Sample records for retrograde neuronal tracing

  1. Combination of intracellular staining of retrogradely labeled neurons and anterograde fluorescent tracing: use of the confocal laser scanning microscope.

    PubMed

    Shi, C; Cassell, M D

    1993-04-01

    This report describes a combined retrograde tracing, intracellular injection and anterograde fluorescence labeling method using the application of confocal laser scanning microscopy. By simultaneously viewing the morphology of identified projection neurons and the distribution of anterogradely labeled fibers and terminals, this approach allows accurate characterization of the anatomical relationships between these two elements. To demonstrate this approach, the retrograde tracer Fast Blue was injected into the bed nucleus of stria terminalis (BNST) and the anterograde tracer tetramethylrhodamine-conjugated dextran was injected into the insular cortex in adult rats. After one week survival time, the brains were fixed and sectioned on a vibratome. Individual BNST projecting neurons identified in the amygdaloid complex on 120 microns thick sections were intracellularly injected with Lucifer Yellow under visual control and analyzed with confocal laser scanning microscopy. The results demonstrate that images from very thin optical sections can clearly show potential synaptic contacts between anterograde labeling and intracellularly labeled projecting neurons. Stacked images from optical sections show, in very great detail, the morphology of projection neurons in three-dimensions. Compared to other methodological combinations, the present method provides a more simple and efficient means to trace three successive components of a putative neuron chain.

  2. The central nucleus of the amygdala modulates gut-related neurons in the dorsal vagal complex in rats

    PubMed Central

    Zhang, Xueguo; Cui, Jinjuan; Tan, Zhenjun; Jiang, Chunhui; Fogel, Ronald

    2003-01-01

    Using retrograde tract-tracing and electrophysiological methods, we characterized the anatomical and functional relationship between the central nucleus of the amygdala and the dorsal vagal complex. Retrograde tract-tracing techniques revealed that the central nucleus of the amygdala projects to the dorsal vagal complex with a topographic distribution. Following injection of retrograde tracer into the vagal complex, retrogradely labelled neurons in the central nucleus of the amygdala were clustered in the central portion at the rostral level and in the medial part at the middle level of the nucleus. Few labelled neurons were seen at the caudal level. Electrical stimulation of the central nucleus of the amygdala altered the basal firing rates of 65 % of gut-related neurons in the nucleus of the solitary tract and in the dorsal motor nucleus of the vagus. Eighty-one percent of the neurons in the nucleus of the solitary tract and 47 % of the neurons in the dorsal motor nucleus were inhibited. Electrical stimulation of the central nucleus of the amygdala also modulated the response of neurons in the dorsal vagal complex to gastrointestinal stimuli. The predominant effect on the neurons of the nucleus of the solitary tract was inhibition. These results suggest that the central nucleus of the amygdala influences gut-related neurons in the dorsal vagal complex and provides a neuronal circuitry that explains the regulation of gastrointestinal activity by the amygdala. PMID:14555729

  3. Enkephalin-containing neurons in the inferior mesenteric ganglion projecting to the distal colon of cat: evidence from combined retrograde tracing by fluorescent microspheres and immunohistochemistry.

    PubMed

    Bagnol, D; Jule, Y; Kirchner, G; Cupo, A; Roman, C

    1993-02-01

    Retrograde tracing with rhodamine fluorescent microspheres combined with fluorescein immunolabelling of methionine-enkephalin showed the presence of enkephalin-like material in neurons of the inferior mesenteric ganglion (sympathetic prevertebral ganglion) projecting to the distal colon in cat. Two weeks after injecting the microspheres into the wall of the distal colon, the inferior mesenteric ganglion was dissected out and incubated for 24 hours in a colchicine-containing culture medium in order to facilitate the detection of enkephalins in the soma of ganglion neurons. It was observed that retrogradely labelled ganglion cells contained enkephalin-like immunoreactive material. These ganglion cells corresponded to enkephalin-like postganglionic neurons, the terminals of which were located inside the wall of the distal colon. These enkephalin-like neurons were numerous and scattered throughout the ganglion. Sometimes enkephalin-like immunoreactive fibers, probably originating from spinal preganglionic neurons, ran close to immunoreactive and non-immunoreactive retrogradely labelled ganglion cells. This suggests that enkephalin-like immunoreactive fibers may make synaptic connections with enkephalin-like and non-enkephalin-like postganglionic neurons projecting to the distal colon. The present study establishes for the first time the existence of an enkephalin-like postganglionic pathway to the digestive tract originating from a sympathetic prevertebral ganglion. This finding indicates that the enkephalinergic innervation of the cat digestive tract may have at least two possible sources: (i) the sympathetic prevertebral ganglia; and (ii) the enteric nervous ganglia.

  4. A novel fluorescent retrograde neural tracer: cholera toxin B conjugated carbon dots

    NASA Astrophysics Data System (ADS)

    Zhou, Nan; Hao, Zeyu; Zhao, Xiaohuan; Maharjan, Suraj; Zhu, Shoujun; Song, Yubin; Yang, Bai; Lu, Laijin

    2015-09-01

    The retrograde neuroanatomical tracing method is a key technique to study the complex interconnections of the nervous system. Traditional tracers have several drawbacks, including time-consuming immunohistochemical or immunofluorescent staining procedures, rapid fluorescence quenching and low fluorescence intensity. Carbon dots (CDs) have been widely used as a fluorescent bio-probe due to their ultrasmall size, excellent optical properties, chemical stability, biocompatibility and low toxicity. Herein, we develop a novel fluorescent neural tracer: cholera toxin B-carbon dot conjugates (CTB-CDs). It can be taken up and retrogradely transported by neurons in the peripheral nervous system of rats. Our results show that CTB-CDs possess high photoluminescence intensity, good optical stability, a long shelf-life and non-toxicity. Tracing with CTB-CDs is a direct and more economical way of performing retrograde labelling experiments. Therefore, CTB-CDs are reliable fluorescent retrograde tracers.The retrograde neuroanatomical tracing method is a key technique to study the complex interconnections of the nervous system. Traditional tracers have several drawbacks, including time-consuming immunohistochemical or immunofluorescent staining procedures, rapid fluorescence quenching and low fluorescence intensity. Carbon dots (CDs) have been widely used as a fluorescent bio-probe due to their ultrasmall size, excellent optical properties, chemical stability, biocompatibility and low toxicity. Herein, we develop a novel fluorescent neural tracer: cholera toxin B-carbon dot conjugates (CTB-CDs). It can be taken up and retrogradely transported by neurons in the peripheral nervous system of rats. Our results show that CTB-CDs possess high photoluminescence intensity, good optical stability, a long shelf-life and non-toxicity. Tracing with CTB-CDs is a direct and more economical way of performing retrograde labelling experiments. Therefore, CTB-CDs are reliable fluorescent retrograde tracers. Electronic supplementary information (ESI) available: PL spectra of CTB; absorption spectra of dialysate; fluorescence signal and immunohistochemical staining of CTB-CDs in L4 DRG. See DOI: 10.1039/c5nr04361a

  5. Retrograde tracing and toe spreading after experimental autologous nerve transplantation and crush injury of the sciatic nerve: a descriptive methodological study.

    PubMed

    van Neerven, Sabien Ga; Bozkurt, Ahmet; O'Dey, Dan Mon; Scheffel, Juliane; Boecker, Arne H; Stromps, Jan-Philipp; Dunda, Sebastian; Brook, Gary A; Pallua, Norbert

    2012-04-30

    Evaluation of functional and structural recovery after peripheral nerve injury is crucial to determine the therapeutic effect of a nerve repair strategy. In the present study, we examined the relationship between the structural evaluation of regeneration by means of retrograde tracing and the functional analysis of toe spreading. Two standardized rat sciatic nerve injury models were used to address this relationship. As such, animals received either a 2 cm sciatic nerve defect (neurotmesis) followed by autologous nerve transplantation (ANT animals) or a crush injury with spontaneous recovery (axonotmesis; CI animals). Functional recovery of toe spreading was observed over an observation period of 84 days. In contrast to CI animals, ANT animals did not reach pre-surgical levels of toe spreading. After the observation period, the lipophilic dye DiI was applied to label sensory and motor neurons in dorsal root ganglia (DRG; sensory neurons) and spinal cord (motor neurons), respectively. No statistical difference in motor or sensory neuron counts could be detected between ANT and CI animals.In the present study we could indicate that there was no direct relationship between functional recovery (toe spreading) measured by SSI and the number of labelled (motor and sensory) neurons evaluated by retrograde tracing. The present findings demonstrate that a multimodal approach with a variety of independent evaluation tools is essential to understand and estimate the therapeutic benefit of a nerve repair strategy.

  6. [Substance P and/or calcitonin gene-related peptide immunoreactive neurons in dorsal root ganglia possibly involved in the transmission of nociception in rat penile frenulum].

    PubMed

    Wu, Zhong-Min; Ni, Jing-Jing; Ling, Shu-Cai

    2007-12-01

    To study the relationship between substance P (SP) and/or calcitonin gene-related peptide (CGRP) immunoreactive neurons in dorsal root ganglia (DRG) and the transmission of nociception in the penile frenulum of rats. The fluoro-gold (FG) retrograde tracing method was used to trace the origin of nerve terminals in the penile frenulum of rats. And SP and/or CGRP immunofluorescence labeling was employed to detect the distribution of SP and/or CGRP immunoreactive neurons in DRG. FG retrograde tracing showed that the FG retrolabeled neurons were localized in L6-DRG and S1-DRG. SP and/or CGRP immunofluorescence labeling indicated that a large number of DRG neurons were SP- and CGRP-immunoreactive, different in size, bright red and bright green respectively in color, and arranged in rows or spots among nerve bundles. All the FG/SP and FG/CGRP double-labeled neurons were medium or small-sized. One third of the FG-labeled neurons were SP-immunoreactive, and a half of them CGRP-immunoreactive in L6-DRG and S1-DRG respectively. The FG/SP/CGRP-labeled neurons accounted for one fifth of the FG retro labeled neurons. SP- and CGRP-immunoreactive neurons in L6-DRG and SI-DRG of rats may be involved in the transmission of nociception in rat penile frenulum.

  7. Presynaptic Inputs to Any CNS Projection Neuron Identified by Dual Recombinant Virus Infection

    PubMed Central

    Bráz, João M.; Wang, Fan; Basbaum, Allan I.

    2015-01-01

    Although neuroanatomical tracing studies have defined the origin and targets of major projection neurons (PN) of the central nervous system (CNS), there is much less information about the circuits that influence these neurons. Recently, genetic approaches that use Cre recombinase-dependent viral vectors have greatly facilitated such circuit analysis, but these tracing approaches are limited by the availability of Cre-expressing mouse lines and the difficulty in restricting Cre expression to discrete regions of the CNS. Here, we illustrate an alternative approach to drive Cre expression specifically in defined subsets of CNS projection neurons, so as to map both direct and indirect presynaptic inputs to these cells. The method involves a combination of Cre-dependent transneuronal viral tracers that can be used in the adult and that does not require genetically modified mice. To trigger Cre-expression we inject a Cre-expressing adenovirus that is retrogradely transported to the projection neurons of interest. The region containing the retrogradely labeled projection neurons is next injected with Cre-dependent pseudorabies or rabies vectors, which results in labeling of poly- and monosynaptic neuronal inputs, respectively. In proof-of-concept experiments, we used this novel tracing system to study the circuits that engage projection neurons of the superficial dorsal horn of the spinal cord and trigeminal nucleus caudalis, neurons of the parabrachial nucleus of the dorsolateral pons that project to the amygdala and cortically-projecting neurons of the lateral geniculate nucleus. Importantly, because this dual viral tracing method does not require genetically derived Cre-expressing mouse lines, inputs to almost any projection system can be studied and the analysis can be performed in larger animals, such as the rat. PMID:26470056

  8. Anterograde and retrograde tracing with high molecular weight biotinylated dextran amine through thalamocortical and corticothalamic pathways.

    PubMed

    Zhang, Wenjie; Xu, Dongsheng; Cui, Jingjing; Jing, Xianghong; Xu, Nenggui; Liu, Jianhua; Bai, Wanzhu

    2017-02-01

    Biotinylated dextran amine (BDA) has been used for neural pathway tracing in the central nervous system for many decades, in which high molecular weight BDA appeared to be transported predominantly in the anterograde direction and less in the retrograde direction. In the current study, we reexamined the properties of neural labeling with high molecular weight BDA through a reciprocal neural pathway between thalamus and somatosensory cortex. After injection of BDA into the ventral posteromedial nucleus of thalamus (VPM) in the rat, the BDA labeling was sequentially examined on somatosensory cortex at 3, 5, 7, 10, and 14 survival days. Both of anterogradely labeled axonal terminals and retrogradely labeled neuronal cell bodies were observed simultaneously on the somatosensory cortex. With the increasing of survival times after injection, morphological changes occurred on the labeled axonal arbors and neuronal dendrites, in which the high quality of BDA labeling appeared on the tenth survival day. These results indicate that high molecular weight BDA is not only a sensitive anterograde tracer but also an excellent retrograde marker to be used for tracing through thalamocortical and corticothalamic pathways. And the detailed structure of neural labeling with BDA similar to Golgi-like resolution can be obtained at optimal survival times of animals after the injection of high molecular weight BDA. © 2016 Wiley Periodicals, Inc.

  9. Distinct Expression of Phenotypic Markers in Placodes- and Neural Crest-Derived Afferent Neurons Innervating the Rat Stomach.

    PubMed

    Trancikova, Alzbeta; Kovacova, Eva; Ru, Fei; Varga, Kristian; Brozmanova, Mariana; Tatar, Milos; Kollarik, Marian

    2018-02-01

    Visceral pain is initiated by activation of primary afferent neurons among which the capsaicin-sensitive (TRPV1-positive) neurons play an important role. The stomach is a common source of visceral pain. Similar to other organs, the stomach receives dual spinal and vagal afferent innervation. Developmentally, spinal dorsal root ganglia (DRG) and vagal jugular neurons originate from embryonic neural crest and vagal nodose neurons originate from placodes. In thoracic organs the neural crest- and placodes-derived TRPV1-positive neurons have distinct phenotypes differing in activation profile, neurotrophic regulation and reflex responses. It is unknown to whether such distinction exists in the stomach. We hypothesized that gastric neural crest- and placodes-derived TRPV1-positive neurons express phenotypic markers indicative of placodes and neural crest phenotypes. Gastric DRG and vagal neurons were retrogradely traced by DiI injected into the rat stomach wall. Single-cell RT-PCR was performed on traced gastric neurons. Retrograde tracing demonstrated that vagal gastric neurons locate exclusively into the nodose portion of the rat jugular/petrosal/nodose complex. Gastric DRG TRPV1-positive neurons preferentially expressed markers PPT-A, TrkA and GFRα 3 typical for neural crest-derived TRPV1-positive visceral neurons. In contrast, gastric nodose TRPV1-positive neurons preferentially expressed markers P2X 2 and TrkB typical for placodes-derived TRPV1-positive visceral neurons. Differential expression of neural crest and placodes markers was less pronounced in TRPV1-negative DRG and nodose populations. There are phenotypic distinctions between the neural crest-derived DRG and placodes-derived vagal nodose TRPV1-positive neurons innervating the rat stomach that are similar to those described in thoracic organs.

  10. Combination of diOlistic labeling with retrograde tract tracing and immunohistochemistry.

    PubMed

    Neely, M Diana; Stanwood, Gregg D; Deutch, Ariel Y

    2009-11-15

    Neuronal staining techniques have played a crucial role in the analysis of neuronal function. Several different staining techniques have been developed to allow morphological analyses of neurons. DiOlistic labeling, in which beads are coated with a lipophilic dye and then ballistically ejected onto brain tissue, has recently been introduced as a useful and simple means to label neurons and glia in their entirety. Although diOlistic labeling provides detailed information on the morphology of neurons, combining this approach with other staining methods is a significant advance. We have developed protocols that result in high quality diOlistically- and retrogradely-labeled or diOlistically-immunohistochemically labeled neurons. These dual-label methods require modification of fixation parameters and the restricted use of detergents for tissue permeabilization, and are readily applicable to a wide range of tracers and antibodies.

  11. Combination of DiOlistic Labeling with Retrograde Tract Tracing and Immunohistochemistry

    PubMed Central

    Diana Neely, M.; Stanwood, Gregg D; Deutch, Ariel Y.

    2009-01-01

    Neuronal staining techniques have played a crucial role in the analysis of neuronal function. Several different staining techniques have been developed to allow morphological analyses of neurons. Recently diOlistic labeling, in which beads are coated with a lipophilic dye and then ballistically ejected onto brain tissue, has been developed as a useful and simple means to label neurons and glia in their entirety. Although diOlistic labeling provides detailed information on the morphology of neurons, combining this approach with other staining methods is a significant advance. We have developed protocols that result in high quality diOlistically- and retrogradely-labeled or diOlistically-immunohistochemically labeled neurons. These dual-label methods require modification of fixation parameters and the use of detergents for tissue permeabilization, and are readily applicable to a wide range of tracers and antibodies. PMID:19712695

  12. Efficacy of lateral- versus medial-approach hip joint capsule denervation as surgical treatments of the hip joint pain; a neuronal tract tracing study in the sheep

    PubMed Central

    Sienkiewicz, Waldemar; Dudek, Agnieszka; Czaja, Krzysztof; Janeczek, Maciej; Chrószcz, Aleksander; Kaleczyc, Jerzy

    2018-01-01

    Objective To evaluate efficacy of denervation of the of the hip joint capsule (HJC), as a treatment of hip joint pain. Specifically, we tested the hypothesis that HJC denervation will significantly reduce the number of sensory neurons innervating the capsule. Study design Denervation of the HJC from a medial or lateral approach was followed by retrograde tracing of sensory neurons innervating the capsule. Animals Twenty adult male sheep (30–40 kg of body weight; Polish merino breed) were used in the study. Methods The hip joint was denervated from medial (n = 5) or lateral (n = 5) surgical approaches. Immediately after denervation, the retrograde neural tract tracer Fast Blue (FB) was injected into the HJC. An additional ten animals (n = 5 for medial and n = 5 for lateral approach) received the same treatment without HJC denervation to provide the appropriate controls. Results Results of the study revealed that the vast majority of retrogradely labelled sensory neurons innervating the HJC originate from fifth lumbar to second sacral dorsal root ganglia. Both the medial and the lateral denervations significantly reduced the number of sensory neurons innervating the HJC (39.2% and 69.0% reduction respectively). Conclusions These results show that denervation of the HJC is an effective surgical procedure for reduction of the sensory neuronal input to the HJC. Moreover, the lateral approach was found to be significantly more effective for reducing sensory innervation as compared to the medial one. PMID:29329303

  13. Digoxigenylated wheat germ agglutinin visualized with alkaline phosphatase-labeled anti-digoxigenin antibodies--a new, sensitive technique with the potential for single and double tracing of neuronal connections.

    PubMed

    Veh, R W

    1991-01-02

    For double tracing experiments, wheat germ agglutinin (WGA) molecules labeled with two different haptens are desirable. In the present report the suitability of digoxigenylated WGA (DIG-WGA) for retrograde tracing was investigated. For this purpose the new tracer was pressure injected into rat brains and the transported DIG-WGA visualized via its digoxigenyl group with an alkaline phosphatase linked anti DIG antibody in permanently stained sections of high quality. With fixatives containing 2.5% glutaraldehyde only few positive cells were found. However, at milder fixation conditions (4% paraformaldehyde, 0.05% glutaraldehyde 0.2% picric acid, 30 min) retrogradely labeled cells were detected with a sensitivity comparable to tetramethylbenzidine protocols for conventional WGA-HRP (horseradish peroxidase) tracing. Preliminary experiments suggest excellent suitability for double labeling.

  14. Anterograde or Retrograde Transsynaptic Circuit Tracing in Vertebrates with Vesicular Stomatitis Virus Vectors

    PubMed Central

    Beier, Kevin T.; Mundell, Nathan A.; Pan, Y. Albert; Cepko, Constance L.

    2016-01-01

    Viruses have been used as transsynaptic tracers, allowing one to map the inputs and outputs of neuronal populations, due to their ability to replicate in neurons and transmit in vivo only across synaptically connected cells. To date, their use has been largely restricted to mammals. In order to explore the use of such viruses in an expanded host range, we tested the transsynaptic tracing ability of recombinant vesicular stomatitis virus (rVSV) vectors in a variety of organisms. Successful infection and gene expression were achieved in a wide range of organisms, including vertebrate and invertebrate model organisms. Moreover, rVSV enabled transsynaptic tracing of neural circuitry in predictable directions dictated by the viral envelope glycoprotein (G), derived from either VSV or rabies virus (RABV). Anterograde and retrograde labeling, from initial infection and/or viral replication and transmission, was observed in Old and New World monkeys, seahorses, jellyfish, zebrafish, chickens, and mice. These vectors are widely applicable for gene delivery, afferent tract tracing, and/or directional connectivity mapping. Here, we detail the use of these vectors and provide protocols for propagating virus, changing the surface glycoprotein, and infecting multiple organisms using several injection strategies. PMID:26729030

  15. Anterograde or Retrograde Transsynaptic Circuit Tracing in Vertebrates with Vesicular Stomatitis Virus Vectors.

    PubMed

    Beier, Kevin T; Mundell, Nathan A; Pan, Y Albert; Cepko, Constance L

    2016-01-04

    Viruses have been used as transsynaptic tracers, allowing one to map the inputs and outputs of neuronal populations, due to their ability to replicate in neurons and transmit in vivo only across synaptically connected cells. To date, their use has been largely restricted to mammals. In order to explore the use of such viruses in an expanded host range, we tested the transsynaptic tracing ability of recombinant vesicular stomatitis virus (rVSV) vectors in a variety of organisms. Successful infection and gene expression were achieved in a wide range of organisms, including vertebrate and invertebrate model organisms. Moreover, rVSV enabled transsynaptic tracing of neural circuitry in predictable directions dictated by the viral envelope glycoprotein (G), derived from either VSV or rabies virus (RABV). Anterograde and retrograde labeling, from initial infection and/or viral replication and transmission, was observed in Old and New World monkeys, seahorses, jellyfish, zebrafish, chickens, and mice. These vectors are widely applicable for gene delivery, afferent tract tracing, and/or directional connectivity mapping. Here, we detail the use of these vectors and provide protocols for propagating virus, changing the surface glycoprotein, and infecting multiple organisms using several injection strategies. Copyright © 2016 John Wiley & Sons, Inc.

  16. Identification of neuroanatomic circuits from spinal cord to stomach in mouse: retrograde transneuronal viral tracing study.

    PubMed

    Ye, Da-Wei; Liu, Cheng; Tian, Xue-Bi; Xiang, Hong-Bing

    2014-01-01

    To determine the spinal innervation and neuronal connections is important for studying gastric carbohydrate metabolism and motor responses. Neurons involved in the efferent control of the stomach were identified following visualization of pseudorabies virus (PRV)-614 retrograde tracing. PRV-614 was injected into the ventral stomach wall in 13 adult C57BL/6J strain male mice. On the fifth day postinjection, animals were humanely sacrificed, and spinal cords were removed and sectioned, and processed for PRV visualization. The virus injected into the ventral stomach wall was specifically transported to the thoracic spinal cord. At 5 d after injection of the PRV-614, stomach enlargement and tissue edema were found, and PRV-614 positive cells were found in the intermediolateral cell column, the intercalates nucleus or the central autonomic nucleus of spinal cord segments T3 to L1, and major PRV-614 labeled cells were focused in the T6-10 segment. Our results revealed neuroanatomical circuits between stomach and the spinal intermediolateral cell column neurons.

  17. The neuroinvasive profiles of H129 (herpes simplex virus type 1) recombinants with putative anterograde-only transneuronal spread properties.

    PubMed

    Wojaczynski, Gregory J; Engel, Esteban A; Steren, Karina E; Enquist, Lynn W; Patrick Card, J

    2015-01-01

    The use of viruses as transneuronal tracers has become an increasingly powerful technique for defining the synaptic organization of neural networks. Although a number of recombinant alpha herpesviruses are known to spread selectively in the retrograde direction through neural circuits only one strain, the H129 strain of herpes simplex virus type 1, is reported to selectively spread in the anterograde direction. However, it is unclear from the literature whether there is an absolute block or an attenuation of retrograde spread of H129. Here, we demonstrate efficient anterograde spread, and temporally delayed retrograde spread, of H129 and three novel recombinants. In vitro studies revealed no differences in anterograde and retrograde spread of parental H129 and its recombinants through superior cervical ganglion neurons. In vivo injections of rat striatum revealed a clear bias of anterograde spread, although evidence of deficient retrograde transport was also present. Evidence of temporally delayed retrograde transneuronal spread of H129 in the retina was observed following injection of the lateral geniculate nucleus. The data also demonstrated that three novel recombinants efficiently express unique fluorescent reporters and have the capacity to infect the same neurons in dual infection paradigms. From these experiments we conclude that H129 and its recombinants not only efficiently infect neurons through anterograde transneuronal passage, but also are capable of temporally delayed retrograde transneuronal spread. In addition, the capacity to produce dual infection of projection targets following anterograde transneuronal passage provides an important addition to viral transneuronal tracing technology.

  18. The Neuroinvasive Profiles of H129 (Herpes Simplex Virus Type 1) Recombinants with Putative Anterograde-Only Transneuronal Spread Properties

    PubMed Central

    Wojaczynski, Gregory J.; Engel, Esteban A.; Steren, Karina E.; Enquist, Lynn W.; Card, J. Patrick

    2014-01-01

    The use of viruses as transneuronal tracers has become an increasingly powerful technique for defining the synaptic organization of neural networks. Although a number of recombinant alpha herpesviruses are known to spread selectively in the retrograde direction through neural circuits only one strain, the H129 strain of herpes simplex virus type 1, is reported to selectively spread in the anterograde direction. However, it is unclear from the literature whether there is an absolute block or an attenuation of retrograde spread of H129. Here we demonstrate efficient anterograde spread, and temporally delayed retrograde spread, of H129 and three novel recombinants. In vitro studies revealed no differences in anterograde and retrograde spread of parental H129 and its recombinants through superior cervical ganglion neurons. In vivo injections of rat striatum revealed a clear bias of anterograde spread, although evidence of deficient retrograde transport was also present. Evidence of temporally delayed retrograde transneuronal spread of H129 in the retina was observed following injection of the lateral geniculate nucleus. The data also demonstrated that three novel recombinants efficiently express unique fluorescent reporters and have the capacity to infect the same neurons in dual infection paradigms. From these experiments we conclude that H129 and its recombinants efficiently infect neurons through anterograde transneuronal passage, but also are capable of temporally delayed retrograde transneuronal spread. In addition, the capacity to produce dual infection of projection targets following anterograde transneuronal passage provides an important addition to viral transneuronal tracing technology. PMID:24585022

  19. Neurochemistry of olivocochlear neurons in the hamster.

    PubMed

    Reuss, Stefan; Disque-Kaiser, Ursula; Antoniou-Lipfert, Patricia; Gholi, Maryam Najaf; Riemann, Elke; Riemann, Randolf

    2009-04-01

    The present study was conducted to characterize the superior olivary complex (SOC) of the lower brain stem in the pigmented Djungarian hamster Phodopus sungorus. Using Nissl-stained serial cryostat sections from fresh-frozen brains, we determined the borders of the SOC nuclei. We also identified olivocochlear (OC) neurons by retrograde neuronal tracing upon injection of Fluoro-Gold into the scala tympani. To evaluate the SOC as a putative source of neuronal nitric oxide synthase (nNOS), arginine-vasopressin (AVP), oxytocin (OT), vasoactive intestinal polypeptide (VIP), or pituitary adenylate cyclase-activating polypeptide (PACAP) that were all found in the cochlea, we conducted immunohistochemistry on sections exhibiting retrogradely labeled neurons. We did not observe AVP-, OT-, or VIP-immunoreactivity, neither in OC neurons nor in the SOC at all, revealing that cochlear AVP, OT, and VIP are of nonolivary origin. However, we found nNOS, the enzyme responsible for nitric oxide synthesis in neurons, and PACAP in neuronal perikarya of the SOC. Retrogradely labeled neurons of the lateral olivocochlear (LOC) system in the lateral superior olive did not contain PACAP and were only infrequently nNOS-immunoreactive. In contrast, some shell neurons and some of the medial OC (MOC) system exhibited immunofluorescence for either substance. Our data obtained from the dwarf hamster Phodopus sungorus confirm previous observations that a part of the LOC system is nitrergic. They further demonstrate that the medial olivocochlear system is partly nitrergic and use PACAP as neurotransmitter or modulator.

  20. Mapping sensory circuits by anterograde trans-synaptic transfer of recombinant rabies virus

    PubMed Central

    Zampieri, Niccolò; Jessell, Thomas M.; Murray, Andrew J.

