Sample records for retro diels-alder reaction

  1. Microwave-based reaction screening: tandem retro-Diels-Alder/Diels-Alder cycloadditions of o-quinol dimers.

    PubMed

    Dong, Suwei; Cahill, Katharine J; Kang, Moon-Il; Colburn, Nancy H; Henrich, Curtis J; Wilson, Jennifer A; Beutler, John A; Johnson, Richard P; Porco, John A

    2011-11-04

    We have accomplished a parallel screen of cycloaddition partners for o-quinols utilizing a plate-based microwave system. Microwave irradiation improves the efficiency of retro-Diels-Alder/Diels-Alder cascades of o-quinol dimers which generally proceed in a diastereoselective fashion. Computational studies indicate that asynchronous transition states are favored in Diels-Alder cycloadditions of o-quinols. Subsequent biological evaluation of a collection of cycloadducts has identified an inhibitor of activator protein-1 (AP-1), an oncogenic transcription factor.

  2. Microwave-Based Reaction Screening: Tandem Retro-Diels-Alder/Diels-Alder Cycloadditions of ortho-Quinol Dimers

    PubMed Central

    Dong, Suwei; Cahill, Kath arine J.; Kang, Moon -Il; Colburn, Nancy H.; Henrich, Curtis J.; Wilson, Jennifer A.; Beutler, John A.; Johnson, Richard P.; Porco, John A.

    2011-01-01

    We have accomplished a parallel screen of cycloaddition partners for ortho-quinols utilizing a plate-based microwave system. Microwave irradiation improves the efficiency of retro-Diels-Alder/Diels-Alder cascades of ortho-quinol dimers which generally proceed in a diastereoselective fashion. Computational studies indicate that asynchronous transition states are favored in Diels-Alder cycloadditions of ortho-quinols. Subsequent biological evaluation of a collection of cycloadducts has identified an inhibitor of activator protein-1 (AP-1), an oncogenic transcription factor. PMID:21942286

  3. Retro iminonitroso Diels-Alder reactions: interconversion of nitroso cycloadducts

    PubMed Central

    Yang, Baiyuan; Lin, Weimin; Krchnak, Viktor; Miller, Marvin J.

    2009-01-01

    Retro iminonitroso Diels-Alder reactions were investigated in both solution and solid phase. In thermal or Cu(I)-mediated reactions, interconversion of various nitroso cycloadducts occurred in the presence of separate dienes. Up to 99% of conversion was observed. Use of chiral ligands in the Cu(I)-medicated reactions gave new cycloadducts enantioselectively. PMID:20161032

  4. Continuous-flow retro-Diels-Alder reaction: an efficient method for the preparation of pyrimidinone derivatives.

    PubMed

    Nekkaa, Imane; Palkó, Márta; Mándity, István M; Fülöp, Ferenc

    2018-01-01

    The syntheses of various pyrimidinones as potentially bioactive products by means of the highly controlled continuous-flow retro-Diels-Alder reaction of condensed pyrimidinone derivatives are presented. Noteworthy, the use of this approach allowed us to rapidly screen a selection of conditions and quickly confirm the viability of preparing the desired pyrimidinones in short reaction times. Yields typically higher than those published earlier using conventional batch or microwave processes were achieved.

  5. Control of femtosecond laser driven retro-Diels-Alder-like reaction of dicyclopentadiene

    PubMed Central

    Das, Dipak Kumar; Goswami, Tapas; Goswami, Debabrata

    2013-01-01

    Using femtosecond time resolved degenerate pump-probe mass spectrometry coupled with simple linearly chirped frequency modulated pulse, we elucidate that the dynamics of retro-Diels-Alder-like reaction of diclopentadiene (DCPD) to cyclopentadiene (CPD) in supersonic molecular beam occurs in ultrafast time scale. Negatively chirped pulse enhances the ion yield of CPD, as compared to positively chirped pulse. This indicates that by changing the frequency (chirp) of the laser pulse we can control the ion yield of a chemical reaction. PMID:23814449

  6. Recyclable thermosetting thermal pad using silicone-based polyurethane crosslinked by Diels-Alder adduct

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Woong; Lee, Da Hee; Jeon, Hee-Jeong; Jang, Sung Il; Cho, Hyun Min; Kim, Youngmin

    2018-01-01

    The recyclable silicone-based thermoset was successfully synthesized by making use of a Diels-Alder (DA) adduct as a cross-linker. The incorporation of the furan-tethered diol 1 into the polymer backbones realized the crosslinking of polymers via the DA reaction. The thermosetting polymer was dissolved in DMF after the retro DA reaction which was monitored by 1H NMR spectroscopy. Due to the retro DA reaction, polymer showed the mendable behavior when it was scratched followed by being heated. This polymer was mixed with alumina powders to fabricate the thermal pad. The thermal resistance of this pad was measured to be 0.48 K/W by a thermal transient test. The thermosetting composite was recycled via the retro DA reaction. The thermal resistance of the recycled one was similar to that of the original one.

  7. Exploiting the Electrophilic and Nucleophilic Dual Role of Nitrile Imines: One-Pot, Three-Component Synthesis of Furo[2,3-d]pyridazin-4(5H)-ones.

    PubMed

    Giustiniano, Mariateresa; Mercalli, Valentina; Amato, Jussara; Novellino, Ettore; Tron, Gian Cesare

    2015-08-21

    An expeditious multicomponent reaction to synthesize tetrasubstituted furo[2,3-d]pyridazin-4(5H)-ones is reported. In brief, hydrazonoyl chlorides react with isocyanoacetamides, in the presence of TEA, to give 1,3-oxazol-2-hydrazones which, without being isolated, can react with dimethylacetylene dicarboxylate to afford furo[2,3-d]pyridazin-4(5H)-ones with an unprecedented level of complexity in a triple domino Diels-Alder/retro-Diels-Alder/lactamization reaction sequence.

  8. The Preparation and Properties of Thermo-reversibly Cross-linked Rubber Via Diels-Alder Chemistry.

    PubMed

    Polgar, Lorenzo Massimo; van Duin, Martin; Picchioni, Francesco

    2016-08-25

    A method for using Diels Alder thermo-reversible chemistry as cross-linking tool for rubber products is demonstrated. In this work, a commercial ethylene-propylene rubber, grafted with maleic anhydride, is thermo-reversibly cross-linked in two steps. The pending anhydride moieties are first modified with furfurylamine to graft furan groups to the rubber backbone. These pendant furan groups are then cross-linked with a bis-maleimide via a Diels-Alder coupling reaction. Both reactions can be performed under a broad range of experimental conditions and can easily be applied on a large scale. The material properties of the resulting Diels-Alder cross-linked rubbers are similar to a peroxide-cured ethylene/propylene/diene rubber (EPDM) reference. The cross-links break at elevated temperatures (> 150 °C) via the retro-Diels-Alder reaction and can be reformed by thermal annealing at lower temperatures (50-70 °C). Reversibility of the system was proven with infrared spectroscopy, solubility tests and mechanical properties. Recyclability of the material was also shown in a practical way, i.e., by cutting a cross-linked sample into small parts and compression molding them into new samples displaying comparable mechanical properties, which is not possible for conventionally cross-linked rubbers.

  9. SAM-dependent enzyme-catalysed pericyclic reactions in natural product biosynthesis

    NASA Astrophysics Data System (ADS)

    Ohashi, Masao; Liu, Fang; Hai, Yang; Chen, Mengbin; Tang, Man-Cheng; Yang, Zhongyue; Sato, Michio; Watanabe, Kenji; Houk, K. N.; Tang, Yi

    2017-09-01

    Pericyclic reactions—which proceed in a concerted fashion through a cyclic transition state—are among the most powerful synthetic transformations used to make multiple regioselective and stereoselective carbon-carbon bonds. They have been widely applied to the synthesis of biologically active complex natural products containing contiguous stereogenic carbon centres. Despite the prominence of pericyclic reactions in total synthesis, only three naturally existing enzymatic examples (the intramolecular Diels-Alder reaction, and the Cope and the Claisen rearrangements) have been characterized. Here we report a versatile S-adenosyl-L-methionine (SAM)-dependent enzyme, LepI, that can catalyse stereoselective dehydration followed by three pericyclic transformations: intramolecular Diels-Alder and hetero-Diels-Alder reactions via a single ambimodal transition state, and a retro-Claisen rearrangement. Together, these transformations lead to the formation of the dihydropyran core of the fungal natural product, leporin. Combined in vitro enzymatic characterization and computational studies provide insight into how LepI regulates these bifurcating biosynthetic reaction pathways by using SAM as the cofactor. These pathways converge to the desired biosynthetic end product via the (SAM-dependent) retro-Claisen rearrangement catalysed by LepI. We expect that more pericyclic biosynthetic enzymatic transformations remain to be discovered in naturally occurring enzyme ‘toolboxes’. The new role of the versatile cofactor SAM is likely to be found in other examples of enzyme catalysis.

  10. Structural Modification of Sol-Gel Materials through Retro Diels-Alder Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SHALTOUT,RAAFAT M.; LOY,DOUGLAS A.; MCCLAIN,MARK D.

    1999-12-08

    Hydrolysis and condensation of organically bridged bis-triethoxysilanes, (EtO){sub 3}Si-R-Si(OEt){sub 3}, results in the formation of three dimensional organic/inorganic hybrid networks (Equation 1). Properties of these materials, including porosity, are dependent on the nature of the bridging group, R. Flexible groups (akylene-spacers longer than five carbons in length) polymerize under acidic conditions to give non-porous materials. Rigid groups (such as arylene-, alkynylene-, or alkenylene) form non-porous, microporous, and macroporous gels. In many cases the pore size distributions are quite narrow. One of the motivations for preparing hybrid organic-inorganic materials is to extend the range of properties available with sol-gel systems bymore » incorporating organic groups into the inorganic network. For example, organically modified silica gels arc either prepared by co-polymerizing an organoalkoxysilane with a silica precursor or surface silylating the inorganic gel. This can serve to increase hydrophobicity or to introduce some reactive organic functionality. However, the type and orientation of these organic functionalities is difficult to control. Furthermore, many organoalkoxysilanes can act to inhibitor even prevent gelation, limiting the final density of organic functionalities. We have devised a new route for preparing highly functionalized pores in hybrid materials using bridging groups that are thermally converted into the desired functionalities after the gel has been obtained. In this paper, we present the preparation and characterization of bridged polysilsesquioxanes with Diels-Alder adducts as the bridging groups from the sol-gel polymerization of monomers 2 and 4. The bridging groups are constructed such that the retro Diela-Alder reaction releases the dienes and leaves the dienophiles as integral parts of the network polymers. In the rigid architecture of a xerogel, this loss of organic functionality should liberate sufficient space to modify the overall porosity. Furthermore, the new porosity will be functionalized with the dienophilic olefin bridging group. We also demonstrate that by changing the type of Diels-Alder adduct used as the bridging group, we can change the temperature at which the retro-Diels-Alder reaction will occur.« less

  11. Thermally cleavable surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McElhanon, James R; Simmons, Blake A; Zifer, Thomas

    2009-11-24

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  12. Thermally cleavable surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McElhanon, James R; Simmons, Blake A; Zifer, Thomas

    2009-09-29

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  13. Thermally cleavable surfactants

    DOEpatents

    McElhanon, James R [Manteca, CA; Simmons, Blake A [San Francisco, CA; Zifer, Thomas [Manteca, CA; Jamison, Gregory M [Albuquerque, NM; Loy, Douglas A [Albuquerque, NM; Rahimian, Kamyar [Albuquerque, NM; Long, Timothy M [Urbana, IL; Wheeler, David R [Albuquerque, NM; Staiger, Chad L [Albuquerque, NM

    2006-04-04

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  14. Contributive Research and Development

    DTIC Science & Technology

    1991-09-25

    cyclopentadiene cracks down (evolves) at about 230 C by retro- Diels Alder reaction under ambient pressure, high pressure, or vacuum environments and the...block coagulation 3) lamination of extruded film 4) microwave drawing of extruded fiber. During processing of molecular composite solutions via wet

  15. Synthesis of Pyrrolo[1,2-a]pyrimidine Enantiomers via Domino Ring-Closure followed by Retro Diels-Alder Protocol.

    PubMed

    Fekete, Beáta; Palkó, Márta; Haukka, Matti; Fülöp, Ferenc

    2017-04-13

    From 2-aminonorbornene hydroxamic acids, a simple and efficient method for the preparation of pyrrolo[1,2- a ]pyrimidine enantiomers is reported. The synthesis is based on domino ring-closure followed by microwave-induced retro Diels-Alder (RDA) protocols, where the chirality of the desired products is transferred from norbornene derivatives. The stereochemistry of the synthesized compounds was proven by X-ray crystallography. The absolute configuration of the product is determined by the configuration of the starting amino hydroxamic acid.

  16. Controlled Ring-Opening Metathesis Polymerization by Molybdenum and Tungsten Alkylidene Complexes

    DTIC Science & Technology

    1988-07-29

    weights and low polydispersities (as low as 1.03) consistent with a living catalyst system employing 50, 100, 200, and 400 eq of monomer. The reactions are...secondary metathesis of polymer chains Bulky alkoxide ligands Wittig-like reaction Ring-opening metathesis polymerization (ROMP) Feast monomer Cyclic...olefins Retro Diels-Alder reaction Norbornene (NBE) Low temperature column chromatography Endo-,endo-5,6-dicarbomethoxynorbornene Discrete, soluble

  17. Elucidation of the Cross-Link Structure of Nadic-End-Capped Polyimides Using NMR of C-13-Labeled Polymers

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Johnston, J. Christopher; Cavano, Paul J.

    1997-01-01

    Solid NMR of C-13 isotope-labeled samples of PMR-15 was used to follow the cross-linking reaction of the nadic end cap. Some samples were labeled on one of the carbon atoms of the nadic end cap, and others on the methylene carbon atom of the methylenedianiline portion of the polymer. NMR spectra were run on these samples both before and after cross-linking. In this way, direct evidence of the major products of cross-linking under normal cure conditions is provided. The majority (approximately 85%) of the cross-linking derives from olefin polymerization through the double bond of the end cap. Approximately 15% of the products could come from a pathway involving a retro-Diels-Alder reaction. However, all of the products could be explained by a biradical intermediate without a retro-Diels-Alder reaction. Evidence is also presented that the methylene moiety in the methylenedianiline part of the polymer chain also participates in the cross-linking, albeit to a small extent, by a radical transfer reaction. Different cure conditions (higher temperatures, longer times) could change the relative distribution of the products.

  18. Enzymatic catalysis of the Diels-Alder reaction in the biosynthesis of natural products.

    PubMed

    Oikawa, Hideaki; Tokiwano, Tetsuo

    2004-06-01

    Recent studies on enzymes catalyzing the Diels- Alder reaction. often named "Diels-Alderases", clearlydemonstrated the involvement of this synthetically useful reaction in the biosynthesis of natural products.This review covers natural Diels-Alder type cycloadducts. synthetic efforts on the chemical feasibility ofthe biosynthctic Diels - Alder reaction and a brief history of studies on Diels-Alderases. In addition,reaction mechanisms of artificial and natural Diels--Alderases are discussed.

  19. Synthesis of tripeptide derivatized cyclopentadienyl complexes of technetium and rhenium as radiopharmaceutical probes.

    PubMed

    Nadeem, Qaisar; Can, Daniel; Shen, Yunjun; Felber, Michael; Mahmood, Zaid; Alberto, Roger

    2014-03-28

    We describe the syntheses of half-sandwich complexes of the type [(η(5)-Cp(CONH-R))M(CO)3] with M = Re or (99m)Tc. The R group represents different tri-peptides (tpe) which display high binding affinities for oligopeptide transporters PEPT2. The (99m)Tc complexes were prepared directly from [(99m)Tc(OH2)3(CO)3](+) and Diels-Alder dimerized, cyclopentadienyl derivatized peptides in water. This approach corroborates the feasibility of metal-mediated retro Diels-Alder reactions for the preparation of not only small molecules but also peptides carrying a [(η(5)-Cp)(99m)Tc(CO)3] tag. We synthesized the Diels-Alder product [(HCpCONH-tpe)2] from Thiele's acid [(η(5)-HCpCOOH)2] via double peptide coupling. The Re-complexes [(η(5)-CpCONH-tpe)Re(CO)3] were obtained by attaching [(Cp-COOH)Re(CO)3] directly to the N-terminus of peptides as received from SPPS. The authenticity of the (99m)Tc-complexes is confirmed by chromatographic comparison with the corresponding rhenium complexes, fully characterized by spectroscopic techniques.

  20. Dynamically Cross-linked Elastomer Hybrids with Light-Induced Rapid and Efficient Self-Healing Ability and Reprogrammable Shape Memory Behavior.

    PubMed

    Bai, Jing; Shi, Zixing

    2017-08-16

    Pristine carbon nanotubes (CNTs) were activated to exhibit Diels-Alder (DA) reactivity in a polymer matrix, which was modified with monomers containing furan groups. The DA-active polymer matrix was transferred into a dynamic reversible cross-linked inorganic-organic network via a Diels-Alder reaction with CNTs, where pristine CNTs were used as dienophile chemicals and furan-modified SBS acted as the macromolecular diene. In this system, the mechanical properties as well as resilience and solvent resistance were greatly improved even with the presence of only 1 wt % CNTs. Meanwhile, the hybrids retained recyclability and exhibited some smart behaviors, including self-healing and reprogrammable shape memory properties. Furthermore, due to the photothermal effect of CNTs, a retro-Diels-Alder (rDA) reaction was activated under laser irradiation, and healing of a crack on the hybrid surface was demonstrated in approximately 10 s with almost complete recovery of the mechanical properties. Such fast and efficient self-healing performance provides a new concept in designing self-healing nanocomposites with tunable structures and mechanical properties. Furthermore, the DA and rDA reactions could be combined to reprogram the shape memory behavior under laser irradiation or thermal treatment, wherein the temporary shape of the sample could be transferred to a permanent shape via the rDA reaction at high temperature.

  1. Tetramethylnorbornadiene, a versatile alkene for cyclopentenone synthesis through intermolecular Pauson-Khand reactions.

    PubMed

    Revés, Marc; Lledó, Agustí; Ji, Yining; Blasi, Emma; Riera, Antoni; Verdaguer, Xavier

    2012-07-06

    1,2,3,4-Tetramethyl-bicyclo[2.2.1]hepta-2,5-diene (TMNBD, for tetramethylnorbornadiene) has been prepared and used successfully as an acetylene equivalent in the synthesis of substituted cyclopentenones. TMNBD is easily accessible on a multigram scale and displays excellent reactivity toward the intermolecular Pauson-Khand reaction. Conjugate additions on the resulting tricyclic compounds proceed with exquisite diastereoselectivity. The retro-Diels-Alder reaction of these TMNBD derivatives occurs under much smoother conditions than those required for its norbornadiene homologues.

  2. A facile microwave-assisted Diels-Alder reaction of vinylboronates.

    PubMed

    Sarotti, Ariel M; Pisano, Pablo L; Pellegrinet, Silvina C

    2010-11-21

    The Diels-Alder reaction of vinylboronates can be easily performed using microwave irradiation giving excellent yields of the cycloadducts. Pinacol vinylboronate was the reagent of choice due to its stability towards hydrolysis, operational simplicity and yields of Diels-Alder products. To the best of our knowledge, this is the first example of microwave-assisted Diels-Alder reaction of boron-substituted dienophiles. Subsequent in situ oxidation of the cycloadducts with alkaline hydrogen peroxide afforded the alcohols efficiently.

  3. Addition polymers from 1,4,5,8-tetrahydro-1,4;5,8-diepoxyanthracene and Bis-dienes. 2: Evidence for thermal dehydration occurring in the cure process

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Olshavsky, Michael A.; Meador, Michael A.; Ahn, Myong-Ku

    1988-01-01

    Diels-Alder cycloaddition copolymers from 1,4,5,8-tetrahydro-1,4;5,8-diepoxyanthracene and anthracene end-capped polyimide oligomers appear, by thermogravimetric analysis (TGA), to undergo dehydration at elevated temperatures. This would produce thermally stable pentiptycene units along the polymer backbone, and render the polymers incapable of unzipping through a retro-Diels-Alder pathway. High resolution solid 13C nuclear magnetic resonance (NMR) of one formulation of the polymer system before and after heating at elevated temperatures, shows this to indeed be the case. NMR spectra of solid samples of the polymer before and after heating correlated well with those of the parent pentiptycene model compound before and after acid-catalyzed dehydration. Isothermal gravimetric analyses and viscosities of the polymer before and after heat treatment support dehydration as a mechanism for the cure reaction.

  4. Enantioselective syntheses of carbanucleosides from the Pauson-Khand adduct of trimethylsilylacetylene and norbornadiene.

    PubMed

    Vázquez-Romero, Ana; Rodríguez, Julia; Lledó, Agustí; Verdaguer, Xavier; Riera, Antoni

    2008-10-16

    A new enantioselective approach to carbanucleosides from Pauson-Khand (PK) adduct 1 is disclosed. The chiral cyclopentenone 1 is readily accessible in enantiomerically pure form via PK reaction of trimethylsilylacetylene and norbornadiene using N-benzyl-N-diphenylphosphino-tert-butyl-sulfinamide as a chiral P,S ligand. (-)-Carbavir and (-)-Abacavir were enantioselectively synthesized starting from (-)-1. The key steps of the sequence are a photochemical conjugate addition of a hydroxymethyl radical, a retro-Diels-Alder reaction, and a palladium catalyzed allylic substitution to introduce the nucleobase.

  5. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction

    PubMed Central

    Siegel, Justin B.; Zanghellini, Alexandre; Lovick, Helena M.; Kiss, Gert; Lambert, Abigail R.; St.Clair, Jennifer L.; Gallaher, Jasmine L.; Hilvert, Donald; Gelb, Michael H.; Stoddard, Barry L.; Houk, Kendall N.; Michael, Forrest E.; Baker, David

    2011-01-01

    The Diels-Alder reaction is a cornerstone in organic synthesis, forming two carbon-carbon bonds and up to four new stereogenic centers in one step. No naturally occurring enzymes have been shown to catalyze bimolecular Diels-Alder reactions. We describe the de novo computational design and experimental characterization of enzymes catalyzing a bimolecular Diels-Alder reaction with high stereoselectivity and substrate specificity. X-ray crystallography confirms that the structure matches the design for the most active of the enzymes, and binding site substitutions reprogram the substrate specificity. Designed stereoselective catalysts for carbon-carbon bond forming reactions should be broadly useful in synthetic chemistry. PMID:20647463

  6. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction.

    PubMed

    Siegel, Justin B; Zanghellini, Alexandre; Lovick, Helena M; Kiss, Gert; Lambert, Abigail R; St Clair, Jennifer L; Gallaher, Jasmine L; Hilvert, Donald; Gelb, Michael H; Stoddard, Barry L; Houk, Kendall N; Michael, Forrest E; Baker, David

    2010-07-16

    The Diels-Alder reaction is a cornerstone in organic synthesis, forming two carbon-carbon bonds and up to four new stereogenic centers in one step. No naturally occurring enzymes have been shown to catalyze bimolecular Diels-Alder reactions. We describe the de novo computational design and experimental characterization of enzymes catalyzing a bimolecular Diels-Alder reaction with high stereoselectivity and substrate specificity. X-ray crystallography confirms that the structure matches the design for the most active of the enzymes, and binding site substitutions reprogram the substrate specificity. Designed stereoselective catalysts for carbon-carbon bond-forming reactions should be broadly useful in synthetic chemistry.

  7. Fe(II)/Fe(III)-Catalyzed Intramolecular Didehydro-Diels-Alder Reaction of Styrene-ynes.

    PubMed

    Mun, Hyeon Jin; Seong, Eun Young; Ahn, Kwang-Hyun; Kang, Eun Joo

    2018-02-02

    The intramolecular didehydro-Diels-Alder reaction of styrene-ynes was catalyzed by Fe(II) and Fe(III) to produce various naphthalene derivatives under microwave heating conditions. Mechanistic calculations found that the Fe(II) catalyst activates the styrenyl diene in an inverse-electron-demand Diels-Alder reaction, and the consecutive dehydrogenation reaction can be promoted by either Fe(II)-catalyzed direct dehydrogenation or an Fe(III)-catalyzed rearomatization/dehydrogenation pathway.

  8. Theoretical study of the Diels-Alder reaction between o-benzoquinone and norbornadiene

    NASA Astrophysics Data System (ADS)

    Quijano-Quiñones, Ramiro F.; Quesadas-Rojas, M.; Cuevas, Gabriel; Mena-Rejón, Gonzalo J.

    2013-06-01

    The reaction between norbornadiene and o-benzoquinone is an important step in polyalicyclic rigid structures synthesis. It has been considered that this reaction is an example of Diels-Alder (DA) and hetero-Diels-Alder (HDA) cycloadditions with o-benzoquinone acting as diene (forming C-C bonds) and heterodiene (forming O-C bonds). We have performed a Density Functional Theory study of this reaction, employing B3LYP, mPW1PW91, and B1B95 functionals and 6-31G(d,p) and 6-31+G(d,p) Gaussian type basis sets. The results indicate that Diels-Alder is a feasible mechanism for both reactions, but should not be the main route to the formation of products with C-C bonds.

  9. Origins of Stereoselectivity in the trans-Diels-Alder Paradigm

    PubMed Central

    Paton, Robert S.; Mackey, Joel L.; Kim, Woo Han; Lee, Jun Hee; Danishefsky, Samuel J.; Houk, K. N.

    2010-01-01

    The regioselectivity and stereoselectivity aspects of the Diels-Alder/radical hydrodenitration reaction sequence leading to trans-fused ring systems have been investigated with density functional calculations. A continuum of transition structures representing Diels-Alder and hetero-Diels-Alder cycloadditions as well as a sigmatropic rearrangement have been located, and they all lie very close in energy on the potential energy surface. All three pathways are found to be important in the formation of the Diels-Alder adduct. Reported regioselectivities are reproduced by the calculations. The stereoselectivity of radical hydrodenitration of the cis-Diels-Alder adduct is found to be related to the relative conformational stabilities of bicyclic radical intermediates. Overall, the computations provide understanding of the regioselectivities and stereoselectivities of the trans-Diels-Alder paradigm. PMID:20557046

  10. A Single Molecular Diels-Alder Crosslinker for Achieving Recyclable Cross-Linked Polymers.

    PubMed

    Chen, Shengli; Wang, Fenfen; Peng, Yongjin; Chen, Tiehong; Wu, Qiang; Sun, Pingchuan

    2015-09-01

    A triol-functional crosslinker combining the thermoreversible properties of Diels-Alder (DA) adducts in one molecule is designed, synthesized, and used as an ideal substitute of a traditional crosslinker to prepare thermal recyclable cross-linked polyurethanes with excellent mechanical properties and recyclability in a very simple and efficient way. The recycle property of these materials achieved by the DA/retro-DA reaction at a suitable temperature is verified by differential scanning calorimetry and in situ variable temperature solid-state NMR experiments during the cyclic heating and cooling processes. The thermal recyclability and remending ability of the bulk polyurethanes is demonstrated by three polymer processing methods, including hot-press molding, injection molding, and solution casting. It is notable that all the recycled cross-linked polymers display nearly invariable elongation/stress at break compared to the as-synthesized samples. Further end-group functionalization of this single molecular DA crosslinker provides the potential in preparing a wide range of recyclable cross-linked polymers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Enhancing the Scope of the Diels-Alder Reaction through Isonitrile Chemistry: Emergence of a New Class of Acyl-Activated Dienophiles

    PubMed Central

    Townsend, Steven D.; Wu, Xiangyang; Danishefsky, Samuel J.

    2012-01-01

    α,β-Unsaturated imides, formylated at the nitrogen atom, comprise a new and valuable family of dienophiles for servicing Diels-Alder reactions. These systems are assembled through extension of recently discovered isonitrile chemistry to the domain of α,β-unsaturated acids. Cycloadditions are facilitated by Et2AlCl, presumably via chelation between the two carbonyl groups of the N-formyl amide. Applications of the isonitrile/Diels-Alder logic to the IMDA reaction, as well as methodologies to modify the N-formyl amide of the resultant cycloaddition product, are described. It is expected that this easily executed chemistry will provide a significant enhancement for application of Diels-Alder reactions to many synthetic targets. PMID:22708980

  12. Diversity-Oriented Approaches to Polycyclics and Bioinspired Molecules via the Diels-Alder Strategy: Green Chemistry, Synthetic Economy, and Beyond.

    PubMed

    Kotha, Sambasivarao; Chavan, Arjun S; Goyal, Deepti

    2015-05-11

    We describe diverse approaches to various dienes and their utilization in the Diels-Alder reaction to produce a variety of polycycles. The dienes covered here are prepared by simple alkylation reaction or via the Claisen rearrangement or by enyne metathesis of alkyne or enyne building blocks. Here, we have also included the Diels-Alder chemistry of dendralenes, a higher analog of cross-conjugated dienes. The present article is inclusive of o-xylylene derivatives that are generated in situ starting with benzosultine or benzosulfone derivatives. The Diels-Alder reaction of these dienes with various dienophiles gave diverse polycyclic systems and biologically important targets.

  13. Exploring the influence of Diels-Alder linker length on photothermal molecule release from gold nanorods.

    PubMed

    Vetterlein, Claudia; Vásquez, Rodrigo; Bolaños, Karen; Acosta, Gerardo A; Guzman, Fanny; Albericio, Fernando; Celis, Freddy; Campos, Marcelo; Kogan, Marcelo J; Araya, Eyleen

    2018-06-01

    We studied the photothermal release of carboxyfluorescein (CF) linked to the gold surface of gold nanorods (GNRs) by two Diels-Alder adducts of different lengths (n = 4 and n = 9). The functionalized GNRs were irradiated with infrared light to produce photothermal release of CF by a retro-Diels-Alder reaction. The adducts were chemisorbed on the GNRs and the functionalized nanoparticles were characterized by UV-vis, DLS, zeta potential and Raman and surface-enhanced Raman spectroscopy (SERS). On the basis of the degree of nanoparticle functionalization and the SERS results, we inferred the orientation of CF on the surface of the gold nanoparticle. Moreover, we determined the photothermal release profiles of CF from the gold surface by laser irradiation. The release was faster for the longer linker (n = 9). SERS revealed that, for the shorter linker (n = 4), molecules are oriented perpendicularly with respect to the gold surface, thereby maintaining the CF far from the surface. In contrast, the longer linker was observed to be tilted, thus maintaining CF close to the gold surface and therefore potentially favoring the photothermal transfer of energy. These results are relevant for the future development of the spatial and temporal controlled release of drugs by means of gold nanoparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. The effect of pressure on microwave-enhanced Diels-Alder reactions. A case study.

    PubMed

    Kaval, Nadya; Dehaen, Wim; Kappe, C Oliver; Van der Eycken, Erik

    2004-01-21

    It is demonstrated that microwave-assisted Diels-Alder reactions of substituted 2(1H)-pyrazinones with ethylene are significantly more effective utilizing pre-pressurized (up to 10 bar) reaction vessels.

  15. Rate Acceleration of the Retro Diels-Alder Reaction of Anthracene Cycloadducts by Polysiloxy Substituents

    DTIC Science & Technology

    1988-01-01

    Lindsey 13 yielded 9, 1O-dimethyl-2,3,6,7-tetramethoxyanthracene (13) by condensing veratrole (12) and acetaldehyde in the presence of sulfuric acid...combination of those cited by Boldt12 and Lindsey.13 To an ice cooled solution of veratrole (32 mL, 250 mmol) in acetic acid (125 mL) was slowly added...solution of veratrole (32 mL, 250 mmol) in acetic acid (125 mL) was slowly added an ice cooled solution of benzaldehyde ( 25 mL, 246 mmol) in methanol

  16. Synthesis of cyclopentadienyl capped polyethylene and subsequent block copolymer formation via hetero Diels-Alder (HDA) chemistry.

    PubMed

    Espinosa, Edgar; Glassner, Mathias; Boisson, Christophe; Barner-Kowollik, Christopher; D'Agosto, Franck

    2011-09-15

    In the current contribution it is demonstrated - for the first time - that poly(ethylene) (M(n) = 1,400 as well as 2,800 g  ·  mol(-1) , PDI = 1.2) can be readily equipped with highly reactive cyclopentadienyl (Cp) end groups. The Cp terminal poly(ethylene) can subsequently be reacted in an efficient hetero Diels-Alder (HDA) reaction with macromolecules (poly(isobornyl acrylate) (M(n) = 4,600 g  ·  mol(-1) , PDI = 1.10) and poly(styrene) (M(n) = 6,300 g  ·  mol(-1) , PDI = 1.13) featuring strongly electron withdrawing thiocarbonyl thio end groups, prepared via reversible addition fragmentation chain transfer (RAFT) polymerization employing benzylpyridin-2-yldithioformate (BPDF) as transfer agent. The resulting block copolymers have been analyzed via high-temperature size exclusion chromatography (SEC) as well as nuclear magnetic resonance (NMR) spectroscopy. The current system allows for the removal of the excess of the non-poly(ethylene) containing segment via filtration of the poly(ethylene)-containing block copolymer. However, the reaction temperatures need to be judiciously selected. Characterization of the generated block copolymers at elevated temperatures can lead - depending on the block copolymer type - to the occurrence of retro Diels-Alder processes. The present study thus demonstrates that RAFT-HDA ligation can be effectively employed for the generation of block copolymers containing poly(ethylene) segments. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The influence of reaction conditions on the Diels-Alder cycloadditions of 2-thio-3-chloroacrylamides; investigation of thermal, catalytic and microwave conditions.

    PubMed

    Kissane, Marie; Lynch, Denis; Chopra, Jay; Lawrence, Simon E; Maguire, Anita R

    2010-12-21

    The Diels-Alder cycloadditions of cyclopentadiene and 2,3-dimethyl-1,3-butadiene to a range of 2-thio-3-chloroacrylamides under thermal, catalytic and microwave conditions is described. The influence of reaction conditions on the outcome of the cycloadditions, in particular the stereoselectivity and reaction efficiency, is discussed. While the cycloadditions have been attempted at the sulfide, sulfoxide and sulfone levels of oxidation, use of the sulfoxide derivatives is clearly beneficial for stereoselective construction of Diels-Alder cycloadducts.

  18. Synthesis of 3,4-dihydro-1,8-naphthyridin-2(1H)-ones via microwave-activated inverse electron-demand Diels-Alder reactions.

    PubMed

    Fadel, Salah; Hajbi, Youssef; Khouili, Mostafa; Lazar, Said; Suzenet, Franck; Guillaumet, Gérald

    2014-01-01

    Substituted 3,4-dihydro-1,8-naphthyridin-2(1H)-ones have been synthesized with the inverse electron-demand Diels-Alder reaction from 1,2,4-triazines bearing an acylamino group with a terminal alkyne side chain. Alkynes were first subjected to the Sonogashira cross-coupling reaction with aryl halides, the product of which then underwent an intramolecular inverse electron-demand Diels-Alder reaction to yield 5-aryl-3,4-dihydro-1,8-naphthyridin-2(1H)-ones by an efficient synthetic route.

  19. A recyclable fluorous organocatalyst for Diels-Alder reactions

    PubMed Central

    Chu, Qianli; Zhang, Wei; Curran, Dennis P.

    2007-01-01

    Chiral fluorous imidazolidinone catalyst 2 provides consistently high enantioselectivities in Diels-Alder reactions of dienes and α, β-unsaturated aldehydes. The catalyst can be readily separated from the reaction products by fluorous solid-phase extraction, and recovered in excellent purity for direct reuse. PMID:17710220

  20. Nature's Strategy for Catalyzing Diels-Alder Reaction.

    PubMed

    Oikawa, Hideaki

    2016-04-21

    The enzymes catalyzing a Diels-Alder-type reaction have been attractive targets for organic chemists for years. Recently, Zheng et al. (2016) reported the structure of a formal monofunctional Diels-Alderase PyrI4 complexed with the product and unveiled a detailed catalytic mechanism of a highly important enzyme. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Nitropyrroles, Diels-Alder reactions assisted by microwave irradiation and solvent effect. An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Mancini, Pedro M. E.; Kneeteman, María N.; Cainelli, Mauro; Ormachea, Carla M.; Domingo, Luis R.

    2017-11-01

    The behaviors of N-tosylnitropyrroles acting as electrophilic dienophiles in polar Diels-Alder reactions joint to different dienes of increeased nucleophilicity are analyzed. The reactions were developed under microwave irradiation using toluene or protic ionic liquids (PILs) as solvents and in free solvent conditions. In all the cases explored we observed good yields in short reaction times. For these reactions, the free solvent condition and the use of protic ionic liquids as solvents offer similar results. However, the free solvent conditions favor environmental sustainability. The role of PILs in these polar Diels-Alder reactions has been theoretically studied within the Molecular Electron Density Theory.

  2. Tandem enyne metathesis-Diels-Alder reaction for construction of natural product frameworks.

    PubMed

    Rosillo, Marta; Domínguez, Gema; Casarrubios, Luis; Amador, Ulises; Pérez-Castells, Javier

    2004-03-19

    Enynes connected through aromatic rings are used as substrates for metathesis reactions. The reactivity of three ruthenium carbene complexes is compared. The resulting 1,3-dienes are suitable precursors of polycyclic structures via a Diels-Alder process. Some domino RCM-Diels-Alder reactions are performed, suggesting a possible beneficial effect of the ruthenium catalyst in the cycloaddition process. Other examples require Lewis acid cocatalyst. When applied to aromatic ynamines or enamines, a new synthesis of vinylindoles is achieved. Monitorization of several metathesis reactions with NMR shows the different behavior for ruthenium catalysts. New carbenic species are detected in some reactions with an important dependence on the solvent used.

  3. Genetic Selection for Improved Abzymes in E. Coli

    DTIC Science & Technology

    1994-08-03

    immunoassay to scemen antibody phage libraries directly for catalysis of a bimolecular Diels - Alder reaction and have identified several active clones...sensitive growth selection assay in F coli for catalysts with chorismate mutase activity; and (3) we identified new abzymes for a Diels - Alder ...generated combinatorial antibody libraries from mRNA isolated from the spleens of mice hyperimmunized with transition state analogs for Diels - Alder and

  4. Regiocontrol by remote substituents. An enantioselective total synthesis of frenolicin B via a highly regioselective Diels-Alder reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, G.A.; Li, J.; Gordon, M.S.

    1993-06-30

    The quinone subunit is contained in a broad range of biologically important natural products such as frenolicin B, which is a member of the pyranonaphthoquinone family. The diverse biological activity of quinones has led to the development of several new synthetic methods for quinones. Among the pathways featuring a cycloaddition reaction, one of the most general methods for the regiospecific synthesis of substituted quinones was pioneered by H.J. Rapoport and others. This method involves the Diels-Alder reaction of a substituted quinone. As part of a program to evaluate the directing effects of functional groups not directly attached to the atomsmore » undergoing Diels-Alder cycloaddition, we now report that remote substituents on a dienophile can confer excellent regioselectivity in Diels-Alder reactions. This work has led to an extremely direct synthesis of the pyranonaphthoquinone framework and to the first synthesis of frenolicin B (1). 19 refs., 1 fig.« less

  5. A computational study of the Diels-Alder reactions between 2,3-dibromo-1,3-butadiene and maleic anhydride

    NASA Astrophysics Data System (ADS)

    Rivero, Uxía; Meuwly, Markus; Willitsch, Stefan

    2017-09-01

    The neutral and cationic Diels-Alder-type reactions between 2,3-dibromo-1,3-butadiene and maleic anhydride have been computationally explored as the first step of a combined experimental and theoretical study. Density functional theory calculations show that the neutral reaction is concerted while the cationic reaction can be either concerted or stepwise. Further isomerizations of the Diels-Alder products have been studied in order to predict possible fragmentation pathways in gas-phase experiments. Rice-Ramsperger-Kassel-Marcus (RRKM) calculations suggest that under single-collision experimental conditions the neutral product may reform the reactants and the cationic product will most likely eliminate CO2.

  6. [Chemistry and biosynthesis of prenylflavonoids].

    PubMed

    Nomura, T

    2001-07-01

    Many isoprenylated flavonoids have been isolated from mulberry trees and related plants (Moraceae). Among them, kuwanons G (13) and H (14) were the first isolated active substances exhibiting a hypotensive effect from the Japanese Morus root bark. These compounds are considered to be formed through an enzymatic Diels-Alder reaction of a chalcone (15) and dehydro-kuwanon C (16) or its equivalent. Since that time, about forty kinds of Diels-Alder type adducts structurally similar to that of 13 have been isolated from the moraceous plants. Some strains of Morus alba as well as M. bombycis callus tissues have a high productivity of mulberry Diels-Alder type adducts, such as chalcomoracin (26) and kuwanon J (28). The biosynthesis of the mulberry Diels-Alder type adducts has been studied with the aid of the cell strain. Chalcomoracin (26) and kuwanon J (28) were proved to be enzymatic Diels-Alder type reaction products by the administration experiment with O-methylchalcone derivatives. Furthermore, for the isoprenoid biosynthesis of prenylflavonoids in Morus alba callus tissues, a novel way through the junction of glycolysis and pentose-phosphate cycle was proposed. The crude enzyme fraction catalyzing the Morus Diels-Alder type reaction could be isolated. Studies of phenolic constituents of licorice (Glycyrrhiza species) were carried out. On the course of the structure determination of the phenolic constituents of licorice, two new NMR structure determination methods for prenylflavonoids were found. Furthermore, the prenylphenols isolated from licorice were summarized according to the origin of the materials.

  7. Chemistry and biosynthesis of isoprenylated flavonoids from Japanese mulberry tree

    PubMed Central

    Nomura, Taro; Hano, Yoshio; Fukai, Toshio

    2009-01-01

    Many isoprenylated flavonoids have been isolated from Japanese mulberry tree (Moraceae). Among them, kuwanons G (1) and H (2) were the first isolated active substances exhibiting a hypotensive effect. These compounds are considered to be formed through an enzymatic Diels-Alder type reaction between an isoprenyl portion of an isoprenylphenol as the diene and an α, β-double bond of chalcone as the dienophile. The absolute configurations of these Diels-Alder type adducts were confirmed by three different methods. The stereochemistries of the adducts were consistent with those of ones in the Diels-Alder reaction involving exo- and endo-addition. Some strains of Morus alba callus tissues have a high productivity of mulberry Diels-Alder type adducts, such as chalcomoracin (3) and kuwanon J (4). The biosynthetic studies of the mulberry Diels-Alder type adducts have been carried out with the aid of the cell strain. Chalcomoracin (3) and kuwanon J (4) were proved to be enzymatic Diels-Alder type reaction products by the administration experiments with O-methylchalcone derivatives. Furthermore, for the isoprenoid biosynthesis of prenylflavonoids in Morus alba callus tissues by administration of [1,3-13C2]- and [2-13C]-glycerol, a novel way through the junction of glycolysis and pentose-phosphate cycle was proved. Two independent isoprenoid biosynthetic pathways, that for sterols and that for isoprenoidphenols, operate in the Morus alba cell cultures. The former is susceptible to compactin (ML-236) and the latter resists to compactin in the cell cultures, respectively. PMID:19907125

  8. The Diels-Alder cyclization of ketenimines.

    PubMed

    Erb, Jeremy; Strull, Jessica; Miller, David; He, Jean; Lectka, Thomas

    2012-04-20

    A Diels-Alder reaction between cyclopentadiene and a variety of ketenimines is reported. A copper(I)-bis(phosphine complex catalyzes the cycloaddition across the C═N bond of the ketenimine in a [4 + 2] reaction to give an enamine intermediate that is hydrolyzed upon purification to generate aminoketones. © 2012 American Chemical Society

  9. Illustrating the Utility of X-Ray Crystallography for Structure Elucidation through a Tandem Aldol Condensation/Diels-Alder Reaction Sequence

    ERIC Educational Resources Information Center

    Hoang, Giang T.; Kubo, Tomohiro; Young, Victor G., Jr.; Kautzky, Jacob A.; Wissinger, Jane E.

    2015-01-01

    Two introductory organic chemistry laboratory experiments are described based on the Diels-Alder reaction of 2,3,4,5-tetraphenylcyclopentadienone, which is synthesized prior to or in a one-pot reaction, with styrene. Students are presented with three possible products, the "endo" and "exo" diastereomers and the decarbonylated…

  10. Microwave-Enhanced Organic Syntheses for the Undergraduate Laboratory: Diels-Alder Cycloaddition, Wittig Reaction, and Williamson Ether Synthesis

    ERIC Educational Resources Information Center

    Baar, Marsha R.; Falcone, Danielle; Gordon, Christopher

    2010-01-01

    Microwave heating enhanced the rate of three reactions typically performed in our undergraduate organic chemistry laboratory: a Diels-Alder cycloaddition, a Wittig salt formation, and a Williamson ether synthesis. Ninety-minute refluxes were shortened to 10 min using a laboratory-grade microwave oven. In addition, yields improved for the Wittig…

  11. Structural basis for Diels-Alder ribozyme-catalyzed carbon-carbon bond formation

    PubMed Central

    Serganov, Alexander; Keiper, Sonja; Malinina, Lucy; Tereshko, Valentina; Skripkin, Eugene; Höbartner, Claudia; Polonskaia, Anna; Phan, Anh Tuân; Wombacher, Richard; Micura, Ronald; Dauter, Zbigniew; Jäschke, Andres; Patel, Dinshaw J

    2015-01-01

    The majority of structural efforts addressing RNA’s catalytic function have focused on natural ribozymes, which catalyze phosphodiester transfer reactions. By contrast, little is known about how RNA catalyzes other types of chemical reactions. We report here the crystal structures of a ribozyme that catalyzes enantioselective carbon-carbon bond formation by the Diels-Alder reaction in the unbound state and in complex with a reaction product. The RNA adopts a λ-shaped nested pseudoknot architecture whose preformed hydrophobic pocket is precisely complementary in shape to the reaction product. RNA folding and product binding are dictated by extensive stacking and hydrogen bonding, whereas stereoselection is governed by the shape of the catalytic pocket. Catalysis is apparently achieved by a combination of proximity, complementarity and electronic effects. We observe structural parallels in the independently evolved catalytic pocket architectures for ribozyme- and antibody-catalyzed Diels-Alder carbon-carbon bond-forming reactions. PMID:15723077

  12. Cyclic-RGD penta-peptides cRGDyK derivatized with cyclopentadienyl complexes of technetium and rhenium as radiopharmaceutical probes.

    PubMed

    Nadeem, Qaisar; Shen, Yunjun; Warsi, Muhammad Farooq; Nasar, Gulfam; Qadir, Muhammad Abdul; Alberto, Roger

    2017-07-01

    The present study reports the syntheses of half-sandwich complexes of the type [M(η 5 -C 5 H 4 CONH-R)(CO) 3 ] (M═Re, 99m Tc;R═cyclic RGD peptide (cRGDyK) for potential imaging of α v β 3 integrin expression. The 99m Tc complex was prepared directly from the reaction of [ 99m Tc(OH 2 ) 3 (CO) 3 ] + with cRGDyK, doubly conjugated to Thiele's acid [(C 5 H 5 COOH) 2 ] in water. This approach extends the viability of metal-mediated retro Diels-Alder reactions for the preparation of small molecules such as linear tripeptides to a more complex cyclic peptide carrying a [(η 5 -C 5 H 4 ) 99m Tc(CO) 3 ] tag. The Diels-Alder product [(C 5 H 5 CONH-cRGDyK) 2 ] was prepared from Thiele's acid via double peptide coupling. The Re-complex [Re(η 5 -C 5 H 4 CONH-cRGDyK)(CO) 3 ] was obtained by attaching [Re(η 5 -C 5 H 4 COOH)(CO) 3 ] directly to the N-terminus of cRGDyK. The identity of the 99m Tc-complex is confirmed by chromatographic comparison with the corresponding rhenium complex, fully characterized by spectroscopic techniques. Copyright © 2017 John Wiley & Sons, Ltd.

  13. The Synthesis of "N"-Benzyl-2-Azanorbornene via Aqueous Hetero Diels-Alder Reaction: An Undergraduate Project in Organic Synthesis and Structural Analysis

    ERIC Educational Resources Information Center

    Sauvage, Xavier; Delaude, Lionel

    2008-01-01

    The synthesis of "N"-benzyl-2-azanorbornene via aqueous hetero Diels-Alder reaction of cyclopentadiene and benzyliminium chloride formed in situ from benzylamine hydrochloride and formaldehyde is described. Characterization of the product was achieved by IR and NMR spectroscopies. The spectral data acquired are thoroughly discussed. Numerous…

  14. Continuous-flow retro-Diels–Alder reaction: an efficient method for the preparation of pyrimidinone derivatives

    PubMed Central

    Nekkaa, Imane; Palkó, Márta; Mándity, István M

    2018-01-01

    The syntheses of various pyrimidinones as potentially bioactive products by means of the highly controlled continuous-flow retro-Diels–Alder reaction of condensed pyrimidinone derivatives are presented. Noteworthy, the use of this approach allowed us to rapidly screen a selection of conditions and quickly confirm the viability of preparing the desired pyrimidinones in short reaction times. Yields typically higher than those published earlier using conventional batch or microwave processes were achieved. PMID:29507637

  15. SAM-Dependent Enzyme-Catalysed Pericyclic Reactions in Natural Product Biosynthesis

    PubMed Central

    Ohashi, Masao; Liu, Fang; Hai, Yang; Chen, Mengbin; Tang, Man-cheng; Yang, Zhongyue; Sato, Michio; Watanabe, Kenji; Houk, K. N.; Tang, Yi

    2017-01-01

    Pericyclic reactions are among the most powerful synthetic transformations to make multiple regioselective and stereoselective carbon-carbon bonds1. These reactions have been widely applied for the synthesis of biologically active complex natural products containing contiguous stereogenic carbon centers2–6. Despite the prominence of pericyclic reactions in total synthesis, only three naturally existing enzymatic examples, intramolecular Diels-Alder (IMDA) reaction7, Cope8 and Claisen rearrangements9, have been characterized. Here, we report the discovery of a S-adenosyl-L-methionine (SAM) dependent enzyme LepI that can catalyse stereoselective dehydration, bifurcating IMDA/hetero-DA (HDA) reactions via an ambimodal transition state, and a [3,3]-sigmatropic retro-Claisen rearrangement leading to the formation of dihydopyran core in the fungal natural product leporin10. Combined in vitro enzymatic characterization and computational studies provide evidence and mechanistic insight about how the O-methyltransferase-like protein LepI regulates the bifurcating biosynthetic reaction pathways (“direct” HDA and “byproduct recycle” IMDA/retro-Claisen reaction pathways) by utilizing SAM as the cofactor in order to converge to the desired biosynthetic end product. This work highlights that LepI is the first example of an enzyme catalysing a (SAM-dependent) retro-Claisen rearrangement. We suggest that more pericyclic biosynthetic enzymatic transformations are yet to be discovered in the intriguing enzyme toolboxes in Nature11, and propose an ever expanding role of the versatile cofactor SAM in enzyme catalysis. PMID:28902839

  16. The hexadehydro-Diels-Alder reaction.

    PubMed

    Hoye, Thomas R; Baire, Beeraiah; Niu, Dawen; Willoughby, Patrick H; Woods, Brian P

    2012-10-11

    Arynes (aromatic systems containing, formally, a carbon-carbon triple bond) are among the most versatile of all reactive intermediates in organic chemistry. They can be 'trapped' to give products that are used as pharmaceuticals, agrochemicals, dyes, polymers and other fine chemicals. Here we explore a strategy that unites the de novo generation of benzynes-through a hexadehydro-Diels-Alder reaction-with their in situ elaboration into structurally complex benzenoid products. In the hexadehydro-Diels-Alder reaction, a 1,3-diyne is engaged in a [4+2] cycloisomerization with a 'diynophile' to produce the highly reactive benzyne intermediate. The reaction conditions for this simple, thermal transformation are notable for being free of metals and reagents. The subsequent and highly efficient trapping reactions increase the power of the overall process. Finally, we provide examples of how this de novo benzyne generation approach allows new modes of intrinsic reactivity to be revealed.

  17. Polar Diels-Alder reactions using electrophilic nitrobenzothiophenes. A combined experimental and DFT study

    NASA Astrophysics Data System (ADS)

    Della Rosa, Claudia D.; Mancini, Pedro M. E.; Kneeteman, Maria N.; Lopez Baena, Anna F.; Suligoy, Melisa A.; Domingo, Luis R.

    2015-01-01

    The reactions between 2- and 3-nitrobenzothiophenes with three dienes of different nucleophilicity, 1-methoxy-3-trimethylsilyloxy-1,3-butadiene, 1-trimethylsilyloxy-1,3-butadiene and isoprene developed in anhydrous benzene and alternative under microwave irradiation with molecular solvents or in free solvent conditions, respectively, for produce dibenzothiophenes permit to conclude that both nitroheterocycles act as electrophile with the cited dienes. In the cases of the dienes 1-methoxy-3-trimethylsilyloxy-1,3-butadiene and 1-trimethylsilyloxy-1,3-butadiene which posses major nucleophilicity the observed product is the normal cycloaddition one. However when the diene is isoprene the product with both electrophiles follow the hetero Diels-Alder way. These reactions are considered polar cycloaddition reactions and the yields are reasonables. Moreover the polar Diels-Alder reactions of nitrobenzothiophenes with electron rich dienes 1-trimethylsilyloxy-1,3-butadiene have been theoretically studied using DFT methods.

  18. A new approach to the synthesis of monomers and polymers incorporating furan/maleimide Diels-Alder adducts

    NASA Astrophysics Data System (ADS)

    Banella, Maria Barbara; Gioia, Claudio; Vannini, Micaela; Colonna, Martino; Celli, Annamaria; Gandini, Alessandro

    2016-05-01

    The Diels-Alder reaction between furan and maleimide moieties is a well-known and widely used strategy to build bio-based macromolecular structures with peculiar properties. The furan-maleimide adducts are thermally reversible because they can be broken above about 120°C and recombined at lower temperatures. At the moment only the monomers exhibiting the furan or the maleimide moieties on their extremity are used in order to get linear or cross-linked polymeric structures. The innovative idea described here consists in using a monomer bearing two carboxylic acidic groups on its extremities and a furan-maleimide Diels-Alder adduct within its structure. This monomer can give rise to classical polycondensation reactions leading to polymers. These polymers (which are polyesters in the present case) can be broken at high temperatures in correspondence of the furane-maleimide Diels-Alder adduct leading to segments exhibiting furan or maleimide moieties at their extremities, which at lower temperature recombine leading to random or block copolymers.

  19. Synthesis of isochromene-type scaffolds via single-flask Diels-Alder-[4 + 2]-annulation sequence of a silyl-substituted diene with menadione.

    PubMed

    Lee, Jihoon; Panek, James S

    2014-06-20

    A sequential Diels-Alder reaction/silicon-directed [4 + 2]-annulation was developed to assemble hydroisochromene-type ring systems from menadione 2. In the first step, a Diels-Alder of the 1-silyl-substituted butadiene 1 with 2 furnished an intermediate cyclic allylsilane. Subsequently, TMSOTf promoted a [4 + 2]-annulation through trapping of an oxonium, generated by condensation between an aldehyde and the TBS protected alcohol resulted in the formation of a cis-fused hydroisochromene 13.

  20. Silica-promoted Diels-Alder reactions in carbon dioxide from gaseous to supercritical conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinstein, R.D.; Renslo, A.R.; Danheiser, R.L.

    1999-04-15

    Amorphous fumed silica (SiO{sub 2}) was shown to increase yields and selectivities of several Diels-Alder reactions in gaseous and supercritical CO{sub 2}. Pressure effects on the Diels-Alder reaction were explored using methyl vinyl ketone and penta-1,3-diene at 80 C. The selectivity of the reaction was not affected by pressure/density. As pressure was increased, the yield decreased. At the reaction temperature, adsorption isotherms at various pressures were obtained for the reactants and the Diels-Alder adduct. As expected when pressure is increased, the ratio of the amount of reactants adsorbed to the amount of reactants in the fluid phase decreases, thus causingmore » the yield to decrease. The Langmuir adsorption model fit the adsorption data. The Langmuir equilibrium partitioning constants all decreased with increasing pressure. The effect of temperature on adsorption was experimentally determined and traditional heats of adsorption were calculated. However, since supercritical CO{sub 2} is a highly compressible fluid, it is logical to examine the effect of temperature at constant density. In this case, entropies of adsorption were obtained. The thermodynamic properties that influence the real enthalpy and entropy of adsorption were derived. Methods of doping the silica and improving yields and selectivities were also explored.« less

  1. Enantioselective Diels-Alder reactions of unsaturated beta-ketoesters catalyzed by chiral ruthenium PNNP complexes.

    PubMed

    Schotes, Christoph; Mezzetti, Antonio

    2011-01-01

    We report here dicationic ruthenium PNNP complexes that promote the enantioselective Diels-Alder reaction of alpha-methylene beta-ketoesters with various dienes. Complex [Ru(OEt2)2(PNNP)](PF6)2, formed in situ from [RuCl2,(PNNP)] and (Et3O)PF6 (2 equiv.), catalyzes the Diels-Alder reaction of such unsaturated beta-ketoesters to give novel alkoxycarbonyltetrahydro-1-indanone derivatives (nine examples) with up to 93% ee. The crystal structure of the substrate-catalyst adduct shows that the lower face of the substrate is shielded by a phenyl ring of the PNNP ligand, which accounts for the high enantioselectivity. The attack of the diene from the open re enantioface of the unsaturated beta-ketoester is consistent with the absolute configuration of the product. A useful application of this method is the reaction with Dane's diene to give estrone derivatives with up to 99% ee and an ester-exo:endo ratio of up to 145:1 (after recrystallization). Besides the enantioselective formation of all-carbon quaternary centers, this methodology is notable because unsaturated beta-ketoesters have been rarely used in Diels-Alder reactions. Furthermore, enantiomerically pure estrone derivatives are interesting in view of their potential applications, including the treatment of breast cancer.

  2. A microwave assisted intramolecular-furan-Diels-Alder approach to 4-substituted indoles.

    PubMed

    Petronijevic, Filip; Timmons, Cody; Cuzzupe, Anthony; Wipf, Peter

    2009-01-07

    The key steps of a versatile new protocol for the convergent synthesis of 3,4-disubstituted indoles are the addition of an alpha-lithiated alkylaminofuran to a carbonyl compound, a microwave-accelerated intramolecular Diels-Alder cycloaddition and an in situ double aromatization reaction.

  3. Indole synthesis by palladium-catalyzed tandem allylic isomerization - furan Diels-Alder reaction.

    PubMed

    Xu, Jie; Wipf, Peter

    2017-08-30

    A Pd(0)-catalyzed elimination of an allylic acetate generates a π-allyl complex that is postulated to initiate a novel intramolecular Diels-Alder cycloaddition to a tethered furan (IMDAF). Under the reaction conditions, this convergent, microwave-accelerated cascade process provides substituted indoles in moderate to good yields after Pd-hydride elimination, aromatization by dehydration, and in situ N-Boc cleavage.

  4. Diels-Alder Cycloadditions: A MORE Experiment in the Organic Laboratory Including a Diene Identification Exercise Involving NMR Spectroscopy and Molecular Modeling

    ERIC Educational Resources Information Center

    Shaw, Roosevelt; Severin, Ashika; Balfour, Miguel; Nettles, Columbus

    2005-01-01

    Two Diels-Alder reactions are described that are suitable for a MORE (microwave-induced organic reaction enhanced) experiment in the organic chemistry laboratory course. A second experiment in which the splitting patterns of the vinyl protons in the nuclear magnetic resonance (NMR) spectra of two MORE adducts are used in conjunction with molecular…

  5. Diels-Alder Synthesis of endo-cis-N-phenylbicyclo[2.2.2]oct-5-en-2,3-dicarboximide

    ERIC Educational Resources Information Center

    Baar, Marsha R.; Wustholz, Kristin

    2005-01-01

    A study investigated the Diels-Alder synthesis of endo-cis-N-phenylbicyclo [2.2.2]oct-5-en-2,3-dicarboximide. The amount of time taken by a reaction between the 1,3-cyclohexadiene and N-phenylmaleimide at room temperature and also whether the desired cycloadduct would precipitate directly from the reaction mixture was examined.

  6. Origins of Stereoselectivity in Diels-Alder Cycloadditions Catalyzed by Chiral Imidazolidinones

    PubMed Central

    Gordillo, Ruth; Houk, K. N.

    2011-01-01

    B3LYP/6-31G(d) density functional theory has been used to study Diels-Alder reactions of cyclopentadiene with α,β-unsaturated aldehydes and ketones organocatalyzed by MacMillan’s chiral imidazolidinones. Preferred conformations of transition structures and reaction intermediates have been located. The dramatically different reactivities and enantioselectivities exhibited by two similar chiral imidazolidinones are rationalized. PMID:16536527

  7. Quantitative structure-activation barrier relationship modeling for Diels-Alder ligations utilizing quantum chemical structural descriptors.

    PubMed

    Nandi, Sisir; Monesi, Alessandro; Drgan, Viktor; Merzel, Franci; Novič, Marjana

    2013-10-30

    In the present study, we show the correlation of quantum chemical structural descriptors with the activation barriers of the Diels-Alder ligations. A set of 72 non-catalysed Diels-Alder reactions were subjected to quantitative structure-activation barrier relationship (QSABR) under the framework of theoretical quantum chemical descriptors calculated solely from the structures of diene and dienophile reactants. Experimental activation barrier data were obtained from literature. Descriptors were computed using Hartree-Fock theory using 6-31G(d) basis set as implemented in Gaussian 09 software. Variable selection and model development were carried out by stepwise multiple linear regression methodology. Predictive performance of the quantitative structure-activation barrier relationship (QSABR) model was assessed by training and test set concept and by calculating leave-one-out cross-validated Q2 and predictive R2 values. The QSABR model can explain and predict 86.5% and 80% of the variances, respectively, in the activation energy barrier training data. Alternatively, a neural network model based on back propagation of errors was developed to assess the nonlinearity of the sought correlations between theoretical descriptors and experimental reaction barriers. A reasonable predictability for the activation barrier of the test set reactions was obtained, which enabled an exploration and interpretation of the significant variables responsible for Diels-Alder interaction between dienes and dienophiles. Thus, studies in the direction of QSABR modelling that provide efficient and fast prediction of activation barriers of the Diels-Alder reactions turn out to be a meaningful alternative to transition state theory based computation.

  8. High-speed microwave-promoted hetero-Diels-Alder reactions of 2(1H)-pyrazinones in ionic liquid doped solvents.

    PubMed

    Van Der Eycken, Erik; Appukkuttan, Prasad; De Borggraeve, Wim; Dehaen, Wim; Dallinger, Doris; Kappe, C Oliver

    2002-11-01

    Inter- and intramolecular hetero-Diels-Alder reactions in a series of functionalized 2(1H)-pyrazinones were investigated under controlled microwave irradiation. The cycloaddition reactions were efficiently performed in sealed tubes, utilizing either a combination of 1,2-dichloroethane and a thermally stable ionic liquid, or 1,2-dichlorobenzene as reaction medium. In all cases, a significant rate-enhancement using microwave flash heating as compared to thermal heating was observed.

  9. The unexpected product of Diels-Alder reaction between "indanocyclon" and maleimide

    NASA Astrophysics Data System (ADS)

    Dobrowolski, Michał A.; Roszkowski, Piotr; Struga, Marta; Szulczyk, Daniel

    2017-02-01

    A heterocyclic compound commonly known as "indanocyclon" undergoes an unexpected Diels-Alder addition with maleimide. The resulting product has been isolated and characterized in order to get an information about its structure and possible mechanism of the reaction. Extensive comparison of single crystal properties of 3-(2,8-dioxo-1,3-diphenyl-2,8-dihydrocyclopenta[a]inden-8a(1H)-yl)pyrrolidine-2,5-dione and favorable product of the reaction has been also performed.

  10. Synthesis of a Self-Healing Polymer Based on Reversible Diels-Alder Reaction: An Advanced Undergraduate Laboratory at the Interface of Organic Chemistry and Materials Science

    ERIC Educational Resources Information Center

    Weizman, Haim; Nielsen, Christian; Weizman, Or S.; Nemat-Nasser, Sia

    2011-01-01

    This laboratory experiment exposes students to the chemistry of self-healing polymers based on a Diels-Alder reaction. Students accomplish a multistep synthesis of a monomer building block and then polymerize it to form a cross-linked polymer. The healing capability of the polymer is verified by differential scanning calorimetry (DSC) experiments.…

  11. Syntheses of the hexahydroindene cores of indanomycin and stawamycin by combinations of iridium-catalyzed asymmetric allylic alkylations and intramolecular Diels-Alder reactions.

    PubMed

    Gärtner, Martin; Satyanarayana, Gedu; Förster, Sebastian; Helmchen, Günter

    2013-01-02

    Short and concise syntheses of the hexahydroindene cores of the antibiotics indanomycin (X-14547 A) and stawamycin are presented. Key methods used are an asymmetric iridium-catalyzed allylic alkylation, a modified Julia olefination, a Suzuki-Miyaura coupling, and an intramolecular Diels-Alder reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Processing Conjugated-Diene-Containing Polymers

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L.; Havens, Stephen J.

    1987-01-01

    Diels-Alder reaction used to cross-linked thermoplastics. Process uses Diels-Alder reaction to cross-link and/or extend conjugated-diene-containing polymers by reacting them with bis-unsaturated dienophiles results in improved polymer properties. Quantities of diene groups required for cross-linking varies from very low to very high concentrations. Process also used to extend, or build up molecular weights of, low-molecular-weight linear polymers with terminal conjugated dienic groups.

  13. Fast Hetero-Diels-Alder Reactions Using 4-Phenyl-1,2,4-Triazoline-3,5-Dione (PTAD) as the Dienophile

    ERIC Educational Resources Information Center

    Celius, Tevye C.

    2010-01-01

    A hetero-Diels-Alder reaction that proceeds rapidly and only requires a simple filtration to purify the product is presented. The dienophile, 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD), is prepared by the heterogeneous oxidation of 4-phenylurazole by the bromenium ion, Br[superscript +], generated in situ by the oxidation of potassium bromide by…

  14. Multicatalytic asymmetric synthesis of complex tetrahydrocarbazoles via a Diels-Alder/benzoin reaction sequence.

    PubMed

    Liu, Yankai; Nappi, Manuel; Escudero-Adán, Eduardo C; Melchiorre, Paolo

    2012-03-02

    Expanding upon the recently developed aminocatalytic asymmetric indole-2,3-quinodimethane strategy, a straightforward synthesis of structurally and stereochemically complex tetrahydrocarbazoles has been devised. The chemistry's complexity-generating power was further harnessed by designing a multicatalytic, one-pot Diels-Alder/benzoin reaction sequence to stereoselectively access trans-fused tetracyclic indole-based compounds having four stereogenic centers with very high fidelity. © 2012 American Chemical Society

  15. Rate variations of a hetero-Diels--Alder reaction in supercritical fluid CO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, R.L.; Glaeser, R.; Bush, D.

    1999-11-01

    The hetero-Diels-Alder reaction between anthracene and excess 4-phenyl-1,2,4-triazoline-3,5-dione has been investigated in supercritical CO{sub 2} at 40 C and pressures between 75 and 216 bar. Biomolecular reaction rate constants have been measured via fluorescence spectroscopy by following the decrease in anthracene concentration with reaction time. The reaction rate is elevated in the vicinity of the critical pressure. This difference is consistent with local composition enhancement and can be modeled with the Peng-Robinson equation of state.

  16. Excellent acceleration of the Diels-Alder reaction by microwave irradiation for the synthesis of new fluorine-substituted ligands of NMDA receptor.

    PubMed

    Sasaki, S; Ishibashi, N; Kuwamura, T; Sano, H; Matoba, M; Nisikawa, T; Maeda, M

    1998-11-03

    A series of 6,11-ethanobenzo[b]quinolizinium derivatives was synthesized through the Diels-Alder reaction between azoniaanthracne and the corresponding 1,1-disubstituted olefin. After a systematic investigation for achieving rapid synthesis, it was found that the reaction is accelerated in polar media such as H2O and trifluoroethanol. In particular, excellent acceleration was effected by microwave irradiation. The new fluorine-substituted ligands thus obtained exhibited potential affinity toward NMDA receptors.

  17. Microwave-Assisted Organocatalytic Intramolecular Knoevenagel/Hetero Diels-Alder Reaction with O-(Arylpropynyloxy)-Salicylaldehydes: Synthesis of Polycyclic Embelin Derivatives.

    PubMed

    Martín-Acosta, Pedro; Feresin, Gabriela; Tapia, Alejandro; Estévez-Braun, Ana

    2016-10-21

    A highly efficient and regioselective approach to new polycyclic embelin derivatives through a domino Knoevenagel condensation/intramolecular hetero Diels-Alder reaction using O-(arylpropynyloxy)-salicylaldehydes in the presence of ethylenediamine diacetate (EDDA) is reported. This organocatalyzed protocol is compatible toward a wide range of aryl-substituted alkynyl ethers with electron-donating and electron-withdrawing groups. When other active methylene compounds were subjected to this domino reaction the corresponding adducts were obtained in high yield.

  18. Computational neural networks in chemistry: Model free mapping devices for predicting chemical reactivity from molecular structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.W.

    1992-01-01

    Computational neural networks (CNNs) are a computational paradigm inspired by the brain's massively parallel network of highly interconnected neurons. The power of computational neural networks derives not so much from their ability to model the brain as from their ability to learn by example and to map highly complex, nonlinear functions, without the need to explicitly specify the functional relationship. Two central questions about CNNs were investigated in the context of predicting chemical reactions: (1) the mapping properties of neural networks and (2) the representation of chemical information for use in CNNs. Chemical reactivity is here considered an example ofmore » a complex, nonlinear function of molecular structure. CNN's were trained using modifications of the back propagation learning rule to map a three dimensional response surface similar to those typically observed in quantitative structure-activity and structure-property relationships. The computational neural network's mapping of the response surface was found to be robust to the effects of training sample size, noisy data and intercorrelated input variables. The investigation of chemical structure representation led to the development of a molecular structure-based connection-table representation suitable for neural network training. An extension of this work led to a BE-matrix structure representation that was found to be general for several classes of reactions. The CNN prediction of chemical reactivity and regiochemistry was investigated for electrophilic aromatic substitution reactions, Markovnikov addition to alkenes, Saytzeff elimination from haloalkanes, Diels-Alder cycloaddition, and retro Diels-Alder ring opening reactions using these connectivity-matrix derived representations. The reaction predictions made by the CNNs were more accurate than those of an expert system and were comparable to predictions made by chemists.« less

  19. A thermal dehydrogenative Diels-Alder reaction of styrenes for the concise synthesis of functionalized naphthalenes.

    PubMed

    Kocsis, Laura S; Benedetti, Erica; Brummond, Kay M

    2012-09-07

    Functionalized naphthalenes are valuable building blocks in many important areas. A microwave-assisted, intramolecular dehydrogenative Diels-Alder reaction of styrenyl derivatives to provide cyclopenta[b]naphthalene substructures not previously accessible using existing synthetic methods is described. The synthetic utility of these uniquely functionalized naphthalenes was demonstrated by a single-step conversion of one of these cycloadducts to a fluorophore bearing a structural resemblance to Prodan.