    2014-01-01

    Summary Primary sensory neurons convey information from the external world to relay circuits within the central nervous system (CNS), but the identity and organization of the neurons that process incoming sensory information remains sketchy. Within the CNS viral tracing techniques that rely on retrograde trans-synaptic transfer provide a powerful tool for delineating circuit organization. Viral tracing of the circuits engaged by primary sensory neurons has, however, been hampered by the absence of a genetically tractable anterograde transfer system. In this study we demonstrate that rabies virus can infect sensory neurons in the somatosensory system, is subject to anterograde trans-synaptic transfer from primary sensory to spinal target neurons, and can delineate output connectivity with third-order neurons. Anterograde trans-synaptic transfer is a feature shared by other classes of primary sensory neurons, permitting the identification and potentially the manipulation of neural circuits processing sensory feedback within the mammalian CNS. PMID:24486087

  1. Neuroanatomy of melanocortin-4 receptor pathway in the lateral hypothalamic area

    PubMed Central

    Cui, Huxing; Sohn, Jong-Woo; Gautron, Laurent; Funahashi, Hisayuki; Williams, Kevin W.; Elmquist, Joel K.; Lutter, Michael

    2013-01-01

    The central melanocortin system regulates body energy homeostasis including the melanocortin-4 receptor (MC4R). The lateral hypothalamic area (LHA) receives dense melanocortinergic inputs from the arcuate nucleus of hypothalamus and regulates multiple processes including food intake, reward behaviors and autonomic function. Using a mouse line in which green fluorescent protein (GFP) is expressed under control of MC4R gene promoter, we systemically investigated MC4R signaling in the LHA by combining double immunohistochemistry, electrophysiology and retrograde tracing techniques. We found that LHA MC4R-GFP neurons co-express neurotensin as well as the leptin receptor but not with other peptide neurotransmitters found in the LHA including orexin, melanin concentrating hormone and nesfatin-1. Furthermore, electrophysiological recording demonstrated that leptin, but not the MC4R agonist melanotan II, hyperpolarizes the majority of LHA MC4R-GFP neurons in an ATP-sensitive potassium channel-dependent manner. Retrograde tracing revealed that LHA MC4R-GFP neurons do not project to the ventral tegmental area, dorsal raphe nucleus, nucleus accumbens and spinal cord, and only limited number of neurons project to the nucleus of solitary tract and parabrachial nucleus. Our findings provide new insight into MC4R signaling in the LHA and its potential implication in homeostatic regulation of body energy balance. PMID:22605619

  2. Callosally projecting neurons in the macaque monkey V1/V2 border are enriched in nonphosphorylated neurofilament protein

    NASA Technical Reports Server (NTRS)

    Hof, P. R.; Ungerleider, L. G.; Adams, M. M.; Webster, M. J.; Gattass, R.; Blumberg, D. M.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1997-01-01

    Previous immunohistochemical studies combined with retrograde tracing in macaque monkeys have demonstrated that corticocortical projections can be differentiated by their content of neurofilament protein. The present study analyzed the distribution of nonphosphorylated neurofilament protein in callosally projecting neurons located at the V1/V2 border. All of the retrogradely labeled neurons were located in layer III at the V1/V2 border and at an immediately adjacent zone of area V2. A quantitative analysis showed that the vast majority (almost 95%) of these interhemispheric projection neurons contain neurofilament protein immunoreactivity. This observation differs from data obtained in other sets of callosal connections, including homotypical interhemispheric projections in the prefrontal, temporal, and parietal association cortices, that were found to contain uniformly low proportions of neurofilament protein-immunoreactive neurons. Comparably, highly variable proportions of neurofilament protein-containing neurons have been reported in intrahemispheric corticocortical pathways, including feedforward and feedback visual connections. These results indicate that neurofilament protein is a prominent neurochemical feature that identifies a particular population of interhemispheric projection neurons at the V1/V2 border and suggest that this biochemical attribute may be critical for the function of this subset of callosal neurons.

  3. Neurokinin B-producing projection neurons in the lateral stripe of the striatum and cell clusters of the accumbens nucleus in the rat.

    PubMed

    Zhou, Ligang; Furuta, Takahiro; Kaneko, Takeshi

    2004-12-06

    Neurons producing preprotachykinin B (PPTB), the precursor of neurokinin B, constitute 5% of neurons in the dorsal striatum and project to the substantia innominata (SI) selectively. In the ventral striatum, PPTB-producing neurons are collected mainly in the lateral stripe of the striatum (LSS) and cell clusters of the accumbens nucleus (Acb). In the present study, we first examined the distribution of PPTB-immunoreactive neurons in rat ventral striatum and found that a large part of the PPTB-immunoreactive cell clusters was continuous to the LSS, but a smaller part was not. Thus, we divided the PPTB-immunoreactive cell clusters into the LSS-associated and non-LSS-associated ones. We next investigated the projection targets of the PPTB-producing ventral striatal neurons by combining immunofluorescence labeling and retrograde tracing. After injection of Fluoro-Gold into the basal component of the SI (SIb) and medial part of the interstitial nucleus of posterior limb of the anterior commissure, many PPTB-immunoreactive neurons were retrogradely labeled in the LSS-associated cell clusters and LSS, respectively. When the injection site included the ventral part of the sublenticular component of the SI(SIsl), retrogradely labeled neurons showed PPTB-immunoreactivity frequently in non-LSS-associated cell clusters. Furthermore, these PPTB-immunoreactive projections were confirmed by the double-fluorescence method after anterograde tracer injection into the ventral striatum containing the cell clusters. Since the dorsalmost part of the SIsl is known to receive strong inputs from PPTB-producing dorsal striatal neurons, the present results indicate that PPTB-producing ventral striatal neurons project to basal forebrain target regions in parallel with dorsal striatal neurons without significant convergence. 2004 Wiley-Liss, Inc.

  4. Neuroanatomy of melanocortin-4 receptor pathway in the lateral hypothalamic area.

    PubMed

    Cui, Huxing; Sohn, Jong-Woo; Gautron, Laurent; Funahashi, Hisayuki; Williams, Kevin W; Elmquist, Joel K; Lutter, Michael

    2012-12-15

    The central melanocortin system regulates body energy homeostasis including the melanocortin-4 receptor (MC4R). The lateral hypothalamic area (LHA) receives dense melanocortinergic inputs from the arcuate nucleus of the hypothalamus and regulates multiple processes including food intake, reward behaviors, and autonomic function. By using a mouse line in which green fluorescent protein (GFP) is expressed under control of the MC4R gene promoter, we systemically investigated MC4R signaling in the LHA by combining double immunohistochemistry, electrophysiology, and retrograde tracing techniques. We found that LHA MC4R-GFP neurons coexpress neurotensin as well as the leptin receptor but do not coexpress other peptide neurotransmitters found in the LHA including orexin, melanin-concentrating hormone, and nesfatin-1. Furthermore, electrophysiological recording demonstrated that leptin, but not the MC4R agonist melanotan II, hyperpolarizes the majority of LHA MC4R-GFP neurons in an ATP- sensitive potassium channel-dependent manner. Retrograde tracing revealed that LHA MC4R-GFP neurons do not project to the ventral tegmental area, dorsal raphe nucleus, nucleus accumbens, and spinal cord, and only limited number of neurons project to the nucleus of the solitary tract and parabrachial nucleus. Our findings provide new insights into MC4R signaling in the LHA and its potential implications in homeostatic regulation of body energy balance. Copyright © 2012 Wiley Periodicals, Inc.

  5. Relationships between structure, in vivo function and long-range axonal target of cortical pyramidal tract neurons.

    PubMed

    Rojas-Piloni, Gerardo; Guest, Jason M; Egger, Robert; Johnson, Andrew S; Sakmann, Bert; Oberlaender, Marcel

    2017-10-11

    Pyramidal tract neurons (PTs) represent the major output cell type of the neocortex. To investigate principles of how the results of cortical processing are broadcasted to different downstream targets thus requires experimental approaches, which provide access to the in vivo electrophysiology of PTs, whose subcortical target regions are identified. On the example of rat barrel cortex (vS1), we illustrate that retrograde tracer injections into multiple subcortical structures allow identifying the long-range axonal targets of individual in vivo recorded PTs. Here we report that soma depth and dendritic path lengths within each cortical layer of vS1, as well as spiking patterns during both periods of ongoing activity and during sensory stimulation, reflect the respective subcortical target regions of PTs. We show that these cellular properties result in a structure-function parameter space that allows predicting a PT's subcortical target region, without the need to inject multiple retrograde tracers.The major output cell type of the neocortex - pyramidal tract neurons (PTs) - send axonal projections to various subcortical areas. Here the authors combined in vivo recordings, retrograde tracings, and reconstructions of PTs in rat somatosensory cortex to show that PT structure and activity can predict specific subcortical targets.

  6. Terminal field specificity of forebrain efferent axons to the pontine parabrachial nucleus and medullary reticular formation

    PubMed Central

    Zhang, Chi; Kang, Yi; Lundy, Robert F.

    2010-01-01

    The pontine parabrachial nucleus (PBN) and medullary reticular formation (RF) are hindbrain regions that, respectively, process sensory input and coordinate motor output related to ingestive behavior. Neural processing in each hindbrain site is subject to modulation originating from several forebrain structures including the insular gustatory cortex (IC), bed nucleus of the stria terminalis (BNST), central nucleus of the amygdala (CeA), and lateral hypothalamus (LH). The present study combined electrophysiology and retrograde tracing techniques to determine the extent of overlap between neurons within the IC, BNST, CeA and LH that target both the PBN and RF. One fluorescent retrograde tracer, red (RFB) or green (GFB) latex microbeads, was injected into the gustatory PBN under electrophysiological guidance and a different retrograde tracer, GFB or fluorogold (FG), into the ipsilateral RF using the location of gustatory NST as a point of reference. Brain tissue containing each forebrain region was sectioned, scanned using a confocal microscope, and scored for the number of single and double labeled neurons. Neurons innervating the RF only, the PBN only, or both the medullary RF and PBN were observed, largely intermingled, in each forebrain region. The CeA contained the largest number of cells retrogradely labeled after tracer injection into either hindbrain region. For each forebrain area except the IC, the origin of descending input to the RF and PBN was almost entirely ipsilateral. Axons from a small percentage of hindbrain projecting forebrain neurons targeted both the PBN and RF. Target specific and non specific inputs from a variety of forebrain nuclei to the hindbrain likely reflect functional specialization in the control of ingestive behaviors. PMID:21040715

  7. Nicotine Modulates Multiple Regions in the Limbic Stress Network Regulating Activation of Hypophysiotrophic Neurons in Hypothalamic Paraventricular Nucleus

    PubMed Central

    Yu, Guoliang; Sharp, Burt M.

    2012-01-01

    Nicotine intake affects CNS responses to stressors. We reported that nicotine self-administration (SA) augmented the hypothalamo-pituitary-adrenal (HPA) stress response, in part due to altered neurotransmission and neuropeptide expression within hypothalamic paraventricular nucleus (PVN). Limbic-PVN interactions involving medial prefrontal cortex, amygdala, bed nucleus of the stria terminalis (BST) greatly impact the HPA stress response. Therefore, we investigated the effects of nicotine SA on stress-induced neuronal activation in limbic-PVN network, using c-Fos protein immunohistochemistry and retrograde tracing. Nicotine decreased stress-induced c-Fos in prelimbic cortex (PrL), anteroventral BST (avBST), and peri-PVN; but increased c-Fos induction in medial amygdala (MeA), locus coeruleus, and PVN. Fluoro-gold (FG) was injected into avBST or PVN, since GABAergic neurons in avBST projecting to PVN corticotrophin-releasing factor (CRF) neurons relay information from both PrL glutamatergic and MeA GABAergic neurons. The stress-induced c-Fos expression in retrograde-labeled FG+ neurons was decreased in PrL by nicotine, but increased in MeA, and also reduced in avBST. Therefore, within limbic-PVN network, nicotine SA exerts selective regional effects on neuronal activation by stress. These findings expand the mechanistic framework by demonstrating altered limbic-BST-PVN interactions underlying the disinhibition of PVN CRF neurons, an essential component of the amplified HPA response to stress by nicotine. PMID:22578217

  8. Gene Expression Profiling with Cre-Conditional Pseudorabies Virus Reveals a Subset of Midbrain Neurons That Participate in Reward Circuitry

    PubMed Central

    Pomeranz, Lisa E.; Ekstrand, Mats I.; Latcha, Kaamashri N.; Smith, Gregory A.; Enquist, Lynn W.

    2017-01-01

    The mesolimbic dopamine pathway receives inputs from numerous regions of the brain as part of a neural system that detects rewarding stimuli and coordinates a behavioral response. The capacity to simultaneously map and molecularly define the components of this complex multisynaptic circuit would thus advance our understanding of the determinants of motivated behavior. To accomplish this, we have constructed pseudorabies virus (PRV) strains in which viral propagation and fluorophore expression are activated only after exposure to Cre recombinase. Once activated in Cre-expressing neurons, the virus serially labels chains of presynaptic neurons. Dual injection of GFP and mCherry tracing viruses simultaneously illuminates nigrostriatal and mesolimbic circuitry and shows no overlap, demonstrating that PRV transmission is confined to synaptically connected neurons. To molecularly profile mesolimbic dopamine neurons and their presynaptic inputs, we injected Cre-conditional GFP virus into the NAc of (anti-GFP) nanobody-L10 transgenic mice and immunoprecipitated translating ribosomes from neurons infected after retrograde tracing. Analysis of purified RNA revealed an enrichment of transcripts expressed in neurons of the dorsal raphe nuclei and lateral hypothalamus that project to the mesolimbic dopamine circuit. These studies identify important inputs to the mesolimbic dopamine pathway and further show that PRV circuit-directed translating ribosome affinity purification can be broadly applied to identify molecularly defined neurons comprising complex, multisynaptic circuits. SIGNIFICANCE STATEMENT The mesolimbic dopamine circuit integrates signals from key brain regions to detect and respond to rewarding stimuli. To further define this complex multisynaptic circuit, we constructed a panel of Cre recombinase-activated pseudorabies viruses (PRVs) that enabled retrograde tracing of neural inputs that terminate on Cre-expressing neurons. Using these viruses and Retro-TRAP (translating ribosome affinity purification), a previously reported molecular profiling method, we developed a novel technique that provides anatomic as well as molecular information about the neural components of polysynaptic circuits. We refer to this new method as PRV-Circuit-TRAP (PRV circuit-directed TRAP). Using it, we have identified major projections to the mesolimbic dopamine circuit from the lateral hypothalamus and dorsal raphe nucleus and defined a discrete subset of transcripts expressed in these projecting neurons, which will allow further characterization of this important pathway. Moreover, the method we report is general and can be applied to the study of other neural circuits. PMID:28283558

  9. Excitatory innervation of caudal hypoglossal nucleus from nucleus reticularis gigantocellularis in the rat.

    PubMed

    Yang, C C; Chan, J Y; Chan, S H

    1995-03-01

    We examined the possible innervation of the caudal hypoglossal nucleus by the nucleus reticularis gigantocellularis of the medulla oblongata, based on single-neuron recording and retrograde tracing experiments in Sprague-Dawley rats. Under pentobarbital sodium (50 mg/kg, i.p.) anesthesia, electrical stimulation of the caudal portion of the nucleus reticularis gigantocellularis with repetitive 0.5-ms rectangular pulses increased (46 of 51 neurons) the basal discharge frequency of spontaneously active cells, or evoked spike activity in silent, hypoglossal neurons located at the level of the obex. This excitatory effect was related to the intensity (25-100 microA) and/or frequency (0.5-20 Hz) of the stimulating pulses to the nucleus reticularis gigantocellularis. Perikaryal activation of neurons by microinjection of L-glutamate (0.5 nmol, 25 nl) into the caudal portion of the nucleus reticularis gigantocellularis similarly produced an excitatory action on eight of 14 hypoglossal neurons. Retrogradely labeled neurons were found bilaterally within the confines of the nucleus reticularis gigantocellularis following unilateral microinjection of wheatgerm agglutinin-conjugated horseradish peroxidase or Fast Blue into the corresponding hypoglossal recording sites. Furthermore, the distribution of labeled neurons in the nucleus reticularis gigantocellularis substantially overlapped with the loci of electrical or chemical stimulation. These complementary electrophysiological and neuroanatomical results support the conclusion that an excitatory link exists between the nucleus reticularis gigantocellularis and at least the caudal portion of the hypoglossal nucleus in the rat.

  10. Hindbrain Catecholamine Neurons Activate Orexin Neurons During Systemic Glucoprivation in Male Rats.

    PubMed

    Li, Ai-Jun; Wang, Qing; Elsarelli, Megan M; Brown, R Lane; Ritter, Sue

    2015-08-01

    Hindbrain catecholamine neurons are required for elicitation of feeding responses to glucose deficit, but the forebrain circuitry required for these responses is incompletely understood. Here we examined interactions of catecholamine and orexin neurons in eliciting glucoprivic feeding. Orexin neurons, located in the perifornical lateral hypothalamus (PeFLH), are heavily innervated by hindbrain catecholamine neurons, stimulate food intake, and increase arousal and behavioral activation. Orexin neurons may therefore contribute importantly to appetitive responses, such as food seeking, during glucoprivation. Retrograde tracing results showed that nearly all innervation of the PeFLH from the hindbrain originated from catecholamine neurons and some raphe nuclei. Results also suggested that many catecholamine neurons project collaterally to the PeFLH and paraventricular hypothalamic nucleus. Systemic administration of the antiglycolytic agent, 2-deoxy-D-glucose, increased food intake and c-Fos expression in orexin neurons. Both responses were eliminated by a lesion of catecholamine neurons innervating orexin neurons using the retrogradely transported immunotoxin, anti-dopamine-β-hydroxylase saporin, which is specifically internalized by dopamine-β-hydroxylase-expressing catecholamine neurons. Using designer receptors exclusively activated by designer drugs in transgenic rats expressing Cre recombinase under the control of tyrosine hydroxylase promoter, catecholamine neurons in cell groups A1 and C1 of the ventrolateral medulla were activated selectively by peripheral injection of clozapine-N-oxide. Clozapine-N-oxide injection increased food intake and c-Fos expression in PeFLH orexin neurons as well as in paraventricular hypothalamic nucleus neurons. In summary, catecholamine neurons are required for the activation of orexin neurons during glucoprivation. Activation of orexin neurons may contribute to appetitive responses required for glucoprivic feeding.

  11. Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb

    PubMed Central

    Deshpande, Aditi; Bergami, Matteo; Ghanem, Alexander; Conzelmann, Karl-Klaus; Lepier, Alexandra; Götz, Magdalena; Berninger, Benedikt

    2013-01-01

    Identifying the connectome of adult-generated neurons is essential for understanding how the preexisting circuitry is refined by neurogenesis. Changes in the pattern of connectivity are likely to control the differentiation process of newly generated neurons and exert an important influence on their unique capacity to contribute to information processing. Using a monosynaptic rabies virus-based tracing technique, we studied the evolving presynaptic connectivity of adult-generated neurons in the dentate gyrus (DG) of the hippocampus and olfactory bulb (OB) during the first weeks of their life. In both neurogenic zones, adult-generated neurons first receive local connections from multiple types of GABAergic interneurons before long-range projections become established, such as those originating from cortical areas. Interestingly, despite fundamental similarities in the overall pattern of evolution of presynaptic connectivity, there were notable differences with regard to the development of cortical projections: although DG granule neuron input originating from the entorhinal cortex could be traced starting only from 3 to 5 wk on, newly generated neurons in the OB received input from the anterior olfactory nucleus and piriform cortex already by the second week. This early glutamatergic input onto newly generated interneurons in the OB was matched in time by the equally early innervations of DG granule neurons by glutamatergic mossy cells. The development of connectivity revealed by our study may suggest common principles for incorporating newly generated neurons into a preexisting circuit. PMID:23487772

  12. Dual Anterograde and Retrograde Viral Tracing of Reciprocal Connectivity.

    PubMed

    Haberl, Matthias G; Ginger, Melanie; Frick, Andreas

    2017-01-01

    Current large-scale approaches in neuroscience aim to unravel the complete connectivity map of specific neuronal circuits, or even the entire brain. This emerging research discipline has been termed connectomics. Recombinant glycoprotein-deleted rabies virus (RABV ∆G) has become an important tool for the investigation of neuronal connectivity in the brains of a variety of species. Neuronal infection with even a single RABV ∆G particle results in high-level transgene expression, revealing the fine-detailed morphology of all neuronal features-including dendritic spines, axonal processes, and boutons-on a brain-wide scale. This labeling is eminently suitable for subsequent post-hoc morphological analysis, such as semiautomated reconstruction in 3D. Here we describe the use of a recently developed anterograde RABV ∆G variant together with a retrograde RABV ∆G for the investigation of projections both to, and from, a particular brain region. In addition to the automated reconstruction of a dendritic tree, we also give as an example the volume measurements of axonal boutons following RABV ∆G-mediated fluorescent marker expression. In conclusion RABV ∆G variants expressing a combination of markers and/or tools for stimulating/monitoring neuronal activity, used together with genetic or behavioral animal models, promise important insights in the structure-function relationship of neural circuits.

  13. A novel central pathway links arterial baroreceptors and pontine parasympathetic neurons in cerebrovascular control.

    PubMed

    Agassandian, Khristofor; Fazan, Valeria P S; Margaryan, Naira; Dragon, Deidre Nitschke; Riley, Jeffrey; Talman, William T

    2003-10-01

    1. We tested the hypothesis that arterial baroreceptor reflexes modulate cerebrovascular tone through a pathway that connects the cardiovascular nucleus tractus solitarii with parasympathetic preganglionic neurons in the pons. 2. Anesthetized rats were used in all studies. Laser flowmetry was used to measure cerebral blood flow. We assessed cerebrovascular responses to increases in arterial blood pressure in animals with lesions of baroreceptor nerves, the nucleus tractus solitarii itself, the pontine preganglionic parasympathetic neurons, or the parasympathetic ganglionic nerves to the cerebral vessels. Similar assessments were made in animals after blockade of synthesis of nitric oxide, which is released by the parasympathetic nerves from the pterygopalatine ganglia. Finally the effects on cerebral blood flow of glutamate stimulation of pontine preganglionic parasympathetic neurons were evaluated. 3. We found that lesions at any one of the sites in the putative pathway or interruption of nitric oxide synthesis led to prolongation of autoregulation as mean arterial pressure was increased to levels as high as 200 mmHg. Conversely, stimulation of pontine parasympathetic preganglionic neurons led to cerebral vasodilatation. The second series of studies utilized classic anatomical tracing methods to determine at the light and electron microscopic level whether neurons in the cardiovascular nucleus tractus solitarii, the site of termination of baroreceptor afferents, projected to the pontine preganglionic neurons. Fibers were traced with anterograde tracer from the nucleus tractus solitarii to the pons and with retrograde tracer from the pons to the nucleus tractus solitarii. Using double labeling techniques we further studied synapses made between labeled projections from the nucleus tractus solitarii and preganglionic neurons that were themselves labeled with retrograde tracer placed into the pterygopalatine ganglion. 4. These anatomical studies showed that the nucleus tractus solitarii directly projects to pontine preganglionic neurons and makes asymmetric, seemingly excitatory, synapses with those neurons. These studies provide strong evidence that arterial baroreceptors may modulate cerebral blood flow through direct connections with pontine parasympathetic neurons. Further study is needed to clarify the role this pathway plays in integrative physiology.

  14. Nicotine modulates multiple regions in the limbic stress network regulating activation of hypophysiotrophic neurons in hypothalamic paraventricular nucleus.

    PubMed

    Yu, Guoliang; Sharp, Burt M

    2012-08-01

    Nicotine intake affects CNS responses to stressors. We reported that nicotine self-administration (SA) augmented the hypothalamo-pituitary-adrenal (HPA) stress response, in part because of the altered neurotransmission and neuropeptide expression within hypothalamic paraventricular nucleus (PVN). Limbic-PVN interactions involving medial prefrontal cortex, amygdala, and bed nucleus of the stria terminalis (BST) greatly impact the HPA stress response. Therefore, we investigated the effects of nicotine SA on stress-induced neuronal activation in limbic-PVN network, using c-Fos protein immunohistochemistry and retrograde tracing. Nicotine decreased stress-induced c-Fos in prelimbic cortex (PrL), anteroventral BST (avBST), and peri-PVN, but increased c-Fos induction in medial amygdala (MeA), locus coeruleus, and PVN. Fluoro-gold (FG) was injected into avBST or PVN, as GABAergic neurons in avBST projecting to PVN corticotrophin-releasing factor neurons relay information from both PrL glutamatergic and MeA GABAergic neurons. The stress-induced c-Fos expression in retrograde-labeled FG+ neurons was decreased in PrL by nicotine, but increased in MeA, and also reduced in avBST. Therefore, within limbic-PVN network, nicotine SA exerts selective regional effects on neuronal activation by stress. These findings expand the mechanistic framework by demonstrating altered limbic-BST-PVN interactions underlying the disinhibition of PVN corticotrophin-releasing factor neurons, an essential component of the amplified HPA response to stress by nicotine. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  15. Trace Fear Conditioning Differentially Modulates Intrinsic Excitability of Medial Prefrontal Cortex-Basolateral Complex of Amygdala Projection Neurons in Infralimbic and Prelimbic Cortices.

    PubMed

    Song, Chenghui; Ehlers, Vanessa L; Moyer, James R

    2015-09-30

    Neuronal activity in medial prefrontal cortex (mPFC) is critical for the formation of trace fear memory, yet the cellular mechanisms underlying these memories remain unclear. One possibility involves the modulation of intrinsic excitability within mPFC neurons that project to the basolateral complex of amygdala (BLA). The current study used a combination of retrograde labeling and in vitro whole-cell patch-clamp recordings to examine the effect of trace fear conditioning on the intrinsic excitability of layer 5 mPFC-BLA projection neurons in adult rats. Trace fear conditioning significantly enhanced the intrinsic excitability of regular spiking infralimbic (IL) projection neurons, as evidenced by an increase in the number of action potentials after current injection. These changes were also associated with a reduction in spike threshold and an increase in h current. In contrast, trace fear conditioning reduced the excitability of regular spiking prelimbic (PL) projection neurons, through a learning-related decrease of input resistance. Interestingly, the amount of conditioned freezing was (1) positively correlated with excitability of IL-BLA projection neurons after conditioning and (2) negatively correlated with excitability of PL-BLA projection neurons after extinction. Trace fear conditioning also significantly enhanced the excitability of burst spiking PL-BLA projection neurons. In both regions, conditioning-induced plasticity was learning specific (observed in conditioned but not in pseudoconditioned rats), flexible (reversed by extinction), and transient (lasted <10 d). Together, these data suggest that intrinsic plasticity within mPFC-BLA projection neurons occurs in a subregion- and cell-type-specific manner during acquisition, consolidation, and extinction of trace fear conditioning. Significance statement: Frontal lobe-related function is vital for a variety of important behaviors, some of which decline during aging. This study involves a novel combination of electrophysiological recordings from fluorescently labeled mPFC-to-amygdala projection neurons in rats with acquisition and extinction of trace fear conditioning to determine how specific neurons change during behavior. This is the first study to demonstrate that trace fear conditioning significantly alters the intrinsic excitability of mPFC-to-amygdala projection neurons in a subregion- and cell-type-specific manner, which is also transient and reversed by extinction. These data are of broad interest to the neuroscientific community, and the results will inspire additional studies investigating the cellular mechanisms underlying circuit-specific changes within the brain as a result of associative learning and memory. Copyright © 2015 the authors 0270-6474/15/3513511-14$15.00/0.

  16. Incomplete segregation of endorgan-specific vestibular ganglion cells in mice and rats

    NASA Technical Reports Server (NTRS)

    Maklad, A.; Fritzsch, B.

    1999-01-01

    The endorgan-specific distribution of vestibular ganglion cells was studied in neonatal and postnatal rats and mice using indocarbocyanine dye (DiI) and dextran amines for retrograde and anterograde labeling. Retrograde DiI tracing from the anterior vertical canal labeled neurons scattered throughout the whole superior vestibular ganglion, with denser labeling at the dorsal and central regions. Horizontal canal neurons were scattered along the dorsoventral axis with more clustering toward the dorsal and ventral poles of this axis. Utricular ganglion cells occupied predominantly the central region of the superior vestibular ganglion. This utricular population overlapped with both the anterior vertical and horizontal canals' ganglion cells. Posterior vertical canal neurons were clustered in the posterior part of the inferior vestibular ganglion. The saccular neurons were distributed in the two parts of the vestibular ganglion, the superior and inferior ganglia. Within the inferior ganglion, the saccular neurons were clustered in the anterior part. In the superior ganglion, the saccular neurons were widely scattered throughout the whole ganglion with more numerous neurons at the posterior half. Small and large neurons were labeled from all endorgans. Examination of the fiber trajectory within the superior division of the vestibular nerve showed no clear lamination of the fibers innervating the different endorgans. These results demonstrate an overlapping pattern between the different populations within the superior ganglion, while in the inferior ganglion, the posterior canal and saccular neurons show tighter clustering but incomplete segregation. This distribution implies that the ganglion cells are assigned for their target during development in a stochastic rather than topographical fashion.