  20. Enzymatic activity and partial purification of solanapyrone synthase: first enzyme catalyzing Diels-Alder reaction.

    PubMed

    Katayama, K; Kobayashi, T; Oikawa, H; Honma, M; Ichihara, A

    1998-05-19

    In cell-free extracts of Alternaria solani, an enzymatic activity converting prosolanapyrone II to solanapyrones A and D via oxidation and subsequent Diels-Alder reaction has been found. Chromatography with DEAE-Sepharose provided two active fractions, pools 1 and 2. The former fraction converted prosolanapyrone II to solanapyrones A and D in a ratio of 2.2:1 with optical purities of 99% and 45% ee, respectively. The latter fraction did so in a ratio of 7.6:1 with 99% and nearly 0% ee, respectively. The enzyme partially purified from pool 2 native molecular weight of 40-62 kD and a pl of 4.25. The high reactivity of prosolanapyrone III in aqueous solution and the chromatographic behavior of the enzyme in pool 2 suggest that a single enzyme catalyzes both the oxidation and Diels-Alder reaction.

  1. Self-healing polymers and composites based on thermal activation

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Bolanos, Ed; Wudl, Fred; Hahn, Thomas; Kwok, Nathan

    2007-04-01

    Structural polymer composites are susceptible to premature failure in the form of microcracks in the matrix. Although benign initially when they form, these matrix cracks tend to coalesce and lead in service to critical damage modes such as ply delamination. The matrix cracks are difficult to detect and almost impossible to repair because they form inside the composite laminate. Therefore, polymers with self-healing capability would provide a promising potential to minimize maintenance costs while extending the service lifetime of composite structures. In this paper we report on a group of polymers and their composites which exhibit mendable property upon heating. The failure and healing mechanisms of the polymers involve Diels-Alder (DA) and retro-Diels-Alder (RDA) reactions on the polymer back-bone chain, which are thermally reversible reactions requiring no catalyst. The polymers exhibited good healing property in bulk form. Composite panels were prepared by sandwiching the monomers between carbon fiber fabric layers and cured in autoclave. Microcracks were induced on the resin-rich surface of composite with Instron machine at room temperature by holding at 1% strain for 1 min. The healing ability of the composite was also demonstrated by the disappearance of microcracks after heating. In addition to the self-healing ability, the polymers and composites also exhibited shape memory property. These unique properties may provide the material multi-functional applications. Resistance heating of traditional composites and its applicability in self-healing composites is also studied to lay groundwork for a fully integrated self-healing composite.

  2. A Computational Experiment of the Endo versus Exo Preference in a Diels-Alder Reaction

    ERIC Educational Resources Information Center

    Rowley, Christopher N.; Woo, Tom K.

    2009-01-01

    We have developed and tested a computational laboratory that investigates an endo versus exo Diels-Alder cycloaddition. This laboratory employed density functional theory (DFT) calculations to study the cycloaddition of N-phenylmaleimide to furan. The endo and exo stereoisomers of the product were distinguished by building the two isomers in a…

  3. Aqueous catalysis: Methylrhenium trioxide (MTO) as a homogeneous catalyst for the Diels-Alder reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Z.; Espenson, J.H.

    1997-04-16

    The title compound proves to be an effective and efficient catalyst for the Diels-Alder reaction when the dienophile is an {alpha},{beta}-unsaturated ketone or aldehyde. It is especially effective in water. Equal amounts of any such dienophile and any of six representative dienes (isoprene, 2-methyl-1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, cyclopentadiene, 1,2,3,4,5,-pentamethylcyclopentadiene, and 1,3-cyclohexadiene) were used, along with 1% MTO. The reactions gave usually > 90% isolated yield of the cycloaddition product except for the larger dienophiles. Nearly exclusively, there was formed one product isomer, the same one that usually predominates. The reactions were often run in chloroform (mostly) and in other organic solvents. Amore » select number were carried out in water, where the reactions gave a greater product yield in a considerably shorter time. Water, itself, is known to enhance the rates of Diels-Alder reactions, but MTO exerts an additional accelerating effect. Kinetics studies were carried out to show that the rate is proportional to the catalyst concentration. The products do not inhibit the reaction. The desirability of MTO as a Diels-Alder catalyst stems from a combination of favorable properties: the inertness to air/oxygen, the tolerance for many substrates, the use of an aqueous medium, and the absence of product inhibition. The initial step appears to be the (weak) coordination of the carbonyl oxygen to the electropositive rhenium center. Steric crowding around rhenium inhibits reactions of the larger dienophiles. 26 refs., 3 figs., 4 tabs.« less

  4. Spectacular Rate Enhancement of the Diels-Alder Reaction at the Ionic Liquid/n-Hexane Interface.

    PubMed

    Beniwal, Vijay; Manna, Arpan; Kumar, Anil

    2016-07-04

    The use of the ionic liquid/n-hexane interface as a new class of reaction medium for the Diels-Alder reaction gives large rate enhancements of the order of 10(6) to 10(8) times and high stereoselectivity, as compared to homogeneous media. The rate enhancement is attributed to the H-bonding abilities and polarities of the ionic liquids, whereas the hydrophobicity of ionic liquids was considered to be the factor in controlling stereoselectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Diels-Alder reactions onto fluorinated and hydrogenated graphene

    NASA Astrophysics Data System (ADS)

    Denis, Pablo A.

    2017-09-01

    We studied Diels-Alder (DA) reactions onto functionalized graphene. When fluorine, hydrogen or oxygen functional groups are present on one side of the sheet, the DA cycloadditions become significantly more exergonic when performed on the opposite side. Hydrogen is more effective than fluorine and oxygen to promote these cycloadditions. In contrast with the results obtained for perfect graphene, the functionalization with H, F or O turns the DA reactions exergonic, with ΔG°298 = -127.2 kcal/mol. The reaction barriers are expected to be considerably lowered with respect to perfect graphene because the functional groups significantly reduce the distortion energy.

  6. Syntheses of the Stemona Alkaloids (±)-Stenine, (±)-Neostenine, and (±)-13-Epineostenine Using a Stereodivergent Diels-Alder/Azido-Schmidt Reaction

    PubMed Central

    Frankowski, Kevin J.; Golden, Jennifer E.; Zeng, Yibin; Lei, Yao; Aubé, Jeffrey

    2009-01-01

    A tandem Diels-Alder/azido Schmidt reaction sequence provides rapid access to the core skeleton shared by several Stemona alkaloids including stenine, neostenine, tuberstemonine, and neotubererostemonine. The discovery and evolution of inter- and intramolecular variations of this process and their applications to total syntheses of (±)–stenine and (±)–neostenine is described. The stereochemical outcome of the reaction depends on both substrate type and reaction condition, enabling the preparation of both (±)–stenine and (±)–neostenine from the same diene/dienophile combination. PMID:18396881

  7. Diels-Alder reactions of 12-hydroxy-9(10®20)-5aH-abeo-abieta-1(10),8(9),12(13)-triene-11,14-dione.

    PubMed

    Majetich, George; Zhang, Yong; Tian, Xinrong; Zou, Ge; Li, Yang; Wang, Yangyang; Hu, Shougang; Huddleston, Eric

    2013-06-14

    12-Hydroxy-9(10-->20)-5aH-abeo-abieta-1(10),8(9),12(13)-triene-11,14-dione (quinone 2) served as the dienophile in numerous intermolecular Diels-Alder reactions. These cycloadditions were conducted either thermally (including microwave heating) or with Lewis acid activation. While most dienes reacted with quinone 2 in good chemical yield, others were incompatible under the experimental conditions used.

  8. Stereoselective protecting group free synthesis of D,L-gulose ethyl glycoside via multicomponent enyne cross metathesis--hetero Diels-Alder reaction.

    PubMed

    Castagnolo, Daniele; Botta, Lorenzo; Botta, Maurizio

    2009-07-27

    An efficient and stereoselective synthesis of D,L-gulose was described. The key step of the synthetic route is represented by a multicomponent enyne cross metathesis-hetero Diels-Alder reaction which allows the formation of the pyran ring from cheap and commercially available substrates in a single synthetic step. The synthesis of D,L-gulose was accomplished without the use of protecting groups making this approach highly desirable also in terms of atom economy.

  9. Detection of transient radical cations in electron transfer-initiated Diels-Alder reactions by electrospray ionization mass spectrometry.

    PubMed

    Fürmeier, Sven; Metzger, Jürgen O

    2004-11-10

    The coupling of a simple microreactor to an atmospheric pressure ion source, such as electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI), allows the investigation of reactions in solution by mass spectrometry. The tris(p-bromophenyl)aminium hexachloroantimonate (1(*)(+)SbCl(6)(-))-initiated reactions of phenylvinylsulfide (2) and cyclopentadiene (3) and of trans-anethole (5) and isoprene (6) and the dimerization of 1,3-cyclohexadiene (8) to give the respective Diels-Alder products were studied. These preparatively interesting reactions proceed as radical cation chain reactions via the transient radical cations of the respective dienophiles and of the respective Diels-Alder addition products. These radical cations could be detected directly and characterized unambiguously in the reacting solution by ESI-MS-MS. The identity was confirmed by comparison with MS-MS spectra of the authentic radical cations obtained by APCI-MS and by CID experiments of the corresponding molecular ions generated by EI-MS. In addition, substrates and products could be monitored easily in the reacting solution by APCI-MS.

  10. "Clickable" Polymeric Nanofibers through Hydrophilic-Hydrophobic Balance: Fabrication of Robust Biomolecular Immobilization Platforms.

    PubMed

    Kalaoglu-Altan, Ozlem I; Sanyal, Rana; Sanyal, Amitav

    2015-05-11

    Fabrication of hydrophilic polymeric nanofibers that undergo facile and selective functionalization through metal catalyst-free Diels-Alder "click" reaction in aqueous environment is outlined. Electrospinning of copolymers containing an electron-rich furan moiety, hydrophobic methyl methacrylate units and hydrophilic poly(ethylene glycol)s as side chains provide specifically functionalizable yet antibiofouling fibers that remain stable in aqueous media due to appropriate hydrophobic hydrophilic balance. Efficient functionalization of these nanofibers is accomplished through the Diels-Alder reaction by exposing them to maleimide-containing molecules and ligands. Diels-Alder conjugation based functionalization is demonstrated through attachment of fluorescein-maleimide and a maleimide tethered biotin ligand. Biotinylated nanofibers were utilized to mediate immobilization of the protein streptavidin, as well as streptavidin coated quantum dots. Facile fabrication from readily available polymers and their effective functionalization under mild and reagent-free conditions in aqueous media make these "clickable" nanofibers attractive candidates as functionalizable scaffolds for various biomedical applications.

  11. Fourfold Diels-Alder reaction of tetraethynylsilane.

    PubMed

    Geyer, Florian L; Rode, Alexander; Bunz, Uwe H F

    2014-12-08

    A series of ethynylated silanes, including tetraethynylsilane, was treated with tetraphenylcyclopentadienone at 300 °C under microwave irradiation to give the aromatized Diels-Alder adducts as sterically encumbered mini-dendrimers with up to 20 benzene rings. The sterically most congested adducts display red-shifted emission through intramolecular π-π interactions in the excited state. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Diels-Alder cycloadditions by microwave-assisted, continuous flow organic synthesis (MACOS): the role of metal films in the flow tube.

    PubMed

    Shore, Gjergji; Organ, Michael G

    2008-02-21

    Thin Pd films have been deposited on the inside of capillary-sized tubes through which compounds undergoing Diels-Alder reactions have been flowed while being heated with microwave irradiation; dramatic rate accelerations are observed in the presence of the film, which has been shown to play both a heating and catalytic role.

  13. The nitrosocarbonyl hetero-Diels-Alder reaction as a useful tool for organic syntheses.

    PubMed

    Bodnar, Brian S; Miller, Marvin J

    2011-06-14

    Organic transformations that result in the formation of multiple covalent bonds within the same reaction are some of the most powerful tools in synthetic organic chemistry. Nitrosocarbonyl hetero-Diels-Alder (HDA) reactions allow for the simultaneous stereospecific introduction of carbon-nitrogen and carbon-oxygen bonds in one synthetic step, and provide direct access to 3,6-dihydro-1,2-oxazines. This Review describes the development of the nitrosocarbonyl HDA reaction and the utility of the resulting oxazine ring in the synthesis of a variety of important, biologically active molecules. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Microwave-promoted catalyst- and solvent-free aza-Diels-Alder reaction of aldimines with 6-[2-(dimethylamino)vinyl]-1,3-dimethyluracil.

    PubMed

    Sarma, Rupam; Sarmah, Manas M; Prajapati, Dipak

    2012-02-17

    A microwave-promoted aza-Diels-Alder reaction between 6-[2-(dimethylamino)vinyl]-1,3-dimethyluracil and aldimines has been developed for the construction of dihydropyrido[4,3-d]pyrimidines. Urea is effectively employed as an environmentally benign source of ammonia in the absence of any catalyst or solvent. The key step in the reaction is in situ generation and trapping of the reactive aldimine formed from urea and aldehyde by the diene system of the uracil. The reaction is clean, and excellent yields are obtained in a matter of a few minutes.

  15. Diels-Alder reactions of five-membered heterocycles containing one heteroatom

    PubMed Central

    Ding, Xiaoyuan; Nguyen, Son T.; Williams, John D.; Peet, Norton P.

    2015-01-01

    Diels-Alder reactions of five-membered heterocycles containing one heteroatom with an N-arylmaleimide were studied. Cycloaddition of 2,5-dimethylfuran (4) with 2-(4-methylphenyl)maleimide (3) in toluene at 60 °C gave bicyclic adduct 5. Cycloadditions of 3 with 2,5-dimethylthiophene (11) and 1,2,5-trimethylpyrrole (14) were also studied. Interestingly, the bicyclic compound 5 cleanly rearranged, with loss of water, when treated with p-toluenesulfonic acid in toluene at 80 °C to give 4,7-dimethyl-2-p-tolylisoindoline-1,3-dione (6). PMID:25838605

  16. A Tunable and Enantioselective Hetero-Diels-Alder Reaction Provides Access to Distinct Piperidinoyl Spirooxindoles.

    PubMed

    Jayakumar, Samydurai; Louven, Kathrin; Strohmann, Carsten; Kumar, Kamal

    2017-12-11

    The active complexes of chiral N,N'-dioxide ligands with dysprosium and magnesium salts catalyze the hetero-Diels-Alder reaction between 2-aza-3-silyloxy-butadienes and alkylidene oxindoles to selectively form 3,3'- and 3,4'-piperidinoyl spirooxindoles, respectively, in very high yields and with excellent enantioselectivities. The exo-selective asymmetric cycloaddition successfully regaled the construction of sp 3 -rich and highly substituted natural-product-based spirooxindoles supporting many chiral centers, including contiguous all-carbon quaternary centers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Classical Example of Total Kinetic and Thermodynamic Control: The Diels-Alder Reaction between DMAD and Bis-furyl Dienes.

    PubMed

    Borisova, Kseniya K; Kvyatkovskaya, Elizaveta A; Nikitina, Eugeniya V; Aysin, Rinat R; Novikov, Roman A; Zubkov, Fedor I

    2018-04-20

    A rare example of chemospecificity in the tandem Diels-Alder reaction of activated alkynes and bis-dienes has been revealed. The reaction between bis-furyl dienes and DMAD occurs at 25-80 °C and leads to kinetically controlled "pincer" adducts, 4a,8a-disubstituted 1,4:5,8-diepoxynaphthalenes. On the contrary, only thermodynamically controlled "domino" adducts (2,3-disubstituted 1,4:5,8-diepoxynaphthalenes) are formed in the same reaction at 140 °C. The "pincer" adducts can be transformed to the "domino" adducts at heating. The rate constants for reactions of both types were calculated using dynamic 1 H NMR spectroscopy.

  18. Covalently crosslinked diels-alder polymer networks.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, Christopher; Adzima, Brian J.; Anderson, Benjamin John

    2011-09-01

    This project examines the utility of cycloaddition reactions for the synthesis of polymer networks. Cycloaddition reactions are desirable because they produce no unwanted side reactions or small molecules, allowing for the formation of high molecular weight species and glassy crosslinked networks. Both the Diels-Alder reaction and the copper-catalyzed azide-alkyne cycloaddition (CuAAC) were studied. Accomplishments include externally triggered healing of a thermoreversible covalent network via self-limited hysteresis heating, the creation of Diels-Alder based photoresists, and the successful photochemical catalysis of CuAAC as an alternative to the use of ascorbic acid for the generation of Cu(I) in click reactions. An analysis ofmore » the results reveals that these new methods offer the promise of efficiently creating robust, high molecular weight species and delicate three dimensional structures that incorporate chemical functionality in the patterned material. This work was performed under a Strategic Partnerships LDRD during FY10 and FY11 as part of a Sandia National Laboratories/University of Colorado-Boulder Excellence in Science and Engineering Fellowship awarded to Brian J. Adzima, a graduate student at UC-Boulder. Benjamin J. Anderson (Org. 1833) was the Sandia National Laboratories point-of-contact for this fellowship.« less

  19. Fluorogenic Behaviour of the Hetero-Diels-Alder Ligation of 5-Alkoxyoxazoles with Maleimides and their Applications.

    PubMed

    Renault, Kévin; Jouanno, Laurie-Anne; Lizzul-Jurse, Antoine; Renard, Pierre-Yves; Sabot, Cyrille

    2016-12-19

    Fluorogenic reactions are largely underrepresented in the toolbox of chemoselective ligations despite their tremendous potential, particularly in chemical biology and biochemistry. In this respect, we have investigated in full detail the fluorescence behaviour of the azaphthalamide, a scaffold which is generated through a hetero-Diels-Alder reaction of 5-alkoxyoxazole and maleimide derivatives under mild conditions that are compatible with, among others, peptide chemistry. The scope and limitations of such a fluorogenic labelling strategy were examined through four distinct applications, which target enzymatic activities or bioorthogonal reactions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Total synthesis of the thiopeptide antibiotic amythiamicin D.

    PubMed

    Hughes, Rachael A; Thompson, Stewart P; Alcaraz, Lilian; Moody, Christopher J

    2005-11-09

    The thiopeptide (or thiostrepton) antibiotics are a class of sulfur containing highly modified cyclic peptides with interesting biological properties, including reported activity against MRSA and malaria. Described herein is the total synthesis of the thiopeptide natural product amythiamicin D, which utilizes a biosynthesis-inspired hetero-Diels-Alder route to the pyridine core of the antibiotic as a key step. Preliminary studies using a range of serine-derived 1-ethoxy-2-azadienes established that hetero-Diels-Alder reaction with N-acetylenamines proceeded efficiently under microwave irradiation to give 2,3,6-trisubstituted pyridines. The thiazole building blocks of the antibiotic were obtained by either classical Hantzsch reactions or by dirhodium(II)-catalyzed chemoselective carbene N-H insertion followed by thionation, and were combined to give the bis-thiazole that forms the left-hand fragment of the antibiotic. The key Diels-Alder reaction of a tris-thiazolyl azadiene with benzyl 2-(1-acetylaminoethenyl)thiazole-4-carboxylate gave the core tetrathiazolyl pyridine, which was elaborated into the natural product by successive incorporation of glycine and bis-thiazole fragments followed by macrocyclization.

  1. Design and Synthesis of a Library of Tetracyclic Hydroazulenoisoindoles

    PubMed Central

    Brummond, Kay M.; Mao, Shuli; Shinde, Sunita N.; Johnston, Paul J.; Day, Billy W.

    2009-01-01

    Forty-four tetracyclic hydroazulenoisoindoles were synthesized via a tandem cyclopropanation/Cope rearrangement followed by a Diels-Alder sequence from easily available five-membered cyclic cross-conjugated trienones. These trienones were obtained from two different routes depending upon whether R1 and R2 are alkyl or amino acid derived functional groups, via a rhodium(I)-catalyzed cycloisomerization reaction. In order to increase diversity, four maleimides and two 1,2,4-triazoline-3,5-diones were used as dienophiles in the Diels-Alder step. Several Diels-Alder adducts were further reacted under palladium-catalyzed hydrogenation conditions, leading to a diastereoselective reduction of the trisubstituted double bond. This library has demonstrated rapid access to a variety of structurally complex natural product-like compounds via stereochemical diversity and building block diversity approaches. PMID:19366169

  2. Diastereoselective Diels-Alder reactions of alpha-fluorinated alpha,beta-unsaturated carbonyl compounds: chemical consequences of fluorine substitution. 2.

    PubMed

    Essers, Michael; Mück-Lichtenfeld, Christian; Haufe, Günter

    2002-07-12

    Two alpha-fluoro alpha,beta-unsaturated carbonyl compounds, i.e., benzyl 2-fluoroacrylate (3) and 2-fluorooct-1-en-3-one (4), as well as the corresponding nonfluorinated parent compounds, were synthesized and subjected to Diels-Alder reactions with cyclopentadiene. The cycloadditions were conducted thermally, microwave-assisted, and Lewis acid-mediated (TiCl(4)). The fluorinated dienophiles exhibited a lower reactivity and exo diastereoselectivity, while the corresponding nonfluorinated parent compounds reacted endo selectively. DFT calculations suggest that kinetic effects of fluorine determine the stereoselectivity rather than higher thermodynamic stability of the exo products.

  3. The [2 + 2] Cycloaddition-Retroelectrocyclization and [4 + 2] Hetero-Diels-Alder Reactions of 2-(Dicyanomethylene)indan-1,3-dione with Electron-Rich Alkynes: Influence of Lewis Acids on Reactivity.

    PubMed

    Donckele, Etienne J; Finke, Aaron D; Ruhlmann, Laurent; Boudon, Corinne; Trapp, Nils; Diederich, François

    2015-07-17

    The reaction of electrophilic 2-(dicyanomethylene)indan-1,3-dione (DCID) with substituted, electron-rich alkynes provides two classes of push-pull chromophores with interesting optoelectronic properties. The formal [2 + 2] cycloaddition-retroelectrocyclization reaction at the exocyclic double bond of DCID gives cyanobuta-1,3-dienes, and the formal [4 + 2] hetero-Diels-Alder (HDA) reaction at an enone moiety of DCID generates fused 4H-pyran heterocycles. Both products can be obtained in good yield and excellent selectivity by carefully tuning the reaction conditions; in particular, the use of Lewis acids dramatically enhances formation of the HDA adduct.

  4. Three-Dimensional Graphene Structure for Healable Flexible Electronics Based on Diels-Alder Chemistry.

    PubMed

    Li, Jinhui; Liu, Qiang; Ho, Derek; Zhao, Songfang; Wu, Shuwen; Ling, Lei; Han, Fei; Wu, Xinxiu; Zhang, Guoping; Sun, Rong; Wong, Ching-Ping

    2018-03-21

    Wearable electronics with excellent stretchability and sensitivity have emerged as a very promising field with wide applications such as e-skin and human motion detection. Although three-dimensional (3D) graphene structures (GS) have been reported for high-performance strain sensors, challenges still remain such as the high cost of GS preparation, low stretchability, and the lack of ability to heal itself. In this paper, we reported a novel self-healing flexible electronics with 3D GS based on Diels-Alder (DA) chemistry. Furfurylamine (FA) was employed as a reducing as well as a modifying agent, forming GS by FA (FAGS)/DA bonds contained polyurethane with the "infiltrate-gel-dry" process. The as-prepared composite exhibited excellent stretchability (200%) and intrinsic conductivity with low incorporation of graphene (about 2 wt %), which could be directly employed for flexible electronics to detect human motions. Besides, the FAGS/DAPU composite exhibited lower temperature retro-DA response for the continuous graphene networks. Highly effective healing of the composites by heat and microwave has been demonstrated successfully.

  5. Domino Acylation/Diels-Alder Synthesis of N-Alkyl-octahydroisoquinolin-1-one-8-carboxylic Acids under Low-Solvent Conditions.

    PubMed

    Slauson, Stephen R; Pemberton, Ryan; Ghosh, Partha; Tantillo, Dean J; Aubé, Jeffrey

    2015-05-15

    The development of the domino reaction between an aminoethyl-substituted diene and maleic anhydride to afford an N-substituted octahydroisoquinolin-1-one is described. A typical procedure involves the treatment of a 1-aminoethyl-substituted butadiene with maleic anhydride at 0 °C to room temperature for 20 min under low-solvent conditions, which affords a series of isoquinolinone carboxylic acids in moderate to excellent yields. NMR monitoring suggested that the reaction proceeded via an initial acylation step followed by an intramolecular Diels-Alder reaction. For the latter step, a significant rate difference was observed depending on whether the amino group was substituted by a phenyl or an alkyl (usually benzyl) substituent, with the former noted by NMR to be substantially slower. The Diels-Alder step was studied by density functional theory (DFT) methods, leading to the conclusion that the degree of preorganization in the starting acylated intermediate had the largest effect on the reaction barriers. In addition, the effect of electronics on the aromatic ring in N-phenyl substrates was studied computationally and experimentally. Overall, this protocol proved considerably more amenable to scale up compared to earlier methods by eliminating the requirement of microwave batch chemistry for this reaction as well as significantly reducing the quantity of solvent.

  6. Studies toward the synthesis of palhinine lycopodium alkaloids: a Morita-Baylis-Hillman/intramolecular Diels-Alder approach.

    PubMed

    Sizemore, Nicholas; Rychnovsky, Scott D

    2014-02-07

    A synthetic route to the isotwistane core of palhinine lycopodium alkaloids is described. A Morita-Baylis-Hillman/intramolecular Diels-Alder (IMDA) strategy sets the vicinal all-carbon quaternary centers present in this family of natural products. The regioselectivity of the IMDA reaction is dictated by the conditions employed for silyl enol ether formation, with one set of conditions providing the core of cardionine and alternate conditions generating the desired isotwistane core of isopalhinine.

  7. Microcontact Printing Patterning of an HOPG Surface by an Inverse Electron Demand Diels-Alder Reaction.

    PubMed

    Zhu, Jun; Hiltz, Jonathan; Tefashe, Ushula M; Mauzeroll, Janine; Lennox, R Bruce

    2018-06-21

    The chemical modification of an sp 2 hybridized carbon surface in a controllable manner is very challenging but also crucial for many applications. An inverse electron demand Diels-Alder (IEDDA) reaction using microcontact printing technique is introduced to spatially control the modification of a highly ordered pyrolytic graphite (HOPG) surface under ambient conditions. The covalent modification was characterized by Raman spectroscopy, XPS, and SECM. Tetrazine derivatives can effectively react with an HOPG surface and with microcontact printing methods resulting in spatially patterned surfaces being produced with micrometer-scale resolution. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Solid-supported nitroso hetero Diels-Alder reactions. 1. Acylnitroso dienophiles: scope and limitations.

    PubMed

    Krchnák, Viktor; Moellmann, Ute; Dahse, Hans-Martin; Miller, Marvin J

    2008-01-01

    Polymer-supported acylnitroso dienophiles were prepared and used in hetero Diels-Alder (HDA) reactions with a variety of dienes. The transient acylnitroso dienophiles were prepared in situ from immobilized hydroxamates, which were attached to solid supports via several linkers each cleavable by different cleavage reagents, and served for the synthesis of both N-unsubstituted and N-derivatized HDA adducts. Model compounds were used to (i) optimize reaction conditions for solid-supported HDA reactions, (ii) evaluate the outcome of the reactions with various dienes, (iii) compare relative reactivities of dienes, and (iv) assess the stability of HDA adducts toward cleavage conditions typically used in solid-phase syntheses. Cleaved products were submitted to biological assays, and the results are reported. The accompanying paper, focused on complementary arylnitroso HDA reactions, includes a comparison of both HDA reactions.

  9. Preparation and Characterization of a Small Library of Thermally-Labile End-Caps for Variable-Temperature Triggering of Self-Immolative Polymers.

    PubMed

    Taimoory, S Maryamdokht; Sadraei, S Iraj; Fayoumi, Rose Anne; Nasri, Sarah; Revington, Matthew; Trant, John F

    2018-04-20

    The reaction between furans and maleimides has increasingly become a method of interest as its reversibility makes it a useful tool for applications ranging from self-healing materials, to self-immolative polymers, to hydrogels for cell culture and for the preparation of bone repair. However, most of these applications have relied on simple monosubstituted furans and simple maleimides and have not extensively evaluated the potential thermal variability inherent in the process that is achievable through simple substrate modification. A small library of cycloadducts suitable for the above applications was prepared, and the temperature dependence of the retro-Diels-Alder processes was determined through in situ 1 H NMR analyses complemented by computational calculations. The practical range of the reported systems ranges from 40 to >110 °C. The cycloreversion reactions are more complex than would be expected based on simple trends expected based on frontier molecular orbital analyses of the materials.

  10. Diels-Alder addition to H2O@C60 an electronic and structural study

    NASA Astrophysics Data System (ADS)

    Reveles, J. Ulises; Govinda, K. C.; Baruah, Tunna; Zope, Rajendra R.

    2017-10-01

    Exohedral reactivity of endohedral fullerenes has aroused a significant interest because of its potential applications. The present letter examines the effect of an entrapped single water molecule on the reactivity of C60. We study the thermodynamics and kinetics of a Diels-Alder reaction occurring at all non-identical bonds of free C60 and H2O@C60. Our calculations show that encapsulation of water does not have a significant effect on H2O@C60 reactivity compared to C60, as attested by the investigation of the reaction under several orientations of H2O inside C60. Reaction and activation energies indicate that [6,6] bonds are the most reactive sites.

  11. Prediction of the chemo- and regioselectivity of Diels-Alder reactions of o-benzoquinone derivatives with thiophenes by means of DFT-based reactivity indices

    NASA Astrophysics Data System (ADS)

    Ghomri, Amina; Mekelleche, Sidi Mohamed

    2014-03-01

    Global and local reactivity indices derived from density functional theory were used to elucidate the regio- and chemoselectivity of Diels-Alder reactions of masked o-benzoquinones with thiophenes acting as dienophiles. The polarity of the studied reactions is evaluated in terms of the difference of electrophilicity powers between the diene and dienophile partners. Preferential cyclisation modes of these cycloadditions are predicted using Domingo's polar model based on the local electrophilicity index, ωk, of the electrophile and the local nucleophilicity index, Nuk, of the nucleophile. The theoretical calculations, carried out at the B3LYP/6-311G(d,p) level of theory, are in good agreement with experimental findings.

  12. Intramolecular Aza-Diels-Alder Reactions of ortho-Quinone Methide Imines: Rapid, Catalytic, and Enantioselective Assembly of Benzannulated Quinolizidines.

    PubMed

    Kretzschmar, Martin; Hofmann, Fabian; Moock, Daniel; Schneider, Christoph

    2018-04-16

    Aza-Diels-Alder reactions (ADARs) are powerful processes that furnish N-heterocycles in a straightforward fashion. Intramolecular variants offer the additional possibility of generating bi- and polycyclic systems with high stereoselectivity. We report herein a novel Brønsted acid catalyzed process in which ortho-quinone methide imines tethered to the dienophile via the N substituent react in an intramolecular ADAR to form complex quinolizidines and oxazinoquinolines in a one-step process. The reactions proceed under very mild conditions, with very good yields and good to very good diastereo- and enantioselectivities. Furthermore, the process was extended to a domino reaction that efficiently combines substrate synthesis, ortho-quinone methide imine formation, and ADAR. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Intramolecular inverse-electron-demand Diels-Alder reactions of imidazoles with 1,2,4-triazines: a new route to 1,2,3,4-tetrahydro-1,5-naphthyridines and related heterocycles.

    PubMed

    Lahue, Brian R; Lo, Sie-Mun; Wan, Zhao-Kui; Woo, Grace H C; Snyder, John K

    2004-10-15

    The intramolecular inverse-electron-demand Diels-Alder reaction between imidazoles and 1,2,4-triazines linked by a trimethylene tether from the imidazole N1 position to the triazine C3 proceed in excellent yields to produce 1,2,3,4-tetrahydro-1,5-naphthyridines. The reaction proceeds by a cycloaddition with subsequent loss of nitrogen, followed by a presumed stepwise loss of a nitrile. The analogous intramolecular cycloadditions employing a tetramethylene tether also proceeded to give 2,3,4,5-tetrahydro-1H-pyrido[3,2-b]azepines in acceptable yields. The reaction to produce the tetrahydro-1,5-naphthyridines can also be promoted with microwave irradiation.

  14. Natural Diels-Alderases: Elusive and Irresistable

    PubMed Central

    Klas, Kimberly; Tsukamoto, Sachiko; Sherman, David H.; Williams, Robert M.

    2016-01-01

    Eight examples of biosynthetic pathways wherein a natural enzyme has been identified and claimed to function as a catalyst for the [4+2] cycloaddition reaction, namely, Diels-Alderases, are briefly reviewed. These are discussed in the context of the mechanistic challenges associated with the technical difficulty of proving that the net formal [4+2] cycloaddition under study, indeed proceeds through a synchronous, mechanism and that the putative biosynthetic enzyme deploys the pericyclic transition state required for a Diels-Alder cycloaddition reaction. PMID:26495876

  15. Chlorotheolides A and B, Spiroketals Generated via Diels-Alder Reactions in the Endophytic Fungus Pestalotiopsis theae.

    PubMed

    Liu, Ling; Han, Yu; Xiao, Junhai; Li, Li; Guo, Liangdong; Jiang, Xuejun; Kong, Lingyi; Che, Yongsheng

    2016-10-28

    Chlorotheolides A (1) and B (2), two new spiroketals possessing the unique [4,7]methanochromene and dispiro-trione skeletons, respectively, and their putative biosynthetic precursors, 1-undecen-2,3-dicarboxylic acid (3) and maldoxin (4), were isolated from the solid substrate fermentation of the plant endophytic fungus Pestalotiopsis theae (N635). Their structures were elucidated based on NMR spectroscopic data and electronic circular dichroism calculations. Biogenetically, compounds 1 and 2 could be generated from the co-isolated 3 and 4 via Diels-Alder reactions. Chlorotheolide (2) showed an antiproliferative effect against the human tumor cell line HeLa and induced an autophagic process in the cells.

  16. Grafting methyl acrylic onto carbon fiber via Diels-Alder reaction for excellent mechanical and tribological properties of phenolic composites

    NASA Astrophysics Data System (ADS)

    Fei, Jie; Duan, Xiao; Luo, Lan; Zhang, Chao; Qi, Ying; Li, Hejun; Feng, Yongqiang; Huang, Jianfeng

    2018-03-01

    Carbon fibers (CFs) were grafted with methyl acrylic via Diels-Alder reaction at the different oil bath temperature effectively creating a carboxyl functionalized surface. The effect of grafting temperature on the surface morphology and functional groups of carbon fibers were investigated by FTIR, Raman spectroscopy, XPS and SEM respectively. The results showed that the optimal grafting temperature was 80 °C, and the relative surface coverage by carboxylic acid groups increased from an initial 5.16% up to 19.30% significantly improved the chemical activity without damaging the skin and core region of the carbon fibers. Mechanical property tests indicated that the shear and tensile strength of the sample with the grafting temperature of 80 °C (CFRP-3) increased obviously by 90.3% and 78.7%, respectively, compared with the pristine carbon fibers reinforced composite. Further, the sample CFRP-3 exhibited higher and more stable friction coefficient and improved wear resistance, while the wear rate decreased 52.7%, from 10.8 × 10-6 to 5.1 × 10-6 mm3/N m. The present work shows that grafting methyl acrylic via Diels-Alder reaction could be a highly efficient and facile method to functionalize carbon fibers for advanced composites.

  17. Unimolecular Thermal Fragmentation of Ortho-Benzyne

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X.; Maccarone, A. T.; Nimlos, M. R.

    2007-01-01

    The ortho-benzyne diradical, o-C{sub 6}H{sub 4} has been produced with a supersonic nozzle and its subsequent thermal decomposition has been studied. As the temperature of the nozzle is increased, the benzyne molecule fragments: o-C{sub 6}H{sub 4} + {Delta} {yields} products. The thermal dissociation products were identified by three experimental methods: (i) time-of-flight photoionization mass spectrometry, (ii) matrix-isolation Fourier transform infrared absorption spectroscopy, and (iii) chemical ionization mass spectrometry. At the threshold dissociation temperature, o-benzyne cleanly decomposes into acetylene and diacetylene via an apparent retro-Diels-Alder process: o-C{sub 6}H{sub 4} + {Delta} {yields} HC {triple_bond} CH+HC {triple_bond} C-C {triple_bond} CH. The experimentalmore » {Delta}{sub rxn}H{sub 298}(o-C{sub 6}H{sub 4} {yields} HC {triple_bond} CH+HC {triple_bond} C-C {triple_bond} CH) is found to be 57 {+-} 3 kcal mol{sup -1}. Further experiments with the substituted benzyne, 3,6-(CH{sub 3}){sub 2}-o-C{sub 6}H{sub 2}, are consistent with a retro-Diels-Alder fragmentation. But at higher nozzle temperatures, the cracking pattern becomes more complicated. To interpret these experiments, the retro-Diels-Alder fragmentation of o-benzyne has been investigated by rigorous ab initio electronic structure computations. These calculations used basis sets as large as [C(7s6p5d4f3g2h1i)/H(6s5p4d3f2g1h)] (cc-pV6Z) and electron correlation treatments as extensive as full coupled cluster through triple excitations (CCSDT), in cases with a perturbative term for connected quadruples [CCSDT(Q)]. Focal point extrapolations of the computational data yield a 0 K barrier for the concerted, C{sub 2v}-symmetric decomposition of o-benzyne, E{sub b}(o-C{sub 6}H{sub 4} {yields} HC {triple_bond} CH+HC {triple_bond} C-C {triple_bond} CH) = 88.0 {+-} 0.5 kcal mol{sup -1}. A barrier of this magnitude is consistent with the experimental results. A careful assessment of the thermochemistry for the high temperature fragmentation of benzene is presented: C{sub 6}H{sub 6} {yields} H+[C{sub 6}H{sub 5}] {yields} H+[o-C{sub 6}H{sub 4}] {yields} HC {triple_bond} CH+HC {triple_bond} C-C {triple_bond} CH. Benzyne may be an important intermediate in the thermal decomposition of many alkylbenzenes (arenes). High engine temperatures above 1500 K may crack these alkylbenzenes to a mixture of alkyl radicals and phenyl radicals. The phenyl radicals will then dissociate first to benzyne and then to acetylene and diacetylene.« less

  18. Unimolecular thermal fragmentation of ortho-benzene.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X.; Maccarone, A. T.; Nimlos, M. R.

    2007-01-01

    The ortho-benzyne diradical, o-C{sub 6}H{sub 4} has been produced with a supersonic nozzle and its subsequent thermal decomposition has been studied. As the temperature of the nozzle is increased, the benzyne molecule fragments o-C{sub 6}H{sub 4}{sup +} {Delta} {yields} products. The thermal dissociation products were identified by three experimental methods: (i) time-of-flight photoionization mass spectrometry, (ii) matrix-isolation Fourier transform infrared absorption spectroscopy, and (iii) chemical ionization mass spectrometry. At the threshold dissociation temperature, o-benzyne cleanly decomposes into acetylene and diacetylene via an apparent retro-Diels-Alder process: o-C{sub 6}H{sub 4}{sup +}{Delta}{yields} HC {triple_bond} CH+HC {triple_bond} C-C {triple_bond} CH. The experimental {Delta}{sub rxn}H{submore » 298}(o-C{sub 6}H{sub 4} {yields} HC {triple_bond} CH+HC {triple_bond} C-C {triple_bond} CH) is found to be 57 {+-} 3 kcal mol{sup -1}. Further experiments with the substituted benzyne, 3,6-(CH{sub 3}){sub 2}-o-C{sub 6}H{sub 2}, are consistent with a retro-Diels-Alder fragmentation. But at higher nozzle temperatures, the cracking pattern becomes more complicated. To interpret these experiments, the retro-Diels-Alder fragmentation of o-benzyne has been investigated by rigorous ab initio electronic structure computations. These calculations used basis sets as large as [C(7s6p5d4f3g2h1i)/H(6s5p4d3f2g1h)] (cc-pV6Z) and electron correlation treatments as extensive as full coupled cluster through triple excitations (CCSDT), in cases with a perturbative term for connected quadruples [CCSDT(Q)]. Focal point extrapolations of the computational data yield a 0 K barrier for the concerted, C{sub 2v}-symmetric decomposition of o-benzyne, E{sub b}(o-C{sub 6}H{sub 4} {yields} HC {triple_bond} CH+HC {triple_bond} C-C {triple_bond} CH) = 88.0 {+-} 0.5 kcal mol{sup -1}. A barrier of this magnitude is consistent with the experimental results. A careful assessment of the thermochemistry for the high temperature fragmentation of benzene is presented: C{sub 6}H{sub 6} {yields} H+[C{sub 6}H{sub 5}] {yields} H+[o-C{sub 6}H{sub 4}] {yields} HC {triple_bond} CH-HC {triple_bond} C-C {triple_bond} CH. Benzyne may be an important intermediate in the thermal decomposition of many alkylbenzenes (arenes). High engine temperatures above 1500 K may crack these alkylbenzenes to a mixture of alkyl radicals and phenyl radicals. The phenyl radicals will then dissociate first to benzyne and then to acetylene and diacetylene.« less

  19. P-chiral 1-phosphanorbornenes: from asymmetric phospha-Diels-Alder reactions towards ligand design and functionalisation.

    PubMed

    Möller, Tobias; Wonneberger, Peter; Sárosi, Menyhárt B; Coburger, Peter; Hey-Hawkins, Evamarie

    2016-02-07

    The principle of stereotopic face differentiation was successfully applied to 2H-phospholes which undergo a very efficient and highly stereoselective Diels-Alder reaction giving phosphorus-chiral 1-phosphanorbornenes with up to 87% yield. The observed reaction pathway has been supported by theoretical calculations showing that the cycloaddition reaction between 2H-phosphole 3a and the dienophile (5R)-(-)-menthyloxy-2(5H)-furanone (8) is of normal electron demand. Optically pure phosphanes were obtained by separation of the single diastereomers and subsequent desulfurisation of the sulfur-protected phosphorus atom. Finally, divergent ligand synthesis is feasible by reduction of the chiral auxiliary, subsequent stereospecific intramolecular Michael addition, and various functionalisations of the obtained key compound 13a. Furthermore, the unique structural properties of phospanorbornenes are presented and compared to those of phosphanorbornanes.

  20. ent-Kaurane-Based Regio- and Stereoselective Inverse Electron Demand Hetero-Diels-Alder Reactions: Synthesis of Dihydropyran-Fused Diterpenoids†

    PubMed Central

    Ding, Chunyong; Wang, Lili; Chen, Haijun; Wild, Christopher; Ye, Na; Ding, Ye; Wang, Tianzhi; White, Mark A.; Shen, Qiang; Zhou, Jia

    2014-01-01

    A mild and concise approach for the construction of 3,4-dihydro-2H-pyran ring integrated into the A-ring of the natural product oridonin using an optimized inverse electron demand hetero-Diels-Alder (IED HDA) reaction is reported herein. A self-dimerization of the exocyclic enone installed in the A-ring through a homo-HDA reaction was identified to exclusively give a dimeric ent-kaurane diterpenoid with the spirochroman core. Moreover, the efficient cross-HDA cycloadditions of this enone with various vinyl ethers or vinyl sulfides, instead of its own homo-HDA dimerization, were achieved in regio- and stereoselective manners, thus providing the access to novel dihydropyran-fused diterpenoids as potential anticancer agents to overcome chemoresistance. PMID:25225052

  1. Development of Remendable Polymer Composites using a Thermoreversible Reaction

    NASA Astrophysics Data System (ADS)

    Peterson, Amy Michelle

    2011-12-01

    Materials that can repair cracks and recover from mechanical failure are desirable. Because remendable materials both repair and prevent the propagation of cracks on the micro scale, they offer the potential for increased durability, safety, and cost efficiency for many applications. The focus of this work was to understand the kinetic and physical parameters that control thermoreversible Diels-Alder bond formation in different types of healable polymeric systems. Three healing systems were developed based on the thermoreversible Diets-Alder reaction of furan and maleimide. In one, crack healing of a thermoset was induced by thermally reversible cross-linking of a secondary phase. In another, a furan-functionalized epoxy-amine thermoset were healed with a bismaleimide solution at room temperature and minimal pressure, with significant load recovery possible multiple times. The third system allowed for interfacial healing of glass fiber-reinforced epoxy-amine composites via compatible functionalization of glass fibers and the polymer network. The Diels-Alder reaction was characterized in all systems as well as highly mobile small molecule solutions. It was found that mobility, coupled with kinetics, dictate the extent of reaction and consequent strength recovery.

  2. Diels-Alder Cycloadditions of Masked o-Benzoquinones with Alkenes.

    PubMed

    Georgopanou, Effie; Martini, Katerina-Irene; Pantazis, Panagiotis; Pelagias, Paulos; Voulgari, Penelope; Hadjiarapoglou, Lazaros P

    2015-10-02

    Diels-Alder cycloadditions of 3-oxobut-1-enyl substituted orthoquinone monoketals with olefinic dienophiles furnished functionalized ortho-endo bicyclo[2.2.2]octenone derivatives with high regio- and stereoselectivities. The competition between self-dimerization and Diels-Alder cycloaddition with an external dienophile usually exists, except in the case of 5-substituted orthoquinone monoketal.

  3. "Click chemistry" in tailor-made polymethacrylates bearing reactive furfuryl functionality: a new class of self-healing polymeric material.

    PubMed

    Kavitha, A Amalin; Singha, Nikhil K

    2009-07-01

    This investigation reports the effective use of the Diels-Alder (DA) reaction, a "click reaction" in the preparation of thermally amendable and self-healing polymeric materials having reactive furfuryl functionality. In this case, the DA and retro-DA (rDA) reactions were carried out between the tailor-made homo- and copolymer of furfuryl methacrylate prepared by atom-transfer radical polymerization and a bismaleimide (BM). The kinetic studies of DA and rDA reactions were carried out using Fourier transform infrared spectroscopy. The DA polymers were insoluble in toluene at room temperature. When the DA polymers were heated at 100 degrees C in toluene, it was soluble. This is because of the cleavage between furfuryl functionality and BM. The chemical cross-link density was determined by the Flory-Rehner equation. The cross-linked polymer showed much greater adhesive strength at room temperature, but the adhesive strength was quite low at higher temperature. The self-healing capability was studied by using scanning electron microscopy analysis. The thermal and dynamic mechanical properties of the thermally amendable cross-linked materials were investigated by thermogravimetric analysis and dynamic mechanical analysis.

  4. A Thermal Dehydrogenative Diels–Alder Reaction of Styrenes for the Concise Synthesis of Functionalized Naphthalenes

    PubMed Central

    Kocsis, Laura S.; Benedetti, Erica

    2012-01-01

    Functionalized naphthalenes are valuable building blocks in many important areas. A microwave-assisted, intramolecular dehydrogenative Diels-Alder reaction of styrenyl derivatives to provide cyclopenta[b]naphthalene substructures not previously accessible using existing synthetic methods is described. The synthetic utility of these uniquely functionalized naphthalenes was demonstrated by a single-step conversion of one of these cycloadducts to a fluorophore bearing a structural resemblance to Prodan. PMID:22913473

  5. Solution-phase parallel synthesis of hexahydro-1H-isoindolone libraries via tactical combination of Cu-catalyzed three-component coupling and Diels-Alder reactions.

    PubMed

    Zhang, Lei; Lushington, Gerald H; Neuenswander, Benjamin; Hershberger, John C; Malinakova, Helena C

    2008-01-01

    Parallel solution-phase synthesis of combinatorial libraries of hexahydro-1 H-isoindolones exploiting a novel "tactical combination" of Cu-catalyzed three-component coupling and Diels-Alder reactions was accomplished. Three distinct libraries consisting of 24 members (library I), 60 members (library II), and 32 members (library III) were constructed. Variation of three substituents on the isoindolone scaffold in library I was exclusively achieved by the choice of the building blocks. In the syntheses of libraries II and III, sublibraries of isoindolone scaffolds were prepared initially in a one-pot/two-step process and were further diversified via Pd-catalyzed Suzuki cross-coupling reaction with boronic acids at two different diversification points. The Lipinski profiles and calculated ADME properties of the compounds are also reported.

  6. Signal transduction in a covalent post-assembly modification cascade

    NASA Astrophysics Data System (ADS)

    Pilgrim, Ben S.; Roberts, Derrick A.; Lohr, Thorsten G.; Ronson, Tanya K.; Nitschke, Jonathan R.

    2017-12-01

    Natural reaction cascades control the movement of biomolecules between cellular compartments. Inspired by these systems, we report a synthetic reaction cascade employing post-assembly modification reactions to direct the partitioning of supramolecular complexes between phases. The system is composed of a self-assembled tetrazine-edged FeII8L12 cube and a maleimide-functionalized FeII4L6 tetrahedron. Norbornadiene (NBD) functions as the stimulus that triggers the cascade, beginning with the inverse-electron-demand Diels-Alder reaction of NBD with the tetrazine moieties of the cube. This reaction generates cyclopentadiene as a transient by-product, acting as a relay signal that subsequently undergoes a Diels-Alder reaction with the maleimide-functionalized tetrahedron. Cyclooctyne can selectively inhibit the cascade by outcompeting NBD as the initial trigger. Initiating the cascade with 2-octadecyl NBD leads to selective alkylation of the tetrahedron upon cascade completion. The increased lipophilicity of the C18-tagged tetrahedron drives this complex into a non-polar phase, allowing its isolation from the initially inseparable mixture of complexes.

  7. High performance addition-type thermoplastics (ATTs) - Evidence for the formation of a Diels-Alder adduct in the reaction of an acetylene-terminated material and a bismaleimide

    NASA Technical Reports Server (NTRS)

    Pater, R. H.; Soucek, M. D.; Chang, A. C.; Partos, R. D.

    1991-01-01

    Recently, the concept and demonstration of a new versatile synthetic reaction for making a large number of high-performance addition-type thermoplastics (ATTs) were reported. The synthesis shows promise for providing polymers having an attractive combination of easy processability, good toughness, respectable high temperature mechanical performance, and excellent thermo-oxidative stability. The new chemistry involves the reaction of an acetylene-terminated material with a bismaleimide or benzoquinone. In order to clarify the reaction mechanism, model compound studies were undertaken in solutions as well as in the solid state. The reaction products were purified by flash chromatography and characterized by conventional analytical techniques including NMR, FT-IR, UV-visible, mass spectroscopy, and high pressure liquid chromatography. The results are presented of the model compound studies which strongly support the formation of a Diels-Alder adduct in the reaction of an acetylene-terminated compound and a bismaleimide or benzoquinone.

  8. Ring-rearrangement metathesis of nitroso Diels-Alder cycloadducts.

    PubMed

    Vincent, Guillaume; Kouklovsky, Cyrille

    2011-03-01

    Strained nitroso Diels-Alder bicyclo[2.2.1] or [2.2.2] adducts functionalized with alkene side chains of diverse length undergo a ring-rearrangement metathesis process with external alkenes and Grubbs II or Hoveyda-Grubbs II ruthenium catalysts, under microwave irradiation or classical heating, to deliver cis-fused bicycles of various ring sizes, which contain a N-O bond. These scaffolds are of synthetic relevance for the generation of molecular diversity and to the total synthesis of alkaloids. The observation of unexpected reactions, such as epimerization or one-carbon homologation of the alkene side chain, is also reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Heteropoly acid-catalyzed microwave-assisted three-component aza-Diels-Alder cyclizations: diastereoselective synthesis of potential drug candidates for Alzheimer's disease.

    PubMed

    Borkin, Dmitry; Morzhina, Elena; Datta, Silpi; Rudnitskaya, Aleksandra; Sood, Abha; Török, Marianna; Török, Béla

    2011-03-07

    A highly diastereoselective microwave-assisted three component synthesis of azabicyclo[2.2.2]octan-5-ones by a silicotungstic acid-catalyzed aza-Diels-Alder cyclization is described. The one-pot process involves the formation of the in situ generated Schiff base and its immediate cyclization with cyclohex-2-enone. The short reaction times, good yields and excellent diastereoselectivity make this annulation a practical and environmentally attractive method for the synthesis of the target compounds. Preliminary assays were carried out to determine the activity of the products in AChE as well as in amyloid β fibrillogenesis inhibition.

  10. Temperature-controlled cross-linking of silver nanoparticles with diels-alder reaction and its application on antibacterial property

    NASA Astrophysics Data System (ADS)

    Liu, Lian; Yang, Pengfei; Li, Junying; Zhang, Zhiliang; Yu, Xi; Lu, Ling

    2017-05-01

    Sliver nanoparticles (AgNPs) were synthesized and functionalized with furan group on their surface, followed by the reverse Diels-Alder (DA) reaction with bismaleimide to vary the particle size, so as to give different antibacterial activities. These nanoparticles were characterized using Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Ultraviolet-Visible (UV-vis), Nanoparticle Size Analyzer and X-Ray Photoelectron Spectroscopy (XPS). It was found that the cross-linking reaction with bismaleimide had a great effect on the size of AgNPs. The size of the AgNPs could be controlled by the temperature of DA/r-DA equilibrium. The antibacterial activity was assessed using the inhibition zone diameter by introducing the particles into a media containing Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus, respectively. It was found that these particles were effective bactericides. Furthermore, the antibacterial activity of the nanoparticles decreased orderly as the particle size enlarged.

  11. Iodine(III) Derivatives as Halogen Bonding Organocatalysts.

    PubMed

    Heinen, Flemming; Engelage, Elric; Dreger, Alexander; Weiss, Robert; Huber, Stefan M

    2018-03-26

    Hypervalent iodine(III) derivatives are known as versatile reagents in organic synthesis, but there is only one previous report on their use as Lewis acidic organocatalysts. Herein, we present first strong indications for the crucial role of halogen bonding in this kind of catalyses. To this end, the solvolysis of benzhydryl chloride and the Diels-Alder reaction of cyclopentadiene with methyl vinyl ketone served as benchmark reactions for halide abstraction and the activation of neutral compounds. Iodolium compounds (cyclic diaryl iodonium species) were used as activators or catalysts, and we were able to markedly reduce or completely switch off their activity by sterically blocking one or two of their electrophilic axes. Compared with previously established bidentate cationic halogen bond donors, the monodentate organoiodine derivatives used herein are at least similarly active (in the Diels-Alder reaction) or even decidedly more active (in benzhydryl chloride solvolysis). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Poly(2-vinyl pyridine)-block-poly(ethylene oxide) featuring a furan group at the block junction-synthesis and functionalization.

    PubMed

    Rudolph, Tobias; Barthel, Markus J; Kretschmer, Florian; Mansfeld, Ulrich; Hoeppener, Stephanie; Hager, Martin D; Schubert, Ulrich S; Schacher, Felix H

    2014-05-01

    Furfuryl glycidyl ether (FGE) represents a highly versatile monomer for the preparation of reversibly cross-linkable nanostructured materials via Diels-Alder reactions. Here, the use of FGE for the mid-chain functionalization of a P2VP-b-PEO diblock copolymer is reported. The material features one furan moiety at the block junction, P2VP68 -FGE-b-PEO390 , which can be subsequently addressed in Diels-Alder reactions using maleimide-functionalized counterparts. The presence of the FGE moiety enables the introduction of dyes as model labels or the formation of hetero-grafted brushes as shell on hybrid Au@Polymer nanoparticles. This renders P2VP68 -FGE-b-PEO390 , a powerful tool for selective functionalization reactions, including the modification of surfaces. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Bio-orthogonal Fluorescent Labelling of Biopolymers through Inverse-Electron-Demand Diels-Alder Reactions.

    PubMed

    Kozma, Eszter; Demeter, Orsolya; Kele, Péter

    2017-03-16

    Bio-orthogonal labelling schemes based on inverse-electron-demand Diels-Alder (IEDDA) cycloaddition have attracted much attention in chemical biology recently. The appealing features of this reaction, such as the fast reaction kinetics, fully bio-orthogonal nature and high selectivity, have helped chemical biologists gain deeper understanding of biochemical processes at the molecular level. Listing the components and discussing the possibilities and limitations of these reagents, we provide a recent snapshot of the field of IEDDA-based biomolecular manipulation with special focus on fluorescent modulation approaches through the use of bio-orthogonalized building blocks. At the end, we discuss challenges that need to be addressed for further developments in order to overcome recent limitations and to enable researchers to answer biomolecular questions in more detail. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  14. Applications of microwave-accelerated organic synthesis

    NASA Astrophysics Data System (ADS)

    Majetich, George; Hicks, Rodgers

    1995-04-01

    A comparison of microwave vs conventional heating is presented for a variety of Diels-Alder reactions, ortho-Claisen rearrangements, ene reactions, alkyl bromide preparations, Finkelstein reactions, oxidations, esterifications, hydrolyses, Williamson ether syntheses and other common organic transformations. In general, microwave-promoted reactions proceed with significant decreases in reaction times and in comparable chemical yield.

  15. Biodegradable hyaluronic acid hydrogels to control release of dexamethasone through aqueous Diels-Alder chemistry for adipose tissue engineering.

    PubMed

    Fan, Ming; Ma, Ye; Zhang, Ziwei; Mao, Jiahui; Tan, Huaping; Hu, Xiaohong

    2015-11-01

    A robust synthetic strategy of biopolymer-based hydrogels has been developed where hyaluronic acid derivatives reacted through aqueous Diels-Alder chemistry without the involvement of chemical catalysts, allowing for control and sustain release of dexamethasone. To conjugate the hydrogel, furan and maleimide functionalized hyaluronic acid were synthesized, respectively, as well as furan functionalized dexamethasone, for the covalent immobilization. Chemical structure, gelation time, morphologies, swelling kinetics, weight loss, compressive modulus and dexamethasone release of the hydrogel system in PBS at 37°C were studied. The results demonstrated that the aqueous Diels-Alder chemistry provides an extremely selective reaction and proceeds with high efficiency for hydrogel conjugation and covalent immobilization of dexamethasone. Cell culture results showed that the dexamethasone immobilized hydrogel was noncytotoxic and preserved proliferation of entrapped human adipose-derived stem cells. This synthetic approach uniquely allows for the direct fabrication of biologically functionalized gel scaffolds with ideal structures for adipose tissue engineering, which provides a competitive alternative to conventional conjugation techniques such as copper mediated click chemistry. Copyright © 2015. Published by Elsevier B.V.

  16. Synthesis of Polyheterocyclic Pyrrolo[3,4-b]pyridin-5-ones via a One-Pot (Ugi-3CR/aza Diels-Alder/N-acylation/aromatization/SN2) Process. A Suitable Alternative towards Novel Aza-Analogues of Falipamil.

    PubMed

    Zamudio-Medina, Angel; García-González, Ailyn N; Herrera-Carrillo, Genesis K; Zárate-Zárate, Daniel; Benavides-Macías, Adriana; Tamariz, Joaquín; Ibarra, Ilich A; Islas-Jácome, Alejandro; González-Zamora, Eduardo

    2018-03-27

    We describe the one-pot synthesis of twenty polyheterocyclic pyrrolo[3,4- b ]pyridin-5-ones via a cascade process (Ugi-3CR/aza Diels-Alder/ N -acylation/aromatization) in 20 to 95% overall yields, as well as four pharmacologically promising analogues via an improved cascade process (Ugi-3CR/aza Diels-Alder/ N -acylation/aromatization/S N 2): two piperazine-linked pyrrolo[3,4- b ]pyridin-5-ones in 33 and 34%, and a couple of Falipamil aza-analogues in 30 and 35% overall yields. It is worth highlighting the good substrate scope found, because final products are furnished with alkyl, aryl, and heterocyclic substituents. The use of chain-ring tautomerizable isocyanides (as key reagents for the Ugi-type three component reaction) allowed for a rapid and efficient assembly of the polysubstituted oxindoles, which were used in situ toward the complex products, conferring features like robustness, sustainability, and the one-pot approach to this synthetic methodology.

  17. Catalytic asymmetric total synthesis of (+)-yohimbine.

    PubMed

    Mergott, Dustin J; Zuend, Stephan J; Jacobsen, Eric N

    2008-03-06

    The total synthesis of (+)-yohimbine was achieved in 11 steps and 14% overall yield. The absolute configuration was established through a highly enantioselective thiourea-catalyzed acyl-Pictet-Spengler reaction, and the remaining 4 stereocenters were set simultaneously in a substrate-controlled intramolecular Diels-Alder reaction.

  18. Isoprene/methyl acrylate Diels-Alder reaction in supercritical carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, B.; Akgerman, A.

    1999-12-01

    The Diels-Alder reaction between isoprene and methyl acrylate was carried out in supercritical carbon dioxide in the temperature range 110--140 C and the pressure range 95.2--176.9 atm in a 300 cm{sup 3} autoclave. The high-pressure phase behavior of the reaction mixture in the vicinity of its critical region was determined in a mixed vessel with a sight window to ensure that all the experiments were performed in the supercritical single-phase region. Kinetic data were obtained at different temperatures, pressures, and reaction times. It was observed that in the vicinity of the critical point the reaction rate constant decreases with increasingmore » pressure. It was also determined that the reaction selectivity does not change with operating conditions. Transition-state theory was used to explain the effect of pressure on reaction rate and product selectivity. Additional experiments were conducted at constant temperature but different phase behaviors (two-phase region, liquid phase, supercritical phase) by adjusting the initial composition and pressure. It was shown that the highest reaction rate is in the supercritical region.« less

  19. (125)I-Tetrazines and Inverse-Electron-Demand Diels-Alder Chemistry: A Convenient Radioiodination Strategy for Biomolecule Labeling, Screening, and Biodistribution Studies.

    PubMed

    Albu, Silvia A; Al-Karmi, Salma A; Vito, Alyssa; Dzandzi, James P K; Zlitni, Aimen; Beckford-Vera, Denis; Blacker, Megan; Janzen, Nancy; Patel, Ramesh M; Capretta, Alfredo; Valliant, John F

    2016-01-20

    A convenient method to prepare radioiodinated tetrazines was developed, such that a bioorthogonal inverse electron demand Diels-Alder reaction can be used to label biomolecules with iodine-125 for in vitro screening and in vivo biodistribution studies. The tetrazine was prepared by employing a high-yielding oxidative halo destannylation reaction that concomitantly oxidized the dihydrotetrazine precursor. The product reacts quickly and efficiently with trans-cyclooctene derivatives. Utility was demonstrated through antibody and hormone labeling experiments and by evaluating products using standard analytical methods, in vitro assays, and quantitative biodistribution studies where the latter was performed in direct comparison to Bolton-Hunter and direct iodination methods. The approach described provides a convenient and advantageous alternative to conventional protein iodination methods that can expedite preclinical development and evaluation of biotherapeutics.

  20. Irreversible endo-selective diels-alder reactions of substituted alkoxyfurans: a general synthesis of endo-cantharimides.

    PubMed

    Foster, Robert W; Benhamou, Laure; Porter, Michael J; Bučar, Dejan-Krešimir; Hailes, Helen C; Tame, Christopher J; Sheppard, Tom D

    2015-04-13

    The [4+2] cycloaddition of 3-alkoxyfurans with N-substituted maleimides provides the first general route for preparing endo-cantharimides. Unlike the corresponding reaction with 3H furans, the reaction can tolerate a broad range of 2-substitued furans including alkyl, aromatic, and heteroaromatic groups. The cycloaddition products were converted into a range of cantharimide products with promising lead-like properties for medicinal chemistry programs. Furthermore, the electron-rich furans are shown to react with a variety of alternative dienophiles to generate 7-oxabicyclo[2.2.1]heptane derivatives under mild conditions. DFT calculations have been performed to rationalize the activation effect of the 3-alkoxy group on a furan Diels-Alder reaction. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  1. Reactions of hexadehydro-Diels-Alder benzynes with structurally complex multifunctional natural products

    NASA Astrophysics Data System (ADS)

    Ross, Sean P.; Hoye, Thomas R.

    2017-06-01

    An important question in organic chemistry concerns the extent to which benzynes—one of the classical reactive intermediates in organic chemistry—can react in discriminating fashion with trapping reagents. In particular, whether these species can react selectively with substrates containing multiple functional groups and possible sites of reactivity has remained unanswered. Natural products comprise a palette of multifunctional compounds with which to address this question. Here, we show that benzynes produced by the hexadehydro-Diels-Alder (HDDA) reaction react with many secondary metabolites with a preference for one among several pathways. Examples demonstrating such selectivity include reactions with: phenolics, through dearomatizing ortho-substitution; alkaloids, through Hofmann-type elimination; tropolone and furan, through cycloaddition; and alkaloids, through three-component fragmentation-coupling reactions. We also demonstrate that the cinchona alkaloids quinidine and quinine give rise to products (some in as few as three steps) that enable subsequent and rapid access to structurally diverse polyheterocyclic compounds. The results show that benzynes are quite discriminating in their reactivity—a trait perhaps not broadly enough appreciated.

  2. Microwave assisted synthesis of bridgehead alkenes.

    PubMed

    Cleary, Leah; Yoo, Hoseong; Shea, Kenneth J

    2011-04-01

    A new, concise method to synthesize triene precursors for the type 2 intramolecular Diels-Alder reaction has been developed. Microwave irradiation of the trienes provides a convenient method for the synthesis of bridgehead alkenes. Higher yields, shorter reaction times, and lower reaction temperatures provide a general and efficient route to this interesting class of molecules.

  3. An MM and QM Study of Biomimetic Catalysis of Diels-Alder Reactions Using Cyclodextrins

    PubMed Central

    Chen, Wei; Sun, Lipeng; Tang, Zhiye; Ali, Zulfikhar A.; Wong, Bryan M.; Chang, Chia-en A.

    2018-01-01

    We performed a computational investigation of the mechanism by which cyclodextrins (CDs) catalyze Diels-Alder reactions between 9-anthracenemethanol and N-cyclohexylmaleimide. Hydrogen bonds (Hbonds) between N-cyclohexylmaleimide and the hydroxyl groups of cyclodextrins were suggested to play an important role in this catalytic process. However, our free energy calculations and molecular dynamics simulations showed that these Hbonds are not stable, and quantum mechanical calculations suggested that the reaction is not promoted by these Hbonds. The binding of 9-anthracenemethanol and N-cyclohexylmaleimide to cyclodextrins was the key to the catalytic process. Cyclodextrins act as a container to hold the two reactants in the cavity, pre-organize them for the reactions, and thus reduce the entropy penalty to the activation free energy. Dimethyl-β-CD was a better catalyst for this specific reaction than β-CD because of its stronger van der Waals interaction with the pre-organized reactants and its better performance in reducing the activation energy. This computational work sheds light on the mechanism of the catalytic reaction by cyclodextrins and introduces new perspectives of supramolecular catalysis. PMID:29938117

  4. Dual function catalysts. Dehydrogenation and asymmetric intramolecular Diels-Alder cycloaddition of N-hydroxy formate esters and hydroxamic acids: evidence for a ruthenium-acylnitroso intermediate.

    PubMed

    Chow, Chun P; Shea, Kenneth J

    2005-03-23

    The chiral ruthenium salen complex, 13b, functions as an efficient catalyst for the sequential oxidation and asymmetric Diels-Alder cycloaddition of hydroxamic acids and N-hydroxy formate esters. This result provides evidence for the formation of a ruthenium-nitroso formate (acyl nitroso) intermediate. The Diels-Alder precursors are prepared from simple building blocks, and the cycloadducts, bridged oxazinolactams, can serve as useful intermediates in organic synthesis.

  5. A Diels-Alder Route to Angularly Functionalized Bicyclic Structures

    PubMed Central

    Kim, Woo Han; Lee, Jun Hee; Aussedat, Baptiste; Danishefsky, Samuel J.

    2010-01-01

    A Diels-Alder based route to trans-fused angularly functionalized bicyclic structures has been developed. This transformation features the use of a tetrasubstituted dienophile in the cycloaddition step. PMID:20717474

  6. Enhancing Zeolite Performance by Catalyst Shaping in a Mesoscale Continuous-Flow Diels-Alder Process.

    PubMed

    Seghers, Sofie; Lefevere, Jasper; Mullens, Steven; De Vylder, Anton; Thybaut, Joris W; Stevens, Christian V

    2018-03-26

    In contrast to most lab-scale batch procedures, a continuous-flow implementation requires a thorough consideration of the solid catalyst design. In a previous study, irregular zeolite pellets were applied in a miniaturized continuous-flow reactor for the Diels-Alder reaction in the construction of norbornene scaffolds. After having faced the challenges of continuous operation, the aim of this study is to exploit catalyst structuring. To this end, microspheres with high uniformity and various sphere diameters were synthesized according to the vibrational droplet coagulation method. The influence of the use of these novel zeolite shapes in a mesoscale continuous-flow Diels-Alder process of cyclopentadiene and methyl acrylate is discussed. An impressive enhancement of catalyst lifetime is demonstrated, as even after a doubled process time of 14 h, the microspheres still exceeded the conversion after 7 h when using zeolite pellets by 30 %. A dual reason is found for this beneficial impact of catalyst shaping. The significant improvement in catalyst longevity can be attributed to the interplay of the chemical composition and the porosity structure of the microspheres. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Regiochemically controlled synthesis of a β-4-β' [70]fullerene bis-adduct

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerón, Maira R.; Castro, Edison; Neti, Venkata S. Pavan K.

    2016-12-22

    A β-4-β' C 70 bis-adduct regioisomer and an uncommon mono-adduct β-malonate C 70 derivative were synthesized by using a Diels–Alder cycloaddition followed by an addition–elimination of bromo-ethylmalonate and a retro-Diels–Alder cycloaddition reaction. Here, we also report the regioselective synthesis and spectroscopic characterization of C s-symmetric tris- and C 2v-symmetric tetra-adducts of C 70, which are the precursors of the mono- and bis-adduct final products.

  8. Stereocontrolled total syntheses of (±)-fawcettimine, (±)-lycoflexine, and (±)-lycoflexine N-oxide.

    PubMed

    Xu, Ke; Cheng, Bin; Li, Yun; Xu, Tingting; Yu, Cunming; Zhang, Jun; Ma, Zhiqiang; Zhai, Hongbin

    2014-01-03

    New stereocontrolled total syntheses of (±)-fawcettimine, (±)-lycoflexine, and (±)-lycoflexine N-oxide have been accomplished. The highlights include a one-pot annulation to construct the enedione and a microwave-promoted Diels-Alder reaction.

  9. Elucidation of Diels-Alder Reaction Network of 2,5-Dimethylfuran and Ethylene on HY Zeolite Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Do, Phuong T. M.; McAtee, Jesse R.; Watson, Donald A.

    2012-12-12

    The reaction of 2,5-dimethylfuran and ethylene to produce p-xylene represents a potentially important route for the conversion of biomass to high-value organic chemicals. Current preparation methods suffer from low selectivity and produce a number of byproducts. Using modern separation and analytical techniques, the structures of many of the byproducts produced in this reaction when HY zeolite is employed as a catalyst have been identified. From these data, a detailed reaction network is proposed, demonstrating that hydrolysis and electrophilic alkylation reactions compete with the desired Diels–Alder/dehydration sequence. This information will allow the rational identification of more selective catalysts and more selectivemore » reaction conditions.« less

  10. "In silico" mechanistic studies as predictive tools in microwave-assisted organic synthesis.

    PubMed

    Rodriguez, A M; Prieto, P; de la Hoz, A; Díaz-Ortiz, A

    2011-04-07

    Computational calculations can be used as a predictive tool in Microwave-Assisted Organic Synthesis (MAOS). A DFT study on Intramolecular Diels-Alder reactions (IMDA) indicated that the activation energy of the reaction and the polarity of the stationary points are two fundamental parameters to determine "a priori" if a reaction can be improved by using microwave irradiation.

  11. Optical fiber-based on-line UV/Vis spectroscopic monitoring of chemical reaction kinetics under high pressure in a capillary microreactor.

    PubMed

    Benito-Lopez, Fernando; Verboom, Willem; Kakuta, Masaya; Gardeniers, J Han G E; Egberink, Richard J M; Oosterbroek, Edwin R; van den Berg, Albert; Reinhoudt, David N

    2005-06-14

    With a miniaturized (3 microL volume) fiber-optics based system for on-line measurement by UV/Vis spectroscopy, the reaction rate constants (at different pressures) and the activation volumes (deltaV(not =)) were determined for a nucleophilic aromatic substitution and an aza Diels-Alder reaction in a capillary microreactor.

  12. Solvent effects in acid-catalyzed dehydration of the Diels-Alder cycloadduct between 2,5-dimethylfuran and maleic anhydride

    NASA Astrophysics Data System (ADS)

    Salavati-fard, Taha; Caratzoulas, Stavros; Doren, Douglas J.

    2017-03-01

    Dehydration of the cycloadduct produced from the Diels-Alder reaction between 2,5-dimethylfuran and maleic anhydride to 3,6-dimethylphthalic anhydride exemplifies an important step in producing platform chemicals from biomass. The mechanisms of dehydration and catalytic effects of Lewis and Brønsted acids are investigated with density functional theory. The uncatalyzed reaction has a very high activation barrier (68.7 kcal/mol) in the gas phase and it is not significantly affected by solvation. With a Lewis acid catalyst, modeled as an alkali ion, the activation barriers are reduced, but intermediates are also stabilized. The net effect in vacuum is that the energetic span, or apparent activation energy of the catalytic cycle, is 77.9 kcal/mol, even higher than the barrier in the uncatalyzed case. In solution, however, the energetic span is reduced by as much as 20 kcal/mol, due to differences in the solvation energy of the transition states and intermediates. In the case of a Brønsted acid catalyst, modeled as a proton, the gas phase transition state energies are reduced even more than in the Lewis acid case, and there is no strong stabilization of the intermediates. The energetic span in vacuum is only 13.8 kcal/mol and is reduced even further in solution. Brønsted acid catalysis appears to be the preferred mechanism for dehydration of this cycloadduct. Since the Diels-Alder reaction that produced the molecule has previously been shown to be catalyzed by Brønsted acids, this suggests that a single catalyst could be used to accelerate both steps.

  13. Diels-Alder functionalized carbon nanotubes for bone tissue engineering: in vitro/in vivo biocompatibility and biodegradability.

    PubMed

    Mata, D; Amaral, M; Fernandes, A J S; Colaço, B; Gama, A; Paiva, M C; Gomes, P S; Silva, R F; Fernandes, M H

    2015-01-01

    The risk-benefit balance for carbon nanotubes (CNTs) dictates their clinical fate. To take a step forward at this crossroad it is compulsory to modulate the CNT in vivo biocompatibility and biodegradability via e.g. chemical functionalization. CNT membranes were functionalised combining a Diels-Alder cycloaddition reaction to generate cyclohexene (-C6H10) followed by a mild oxidisation to yield carboxylic acid groups (-COOH). In vitro proliferation and osteogenic differentiation of human osteoblastic cells were maximized on functionalized CNT membranes (p,f-CNTs). The in vivo subcutaneously implanted materials showed a higher biological reactivity, thus inducing a slighter intense inflammatory response compared to non-functionalized CNT membranes (p-CNTs), but still showing a reduced cytotoxicity profile. Moreover, the in vivo biodegradation of CNTs was superior for p,f-CNT membranes, likely mediated by the oxidation-induced myeloperoxidase (MPO) in neutrophil and macrophage inflammatory milieus. This proves the biodegradability faculty of functionalized CNTs, which potentially avoids long-term tissue accumulation and triggering of acute toxicity. On the whole, the proposed Diels-Alder functionalization accounts for the improved CNT biological response in terms of the biocompatibility and biodegradability profiles. Therefore, CNTs can be considered for use in bone tissue engineering without notable toxicological threats.

  14. ISOPRENE/METHYL ACRYLATE DIELS-ALDER REACTION IN SUPERCRITICAL CARBON DIOXIDE. (R822721C640)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  15. ISOPRENE/METHYL ACRYLATE DIELS-ALDER REACTION IN SUPERCRITICAL CARBON DIOXIDE. (R826694C640)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  16. Synthesis of (±)-Bistellettadine A

    PubMed Central

    Yu, Min; Pochapsky, Susan S.

    2010-01-01

    Esterification of the trienoic acid with o-xylylene dibromide gave the bis ester that underwent a templated Diels-Alder reaction to afford the macrodiolide stereospecifically in a single step. The synthesis of bistellettadine A was completed in four steps by hydrolysis and side chain elaboration. PMID:20078082

  17. Catalysis in the Diels-Alder Cycloaddition of Biomass-Derived Furan and Methyl Acrylate by Transition Metal Oxide Surfaces.

    NASA Astrophysics Data System (ADS)

    Salavati-Fard, Taha; Jenness, Glen; Caratzoulas, Stavros; Doren, Douglas

    Using computational methods, the catalytic effects of oxide surfaces on the Diels-Alder reaction between biomass-derived furan and methyl acrylate are investigated. The cycloadduct can be dehydrated later to produce methyl benzoic which is an important step toward benzoic acid production. Different systems such as clean, partially hydroxylated and fully hydroxylated ZrO2 are considered. The Langmuir and Eley-Rideal mechanisms are studied, as well. Our calculations show that the oxide surfaces catalyze the reaction significantly through the interaction of metal sites with the electron-poor reactant. The calculations are interpreted by making use of the total and projected electronic density of states and band structure of the catalyst. This material is based on work supported as part of the Catalysis Center for Energy Innovation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001004.

  18. Gold-Catalyzed Cycloisomerization and Diels-Alder Reaction of 1,4,9-Dienyne Esters to 3 a,6-Methanoisoindole Esters with Pro-Inflammatory Cytokine Antagonist Activity.

    PubMed

    Susanti, Dewi; Liu, Li-Juan; Rao, Weidong; Lin, Sheng; Ma, Dik-Lung; Leung, Chung-Hang; Chan, Philip Wai Hong

    2015-06-15

    A synthetic method to prepare 3a,6-methanoisoindole esters efficiently by gold(I)-catalyzed tandem 1,2-acyloxy migration/Nazarov cyclization followed by Diels-Alder reaction of 1,4,9-dienyne esters is described. We also report the ability of one example to inhibit binding of tumor necrosis factor-α (TNF-α) to the tumor necrosis factor receptor 1 (TNFR1) site and TNF-α-induced nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activation in cell at a half-maximal inhibitory concentration (IC50 ) value of 6.6 μM. Along with this is a study showing the isoindolyl derivative to exhibit low toxicity toward human hepatocellular liver carcinoma (HepG2) cells and its possible mode of activity based on molecular modeling analysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Novel N-allyl/propargyl tetrahydroquinolines: Synthesis via Three-component Cationic Imino Diels-Alder Reaction, Binding Prediction, and Evaluation as Cholinesterase Inhibitors.

    PubMed

    Rodríguez, Yeray A; Gutiérrez, Margarita; Ramírez, David; Alzate-Morales, Jans; Bernal, Cristian C; Güiza, Fausto M; Romero Bohórquez, Arnold R

    2016-10-01

    New N-allyl/propargyl 4-substituted 1,2,3,4-tetrahydroquinolines derivatives were efficiently synthesized using acid-catalyzed three components cationic imino Diels-Alder reaction (70-95%). All compounds were tested in vitro as dual acetylcholinesterase and butyryl-cholinesterase inhibitors and their potential binding modes, and affinity, were predicted by molecular docking and binding free energy calculations (∆G) respectively. The compound 4af (IC50 = 72 μm) presented the most effective inhibition against acetylcholinesterase despite its poor selectivity (SI = 2), while the best inhibitory activity on butyryl-cholinesterase was exhibited by compound 4ae (IC50 = 25.58 μm) with considerable selectivity (SI = 0.15). Molecular docking studies indicated that the most active compounds fit in the reported acetylcholinesterase and butyryl-cholinesterase active sites. Moreover, our computational data indicated a high correlation between the calculated ∆G and the experimental activity values in both targets. © 2016 The Authors Chemical Biology & Drug Design Published by John Wiley & Sons Ltd.

  20. Cross-Diels-Alder reactions of 6-oxo-1-sulfonyl-1,6-dihydropyridine-3-carboxylates.

    PubMed

    Teyssot, Marie-Laure; Lormier, Anh-Tuan; Chataigner, Isabelle; Piettre, Serge R

    2007-03-30

    Electron-poor 6-oxo-1-sulfonyl-1,6-dihydropyridine-3-carboxylates 1b-d undergo cross-Diels-Alder reactions with electron-rich dienes 4a-f under hyperbaric conditions, reacting either as dienophiles to yield normal-electron-demand (NED) cycloadducts 10 and/or 11 or as dienes to give inverse-electron-demand (IED) cycloadducts 12 and/or 13. The latter are converted into 14 and/or 15 through an NED cycloaddition with a second equivalent of electron-rich diene. Acyclic dienes display a propensity to yield NED products, whereas cyclic dienes tend to favor IED cycloadducts. High-pressure activation compares favorably with thermal or microwave activation in terms of both yields and suppression of the transformation of 1 into unreactive pyridines 3. Whereas the Cope rearrangement from IED to NED occurs under thermal conditions, no evidence of its involvement under high pressure could be detected. These and other data point to similar activation energies for the NED and IED processes under these conditions.

  1. Assembly of the Isoindolinone Core of Muironolide A by Asymmetric Intramolecular Diels-Alder Cycloaddition

    PubMed Central

    Flores, Beatris; Molinski, Tadeusz F.

    2011-01-01

    The hexahydro-1H-isoindolin-1-one core of muironolide A was prepared by asymmetric intramolecular Diels Alder cycloaddition using a variant of the MacMillan organocatalyst which sets the C4,C5 and C11 stereocenters. PMID:21751773

  2. Photochemistry of tricyclo[5.2.2.0(2,6)]undeca-4,10-dien-8-ones: an efficient general route to substituted linear triquinanes from 2-methoxyphenols. Total synthesis of (+/-)-Delta(9(12))-capnellene.

    PubMed

    Hsu, Day-Shin; Chou, Yu-Yu; Tung, Yen-Shih; Liao, Chun-Chen

    2010-03-08

    An efficient and short entry to polyfunctionalized linear triquinanes from 2-methoxyphenols is described by utilizing the following chemistry. The Diels-Alder reactions of masked o-benzoquinones, derived from 2-methoxyphenols, with cyclopentadiene afford tricyclo[5.2.2.0(2,6)]undeca-4,10-dien-8-ones. Photochemical oxa-di-pi-methane (ODPM) rearrangements and 1,3-acyl shifts of the Diels-Alder adducts are investigated. The ODPM-rearranged products are further converted to linear triquinanes by using an O-stannyl ketyl fragmentation. Application of this efficient strategy to the total synthesis of (+/-)-Delta(9(12))-capnellene was accomplished from 2-methoxy-4-methylphenol in nine steps with 20 % overall yield.

  3. Theoretical study of catalytic efficiency of a Diels-Alderase catalytic antibody: an indirect effect produced during the maturation process.

    PubMed

    Martí, Sergio; Andrés, Juan; Moliner, Vicent; Silla, Estanislao; Tuñón, Iñaki; Bertrán, Juan

    2008-01-01

    The Diels-Alder reaction is one of the most important and versatile transformations available to organic chemists for the construction of complex natural products, therapeutics agents, and synthetic materials. Given the lack of efficient enzymes capable of catalyzing this kind of reaction, it is of interest to ask whether a biological catalyst could be designed from an antibody-combining site. In the present work, a theoretical study of the different behavior of a germline catalytic antibody (CA) and its matured form, 39 A-11, that catalyze a Diels-Alder reaction has been carried out. A free-energy perturbation technique based on a hybrid quantum-mechanics/molecular-mechanics scheme, together with internal energy minimizations, has allowed free-energy profiles to be obtained for both CAs. The profiles show a smaller barrier for the matured form, which is in agreement with the experimental observation. Free-energy profiles were obtained with this methodology, thereby avoiding the much more demanding two-dimensional calculations of the energy surfaces that are normally required to study this kind of reaction. Structural analysis and energy evaluations of substrate-protein interactions have been performed from averaged structures, which allows understanding of how the single mutations carried out during the maturation process can be responsible for the observed fourfold enhancement of the catalytic rate constant. The conclusion is that the mutation effect in this studied germline CA produces a complex indirect effect through coupled movements of the backbone of the protein and the substrate.

  4. A: The Progression of a Catalytic Immune Response. B: Molecular Recognition of Anions by Silica Bound Sapphyrin

    DTIC Science & Technology

    1994-08-01

    Diels - Alder reactions (58-60), Claisen rearrangements (43-45), olefin isomerization (73), a O-elimination (74), an asymmetric ketone reduction (54...phosphorothioate hapten3 ........ 19 Figure 5. Carboxylic acid hydrolysis .................... 21 Figure 6. Reaction coordinates for antibody catalyzed ...and catalyze the reaction. Thus, it is important to design transition analogs that closely mimic the transition state in every possible chemical

  5. Diels-Alder functionalized carbon nanotubes for bone tissue engineering: in vitro/in vivo biocompatibility and biodegradability

    NASA Astrophysics Data System (ADS)

    Mata, D.; Amaral, M.; Fernandes, A. J. S.; Colaço, B.; Gama, A.; Paiva, M. C.; Gomes, P. S.; Silva, R. F.; Fernandes, M. H.

    2015-05-01

    The risk-benefit balance for carbon nanotubes (CNTs) dictates their clinical fate. To take a step forward at this crossroad it is compulsory to modulate the CNT in vivo biocompatibility and biodegradability via e.g. chemical functionalization. CNT membranes were functionalised combining a Diels-Alder cycloaddition reaction to generate cyclohexene (-C6H10) followed by a mild oxidisation to yield carboxylic acid groups (-COOH). In vitro proliferation and osteogenic differentiation of human osteoblastic cells were maximized on functionalized CNT membranes (p,f-CNTs). The in vivo subcutaneously implanted materials showed a higher biological reactivity, thus inducing a slighter intense inflammatory response compared to non-functionalized CNT membranes (p-CNTs), but still showing a reduced cytotoxicity profile. Moreover, the in vivo biodegradation of CNTs was superior for p,f-CNT membranes, likely mediated by the oxidation-induced myeloperoxidase (MPO) in neutrophil and macrophage inflammatory milieus. This proves the biodegradability faculty of functionalized CNTs, which potentially avoids long-term tissue accumulation and triggering of acute toxicity. On the whole, the proposed Diels-Alder functionalization accounts for the improved CNT biological response in terms of the biocompatibility and biodegradability profiles. Therefore, CNTs can be considered for use in bone tissue engineering without notable toxicological threats.The risk-benefit balance for carbon nanotubes (CNTs) dictates their clinical fate. To take a step forward at this crossroad it is compulsory to modulate the CNT in vivo biocompatibility and biodegradability via e.g. chemical functionalization. CNT membranes were functionalised combining a Diels-Alder cycloaddition reaction to generate cyclohexene (-C6H10) followed by a mild oxidisation to yield carboxylic acid groups (-COOH). In vitro proliferation and osteogenic differentiation of human osteoblastic cells were maximized on functionalized CNT membranes (p,f-CNTs). The in vivo subcutaneously implanted materials showed a higher biological reactivity, thus inducing a slighter intense inflammatory response compared to non-functionalized CNT membranes (p-CNTs), but still showing a reduced cytotoxicity profile. Moreover, the in vivo biodegradation of CNTs was superior for p,f-CNT membranes, likely mediated by the oxidation-induced myeloperoxidase (MPO) in neutrophil and macrophage inflammatory milieus. This proves the biodegradability faculty of functionalized CNTs, which potentially avoids long-term tissue accumulation and triggering of acute toxicity. On the whole, the proposed Diels-Alder functionalization accounts for the improved CNT biological response in terms of the biocompatibility and biodegradability profiles. Therefore, CNTs can be considered for use in bone tissue engineering without notable toxicological threats. Electronic supplementary information (ESI) available: Experimental details on the preparation of HNO3 functionalized CNTs and supplementary analyses (μ-Raman, TG, EDS, acid-base titration, FTIR, roughness measurements, SEM and optical images) are shown. See DOI: 10.1039/c5nr01829c

  6. ADVANCED INTRAMOLECULAR DIELS-ALDER STUDY TOWARD THE SYNTHESIS OF (-)-MORPHINE: STRUCTURE CORRECTION OF A PREVIOUSLY REPORTED DIELS-ALDER PRODUCT. (R826113)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. Unique metabolites of Pestalotiopsis fici suggest a biosynthetic hypothesis involving a Diels-Alder reaction and then mechanistic diversification.

    PubMed

    Liu, Ling; Niu, Shubin; Lu, Xinhua; Chen, Xulin; Zhang, Hua; Guo, Liangdong; Che, Yongsheng

    2010-01-21

    Chloropupukeanolides A (1) and B (2), unprecedented spiroketal peroxides, and chloropupukeanone A (3), three highly functionalized metabolites featuring a chlorinated pupukeanane core, were isolated from an endophytic fungus Pestalotiopsis fici, with 1 showing significant anti-HIV-1 and cytotoxic effects.

  8. YTTERBIUM(III) TRIFLUOROMETHANESULFONATE CATALYZED SOLID PHASE AZA DIELS-ALDER REACTION AND SUBSEQUENT FACILE ADDUCT RELEASE. (R826123)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  9. Inverse electron demand Diels-Alder reactions in chemical biology.

    PubMed

    Oliveira, B L; Guo, Z; Bernardes, G J L

    2017-08-14

    The emerging inverse electron demand Diels-Alder (IEDDA) reaction stands out from other bioorthogonal reactions by virtue of its unmatchable kinetics, excellent orthogonality and biocompatibility. With the recent discovery of novel dienophiles and optimal tetrazine coupling partners, attention has now been turned to the use of IEDDA approaches in basic biology, imaging and therapeutics. Here we review this bioorthogonal reaction and its promising applications for live cell and animal studies. We first discuss the key factors that contribute to the fast IEDDA kinetics and describe the most recent advances in the synthesis of tetrazine and dienophile coupling partners. Both coupling partners have been incorporated into proteins for tracking and imaging by use of fluorogenic tetrazines that become strongly fluorescent upon reaction. Selected notable examples of such applications are presented. The exceptional fast kinetics of this catalyst-free reaction, even using low concentrations of coupling partners, make it amenable for in vivo radiolabelling using pretargeting methodologies, which are also discussed. Finally, IEDDA reactions have recently found use in bioorthogonal decaging to activate proteins or drugs in gain-of-function strategies. We conclude by showing applications of the IEDDA reaction in the construction of biomaterials that are used for drug delivery and multimodal imaging, among others. The use and utility of the IEDDA reaction is interdisciplinary and promises to revolutionize chemical biology, radiochemistry and materials science.

  10. Why bistetracenes are much less reactive than pentacenes in Diels-Alder reactions with fullerenes.

    PubMed

    Cao, Yang; Liang, Yong; Zhang, Lei; Osuna, Sílvia; Hoyt, Andra-Lisa M; Briseno, Alejandro L; Houk, K N

    2014-07-30

    The Diels-Alder (DA) reactions of pentacene (PT), 6,13-bis(2-trimethylsilylethynyl)pentacene (TMS-PT), bistetracene (BT), and 8,17-bis(2-trimethylsilylethynyl)bistetracene (TMS-BT) with the [6,6] double bond of [60]fullerene have been investigated by density functional theory calculations. Reaction barriers and free energies have been obtained to assess the effects of frameworks and substituent groups on the DA reactivity and product stability. Calculations indicate that TMS-BT is about 5 orders of magnitude less reactive than TMS-PT in the reactions with [60]fullerene. This accounts for the observed much higher stability of TIPS-BT than TIPS-PT when mixed with PCBM. Surprisingly, calculations predict that the bulky silylethynyl substituents of TMS-PT and TMS-BT have only a small influence on reaction barriers. However, the silylethynyl substituents significantly destabilize the corresponding products due to steric repulsions in the adducts. This is confirmed by experimental results here. Architectures of the polycyclic aromatic hydrocarbons (PAHs) play a crucial role in determining both the DA barrier and the adduct stability. The reactivities of different sites in various PAHs are related to the loss of aromaticity, which can be predicted using the simple Hückel molecular orbital localization energy calculations.

  11. Recycling tires? Reversible crosslinking of poly(butadiene).

    PubMed

    Trovatti, Eliane; Lacerda, Talita M; Carvalho, Antonio J F; Gandini, Alessandro

    2015-04-01

    Furan-modified poly(butadiene) prepared by the thiol-ene click reaction is crosslinked with bismaleimides through the Diels-Alder reaction, giving rise to a novel recyclable elastomer. This is possible because of the thermal reversibility of the adducts responsible for the formation of the network. The use of this strategy provides the possibility to produce recyclable tires. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Microwave-assisted domino and multicomponent reactions with cyclic acylketenes: expeditious syntheses of oxazinones and oxazindiones.

    PubMed

    Presset, Marc; Coquerel, Yoann; Rodriguez, Jean

    2009-12-17

    The microwave-assisted Wolff rearrangement of cyclic 2-diazo-1,3-diketones in the presence of aldehydes and primary amines provides a straightforward access to functionalized bi- and pentacyclic oxazinones following an unprecedented three-component domino reaction. Alternatively, in the presence of acyl azides, an efficient Curtius/Wolff/hetero-Diels-Alder sequence allows the direct synthesis of oxazindiones.

  13. Microwave-assisted Stille-coupling of steroidal substrates.

    PubMed

    Skoda-Földes, Rita; Pfeiffer, Péter; Horváth, Judit; Tuba, Zoltán; Kollár, László

    2002-07-01

    Steroidal dienes were synthesised by Stille-coupling of the corresponding alkenyl iodides with vinyltributyltin under microwave irradiation in a domestic microwave oven in drastically reduced reaction times. Rate acceleration was observed also in the one-pot Stille-coupling-Diels-Alder reaction of 17-iodo-5alpha-androst-16-ene. Stereoselectivity of cycloaddition was slightly improved with diethyl maleate as the dienophile, compared to that achieved with thermal heating.

  14. Sorocenols G and H, Anti-MRSA Oxygen Heterocyclic Diels-Alder-type Adducts from Sorocea muriculata Roots

    USDA-ARS?s Scientific Manuscript database

    Bioassay-guided fractionation of a root extract of Sorocea muriculata led to the isolation and identification of two new oxygen heterocyclic Diels-Alder-type adducts, sorocenols G (1) and H (2), along with lupeol-3-(3'R-hydroxytetradecanoate) and oxyresveratrol. The structures of 1 and 2 were eluci...

  15. From Biomass-Derived Furans to Aromatics with Ethanol over Zeolite.

    PubMed

    Teixeira, Ivo F; Lo, Benedict T W; Kostetskyy, Pavlo; Stamatakis, Michail; Ye, Lin; Tang, Chiu C; Mpourmpakis, Giannis; Tsang, Shik Chi Edman

    2016-10-10

    We report a novel catalytic conversion of biomass-derived furans and alcohols to aromatics over zeolite catalysts. Aromatics are formed via Diels-Alder cycloaddition with ethylene, which is produced in situ from ethanol dehydration. The use of liquid ethanol instead of gaseous ethylene, as the source of dienophile in this one-pot synthesis, makes the aromatics production much simpler and renewable, circumventing the use of ethylene at high pressure. More importantly, both our experiments and theoretical studies demonstrate that the use of ethanol instead of ethylene, results in significantly higher rates and higher selectivity to aromatics, due to lower activation barriers over the solid acid sites. Synchrotron-diffraction experiments and proton-affinity calculations clearly suggest that a preferred protonation of ethanol over the furan is a key step facilitating the Diels-Alder and dehydration reactions in the acid sites of the zeolite. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Orthogonal Clickable Iron Oxide Nanoparticle Platform for Targeting, Imaging, and On-Demand Release.

    PubMed

    Guldris, Noelia; Gallo, Juan; García-Hevia, Lorena; Rivas, José; Bañobre-López, Manuel; Salonen, Laura M

    2018-04-12

    A versatile iron oxide nanoparticle platform is reported that can be orthogonally functionalized to obtain highly derivatized nanomaterials required for a wide variety of applications, such as drug delivery, targeted therapy, or imaging. Facile functionalization of the nanoparticles with two ligands containing isocyanate moieties allows for high coverage of the surface with maleimide and alkyne groups. As a proof-of-principle, the nanoparticles were subsequently functionalized with a fluorophore as a drug model and with biotin as a targeting ligand towards tumor cells through Diels-Alder and azide-alkyne cycloaddition reactions, respectively. The thermoreversibility of the Diels-Alder product was exploited to induce the on-demand release of the loaded molecules by magnetic hyperthermia. Additionally, the nanoparticles were shown to target cancer cells through in vitro experiments, as analyzed by magnetic resonance imaging. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Current Developments and Challenges in the Search for a Naturally Selected Diels-Alderase

    PubMed Central

    Kim, Hak Joong; Ruszczycky, Mark W.; Liu, Hung-wen

    2012-01-01

    Only a very few examples of enzymes known to catalyze pericyclic reactions have been reported, and presently no enzyme has been demonstrated unequivocally to catalyze a Diels-Alder reaction. Nevertheless, research into secondary metabolism has led to the discovery of numerous natural products exhibiting the structural hallmarks of [4+2] cycloadditions, prompting efforts to characterize the responsible enzymatic processes. These efforts have resulted in a growing collection of enzymes believed to catalyze pericyclic [4+2] cycloaddition reactions; however, in each case the complexity of the substrates and catalytic properties of these enzymes poses significant challenges in substantiating these hypotheses. Herein we consider the principles motivating these efforts and the enzymological systems currently under investigation. PMID:22260931

  18. Tyrosine-lipid peroxide adducts from radical termination: para coupling and intramolecular Diels-Alder cyclization.

    PubMed

    Shchepin, Roman; Möller, Matias N; Kim, Hye-young H; Hatch, Duane M; Bartesaghi, Silvina; Kalyanaraman, Balaraman; Radi, Rafael; Porter, Ned A

    2010-12-15

    Free radical co-oxidation of polyunsaturated lipids with tyrosine or phenolic analogues of tyrosine gave rise to lipid peroxide-tyrosine (phenol) adducts in both aqueous micellar and organic solutions. The novel adducts were isolated and characterized by 1D and 2D NMR spectroscopy as well as by mass spectrometry (MS). The spectral data suggest that the polyunsaturated lipid peroxyl radicals give stable peroxide coupling products exclusively at the para position of the tyrosyl (phenoxy) radicals. These adducts have characteristic (13)C chemical shifts at 185 ppm due to the cross-conjugated carbonyl of the phenol-derived cyclohexadienone. The primary peroxide adducts subsequently undergo intramolecular Diels-Alder (IMDA) cyclization, affording a number of diastereomeric tricyclic adducts that have characteristic carbonyl (13)C chemical shifts at ~198 ppm. All of the NMR HMBC and HSQC correlations support the structure assignments of the primary and Diels-Alder adducts, as does MS collision-induced dissociation data. Kinetic rate constants and activation parameters for the IMDA reaction were determined, and the primary adducts were reduced with cuprous ion to give a phenol-derived 4-hydroxycyclohexa-2,5-dienone. No products from adduction of peroxyls at the phenolic ortho position were found in either the primary or cuprous reduction product mixtures. These studies provide a framework for understanding the nature of lipid-protein adducts formed by peroxyl-tyrosyl radical-radical termination processes. Coupling of lipid peroxyl radicals with tyrosyl radicals leads to cyclohexenone and cyclohexadienone adducts, which are of interest in and of themselves since, as electrophiles, they are likely targets for protein nucleophiles. One consequence of lipid peroxyl reactions with tyrosyls may therefore be protein-protein cross-links via interprotein Michael adducts.

  19. Tyrosine-Lipid Peroxide Adducts from Radical Termination: Para-Coupling and Intramolecular Diels-Alder Cyclization

    PubMed Central

    Shchepin, Roman; Möller, Matias N.; Kim, Hye-young H.; Hatch, Duane M.; Bartesaghi, Silvina; Kalyanaraman, Balaraman; Radi, Rafael

    2013-01-01

    Free radical co-oxidation of polyunsaturated lipids with tyrosine or phenolic analogs of tyrosine gave rise to lipid peroxide-tyrosine (phenol) adducts in both aqueous micellar and organic solutions. The novel adducts were isolated and characterized by 1D and 2D NMR as well as by mass spectrometry. The spectral data suggest that the polyunsaturated lipid peroxyl radicals give stable peroxide coupling products exclusively at the para position of the tyrosyl (phenoxy) radicals. These adducts have characteristic 13C chemical shifts at 185 ppm due to the cross-conjugated carbonyl of the phenol-derived cyclohexadienone. The primary peroxide adducts subsequently undergo intramolecular Diels-Alder (IMDA) cyclization, affording a number of diastereomeric tricyclic adducts that have characteristic carbonyl 13C chemical shifts at ~198 ppm. All NMR HMBC and HSQC correlations support the structure assignment of the primary and Diels-Alder adducts, as does MS collision induced dissociation. Kinetic rate constants and activation parameters for the IMDA reaction were determined and the primary adducts were reduced with cuprous ion giving a phenol-derived 4-hydroxycyclohexa-2,5-dienone. No products from adduction of peroxyls at the phenolic ortho position were found either in the primary or the cuprous reduction product mixtures. These studies provide a framework for understanding the nature of lipid-protein adducts formed by peroxyl-tyrosyl radical-radical termination processes. Coupling of lipid peroxyl radicals with tyrosyl radicals leads to cyclohexenone and cyclohexadienone adducts which are of interest in and of themselves since, as electrophiles, they are likely targets for protein nucleophiles. One consequence of lipid peroxyl reactions with tyrosyls may therefore be protein-protein crosslinks via interprotein Michael adducts. PMID:21090613

  20. N-O chemistry for antibiotics: discovery of N-alkyl-N-(pyridin-2-yl)hydroxylamine scaffolds as selective antibacterial agents using nitroso Diels-Alder and ene chemistry.

    PubMed

    Wencewicz, Timothy A; Yang, Baiyuan; Rudloff, James R; Oliver, Allen G; Miller, Marvin J

    2011-10-13

    The discovery, syntheses, and structure-activity relationships (SAR) of a new family of heterocyclic antibacterial compounds based on N-alkyl-N-(pyridin-2-yl)hydroxylamine scaffolds are described. A structurally diverse library of ∼100 heterocyclic molecules generated from Lewis acid-mediated nucleophilic ring-opening reactions with nitroso Diels-Alder cycloadducts and nitroso ene reactions with substituted alkenes was evaluated in whole cell antibacterial assays. Compounds containing the N-alkyl-N-(pyridin-2-yl)hydroxylamine structure demonstrated selective and potent antibacterial activity against the Gram-positive bacterium Micrococcus luteus ATCC 10240 (MIC(90) = 2.0 μM or 0.41 μg/mL) and moderate activity against other Gram-positive strains including antibiotic resistant strains of Staphylococcus aureus (MRSA) and Enterococcus faecalis (VRE). A new synthetic route to the active core was developed using palladium-catalyzed Buchwald-Hartwig amination reactions of N-alkyl-O-(4-methoxybenzyl)hydroxylamines with 2-halo-pyridines that facilitated SAR studies and revealed the simplest active structural fragment. This work shows the value of using a combination of diversity-oriented synthesis (DOS) and parallel synthesis for identifying new antibacterial scaffolds.

  1. N-O Chemistry for Antibiotics: Discovery of N-Alkyl-N-(pyridin-2-yl)hydroxylamine Scaffolds as Selective Antibacterial Agents Using Nitroso Diels-Alder and Ene Chemistry

    PubMed Central

    Wencewicz, Timothy A.; Yang, Baiyuan; Rudloff, James R.; Oliver, Allen G.; Miller, Marvin J.

    2011-01-01

    The discovery, syntheses, and structure-activity relationships (SAR) of a new family of heterocyclic antibacterial compounds based on N-alkyl-N-(pyridin-2-yl)hydroxylamine scaffolds are described. A structurally diverse library of ~100 heterocyclic molecules generated from Lewis acid-mediated nucleophilic ring opening reactions with nitroso Diels-Alder cycloadducts and nitroso ene reactions with substituted alkenes was evaluated in whole cell antibacterial assays. Compounds containing the N-alkyl-N-(pyridin-2-yl)hydroxylamine structure demonstrated selective and potent antibacterial activity against the Gram-positive bacterium Micrococcus luteus ATCC 10240 (MIC90 = 2.0 μM or 0.41 μg/mL) and moderate activity against other Gram-positive strains including antibiotic resistant strains of Staphylococcus aureus (MRSA) and Enterococcus faecalis (VRE). A new synthetic route to the active core was developed using palladium-catalyzed Buchwald-Hartwig amination reactions of N-alkyl-O-(4-methoxybenzyl)hydroxylamines with 2-halo-pyridines that facilitated SAR studies and revealed the simplest active structural fragment. This work shows the value of using a combination of diversity-oriented synthesis (DOS) and parallel synthesis for identifying new antibacterial scaffolds. PMID:21859126

  2. Supramolecular hydrogel formation between chitosan and hydroxypropyl β-cyclodextrin via Diels-Alder reaction and its drug delivery.

    PubMed

    Zhang, Mengke; Wang, Jinpeng; Jin, Zhengyu

    2018-07-15

    Chitosan-cyclodextrin hydrogel (CFCD) was prepared via Diels-Alder reaction between furfural functionalized chitosan (CF) and N-maleoyl alanine functionalized hydroxypropyl β-cyclodextrin (HPCD-AMI) in aqueous media without any catalyst or initiator. The CF and HPCD-AMI were confirmed by Fourier transform infrared spectroscopy and 1 H nuclear magnetic resonance spectroscopy. The resultant CFCD hydrogel was characterized in terms of thermal peripteries, microstructure, rheology behavior, and swelling capacity. The rheology analysis found that the storage modulus G' ranged from 1pa to 1200pa as the degree of furfural substitute on chitosan increased from 2.6% to 28.3%, indicating the hydrogel strength can be tuned readily by reaction stoichiometry. The swelling behaviors proved that CFCD hydrogel was pH-responsive with low swelling capacity, which would be preferable for drug delivery. Drug adsorption analysis showed the introduction of cyclodextrin into CFCD hydrogels promoted drug adsorption capacity. In addition, methyl orange cumulative release in PBS buffer was only 48.85% after 24h, suggesting CFCD hydrogel had good sustained release capacity on the loaded drug. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Multistep Synthesis of a Terphenyl Derivative Showcasing the Diels-Alder Reaction

    ERIC Educational Resources Information Center

    Davie, Elizabeth A. Colby

    2015-01-01

    An adaptable multistep synthesis project designed for the culmination of a second-year organic chemistry laboratory course is described. The target compound is a terphenyl derivative that is an intermediate in the synthesis of compounds used in organic light-emitting devices. Students react a conjugated diene with dimethylacetylene dicarboxylate…

  4. Hetero-Diels-Alder reactions of novel 3-triazolyl-nitrosoalkenes as an approach to functionalized 1,2,3-triazoles with antibacterial profile.

    PubMed

    Lopes, Susana M M; Novais, Juliana S; Costa, Dora C S; Castro, Helena C; Figueiredo, Agnes Marie S; Ferreira, Vitor F; Pinho E Melo, Teresa M V D; da Silva, Fernando de Carvalho

    2018-01-01

    The generation and reactivity of 3-triazolyl-nitrosoalkenes are reported for the first time. The study showed that hetero-Diels-Alder reaction of these heterodienes is an interesting synthetic strategy to functionalized 1,2,3-triazoles, including 1,2,3-triazolyl-pyrroles, 1,2,3-triazolyl-dipyrromethanes and 1,2,3-triazolyl-indoles. The evaluation of the antibacterial profile against Gram-positive and Gram-negative strains revealed the new 5,5'-diethyldipyrromethane bearing a side chain incorporating a triazole and oxime moieties. The antibacterial profile detected was within the Clinical and Laboratory Standard Institute (CLSI) range and against important Staphylococcus species including Methicillin-resistant strain (S. aureus ATCC 25923, S. epidermidis ATCC 12228 and S. simulans ATCC 27851 and MRSA). Interestingly, this new 1,2,3-triazole presented hemocompatibility and low in silico toxicity profile similar to antibiotics current in use. It also has an usual antibiofilm activity against MRSA, which reinforced its potential as a new antibacterial prototype. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Synthesis and biological activities of new furo[3,4-b]carbazoles: potential topoisomerase II inhibitors.

    PubMed

    Hajbi, Youssef; Neagoie, Cléopatra; Biannic, Bérenger; Chilloux, Aurélie; Vedrenne, Emeline; Baldeyrou, Brigitte; Bailly, Christian; Mérour, Jean-Yves; Rosca, Sorin; Routier, Sylvain; Lansiaux, Amélie

    2010-11-01

    New 1,5-dihydro-4-(substituted phenyl)-3H-furo[3,4-b]carbazol-3-ones were synthesised via a key step Diels-Alder reaction under microwave irradiation. 3-Formylindole was successfully used in a 6-step synthesis to obtain those complex heterocycles. The Diels-Alder reaction generating the carbazole ring was optimised under thermal conditions or microwave irradiation. After cleavage of functional groups, DNA binding, topoisomerase inhibition and cytotoxic properties of the new-formed furocarbazoles were investigated. These carbazoles do not present a strong interaction with the DNA, and do not modify the relaxation of the DNA in the presence of topoisomerase I or II except for one promising compound. This compound is a potent topoisomerase II inhibitor, and its cellular activity is not moderated compared to etoposide. The synthesis of these molecules allowed the generalisation of the method using indole and 5-OBn indole and several benzaldehydes. The synthesis of these molecules produced chemical structures endowed with promising cytotoxic and topoisomerase II inhibition activities. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  6. Intramolecular Diels-Alder Reaction of N-Alkyl-2-cyano-1-azadienes: A Study of the Eschenmoser Cycloreversion of Dihydrooxazines as a Route to N-Alkyl-2-cyano-1-azadienes.

    PubMed

    Motorina, Irina A.; Fowler, Frank W.; Grierson, David S.

    1997-04-04

    In connection with the development of the intramolecular Diels-Alder reaction (IMDA) of 1-azadienes, the 5,6-dihydro-4H-1,2-oxazine 12has been evaluated as a synthon equivalent of the 2-cyano-1-azadiene system. It was found that the dihydrooxazonium salt 27, generated in situ from the cyclic hydroxamic acid derivative 26, is converted directly to azadiene 4a via tautomerization to the corresponding enamine and a particularly facile Eschenmoser type cycloreversion process. Conditions were subsequently found for the preparation of synthon 12. N-Alkylation of this intermediate with alkyl bromides in the presence of Ag(+) ion also resulted in direct formation of the 2-cyano-1-azadiene products 38a-dand 4a. Microwave irradiation of a benzene solution of azadiene 4a proved to be a convenient means to effect its IMDA conversion to indolizidine 5a. To avoid decomposition of azadiene 38c, its intramolecular cycloaddition giving 40 (60%) was achieved by flash vacuum thermolysis.

  7. Rapid synthesis of carbohydrate derivatives, including mimetics of C-linked disaccharides and C-linked aza disaccharides, using the hetero-Diels-Alder reaction.

    PubMed

    Burland, Peter A; Coisson, David; Osborn, Helen M I

    2010-11-05

    In this work we demonstrate the value of performing a hetero-Diels-Alder reaction (HDAR) between Danishefsky's diene and a range of aldehydes or imines, under microwave irradiation. By using a range of aldehydes and imines, including those derived from carbohydrates, access to functionalized 2,3-dihydro-4H-pyran-4-ones or 2,3-dihydro-4-pyridinones in good to excellent synthetic yields is possible. A particular strength of the methodology is its ability to access mimetics of C-linked disaccharides and C-linked aza disaccharides, targets of current therapeutic interest, in a rapid, convenient, and diastereoselective manner. The effect of high pressure on the HDARs involving carbohydrate-derived aldehydes and imines is also explored, with enhancement in yields occurring for the aldehyde substrates. Finally, HDARs using carbohydrate derived ketones, enones, and enals are described under a range of conditions. Optimum results were obtained under high-pressure conditions, with highly functionalized carbohydrate derivatives being afforded, in good yields, in this way.

  8. On-Demand Dissolution of Chemically Cross-Linked Hydrogels.

    PubMed

    Konieczynska, Marlena D; Grinstaff, Mark W

    2017-02-21

    The formation and subsequent on-demand dissolution of chemically cross-linked hydrogels is of keen interest to chemists, engineers, and clinicians. In this Account, we summarize our recent advances in the area of dissolvable chemically cross-linked hydrogels and provide a comparative discussion of other recent hydrogel systems. Using biocompatible macromonomers, we developed a library of cross-linked dendritic hydrogels that possess favorable properties, including biocompatibility, tissue adhesion, and swelling. Additionally, these hydrogels possess the unique ability to dissolve on-demand via application of a biocompatible aqueous solution. Each of the three hydrogel systems described employs a thiol-thioester exchange reaction as the mechanism of dissolution. These new materials successfully decrease bleeding in in vivo models of hepatic and aortic hemorrhage and dissolve on-demand, providing easy removal. In addition, we evaluated these hydrogels as dressings for second-degree burn wounds and performed proof-of-concept in vivo studies. These hydrogel wound dressings provide a means of repeatedly changing the dressing in a minimally invasive and atraumatic manner while also serving as a protective barrier against bacterial infection. Finally, we highlight the seminal work of other researchers in the field of dissolvable chemically cross-linked hydrogels using thiol-disulfide exchange, retro-Michael-type, and retro-Diels-Alder reactions. These chemistries provide a versatile synthetic toolbox to dissolve hydrogels in a controlled manner on time scales from minutes to weeks. Continued investigation of these dissolution approaches as well as the development of new chemical reactions will open doors to other avenues of on-demand dissolution and expand the application space for these materials. In summary, the management and closure of wounds after traumatic injury or surgical intervention are of significant clinical importance. Stimuli-responsive hydrogels that function as sealants, adhesives, or dressings are emerging as vital alternatives to current standards of care that rely upon conventional sutures, staples, or dressings.

  9. Incorporation of large guest molecules into liposomes via chemical reactions in lipid membranes.

    PubMed

    Tsuchiya, Yuki; Sugikawa, Kouta; Ueda, Masafumi; Ikeda, Atsushi

    2017-02-22

    The incorporation of hydrophobic guest molecules into lipid membranes by the exchange of the guest molecule from a cyclodextrin (CDx) complex to a liposome is limited to guest molecules that can be included in CDxs. To solve this problem, large guest molecules were incorporated into liposomes by chemical reactions of guest molecules in lipid membranes. Stable lipid-membrane-incorporated fullerene derivatives with large substituent(s) were prepared by Diels-Alder reactions in lipid membranes.

  10. Microwave-assisted intramolecular dehydrogenative Diels-Alder reactions for the synthesis of functionalized naphthalenes/solvatochromic dyes.

    PubMed

    Kocsis, Laura S; Benedetti, Erica; Brummond, Kay M

    2013-04-01

    Functionalized naphthalenes have applications in a variety of research fields ranging from the synthesis of natural or biologically active molecules to the preparation of new organic dyes. Although numerous strategies have been reported to access naphthalene scaffolds, many procedures still present limitations in terms of incorporating functionality, which in turn narrows the range of available substrates. The development of versatile methods for direct access to substituted naphthalenes is therefore highly desirable. The Diels-Alder (DA) cycloaddition reaction is a powerful and attractive method for the formation of saturated and unsaturated ring systems from readily available starting materials. A new microwave-assisted intramolecular dehydrogenative DA reaction of styrenyl derivatives described herein generates a variety of functionalized cyclopenta[b]naphthalenes that could not be prepared using existing synthetic methods. When compared to conventional heating, microwave irradiation accelerates reaction rates, enhances yields, and limits the formation of undesired byproducts. The utility of this protocol is further demonstrated by the conversion of a DA cycloadduct into a novel solvatochromic fluorescent dye via a Buchwald-Hartwig palladium-catalyzed cross-coupling reaction. Fluorescence spectroscopy, as an informative and sensitive analytical technique, plays a key role in research fields including environmental science, medicine, pharmacology, and cellular biology. Access to a variety of new organic fluorophores provided by the microwave-assisted dehydrogenative DA reaction allows for further advancement in these fields.

  11. Microwave-assisted Intramolecular Dehydrogenative Diels-Alder Reactions for the Synthesis of Functionalized Naphthalenes/Solvatochromic Dyes

    PubMed Central

    Kocsis, Laura S.; Benedetti, Erica; Brummond, Kay M.

    2013-01-01

    Functionalized naphthalenes have applications in a variety of research fields ranging from the synthesis of natural or biologically active molecules to the preparation of new organic dyes. Although numerous strategies have been reported to access naphthalene scaffolds, many procedures still present limitations in terms of incorporating functionality, which in turn narrows the range of available substrates. The development of versatile methods for direct access to substituted naphthalenes is therefore highly desirable. The Diels-Alder (DA) cycloaddition reaction is a powerful and attractive method for the formation of saturated and unsaturated ring systems from readily available starting materials. A new microwave-assisted intramolecular dehydrogenative DA reaction of styrenyl derivatives described herein generates a variety of functionalized cyclopenta[b]naphthalenes that could not be prepared using existing synthetic methods. When compared to conventional heating, microwave irradiation accelerates reaction rates, enhances yields, and limits the formation of undesired byproducts. The utility of this protocol is further demonstrated by the conversion of a DA cycloadduct into a novel solvatochromic fluorescent dye via a Buchwald-Hartwig palladium-catalyzed cross-coupling reaction. Fluorescence spectroscopy, as an informative and sensitive analytical technique, plays a key role in research fields including environmental science, medicine, pharmacology, and cellular biology. Access to a variety of new organic fluorophores provided by the microwave-assisted dehydrogenative DA reaction allows for further advancement in these fields. PMID:23609566

  12. Synthesis of Single-walled Carbon Nanotubes Coated with Thiol-reactive Gel via Emulsion Polymerization.

    PubMed

    Nagai, Yukiko; Tsutsumi, Yusuke; Nakashima, Naotoshi; Fujigaya, Tsuyohiko

    2018-06-15

    Single-walled carbon nanotubes (SWNTs) have unique near-infrared absorption and photoemission properties that are attractive for in vivo biological applications such as photothermal cancer treatment and bioimaging. Therefore, a smart functionalization strategy for SWNTs to create biocompatible surfaces and introduce various ligands to target active cancer cells without losing the unique optical properties of the SWNTs is strongly desired. This paper reports the de-sign and synthesis of a SWNT/gel hybrid containing maleimide groups, which react with various thiol compounds through Michael addition reactions. In this hybrid, the method called carbon nanotube micelle polymerization was used to non-covalently modify the surface of SWNTs with a cross-linked polymer gel layer. This method can form an extremely stable gel layer on SWNTs; such stability is essential for in vivo biological applications. The monomer used to form the gel layer contained a maleimide group, which was protected with furan in endo-form. The resulting hybrid was treated in water to induce deprotection via retro Diels-Alder reaction and then functionalized with thiol com-pounds through Michael addition. The functionalization of the hybrid was explored using a thiol-containing fluores-cent dye as a model thiol and the formation of the SWNT-dye conjugate was confirmed by energy transfer from the dye to SWNTs. Our strategy offers a promising SWNT-based platform for biological functionalization for cancer targeting, imaging, and treatment.

  13. Effect of hydrostatic pressure, temperature, and solvent on the rate of the Diels-Alder reaction between 9,10-anthracenedimethanol and maleic anhydride

    NASA Astrophysics Data System (ADS)

    Kiselev, V. D.; Kornilov, D. A.; Anikin, O. V.; Latypova, L. I.; Konovalov, A. I.

    2017-03-01

    The rate of the reaction between 9,10-anthracenedimethanol and maleic anhydride in 1,4-dioxane, acetonitrile, trichloromethane, and toluene is studied at 25, 35, 45°C in the pressure range of 1-1772 bar. The rate constants, enthalpies, entropies and activation volumes are determined. It is shown that the rate of reaction with 9,10-anthracenedimethanol is approximately one order of magnitude higher than with 9-anthracenemethanol.

  14. Mild and modular surface modification of cellulose via hetero Diels-Alder (HDA) cycloaddition.

    PubMed

    Goldmann, Anja S; Tischer, Thomas; Barner, Leonie; Bruns, Michael; Barner-Kowollik, Christopher

    2011-04-11

    A combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and hetero Diels-Alder (HDA) cycloaddition was used to effect, under mild (T ≈ 20 °C), fast, and modular conditions, the grafting of poly(isobornyl acrylate) (M(n) = 9800 g mol(-1), PDI = 1.19) onto a solid cellulose substrate. The active hydroxyl groups expressed on the cellulose fibers were converted to tosylate leaving groups, which were subsequently substituted by a highly reactive cyclopentadienyl functionality (Cp). By employing the reactive Cp-functionality as a diene, thiocarbonyl thio-capped poly(isobornyl acrylate) synthesized via RAFT polymerization (mediated by benzyl pyridine-2-yldithioformiate (BPDF)) was attached to the surface under ambient conditions by an HDA cycloaddition (reaction time: 15 h). The surface-modified cellulose samples were analyzed in-depth by X-ray photoelectron spectroscopy, scanning electron microscopy, elemental analysis, Fourier transform infrared (FT-IR) spectroscopy as well as Fourier transform infrared microscopy employing a focal plane array detector for imaging purposes. The analytical results provide strong evidence that the reaction of suitable dienophiles with Cp-functional cellulose proceeds under mild reaction conditions (T ≈ 20 °C) in an efficient fashion. In particular, the visualization of individual modified cellulose fibers via high-resolution FT-IR microscopy corroborates the homogeneous distribution of the polymer film on the cellulose fibers.

  15. Diels-Alder Trapping of Photochemically Generated o-Quinodimethane Intermediates: An Alternative Route to Photocured Polymer Film Development

    NASA Technical Reports Server (NTRS)

    Tyson, Daniel S.; Ilhan, Faysal; Meador, Mary Ann B.; Smith, Dee Dee; Scheiman, Daniel A.; Meador, Michael A.

    2004-01-01

    Photolysis of o-methylphenyl ketones generates bis-o-quinodimethane intermediates that can be trapped in situ by dienophiles through Diels-Alder cycloadditions. This well-known photochemical process is applied to a series of six new photoreactive monomers containing bis-(o-methylphenyl ketone) functionalities combined with diacrylate and triacrylate ester monomers for the development of acrylic ester copolymer blends. Irradiation of cyclohexanone solutions of the bis-(o-methylphenyl ketone)s and acrylate esters produce thin polymer films. Solid state 13C NMR data indicated 47- 100% reaction of the bis-(o-methylphenyl ketone)s, depending on experimental conditions, to yield the desired products. DSC and TGA analyses were performed to determine the glass transition temperature, T,, and onset of decomposition, Td, of the resulting polymer films. A statistical Design of Experiments approach was used to obtain a systematic understanding of the effects of experimental variables on the extent of polymerization and the final polymer properties.

  16. A self-crosslinking thermosetting monomer with both epoxy and anhydride groups derived from tung oil fatty acids: Synthesis and properties

    USDA-ARS?s Scientific Manuscript database

    A self-crosslinking compound with epoxy groups and anhydride groups (GEMA) has been successfully synthesized from tung oil fatty acid by reacting with maleic anhydride via the Diels-Alder reaction. GEMA has very good storage stability and could be cured with trace amounts of tertiary amine. This ad...

  17. A self-crosslinking thermosetting monomer with both epoxy and anhydride groups derived from Tung oil fatty acids: Synthesis and properties

    USDA-ARS?s Scientific Manuscript database

    A self-crosslinking compound with epoxy groups and anhydride groups (GEMA) has been successfully synthesized from Tung oil fatty acid by reacting with maleic anhydride via the Diels-Alder reaction. GEMA has very good storage stability and can be cured with trace amounts of tertiary amine. This advan...

  18. Total Synthesis and Structural Revision of Antibiotic CJ-16,264.

    PubMed

    Nicolaou, K C; Shah, Akshay A; Korman, Henry; Khan, Tabrez; Shi, Lei; Worawalai, Wisuttaya; Theodorakis, Emmanuel A

    2015-08-03

    The total synthesis and structural revision of antibiotic CJ-16,264 is described. Starting with citronellal, the quest for the target molecule featured a novel bis-transannular Diels-Alder reaction that casted stereoselectively the decalin system and included the synthesis of six isomers before demystification of its true structure. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Guaiane dimers from Xylopia vielana.

    PubMed

    Kamperdick, C; Phuong, N M; Van Sung, T; Adam, G

    2001-02-01

    From the leaves of Xylopia vielana (Annonaceae) the three dimeric guaianes vielanin A-C were isolated and structurally elucidated by mass and NMR spectroscopy as 1-3. The structure of 1 contains a bridged ring system formed probably via a Diels-Alder reaction of two different guaiane monomers. Compounds 2 and 3 represent symmetric cyclobutanes formally generated from two equal guaiane moieties by [2 + 2] cycloaddition.

  20. Chloropupukeanolides C-E: cytotoxic pupukeanane chlorides with a spiroketal skeleton from Pestalotiopsis fici.

    PubMed

    Liu, Ling; Bruhn, Torsten; Guo, Liangdong; Götz, Daniel C G; Brun, Reto; Stich, August; Che, Yongsheng; Bringmann, Gerhard

    2011-02-25

    Chloropupukeanolides C-E (8-10), three highly functionalized secondary metabolites featuring a novel spiroketal skeleton derived from the chlorinated tricyclo-[4.3.1.0(3, 7)]-decane (pupukeanane) and the 2,6-dihydroxy-4-methylbenzoic acid moieties, were isolated from the scale-up fermentation extract of the plant endophytic fungus Pestalotiopsis fici. The constitutions of compounds 8-10 were elucidated primarily by NMR experiments. Their relative configurations were deduced by analogy to metabolites 4-6, which were previously isolated from the same fungus. The absolute configuration of 8 was assigned by X-ray crystallography and those of 9 and 10 by quantum-chemical CD calculations. Biogenetically, chloropupukeanolides C-E (8-10) are presumably derived from the same oxidation-induced Diels-Alder reaction pathway as compounds 1 and 4-7, via the putative biosynthetic precursors 2 and 3. The opposite configurations of the complete "Southern parts" of 8 and 9 suggests that this Diels-Alder reaction is stereochemically not very selective. Compounds 8-10 showed significant cytotoxicity against a small panel of human tumor cell lines and weak activities against the pathogens of tropical diseases. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Thermally Conductive-Silicone Composites with Thermally Reversible Cross-links.

    PubMed

    Wertz, J T; Kuczynski, J P; Boday, D J

    2016-06-08

    Thermally conductive-silicone composites that contain thermally reversible cross-links were prepared by blending diene- and dienophile-functionalized polydimethylsiloxane (PDMS) with an aluminum oxide conductive filler. This class of thermally conductive-silicones are useful as thermal interface materials (TIMs) within Information Technology (IT) hardware applications to allow rework of valuable components. The composites were rendered reworkable via retro Diels-Alder cross-links when temperatures were elevated above 130 °C and required little mechanical force to remove, making them advantageous over other TIM materials. Results show high thermal conductivity (0.4 W/m·K) at low filler loadings (45 wt %) compared to other TIM solutions (>45 wt %). Additionally, the adhesion of the material was found to be ∼7 times greater at lower temperatures (25 °C) and ∼2 times greater at higher temperatures (120 °C) than commercially available TIMs.

  2. Negative ion ESI-MS analysis of natural yellow dye flavonoids--An isotopic labelling study

    NASA Astrophysics Data System (ADS)

    McNab, Hamish; Ferreira, Ester S. B.; Hulme, Alison N.; Quye, Anita

    2009-07-01

    Flavonoids are amongst the most commonly used natural yellow colourants in paintings, as lakes, and in historical textiles as mordant dyes. In this paper, evidence from isotopically labelled substrates is used to propose negative ion electrospray collision induced decomposition mechanisms of flavones, flavonols and an isoflavone. These mechanisms include a retro-Diels-Alder fragmentation (observed for flavones and flavonols) and an M-122 fragmentation (characteristic of 3',4'-dihydroxyflavonols). In addition, the presence of a m/z 125 fragment ion is shown to be characteristic of 2'-hydroxyflavonols and an ion at m/z 149 is shown to be characteristic of 4'-hydroxyflavones. Applications of these methods are exemplified by the identification of a minor component of Dyer's camomile (Anthemis tinctoria L.) and the identification of the dye source in green threads sampled from an 18th Century Scottish tartan fragment.

  3. Novel Applications of Donor-Acceptor Cyclopropanes and Dearomatization towards the Expedient Synthesis of Highly Substituted Carbocycles

    NASA Astrophysics Data System (ADS)

    Mackay, William Daniel

    I. Lewis Acid Catalyzed (3+2)-Annulations of Donor-Acceptor Cyclopropanes and Ynamides. The Sc(OTf)3-catalyzed (3+2)-annulation of donor-acceptor cyclopropanes and ynamides is described, providing the corresponding cyclopentene sulfonamides in good to excellent yield. Deprotection and hydrolysis of the resulting cyclopentenesulfonamides delivers 2,3-substituted cyclopentanones with high diastereoselectivity. II. Kinetic Separation and Asymmetric Reactions of Norcaradiene Cycloadducts: Facilitated Access via H2O-Accelerated Cycloaddition. We exploit the Buchner reaction to access 1,2-disubstituted cyclohexadiene synthons (norcaradienes), which participate in H2O-accelerated cycloaddition with dienophiles to provide cyclopropyl-fused [2.2.2]-bicyclooctene derivatives in good yields. Regioisomeric mixtures can be kinetically separated exploiting different reaction rates in Diels-Alder reactions. meso -Diels-Alder products may be enantioselectively desymmetrized, providing highly substituted cyclohexanes with up to seven contiguous stereocenters. III. The Development of Regioisomerically Enriched Buchner Products for Use as Cyclohexadienyl Synthetic Intermediates. We have investigated two conceptual methods to generate highly regioisomerically enriched norcaradienyl intermediates through arene cyclopropanation. Intermolecular Buchner reaction of aryl diazoacetates under either thermolysis or silver(I) catalysis provide expedient routes to single regioisomeric norcaradienes, in some cases favoring the least sterically encumbered site of cyclopropanation. Intramolecular Buchner reaction of benzyl cyanodiazoacetates allow for the site-selective cyclopropanation of the tethered arene, and the installation of an activated cyclopropane for downstream functionalization. Both methods generate norcaradienes that are amenable to further transformations to generate highly stereochemically complex carbocyclic products.

  4. Improved methodologies for the preparation of highly substituted pyridines.

    PubMed

    Fernández Sainz, Yolanda; Raw, Steven A; Taylor, Richard J K

    2005-11-25

    [reaction: see text] Two separate strategies have been developed for the preparation of highly substituted pyridines from 1,2,4-triazines via the inverse-electron-demand Diels-Alder reaction: a microwave-promoted, solvent-free procedure and a tethered imine-enamine (TIE) approach. Both routes avoid the need for a discrete aromatization step and offer significant advantages over the classical methods, giving a wide variety of tri-, tetra-, and penta-substituted pyridines in high, optimized yields.

  5. A diels-alder modulated approach to control and sustain the release of dexamethasone and induce osteogenic differentiation of human mesenchymal stem cells

    PubMed Central

    Koehler, Kenneth C.; Alge, Daniel L.; Anseth, Kristi S.; Bowman, Christopher N.

    2013-01-01

    We report a new approach to controlled drug release based upon exploiting the dynamic equilibrium that exists between Diels-Alder reactants and products, demonstrating the release of a furan containing dexamethasone peptide (dex-KGPQG-furan) from a maleimide containing hydrogel. Using a reaction-diffusion model, the release kinetics were tuned to achieve sustained concentrations conducive to osteogenic differentiation of human mesenchymal stem cells (hMSCs). Efficacy was first demonstrated in a 2D culture model, in which dexamethasone release induced significant increases in alkaline phosphatase (ALP) activity and mineral deposition in hMSCs compared to a dexamethasone-free treatment. The results were similar to that observed with a soluble dexamethasone treatment. More dramatic differences were observed in 3D culture, where co-encapsulation of a dexamethasone releasing hydrogel depot within an hMSC-laden extracellular matrix mimetic poly(ethylene glycol) hydrogel resulted in a local and robust osteogenic differentiation. ALP activity reached levels that were up to six times higher than the dexamethasone free treatment. Interestingly, at 5 and 10 day time points, the ALP activity exceeded the dexamethasone positive control, suggesting a potential benefit of sustained release in 3D culture. After 21 days, substantial mineralization comparable to the positive control was also observed in the hydrogels. Collectively, these results demonstrate Diels-Alder modulated release as an effective and versatile new platform for controlled drug delivery that may prove especially beneficial for sustaining the release of low molecular weight molecules in hydrogel systems. PMID:23465826

  6. High Activity and Efficient Turnover by a Simple, Self-Assembled "Artificial Diels-Alderase".

    PubMed

    Martí-Centelles, Vicente; Lawrence, Andrew L; Lusby, Paul J

    2018-02-28

    The Diels-Alder (DA) reaction is a cornerstone of synthesis, yet Nature does not use catalysts for intermolecular [4+2] cycloadditions. Attempts to create artificial "Diels-Alderases" have also met with limited success, plagued by product inhibition. Using a simple Pd 2 L 4 capsule we now show DA catalysis that combines efficient turnover alongside enzyme-like hallmarks. This includes excellent activity (k cat /k uncat > 10 3 ), selective transition-state stabilization comparable to the most proficient DA catalytic antibodies, and control over regio- and chemoselectivity that would otherwise be difficult to achieve using small-molecule catalysts. Unlike other catalytic approaches that use synthetic capsules, this method is not defined by entropic effects; instead multiple H-bonding interactions modulate reactivity, reminiscent of enzymatic action.

  7. National Research Council Resident Research Associateship (NRC-RRA) program

    DTIC Science & Technology

    1988-08-01

    Davis, C. J. Dymek, J. J. P. Stewart, H. P. Clark, W. J. Lauderdale, J. Am. Chem. Soc., 107, 5041-5046 (1985). 7. "Mechanism of the Diels - Alder ...Package" Dewar Research Group and J. J. P. Stewart, Quantum Chemistry Program Exchange, no. 506, nn, nnn, (1986) 16. "Mechanism of the Diels - Alder ...Kvisle, 0. Nirisen, M. Ystenes, and H. A. Oye, Proceedings of 1986 International Symposium on Transition Metals Catalyzed Polymerizations, Institute of

  8. Differentiation of three pairs of aconite alkaloid isomers from Aconitum nagarum var. lasiandrum by electrospray ionization tandem mass spectrometry.

    PubMed

    Li, Rui; Wu, Zhijun; Zhang, Fan; Ding, Lisheng

    2006-01-01

    Three pairs of isomers of aconite alkaloids from Aconitum nagarum var. lasiandrum have been investigated by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) employing ion-trap and quadrupole time-of-flight mass spectrometers in positive mode. Based on the differences of their fragmentation pathways and special fragment ions, three pairs of isomers of aconite alkaloids were differentiated. In addition, fragmentation laws of some veatchines and the discrepancy of fragmentation mechanisms between veatchine-type and aconitine-type alkaloid were also concluded. In the case of veatchines, a radical would be formed by homolysis of C18--C4 or C18--H bonds, followed by elimination of a series of C(2)H(2) and C(2)H(4). Moreover, the retro-Diels-Alder (RDA) reaction occurred in the E-ring and double-electron transfer triggered by the positive charge on C1 led to the formation of diagnostic ions at m/z 216. With regard to aconitine-type alkaloids, the N-substituent is not eliminated easily. Although there is no carbonyl group on some aconitine-type alkaloids, with hydroxyl and methoxyl on C15 and C16 respectively, CO was readily eliminated through tautomerization.

  9. [4 + 2] Cycloaddition reaction of C-aryl ketenimines with PTAD as a synthetic equivalent of dinitrogen. Synthesis of triazolocinnolines and cinnolines.

    PubMed

    Alajarin, Mateo; Bonillo, Baltasar; Marin-Luna, Marta; Vidal, Angel; Orenes, Raul-Angel

    2009-05-01

    C,C,N-Triaryl ketenimines and C-alkyl-C,N-diaryl ketenimines react with 2 equiv of PTAD to provide 1,2,4-triazolo[1,2-a]cinnolines with a pendant triazolidindione group by means of a Diels-Alder/ene sequence. The treatment of such adducts with potassium hydroxide affords 3-aminocinnolines.

  10. Structural diversity through intramolecular cycloaddition and modulation of chemical reactivity in excited state. Synthesis and photoreactions of 3-oxa-tricyclo[5.2.2.0(1,5)]undecenones: novel stereoselective route to oxa-triquinanes and oxa-sterpuranes.

    PubMed

    Singh, V; Alam, S Q

    2000-11-20

    Synthesis of 11-methyl-3-oxa-tricyclo[5.2.2.0(1,5)]undecenones by intramolecular Diels-Alder reaction of highly labile spiroepoxycyclohexa-2,4-dienones and its photochemical reactions upon triplet (3T) and singlet (1S) excitation leading to a stereoselective route to oxa-triquinane and oxa-sterpurane, respectively, is described.

  11. Pedagogical Comparison of Five Reactions Performed under Microwave Heating in Multi-Mode versus Mono-Mode Ovens: Diels-Alder Cycloaddition, Wittig Salt Formation, E2 Dehydrohalogenation to Form an Alkyne, Williamson Ether Synthesis, and Fischer Esterification

    ERIC Educational Resources Information Center

    Baar, Marsha R.; Gammerdinger, William; Leap, Jennifer; Morales, Erin; Shikora, Jonathan; Weber, Michael H.

    2014-01-01

    Five reactions were rate-accelerated relative to the standard reflux workup in both multi-mode and mono-mode microwave ovens, and the results were compared to determine whether the sequential processing of a mono-mode unit could provide for better lab logistics and pedagogy. Conditions were optimized so that yields matched in both types of…

  12. Investigation of Thermochemistry Associated with the Carbon–Carbon Coupling Reactions of Furan and Furfural Using ab Initio Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Cong; Assary, Rajeev S.; Curtiss, Larry A.

    2014-06-26

    Upgrading of furan and small oxygenates obtained from the decomposition of cellulosic materials via formation of carbon-carbon bonds is critical to effective conversion of biomass to liquid transportation fuels. Simulation-driven molecular level understanding of carbon-carbon bond formation is required to design efficient catalysts and processes. Accurate quantum chemical methods are utilized here to predict the reaction energetics for conversion of furan (C4H4O) to C5-C8 ethers and the transformation of furfural (C5H6O2) to C13-C26 alkanes. Furan, can be coupled with various C1 to C4 lower molecular weight carbohydrates obtained from the pyrolysis via Diels-Alder type reactions in the gas phase tomore » produce C5-C8 cyclic ethers. The computed reaction barriers for these reactions (~25 kcal/mol) are lower than the cellulose activation or decomposition reactions (~50 kcal/mol). Cycloaddition of C5-C8 cyclo-ethers with furans can also occur in the gas phase, and the computed activation energy is similar to that of the first Diels-Alder reaction. Furfural, obtained from biomass, can be coupled with aldehydes or ketones with α-hydrogen atoms to form longer chain aldol products and these aldol products can undergo vapor phase hydrocycloaddition (activation barrier of ~20 kcal/mol) to form the precursors of C26 cyclic hydrocarbons. These thermochemical studies provide the basis for further vapor phase catalytic studies required for upgrading of furans/furfurals to longer chain hydrocarbons.« less

  13. Computational Insights into an Enzyme-Catalyzed [4+2] Cycloaddition

    PubMed Central

    2017-01-01

    The enzyme SpnF, involved in the biosynthesis of spinosyn A, catalyzes a formal [4+2] cycloaddition of a 22-membered macrolactone, which may proceed as a concerted [4+2] Diels–Alder reaction or a stepwise [6+4] cycloaddition followed by a Cope rearrangement. Quantum mechanics/molecular mechanics (QM/MM) calculations combined with free energy simulations show that the Diels–Alder pathway is favored in the enzyme environment. OM2/CHARMM free energy simulations for the SpnF-catalyzed reaction predict a free energy barrier of 22 kcal/mol for the concerted Diels–Alder process and provide no evidence of a competitive stepwise pathway. Compared with the gas phase, the enzyme lowers the Diels–Alder barrier significantly, consistent with experimental observations. Inspection of the optimized geometries indicates that the enzyme may prearrange the substrate within the active site to accelerate the [4+2] cycloaddition and impede the [6+4] cycloaddition through interactions with active-site residues. Judging from partial charge analysis, we find that the hydrogen bond between the Thr196 residue of SpnF and the substrate C15 carbonyl group contributes to the enhancement of the rate of the Diels–Alder reaction. QM/MM simulations show that the substrate can easily adopt a reactive conformation in the active site of SpnF because interconversion between the C5–C6 s-trans and s-cis conformers is facile. Our QM/MM study suggests that the enzyme SpnF does behave as a Diels-Alderase. PMID:29131960

  14. Architecture of a Diels-Alderase ribozyme with a preformed catalytic pocket.

    PubMed

    Keiper, Sonja; Bebenroth, Dirk; Seelig, Burckhard; Westhof, Eric; Jäschke, Andres

    2004-09-01

    Artificial ribozymes catalyze a variety of chemical reactions. Their structures and reaction mechanisms are largely unknown. We have analyzed a ribozyme catalyzing Diels-Alder cycloaddition reactions by comprehensive mutation analysis and a variety of probing techniques. New tertiary interactions involving base pairs between nucleotides of the 5' terminus and a large internal loop forming a pseudoknot fold were identified. The probing data indicate a preformed tertiary structure that shows no major changes on substrate or product binding. Based on these observations, a molecular architecture featuring a Y-shaped arrangement is proposed. The tertiary structure is formed in a rather unusual way; that is, the opposite sides of the asymmetric internal loop are clamped by the four 5'-terminal nucleotides, forming two adjacent two base-pair helices. It is proposed that the catalytic pocket is formed by a wedge within one of these helices.