  17. Extrinsic Origins of the Somatostatin and Neuropeptide Y innervation of the Rat Basolateral Amygdala

    PubMed Central

    McDonald, Alexander J.; Zaric, Violeta

    2015-01-01

    The amygdalar basolateral nuclear complex (BLC) is a cortex-like structure that receives inputs from many cortical areas. It has long been assumed that cortico-amygdalar projections, as well as inter-areal intracortical connections, arise from cortical pyramidal cells. However, recent studies have shown that GABAergic long-range nonpyramidal neurons (LRNP neurons) in the cortex also contribute to inter-areal connections. The present study combined Fluorogold (FG) retrograde tract tracing with immunohistochemistry for cortical nonpyramidal neuronal markers to determine if cortical LRNP neurons project to the BLC in the rat. Injections of FG into the BLC produced widespread retrograde labeling in the cerebral hemispheres and diencephalon. Triple-labeling for FG, somatostatin (SOM), and neuropeptide Y (NPY) revealed a small number of FG+/SOM+/NPY+ neurons and FG+/SOM+/NPY− neurons in the lateral entorhinal area, amygdalopiriform transition area, and piriform cortex, but not in the prefrontal and insular cortices, or in the diencephalon. In addition, FG+/SOM+/NPY+ neurons were observed in the amygdalostriatal transition area and in a zone surrounding the intercalated nuclei. About half of the SOM+ neurons in the lateral entorhinal area labeled by FG were GABA+. FG+ neurons containing parvalbumin were only seen in the basal forebrain, and no FG+ neurons containing vasoactive intestinal peptide were observed in any brain region. Since LRNP neurons involved in corticocortical connections are critical for synchronous oscillations that allow temporal coordination between distant cortical regions, the LRNP neurons identified in this study may play a role in the synchronous oscillations of the BLC and hippocampal region that are involved in the retrieval of fear memories. PMID:25769940

  18. Cell type-specific long-range connections of basal forebrain circuit.

    PubMed

    Do, Johnny Phong; Xu, Min; Lee, Seung-Hee; Chang, Wei-Cheng; Zhang, Siyu; Chung, Shinjae; Yung, Tyler J; Fan, Jiang Lan; Miyamichi, Kazunari; Luo, Liqun; Dan, Yang

    2016-09-19

    The basal forebrain (BF) plays key roles in multiple brain functions, including sleep-wake regulation, attention, and learning/memory, but the long-range connections mediating these functions remain poorly characterized. Here we performed whole-brain mapping of both inputs and outputs of four BF cell types - cholinergic, glutamatergic, and parvalbumin-positive (PV+) and somatostatin-positive (SOM+) GABAergic neurons - in the mouse brain. Using rabies virus -mediated monosynaptic retrograde tracing to label the inputs and adeno-associated virus to trace axonal projections, we identified numerous brain areas connected to the BF. The inputs to different cell types were qualitatively similar, but the output projections showed marked differences. The connections to glutamatergic and SOM+ neurons were strongly reciprocal, while those to cholinergic and PV+ neurons were more unidirectional. These results reveal the long-range wiring diagram of the BF circuit with highly convergent inputs and divergent outputs and point to both functional commonality and specialization of different BF cell types.

  19. Pirt contributes to uterine contraction-induced pain in mice.

    PubMed

    Wang, Changming; Wang, Zhongli; Yang, Yan; Zhu, Chan; Wu, Guanyi; Yu, Guang; Jian, Tunyu; Yang, Niuniu; Shi, Hao; Tang, Min; He, Qian; Lan, Lei; Liu, Qin; Guan, Yun; Dong, Xinzhong; Duan, Jinao; Tang, Zongxiang

    2015-09-17

    Uterine contraction-induced pain (UCP) represents a common and severe form of visceral pain. Nerve fibers that innervate uterine tissue express the transient receptor potential vanilloid channel 1 (TRPV1), which has been shown to be involved in the perception of UCP. The phosphoinositide-interacting regulator of TRP (Pirt) may act as a regulatory subunit of TRPV1. The intraperitoneal injection of oxytocin into female mice after a 6-day priming treatment with estradiol benzoate induces writhing responses, which reflect the presence of UCP. Here, we first compared writhing response between Pirt (+/+) and Pirt (-/-) mice. Second, we examined the innervation of Pirt-expressing nerves in the uterus of Pirt (-/-) mice by immunofluorescence and two-photon microscopy. Third, we identified the soma of dorsal root ganglion (DRG) neurons that innerve the uterus using retrograde tracing and further characterized the neurochemical properties of these DRG neurons. Finally, we compared the calcium response of capsaicin between DRG neurons from Pirt (+/+) and Pirt (-/-) mice. We found that the writhing responses were less intensive in Pirt (-/-) mice than in Pirt (+/+) mice. We also observed Pirt-expressing nerve fibers in the myometrium of the uterus, and that retrograde-labeled cells were small-diameter, unmyelinated, and Pirt-positive DRG neurons. Additionally, we found that the number of capsaicin-responding neurons and the magnitude of evoked calcium response were markedly reduced in DRG neurons from Pirt (-/-) mice. Taken together, we speculate that Pirt plays an important role in mice uterine contraction-induced pain.

  20. The pattern of thalamocortical and brain stem projections to the vibrissae-related sensory and motor cortices in de-whiskered congenital hypothyroid rats.

    PubMed

    Afarinesh, Mohammad Reza; Behzadi, Gila

    2017-08-01

    The present study is designed to investigate the plastic organization of the thalamo-cortical (TC) and brain stem afferents of whisker primary sensory (wS1) and motor (wM1) cortical areas in congenital hypothyroid (CH) pups following whisker deprivation (WD) from neonatal to adolescence period. Maternal hypothyroidism was induced by adding propylthiouracil (PTU) to the drinking water from early embryonic day 16 to postnatal day (PND) 60. Pregnant rats were divided into intact and CH groups (n = 8). In each group, the total whiskers of pups (4 of 8) were trimmed continuously from PND 1 to PND 60. Retrograde tracing technique with WGA-HRP was performed in the present study. Retrogradely labeled neurons were observed in the specific thalamic nuclei (VPM and VL) following separately WGA-HRP injections into wS1/M1 cortical areas. The number of labeled cells in the VPM, VL, VM and PO nuclei of the thalamus significantly decreased in CH offsprings rats (P < 0.05). Neonatal WD did not show any significant effects on the number of VPM, VL, VM and PO labeled projection neurons to wS1 and wM1 cortical areas. In addition, retrogradely labeled neurons in dorsal raphe (DR) and locus coeruleus (LC) nuclei were observed in all experimental groups. The number of DR and LC labeled neurons were higher in the CH and whisker deprived groups compared to their matching controls (P < 0.05). Upon our results, CH and WD had no synergic or additive effects on the TC and brain stem afferent patterns of barrel sensory and motor cortices.

  1. A Viral Receptor Complementation Strategy to Overcome CAV-2 Tropism for Efficient Retrograde Targeting of Neurons.

    PubMed

    Li, Shu-Jing; Vaughan, Alexander; Sturgill, James Fitzhugh; Kepecs, Adam

    2018-06-06

    Retrogradely transported neurotropic viruses enable genetic access to neurons based on their long-range projections and have become indispensable tools for linking neural connectivity with function. A major limitation of viral techniques is that they rely on cell-type-specific molecules for uptake and transport. Consequently, viruses fail to infect variable subsets of neurons depending on the complement of surface receptors expressed (viral tropism). We report a receptor complementation strategy to overcome this by potentiating neurons for the infection of the virus of interest-in this case, canine adenovirus type-2 (CAV-2). We designed AAV vectors for expressing the coxsackievirus and adenovirus receptor (CAR) throughout candidate projection neurons. CAR expression greatly increased retrograde-labeling rates, which we demonstrate for several long-range projections, including some resistant to other retrograde-labeling techniques. Our results demonstrate a receptor complementation strategy to abrogate endogenous viral tropism and thereby facilitate efficient retrograde targeting for functional analysis of neural circuits. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Dynamic Expression of Serotonin Receptor 5-HT3A in Developing Sensory Innervation of the Lower Urinary Tract

    PubMed Central

    Ritter, K. Elaine; Southard-Smith, E. Michelle

    2017-01-01

    Sensory afferent signaling is required for normal function of the lower urinary tract (LUT). Despite the wide prevalence of bladder dysfunction and pelvic pain syndromes, few effective treatment options are available. Serotonin receptor 5-HT3A is a known mediator of visceral afferent signaling and has been implicated in bladder function. However, basic expression patterns for this gene and others among developing bladder sensory afferents that could be used to inform regenerative efforts aimed at treating deficiencies in pelvic innervation are lacking. To gain greater insight into the molecular characteristics of bladder sensory innervation, we conducted a thorough characterization of Htr3a expression in developing and adult bladder-projecting lumbosacral dorsal root ganglia (DRG) neurons. Using a transgenic Htr3a-EGFP reporter mouse line, we identified 5-HT3A expression at 10 days post coitus (dpc) in neural crest derivatives and in 12 dpc lumbosacral DRG. Using immunohistochemical co-localization we observed Htr3a-EGFP expression in developing lumbosacral DRG that partially coincides with neuropeptides CGRP and Substance P and capsaicin receptor TRPV1. A majority of Htr3a-EGFP+ DRG neurons also express a marker of myelinated Aδ neurons, NF200. There was no co-localization of 5-HT3A with the TRPV4 receptor. We employed retrograde tracing in adult Htr3a-EGFP mice to quantify the contribution of 5-HT3A+ DRG neurons to bladder afferent innervation. We found that 5-HT3A is expressed in a substantial proportion of retrograde traced DRG neurons in both rostral (L1, L2) and caudal (L6, S1) axial levels that supply bladder innervation. Most bladder-projecting Htr3a-EGFP+ neurons that co-express CGRP, Substance P, or TRPV1 are found in L1, L2 DRG, whereas Htr3a-EGFP+, NF200+ bladder-projecting neurons are from the L6, S1 axial levels. Our findings contribute much needed information regarding the development of LUT innervation and highlight the 5-HT3A serotonin receptor as a candidate for future studies of neurally mediated bladder control. PMID:28111539

  3. Neural pathways mediating control of reproductive behaviour in male Japanese quail

    PubMed Central

    Wild, J Martin; Balthazart, Jacques

    2012-01-01

    The sexually dimorphic medial preoptic nucleus (POM) in Japanese quail has for many years been the focus of intensive investigations into its role in reproductive behaviour. The present paper delineates a sequence of descending pathways that finally reach sacral levels of the spinal cord housing motor neurons innervating cloacal muscles involved in reproductive behaviour. We first retrogradely labeled the motor neurons innervating the large cloacal sphincter muscle (mSC) that forms part of the foam gland complex (Seiwert and Adkins-Regan, 1998, Brain Behav Evol 52:61–80) and then putative premotor nuclei in the brainstem, one of which was nucleus retroambigualis (RAm) in the caudal medulla. Anterograde tracing from RAm defined a bulbospinal pathway, terminations of which overlapped the distribution of mSC motor neurons and their extensive dorsally directed dendrites. Descending input to RAm arose from an extensive dorsomedial nucleus of the intercollicular complex (DM-ICo), electrical stimulation of which drove vocalizations. POM neurons were retrogradely labeled by injections of tracer into DM-ICo, but POM projections largely surrounded DM, rather than penetrated it. Thus, although a POM projection to ICo was shown, a POM projection to DM must be inferred. Nevertheless, the sequence of projections in the male quail from POM to cloacal motor neurons strongly resembles that in rats, cats and monkeys for the control of reproductive behaviour, as largely defined by Holstege and co-workers (e.g., Holstege et al., 1997, Neuroscience 80: 587–598). PMID:23225613

  4. Reticulospinal neurons in the pontomedullary reticular formation of the monkey (Macaca fascicularis).

    PubMed

    Sakai, S T; Davidson, A G; Buford, J A

    2009-11-10

    Recent neurophysiological studies indicate a role for reticulospinal neurons of the pontomedullary reticular formation (PMRF) in motor preparation and goal-directed reaching in the monkey. Although the macaque monkey is an important model for such investigations, little is known regarding the organization of the PMRF in the monkey. In the present study, we investigated the distribution of reticulospinal neurons in the macaque. Bilateral injections of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) were made into the cervical spinal cord. A wide band of retrogradely labeled cells was found in the gigantocellular reticular nucleus (Gi) and labeled cells continued rostrally into the caudal pontine reticular nucleus (PnC) and into the oral pontine reticular nucleus (PnO). Additional retrograde tracing studies following unilateral cervical spinal cord injections of cholera toxin subunit B revealed that there were more ipsilateral (60%) than contralateral (40%) projecting cells in Gi, while an approximately 50:50 ratio contralateral to ipsilateral split was found in PnC and more contralateral projections arose from PnO. Reticulospinal neurons in PMRF ranged widely in size from over 50 microm to under 25 microm across the major somatic axis. Labeled giant cells (soma diameters greater than 50 microm) comprised a small percentage of the neurons and were found in Gi, PnC and PnO. The present results define the origins of the reticulospinal system in the monkey and provide an important foundation for future investigations of the anatomy and physiology of this system in primates.

  5. Nociceptive Afferents to the Premotor Neurons That Send Axons Simultaneously to the Facial and Hypoglossal Motoneurons by Means of Axon Collaterals

    PubMed Central

    Dong, Yulin; Li, Jinlian; Zhang, Fuxing; Li, Yunqing

    2011-01-01

    It is well known that the brainstem premotor neurons of the facial nucleus and hypoglossal nucleus coordinate orofacial nociceptive reflex (ONR) responses. However, whether the brainstem PNs receive the nociceptive projection directly from the caudal spinal trigeminal nucleus is still kept unclear. Our present study focuses on the distribution of premotor neurons in the ONR pathways of rats and the collateral projection of the premotor neurons which are involved in the brainstem local pathways of the orofacial nociceptive reflexes of rat. Retrograde tracer Fluoro-gold (FG) or FG/tetramethylrhodamine-dextran amine (TMR-DA) were injected into the VII or/and XII, and anterograde tracer biotinylated dextran amine (BDA) was injected into the caudal spinal trigeminal nucleus (Vc). The tracing studies indicated that FG-labeled neurons receiving BDA-labeled fibers from the Vc were mainly distributed bilaterally in the parvicellular reticular formation (PCRt), dorsal and ventral medullary reticular formation (MdD, MdV), supratrigeminal nucleus (Vsup) and parabrachial nucleus (PBN) with an ipsilateral dominance. Some FG/TMR-DA double-labeled premotor neurons, which were observed bilaterally in the PCRt, MdD, dorsal part of the MdV, peri-motor nucleus regions, contacted with BDA-labeled axonal terminals and expressed c-fos protein-like immunoreactivity which induced by subcutaneous injection of formalin into the lip. After retrograde tracer wheat germ agglutinated horseradish peroxidase (WGA-HRP) was injected into VII or XII and BDA into Vc, electron microscopic study revealed that some BDA-labeled axonal terminals made mainly asymmetric synapses on the dendritic and somatic profiles of WGA-HRP-labeled premotor neurons. These data indicate that some premotor neurons could integrate the orofacial nociceptive input from the Vc and transfer these signals simultaneously to different brainstem motonuclei by axonal collaterals. PMID:21980505

  6. D-(/sup 3/H)aspartate retrograde labelling of callosal and association neurons of somatosensory areas I and II of cats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbaresi, P.; Fabri, M.; Conti, F.

    Experiments were carried out on cats to ascertain whether corticocortical neurons of somatosensory areas I (SI) and II (SII) could be labelled by retrograde axonal transport of D-(/sup 3/H)aspartate (D-(/sup 3/H)Asp). This tritiated enantiomer of the amino acid aspartate is (1) taken up selectively by axon terminals of neurons releasing aspartate and/or glutamate as excitatory neurotransmitter, (2) retrogradely transported and accumulated in perikarya, (3) not metabolized, and (4) visualized by autoradiography. A solution of D-(/sup 3/H)Asp was injected in eight cats in the trunk and forelimb zones of SI (two cats) or in the forelimb zone of SII (six cats).more » In order to compare the labelling patterns obtained with D-(/sup 3/H)Asp with those resulting after injection of a nonselective neuronal tracer, horseradish peroxidase (HRP) was delivered mixed with the radioactive tracer in seven of the eight cats. Furthermore, six additional animals received HRP injections in SI (three cats; trunk and forelimb zones) or SII (three cats; forelimb zone). D-(/sup 3/H)Asp retrograde labelling of perikarya was absent from the ipsilateral thalamus of all cats injected with the radioactive tracer but a dense terminal plexus of anterogradely labelled corticothalamic fibers from SI and SII was observed, overlapping the distribution area of thalamocortical neurons retrogradely labelled with HRP from the same areas. D-(/sup 3/H)Asp-labelled neurones were present in ipsilateral SII (SII-SI association neurones) in cats injected in SI. In these animals a bundle of radioactive fibres was observed in the rostral portion of the corpus callosum entering the contralateral hemisphere. There, neurones retrogradely labelled with silver grains were present in SI (SI-SI callosal neurons).« less

  7. Endosome-mediated retrograde axonal transport of P2X3 receptor signals in primary sensory neurons

    PubMed Central

    Chen, Xu-Qiao; Wang, Bin; Wu, Chengbiao; Pan, Jin; Yuan, Bo; Su, Yuan-Yuan; Jiang, Xing-Yu; Zhang, Xu; Bao, Lan

    2012-01-01

    Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals. However, the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood. Here, we report that the signals of the purinergic (P)2X3 receptor, an ATP-gated ion channel, are retrogradely transported in dorsal root ganglion (DRG) neuron axons. We found that Rab5, a small GTPase, controls the early sorting of P2X3 receptors into endosomes, while Rab7 mediates the fast retrograde transport of P2X3 receptors. Intraplantar injection and axonal application into the microfluidic chamber of α, β-methylene-ATP (α, β-MeATP), a P2X selective agonist, enhanced the endocytosis and retrograde transport of P2X3 receptors. The α, β-MeATP-induced Ca2+ influx activated a pathway comprised of protein kinase C, rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK), which associated with endocytic P2X3 receptors to form signaling endosomes. Disruption of the lipid rafts abolished the α, β-MeATP-induced ERK phosphorylation, endocytosis and retrograde transport of P2X3 receptors. Furthermore, treatment of peripheral axons with α, β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability. Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α, β-MeATP-induced retrograde signals. These results indicate that P2X3 receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels. PMID:22157653

  8. Endosome-mediated retrograde axonal transport of P2X3 receptor signals in primary sensory neurons.

    PubMed

    Chen, Xu-Qiao; Wang, Bin; Wu, Chengbiao; Pan, Jin; Yuan, Bo; Su, Yuan-Yuan; Jiang, Xing-Yu; Zhang, Xu; Bao, Lan

    2012-04-01

    Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals. However, the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood. Here, we report that the signals of the purinergic (P)2X(3) receptor, an ATP-gated ion channel, are retrogradely transported in dorsal root ganglion (DRG) neuron axons. We found that Rab5, a small GTPase, controls the early sorting of P2X(3) receptors into endosomes, while Rab7 mediates the fast retrograde transport of P2X(3) receptors. Intraplantar injection and axonal application into the microfluidic chamber of α, β-methylene-ATP (α, β-MeATP), a P2X selective agonist, enhanced the endocytosis and retrograde transport of P2X(3) receptors. The α, β-MeATP-induced Ca(2+) influx activated a pathway comprised of protein kinase C, rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK), which associated with endocytic P2X(3) receptors to form signaling endosomes. Disruption of the lipid rafts abolished the α, β-MeATP-induced ERK phosphorylation, endocytosis and retrograde transport of P2X(3) receptors. Furthermore, treatment of peripheral axons with α, β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability. Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α, β-MeATP-induced retrograde signals. These results indicate that P2X(3) receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels.

  9. Comparison of the spatial distribution of endopeptidase-24.11 with substance P, substance P receptor (NK-1r) and gastric efferent neurons in the dorsal vagal complex of the rat.

    PubMed

    Ladic, L; Buchan, A

    1997-01-24

    The spatial location of neutral endopeptidase 24.11 (NEP) immunoreactivity was compared to that of substance P (SP), SP receptor (NK-1r) and identified gastric efferent neurons in the dorsal vagal complex in rat brainstem. The majority of NEP labeling was observed caudal to the obex. Neutral endopeptidase-immunoreactivity was associated with the central canal, ependyma and blood vessels, and surrounded the area postrema. A comparison of the results of immunocytochemical and retrograde tracing experiments demonstrated the absence of co-labeling of neurons or their process with NEP and either substance P or NK-1r. Furthermore, no NEP-immunoreactivity was observed in the vicinity of identified gastric efferents in the dorsal motor nucleus of the vagus. These results would suggest that NEP does not degrade SP in the vicinity of gastric efferent neurons.

  10. Specific Connectivity and Unique Molecular Identity of MET Receptor Tyrosine Kinase Expressing Serotonergic Neurons in the Caudal Dorsal Raphe Nuclei.

    PubMed

    Kast, Ryan J; Wu, Hsiao-Huei; Williams, Piper; Gaspar, Patricia; Levitt, Pat

    2017-05-17

    Molecular characterization of neurons across brain regions has revealed new taxonomies for understanding functional diversity even among classically defined neuronal populations. Neuronal diversity has become evident within the brain serotonin (5-HT) system, which is far more complex than previously appreciated. However, until now it has been difficult to define subpopulations of 5-HT neurons based on molecular phenotypes. We demonstrate that the MET receptor tyrosine kinase (MET) is specifically expressed in a subset of 5-HT neurons within the caudal part of the dorsal raphe nuclei (DRC) that is encompassed by the classic B6 serotonin cell group. Mapping from embryonic day 16 through adulthood reveals that MET is expressed almost exclusively in the DRC as a condensed, paired nucleus, with an additional sparse set of MET+ neurons scattered within the median raphe. Retrograde tracing experiments reveal that MET-expressing 5-HT neurons provide substantial serotonergic input to the ventricular/subventricular region that contains forebrain stem cells, but do not innervate the dorsal hippocampus or entorhinal cortex. Conditional anterograde tracing experiments show that 5-HT neurons in the DRC/B6 target additional forebrain structures such as the medial and lateral septum and the ventral hippocampus. Molecular neuroanatomical analysis identifies 14 genes that are enriched in DRC neurons, including 4 neurotransmitter/neuropeptide receptors and 2 potassium channels. These analyses will lead to future studies determining the specific roles that 5-HT MET+ neurons contribute to the broader set of functions regulated by the serotonergic system.

  11. Parallel pathways from motor and somatosensory cortex for controlling whisker movements in mice

    PubMed Central

    Sreenivasan, Varun; Karmakar, Kajari; Rijli, Filippo M; Petersen, Carl C H

    2015-01-01

    Mice can gather tactile sensory information by actively moving their whiskers to palpate objects in their immediate surroundings. Whisker sensory perception therefore requires integration of sensory and motor information, which occurs prominently in the neocortex. The signalling pathways from the neocortex for controlling whisker movements are currently poorly understood in mice. Here, we delineate two pathways, one originating from primary whisker somatosensory cortex (wS1) and the other from whisker motor cortex (wM1), that control qualitatively distinct movements of contralateral whiskers. Optogenetic stimulation of wS1 drove retraction of contralateral whiskers while stimulation of wM1 drove rhythmic whisker protraction. To map brainstem pathways connecting these cortical areas to whisker motor neurons, we used a combination of anterograde tracing using adenoassociated virus injected into neocortex and retrograde tracing using monosynaptic rabies virus injected into whisker muscles. Our data are consistent with wS1 driving whisker retraction by exciting glutamatergic premotor neurons in the rostral spinal trigeminal interpolaris nucleus, which in turn activate the motor neurons innervating the extrinsic retractor muscle nasolabialis. The rhythmic whisker protraction evoked by wM1 stimulation might be driven by excitation of excitatory and inhibitory premotor neurons in the brainstem reticular formation innervating both intrinsic and extrinsic muscles. Our data therefore begin to unravel the neuronal circuits linking the neocortex to whisker motor neurons. PMID:25476605

  12. Transgene expression in target-defined neuron populations mediated by retrograde infection with adeno-associated viral vectors.

    PubMed

    Rothermel, Markus; Brunert, Daniela; Zabawa, Christine; Díaz-Quesada, Marta; Wachowiak, Matt

    2013-09-18

    Tools enabling the manipulation of well defined neuronal subpopulations are critical for probing complex neuronal networks. Cre recombinase (Cre) mouse driver lines in combination with the Cre-dependent expression of proteins using viral vectors--in particular, recombinant adeno-associated viral vectors (rAAVs)--have emerged as a widely used platform for achieving transgene expression in specified neural populations. However, the ability of rAAVs to further specify neuronal subsets on the basis of their anatomical connectivity has been reported as limited or inconsistent. Here, we systematically tested a variety of widely used neurotropic rAAVs for their ability to mediate retrograde gene transduction in the mouse brain. We tested pseudotyped rAAVs of several common serotypes (rAAV 2/1, 2/5, and 2/9) as well as constructs both with and without Cre-dependent expression switches. Many of the rAAVs tested--in particular, though not exclusively, Cre-dependent vectors--showed a robust capacity for retrograde infection and transgene expression. Retrograde expression was successful over distances as large as 6 mm and in multiple neuron types, including olfactory projection neurons, neocortical pyramidal cells projecting to distinct targets, and corticofugal and modulatory projection neurons. Retrograde infection using transgenes such as ChR2 allowed for optical control or optically assisted electrophysiological identification of neurons defined genetically as well as by their projection target. These results establish a widely accessible tool for achieving combinatorial specificity and stable, long-term transgene expression to isolate precisely defined neuron populations in the intact animal.

  13. Transgene Expression in Target-Defined Neuron Populations Mediated by Retrograde Infection with Adeno-Associated Viral Vectors

    PubMed Central

    Rothermel, Markus; Brunert, Daniela; Zabawa, Christine; Díaz-Quesada, Marta

    2013-01-01

    Tools enabling the manipulation of well defined neuronal subpopulations are critical for probing complex neuronal networks. Cre recombinase (Cre) mouse driver lines in combination with the Cre-dependent expression of proteins using viral vectors—in particular, recombinant adeno-associated viral vectors (rAAVs)—have emerged as a widely used platform for achieving transgene expression in specified neural populations. However, the ability of rAAVs to further specify neuronal subsets on the basis of their anatomical connectivity has been reported as limited or inconsistent. Here, we systematically tested a variety of widely used neurotropic rAAVs for their ability to mediate retrograde gene transduction in the mouse brain. We tested pseudotyped rAAVs of several common serotypes (rAAV 2/1, 2/5, and 2/9) as well as constructs both with and without Cre-dependent expression switches. Many of the rAAVs tested—in particular, though not exclusively, Cre-dependent vectors—showed a robust capacity for retrograde infection and transgene expression. Retrograde expression was successful over distances as large as 6 mm and in multiple neuron types, including olfactory projection neurons, neocortical pyramidal cells projecting to distinct targets, and corticofugal and modulatory projection neurons. Retrograde infection using transgenes such as ChR2 allowed for optical control or optically assisted electrophysiological identification of neurons defined genetically as well as by their projection target. These results establish a widely accessible tool for achieving combinatorial specificity and stable, long-term transgene expression to isolate precisely defined neuron populations in the intact animal. PMID:24048849

  14. Serotonergic innervation of mesencephalic trigeminal nucleus neurons: a light and electron microscopic study in the rat.

    PubMed

    Li, J; Xiong, K H; Li, Y Q; Kaneko, T; Mizuno, N

    2000-06-01

    Neurons of the mesencephalic trigeminal nucleus (MTN) are considered to be homologous to mechanosensitive neurons in the sensory ganglia. The sites of origin of serotonin (5HT)-immunoreactive axons on neuronal cell bodies in the MTN were studied in the rat by combining immunofluorescence histochemical techniques with retrograde tracing of Fluoro-Gold (FG) and anterograde tracing of biotin-conjugated dextran amine (BDA). The tracing studies, which were combined with multiple-labeling immunohistochemistry and confocal microscopy, indicated that 5HT-immunoreactive axon terminals on the cell bodies of MTN neurons originated from the medullary raphe nuclei, such as the nucleus raphes magmus (RMg), alpha part of the nucleus reticularis gigantocellularis (GiA) and nucleus raphes obscurus (ROb), as well as from the mesopontine raphe nuclei, such as the nucleus raphes dorsalis (DR), nucleus raphes pontis (PnR) and nucleus raphes medianus (MnR); mainly from the RMg, GiA and DR, and additionally from the ROb, PnR and MnR. The cell bodies in close apposition to 5HT-immunoreactive axon terminals were found through the whole rostrocaudal extent of the MTN. Electron microscopically a number of axon terminals that were labeled with BDA injected into the raphe nuclei were confirmed to be in asymmetric synaptic contact with the cell bodies of MTN neurons. It was also indicated that substance P existed in some of the 5HT-containing axosomatic terminals arising from the ROb, RMg and GiA. The present results indicated that proprioceptive sensory signals from the muscle spindles or periodontal ligament might be modulated at the level of the primary afferent cell bodies in the MTN by 5HT-containing axons from the mesopontine and medullary raphe nuclei including the GiA.

  15. A Subset of Palisade Endings Only in the Medial and Inferior Rectus Muscle in Monkey Contain Calretinin

    PubMed Central

    Lienbacher, Karoline; Ono, Seiji; Fleuriet, Jérome; Mustari, Michael; Horn, Anja K. E.

    2018-01-01

    Purpose To further chemically characterize palisade endings in extraocular muscles in rhesus monkeys. Methods Extraocular muscles of three rhesus monkeys were studied for expression of the calcium-binding protein calretinin (CR) in palisade endings and multiple endings. The complete innervation was visualized with antibodies against the synaptosomal-associated protein of 25 kDa and combined with immunofluorescence for CR. Six rhesus monkeys received tracer injections of choleratoxin subunit B or wheat germ agglutinin into either the belly or distal myotendinous junction of the medial or inferior rectus muscle to allow retrograde tracing in the C-group of the oculomotor nucleus. Double-immunofluorescence methods were used to study the CR content in retrogradely labeled neurons in the C-group. Results A subgroup of palisade and multiple endings was found to express CR, only in the medial and inferior rectus muscle. In contrast, the en plaque endings lacked CR. Accordingly, within the tracer-labeled neurons of the C-group, a subgroup expressed CR. Conclusions The study indicates that two different neuron populations targeting nontwitch muscle fibers are present within the C-group for inferior rectus and medial rectus, respectively, one expressing CR, one lacking CR. It is possible that the CR-negative neurons represent the basic population for all extraocular muscles, whereas the CR-positive neurons giving rise to CR-positive palisade endings represent a specialized, perhaps more excitable type of nerve ending in the medial and inferior rectus muscles, being more active in vergence. The malfunction of this CR-positive population of neurons that target nontwitch muscle fibers could play a significant role in strabismus.

  16. Regulation Of Hypothalamic Signaling By Tuberoinfundibular Peptide Of 39 Residues Is Critical For The Response To Cold: A Novel Peptidergic Mechanism Of Thermoregulation

    PubMed Central

    Dimitrov, Eugene L.; Kim, Yoon Yi; Usdin, Ted B.

    2012-01-01

    Euthermia is critical for mammalian homeostasis. Circuits within the preoptic hypothalamus regulate temperature, with fine control exerted via descending GABAergic inhibition of presympathetic motor neurons that control brown adipose tissue (BAT) thermogenesis and cutaneous vascular tone. The thermoregulatory role of hypothalamic excitatory neurons is less clear. Here we report peptidergic regulation of preoptic glutamatergic neurons that contributes to temperature regulation. Tuberoinfundibular peptide of 39 residues (TIP39) is a ligand for the parathyroid hormone 2 receptor (PTH2R). Both peptide and receptor are abundant in the preoptic hypothalamus. Based on PTH2R and vesicular glutamate transporter 2 (VGlut2) immunolabeling in animals with retrograde tracer injection, PTH2R containing glutamatergic fibers are presynaptic to neurons projecting from the median preoptic nucleus (MnPO) to the dorsomedial hypothalamus. Transneuronal retrograde pathway tracing with pseudorabies virus revealed connectivity between MnPO VGlut2 and PTH2R neurons and BAT. MnPO injection of TIP39 increased body temperature by 2° C for several hours. Mice lacking TIP39 signaling, either because of PTH2R null mutation or brain delivery of a PTH2R antagonist had impaired heat production upon cold exposure, but no change in basal temperature and no impairment in response to a hot environment. Thus, TIP39 appears to act on PTH2Rs present on MnPO glutamatergic terminals to regulate their activation of projection neurons and subsequent sympathetic BAT activation. This excitatory mechanism of heat production appears to be activated on demand, during cold exposure, and parallels the tonic inhibitory GABAergic control of body temperature. PMID:22159128

  17. N-Acetylcysteine Prevents Retrograde Motor Neuron Death after Neonatal Peripheral Nerve Injury.

    PubMed

    Catapano, Joseph; Zhang, Jennifer; Scholl, David; Chiang, Cameron; Gordon, Tessa; Borschel, Gregory H

    2017-05-01

    Neuronal death may be an overlooked and unaddressed component of disability following neonatal nerve injuries, such as obstetric brachial plexus injury. N-acetylcysteine and acetyl-L-carnitine improve survival of neurons after adult nerve injury, but it is unknown whether they improve survival after neonatal injury, when neurons are most susceptible to retrograde neuronal death. The authors' objective was to examine whether N-acetylcysteine or acetyl-L-carnitine treatment improves survival of neonatal motor or sensory neurons in a rat model of neonatal nerve injury. Rat pups received either a sciatic nerve crush or transection injury at postnatal day 3 and were then randomized to receive either intraperitoneal vehicle (5% dextrose), N-acetylcysteine (750 mg/kg), or acetyl-L-carnitine (300 mg/kg) once or twice daily. Four weeks after injury, surviving neurons were retrograde-labeled with 4% Fluoro-Gold. The lumbar spinal cord and L4/L5 dorsal root ganglia were then harvested and sectioned to count surviving motor and sensory neurons. Transection and crush injuries resulted in significant motor and sensory neuron loss, with transection injury resulting in significantly less neuron survival. High-dose N-acetylcysteine (750 mg/kg twice daily) significantly increased motor neuron survival after neonatal sciatic nerve crush and transection injury. Neither N-acetylcysteine nor acetyl-L-carnitine treatment improved sensory neuron survival. Proximal neonatal nerve injuries, such as obstetric brachial plexus injury, produce significant retrograde neuronal death after injury. High-dose N-acetylcysteine significantly increases motor neuron survival, which may improve functional outcomes after obstetrical brachial plexus injury.

  18. An orexinergic projection from perifornical hypothalamus to raphe pallidus increases rat brown adipose tissue thermogenesis.

    PubMed

    Tupone, Domenico; Madden, Christopher J; Cano, Georgina; Morrison, Shaun F

    2011-11-02

    Orexin (hypocretin) neurons, located exclusively in the PeF-LH, which includes the perifornical area (PeF), the lateral hypothalamus (LH), and lateral portions of the medial hypothalamus, have widespread projections and influence many physiological functions, including the autonomic regulation of body temperature and energy metabolism. Narcolepsy is characterized by the loss of orexin neurons and by disrupted sleep, but also by dysregulation of body temperature and by a strong tendency for obesity. Heat production (thermogenesis) in brown adipose tissue (BAT) contributes to the maintenance of body temperature and, through energy consumption, to body weight regulation. We identified a neural substrate for the influence of orexin neurons on BAT thermogenesis in rat. Nanoinjection of orexin-A (12 pmol) into the rostral raphe pallidus (rRPa), the site of BAT sympathetic premotor neurons, produced large, sustained increases in BAT sympathetic outflow and in BAT thermogenesis. Activation of neurons in the PeF-LH also enhanced BAT thermogenesis over a long time course. Combining viral retrograde tracing from BAT, or cholera toxin subunit b tracing from rRPa, with orexin immunohistochemistry revealed synaptic connections to BAT from orexin neurons in PeF-LH and from rRPa neurons with closely apposed, varicose orexin fibers, as well as a direct, orexinergic projection from PeF-LH to rRPa. These results indicate a potent modulation of BAT thermogenesis by orexin released from the terminals of orexin neurons in PeF-LH directly into the rRPa and provide a potential mechanism contributing to the disrupted regulation of body temperature and energy metabolism in the absence of orexin.

  19. End-to-side neurorraphy: a long-term study of neural regeneration in a rat model.

    PubMed

    Tarasidis, G; Watanabe, O; Mackinnon, S E; Strasberg, S R; Haughey, B H; Hunter, D A

    1998-10-01

    This study evaluated long-term reinnervation of an end-to-side neurorraphy and the resultant functional recovery in a rat model. The divided distal posterior tibial nerve was repaired to the side of an intact peroneal nerve. Control groups included a cut-and-repair of the posterior tibial nerve and an end-to-end repair of the peroneal nerve to the posterior tibial nerve. Evaluations included walking-track analysis, nerve conduction studies, muscle mass measurements, retrograde nerve tracing, and histologic evaluation. Walking tracks indicated poor recovery of posterior tibial nerve function in the experimental group. No significant difference in nerve conduction velocities was seen between the experimental and control groups. Gastrocnemius muscle mass measurements revealed no functional recovery in the experimental group. Similarly, retrograde nerve tracing revealed minimal motor neuron staining in the experimental group. However, some sensory staining was seen within the dorsal root ganglia of the end-to-side group. Histologic study revealed minimal myelinated axonal regeneration in the experimental group as compared with findings in the other groups. These results suggest that predominantly sensory regeneration occurs in an end-to-side neurorraphy at an end point of 6 months.

  20. Different Populations of Prostaglandin EP3 Receptor-Expressing Preoptic Neurons Project to Two Fever-Mediating Sympathoexcitatory Brain Regions

    PubMed Central

    Nakamura, Y.; Nakamura, K.; Morrison, S. F.

    2010-01-01

    The central mechanism of fever induction is triggered by an action of prostaglandin E2 (PGE2) on neurons in the preoptic area (POA) through the EP3 subtype of prostaglandin E receptor. EP3 receptor (EP3R)-expressing POA neurons project directly to the dorsomedial hypothalamus (DMH) and to the rostral raphe pallidus nucleus (rRPa), key sites for the control of thermoregulatory effectors. Based on physiological findings, we hypothesize that the febrile responses in brown adipose tissue (BAT) and those in cutaneous vasoconstrictors are controlled independently by separate neuronal pathways: PGE2 pyrogenic signaling is transmitted from EP3R-expressing POA neurons via a projection to the DMH to activate BAT thermogenesis and via another projection to the rRPa to increase cutaneous vasoconstriction. In this case, DMH-projecting and rRPa-projecting neurons would constitute segregated populations within the EP3R-expressing neuronal group in the POA. Here, we sought direct anatomical evidence to test this hypothesis with a double-tracing experiment in which two types of the retrograde tracer, cholera toxin b-subunit (CTb), conjugated with different fluorophores were injected into the DMH and the rRPa of rats and the resulting retrogradely labeled populations of EP3R-immunoreactive neurons in the POA were identified with confocal microscopy. We found substantial numbers of EP3R-immunoreactive neurons in both the DMH-projecting and the rRPa-projecting populations. However, very few EP3R-immunoreactive POA neurons were labeled with both the CTb from the DMH and that from the rRPa, although a substantial number of neurons that were not immunoreactive for EP3R were double-labeled with both CTbs. The paucity of the EP3R-expressing neurons that send collaterals to both the DMH and the rRPa suggests that pyrogenic signals are sent independently to these caudal brain regions from the POA and that such pyrogenic outputs from the POA reflect different control mechanisms for BAT thermogenesis and for cutaneous vasoconstriction by distinct sets of POA neurons. PMID:19327390

  1. Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals.

    PubMed

    Ohno-Shosaku, T; Maejima, T; Kano, M

    2001-03-01

    Endogenous cannabinoids are considered to function as diffusible and short-lived modulators that may transmit signals retrogradely from postsynaptic to presynaptic neurons. To evaluate this possibility, we have made a paired whole-cell recording from cultured hippocampal neurons with inhibitory synaptic connections. In about 60% of pairs, a cannabinoid agonist greatly reduced the release of the inhibitory neurotransmitter GABA from presynaptic terminals. In most of such pairs but not in those insensitive to the agonist, depolarization of postsynaptic neurons and the resultant elevation of intracellular Ca2+ concentration caused transient suppression of inhibitory synaptic currents, which is mainly due to reduction of GABA release. This depolarization-induced suppression was completely blocked by selective cannabinoid antagonists. Our results reveal that endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals to cause the reduction of transmitter release.

  2. IL-1β impairs retrograde flow of BDNF signaling by attenuating endosome trafficking.

    PubMed

    Carlos, Anthony J; Tong, Liqi; Prieto, G Aleph; Cotman, Carl W

    2017-02-02

    Pro-inflammatory cytokines accumulate in the brain with age and Alzheimer's disease and can impair neuron health and cognitive function. Brain-derived neurotrophic factor (BDNF) is a key neurotrophin that supports neuron health, function, and synaptic plasticity. The pro-inflammatory cytokine interleukin-1β (IL-1β) impairs BDNF signaling but whether it affects BDNF signaling endosome trafficking has not been studied. This study uses an in vitro approach in primary hippocampal neurons to evaluate the effect of IL-1β on BDNF signaling endosome trafficking. Neurons were cultured in microfluidic chambers that separate the environments of the cell body and its axon terminal, enabling us to specifically treat in axon compartments and trace vesicle trafficking in real-time. We found that IL-1β attenuates BDNF signaling endosomes throughout networks in cultures. In IL-1β-treated cells, overall BDNF endosomal density was decreased, and the colocalization of BDNF endosomes with presynaptic terminals was found to be more than two times higher than in control cultures. Selective IL-1β treatment to the presynaptic compartment in microfluidic chamber attenuated BDNF endosome flux, as measured by reduced BDNF-GFP endosome counts in the somal compartment. Further, IL-1β decreased the BDNF-induced phosphorylation of Erk5, a known BDNF retrograde trafficking target. Mechanistically, the deficiency in trafficking was not due to impaired endocytosis of the BDNF-TrkB complex, or impaired transport rate, since BDNF endosomes traveled at the same rate in both control and IL-1β treatment groups. Among the regulators of presynaptic endosome sorting is the post-translational modification, ubiquitination. In support of this possibility, the IL-1β-mediated suppression of BDNF-induced Erk5 phosphorylation can be rescued by exogenous ubiquitin C-terminal hydrolase L1 (UCH-L1), a deubiquitinating enzyme that regulates ubiquitin and endosomal trafficking. We observed a state of neurotrophic resistance whereby, in the prolonged presence of IL-1β, BDNF is not effective in delivering long-distance signaling via the retrograde transport of signaling endosomes. Since IL-1β accumulation is an invariant feature across many neurodegenerative diseases, our study suggest that compromised BDNF retrograde transport-dependent signaling may have important implications in neurodegenerative diseases.

  3. Modulation of Specific Sensory Cortical Areas by Segregated Basal Forebrain Cholinergic Neurons Demonstrated by Neuronal Tracing and Optogenetic Stimulation in Mice

    PubMed Central

    Chaves-Coira, Irene; Barros-Zulaica, Natali; Rodrigo-Angulo, Margarita; Núñez, Ángel

    2016-01-01

    Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions. Previous results have suggested a refined anatomical and functional topographical organization of basal forebrain (BF) projections that may control cortical sensory processing in a specific manner. We have used retrograde anatomical procedures to demonstrate the existence of specific neuronal groups in the BF involved in the control of specific sensory cortices. Fluoro-Gold (FlGo) and Fast Blue (FB) fluorescent retrograde tracers were deposited into the primary somatosensory (S1) and primary auditory (A1) cortices in mice. Our results revealed that the BF is a heterogeneous area in which neurons projecting to different cortical areas are segregated into different neuronal groups. Most of the neurons located in the horizontal limb of the diagonal band of Broca (HDB) projected to the S1 cortex, indicating that this area is specialized in the sensory processing of tactile stimuli. However, the nucleus basalis magnocellularis (B) nucleus shows a similar number of cells projecting to the S1 as to the A1 cortices. In addition, we analyzed the cholinergic effects on the S1 and A1 cortical sensory responses by optogenetic stimulation of the BF neurons in urethane-anesthetized transgenic mice. We used transgenic mice expressing the light-activated cation channel, channelrhodopsin-2, tagged with a fluorescent protein (ChR2-YFP) under the control of the choline-acetyl transferase promoter (ChAT). Cortical evoked potentials were induced by whisker deflections or by auditory clicks. According to the anatomical results, optogenetic HDB stimulation induced more extensive facilitation of tactile evoked potentials in S1 than auditory evoked potentials in A1, while optogenetic stimulation of the B nucleus facilitated either tactile or auditory evoked potentials equally. Consequently, our results suggest that cholinergic projections to the cortex are organized into segregated pools of neurons that may modulate specific cortical areas. PMID:27147975

  4. Modulation of Specific Sensory Cortical Areas by Segregated Basal Forebrain Cholinergic Neurons Demonstrated by Neuronal Tracing and Optogenetic Stimulation in Mice.

    PubMed

    Chaves-Coira, Irene; Barros-Zulaica, Natali; Rodrigo-Angulo, Margarita; Núñez, Ángel

    2016-01-01

    Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions. Previous results have suggested a refined anatomical and functional topographical organization of basal forebrain (BF) projections that may control cortical sensory processing in a specific manner. We have used retrograde anatomical procedures to demonstrate the existence of specific neuronal groups in the BF involved in the control of specific sensory cortices. Fluoro-Gold (FlGo) and Fast Blue (FB) fluorescent retrograde tracers were deposited into the primary somatosensory (S1) and primary auditory (A1) cortices in mice. Our results revealed that the BF is a heterogeneous area in which neurons projecting to different cortical areas are segregated into different neuronal groups. Most of the neurons located in the horizontal limb of the diagonal band of Broca (HDB) projected to the S1 cortex, indicating that this area is specialized in the sensory processing of tactile stimuli. However, the nucleus basalis magnocellularis (B) nucleus shows a similar number of cells projecting to the S1 as to the A1 cortices. In addition, we analyzed the cholinergic effects on the S1 and A1 cortical sensory responses by optogenetic stimulation of the BF neurons in urethane-anesthetized transgenic mice. We used transgenic mice expressing the light-activated cation channel, channelrhodopsin-2, tagged with a fluorescent protein (ChR2-YFP) under the control of the choline-acetyl transferase promoter (ChAT). Cortical evoked potentials were induced by whisker deflections or by auditory clicks. According to the anatomical results, optogenetic HDB stimulation induced more extensive facilitation of tactile evoked potentials in S1 than auditory evoked potentials in A1, while optogenetic stimulation of the B nucleus facilitated either tactile or auditory evoked potentials equally. Consequently, our results suggest that cholinergic projections to the cortex are organized into segregated pools of neurons that may modulate specific cortical areas.

  5. Distinct projection targets define subpopulations of mouse brainstem vagal neurons that express the autism-associated MET receptor tyrosine kinase.

    PubMed

    Kamitakahara, Anna; Wu, Hsiao-Huei; Levitt, Pat

    2017-12-15

    Detailed anatomical tracing and mapping of the viscerotopic organization of the vagal motor nuclei has provided insight into autonomic function in health and disease. To further define specific cellular identities, we paired information based on visceral connectivity with a cell-type specific marker of a subpopulation of neurons in the dorsal motor nucleus of the vagus (DMV) and nucleus ambiguus (nAmb) that express the autism-associated MET receptor tyrosine kinase. As gastrointestinal disturbances are common in children with autism spectrum disorder (ASD), we sought to define the relationship between MET-expressing (MET+) neurons in the DMV and nAmb, and the gastrointestinal tract. Using wholemount tissue staining and clearing, or retrograde tracing in a MET EGFP transgenic mouse, we identify three novel subpopulations of EGFP+ vagal brainstem neurons: (a) EGFP+ neurons in the nAmb projecting to the esophagus or laryngeal muscles, (b) EGFP+ neurons in the medial DMV projecting to the stomach, and (b) EGFP+ neurons in the lateral DMV projecting to the cecum and/or proximal colon. Expression of the MET ligand, hepatocyte growth factor (HGF), by tissues innervated by vagal motor neurons during fetal development reveal potential sites of HGF-MET interaction. Furthermore, similar cellular expression patterns of MET in the brainstem of both the mouse and nonhuman primate suggests that MET expression at these sites is evolutionarily conserved. Together, the data suggest that MET+ neurons in the brainstem vagal motor nuclei are anatomically positioned to regulate distinct portions of the gastrointestinal tract, with implications for the pathophysiology of gastrointestinal comorbidities of ASD. © 2017 Wiley Periodicals, Inc.

  6. Differential expression of VGLUT1 or VGLUT2 in the trigeminothalamic or trigeminocerebellar projection neurons in the rat.

    PubMed

    Ge, Shun-Nan; Li, Zhi-Hong; Tang, Jun; Ma, Yunfei; Hioki, Hiroyuki; Zhang, Ting; Lu, Ya-Cheng; Zhang, Fu-Xing; Mizuno, Noboru; Kaneko, Takeshi; Liu, Ying-Ying; Lung, Mandy Siu Yu; Gao, Guo-Dong; Li, Jin-Lian

    2014-01-01

    The vesicular glutamate transporters, VGLUT1 and VGLUT2, reportedly display complementary distribution in the rat brain. However, co-expression of them in single neurons has been reported in some brain areas. We previously found co-expression of VGLUT1 and VGLUT2 mRNAs in a number of single neurons in the principal sensory trigeminal nucleus (Vp) of the adult rat; the majority of these neurons sent their axons to the thalamic regions around the posteromedial ventral nucleus (VPM) and the posterior nuclei (Po). It is well known that trigeminothalamic (T-T) projection fibers arise not only from the Vp but also from the spinal trigeminal nucleus (Vsp), and that trigeminocerebellar (T-C) projection fibers take their origins from both of the Vp and Vsp. Thus, in the present study, we examined the expression of VGLUT1 and VGLUT2 in Vp and Vsp neurons that sent their axons to the VPM/Po regions or the cortical regions of the cerebellum. For this purpose, we combined fluorescence in situ hybridization (FISH) histochemistry with retrograde tract-tracing; immunofluorescence histochemistry was also combined with anterograde tract-tracing. The results indicate that glutamatergic Vsp neurons sending their axons to the cerebellar cortical regions mainly express VGLUT1, whereas glutamatergic Vsp neurons sending their axons to the thalamic regions express VGLUT2. The present data, in combination with those of our previous study, indicate that glutamatergic Vp neurons projecting to the cerebellar cortical regions express mainly VGLUT1, whereas the majority of glutamatergic Vp neurons projecting to the thalamus co-express VGLUT1 and VGLUT2.

  7. Oxytocin stimulates hippocampal neurogenesis via oxytocin receptor expressed in CA3 pyramidal neurons.

    PubMed

    Lin, Yu-Ting; Chen, Chien-Chung; Huang, Chiung-Chun; Nishimori, Katsuhiko; Hsu, Kuei-Sen

    2017-09-14

    In addition to the regulation of social and emotional behaviors, the hypothalamic neuropeptide oxytocin has been shown to stimulate neurogenesis in adult dentate gyrus; however, the mechanisms underlying the action of oxytocin are still unclear. Taking advantage of the conditional knockout mouse model, we show here that endogenous oxytocin signaling functions in a non-cell autonomous manner to regulate survival and maturation of newly generated dentate granule cells in adult mouse hippocampus via oxytocin receptors expressed in CA3 pyramidal neurons. Through bidirectional chemogenetic manipulations, we also uncover a significant role for CA3 pyramidal neuron activity in regulating adult neurogenesis in the dentate gyrus. Retrograde neuronal tracing combined with immunocytochemistry revealed that the oxytocin neurons in the paraventricular nucleus project directly to the CA3 region of the hippocampus. Our findings reveal a critical role for oxytocin signaling in adult neurogenesis.Oxytocin (OXT) has been implicated in adult neurogenesis. Here the authors show that CA3 pyramidal cells in the adult mouse hippocampus express OXT receptors and receive inputs from hypothalamic OXT neurons; activation of OXT signaling in CA3 pyramidal cells promotes the survival and maturation of newborn neurons in the dentate gyrus in a non-cell autonomous manner.

  8. Neuroanatomy: Cajal and after Cajal.

    PubMed

    Jones, Edward G

    2007-10-01

    This essay commences with a consideration of the relative contributions of Cajal and Golgi to the study of the anatomy of the nervous system. It demonstrates the extent to which Cajal depended upon Golgi's work and how his modifications of the Golgi technique permitted a remarkable series of investigations in which the foundations of the neuron doctrine were laid and in which the intrinsic connectivity of virtually every part of the central nervous system was charted. Cajal's readiness to seize on and develop new techniques was one of the many keys to his success. After him, neuroanatomical studies tended to be focused more on long tract connectivity, using techniques such as those of Nissl and Marchi that had been in place before Cajal commenced his studies. Development of degeneration-based techniques of tracing connections in the late 1950s spearheaded a revolution in neuroanatomy while introduction of mixed aldehyde fixation made possible similarly intensive studies of the fine structure of the nervous system. At this time, the Golgi technique experienced a brief resurgence as neuroanatomists made efforts to bridge the gap between light and electron microscopy. Later developments in techniques for tracing connections included anterograde tracing by autoradiography and retrograde tracing by horseradish peroxidase. These were soon superseded by tracing techniques of increasing sensitivity and specificity that rely upon the cellular and molecular biology of neurons. Although neuroanatomy in its traditional form is perhaps no longer fashionable as a discipline, the techniques of neuroanatomy remain preeminent in many, perhaps all areas of neuroscience.

  9. Acute inhibition of diacylglycerol lipase blocks endocannabinoid-mediated retrograde signalling: evidence for on-demand biosynthesis of 2-arachidonoylglycerol

    PubMed Central

    Hashimotodani, Yuki; Ohno-Shosaku, Takako; Tanimura, Asami; Kita, Yoshihiro; Sano, Yoshikazu; Shimizu, Takao; Di Marzo, Vincenzo; Kano, Masanobu

    2013-01-01

    The endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) produced by diacylglycerol lipase α (DGLα) is one of the best-characterized retrograde messengers at central synapses. It has been thought that 2-AG is produced ‘on demand’ upon activation of postsynaptic neurons. However, recent studies propose that 2-AG is pre-synthesized by DGLα and stored in neurons, and that 2-AG is released from such ‘pre-formed pools’ without the participation of DGLα. To address whether the 2-AG source for retrograde signalling is the on-demand biosynthesis by DGLα or the mobilization from pre-formed pools, we examined the effects of acute pharmacological inhibition of DGL by a novel potent DGL inhibitor, OMDM-188, on retrograde eCB signalling triggered by Ca2+ elevation, Gq/11 protein-coupled receptor activation or synergy of these two stimuli in postsynaptic neurons. We found that pretreatment for 1 h with OMDM-188 effectively blocked depolarization-induced suppression of inhibition (DSI), a purely Ca2+-dependent form of eCB signalling, in slices from the hippocampus, striatum and cerebellum. We also found that at parallel fibre–Purkinje cell synapses in the cerebellum OMDM-188 abolished synaptically induced retrograde eCB signalling, which is known to be caused by the synergy of postsynaptic Ca2+ elevation and group I metabotropic glutamate receptor (I-mGluR) activation. Moreover, brief OMDM-188 treatments for several minutes were sufficient to suppress both DSI and the I-mGluR-induced retrograde eCB signalling in cultured hippocampal neurons. These results are consistent with the hypothesis that 2-AG for synaptic retrograde signalling is supplied as a result of on-demand biosynthesis by DGLα rather than mobilization from presumptive pre-formed pools. PMID:23858009

  10. Resolving the detailed structure of cortical and thalamic neurons in the adult rat brain with refined biotinylated dextran amine labeling.

    PubMed

    Ling, Changying; Hendrickson, Michael L; Kalil, Ronald E

    2012-01-01

    Biotinylated dextran amine (BDA) has been used frequently for both anterograde and retrograde pathway tracing in the central nervous system. Typically, BDA labels axons and cell somas in sufficient detail to identify their topographical location accurately. However, BDA labeling often has proved to be inadequate to resolve the fine structural details of axon arbors or the dendrites of neurons at a distance from the site of BDA injection. To overcome this limitation, we varied several experimental parameters associated with the BDA labeling of neurons in the adult rat brain in order to improve the sensitivity of the method. Specifically, we compared the effect on labeling sensitivity of: (a) using 3,000 or 10,000 MW BDA; (b) injecting different volumes of BDA; (c) co-injecting BDA with NMDA; and (d) employing various post-injection survival times. Following the extracellular injection of BDA into the visual cortex, labeled cells and axons were observed in both cortical and thalamic areas of all animals studied. However, the detailed morphology of axon arbors and distal dendrites was evident only under optimal conditions for BDA labeling that take into account the: molecular weight of the BDA used, concentration and volume of BDA injected, post-injection survival time, and toning of the resolved BDA with gold and silver. In these instances, anterogradely labeled axons and retrogradely labeled dendrites were resolved in fine detail, approximating that which can be achieved with intracellularly injected compounds such as biocytin or fluorescent dyes.

  11. Vesicular stomatitis virus enables gene transfer and transsynaptic tracing in a wide range of organisms.

    PubMed

    Mundell, Nathan A; Beier, Kevin T; Pan, Y Albert; Lapan, Sylvain W; Göz Aytürk, Didem; Berezovskii, Vladimir K; Wark, Abigail R; Drokhlyansky, Eugene; Bielecki, Jan; Born, Richard T; Schier, Alexander F; Cepko, Constance L

    2015-08-01

    Current limitations in technology have prevented an extensive analysis of the connections among neurons, particularly within nonmammalian organisms. We developed a transsynaptic viral tracer originally for use in mice, and then tested its utility in a broader range of organisms. By engineering the vesicular stomatitis virus (VSV) to encode a fluorophore and either the rabies virus glycoprotein (RABV-G) or its own glycoprotein (VSV-G), we created viruses that can transsynaptically label neuronal circuits in either the retrograde or anterograde direction, respectively. The vectors were investigated for their utility as polysynaptic tracers of chicken and zebrafish visual pathways. They showed patterns of connectivity consistent with previously characterized visual system connections, and revealed several potentially novel connections. Further, these vectors were shown to infect neurons in several other vertebrates, including Old and New World monkeys, seahorses, axolotls, and Xenopus. They were also shown to infect two invertebrates, Drosophila melanogaster, and the box jellyfish, Tripedalia cystophora, a species previously intractable for gene transfer, although no clear evidence of transsynaptic spread was observed in these species. These vectors provide a starting point for transsynaptic tracing in most vertebrates, and are also excellent candidates for gene transfer in organisms that have been refractory to other methods. © 2015 Wiley Periodicals, Inc.

  12. Kinesin Khc-73/KIF13B modulates retrograde BMP signaling by influencing endosomal dynamics at the Drosophila neuromuscular junction

    PubMed Central

    Gray, Lindsay; Tsurudome, Kazuya; El-Mounzer, Wassim; Elazzouzi, Fatima; Baim, Christopher; Calderon, Mario R.; Kauwe, Grant

    2018-01-01

    Retrograde signaling is essential for neuronal growth, function and survival; however, we know little about how signaling endosomes might be directed from synaptic terminals onto retrograde axonal pathways. We have identified Khc-73, a plus-end directed microtubule motor protein, as a regulator of sorting of endosomes in Drosophila larval motor neurons. The number of synaptic boutons and the amount of neurotransmitter release at the Khc-73 mutant larval neuromuscular junction (NMJ) are normal, but we find a significant decrease in the number of presynaptic release sites. This defect in Khc-73 mutant larvae can be genetically enhanced by a partial genetic loss of Bone Morphogenic Protein (BMP) signaling or suppressed by activation of BMP signaling in motoneurons. Consistently, activation of BMP signaling that normally enhances the accumulation of phosphorylated form of BMP transcription factor Mad in the nuclei, can be suppressed by genetic removal of Khc-73. Using a number of assays including live imaging in larval motor neurons, we show that loss of Khc-73 curbs the ability of retrograde-bound endosomes to leave the synaptic area and join the retrograde axonal pathway. Our findings identify Khc-73 as a regulator of endosomal traffic at the synapse and modulator of retrograde BMP signaling in motoneurons. PMID:29373576

  13. Medial vestibular connections with the hypocretin (orexin) system

    NASA Technical Reports Server (NTRS)

    Horowitz, Seth S.; Blanchard, Jane; Morin, Lawrence P.