  15. An interpenetrating HA/G/CS biomimic hydrogel via Diels-Alder click chemistry for cartilage tissue engineering.

    PubMed

    Yu, Feng; Cao, Xiaodong; Zeng, Lei; Zhang, Qing; Chen, Xiaofeng

    2013-08-14

    In order to mimic the natural cartilage extracellular matrix, a novel biological degradable interpenetrating network hydrogel was synthesized from the gelatin (G), hyaluronic acid (HA) and chondroitin sulfate (CS) by Diels-Alder "click" chemistry. HA was modified with furylamine and G was modified with furancarboxylic acid respectively. (1)H NMR spectra and elemental analysis showed that the substitution degrees of HA-furan and G-furan were 71.5% and 44.5%. Then the hydrogels were finally synthesized by cross-linking furan-modified HA and G derivatives with dimaleimide poly(ethylene glycol) (MAL-PEG-MAL). The mechanical and degradation properties of the hydrogels could be tuned simply through varying the molar ratio between furan and maleimide. Rheological, mechanical and degradation studies demonstrated that the Diels-Alder "click" chemistry is an efficient method for preparing high performance biological interpenetrating hydrogels. This biomimic hydrogel with improved mechanical properties could have great potential applications in cartilage tissue engineering. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Theoretical study of Diels-Alder cycloadditions of butadiene to C{sub 70}. An insight into the chemical reactivity of C{sub 70} as compared to C{sub 60}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mestres, J.; Duran, M.; Sola, M.

    1996-05-02

    The eight unique Diels-Alder cycloadditions of butadiene to C{sub 70} are analyzed theoretically and compared with the well-established, two possible Diels-Alder cycloadditions of butadiene to C{sub 60}. Full geometry optimizations of reactants, adducts, and transition states are performed using the AMI semiempirical method followed by single-point ab initio energy calculations. The results show that the cycloaddition of butadiene to the C{sub 70} fullerene in the gas phase is slightly more reactive than that to C{sub 60}. However, in toluene solution calculations yield that the different solvent effects on C{sub 60} and C{sub 70} cause a significant decrease of the energymore » barrier in the C{sub 60} cycloaddition, thus predicting a larger reactivity for C{sub 60} as compared to the C{sub 70} fullerene. 36 refs., 2 figs., 3 tabs.« less

  17. Lipase Catalysed Synthesis of Furan Based Oligoesters and their Self-Assembly Assisted Polymerization.

    PubMed

    Subbiah, Nagarajan; K, Muthusamy; Krishnamoorthy, Lalitha; Yadavali, Siva Prasad; Ayyapillai, Thamizhanban; Vellaisamy, Sridharan; C Uma, Maheswari

    2018-05-11

    Bio-based polyesters are well-known biodegradable materials that are frequently used in our daily life, which include food industries and biomedical fields. The journey towards the development of sustainable polymer materials and technology postulate the replacement of traditionally using petrochemical-based monomers, transition metal catalyst, and more intensive purification techniques, which do not agree with the green chemistry principles. This contribution investigates the synthesis of bio-based hydrophilic and hydrophobic oligoesters, which in turn derived from easily accessible monomers of natural resources. In addition to the selection of renewable monomers, Novozyme 435, an immobilized lipase B from Candida antarctica was used for the oligomerization of monomers. The reaction condition for oligomerization using Novozyme 435 was established to get moderate to good yield. To our delight, oligoester derived from hydrophilic monomer was found to self-assemble to form a viscous solution, which on further heating resulted in the formation of polymer via the intermolecular Diels-Alder reaction. The viscosity of solution and assembly of oligoester to form fibrous structure was investigated by rheological studies, XRD and SEM. Both oligoesters and polymers were completely characterized. For the first time we are reporting the assembly assisted polymerization of oligoester using intermolecular Diels-Alder reaction, which would initiate a new avenue in polymer science field. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Mechanisms of the Knoevenagel hetero Diels-Alder sequence in multicomponent reactions to dihydropyrans: experimental and theoretical investigations into the role of water.

    PubMed

    Frapper, Gilles; Bachmann, Christian; Gu, Yanlong; Coval De Sousa, Rodolphe; Jérôme, François

    2011-01-14

    The role of water in a multicomponent domino reaction (MCR) involving styrene, 2,4-pentanedione, and formaldehyde was studied. Whereas anhydrous conditions produced no reaction, the MCR successfully proceeded in the presence of water, affording the targeted dihydropyran derivatives with good yield. The mechanism of this MCR (Knoevenagel hetero Diels-Alder sequence) was studied with and without explicit water molecules using the SMD continuum solvation model in combination with the B3LYP density functional and the 6-311++G** basis set to compute the water and acetone (aprotic organic solvent) solution Gibbs free energies. In the Knoevenagel step, we found that water acted as a proton relay to favor the formation of more flexible six-membered ring transition state structures both in concerted (direct H(2)O elimination) and stepwise (keto-enol tautomerization and dehydration) pathways. The inclusion of a water molecule in our model resulted in a significant decrease (-8.5 kcal mol(-1)ΔG(water)(‡)) of the direct water elimination activation barrier. Owing to the presence of water, all chemical steps involved in the MCR mechanism had activation free energies barriers lower than 39 kcal mol(-1) at 25 °C in aqueous solvent (<21 kcal mol(-1) ZPE corrected electronic energies barriers). Consequently, the MCR proceeded without the assistance of any catalyst.

  19. Production of Plant Phthalate and its Hydrogenated Derivative from Bio-Based Platform Chemicals.

    PubMed

    Lu, Rui; Lu, Fang; Si, Xiaoqin; Jiang, Huifang; Huang, Qianqian; Yu, Weiqiang; Kong, Xiangtao; Xu, Jie

    2018-04-06

    Direct transformation of bio-based platform chemicals into aromatic dicarboxylic acids and their derivatives, which are widely used for the manufacture of polymers, is of significant importance for the sustainable development of the plastics industry. However, limited successful chemical processes have been reported. This study concerns a sustainable route for the production of phthalate and its hydrogenated derivative from bio-based malic acid and erythritol. The key Diels-Alder reaction is applied to build a substituted cyclohexene structure. The dehydration reaction of malic acid affords fumaric acid with 96.6 % yield, which could be used as the dienophile, and 1,3-butadiene generated in situ through erythritol deoxydehydration serves as the diene. Starting from erythritol and dibutyl fumarate, a 74.3 % yield of dibutyl trans-4-cyclohexene-1,2-dicarboxylate is obtained. The palladium-catalyzed dehydrogenation of the cycloadduct gives a 77.8 % yield of dibutyl phthalate. Dibutyl trans-cyclohexane-1,2-dicarboxylate could be formed in nearly 100 % yield under mild conditions by hydrogenation of the cycloadduct. Furthermore, fumaric acid and fumarate, with trans configurations, were found to be better dienophiles for this Diels-Alder reaction than maleic acid and maleate, with cis configuration, based on the experimental and computational results. This new route will pave the way for the production of environmental friendly plastic materials from plants. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Oxidative cycloaddition of hydroxamic acids with dienes or guaiacols mediated by iodine(III) reagents.

    PubMed

    Shimizu, Hisato; Yoshimura, Akira; Noguchi, Keiichi; Nemykin, Victor N; Zhdankin, Viktor V; Saito, Akio

    2018-01-01

    [Bis(trifluoroacetoxy)iodo]benzene (BTI) and (diacetoxyiodo)benzene (DIB) efficiently promote the formation of acylnitroso species from hydroxamic acids in the presence of various dienes to give the corresponding hetero-Diels-Alder (HDA) adducts in moderate to high yields. The present method could be applied to the HDA reactions of acylnitroso species with o -benzoquinones generated by the oxidative dearomatization of guaiacols.

  1. Microwaves in chemistry: Another way of heating reaction mixtures

    NASA Astrophysics Data System (ADS)

    Berlan, J.

    1995-04-01

    The question of a possible "microwave activation" of chemical reaction is discussed. In fact two cases should be distinguished: homogeneous or heterogeneous reaction mixtures. In homogeneous mixtures there are no (or very low) rate enhancements compared to a conventional heating, but some influence on chemioselectivity has been observed. These effects derive from fast and mass heating of microwaves, and probably, especially under reflux, from different boiling rates and/or overheating. With heterogeneous mixtures non conventional effects probably derive from mass heating and selective overheating. This is illustrated with several reactions: Diels-Alder, naphthalene sulphonation, preparation of cyanuric acid, hydrolysis of nitriles, transposition reaction on solid support.

  2. Unravelling RNA-substrate interactions in a ribozyme-catalysed reaction using fluorescent turn-on probes.

    PubMed

    Gaffarogullari, Ece Cazibe; Greulich, Peter; Kobitski, Andrei Yu; Nierth, Alexander; Nienhaus, G Ulrich; Jäschke, Andres

    2015-04-07

    The Diels-Alder reaction is one of the most important C-C bond-forming reactions in organic chemistry, and much effort has been devoted to controlling its enantio- and diastereoselectivity. The Diels-Alderase ribozyme (DAse) catalyses the reaction between anthracene dienes and maleimide dienophiles with multiple-turnover, stereoselectivity, and up to 1100-fold rate acceleration. Here, a new generation of anthracene-BODIPY-based fluorescent probes was developed to monitor catalysis by the DAse. The brightness of these probes increases up to 93-fold upon reaction with N-pentylmaleimide (NPM), making these useful tools for investigating the stereochemistry of the ribozyme-catalysed reaction. With these probes, we observed that the DAse catalyses the reaction with >91% de and >99% ee. The stereochemistry of the major product was determined unambiguously by rotating-frame nuclear Overhauser NMR spectroscopy (ROESY-NMR) and is in agreement with crystallographic structure information. The pronounced fluorescence change of the probes furthermore allowed a complete kinetic analysis, which revealed an ordered bi uni type reaction mechanism, with the dienophile binding first. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. L-Pyroglutamic Sulphonamide as Hydrogen-Bonding Organocatalyst: Enantioselective Diels-Alder Cyclization to Construct Carbazolespirooxindoles.

    PubMed

    Ren, Ji-Wei; Wang, Jing; Xiao, Jun-An; Li, Jun; Xiang, Hao-Yue; Chen, Xiao-Qing; Yang, Hua

    2017-06-16

    Hydrogen-bonding organocatalysts L-pyroglutamic sulphonamides were readily synthesized for the first time by fully exploiting the potentials of L-pyroglutamic acid. The newly designed catalyst was successfully applied in catalyzing asymmetric Diels-Alder cyclization of methyleneindolinones with 2-vinyl-1H-indoles to efficiently assemble carbazolespirooxindoles in excellent stereoselectivity (up to 99% ee, >20:1 dr) and yields (up to 99%). Mechanistic studies disclosed that the well-designed hydrogen-bonding modes between L-pyroglutamic sulphonamide and substrates were crucial for stereocontrol in the cyclization.

  4. Synthesis of rigidified flavin-guanidinium ion conjugates and investigation of their photocatalytic properties.

    PubMed

    Schmaderer, Harald; Bhuyan, Mouchumi; König, Burkhard

    2009-05-28

    Flavin chromophores can mediate redox reactions upon irradiation by blue light. In an attempt to increase their catalytic efficacy, flavin derivatives bearing a guanidinium ion as oxoanion binding site were prepared. Chromophore and substrate binding site are linked by a rigid Kemp's acid structure. The molecular structure of the new flavins was confirmed by an X-ray structure analysis and their photocatalytic activity was investigated in benzyl ester cleavage, nitroarene reduction and a Diels-Alder reaction. The modified flavins photocatalyze the reactions, but the introduced substrate binding site does not enhance their performance.

  5. Synthesis of racemic β-chamigrene, a spiro[5.5]undecane sequiterpene.

    PubMed

    Antonsen, Simen; Skattebøl, Lars; Stenstrøm, Yngve

    2014-12-10

    The present paper describes a total synthesis of racemic β-chamigrene, a sesquiterpene with a spiro[5.5]undecane carbon framework. Compared with previously reported β-chamigrene syntheses, we were able to reduce the total number of reaction steps, which also resulted in a significant improvement of the overall yield. The commercially available ketone 6-methylhept-5-en-2-one was transformed by known simple procedures into 3,3-dimethyl-2-methylenecyclohexanone. This reacted with isoprene by a Diels-Alder reaction to give a spiro ketone. An olefination reaction on this compound gave the target molecule.

  6. A one-pot, microwave-influenced synthesis of diverse small molecules by multicomponent reaction cascades.

    PubMed

    Santra, Soumava; Andreana, Peter R

    2007-11-22

    Small molecule diversity can be achieved in a single synthetic operation from bifunctional substrates in the absence of additives and under the influence of microwaves with complete control of pathway selectivity. The preliminary Ugi four-component coupling products give rise to three structurally distinct scaffolds that are dependent on solvent effects and sterics. 2,5-Diketopiperazines (Type A), 2-azaspiro[4.5]deca-6,9-diene-3,8-diones (Type B), and thiophene-derived Diels-Alder tricyclic lactams (Type C) predominate in this reaction cascade.

  7. Patent Retrieval in Chemistry based on Semantically Tagged Named Entities

    DTIC Science & Technology

    2009-11-01

    their corresponding synonyms. An ex- ample query for TS-15 is: (" Betaine " OR "Glycine betaine " OR "Glycocol betaine " OR "Glycylbetaine" OR ...) AND...task in an automatic way based on noun- phrase detection incorporating the OpenNLP chun- 3 Informative Term Synonyms Source Betaine Glycine betaine ...Glycocol betaine , Glycylbetaine etc. ATC Peripheral Artery Disease Peripheral Artery Disorder, Peripheral Arterial Disease etc. MeSH Diels-Alder reaction

  8. Computational Studies of Candida Antarctica Lipase B to Test its Capability as a Starting Point to Redesign New Diels-Alderases

    PubMed Central

    Świderek, Katarzyna; Moliner, Vicent

    2015-01-01

    The design of new biocatalysts is a target that is receiving increasing attention. One of the most popular reactions in this regard is the Diels-Alder cycloaddition due to its applications in organic synthesis and the absence of efficient natural enzymes that catalyze it. In this paper, the possibilities of using the highly promiscuous Candida Antarctica lipase B (CALB) as a protein scaffold to re-design a Diels-Alderase has been explored by means of theoretical quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations. Free energy surfaces have been computed for two reactions in the wild-type and in several mutants with hybrid AM1/MM potentials with corrections at M06-2X/MM level. The study of the counterpart reactions in solution has allowed performing comparative analysis that render interesting conclusion. Since the dienophile anchors very well in the oxyanion hole of all tested protein variants, the slight electronic changes from reactant complex to the transition state suggest that mutations should be focused in favoring the formation of reactive conformations of reactant complex that, in turn, would reduce the energy barrier. PMID:26624234

  9. Diels-Alder and Stille Coupling Approach for the Short Protecting-Group-Free Synthesis of Mycophenolic Acid, Its Phenylsulfenyl and Phenylselenyl Analogues, and Reactive Oxygen Species (ROS) Probing Capacity in Water.

    PubMed

    Halle, Mahesh B; Yudhistira, Tesla; Lee, Woo-Hyun; Mulay, Sandip V; Churchill, David G

    2018-06-15

    A short, protecting-group-free synthesis is achieved. The synthesis is step-efficient and general. A Diels-Alder and Stille cross-coupling approach includes key transformations, allowing for a competitive synthesis which involves a rare halophenol Stille cross-coupling study. The phenylselenyl and phenylsulfenyl analogues were prepared as novel compounds in good overall yield. The applicability of one of the intermediates as a potential probe for reactive oxygen species (ROS) in water is investigated.

  10. Diels-Alder cycloaddition in the synthesis of 1-azafagomine, analogs, and derivatives as glycosidase inhibitors.

    PubMed

    Salgueiro, Daniela A L; Sousa, Cristina E A; Fortes, A Gil; Alves, M José

    2012-12-01

    This comprehensive review deals with the synthesis of 1-azafagomine, analogs, and derivatives having the Diels-Alder cycloaddition as the key step. Most of the compounds referred are racemic or have been resolved by lipase transesterification. There are two asymmetric cycloadditions leading to 1-azafagomine or to an analog. In one case both enantiomers of 1-azafagomine were prepared together with a pair of derivatives. The study comprises glycosidase inhibition studies of the target compounds to a set of glycosidic enzymes, and evidenced molecular features that enhance or diminish their activity as glycosidase inhibitors.

  11. Design of New Bridge-Ring Energetic Compounds Obtained by Diels-Alder Reactions of Tetranitroethylene Dienophile.

    PubMed

    He, Piao; Mei, Hao-Zheng; Wu, Le; Yang, Jun-Qing; Zhang, Jian-Guo; Cohen, Adva; Gozin, Michael

    2018-03-29

    The density functional theory method was employed to calculate three-dimensional structures for a series of novel explosophores. The design of new molecules (DA1-DA12) was based on the bridge-ring structures that could be formed via Diels-Alder (DA) reaction of selected nitrogen-rich dienes and tetranitroethylene dienophile. The feasibility of the proposed DA reactions was predicted on the basis of the molecular orbital theory. The strong interactions between the HOMO of dienes, with electron-donating groups (Diene2, Diene6, and Diene8), and the LUMO of tetranitroethylene dienophile suggested thermodynamically favorable formation of the desired DA reaction products. In addition to molecular structures of the explored DA compounds, their physicochemical and energetic properties were also calculated in detail. Due to compact bridge-ring structures, new energetic molecules have highly positive heats of formation (up to 1124.90 kJ·mol -1 ) and high densities (up to 2.04 g·cm -3 ). Also, as a result of all-right ratios of nitrogen and oxygen, most of the new compounds possess high detonation velocities (8.28-10.02 km·s -1 ) and high detonation pressures (30.87-47.83 GPa). Energetic compounds DA1, DA4, and DA12 exhibit a superior detonation performance over widely used HMX explosive, and DA5, DA7, and DA10 could be comparable to the state-of-the-art CL-20 and ONC explosives. Our proposed designs and synthetic methodology should provide a platform for the development of novel energetic materials with superior performance.

  12. The Use of Nitrone Cycloadditions in the Synthesis of Beta-Amino Aldehydes and Unsaturated Amines.

    DTIC Science & Technology

    1986-01-01

    with alkenes (dipolarophiles) to produce isoxazolidines (2) in a fashion similar to the (4+2] Diels - Alder reaction.’ The cycloaddition results in...structures to study enzyme inhibition, and they serve as useful intermediates in the synthesis of $-lactams. 3 3 Table IV summarizes attempts to oxidize p...84% yield (Table V, entry 3). Due to the mechanistic imperative, acid catalyzed elimination always yielded the allylic amine in which the alkene

  13. A Tetrazine-Labile Vinyl Ether Benzyloxycarbonyl Protecting Group (VeZ): An Orthogonal Tool for Solid-Phase Peptide Chemistry.

    PubMed

    Staderini, Matteo; Gambardella, Alessia; Lilienkampf, Annamaria; Bradley, Mark

    2018-06-01

    The vinyl ether benzyloxycarbonyl (VeZ) protecting group is selectively cleaved by treatment with tetrazines via an inverse electron-demand Diels-Alder reaction. This represents a new orthogonal protecting group for solid-phase peptide synthesis, with Fmoc-Lys(VeZ)-OH as a versatile alternative to Fmoc-Lys(Alloc)-OH and Fmoc-Lys(Dde)-OH, as demonstrated by the synthesis of two biologically relevant cyclic peptides.

  14. Uncovering the Roles of Oxygen in Cr(III) Photoredox Catalysis.

    PubMed

    Higgins, Robert F; Fatur, Steven M; Shepard, Samuel G; Stevenson, Susan M; Boston, David J; Ferreira, Eric M; Damrauer, Niels H; Rappé, Anthony K; Shores, Matthew P

    2016-04-27

    A combined experimental and theoretical investigation aims to elucidate the necessary roles of oxygen in photoredox catalysis of radical cation based Diels-Alder cycloadditions mediated by the first-row transition metal complex [Cr(Ph2phen)3](3+), where Ph2phen = bathophenanthroline. We employ a diverse array of techniques, including catalysis screening, electrochemistry, time-resolved spectroscopy, and computational analyses of reaction thermodynamics. Our key finding is that oxygen acts as a renewable energy and electron shuttle following photoexcitation of the Cr(III) catalyst. First, oxygen quenches the excited Cr(3+)* complex; this energy transfer process protects the catalyst from decomposition while preserving a synthetically useful 13 μs excited state and produces singlet oxygen. Second, singlet oxygen returns the reduced catalyst to the Cr(III) ground state, forming superoxide. Third, the superoxide species reduces the Diels-Alder cycloadduct radical cation to the final product and reforms oxygen. We compare the results of these studies with those from cycloadditions mediated by related Ru(II)-containing complexes and find that the distinct reaction pathways are likely part of a unified mechanistic framework where the photophysical and photochemical properties of the catalyst species lead to oxygen-mediated photocatalysis for the Cr-containing complex but radical chain initiation for the Ru congener. These results provide insight into how oxygen can participate as a sustainable reagent in photocatalysis.

  15. Synthesis and Antifungal in Vitro Evaluation of Pyrazolo[3,4-b]pyridines Derivatives Obtained by Aza-Diels-Alder Reaction and Microwave Irradiation.

    PubMed

    Quiroga, Jairo; Villarreal, Yazmín; Gálvez, Jaime; Ortíz, Alejandro; Insuasty, Braulio; Abonia, Rodrigo; Raimondi, Marcela; Zacchino, Susana

    2017-02-01

    A series of pyrazolo[3,4-b]pyridines were prepared by a microwave-assisted aza-Diels-Alder reaction between pyrazolylformimidamides 1 and β-nitrostyrenes 2 in toluene as the solvent. This procedure provides a simple one-step and environmentally friendly methodology with good yields for the synthesis of these compounds. All compounds were tested for antifungal activity against two clinically important fungi Candida albicans and Cryptococcus neoformans. Within the compounds of the series bearing a -CH 3 group on the carbon C-3 of the azole ring (3a-e), the compound without a substituent on the p'-phenyl ring (3a), showed the best activity against both fungi, followed by the p'-Br-phenyl (3c). Within the compounds of the series bearing a tert-butyl group in the carbon C-3 of the azole ring (3f-j), the non-substituted p'-compound (3f) was the most active one, followed by (3h) (p'-Br substituted) that showed the best activity against both fungi. The remaining compounds of this sub-series (3g, i, j) showed similar moderate activities. The antifungal activity of the compounds of the series was found to be correlated with a higher log P and a lower dipole moment in the more active compounds.

  16. Phosphine-catalyzed cycloadditions of allenic ketones: new substrates for nucleophilic catalysis.

    PubMed

    Wallace, Debra J; Sidda, Rachel L; Reamer, Robert A

    2007-02-02

    A range of phosphine-catalyzed cycloaddition reactions of allenic ketones have been studied, extending the scope of these processes from the more widely used 2,3-butadienoates to allow access to a number of synthetically useful products. Reaction of allenyl methyl ketone 4 with exo-enones afforded spirocyclic compounds in good regioselectivity and promising enantioselectivity via a [2 + 3] cycloaddtion. Aromatic allenyl ketones undergo a phosphine-promoted dimerization to afford functionalized pyrans, leading to a formal [2 + 4] Diels-Alder product, but did not react in the [2 + 3] cycloaddition. The results from other reactions that had found utility with 2,3-butadienoates are also reported.

  17. Reaction of an Iron(IV) Nitrido Complex with Cyclohexadienes: Cycloaddition and Hydrogen-Atom Abstraction

    PubMed Central

    2015-01-01

    The iron(IV) nitrido complex PhB(MesIm)3Fe≡N reacts with 1,3-cyclohexadiene to yield the iron(II) pyrrolide complex PhB(MesIm)3Fe(η5-C4H4N) in high yield. The mechanism of product formation is proposed to involve sequential [4 + 1] cycloaddition and retro Diels–Alder reactions. Surprisingly, reaction with 1,4-cyclohexadiene yields the same iron-containing product, albeit in substantially lower yield. The proposed reaction mechanism, supported by electronic structure calculations, involves hydrogen-atom abstraction from 1,4-cyclohexadiene to provide the cyclohexadienyl radical. This radical is an intermediate in substrate isomerization to 1,3-cyclohexadiene, leading to formation of the pyrrolide product. PMID:25068927

  18. Ultrasound and polar homogeneous reactions.

    PubMed

    Tuulmets, A

    1997-04-01

    The effect of ultrasound on the rates of homogeneous heterolytic reactions not switched to a free radical pathway can be explained by the perturbation of the molecular organization of or the solvation in the reacting system. A quantitative analysis of the sonochemical acceleration on the basis of the microreactor concept was carried out. It was found that (1) the Diels-Alder reaction cannot be accelerated by ultrasound except when SET or free radical processes are promoted, (2) the rectified diffusion during cavitation cannot be responsible for the acceleration of reactions, and (3) the sonochemical acceleration of polar homogeneous reactions takes place in the bulk reaction medium. This implies the presence of a 'sound-field' sonochemistry besides the 'hot-spot' sonochemistry. The occurrence of a sonochemical deceleration effect can be predicted.

  19. Magnetic hyaluronic acid nanospheres via aqueous Diels-Alder chemistry to deliver dexamethasone for adipose tissue engineering.

    PubMed

    Jia, Yang; Fan, Ming; Chen, Huinan; Miao, Yuting; Xing, Lian; Jiang, Bohong; Cheng, Qifan; Liu, Dongwei; Bao, Weikang; Qian, Bin; Wang, Jionglu; Xing, Xiaodong; Tan, Huaping; Ling, Zhonghua; Chen, Yong

    2015-11-15

    Biopolymer-based nanospheres have great potential in the field of drug delivery and tissue regenerative medicine. In this work, we present a flexible way to conjugate a magnetic hyaluronic acid (HA) nanosphere system that are capable of vectoring delivery of adipogenic factor, e.g. dexamethasone, for adipose tissue engineering. Conjugation of nanospheres was established by aqueous Diels-Alder chemistry between furan and maleimide of HA derivatives. Simultaneously, a furan functionalized dexamethasone peptide, GQPGK, was synthesized and covalently immobilized into the nanospheres. The magnetic HA nanospheres were fabricated by encapsulating super-paramagnetic iron oxide nanoparticles, which exhibited quick magnetic sensitivity. The aqueous Diels-Alder chemistry made nanospheres high binding efficiency of dexamethasone, and the vectoring delivery of dexamethasone could be easily controlled by a external magnetic field. The potential application of the magnetic HA nanospheres on vectoring delivery of adipogenic factor was confirmed by co-culture of human adipose-derived stem cells (ASCs). In vitro cytotoxicity tests demonstrated that incorporation of dexamethasone into magnetic HA nanospheres showed high efficiency to promote ASCs viabilities, in particular under a magnetic field, which suggested a promising future for adipose regeneration applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Spiroacetal formation through telescoped cycloaddition and carbon-hydrogen bond functionalization: total synthesis of bistramide A.

    PubMed

    Han, Xun; Floreancig, Paul E

    2014-10-06

    Spiroacetals can be formed through a one-pot sequence of a hetero-Diels-Alder reaction, an oxidative carbon-hydrogen bond cleavage, and an acid treatment. This convergent approach expedites access to a complex molecular subunit which is present in numerous biologically active structures. The utility of the protocol is demonstrated through its application to a brief synthesis of the actin-binding cytotoxin bistramide A. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Experimental and Theoretical Aspects of Excited State Electron Transfer and Related Phenomena: Conference Held in Honour of Zbigniew R. Grabowski in Pultusk, Poland on September 27-October 2, 1992

    DTIC Science & Technology

    1992-10-01

    DBMBF2 ) undergoes photoreaction with olefins through a partial electron transfer that leads to cycloaddition or sensitized Diels - Alder reactions. We...8217 Fluorescence. 10:00 J.M. WARMAN: Photon-induced Intramolecular Charge Sepaiation Studied byTime-Resolved Microwave Conductivity. 10:30 Coffee 11:)) W...26 Photon-Induced Intramolecular Charge Separation Studied by Time-Resolved Microwave Conductivity John M. Warman IRI, Delft University of Technology

  2. Microwave assisted IMDAF# reaction: microwave irradiation applied with success to cycloaddition reaction of N-propargyl-N-p-tolyl-N-2-furfurylamines.

    PubMed

    Mance, Ana Dunja; Jakopcić, Kresimir

    2005-01-01

    The new tertiary furfurylamine with triple bond as a dienophylic part i.e. N-(5-methyl-2-furfuryl)-N-prop-2-ynyl-p-toluidine (1) was prepared and the intramolecular Diels-Alder reaction of the amine (1) was performed under microwave irradiation conditions and by heating a benzene solution of the amine under nitrogen. Comparing the results of the usual thermal and the MAOS reaction, we confirmed our expectations that MAOS could promote the outcome of IMDA reaction of the suitably N-substituted tertiary 2-furfuryl-amines. In the present example, N-p-tolyl-5-methyl-5,7a-dihydro-5,7a-epoxyisoindoline was obtained in much better yield and of higher purity.

  3. Synthetic studies of the zoanthamine alkaloids: the total syntheses of norzoanthamine and zoanthamine.

    PubMed

    Yoshimura, Fumihiko; Sasaki, Minoru; Hattori, Izumi; Komatsu, Kei; Sakai, Mio; Tanino, Keiji; Miyashita, Masaaki

    2009-07-06

    The zoanthamine alkaloids, a type of heptacyclic marine alkaloid isolated from colonial zoanthids of the genus Zoanthus sp., have distinctive biological and pharmacological properties in addition to their unique chemical structures with stereochemical complexity. Namely, norzoanthamine (1) can suppress the loss of bone weight and strength in ovariectomized mice and has been expected as a promising candidate for a new type of antiosteoporotic drug, while zoanthamine (2) has exhibited potent inhibitory activity toward phorbol myristate-induced inflammation in addition to powerful analgesic effects. Recently, norzoanthamine derivatives were demonstrated to inhibit strongly the growth of P-388 murine leukemia cell lines, in addition to their potent antiplatelet activities on human platelet aggregation. Their distinctive biological properties, combined with novel chemical structures, make this family of alkaloids extremely attractive targets for chemical synthesis. However, the chemical synthesis of the zoanthamine alkaloids has been impeded owing to their densely functionalized complex stereostructures. In this paper, we report the first and highly efficient total syntheses of norzoanthamine (1) and zoanthamine (2) in full detail, which involve stereoselective synthesis of the requisite triene (18) for an intramolecular Diels-Alder reaction via the sequential three-component coupling reactions, the key intramolecular Diels-Alder reaction, and subsequent crucial bis-aminoacetalization as the key steps. Ultimately, we achieved the total synthesis of norzoanthamine (1) in 41 steps with an overall yield of 3.5 % (an average of 92 % yield each step) and that of zoanthamine (2) in 43 steps with an overall yield of 2.2 % (an average of 91 % yield each step) starting from (R)-5-methylcyclohexenone (3), respectively.

  4. Thermal phenomena under microwave field in the organic synthesis processes: Application to the Diels Alder reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saillard, R.; Poux, M.; Audhuy-Peaudecerf, M.

    1996-12-31

    The influence of the microwave heating on chemical reactions were investigated. The kinetic of the Diels Alder reaction were studied under microwave irradiation at a frequency of 2.45 GHz in a single mode cavity and were compared to the kinetic obtained by a conventional heating. Experiments were carried out in a liquid solvent in order to have a better control of the medium temperature measurement. In a second part, the presence of a catalytic solid phase was introduced. Some thermal fluctuations which are due to an heterogeneity of the electric field were detected in the medium. They reduce the precisionmore » of the results and cause problems of experimental reproducibility. A thermoluminescent material allow a good visualization of these phenomena. In addition, the profiles of the electric field intensity were modelled by a 2D finite elements method in the reactor in the presence of a solvent. Despite the small size of the sample and the use of a monomode cavity which both limited the heterogeneities of the medium temperature, the authors showed a great heterogeneity of the electric field intensity and as a result the heterogeneity of the temperature in their sample. In order to avoid these phenomena which induce a lack of reproducibility, a stirring device was developed. The values of the kinetics obtained under the 2 heating modes with the introduction of the stirring device. So, it induces a good control of the medium temperature. All those investigations prompted the authors to the conclusion that there is no difference between microwave heating and a classical heating in the studied reaction.« less

  5. Assessing the superelectrophilic dimension through sigma-complexation, SNAr and Diels-Alder reactivity.

    PubMed

    Buncel, Erwin; Terrier, François

    2010-05-21

    In the domain of organic chemistry, S(N)Ar substitutions represent a class of reactions of overwhelming importance, both in synthesis and in the understanding of structure-reactivity relationships, especially the role of sigma-complex intermediates. The primary factor necessary for achievement of S(N)Ar reactions is the presence of a good leaving group, which allows facile rearomatization of the ring undergoing nucleophilic attack. Consistent is the finding that the superelectrophilic chloronitrobenzofuroxans--or furazans--exhibit a very high S(N)Ar reactivity, allowing a number of C-C, C-N, C-O couplings to be achieved that are not accessible with the classical series of nitro-substituted aromatics. Of particular interest is the synthesis of a number of indoles, indolizines, pyrroles and extended pi-excessive aromatic structures like azulene substituted by superelectrophilic moieties. The remarkable driving force for the facile completion of these reactions is the 10 orders of magnitude greater reactivity of 10pi-electron-deficient heteroaromatics such as 4,6-dinitrobenzofuroxan (DNBF) than of the most reactive trinitrobenzene derivatives in sigma-adduct complexation. Among the factors that have been recognized as governing superelectrophilicity, there is the poor aromaticity of 6-membered 10pi-electron structures investigated, with a common origin for sigma-complexation and pericyclic processes. A remarkable capacity of these structures is actually to contribute to a variety of Diels-Alder reactions. As an example, the DNBF molecule formally behaves as a nitroalkene, being susceptible to act as a dienophile as well as a heterodiene. Another remarkable Diels-Alder pathway is the capacity of the 6-membered carbocyclic ring of DNBF to act as a carbodiene. Also noteworthy is the successful Diels-Alder trapping of the dinitroso intermediate associated with 1-oxide/3-oxide tautomerism of the furoxan moiety of 4-aza-6-nitrobenzofuroxan. A point of fundamental importance in taking advantage of the reactivity of superelectrophilic structures at hand has been a successful calibration of their reactivity within the electrophilicity E scale developed by Mayr to describe nucleophile-electrophile combinations in general. It has thus been established that the E parameters measuring the electrophilicity of neutral heteroaromatics lie in the same region of the E scale as a number of highly reactive cationic reagents. Besides a reactivity rather similar to that of the 4-nitrobenzenediazonium cation (vide supra), the most electrophilic neutral molecules (DNBF, DNTP, DNBZ) are as electrophilic as tropylium cations or a number of metal-coordinated carbenium ions. Furthermore, there is a remarkable link between the pK(a)(H(2)O) and E scales, as evidenced by the existence of a unique linear relationship spanning more than 20 orders of reactivity. This relationship appears as being a nice probe to predict the feasibility of S(N)Ar substitutions and related sigma-complexation processes. Also revealing in terms of feasibility of the reactions is the existence of a close correlation between the electrochemical oxidation potential E degrees of sigma-adducts and their positioning on the pK(a)(H(2)O) scale. Our data can also be used to evaluate the potential of a theoretical model recently derived from DFT calculations, namely the global electrophilicity index omega, for the description of nucleophile-electrophile combinations. While showing several significant deviations, a reasonably linear omega vs. pK(a)(H(2)O) relationship is obtained when restricting the correlation to structurally similar electrophilic moieties. On this basis, valuable information could be derived regarding the polar character of some DA reactions. Overall, the global electrophilicity (omega) approach may be a promising avenue in future work of electrophile-nucleophile combinations.

  6. Determination of ergocalciferol in human plasma after Diels-Alder derivatization by LC-MS/MS and its application to a bioequivalence study.

    PubMed

    Contractor, Pritesh; Gandhi, Abhishek; Solanki, Gajendra; Shah, Priyanka A; Shrivastav, Pranav S

    2017-12-01

    An accurate, sensitive and selective method is developed for determination of ergocalciferol (vitamin D 2 ) in human plasma using LC-MS/MS. After liquid-liquid extraction with n- hexane, ergocalciferol was derivatized by reacting with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD), a strong dienophile based on Diels-Alder reaction. Ergocalciferol and its deuterated internal standard, ergocalciferol-d6, were analyzed on X Select CSH C 18 (100 mm×4.6 mm, 2.5 µm) column using acetonitrile and 0.1% (v/v) formic acid in water containing 0.14% methylamine within 6.0 min under gradient elution mode. Tandem mass spectrometry in positive ionization mode was used to quantify ergocalciferol by multiple reaction monitoring (MRM). Entire data processing was done using Watson LIMS™ software which provided excellent data integrity and high throughput with improved operational efficiency. The major advantage of this method includes higher sensitivity (0.10 ng/mL), superior extraction efficiency (≥83%) and small sample volume (100 µL) for processing. The method was linear in the concentration range of 0.10-100 ng/mL for ergocalciferol. The intra-batch and inter-batch accuracy and precision (% CV) values varied from 97.3% to 109.0% and 1.01% to 5.16%, respectively. The method was successfully applied to support a bioequivalence study of 1.25 mg ergocalciferol capsules in 12 healthy subjects.

  7. The 2.5-diacyl-1,4-dimethylbenzenes: Examples of bisphotoenol equivalents

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    1987-01-01

    The photochemistry of 2,5-dibenzoyl(DBX)-and 2,5-diacetyl-1,4-dimethylbenzene (DAX) has been investigated. Both compounds readily undergo photoenolization similar to 0-alkylphenyl ketones. However, unlike 0-alkylphenyl ketones DAX and DBX are each capable of undergoing two tandem photoenolizations. Photoenols derived from o-alkylphenyl ketones have been successfully trapped with Diels-Alder dienophiles to provide a convenient synthesis of substituted tetralins. Similarly, Diels-Alder trapping of DBX photoenils afforded substituted tetra- and octahydro anthracenes. Further mainpulation of these photadducts provided the corresponding anthracenes in good yield. The photochemistry of DAX and DBX will be discussed, in particular their use in the synthesis of substituted anthracenes.

  8. Radioactive Phosphorylation of Alcohols to Monitor Biocatalytic Diels-Alder Reactions

    PubMed Central

    Nierth, Alexander; Jäschke, Andres

    2011-01-01

    Nature has efficiently adopted phosphorylation for numerous biological key processes, spanning from cell signaling to energy storage and transmission. For the bioorganic chemist the number of possible ways to attach a single phosphate for radioactive labeling is surprisingly small. Here we describe a very simple and fast one-pot synthesis to phosphorylate an alcohol with phosphoric acid using trichloroacetonitrile as activating agent. Using this procedure, we efficiently attached the radioactive phosphorus isotope 32P to an anthracene diene, which is a substrate for the Diels-Alderase ribozyme—an RNA sequence that catalyzes the eponymous reaction. We used the 32P-substrate for the measurement of RNA-catalyzed reaction kinetics of several dye-labeled ribozyme variants for which precise optical activity determination (UV/vis, fluorescence) failed due to interference of the attached dyes. The reaction kinetics were analyzed by thin-layer chromatographic separation of the 32P-labeled reaction components and densitometric analysis of the substrate and product radioactivities, thereby allowing iterative optimization of the dye positions for future single-molecule studies. The phosphorylation strategy with trichloroacetonitrile may be applicable for labeling numerous other compounds that contain alcoholic hydroxyl groups. PMID:21731729

  9. Method of making thermally removable adhesives

    DOEpatents

    Aubert, James H.

    2004-11-30

    A method of making a thermally-removable adhesive is provided where a bismaleimide compound, a monomeric furan compound, containing an oxirane group an amine curative are mixed together at an elevated temperature of greater than approximately 90.degree. C. to form a homogeneous solution, which, when cooled to less than approximately 70.degree. C., simultaneously initiates a Diels-Alder reaction between the furan and the bismaleimide and a epoxy curing reaction between the amine curative and the oxirane group to form a thermally-removable adhesive. Subsequent heating to a temperature greater than approximately 100.degree. C. causes the adhesive to melt and allows separation of adhered pieces.

  10. Microwave-assisted synthesis of medicinally relevant indoles.

    PubMed

    Patil, S A; Patil, R; Miller, D D

    2011-01-01

    Indoles represent an important structural class in medicinal chemistry with broad spectrum of biological activities. The synthesis of indoles, therefore, has attracted enormous attention from synthetic chemists. Microwave methods for the preparation of indole analogs have been developed to speed up the synthesis, therefore, microwave assisted organic synthesis (MAOS) in controlled conditions is an invaluable technique for medicinal chemistry. In this review, indole forming classical reactions such as Fischer, Madelung, Bischler-Mohlau, Batcho-Leimgruber, Hemetsberger-Knittel, Graebe-Ullmann, Diels-Alder and Wittig type reactions using microwave radiation has been summarized. In addition, metal mediated cyclizations along with solid phase synthesis of indoles have been discussed. © 2011 Bentham Science Publishers Ltd.

  11. Expeditious microwave-assisted synthesis of 5-alkoxyoxazoles from α-triflyloxy esters and nitriles.

    PubMed

    Jouanno, Laurie-Anne; Sabot, Cyrille; Renard, Pierre-Yves

    2012-10-05

    A rapid and general access to diversely substituted 5-alkoxyoxazoles 2 (i.e., R(1), R(2) = alkyl, phenyl) from easily accessible α-triflyloxy/hydroxy esters 1 and nitriles with good yields (41-76%) is reported. The versatility of the cyclization is shown for a range of substrates with high selectivity toward triflates over mesylates and proved to be compatible with sensitive functional groups. As an illustration of this transformation, the first synthesis of the recently isolated hydroxypyridine methyl multijuguinate 4 was achieved in four steps through a hetero Diels-Alder reaction of the 5-alkoxyoxazole and acrylic acid, followed by a protodecarboxylation reaction.

  12. Chemical control of rate and onset temperature of nadimide polymerization

    NASA Technical Reports Server (NTRS)

    Lauver, R. W.

    1985-01-01

    The chemistry of norbornenyl capped imide compounds (nadimides) is briefly reviewed with emphasis on the contribution of Diels-Alder reversion in controlling the rate and onset of the thermal polymerization reaction. Control of onset temperature of the cure exotherm by adjusting the concentration of maleimide is demonstrated using selected model compounds. The effects of nitrophenyl compounds as free radical retarders on nadimide reactivity are discussed. A simple copolymerization model is proposed for the overall nadimide cure reaction. An approximate numerical analysis is carried out to demonstrate the ability of the model to simulate the trends observed for both maleimide and nitrophenyl additions.

  13. Asymmetric Synthesis of Hydrocarbazoles Catalyzed by an Octahedral Chiral-at-Rhodium Lewis Acid.

    PubMed

    Huang, Yong; Song, Liangliang; Gong, Lei; Meggers, Eric

    2015-12-01

    A bis-cyclometalated chiral-at-metal rhodium complex catalyzes the Diels-Alder reaction between N-Boc-protected 3-vinylindoles (Boc = tert-butyloxycarbonyl) and β-carboxylic ester-substituted α,β-unsaturated 2-acyl imidazoles with good-to-excellent regioselectivity (up to 99:1) and excellent diastereoselectivity (>50:1 d.r.) as well as enantioselectivity (92-99% ee) under optimized conditions. The rhodium catalyst serves as a chiral Lewis acid to activate the 2-acyl imidazole dienophile by two-point binding and overrules the preferred regioselectivity of the uncatalyzed reaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Spiroketals of Pestalotiopsis fici provide evidence for a biosynthetic hypothesis involving diversified Diels-Alder reaction cascades.

    PubMed

    Liu, Ling; Li, Yan; Li, Li; Cao, Ya; Guo, Liangdong; Liu, Gang; Che, Yongsheng

    2013-04-05

    Chloropestolides B-G (1-6), six new metabolites featuring the chlorinated spiro[benzo[d][1,3]dioxine-2,7'-bicyclo[2.2.2]octane]-4,8'-dione (1-3) and spiro[benzo[d][1,3]dioxine-2,1'-naphthalene]-2',4-dione (4-6) skeletons, and their putative biosynthetic precursor dechloromaldoxin (7) were isolated from the scale-up fermentation cultures of the plant endophytic fungus Pestalotiopsis fici . The structures of 1-7 were determined mainly by NMR experiments. The absolute configurations of 1-3 were deduced by analogy to the previously isolated metabolites from the same fungus (9 and 13-18), whereas those of 4, 5, and 7 were assigned by electronic circular dichroism (ECD) calculations. Structurally, the spiroketal skeletons found in 1-3 and 4-6 could be derived from 2,6-dihydroxy-4-methylbenzoic acid with chlorinated bicyclo[2.2.2]oct-2-en-5-one and 4a,5,8,8a-tetrahydronaphthalen-2(1H)-one, respectively. Biogenetically, compounds 1-6 were derived from the same Diels-Alder precursors as the previously isolated 9 and 12-18. In addition, compounds 2 and 3 were proposed as the biosynthetic intermediates of 17 and 16, respectively. Compound 1 was cytotoxic to three human tumor cell lines.

  15. A new class of dual responsive self-healable hydrogels based on a core crosslinked ionic block copolymer micelle prepared via RAFT polymerization and Diels-Alder "click" chemistry.

    PubMed

    Banerjee, Sovan Lal; Singha, Nikhil K

    2017-12-06

    Amphiphilic diblock copolymers of poly(furfuryl methacrylate) (PFMA) with cationic poly(2-(methacryloyloxy)ethyltrimethyl ammonium chloride) (PFMA-b-PMTAC) and anionic poly(sodium 4-vinylbenzenesulfonate) (PFMA-b-PSS) were prepared via reversible addition fragmentation chain-transfer (RAFT) polymerization by using PFMA as a macro-RAFT agent. The formation of the block copolymer was confirmed by FTIR and 1 H NMR analyses. In water, the amphiphilic diblock copolymers, (PFMA-b-PMTAC) and (PFMA-b-PSS), formed micelles with PFMA in the core and the rest of the hydrophilic polymers like PMTAC and PSS in the corona. The PFMA core was crosslinked by using Diels-Alder (DA) "Click" chemistry in water at 60 °C where bismaleimide acted as a crosslinker. Afterwards, both the core crosslinked micelles were mixed at an almost equal charge ratio which was determined by zeta potential analysis to prepare the self-assembled hydrogel. The de-crosslinking of the hydrophobic PFMA core in the self-assembled hydrogel via rDA reaction took place at 165 °C as determined from DSC analysis. This hydrogel showed self-healing behavior using ionic interaction (in the presence of water) and DA chemistry (in the presence of heat).

  16. Self-healable interfaces based on thermo-reversible Diels-Alder reactions in carbon fiber reinforced composites.

    PubMed

    Zhang, W; Duchet, J; Gérard, J F

    2014-09-15

    Thermo-reversible Diels-Alder (DA) bonds formed between maleimide and furan groups have been used to generate an interphase between carbon fiber surface and an epoxy matrix leading to the ability of interfacial self-healing in carbon:epoxy composite materials. The maleimide groups were grafted on an untreated T700 carbon fiber from a three step surface treatment: (i) nitric acid oxidization, (ii) tetraethylenepentamine amination, and (iii) bismaleimide grafting. The furan groups were introduced in the reactive epoxy system from furfuryl glycidyl ether. The interface between untreated carbon fiber and epoxy matrix was considered as a reference. The interfacial shear strength (IFSS) was evaluated by single fiber micro-debonding test. The debonding force was shown to have a linear dependence with embedded length. The highest healing efficiency calculated from the debonding force was found to be about 82% more compared to the value for the reference interface. All the interphases designed with reversible DA bonds have a repeatable self-healing ability. As after the fourth healing, they can recover a relatively high healing efficiency (58% for the interphase formed by T700-BMI which is oxidized for 60 min during the first treatment step). Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Recent (2000-2015) developments in the analysis of minor unknown natural products based on characteristic fragment information using LC-MS.

    PubMed

    Cai, Tian; Guo, Ze-Qin; Xu, Xiao-Ying; Wu, Zhi-Jun

    2018-03-01

    Liquid chromatography-Mass Spectrometry (LC-MS) has been widely used in natural product analysis. Global detection and identification of nontargeted components are desirable in natural product research, for example, in quality control of Chinese herbal medicine. Nontargeted components analysis continues to expand to exciting life science application domains such as metabonomics. With this background, the present review summarizes recent developments in the analysis of minor unknown natural products using LC-MS and mainly focuses on the determination of the molecular formulae, selection of precursor ions, and characteristic fragmentation patterns of the known compounds. This review consists of three parts. Firstly, the methods used to determine unique molecular formula of unknown compounds such as accurate mass measurements, MS n spectra, or relative isotopic abundance information, are introduced. Secondly, the methods improving signal-to-noise ratio of MS/MS spectra by manual-MS/MS or workflow targeting-only signals were elucidated; pure precursor ions can be selected by changing the precursor ion isolated window. Lastly, characteristic fragmentation patterns such as Retro-Diels-Alder (RDA), McLafferty rearrangements, "internal residue loss," and so on, occurring in the molecular ions of natural products are summarized. Classical application of characteristic fragmentation patterns in identifying unknown compounds in extracts and relevant fragmentation mechanisms are presented (RDA reactions occurring readily in the molecular ions of flavanones or isoflavanones, McLafferty-type fragmentation reactions of some natural products such as epipolythiodioxopiperazines; fragmentation by "internal residue loss" possibly involving ion-neutral complex intermediates). © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:202-216, 2018. © 2016 Wiley Periodicals, Inc.

  18. Active photo-thermal self-healing of shape memory polyurethanes

    NASA Astrophysics Data System (ADS)

    Kazemi-Lari, Mohammad A.; Malakooti, Mohammad H.; Sodano, Henry A.

    2017-05-01

    Structural health monitoring (SHM) has received significant interest over the past decade and has led to the development of a wide variety of sensors and signal processing techniques to determine the presence of changes or damage in a structural system. The topic has attracted significant attention due to the safety and performance enhancing benefits as well as the potential lifesaving capabilities offered by the technology. While the resulting systems are capable of sensing their surrounding structural and environmental conditions, few methods exist for using the information to autonomously react and repair or protect the system. One of the major challenges in the future implementation of SHM systems is their coupling with materials that can react to the damage to heal themselves and return to normal function. The coupling of self-healing materials with SHM has the potential to significantly prolong the lifetime of structural systems and extend the required inspection intervals. In the present study, an optical fiber based self-healing system composed of mendable polyurethanes based on the thermally reversible Diels-Alder (DA) reaction is developed. Inspired by health monitoring techniques, active photo-thermal sensing and actuation is achieved using infrared laser light passing through an optical fiber and a thermal power sensor to detect the presence of cracking in the structure. Healing is triggered as the crack propagates through the polymer and fractures the embedded optical fiber. Through a feedback loop, the detected power drop by the sensor is utilized as a signal to heat the cracked area and stimulate the shape memory effect of the polyurethane and the retro-DA reaction. The healing performance results indicate that this novel integrated system can be effectively employed to monitor the incidence of damage and actively heal a crack in the polymer.

  19. The structure of SpnF a standalone enzyme that catalyzes [4 + 2] cycloaddition

    DOE PAGES

    Fage, Christopher D.; Isiorho, Eta A.; Liu, Yungnan; ...

    2015-03-02

    In the biosynthetic pathway of the spinosyn insecticides, the tailoring enzyme SpnF performs a [4 + 2] cycloaddition on a 22-membered macrolactone to forge an embedded cyclohexene ring. To learn more about this reaction, which could potentially proceed through a Diels-Alder mechanism, in this paper we determined the 1.50-Å-resolution crystal structure of SpnF bound to S-adenosylhomocysteine. Finally, this sets the stage for advanced experimental and computational studies to determine the precise mechanism of SpnF-mediated cyclization.

  20. Diazo Esters as Dienophiles in Intramolecular (4 + 2) Cycloadditions: Computational Explorations of Mechanism.

    PubMed

    Duan, Abing; Yu, Peiyuan; Liu, Fang; Qiu, Huang; Gu, Feng Long; Doyle, Michael P; Houk, K N

    2017-02-22

    The first experimental examples of Diels-Alder (DA) reactions of diazo compounds as heterodienophiles with dienes have been studied with density functional theory (DFT) using the M06-2X functional. For comparison, the reactivities of diazo esters as dienophiles or 1,3-dipoles with 1,3-dienes in intermolecular model systems have been analyzed by the distortion/interaction model. The 1,3-dipolar cycloaddition is strongly favored for the intermolecular system. The intramolecular example is unique because the tether strongly favors the (4 + 2) cycloaddition.

  1. Bis(4-(3,4-dimethylenepyrrolidyl)-phenyl) methane

    NASA Technical Reports Server (NTRS)

    Ottenbrite, Raphael M. (Inventor)

    1989-01-01

    It is the primary object of the present invention to prepare high temperature polymeric materials, especially linear aromatic polyimides, which maintain their integrity and toughness during long exposure times at elevated temperatures. According to the present invention, this object is achieved, and the attending benefits are obtained, by first providing the bis(exocyclodiene) bis(4-(3,4-dinethylene pyrrolidyl) phenyl) methane, which is formed from the monomer N-phenyl 3,4-dimethylene pyrrolidine. This bis-(exocyclodiene) undergoes Diels-Alder reaction with a bismaleimide without the evolution of gaseous by-products, to form the aromatic polyimide.

  2. The synthesis of highly functionalised pyridines using Ghosez-type reactions of dihydropyrazoles.

    PubMed

    Catti, Federica; Kiuru, Paula S; Slawin, Alexandra M Z; Westwood, Nicholas J

    2008-09-29

    The aza-Diels-Alder reaction of αβ-unsaturated hydrazones is a general methodology that has been applied both to the synthesis of natural products and in the development of multicomponent reactions. Trends have emerged as to the effect of substituents on the efficiency of this reaction with substituents at the C2 and C4-positions of the aza-diene in general suppressing the reaction. Here we report that 4,5-dihydropyrazoles can function as substrates in this process despite the presence of substituents at both of these positions. A one pot, four chemical step sequence carried out under standard thermal or microwave conditions results in the formation of the corresponding pyridine-containing compounds. The scope of the reaction is explored and additional insights into the proposed mechanism of this reaction are provided.

  3. Characterization of vanadium ion uptake in sulfonated diels alder poly(phenylene) membranes

    DOE PAGES

    Lawton, Jamie; Jones, Amanda; Tang, Zhijiang; ...

    2015-11-28

    Sulfonated diels alder poly(phenylene) (SDAPP), alternative aromatic hydrocarbon membranes for vanadium redox flow batteries (VRFBs) are characterized using electron paramagnetic resonance (EPR). Membranes soaked in sulfuric acid and vanadyl sulfate are analyzed to determine the membrane environment in which the vanadyl ion (VO 2+) diffuses in the membranes. These results are compared to Nafion 117 membranes. In contrast to Nafion, the VO 2+ in SDAPP membranes exists in two different environments. The results of analysis of rotational diffusion determined from fits the EPR spectral lineshapes in comparison with previously reported permeation studies and measurements of partitioning functions reported here suggestmore » that the diffusion pathways in SDAPP are very different than in Nafion.« less

  4. Post-assembly Modification of Tetrazine-Edged Fe(II)4L6 Tetrahedra.

    PubMed

    Roberts, Derrick A; Pilgrim, Ben S; Cooper, Jonathan D; Ronson, Tanya K; Zarra, Salvatore; Nitschke, Jonathan R

    2015-08-19

    Post-assembly modification (PAM) is a powerful tool for the modular functionalization of self-assembled structures. We report a new family of tetrazine-edged Fe(II)4L6 tetrahedral cages, prepared using different aniline subcomponents, which undergo rapid and efficient PAM by inverse electron-demand Diels-Alder (IEDDA) reactions. Remarkably, the electron-donating or -withdrawing ability of the para-substituent on the aniline moiety influences the IEDDA reactivity of the tetrazine ring 11 bonds away. This effect manifests as a linear free energy relationship, quantified using the Hammett equation, between σ(para) and the rate of the IEDDA reaction. The rate of PAM can thus be adjusted by varying the aniline subcomponent.

  5. Critical Role of Diels-Adler Adducts to Realise Stretchable Transparent Electrodes Based on Silver Nanowires and Silicone Elastomer

    NASA Astrophysics Data System (ADS)

    Heo, Gaeun; Pyo, Kyoung-Hee; Lee, Da Hee; Kim, Youngmin; Kim, Jong-Woong

    2016-05-01

    This paper presents the successful fabrication of a transparent electrode comprising a sandwich structure of silicone/Ag nanowires (AgNWs)/silicone equipped with Diels-Alder (DA) adducts as crosslinkers to realise highly stable stretchability. Because of the reversible DA reaction, the crosslinked silicone successfully bonds with the silicone overcoat, which should completely seal the electrode. Thus, any surrounding liquid cannot leak through the interfaces among the constituents. Furthermore, the nanowires are protected by the silicone cover when they are stressed by mechanical loads such as bending, folding, and stretching. After delicate optimisation of the layered silicone/AgNW/silicone sandwich structure, a stretchable transparent electrode which can withstand 1000 cycles of 50% stretching-releasing with an exceptionally high stability and reversibility was fabricated. This structure can be used as a transparent strain sensor; it possesses a strong piezoresistivity with a gauge factor greater than 11.

  6. Molecular Engineering of Perylene Imides for High-Performance Lithium Batteries: Diels-Alder Extension and Chiral Dimerization.

    PubMed

    Li, Lei; Hong, Yu-Jian; Chen, Dong-Yang; Lin, Mei-Jin

    2017-11-21

    The search for high-performance electrode materials in organic rechargeable batteries remains a key challenge. Reported herein is a molecular structural modification of perylene imides, a promising class of redox-active electrode materials, for improved battery performance. The Diels-Alder extension of perylene imides at the lateral position led to the simultaneous incorporation of two electron-withdrawing carbonyl groups and extension of the π system, which is supposed to favor high specific capacity, operating voltage, and electronic conductivity. After the chiral dimerization of the extended species with 1,2-diaminocyclohexane, it was anticipated that the porosity and coulombic interactions with lithium ions would be promoted, which would be beneficial for fast reaction kinetics and long cycling life. As expected, in lithium batteries, the obtained chiral and π-extended tweezer, which features six imide groups and a porous solid-state network of 42.2 % accessible cell volume, was found to deliver a reversible capacity of 92.1 mA h g -1 at a charge/discharge rate of 1 C within an operating voltage window of 1.60-2.80 V versus Li + /Li, around 75 and 50 % of which was maintained after 100 and 300 galvanostatic cycles, respectively, much better than those of unmodified species. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Syntheses of strychnine, norfluorocurarine, dehydrodesacetylretuline, and valparicine enabled by intramolecular cycloadditions of Zincke aldehydes.

    PubMed

    Martin, David B C; Nguyen, Lucas Q; Vanderwal, Christopher D

    2012-01-06

    A full account of the development of the base-mediated intramolecular Diels-Alder cycloadditions of tryptamine-derived Zincke aldehydes is described. This important complexity-generating transformation provides the tetracyclic core of many indole monoterpene alkaloids in only three steps from commercially available starting materials and played a key role in short syntheses of norfluorocurarine (five steps), dehydrodesacetylretuline (six steps), valparicine (seven steps), and strychnine (six steps). Reasonable mechanistic possibilities for this reaction, a surprisingly facile dimerization of the products, and an unexpected cycloreversion to regenerate Zincke aldehydes under specific conditions are also discussed.

  8. Room-temperature healing of a thermosetting polymer using the Diels-Alder reaction.

    PubMed

    Peterson, Amy M; Jensen, Robert E; Palmese, Giuseppe R

    2010-04-01

    Self-healing materials are particularly desirable for load-bearing applications because they offer the potential for increased safety and material lifetimes. A furan-functionalized polymer network was designed that can heal via covalent bonding across the crack surface with the use of a healing agent consisting of a bismaleimide in solution. Average healing efficiencies of approximately 70% were observed. The healing ability of fiber-reinforced composite specimens was investigated with flexural, short beam shear, and double cantilever beam specimens. It was found that solvent amount and maleimide concentration play key roles in determining healing efficiency.

  9. Microwave-Assisted Synthesis and Physicochemical Characterization of Tetrafuranylporphyrin-Grafted Reduced-Graphene Oxide.

    PubMed

    Bosca, Federica; Orio, Laura; Tagliapietra, Silvia; Corazzari, Ingrid; Turci, Francesco; Martina, Katia; Pastero, Linda; Cravotto, Giancarlo; Barge, Alessandro

    2016-01-26

    This work describes the design of a modified porphyrin that bears four furan rings linked by 1,2-bis-(2-aminoethoxy)ethane spacers. This unit is a well-suited scaffold for a Diels-Alder reaction with commercial reduced-graphene oxide, which is also described in this paper. A new hybrid material is obtained, thanks to efficient grafting under microwave irradiation, and fully characterized in terms of structure (UV, TGA, Raman) and morphology (HR-TEM and AFM). Potential applications in photo- and sonodynamic therapy are envisaged. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Computational Study of a Model System of Enzyme-Mediated [4+2] Cycloaddition Reaction

    PubMed Central

    2015-01-01

    A possible mechanistic pathway related to an enzyme-catalyzed [4+2] cycloaddition reac-tion was studied by theoretical calculations at density functional (B3LYP, O3LYP, M062X) and semiempirical levels (PM6-DH2, PM6) performed on a model system. The calculations were carried out for the key [4+2] cycloaddition step considering enzyme-catalyzed biosynthesis of Spinosyn A in a model reaction, where a reliable example of a biological Diels-Alder reaction was reported experimentally. In the present study it was demonstrated that the [4+2] cycloaddition reaction may benefit from moving along the energetically balanced reaction coordinate, which enabled the catalytic rate enhancement of the [4+2] cycloaddition pathway involving a single transition state. Modeling of such a system with coordination of three amino acids indicated a reliable decrease of activation energy by ~18.0 kcal/mol as compared to a non-catalytic transformation. PMID:25853669

  11. Insight into organic reactions from the direct random phase approximation and its corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruzsinszky, Adrienn; Zhang, Igor Ying; Scheffler, Matthias

    2015-10-14

    The performance of the random phase approximation (RPA) and beyond-RPA approximations for the treatment of electron correlation is benchmarked on three different molecular test sets. The test sets are chosen to represent three typical sources of error which can contribute to the failure of most density functional approximations in chemical reactions. The first test set (atomization and n-homodesmotic reactions) offers a gradually increasing balance of error from the chemical environment. The second test set (Diels-Alder reaction cycloaddition = DARC) reflects more the effect of weak dispersion interactions in chemical reactions. Finally, the third test set (self-interaction error 11 = SIE11)more » represents reactions which are exposed to noticeable self-interaction errors. This work seeks to answer whether any one of the many-body approximations considered here successfully addresses all these challenges.« less

  12. A hierarchical transition state search algorithm

    NASA Astrophysics Data System (ADS)

    del Campo, Jorge M.; Köster, Andreas M.

    2008-07-01

    A hierarchical transition state search algorithm is developed and its implementation in the density functional theory program deMon2k is described. This search algorithm combines the double ended saddle interpolation method with local uphill trust region optimization. A new formalism for the incorporation of the distance constrain in the saddle interpolation method is derived. The similarities between the constrained optimizations in the local trust region method and the saddle interpolation are highlighted. The saddle interpolation and local uphill trust region optimizations are validated on a test set of 28 representative reactions. The hierarchical transition state search algorithm is applied to an intramolecular Diels-Alder reaction with several internal rotors, which makes automatic transition state search rather challenging. The obtained reaction mechanism is discussed in the context of the experimentally observed product distribution.

  13. Quantum mechanical/molecular mechanical modeling finds Diels-Alder reactions are accelerated less on the surface of water than in water.

    PubMed

    Thomas, Laura L; Tirado-Rives, Julian; Jorgensen, William L

    2010-03-10

    Quantum and molecular mechanics calculations for the Diels-Alder reactions of cyclopentadiene with 1,4-naphthoquinone, methyl vinyl ketone, and acrylonitrile have been carried out at the vacuum-water interface and in the gas phase. In conjunction with previous studies of these cycloadditions in dilute solution, a more complete picture of aqueous environmental effects emerges with implications for the origin of observed rate accelerations using heterogeneous aqueous suspensions, "on water" conditions. The pure TIP4P water slab maintains the bulk density and hydrogen-bonding properties in central water layers. The bulk region merges to vacuum over a ca. 5 A band with progressive diminution of the density and hydrogen bonding. The relative free energies of activation and transition structures for the reactions at the interface are found to be intermediate between those calculated in the gas phase and in bulk water; i.e., for the reaction with 1,4-naphthoquinone, the DeltaDeltaG(++) values relative to the gas phase are -3.6 and -7.3 kcal/mol at the interface and in bulk water, respectively. Thus, the results do not support the notion that a water surface is more effective than bulk water for catalysis of such pericyclic reactions. The trend is in qualitative agreement with expectations based on density considerations and estimates of experimental rate constants for the gas phase, a heterogeneous aqueous suspension, and a dilute aqueous solution for the reaction of cyclopentadiene with methyl vinyl ketone. Computed energy pair distributions reveal a uniform loss of 0.5-1.0 hydrogen bond for the reactants and transition states in progressing from bulk water to the vacuum-water interface. Orientational effects are apparent at the surface; e.g., the carbonyl group in the methyl vinyl ketone transition structure is preferentially oriented into the surface. Also, the transition structure for the 1,4-naphthoquinone case is buried more in the surface, and the free energy of activation for this reaction is most similar to the result in bulk water.

  14. Separation and identification of twelve catechins in tea using liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry.

    PubMed

    Zeeb, D J; Nelson, B C; Albert, K; Dalluge, J J

    2000-10-15

    A method has been developed for the direct microscale determination of 12 catechins in green and black tea infusions. The method is based on liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry (LC/APCI-MS). Standard catechin mixtures and tea infusions were analyzed by LC/APCI-MS with detection of protonated molecular ions and characteristic fragment ions for each compound. The identities of eight major catechins and caffeine in tea were established based on LC retention times and simultaneously recorded mass spectra. In addition, monitoring of the catechin-specific retro Diels-Alder fragment ion at m/z 139 throughout the chromatogram provided a unique fingerprint for catechin content in the samples that led to the identification of four minor chemically modified catechin derivatives in the infusions. This report is the first to describe the comprehensive determination of all 12 reported catechins in a single analysis. The utility of LC/APCI-MS for providing routine separation and identification of catechins at femtomole to low-picomole levels without extraction or sample pretreatment, and its potential as a standard analytical tool for the determination of polyphenols in natural products and biological fluids, are discussed.

  15. Chemoenzymatic Synthesis of an Enantiomerically Pure Lactone: A Three-Step Synthesis for Undergraduate Organic Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    McClure, Cynthia K.; Chenault, H. Keith

    1996-05-01

    A three-step laboratory sequence for the undergraduate organic laboratory is described. This series of experiments requires a student to use the product from one reaction as the starting material for a subsequent reaction, and thus the affords the student a "real world" experience of multistep synthesis. Thermal extrusion of sulfur dioxide from sulfolene is used to generate 1,3-butadiene in situ for a Diels-Alder cyclization with maleic anhydride. The anhydride is then reduced to the diol with lithium aluminum hydride. Oxidation of the diol to the chiral lactone is catalyzed by horse-liver alcohol dehydrogenase. This enzymatic oxidation illustrates in situ cofactor regeneration and allows students to measure simple enzyme kinetics.

  16. Palladium-catalyzed reactions in the synthesis of 3- and 4-substituted indoles. 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hegedus, L.S.; Sestrick, M.R.; Michaelson, E.T.

    1989-08-18

    4-Bromo-1-tosylindole (1) was converted to tricyclic indole enone 11, a potential intermediate in the synthesis of tetracyclic ergot alkaloids, by a series of palladium-catalyzed processes. Attempts to construct the ergot D ring by the hetero-Diels-Alder reaction of enone 11 and 1-azabutadiene 12 produced not the expected (4 + 2) adduct 13 but the benz(cd)indoline derivative 14 resulting from attack of the aza diene at the indole 2-position. The thermodynamic stability of the naphthol nucleus makes enone 11 generally susceptible to attack at the indole 2-position, as evidenced by the attack of hydride and methyl cuprate nucleophiles at this portion formingmore » indolines 16 and 17, respectively.« less

  17. Photo-Curing: UV Radiation curing of polymers

    NASA Technical Reports Server (NTRS)

    Inman, Christina A.

    2004-01-01

    The Polymers Branch of the Materials Division is dedicated to the development of high-performance for a variety of applications. Areas of significant interest include high- temperature polymers, low density, and high strength insulating materials, conductive polymers, and high density polymer electrolytes. This summer our group is working diligently on a photo-curing project. There is interest in the medical community feel the need for a new and improved balloon that will be used for angioplasty (a form of heart surgery). This product should maintain flexibility but add many other properties. Like possibly further processability and resistance to infection. Our group intends on coming up with this product by using photo-enolization (or simply, photo-curing) by Diels-Alder trapping. The main objective was to synthesize a series of new polymers by Diels-Alder cycloaddition of photoenols with more elastomeric properties. Our group was responsible for performing the proper photo-curing techniques of the polymers with diacrylates and bismaleimides, synthesizing novel monomers, and evaluating experimental results. We attempted to use a diacrylate to synthesize the polymer because of previous research done within the Polymers Branch here at NASA. Most acrylates are commercially available, have more elastometric properties than a typical rigid aromatic structure has and they contain ethylene oxides in the middle of their structure that create extensive flexibility. The problem we encountered with the acrylates is that they photo chemically and thermally self polymerize and create diradicals at low temperatures; these constraints caused a lot of unnecessary side reactions. We want to promote solely, diketone polymerization because this type of polymerization has the ability to cause very elastic polymers. We chose to direct our attention towards the usage of maleimides because they are known for eliminating these unnecessary side reactions.

  18. Magnetic nanoparticles conjugated to chiral imidazolidinone as recoverable catalyst

    NASA Astrophysics Data System (ADS)

    Mondini, Sara; Puglisi, Alessandra; Benaglia, Maurizio; Ramella, Daniela; Drago, Carmelo; Ferretti, Anna M.; Ponti, Alessandro

    2013-11-01

    The immobilization of an ad hoc designed chiral imidazolidin-4-one onto iron oxide magnetic nanoparticles (MNPs) is described, to afford MNP-supported MacMillan's catalyst. Morphological and structural analysis of the materials, during preparation, use, and recycle, has been carried out by transmission electron microscopy. The supported catalyst was tested in the Diels-Alder reaction of cyclopentadiene with cinnamic aldehyde, affording the products in good yields and enantiomeric excesses up to 93 %, comparable to those observed with the non-supported catalyst. Recovery of the chiral catalyst has been successfully performed by simply applying an external magnet to achieve a perfect separation of the MNPs from the reaction product. The recycle of the catalytic system has been also investigated. Noteworthy, this immobilized MacMillan's catalyst proved to be able to efficiently promote the reaction in pure water.