    2005-01-01

    The mammalian medial vestibular nucleus (MVe) receives input from all vestibular endorgans and provides extensive projections to the central nervous system. Recent studies have demonstrated projections from the MVe to the circadian rhythm system. In addition, there are known projections from the MVe to regions considered to be involved in sleep and arousal. In this study, afferent and efferent subcortical connectivity of the medial vestibular nucleus of the golden hamster (Mesocricetus auratus) was evaluated using cholera toxin subunit-B (retrograde), Phaseolus vulgaris leucoagglutinin (anterograde), and pseudorabies virus (transneuronal retrograde) tract-tracing techniques. The results demonstrate MVe connections with regions mediating visuomotor and postural control, as previously observed in other mammals. The data also identify extensive projections from the MVe to regions mediating arousal and sleep-related functions, most of which receive immunohistochemically identified projections from the lateral hypothalamic hypocretin (orexin) neurons. These include the locus coeruleus, dorsal and pedunculopontine tegmental nuclei, dorsal raphe, and lateral preoptic area. The MVe itself receives a projection from hypocretin cells. CTB tracing demonstrated reciprocal connections between the MVe and most brain areas receiving MVe efferents. Virus tracing confirmed and extended the MVe afferent connections identified with CTB and additionally demonstrated transneuronal connectivity with the suprachiasmatic nucleus and the medial habenular nucleus. These anatomical data indicate that the vestibular system has access to a broad array of neural functions not typically associated with visuomotor, balance, or equilibrium, and that the MVe is likely to receive information from many of the same regions to which it projects.

  14. Evaluation of the percentage of ganglion cells in the ganglion cell layer of the rodent retina

    PubMed Central

    Schlamp, Cassandra L.; Montgomery, Angela D.; Mac Nair, Caitlin E.; Schuart, Claudia; Willmer, Daniel J.

    2013-01-01

    Purpose Retinal ganglion cells comprise a percentage of the neurons actually residing in the ganglion cell layer (GCL) of the rodent retina. This estimate is useful to extrapolate ganglion cell loss in models of optic nerve disease, but the values reported in the literature are highly variable depending on the methods used to obtain them. Methods We tested three retrograde labeling methods and two immunostaining methods to calculate ganglion cell number in the mouse retina (C57BL/6). Additionally, a double-stain retrograde staining method was used to label rats (Long-Evans). The number of total neurons was estimated using a nuclear stain and selecting for nuclei that met specific criteria. Cholinergic amacrine cells were identified using transgenic mice expressing Tomato fluorescent protein. Total neurons and total ganglion cell numbers were measured in microscopic fields of 104 µm2 to determine the percentage of neurons comprising ganglion cells in each field. Results Historical estimates of the percentage of ganglion cells in the mouse GCL range from 36.1% to 67.5% depending on the method used. Experimentally, retrograde labeling methods yielded a combined estimate of 50.3% in mice. A retrograde method also yielded a value of 50.21% for rat retinas. Immunolabeling estimates were higher at 64.8%. Immunolabeling may introduce overestimates, however, with non-specific labeling effects, or ectopic expression of antigens in neurons other than ganglion cells. Conclusions Since immunolabeling methods may overestimate ganglion cell numbers, we conclude that 50%, which is consistently derived from retrograde labeling methods, is a reliable estimate of the ganglion cells in the neuronal population of the GCL. PMID:23825918

  15. Alpha-2 adrenergic receptor-mediated inhibition of thermogenesis

    PubMed Central

    Madden, Christopher J.; Tupone, Domenico; Cano, Georgina; Morrison, Shaun F.

    2013-01-01

    Alpha2-adrenergic receptor (α2-AR) agonists have been use as anti-hypertensive agents, in the management of drug withdrawal, and as sedative analgesics. Since α2-AR agonists also influence the regulation of body temperature, we explored their potential as antipyretic agents. This study delineates the central neural substrate for the inhibition of rat brown adipose tissue (BAT) and shivering thermogenesis by α2-AR agonists. Nanoinjection of the α2-AR agonist, clonidine (1.2 nmol), into the rostral raphe pallidus (rRPa) inhibited BAT sympathetic nerve activity (SNA) and BAT thermogenesis. Subsequent nanoinjection of the α2-AR antagonist, idazoxan (6nmol) into the rRPa reversed the clonidine-evoked inhibition of BAT SNA and BAT thermogenesis. Systemic administration of the α2-AR agonists, dexmedetomidine (25ug/kg, iv) or clonidine (100ug/kg, iv) inhibited shivering EMGs, BAT SNA and BAT thermogenesis effects that were reversed by nanoinjection of idazoxan (6nmol) into the rRPa. Dexmedetomidine (100µg/kg, ip) prevented and reversed lipopolysaccharide (10µg/kg ip)-evoked thermogenesis in free-behaving rats. Cholera toxin subunit b retrograde tracing from rRPa and pseudorabies virus transynaptic retrograde tracing from BAT combined with immunohistochemistry for catecholaminergic biosynthetic enzymes revealed the ventrolateral medulla as the source of catecholaminergic input to the rRPa and demonstrated that these catecholaminergic neurons are synaptically connected to BAT. Photostimulation of VLM neurons expressing of the PRSx8-ChR2-mCherry lentiviral vector inhibited BAT SNA via activation of α2-ARs in the rRPa. These results indicate a potent inhibition of BAT and shivering thermogenesis by α2-AR activation in the rRPa, and suggest a therapeutic potential of α2-AR agonists for reducing potentially-lethal elevations in body temperature during excessive fever. PMID:23365239

  16. Differential projections of the densocellular and intermediate parts of the hyperpallium in the pigeon (Columba livia).

    PubMed

    Atoji, Yasuro; Sarkar, Sonjoy; Wild, J Martin

    2018-01-01

    The visual Wulst in birds shows a four-layered structure: apical part of the hyperpallium (HA), interstitial part of HA (IHA), intercalated part of hyperpallium (HI), and densocellular part of hyperpallium (HD). HD also connects with the hippocampus and olfactory system. Because HD is subjacent to HI, the two have been treated as one structure in many studies, and the fiber connections of HD have been examined by afferents and efferents originating outside HD. However, to clarify the difference between these two layers, they need to be treated separately. In the present study, the fiber connections of HD and HI were analyzed with tract-tracing techniques using a combination of injections of cholera toxin subunit B (CTB) for retrograde tracing and biotinylated dextran amine (BDA) for anterograde tracing. When the two tracers were bilaterally injected in HD, a major reciprocal connection was seen with the dorsolateral subdivision (DL) of the hippocampal formation. When CTB and BDA were bilaterally injected in HI, strong reciprocal connections were found between HI and HA. Next, projection neurons in HD and HI were examined by double staining for CTB combined with vesicular glutamate transporter 2 (vGluT2) mRNA in situ hybridization. After CTB was injected in DL or HA, many neurons revealed CTB+/vGluT2+ in HD or HI, respectively. Furthermore, in situ hybridization showed that DL and HA contained neurons expressing various subunits of ionotropic glutamate receptors: AMPA, kainate, and NMDA types. These results suggest that glutamatergic neurons in HD and HI project primarily to DL and HA, respectively. © 2017 Wiley Periodicals, Inc.

  17. Biocytin-Derived MRI Contrast Agent for Longitudinal Brain Connectivity Studies

    PubMed Central

    2011-01-01

    To investigate the connectivity of brain networks noninvasively and dynamically, we have developed a new strategy to functionalize neuronal tracers and designed a biocompatible probe that can be visualized in vivo using magnetic resonance imaging (MRI). Furthermore, the multimodal design used allows combined ex vivo studies with microscopic spatial resolution by conventional histochemical techniques. We present data on the functionalization of biocytin, a well-known neuronal tract tracer, and demonstrate the validity of the approach by showing brain networks of cortical connectivity in live rats under MRI, together with the corresponding microscopic details, such as fibers and neuronal morphology under light microscopy. We further demonstrate that the developed molecule is the first MRI-visible probe to preferentially trace retrograde connections. Our study offers a new platform for the development of multimodal molecular imaging tools of broad interest in neuroscience, that capture in vivo the dynamics of large scale neural networks together with their microscopic characteristics, thereby spanning several organizational levels. PMID:22860157

  18. Shared rhythmic subcortical GABAergic input to the entorhinal cortex and presubiculum

    PubMed Central

    Salib, Minas; Joshi, Abhilasha; Unal, Gunes; Berry, Naomi

    2018-01-01

    Rhythmic theta frequency (~5–12 Hz) oscillations coordinate neuronal synchrony and higher frequency oscillations across the cortex. Spatial navigation and context-dependent episodic memories are represented in several interconnected regions including the hippocampal and entorhinal cortices, but the cellular mechanisms for their dynamic coupling remain to be defined. Using monosynaptically-restricted retrograde viral tracing in mice, we identified a subcortical GABAergic input from the medial septum that terminated in the entorhinal cortex, with collaterals innervating the dorsal presubiculum. Extracellularly recording and labeling GABAergic entorhinal-projecting neurons in awake behaving mice show that these subcortical neurons, named orchid cells, fire in long rhythmic bursts during immobility and locomotion. Orchid cells discharge near the peak of hippocampal and entorhinal theta oscillations, couple to entorhinal gamma oscillations, and target subpopulations of extra-hippocampal GABAergic interneurons. Thus, orchid cells are a specialized source of rhythmic subcortical GABAergic modulation of ‘upstream’ and ‘downstream’ cortico-cortical circuits involved in mnemonic functions. PMID:29620525

  19. CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety

    PubMed Central

    McCall, Jordan G.; Al-Hasani, Ream; Siuda, Edward R.; Hong, Daniel Y.; Norris, Aaron J.; Ford, Christopher P.; Bruchas, Michael R.

    2015-01-01

    Summary The locus coeruleus noradrenergic (LC-NE) system is one of the first systems engaged following a stressful event. While numerous groups have demonstrated that LC-NE neurons are activated by many different stressors, the underlying neural circuitry and the role of this activity in generating stress-induced anxiety has not been elucidated. Using a combination of in vivo chemogenetics, optogenetics, and retrograde tracing we determine that increased tonic activity of the LC-NE system is necessary and sufficient for stress-induced anxiety and aversion. Selective inhibition of LC-NE neurons during stress prevents subsequent anxiety-like behavior. Exogenously increasing tonic, but not phasic, activity of LC-NE neurons is alone sufficient for anxiety-like and aversive behavior. Furthermore, endogenous corticotropin releasing hormone+ (CRH+) LC inputs from the amygdala increase tonic LC activity, inducing anxiety-like behaviors. These studies position the LC-NE system as a critical mediator of acute stress-induced anxiety and offer a potential intervention for preventing stress-related affective disorders. PMID:26212712

  20. Shared rhythmic subcortical GABAergic input to the entorhinal cortex and presubiculum.

    PubMed

    Viney, Tim James; Salib, Minas; Joshi, Abhilasha; Unal, Gunes; Berry, Naomi; Somogyi, Peter

    2018-04-05

    Rhythmic theta frequency (~5-12 Hz) oscillations coordinate neuronal synchrony and higher frequency oscillations across the cortex. Spatial navigation and context-dependent episodic memories are represented in several interconnected regions including the hippocampal and entorhinal cortices, but the cellular mechanisms for their dynamic coupling remain to be defined. Using monosynaptically-restricted retrograde viral tracing in mice, we identified a subcortical GABAergic input from the medial septum that terminated in the entorhinal cortex, with collaterals innervating the dorsal presubiculum. Extracellularly recording and labeling GABAergic entorhinal-projecting neurons in awake behaving mice show that these subcortical neurons, named orchid cells, fire in long rhythmic bursts during immobility and locomotion. Orchid cells discharge near the peak of hippocampal and entorhinal theta oscillations, couple to entorhinal gamma oscillations, and target subpopulations of extra-hippocampal GABAergic interneurons. Thus, orchid cells are a specialized source of rhythmic subcortical GABAergic modulation of 'upstream' and 'downstream' cortico-cortical circuits involved in mnemonic functions. © 2018, Viney et al.

  1. Facilitation of Contextual Fear Extinction by Orexin-1 Receptor Antagonism Is Associated with the Activation of Specific Amygdala Cell Subpopulations.

    PubMed

    Flores, África; Herry, Cyril; Maldonado, Rafael; Berrendero, Fernando

    2017-08-01

    Orexins are hypothalamic neuropeptides recently involved in the regulation of emotional memory. The basolateral amygdala, an area orchestrating fear memory processes, appears to be modulated by orexin transmission during fear extinction. However, the neuronal types within the basolateral amygdala involved in this modulation remain to be elucidated. We used retrograde tracing combined with immunofluorescence techniques in mice to identify basolateral amygdala projection neurons and cell subpopulations in this brain region influenced by orexin transmission during contextual fear extinction consolidation. Treatment with the orexin-1 receptor antagonist SB334867 increased the activity of basolateral amygdala neurons projecting to infralimbic medial prefrontal cortex during fear extinction. GABAergic interneurons expressing calbindin, but not parvalbumin, were also activated by orexin-1 receptor antagonism in the basolateral amygdala. These data identify neuronal circuits and cell populations of the amygdala associated with the facilitation of fear extinction consolidation induced by the orexin-1 receptor antagonist SB334867. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  2. The dependence of neuronal encoding efficiency on Hebbian plasticity and homeostatic regulation of neurotransmitter release

    PubMed Central

    Faghihi, Faramarz; Moustafa, Ahmed A.

    2015-01-01

    Synapses act as information filters by different molecular mechanisms including retrograde messenger that affect neuronal spiking activity. One of the well-known effects of retrograde messenger in presynaptic neurons is a change of the probability of neurotransmitter release. Hebbian learning describe a strengthening of a synapse between a presynaptic input onto a postsynaptic neuron when both pre- and postsynaptic neurons are coactive. In this work, a theory of homeostatic regulation of neurotransmitter release by retrograde messenger and Hebbian plasticity in neuronal encoding is presented. Encoding efficiency was measured for different synaptic conditions. In order to gain high encoding efficiency, the spiking pattern of a neuron should be dependent on the intensity of the input and show low levels of noise. In this work, we represent spiking trains as zeros and ones (corresponding to non-spike or spike in a time bin, respectively) as words with length equal to three. Then the frequency of each word (here eight words) is measured using spiking trains. These frequencies are used to measure neuronal efficiency in different conditions and for different parameter values. Results show that neurons that have synapses acting as band-pass filters show the highest efficiency to encode their input when both Hebbian mechanism and homeostatic regulation of neurotransmitter release exist in synapses. Specifically, the integration of homeostatic regulation of feedback inhibition with Hebbian mechanism and homeostatic regulation of neurotransmitter release in the synapses leads to even higher efficiency when high stimulus intensity is presented to the neurons. However, neurons with synapses acting as high-pass filters show no remarkable increase in encoding efficiency for all simulated synaptic plasticity mechanisms. This study demonstrates the importance of cooperation of Hebbian mechanism with regulation of neurotransmitter release induced by rapid diffused retrograde messenger in neurons with synapses as low and band-pass filters to obtain high encoding efficiency in different environmental and physiological conditions. PMID:25972786

  3. Distal axotomy enhances retrograde presynaptic excitability onto injured pyramidal neurons via trans-synaptic signaling.

    PubMed

    Nagendran, Tharkika; Larsen, Rylan S; Bigler, Rebecca L; Frost, Shawn B; Philpot, Benjamin D; Nudo, Randolph J; Taylor, Anne Marion

    2017-09-20

    Injury of CNS nerve tracts remodels circuitry through dendritic spine loss and hyper-excitability, thus influencing recovery. Due to the complexity of the CNS, a mechanistic understanding of injury-induced synaptic remodeling remains unclear. Using microfluidic chambers to separate and injure distal axons, we show that axotomy causes retrograde dendritic spine loss at directly injured pyramidal neurons followed by retrograde presynaptic hyper-excitability. These remodeling events require activity at the site of injury, axon-to-soma signaling, and transcription. Similarly, directly injured corticospinal neurons in vivo also exhibit a specific increase in spiking following axon injury. Axotomy-induced hyper-excitability of cultured neurons coincides with elimination of inhibitory inputs onto injured neurons, including those formed onto dendritic spines. Netrin-1 downregulation occurs following axon injury and exogenous netrin-1 applied after injury normalizes spine density, presynaptic excitability, and inhibitory inputs at injured neurons. Our findings show that intrinsic signaling within damaged neurons regulates synaptic remodeling and involves netrin-1 signaling.Spinal cord injury can induce synaptic reorganization and remodeling in the brain. Here the authors study how severed distal axons signal back to the cell body to induce hyperexcitability, loss of inhibition and enhanced presynaptic release through netrin-1.

  4. Dopaminergic Neurons Controlling Anterior Pituitary Functions: Anatomy and Ontogenesis in Zebrafish.

    PubMed

    Fontaine, Romain; Affaticati, Pierre; Bureau, Charlotte; Colin, Ingrid; Demarque, Michaël; Dufour, Sylvie; Vernier, Philippe; Yamamoto, Kei; Pasqualini, Catherine

    2015-08-01

    Dopaminergic (DA) neurons located in the preoptico-hypothalamic region of the brain exert a major neuroendocrine control on reproduction, growth, and homeostasis by regulating the secretion of anterior pituitary (or adenohypophysis) hormones. Here, using a retrograde tract tracing experiment, we identified the neurons playing this role in the zebrafish. The DA cells projecting directly to the anterior pituitary are localized in the most anteroventral part of the preoptic area, and we named them preoptico-hypophyseal DA (POHDA) neurons. During development, these neurons do not appear before 72 hours postfertilization (hpf) and are the last dopaminergic cell group to differentiate. We found that the number of neurons in this cell population continues to increase throughout life proportionally to the growth of the fish. 5-Bromo-2'-deoxyuridine incorporation analysis suggested that this increase is due to continuous neurogenesis and not due to a phenotypic change in already-existing neurons. Finally, expression profiles of several genes (foxg1a, dlx2a, and nr4a2a/b) were different in the POHDA compared with the adjacent suprachiasmatic DA neurons, suggesting that POHDA neurons develop as a distinct DA cell population in the preoptic area. This study offers some insights into the regional identity of the preoptic area and provides the first bases for future functional genetic studies on the development of DA neurons controlling anterior pituitary functions.

  5. Dync1h1 Mutation Causes Proprioceptive Sensory Neuron Loss and Impaired Retrograde Axonal Transport of Dorsal Root Ganglion Neurons.

    PubMed

    Zhao, Jing; Wang, Yi; Xu, Huan; Fu, Yuan; Qian, Ting; Bo, Deng; Lu, Yan-Xin; Xiong, Yi; Wan, Jun; Zhang, Xiang; Dong, Qiang; Chen, Xiang-Jun

    2016-07-01

    Sprawling (Swl) is a radiation-induced mutation which has been identified to have a nine base pair deletion in dynein heavy chain 1 (DYNC1H1: encoded by a single gene Dync1h1). This study is to investigate the phenotype and the underlying mechanism of the Dync1h1 mutant. To display the phenotype of Swl mutant mice, we examined the embryos of homozygous (Swl/Swl) and heterozygous (Swl/+) mice and their postnatal dorsal root ganglion (DRG) of surviving Swl/+ mice. The Swl/+ mice could survive for a normal life span, while Swl/Swl could only survive till embryonic (E) 8.5 days. Excessive apoptosis of Swl/+ DRG neurons was revealed during E11.5-E15.5 days, and the peak rate was at E13.5 days. In vitro study of mutated DRG neurons showed impaired retrograde transport of dynein-driven nerve growth factor (NGF). Mitochondria, another dynein-driven cargo, demonstrated much slower retrograde transport velocity in Swl/+ neurons than in wild-type (WT) neurons. Nevertheless, the Swl, Loa, and Cra mutations did not affect homodimerization of DYNC1H1. The Swl/Swl mutation of Dync1h1 gene led to embryonic mal-development and lethality, whereas the Swl/+ DRG neurons demonstrated deficient retrograde transport in dynein-driven cargos and excessive apoptosis during mid- to late-developmental stages. The underlying mechanism of the mutation may not be due to impaired homodimerization of DYNC1H1. © 2016 John Wiley & Sons Ltd.

  6. Semaphorin 3A is a retrograde cell death signal in developing sympathetic neurons

    PubMed Central

    Wehner, Amanda B.; Abdesselem, Houari; Dickendesher, Travis L.; Imai, Fumiyasu; Yoshida, Yutaka; Giger, Roman J.; Pierchala, Brian A.

    2016-01-01

    ABSTRACT During development of the peripheral nervous system, excess neurons are generated, most of which will be lost by programmed cell death due to a limited supply of neurotrophic factors from their targets. Other environmental factors, such as ‘competition factors' produced by neurons themselves, and axon guidance molecules have also been implicated in developmental cell death. Semaphorin 3A (Sema3A), in addition to its function as a chemorepulsive guidance cue, can also induce death of sensory neurons in vitro. The extent to which Sema3A regulates developmental cell death in vivo, however, is debated. We show that in compartmentalized cultures of rat sympathetic neurons, a Sema3A-initiated apoptosis signal is retrogradely transported from axon terminals to cell bodies to induce cell death. Sema3A-mediated apoptosis utilizes the extrinsic pathway and requires both neuropilin 1 and plexin A3. Sema3A is not retrogradely transported in older, survival factor-independent sympathetic neurons, and is much less effective at inducing apoptosis in these neurons. Importantly, deletion of either neuropilin 1 or plexin A3 significantly reduces developmental cell death in the superior cervical ganglia. Taken together, a Sema3A-initiated apoptotic signaling complex regulates the apoptosis of sympathetic neurons during the period of naturally occurring cell death. PMID:27143756

  7. A Layer-specific Corticofugal Input to the Mouse Superior Colliculus.

    PubMed

    Zurita, Hector; Rock, Crystal; Perkins, Jessica; Apicella, Alfonso Junior

    2017-07-05

    In the auditory cortex (AC), corticofugal projections arise from each level of the auditory system and are considered to provide feedback "loops" important to modulate the flow of ascending information. It is well established that the cortex can influence the response of neurons in the superior colliculus (SC) via descending corticofugal projections. However, little is known about the relative contribution of different pyramidal neurons to these projections in the SC. We addressed this question by taking advantage of anterograde and retrograde neuronal tracing to directly examine the laminar distribution, long-range projections, and electrophysiological properties of pyramidal neurons projecting from the AC to the SC of the mouse brain. Here we show that layer 5 cortico-superior-collicular pyramidal neurons act as bandpass filters, resonating with a broad peak at ∼3 Hz, whereas layer 6 neurons act as low-pass filters. The dissimilar subthreshold properties of layer 5 and layer 6 cortico-superior-collicular pyramidal neurons can be described by differences in the hyperpolarization-activated cyclic nucleotide-gated cation h-current (Ih). Ih also reduced the summation of short trains of artificial excitatory postsynaptic potentials injected at the soma of layer 5, but not layer 6, cortico-superior-collicular pyramidal neurons, indicating a differential dampening effect of Ih on these neurons. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. FoxP2 brainstem neurons project to sodium appetite regulatory sites.

    PubMed

    Shin, Jung-Won; Geerling, Joel C; Stein, Matthew K; Miller, Rebecca L; Loewy, Arthur D

    2011-09-01

    The transcription factor Forkhead box protein 2 (FoxP2) is expressed in two cell groups of the brainstem that have been implicated in sodium appetite regulation: the pre-locus coeruleus (pre-LC) and parabrachial nucleus--external lateral-inner subdivision (PBel-inner). Because the connections of these two groups are unknown, neuroanatomical tracing methods were used to define their central projections. The pre-LC outputs were first analyzed using an anterograde axonal tracer--Phaseolus vulgaris leucoagglutinin (PHAL) to construct a brain map. Next, we examined whether the FoxP2 immunoreactive (FoxP2+) neurons of the pre-LC contribute to these projections using a retrograde neuronal tracer--cholera toxin β-subunit (CTb). CTb was injected into selected brain regions identified in the anterograde tracing study. One week later the rats were killed, and brainstem sections were processed by a double immunohistochemical procedure to determine whether the FoxP2+ neurons in the pre-LC and/or PBel-inner contained CTb. FoxP2+ pre-LC neurons project to: (1) ventral pallidum; (2) substantia innominata and bed nucleus of the stria terminalis; (3) paraventricular, central medial, parafascicular, and subparafascicular parvicellular thalamic nuclei; (4) paraventricular (PVH), lateral, perifornical, dorsomedial (DMH), and parasubthalamic hypothalamic nuclei; and (5) ventral tegmental area (VTA), periaqueductal gray matter (PAG), dorsal and central linear raphe nuclei. FoxP2+ PBel-inner neurons project to the PVH and DMH, with weaker connections to the LHA, VTA, and PAG. Both the pre-LC and PBel-inner project to central sites implicated in sodium appetite, and related issues, including foraging behavior, hedonic responses to salt intake, sodium balance, and cardiovascular regulation, are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Rabies Virus Envelope Glycoprotein Targets Lentiviral Vectors to the Axonal Retrograde Pathway in Motor Neurons*

    PubMed Central

    Hislop, James N.; Islam, Tarin A.; Eleftheriadou, Ioanna; Carpentier, David C. J.; Trabalza, Antonio; Parkinson, Michael; Schiavo, Giampietro; Mazarakis, Nicholas D.

    2014-01-01

    Rabies pseudotyped lentiviral vectors have great potential in gene therapy, not least because of their ability to transduce neurons following their distal axonal application. However, very little is known about the molecular processes that underlie their retrograde transport and cell transduction. Using multiple labeling techniques and confocal microscopy, we demonstrated that pseudotyping with rabies virus envelope glycoprotein (RV-G) enabled the axonal retrograde transport of two distinct subtypes of lentiviral vector in motor neuron cultures. Analysis of this process revealed that these vectors trafficked through Rab5-positive endosomes and accumulated within a non-acidic Rab7 compartment. RV-G pseudotyped vectors were co-transported with both the tetanus neurotoxin-binding fragment and the membrane proteins thought to mediate rabies virus endocytosis (neural cell adhesion molecule, nicotinic acetylcholine receptor, and p75 neurotrophin receptor), thus demonstrating that pseudotyping with RV-G targets lentiviral vectors for transport along the same pathway exploited by several toxins and viruses. Using motor neurons cultured in compartmentalized chambers, we demonstrated that axonal retrograde transport of these vectors was rapid and efficient; however, it was not able to transduce the targeted neurons efficiently, suggesting that impairment in processes occurring after arrival of the viral vector in the soma is responsible for the low transduction efficiency seen in vivo, which suggests a novel area for improvement of gene therapy vectors. PMID:24753246

  10. Nonserotonergic projection neurons in the midbrain raphe nuclei contain the vesicular glutamate transporter VGLUT3.

    PubMed

    Jackson, Jesse; Bland, Brian H; Antle, Michael C

    2009-01-01

    The brainstem raphe nuclei are typically assigned a role in serotonergic brain function. However, numerous studies have reported that a large proportion of raphe projection cells are nonserotonergic. The identity of these projection cells is unknown. Recent studies have reported that the vesicular glutamate transporter VGLUT3 is found in both serotonergic and nonserotonergic neurons in both the median raphe (MR) and dorsal raphe (DR) nuclei. We injected the retrograde tracer cholera toxin subunit B into either the dorsal hippocampus or the medial septum (MS) and used triple labeled immunofluorescence to determine if nonserotonergic raphe cells projecting to these structures contained VGLUT3. Consistent with previous studies, only about half of retrogradely labeled MR neurons projecting to the hippocampus contained serotonin, whereas a majority of the retrogradely labeled nonserotonergic cells contained VGLUT3. Similar patterns were observed for MR cells projecting to the MS. About half of retrogradely labeled nonserotonergic neurons in the DR contained VGLUT3. Additionally, a large number of retrogradely labeled cells in the caudal linear and interpeduncular nuclei projecting to the MS were found to contain VGLUT3. These data suggest the enigmatic nonserotonergic projection from the MR to forebrain regions may be glutamatergic. In addition, these results demonstrate a dissociation between glutamatergic and serotonergic MR afferent inputs to the MS and hippocampus suggesting divergent and/or complementary roles of these pathways in modulating cellular activity within the septohippocampal network.

  11. Resolving the Detailed Structure of Cortical and Thalamic Neurons in the Adult Rat Brain with Refined Biotinylated Dextran Amine Labeling

    PubMed Central

    Ling, Changying; Hendrickson, Michael L.; Kalil, Ronald E.

    2012-01-01

    Biotinylated dextran amine (BDA) has been used frequently for both anterograde and retrograde pathway tracing in the central nervous system. Typically, BDA labels axons and cell somas in sufficient detail to identify their topographical location accurately. However, BDA labeling often has proved to be inadequate to resolve the fine structural details of axon arbors or the dendrites of neurons at a distance from the site of BDA injection. To overcome this limitation, we varied several experimental parameters associated with the BDA labeling of neurons in the adult rat brain in order to improve the sensitivity of the method. Specifically, we compared the effect on labeling sensitivity of: (a) using 3,000 or 10,000 MW BDA; (b) injecting different volumes of BDA; (c) co-injecting BDA with NMDA; and (d) employing various post-injection survival times. Following the extracellular injection of BDA into the visual cortex, labeled cells and axons were observed in both cortical and thalamic areas of all animals studied. However, the detailed morphology of axon arbors and distal dendrites was evident only under optimal conditions for BDA labeling that take into account the: molecular weight of the BDA used, concentration and volume of BDA injected, post-injection survival time, and toning of the resolved BDA with gold and silver. In these instances, anterogradely labeled axons and retrogradely labeled dendrites were resolved in fine detail, approximating that which can be achieved with intracellularly injected compounds such as biocytin or fluorescent dyes. PMID:23144777

  12. Collateralization of cerebellar output to functionally distinct brainstem areas. A retrograde, non-fluorescent tracing study in the rat

    PubMed Central

    Ruigrok, Tom J. H.; Teune, Thea M.