  19. Process for crosslinking and extending conjugated diene-containing polymers

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L. (Inventor); Havens, Stephen J. (Inventor)

    1977-01-01

    A process using a Diels-Alder reaction which increases the molecular weight and/or crosslinks polymers by reacting the polymers with bisunsaturated dienophiles is developed. The polymer comprises at least 75% by weight based on the reaction product, has a molecular weight of at least 5000 and a plurality of conjugated 1,3-diene systems incorporated into the molecular structure. A dienophile reaction with the conjugated 1,3-diene of the polymer is at least 1% by weight based on the reaction product. Examples of the polymer include polyesters, polyamides, polyethers, polysulfones and copolymers. The bisunsaturated dienophiles may include bis-maleimides, bis maleic and bis tumaric esters and amides. This method for expanding the molecular weight chains of the polymers, preferable thermoplastics, is advantageous for processing or fabricating thermoplastics. A low molecular weight thermoplastic is converted to a high molecular weight plastic having improved strength and toughness for use in the completed end use article.

  20. Asymmetric Oxidation of o-Alkylphenols with Chiral 2-(o-Iodoxyphenyl)-Oxazolines

    PubMed Central

    Boppisetti, Jagadish K.; Birman, Vladimir B.

    2009-01-01

    A new class of chiral iodine (V) derivatives has been prepared. These compounds have been found to transform ortho-alkylphenols into ortho-quinol Diels-Alder dimers with significant levels of asymmetric induction. PMID:19231848

  1. Diels-Alder active-template synthesis of rotaxanes and metal-ion-switchable molecular shuttles.

    PubMed

    Crowley, James D; Hänni, Kevin D; Leigh, David A; Slawin, Alexandra M Z

    2010-04-14

    A synthesis of [2]rotaxanes in which Zn(II) or Cu(II) Lewis acids catalyze a Diels-Alder cycloaddition to form the axle while simultaneously acting as the template for the assembly of the interlocked molecules is described. Coordination of the Lewis acid to a multidentate endotopic 2,6-di(methyleneoxymethyl)pyridyl- or bipyridine-containing macrocycle orients a chelated dienophile through the macrocycle cavity. Lewis acid activation of the double bond causes it to react with an incoming "stoppered" diene, affording the [2]rotaxane in up to 91% yield. Unusually for an active-template synthesis, the metal binding site "lives on" in these rotaxanes. This was exploited in the synthesis of a molecular shuttle containing two different ligating sites in which the position of the macrocycle could be switched by complexation with metal ions [Zn(II) and Pd(II)] with different preferred coordination geometries.

  2. Full cell study of Diels Alder poly(phenylene) anion and cation exchange membranes in vanadium redox flow batteries

    DOE PAGES

    Pezeshki, Alan M.; Fujimoto, Cy; Sun, Che -Nan; ...

    2015-11-14

    In this paper, we report on the performance of Diels Alder poly(phenylene) membranes in vanadium redox flow batteries. The membranes were functionalized with quaternary ammonium groups to form an anion exchange membrane (QDAPP) and with sulfonic acid groups to form a cation exchange membrane (SDAPP). Both membrane classes showed similar conductivities in the battery environment, suggesting that the ion conduction mechanism in the material is not strongly affected by the moieties along the polymer backbone. The resistance to vanadium permeation in QDAPP was not improved relative to SDAPP, further suggesting that the polarity of the functional groups do not playmore » a significant role in the membrane materials tested. Both QDAPP and SDAPP outperformed Nafion membranes in cycling tests, with both achieving voltage efficiencies above 85% while maintaining 95% coulombic efficiency while at a current density of 200 mA/cm 2.« less

  3. Regenerative biomaterials that "click": simple, aqueous-based protocols for hydrogel synthesis, surface immobilization, and 3D patterning.

    PubMed

    Nimmo, Chelsea M; Shoichet, Molly S

    2011-11-16

    The click chemistry era has generated a library of versatile "spring-loaded" reactions that offer high yields, regio- and stereospecificity, and outstanding functional group tolerance. These powerful transformations are particularly advantageous for the design of sophisticated biomaterials that require high levels of precision and control, namely, materials that promote tissue regeneration such as hydrogels, 2D functionalized substrates, and 3D biomimetic scaffolds. In this review, the synthesis and application of regenerative biomaterials via click chemistry are summarized. Particular emphasis is placed on the copper(I)-catalyzed alkyne-azide cycloaddition, Diels-Alder cycloadditions, and thiol-click coupling.

  4. Integrative Pericyclic Cascade: An Atom Economic, Multi C-C Bond-Forming Strategy for the Construction of Molecular Complexity.

    PubMed

    Tejedor, David; Delgado-Hernández, Samuel; Peyrac, Jesús; González-Platas, Javier; García-Tellado, Fernando

    2017-07-26

    An all-pericyclic manifold is developed for the construction of topologically diverse, structurally complex and natural product-like polycyclic chemotypes. The manifold uses readily accessible tertiary propargyl vinyl ethers as substrates and imidazole as a catalyst to form up to two new rings, three new C-C bonds, six stereogenic centers and one transannular oxo-bridge. The manifold is efficient, scalable and instrumentally simple to perform and entails a propargyl Claisen rearrangement-[1,3]H shift, an oxa-6π-electrocyclization, and an intramolecular Diels-Alder reaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Monitoring of self-healing composites: a nonlinear ultrasound approach

    NASA Astrophysics Data System (ADS)

    Malfense Fierro, Gian-Piero; Pinto, Fulvio; Dello Iacono, Stefania; Martone, Alfonso; Amendola, Eugenio; Meo, Michele

    2017-11-01

    Self-healing composites using a thermally mendable polymer, based on Diels-Alder reaction were fabricated and subjected to various multiple damage loads. Unlike traditional destructive methods, this work presents a nonlinear ultrasound technique to evaluate the structural recovery of the proposed self-healing laminate structures. The results were compared to computer tomography and linear ultrasound methods. The laminates were subjected to multiple loading and healing cycles and the induced damage and recovery at each stage was evaluated. The results highlight the benefit and added advantage of using a nonlinear based methodology to monitor the structural recovery of reversibly cross-linked epoxy with efficient recycling and multiple self-healing capability.

  6. Structural diversification of the aminobicyclo[4.3.0]nonane skeleton using alkynylsilyl-derived allylic trichloroacetimidates.

    PubMed

    Mostafa, Mohamed A B; McMillan, Angus E; Sutherland, Andrew

    2017-04-05

    The amino substituted bicyclo[4.3.0]nonane is a molecular scaffold found in a wide range of natural products and medicinal agents. Despite this, synthetic methods for the general preparation of this structural motif are sparse. Here we evaluate a diastereoselective approach for the preparation of vinylsilyl derived aminobicyclo[4.3.0]nonanes using a one-pot multi-bond forming process involving a Pd(ii)-catalysed Overman rearrangement, a Ru(ii)-catalysed ring closing enyne metathesis reaction, followed by a hydrogen bonding directed Diels-Alder reaction. We show that a benzyldimethylsilyl-substituted alkene analogue is amenable to further functionalisation and the late stage generation of diverse sp 3 -rich, drug-like aminobicyclo[4.3.0]nonane scaffolds with up to six stereogenic centres.

  7. Total synthesis of dihydrolysergic acid and dihydrolysergol: development of a divergent synthetic strategy applicable to rapid assembly of D-ring analogs.

    PubMed

    Lee, Kiyoun; Poudel, Yam B; Glinkerman, Christopher M; Boger, Dale L

    2015-09-02

    The total syntheses of dihydrolysergic acid and dihydrolysergol are detailed based on a Pd(0)-catalyzed intramolecular Larock indole cyclization for the preparation of the embedded tricyclic indole (ABC ring system) and a subsequent powerful inverse electron demand Diels-Alder reaction of 5-carbomethoxy-1,2,3-triazine with a ketone-derived enamine for the introduction of a functionalized pyridine, serving as the precursor for a remarkably diastereoselective reduction to the N -methylpiperidine D-ring. By design, the use of the same ketone-derived enamine and a set of related complementary heterocyclic azadiene [4 + 2] cycloaddition reactions permitted the late stage divergent preparation of a series of alternative heterocyclic derivatives not readily accessible by more conventional approaches.

  8. Microwave-induced Bismuth Salts-mediated Synthesis of Molecules of Medicinal Interests.

    PubMed

    Bandyopadhyay, Debasish; Chavez, Ashlee; Banik, Bimal K

    2017-01-01

    Bismuth salts-mediated reactions have become a powerful tool for the synthesis of diverse medicinally-significant compounds because of their low-toxicity (non-toxic) and Lewis acidic capacity. In fact, LD50 of bismuth nitrate is lower than table salt. On the other hand, microwave-induced chemical synthesis is considered as a major greener route in modern chemistry. A total of 139 publications (including a few authentic web links) have been reviewed mainly to discuss bismuth salts-induced electrophilic aromatic substitution, protection-deprotection chemistry of carbonyl compounds, enamination, oxidation, carbohydrate chemistry, hydrolysis, addition-elimination route, Paal-Knorr reaction, Clauson-kaas synthesis, Michael addition, aza-Michael addition, Hantzsch reaction, Biginelli reaction, Ferrier rearrangement, Pechmann condensation, Diels-Alder and aza-Diels- Alder reactions, as well as effects of microwave irradiation in a wide range of chemical transformations. Bismuth salts-mediated reactions are developed for the synthesis of diverse organic molecules of medicinal significance. Reactions conducted with bismuth salts are environmentally benign, economical, rapid and high yielding. Microwave irradiation has accelerated these reactions significantly. It is believed that bismuth salts released corresponding acids in the media during the reaction. However, a coordination of bismuth salt to the electronegative atom is also observed in the NMR study. Bismuth has much less control (less attractive forces) over anions (for example, halides, nitrate, sulfate and triflates) compared to alkali metals. Therefore, it forms weak bond with electronegative atoms more readily and facilitates the reactions significantly. Many products obtained via bismuth salts-mediated reactions are medicinally active or intermediate for the synthesis of biologically active molecules including antifungal, anti-parasitic, anticancer and antibacterial agents, as well as agents to prevent Leishmaniosis and Chagas' diseases. Bismuth salts are able to (i) generate mineral acids in the reaction media and (ii) coordinate with electronegative atoms to facilitate the reaction. When the reagents and the catalyst (bismuth salt) are subjected to microwave irradiation, microwave passes through the (glass) walls of the reaction vessel and heat only the reactants avoiding local overheating at the wall of the vessel. Accordingly, the possibility of side reaction and subsequent by-product formation are reduced abruptly which in turn increases the yield of the desired product. The extreme rapidity with excellent yield of the product can be rationalized as a synergistic effect of the bismuth salts and microwave irradiation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Computational study on the functionalization of BNNC with pyrrole molecule

    NASA Astrophysics Data System (ADS)

    Payvand, Akram; Tavangar, Zahra

    2018-05-01

    The functionalization of the boron nitride nanocone (BNNC) by pyrrole molecule was studied using B3LYP/6-311+G(d) level of theory. The reaction was studied in three methods in different layers of the nanocone: Diels-Alder cycloaddition, quartet cycloaddition and the reaction of the nitrogen atom of the pyrrole molecule with the boron or nitrogen atom of the BNNC. Thermodynamic quantities, Chemical hardness and potential and electrophilicity index of the functionalized BNNC were studied. The results show that the tip of nanocone has a higher tendency for participation in the reaction and the most favorable product of the reaction between BNNC and pyrrole molecule is produced from the reaction of N atom of pyrrole with the B atom of BNNC. The reaction decreases the energy gap value which leads to increasing the reactivity and conductivity of functionalized nanocone. The calculated NICS values confirm the aromaticity in the pristine nanocone as well as in the functionalized nanocone.

  10. Accurate recognition and feature qualify for flavonoid extracts from Liang-wai Gan Cao by liquid chromatography-high resolution-mass spectrometry and computational MS/MS fragmentation.

    PubMed

    He, Min; Wu, Hai; Nie, Juan; Yan, Pan; Yang, Tian-Biao; Yang, Zhi-Yu; Pei, Rui

    2017-11-30

    In this study, Liquid Chromatography (LC) separation combined with quadrupole-Time-Of-Flight Mass Spectrometry (qTOF-MS) detection was used to analyze the characteristic ions of the flavonoids from Liang-wai Gan Cao (Radix Glycyrrhizae uralensis). First, accurate mass measurement and isotope curve optimization could provide reliable molecular prediction after noise deduction, baseline calibration and "ghost peak recognition". Thus, some spectral features in the LC-MS data could be clearly explained. Secondly, the chemical structure of flavonoids was deduced by MS/MS fragment ions, and the in-silico spectra by MS-FINDER program provided strong support for overcoming the bottleneck of phytochemical identification. For a predicted formula and experimental MS/MS spectrum, the MS-FINDER program could sort the candidate compounds in the public database based on a comprehensive weighted score, and we took the first 20 reliable compounds to seek the target compound in an in-house database. Certainly, those fragmentation pathways could also be deduced and described as Retro-Diels-Alder (RDA) fragmentation reaction, losses of C 4 H 8 , C 5 H 8 , CH 3 , CO, CO 2 and others. Accordingly, 63 flavonoids were identified, and their in-silico bioactivity were clearly disclosed by some bioinformatics tools. In this experiment, the flavonoids obtained by the four extraction processes were tested by LC-qTOF-MS. We looked for possible Q-markers from these data matrices and then quantified them; their similarities/differences were also described. The results also indicated that the Macroporous Adsorption Resins (MARs) purification is a low cost, environmentally friendly and effective approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Selective C-O Hydrogenolysis and Decarboxylation of Biomass-Derived Heterocyclic Compounds over Heterogeneous Catalysts

    NASA Astrophysics Data System (ADS)

    Chia, Mei

    The catalytic deoxygenation of biomass-derived compounds through selective C-O hydrogenolysis, catalytic transfer hydrogenation and lactonization, and decarboxylation to value-added chemicals over heterogeneous catalysts was examined under liquid phase reaction conditions. The reactions studied involve the conversion or production of heterocyclic compounds, specifically, cyclic ethers, lactones, and 2-pyrones. A bimetallic RhRe/C catalyst was found to be selective for the hydrogenolysis of secondary C-O bonds for a broad range cyclic ethers and polyols. Results from experimentally-observed reactivity trends, NH3 temperature-programmed desorption, fructose dehydration reaction studies, and first-principles density functional theory (DFT) calculations are consistent with the hypothesis of a bifunctional catalyst which facilitates acid-catalyzed ring-opening and dehydration coupled with metal-catalyzed hydrogenation. C-O hydrogenolysis and fructose dehydration activities were observed to decrease with an increase in reduction temperature and a decrease in the number of surface metallic Re atoms measured by in situ X-ray absorption spectroscopy. No C-O hydrogenolysis activity was detected over RhRe/C under water-free conditions. The activation of water molecules by Re atoms on the surface of metallic Rh is suggested to result in the formation of Bronsted acidity over RhRe/C. The catalytic transfer hydrogenation and lactonization of levulinic acid and its esters to gamma-valerolactone was accomplished through the Meerwein-Ponndorf-Verley reaction over metal oxide catalysts using secondary alcohols as the hydrogen donor. ZrO2 was a highly active material for CTH under batch and continuous flow reaction conditions; the initial activity of the catalyst was repeatedly regenerable by calcination in air, with no observable loss in catalytic activity. Lastly, the 2-pyrone, triacetic acid lactone, is shown to be a promising biorenewable platform chemical from which a wide range of chemical intermediates and end products can be obtained using heterogeneous catalysts or by thermal decomposition. Mechanistic insights from experimentally-observed reactivity trends and results from DFT calculations indicate that 2-pyrones undergo reactions unique to their structure such as keto-enol tautomerization, retro Diels-Alder, and nucleophilic attack by water. Ring-opening and decarboxylation reactions were found to be governed by key structural features such as the degree of saturation in the ring (e.g., C4=C5 bond), nature of the solvent, and presence of an acid catalyst.

  12. The [C{sub 6}H{sub 10}]{sup {sm{underscore}bullet}+} hypersurface: The parent radical cation Diels-Alder reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, M.; Schaefer, H.F. III

    1999-07-21

    Various possible reaction pathways between ethene and butadiene radical cation (cis- and trans-), have been investigated at different levels of theory up to UCCSD(T)/DZP/UMP2(fc)/DZP and with density functional theory at B3LYP/DZP. A stepwise addition involving open chain intermediates and leading to the Diels-Alder product, the cyclohexene radical cation, was found to have a total activation barrier {Delta}G{sup 298{ne}} = 6.3 kcal mol{sup {minus}1} and a change in free Gibbs energy, {Delta}G{sup 298}, of {minus}33.5 kcal mol{sup {minus}1}. On the E{degree} potential energy surface, all transition states are lower in energy than separated ethene and butadiene, the exothermicity {Delta}E = -45.6more » kcal mol{sup {minus}1}. A more direct path could be characterized as stepwise with one intermediate only at the SCF level but not at electron-correlated levels and hence might actually be a concerted strongly asynchronous addition with a very small or no activation barrier (UCCSD(T)/DZP/UHF/6-31G* gives a {Delta}G{sup 298{ne}} of 0.8 kcal mol{sup {minus}1}). The critical step for another alternative, the cyclobutanation-vinylcyclobutane/cyclohexene rearrangement, is a 1,3-alkyl shift which involves a barrier ({Delta}G{sup 298{ne}}) only 1.7 kcal mol{sup {minus}1} higher than that of stop use addition for both cis-, and trans-butadiene radical cation. However, from the (ethene and trans-butadiene) reactions, ring expansion of the vinylcyclobutane radical cation intermediate, to a methylene cyclopentane radical cation, requires an activation only 1.3 kcal mol{sup {minus}1} larger than for (trans-butadiene radical). While cis/trans isomerization of free butadiene radical cation requires a high activation (24.9 kcal mol{sup {minus}1}), a reaction sequence involving addition of ethene (to stepwise give an open chain intermediate and vinyl cyclobutane radical cation) has a barrier of only 3.5 kcal mol{sup {minus}1} ({Delta}G{sup 298{ne}}). This sequence also makes ethene and butadiene radical cations to exchange terminal methylene groups.« less

  13. New Polybenzimidazole Architectures by Diels Alder Polymerization

    DTIC Science & Technology

    2012-02-14

    stable organic polymers known.9 This class of polymers is aromatic with the heterocyclic benzimidazole group, a five membered imidazole ring...will allow benzimidazole ring systems to be prepared from the cycloaddition with an imidazole diene. The goals of the project included synthesis

  14. Bioactivities of volatile components from Nepalese Artemisia species.

    PubMed

    Satyal, Prabodh; Paudel, Prajwal; Kafle, Ananad; Pokharel, Suraj K; Lamichhane, Bimala; Dosoky, Noura S; Moriarity, Debra M; Setzer, William N

    2012-12-01

    The essential oils from the leaves of Artemisia dubia, A. indica, and A. vulgaris growing wild in Nepal were obtained by hydrodistillation and analyzed by GC-MS. The major components in A. dubia oil were chrysanthenone (29.0%), coumarin (18.3%), and camphor (16.4%). A. indica oil was dominated by ascaridole (15.4%), isoascaridole (9.9%), trans-p-mentha-2,8-dien-1-ol (9.7%), and trans-verbenol (8.4%). The essential oil of Nepalese A. vulgaris was rich in alpha-thujone (30.5%), 1,8-cineole (12.4%), and camphor (10.3%). The essential oils were screened for phytotoxic activity against Lactuca sativa (lettuce) and Lolium perenne (perennial ryegrass) using both seed germination and seedling growth, and all three Artemisia oils exhibited notable allelopathic activity. A. dubia oil showed in-vitro cytotoxic activity on MCF-7 cells (100% kill at 100 microg/mL) and was also marginally antifungal against Aspergillus niger (MIC = 313 microg/mL). DFT calculations (B3LYP/6-31G*) revealed thermal decomposition of ascaridole to be energetically accessible at hydrodistillation and GC conditions, but these are spin-forbidden processes. If decomposition does occur, it likely proceeds by way of homolytic peroxide bond cleavage rather than retro-Diels-Alder elimination of molecular oxygen.

  15. Structure revision of hupehensis saponin F and G and characterization of new trace triterpenoid saponins from Anemone hupehensis by tandem electrospray ionization mass spectrometry.

    PubMed

    Li, Fu; Liu, Xin; Tang, Minghai; Chen, Bin; Ding, Lisheng; Chen, Lijuan; Wang, Mingkui

    2012-05-15

    Electrospray ionization ion-trap tandem mass spectrometry (ESI-MS(n)) was first employed for reinvestigating the structures of hupehensis saponin F and G previously isolated from Anemone hupehensis in our lab. Hupehensis saponin G was determined to contain one more trisaccharide unit (Rha-(1→4)-Glc-(1→6)-Glc-), not a glucose residue, than saponin F based on their molecular weights deduced from their [M+Na](+) ions in ESI-MS spectra. The (2,4)A(4α)-ion at m/z 551.3 formed by retro-Diels-Alder (RDA) rearrangement in positive mode illustrated that the C-28 sugar chains of the two saponins were composed of trisaccharide repeating moieties with (1→4) linkages rather than (1→3) linkages. The interpretation of 2D-NMR spectra of the two compounds also confirmed the results obtained by ESI-MS(n). Moreover, from the water soluble part of A. hupehensis, two novel triterpene saponins were tentatively characterized to contain 4 and 5 (1→4)-linked above trisaccharide repeating moieties at C-28 position according to their ESI-MS(n) behaviors, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Photo-Induced Click Chemistry for DNA Surface Structuring by Direct Laser Writing.

    PubMed

    Kerbs, Antonina; Mueller, Patrick; Kaupp, Michael; Ahmed, Ishtiaq; Quick, Alexander S; Abt, Doris; Wegener, Martin; Niemeyer, Christof M; Barner-Kowollik, Christopher; Fruk, Ljiljana

    2017-04-11

    Oligonucleotides containing photo-caged dienes were prepared and shown to react quantitatively in a light-induced Diels-Alder cycloaddition with functional maleimides in aqueous solution within minutes. Due to its high yield and fast rate, the reaction was exploited for DNA surface patterning with sub-micrometer resolution employing direct laser writing (DLW). Functional DNA arrays were written by direct laser writing (DLW) in variable patterns, which were further encoded with fluorophores and proteins through DNA directed immobilization. This mild and efficient light-driven platform technology holds promise for the fabrication of complex bioarrays with sub-micron resolution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Unified Total Syntheses of Fawcettimine Class Alkaloids: Fawcettimine, Fawcettidine, Lycoflexine, and Lycoposerramine B

    PubMed Central

    Pan, Guojun; Williams, Robert M.

    2012-01-01

    The total syntheses of the lycopodium alkaloids: fawcettimine, fawcettidine, lycoflexine, and lycoposerramine B have been accomplished through an efficient, unified, and stereocontrolled strategy, which relies on a Diels-Alder reaction to construct the cis-fused 6,5-carbocycles with one all-carbon quaternary center. Access to the enantioselective syntheses of both antipodes of those alkaloids can be achieved by kinetic resolution of the earliest intermediate via a Sharpless asymmetric dihydroxylation (Sharpless AD). Compared to existing approaches to these alkaloids, our synthetic route possesses superior stereocontrol over the C-4 and C-15 stereogenic centers as well as allowing for more functional variation on the 6-membered ring. PMID:22519642

  18. Pd(OAc)2/Ph3P-catalyzed dimerization of isoprene and synthesis of monoterpenic heterocycles.

    PubMed

    Kellner, Dominik; Weger, Maximilian; Gini, Andrea; Mancheño, Olga García

    2017-01-01

    The palladium-catalyzed dimerization of isoprene is a practical approach of synthesizing monoterpenes. Though several highly selective methods have been reported, most of them still required pressure or costly ligands for attaining the active system and desired selectivity. Herein, we present a simple and economical procedure towards the tail-to-tail dimer using readily available Pd(OAc) 2 and inexpensive triphenylphosphine as ligand. Furthermore, simple screw cap vials are employed, allowing carrying out the reaction at low pressure. In addition, the potential of the dimer as a chemical platform for the preparation of heterocyclic terpenes by subsequent (hetero)-Diels-Alder or [4 + 1]-cycloadditions with nitrenes is also depicted.

  19. On the effect of tether composition on cis/trans selectivity in intramolecular Diels-Alder reactions.

    PubMed

    Paddon-Row, Michael N; Longshaw, Alistair I; Willis, Anthony C; Sherburn, Michael S

    2009-01-05

    Intramolecular Diels-Alder (IMDA) transition structures (TSs) and energies have been computed at the B3LYP/6-31+G(d) and CBS-QB3 levels of theory for a series of 1,3,8-nonatrienes, H(2)C=CH-CH=CH-CH(2)-X-Z-CH=CH(2) [-X-Z- = -CH(2)-CH(2)- (1); -O-C(=O)- (2); -CH(2)-C(=O)- (3); -O-CH(2)- (4); -NH-C(=O)- (5); -S-C(=O)- (6); -O-C(=S)- (7); -NH-C(=S)- (8); -S-C(=S)- (9)]. For each system studied (1-9), cis- and trans-TS isomers, corresponding, respectively, to endo- and exo-positioning of the -C-X-Z- tether with respect to the diene, have been located and their relative energies (E(rel) (TS)) employed to predict the cis/trans IMDA product ratio. Although the E(rel) (TS) values are modest (typically <3 kJ mol(-1)), they follow a clear and systematic trend. Specifically, as the electronegativity of the tether group X is reduced (X=O --> NH or S), the IMDA cis stereoselectivity diminishes. The predicted stereochemical reaction preferences are explained in terms of two opposing effects operating in the cis-TS, namely (1) unfavorable torsional (eclipsing) strain about the C4-C5 bond, that is caused by the -C-X-C(=Y)- group's strong tendency to maintain local planarity; and (2) attractive electrostatic and secondary orbital interactions between the endo-(thio)carbonyl group, C=Y, and the diene. The former interaction predominates when X is weakly electronegative (X=N, S), while the latter is dominant when X is more strongly electronegative (X=O), or a methylene group (X=CH(2)) which increases tether flexibility. These predictions hold up to experimental scrutiny, with synthetic IMDA reactions of 1, 2, 3, and 4 (published work) and 5, 6, and 8 (this work) delivering ratios close to those calculated. The reactions of thiolacrylate 5 and thioamide 8 represent the first examples of IMDA reactions with tethers of these types. Our results point to strategies for designing tethers, which lead to improved cis/trans-selectivities in IMDAs that are normally only weakly selective. Experimental verification of the validity of this claim comes in the form of fumaramide 14, which undergoes a more trans-selective IMDA reaction than the corresponding ester tethered precursor 13.

  20. Characterizing multiple metal ion binding sites within a ribozyme by cadmium-induced EPR silencing

    PubMed Central

    Kisseleva, Natalia; Kraut, Stefanie; Jäschke, Andres; Schiemann, Olav

    2007-01-01

    In ribozyme catalysis, metal ions are generally known to make structural and∕or mechanistic contributions. The catalytic activity of a previously described Diels-Alderase ribozyme was found to depend on the concentration of divalent metal ions, and crystallographic data revealed multiple binding sites. Here, we elucidate the interactions of this ribozyme with divalent metal ions in solution using electron paramagnetic resonance (EPR) spectroscopy. Manganese ion titrations revealed five high-affinity Mn2+ binding sites with an upper Kd of 0.6±0.2 μM. In order to characterize each binding site individually, EPR-silent Cd2+ ions were used to saturate the other binding sites. This cadmium-induced EPR silencing showed that the Mn2+ binding sites possess different affinities. In addition, these binding sites could be assigned to three different types, including innersphere, outersphere, and a Mn2+ dimer. Based on simulations, the Mn2+-Mn2+ distance within the dimer was found to be ∼6 Å, which is in good agreement with crystallographic data. The EPR-spectroscopic characterization reveals no structural changes upon addition of a Diels-Alder product, supporting the concept of a preorganized catalytic pocket in the Diels-Alder ribozyme and the structural role of these ions. PMID:19404418

  1. Novel Diels-Alder based self-healing epoxies for aerospace composites

    NASA Astrophysics Data System (ADS)

    Coope, T. S.; Turkenburg, D. H.; Fischer, H. R.; Luterbacher, R.; van Bracht, H.; Bond, I. P.

    2016-08-01

    Epoxy resins containing Diels-Alder (DA) furan and maleimide moieties are presented with the capability to self-heal after exposure to an external heat source. A conventional epoxy amine system has been combined with furfuryl and maleimide functional groups in a two-step process, to avoid major side-reactions, and the concentration of a thermo-reversibly binding cross-linker was considered to balance thermoset and thermoplastic behaviours, and the subsequent self-healing performance. In the context of self-repair technologies an inbuilt ‘intrinsic’ self-healing system is deemed favourable as the healing agent can be placed in known ‘hot spot’ regions (i.e. skin-stringer run outs, ply drops and around drilled holes) where operational damage predominately occurs in load bearing aerospace structures. In this study, the mechanical and self-healing performance of furan functionalised epoxy resins containing varying amounts (10, 20, 30 or 40 pph) of bismaleimide were investigated using a bulk epoxy polymer tapered double cantilever beam test specimen geometry. Two forms, a thin film and a bulk material, were evaluated to account for future integration methods into fibre reinforced polymer (FRP) composites. The highest healing efficiency, with respect to the obtained initial load value, was observed from the 20 pph bulk material derivative. The polymers were successful in achieving consistent multiple (three) healing cycles when heated at 150 °C for 5 min. This novel investigated DA material exhibits favourable processing characteristics for FRP composites as preliminary studies have shown successful coextrution with reinforcing fibres to form free standing films and dry fibre impregnation.

  2. Asymmetric total synthesis of onoseriolide, bolivianine, and isobolivianine.

    PubMed

    Du, Biao; Yuan, Changchun; Yu, Tianzi; Yang, Li; Yang, Yang; Liu, Bo; Qin, Song

    2014-02-24

    In this article, we describe our efforts on the total synthesis of bolivianine (1) and isobolivianine (2), involving the synthesis of onoseriolide (3). The first generation synthesis of bolivianine was completed in 21 steps by following a chiral resolution strategy. Based on the potential biogenetic relationship between bolivianine (1), onoseriolide (3), and β-(E)-ocimene (8), the second generation synthesis of bolivianine was biomimetically achieved from commercially available (+)-verbenone in 14 steps. The improved total synthesis features an unprecedented palladium-catalyzed intramolecular cyclopropanation through an allylic metal carbene, for the construction of the ABC tricyclic system, and a Diels-Alder/intramolecular hetero-Diels-Alder (DA/IMHDA) cascade for installation of the EFG tricyclic skeleton with the correct stereochemistry. Transformation from bolivianine to isobolivianine was facilitated in the presence of acid. The biosynthetic mechanism and the excellent regio- and endo selectivities in the cascade are well supported by theoretical chemistry based on the DFT calculations. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Biogenetically inspired approach to the Strychnos alkaloids. Concise syntheses of (+/-)-akuammicine and (+/-)-strychnine.

    PubMed

    Ito, M; Clark, C W; Mortimore, M; Goh, J B; Martin, S F

    2001-08-22

    A linear synthesis of the indole alkaloid (+/-)-akuammicine (2) was completed by a novel sequence of reactions requiring only 10 steps from commercially available starting materials. The approach features a tandem vinylogous Mannich addition and an intramolecular hetero Diels-Alder reaction to rapidly assemble the pentacyclic heteroyohimboid derivative 8 from the readily available hydrocarboline 6. Oxidation of the E ring of 8 gave the lactone 9 that was converted into deformylgeissoschizine (11). The subsequent elaboration of 11 into 2 was effected by a biomimetically patterned transformation that involved sequential oxidation and base-induced skeletal reorganization. A variation of these tactics was then applied to the synthesis of the C(18) hydroxylated akuammicine derivative 36. Because 36 had previously been converted into strychnine (1) in four steps, its preparation constitutes a concise, formal synthesis of this complex alkaloid.

  4. Total synthesis of solanoeclepin A

    NASA Astrophysics Data System (ADS)

    Tanino, Keiji; Takahashi, Motomasa; Tomata, Yoshihide; Tokura, Hiroshi; Uehara, Taketo; Narabu, Takashi; Miyashita, Masaaki

    2011-06-01

    Cyst nematodes are troublesome parasites that live on, and destroy, a range of important host vegetable plants. Damage caused by the potato cyst nematode has now been reported in over 50 countries. One approach to eliminating the problem is to stimulate early hatching of the nematodes, but key hatching stimuli are not naturally available in sufficient quantities to do so. Here, we report the first chemical synthesis of solanoeclepin A, the key hatch-stimulating substance for potato cyst nematode. The crucial steps in our synthesis are an intramolecular cyclization reaction for construction of the highly strained tricyclo[5.2.1.01,6]decane skeleton (DEF ring system) and an intramolecular Diels-Alder reaction of a furan derivative for the synthesis of the ABC carbon framework. The present synthesis has the potential to contribute to addressing one of the critical food issues of the twenty-first century.

  5. Studies on the Himbert Intramolecular Arene/ Allene Diels – Alder Cycloaddition. Mechanistic Studies and Expansion of Scope to All-Carbon Tethers

    PubMed Central

    Schmidt, Yvonne; Lam, Jonathan K.; Pham, Hung V.; Houk, K. N.; Vanderwal, Christopher D.

    2013-01-01

    The unusual intramolecular arene/allene cycloaddition described thirty years ago by Himbert permits rapid access to strained polycyclic compounds that offer great potential for the synthesis of complex scaffolds. To more fully understand the mechanism of this cycloaddition reaction, and to guide efforts to extend its scope to new substrates, quantum mechanical computational methods were employed in concert with laboratory experiments. These studies indicated that the cycloadditions likely proceed via concerted processes; a stepwise biradical mechanism was shown to be higher in energy in the cases studied. The original Himbert cycloaddition chemistry is also extended from heterocyclic to carbocyclic systems, with computational guidance used to predict thermodynamically favorable cases. Complex polycyclic scaffolds result from the combination of the cycloaddition and subsequent ring-rearrangement metathesis reactions. PMID:23634642

  6. Characterization of products from hydrothermal carbonization of pine.

    PubMed

    Wu, Qiong; Yu, Shitao; Hao, Naijia; Wells, Tyrone; Meng, Xianzhi; Li, Mi; Pu, Yunqiao; Liu, Shouxin; Ragauskas, Arthur J

    2017-11-01

    This study aims to reveal the structural features and reaction pathways for solid-liquid products from hydrothermal carbonization of Loblolly pine, where the solid products can be used as catalysts, adsorbents and electrode materials while liquid products can be treated yielding fuels and platform chemicals. Results revealed when treated at 240°C, cellulose and hemicellulose were degraded, in part, to 5-hydroxy-methyl furfural and furfural which were further transformed to aromatic structures via ring opening and Diels Alder reactions. Lignin degradation and formation of carbon-carbon bonds, forming aromatic motifs in the presence of furanic compounds connected via aliphatic bridges, ether or condensation reactions. After hydrothermal treatment, condensed aromatic carbon materials with methoxy groups were recovered with high fixed carbon content and HHV. The recovered liquid products are lignin-like value-added chemicals consisting of furfural and polyaromatic structure with alkanes and carboxyl, their total hydroxyl group content decreased when increasing reaction time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Characterization of products from hydrothermal carbonization of pine

    DOE PAGES

    Wu, Qiong; Yu, Shitao; Hao, Naijia; ...

    2017-07-27

    This study aims to reveal the structural features and reaction pathways for solid–liquid products from hydrothermal carbonization of Loblolly pine, where the solid products can be used as catalysts, adsorbents and electrode materials while liquid products can be treated yielding fuels and platform chemicals. Results revealed when treated at 240 °C, cellulose and hemicellulose were degraded, in part, to 5-hydroxy-methyl furfural and furfural which were further transformed to aromatic structures via ring opening and Diels Alder reactions. Lignin degradation and formation of carbon–carbon bonds, forming aromatic motifs in the presence of furanic compounds connected via aliphatic bridges, ether or condensationmore » reactions. After hydrothermal treatment, condensed aromatic carbon materials with methoxy groups were recovered with high fixed carbon content and HHV. As a result, the recovered liquid products are lignin-like value-added chemicals consisting of furfural and polyaromatic structure with alkanes and carboxyl, their total hydroxyl group content decreased when increasing reaction time.« less

  8. Quantum mechanical design of enzyme active sites.

    PubMed

    Zhang, Xiyun; DeChancie, Jason; Gunaydin, Hakan; Chowdry, Arnab B; Clemente, Fernando R; Smith, Adam J T; Handel, T M; Houk, K N

    2008-02-01

    The design of active sites has been carried out using quantum mechanical calculations to predict the rate-determining transition state of a desired reaction in presence of the optimal arrangement of catalytic functional groups (theozyme). Eleven versatile reaction targets were chosen, including hydrolysis, dehydration, isomerization, aldol, and Diels-Alder reactions. For each of the targets, the predicted mechanism and the rate-determining transition state (TS) of the uncatalyzed reaction in water is presented. For the rate-determining TS, a catalytic site was designed using naturalistic catalytic units followed by an estimation of the rate acceleration provided by a reoptimization of the catalytic site. Finally, the geometries of the sites were compared to the X-ray structures of related natural enzymes. Recent advances in computational algorithms and power, coupled with successes in computational protein design, have provided a powerful context for undertaking such an endeavor. We propose that theozymes are excellent candidates to serve as the active site models for design processes.

  9. Fundamentals and applications of solar energy. Part 2

    NASA Astrophysics Data System (ADS)

    Faraq, I. H.; Melsheimer, S. S.

    Applications of techniques of chemical engineering to the development of materials, production methods, and performance optimization and evaluation of solar energy systems are discussed. Solar thermal storage systems using phase change materials, liquid phase Diels-Alder reactions, aquifers, and hydrocarbon oil were examined. Solar electric systems were explored in terms of a chlorophyll solar cell, the nonequilibrium electric field effects developed at photoelectrode/electrolyte interfaces, and designs for commercial scale processing of solar cells using continuous thin-film coating production methods. Solar coal gasification processes were considered, along with multilayer absorber coatings for solar concentrator receivers, solar thermal industrial applications, the kinetics of anaerobic digestion of crop residues to produce methane, and a procedure for developing a computer simulation of a solar cooling system.

  10. Selective Production of Renewable para-Xylene by Tungsten Carbide Catalyzed Atom-Economic Cascade Reactions.

    PubMed

    Dai, Tao; Li, Changzhi; Li, Lin; Zhao, Zongbao Kent; Zhang, Bo; Cong, Yu; Wang, Aiqin

    2018-02-12

    Tungsten carbide was employed as the catalyst in an atom-economic and renewable synthesis of para-xylene with excellent selectivity and yield from 4-methyl-3-cyclohexene-1-carbonylaldehyde (4-MCHCA). This intermediate is the product of the Diels-Alder reaction between the two readily available bio-based building blocks acrolein and isoprene. Our results suggest that 4-MCHCA undergoes a novel dehydroaromatization-hydrodeoxygenation cascade process by intramolecular hydrogen transfer that does not involve an external hydrogen source, and that the hydrodeoxygenation occurs through the direct dissociation of the C=O bond on the W 2 C surface. Notably, this process is readily applicable to the synthesis of various (multi)methylated arenes from bio-based building blocks, thus potentially providing a petroleum-independent solution to valuable aromatic compounds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthesis and Evaluation of a Series of 1,2,4,5-Tetrazines for Bioorthogonal Conjugation

    PubMed Central

    Karver, Mark R.; Weissleder, Ralph; Hilderbrand, Scott A.

    2011-01-01

    1,2,4,5-Tetrazines have been established as effective dienes for inverse electron demand [4 + 2] Diels-Alder cycloaddition reactions with strained alkenes for over fifty years. Recently, this reaction pair combination has been applied to bioorthogonal labeling and cell detection applications; however, to date there has been no detailed examination and optimization of tetrazines for use in biological experiments. Here we report the synthesis and characterization of twelve conjugatable tetrazines. The tetrazines were all synthesized in a similar fashion and were screened in parallel to identify candidates most ideally suited for biological studies. In depth follow up studies revealed compounds with varying degrees of stability and reactivity that could each be useful in different bioorthogonal applications. One promising, highly stable and water soluble derivative was used in pre-targeted cancer cell labeling studies, confirming its utility as a bioorthogonal moiety. PMID:21950520

  12. A new approach to promoting sluggish Diels-Alder reactions: dihapto-coordination of the diene.

    PubMed

    Liu, Weijun; You, Fei; Mocella, Christopher J; Harman, W Dean

    2006-02-08

    The cycloaddition between 1,3-cyclohexadiene and various enones and enals (methyl vinyl ketone, ethyl vinyl ketone, methacrolien) is accomplished at room temperature in yields ranging from 51 to 68% without the use of Lewis acids, high pressures, or microwave reactors. This normally sluggish cyclization is accomplished by precoordination of the diene to a pi-basic molybdenum complex. The eta2-bound metal is thought to promote a Michael reaction between the uncoordinated portion of the diene and the enone, and the resulting enolate then closes to form the cycloalkene product. The organic cycloadduct is removed by oxidation with air or with silver triflate in nearly quantitative yield. For more sterically hindered enones (e.g., mesityl oxide) and for methyl acrylate, the desired outcome requires the use of BF3.OEt2, and yields are significantly lower (15-35%)

  13. Kinetics of imidization and crosslinking in PMR-polyimide resin

    NASA Technical Reports Server (NTRS)

    Lauver, R. W.

    1977-01-01

    Infrared spectroscopy and differential scanning calorimetry were employed to study the imidization and crosslinking kinetics of norbornenyl-capped, addition-type polyimide resins (designated PMR for polymerization of monomer reactants). The spectral and thermal analyses were performed on resin specimens which had been isothermally aged at temperatures appropriate for imidization (120 to 204 C) and crosslinking (275 to 325 C). Imidization occurs rapidly (approximately 0.01/min) at short times, while at times longer than approximately 0.5 hour, the rate decreases significantly (approximately 0.0001/min). The crosslinking reaction exhibits first order kinetics during the initial portion of the reaction and its rate appears to be limited by the reversion of the norbornenyl Diels-Alder adduct. The total heat evolved per mole of endcap during crosslinking shows an inverse dependence on the molecular weight of the imide prepolymers. This reflects the effect of endcap dilution and decreased mobility of the larger oligomers.

  14. Design and preparation of novel polyarylene ether materials based on Diels-Alder reaction as the crosslinker for electrooptical modulators

    NASA Astrophysics Data System (ADS)

    Gao, Wu; Hou, Wenjun; Zhen, Zhen; Liu, Xinhou; Liu, Jialei; Fedorchuk, A. A.; Czaja, P.

    2016-07-01

    Novel crosslinkable organic linear electro-optical (EO) material based on polyarylene ether as the main chain host polymer was designed and prepared. The host polymer with rigid aromatic has demonstrated a good compatibility with the guest chromophore. Long side chain with anthracene ensured the crosslinkable reaction and appropriate glass transition temperature of the host polymer (55 °C). The EO r33 tensor coefficient for this novel EO material has been magnitude of 66 pm/V at 1310 nm and the excellent long term stability at 85 °C. These parameters permit to consider their application in fabrication of organic electro optical devices. The semi-empirical and DFT quantum chemical simulations were performed for 4 principal chromophores to clarify a role of cross-linker in the enhancement of the ground state dipole moments and effective hyperpolarizabilities.

  15. Chemical Reactions in Supercritical Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Wai, Chien M.; Hunt, Fred; Ji, Min; Chen, Xiaoyuan

    1998-12-01

    Utilizing supercritical fluids as environmentally benign solvents for chemical synthesis is one of the new approaches in the "greening" of chemistry. Carbon dioxide is the most widely used gas for supercritical fluid studies because of its moderate critical constants, nontoxic nature, and availability in pure form. One unique property of supercritical carbon dioxide (sc-CO2) is its high solubility for fluorinated compounds. Thus sc-CO2 can be used to replace Freons that are conventionally used as solvents for synthesis of perfluoro-polymers. Another property of sc-CO2 is its miscibility with gases such as H2. Heterogeneous reactions involving these gases may become homogeneous reactions in sc-CO2. Reactions in sc-CO2 may offer several advantages including controlling phase behavior and products, increasing speed of reactions, and obtaining specific reaction channels. This paper describes the following nine types of chemical reactions reported in the literature utilizing sc-CO2 as a solvent to illustrate the unique properties of the supercritical fluid reaction systems: (i) hydrogenation and hydroformylation, (ii) synthesis of organometallic compounds, (iii) metal chelation and extraction, (iv) preparation of inorganic nanoparticles, (v) stereo-selectivity of lipase-catalyzed reactions, (vi) asymmetric catalytic hydrogenation, (vii) polymerization, (viii) Diels-Alder reaction, and (ix) free radical reactions.

  16. An unexpected reaction pathway in the synthesis of the ABCE framework of strychnine-type alkaloids - A multidisciplinary study

    NASA Astrophysics Data System (ADS)

    Šoral, Michal; Markus, Jozef; Doháňošová, Jana; Šoralová, Stanislava; Dvoranová, Dana; Chyba, Andrej; Moncol, Ján; Berkeš, Dušan; Liptaj, Tibor

    2017-01-01

    Acid-catalyzed cyclization of spirocyclic 1‧-benzyl-2‧-(prop-2-en-1-yl)spiro[indole-3,3‧-pyrrolidine]-5‧-one (1) was performed. The pentacyclic product of Povarov-like imino-Diels-Alder reaction was isolated in high yield instead of expected tetracyclic aza-Prins intermediate. The unusual exotic alkaloid-type structure of the resulting molecule 2 was unambiguously confirmed by a detailed NMR analysis using a set of 2D NMR spectra including an INADEQUATE experiment. The relative configuration of 2 was predicted from the synthesis mechanism and DFT geometry calculations and independently confirmed using NOESY and residual dipolar coupling (RDC) assisted NMR analysis in stretched crosslinked polystyrene gels. The reversibility of the cycloaddition in aprotic solvents was observed. A new reaction pathway yielding a rare 6-5-5-5 tetracyclic spiroindoline 3 was suggested. The relative configuration within the tetracyclic framework was ultimately proved using Single-crystal X-ray diffraction analysis of compound 4.

  17. Preparation of Lanthanide-Polymer Composite Material via Click Chemistry.

    PubMed

    Chen, Bin; Wen, Guian; Wu, Jiajie; Feng, Jiachun

    2015-10-01

    Covalently attaching lanthanide complexes to the polymer backbone can effectively reduce the clustering of lanthanides and thus become an important strategy to fully unleash their potential. In this Communication, a metal-free click reaction is used for the first time to link a lanthanide complex to the polymer matrix. A diene-bearing copolymer with anthracenylmethyl methacrylate as a monomer and a dienophile-bearing lanthanide complex with 5-maleimido-1,10-phenanthroline as the second ligand are synthesized and coupled together through a Diels-Alder cycloaddition (DA). A comparative investigation demonstrates that the composite material prepared by DA click reaction shows the highest quantum yields in the same lanthanide concentration as compared to materials prepared by widely used "directly doping" and "in situ coordinating lanthanide ions with macromolecular ligand" approaches. This work suggests that the "metal-free" DA click reaction can be a promising tool in the synthesis of high efficient lanthanide functionalized polymeric materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. PEELS of buckyballs: Synthesis and first investigations into properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlueter, A.D.

    The polymer analogous aromatization of double-stranded Diels-Alder polymers to give fully unsaturated, all-carbon ladder polymers by means of dehydration and dehydrogenation is described. The polymers obtained were characterized by solid state carbon NMR and UV-spectroscopy as well as elemental analysis. Investigations into optical and electrical properties will be discussed.

  19. Synthesis of Taxol-Like Prostate Cancer Chemotherapeutic Agents

    DTIC Science & Technology

    2007-11-01

    in Scheme 5, conventional condition utilizing n- BuLi as a base was not successful in the preparation of the desired Diels-Alder substrate 19 as only...unsuccessful. The only product obtained was n- BuLi addition to aldehyde 21. Thus, deprotonation conditions of terminal alkyne 17 or 20 are now being

  20. Random quaternary ammonium Diels-Alder poly(phenylene) copolymers for improved vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Largier, Timothy D.; Cornelius, Chris J.

    2017-06-01

    This study analyzes the effect of quaternary ammonium homopolymer (AmPP) and ionic and non-ionic random unit copolymerization (AmPP-PP) of Diels-Alder poly(phenylene)s on electrochemical and transport properties, vanadium redox flow battery performance, and material stability. AmPP-PP materials were synthesized with IEC's up to 2.2 meq/g, displaying a carbonate form ion conductivity of 17.3 mS/cm and water uptake of 57.3%. Vanadium ion permeability studies revealed that the random copolymers possess superior charge carrier selectivity. For materials of comparable ion content, at 10 mA/cm2 the random copolymer displayed a 14% increase in coulombic efficiency (CE) corresponding to a 7% increase in energy efficiency. All quaternary ammonium materials displayed ex situ degradation in a 0.5 M V5+ + 5 M H2SO4 solution, with the rate of degradation appearing to increase with IEC. Preliminary studies reveal that the neutralizing counter-ion has a significant effect on VRB performance, proportional to changes in vanadium ion molecular diffusion.

  1. Theoretical verification of nonthermal microwave effects on intramolecular reactions.

    PubMed

    Kanno, Manabu; Nakamura, Kosuke; Kanai, Eri; Hoki, Kunihito; Kono, Hirohiko; Tanaka, Motohiko

    2012-03-08

    There have been a growing number of articles that report dramatic improvements in the experimental performance of chemical reactions by microwave irradiation compared to that under conventional heating conditions. We theoretically examined whether nonthermal microwave effects on intramolecular reactions exist or not, in particular, on Newman-Kwart rearrangements and intramolecular Diels-Alder reactions. The reaction rates of the former calculated by the transition state theory, which consider only the thermal effects of microwaves, agree quantitatively with experimental data, and thus, the increases in reaction rates can be ascribed to dielectric heating of the solvent by microwaves. In contrast, for the latter, the temperature dependence of reaction rates can be explained qualitatively by thermal effects but the possibility of nonthermal effects still remains regardless of whether competitive processes are present or not. The effective intramolecular potential energy surface in the presence of a microwave field suggests that nonthermal effects arising from potential distortion are vanishingly small in intramolecular reactions. It is useful in the elucidation of the reaction mechanisms of microwave synthesis to apply the present theoretical approach with reference to the experiments where thermal and nonthermal effects are separated by screening microwave fields.

  2. Identification of prenylated pterocarpans and other isoflavonoids in Rhizopus spp. elicited soya bean seedlings by electrospray ionisation mass spectrometry.

    PubMed

    Simons, Rudy; Vincken, Jean-Paul; Bohin, Maxime C; Kuijpers, Tomas F M; Verbruggen, Marian A; Gruppen, Harry

    2011-01-15

    Phytoalexins from soya are mainly characterised as prenylated pterocarpans, the glyceollins. Extracts of non-soaked and soaked soya beans, as well as that of soya seedlings, grown in the presence of Rhizopus microsporus var. oryzae, were screened for the presence of prenylated flavonoids with a liquid chromatography/mass spectrometry (LC/MS)-based screening method. The glyceollins I-III and glyceollidins I-II, belonging to the isoflavonoid subclass of the pterocarpans, were tentatively assigned. The formation of these prenylated pterocarpans was accompanied by that of other prenylated isoflavonoids of the subclasses of the isoflavones and the coumestans. It was estimated that approx. 40% of the total isoflavonoid content in Rhizopus-challenged soya bean seedlings were prenylated pterocarpans, whereas 7% comprised prenylated isoflavones and prenylated coumestans. The site of prenylation (A-ring or B-ring) of the prenylated isoflavones was tentatively annotated using positive-ion mode MS by comparing the (1,3) A(+) retro-Diels-Alder (RDA) fragments of prenylated and non-prenylated isoflavones. Furthermore, the fragmentation pathways of the five pterocarpans in negative-ion (NI) mode were proposed, which involved the cleavage of the C-ring and/or D-ring. The absence of the ring-closed prenyl (pyran or furan) gave exclusively -H(2) O(x,y) RDA fragments, whereas its presence gave predominantly the common RDA fragments. Copyright © 2010 John Wiley & Sons, Ltd.

  3. Heterogeneous Diels–Alder catalysis for biomass-derived aromatic compounds

    DOE PAGES

    Settle, Amy E.; Berstis, Laura; Rorrer, Nicholas A.; ...

    2017-05-17

    In this tutorial review, we provide an overview of heterogeneous Diels–Alder catalysis for the production of lignocellulosic biomass-derived aromatic compounds. Diels–Alder reactions afford an extremely selective and efficient route for carbon–carbon cycloadditions to produce intermediates that can readily undergo subsequent dehydration or dehydrogenation reactions for aromatization. As a result, catalysis of Diels–Alder reactions with biomass-derived dienes and dienophiles has seen a growth of interest in recent years; however, significant opportunities remain to (i) tailor heterogeneous catalyst materials for tandem Diels–Alder and aromatization reactions, and (ii) utilize biomass-derived dienes and dienophiles to access both conventional and novel aromatic monomers. As such,more » this review discusses the mechanistic aspects of Diels–Alder reactions from both an experimental and computational perspective, as well as the synergy of Brønsted–Lewis acid catalysts to facilitate tandem Diels–Alder and aromatization reactions. Heterogeneous catalyst design strategies for Diels–Alder reactions are reviewed for two exemplary solid acid catalysts, zeolites and polyoxometalates, and recent efforts for targeting direct replacement aromatic monomers from biomass are summarized. In conclusion, we point out important research directions for progressing Diels–Alder catalysis to target novel, aromatic monomers with chemical functionality that enables new properties compared to monomers that are readily accessible from petroleum.« less

  4. Systematic Evaluation of Bioorthogonal Reactions in Live Cells with Clickable HaloTag Ligands: Implications for Intracellular Imaging.

    PubMed

    Murrey, Heather E; Judkins, Joshua C; Am Ende, Christopher W; Ballard, T Eric; Fang, Yinzhi; Riccardi, Keith; Di, Li; Guilmette, Edward R; Schwartz, Joel W; Fox, Joseph M; Johnson, Douglas S

    2015-09-09

    Bioorthogonal reactions, including the strain-promoted azide-alkyne cycloaddition (SPAAC) and inverse electron demand Diels-Alder (iEDDA) reactions, have become increasingly popular for live-cell imaging applications. However, the stability and reactivity of reagents has never been systematically explored in the context of a living cell. Here we report a universal, organelle-targetable system based on HaloTag protein technology for directly comparing bioorthogonal reagent reactivity, specificity, and stability using clickable HaloTag ligands in various subcellular compartments. This system enabled a detailed comparison of the bioorthogonal reactions in live cells and informed the selection of optimal reagents and conditions for live-cell imaging studies. We found that the reaction of sTCO with monosubstituted tetrazines is the fastest reaction in cells; however, both reagents have stability issues. To address this, we introduced a new variant of sTCO, Ag-sTCO, which has much improved stability and can be used directly in cells for rapid bioorthogonal reactions with tetrazines. Utilization of Ag complexes of conformationally strained trans-cyclooctenes should greatly expand their usefulness especially when paired with less reactive, more stable tetrazines.

  5. Diels-Alder Trapping of Photochemically Generated o-Xylenols: Application in the Synthesis of Novel Organic Molecules and Polymers

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2003-01-01

    Bis(o-xylenol) equivalents are useful synthetic intermediates in the construction of polymers and hydroxyl substituted organic molecules which can organize by hydrogen bonded self-assembly into unique supramolecular structures. These polymers and supramolecular materials have potential use as coatings and thin films in aerospace, electronic and biomedical applications.

  6. Guaiane dimers from Xylopia vielana.

    PubMed

    Kamperdick, Christine; Phuong, Nguyen Minh; Adam, Günter; Van Sung, Tran

    2003-10-01

    From the leaves of Xylopia vielana (Annonaceae) two dimeric guaianes named vielanins D and E were isolated and structurally elucidated by mass and NMR spectroscopy. Vielanin D and E consist of bridged ring systems formally representing the Diels-Alder products from the hypothetical guaiane-type monomers. Due to a hemiketal function at C-8' both compounds occurred as epimeric mixtures.

  7. Synthesis and characterization of a biocompatible chitosan-based hydrogel cross-linked via 'click' chemistry for controlled drug release.

    PubMed

    Guaresti, O; García-Astrain, C; Palomares, T; Alonso-Varona, A; Eceiza, A; Gabilondo, N

    2017-09-01

    A chemically cross-linked chitosan-based hydrogel was successfully synthesized through Diels-Alder (DA) reaction and characterized. The final product was obtained after different steps; on the one hand, furan-modified chitosan (Cs-Fu) was synthesized by the reaction of furfural with the free amino groups of chitosan. On the other hand, highlighting the novelty of the present research, maleimide-functionalized chitosan (Cs-AMI) was prepared by the reaction of a maleimide-modified aminoacid with the amino groups of chitosan through amide coupling. The two complementary chitosan derivatives were cross-linked to the final hydrogel network. Both modification reactions were confirmed by FTIR and 1 H NMR, obtaining a degree of substitution (DS) of 31% and 26% for Cs-Fu and Cs-AMI, respectively. The as-designed hydrogel was analyzed in terms of microstructure, swelling capacity and rheological behaviour. The hydrogel showed pH-sensitivity, biocompatibility and inhibitory bacterial activity, promising features for biomedical applications, particularly for targeted-drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A Combined Photochemical and Multicomponent Reaction Approach to Precision Oligomers.

    PubMed

    Konrad, Waldemar; Bloesser, Fabian R; Wetzel, Katharina S; Boukis, Andreas C; Meier, Michael A R; Barner-Kowollik, Christopher

    2018-03-07

    We introduce the convergent synthesis of linear monodisperse sequence-defined oligomers through a unique approach, combining the Passerini three-component reaction (P-3CR) and a Diels-Alder (DA) reaction based on photocaged dienes. A set of oligomers is prepared resting on a Passerini linker unit carrying an isocyano group for chain extension by P-3CR and a maleimide moiety for photoenol conjugation enabling a modular approach for chain growth. Monodisperse oligomers are accessible in a stepwise fashion by switching between both reaction types. Employing sebacic acid as a core unit allows the synthesis of a library of symmetric sequence-defined oligomers. The oligomers consist of alternating P-3CR and photoblocks with molecular weights up to 3532.16 g mol -1 , demonstrating the successful switching from P-3CR to photoenol conjugation. In-depth characterization was carried out including size-exclusion chromatography (SEC), high-resolution electrospray ionization mass spectrometry (ESI-MS) and NMR spectroscopy, evidencing the monodisperse nature of the precision oligomers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Simulating chemical reactions in ionic liquids using QM/MM methodology.

    PubMed

    Acevedo, Orlando

    2014-12-18

    The use of ionic liquids as a reaction medium for chemical reactions has dramatically increased in recent years due in large part to the numerous reported advances in catalysis and organic synthesis. In some extreme cases, ionic liquids have been shown to induce mechanistic changes relative to conventional solvents. Despite the large interest in the solvents, a clear understanding of the molecular factors behind their chemical impact is largely unknown. This feature article reviews our efforts developing and applying mixed quantum and molecular mechanical (QM/MM) methodology to elucidate the microscopic details of how these solvents operate to enhance rates and alter mechanisms for industrially and academically important reactions, e.g., Diels-Alder, Kemp eliminations, nucleophilic aromatic substitutions, and β-eliminations. Explicit solvent representation provided the medium dependence of the activation barriers and atomic-level characterization of the solute-solvent interactions responsible for the experimentally observed "ionic liquid effects". Technical advances are also discussed, including a linear-scaling pairwise electrostatic interaction alternative to Ewald sums, an efficient polynomial fitting method for modeling proton transfers, and the development of a custom ionic liquid OPLS-AA force field.

  10. Efficient synthesis and biological evaluation of new benzopyran-annulated pyrano[2,3-c]pyrazole derivatives.

    PubMed

    Labana, Balvantsingh M; Brahmbhatt, Gaurangkumar C; Sutariya, Tushar R; Parmar, Narsidas J; Padrón, José M; Kant, Rajni; Gupta, Vivek K

    2017-05-01

    A one-pot method has been described to synthesize benzopyran-annulated pyrano[2,3-c]pyrazoles, effectively by combining O-alkenyloxy/alkynyloxy-acetophenones with various pyrazolones in triethylammonium acetate (TEAA) under microwave irradiation. While combination of O-allyloxy- or O-prenyloxy-acetophenones with pyrazolones occurred efficiently, that of O-propargyloxy-acetophenones was found effective in the presence of ZnO catalyst, via a domino Knoevenagel-hetero-Diels-Alder (DKHDA) reaction. Aminobenzopyran frameworks were also synthesized, after nitro-containing products were reduced in tandem with iron(II) in an acidic medium. The in vitro antiproliferative activity of these compounds was measured and discussed against gram-positive, gram-negative and M. tuberculosis bacteria, fungi, and various representative human solid tumor cell lines, in addition to their ferric reducing antioxidant capability.

  11. High transparent shape memory gel

    NASA Astrophysics Data System (ADS)

    Gong, Jin; Arai, Masanori; Kabir, M. H.; Makino, Masato; Furukawa, Hidemitsu

    2014-03-01

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry. In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals, and the functional groups of thermoreversible Diels-Alder reaction were introduced into soft gels as crosslinkable pendent chains. The functionalization and strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals and thermoreversible pendent chains. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  12. Meso-decorated self-healing gels: network structure and properties

    NASA Astrophysics Data System (ADS)

    Gong, Jin; Sawamura, Kensuke; Igarashi, Susumu; Furukawa, Hidemitsu

    2013-04-01

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry. In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals, and the functional groups of thermoreversible Diels-Alder reaction were introduced into soft gels as crosslinkable pendent chains. The functionalization and strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals and thermoreversible pendent chains. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Settle, Amy E.; Berstis, Laura; Rorrer, Nicholas A.

    In this tutorial review, we provide an overview of heterogeneous Diels–Alder catalysis for the production of lignocellulosic biomass-derived aromatic compounds. Diels–Alder reactions afford an extremely selective and efficient route for carbon–carbon cycloadditions to produce intermediates that can readily undergo subsequent dehydration or dehydrogenation reactions for aromatization. As a result, catalysis of Diels–Alder reactions with biomass-derived dienes and dienophiles has seen a growth of interest in recent years; however, significant opportunities remain to (i) tailor heterogeneous catalyst materials for tandem Diels–Alder and aromatization reactions, and (ii) utilize biomass-derived dienes and dienophiles to access both conventional and novel aromatic monomers. As such,more » this review discusses the mechanistic aspects of Diels–Alder reactions from both an experimental and computational perspective, as well as the synergy of Brønsted–Lewis acid catalysts to facilitate tandem Diels–Alder and aromatization reactions. Heterogeneous catalyst design strategies for Diels–Alder reactions are reviewed for two exemplary solid acid catalysts, zeolites and polyoxometalates, and recent efforts for targeting direct replacement aromatic monomers from biomass are summarized. In conclusion, we point out important research directions for progressing Diels–Alder catalysis to target novel, aromatic monomers with chemical functionality that enables new properties compared to monomers that are readily accessible from petroleum.« less

  14. N-(furfural) chitosan hydrogels based on Diels-Alder cycloadditions and application as microspheres for controlled drug release.

    PubMed

    Montiel-Herrera, Marcelino; Gandini, Alessandro; Goycoolea, Francisco M; Jacobsen, Neil E; Lizardi-Mendoza, Jaime; Recillas-Mota, Maricarmen; Argüelles-Monal, Waldo M

    2015-09-05

    In this study, chitosan was chemically modified by reductive amination in a two-step process. The synthesis of N-(furfural) chitosan (FC) was confirmed by FT-IR and (1)H NMR analysis, and the degrees of substitution were estimated as 8.3 and 23.8%. The cross-linkable system of bismaleimide (BM) and FC shows that FC shared properties of furan-maleimide chemistry. This system produced non-reversible hydrogel networks by Diels-Alder cycloadditions at 85 °C. The system composed of BM and FC (23.8% substitution) generated stronger hydrogel networks than those of FC with an 8.3% degree of substitution. Moreover, the FC-BM system was able to produce hydrogel microspheres. Environmental scanning electron microscopy revealed the surface of the microspheres to be non-porous with small protuberances. In water, the microspheres swelled, increasing their volume by 30%. Finally, microspheres loaded with methylene blue were able to release the dye gradually, obeying second-order kinetics for times less than 600 min. This behavior suggests that diffusion is governed by the relaxation of polymer chains in the swelled state, thus facilitating drug release outside the microspheres. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Dual Functionalization of White Phosphorus: Formation, Characterization, and Reactivity of Rare-Earth-Metal Cyclo-P3 Complexes.

    PubMed

    Du, Shanshan; Yin, Jianhao; Chi, Yue; Xu, Ling; Zhang, Wen-Xiong

    2017-12-11

    The [3+1] fragmentation reaction of rare-earth metallacyclopentadienes 1 a-c with 0.5 equivalents of P 4 affords a series of rare-earth metal cyclo-P 3 complexes 2 a-c and a phospholyl anion 3. 2 a-c demonstrate an unusual η 3 coordination mode with one P-P bond featuring partial π-bonding character. 2 a-c are the first cyclo-P 3 complexes of rare-earth metals, and also the first organo-substituted polyphosphides in the category of Group 3 and f-block elements. Rare-earth metallacyclopentadienes play a dual role in the combination of aromatization and Diels-Alder reaction. Compounds 2 a-c can coordinate to one or two [W(CO) 5 ] units, yielding 4 a-c or 5 c, respectively. Furthermore, oxidation of 2 a with p-benzoquinone produces its corresponding phospholyllithium and regenerated P 4 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ultra-Fast RAFT-HDA Click Conjugation: An Efficient Route to High Molecular Weight Block Copolymers.

    PubMed

    Inglis, Andrew J; Stenzel, Martina H; Barner-Kowollik, Christopher

    2009-11-02

    The use of the reversible addition fragmentation chain transfer-hetero Diels-Alder (RAFT-HDA) click reaction for the modular construction of block copolymers is extended to the generation of high molecular weight materials. Cyclopentadienyl end-functionalized polystyrene (PS-Cp) prepared via both atom transfer radical polymerization (ATRP) and the RAFT process are conjugated to poly(isobornyl acrylate) (PiBoA) (also prepared via RAFT polymerization) to achieve well-defined block copolymers with molecular weights ranging from 34 000 to over 100 000 g · mol(-1) and with small polydispersities (PDI < 1.2). The conjugation reactions proceeded in a very rapid fashion (less than 10 min in the majority of cases) under ambient conditions of temperature and atmosphere. The present study demonstrates-for the first time-that RAFT-HDA click chemistry can provide access to high molecular weight block copolymers in a simple and straight-forward fashion. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Organocatalytic aza-Michael/retro-aza-Michael reaction: pronounced chirality amplification in aza-Michael reaction and racemization via retro-aza-Michael reaction.

    PubMed

    Cai, Yong-Feng; Li, Li; Luo, Meng-Xian; Yang, Ke-Fang; Lai, Guo-Qiao; Jiang, Jian-Xiong; Xu, Li-Wen

    2011-05-01

    A detailed experimental investigation of an aza-Michael reaction of aniline and chalcone is presented. A series of Cinchona alkaloid-derived organocatalysts with different functional groups were prepared and used in the aza-Michael and retro-aza-Michael reaction. There was an interesting finding that a complete reversal of stereoselectivity when a benzoyl group was introduced to the cinchonine and cinchonidine. The chirality amplification vs. time proceeds in the quinine-derived organocatalyst containing silicon-based bulky group, QN-TBS, -catalyzed aza-Michael reaction under solvent-free conditions. In addition, we have demonstrated for the first time that racemization was occurred in suitable solvents under mild conditions due to retro-aza-Michael reaction of the Michael adduct of aniline with chalcone. These indicate the equilibrium of retro-aza-Michael reaction and aza-Michael reaction produce the happening of chirality amplification in aza-Michael reaction and racemization via retro-aza-Michael reaction under different conditions, which would be beneficial to the development of novel chiral catalysts for the aza-Michael reactions. Copyright © 2011 Wiley-Liss, Inc.

  18. Anion-π Catalysis on Fullerenes.

    PubMed

    López-Andarias, Javier; Frontera, Antonio; Matile, Stefan

    2017-09-27

    Anion-π interactions on fullerenes are about as poorly explored as the use of fullerenes in catalysis. However, strong exchange-correlation contributions and the localized π holes on their surface promise unique selectivities. To elaborate on this promise, tertiary amines are attached nearby. Dependent on their positioning, the resulting stabilization of anionic transition states on fullerenes is shown to accelerate disfavored enolate addition and exo Diels-Alder reactions enantioselectively. The found selectivities are consistent with computational simulations, particularly concerning the discrimination of differently planarized and charge-delocalized enolate tautomers by anion-π interactions. Enolate-π interactions on fullerenes are much shorter than standard π-π interactions and anion-π interactions on planar surfaces, and alternative cation-π interactions are not observed. These findings open new perspectives with regard to anion-π interactions in general and the use of carbon allotropes in catalysis.

  19. Three Short Stories about Hexaarylbenzene-Porphyrin Scaffolds.

    PubMed

    Lungerich, Dominik; Hitzenberger, Jakob F; Donaubauer, Wolfgang; Drewello, Thomas; Jux, Norbert

    2016-11-14

    A feasible two-step synthesis and characterization of a full series of hexaarylbenzene (HAB) substituted porphyrins and tetrabenzoporphyrins is presented. Key steps represent the microwave-assisted porphyrin condensation and the statistical Diels-Alder reaction to the desired HAB-porphyrins. Regarding their applications, they proved to be easily accessible and effective high molecular mass calibrants for (MA)LDI mass spectrometry. The free-base and zinc(II) porphyrin systems, as well as the respective tetrabenzoporphyrins, demonstrate in solid state experiments strong red- and near-infrared-light emission and are potentially interesting for the application in "truly organic" light-emitting devices. Lastly, they represent facile precursors to large polycyclic aromatic hydrocarbon (PAH) substituted porphyrins. We prepared the first tetra-hexa-peri-hexabenzocoronene substituted porphyrin, which represents the largest prepared PAH-porphyrin conjugate to date. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis of the C(18) -norditerpenoid alkaloid neofinaconitine: a lesson in convergent synthesis planning.

    PubMed

    Liu, Xiao-Yu; Chen, David Y-K

    2014-01-20

    Hexacyclic framework: The total synthesis of the complex C18 -norditerpenoid alkaloid neofinaconitine has been achieved by a convergent approach. This remarkable synthesis featured two Diels-Alder cycloadditions and subsequent Mannich-type N-acyliminium and radical cyclizations to establish the unique hexacyclic core structure of the target molecule. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis of an Imidazolidinone Organocatalyst and Its Application in a Diels-Alder Cycloaddition: A Multistep Experiment for the Organic Teaching Laboratory

    ERIC Educational Resources Information Center

    Murphy, John J.; Driver, Ross B.; Walsh, Ria; Stephens, John C.

    2016-01-01

    The development of novel, high-yielding, and selective methodologies for the asymmetric synthesis of stereocenters is at the forefront of modern synthetic chemistry research. Organocatalysis can now be viewed as a viable alternative to the use of the sometimes toxic transition-metal catalysts. In this experiment, the simple synthesis of an achiral…

  2. Antioxidant activity and ultra-performance LC-electrospray ionization-quadrupole time-of-flight mass spectrometry for phenolics-based fingerprinting of Rose species: Rosa damascena, Rosa bourboniana and Rosa brunonii.

    PubMed

    Kumar, Neeraj; Bhandari, Pamita; Singh, Bikram; Bari, Shamsher S

    2009-02-01

    Roses are one of the most important groups of ornamental plants and their fruits and flowers are used in a wide variety of food, nutritional products and different traditional medicines. The antioxidant activity of methanolic extracts from fresh flowers of three rose species (Rosa damascena, Rosa bourboniana and Rosa brunonii) was evaluated by 1,1-diphenyl-2-picryl hydrazyl (DPPH) free-radical method. The ability to scavenge DPPH radical was measured by the discoloration of the solution. The methanolic extract from R. brunonii exhibited maximum free-radical-scavenging activity (64.5+/-0.38%) followed by R. bourboniana (51.8+/-0.46%) and R. damascena (43.6+/-0.25%) at 100 microg/ml. Simultaneously, ultra-performance liquid chromatography coupled with electrospray ionization-quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS) was used to study phenolic composition in the methanolic extracts from the fresh flowers of rose species. The phenolic constituents were further investigated by direct infusion-ESI-QTOF-MS/MS in negative ion mode. Characteristic Electrospray ionization tandem mass spectrometry (ESI-MS/MS) spectra with other diagnostic fragment ions generated by retro Diels-Alder (RDA) fragmentation pathways were recorded for the flavonoids. Distinct similarities were observed in the relative distribution of polyphenolic compounds among the three species. The dominance of quercetin, kaempferol and their glycosides was observed in all the three species.

  3. Isomerization and Fragmentation of Cyclohexanone in a Heated Micro-Reactor

    NASA Astrophysics Data System (ADS)

    Porterfield, Jessica P.; Nguyen, Thanh Lam; Baraban, Joshua H.; Buckingham, Grant; Troy, Tyler; Kostko, Oleg; Ahmed, Musahid; Stanton, John F.; Daily, John W.; Ellison, Barney

    2016-06-01

    he thermal decomposition of cyclohexanone (C_6H10=O) has been studied in a set of flash-pyrolysis micro-reactors. Samples of C_6H10=O were first observed to decompose at 1200 K. Short residence times of 100 μsec and dilution of samples (<0.1%) isolate unimolecular decomposition. Products were identified by tunable VUV photoionization mass spectroscopy, photoionization appearance thresholds, and complementary matrix infrared absorption spectroscopy. Thermal cracking of cyclohexanone appeared to result from a variety of competing pathways pictured to the right. Isomerization of cyclohexanone to the enol, cyclohexen-1-ol (C_6H_9OH), is followed by retro-Diels-Alder cleavage to CH_2=CH_2 and CH_2=C(OH)-CH=CH_2. Further isomerization of CH_2=C(OH)CH=CH_2 to methyl vinyl ketone (CH_3COCH=CH_2, MVK) was also observed. Photoionization spectra identified both enols, C_6H_9OH and CH=C(OH)CH=CH_2, and the ionization threshold of C_6H_9OH was measured to be 8.2 ± 0.1 eV. At 1200 K, the products of cyclohexanone pyrolysis were found to be: C_6H_9OH, CH_2=C(OH)CH=CH_2, MVK, CH_2CHCH_2, CO, CH_2=C=O, CH_3, CH_2=C=CH_2, CH_2=CH-CH=CH_2, CH_2=CHCH_2CH_3, CH_2=CH_2, and HCCH.

  4. Full exploration of the Diels-Alder cycloaddition on metallofullerenes M3N@C80 (M = Sc, Lu, Gd): the D(5h) versus I(h) isomer and the influence of the metal cluster.

    PubMed

    Osuna, Sílvia; Valencia, Ramón; Rodríguez-Fortea, Antonio; Swart, Marcel; Solà, Miquel; Poblet, Josep M

    2012-07-16

    In this work a detailed investigation of the exohedral reactivity of the most important and abundant endohedral metallofullerene (EMF) is provided, that is, Sc(3)N@I(h)-C(80) and its D(5h) counterpart Sc(3)N@D(5h)-C(80) , and the (bio)chemically relevant lutetium- and gadolinium-based M(3)N@I(h)/D(5h)-C(80) EMFs (M = Sc, Lu, Gd). In particular, we analyze the thermodynamics and kinetics of the Diels-Alder cycloaddition of s-cis-1,3-butadiene on all the different bonds of the I(h)-C(80) and D(5h)-C(80) cages and their endohedral derivatives. First, we discuss the thermodynamic and kinetic aspects of the cycloaddition reaction on the hollow fullerenes and the two isomers of Sc(3)N@C(80). Afterwards, the effect of the nature of the metal nitride is analyzed in detail. In general, our BP86/TZP//BP86/DZP calculations indicate that [5,6] bonds are more reactive than [6,6] bonds for the two isomers. The [5,6] bond D(5h)-b, which is the most similar to the unique [5,6] bond type in the icosahedral cage, I(h)-a, is the most reactive bond in M(3)N@D(5h)-C(80) regardless of M. Sc(3)N@C(80) and Lu(3)N@C(80) give similar results; the regioselectivity is, however, significantly reduced for the larger and more electropositive M = Gd, as previously found in similar metallofullerenes. Calculations also show that the D(5h) isomer is more reactive from the kinetic point of view than the I(h) one in all cases which is in good agreement with experiments. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Coordination-Assisted Bioorthogonal Chemistry: Orthogonal Tetrazine Ligation with Vinylboronic Acid and a Strained Alkene.

    PubMed

    Eising, Selma; Xin, Bo-Tao; Kleinpenning, Fleur; Heming, Juriaan; Florea, Bogdan; Overkleeft, Herman; Bonger, Kimberly Michelle

    2018-05-28

    Bioorthogonal chemistry can be used for the selective modification of biomolecules without interfering with any other functionality present. Recent developments in the field provided orthogonal bioorthogonal reactions for modification of multiple biomolecules simultaneously. During our research, we have observed exceptional high reaction rates in the bioorthogonal inverse electron-demand Diels-Alder (iEDDA) reaction between non-strained vinylboronic acids (VBAs) and dipyridyl-s-tetrazines relative to that of tetrazines bearing a methyl or phenyl substituent. As VBAs are mild Lewis acids, we hypothesize that coordination of the pyridyl nitrogen to the boronic acid promotes the tetrazine ligation. Here, we explore the molecular basis and scope of the VBA-tetrazine ligation in more detail and benefit from its unique reactivity in the simultaneous orthogonal tetrazine labelling of two proteins modified with VBA and norbornene, a widely used strained alkene. We further show that the two orthogonal iEDDA reactions can be carried out in living cells by labelling of the proteasome using a non-selective probe equipped with a VBA and a subunit-selective one bearing a norbornene. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Beom-Goo; Pramanik, Nabendu B.; Singha, Nikhil K.

    The anionic block copolymerization of 4,4' -vinylphenyl-N,N-bis(4-tert-butylphenyl)benzenamine (A) with furfuryl isocyanate (B) was carried out using potassium naphthalenide (K-Naph) in tetrahydrofuran at -78 and -98 °C to prepare well-defined block copolymers containing furan groups for the formation of thermoreversible networks via a Diels Alder (DA) reaction. While no block copolymerization was observed in the absence of sodium tetraphenylborate (NaBPh 4) due to side reactions, well-defined poly-(B-b-A-b-B) (PBAB) copolymers with controlled molecular weights (M n = 18 700 19 500 g mol -1) and narrow molecular weight distributions (M w/M n = 1.08 -1.17) were successfully synthesized in the presence ofmore » excess NaBPh 4. We prevented the occurrence of the undesirable side reactions during polymerization of B of NaBPh 4, which results in the change in the countercation from K + to Na + for further polymerization of B. Moreover, the cross-linking via the DA reaction between the furan groups of PBAB and bismaleimide was proved by FT-IR and differential scanning calorimetry (DSC), and the thermoreversible properties of the cross-linked polymer were subsequently investigated using DSC and solubility testing.« less

  7. Diagrams for comprehensive molecular orbital-based chemical reaction analyses: reactive orbital energy diagrams.

    PubMed

    Tsuneda, Takao; Singh, Raman Kumar; Chattaraj, Pratim Kumar

    2018-05-15

    Reactive orbital energy diagrams are presented as a tool for comprehensively performing orbital-based reaction analyses. The diagrams rest on the reactive orbital energy theory, which is the expansion of conceptual density functional theory (DFT) to an orbital energy-based theory. The orbital energies on the intrinsic reaction coordinates of fundamental reactions are calculated by long-range corrected DFT, which is confirmed to provide accurate orbital energies of small molecules, combining with a van der Waals (vdW) correlation functional, in order to examine the vdW effect on the orbital energies. By analysing the reactions based on the reactive orbital energy theory using these accurate orbital energies, it is found that vdW interactions significantly affect the orbital energies in the initial reaction processes and that more than 70% of reactions are determined to be initially driven by charge transfer, while the remaining structural deformation (dynamics)-driven reactions are classified into identity, cyclization and ring-opening, unimolecular dissociation, and H2 reactions. The reactive orbital energy diagrams, which are constructed using these results, reveal that reactions progress so as to delocalize the occupied reactive orbitals, which are determined as contributing orbitals and are usually not HOMOs, by hybridizing the unoccupied reactive orbitals, which are usually not LUMOs. These diagrams also raise questions about conventional orbital-based diagrams such as frontier molecular orbital diagrams, even for the well-established interpretation of Diels-Alder reactions.

  8. Inhibitors of Fatty Acid Synthase for Prostate Cancer

    DTIC Science & Technology

    2012-05-01

    structure, Figure 3) is highly susceptible to nucelophi lic attack. In addition, well- established Diels - Alder chemistry will b e used to crea te...including each of the precurso rs leading to the compounds. Based on multiple criteria including ability to inhibit recombinant enzyme , ability to...The specificity or hydrophobic channel binds the growing fatty acid chain and guides substrate specificity of the enzyme . The short-chain pock et

  9. Synthesis of phenanthridine derivatives by microwave-mediated cyclization of o-furyl(allylamino)arenes.

    PubMed

    Read, Matthew Lovell; Gundersen, Lise-Lotte

    2013-02-01

    A novel and efficient synthesis of phenanthridines and aza analogues is reported. The key step is a microwave-mediated intramolecular Diels-Alder cyclization of o-furyl(allylamino)arenes. In the presence of a catalytic amount of acid, the DA-adduct reacts further to give the dihydrophenanthridines, which easily can be oxidized to fully aromatic compounds by air in the presence of UV light or by DDQ.

  10. Photoremovable chiral auxiliary.

    PubMed

    Kammath, Viju Balachandran; Sebej, Peter; Slanina, Tomáš; Kříž, Zdeněk; Klán, Petr

    2012-03-01

    A new concept of a photoremovable chiral auxiliary (PCA), based on the chiral benzoin chromophore, is introduced. This moiety can control the asymmetric formation of a Diels-Alder adduct, and then be removed in a subsequent photochemical step in high chemical and quantum yields. Selective formation of the products at up to 96% ee was observed in the presence of a Lewis acid catalyst in the case of a 2-methoxybenzoinyl chiral auxiliary.

  11. Generation and characterization of highly strained dibenzotetrakisdehydro[12]- and dibenzopentakisdehydro[14]annulenes.

    PubMed

    Hisaki, Ichiro; Eda, Takeshi; Sonoda, Motohiro; Niino, Hiroyuki; Sato, Tadatake; Wakabayashi, Tomonari; Tobe, Yoshito

    2005-03-04

    To generate dibenzotetrakisdehydro[12]- and dibenzopentakisdehydro[14]annulenes ([12]- and [14]DBAs) having a highly deformed triyne moiety, [4.3.2]propellatriene-anneleted dehydro[12]- and dehydro[14]annulenes were prepared as their precursors. UV irradiation of the precursors resulted in the photochemical [2 + 2] cycloreversion to generate the strained [12]- and [14]DBAs, respectively. The [12]DBA was not detected by 1H NMR spectroscopy, but it was intercepted as Diels-Alder adducts in solution, suggesting its intermediacy. Its spectroscopic characterization was successfully carried out by UV-vis spectroscopy in a 2-methyltetrahydrofuran (MTHF) glass matrix at 77 K and by FT-IR spectroscopy in an argon matrix at 20 K. On the other hand, the [14]DBA was stable enough for observation by 1H and 13C NMR spectra in solution, though it was not isolated because of the low efficiency of the cycloreversion. The [14]DBA was also characterized by interception as Diels-Alder adducts in solution and by UV-vis spectroscopy in a MTHF glass matrix at 77 K. The kinetic stabilities of the DBAs are compared with the related dehydrobenzoannulenes with respect to the topology of the pi-systems. In addition, the tropicity of the [14]DBA is discussed based on its experimental and theoretical 1H NMR chemical shifts.

  12. Diels-Alderase-free, bis-pericyclic, [4+2] dimerization in the biosynthesis of (±)-paracaseolide A

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Hoye, Thomas R.

    2015-08-01

    The natural product paracaseolide A is a tetracyclic dilactone containing six adjacent stereocentres. Its skeleton occupies a unique structural space among the >200,000 characterized secondary metabolites. Six different research groups have reported a chemical synthesis of this compound, five of which used a thermal, net Diels-Alder [4+2] cycloaddition and dehydration at 110 °C to access the target by dimerization of a simple butenolide precursor. Here, we report that this dimerization proceeds under much milder conditions and with a different stereochemical outcome than previously recognized. This can be rationalized by invoking a bis-pericyclic transition state. Furthermore, we find that spontaneous epimerization, necessary to correct the configuration at one key stereocentre, is viable and that natural paracaseolide A is racemic. Together, these facts point to the absence of enzymatic catalysis (that is, Diels-Alderase activity) in the cycloaddition and strongly suggest that a non-enzyme-mediated dimerization is the actual event by which paracaseolide A is produced in nature.

  13. Diagenesis of metabolites and a discussion of the origin of petroleum hydrocarbons

    USGS Publications Warehouse

    Breger, I.A.

    1960-01-01

    Proteins and carbohydrates are rapidly degraded to compounds of no direct interest in the problem of the origin of petroleum. Lignin, if carried into marine basins in the form of humic substances, is probably the major progenitor of kerogen rather than the precursor of petroleum. Pigments are but minor contributors to petroleum. The fate of fatty acids in a marine environment is not completely understood. Although they may not be directly decarboxylated biochemically, it is shown how they can be converted into oxygenated or dehydrogenated acids more reactive than the parent compounds. Illustrations are also given for Diels-Alder reactions that could account for the formation from these compounds of the alicyclic and aromatic hydrocarbons in petroleum. It is most likely that crude oil is generated in sediments containing concentrations of lipids, the character of which governs the nature of the oil that is formed. ?? 1960.

  14. In-Situ Measurement of Shock-Induced Reactive Flow in a Series of Related Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Sheffield, S. A.; Dattelbaum, D. M.; Stahl, D. B.

    2009-12-01

    Understanding of the chemistry that occurs under extreme, high-pressure, high-temperature shock environments poses both a significant scientific challenge, due to the difficulty of direct experimental observations, and an opportunity for discovery of new materials and bonding constructs. The combined high pressure, high temperature conditions induced by shock loading results in prompt reactions that may include dynamic bond breaking, dimerization and polymerization, and dissociation to small molecules. Understanding of the evolution of different reaction pathways as a function of shock input remains a significant challenge, due to both the very short shock timescales, and difficulty in measurement of reaction intermediates and products. We have used in-situ multiple magnetic gauges to measure changes in mechanical variables (such as particle velocity waveforms) resulting from the shock-induced chemistry. This allows us to gain some understanding of the shock input conditions necessary to start chemical reaction. Seven experiments have been completed on a set of related organic liquids; 1-3 cyclohexadiene was found to react at 4.9 GPa, 1-4 cyclohexadiene at 7 GPa, cyclohexene between 10 and 12 GPa, and cyclopentene results were inconclusive. Since 1-3 cyclohexadiene could dimerize by a Diels-Alder reaction, it was expected to react at the lowest pressure.

  15. Terminal alkenes as versatile chemical reporter groups for metabolic oligosaccharide engineering.

    PubMed

    Späte, Anne-Katrin; Schart, Verena F; Schöllkopf, Sophie; Niederwieser, Andrea; Wittmann, Valentin

    2014-12-08

    The Diels-Alder reaction with inverse electron demand (DAinv reaction) of 1,2,4,5-tetrazines with electron rich or strained alkenes was proven to be a bioorthogonal ligation reaction that proceeds fast and with high yields. An important application of the DAinv reaction is metabolic oligosaccharide engineering (MOE) which allows the visualization of glycoconjugates in living cells. In this approach, a sugar derivative bearing a chemical reporter group is metabolically incorporated into cellular glycoconjugates and subsequently derivatized with a probe by means of a bioorthogonal ligation reaction. Here, we investigated a series of new mannosamine and glucosamine derivatives with carbamate-linked side chains of varying length terminated by alkene groups and their suitability for labeling cell-surface glycans. Kinetic investigations showed that the reactivity of the alkenes in DAinv reactions increases with growing chain length. When applied to MOE, one of the compounds, peracetylated N-butenyloxycarbonylmannosamine, was especially well suited for labeling cell-surface glycans. Obviously, the length of its side chain represents the optimal balance between incorporation efficiency and speed of the labeling reaction. Sialidase treatment of the cells before the bioorthogonal labeling reaction showed that this sugar derivative is attached to the glycans in form of the corresponding sialic acid derivative and not epimerized to another hexosamine derivative to a considerable extent. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Stereoselective rhodium-catalysed [2+2+2] cycloaddition of linear allene-ene/yne-allene substrates: reactivity and theoretical mechanistic studies.

    PubMed

    Haraburda, Ewelina; Torres, Óscar; Parella, Teodor; Solà, Miquel; Pla-Quintana, Anna

    2014-04-22

    Allene-ene-allene (2 and 5) and allene-yne-allene (3 and 7) N-tosyl and O-linked substrates were satisfactorily synthesised. The [2+2+2] cycloaddition reaction catalysed by the Wilkinson catalyst [RhCl(PPh3 )3 ] was evaluated. Substrates 2 and 5, which bear a double bond in the central position, gave a tricyclic structure in a reaction in which four contiguous stereogenic centres were formed as a single diastereomer. The reaction of substrates 3 and 7, which bear a triple bond in the central position, gave a tricyclic structure with a cyclohexenic ring core, again in a diastereoselective manner. All cycloadducts were formed by a regioselective reaction of the inner allene double bond and, therefore, feature an exocyclic diene motif. A Diels-Alder reaction on N-tosyl linked cycloadducts 8 and 10 allowed pentacyclic scaffolds to be diastereoselectively constructed. The reactivity of the allenes on [2+2+2] cycloaddition reactions was studied for the first time by density functional theory calculations. This mechanistic study rationalizes the order in which the unsaturations take part in the catalytic cycle, the reactivity of the two double bonds of the allene towards the [2+2+2] cycloaddition reaction, and the diastereoselectivity of the reaction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Silicon carbide passive heating elements in microwave-assisted organic synthesis.

    PubMed

    Kremsner, Jennifer M; Kappe, C Oliver

    2006-06-09

    Microwave-assisted organic synthesis in nonpolar solvents is investigated utilizing cylinders of sintered silicon carbide (SiC)--a chemically inert and strongly microwave absorbing material--as passive heating elements (PHEs). These heating inserts absorb microwave energy and subsequently transfer the generated thermal energy via conduction phenomena to the reaction mixture. The use of passive heating elements allows otherwise microwave transparent or poorly absorbing solvents such as hexane, carbon tetrachloride, tetrahydrofuran, dioxane, or toluene to be effectively heated to temperatures far above their boiling points (200-250 degrees C) under sealed vessel microwave conditions. This opens up the possibility to perform microwave synthesis in unpolar solvent environments as demonstrated successfully for several organic transformations, such as Claisen rearrangements, Diels-Alder reactions, Michael additions, N-alkylations, and Dimroth rearrangements. This noninvasive technique is a particularly valuable tool in cases where other options to increase the microwave absorbance of the reaction medium, such as the addition of ionic liquids as heating aids, are not feasible due to an incompatibility of the ionic liquid with a particular substrate. The SiC heating elements are thermally and chemically resistant to 1500 degrees C and compatible with any solvent or reagent.

  18. Generation and Reactions of an Octacyclic Hindered Pyramidalized Alkene.

    PubMed

    Camps, Pelayo; Lozano, David; Barbaraci, Carla; Font-Bardia, Merce; Luque, F Javier; Estarellas, Carolina

    2018-05-18

    Octacyclo[10.6.1.0 1,10 .0 3,7 .0 4,9 .0 8,19 .0 11,16 .0 13,17 ]nonadeca-5,8,14-triene (27), a hindered pyramidalized alkene, has been generated from a diiodide precursor. Contrary to the usual behavior of known pyramidalized alkenes, no Diels-Alder adducts were obtained from the present alkene when it was generated by different standard procedures in the presence of different dienes. However, products derived from the reduction, t-BuLi addition, condensation with the solvent, or dimerization were isolated from these reactions, depending on the conditions used to generate it. No [2 + 2] cross product among this pyramidalized alkene and tricyclo[3.3.1.0 3,7 ]non-3(7)-ene was formed when a mixture of the corresponding precursor diiodides was reacted with sodium amalgam. The analysis of selected geometrical and orbital parameters determined from quantum mechanical calculations indicates that the degree of pyramidalization of this alkene and its higher steric hindrance compared with other polycyclic pyramidalized alkenes may explain its peculiar reactivity.

  19. Improving hydrocarbon yield from catalytic fast co-pyrolysis of hemicellulose and plastic in the dual-catalyst bed of CaO and HZSM-5.

    PubMed

    Ding, Kuan; Zhong, Zhaoping; Wang, Jia; Zhang, Bo; Fan, Liangliang; Liu, Shiyu; Wang, Yunpu; Liu, Yuhuan; Zhong, Daoxu; Chen, Paul; Ruan, Roger

    2018-08-01

    The high concentration of oxygenated compounds in pyrolytic products prohibits the conversion of hemicellulose to important biofuels and chemicals via fast pyrolysis. Herein a dual-catalyst bed of CaO and HZSM-5 was developed to convert acids in the pyrolytic products of xylan to valuable hydrocarbons. Meanwhile, LLDPE was co-pyrolyzed with xylan to supplement hydrogen during the catalysis of HZSM-5. The results showed that CaO could effectively transform acids into ketones. A minimum yield of acids (2.74%) and a maximum yield of ketones (42.93%) were obtained at a catalyst to feedstock ratio of 2:1. The dual-catalyst bed dramatically increased the yield of aromatics. Moreover, hydrogen-rich fragments derived from LLDPE promoted the Diels-Alder reactions of furans and participated in the hydrocarbon pool reactions of non-furanic compounds. As a result, a higher yield of hydrocarbons was achieved. This study provides a fundamental for recovering energy and chemicals from pyrolysis of hemicellulose. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Synthesis and photophysical properties of a series of cyclopenta[b]naphthalene solvatochromic fluorophores.

    PubMed

    Benedetti, Erica; Kocsis, Laura S; Brummond, Kay M

    2012-08-01

    The synthesis and photophysical properties of a series of naphthalene-containing solvatochromic fluorophores are described within. These novel fluorophores are prepared using a microwave-assisted dehydrogenative Diels-Alder reaction of styrene, followed by a palladium-catalyzed cross coupling reaction to install an electron donating amine group. The new fluorophores are structurally related to Prodan. Photophysical properties of the new fluorophores were studied and intriguing solvatochromic behavior was observed. For most of these fluorophores, high quantum yields (60-99%) were observed in methylene chloride in addition to large Stokes shifts (95-226 nm) in this same solvent. As the solvent polarity increased, so did the observed Stokes shift with one derivative displaying a Stokes shift of ~300 nm in ethanol. All fluorophore emission maxima, and nearly all absorption maxima were significantly red-shifted when compared to Prodan. Shifting the absorption and emission maxima of a fluorophore into the visible region increases its utility in biological applications. Moreover, the cyclopentane portion of the fluorophore structure provides an attachment point for biomolecules that will minimize disruptions of the photophysical properties.

  1. Differentiation of isomeric 2-aryldimethyltetrahydro-5-quinolinones by electron ionization and electrospray ionization mass spectrometry.

    PubMed

    Kumar, Ch Dinesh; Chary, V Naresh; Dinesh, A; Reddy, P S; Srinivas, K; Gayatri, G; Sastry, G N; Prabhakar, S

    2011-10-15

    A series of isomeric 2-aryl-6,6-dimethyltetrahydro-5-quinolinones (set I) and 2-aryl-7,7-dimethyltetrahydro-5-quinolinones (set II) were studied under positive ion electron ionization (EI) and electrospray ionization (ESI) techniques. Under EI conditions, the molecular ions were found to be less stable in set I isomers, and they resulted in abundant fragment ions, i.e., [M-CH(3)](+), [M-CO](+.), [M-HCO](+), [M-(CH(3),CO)](+), and [M-(CH(3),CH(2)O)](+), when compared with set II isomers. In addition, the set I isomers showed specific fragment ions corresponding to [M-OH](+) and [M-OCH(3)](+). The retro-Diels-Alder (RDA) product ion was always higher in set II isomers. The ESI mass spectra produced [M + H](+) ions, and their decomposition showed favorable loss of CH(3) radical, CH(4) and C(2)H(6) molecules in set I isomers. The set II isomers, however, showed predominant RDA product ions, and specific loss of H(2)O. The selectivity in EI and ESI was attributed to the instability of set I isomers by the presence of a gem-dimethyl group at the α-position, and it was supported by the data from model compounds without a gem-dimethyl group. Density functional theory (DFT) calculations successfully corroborated the fragmentation pathways for diagnostic ions. This study revealed the effect of a gem-dimethyl group located at the α-position to the carbonyl having aromatic/unsaturated carbon on the other side of the carbonyl group. Copyright © 2011 John Wiley & Sons, Ltd.

  2. Structural characterization of monoterpene indole alkaloids in ethanolic extracts of Rauwolfia species by liquid chromatography with quadrupole time-of-flight mass spectrometry.

    PubMed

    Kumar, Sunil; Singh, Awantika; Bajpai, Vikas; Srivastava, Mukesh; Singh, Bhim Pratap; Kumar, Brijesh

    2016-12-01

    Rauwolfia species (Apocynaceae) are medicinal plants well known worldwide due to its potent bioactive monoterpene indole alkaloids (MIAs) such as reserpine, ajmalicine, ajmaline, serpentine and yohimbine. Reserpine, ajmalicine and ajmaline are powerful antihypertensive, tranquilizing agents used in hypertension. Yohimbine is an aphrodisiac used in dietary supplements. As there is no report on the comparative and comprehensive phytochemical investigation of the roots of Rauwolfia species, we have developed an efficient and reliable liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for ethanolic root extract of Rauwolfia species to elucidate the fragmentation pathways for dereplication of bioactive MIAs using high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (HPLC-ESI-QTOF-MS/MS) in positive ion mode. We identified and established diagnostic fragment ions and fragmentation pathways using reserpine, ajmalicine, ajmaline, serpentine and yohimbine. The MS/MS spectra of reserpine, ajmalicine, and ajmaline showed C -ring-cleavage whereas E -ring cleavage was observed in serpentine via Retro Diels Alder (RDA). A total of 47 bioactive MIAs were identified and characterized on the basis of their molecular formula, exact mass measurements and MS/MS analysis. Reserpine, ajmalicine, ajmaline, serpentine and yohimbine were unambiguously identified by comparison with their authentic standards and other 42 MIAs were tentatively identified and characterized from the roots of Rauwolfia hookeri, Rauwolfia micrantha, Rauwolfia serpentina, Rauwolfia verticillata, Rauwolfia tetraphylla and Rauwolfia vomitoria . Application of LC-MS followed by principal component analysis (PCA) has been successfully used to discriminate among six Rauwolfia species.

  3. [2.2.2]- to [3.2.1]-Bicycle Skeletal Rearrangement Approach to the Gibberellin Family of Natural Products.

    PubMed

    Smith, Brandon R; Njardarson, Jon T

    2018-05-03

    Synthetic studies toward the gibberellin family of natural products are reported. An oxidative dearomatization/Diels-Alder cascade assembles the carbon skeleton as a [2.2.2]-bicycle, which is then transformed to the [3.2.1]-bicyclic gibberellin core via a novel Lewis acid catalyzed rearrangement. Strategic synthetic handles allow for late-stage modification of the gibberellin skeleton and provides efficient access to this important family of natural compounds.

  4. 5-Hydroxyindoles by intramolecular alkynol-furan diels-alder cycloaddition.

    PubMed

    LaPorte, Matthew; Hong, Ki Bum; Xu, Jie; Wipf, Peter

    2013-01-04

    A convergent approach provides a convenient access to synthetically and biologically useful 3,4-disubstituted 5-hydroxyindoles. The one-pot procedure uses microwave heating to initiate an intramolecular [4 + 2]-cycloaddition of an alkynol segment onto a furan followed by a fragmentation, aromatization, and N-Boc deprotection cascade. Yields range from 15 to 74%, with aromatic substituents providing better conversions. 4-Trimethylsilylated analogues undergo a 1,3-silatropic rearrangement to give the O-TMS ethers.

  5. Diels Alder polyphenylene anion exchange membrane for nonaqueous redox flow batteries

    DOE PAGES

    Small, Leo J.; Pratt, III, Harry D.; Fujimoto, Cy H.; ...

    2015-10-23

    Here highly conductive, solvent-resistant anionic Diels Alder polyphenylene (DAPP) membranes were synthesized with three different ionic contents and tested in an ionic liquid-based nonaqueous redox flow battery (RFB). These membranes display 3–10× increase in conductivity in propylene carbonate compared to some commercially available (aqueous) anion exchange membranes. The membrane with an ion content of 1.5 meq/g (DAPP1.5) proved too brittle for operation in a RFB, while the membrane with an ion content of 2.5 meq/g (DAPP2.5) allowed excessive movement of solvent and poor electrochemical yields (capacity fade). Despite having lower voltage efficiencies compared to DAPP2.5, the membrane with an intermediatemore » ion content of 2.0 meq/g (DAPP2.0) exhibited higher coulombic efficiencies (96.4% vs. 89.1%) and electrochemical yields (21.6% vs. 10.9%) after 50 cycles. Crossover of the electroactive species was the primary reason for decreased electrochemical yields. Analysis of the anolyte and catholyte revealed degradation of the electroactive species and formation of a film at the membrane-solution interface. Increases in membrane resistance were attributed to mechanical and thermal aging of the membrane; no chemical change was observed. As a result, improvements in the ionic selectivity and ionic conductivity of the membrane will increase the electrochemical yield and voltage efficiency of future nonaqueous redox flow batteries.« less

  6. Solvent-free, microwave-assisted synthesis of thiophene oligomers via Suzuki coupling.

    PubMed

    Melucci, Manuela; Barbarella, Giovanna; Sotgiu, Giovanna

    2002-12-13

    The purpose of this study was to obtain a rapid, efficient, and environmentally friendly methodology for the synthesis of highly pure thiophene oligomers. The solvent-free, microwave-assisted coupling of thienyl boronic acids and esters with thienyl bromides, using aluminum oxide as the solid support, allowed us to rapidly check the reaction trends on changing times, temperature, catalyst, and base and easily optimize the experimental conditions to obtain the targeted product in fair amounts. This procedure offers a novel, general, and very rapid route to the preparation of soluble thiophene oligomers. Thus, for example, quaterthiophene was obtained in 6 min by reaction of 2-bromo-2,2'-bithiophene with bis(pinacolato)diboron (isolated yield 65%), whereas quinquethiophene was obtained in 11 min by reaction of dibromoterthiophene with thienylboronic acid (isolated yield 74%). The synthesis of new chiral 2,2'-bithiophenes is reported. The detailed analysis of the byproducts of some reactions allowed us to elucidate a few aspects of reaction mechanisms. While the use of microwaves proved to be very convenient for the coupling between conventional thienyl moieties, the same was not true for the coupling of thienyl rings to thienyl-S,S-dioxide moieties. Indeed, in this case, the targeted product was obtained in low yields because of the competitive, accelerated, Diels-Alder reaction that affords a variety of condensation products.

  7. Synthesis of 3,4-dihydro-1,8-naphthyridin-2(1H)-ones via microwave-activated inverse electron-demand Diels–Alder reactions

    PubMed Central

    Fadel, Salah; Hajbi, Youssef; Khouili, Mostafa; Lazar, Said

    2014-01-01

    Summary Substituted 3,4-dihydro-1,8-naphthyridin-2(1H)-ones have been synthesized with the inverse electron-demand Diels–Alder reaction from 1,2,4-triazines bearing an acylamino group with a terminal alkyne side chain. Alkynes were first subjected to the Sonogashira cross-coupling reaction with aryl halides, the product of which then underwent an intramolecular inverse electron-demand Diels–Alder reaction to yield 5-aryl-3,4-dihydro-1,8-naphthyridin-2(1H)-ones by an efficient synthetic route. PMID:24605148

  8. Preparations and properties of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials.

    PubMed

    Watanabe, Shoji

    2008-01-01

    This short review describes various types of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials. It is concerned with synthetic additives classified according to their functional groups; silicone compounds, carboxylic acids and dibasic acids, esters, Diels-Alder adducts, various polymers, nitrogen compounds, phosphoric esters, phosphonic acids, and others. Testing methods for water-soluble metal working fluids for aluminum alloy materials are described for a practical application in a laboratory.

  9. Reversible Thermoset Adhesives

    NASA Technical Reports Server (NTRS)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  10. Photochemically Synthesized Polyimides

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.; Tyson, Daniel S.

    2008-01-01

    An alternative to the conventional approach to synthesis of polyimides involves the use of single monomers that are amenable to photopolymerization. Heretofore, the synthesis of polyimides has involved multiple-monomer formulations and heating to temperatures that often exceed 250 C. The present alternative approach enables synthesis under relatively mild conditions that can include room temperature. The main disadvantages of the conventional approach are the following: Elevated production temperatures can lead to high production costs and can impart thermal stresses to the final products. If the proportions of the multiple monomeric ingredients in a given batch are not exactly correct, the molecular weight and other physical properties of the final material could be reduced from their optimum or desired values. To be useful in the alternative approach, a monomer must have a molecular structure tailored to exploit Diels-Alder trapping of a photochemically generated ortho-quinodimethane. (In a Diels-Alder reaction, a diene combines with a dienophile to form molecules that contain six-membered rings.) In particular, a suitable monomer (see figure) contains ortho-methylbenzophenone connected to a dienophile (in this case, a maleimide) through a generic spacer group. Irradiation with ultraviolet light gives rise to a photochemical intermediate the aforementioned ortho-quinodimethane from the ortho-methylbenzophenone. This group may react with the dienophile on another such monomer molecule to produce an oligomer that, in turn may react in a stepgrowth manner to produce a polyimide. This approach offers several advantages in addition to those mentioned above: The monomer can be stored for a long time because it remains unreactive until exposed to light. Because the monomer is the only active starting ingredient, there is no need for mixing, no concern for ensuring correct proportions of monomers, and the purity of the final product material is inherently high. The use of solvents is optional: The synthesis can be performed using the neat monomer or the monomer mixed with one or more solvent(s) in dilute or concentrated solution. The solubility of the monomer and the physical and chemical properties of the final polymer can be tailored through selection of the spacer group.

  11. Diels–Alder cycloaddition of 2-methylfuran and ethylene for renewable toluene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Sara K.; Patet, Ryan E.; Nikbin, Nima

    Diels–Alder cycloaddition of biomass-derived 2-methylfuran and ethylene provides a thermochemical pathway to renewable toluene. In this work, the kinetics and reaction pathways of toluene formation have been evaluated with H-BEA and Sn-BEA catalysts. Kinetic analysis of the main reaction chemistries reveals the existence of two rate-controlling reactions: (i) Diels–Alder cycloaddition of 2-methylfuran and ethylene where the production rate is independent of the Brønsted acid site concentration, and (ii) dehydration of the Diels–Alder cycloadduct where the production rate is dependent on the Brønsted acid site concentration. Application of a reduced kinetic model supports the interplay of these two regimes with themore » highest concentration of toluene measured at a catalyst loading equal to the transition region between the two kinetic regimes. Selectivity to toluene never exceeded 46%, as 2-methylfuran was consumed by several newly identified reactions to side products, including dimerization of 2-methylfuran, the formation of a trimer following hydrolysis and ring-opening of 2-methylfuran, and the incomplete dehydration of the Diels–Alder cycloadduct of 2-methylfuran and ethylene.« less

  12. Diels–Alder reactions of myrcene using intensified continuous-flow reactors

    PubMed Central

    Álvarez-Diéguez, Miguel Á; Kohl, Thomas M; Tsanaktsidis, John

    2017-01-01

    This work describes the Diels–Alder reaction of the naturally occurring substituted butadiene, myrcene, with a range of different naturally occurring and synthetic dienophiles. The synthesis of the Diels–Alder adduct from myrcene and acrylic acid, containing surfactant properties, was scaled-up in a plate-type continuous-flow reactor with a volume of 105 mL to a throughput of 2.79 kg of the final product per day. This continuous-flow approach provides a facile alternative scale-up route to conventional batch processing, and it helps to intensify the synthesis protocol by applying higher reaction temperatures and shorter reaction times. PMID:28228853

  13. Decoupling the Arrhenius equation via mechanochemistry.

    PubMed

    Andersen, Joel M; Mack, James

    2017-08-01

    Mechanochemistry continues to reveal new possibilities in chemistry including the opportunity for "greening" reactions. Nevertheless, a clear understanding of the energetic transformations within mechanochemical systems remains elusive. We employed a uniquely modified ball mill and strategically chosen Diels-Alder reactions to evaluate the role of several ball-milling variables. This revealed three different energetic regions that we believe are defining characteristics of most, if not all, mechanochemical reactors. Relative to the locations of a given ball mill's regions, activation energy determines whether a reaction is energetically easy (Region I), challenging (Region II), or unreasonable (Region III) in a given timeframe. It is in Region II, that great sensitivity to mechanochemical conditions such as vial material and oscillation frequency emerge. Our unique modifications granted control of reaction vessel temperature, which in turn allowed control of the locations of Regions I, II, and III for our mill. Taken together, these results suggest envisioning vibratory mills (and likely other mechanochemical methodologies) as molecular-collision facilitating devices that act upon molecules occupying a thermally-derived energy distribution. This unifies ball-milling energetics with solution-reaction energetics via a common tie to the Arrhenius equation, but gives mechanochemistry the unique opportunity to influence either half of the equation. In light of this, we discuss a strategy for translating solvent-based reaction conditions to ball milling conditions. Lastly, we posit that the extra control via frequency factor grants mechanochemistry the potential for greater selectivity than conventional solution reactions.

  14. Synthesis of marmycin A and investigation into its cellular activity

    NASA Astrophysics Data System (ADS)

    Cañeque, Tatiana; Gomes, Filipe; Mai, Trang Thi; Maestri, Giovanni; Malacria, Max; Rodriguez, Raphaël

    2015-09-01

    Anthracyclines such as doxorubicin are used extensively in the treatment of cancers. Anthraquinone-related angucyclines also exhibit antiproliferative properties and have been proposed to operate via similar mechanisms, including direct genome targeting. Here, we report the chemical synthesis of marmycin A and the study of its cellular activity. The aromatic core was constructed by means of a one-pot multistep reaction comprising a regioselective Diels-Alder cycloaddition, and the complex sugar backbone was introduced through a copper-catalysed Ullmann cross-coupling, followed by a challenging Friedel-Crafts cyclization. Remarkably, fluorescence microscopy revealed that marmycin A does not target the nucleus but instead accumulates in lysosomes, thereby promoting cell death independently of genome targeting. Furthermore, a synthetic dimer of marmycin A and the lysosome-targeting agent artesunate exhibited a synergistic activity against the invasive MDA-MB-231 cancer cell line. These findings shed light on the elusive pathways through which anthraquinone derivatives act in cells, pointing towards unanticipated biological and therapeutic applications.

  15. Proteome labelling and protein identification in specific tissues and at specific developmental stages in an animal

    PubMed Central

    Elliott, Thomas S.; Townsley, Fiona M.; Bianco, Ambra; Ernst, Russell J.; Sachdeva, Amit; Elsässer, Simon J.; Davis, Lloyd; Lang, Kathrin; Pisa, Rudolf; Greiss, Sebastian.; Lilley, Kathryn S.; Chin, Jason W.

    2014-01-01

    Identifying the proteins synthesized in defined cells at specific times in an animal will facilitate the study of cellular functions and dynamic processes. Here we introduce stochastic orthogonal recoding of translation with chemoselective modification (SORT-M) to address this challenge. SORT-M involves modifying cells to express an orthogonal aminoacyl-tRNA synthetase/tRNA pair to enable the incorporation of chemically modifiable analogs of amino acids at diverse sense codons in cells in rich media. We apply SORT-M to Drosophila melanogaster fed standard food to label and image proteins in specific tissues at precise developmental stages with diverse chemistries, including cyclopropene-tetrazine inverse electron demand Diels-Alder cycloaddition reactions. We also use SORT-M to identify proteins synthesized in germ cells of the fly ovary without dissection. SORT-M will facilitate the definition of proteins synthesized in specific sets of cells to study development, and learning and memory in flies, and may be extended to other animals. PMID:24727715

  16. Microwave-assisted synthesis of 3,6-di(pyridin-2-yl)pyridazines: unexpected ketone and aldehyde cycloadditions.

    PubMed

    Hoogenboom, Richard; Moore, Brian C; Schubert, Ulrich S

    2006-06-23

    3,6-Di(pyridin-2-yl)pyridazines are an interesting class of compounds because of their metal-coordinating ability resulting in the self-assembly into [2x2] gridlike metal complexes with copper(I) or silver(I) ions. These and other substituted pyridazines can be prepared by the inverse-electron-demand Diels-Alder reactions between acetylenes and 1,2,4,5-tetrazines. In this contribution, the effect of (superheated) microwave conditions on these generally slow cycloadditions is described. The cycloaddition of acetylenes to 3,6-di(pyridin-2-yl)-1,2,4,5-tetrazine could be accelerated from several days reflux in toluene or N,N-dimethylformamide to several hours in dichloromethane at 150 degrees C. In addition, the unexpected cycloaddition of the enol tautomers of various ketones and aldehydes to 3,6-di(pyridin-2-yl)-1,2,4,5-tetrazine is described in detail providing an alternative route for the synthesis of (substituted) pyridazines.

  17. Short Access to Belt Compounds with Spatially Close C=C Bonds and Their Transannular Reactions.

    PubMed

    Camps, Pelayo; Gómez, Tània; Otermin, Ane; Font-Bardia, Mercè; Estarellas, Carolina; Luque, Francisco Javier

    2015-09-28

    Two domino Diels-Alder adducts were obtained from 3,7-bis(cyclopenta-2,4-dien-1-ylidene)-cis-bicyclo[3.3.0]octane and dimethyl acetylenedicarboxylate or N-methylmaleimide under microwave irradiation. From the first adduct, a C20H24 diene with C2v symmetry was obtained by Zn/AcOH reduction, hydrolysis, oxidative decarboxylation, and selective hydrogenation. Photochemical [2+2] cycloaddition of this diene gave a thermally unstable cyclobutane derivative, which reverts to the diene. However, both the diene and the cyclobutane derivatives could be identified by X-ray diffraction analysis upon irradiation of the diene crystal. New six-membered rings are formed upon the transannular addition of bromine or iodine to the diene. The N-type selectivity of the addition was examined by theoretical calculations, which revealed the distinct susceptibility of the doubly bonded carbon atoms to the bromine attack. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Characterization of Sulfonated Diels-Alder Poly(phenylene) Membranes for Electrolyte Separators in Vanadium Redox Flow Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Zhijiang; Lawton, Jamie S.; Sun, Che-Nan

    2014-09-03

    Here, sulfonated Diels-Alder poly(phenylene) (SDAPP) membranes were synthesized and characterized as potential electrolyte separators for vanadium redox flow batteries. The SDAPP membranes studied had ion exchange capacities of 1.4, 1.8 and 2.3 meq/g. Transmission electron microscopy imaging shows that the ionic domains in SDAPP are roughly 0.5 nm in dimension, while Nafion has a hydrophilic phase width of around 5 nm. The sulfuric acid uptake by SDAPP was higher than that for Nafion, but the materials had similar water uptake from solutions of various sulfuric acid concentrations. In equilibration with sulfuric acid concentrations ranging from 0–17.4 mol·kg -1, SDAPP withmore » a IEC of 2.3 meq/g had the highest conductivity, ranging from 0.21 to 0.05 S·cm -1, while SDAPP with a IEC of 1.8 had conductivity close to Nafion 117, ranging from 0.11 to 0.02 S·cm -1. With varying sulfuric acid concentration and temperature, vanadium permeability in SDAPP is positively correlated to the membrane's IEC. The vanadium permeability of SDAPP 2.3 is similar to that of Nafion, but permeability values for SDAPP 1.8 and SDAPP 1.4 are substantially lower. The vanadium permeation decreases with increasing electrolyte sulfuric acid concentration. Lastly, vanadium diffusion activation energy is about 20 kJ·mol -1 in both SDAPP and Nafion.« less

  19. Sustainable Production of o-Xylene from Biomass-Derived Pinacol and Acrolein.

    PubMed

    Hu, Yancheng; Li, Ning; Li, Guangyi; Wang, Aiqin; Cong, Yu; Wang, Xiaodong; Zhang, Tao

    2017-07-21

    o-Xylene (OX) is a large-volume commodity chemical that is conventionally produced from fossil fuels. In this study, an efficient and sustainable two-step route is used to produce OX from biomass-derived pinacol and acrolein. In the first step, the phosphotungstic acid (HPW)-catalyzed pinacol dehydration in 1-ethyl-3-methylimidazolium chloride ([emim]Cl) selectively affords 2,3-dimethylbutadiene. The high selectivity of this reaction can be ascribed to the H-bonding interaction between Cl - and the hydroxy group of pinacol. The stabilization of the carbocation intermediate by the surrounding anion Cl - may be another reason for the high selectivity. Notably, the good reusability of the HPW/[emim]Cl system can reduce the waste output and production cost. In the second step, OX is selectively produced by a Diels-Alder reaction of 2,3-dimethylbutadiene and acrolein, followed by a Pd/C-catalyzed decarbonylation/aromatization cascade in a one-pot fashion. The sustainable two-step process efficiently produces renewable OX in 79 % overall yield. Analogously, biomass-derived crotonaldehyde and pinacol can also serve as the feedstocks for the production of 1,2,4-trimethylbenzene. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Characterization of flavonoids in the extract of Sophora flavescens Ait. by high-performance liquid chromatography coupled with diode-array detector and electrospray ionization mass spectrometry.

    PubMed

    Zhang, Lei; Xu, Liang; Xiao, Shan-Shan; Liao, Qiong-Feng; Li, Qing; Liang, Jian; Chen, Xiao-Hui; Bi, Kai-Shun

    2007-09-03

    A method coupling high-performance liquid chromatography (HPLC) with diode-array detector (DAD) and electrospray ionization mass spectrometry (ESI) was established for the separation and characterization of flavonoids in Sophora flavescens Ait. Based on the chromatographic separation of most flavonoids present in S. flavescens Ait., a total of 24 flavonoids were identified. Fourteen compounds were unambiguously identified comparing experimental data for retention time (t(R)), UV and MS spectra with those of the authentic compounds: 3',7-dihydroxy-4'-methoxy-isoflavone (13), trifolirhizin (14), kurarinol (18), formononetin (19), 7,4'-dihydroxy-5-methoxy-8-(gamma,gamma-dimethylallyl)-flavanone (22), maackiain (21), isoxanthohumol (23), kuraridine (26), kuraridinol (27), sophoraflavanone G (30), xanthohumol (31), isokurarinone (33), kurarinone (35) and kushenol D (38), and additional 10 compounds were tentatively identified as kushenol O (10), trifolirhizin-6''-malonate (15), sophoraisoflavanone A (20), norkurarinol/kosamol Q (24), kushenol I/N (25), kushenol C (28), 2'-methoxykurarinone (29), kosamol R (32), kushecarpin A (34) and kushenol A (37) by comparing experimental data for UV and MS spectra with those of literature. Furthermore, fragmentation pathways in positive ions mode of 24 flavonoid compounds of types of flavanone, flavanonol, flavonol, chalcone, isoflavone, isoflavanone and ptercocarpane were summarized. Some common features, such as CH(3)., H(2)O, CO, CO(2), C(3)O(2) and C(2)H(2)O losses, together with Retro-Diels-Alder fragmentations were observed in the prenylated flavonoids in S. flavescens Ait. The loss of the lanandulyl chain was their characteristic fragmentation, which might help deducing the structure of unknown flavonoid compounds. The present study provided an approach to rapidly characterize bioactive constituents in S. flavescens Ait.

  1. Genetic Encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels-Alder reactions.

    PubMed

    Lang, Kathrin; Davis, Lloyd; Wallace, Stephen; Mahesh, Mohan; Cox, Daniel J; Blackman, Melissa L; Fox, Joseph M; Chin, Jason W

    2012-06-27

    Rapid, site-specific labeling of proteins with diverse probes remains an outstanding challenge for chemical biologists. Enzyme-mediated labeling approaches may be rapid but use protein or peptide fusions that introduce perturbations into the protein under study and may limit the sites that can be labeled, while many "bioorthogonal" reactions for which a component can be genetically encoded are too slow to effect quantitative site-specific labeling of proteins on a time scale that is useful for studying many biological processes. We report a fluorogenic reaction between bicyclo[6.1.0]non-4-yn-9-ylmethanol (BCN) and tetrazines that is 3-7 orders of magnitude faster than many bioorthogonal reactions. Unlike the reactions of strained alkenes, including trans-cyclooctenes and norbornenes, with tetrazines, the BCN-tetrazine reaction gives a single product of defined stereochemistry. We have discovered aminoacyl-tRNA synthetase/tRNA pairs for the efficient site-specific incorporation of a BCN-containing amino acid, 1, and a trans-cyclooctene-containing amino acid 2 (which also reacts extremely rapidly with tetrazines) into proteins expressed in Escherichia coli and mammalian cells. We demonstrate the rapid fluorogenic labeling of proteins containing 1 and 2 in vitro, in E. coli , and in live mammalian cells. These approaches may be extended to site-specific protein labeling in animals, and we anticipate that they will have a broad impact on labeling and imaging studies.

  2. Diels–Alder Exo-Selectivity in Terminal-Substituted Dienes and Dienophiles: Experimental Discoveries and Computational Explanations

    PubMed Central

    Lam, Yu-hong; Cheong, Paul Ha-Yeon; Mata, José M. Blasco; Stanway, Steven J.; Gouverneur, Véronique; Houk, K. N.

    2009-01-01

    The Diels–Alder reactions of a series of silyloxydienes and silylated dienes with acyclic α,β-unsaturated ketones and N-acyloxazolidinones have been investigated. The endo/exo stereochemical outcome is strongly influenced by the substitution pattern of the reactants. High exo selectivity was observed when the termini of the diene and the dienophile involved in the shorter forming bond are both substituted, while the normal endo preference was found otherwise. The exo-selective asymmetric Diels–Alder reactions using Evans’ oxazolidinone chiral auxiliary furnished a high level of π-facial selectivity in the same sense as their well-documented endo-selective counterparts. Computational results of these Diels–Alder reactions were consistent with the experimental endo/exo selectivity in most cases. A twist-asynchronous model accounts for the geometries and energies of the computed transition structures. PMID:19154113

  3. Grignard reagent-mediated conversion of an acyl nitroso-anthracene cycloadduct to a nitrone.

    PubMed

    Chen, Weibin; Day, Cynthia S; King, S Bruce

    2006-11-24

    An intramolecular hetero-Diels-Alder cycloadduct of an acyl nitroso compound and a 9,10-dimethyl anthracene derivative was prepared as a potential nitroxyl (HNO) donor. This compound did not release HNO under any of the conditions tested. Treatment of this cycloadduct with excess MeMgCl resulted in the formation of a nitrone, whose structure was confirmed by X-ray crystallography. A mechanism where MeMgCl acts as a nucleophile, strong base, and Lewis acid possibly explains the formation of this product.

  4. Grignard Reagent-Mediated Conversion of an Acyl Nitroso-Anthracene Cycloadduct to a Nitrone

    PubMed Central

    Chen, Weibin; Day, Cynthia S.

    2012-01-01

    An intramolecular hetero-Diels-Alder cycloadduct of an acyl nitroso compound and a 9, 10-dimethyl anthracene derivative was prepared as a potential nitroxyl (HNO) donor. This compound did not release HNO under any of the conditions tested. Treatment of this cycloadduct with excess MeMgCl resulted in the formation of a nitrone, whose structure was confirmed by X-ray crystallography. A mechanism where MeMgCl acts as a nucleophile, strong base and Lewis acid possibly explains the formation of this product. PMID:17109552

  5. Development of autoclave moldable addition-type polyimides

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Jones, R. J.; Orell, M. K.; Zakrzewski, G. A.

    1976-01-01

    Chemistry and processing modifications of the poly(Diels Alder) polyimide (PDA) resin were performed to obtain structural composites suitable for 589 K (600 F) service. This work demonstrated that the PDA resin formulation is suitable for service at 589 K (600 F) for up to 125 hours when used in combination with Hercules HTS graphite fiber. Sandwich panels were autoclave molded using PDA/HTS skins and polyimide/glass honeycomb core. Excellent adhesion between honeycomb core and the facing skins was demonstrated. Fabrication ease was demonstrated by autoclave molding three-quarter scale YF-12 wing panels.

  6. Synthesis of Illudinine from Dimedone.

    PubMed

    Morrison, Alec E; Hoang, Tung T; Birepinte, Mélodie; Dudley, Gregory B

    2017-02-17

    A total synthesis of the illudalane sesquiterpene illudinine was realized in eight steps and 14% overall yield from commercially available dimedone. The approach features tandem fragmentation/Knoevenagel-type condensation and microwave-assisted oxidative cycloisomerization to establish the isoquinoline core. Completion of the synthesis involves a recently reported cascade S N Ar/Lossen rearrangement on a densely functionalized aryl bromide and an optimized procedure for O-methylation of 8-hydroxyisoquinolines. The oxidative cycloisomerization proceeds by way of a novel inverse-demand intramolecular dehydro-Diels-Alder cycloaddition, which has a potentially broader appeal for preparing substituted isoquinolines.

  7. Chemical approach for controlling nadimide cure temperature and rate

    NASA Technical Reports Server (NTRS)

    Lauver, R. W. (Inventor)

    1985-01-01

    Polyimide resins suitable for use as composite matrix materials are formed by copolymerization of maleic and norbornenyl end-capped monomers and oligomers. The copolymers can be cured at temperatures under about 300 C. by controlling the available concentration of the maleic end-capped reactant. This control can be achieved by adding sufficient amounts of said maleic reactant, or by chemical modification of either copolymer, to increase Diels-Alder retrogression of the norbornenyl-capped reactant and/or holding initiation and polymerization to a rate compatible with the availability of the maleic-capped reactant.

  8. Chemical approach for controlling nadimide cure temperature and rate

    NASA Technical Reports Server (NTRS)

    Lauver, R. W. (Inventor)

    1984-01-01

    Polyimide resins suitable for use as composite matrix materials are formed by copolymerization of maleic and norbornenyl endcapped monomers and oligomers. The copolymers can be cured at temperatures under about 300 C by controlling the available concentration of the maleic capped reactant. This control can be achieved by adding sufficient amounts of said maleic reactant, or by chemical modification of either copolymer, so as to either increase Diels-Alder retrogression of the norbornenyl capped reactant and/or holding initiation and polymerization to a rate compatible with the availability of the maleic capped reactant.

  9. Chemical approach for controlling nadimide cure temperature and rate

    NASA Technical Reports Server (NTRS)

    Lauver, R. W. (Inventor)

    1985-01-01

    Polyimide resins suitable for use as composite matrix materials are formed by copolymerization of maleic and norbornenyl endcapped monomers and oligomers. The copolymers can be cured at temperatures under about 300 C by controlling the available concentration of the maleic endcapped reactant. This control is achieved by adding sufficient amounts of said maleic reactant or by chemical modification of either copolymer, to either increase Diels-Alder retrogression of the norbornenyl capped reactant and/or hold initiation and polymerization to a rate compatible with the availability of the maleic capped reactant.

  10. Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry.

    PubMed

    Herrero, M Antonia; Kremsner, Jennifer M; Kappe, C Oliver

    2008-01-04

    The concept of nonthermal microwave effects has received considerable attention in recent years and is the subject of intense debate in the scientific community. Nonthermal microwave effects have been postulated to result from a direct stabilizing interaction of the electric field with specific (polar) molecules in the reaction medium that is not related to a macroscopic temperature effect. In order to probe the existence of nonthermal microwave effects, four synthetic transformations (Diels-Alder cycloaddition, alkylation of triphenylphosphine and 1,2,4-triazole, direct amide bond formation) were reevaluated under both microwave dielectric heating and conventional thermal heating. In all four cases, previous studies have claimed the existence of nonthermal microwave effects in these reactions. Experimentally, significant differences in conversion and/or product distribution comparing the conventionally and microwave-heated experiments performed at the same measured reaction temperature were found. The current reevaluation of these reactions was performed in a dedicated reactor setup that allowed accurate internal reaction temperature measurements using a multiple fiber-optic probe system. Using this technology, the importance of efficient stirring and internal temperature measurement in microwave-heated reactions was made evident. Inefficient agitation leads to temperature gradients within the reaction mixture due to field inhomogeneities in the microwave cavity. Using external infrared temperature sensors in some cases results in significant inaccuracies in the temperature measurement. Applying the fiber-optic probe temperature monitoring device, a critical reevaluation of all four reactions has provided no evidence for the existence of nonthermal microwave effects. Ensuring efficient agitation of the reaction mixture via magnetic stirring, no significant differences in terms of conversion and selectivity between experiments performed under microwave or oil bath conditions at the same internally measured reaction temperatures were experienced. The observed effects were purely thermal and not related to the microwave field.

  11. Tandem catalysis for the production of alkyl lactates from ketohexoses at moderate temperatures

    DOE PAGES

    Orazov, Marat; Davis, Mark E.

    2015-09-08

    Retro-aldol reactions have been implicated as the limiting steps in catalytic routes to convert biomass-derived hexoses and pentoses into valuable C2, C3, and C4 products such as glycolic acid, lactic acid, 2-hydroxy-3-butenoic acid, 2,4-dihydroxybutanoic acid, and alkyl esters thereof. Due to a lack of efficient retro-aldol catalysts, most previous investigations of catalytic pathways involving these reactions were conducted at high temperatures (≥160 °C). Here, we report moderate-temperature (around 100 °C) retro-aldol reactions of various hexoses in aqueous and alcoholic media with catalysts traditionally known for their capacity to catalyze 1,2-intramolecular carbon shift (1,2-CS) reactions of aldoses, i.e., various molybdenum oxidemore » and molybdate species, nickel(II) diamine complexes, alkali-exchanged stannosilicate molecular sieves, and amorphous TiO2–SiO2 coprecipitates. Solid Lewis acid cocatalysts that are known to catalyze 1,2-intramolecular hydride shift (1,2-HS) reactions that enable the formation of α-hydroxy carboxylic acids from tetroses, trioses, and glycolaldehyde, but cannot readily catalyze retro-aldol reactions of hexoses and pentoses at these moderate temperatures, are shown to be compatible with the aforementioned retro-aldol catalysts. The combination of a distinct retro-aldol catalyst with a 1,2-HS catalyst enables lactic acid and alkyl lactate formation from ketohexoses at moderate temperatures (around 100 °C), with yields comparable to best-reported chemocatalytic examples at high temperature conditions (≥160 °C). The use of moderate temperatures enables numerous desirable features such as lower pressure and significantly less catalyst deactivation.« less

  12. Red alder kitchen cabinets—How does application of commercial stains influence customer choice?

    Treesearch

    David Nicholls; Joseph Roos

    2007-01-01

    A better understanding of consumer reaction and preferences for red alder (Alnus rubra Bong.) secondary products will help Alaska producers in entering new markets. In this study, red alder kitchen cabinets were commercially stained to six different levels and displayed at home shows in Portland, Oregon, and Anchorage, Alaska. The stains simulated...

  13. Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering.

    PubMed

    Jiang, Yanjiao; Chen, Jing; Deng, Chao; Suuronen, Erik J; Zhong, Zhiyuan

    2014-06-01

    Hydrogels, microgels and nanogels have emerged as versatile and viable platforms for sustained protein release, targeted drug delivery, and tissue engineering due to excellent biocompatibility, a microporous structure with tunable porosity and pore size, and dimensions spanning from human organs, cells to viruses. In the past decade, remarkable advances in hydrogels, microgels and nanogels have been achieved with click chemistry. It is a most promising strategy to prepare gels with varying dimensions owing to its high reactivity, superb selectivity, and mild reaction conditions. In particular, the recent development of copper-free click chemistry such as strain-promoted azide-alkyne cycloaddition, radical mediated thiol-ene chemistry, Diels-Alder reaction, tetrazole-alkene photo-click chemistry, and oxime reaction renders it possible to form hydrogels, microgels and nanogels without the use of potentially toxic catalysts or immunogenic enzymes that are commonly required. Notably, unlike other chemical approaches, click chemistry owing to its unique bioorthogonal feature does not interfere with encapsulated bioactives such as living cells, proteins and drugs and furthermore allows versatile preparation of micropatterned biomimetic hydrogels, functional microgels and nanogels. In this review, recent exciting developments in click hydrogels, microgels and nanogels, as well as their biomedical applications such as controlled protein and drug release, tissue engineering, and regenerative medicine are presented and discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Transparent Ethenylene-Bridged Polymethylsiloxane Aerogels: Mechanical Flexibility and Strength and Availability for Addition Reaction.

    PubMed

    Shimizu, Taiyo; Kanamori, Kazuyoshi; Maeno, Ayaka; Kaji, Hironori; Doherty, Cara M; Nakanishi, Kazuki

    2017-05-09

    Transparent, low-density ethenylene-bridged polymethylsiloxane [Ethe-BPMS, O 2/2 (CH 3 )Si-CH═CH-Si(CH 3 )O 2/2 ] aerogels from 1,2-bis(methyldiethoxysilyl)ethene have successfully been synthesized via a sol-gel process. A two-step sol-gel process composed of hydrolysis under acidic conditions and polycondensation under basic conditions in a liquid surfactant produces a homogeneous pore structure based on cross-linked nanosized colloidal particles. Visible-light transmittance of the aerogels varies with the concentration of the base catalyst and reaches as high as 87% (at a wavelength of 550 nm for a 10 mm thick sample). Gelation and aging temperature strongly affect the deformation behavior of the resultant aerogels against uniaxial compression, and the obtained aerogels prepared at 80 °C show high elasticity after being unloaded. This highly resilient behavior is primarily derived from the rigidity of ethenylene groups, which is confirmed by a comparison with other aerogels with similar molecular structures, ethylene-bridged polymethylsiloxane and polymethylsilsesquioxane. Applicability of the addition reaction using a Diels-Alder reaction of benzocyclobutene has also been investigated, revealing that a successful addition takes place on the ethenylene linkings, which is verified using Raman and solid-state NMR spectroscopies. Insights into the effect of molecular structure on mechanical properties and the availability of surface functionalization provided in this study are important for realizing transparent aerogels with the desired functionality.

  15. Chemistry at the dirac point of graphene

    NASA Astrophysics Data System (ADS)

    Sarkar, Santanu

    Graphene holds great potential as an electronic material because of its excellent transport properties, which derive from its unique Fermi surface and ballistic conductance. It exhibits extremely high mobility [~250,000 cm*2/(V*s)]. Despite its extraordinary properties, the absence of a band-gap in graphene makes it unsuitable for its use as an active element in conventional field effect transistors (FETs). Another problem with pristine graphene is its lack of solution processability, which inhibits it applications in numerous fields such as printed electronics, transparent conductors, nano-biodevices, and thin film technologies involving fuel cells, capacitors and solar cells. My thesis is focused on addressing theses issue by application of covalent chemistry on graphene. We have applied the Kolbe electro-oxidation strategy to achieve an efficient quasi-reversible electrochemical grafting of the naphthylmethyl radicals to graphene. The method facilitates reversible bandgap engineering in graphene and preparation of electrochemically erasable organic dielectric films. We have discovered that the zero-band-gap electronic structure of graphene enables it to function as either the diene or the dienophile in the Diels-Alder (DA) reaction, and this versatile synthetic method offers a powerful strategy for the reversible modification of the electronic properties of graphene under very mild conditions. We show that the application of the Diels-Alder (DA) chemistry to graphene, which is capable of simultaneous formation of a pair of sp3-carbon centers (balanced divacancies) in graphene, can selectively produce DA-modified graphene FET devices with mobility between 1,000-6,000 cm2V-1s-1 (with a variable range hopping transport mechanism). Most of the covalent chemistry applied on graphene leads to the change in hybridization of graphene sp2 carbon to sp3 (destructive hybridization) and the FET devices based on such covalently modified graphene shows a drastic reduction of device mobility. To this end, we find that the organometallic hexahapto metal complexation chemistry of graphene, in which the graphene pi-band constructively hybridizes with the vacant d-orbitals of transition metals, allows the fabrication of field effect devices which retain a high degree of the mobility with enhanced on-off ratio. In summary, we find that the singular electronic structure of graphene at the Dirac point governs the chemical reactivity of graphene and this chemistry will play a vital role in propelling graphene to assume its role as the next generation electronic material beyond silicon.

  16. Isoprenylated phenolic compounds with PTP1B inhibition from Morus alba.

    PubMed

    Huang, Qing-Hua; Lei, Chun; Wang, Pei-Pei; Li, Jing-Ya; Li, Jia; Hou, Ai-Jun

    2017-10-01

    Two new Diels-Alder adducts, albasins A and B (1 and 2), one new isoprenylated 2-arylbenzofuran, albasin C (3), one new isoprenylated flavone, albasin D (4), together with sixteen known phenolic compounds, were isolated from the root bark of Morus alba. Their structures were elucidated by extensive spectroscopic analysis, including NMR, MS, and ECD data. All the new compounds and most of the known ones showed significant inhibitory effects on PTP1B in vitro with IC 50 values ranging from 0.57 to 7.49μM. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. New cytotoxic diterpenylnaphthohydroquinone derivatives obtained from a natural diterpenoid.

    PubMed

    Miguel Del Corral, José M; Castro, M Angeles; Lucena Rodri Guez, M; Chamorro, Pablo; Cuevas, Carmen; San Feliciano, Arturo

    2007-09-01

    Diterpenylquinone/hydroquinone derivatives were prepared through Diels-Alder cycloaddition between natural myrcecommunic acid or its methyl ester and p-benzoquinone (p-BQ), using BF(3).Et(2)O as catalyst or under microwave (Mw) irradiation. Acetyl, methyl and benzyl derivatives of several diterpenylnaphthohydroquinone were prepared from cycloadducts following two basic synthetic strategies, either protection before aromatisation or viceversa. Some of them were further functionalised at the B-ring of the decaline core. Most of the new compounds were evaluated and some of them resulted cytotoxic against several tumour cell lines with IC(50) values under the microM level.

  18. Capturing Transient Endoperoxide in the Singlet Oxygen Oxidation of Guanine.

    PubMed

    Lu, Wenchao; Liu, Jianbo

    2016-02-24

    The chemistry of singlet O2 toward the guanine base of DNA is highly relevant to DNA lesion, mutation, cell death, and pathological conditions. This oxidative damage is initiated by the formation of a transient endoperoxide through the Diels-Alder cycloaddition of singlet O2 to the guanine imidazole ring. However, no endoperoxide formation was directly detected in native guanine or guanosine, even at -100 °C. Herein, gas-phase ion-molecule scattering mass spectrometry was utilized to capture unstable endoperoxides in the collisions of hydrated guanine ions (protonated or deprotonated) with singlet O2 at ambient temperature. Corroborated by results from potential energy surface exploration, kinetic modeling, and dynamics simulations, various aspects of endoperoxide formation and transformation (including its dependence on guanine ionization and hydration states, as well as on collision energy) were determined. This work has pieced together reaction mechanisms, kinetics, and dynamics data concerning the early stage of singlet O2 induced guanine oxidation, which is missing from conventional condensed-phase studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthesis and evaluation of functional alginate hydrogels based on click chemistry for drug delivery applications.

    PubMed

    García-Astrain, Clara; Avérous, Luc

    2018-06-15

    Environment-sensitive alginate-based hydrogels for drug delivery applications are receiving increasing attention. However, most work in this field involves traditional cross-linking strategies which led to hydrogels with poor long-term stability. Herein, a series of chemically cross-linked alginate hydrogels was synthesized via click chemistry using Diels-Alder reaction by reacting furan-modified alginate and bifunctional cross-linkers. Alginate was successfully functionalized with furfurylamine. Then, 3D architectures were synthesized with water-soluble bismaleimides. Different substitution degrees were achieved in order to study the effect of alginate modification and the cross-linking extent over the behaviour of the hydrogels. The ensuing hydrogels were analysed in terms of microstructure, swelling, structure modification and rheological behaviour. The materials response to external stimuli such as pH was also investigated, revealing a pulsatile behaviour in a large pH range (1-13) and a clear pH-dependent swelling. Finally, vanillin release studies were conducted to demonstrate the potential of these biobased materials for drug delivery applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. In Situ Forming, Cytocompatible, and Self-Recoverable Tough Hydrogels Based on Dual Ionic and Click Cross-Linked Alginate.

    PubMed

    Ghanian, Mohammad Hossein; Mirzadeh, Hamid; Baharvand, Hossein

    2018-05-14

    A dual cross-linking strategy was developed to answer the urgent need for fatigue-resistant, cytocompatible, and in situ forming tough hydrogels. Clickable, yet calcium-binding derivatives of alginate were synthesized by partial substitution of its carboxyl functionalities with furan, which could come into Diels-Alder click reaction with maleimide end groups of a four arm poly(ethylene glycol) cross-linker. Tuning the cooperative viscoelastic action of transient ionic and permanent click cross-links within the single network of alginate provided a soft tough hydrogel with a set of interesting features: (i) immediate self-recovery under cyclic loading, (ii) highly efficient and autonomous self-healing upon fracture, (iii) in situ forming ability for molding and minimally invasive injection, (iv) capability for viable cell encapsulation, and (v) reactivity for on-demand biomolecule conjugation. The facile strategy is applicable to a wide range of natural and synthetic polymers by introducing the calcium binding and click reacting functional groups and can broaden the use of tough hydrogels in load-bearing, cell-laden applications such as soft tissue engineering and bioactuators.