    2014-01-01

    The organization of the cerebellum is characterized by a number of longitudinally organized connection patterns that consist of matching olivo-cortico-nuclear zones. These entities, referred to as modules, have been suggested to act as functional units. The various parts of the cerebellar nuclei (CN) constitute the output of these modules. We have studied to what extent divergent and convergent patterns in the output of the modules to four, functionally distinct brain areas can be recognized. Two retrograde tracers were injected in various combinations of the following nuclei: the red nucleus (RN), as a main premotor nucleus; the prerubral area, as a main supplier of afferents to the inferior olive (IO); the nucleus reticularis tegmenti pontis (NRTP), as a main source of cerebellar mossy fibers; and the IO, as the source of climbing fibers. For all six potential combinations three cases were examined. All nine cases with combinations that involved the IO did not, or hardly, resulted in double labeled neurons. In contrast, all other combinations resulted in at least 10% and up to 67% of double labeled neurons in cerebellar nuclear areas where both tracers were found. These results show that the cerebellar nuclear neurons that terminate within the studied areas represent basically two intermingled populations of projection cells. One population corresponds to the small nucleo-olivary neurons whereas the other consists of medium- to large-sized neurons which are likely to distribute their axons to several other areas. Despite some consistent differences between the output patterns of individual modules we propose that modular cerebellar output to premotor areas such as the RN provides simultaneous feedback to both the mossy fiber and the climbing fiber system and acts in concert with a designated GABAergic nucleo-olivary circuit. These features seem to form a basic characteristic of cerebellar operation. PMID:24600356

  13. Vesicular stomatitis virus enables gene transfer and transsynaptic tracing in a wide range of organisms

    PubMed Central

    Mundell, Nathan A.; Beier, Kevin T.; Pan, Y. Albert; Lapan, Sylvain W.; Göz Aytürk, Didem; Berezovskii, Vladimir K.; Wark, Abigail R.; Drokhlyansky, Eugene; Bielecki, Jan; Born, Richard T.; Schier, Alexander F.

    2015-01-01

    Current limitations in technology have prevented an extensive analysis of the connections among neurons, particularly within nonmammalian organisms. We developed a transsynaptic viral tracer originally for use in mice, and then tested its utility in a broader range of organisms. By engineering the vesicular stomatitis virus (VSV) to encode a fluorophore and either the rabies virus glycoprotein (RABV‐G) or its own glycoprotein (VSV‐G), we created viruses that can transsynaptically label neuronal circuits in either the retrograde or anterograde direction, respectively. The vectors were investigated for their utility as polysynaptic tracers of chicken and zebrafish visual pathways. They showed patterns of connectivity consistent with previously characterized visual system connections, and revealed several potentially novel connections. Further, these vectors were shown to infect neurons in several other vertebrates, including Old and New World monkeys, seahorses, axolotls, and Xenopus. They were also shown to infect two invertebrates, Drosophila melanogaster, and the box jellyfish, Tripedalia cystophora, a species previously intractable for gene transfer, although no clear evidence of transsynaptic spread was observed in these species. These vectors provide a starting point for transsynaptic tracing in most vertebrates, and are also excellent candidates for gene transfer in organisms that have been refractory to other methods. J. Comp. Neurol. 523:1639–1663, 2015. © 2015 Wiley Periodicals, Inc. PMID:25688551

  14. Electrophysiological and morphological properties of pre-autonomic neurones in the rat hypothalamic paraventricular nucleus.

    PubMed

    Stern, J E

    2001-11-15

    1. The cellular properties of pre-autonomic neurones in the hypothalamic paraventricular nucleus (PVN) were characterized by combining in vivo retrograde tracing techniques, in vitro patch-clamp recordings and three-dimensional reconstruction of recorded neurones in adult hypothalamic slices. 2. The results showed that PVN pre-autonomic neurones constitute a heterogeneous neuronal population. Based on morphological criteria, neurones were classified into three subgroups. Type A neurones (52 %) were located in the ventral parvocellular (PaV) subnucleus, and showed an oblique orientation with respect to the third ventricle (3V). Type B neurones (25 %) were located in the posterior parvocellular (PaPo) subnucleus, and were oriented perpendicularly with respect to the 3V. Type C neurones (23 %) were located in both the PaPo (82 %) and the PaV (18 %) subnuclei, and displayed a concentric dendritic configuration. 3. A morphometric analysis revealed significant differences in the dendritic configuration among neuronal types. Type B neurones had the most complex dendritic arborization, with longer and more branching dendritic trees. 4. Several electrophysiological properties, including cell input resistance and action potential waveforms, differed between cell types, suggesting that the expression and/or properties of a variety of ion channels differ between neuronal types. 5. Common features of PVN pre-autonomic neurones included the expression of a low-threshold spike and strong inward rectification. These properties distinguished them from neighbouring magnocellular vasopressin neurones. 6. In summary, these results indicate that PVN pre-autonomic neurones constitute a heterogeneous neuronal population, and provide a cellular basis for the study of their involvement in the pathophysiology of hypertension and congestive heart failure disorders.

  15. Electrophysiological and morphological properties of pre-autonomic neurones in the rat hypothalamic paraventricular nucleus

    PubMed Central

    Stern, Javier E

    2001-01-01

    The cellular properties of pre-autonomic neurones in the hypothalamic paraventricular nucleus (PVN) were characterized by combining in vivo retrograde tracing techniques, in vitro patch-clamp recordings and three-dimensional reconstruction of recorded neurones in adult hypothalamic slices. The results showed that PVN pre-autonomic neurones constitute a heterogeneous neuronal population. Based on morphological criteria, neurones were classified into three subgroups. Type A neurones (52 %) were located in the ventral parvocellular (PaV) subnucleus, and showed an oblique orientation with respect to the third ventricle (3V). Type B neurones (25 %) were located in the posterior parvocellular (PaPo) subnucleus, and were oriented perpendicularly with respect to the 3V. Type C neurones (23 %) were located in both the PaPo (82 %) and the PaV (18 %) subnuclei, and displayed a concentric dendritic configuration. A morphometric analysis revealed significant differences in the dendritic configuration among neuronal types. Type B neurones had the most complex dendritic arborization, with longer and more branching dendritic trees. Several electrophysiological properties, including cell input resistance and action potential waveforms, differed between cell types, suggesting that the expression and/or properties of a variety of ion channels differ between neuronal types. Common features of PVN pre-autonomic neurones included the expression of a low-threshold spike and strong inward rectification. These properties distinguished them from neighbouring magnocellular vasopressin neurones. In summary, these results indicate that PVN pre-autonomic neurones constitute a heterogeneous neuronal population, and provide a cellular basis for the study of their involvement in the pathophysiology of hypertension and congestive heart failure disorders. PMID:11711570

  16. Trafficking of cell surface beta-amyloid precursor protein: retrograde and transcytotic transport in cultured neurons

    PubMed Central

    1995-01-01

    Amyloid beta-protein (A beta), the principal constituent of senile plaques seen in Alzheimer's disease (AD), is derived by proteolysis from the beta-amyloid precursor protein (beta PP). The mechanism of A beta production in neurons, which are hypothesized to be a rich source of A beta in brain, remains to be defined. In this study, we describe a detailed localization of cell surface beta PP and its subsequent trafficking in primary cultured neurons. Full-length cell surface beta PP was present primarily on perikarya and axons, the latter with a characteristic discontinuous pattern. At growth cones, cell surface beta PP was inconsistently detected. By visualizing the distribution of beta PP monoclonal antibodies added to intact cultures, beta PP was shown to be internalized from distal axons or terminals and retrogradely transported back to perikarya in organelles which colocalized with fluid-phase endocytic markers. Retrograde transport of beta PP was shown in both hippocampal and peripheral sympathetic neurons, the latter using a compartment culture system that isolated cell bodies from distal axons and terminals. In addition, we demonstrated that beta PP from distal axons was transcytotically transported to the surface of perikarya from distal axons in sympathetic neurons. Indirect evidence of this transcytotic pathway was obtained in hippocampal neurons using antisense oligonucleotide to the kinesin heavy chain to inhibit anterograde beta PP transport. Taken together, these results demonstrate novel aspects of beta PP trafficking in neurons, including retrograde axonal transport and transcytosis. Moreover, the axonal predominance of cell surface beta PP is unexpected in view of the recent report of polarized sorting of beta PP to the basolateral domain of MDCK cells. PMID:7721945

  17. Expression of vesicular glutamate transporters in sensory and autonomic neurons innervating the mouse bladder.

    PubMed

    Brumovsky, Pablo R; Seal, Rebecca P; Lundgren, Kerstin H; Seroogy, Kim B; Watanabe, Masahiko; Gebhart, G F

    2013-06-01

    VGLUTs, which are essential for loading glutamate into synaptic vesicles, are present in various neuronal systems. However, to our knowledge the expression of VGLUTs in neurons innervating the bladder has not yet been analyzed. We studied VGLUT1, VGLUT2 and VGLUT3 in mouse bladder neurons. We analyzed the expression of VGLUT1, VGLUT2 and calcitonin gene-related peptide by immunohistochemistry in the retrograde labeled primary afferent and autonomic neurons of BALB/c mice after injecting fast blue in the bladder wall. To study VGLUT3 we traced the bladder of transgenic mice, in which VGLUT3 is identified by enhanced green fluorescent protein detection. Most bladder dorsal root ganglion neurons expressed VGLUT2. A smaller percentage of neurons also expressed VGLUT1 or VGLUT3. Co-expression with calcitonin gene-related peptide was only observed for VGLUT2. Occasional VGLUT2 immunoreactive neurons were seen in the major pelvic ganglia. Abundant VGLUT2 immunoreactive nerves were detected in the bladder dome and trigone, and the urethra. VGLUT1 immunoreactive nerves were discretely present. We present what are to our knowledge novel data on VGLUT expression in sensory and autonomic neurons innervating the mouse bladder. The frequent association of VGLUT2 and calcitonin gene-related peptide in sensory neurons suggests interactions between glutamatergic and peptidergic neurotransmissions, potentially influencing commonly perceived sensations in the bladder, such as discomfort and pain. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Rabies virus envelope glycoprotein targets lentiviral vectors to the axonal retrograde pathway in motor neurons.

    PubMed

    Hislop, James N; Islam, Tarin A; Eleftheriadou, Ioanna; Carpentier, David C J; Trabalza, Antonio; Parkinson, Michael; Schiavo, Giampietro; Mazarakis, Nicholas D

    2014-06-06

    Rabies pseudotyped lentiviral vectors have great potential in gene therapy, not least because of their ability to transduce neurons following their distal axonal application. However, very little is known about the molecular processes that underlie their retrograde transport and cell transduction. Using multiple labeling techniques and confocal microscopy, we demonstrated that pseudotyping with rabies virus envelope glycoprotein (RV-G) enabled the axonal retrograde transport of two distinct subtypes of lentiviral vector in motor neuron cultures. Analysis of this process revealed that these vectors trafficked through Rab5-positive endosomes and accumulated within a non-acidic Rab7 compartment. RV-G pseudotyped vectors were co-transported with both the tetanus neurotoxin-binding fragment and the membrane proteins thought to mediate rabies virus endocytosis (neural cell adhesion molecule, nicotinic acetylcholine receptor, and p75 neurotrophin receptor), thus demonstrating that pseudotyping with RV-G targets lentiviral vectors for transport along the same pathway exploited by several toxins and viruses. Using motor neurons cultured in compartmentalized chambers, we demonstrated that axonal retrograde transport of these vectors was rapid and efficient; however, it was not able to transduce the targeted neurons efficiently, suggesting that impairment in processes occurring after arrival of the viral vector in the soma is responsible for the low transduction efficiency seen in vivo, which suggests a novel area for improvement of gene therapy vectors. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. The topology of connections between rat prefrontal and temporal cortices

    PubMed Central

    Bedwell, Stacey A.; Billett, E. Ellen; Crofts, Jonathan J.; MacDonald, Danielle M.; Tinsley, Chris J.

    2015-01-01

    Understanding the structural organization of the prefrontal cortex (PFC) is an important step toward determining its functional organization. Here we investigated the organization of PFC using different neuronal tracers. We injected retrograde (Fluoro-Gold, 100 nl) and anterograde [Biotinylated dextran amine (BDA) or Fluoro-Ruby, 100 nl] tracers into sites within PFC subdivisions (prelimbic, ventral orbital, ventrolateral orbital, dorsolateral orbital) along a coronal axis within PFC. At each injection site one injection was made of the anterograde tracer and one injection was made of the retrograde tracer. The projection locations of retrogradely labeled neurons and anterogradely labeled axon terminals were then analyzed in the temporal cortex: area Te, entorhinal and perirhinal cortex. We found evidence for an ordering of both the anterograde (anterior-posterior, dorsal-ventral, and medial-lateral axes: p < 0.001) and retrograde (anterior-posterior, dorsal-ventral, and medial-lateral axes: p < 0.001) connections of PFC. We observed that anterograde and retrograde labeling in ipsilateral temporal cortex (i.e., PFC inputs and outputs) often occurred reciprocally (i.e., the same brain region, such as area 35d in perirhinal cortex, contained anterograde and retrograde labeling). However, often the same specific columnar temporal cortex regions contained only either labeling of retrograde or anterograde tracer, indicating that PFC inputs and outputs are frequently non-matched. PMID:26042005

  20. Vestibular efferent neurons project to the flocculus

    NASA Technical Reports Server (NTRS)

    Shinder, M. E.; Purcell, I. M.; Kaufman, G. D.; Perachio, A. A.

    2001-01-01

    A bilateral projection from the vestibular efferent neurons, located dorsal to the genu of the facial nerve, to the cerebellar flocculus and ventral paraflocculus was demonstrated. Efferent neurons were double-labeled by the unilateral injections of separate retrograde tracers into the labyrinth and into the floccular and ventral parafloccular lobules. Efferent neurons were found with double retrograde tracer labeling both ipsilateral and contralateral to the sites of injection. No double labeling was found when using a fluorescent tracer with non-fluorescent tracers such as horseradish peroxidase (HRP) or biotinylated dextran amine (BDA), but large percentages of efferent neurons were found to be double labeled when using two fluorescent substances including: fluorogold, microruby dextran amine, or rhodamine labeled latex beads. These data suggest a potential role for vestibular efferent neurons in modulating the dynamics of the vestibulo-ocular reflex (VOR) during normal and adaptive conditions.

  1. Nutritional State-Dependent Ghrelin Activation of Vasopressin Neurons via Retrograde Trans-Neuronal–Glial Stimulation of Excitatory GABA Circuits

    PubMed Central

    Haam, Juhee; Halmos, Katalin C.; Di, Shi

    2014-01-01

    Behavioral and physiological coupling between energy balance and fluid homeostasis is critical for survival. The orexigenic hormone ghrelin has been shown to stimulate the secretion of the osmoregulatory hormone vasopressin (VP), linking nutritional status to the control of blood osmolality, although the mechanism of this systemic crosstalk is unknown. Here, we show using electrophysiological recordings and calcium imaging in rat brain slices that ghrelin stimulates VP neurons in the hypothalamic paraventricular nucleus (PVN) in a nutritional state-dependent manner by activating an excitatory GABAergic synaptic input via a retrograde neuronal–glial circuit. In slices from fasted rats, ghrelin activation of a postsynaptic ghrelin receptor, the growth hormone secretagogue receptor type 1a (GHS-R1a), in VP neurons caused the dendritic release of VP, which stimulated astrocytes to release the gliotransmitter adenosine triphosphate (ATP). ATP activation of P2X receptors excited presynaptic GABA neurons to increase GABA release, which was excitatory to the VP neurons. This trans-neuronal–glial retrograde circuit activated by ghrelin provides an alternative means of stimulation of VP release and represents a novel mechanism of neuronal control by local neuronal–glial circuits. It also provides a potential cellular mechanism for the physiological integration of energy and fluid homeostasis. PMID:24790191

  2. Differential TRPV1 and TRPV2 Channel Expression in Dental Pulp

    PubMed Central

    Gibbs, J.L.; Melnyk, J.L.; Basbaum, A.I.

    2011-01-01

    Hypersensitivity to thermal and mechanical stimuli can occur in painful pulpitis. To explore the neuro-anatomical basis of heat and mechanical sensitivity, we evaluated expression of TRPV1 (heat) and TRPV2 (heat/mechanical) channels in the cell bodies and terminal arborizations of neurons that innervate the dental pulp (DP) and periodontal tissues (PDL). We report that ~50% of trigeminal ganglion (TG) neurons retrogradely labeled from the DP express TRPV2, and this was significantly greater than the general expression of this channel in the TG (15%) and slightly more than what is expressed in the PDL by retrograde labeling (40%). The TRPV1 receptor, however, was less prevalent in neurons innervating the DP than their general expression in the TG (17% vs. 26%) and was more extensively expressed in neurons innervating the PDL (26%). Co-labeling studies showed that 70% of neurons that innervate the DP are myelinated. Approximately 1/3 of the retrogradely labeled neurons from the DP were calcitonin-gene-related-peptide-positive (peptide-expressing), but very few expressed the IB4 marker of non-peptidergic unmyelinated afferents. These findings suggest that the DP has a unique neurochemical innervation with regard to TRP receptor expression, which has significant implications for the mechanisms contributing to odontogenic pain and management strategies. PMID:21406609

  3. Differential TRPV1 and TRPV2 channel expression in dental pulp.

    PubMed

    Gibbs, J L; Melnyk, J L; Basbaum, A I

    2011-06-01

    Hypersensitivity to thermal and mechanical stimuli can occur in painful pulpitis. To explore the neuro-anatomical basis of heat and mechanical sensitivity, we evaluated expression of TRPV1 (heat) and TRPV2 (heat/mechanical) channels in the cell bodies and terminal arborizations of neurons that innervate the dental pulp (DP) and periodontal tissues (PDL). We report that ~50% of trigeminal ganglion (TG) neurons retrogradely labeled from the DP express TRPV2, and this was significantly greater than the general expression of this channel in the TG (15%) and slightly more than what is expressed in the PDL by retrograde labeling (40%). The TRPV1 receptor, however, was less prevalent in neurons innervating the DP than their general expression in the TG (17% vs. 26%) and was more extensively expressed in neurons innervating the PDL (26%). Co-labeling studies showed that 70% of neurons that innervate the DP are myelinated. Approximately 1/3 of the retrogradely labeled neurons from the DP were calcitonin-gene-related-peptide-positive (peptide-expressing), but very few expressed the IB4 marker of non-peptidergic unmyelinated afferents. These findings suggest that the DP has a unique neurochemical innervation with regard to TRP receptor expression, which has significant implications for the mechanisms contributing to odontogenic pain and management strategies.

  4. CRH Engagement of the Locus Coeruleus Noradrenergic System Mediates Stress-Induced Anxiety.

    PubMed

    McCall, Jordan G; Al-Hasani, Ream; Siuda, Edward R; Hong, Daniel Y; Norris, Aaron J; Ford, Christopher P; Bruchas, Michael R

    2015-08-05

    The locus coeruleus noradrenergic (LC-NE) system is one of the first systems engaged following a stressful event. While numerous groups have demonstrated that LC-NE neurons are activated by many different stressors, the underlying neural circuitry and the role of this activity in generating stress-induced anxiety has not been elucidated. Using a combination of in vivo chemogenetics, optogenetics, and retrograde tracing, we determine that increased tonic activity of the LC-NE system is necessary and sufficient for stress-induced anxiety and aversion. Selective inhibition of LC-NE neurons during stress prevents subsequent anxiety-like behavior. Exogenously increasing tonic, but not phasic, activity of LC-NE neurons is alone sufficient for anxiety-like and aversive behavior. Furthermore, endogenous corticotropin-releasing hormone(+) (CRH(+)) LC inputs from the amygdala increase tonic LC activity, inducing anxiety-like behaviors. These studies position the LC-NE system as a critical mediator of acute stress-induced anxiety and offer a potential intervention for preventing stress-related affective disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Substance P and acetylcholine are co-localized in the pathway mediating mucociliary activity in Rana pipiens.

    PubMed

    Hernández, C J; Ortíz, T; Rosa, C; Foster, K; Tyagi, M; Lugo, N; Albrecht, R; Chinapen, S

    2007-04-01

    Mucociliary activity is an important clearance mechanism in the respiratory system of air breathing vertebrates. Substance P (SP) and acetylcholine play a key role in the stimulation of the mucociliary transport in the frog palate. In this study, retrograde neuronal tracing was combined with immunocytochemistry for SP and choline acetyl transferase (ChAT) in the trigeminal ganglion and for neurokinin-1 receptor (NK1R) in the palate of Rana pipiens. The cells of origin of the palatine nerve were identified in the trigeminal ganglion using the retrograde tracer Fluorogold (FG). Optimal labeling of FG cells in the trigeminal ganglion was obtained at 96 h of exposure. Immunoflorescent shows that SP and acetylcholine are co-localized in 92% of the cells labeled with FG in the trigeminal ganglion. NK1 receptors were found in the membrane of epithelial and goblet cells of the palate. Ultrastructural study of the palate showed axonal-like endings with vesicles in connection with epithelial and goblet cells. These results further support the concerted action of both neurotransmitters in the regulation of mucociliary activity in the frog palate.

  6. Dorsal Vagal Complex Modulates Neurogenic Airway Inflammation in a Guinea Pig Model With Esophageal Perfusion of HCl.

    PubMed

    Chen, Zhe; Sun, Lejia; Chen, Hui; Gu, Dachuan; Zhang, Weitao; Yang, Zifeng; Peng, Tao; Dong, Rong; Lai, Kefang

    2018-01-01

    Neurogenic airway inflammation in chronic cough and bronchial asthma related to gastroesophageal reflux (GER) is involved in the esophageal-bronchial reflex, but it is unclear whether this reflex is mediated by central neurons. This study aimed to investigate the regulatory effects of the dorsal vagal complex (DVC) on airway inflammation induced by the esophageal perfusion of hydrochloric acid (HCl) following the microinjection of nuclei in the DVC in guinea pigs. Airway inflammation was evaluated by measuring the extravasation of Evans blue dye (EBD) and substance P (SP) expression in the airway. Neuronal activity was indicated by Fos expression in the DVC. The neural pathways from the lower esophagus to the DVC and the DVC to the airway were identified using DiI tracing and pseudorabies virus Bartha (PRV-Bartha) retrograde tracing, respectively. HCl perfusion significantly increased plasma extravasation, SP expression in the trachea, and the expression of SP and Fos in the medulla oblongata nuclei, including the nucleus of the solitary tract (NTS) and the dorsal motor nucleus of the vagus (DMV). The microinjection of glutamic acid (Glu) or exogenous SP to enhance neuronal activity in the DVC significantly potentiated plasma extravasation and SP release induced by intra-esophageal perfusion. The microinjection of γ-aminobutyric acid (GABA), lidocaine to inhibit neuronal activity or anti-SP serum in the DVC alleviated plasma extravasation and SP release. In conclusion, airway inflammation induced by the esophageal perfusion of HCl is regulated by DVC. This study provides new insight for the mechanism of airway neurogenic inflammation related to GER.

  7. Dorsal Vagal Complex Modulates Neurogenic Airway Inflammation in a Guinea Pig Model With Esophageal Perfusion of HCl

    PubMed Central

    Chen, Zhe; Sun, Lejia; Chen, Hui; Gu, Dachuan; Zhang, Weitao; Yang, Zifeng; Peng, Tao; Dong, Rong; Lai, Kefang

    2018-01-01

    Neurogenic airway inflammation in chronic cough and bronchial asthma related to gastroesophageal reflux (GER) is involved in the esophageal–bronchial reflex, but it is unclear whether this reflex is mediated by central neurons. This study aimed to investigate the regulatory effects of the dorsal vagal complex (DVC) on airway inflammation induced by the esophageal perfusion of hydrochloric acid (HCl) following the microinjection of nuclei in the DVC in guinea pigs. Airway inflammation was evaluated by measuring the extravasation of Evans blue dye (EBD) and substance P (SP) expression in the airway. Neuronal activity was indicated by Fos expression in the DVC. The neural pathways from the lower esophagus to the DVC and the DVC to the airway were identified using DiI tracing and pseudorabies virus Bartha (PRV-Bartha) retrograde tracing, respectively. HCl perfusion significantly increased plasma extravasation, SP expression in the trachea, and the expression of SP and Fos in the medulla oblongata nuclei, including the nucleus of the solitary tract (NTS) and the dorsal motor nucleus of the vagus (DMV). The microinjection of glutamic acid (Glu) or exogenous SP to enhance neuronal activity in the DVC significantly potentiated plasma extravasation and SP release induced by intra-esophageal perfusion. The microinjection of γ-aminobutyric acid (GABA), lidocaine to inhibit neuronal activity or anti-SP serum in the DVC alleviated plasma extravasation and SP release. In conclusion, airway inflammation induced by the esophageal perfusion of HCl is regulated by DVC. This study provides new insight for the mechanism of airway neurogenic inflammation related to GER. PMID:29867575

  8. Afferents to the Orexin Neurons of the Rat Brain

    PubMed Central

    YOSHIDA, KYOKO; McCORMACK, SARAH; ESPAÑA, RODRIGO A.; CROCKER, AMANDA; SCAMMELL, THOMAS E.

    2008-01-01

    Emotions, stress, hunger, and circadian rhythms all promote wakefulness and behavioral arousal. Little is known about the pathways mediating these influences, but the orexin-producing neurons of the hypothalamus may play an essential role. These cells heavily innervate many wake-promoting brain regions, and mice lacking the orexin neurons have narcolepsy and fail to rouse in response to hunger (Yamanaka et al. [2003] Neuron 38:701–713). To identify the afferents to the orexin neurons, we first injected a retrograde tracer into the orexin neuron field of rats. Retrogradely labeled neurons were abundant in the allocortex, claustrum, lateral septum, bed nucleus of the stria terminalis, and in many hypothalamic regions including the preoptic area, dorsomedial nucleus, lateral hypothalamus, and posterior hypothalamus. Retrograde labeling in the brainstem was generally more modest, but labeling was strong in the periaqueductal gray matter, dorsal raphe nucleus, and lateral parabrachial nucleus. Injection of an anterograde tracer confirmed that most of these regions directly innervate the orexin neurons, with some of the heaviest input coming from the lateral septum, preoptic area, and posterior hypothalamus. In addition, hypothalamic regions preferentially innervate orexin neurons in the medial and perifornical parts of the field, but most projections from the brainstem target the lateral part of the field. Inputs from the suprachiasmatic nucleus are mainly relayed via the subparaventricular zone and dorsomedial nucleus. These observations suggest that the orexin neurons may integrate a variety of interoceptive and homeostatic signals to increase behavioral arousal in response to hunger, stress, circadian signals, and autonomic challenges. PMID:16374809

  9. Corticobulbar projections from distinct motor cortical areas to the reticular formation in macaque monkeys.

    PubMed

    Fregosi, Michela; Contestabile, Alessandro; Hamadjida, Adjia; Rouiller, Eric M

    2017-06-01

    Corticospinal and corticobulbar descending pathways act in parallel with brainstem systems, such as the reticulospinal tract, to ensure the control of voluntary movements via direct or indirect influences onto spinal motoneurons. The aim of this study was to investigate the corticobulbar projections from distinct motor cortical areas onto different nuclei of the reticular formation. Seven adult macaque monkeys were analysed for the location of corticobulbar axonal boutons, and one monkey for reticulospinal neurons' location. The anterograde tracer BDA was injected in the premotor cortex (PM), in the primary motor cortex (M1) or in the supplementary motor area (SMA), in 3, 3 and 1 monkeys respectively. BDA anterograde labelling of corticobulbar axons were analysed on brainstem histological sections and overlapped with adjacent Nissl-stained sections for cytoarchitecture. One adult monkey was analysed for retrograde CB tracer injected in C5-C8 hemispinal cord to visualise reticulospinal neurons. The corticobulbar axons formed bilateral terminal fields with boutons terminaux and en passant, which were quantified in various nuclei belonging to the Ponto-Medullary Reticular Formation (PMRF). The corticobulbar projections from both PM and SMA tended to end mainly ipsilaterally in PMRF, but contralaterally when originating from M1. Furthermore, the corticobulbar projection was less dense when originating from M1 than from non-primary motor areas (PM, SMA). The main nuclei of bouton terminals corresponded to the regions where reticulospinal neurons were located with CB retrograde tracing. In conclusion, the corticobulbar projection differs according to the motor cortical area of origin in density and laterality. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. The retrograde delivery of adenovirus vector carrying the gene for brain-derived neurotrophic factor protects neurons and oligodendrocytes from apoptosis in the chronically compressed spinal cord of twy/twy mice.