  1. Heterogeneous organocatalysis at work: functionalization of hollow periodic mesoporous organosilica spheres with MacMillan catalyst.

    PubMed

    Shi, Jiao Yi; Wang, Chang An; Li, Zhi Jun; Wang, Qiong; Zhang, Yuan; Wang, Wei

    2011-05-23

    We report a new method for the synthesis of hollow-structured phenylene-bridged periodic mesoporous organosilica (PMO) spheres with a uniform particle size of 100-200 nm using α-Fe(2)O(3) as a hard template. Based on this method, the hollow-structured phenylene PMO could be easily functionalized with MacMillan catalyst (H-PhPMO-Mac) by a co-condensation process and a "click chemistry" post-modification. The synthesized H-PhPMO-Mac catalyst has been found to exhibit high catalytic activity (98% yield, 81% enantiomeric excess (ee) for endo and 81% ee for exo) in asymmetric Diels-Alder reactions with water as solvent. The catalyst could be reused for at least seven runs without a significant loss of catalytic activity. Our results have also indicated that hollow-structured PMO spheres exhibit higher catalytic efficiency than solid (non-hollow) PMO spheres, and that catalysts prepared by the co-condensation process and "click chemistry" post-modification exhibit higher catalytic efficiency than those prepared by a grafting method. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. One-step hydroprocessing of fatty acids into renewable aromatic hydrocarbons over Ni/HZSM-5: insights into the major reaction pathways.

    PubMed

    Xing, Shiyou; Lv, Pengmei; Wang, Jiayan; Fu, Junying; Fan, Pei; Yang, Lingmei; Yang, Gaixiu; Yuan, Zhenhong; Chen, Yong

    2017-01-25

    For high caloricity and stability in bio-aviation fuels, a certain content of aromatic hydrocarbons (AHCs, 8-25 wt%) is crucial. Fatty acids, obtained from waste or inedible oils, are a renewable and economic feedstock for AHC production. Considerable amounts of AHCs, up to 64.61 wt%, were produced through the one-step hydroprocessing of fatty acids over Ni/HZSM-5 catalysts. Hydrogenation, hydrocracking, and aromatization constituted the principal AHC formation processes. At a lower temperature, fatty acids were first hydrosaturated and then hydrodeoxygenated at metal sites to form long-chain hydrocarbons. Alternatively, the unsaturated fatty acids could be directly deoxygenated at acid sites without first being saturated. The long-chain hydrocarbons were cracked into gases such as ethane, propane, and C 6 -C 8 olefins over the catalysts' Brønsted acid sites; these underwent Diels-Alder reactions on the catalysts' Lewis acid sites to form AHCs. C 6 -C 8 olefins were determined as critical intermediates for AHC formation. As the Ni content in the catalyst increased, the Brønsted-acid site density was reduced due to coverage by the metal nanoparticles. Good performance was achieved with a loading of 10 wt% Ni, where the Ni nanoparticles exhibited a polyhedral morphology which exposed more active sites for aromatization.

  3. Synthesis, Structure, and Molecular Recognition of S6 - and (SO2 )6 -Corona[6](het)arenes: Control of Macrocyclic Conformation and Properties by the Oxidation State of the Bridging Heteroatoms.

    PubMed

    Guo, Qing-Hui; Zhao, Liang; Wang, Mei-Xiang

    2016-05-10

    We report herein the synthesis, structure, and molecular recognition of S6 - and (SO2 )6 -corona[6](het)arenes, and demonstrate a unique and efficient strategy of regulating macrocyclic conformation and properties by adjusting the oxidation state of the heteroatom linkages. The one-pot nucleophilic aromatic substitution reaction of 1,4-benzenedithiol derivatives, biphenyl-4,4'-dithiol and 9,9-dipropyl-9H-fluorene-2,7-dithiol with 3,6-dichlorotetrazine afforded S6 -corona[3]arene[3]tetrazines. These compounds underwent inverse-electron-demand Diels-Alder reaction with enamines and norbornadiene to produce S6 -corona[3]arene[3]pyridazines. Facile oxidation of sulfide linkages yielded (SO2 )6 -corona[3]arene[3]pyridazines. All corona[6](het)arenes adopted generally hexagonal macrocyclic ring structures; however, their electronic properties and conformation could be fine-tuned by altering the oxidation state of the sulfur linkages. Whereas (SO2 )6 -corona[3]arene[3]pyridazines were electron-deficient, S6 -corona[3]arene[3]pyridazines acted as electron-rich macrocyclic hosts that recognized various organic cations in both aqueous and organic solutions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Iodine-Catalyzed Isomerization of Dimethyl Muconate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Settle, Amy E.; Berstis, Laura; Zhang, Shuting

    cis,cis-Muconic acid is a platform biobased chemical that can be upgraded to drop-in commodity and novel monomers. Among the possible drop-in products, dimethyl terephthalate can be synthesized via esterification, isomerization, Diels-Alder cycloaddition, and dehydrogenation. The isomerization of cis,cis-dimethyl muconate ( ccDMM) to the trans,trans-form ( ttDMM) can be catalyzed by iodine; however, studies have yet to address (i) the mechanism and reaction barriers unique to DMM, and (ii) the influence of solvent, potential for catalyst recycle, and recovery of high-purity ttDMM. To address this gap, we apply a joint computational and experimental approach to investigate iodine-catalyzed isomerization of DMM. Densitymore » functional theory calculations identified unique regiochemical considerations due to the large number of halogen-diene coordination schemes. Both transition state theory and experiments estimate significant barrier reductions with photodissociated iodine. Solvent selection was critical for rapid kinetics, likely due to solvent complexation with iodine. Under select conditions, ttDMM yields of 95% were achieved in <1 h with methanol, followed by high purity recovery (>98%) with crystallization. Lastly, post-reaction iodine can be recovered and recycled with minimal loss of activity. Altogether, these findings provide new insight into the mechanism and conditions necessary for DMM isomerization with iodine to advance the state-of-the-art for biobased chemicals.« less

  5. Iodine-Catalyzed Isomerization of Dimethyl Muconate

    DOE PAGES

    Settle, Amy E.; Berstis, Laura; Zhang, Shuting; ...

    2018-04-16

    cis,cis-Muconic acid is a platform biobased chemical that can be upgraded to drop-in commodity and novel monomers. Among the possible drop-in products, dimethyl terephthalate can be synthesized via esterification, isomerization, Diels-Alder cycloaddition, and dehydrogenation. The isomerization of cis,cis-dimethyl muconate ( ccDMM) to the trans,trans-form ( ttDMM) can be catalyzed by iodine; however, studies have yet to address (i) the mechanism and reaction barriers unique to DMM, and (ii) the influence of solvent, potential for catalyst recycle, and recovery of high-purity ttDMM. To address this gap, we apply a joint computational and experimental approach to investigate iodine-catalyzed isomerization of DMM. Densitymore » functional theory calculations identified unique regiochemical considerations due to the large number of halogen-diene coordination schemes. Both transition state theory and experiments estimate significant barrier reductions with photodissociated iodine. Solvent selection was critical for rapid kinetics, likely due to solvent complexation with iodine. Under select conditions, ttDMM yields of 95% were achieved in <1 h with methanol, followed by high purity recovery (>98%) with crystallization. Lastly, post-reaction iodine can be recovered and recycled with minimal loss of activity. Altogether, these findings provide new insight into the mechanism and conditions necessary for DMM isomerization with iodine to advance the state-of-the-art for biobased chemicals.« less

  6. The Chirped-Pulse Fourier Transform Microwave Cp-Ftmw Spectrum and Potential Energy Calculations for AN Aromatic Claisen Rearrangement Molecule, Allyl Phenyl Ether

    NASA Astrophysics Data System (ADS)

    Grubbs, G. S. Grubbs, Ii; Cooke, S. A.; Novick, Stewart E.

    2012-06-01

    Claisen rearrangement ethers are a fundamental organic, pericyclic rearrangement reaction reagent. In the mechanism of a Claisen rearrangement, a vinyl allyl ether is needed to provide the necessary Lewis acid/base sites on the molecule for the rearrangement and are simply heated. This rearrangement was first discovered by heating up the title molecule, allyl phenyl ether. However, much like the Diels-Alder, Cope, and other pericyclic reactions, conformation and coordination of chemical groups is key to the Claisen mechanism. In this study, the authors present some structural characteristics of allyl phenyl ether from an analysis of the microwave spectra in the 8-14 GHz region using a CP-FTMW spectrometer. This is, to the authors knowledge, the first known microwave region study of the title molecule. Three conformers have been observed and assigned to date and will be discussed. Along with the rotational spectra, geometry calculations and potential energy surfaces performed at the MP2/6-311G++(3d,2p) level will be discussed and compared to the experimental results. Modeling the Claisen aromatic rearrangement mechanism using CP-FTMW spectroscopy will also be discussed. L. Claisen Chemische Berichte 45, 3157, October 1912.

  7. Comparison of sugar molecule decomposition through glucose and fructose: a high-level quantum chemical study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assary, R. S.; Curtiss, L. A.; MSD)

    Efficient chemical conversion of biomass is essential to produce sustainable energy and industrial chemicals. Industrial level conversion of glucose to useful chemicals, such as furfural, hydroxymethylfurfural, and levulinic acid, is a major step in the biomass conversion but is difficult because of the formation of undesired products and side reactions. To understand the molecular level reaction mechanisms involved in the decomposition of glucose and fructose, we have carried out high-level quantum chemical calculations [Gaussian-4 (G4) theory]. Selective 1,2-dehydration, keto-enol tautomerization, isomerization, retro-aldol condensation, and hydride shifts of glucose and fructose molecules were investigated. Detailed kinetic and thermodynamic analyses indicate that,more » for acyclic glucose and fructose molecules, the dehydration and isomerization require larger activation barriers compared to the retro-aldol reaction at 298 K in neutral medium. The retro-aldol reaction results in the formation of C2 and C4 species from glucose and C3 species from fructose. The formation of the most stable C3 species, dihydroxyacetone from fructose, is thermodynamically downhill. The 1,3-hydride shift leads to the cleavage of the C-C bond in the acyclic species; however, the enthalpy of activation is significantly higher (50-55 kcal/mol) than that of the retro-aldol reaction (38 kcal/mol) mainly because of the sterically hindered distorted four-membered transition state compared to the hexa-membered transition state in the retro-aldol reaction. Both tautomerization and dehydration are catalyzed by a water molecule in aqueous medium; however, water has little effect on the retro-aldol reaction. Isomerization of glucose to fructose and glyceraldehyde to dihydroxyacetone proceeds through hydride shifts that require an activation enthalpy of about 40 kcal/mol at 298 K in water medium. This investigation maps out accurate energetics of the decomposition of glucose and fructose molecules that is needed to help find more efficient catalysts for the conversion of hexose to useful chemicals.« less

  8. Automated Transition State Search and Its Application to Diverse Types of Organic Reactions.

    PubMed

    Jacobson, Leif D; Bochevarov, Art D; Watson, Mark A; Hughes, Thomas F; Rinaldo, David; Ehrlich, Stephan; Steinbrecher, Thomas B; Vaitheeswaran, S; Philipp, Dean M; Halls, Mathew D; Friesner, Richard A

    2017-11-14

    Transition state search is at the center of multiple types of computational chemical predictions related to mechanistic investigations, reactivity and regioselectivity predictions, and catalyst design. The process of finding transition states in practice is, however, a laborious multistep operation that requires significant user involvement. Here, we report a highly automated workflow designed to locate transition states for a given elementary reaction with minimal setup overhead. The only essential inputs required from the user are the structures of the separated reactants and products. The seamless workflow combining computational technologies from the fields of cheminformatics, molecular mechanics, and quantum chemistry automatically finds the most probable correspondence between the atoms in the reactants and the products, generates a transition state guess, launches a transition state search through a combined approach involving the relaxing string method and the quadratic synchronous transit, and finally validates the transition state via the analysis of the reactive chemical bonds and imaginary vibrational frequencies as well as by the intrinsic reaction coordinate method. Our approach does not target any specific reaction type, nor does it depend on training data; instead, it is meant to be of general applicability for a wide variety of reaction types. The workflow is highly flexible, permitting modifications such as a choice of accuracy, level of theory, basis set, or solvation treatment. Successfully located transition states can be used for setting up transition state guesses in related reactions, saving computational time and increasing the probability of success. The utility and performance of the method are demonstrated in applications to transition state searches in reactions typical for organic chemistry, medicinal chemistry, and homogeneous catalysis research. In particular, applications of our code to Michael additions, hydrogen abstractions, Diels-Alder cycloadditions, carbene insertions, and an enzyme reaction model involving a molybdenum complex are shown and discussed.

  9. Impact of reaction products from building materials and furnishings on indoor air quality—A review of recent advances in indoor chemistry

    NASA Astrophysics Data System (ADS)

    Uhde, E.; Salthammer, T.

    The variety of chemical substances present in modern building products, household products and furnishings provides potential for chemical reactions in the material (case 1), on the material surface (case 2) and in the gas phase (case 3). Such "indoor chemistry" is known as one of the main reasons for primary and secondary emissions. The conditions of production often cause unwanted side reactions and a number of new compounds can be found in finished products. Elevated temperatures are responsible for the degradation of cellulose, decomposition of non-heat-resistant additives and other thermally induced reactions like Diels-Alder synthesis. Heterogeneous chemistry takes place on the surface of materials. Well-known examples are the formation of aliphatic aldehydes from the oxidation of unsaturated fatty acids or the cleavage of photoinitiators under the influence of light. In case of composite flooring structures hydrolysis is one of the major pathways for the appearance of alcohols from esters. If different kinds of material are fixed together, emissions of new VOCs formed by inter-species reactions are possible. Other indoor air pollutants are formed by rearrangement of cleavage products or by metabolism. Compounds with -C dbnd C- bonds like terpenes, styrene, 4-phenylcyclohexene, etc. undergo gas phase reactions with O 3, NO x, OH and other reactive gases. It has been shown that such products derived from indoor-related reactions may have a negative impact on indoor air quality due to their low odor threshold or health-related properties. Therefore, the understanding of primary and secondary emissions and the chemical processes behind is essential for the evaluation of indoor air quality. This publication gives an overview on the current state of research and new findings regarding primary and secondary emissions from building products and furnishings.

  10. Flavoenzymes: Versatile Catalysts in Biosynthetic Pathways

    PubMed Central

    Walsh, Christopher T.; Wencewicz, Timothy A.

    2012-01-01

    Riboflavin-based coenzymes, tightly bound to enzymes catalyzing substrate oxidations and reductions, enable an enormous range of chemical transformations in biosynthetic pathways. Flavoenzymes catalyze substrate oxidations involving amine and alcohol oxidations and desaturations to olefins, the latter setting up Diels-Alder cyclizations in lovastatin and solanapyrone biosyntheses. Both C4a and N5 of the flavin coenzymes are sites for covalent adduct formation. For example, the reactivity of dihydroflavins with molecular oxygen leads to flavin-4a-OOH adducts which then carry out a diverse range of oxygen transfers, including Baeyer-Villiger type ring expansions, olefin epoxidations, halogenations via transient HOCl generation, and an oxidative Favorskii rerrangement during enterocin assembly. PMID:23051833

  11. Flavoenzymes: versatile catalysts in biosynthetic pathways.

    PubMed

    Walsh, Christopher T; Wencewicz, Timothy A

    2013-01-01

    Riboflavin-based coenzymes, tightly bound to enzymes catalyzing substrate oxidations and reductions, enable an enormous range of chemical transformations in biosynthetic pathways. Flavoenzymes catalyze substrate oxidations involving amine and alcohol oxidations and desaturations to olefins, the latter setting up Diels-Alder cyclizations in lovastatin and solanapyrone biosyntheses. Both C(4a) and N(5) of the flavin coenzymes are sites for covalent adduct formation. For example, the reactivity of dihydroflavins with molecular oxygen leads to flavin-4a-OOH adducts which then carry out a diverse range of oxygen transfers, including Baeyer-Villiger type ring expansions, olefin epoxidations, halogenations via transient HOCl generation, and an oxidative Favorskii rerrangement during enterocin assembly.

  12. Flavonol dimers from callus cultures of Dysosma versipellis and their in vitro neuraminidase inhibitory activities.

    PubMed

    Chen, Ridao; Duan, Ruigang; Wei, Yannan; Zou, Jianhua; Li, Junwei; Liu, Xiaoyue; Wang, Haiyan; Guo, Ying; Li, Qiuhong; Dai, Jungui

    2015-12-01

    A chemical investigation of callus cultures of Dysosma versipellis led to the isolation of five new flavonol dimers, dysoverines A-E (1-5), together with 12 known compounds (6-17). The structures of new compounds were determined by the extensive spectroscopic data analyses. The biosynthetic pathway of the new compounds was proposed to involve O-methylation, prenylation, and Diels-Alder cycloaddition, which successively occurred in cultured plant cells. Compounds 1-17 exhibited in vitro neuraminidase inhibitory activities with the IC50 values of 31.0-93.9μM. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Evaluation of anti-inflammatory activity of prenylated substances isolated from Morus alba and Morus nigra.

    PubMed

    Zelová, Hana; Hanáková, Zuzana; Čermáková, Zuzana; Šmejkal, Karel; Dalĺ Acqua, Stefano; Babula, Petr; Cvačka, Josef; Hošek, Jan

    2014-06-27

    Chromatographic separation of root extracts of Morus alba and M. nigra led to the identification of the 2-arylbenzofurans moracin C (1), mulberrofuran Y (2), and mulberrofuran H (3), and the prenylated flavonoids kuwanon E (4), kuwanon C (5), sanggenon H (6), cudraflavone B (7), and morusinol (8), and the Diels-Alder adducts soroceal (9), and sanggenon E (10). The cytotoxicity and their antiphlogistic activity, determined as the attenuation of the secretion of TNF-α and IL-1β and the inhibition of NF-κB nuclear translocation in LPS-stimulated macrophages, were evaluated for compounds 1-10.

  14. Synthesis of Renewable meta-Xylylenediamine from Biomass-Derived Furfural.

    PubMed

    Scodeller, Ivan; Mansouri, Samir; Morvan, Didier; Muller, Eric; de Oliveira Vigier, Karine; Wischert, Raphael; Jérôme, François

    2018-04-30

    We report the synthesis of biomass-derived functionalized aromatic chemicals from furfural, a building block nowadays available in large scale from low-cost biomass. The scientific strategy relies on a Diels-Alder/aromatization sequence. By controlling the rate of each step, it was possible to produce exclusively the meta aromatic isomer. In particular, through this route, we describe the synthesis of renewably sourced meta-xylylenediamine (MXD). Transposition of this work to other furfural-derived chemicals is also discussed and reveals that functionalized biomass-derived aromatics (benzaldehyde, benzylamine, etc.) can be potentially produced, according to this route. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthetic cyclohexenyl chalcone natural products possess cytotoxic activities against prostate cancer cells and inhibit cysteine cathepsins in vitro.

    PubMed

    Deb Majumdar, Ishita; Devanabanda, Arvind; Fox, Benjamin; Schwartzman, Jacob; Cong, Huan; Porco, John A; Weber, Horst C

    2011-12-16

    A number of cyclohexenyl chalcone Diels-Alder natural products possess promising biological properties including strong cytotoxicity in various human cancer cells. Herein, we show that natural products in this class including panduratin A and nicolaioidesin C inhibit cysteine cathepsins as indicated by protease profiling assays and cell-free cathepsin L enzyme assays. Owing to the critical roles of cathepsins in the biology of human tumor progression, invasion, and metastasis, these findings should pave the way for development of novel antitumor agents for use in clinical settings. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. The Nitrosocarbonyl Hetero-Diels–Alder Reaction as a Useful Tool for Organic Syntheses

    PubMed Central

    Bodnar, Brian S.

    2014-01-01

    Organic transformations that result in the formation of multiple covalent bonds within the same reaction are some of the most powerful tools in synthetic organic chemistry. Nitrosocarbonyl hetero-Diels–Alder (HDA) reactions allow for the simultaneous stereospecific introduction of carbon–nitrogen and carbon–oxygen bonds in one synthetic step, and provide direct access to 3,6-dihydro-1,2-oxazines. This Review describes the development of the nitrosocarbonyl HDA reaction and the utility of the resulting oxazine ring in the synthesis of a variety of important, biologically active molecules. PMID:21520360

  17. Diels–Alder Reactions of Allene with Benzene and Butadiene: Concerted, Stepwise, and Ambimodal Transition States

    PubMed Central

    2015-01-01

    Multiconfigurational complete active space methods (CASSCF and CASPT2) have been used to investigate the (4 + 2) cycloadditions of allene with butadiene and with benzene. Both concerted and stepwise radical pathways were examined to determine the mechanism of the Diels–Alder reactions with an allene dienophile. Reaction with butadiene occurs via a single ambimodal transition state that can lead to either the concerted or stepwise trajectories along the potential energy surface, while reaction with benzene involves two separate transition states and favors the concerted mechanism relative to the stepwise mechanism via a diradical intermediate. PMID:25216056

  18. A highly sensitive method for analysis of 7-dehydrocholesterol for the study of Smith-Lemli-Opitz syndrome[S

    PubMed Central

    Liu, Wei; Xu, Libin; Lamberson, Connor; Haas, Dorothea; Korade, Zeljka; Porter, Ned A.

    2014-01-01

    We describe a highly sensitive method for the detection of 7-dehydrocholesterol (7-DHC), the biosynthetic precursor of cholesterol, based on its reactivity with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) in a Diels-Alder cycloaddition reaction. Samples of biological tissues and fluids with added deuterium-labeled internal standards were derivatized with PTAD and analyzed by LC-MS. This protocol permits fast processing of samples, short chromatography times, and high sensitivity. We applied this method to the analysis of cells, blood, and tissues from several sources, including human plasma. Another innovative aspect of this study is that it provides a reliable and highly reproducible measurement of 7-DHC in 7-dehydrocholesterol reductase (Dhcr7)-HET mouse (a model for Smith-Lemli-Opitz syndrome) samples, showing regional differences in the brain tissue. We found that the levels of 7-DHC are consistently higher in Dhcr7-HET mice than in controls, with the spinal cord and peripheral nerve showing the biggest differences. In addition to 7-DHC, sensitive analysis of desmosterol in tissues and blood was also accomplished with this PTAD method by assaying adducts formed from the PTAD “ene” reaction. The method reported here may provide a highly sensitive and high throughput way to identify at-risk populations having errors in cholesterol biosynthesis. PMID:24259532

  19. Cytotoxic effects of new synthesis heterocyclic derivatives of Amoxicillin on some cancer cell lines

    NASA Astrophysics Data System (ADS)

    Al-Rawi, M. S.; Hussei, D. F.; Al-Taie, A. F.; Al-Halbosiy, M. M.; Hameed, B. A.

    2018-05-01

    A new Schiff base [I] was prepared by refluxing Amoxicillin trihydrate and 4-Hydroxy- 3,5-dimethoxybenzaldehyde in aqueous methanol solution using glacial acetic acid as a catalyst. The new 1,3-oxazepine derivative [II] was obtained by Diels- Alder reaction of Schiff base [I] with phthalic anhydride in dry benzene. The reaction of Schiff base [I] with thioglycolic acid in dry benzene led to the formation of thiazolidin-4-one derivative [III]. While the imidazolidin-4-one [IV] derivative was produced by reacting the mentioned Schiff base [I] with glycine and triethylamine in ethanol for 9 hrs. Tetrazole derivative [V] was synthesized by refluxing Schiff base [I] with sodium azide in dimethylformamid DMF. The structure of synthesized compounds[I-V] was characterized by their melting points, elemental analysis CHN-S and by their spectral data; FTIR and 1H NMR spectroscopy. Two cancer cell lines include: (RD) human pelvic rhabdomyosarcoma and (L20B) the mice intestines carcinoma cell line (which expresses the genes for human cellular receptor for Polio viruses) were used in this study. The cytotoxic effect of different concentrations of all the synthesized compounds for 48 hrs was examined. All compounds except [IV] and [V] showed less than 50% inhibition for (L20B), while these compounds exhibit inhibition more than 50% inhibition for (RD).

  20. One-pot synthesis, biological evaluation, and docking study of new chromeno-annulated thiopyrano[2,3-c]pyrazoles.

    PubMed

    Parmar, Bhagyashri D; Sutariya, Tushar R; Brahmbhatt, Gaurangkumar C; Parmar, Narsidas J; Kant, Rajni; Gupta, Vivek K; Murumkar, Prashant R; Sharma, Mayank Kumar; Yadav, Mange Ram

    2016-08-01

    A one-pot synthesis of new chromeno-annulated thiopyrano[2,3-c]pyrazoles has been achieved through a domino-Knoevenagel-hetero-Diels-Alder reaction after combining various pyrazol-5-thiones with O-alkenyloxy/alkynyloxy-salicylaldehydes/naphthaldehydes in a Brønsted acidic ionic liquid, [Hmim]HSO[Formula: see text], methylimidazolium hydrogen sulphate, under microwave irradiation. The method is simple and in many cases the isolated products did not require further purification. The central pyranothiopyranyl cis-fusion was confirmed by 2D NMR NOESY and single-crystal X-ray analysis suggesting that the endo-E-Syn transition state would be the most favored pathway of the reaction. Many heterocycles of this new series were found active against six bacterial and two fungal strains. In addition, all the compounds possess good anti-oxidant activity with the ferric reducing anti-oxidant power value [Formula: see text]. All new structures were docked into active site of angiotensin I converting enzyme (ACE), assuming that the compounds possessed the anti-hypertensive activity potential on the basis of prediction of activity spectra of substances prediction results. Pyranyl ring oxygen in compound 9a forms two hydrogen bonds with HIS353 and HIS513 residues in the active site of the ACE having good G score ([Formula: see text]) of this compound, comparable to that of the reference drug captopril ([Formula: see text]).

  1. Iodine-Catalyzed Isomerization of Dimethyl Muconate.

    PubMed

    Settle, Amy E; Berstis, Laura; Zhang, Shuting; Rorrer, Nicholas A; Hu, Haiming; Richards, Ryan M; Beckham, Gregg T; Crowley, Michael F; Vardon, Derek R

    2018-06-11

    cis,cis-Muconic acid is a platform bio-based chemical that can be upgraded to drop-in commodity and novel monomers. Among the possible drop-in products, dimethyl terephthalate can be synthesized via esterification, isomerization, Diels-Alder cycloaddition, and dehydrogenation. The isomerization of cis,cis-dimethyl muconate (ccDMM) to the trans,trans-form (ttDMM) can be catalyzed by iodine; however, studies have yet to address (i) the mechanism and reaction barriers unique to DMM, and (ii) the influence of solvent, potential for catalyst recycle, and recovery of high-purity ttDMM. To address this gap, we apply a joint computational and experimental approach to investigate iodine-catalyzed isomerization of DMM. Density functional theory calculations identified unique regiochemical considerations owing to the large number of halogen-diene coordination schemes. Both transition state theory and experiments estimate significant barrier reductions with photodissociated iodine. Solvent selection was critical for rapid kinetics, likely because of solvent complexation with iodine. Under select conditions, ttDMM yields of 95 % were achieved in <1 h with methanol, followed by high purity recovery (>98 %) with crystallization. Lastly, post-reaction iodine can be recovered and recycled with minimal loss of activity. Overall, these findings provide new insight into the mechanism and conditions necessary for DMM isomerization with iodine to advance the state-of-the-art for bio-based chemicals. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Sequential one-pot addition of excess aryl-Grignard reagents and electrophiles to O-alkyl thioformates.

    PubMed

    Murai, Toshiaki; Morikawa, Kenta; Maruyama, Toshifumi

    2013-09-23

    The sequential addition of aromatic Grignard reagents to O-alkyl thioformates proceeded to completion within 30 s to give aryl benzylic sulfanes in good yields. This reaction may begin with the nucleophilic attack of the Grignard reagent onto the carbon atom of the O-alkyl thioformates, followed by the elimination of ROMgBr to generate aromatic thioaldehydes, which then react with a second molecule of the Grignard reagent at the sulfur atom to form arylsulfanyl benzylic Grignard reagents. To confirm the generation of aromatic thioaldehydes, the reaction between O-alkyl thioformates and phenyl Grignard reagent was carried out in the presence of cyclopentadiene. As a result, hetero-Diels-Alder adducts of the thioaldehyde and the diene were formed. The treatment of a mixture of the thioformate and phenyl Grignard reagent with iodine gave 1,2-bis(phenylsulfanyl)-1,2-diphenyl ethane as a product, which indicated the formation of arylsulfanyl benzylic Grignard reagents in the reaction mixture. When electrophiles were added to the Grignard reagents that were generated in situ, four-component coupling products, that is, O-alkyl thioformates, two molecules of Grignard reagents, and electrophiles, were obtained in moderate-to-good yields. The use of silyl chloride or allylic bromides gave the adducts within 5 min, whereas the reaction with benzylic halides required more than 30 min. The addition to carbonyl compounds was complete within 1 min and the use of lithium bromide as an additive enhanced the yields of the four-component coupling products. Finally, oxiranes and imines also participated in the coupling reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Radialenes are minimally conjugated cyclic π-systems

    NASA Astrophysics Data System (ADS)

    Dias, Jerry Ray

    2017-03-01

    Conjugation energy (CE) in benzene is larger than its aromatic stabilisation energy (ASE). A far-reaching conclusion offered by this work is that per π-electron, CE is energetically larger than aromaticity. If a diene has a doubly degenerate HOMO, then its Diels-Alder reaction will be kinetically faster than a similar diene with a nondegenerate HOMO. The topological conjugation energy (TCE) for the radialene, monocyclic, dendralene, and linear polyene series has quite different trends. Radialenes are minimally conjugated cyclic systems with the TCE/No. π-bond = 0.432 β; the members of the dendralene series approach this same value from smaller values with increasing size. With increasing size, the members of the monocyclic and linear polyene series have, respectively, decreasing and increasing TCE/No. π-bond values approaching 0.547 β. Topological resonance energy (TRE) for radialenes, dendralenes, and linear polyenes all have TRE = 0, and the TRE/π-electron for monocyclic polyenes has alternating declining values between antiaromatic (-0.3066 β, -0.07435 β, -0.03287 β, …) and aromatic (0.04543 β, 0.01594 β, 0.00807 β, …). For benzene, TRE/No. π-bond = 0.0909 β and TCE/No. π-bond = 0.576 β.

  4. A microwave assisted intramolecular-furan-Diels–Alder approach to 4-substituted indoles†

    PubMed Central

    Petronijevic, Filip; Timmons, Cody; Cuzzupe, Anthony; Wipf, Peter

    2009-01-01

    The key steps of a versatile new protocol for the convergent synthesis of 3,4-disubstituted indoles are the addition of an α-lithiated alkylaminofuran to a carbonyl compound, a microwave-accelerated intramolecular Diels–Alder cycloaddition and an in situ double aromatization reaction. PMID:19082013

  5. New cytotoxic and anti-inflammatory compounds isolated from Morus alba L.

    PubMed

    Qin, Jing; Fan, Min; He, Juan; Wu, Xing-De; Peng, Li-Yan; Su, Jia; Cheng, Xiao; Li, Yan; Kong, Ling-Mei; Li, Rong-Tao; Zhao, Qin-Shi

    2015-01-01

    Six Diels-Alder adducts (1-6) and nine prenylated flavanones (7-15) were isolated from the root bark of Morus alba L. Among them, soroceal B (1) and sanggenol Q (7) were new compounds. Their structures were elucidated on the basis of extensive spectroscopic methods, including 1D and 2D NMR techniques. Compounds 1-3, 9, 10, 12, 13 and 15 exhibited cytotoxic activity against five human tumour lines and compound 2 inhibited significantly selective cytotoxic activities towards HL-60 and AGS cells with IC50 of 3.4 and 3.6 μM. Compounds 3, 5, 9 and 12 exhibited moderate inhibitory activity against nitric oxide production in LPS-activated RAW264.7.

  6. Chemical Control over T-Cell Activation in Vivo Using Deprotection of trans-Cyclooctene-Modified Epitopes.

    PubMed

    van der Gracht, Anouk M F; de Geus, Mark A R; Camps, Marcel G M; Ruckwardt, Tracy J; Sarris, Alexi J C; Bremmers, Jessica; Maurits, Elmer; Pawlak, Joanna B; Posthoorn, Michelle M; Bonger, Kimberly M; Filippov, Dmitri V; Overkleeft, Herman S; Robillard, Marc S; Ossendorp, Ferry; van Kasteren, Sander I

    2018-06-15

    Activation of a cytotoxic T-cell is a complex multistep process, and tools to study the molecular events and their dynamics that result in T-cell activation in situ and in vivo are scarce. Here, we report the design and use of conditional epitopes for time-controlled T-cell activation in vivo. We show that trans-cyclooctene-protected SIINFEKL (with the lysine amine masked) is unable to elicit the T-cell response characteristic for the free SIINFEKL epitope. Epitope uncaging by means of an inverse-electron demand Diels-Alder (IEDDA) event restored T-cell activation and provided temporal control of T-cell proliferation in vivo.

  7. Isomerization and Fragmentation of Cyclohexanone in a Heated Micro-Reactor.

    PubMed

    Porterfield, Jessica P; Nguyen, Thanh Lam; Baraban, Joshua H; Buckingham, Grant T; Troy, Tyler P; Kostko, Oleg; Ahmed, Musahid; Stanton, John F; Daily, John W; Ellison, G Barney

    2015-12-24

    The thermal decomposition of cyclohexanone (C6H10═O) has been studied in a set of flash-pyrolysis microreactors. Decomposition of the ketone was observed when dilute samples of C6H10═O were heated to 1200 K in a continuous flow microreactor. Pyrolysis products were detected and identified by tunable VUV photoionization mass spectroscopy and by photoionization appearance thresholds. Complementary product identification was provided by matrix infrared absorption spectroscopy. Pyrolysis pressures were roughly 100 Torr, and contact times with the microreactors were roughly 100 μs. Thermal cracking of cyclohexanone appeared to result from a variety of competing pathways, all of which open roughly simultaneously. Isomerization of cyclohexanone to the enol, cyclohexen-1-ol (C6H9OH), is followed by retro-Diels-Alder cleavage to CH2═CH2 and CH2═C(OH)-CH═CH2. Further isomerization of CH2═C(OH)-CH═CH2 to methyl vinyl ketone (CH3CO-CH═CH2, MVK) was also observed. Photoionization spectra identified both enols, C6H9OH and CH2═C(OH)-CH═CH2, and the ionization threshold of C6H9OH was measured to be 8.2 ± 0.1 eV. Coupled cluster electronic structure calculations were used to establish the energetics of MVK. The heats of formation of MVK and its enol were calculated to be ΔfH298(cis-CH3CO-CH═CH2) = -26.1 ± 0.5 kcal mol(-1) and ΔfH298(s-cis-1-CH2═C(OH)-CH═CH2) = -13.7 ± 0.5 kcal mol(-1). The reaction enthalpy ΔrxnH298(C6H10═O → CH2═CH2 + s-cis-1-CH2═C(OH)-CH═CH2) is 53 ± 1 kcal mol(-1) and ΔrxnH298(C6H10═O → CH2═CH2 + cis-CH3CO-CH═CH2) is 41 ± 1 kcal mol(-1). At 1200 K, the products of cyclohexanone pyrolysis were found to be C6H9OH, CH2═C(OH)-CH═CH2, MVK, CH2CHCH2, CO, CH2═C═O, CH3, CH2═C═CH2, CH2═CH-CH═CH2, CH2═CHCH2CH3, CH2═CH2, and HC≡CH.

  8. Site-specific chemical conjugation of human Fas ligand extracellular domain using trans-cyclooctene - methyltetrazine reactions.

    PubMed

    Muraki, Michiro; Hirota, Kiyonori

    2017-07-03

    Fas ligand plays a key role in the human immune system as a major cell death inducing protein. The extracellular domain of human Fas ligand (hFasLECD) triggers apoptosis of malignant cells, and therefore is expected to have substantial potentials in medical biotechnology. However, the current application of this protein to clinical medicine is hampered by a shortage of the benefits relative to the drawbacks including the side-effects in systemic administration. Effective procedures for the engineering of the protein by attaching useful additional functions are required to overcome the problem. A procedure for the site-specific chemical conjugation of hFasLECD with a fluorochrome and functional proteins was devised using an inverse-electron-demand Diels-Alder reaction between trans-cyclooctene group and methyltetrazine group. The conjugations in the present study were attained by using much less molar excess amounts of the compounds to be attached as compared with the conventional chemical modification reactions using maleimide derivatives in the previous study. The isolated conjugates of hFasLECD with sulfo-Cy3, avidin and rabbit IgG Fab' domain presented the functional and the structural integrities of the attached molecules without impairing the specific binding activity toward human Fas receptor extracellular domain. The present study provided a new fundamental strategy for the production of the engineered hFasLECDs with additional beneficial functions, which will lead to the developments of the improved diagnostic systems and the effective treatment methods of serious diseases by using this protein as a component of novel molecular tools.

  9. Click Chemistry and Radiochemistry: The First 10 Years.

    PubMed

    Meyer, Jan-Philip; Adumeau, Pierre; Lewis, Jason S; Zeglis, Brian M

    2016-12-21

    The advent of click chemistry has had a profound influence on almost all branches of chemical science. This is particularly true of radiochemistry and the synthesis of agents for positron emission tomography (PET), single photon emission computed tomography (SPECT), and targeted radiotherapy. The selectivity, ease, rapidity, and modularity of click ligations make them nearly ideally suited for the construction of radiotracers, a process that often involves working with biomolecules in aqueous conditions with inexorably decaying radioisotopes. In the following pages, our goal is to provide a broad overview of the first 10 years of research at the intersection of click chemistry and radiochemistry. The discussion will focus on four areas that we believe underscore the critical advantages provided by click chemistry: (i) the use of prosthetic groups for radiolabeling reactions, (ii) the creation of coordination scaffolds for radiometals, (iii) the site-specific radiolabeling of proteins and peptides, and (iv) the development of strategies for in vivo pretargeting. Particular emphasis will be placed on the four most prevalent click reactions-the Cu-catalyzed azide-alkyne cycloaddition (CuAAC), the strain-promoted azide-alkyne cycloaddition (SPAAC), the inverse electron demand Diels-Alder reaction (IEDDA), and the Staudinger ligation-although less well-known click ligations will be discussed as well. Ultimately, it is our hope that this review will not only serve to educate readers but will also act as a springboard, inspiring synthetic chemists and radiochemists alike to harness click chemistry in even more innovative and ambitious ways as we embark upon the second decade of this fruitful collaboration.

  10. Construction and application of a new dual-hybrid random phase approximation.

    PubMed

    Mezei, Pál D; Csonka, Gábor I; Ruzsinszky, Adrienn; Kállay, Mihály

    2015-10-13

    The direct random phase approximation (dRPA) combined with Kohn-Sham reference orbitals is among the most promising tools in computational chemistry and applicable in many areas of chemistry and physics. The reason for this is that it scales as N(4) with the system size, which is a considerable advantage over the accurate ab initio wave function methods like standard coupled-cluster. dRPA also yields a considerably more accurate description of thermodynamic and electronic properties than standard density-functional theory methods. It is also able to describe strong static electron correlation effects even in large systems with a small or vanishing band gap missed by common single-reference methods. However, dRPA has several flaws due to its self-correlation error. In order to obtain accurate and precise reaction energies, barriers and noncovalent intra- and intermolecular interactions, we construct a new dual-hybrid dRPA (hybridization of exact and semilocal exchange in both the energy and the orbitals) and test the performance of this new functional on isogyric, isodesmic, hypohomodesmotic, homodesmotic, and hyperhomodesmotic reaction classes. We also use a test set of 14 Diels-Alder reactions, six atomization energies (AE6), 38 hydrocarbon atomization energies, and 100 reaction barrier heights (DBH24, HT-BH38, and NHT-BH38). For noncovalent complexes, we use the NCCE31 and S22 test sets. To test the intramolecular interactions, we use a set of alkane, cysteine, phenylalanine-glycine-glycine tripeptide, and monosaccharide conformers. We also discuss the delocalization and static correlation errors. We show that a universally accurate description of chemical properties can be provided by a large, 75% exact exchange mixing both in the calculation of the reference orbitals and the final energy.

  11. Advances in quantum and molecular mechanical (QM/MM) simulations for organic and enzymatic reactions.

    PubMed

    Acevedo, Orlando; Jorgensen, William L

    2010-01-19

    Application of combined quantum and molecular mechanical (QM/MM) methods focuses on predicting activation barriers and the structures of stationary points for organic and enzymatic reactions. Characterization of the factors that stabilize transition structures in solution and in enzyme active sites provides a basis for design and optimization of catalysts. Continued technological advances allowed for expansion from prototypical cases to mechanistic studies featuring detailed enzyme and condensed-phase environments with full integration of the QM calculations and configurational sampling. This required improved algorithms featuring fast QM methods, advances in computing changes in free energies including free-energy perturbation (FEP) calculations, and enhanced configurational sampling. In particular, the present Account highlights development of the PDDG/PM3 semi-empirical QM method, computation of multi-dimensional potentials of mean force (PMF), incorporation of on-the-fly QM in Monte Carlo (MC) simulations, and a polynomial quadrature method for efficient modeling of proton-transfer reactions. The utility of this QM/MM/MC/FEP methodology is illustrated for a variety of organic reactions including substitution, decarboxylation, elimination, and pericyclic reactions. A comparison to experimental kinetic results on medium effects has verified the accuracy of the QM/MM approach in the full range of solvents from hydrocarbons to water to ionic liquids. Corresponding results from ab initio and density functional theory (DFT) methods with continuum-based treatments of solvation reveal deficiencies, particularly for protic solvents. Also summarized in this Account are three specific QM/MM applications to biomolecular systems: (1) a recent study that clarified the mechanism for the reaction of 2-pyrone derivatives catalyzed by macrophomate synthase as a tandem Michael-aldol sequence rather than a Diels-Alder reaction, (2) elucidation of the mechanism of action of fatty acid amide hydrolase (FAAH), an unusual Ser-Ser-Lys proteolytic enzyme, and (3) the construction of enzymes for Kemp elimination of 5-nitrobenzisoxazole that highlights the utility of QM/MM in the design of artificial enzymes.

  12. Irreversible endo-Selective Diels–Alder Reactions of Substituted Alkoxyfurans: A General Synthesis of endo-Cantharimides

    PubMed Central

    Foster, Robert W; Benhamou, Laure; Porter, Michael J; Bučar, Dejan-Krešimir; Hailes, Helen C; Tame, Christopher J; Sheppard, Tom D

    2015-01-01

    The [4+2] cycloaddition of 3-alkoxyfurans with N-substituted maleimides provides the first general route for preparing endo-cantharimides. Unlike the corresponding reaction with 3H furans, the reaction can tolerate a broad range of 2-substitued furans including alkyl, aromatic, and heteroaromatic groups. The cycloaddition products were converted into a range of cantharimide products with promising lead-like properties for medicinal chemistry programs. Furthermore, the electron-rich furans are shown to react with a variety of alternative dienophiles to generate 7-oxabicyclo[2.2.1]heptane derivatives under mild conditions. DFT calculations have been performed to rationalize the activation effect of the 3-alkoxy group on a furan Diels–Alder reaction. PMID:25756502

  13. Synthesis and Structural Data of Tetrabenzo[8]circulene

    PubMed Central

    Miller, Robert W.; Duncan, Alexandra K.; Schneebeli, Severin T.; Gray, Danielle L.; Whalley, Adam C.

    2015-01-01

    In 1976, the first attempted synthesis of the saddle-shaped molecule [8]circulene was reported. The next 37 years produced no advancement towards the construction of this complicated molecule. Remarkably, however, over the last six months a flurry of progress has been made with two groups reporting independent and strikingly different strategies for the synthesis of [8]circulene derivatives. Herein, we present a third synthetic method in which we target tetrabenzo[8]circulene. Our approach employs a Diels-Alder reaction and a palladium-catalyzed arylation reaction as the key steps. Despite calculations describing the instability of [8]circulene, coupled with the reported instability of synthesized derivatives of the parent molecule, the addition of four fused benzenoid rings around the periphery of the molecule provides a highly stable structure. This increased stability over the parent [8]circulene was predicted using Clar’s theory of aromatic sextets and is a result of the compound becoming fully benzenoid upon incorporation of these additional rings. The synthesized compound exhibits remarkable stability under ambient conditions – even at elevated temperatures – with no signs of decomposition over several months. The solid-state structure of this compound is significantly twisted compared to the calculated structure primarily as a result of crystal packing forces in the solid state. Despite this contortion from the lowest energy structure, a range of structural data is presented confirming the presence of localized aromaticity in this large polycyclic aromatic hydrocarbon. PMID:24615957

  14. Genetic encoding of a bicyclo[6.1.0]nonyne-charged amino acid enables fast cellular protein imaging by metal-free ligation.

    PubMed

    Borrmann, Annika; Milles, Sigrid; Plass, Tilman; Dommerholt, Jan; Verkade, Jorge M M; Wiessler, Manfred; Schultz, Carsten; van Hest, Jan C M; van Delft, Floris L; Lemke, Edward A

    2012-09-24

    Visualizing biomolecules by fluorescent tagging is a powerful method for studying their behaviour and function inside cells. We prepared and genetically encoded an unnatural amino acid (UAA) that features a bicyclononyne moiety. This UAA offered exceptional reactivity in strain-promoted azide-alkyne cycloadditions. Kinetic measurements revealed that the UAA reacted also remarkably fast in the inverse-electron-demand Diels-Alder cycloaddition with tetrazine-conjugated dyes. Genetic encoding of the new UAA inside mammalian cells and its subsequent selective labeling at low dye concentrations demonstrate the usefulness of the new amino acid for future imaging studies. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis and Verification of Biobased Terephthalic Acid from Furfural

    NASA Astrophysics Data System (ADS)

    Tachibana, Yuya; Kimura, Saori; Kasuya, Ken-Ichi

    2015-02-01

    Exploiting biomass as an alternative to petrochemicals for the production of commodity plastics is vitally important if we are to become a more sustainable society. Here, we report a synthetic route for the production of terephthalic acid (TPA), the monomer of the widely used thermoplastic polymer poly(ethylene terephthalate) (PET), from the biomass-derived starting material furfural. Biobased furfural was oxidised and dehydrated to give maleic anhydride, which was further reacted with biobased furan to give its Diels-Alder (DA) adduct. The dehydration of the DA adduct gave phthalic anhydride, which was converted via phthalic acid and dipotassium phthalate to TPA. The biobased carbon content of the TPA was measured by accelerator mass spectroscopy and the TPA was found to be made of 100% biobased carbon.

  16. Thiourea-catalyzed Diels–Alder reaction of a naphthoquinone monoketal dienophile

    PubMed Central

    Kramer, Carsten S

    2013-01-01

    Summary A variety of organocatalysts were screened for the catalysis of the naphthoquinone monoketal Diels–Alder reaction. In this study we found that Schreiner's thiourea catalyst 10 and Jacobson's thiourea catalyst 12 facilitate the cycloaddition of the sterically hindered naphthoquinone monoketal dienophile 3 with diene 4. The use of thiourea catalysis allowed for the first time the highly selective synthesis of the exo-product 2a in up to 63% yield. In this reaction a new quaternary center was built. The so formed cycloaddition product 2a represents the ABC tricycle of beticolin 0 (1) and is also a valuable model substrate for the total synthesis of related natural products. PMID:23946836

  17. Synthesis, kinetics and characterizations of polyimide based semi-IPN systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, H.J.

    1992-01-01

    The PMR-15 polyimide is the leading matrix resin for high performance composites for use in high temperature and thermo-oxidative environments. This resin has superior mechanical properties, good processability and a high working temperature at around 300[degrees]C. It has the disadvantages of being brittle and high susceptibility to microcracking from thermal cycling that limit its widespread application. To improve the fracture toughness, a thermoplastic polyimide, LARC-TPI, and a thermoplastic poly (amide imide), Amoco AI-10, were added individually to PMR-15 resin to form sequential semi-interpenetrating polymer networks (semi-2-IPNs). the kinetics of imidization of LARC-TPI were studied using TGA technique. Both the solventmore » and the glass transition temperature were found to greatly affect the imidization kinetics. The kinetics could be well modeled by a two-step reaction: the first step being a second order reaction followed by a first order diffusion controlled reaction as the second step. The curing of PMR-15 and PMR-15/LARC-TPI semi-IPN was investigated by DSC. A first order reaction kinetics could describe the curing process adequately, implying that the reverse Diels-Alder reaction of the Norbornene end group was the rate controlling step. The glass transition temperature played an important role. The higher the fraction LARC-TPI, the higher the glass transition temperature of the semi-IPN prepolymer, and the slower the cure reaction. From a knowledge of kinetics, the molding cycle of PMR-15 and PMR-15/LARC-TPI semi-IPNs were determined. Both PMR-15/LARC-TPI and PMR-15/AI-10 semi-IPN systems exhibited much higher fracture toughness than PMR-15, but at the compromise of a reduction in the glass transition temperature. A single glass transition temperature for each semi-IPN was observed but there was presence of special intermolecular interaction. Tg measurements and IR spectroscopy indicated that both semi-IPN systems were compatible polymer pairs.« less

  18. Density functional theory calculations in stereochemical determination of terpecurcumins J-W, cytotoxic terpene-conjugated curcuminoids from Curcuma longa L.

    PubMed

    Lin, Xionghao; Ji, Shuai; Qiao, Xue; Hu, Hongbo; Chen, Ni; Dong, Yinhui; Huang, Yun; Guo, Dean; Tu, Pengfei; Ye, Min

    2013-12-06

    Fourteen novel terpene-conjugated curcuminoids, terpecurcumins J-W (1-14), have been isolated from the rhizomes of Curcuma longa L. Among them, terpecurcumins J-Q and V represent four unprecedented skeletons featuring an unusual core of hydrobenzannulated[6,6]-spiroketal (1 and 2), bicyclo[2.2.2]octene (3-7), bicyclo[3.1.3]octene (8), and spiroepoxide (13), respectively. The structures of compounds 1-14 were elucidated by extensive spectroscopic analysis, and their absolute configurations were established by electronic circular dichroism, vibrational circular dichroism, and (13)C NMR spectroscopic data analysis, together with density functional theory calculations. The structure and configuration of 1 was further confirmed by single-crystal X-ray diffraction (Cu Kα). The biogenetic pathways of 1-14 were proposed, involving Michael addition, condensation, Diels-Alder cycloaddition, and electrophilic substitution reactions. Terpecurcumins showed more potent cytotoxic activities than curcumin and ar-/β-turmerone. Among them, terpecurcumin Q (8) exhibited IC50 of 3.9 μM against MCF-7 human breast cancer cells, and mitochondria-mediated apoptosis played an important role in the overall growth inhibition. Finally, LC/MS/MS quantitative analysis of five representative terpecurcumins indicated these novel compounds were present in C. longa at parts per million level.

  19. Diel cycling of trace elements in streams draining mineralized areas: a review

    USGS Publications Warehouse

    Gammons, Christopher H.; Nimick, David A.; Parker, Stephen R.

    2015-01-01

    Many trace elements exhibit persistent diel, or 24-h, concentration cycles in streams draining mineralized areas. These cycles can be caused by various physical and biogeochemical mechanisms including streamflow variation, photosynthesis and respiration, as well as reactions involving photochemistry, adsorption and desorption, mineral precipitation and dissolution, and plant assimilation. Iron is the primary trace element that exhibits diel cycling in acidic streams. In contrast, many cationic and anionic trace elements exhibit diel cycling in near-neutral and alkaline streams. Maximum reported changes in concentration for these diel cycles have been as much as a factor of 10 (988% change in Zn concentration over a 24-h period). Thus, monitoring and scientific studies must account for diel trace-element cycling to ensure that water-quality data collected in streams appropriately represent the conditions intended to be studied.

  20. Production of alpha-hydroxy carboxylic acids and esters from higher sugars using tandem catalyst systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orazov, Marat; Davis, Mark E.

    The present disclosure is directed to methods and composition used in the preparation of alpha-hydroxy carboxylic acids and esters from higher sugars using a tandem catalyst system comprising retro-aldol catalysts and Lewis acid catalysts. In some embodiments, these alpha-hydroxy carboxylic acids may be prepared from pentoses and hexoses. The retro-aldol and Lewis catalysts may be characterized by their respective ability to catalyze a 1,2-carbon shift reaction and a 1,2-hydride shift reaction on an aldose or ketose substrate.

  1. Detailed reaction mechanism of macrophomate synthase. Extraordinary enzyme catalyzing five-step transformation from 2-pyrones to benzoates.

    PubMed

    Watanabe, K; Mie, T; Ichihara, A; Oikawa, H; Honma, M

    2000-12-08

    Macrophomate synthase from the fungus Macrophoma commelinae IFO 9570 is a Mg(II)-dependent dimeric enzyme that catalyzes an extraordinary, complex five-step chemical transformation from 2-pyrone and oxalacetate to benzoate involving decarboxylation, C-C bond formation, and dehydration. The catalytic mechanism of the whole pathway was investigated in three separate chemical steps. In the first decarboxylation step, the enzyme loses oxalacetate decarboxylation activity upon incubation with EDTA. Activity is fully restored by addition of Mg(II) and is not restored with other divalent metal cations. The dissociation constant of 0.93 x 10(-)(7) for Mg(II) and atomic absorption analysis established a 1:1 stoichiometric complex. Inhibition of pyruvate formation with 2-pyrone revealed that the actual product in the first step is a pyruvate enolate, which undergoes C-C bond formation in the presence of 2-pyrone. Incubation of substrate analogs provided aberrant adducts that were produced via C-C bond formation and rearrangement. This strongly indicates that the second step is two C-C bond formations, affording a bicyclic intermediate. Based on the stereospecificity, involvement of a Diels-Alder reaction at the second step is proposed. Incubation of the stereospecifically deuterium-labeled malate with 2-pyrones in the presence of malate dehydrogenase provided information for the stereochemical course of the reaction catalyzed by macrophomate synthase, indicating that the first decarboxylation provides pyruvate (Z)-[3-(2)H]enolate and that dehydration at the final step occurs with anti-elimination accompanied by concomitant decarboxylation. Examination of kinetic parameters in the individual steps suggests that the third step is the rate-determining step of the overall transformation.

  2. Theoretical study for pyridinium-based ionic liquid 1-ethylpyridinium trifluoroacetate: synthesis mechanism, electronic structure, and catalytic reactivity.

    PubMed

    Zhu, Xueying; Cui, Peng; Zhang, Dongju; Liu, Chengbu

    2011-07-28

    By performing density functional theory calculations, we have studied the synthesis mechanism, electronic structure, and catalytic reactivity of a pyridinium-based ionic liquid, 1-ethylpyridinium trifluoroacetate ([epy](+)[CF(3)COO](-)). It is found that the synthesis of the pyridinium salt follows a S(N)2 mechanism. The electronic structural analyses show that multiple H bonds are generally involved in the pyridinium-based ionic liquid, which may play a decisive role for stabilizing the ionic liquid. The cation-anion interaction mainly involves electron transfer between the lone pair of the oxygen atom in the anion and the antibonding orbital of the C*-H bond (C* denotes the carbon atom at the ortho-position of nitrogen atom in the cation). This present work has also given clearly the catalytic mechanism of [epy](+)[CF(3)COO](-) toward to the Diels-Alder (D-A) reaction of acrylonitrile with 2-methyl-1,3-butadiene. Both the cation and anion are shown to play important roles in promoting the D-A reaction. The cation [epy](+), as a Lewis acid, associates the C≡N group by C≡N···H H bond to increase the polarity of the C═C double bond in acrylonitrile, while the anion CF(3)COO(-) links with the methyl group in 2-methyl-1,3-butadiene by C-H···O H bond, which weakens the electron-donating capability of methyl and thereby lowers the energy barrier of the D-A reaction. The present results are expected to provide valuable information for the design and application of pyridinium-based ionic liquids. © 2011 American Chemical Society

  3. Molecular mechanisms in the pyrolysis of unsaturated chlorinated hydrocarbons: formation of benzene rings. 2. Experimental and kinetic modeling studies.

    PubMed

    McIntosh, Grant J; Russell, Douglas K

    2013-05-23

    The mechanism of formation of benzene rings during the pyrolysis of dichloro- and trichloroethylenes has been investigated by the method of laser powered homogeneous pyrolysis coupled with product analysis by gas chromatography. Additionally, selected (co)pyrolyses between the chlorinated ethylenes, CH2Cl2, C4Cl4, C4Cl6, and C2H2 have been performed to explicitly probe the roles of 2C3 and C4/C2 reaction pairs in aromatic growth. The presence of odd-carbon products in neat C4Cl6 pyrolyses indicates that 2C3 processes are operative in these systems; however, comparison with product yields from C2HCl3 suggests that C4/C2 processes dominate most other systems. This is further evidenced by an absence of C3 and other odd-carbon species in (co)pyrolyses with dichloromethane which should seed C3-based growth. The reactions of perchlorinated C4 species C4Cl5, C4Cl3, and C4Cl4 with C2Cl2 were subsequently explored through extensive kinetic simulations of the possible reaction pathways based on previous kinetic models and the exhaustive quantum chemical investigations of our preceding work. The experimental and theoretical results strongly suggest that, at moderate temperatures, aromatic ring formation from chlorinated ethylenes normally follows a Diels-Alder coupling of C4 and C2 molecular units followed by internal shifts; the one exception is the C4Cl4 + C2Cl2 system, where steric factors lead to the formation of nonaromatic products. There is little evidence for radical-based routes in these systems.

  4. De Novo Computational Design of Retro-Aldol Enzymes

    PubMed Central

    Jiang, Lin; Althoff, Eric A.; Clemente, Fernando R.; Doyle, Lindsey; Röthlisberger, Daniela; Zanghellini, Alexandre; Gallaher, Jasmine L.; Betker, Jamie L.; Tanaka, Fujie; Barbas, Carlos F.; Hilvert, Donald; Houk, Kendall N.; Stoddard, Barry L.; Baker, David

    2012-01-01

    The creation of enzymes capable of catalyzing any desired chemical reaction is a grand challenge for computational protein design. Using new algorithms that rely on hashing techniques to construct active sites for multistep reactions, we designed retro-aldolases that use four different catalytic motifs to catalyze the breaking of a carbon-carbon bond in a nonnatural substrate. Of the 72 designs that were experimentally characterized, 32, spanning a range of protein folds, had detectable retro-aldolase activity. Designs that used an explicit water molecule to mediate proton shuffling were significantly more successful, with rate accelerations of up to four orders of magnitude and multiple turnovers, than those involving charged side-chain networks. The atomic accuracy of the design process was confirmed by the x-ray crystal structure of active designs embedded in two protein scaffolds, both of which were nearly superimposable on the design model. PMID:18323453

  5. Synthesis and Verification of Biobased Terephthalic Acid from Furfural

    PubMed Central

    Tachibana, Yuya; Kimura, Saori; Kasuya, Ken-ichi

    2015-01-01

    Exploiting biomass as an alternative to petrochemicals for the production of commodity plastics is vitally important if we are to become a more sustainable society. Here, we report a synthetic route for the production of terephthalic acid (TPA), the monomer of the widely used thermoplastic polymer poly(ethylene terephthalate) (PET), from the biomass-derived starting material furfural. Biobased furfural was oxidised and dehydrated to give maleic anhydride, which was further reacted with biobased furan to give its Diels-Alder (DA) adduct. The dehydration of the DA adduct gave phthalic anhydride, which was converted via phthalic acid and dipotassium phthalate to TPA. The biobased carbon content of the TPA was measured by accelerator mass spectroscopy and the TPA was found to be made of 100% biobased carbon. PMID:25648201

  6. Microwave-assisted synthesis and structure-activity relationships of neuroactive pyrazolo[3,4-b]pyrrolo[3,4-d]pyridine derivatives.

    PubMed

    Nascimento-Júnior, Nailton M; Mendes, Thaiana C F; Leal, Daniella M; Corrêa, Claudia Maria N; Sudo, Roberto T; Zapata-Sudo, Gisele; Barreiro, Eliezer J; Fraga, Carlos A M

    2010-01-01

    We described herein the optimization of the synthetic methodology exploited to obtain the pyrazolo[3,4-b]pyrrolo[3,4-d]pyridine sedative prototype 1a and novel analogues designed by successive molecular simplifications. By applying microwave irradiation during the hetero Diels-Alder key-step to obtain the heterotricyclic scaffold, under solvent-free conditions, we were able to obtain the desired compounds in drastically shorter times and better yields. Additionally, in vivo evaluation of the sedative effects of these heterocyclic derivatives showed that 1a and the novel structurally-related analogue 1e were the most efficient compounds to impair the locomotor activity in mice at the dose of 10micromol/kg. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Addition polymers from 1,4,5,8-tetrahydro-1,4;5,8-diepoxyanthracene and Bis-dienes: Processable resins for high temperature application

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.

    1987-01-01

    1,4,5,8-Tetrahydro-1,4;5,8-diepoxyanthracene reacts with various anthracene endcapped polyimide oligomers to form Diels-Alder cycloaddition copolymers. The polymers are soluble in common organic solvents, and have molecular weights of approximately 21,000 to 32,000. Interestingly, these resins appear to be more stable in air then in nitrogen. This is shown to be due to a unique dehydration (loss of water ranges from 2 to 5 percent) at temperatures of 390 to 400 C to give thermo-oxidatively stable pentiptycene units along the polymer backbone. Because of their high softening points and good thermo-oxidative stability, the polymers have potential as processible, matrix resins for high temperature composite applications.

  8. Metabolism and Resistance of Fusarium spp. to the Manzamine Alkaloids via a Putative Retro Pictet-Spengler Reaction and Utility of the Rational Design of Antimalarial and Antifungal Agents

    PubMed Central

    Farr, Lorelei Lucas; Gholipour, Abbas; Wedge, David E.; Hamann, Mark T.

    2014-01-01

    As a part of our continuing investigation of the manzamine alkaloids we studied the in vitro activity of the β-carboline containing manzamine alkaloids against Fusarium solani, Fusarium oxysporium, and Fusarium proliferatum by employing several bioassay techniques including one-dimensional direct bioautography, dilution, and plate susceptibility, and microtiter broth assays. In addition, we also studied the metabolism of the manzamine alkaloids by Fusarium spp. in order to facilitate the redesign of the compounds to prevent resistance of Fusarium spp. through metabolism. The present research reveals that the manzamine alkaloids are inactive against Fusarium spp. and the fungi transform manzamines via hydrolysis, reduction, and a retro Pictet-Spengler reaction. This is the first report to demonstrate an enzymatically retro Pictet-Spengler reaction. The results of this study reveal the utility of the rational design of metabolically stable antifungal agents from this class and the development of manzamine alkaloids as antimalarial drugs through the utilization of Fusarium’s metabolic products to reconstruct the molecule. PMID:24553735

  9. Labeling proteins on live mammalian cells using click chemistry.

    PubMed

    Nikić, Ivana; Kang, Jun Hee; Girona, Gemma Estrada; Aramburu, Iker Valle; Lemke, Edward A

    2015-05-01

    We describe a protocol for the rapid labeling of cell-surface proteins in living mammalian cells using click chemistry. The labeling method is based on strain-promoted alkyne-azide cycloaddition (SPAAC) and strain-promoted inverse-electron-demand Diels-Alder cycloaddition (SPIEDAC) reactions, in which noncanonical amino acids (ncAAs) bearing ring-strained alkynes or alkenes react, respectively, with dyes containing azide or tetrazine groups. To introduce ncAAs site specifically into a protein of interest (POI), we use genetic code expansion technology. The protocol can be described as comprising two steps. In the first step, an Amber stop codon is introduced--by site-directed mutagenesis--at the desired site on the gene encoding the POI. This plasmid is then transfected into mammalian cells, along with another plasmid that encodes an aminoacyl-tRNA synthetase/tRNA (RS/tRNA) pair that is orthogonal to the host's translational machinery. In the presence of the ncAA, the orthogonal RS/tRNA pair specifically suppresses the Amber codon by incorporating the ncAA into the polypeptide chain of the POI. In the second step, the expressed POI is labeled with a suitably reactive dye derivative that is directly supplied to the growth medium. We provide a detailed protocol for using commercially available ncAAs and dyes for labeling the insulin receptor, and we discuss the optimal surface-labeling conditions and the limitations of labeling living mammalian cells. The protocol involves an initial cloning step that can take 4-7 d, followed by the described transfections and labeling reaction steps, which can take 3-4 d.

  10. Pyrite footprinting of RNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlatterer, Joerg C., E-mail: joerg.schlatterer@einstein.yu.edu; Wieder, Matthew S.; Jones, Christopher D.

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer RNA structure is mapped by pyrite mediated {sup {center_dot}}OH footprinting. Black-Right-Pointing-Pointer Repetitive experiments can be done in a powdered pyrite filled cartridge. Black-Right-Pointing-Pointer High {sup {center_dot}}OH reactivity of nucleotides imply dynamic role in Diels-Alderase catalysis. -- Abstract: In RNA, function follows form. Mapping the surface of RNA molecules with chemical and enzymatic probes has revealed invaluable information about structure and folding. Hydroxyl radicals ({sup {center_dot}}OH) map the surface of nucleic acids by cutting the backbone where it is accessible to solvent. Recent studies showed that a microfluidic chip containing pyrite (FeS{sub 2}) can produce sufficient {sup {center_dot}}OH tomore » footprint DNA. The 49-nt Diels-Alder RNA enzyme catalyzes the C-C bond formation between a diene and a dienophile. A crystal structure, molecular dynamics simulation and atomic mutagenesis studies suggest that nucleotides of an asymmetric bulge participate in the dynamic architecture of the ribozyme's active center. Of note is that residue U42 directly interacts with the product in the crystallized RNA/product complex. Here, we use powdered pyrite held in a commercially available cartridge to footprint the Diels-Alderase ribozyme with single nucleotide resolution. Residues C39 to U42 are more reactive to {sup {center_dot}}OH than predicted by the solvent accessibility calculated from the crystal structure suggesting that this loop is dynamic in solution. The loop's flexibility may contribute to substrate recruitment and product release. Our implementation of pyrite-mediated {sup {center_dot}}OH footprinting is a readily accessible approach to gleaning information about the architecture of small RNA molecules.« less

  11. Proline Editing: A General and Practical Approach to the Synthesis of Functionally and Structurally Diverse Peptides. Analysis of Steric versus Stereoelectronic Effects of 4-Substituted Prolines on Conformation within Peptides

    PubMed Central

    Pandey, Anil K.; Naduthambi, Devan; Thomas, Krista M.; Zondlo, Neal J.

    2013-01-01

    Functionalized proline residues have diverse applications. Herein we describe a practical approach, proline editing, for the synthesis of peptides with stereospecifically modified proline residues. Peptides are synthesized by standard solid-phase-peptide-synthesis to incorporate Fmoc-Hydroxyproline (4R-Hyp). In an automated manner, the Hyp hydroxyl is protected and the remainder of the peptide synthesized. After peptide synthesis, the Hyp protecting group is orthogonally removed and Hyp selectively modified to generate substituted proline amino acids, with the peptide main chain functioning to “protect” the proline amino and carboxyl groups. In a model tetrapeptide (Ac-TYPN-NH2), 4R-Hyp was stereospecifically converted to 122 different 4-substituted prolyl amino acids, with 4R or 4S stereochemistry, via Mitsunobu, oxidation, reduction, acylation, and substitution reactions. 4-Substituted prolines synthesized via proline editing include incorporated structured amino acid mimetics (Cys, Asp/Glu, Phe, Lys, Arg, pSer/pThr), recognition motifs (biotin, RGD), electron-withdrawing groups to induce stereoelectronic effects (fluoro, nitrobenzoate), handles for heteronuclear NMR (19F:fluoro; pentafluorophenyl or perfluoro-tert-butyl ether; 4,4-difluoro; 77SePh) and other spectroscopies (fluorescence, IR: cyanophenyl ether), leaving groups (sulfonate, halide, NHS, bromoacetate), and other reactive handles (amine, thiol, thioester, ketone, hydroxylamine, maleimide, acrylate, azide, alkene, alkyne, aryl halide, tetrazine, 1,2-aminothiol). Proline editing provides access to these proline derivatives with no solution phase synthesis. All peptides were analyzed by NMR to identify stereoelectronic and steric effects on conformation. Proline derivatives were synthesized to permit bioorthogonal conjugation reactions, including azide-alkyne, tetrazinetrans-cyclooctene, oxime, reductive amination, native chemical ligation, Suzuki, Sonogashira, cross-metathesis, and Diels-Alder reactions. These proline derivatives allowed three parallel bioorthogonal reactions to be conducted in one solution. PMID:23402492

  12. Quantum and Statistical Mechanics Applied to Singlet Carbenes, Pericyclic Reactions, and Condensed Phase Phenomena

    NASA Astrophysics Data System (ADS)

    Evanseck, Jeffrey Donald

    The completed research covers a broad range of theoretical applications in organic chemistry. It is divided into three chapters which covers the chemistry of singlet carbenes (Chapter 1), substituent effects in pericyclic rearrangements (Chapter 2), and the effects of solvent on the reactivity of organic reactions (Chapter 3). The selectivity between 1,2- and 1,4-intramolecular additions to restricted diene systems has been investigated. A decrease in activation energy for the intramolecular cycloaddition is noted for systems which approach the idealized geometry found with intermolecular addition of carbenes to olefins. Direct substitution at the carbene site dramatically effects the predicted activation barriers for 1,2-hydrogen shifts. An excellent correlation between the activation energy and a substituents sigma_sp {rm R}{rm o} parameters has been demonstrated. The long standing problem of orbital alignment influences on the selectivity of 1,2-hydrogen arrangements shows significant geometric distortions, yet has little influence on the rates of singlet alkylcarbene rearrangements. The exo-selectivities observed for 1,2-shifts in rigid systems are explained by torsional and steric interactions which develop in the transition structures. Substituent effects on pericyclic reactions have been computed for several conrotatory and disrotatory electrocyclizations. The six-electron disrotatory electrocyclization of 1-substituted hexatrienes displays a strong electronic component in determining stereoselectivity, despite incredible steric interference. The eight-electron conrotatory electrocyclization transition structure of 1-substituted octatetraene has an unusual helical transition structure which does not differentiate between substituent position. The effects of solvents on the acidity differences between E and Z esters has supplemented earlier ab initio quantum mechanical results on the enhanced acidity of Meldrum's acid. Monte Carlo simulations predict a preferential stabilization of the E isomer in both acetonitrile and aqueous solutions. The rates of intramolecular Diels-Alder reactions are compared to recent experimental work and predictions of different solvent systems are made.

  13. Facile fabrication of highly controllable gating systems based on the combination of inverse opal structure and dynamic covalent chemistry.

    PubMed

    Wang, Chen; Yang, Haowei; Tian, Li; Wang, Shiqiang; Gao, Ning; Zhang, Wanlin; Wang, Peng; Yin, Xianpeng; Li, Guangtao

    2017-06-01

    A three-dimensional (3D) inverse opal with periodic and porous structures has shown great potential for applications not only in optics and optoelectronics, but also in functional membranes. In this work, the benzaldehyde group was initially introduced into a 3D nanoporous inverse opal, serving as a platform for fabricating functional membranes. By employing the dynamic covalent approach, a highly controllable gating system was facilely fabricated to achieve modulable and reversible transport features. It was found that the physical/chemical properties and pore size of the gating system could easily be regulated through post-modification with amines. As a demonstration, the gated nanopores were modified with three kinds of amines to control the wettability, surface charge and nanopore size which in turn was exploited to achieve selective mass transport, including hydrophobic molecules, cations and anions, and the transport with respect to the physical steric hindrance. In particular, the gating system showed extraordinary reversibility and could recover to its pristine state by simply changing pH values. Due to the unlimited variety provided by the Schiff base reaction, the inverse opal described here exhibits a significant extendibility and could be easily post-modified with stimuli-responsive molecules for special purposes. Furthermore, this work can be extended to employ other dynamic covalent routes, for example Diels-Alder, ester exchange and disulfide exchange-based routes.

  14. Toughening and healing of continuous fibre reinforced composites with bis-maleimide based pre-pregs

    NASA Astrophysics Data System (ADS)

    Kostopoulos, V.; Kotrotsos, A.; Tsantzalis, S.; Tsokanas, P.; Christopoulos, A. C.; Loutas, T.

    2016-08-01

    Unidirectional (UD) pre-pregs containing self-healing materials based on Diels-Alder reaction bis-maleimide (BMI) polymers were successfully incorporated on the mid-plane of UD carbon fibre reinforced polymers. The fracture toughness of these composites and the introduced healing capability were measured under mode I loading. The interlaminar fracture toughness was enhanced considerably, since the maximum load (P max) of the modified composite increased approximately 1.5 times and the mode I fracture energy (G IC) displayed a significant increase of almost 3.5 times when compared to the reference composites. Furthermore the modified composites displayed a healing efficiency (HE) value of about 30% for P max and 20% for G IC after the first healing, appearing to be an almost stable behaviour after the third healing cycle. The HE displayed a decrease of 20% and 15% for P max and G IC values, respectively, after the fifth healing cycle. During the tests, the monitored acoustic emission (AE) activity of the samples showed that there is no significant difference due to the presence of BMI polymer in terms of AE hits. Moreover, optical microscopy not only showed that the epoxy matrix at the interface is partly infiltrated by the BMI polymer, but it also revealed the presence of pulled out fibres at the fractured surface, indicating ductile behaviour.

  15. Identification of Vitamin D3 Oxidation Products Using High-Resolution and Tandem Mass Spectrometry.

    PubMed

    Mahmoodani, Fatemeh; Perera, Conrad O; Abernethy, Grant; Fedrizzi, Bruno; Greenwood, David; Chen, Hong

    2018-03-19

    In a successful fortification program, the stability of micronutrients added to the food is one of the most important factors. The added vitamin D3 is known to sometimes decline during storage of fortified milks, and oxidation through fatty acid lipoxidation could be suspected as the likely cause. Identification of vitamin D3 oxidation products (VDOPs) in natural foods is a challenge due to the low amount of their contents and their possible transformation to other compounds during analysis. The main objective of this study was to find a method to extract VDOPs in simulated whole milk powder and to identify these products using LTQ-ion trap, Q-Exactive Orbitrap and triple quadrupole mass spectrometry. The multistage mass spectrometry (MS n ) spectra can help to propose plausible schemes for unknown compounds and their fragmentations. With the growth of combinatorial libraries, mass spectrometry (MS) has become an important analytical technique because of its speed of analysis, sensitivity, and accuracy. This study was focused on identifying the fragmentation rules for some VDOPs by incorporating MS data with in silico calculated MS fragmentation pathways. Diels-Alder derivatization was used to enhance the sensitivity and selectivity for the VDOPs' identification. Finally, the confirmed PTAD-derivatized target compounds were separated and analyzed using ESI(+)-UHPLC-MS/MS in multiple reaction monitoring (MRM) mode. Graphical Abstract ᅟ.

  16. Identification of Vitamin D3 Oxidation Products Using High-Resolution and Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Mahmoodani, Fatemeh; Perera, Conrad O.; Abernethy, Grant; Fedrizzi, Bruno; Greenwood, David; Chen, Hong

    2018-03-01

    In a successful fortification program, the stability of micronutrients added to the food is one of the most important factors. The added vitamin D3 is known to sometimes decline during storage of fortified milks, and oxidation through fatty acid lipoxidation could be suspected as the likely cause. Identification of vitamin D3 oxidation products (VDOPs) in natural foods is a challenge due to the low amount of their contents and their possible transformation to other compounds during analysis. The main objective of this study was to find a method to extract VDOPs in simulated whole milk powder and to identify these products using LTQ-ion trap, Q-Exactive Orbitrap and triple quadrupole mass spectrometry. The multistage mass spectrometry (MSn) spectra can help to propose plausible schemes for unknown compounds and their fragmentations. With the growth of combinatorial libraries, mass spectrometry (MS) has become an important analytical technique because of its speed of analysis, sensitivity, and accuracy. This study was focused on identifying the fragmentation rules for some VDOPs by incorporating MS data with in silico calculated MS fragmentation pathways. Diels-Alder derivatization was used to enhance the sensitivity and selectivity for the VDOPs' identification. Finally, the confirmed PTAD-derivatized target compounds were separated and analyzed using ESI(+)-UHPLC-MS/MS in multiple reaction monitoring (MRM) mode. [Figure not available: see fulltext.

  17. Synthesis and (spectro)electrochemistry of mixed-valent diferrocenyl-dihydrothiopyran derivatives.

    PubMed

    Kowalski, Konrad; Karpowicz, Rafał; Mlostoń, Grzegorz; Miesel, Dominique; Hildebrandt, Alexander; Lang, Heinrich; Czerwieniec, Rafał; Therrien, Bruno

    2015-04-07

    Three novel diferrocenyl complexes were prepared and characterised. 2,2-Diferrocenyl-4,5-dimethyl-3,6-dihydro-2H-thiopyran (1, sulphide) was accessible by the hetero-Diels-Alder reaction of diferrocenyl thioketone with 2,3-dimethyl-1,3-butadiene. Stepwise oxidation of 1 gave the respective oxides 2,2-diferrocenyl-4,5-dimethyl-3,6-dihydro-2H-thiopyran-1-oxide (2, sulfoxide) and 2,2-diferrocenyl-4,5-dimethyl-3,6-dihydro-2H-thiopyran-1,1-dioxide (3, sulfone), respectively. The molecular structures of 1 and 3 in the solid state were determined by single crystal X-ray crystallography. The oxidation of sulphide 1 to sulfone 3, plays only a minor role on the overall structure of the two compounds. Electrochemical (cyclic voltammetry (= CV), square wave voltammetry (= SWV)) and spectroelectrochemical (in situ UV-Vis/NIR spectroscopy) studies were carried out. The CV and SWV measurements showed that an increase of the sulphur atom oxidation from -2 in 1 to +2 in 3 causes an anodic shift of the ferrocenyl-based oxidation potentials of about 100 mV. The electrochemical oxidation of 1-3 generates mixed-valent cations 1(+)-3(+). These monooxidised species display low-energy electronic absorption bands between 1000 and 3000 nm assigned to IVCT (= Inter-Valence Charge Transfer) electronic transitions. Accordingly, the mixed-valent cations 1(+)-3(+) are classified as weakly coupled class II systems according to Robin and Day.

  18. NIR-Cyanine Dye Linker: a Promising Candidate for Isochronic Fluorescence Imaging in Molecular Cancer Diagnostics and Therapy Monitoring.

    PubMed

    Komljenovic, Dorde; Wiessler, Manfred; Waldeck, Waldemar; Ehemann, Volker; Pipkorn, Ruediger; Schrenk, Hans-Hermann; Debus, Jürgen; Braun, Klaus

    2016-01-01

    Personalized anti-cancer medicine is boosted by the recent development of molecular diagnostics and molecularly targeted drugs requiring rapid and efficient ligation routes. Here, we present a novel approach to synthetize a conjugate able to act simultaneously as an imaging and as a chemotherapeutic agent by coupling functional peptides employing solid phase peptide synthesis technologies. Development and the first synthesis of a fluorescent dye with similarity in the polymethine part of the Cy7 molecule whose indolenine-N residues were substituted with a propylene linker are described. Methylating agent temozolomide is functionalized with a tetrazine as a diene component whereas Cy7-cell penetrating peptide conjugate acts as a dienophilic reaction partner for the inverse Diels-Alder click chemistry-mediated ligation route yielding a theranostic conjugate, 3-mercapto-propionic-cyclohexenyl-Cy7-bis-temozolomide-bromide-cell penetrating peptide. Synthesis route described here may facilitate targeted delivery of the therapeutic compound to achieve sufficient local concentrations at the target site or tissue. Its versatility allows a choice of adequate imaging tags applicable in e.g. PET, SPECT, CT, near-infrared imaging, and therapeutic substances including cytotoxic agents. Imaging tags and therapeutics may be simultaneously bound to the conjugate applying click chemistry. Theranostic compound presented here offers a solid basis for a further improvement of cancer management in a precise, patient-specific manner.

  19. Molecular mechanisms in the pyrolysis of unsaturated chlorinated hydrocarbons: formation of benzene rings. 1. Quantum chemical studies.

    PubMed

    McIntosh, Grant J; Russell, Douglas K

    2013-05-23

    Analogues of important aromatic growth mechanisms in hydrocarbon pyrolysis and combustion systems are extended to chlorinated systems. We consider the addition of C2Cl2 to both C4Cl3 and C4Cl5 radicals at the M06-2X/6-311+G(3df,3p)//B3LYP/6-31G(d) level of theory, and we demonstrate that these reaction systems have much in common with those of nonchlorinated species. In particular, we find that these radicals appear to lead preferentially to fulvenes, and not to the observed aromatic products, as is found in nonchlorinated systems. We have therefore also considered nonradical C4/C2 channels by way of Diels-Alder cyclization of C4Cl4/C2Cl2 and C4H2Cl2/C2HCl pairs to describe aromatic formation. While the latter pair readily leads to the formation of partially chlorinated benzenes, the fully chlorinated congeners are sterically prohibited from ring closing directly; this leads to a series of novel rearrangement processes which predict the formation of hexachloro-1,5-diene-3-yne, in addition to hexachlorobenzene, in good agreement with experiment. This suggests, for the first time, that facile nonradical routes to aromatic formation are operative in partially and fully chlorinated pyrolysis and combustion systems.

  20. NIR-Cyanine Dye Linker: a Promising Candidate for Isochronic Fluorescence Imaging in Molecular Cancer Diagnostics and Therapy Monitoring

    PubMed Central

    Komljenovic, Dorde; Wiessler, Manfred; Waldeck, Waldemar; Ehemann, Volker; Pipkorn, Ruediger; Schrenk, Hans-Hermann; Debus, Jürgen; Braun, Klaus

    2016-01-01

    Personalized anti-cancer medicine is boosted by the recent development of molecular diagnostics and molecularly targeted drugs requiring rapid and efficient ligation routes. Here, we present a novel approach to synthetize a conjugate able to act simultaneously as an imaging and as a chemotherapeutic agent by coupling functional peptides employing solid phase peptide synthesis technologies. Development and the first synthesis of a fluorescent dye with similarity in the polymethine part of the Cy7 molecule whose indolenine-N residues were substituted with a propylene linker are described. Methylating agent temozolomide is functionalized with a tetrazine as a diene component whereas Cy7-cell penetrating peptide conjugate acts as a dienophilic reaction partner for the inverse Diels-Alder click chemistry-mediated ligation route yielding a theranostic conjugate, 3-mercapto-propionic-cyclohexenyl-Cy7-bis-temozolomide-bromide-cell penetrating peptide. Synthesis route described here may facilitate targeted delivery of the therapeutic compound to achieve sufficient local concentrations at the target site or tissue. Its versatility allows a choice of adequate imaging tags applicable in e.g. PET, SPECT, CT, near-infrared imaging, and therapeutic substances including cytotoxic agents. Imaging tags and therapeutics may be simultaneously bound to the conjugate applying click chemistry. Theranostic compound presented here offers a solid basis for a further improvement of cancer management in a precise, patient-specific manner. PMID:26722379

  1. Development of autoclavable polyimides. [fabrication procedures of high temperature resistant/fiber composite

    NASA Technical Reports Server (NTRS)

    Orell, M. K.; Sheppard, C. H.; Vaughan, R. W.; Jones, R. J.

    1974-01-01

    A poly(Diels-Alder) (PDA) resin approach was investigated as a means to achieve autoclavability of high temperature resistant resin/fiber composites under mild fabrication procedures. Low void content Type A-S graphite reinforced composites were autoclave fabricated from a PDA resin/fiber prepared from an acetone:methanol:dioxane varnish. Autoclave conditions were 477K (400F) and 0.7 MN/sq m (100 psi) for up to two hours duration. After postcure at temperatures up to 589K (600F), the composites demonstrated high initial mechanical properties at temperatures up to 561K (550F). The results from isothermal aging studies in air for 1000 hours indicated potential for long-term ( 1000 hours) use at 533K (500F) and shorter-term (up to 1000 hours) at 561K (550F).

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pezeshki, Alan M.; Fujimoto, Cy; Sun, Che -Nan

    In this paper, we report on the performance of Diels Alder poly(phenylene) membranes in vanadium redox flow batteries. The membranes were functionalized with quaternary ammonium groups to form an anion exchange membrane (QDAPP) and with sulfonic acid groups to form a cation exchange membrane (SDAPP). Both membrane classes showed similar conductivities in the battery environment, suggesting that the ion conduction mechanism in the material is not strongly affected by the moieties along the polymer backbone. The resistance to vanadium permeation in QDAPP was not improved relative to SDAPP, further suggesting that the polarity of the functional groups do not playmore » a significant role in the membrane materials tested. Both QDAPP and SDAPP outperformed Nafion membranes in cycling tests, with both achieving voltage efficiencies above 85% while maintaining 95% coulombic efficiency while at a current density of 200 mA/cm 2.« less

  3. Method of making thermally removable polyurethanes

    DOEpatents

    Loy, Douglas A.; Wheeler, David R.; McElhanon, James R.; Saunders, Randall S.; Durbin-Voss, Marvie Lou

    2002-01-01

    A method of making a thermally-removable polyurethane material by heating a mixture of a maleimide compound and a furan compound, and introducing alcohol and isocyanate functional groups, where the alcohol group and the isocyanate group reacts to form the urethane linkages and the furan compound and the maleimide compound react to form the thermally weak Diels-Alder adducts that are incorporated into the backbone of the urethane linkages during the formation of the polyurethane material at temperatures from above room temperature to less than approximately 90.degree. C. The polyurethane material can be easily removed within approximately an hour by heating to temperatures greater than approximately 90.degree. C. in a polar solvent. The polyurethane material can be used in protecting electronic components that may require subsequent removal of the solid material for component repair, modification or quality control.

  4. Microwave Assisted Synthesis of Bridgehead Alkenes

    PubMed Central

    Cleary, Leah; Yoo, Hoseong; Shea, Kenneth J.

    2011-01-01

    A new, concise method to synthesize triene precursors for the type 2 intramolecular Diels–Alder reaction has been developed. Microwave irradiation of the trienes provides a convenient method for the synthesis of bridgehead alkenes. Higher yields, shorter reaction times and lower reaction temperatures provide a general and efficient route to this interesting class of molecules. PMID:21384818

  5. Diel variability of mercury phase and species distributions in the Florida Everglades

    USGS Publications Warehouse

    Krabbenhoft, D.P.; Hurley, J.P.; Olson, M.L.; Cleckner, L.B.

    1998-01-01

    Preliminary studies of mercury (Hg) cycling in the Everglades revealed that dissolved gaseous mercury (DGM), total mercury (Hg(T)), and reactive mercury (Hg(R)) show reproducible, diel trends. Peak water-column DGM concentrations were observed on or about noon, with a 3 to 7 fold increase over night-time concentrations. Production of DGM appears to cease during dark periods, with nearly constant water column concentrations that were at or near saturation with respect to the overlying air. A simple mass balance shows that the flux of Hg to the atmosphere from diel DGM production and evasion represents about 10% of the annual input from atmospheric deposition. Production of DGM is likely the result of an indirect photolysis reaction that involves the production of reductive species and/or reduction by electron transfer. Diel variability in Hg(T) and Hg(R) appears to be controlled by two factors: inputs from rainfall and photolytic sorption/desorption processes. A possible mechanism involves photolysis of chromophores on the surface of a solid substrate (e.g., the periphyton mat) giving rise to destabilization of sorbed mercury and net desorption during daylight. At night, the sorption reactions predominate and the water-column Hg(T) decreases. Methylmercury (MeHg) also showed diel trends in concentration but were not clearly linked to the solar cycle or rainfall at the study site.

  6. A Promiscuous De Novo Retro-Aldolase Catalyzes Asymmetric Michael Additions via Schiff Base Intermediates.

    PubMed

    Garrabou, Xavier; Beck, Tobias; Hilvert, Donald

    2015-05-04

    Recent advances in computational design have enabled the development of primitive enzymes for a range of mechanistically distinct reactions. Here we show that the rudimentary active sites of these catalysts can give rise to useful chemical promiscuity. Specifically, RA95.5-8, designed and evolved as a retro-aldolase, also promotes asymmetric Michael additions of carbanions to unsaturated ketones with high rates and selectivities. The reactions proceed by amine catalysis, as indicated by mutagenesis and X-ray data. The inherent flexibility and tunability of this catalyst should make it a versatile platform for further optimization and/or mechanistic diversification by directed evolution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The preparation and use of metal salen complexes derived from cyclobutane diamine

    NASA Astrophysics Data System (ADS)

    Patil, Smita

    The helix is an important chiral motif in nature, there is increasing development in field of helical transition metal complexes and related supramolecular structures. Hence, the goals of this work are to apply the principles of helicity in order to produce metal complexes with predictable molecular shapes and to study their properties as asymmetric catalysts. Computational studies suggest that the (1R,2 R)-cyclobutyldiamine unit can produce highly twisted salen complexes with a large energy barrier between the M and P helical forms. To test this prediction, the tartrate salt of (1R,2R)-cyclobutyldiamine was synthesized and condensed with a series of saliclaldehydes to produce novel salen ligands. The salicylaldehydes chosen have extended phenanthryl or benz[a]anthryl sidearms to encourage formation of helical coordination complexes. These ligands were metallated with zinc, iron and manganese salts to produce salen metal complexes which were characterized by NMR analysis, high-resolution mass spectrometry, and IR spectroscopy. A second ligand type, neutral bis(pyridine-imine) has also been synthesized from (1R,2R)-cyclobutyldiamine and quinolylaldehydes. The synthesis of bis(pyridine-imine) ligands was conducted using greener method, solvent assisted grinding. These ligands, in-situ with nickel metal salts, showed good catalytic activity for asymmetric Diels-Alder reactions. The third ligand type studied was chiral acid-functionalized Schiff-base ligands. These were synthesized by the condensation of 3-formyl-5-methyl salicylic acid and (1R,2R)-cyclobutyldiamine. With this type of ligand, there is possibility of producing both mono and dinuclear metal complexes. In our studies, we were only able to synthesize mononuclear complexs. These were tested as catalysts for asymmetric direct Mannich-type reaction, but were found to be ineffective.

  8. A cyclic-RGD-BioShuttle functionalized with TMZ by DARinv “Click Chemistry” targeted to αvβ3 integrin for therapy

    PubMed Central

    Braun, Klaus; Wiessler, Manfred; Pipkorn, Rüdiger; Ehemann, Volker; Bäuerle, Tobias; Fleischhacker, Heinz; Müller, Gabriele; Lorenz, Peter; Waldeck, Waldemar

    2010-01-01

    Clinical experiences often document, that a successful tumor control requires high doses of drug applications. It is widely believed that unavoidable adverse reactions could be minimized by using gene-therapeutic strategies protecting the tumor-surrounding healthy tissue as well as the bone-marrow. One new approach in this direction is the use of “Targeted Therapies” realizing a selective drug targeting to gain effectual amounts at the target site, even with drastically reduced application doses. MCF-7 breast cancer cells expressing the αvβ3 [alpha(v)beta(3)] integrin receptor are considered as appropriate candidates for such a targeted therapy. The modularly composed BioShuttle carrier consisting of different units designed to facilitate the passage across the cell membranes and for subcellular addressing of diagnostic and/or therapeutic molecules could be considered as an eligible delivery platform. Here we used the cyclic RGD-BioShuttle as a carrier for temozolomide (TMZ) at the αvβ3 integrin receptor realizing local TMZ concentrations sufficient for cell killing. The IC50 values are 12 µMol/L in the case of cRGD-BioShuttle-TMZ and 100 µMol/L for underivatized TMZ, which confirms the advantage of TMZ reformulation to realize local concentrations sufficient for cell killing. Our paper focuses on the design, synthesis and application of the cRGD-BioShuttle conjugate composed of the cyclic RGD, a αvβ3 integrin-ligand, ligated to the cytotoxic drug TMZ. The ligation was carried out by the Diels Alder Reaction with inverse electron demand (DARinv). PMID:20922134

  9. Biomimetically inspired asymmetric total synthesis of (+)-19-dehydroxyl arisandilactone A

    NASA Astrophysics Data System (ADS)

    Han, Yi-Xin; Jiang, Yan-Long; Li, Yong; Yu, Hai-Xin; Tong, Bing-Qi; Niu, Zhe; Zhou, Shi-Jie; Liu, Song; Lan, Yu; Chen, Jia-Hua; Yang, Zhen

    2017-01-01

    Complex natural products are a proven and rich source of disease-modulating drugs and of efficient tools for the study of chemical biology and drug discovery. The architectures of complex natural products are generally considered to represent significant barriers to efficient chemical synthesis. Here we describe a concise and efficient asymmetric synthesis of 19-dehydroxyl arisandilactone A--which belongs to a family of architecturally unique, highly oxygenated nortriterpenoids isolated from the medicinal plant Schisandra arisanensis. This synthesis takes place by means of a homo-Michael reaction, a tandem retro-Michael/Michael reaction, and Cu-catalysed intramolecular cyclopropanation as key steps. The proposed mechanisms for the homo-Michael and tandem retro-Michael/Michael reactions are supported by density functional theory (DFT) calculation. The developed chemistry may find application for the synthesis of its other family members of Schisandraceae nortriterpenoids.

  10. Micro-flow photosynthesis of new dienophiles for inverse-electron-demand Diels–Alder reactions. Potential applications for pretargeted in vivo PET imaging† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc02933g Click here for additional data file.

    PubMed Central

    Billaud, Emilie M. F.; Shahbazali, Elnaz; Ahamed, Muneer; Cleeren, Frederik; Noël, Timothy; Koole, Michel; Verbruggen, Alfons; Hessel, Volker

    2017-01-01

    Pretargeted PET imaging has emerged as an effective two-step in vivo approach that combines the superior affinity and selectivity of antibodies with the rapid pharmacokinetics and favorable dosimetry of smaller molecules radiolabeled with short-lived radionuclides. This approach can be based on the bioorthogonal inverse-electron-demand Diels–Alder (IEDDA) reaction between tetrazines and trans-cyclooctene (TCO) derivatives. We aimed to develop new [18F]TCO–dienophiles with high reactivity for IEDDA reactions, and favorable in vivo stability and pharmacokinetics. New dienophiles were synthesized using an innovative micro-flow photochemistry process, and their reaction kinetics with a tetrazine were determined. In vivo stability and biodistribution of the most promising 18F-radiolabeled-TCO-derivative ([18F]3) was investigated, and its potential for in vivo pretargeted PET imaging was assessed in tumor-bearing mice. We demonstrated that [18F]3 is a suitable dienophile for IEDDA reactions and for pretargeting applications. PMID:28451267

  11. Relative effect of temperature and pH on diel cycling of dissolved trace elements in prickly pear creek, Montana

    USGS Publications Warehouse

    Jones, Clain A.; Nimick, D.A.; McCleskey, R. Blaine

    2004-01-01

    Diel (24 hr) cycles in dissolved metal and As concentrations have been documented in many northern Rocky Mountain streams in the U.S.A. The cause(s) of the cycles are unknown, although temperature- and pH-dependent sorption reactions have been cited as likely causes. A light/dark experiment was conducted to isolate temperature and pH as variables affecting diel metal cycles in Prickly Pear Creek, Montana. Light and dark chambers containing sediment and a strand of macrophyte were placed in the stream to simulate instream temperature oscillations. Photosynthesis-induced pH changes were allowed to proceed in the light chambers while photosynthesis was prevented in the dark chambers. Water samples were collected periodically for 22 hr in late July 2001 from all chambers and the stream. In the stream, dissolved Zn concentrations increased by 300% from late afternoon to early morning, while dissolved As concentrations exhibited the opposite pattern, increasing 33% between early morning and late afternoon. Zn and As concentrations in the light chambers showed similar, though less pronounced, diel variations. Conversely, Zn and As concentrations in the dark chambers had no obvious diel variation, indicating that light, or light-induced reactions, caused the variation. Temperature oscillations were nearly identical between light and dark chambers, strongly suggesting that temperature was not controlling the diel variations. As expected, pH was negatively correlated (P < 0.01) with dissolved Zn concentrations and positively correlated with dissolved As concentrations in both the light and dark chambers. From these experiments, photosynthesis-induced pH changes were determined to be the major cause of the diel dissolved Zn and As cycles in Prickly Pear Creek. Further research is necessary in other streams to verify that this finding is consistent among streams having large differences in trace-element concentrations and mineralogy of channel substrate. ?? 2004 Kluwer Academic Publishers.

  12. Resolving a Long-Standing Ambiguity: the Non-Planarity of gauche-1,3-BUTADIENE Revealed by Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin-Drumel, Marie-Aline; McCarthy, Michael C.; Patterson, David; Eibenberger, Sandra; Buckingham, Grant; Baraban, Joshua H.; Ellison, Barney; Stanton, John F.

    2016-06-01

    The preferred conformation of cis-1,3-butadiene (CH_2=CH-CH=CH_2) has been of long-standing importance in organic chemistry because of its role in Diels-Alder transition states. The molecule could adopt a planar s-cis conformation, in favor of conjugations in the carbon chain, or a non-planar gauche conformation, as a result of steric interactions between the terminal H atoms. To resolve this ambiguity, we have now measured the pure rotational spectrum of this isomer in the microwave region, unambiguously establishing a significant inertial defect, and therefore a gauche conformation. Experimental measurements of gauche-1,3-butadiene and several of its isotopologues using cavity Fourier-transform microwave (FTMW) spectroscopy in a supersonic expansion and chirped-pulse FTMW spectroscopy in a 4 K buffer gas cell will be summarized, as will new quantum chemical calculations.

  13. Nature-inspired indolyl-2-azabicyclo[2.2.2]oct-7-ene derivatives as promising agents for the attenuation of withdrawal symptoms: synthesis of 20-desethyl-20-hydroxymethyl-11-demethoxyibogaine.

    PubMed

    Passarella, D; Barilli, A; Efange, S M N; Elisabetsky, E; Leal, M B; Lesma, G; Linck, V M; Mash, D C; Martinelli, M; Peretto, I; Silvani, A; Danieli, B

    2006-07-10

    Microwave assisted Diels-Alder cycloaddition of 5-Br-N-benzylpyridinone (2) with methyl acrylate is described to gain an easy access to 7-bromo-2-benzyl-3-oxo-2-aza-5 or 6-carbomethoxy bicyclo[2.2.2]oct-7-enes (3)-(6). The preparation of the ibogaine analogue 20-desethyl-(20-endo)-hydroxymethyl-11-demethoxyibogaine (17) is described by stereoselective hydrogenation of the C(7)-C(8) double bond. Biological evaluation showed an interesting in vitro binding profile toward dopamine transporter, serotonin transporter and opioid receptor systems accompanied by an antiwithdrawal effect in mice for hydroxymethyl 7-indolyl-2-aza-bicyclo[2.2.2]oct-2-ene (14). The simplification of the ibogaine structure appears as a promising approach toward the design of compounds that could reduce the withdrawal symptoms.

  14. De Novo Synthesis of Mono- and Oligosaccharides via Dihydropyran Intermediates.

    PubMed

    Song, Wangze; Wang, Shuojin; Tang, Weiping

    2017-05-18

    The importance of carbohydrates is evident by their essential role in all living systems. Their syntheses have attracted attention from chemists for over a century. Most chemical syntheses in this area focus on the preparation of carbohydrates from naturally occurring monosaccharides. De novo chemical synthesis of carbohydrates from feedstock starting materials has emerged as a complementary method for the preparation of diverse mono- and oligosaccharides. In this review, the history of de novo carbohydrate synthesis is briefly discussed and particular attention is given to methods that address the formation of glycosidic bonds for potential de novo synthesis of oligosaccharides. Almost all methods of this kind involve the formation of dihydropyran intermediates. Recent progress in forming dihydropyrans by Achmatowicz rearrangement, hetero-Diels-Alder cycloaddition, ring-closing metathesis, and other methods is also elaborated. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. One-pot Diels–Alder cycloaddition/gold(I)-catalyzed 6-endo-dig cyclization for the synthesis of the complex bicyclo[3.3.1]alkenone framework

    PubMed Central

    Sow, Boubacar; Bellavance, Gabriel; Barabé, Francis

    2011-01-01

    Summary The rapid synthesis of bicyclo[m.n.1]alkanone cores possessing quaternary carbon centers adjacent to a bridged ketone represents a significant synthetic challenge. This type of architectural feature is embedded in various complex biologically active compounds such as hyperforin and garsubellin A. Herein, we report a highly diastereoselective one-pot Diels–Alder reaction/Au(I)-catalyzed carbocyclization to generate bicyclo[3.3.1]alkanones in yields ranging from 48–93%. PMID:21915201

  16. Mechanisms in Motion-Organic Chemistry Animations v 1.5 (by Bruce H. Lipshutz)

    NASA Astrophysics Data System (ADS)

    Rosan, Alan M.

    1998-08-01

    Exeter Multimedia; Jones and Bartlett: Sudbury, MA, 1996 (Macintosh), 1997 (Windows). $395. This single CD-ROM presents 17 short (2-3-minute) Quicktime, full-color movie animations of selected organic reaction mechanisms, most of which are discussed at the sophomore level. It is an ambitious and timely project that seeks to move beyond the static, snapshot formalism of the curved arrow to a seamless portrayal of electron flow in three dimensions. Each movie, accompanied by text and voice, is shown twice and includes at least one view or rotation of an intermediate or transition state. The entire series can be examined in an hour. The animations are interactive as controlled by a QT slide bar. They vary in scope, quality, and clarity. Quite effectively presented are alkene bromination, hydrogenation and hydrohalogenation, carbonyl enolization-alkylation, carbocation rearrangement, and E2 elimination. A few other, more advanced, topics such as the SN2', kinetic aldol, and Baeyer-Villiger reactions are also included. Carbonyl addition and acyl substitution are exemplified by imine formation and ester saponification. Reactions of aromatics are not presented. In this package, the reaction pathways are primarily based on changes in overall geometry and bonding so the emphasis is on highlighting those bonds being broken and those being formed. Transition states are identified by the appearance of a uniform color over all atoms, orbitals, and bonds. Changes in hybridization and attendant stereochemistry are nicely depicted but these animations are not meant to illustrate or model the molecular orbital basis for reactivity. As an example, the Diels-Alder reaction is shown proceeding with endo specificity via a disrotatory motion of the diene and subsequent rotation of the cycloadduct to a half chair conformation but it is not presented as a HOMO-LUMO interaction. In many of the mechanisms the reacting centers and relevant interacting orbitals appear in vividly contrasting colors, which aides visualization but may lend the unintended impression that some reactants, intermediates, or products are in antibonding states. A useful adjunct is an indexing guide which links the 17 animations to specific page references in 13 major organic chemistry texts.

  17. Evaluation of retro-inverso modifications of HTLV-1 protease inhibitors containing a hydroxyethylamine isoster.

    PubMed

    Tatsumi, Tadashi; Awahara, Chiyuki; Naka, Hiromi; Aimoto, Saburo; Konno, Hiroyuki; Nosaka, Kazuto; Akaji, Kenichi

    2010-04-01

    Effects of retro-inverso (RI) modifications of HTLV-1 protease inhibitors containing a hydroxyethylamine isoster backbone were clarified. Construction of the isoster backbone was achieved by a stereoselective aldol reaction. Four diastereomers with different configurations at the isoster hydroxyl site and the scissile site substituent were synthesized. Inhibitory activities of the new inhibitors suggest that partially modified RI inhibitors would interact with HTLV-1 protease in the same manner as the parent hydroxyethylamine inhibitor. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Selection of ribozymes that catalyse multiple-turnover Diels–Alder cycloadditions by using in vitro compartmentalization

    PubMed Central

    Agresti, Jeremy J.; Kelly, Bernard T.; Jäschke, Andres; Griffiths, Andrew D.

    2005-01-01

    In vitro compartmentalization (IVC) has previously been used to evolve protein enzymes. Here, we demonstrate how IVC can be applied to select RNA enzymes (ribozymes) for a property that has previously been unselectable: true intermolecular catalysis. Libraries containing 1011 ribozyme genes are compartmentalized in the aqueous droplets of a water-in-oil emulsion, such that most droplets contain no more than one gene, and transcribed in situ. By coencapsulating the gene, RNA, and the substrates/products of the catalyzed reaction, ribozymes can be selected for all enzymatic properties: substrate recognition, product formation, rate acceleration, and turnover. Here we exploit the complementarity of IVC with systematic evolution of ligands by exponential enrichment (SELEX), which allows selection of larger libraries (≥1015) and for very small rate accelerations (kcat/kuncat) but only selects for intramolecular single-turnover reactions. We selected ≈1014 random RNAs for Diels–Alderase activity with five rounds of SELEX, then six to nine rounds with IVC. All selected ribozymes catalyzed the Diels–Alder reaction in a truly bimolecular fashion and with multiple turnover. Nearly all ribozymes selected by using eleven rounds of SELEX alone contain a common catalytic motif. Selecting with SELEX then IVC gave ribozymes with significant sequence variations in this catalytic motif and ribozymes with completely novel motifs. Interestingly, the catalytic properties of all of the selected ribozymes were quite similar. The ribozymes are strongly product inhibited, consistent with the Diels–Alder transition state closely resembling the product. More efficient Diels–Alderases may need to catalyze a second reaction that transforms the product and prevents product inhibition. PMID:16260754

  19. Quadruple high-resolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling combined with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for identification of antidiabetic constituents in crude root bark of Morus alba L.

    PubMed

    Zhao, Yong; Kongstad, Kenneth Thermann; Jäger, Anna Katharina; Nielsen, John; Staerk, Dan

    2018-06-29

    In this paper, quadruple high-resolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling combined with HPLC-HRMS-SPE-NMR were used for studying the polypharmacological properties of crude root bark extract of Morus alba L. This species is used as an anti-diabetic principle in many traditional treatment systems around the world, and the crude ethyl acetate extract of M. alba root bark was found to inhibit α-glucosidase, α-amylase and protein-tyrosine phosphatase 1B (PTP1B) with IC 50 values of 1.70 ± 0.72, 5.16 ± 0.69, and 5.07 ± 0.68 μg/mL as well as showing radical scavenging activity equaling a TEAC value of (3.82 ± 0.14) × 10 4  mM per gram extract. Subsequent investigation of the crude extract using quadruple high-resolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling provided a quadruple biochromatogram that allowed direct correlation of the HPLC peaks with one or more of the tested bioactivities. This was used to target subsequent HPLC-HRMS-SPE-NMR analysis towards peaks representing bioactive analytes, and led to identification of a new Diels-Alder adduct named Moracenin E as well as a series of Diels-Alder adducts and isoprenylated flavonoids as potent α-glucosidase and α-amylase inhibitors with IC 50 values in the range of 0.60-27.15 μM and 1.22-69.38 μM, respectively. In addition, these compounds and two 2-arylbenzofurans were found to be potent PTP1B inhibitors with IC 50 values ranging from 4.04 to 21.67 μM. The high-resolution radical scavenging profile also revealed that almost all of the compounds possess radical scavenging activity. In conclusion the quadruple high-resolution profiling method presented here allowed a detailed profiling of individual constituents in crude root bark extract of M. alba, and the method provides a general tool for detailed mapping of bioactive constituents in polypharmacological herbal remedies. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Peptide/protein-polymer conjugates: synthetic strategies and design concepts.

    PubMed

    Gauthier, Marc A; Klok, Harm-Anton

    2008-06-21

    This feature article provides a compilation of tools available for preparing well-defined peptide/protein-polymer conjugates, which are defined as hybrid constructs combining (i) a defined number of peptide/protein segments with uniform chain lengths and defined monomer sequences (primary structure) with (ii) a defined number of synthetic polymer chains. The first section describes methods for post-translational, or direct, introduction of chemoselective handles onto natural or synthetic peptides/proteins. Addressed topics include the residue- and/or site-specific modification of peptides/proteins at Arg, Asp, Cys, Gln, Glu, Gly, His, Lys, Met, Phe, Ser, Thr, Trp, Tyr and Val residues and methods for producing peptides/proteins containing non-canonical amino acids by peptide synthesis and protein engineering. In the second section, methods for introducing chemoselective groups onto the side-chain or chain-end of synthetic polymers produced by radical, anionic, cationic, metathesis and ring-opening polymerization are described. The final section discusses convergent and divergent strategies for covalently assembling polymers and peptides/proteins. An overview of the use of chemoselective reactions such as Heck, Sonogashira and Suzuki coupling, Diels-Alder cycloaddition, Click chemistry, Staudinger ligation, Michael's addition, reductive alkylation and oxime/hydrazone chemistry for the convergent synthesis of peptide/protein-polymer conjugates is given. Divergent approaches for preparing peptide/protein-polymer conjugates which are discussed include peptide synthesis from synthetic polymer supports, polymerization from peptide/protein macroinitiators or chain transfer agents and the polymerization of peptide side-chain monomers.

  1. Molecular Switch for Sub-Diffraction Laser Lithography by Photoenol Intermediate-State Cis-Trans Isomerization.

    PubMed

    Mueller, Patrick; Zieger, Markus M; Richter, Benjamin; Quick, Alexander S; Fischer, Joachim; Mueller, Jonathan B; Zhou, Lu; Nienhaus, Gerd Ulrich; Bastmeyer, Martin; Barner-Kowollik, Christopher; Wegener, Martin

    2017-06-27

    Recent developments in stimulated-emission depletion (STED) microscopy have led to a step change in the achievable resolution and allowed breaking the diffraction limit by large factors. The core principle is based on a reversible molecular switch, allowing for light-triggered activation and deactivation in combination with a laser focus that incorporates a point or line of zero intensity. In the past years, the concept has been transferred from microscopy to maskless laser lithography, namely direct laser writing (DLW), in order to overcome the diffraction limit for optical lithography. Herein, we propose and experimentally introduce a system that realizes such a molecular switch for lithography. Specifically, the population of intermediate-state photoenol isomers of α-methyl benzaldehydes generated by two-photon absorption at 700 nm fundamental wavelength can be reversibly depleted by simultaneous irradiation at 440 nm, suppressing the subsequent Diels-Alder cycloaddition reaction which constitutes the chemical core of the writing process. We demonstrate the potential of the proposed mechanism for STED-inspired DLW by covalently functionalizing the surface of glass substrates via the photoenol-driven STED-inspired process exploiting reversible photoenol activation with a polymerization initiator. Subsequently, macromolecules are grown from the functionalized areas and the spatially coded glass slides are characterized by atomic-force microscopy. Our approach allows lines with a full-width-at-half-maximum of down to 60 nm and line gratings with a lateral resolution of 100 nm to be written, both surpassing the diffraction limit.

  2. Mechanisms of iron photoreduction in a metal-rich, acidic stream (St. Kevin Gulch, Colorado, U.S.A.)

    USGS Publications Warehouse

    Kimball, B.A.; McKnight, Diane M.; Wetherbee, G.A.; Harnish, R.A.

    1992-01-01

    Iron photoreduction in metal-rich, acidic streams affected by mine drainage accounts for some of the variability in metal chemistry of such streams, producing diel variations in Fe(II). Differentiation of the mechanisms of the Fe photoreduction reaction by a series of in-stream experiments at St. Kevin Gulch, Colorado, indicates that a homogeneous, solution-phase reaction can occur in the absence of suspended particulate Fe and bacteria, and the rate of reaction is increased by the presence of Fe colloids in the stream water. In-stream Fe photoreduction is limited during the diel cycle by the available Fe(III) in the water column and streambed. The quantum yield of Fe(II) was reproducible in diel measurements: the quantum yield, in mol E-1 (from 300 to 400 nm) was 1.4 ?? 10-3 in 1986, 0.8 ?? 10-3 in 1988 and 1.2 ?? 10-3 in 1989, at the same location and under similar streamflow and stream-chemistry conditions. In a photolysis control experiment, there was no detectable production of Fe(II) above background concentrations in stream-water samples that were experimentally excluded from sunlight. ?? 1992.

  3. Partial diel migration: A facultative migration underpinned by long-term inter-individual variation.

    PubMed

    Harrison, Philip M; Gutowsky, Lee F G; Martins, Eduardo G; Patterson, David A; Cooke, Steven J; Power, Michael

    2017-09-01

    The variations in migration that comprise partial diel migrations, putatively occur entirely as a consequence of behavioural flexibility. However, seasonal partial migrations are increasingly recognised to be mediated by a combination of reversible plasticity in response to environmental variation and individual variation due to genetic and environmental effects. Here, we test the hypothesis that while partial diel migration heterogeneity occurs primarily due to short-term within-individual flexibility in behaviour, long-term individual differences in migratory behaviour also underpin this migration variation. Specifically, we use a hierarchical behavioural reaction norm approach to partition within- and among-individual variation in depth use and diel plasticity in depth use, across short- and long-term time-scales, in a group of 47 burbot (Lota lota) tagged with depth-sensing acoustic telemetry transmitters. We found that within-individual variation at the among-dates-within-seasons and among-seasons scale, explained the dominant proportion of phenotypic variation. However, individuals also repeatedly differed in their expression of migration behaviour over the 2 year study duration. These results reveal that diel migration variation occurs primarily due to short-term within-individual flexibility in depth use and diel migration behaviour. However, repeatable individual differences also played a key role in mediating partial diel migration. These findings represent a significant advancement of our understanding of the mechanisms generating the important, yet poorly understood phenomena of partial diel migration. Moreover, given the pervasive occurrence of diel migrations across aquatic taxa, these findings indicate that individual differences have an important, yet previously unacknowledged role in structuring the temporal and vertical dynamics of aquatic ecosystems. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  4. Recent progress in asymmetric bifunctional catalysis using multimetallic systems.

    PubMed

    Shibasaki, Masakatsu; Kanai, Motomu; Matsunaga, Shigeki; Kumagai, Naoya

    2009-08-18

    The concept of bifunctional catalysis, wherein both partners of a bimolecular reaction are simultaneously activated, is very powerful for designing efficient asymmetric catalysts. Catalytic asymmetric processes are indispensable for producing enantiomerically enriched compounds in modern organic synthesis, providing more economical and environmentally benign results than methods requiring stoichiometric amounts of chiral reagents. Extensive efforts in this field have produced many asymmetric catalysts, and now a number of reactions can be rendered asymmetric. We have focused on the development of asymmetric catalysts that exhibit high activity, selectivity, and broad substrate generality under mild reaction conditions. Asymmetric catalysts based on the concept of bifunctional catalysis have emerged as a particularly effective class, enabling simultaneous activation of multiple reaction components. Compared with conventional catalysts, bifunctional catalysts generally exhibit enhanced catalytic activity and higher levels of stereodifferentiation under milder reaction conditions, attracting much attention as next-generation catalysts for prospective practical applications. In this Account, we describe recent advances in enantioselective catalysis with bifunctional catalysts. Since our identification of heterobimetallic rare earth-alkali metal-BINOL (REMB) complexes, we have developed various types of bifunctional multimetallic catalysts. The REMB catalytic system is effective for catalytic asymmetric Corey-Chaykovsky epoxidation and cyclopropanation. A dinucleating Schiff base has emerged as a suitable multidentate ligand for bimetallic catalysts, promoting catalytic syn-selective nitro-Mannich, anti-selective nitroaldol, and Mannich-type reactions. The sugar-based ligand GluCAPO provides a suitable platform for polymetallic catalysts; structural elucidation revealed that their higher order polymetallic structures are a determining factor for their function in the catalytic asymmetric Strecker reaction. Rational design identified a related ligand, FujiCAPO, which exhibits superior performance in catalytic asymmetric conjugate addition of cyanide to enones and a catalytic asymmetric Diels-Alder-type reaction. The combination of an amide-based ligand with a rare earth metal constitutes a unique catalytic system: the ligand-metal association is in equilibrium because of structural flexibility. These catalytic systems are effective for asymmetric amination of highly coordinative substrate as well as for Mannich-type reaction of alpha-cyanoketones, in which hydrogen bonding cooperatively contributes to substrate activation and stereodifferentiation. Most of the reactions described here generate stereogenic tetrasubstituted carbons or quaternary carbons, noteworthy accomplishments even with modern synthetic methods. Several reactions have been incorporated into the asymmetric synthesis of therapeutics (or their candidate molecules) such as Tamiflu, AS-3201 (ranirestat), GRL-06579A, and ritodrine, illustrating the usefulness of bifunctional asymmetric catalysis.

  5. Diel variation of selenium and arsenic in a wetland of the Great Salt Lake, Utah

    USGS Publications Warehouse

    Dicataldo, G.; Johnson, W.P.; Naftz, D.L.; Hayes, D.F.; Moellmer, W.O.; Miller, T.

    2011-01-01

    Diel (24-h) changes in Se and As concentrations in a freshwater wetland pond bordering the Great Salt Lake (GSL) were examined. Selenium concentrations (filtered and unfiltered) changed on a diel basis, i.e., were depleted during early morning and enriched during daytime over August 17-18. During the May 24-25, 2006 and September 29-30 diel studies, no significant 24-h trends were observed in Se concentrations compared to August, which showed daily maximums up to 59% greater than the daily minimum. Both filtered and unfiltered As concentrations also varied on a diel cycle, with increased concentrations during early morning and decreased concentrations during daytime. Filtered As concentrations increased 110% during the May 24-25, 2006 diel study. Selenium varied in phase with pH, dissolved O2 (DO), and water temperature (Tw) whereas As varied opposite to Se, pH, DO and Tw. Changes in pH, DO and Tw showed a direct linear correlation (r=0.74, 0.75, and 0.55, respectively) to filtered Se. Also pH, DO and Tw were inversely correlated to filtered As concentration (r=-0.88, -0.87, and -0.84, respectively). Equilibrium geochemical speciation and sorption models were used to examine the potential oxidation state changes in Se and As, and sorption and desorption reactions corresponding to the observed 24-h variations in pe and pH. In this wetland it was postulated that diel Se variation was driven by sorption and desorption due to photosynthesis-induced changes in pH and redox conditions. Diel variations of As were hypothesized to be linked to pH-driven sorption and desorption as well as co-precipitation and co-dissolution with mineral phases of Mn. ?? 2010 Elsevier Ltd.

  6. Rhodium-catalyzed kinetic resolution of tertiary homoallyl alcohols via stereoselective carbon-carbon bond cleavage.

    PubMed

    Shintani, Ryo; Takatsu, Keishi; Hayashi, Tamio

    2008-03-20

    A nonenzymatic kinetic resolution of tertiary homoallyl alcohols has been developed through a rhodium-catalyzed retro-allylation reaction under simple conditions. Selectivity factors of up to 12 have been achieved by employing (R)-H8-binap as the ligand, and the reaction can be conducted on a preparative scale.

  7. Investigations on the promoting effect of ammonium hydrogencarbonate on the formation of acrylamide in model systems.

    PubMed

    Amrein, Thomas M; Andres, Luca; Manzardo, Giuseppe G G; Amado, Renato

    2006-12-27

    NH4HCO3 is known to promote acrylamide formation in sweet bakery products. This effect was investigated with respect to sugar fragmentation and formation of acrylamide from asparagine and sugar fragments in model systems under mild conditions. The presence of NH4HCO3 led to increases in acrylamide and alpha-dicarbonyls from glucose and fructose, respectively. As compared to glucose or fructose, sugar fragments such as glyoxal, hydroxyethanal, and glyceraldehyde formed much higher amounts of acrylamide in reaction with asparagine. The enhancing effect of NH4HCO3 is explained by (1) the action of NH3 as base in the retro-aldol reactions leading to sugar fragments, (2) facilitated retro-aldol-type reactions of imines in their protonated forms leading to sugar fragments, and (3) oxidation of the enaminols whereby glyoxal and other reactive sugar fragments are formed. These alpha-dicarbonyl and alpha-hydroxy carbonyl compounds may play a key role in acrylamide formation, especially under mild conditions.

  8. V-378A: A modified bismaleimide for advanced composites

    NASA Technical Reports Server (NTRS)

    Street, S. W.

    1985-01-01

    Addition polyimides cure with no evolution of gaseous by-products at relatively low temperatures and may be cured at low pressures to yield composites with excellent hot-wet strength retention. These properaties have made them excellent candidates as matrix resins for advanced composites. However, commercially available bismaleimides are solids and difficult to handle in preimpregnated form. V-378A is an addition polyimide composed of a mixture of bismaleimides and other reactive ingredients formulated to provide good prepreg properties and handling, facile cure and excellent composite mechanical properties. Several curing mechanisms are utilized to provide the characteristics exhibited by V-378A. Part of the mechanism is free radial and takes place at ambient temperature and above. Other mechanisms are principally Diels-Alder in nature. V-378A prepregs are tacky at ambient temperature, but do not have long tacky outlife similar to some epoxies. V-378A yields composites which exhibit hot-wet strength retention which is superior to that provided by epoxy resin systems.

  9. Opioid receptor probes derived from cycloaddition of the hallucinogen natural product salvinorin A.

    PubMed

    Lozama, Anthony; Cunningham, Christopher W; Caspers, Michael J; Douglas, Justin T; Dersch, Christina M; Rothman, Richard B; Prisinzano, Thomas E

    2011-04-25

    As part of our continuing efforts toward more fully understanding the structure-activity relationships of the neoclerodane diterpene salvinorin A, we report the synthesis and biological characterization of unique cycloadducts through [4+2] Diels-Alder cycloaddition. Microwave-assisted methods were developed and successfully employed, aiding in functionalizing the chemically sensitive salvinorin A scaffold. This demonstrates the first reported results for both cycloaddition of the furan ring and functionalization via microwave-assisted methodology of the salvinorin A skeleton. The cycloadducts yielded herein introduce electron-withdrawing substituents and bulky aromatic groups into the C-12 position. Kappa opioid (KOP) receptor space was explored through aromatization of the bent oxanorbornadiene system possessed by the cycloadducts to a planar phenyl ring system. Although dimethyl- and diethylcarboxylate analogues 5 and 6 retain some affinity and selectivity for KOP receptors and are full agonists, their aromatized counterparts 13 and 14 have reduced affinity for KOP receptors. The methods developed herein signify a novel approach toward rapidly probing the structure-activity relationships of furan-containing natural products.

  10. Diels Alder-mediated release of gemcitabine from hybrid nanoparticles for enhanced pancreatic cancer therapy.

    PubMed

    Oluwasanmi, Adeolu; Al-Shakarchi, Wejdan; Manzur, Ayesha; Aldebasi, Mohammed H; Elsini, Rayan S; Albusair, Malek K; Haxton, Katherine J; Curtis, Anthony D M; Hoskins, Clare

    2017-11-28

    Hybrid nanoparticles (HNPs) have shown huge potential as drug delivery vehicles for pancreatic cancer. Currently, the first line treatment, gemcitabine, is only effective in 23.8% of patients. To improve this, a thermally activated system was developed by introducing a linker between HNPs and gemcitabine. Whereby, heat generation resulting from laser irradiation of the HNPs promoted linker breakdown resulting in prodrug liberation. In vitro evaluation in pancreatic adenocarcinoma cells, showed the prodrug was 4.3 times less cytotoxic than gemcitabine, but exhibited 11-fold improvement in cellular uptake. Heat activation of the formulation led to a 56% rise in cytotoxicity causing it to outperform gemcitabine by 26%. In vivo the formulation outperformed free gemcitabine with a 62% reduction in tumor weight in pancreatic xenografts. This HNP formulation is the first of its kind and has displayed superior anti-cancer activity as compared to the current first line drug gemcitabine after heat mediated controlled release. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Practical application of thermoreversibly Cross-linked rubber products

    NASA Astrophysics Data System (ADS)

    Polgar, L. M.; Picchioni, F.; de Ruiter, E.; van Duin, M.

    2017-07-01

    Currently, rubber products cannot simply be reprocessed after their product life, due to the irreversible cross-linking methods traditionally applied. The purpose of this work is to investigate how thermoreversible cross-linking of rubbers via Diels Alder chemistry can be used for the development of recyclable rubber products. Unfortunately, the applicability of the thermoreversible EPM-g-furan/BM system appears to be limited to room temperature applications, because of the rapid deterioration of the compression set at elevated temperatures compared to irreversibly cross-linked EPM. However, the use of EPM rubber modified with thiophene or cyclopentadiene moieties may extend the temperature application range and results in rubber products with acceptable properties. Finally, rubber products generally comprise fillers such as silica, carbon black or fibers. In this context, the reinforcing effect of short cut aramid fibers on the material properties of the newly developed thermoreversibly cross-linked EPM rubbers was also studied. The material properties of the resulting products were found to be comparable to those of a fiber reinforced, peroxide cured reference sample.

  12. Site-Specific Bioorthogonal Labeling for Fluorescence Imaging of Intracellular Proteins in Living Cells.

    PubMed

    Peng, Tao; Hang, Howard C

    2016-11-02

    Over the past years, fluorescent proteins (e.g., green fluorescent proteins) have been widely utilized to visualize recombinant protein expression and localization in live cells. Although powerful, fluorescent protein tags are limited by their relatively large sizes and potential perturbation to protein function. Alternatively, site-specific labeling of proteins with small-molecule organic fluorophores using bioorthogonal chemistry may provide a more precise and less perturbing method. This approach involves site-specific incorporation of unnatural amino acids (UAAs) into proteins via genetic code expansion, followed by bioorthogonal chemical labeling with small organic fluorophores in living cells. While this approach has been used to label extracellular proteins for live cell imaging studies, site-specific bioorthogonal labeling and fluorescence imaging of intracellular proteins in live cells is still challenging. Herein, we systematically evaluate site-specific incorporation of diastereomerically pure bioorthogonal UAAs bearing stained alkynes or alkenes into intracellular proteins for inverse-electron-demand Diels-Alder cycloaddition reactions with tetrazine-functionalized fluorophores for live cell labeling and imaging in mammalian cells. Our studies show that site-specific incorporation of axial diastereomer of trans-cyclooct-2-ene-lysine robustly affords highly efficient and specific bioorthogonal labeling with monosubstituted tetrazine fluorophores in live mammalian cells, which enabled us to image the intracellular localization and real-time dynamic trafficking of IFITM3, a small membrane-associated protein with only 137 amino acids, for the first time. Our optimized UAA incorporation and bioorthogonal labeling conditions also enabled efficient site-specific fluorescence labeling of other intracellular proteins for live cell imaging studies in mammalian cells.

  13. Effective use of heterologous hosts for characterization of biosynthetic enzymes allows production of natural products and promotes new natural product discovery.

    PubMed

    Watanabe, Kenji

    2014-01-01

    In the past few years, there has been impressive progress in elucidating the mechanism of biosynthesis of various natural products accomplished through the use of genetic, molecular biological and biochemical techniques. Here, we present a comprehensive overview of the current results from our studies on fungal natural product biosynthetic enzymes, including nonribosomal peptide synthetase and polyketide synthase-nonribosomal peptide synthetase hybrid synthetase, as well as auxiliary enzymes, such as methyltransferases and oxygenases. Specifically, biosynthesis of the following compounds is described in detail: (i) Sch210972, potentially involving a Diels-Alder reaction that may be catalyzed by CghA, a functionally unknown protein identified by targeted gene disruption in the wild type fungus; (ii) chaetoglobosin A, formed via multi-step oxidations catalyzed by three redox enzymes, one flavin-containing monooxygenase and two cytochrome P450 oxygenases as characterized by in vivo biotransformation of relevant intermediates in our engineered Saccharomyces cerevisiae; (iii) (-)-ditryptophenaline, formed by a cytochrome P450, revealing the dimerization mechanism for the biosynthesis of diketopiperazine alkaloids; (iv) pseurotins, whose variations in the C- and O-methylations and the degree of oxidation are introduced combinatorially by multiple redox enzymes; and (v) spirotryprostatins, whose spiro-carbon moiety is formed by a flavin-containing monooxygenase or a cytochrome P450 as determined by heterologous de novo production of the biosynthetic intermediates and final products in Aspergillus niger. We close our discussion by summarizing some of the key techniques that have facilitated the discovery of new natural products, production of their analogs and identification of biosynthetic mechanisms in our study.

  14. Diel biogeochemical processes in terrestrial waters

    USGS Publications Warehouse

    Nimick, David A.; Gammons, Christopher H.

    2011-01-01

    Many biogeochemical processes in rivers and lakes respond to the solar photocycle and produce persistent patterns of measureable phenomena that exhibit a day–night, or 24-h, cycle. Despite a large body of recent literature, the mechanisms responsible for these diel fluctuations are widely debated, with a growing consensus that combinations of physical, chemical, and biological processes are involved. These processes include streamflow variation, photosynthesis and respiration, plant assimilation, and reactions involving photochemistry, adsorption and desorption, and mineral precipitation and dissolution. Diel changes in streamflow and water properties such as temperature, pH, and dissolved oxygen concentration have been widely recognized, and recently, diel studies have focused more widely by considering other constituents such as dissolved and particulate trace metals, metalloids, rare earth elements, mercury, organic matter, dissolved inorganic carbon (DIC), and nutrients. The details of many diel processes are being studied using stable isotopes, which also can exhibit diel cycles in response to microbial metabolism, photosynthesis and respiration, or changes in phase, speciation, or redox state. In addition, secondary effects that diel cycles might have, for example, on biota or in the hyporheic zone are beginning to be considered.This special issue is composed primarily of papers presented at the topical session “Diurnal Biogeochemical Processes in Rivers, Lakes, and Shallow Groundwater” held at the annual meeting of the Geological Society of America in October 2009 in Portland, Oregon. This session was organized because many of the growing number of diel studies have addressed just a small part of the full range of diel cycling phenomena found in rivers and lakes. This limited focus is understandable because (1) fundamental aspects of many diel processes are poorly understood and require detailed study, (2) the interests and expertise of individual scientists typically do not encompass the wide diversity and range of processes that produce diel cycles, and (3) the logistics of making field measurements for 24-h periods has limited recognition and understanding of these important cycles. Thus, the topical session brought together hydrologists, biologists, geochemists, and ecologists to discuss field studies, laboratory experiments, theoretical modeling, and measurement techniques related to diel cycling. Hopefully with the cross-disciplinary synergy developed at the session as well as by this special issue, a more comprehensive understanding of the interrelationships between the diel processes will be developed. Needless to say, understanding diel processes is critical for regulatory agencies and the greater scientific community. And perhaps more importantly, expanded knowledge of biogeochemical cycling may lead to better predictions of how aquatic ecosystems might react to changing conditions of contaminant loading, eutrophication, climate change, drought, industrialization, development, and other variables.

  15. First-principles theoretical assessment of catalysis by confinement: NO-O2 reactions within voids of molecular dimensions in siliceous crystalline frameworks.

    PubMed

    Maestri, Matteo; Iglesia, Enrique

    2018-06-01

    Density functional theory methods that include dispersive forces are used to show how voids of molecular dimensions enhance reaction rates by the mere confinement of transition states analogous to those involved in homogeneous routes and without requiring specific binding sites or structural defects within confining voids. These van der Waals interactions account for the observed large rate enhancements for NO oxidation in the presence of purely siliceous crystalline frameworks. The minimum free energy paths for NO oxidation within chabazite (CHA) and silicalite (SIL) frameworks involve intermediates similar in stoichiometry, geometry, and kinetic relevance to those involved in the homogeneous route. The termolecular transition state for the kinetically-relevant cis-NOO2NO isomerization to trans-NOO2NO is strongly stabilized by confinement within CHA (by 36.3 kJ mol-1 in enthalpy) and SIL (by 39.2 kJ mol-1); such enthalpic stabilization is compensated, in part, by concomitant entropy losses brought forth by confinement (CHA: 44.9; SIL: 45.3, J mol-1 K-1 at 298 K). These enthalpy and entropy changes upon confinement agree well with those measured and combine to significantly decrease activation free energies and are consistent with the rate enhancements that become larger as temperature decreases because of the more negative apparent activation energies in confined systems compared with homogeneous routes. Calculated free energies of confinement are in quantitative agreement with measured rate enhancements and with their temperature sensitivity. Such quantitative agreements reflect preeminent effects of geometry in determining the van der Waals contributions from contacts between the transition states (TS) and the confining walls and the weak effects of the level of theory on TS geometries. NO oxidation reactions are chosen here to illustrate these remarkable effects of confinement because detailed kinetic analysis of rate data are available, but also because of their critical role in the treatment of combustion effluents and in the synthesis of nitric acid and nitrates. Similar effects are evident from rate enhancements by confinement observed for Diels-Alder and alkyne oligomerization reactions. These reactions also occur in gaseous media at near ambient temperatures, for which enthalpic stabilization upon confinement of their homogeneous transition states becomes the preeminent component of activation free energies.

  16. Conformationally Strained trans-Cyclooctene (sTCO) Enables the Rapid Construction of 18F-PET Probes via Tetrazine Ligation

    PubMed Central

    Wang, Mengzhe; Svatunek, Dennis; Rohlfing, Katarina; Liu, Yu; Wang, Hui; Giglio, Ben; Yuan, Hong; Wu, Zhanghong; Li, Zibo; Fox, Joseph

    2016-01-01

    The bioorthogonal reaction between tetrazines and trans-cyclooctenes is a method for the rapid construction of F-18 probes for PET imaging. Described here is a second generation 18F-labeling system based on a conformationally strained trans-cyclooctene (sTCO)—a dienophile that is approximately 2 orders of magnitude more reactive than conventional TCO dienophiles. Starting from a readily prepared tosylate precursor, an 18F labeled sTCO derivative (18F-sTCO) could be synthesized in 29.3 +/- 5.1% isolated yield and with high specific activity. Tetrazine ligation was carried out with a cyclic RGD-conjugate of a diphenyl-s-tetrazine analogue (RGD-Tz) chosen from a diene class with an excellent combination of fast reactivity and stability both for the diene as well as the Diels-Alder adduct. For both the tetrazine and the sTCO, mini-PEG spacers were included to enhance solubility and improve the in vivo distribution profile of the resulting probe. Extremely fast reactivity (up to 2.86 x 105 M-1s-1 at 25 °C in water) has been observed in kinetic studies in the reaction of sTCO with diphenyl-s-tetrazine derivatives. A kinetic study on sTCO diastereomers in 55:45 MeOH:water showed that the syn-diastereomer displayed slightly faster reactivity than the anti-diastereomer. An 18F-sTCO conjugate with RGD-Tz demonstrated prominent and persistent tumor uptake in vivo with good tumor-to-background contrast. Unlike most radiolabeled RGD peptides, the tumor uptake of this PET agent increased from 5.3 +/- 0.2% ID/g at 1 h post injection (p.i.), to 8.9 +/- 0.5% ID/g at 4 h p.i., providing evidence for prolonged blood circulation. These findings suggest that tetrazine ligations employing 18F-sTCO should serve as a powerful and general platform for the rapid construction of peptide or protein derived PET agents. PMID:27162558

  17. A role for hydrophobicity in a Diels–Alder reaction catalyzed by pyridyl-modified RNA

    PubMed Central

    Gagnon, Keith T.; Ju, Show-Yi; Goshe, Michael B.; Maxwell, E. Stuart; Franzen, Stefan

    2009-01-01

    New classes of RNA enzymes or ribozymes have been obtained by in vitro evolution and selection of RNA molecules. Incorporation of modified nucleotides into the RNA sequence has been proposed to enhance function. DA22 is a modified RNA containing 5-(4-pyridylmethyl) carboxamide uridines, which has been selected for its ability to promote a Diels–Alder cycloaddition reaction. Here, we show that DA_TR96, the most active member of the DA22 RNA sequence family, which was selected with pyridyl-modified nucleotides, accelerates a cycloaddition reaction between anthracene and maleimide derivatives with high turnover. These widely used reactants were not used in the original selection for DA22 and yet here they provide the first demonstration of DA_TR96 as a true multiple-turnover catalyst. In addition, the absence of a structural or essential kinetic role for Cu2+, as initially postulated, and nonsequence-specific hydrophobic interactions with the anthracene substrate have led to a reevaluation of the pyridine modification's role. These findings broaden the catalytic repertoire of the DA22 family of pyridyl-modified RNAs and suggest a key role for the hydrophobic effect in the catalytic mechanism. PMID:19304744

  18. Aqueous phase hydrodeoxygenation of polyols over Pd/WO3-ZrO2: Role of Pd-WO3 interaction and hydrodeoxygenation pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Changjun; Sun, Junming; Brown, Heather M.

    Aqueous-phase hydrodeoxygenation of sugar and sugar-derived molecules can be used to produce a range of alkanes and oxygenates. In this paper, we have identified the reaction intermediates and reaction chemistry for the aqueous-phase hydrodeoxygenation of sorbitol over a bifunctional catalyst (Pt/SiO2–Al2O3) that contains both metal (Pt) and acid (SiO2–Al2O3) sites. A wide variety of reactions occur in this process including Csingle bondC bond cleavage, Csingle bondO bond cleavage, and hydrogenation reactions. The key Csingle bondC bond cleavage reactions include: retro-aldol condensation and decarbonylation, which both occur on metal catalytic sites. Dehydration is the key Csingle bondO bond cleavage reaction andmore » occurs on acid catalytic sites. Sorbitol initially undergoes dehydration and ring closure to produce cyclic C6 molecules or retro-aldol condensation reactions to produce primarily C3 polyols. Isosorbide is the major final product from sorbitol dehydration. Isosorbide then undergoes ring opening hydrogenation reactions and a dehydration/hydrogenation step to form 1,2,6-hexanetriol. The hexanetriol is then converted into hexanol and hexane by dehydration/hydrogenation. Smaller oxygenates are produced by Csingle bondC bond cleavage. These smaller oxygenates undergo dehydration/hydrogenation reactions to produce alkanes from C1–C5. The results from this paper suggest that hydrodeoxygenation chemistry can be tuned to make a wide variety of products from biomass-derived oxygenates.« less

  19. Pretargeted PET Imaging Using a Site-Specifically Labeled Immunoconjugate.

    PubMed

    Cook, Brendon E; Adumeau, Pierre; Membreno, Rosemery; Carnazza, Kathryn E; Brand, Christian; Reiner, Thomas; Agnew, Brian J; Lewis, Jason S; Zeglis, Brian M

    2016-08-17

    In recent years, both site-specific bioconjugation techniques and bioorthogonal pretargeting strategies have emerged as exciting technologies with the potential to improve the safety and efficacy of antibody-based nuclear imaging. In the work at hand, we have combined these two approaches to create a pretargeted PET imaging strategy based on the rapid and bioorthogonal inverse electron demand Diels-Alder reaction between a (64)Cu-labeled tetrazine radioligand ((64)Cu-Tz-SarAr) and a site-specifically modified huA33-trans-cyclooctene immunoconjugate ((ss)huA33-PEG12-TCO). A bioconjugation strategy that harnesses enzymatic transformations and strain-promoted azide-alkyne click chemistry was used to site-specifically append PEGylated TCO moieties to the heavy chain glycans of the colorectal cancer-targeting huA33 antibody. Preclinical in vivo validation studies were performed in athymic nude mice bearing A33 antigen-expressing SW1222 human colorectal carcinoma xenografts. To this end, mice were administered (ss)huA33-PEG12-TCO via tail vein injection and-following accumulation intervals of 24 or 48 h-(64)Cu-Tz-SarAr. PET imaging and biodistribution studies reveal that this strategy clearly delineates tumor tissue as early as 1 h post-injection (6.7 ± 1.7%ID/g at 1 h p.i.), producing images with excellent contrast and high tumor-to-background activity concentration ratios (tumor:muscle = 21.5 ± 5.6 at 24 h p.i.). Furthermore, dosimetric calculations illustrate that this pretargeting approach produces only a fraction of the overall effective dose (0.0214 mSv/MBq; 0.079 rem/mCi) of directly labeled radioimmunoconjugates. Ultimately, this method effectively facilitates the high contrast pretargeted PET imaging of colorectal carcinoma using a site-specifically modified immunoconjugate.

  20. Gas-Expanded Liquids: Synergism of Experimental and Computational Determinations of Local Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles A. Eckert; Charles L. Liotta; Rigoberto Hernandez

    2007-06-26

    This project focuses on the characterization of a new class of solvent systems called gas-expanded liquids (GXLs), targeted for green-chemistry processing. The collaboration has adopted a synergistic approach combining elements of molecular dynamics (MD) simulation and spectroscopic experiments to explore the local solvent behavior that could not be studied by simulation or experiment alone. The major accomplishments from this project are: • Applied MD simulations to explore the non-uniform structure of CO2/methanol and CO2/acetone GXLs and studied their dynamic behavior with self-diffusion coefficients and correlation functions • Studied local solvent structure and solvation behavior with a combination of spectroscopy andmore » MD simulations • Measured transport properties of heterocyclic solutes in GXLs through Taylor-Aris diffusion techniques and compared these findings to those of MD simulations • Probed local polarity and specific solute-solvent interactions with Diels-Alder and SN2 reaction studies The broader scientific impact resulting from the research activities of this contract have been recognized by two recent awards: the Presidential Green Chemistry Award (Eckert & Liotta) and a fellowship in the American Association for the Advancement of Science (Hernandez). In addition to the technical aspects of this contract, the investigators have been engaged in a number of programs extending the broader impacts of this project. The project has directly supported the development of two postdoctoral researcher, four graduate students, and five undergraduate students. Several of the undergraduate students were co-funded by a Georgia Tech program, the Presidential Undergraduate Research Award. The other student, an African-American female graduated from Georgia Tech in December 2005, and was co-funded through an NSF Research and Education for Undergraduates (REU) award.« less

Top