    PubMed

    Uchida, Kenzo; Nakajima, Hideaki; Hirai, Takayuki; Yayama, Takafumi; Chen, Kebing; Guerrero, Alexander Rodriguez; Johnson, William Eustace; Baba, Hisatoshi

    2012-12-15

    The twy/twy mouse undergoes spontaneous chronic mechanical compression of the spinal cord; this in vivo model system was used to examine the effects of retrograde adenovirus (adenoviral vector [AdV])-mediated brain-derived neurotrophic factor (BDNF) gene delivery to spinal neural cells. To investigate the targeting and potential neuroprotective effect of retrograde AdV-mediated BDNF gene transfection in the chronically compressed spinal cord in terms of prevention of apoptosis of neurons and oligodendrocytes. Several studies have investigated the neuroprotective effects of neurotrophins, including BDNF, in spinal cord injury. However, no report has described the effects of retrograde neurotrophic factor gene delivery in compressed spinal cords, including gene targeting and the potential to prevent neural cell apoptosis. AdV-BDNF or AdV-LacZ (as a control gene) was injected into the bilateral sternomastoid muscles of 18-week old twy/twy mice for retrograde gene delivery via the spinal accessory motor neurons. Heterozygous Institute of Cancer Research mice (+/twy), which do not undergo spontaneous spinal compression, were used as a control for the effects of such compression on gene delivery. The localization and cell specificity of β-galactosidase expression (produced by LacZ gene transfection) and BDNF expression in the spinal cord were examined by coimmunofluorescence staining for neural cell markers (NeuN, neurons; reactive immunology protein, oligodendrocytes; glial fibrillary acidic protein, astrocytes; OX-42, microglia) 4 weeks after gene injection. The possible neuroprotection afforded by retrograde AdV-BDNF gene delivery versus AdV-LacZ-transfected control mice was assessed by scoring the prevalence of apoptotic cells (terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells) and immunoreactivity to active caspases -3, -8, and -9, p75, neurofilament 200 kD (NF), and for the oligodendroglial progenitor marker, NG2. RESULTS.: Four weeks after injection, the retrograde delivery of the LacZ marker gene was identified in cervical spinal neurons and some glial cells, including oligodendrocytes in the white matter of the spinal cord, in both the twy/twy mouse and the heterozygous Institute of Cancer Research mouse (+/twy). In the compressed spinal cord of twy/twy mouse, AdV-BDNF gene transfection resulted in a significant decrease in the number of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells present in the spinal cord and a downregulation in the caspase apoptotic pathway compared with AdV-LacZ (control) gene transfection. There was a marked and significant increase in the areas of the spinal cord of AdV-BDNF-injected mice that were NF- and NG2-immunopositive compared with AdV-LacZ-injected mice, indicating the increased presence of neurons and oligodendrocytes in response to BDNF transfection. Our results demonstrate that targeted retrograde BDNF gene delivery suppresses apoptosis in neurons and oligodendrocytes in the chronically compressed spinal cord of twy/twy mouse. Further work is required to establish whether this method of gene delivery may provide neuroprotective effects in other situations of compressive spinal cord injury.

  11. Expression of Vesicular Glutamate Transporters Type 1 and 2 in Sensory and Autonomic Neurons Innervating the Mouse Colorectum

    PubMed Central

    Brumovsky, Pablo R.; Robinson, David R.; La, Jun-Ho; Seroogy, Kim B.; Lundgren, Kerstin H.; Albers, Kathryn M.; Kiyatkin, Michael E.; Seal, Rebecca P.; Edwards, Robert H.; Watanabe, Masahiko; Hökfelt, Tomas; Gebhart, G.F.

    2013-01-01

    Vesicular glutamate transporters (VGLUTs) have been extensively studied in various neuronal systems, but their expression in visceral sensory and autonomic neurons remains to be analyzed in detail. Here we studied VGLUTs type 1 and 2 (VGLUT1 and VGLUT2, respectively) in neurons innervating the mouse colorectum. Lumbosacral and thoracolumbar dorsal root ganglion (DRG), lumbar sympathetic chain (LSC), and major pelvic ganglion (MPG) neurons innervating the colorectum of BALB/C mice were retrogradely traced with Fast Blue, dissected, and processed for immunohistochemistry. Tissue from additional naïve mice was included. Previously characterized antibodies against VGLUT1, VGLUT2, and calcitonin gene-related peptide (CGRP) were used. Riboprobe in situ hybridization, using probes against VGLUT1 and VGLUT2, was also performed. Most colorectal DRG neurons expressed VGLUT2 and often colocalized with CGRP. A smaller percentage of neurons expressed VGLUT1. VGLUT2-immunoreactive (IR) neurons in the MPG were rare. Abundant VGLUT2-IR nerves were detected in all layers of the colorectum; VGLUT1-IR nerves were sparse. A subpopulation of myenteric plexus neurons expressed VGLUT2 protein and mRNA, but VGLUT1 mRNA was undetectable. In conclusion, we show 1) that most colorectal DRG neurons express VGLUT2, and to a lesser extent, VGLUT1; 2) abundance of VGLUT2-IR fibers innervating colorectum; and 3) a subpopulation of myenteric plexus neurons expressing VGLUT2. Altogether, our data suggests a role for VGLUT2 in colorectal glutamatergic neurotransmission, potentially influencing colorectal sensitivity and motility. PMID:21800314

  12. Carbachol excites sublaterodorsal nucleus neurons projecting to the spinal cord

    PubMed Central

    Weng, F J; Williams, R H; Hawryluk, J M; Lu, J; Scammell, T E; Saper, C B; Arrigoni, E

    2014-01-01

    Considerable electrophysiological and pharmacological evidence has long suggested an important role for acetylcholine in the regulation of rapid-eye-movement (REM) sleep. For example, injection of the cholinergic agonist carbachol into the dorsomedial pons produces an REM sleep-like state with muscle atonia and cortical activation, both of which are cardinal features of REM sleep. Located within this region of the pons is the sublaterodorsal nucleus (SLD), a structure thought to be both necessary and sufficient for generating REM sleep muscle atonia. Subsets of glutamatergic SLD neurons potently contribute to motor inhibition during REM sleep through descending projections to motor-related glycinergic/GABAergic neurons in the spinal cord and ventromedial medulla. Prior electrophysiological and pharmacological studies examining the effects of acetylcholine on SLD neurons have, however, produced conflicting results. In the present study, we sought to clarify how acetylcholine influences the activity of spinally projecting SLD (SLDsp) neurons. We used retrograde tracing in combination with patch-clamp recordings and recorded pre-and postsynaptic effects of carbachol on SLDsp neurons. Carbachol acted presynaptically by increasing the frequency of glutamatergic miniature excitatory postsynaptic currents. We also found that carbachol directly excited SLDsp neurons by activating an Na+–Ca2+ exchanger. Both pre-and postsynaptic effects were mediated by co-activation of M1 and M3 muscarinic receptors. These observations suggest that acetylcholine produces synergistic, excitatory pre-and postsynaptic responses on SLDsp neurons that, in turn, probably serve to promote muscle atonia during REM sleep. PMID:24344163

  13. Carbachol excites sublaterodorsal nucleus neurons projecting to the spinal cord.

    PubMed

    Weng, F J; Williams, R H; Hawryluk, J M; Lu, J; Scammell, T E; Saper, C B; Arrigoni, E

    2014-04-01

    Considerable electrophysiological and pharmacological evidence has long suggested an important role for acetylcholine in the regulation of rapid-eye-movement (REM) sleep. For example, injection of the cholinergic agonist carbachol into the dorsomedial pons produces an REM sleep-like state with muscle atonia and cortical activation, both of which are cardinal features of REM sleep. Located within this region of the pons is the sublaterodorsal nucleus (SLD), a structure thought to be both necessary and sufficient for generating REM sleep muscle atonia. Subsets of glutamatergic SLD neurons potently contribute to motor inhibition during REM sleep through descending projections to motor-related glycinergic/GABAergic neurons in the spinal cord and ventromedial medulla. Prior electrophysiological and pharmacological studies examining the effects of acetylcholine on SLD neurons have, however, produced conflicting results. In the present study, we sought to clarify how acetylcholine influences the activity of spinally projecting SLD (SLDsp) neurons. We used retrograde tracing in combination with patch-clamp recordings and recorded pre- and postsynaptic effects of carbachol on SLDsp neurons. Carbachol acted presynaptically by increasing the frequency of glutamatergic miniature excitatory postsynaptic currents. We also found that carbachol directly excited SLDsp neurons by activating an Na(+)-Ca(2+) exchanger. Both pre- and postsynaptic effects were mediated by co-activation of M1 and M3 muscarinic receptors. These observations suggest that acetylcholine produces synergistic, excitatory pre- and postsynaptic responses on SLDsp neurons that, in turn, probably serve to promote muscle atonia during REM sleep.

  14. α2 Adrenergic receptor-mediated inhibition of thermogenesis.

    PubMed

    Madden, Christopher J; Tupone, Domenico; Cano, Georgina; Morrison, Shaun F

    2013-01-30

    α2 adrenergic receptor (α2-AR) agonists have been used as antihypertensive agents, in the management of drug withdrawal, and as sedative analgesics. Since α2-AR agonists also influence the regulation of body temperature, we explored their potential as antipyretic agents. This study delineates the central neural substrate for the inhibition of rat brown adipose tissue (BAT) and shivering thermogenesis by α2-AR agonists. Nanoinjection of the α2-AR agonist clonidine (1.2 nmol) into the rostral raphe pallidus area (rRPa) inhibited BAT sympathetic nerve activity (SNA) and BAT thermogenesis. Subsequent nanoinjection of the α2-AR antagonist idazoxan (6 nmol) into the rRPa reversed the clonidine-evoked inhibition of BAT SNA and BAT thermogenesis. Systemic administration of the α2-AR agonists dexmedetomidine (25 μg/kg, i.v.) and clonidine (100 μg/kg, i.v.) inhibited shivering EMGs, BAT SNA, and BAT thermogenesis, effects that were reversed by nanoinjection of idazoxan (6 nmol) into the rRPa. Dexmedetomidine (100 μg/kg, i.p.) prevented and reversed lipopolysaccharide-evoked (10 μg/kg, i.p.) thermogenesis in free-behaving rats. Cholera toxin subunit b retrograde tracing from rRPa and pseudorabies virus transynaptic retrograde tracing from BAT combined with immunohistochemistry for catecholaminergic biosynthetic enzymes revealed the ventrolateral medulla as the source of catecholaminergic input to the rRPa and demonstrated that these catecholaminergic neurons are synaptically connected to BAT. Photostimulation of ventrolateral medulla neurons expressing the PRSx8-ChR2-mCherry lentiviral vector inhibited BAT SNA via activation of α2-ARs in the rRPa. These results indicate a potent inhibition of BAT and shivering thermogenesis by α2-AR activation in the rRPa, and suggest a therapeutic potential of α2-AR agonists for reducing potentially lethal elevations in body temperature during excessive fever.

  15. Loss of Miro1-directed mitochondrial movement results in a novel murine model for neuron disease

    PubMed Central

    Nguyen, Tammy T.; Oh, Sang S.; Weaver, David; Lewandowska, Agnieszka; Maxfield, Dane; Schuler, Max-Hinderk; Smith, Nathan K.; Macfarlane, Jane; Saunders, Gerald; Palmer, Cheryl A.; Debattisti, Valentina; Koshiba, Takumi; Pulst, Stefan; Feldman, Eva L.; Hajnóczky, György; Shaw, Janet M.

    2014-01-01

    Defective mitochondrial distribution in neurons is proposed to cause ATP depletion and calcium-buffering deficiencies that compromise cell function. However, it is unclear whether aberrant mitochondrial motility and distribution alone are sufficient to cause neurological disease. Calcium-binding mitochondrial Rho (Miro) GTPases attach mitochondria to motor proteins for anterograde and retrograde transport in neurons. Using two new KO mouse models, we demonstrate that Miro1 is essential for development of cranial motor nuclei required for respiratory control and maintenance of upper motor neurons required for ambulation. Neuron-specific loss of Miro1 causes depletion of mitochondria from corticospinal tract axons and progressive neurological deficits mirroring human upper motor neuron disease. Although Miro1-deficient neurons exhibit defects in retrograde axonal mitochondrial transport, mitochondrial respiratory function continues. Moreover, Miro1 is not essential for calcium-mediated inhibition of mitochondrial movement or mitochondrial calcium buffering. Our findings indicate that defects in mitochondrial motility and distribution are sufficient to cause neurological disease. PMID:25136135

  16. Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior.

    PubMed

    McCall, Jordan G; Siuda, Edward R; Bhatti, Dionnet L; Lawson, Lamley A; McElligott, Zoe A; Stuber, Garret D; Bruchas, Michael R

    2017-07-14

    Increased tonic activity of locus coeruleus noradrenergic (LC-NE) neurons induces anxiety-like and aversive behavior. While some information is known about the afferent circuitry that endogenously drives this neural activity and behavior, the downstream receptors and anatomical projections that mediate these acute risk aversive behavioral states via the LC-NE system remain unresolved. Here we use a combination of retrograde tracing, fast-scan cyclic voltammetry, electrophysiology, and in vivo optogenetics with localized pharmacology to identify neural substrates downstream of increased tonic LC-NE activity in mice. We demonstrate that photostimulation of LC-NE fibers in the BLA evokes norepinephrine release in the basolateral amygdala (BLA), alters BLA neuronal activity, conditions aversion, and increases anxiety-like behavior. Additionally, we report that β-adrenergic receptors mediate the anxiety-like phenotype of increased NE release in the BLA. These studies begin to illustrate how the complex efferent system of the LC-NE system selectively mediates behavior through distinct receptor and projection-selective mechanisms.

  17. Axonal autophagosomes recruit dynein for retrograde transport through fusion with late endosomes

    PubMed Central

    Cheng, Xiu-Tang; Zhou, Bing; Lin, Mei-Yao; Cai, Qian

    2015-01-01

    Efficient degradation of autophagic vacuoles (AVs) via lysosomes is an important cellular homeostatic process. This is particularly challenging for neurons because mature acidic lysosomes are relatively enriched in the soma. Although dynein-driven retrograde transport of AVs was suggested, a fundamental question remains how autophagosomes generated at distal axons acquire dynein motors for retrograde transport toward the soma. In this paper, we demonstrate that late endosome (LE)–loaded dynein–snapin complexes drive AV retrograde transport in axons upon fusion of autophagosomes with LEs into amphisomes. Blocking the fusion with syntaxin17 knockdown reduced recruitment of dynein motors to AVs, thus immobilizing them in axons. Deficiency in dynein–snapin coupling impaired AV transport, resulting in AV accumulation in neurites and synaptic terminals. Altogether, our study provides the first evidence that autophagosomes recruit dynein through fusion with LEs and reveals a new motor–adaptor sharing mechanism by which neurons may remove distal AVs engulfing aggregated proteins and dysfunctional organelles for efficient degradation in the soma. PMID:25940348

  18. Cholinergic Axons in the Rat Ventral Tegmental Area Synapse Preferentially onto Mesoaccumbens Dopamine Neurons

    PubMed Central

    Omelchenko, Natalia; Sesack, Susan R.

    2008-01-01

    Cholinergic afferents to the ventral tegmental area (VTA) contribute substantially to the regulation of motivated behaviors and the rewarding properties of nicotine. These actions are believed to involve connections with dopamine (DA) neurons projecting to the nucleus accumbens (NAc). However, this direct synaptic link has never been investigated, nor is it known whether cholinergic inputs innervate other populations of DA and GABA neurons, including those projecting to the prefrontal cortex (PFC). We addressed these questions using electron microscopic analysis of retrograde tract-tracing and immunocytochemistry for the vesicular acetylcholine transporter (VAChT) and for tyrosine hydroxylase (TH) and GABA. In tissue labeled for TH, VAChT+ terminals frequently synapsed onto DA mesoaccumbens neurons but only seldom contacted DA mesoprefrontal cells. In tissue labeled for GABA, one third of VAChT+ terminals innervated GABA-labeled dendrites, including both mesoaccumbens and mesoprefrontal populations. VAChT+ synapses onto DA and mesoaccumbens neurons were more commonly of the asymmetric (presumed excitatory) morphological type, whereas VAChT+ synapses onto GABA cells were more frequently symmetric (presumed inhibitory or modulatory). These findings suggest that cholinergic inputs to the VTA mediate complex synaptic actions, with a major portion of this effect likely to involve an excitatory influence on DA mesoaccumbens neurons. As such, the results suggest that natural and drug rewards operating through cholinergic afferents to the VTA have a direct synaptic link to the mesoaccumbens DA neurons that modulate approach behaviors. PMID:16385486

  19. Connectivity of Pacemaker Neurons in the Neonatal Rat Superficial Dorsal Horn

    PubMed Central

    Ford, Neil C.; Arbabi, Shahriar; Baccei, Mark L.

    2014-01-01

    Pacemaker neurons with an intrinsic ability to generate rhythmic burst-firing have been characterized in lamina I of the neonatal spinal cord, where they are innervated by high-threshold sensory afferents. However, little is known about the output of these pacemakers, as the neuronal populations which are targeted by pacemaker axons have yet to be identified. The present study combines patch clamp recordings in the intact neonatal rat spinal cord with tract-tracing to demonstrate that lamina I pacemaker neurons contact multiple spinal motor pathways during early life. Retrograde labeling of premotor interneurons with the trans-synaptic virus PRV-152 revealed the presence of burst-firing in PRV-infected lamina I neurons, thereby confirming that pacemakers are synaptically coupled to motor networks in the spinal ventral horn. Notably, two classes of pacemakers could be distinguished in lamina I based on cell size and the pattern of their axonal projections. While small pacemaker neurons possessed ramified axons which contacted ipsilateral motor circuits, large pacemaker neurons had unbranched axons which crossed the midline and ascended rostrally in the contralateral white matter. Recordings from identified spino-parabrachial and spino-PAG neurons indicated the presence of pacemaker activity within neonatal lamina I projection neurons. Overall, these results show that lamina I pacemakers are positioned to regulate both the level of activity in developing motor circuits as well as the ascending flow of nociceptive information to the brain, thus highlighting a potential role for pacemaker activity in the maturation of pain and sensorimotor networks in the CNS. PMID:25380417

  20. Phenotypic alterations of neuropeptide Y and calcitonin gene-related peptide-containing neurons innervating the rat temporomandibular joint during carrageenan-induced arthritis

    PubMed Central

    Damico, J.P.; Ervolino, E.; Torres, K.R.; Batagello, D.S.; Cruz-Rizzolo, R.J.; Casatti, C.A.; Bauer, J.A.

    2012-01-01

    The aim of this study was to identify immunoreactive neuropeptide Y (NPY) and calcitonin gene-related peptide (CGRP) neurons in the autonomic and sensory ganglia, specifically neurons that innervate the rat temporomandibular joint (TMJ). A possible variation between the percentages of these neurons in acute and chronic phases of carrageenan-induced arthritis was examined. Retrograde neuronal tracing was combined with indirect immunofluorescence to identify NPY-immunoreactive (NPY-IR) and CGRP- immunoreactive (CGRP-IR) neurons that send nerve fibers to the normal and arthritic temporomandibular joint. In normal joints, NPY-IR neurons constitute 78±3%, 77±6% and 10±4% of double-labeled nucleated neuronal profile originated from the superior cervical, stellate and otic ganglia, respectively. These percentages in the sympathetic ganglia were significantly decreased in acute (58±2% for superior cervical ganglion and 58±8% for stellate ganglion) and chronic (60±2% for superior cervical ganglion and 59±15% for stellate ganglion) phases of arthritis, while in the otic ganglion these percentages were significantly increased to 19±5% and 13±3%, respectively. In the trigeminal ganglion, CGRP-IR neurons innervating the joint significantly increased from 31±3% in normal animals to 54±2% and 49±3% in the acute and chronic phases of arthritis, respectively. It can be concluded that NPY neurons that send nerve fibers to the rat temporomandibular joint are located mainly in the superior cervical, stellate and otic ganglia. Acute and chronic phases of carrageenan-induced arthritis lead to an increase in the percentage of NPY-IR parasympathetic and CGRP-IR sensory neurons and to a decrease in the percentage of NPY-IR sympathetic neurons related to TMJ innervation. PMID:23027347

  1. Axonal transport and secretion of fibrillar forms of α-synuclein, Aβ42 peptide and HTTExon 1.

    PubMed

    Brahic, Michel; Bousset, Luc; Bieri, Gregor; Melki, Ronald; Gitler, Aaron D

    2016-04-01

    Accruing evidence suggests that prion-like behavior of fibrillar forms of α-synuclein, β-amyloid peptide and mutant huntingtin are responsible for the spread of the lesions that characterize Parkinson disease, Alzheimer disease and Huntington disease, respectively. It is unknown whether these distinct protein assemblies are transported within and between neurons by similar or distinct mechanisms. It is also unclear if neuronal death or injury is required for neuron-to-neuron transfer. To address these questions, we used mouse primary cortical neurons grown in microfluidic devices to measure the amounts of α-synuclein, Aβ42 and HTTExon1 fibrils transported by axons in both directions (anterograde and retrograde), as well as to examine the mechanism of their release from axons after anterograde transport. We observed that the three fibrils were transported in both anterograde and retrograde directions but with strikingly different efficiencies. The amount of Aβ42 fibrils transported was ten times higher than that of the other two fibrils. HTTExon1 was efficiently transported in the retrograde direction but only marginally in the anterograde direction. Finally, using neurons from two distinct mutant mouse strains whose axons are highly resistant to neurodegeneration (Wld(S) and Sarm1(-/-)), we found that the three different fibrils were secreted by axons after anterograde transport, in the absence of axonal lysis, indicating that trans-neuronal spread can occur in intact healthy neurons. In summary, fibrils of α-synuclein, Aβ42 and HTTExon1 are all transported in axons but in directions and amounts that are specific of each fibril. After anterograde transport, the three fibrils were secreted in the medium in the absence of axon lysis. Continuous secretion could play an important role in the spread of pathology between neurons but may be amenable to pharmacological intervention.

  2. The loss of episodic memories in retrograde amnesia: single-case and group studies.

    PubMed

    Kopelman, M D; Kapur, N

    2001-09-29

    Retrograde amnesia in neurological disorders is a perplexing and fascinating research topic. The severity of retrograde amnesia is not well correlated with that of anterograde amnesia, and there can be disproportionate impairments of either. Within retrograde amnesia, there are various dissociations which have been claimed-for example, between the more autobiographical (episodic) and more semantic components of memory. However, the associations of different types of retrograde amnesia are also important, and clarification of these issues is confounded by the fact that retrograde amnesia seems to be particularly vulnerable to psychogenic factors. Large frontal and temporal lobe lesions have been postulated as critical in producing retrograde amnesia. Theories of retrograde amnesia have encompassed storage versus access disruption, physiological processes of 'consolidation', the progressive transformation of episodic memories into a more 'semantic' form, and multiple-trace theory. Single-case investigations, group studies and various forms of neuroimaging can all contribute to the resolution of these controversies.

  3. The Brain–to–Pancreatic Islet Neuronal Map Reveals Differential Glucose Regulation From Distinct Hypothalamic Regions

    PubMed Central

    Rosario, Wilfredo; Singh, Inderroop; Wautlet, Arnaud; Patterson, Christa; Flak, Jonathan; Becker, Thomas C.; Ali, Almas; Tamarina, Natalia; Philipson, Louis H.; Enquist, Lynn W.; Myers, Martin G.

    2016-01-01

    The brain influences glucose homeostasis, partly by supplemental control over insulin and glucagon secretion. Without this central regulation, diabetes and its complications can ensue. Yet, the neuronal network linking to pancreatic islets has never been fully mapped. Here, we refine this map using pseudorabies virus (PRV) retrograde tracing, indicating that the pancreatic islets are innervated by efferent circuits that emanate from the hypothalamus. We found that the hypothalamic arcuate nucleus (ARC), ventromedial nucleus (VMN), and lateral hypothalamic area (LHA) significantly overlap PRV and the physiological glucose-sensing enzyme glucokinase. Then, experimentally lowering glucose sensing, specifically in the ARC, resulted in glucose intolerance due to deficient insulin secretion and no significant effect in the VMN, but in the LHA it resulted in a lowering of the glucose threshold that improved glucose tolerance and/or improved insulin sensitivity, with an exaggerated counter-regulatory response for glucagon secretion. No significant effect on insulin sensitivity or metabolic homeostasis was noted. Thus, these data reveal novel direct neuronal effects on pancreatic islets and also render a functional validation of the brain-to-islet neuronal map. They also demonstrate that distinct regions of the hypothalamus differentially control insulin and glucagon secretion, potentially in partnership to help maintain glucose homeostasis and guard against hypoglycemia. PMID:27207534

  4. The Brain-to-Pancreatic Islet Neuronal Map Reveals Differential Glucose Regulation From Distinct Hypothalamic Regions.

    PubMed

    Rosario, Wilfredo; Singh, Inderroop; Wautlet, Arnaud; Patterson, Christa; Flak, Jonathan; Becker, Thomas C; Ali, Almas; Tamarina, Natalia; Philipson, Louis H; Enquist, Lynn W; Myers, Martin G; Rhodes, Christopher J

    2016-09-01

    The brain influences glucose homeostasis, partly by supplemental control over insulin and glucagon secretion. Without this central regulation, diabetes and its complications can ensue. Yet, the neuronal network linking to pancreatic islets has never been fully mapped. Here, we refine this map using pseudorabies virus (PRV) retrograde tracing, indicating that the pancreatic islets are innervated by efferent circuits that emanate from the hypothalamus. We found that the hypothalamic arcuate nucleus (ARC), ventromedial nucleus (VMN), and lateral hypothalamic area (LHA) significantly overlap PRV and the physiological glucose-sensing enzyme glucokinase. Then, experimentally lowering glucose sensing, specifically in the ARC, resulted in glucose intolerance due to deficient insulin secretion and no significant effect in the VMN, but in the LHA it resulted in a lowering of the glucose threshold that improved glucose tolerance and/or improved insulin sensitivity, with an exaggerated counter-regulatory response for glucagon secretion. No significant effect on insulin sensitivity or metabolic homeostasis was noted. Thus, these data reveal novel direct neuronal effects on pancreatic islets and also render a functional validation of the brain-to-islet neuronal map. They also demonstrate that distinct regions of the hypothalamus differentially control insulin and glucagon secretion, potentially in partnership to help maintain glucose homeostasis and guard against hypoglycemia. © 2016 by the American Diabetes Association.

  5. Cellular Localization of Aquaporin-1 in the Human and Mouse Trigeminal Systems

    PubMed Central

    Gu, Minxia; Marshall, Charles; Ding, Jiong; Hu, Gang; Xiao, Ming

    2012-01-01

    Previous studies reported that a subpopulation of mouse and rat trigeminal neurons express water channel aquaporin-1 (AQP1). In this study we make a comparative investigation of AQP1 localization in the human and mouse trigeminal systems. Immunohistochemistry and immunofluorescence results showed that AQP1 was localized to the cytoplasm and cell membrane of some medium and small-sized trigeminal neurons. Additionally, AQP1 was found in numerous peripheral trigeminal axons of humans and mice. In the central trigeminal root and brain stem, AQP1 was specifically expressed in astrocytes of humans, but was restricted to nerve fibers within the central trigeminal root and spinal trigeminal tract and nucleus in mice. Furthermore, AQP1 positive nerve fibers were present in the mucosal and submucosal layers of human and mouse oral tissues, but not in the muscular and subcutaneous layers. Fluorogold retrograde tracing demonstrated that AQP1 positive trigeminal neurons innervate the mucosa but not skin of cheek. These results reveal there are similarities and differences in the cellular localization of AQP1 between the human and mouse trigeminal systems. Selective expression of AQP1 in the trigeminal neurons innervating the oral mucosa indicates an involvement of AQP1 in oral sensory transduction. PMID:23029502

  6. Axonal transport: cargo-specific mechanisms of motility and regulation.

    PubMed

    Maday, Sandra; Twelvetrees, Alison E; Moughamian, Armen J; Holzbaur, Erika L F

    2014-10-22

    Axonal transport is essential for neuronal function, and many neurodevelopmental and neurodegenerative diseases result from mutations in the axonal transport machinery. Anterograde transport supplies distal axons with newly synthesized proteins and lipids, including synaptic components required to maintain presynaptic activity. Retrograde transport is required to maintain homeostasis by removing aging proteins and organelles from the distal axon for degradation and recycling of components. Retrograde axonal transport also plays a major role in neurotrophic and injury response signaling. This review provides an overview of axonal transport pathways and discusses their role in neuronal function.

  7. Snapin-regulated late endosomal transport is critical for efficient autophagy-lysosomal function in neurons.

    PubMed

    Cai, Qian; Lu, Li; Tian, Jin-Hua; Zhu, Yi-Bing; Qiao, Haifa; Sheng, Zu-Hang

    2010-10-06

    Neuron maintenance and survival require late endocytic transport from distal processes to the soma where lysosomes are predominantly localized. Here, we report a role for Snapin in attaching dynein to late endosomes through its intermediate chain (DIC). snapin(-/-) neurons exhibit aberrant accumulation of immature lysosomes, clustering and impaired retrograde transport of late endosomes along processes, reduced lysosomal proteolysis due to impaired delivery of internalized proteins and hydrolase precursors from late endosomes to lysosomes, and impaired clearance of autolysosomes, combined with reduced neuron viability and neurodegeneration. The phenotypes are rescued by expressing the snapin transgene, but not the DIC-binding-defective Snapin-L99K mutant. Snapin overexpression in wild-type neurons enhances late endocytic transport and lysosomal function, whereas expressing the mutant defective in Snapin-DIC coupling shows a dominant-negative effect. Altogether, our study highlights new mechanistic insights into how Snapin-DIC coordinates retrograde transport and late endosomal-lysosomal trafficking critical for autophagy-lysosomal function, and thus neuronal homeostasis. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Genetics Home Reference: CLN3 disease

    MedlinePlus

    ... role in regulating anterograde and retrograde post-Golgi trafficking. Clin Lipidol. 2012 Feb;7(1):79-91. ... D, Hermey G. Revisiting the neuronal localization and trafficking of CLN3 in juvenile neuronal ceroid lipofuscinosis. J ...

  9. Substance P and acetylcholine are co-localized in the pathway mediating mucociliary activity in Rana pipiens

    PubMed Central

    Hernández, C. J.; Ortíz, T.; Foster, C. Rosa K.; Tyagi, M; Lugo, N.; Albrecht, R.; Chinapen, S.

    2007-01-01

    Mucociliary activity is an important clearance mechanism in the respiratory system of air breathing vertebrates. Substance P (SP) and acetylcholine play a key role in the stimulation of the mucociliary transport in the frog palate. In this study, retrograde neuronal tracing was combined with immunocytochemistry for SP and choline acetyl transferase (ChAT) in the trigeminal ganglion and for neurokinin-1 receptor (NK1R) in the palate of Rana pipiens. The cells of origin of the palatine nerve were identified in the trigeminal ganglion using the retrograde tracer Fluorogold (FG). Optimal labeling of FG cells in the trigeminal ganglion was obtained at 96 h of exposure. Immunoflorescent shows that SP and acetylcholine are co-localized in 92% of the cells labeled with FG in the trigeminal ganglion. NK1 receptors were found in the membrane of epithelial and goblet cells of the palate. Ultrastructural study of the palate showed axonal-like endings with vesicles in connection with epithelial and goblet cells. These results further support the concerted action of both neurotransmitters in the regulation of mucociliary activity in the frog palate. PMID:17276713

  10. A retrograde apoptotic signal originating in NGF-deprived distal axons of rat sympathetic neurons in compartmented cultures.

    PubMed

    Mok, Sue-Ann; Lund, Karen; Campenot, Robert B

    2009-05-01

    Previous investigations of retrograde survival signaling by nerve growth factor (NGF) and other neurotrophins have supported diverse mechanisms, but all proposed mechanisms have in common the generation of survival signals retrogradely transmitted to the neuronal cell bodies. We report the finding of a retrograde apoptotic signal in axons that is suppressed by local NGF signaling. NGF withdrawal from distal axons alone was sufficient to activate the pro-apoptotic transcription factor, c-jun, in the cell bodies. Providing NGF directly to cell bodies, thereby restoring a source of NGF-induced survival signals, could not prevent c-jun activation caused by NGF withdrawal from the distal axons. This is evidence that c-jun is not activated due to loss of survival signals at the cell bodies. Moreover, blocking axonal transport with colchicine inhibited c-jun activation caused by NGF deprivation suggesting that a retrogradely transported pro-apoptotic signal, rather than loss of a retrogradely transported survival signal, caused c-jun activation. Additional experiments showed that activation of c-jun, pro-caspase-3 cleavage, and apoptosis were blocked by the protein kinase C inhibitors, rottlerin and chelerythrine, only when applied to distal axons suggesting that they block the axon-specific pro-apoptotic signal. The rottlerin-sensitive mechanism was found to regulate glycogen synthase kinase 3 (GSK3) activity. The effect of siRNA knockdown, and pharmacological inhibition of GSK3 suggests that GSK3 is required for apoptosis caused by NGF deprivation and may function as a retrograde carrier of the axon apoptotic signal. The existence of a retrograde death signaling system in axons that is suppressed by neurotrophins has broad implications for neurodevelopment and for discovering treatments for neurodegenerative diseases and neurotrauma.

  11. Spatial distribution of intermingling pools of projection neurons with distinct targets: A 3D analysis of the commissural ganglia in Cancer borealis.

    PubMed

    Follmann, Rosangela; Goldsmith, Christopher John; Stein, Wolfgang

    2017-06-01

    Projection neurons play a key role in carrying long-distance information between spatially distant areas of the nervous system and in controlling motor circuits. Little is known about how projection neurons with distinct anatomical targets are organized, and few studies have addressed their spatial organization at the level of individual cells. In the paired commissural ganglia (CoGs) of the stomatogastric nervous system of the crab Cancer borealis, projection neurons convey sensory, motor, and modulatory information to several distinct anatomical regions. While the functions of descending projection neurons (dPNs) which control downstream motor circuits in the stomatogastric ganglion are well characterized, their anatomical distribution as well as that of neurons projecting to the labrum, brain, and thoracic ganglion have received less attention. Using cell membrane staining, we investigated the spatial distribution of CoG projection neurons in relation to all CoG neurons. Retrograde tracing revealed that somata associated with different axonal projection pathways were not completely spatially segregated, but had distinct preferences within the ganglion. Identified dPNs had diameters larger than 70% of CoG somata and were restricted to the most medial and anterior 25% of the ganglion. They were contained within a cluster of motor neurons projecting through the same nerve to innervate the labrum, indicating that soma position was independent of function and target area. Rather, our findings suggest that CoG neurons projecting to a variety of locations follow a generalized rule: for all nerve pathway origins, the soma cluster centroids in closest proximity are those whose axons project down that pathway. © 2017 Wiley Periodicals, Inc.

  12. Impaired retrograde transport of axonal autophagosomes contributes to autophagic stress in Alzheimer’s disease neurons

    PubMed Central

    Tammineni, Prasad; Ye, Xuan; Feng, Tuancheng; Aikal, Daniyal; Cai, Qian

    2017-01-01

    Neurons face unique challenges of transporting nascent autophagic vacuoles (AVs) from distal axons toward the soma, where mature lysosomes are mainly located. Autophagy defects have been linked to Alzheimer’s disease (AD). However, the mechanisms underlying altered autophagy remain unknown. Here, we demonstrate that defective retrograde transport contributes to autophagic stress in AD axons. Amphisomes predominantly accumulate at axonal terminals of mutant hAPP mice and AD patient brains. Amyloid-β (Aβ) oligomers associate with AVs in AD axons and interact with dynein motors. This interaction impairs dynein recruitment to amphisomes through competitive interruption of dynein-Snapin motor-adaptor coupling, thus immobilizing them in distal axons. Consistently, deletion of Snapin in mice causes AD-like axonal autophagic stress, whereas overexpressing Snapin in hAPP neurons reduces autophagic accumulation at presynaptic terminals by enhancing AV retrograde transport. Altogether, our study provides new mechanistic insight into AD-associated autophagic stress, thus establishing a foundation for ameliorating axonal pathology in AD. DOI: http://dx.doi.org/10.7554/eLife.21776.001 PMID:28085665

  13. Aβ1-42 triggers the generation of a retrograde signaling complex from sentinel mRNAs in axons.

    PubMed

    Walker, Chandler A; Randolph, Lisa K; Matute, Carlos; Alberdi, Elena; Baleriola, Jimena; Hengst, Ulrich

    2018-05-14

    Neurons frequently encounter neurodegenerative signals first in their periphery. For example, exposure of axons to oligomeric Aβ 1-42 is sufficient to induce changes in the neuronal cell body that ultimately lead to degeneration. Currently, it is unclear how the information about the neurodegenerative insult is transmitted to the soma. Here, we find that the translation of pre-localized but normally silenced sentinel mRNAs in axons is induced within minutes of Aβ 1-42 addition in a Ca 2+ -dependent manner. This immediate protein synthesis following Aβ 1-42 exposure generates a retrograde signaling complex including vimentin. Inhibition of the immediate protein synthesis, knock-down of axonal vimentin synthesis, or inhibition of dynein-dependent transport to the soma prevented the normal cell body response to Aβ 1-42 These results establish that CNS axons react to neurodegenerative insults via the local translation of sentinel mRNAs encoding components of a retrograde signaling complex that transmit the information about the event to the neuronal soma. © 2018 The Authors.

  14. Transsynaptic Tracing from Peripheral Targets with Pseudorabies Virus Followed by Cholera Toxin and Biotinylated Dextran Amines Double Labeling.

    PubMed

    Arriaga, Gustavo; Macopson, Joshua J; Jarvis, Erich D

    2015-09-14

    Transsynaptic tracing has become a powerful tool used to analyze central efferents that regulate peripheral targets through multi-synaptic circuits. This approach has been most extensively used in the brain by utilizing the swine pathogen pseudorabies virus (PRV)(1). PRV does not infect great apes, including humans, so it is most commonly used in studies on small mammals, especially rodents. The pseudorabies strain PRV152 expresses the enhanced green fluorescent protein (eGFP) reporter gene and only crosses functional synapses retrogradely through the hierarchical sequence of synaptic connections away from the infection site(2,3). Other PRV strains have distinct microbiological properties and may be transported in both directions (PRV-Becker and PRV-Kaplan)(4,5). This protocol will deal exclusively with PRV152. By delivering the virus at a peripheral site, such as muscle, it is possible to limit the entry of the virus into the brain through a specific set of neurons. The resulting pattern of eGFP signal throughout the brain then resolves the neurons that are connected to the initially infected cells. As the distributed nature of transsynaptic tracing with pseudorabies virus makes interpreting specific connections within an identified network difficult, we present a sensitive and reliable method employing biotinylated dextran amines (BDA) and cholera toxin subunit b (CTb) for confirming the connections between cells identified using PRV152. Immunochemical detection of BDA and CTb with peroxidase and DAB (3, 3'-diaminobenzidine) was chosen because they are effective at revealing cellular processes including distal dendrites(6-11).

  15. Growth Cone Localization of the mRNA Encoding the Chromatin Regulator HMGN5 Modulates Neurite Outgrowth

    PubMed Central

    Moretti, Francesca; Rolando, Chiara; Winker, Moritz; Ivanek, Robert; Rodriguez, Javier; Von Kriegsheim, Alex; Taylor, Verdon; Bustin, Michael

    2015-01-01

    Neurons exploit local mRNA translation and retrograde transport of transcription factors to regulate gene expression in response to signaling events at distal neuronal ends. Whether epigenetic factors could also be involved in such regulation is not known. We report that the mRNA encoding the high-mobility group N5 (HMGN5) chromatin binding protein localizes to growth cones of both neuron-like cells and of hippocampal neurons, where it has the potential to be translated, and that HMGN5 can be retrogradely transported into the nucleus along neurites. Loss of HMGN5 function induces transcriptional changes and impairs neurite outgrowth, while HMGN5 overexpression induces neurite outgrowth and chromatin decompaction; these effects are dependent on growth cone localization of Hmgn5 mRNA. We suggest that the localization and local translation of transcripts coding for epigenetic factors couple the dynamic neuronal outgrowth process with chromatin regulation in the nucleus. PMID:25825524

  16. Retrogradely Transported TrkA Endosomes Signal Locally within Dendrites to Maintain Sympathetic Neuron Synapses.

    PubMed

    Lehigh, Kathryn M; West, Katherine M; Ginty, David D

    2017-04-04

    Sympathetic neurons require NGF from their target fields for survival, axonal target innervation, dendritic growth and formation, and maintenance of synaptic inputs from preganglionic neurons. Target-derived NGF signals are propagated retrogradely, from distal axons to somata of sympathetic neurons via TrkA signaling endosomes. We report that a subset of TrkA endosomes that are transported from distal axons to cell bodies translocate into dendrites, where they are signaling competent and move bidirectionally, in close proximity to synaptic protein clusters. Using a strategy for spatially confined inhibition of TrkA kinase activity, we found that distal-axon-derived TrkA signaling endosomes are necessary within sympathetic neuron dendrites for maintenance of synapses. Thus, TrkA signaling endosomes have unique functions in different cellular compartments. Moreover, target-derived NGF mediates circuit formation and synapse maintenance through TrkA endosome signaling within dendrites to promote aggregation of postsynaptic protein complexes. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Structure and function of the amygdaloid NPY system: NPY Y2 receptors regulate excitatory and inhibitory synaptic transmission in the centromedial amygdala.

    PubMed

    Wood, J; Verma, D; Lach, G; Bonaventure, P; Herzog, H; Sperk, G; Tasan, R O

    2016-09-01

    The amygdala is essential for generating emotional-affective behaviors. It consists of several nuclei with highly selective, elaborate functions. In particular, the central extended amygdala, consisting of the central amygdala (CEA) and the bed nucleus of the stria terminalis (BNST) is an essential component actively controlling efferent connections to downstream effectors like hypothalamus and brain stem. Both, CEA and BNST contain high amounts of different neuropeptides that significantly contribute to synaptic transmission. Among these, neuropeptide Y (NPY) has emerged as an important anxiolytic and fear-reducing neuromodulator. Here, we characterized the expression, connectivity and electrophysiological function of NPY and Y2 receptors within the CEA. We identified several NPY-expressing neuronal populations, including somatostatin- and calretinin-expressing neurons. Furthermore, in the main intercalated nucleus, NPY is expressed primarily in dopamine D1 receptor-expressing neurons but also in interspersed somatostatin-expressing neurons. Interestingly, NPY neurons did not co-localize with the Y2 receptor. Retrograde tract tracing experiments revealed that NPY neurons reciprocally connect the CEA and BNST. Functionally, the Y2 receptor agonist PYY3-36, reduced both, inhibitory as well as excitatory synaptic transmission in the centromedial amygdala (CEm). However, we also provide evidence that lack of NPY or Y2 receptors results in increased GABA release specifically at inhibitory synapses in the CEm. Taken together, our findings suggest that NPY expressed by distinct populations of neurons can modulate afferent and efferent projections of the CEA via presynaptic Y2 receptors located at inhibitory and excitatory synapses.

  18. Species-specific diversity in the anatomical and physiological organisation of the BNST-VTA pathway.

    PubMed

    Kaufling, Jennifer; Girard, Delphine; Maitre, Marlène; Leste-Lasserre, Thierry; Georges, François

    2017-05-01

    The anteromedial part of the bed nucleus of the stria terminalis (amBNST) is a limbic structure innervating the ventral tegmental area (VTA) that is remarkably constant across species. The amBNST modulates fear and anxiety, and activation of VTA dopamine (DA) neurons by amBNST afferents seems to be the way by which stress controls motivational states associated with reward or aversion. Because fear learning and anxiety states can be expressed differently between rats and mice, we compared the functional connectivity between amBNST and the VTA-DA neurons in both species using consistent methodological approaches. Using a combination of in vivo electrophysiological, neuroanatomical tracing and laser capture approaches we explored the BNST influences on VTA-DA neuron activity. First, we characterised in rats the molecular phenotype of the amBNST neurons projecting to the VTA. We found that this projection is complex, including both GABAergic and glutamatergic neurons. Then, VTA injections of a conventional retrograde tracer, the β-sub-unit of the cholera toxin (CTB), revealed a stronger BNST-VTA projection in mice than in rats. Finally, electrical stimulations of the BNST during VTA-DA neuron recording demonstrated a more potent excitatory influence of the amBNST on VTA-DA neuron activity in rats than in mice. These data illustrate anatomically, but also functionally, a significant difference between rats and mice in the amBNST-VTA pathway. More generally, together with previous findings, our research highlights the importance of species differences for the interpretation and the generalisation of research data. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Morphology and kainate-receptor immunoreactivity of identified neurons within the entorhinal cortex projecting to superior temporal sulcus in the cynomolgus monkey

    NASA Technical Reports Server (NTRS)

    Good, P. F.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    Projections of the entorhinal cortex to the hippocampus are well known from the classical studies of Cajal (Ramon y Cajal, 1904) and Lorente de No (1933). Projections from the entorhinal cortex to neocortical areas are less well understood. Such connectivity is likely to underlie the consolidation of long-term declarative memory in neocortical sites. In the present study, a projection arising in layer V of the entorhinal cortex and terminating in a polymodal association area of the superior temporal gyrus has been identified with the use of retrograde tracing. The dendritic arbors of neurons giving rise to this projection were further investigated by cell filling and confocal microscopy with computer reconstruction. This analysis demonstrated that the dendritic arbor of identified projection neurons was largely confined to layer V, with the exception of a solitary, simple apical dendrite occasionally ascending to superficial laminae but often confined to the lamina dissecans (layer IV). Finally, immunoreactivity for glutamate-receptor subunit proteins GluR 5/6/7 of the dendritic arbor of identified entorhinal projection neurons was examined. The solitary apical dendrite of identified entorhinal projection neurons was prominently immunolabeled for GluR 5/6/7, as was the dendritic arbor of basilar dendrites of these neurons. The restriction of the large bulk of the dendritic arbor of identified entorhinal projection neurons to layer V implies that these neurons are likely to be heavily influenced by hippocampal output arriving in the deep layers of the entorhinal cortex. Immunoreactivity for GluR 5/6/7 throughout the dendritic arbor of such neurons indicates that this class of glutamate receptor is in a position to play a prominent role in mediating excitatory neurotransmission within hippocampal-entorhinal circuits.

  20. Characterization of Glutamatergic Neurons in the Rat Atrial Intrinsic Cardiac Ganglia that Project to the Cardiac Ventricular Wall

    PubMed Central

    Wang, Ting; Miller, Kenneth E.

    2016-01-01

    The intrinsic cardiac nervous system modulates cardiac function by acting as an integration site for regulating autonomic efferent cardiac output. This intrinsic system is proposed to be composed of a short cardio-cardiac feedback control loop within the cardiac innervation hierarchy. For example, electrophysiological studies have postulated the presence of sensory neurons in intrinsic cardiac ganglia for regional cardiac control. There is still a knowledge gap, however, about the anatomical location and neurochemical phenotype of sensory neurons inside intrinsic cardiac ganglia. In the present study, rat intrinsic cardiac ganglia neurons were characterized neurochemically with immunohistochemistry using glutamatergic markers: vesicular glutamate transporters 1 and 2 (VGLUT1; VGLUT2), and glutaminase (GLS), the enzyme essential for glutamate production. Glutamatergic neurons (VGLUT1/VGLUT2/GLS) in the ICG that have axons to the ventricles were identified by retrograde tracing of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injected in the ventricular wall. Co-labeling of VGLUT1, VGLUT2, and GLS with the vesicular acetylcholine transporter (VAChT) was used to evaluate the relationship between post-ganglionic autonomic neurons and glutamatergic neurons. Sequential labeling of VGLUT1 and VGLUT2 in adjacent tissue sections was used to evaluate the co-localization of VGLUT1 and VGLUT2 in ICG neurons. Our studies yielded the following results: (1) intrinsic cardiac ganglia contain glutamatergic neurons with GLS for glutamate production and VGLUT1 and 2 for transport of glutamate into synaptic vesicles; (2) atrial intrinsic cardiac ganglia contain neurons that project to ventricle walls and these neurons are glutamatergic; (3) many glutamatergic ICG neurons also were cholinergic, expressing VAChT. (4) VGLUT1 and VGLUT2 co-localization occurred in ICG neurons with variation of their protein expression level. Investigation of both glutamatergic and cholinergic ICG neurons could help in better understanding the function of the intrinsic cardiac nervous system. PMID:27167082

  1. Characterization of glutamatergic neurons in the rat atrial intrinsic cardiac ganglia that project to the cardiac ventricular wall.

    PubMed

    Wang, Ting; Miller, Kenneth E

    2016-08-04

    The intrinsic cardiac nervous system modulates cardiac function by acting as an integration site for regulating autonomic efferent cardiac output. This intrinsic system is proposed to be composed of a short cardio-cardiac feedback control loop within the cardiac innervation hierarchy. For example, electrophysiological studies have postulated the presence of sensory neurons in intrinsic cardiac ganglia (ICG) for regional cardiac control. There is still a knowledge gap, however, about the anatomical location and neurochemical phenotype of sensory neurons inside ICG. In the present study, rat ICG neurons were characterized neurochemically with immunohistochemistry using glutamatergic markers: vesicular glutamate transporters 1 and 2 (VGLUT1; VGLUT2), and glutaminase (GLS), the enzyme essential for glutamate production. Glutamatergic neurons (VGLUT1/VGLUT2/GLS) in the ICG that have axons to the ventricles were identified by retrograde tracing of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injected in the ventricular wall. Co-labeling of VGLUT1, VGLUT2, and GLS with the vesicular acetylcholine transporter (VAChT) was used to evaluate the relationship between post-ganglionic autonomic neurons and glutamatergic neurons. Sequential labeling of VGLUT1 and VGLUT2 in adjacent tissue sections was used to evaluate the co-localization of VGLUT1 and VGLUT2 in ICG neurons. Our studies yielded the following results: (1) ICG contain glutamatergic neurons with GLS for glutamate production and VGLUT1 and 2 for transport of glutamate into synaptic vesicles; (2) atrial ICG contain neurons that project to ventricle walls and these neurons are glutamatergic; (3) many glutamatergic ICG neurons also were cholinergic, expressing VAChT; (4) VGLUT1 and VGLUT2 co-localization occurred in ICG neurons with variation of their protein expression level. Investigation of both glutamatergic and cholinergic ICG neurons could help in better understanding the function of the intrinsic cardiac nervous system. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Specific Retrograde Transduction of Spinal Motor Neurons Using Lentiviral Vectors Targeted to Presynaptic NMJ Receptors

    PubMed Central

    Eleftheriadou, I; Trabalza, A; Ellison, SM; Gharun, K; Mazarakis, ND

    2014-01-01

    To understand how receptors are involved in neuronal trafficking and to be able to utilize them for specific targeting via the peripheral route would be of great benefit. Here, we describe the generation of novel lentiviral vectors with tropism to motor neurons that were made by coexpressing onto the lentiviral surface a fusogenic glycoprotein (mutated sindbis G) and an antibody against a cell-surface receptor (Thy1.1, p75NTR, or coxsackievirus and adenovirus receptor) on the presynaptic terminal of the neuromuscular junction. These vectors exhibit binding specificity and efficient transduction of receptor positive cell lines and primary motor neurons in vitro. Targeting of each of these receptors conferred to these vectors the capability of being transported retrogradely from the axonal tip, leading to transduction of motor neurons in vitro in compartmented microfluidic cultures. In vivo delivery of coxsackievirus and adenovirus receptor-targeted vectors in leg muscles of mice resulted in predicted patterns of motor neuron labeling in lumbar spinal cord. This opens up the clinical potential of these vectors for minimally invasive administration of central nervous system-targeted therapeutics in motor neuron diseases. PMID:24670531

  3. Accurate counting of neurons in frozen sections: some necessary precautions.

    PubMed Central

    Cooper, J D; Payne, J N; Horobin, R W

    1988-01-01

    In 30 microns frozen sections of rat midbrain the retrograde axonal transport of diamidino yellow, a fluorescent tracer, was used to demonstrate a population of neurons in the substantia nigra. However, when visualisation was carried out using the routine Nissl method a significant proportion of neurons failed to stain. As the presence of the retrograde tracer did not affect Nissl staining of such cells, such incomplete staining, with consequent underestimation of neuronal populations, is probably a common error in similar material. Further investigation revealed that the proportion of such unstained neurons was greater when the staining time was short, when stain concentration was low, or when section thickness was increased. Some stains were worse in this respect than others. Cresyl fast violet resulted in the highest proportion of unstained neurons, thionin resulted in the lowest proportion. It was concluded that the rate of diffusion of the stain into the section was the main factor limiting the staining of neurons present. Staining with pure thionin at 0.1% concentration for at least 3 minutes and with sections no thicker than 30 microns is one regime which would avoid this problem. Images Fig. 1 PMID:2461923

  4. Area postrema projects to FoxP2 neurons of the pre-locus coeruleus and parabrachial nuclei: brainstem sites implicated in sodium appetite regulation.

    PubMed

    Stein, Matthew K; Loewy, Arthur D

    2010-11-04

    The area postrema (AP) is a circumventricular organ located in the dorsal midline of the medulla. It functions as a chemosensor for blood-borne peptides and solutes, and converts this information into neural signals that are transmitted to the nucleus tractus solitarius (NTS) and parabrachial nucleus (PB). One of its NTS targets in the rat is the aldosterone-sensitive neurons which contain the enzyme 11 β-hydroxysteroid dehydrogenase type 2 (HSD2). The HSD2 neurons are part of a central network involved in sodium appetite regulation, and they innervate numerous brain sites including the pre-locus coeruleus (pre-LC) and PB external lateral-inner (PBel-inner) cell groups of the dorsolateral pons. Both pontine cell groups express the transcription factor FoxP2 and become c-Fos activated following sodium depletion. Because the AP is a component in this network, we wanted to determine whether it also projects to the same sites as the HSD2 neurons. By using a combination of anterograde axonal and retrograde cell body tract-tracing techniques in individual rats, we show that the AP projects to FoxP2 immunoreactive neurons in the pre-LC and PBel-inner. Thus, the AP sends a direct projection to both the first-order medullary (HSD2 neurons of the NTS) and the second-order dorsolateral pontine neurons (pre-LC and PB-el inner neurons). All three sites transmit information related to systemic sodium depletion to forebrain sites and are part of the central neural circuitry that regulates the complex behavior of sodium appetite. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. DiOlistic Labeling of Neurons in Tissue Slices: A Qualitative and Quantitative Analysis of Methodological Variations.

    PubMed

    Staffend, Nancy A; Meisel, Robert L

    2011-01-01

    Fine neuronal morphology, such as dendritic spines, classically has been studied using the Golgi technique; however, Golgi staining is difficult to combine with other histological techniques. With the increasing popularity of fluorescent imaging, a number of fluorescent dyes have been developed that enable the coupling of multiple fluorescent labels in a single preparation. These fluorescent dyes include the lipophilic dialkylcarbocyanine, DiI; traditionally used for anterograde and retrograde neuronal tracing. More recently, DiI labeling has been used in combination with the Gene Gun for "DiOlistic" labeling of neurons in slice preparations. DiI sequesters itself within and diffuses laterally along the neuronal membrane, however once the cell is permeabilized, the DiI begins to leak from the cell membrane. A DiI derivative, Cell Tracker™ CM-DiI, increases dye stability and labeling half-life in permeabilized tissue, however at much greater expense. Here, the DiI and CM-DiI DiOlistic labeling techniques were tested in side-by-side experiments evaluating dye stability within dendritic architecture in medium spiny neurons of the dorsal stratum in both non-permeabilized and permeabilized tissue sections. In tissue sections that were not permeabilized, spine density in DiI labeled sections was higher than in CM-DiI labeling. In contrast, tissue sections that were permeabilized had higher spine densities in CM-DiI labeled neurons. These results suggest that for experiments involving non-permeabilized tissue, traditional DiI will suffice, however for experiments involving permeabilized tissue CM-DiI provides more consistent data. These experiments provide the first quantitative analyses of the impact of methodological permutations on neuronal labeling with DiI.

  6. Botulinum toxin type A induces changes in the chemical coding of substance P-immunoreactive dorsal root ganglia sensory neurons supplying the porcine urinary bladder.

    PubMed

    Bossowska, Agnieszka; Lepiarczyk, Ewa; Mazur, Urszula; Janikiewicz, Paweł; Markiewicz, Włodzimierz

    2015-11-16

    Botulinum toxin (BTX) is a potent neurotoxin which blocks acetylcholine release from nerve terminals, and therefore leads to cessation of somatic motor and/or parasympathetic transmission. Recently it has been found that BTX also interferes with sensory transmission, thus, the present study was aimed at investigating the neurochemical characterization of substance P-immunoreactive (SP-IR) bladder-projecting sensory neurons (BPSN) after the toxin treatment. Investigated neurons were visualized with retrograde tracing method and their chemical profile was disclosed with double-labelling immunohistochemistry using antibodies against SP, calcitonin gene-related peptide (CGRP), pituitary adenylate cyclase activating polypeptide (PACAP), neuronal nitric oxide synthase (nNOS), galanin (GAL), calbindin (CB), and somatostatin (SOM). In the control group (n = 6), 45% of the total population of BPSN were SP-IR. Nearly half of these neurons co-expressed PACAP or CGRP (45% and 35%, respectively), while co-localization of SP with GAL, nNOS, SOM or CB was found less frequently (3.7%, 1.8%, 1.2%, and 0.7%, respectively). In BTX-treated pigs (n = 6), toxin-injections caused a decrease in the number of SP-IR cells containing CGRP, SOM or CB (16.2%, 0.5%, and 0%, respectively) and a distinct increase in these nerve cells immunopositive to GAL (27.2%). The present study demonstrates that BTX significantly modifies the chemical phenotypes of SP-IR BPSN.

  7. Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior

    PubMed Central

    McCall, Jordan G; Siuda, Edward R; Bhatti, Dionnet L; Lawson, Lamley A; McElligott, Zoe A; Stuber, Garret D; Bruchas, Michael R

    2017-01-01

    Increased tonic activity of locus coeruleus noradrenergic (LC-NE) neurons induces anxiety-like and aversive behavior. While some information is known about the afferent circuitry that endogenously drives this neural activity and behavior, the downstream receptors and anatomical projections that mediate these acute risk aversive behavioral states via the LC-NE system remain unresolved. Here we use a combination of retrograde tracing, fast-scan cyclic voltammetry, electrophysiology, and in vivo optogenetics with localized pharmacology to identify neural substrates downstream of increased tonic LC-NE activity in mice. We demonstrate that photostimulation of LC-NE fibers in the BLA evokes norepinephrine release in the basolateral amygdala (BLA), alters BLA neuronal activity, conditions aversion, and increases anxiety-like behavior. Additionally, we report that β-adrenergic receptors mediate the anxiety-like phenotype of increased NE release in the BLA. These studies begin to illustrate how the complex efferent system of the LC-NE system selectively mediates behavior through distinct receptor and projection-selective mechanisms. DOI: http://dx.doi.org/10.7554/eLife.18247.001 PMID:28708061

  8. Targeted retrograde transfection of adenovirus vector carrying brain-derived neurotrophic factor gene prevents loss of mouse (twy/twy) anterior horn neurons in vivo sustaining mechanical compression.

    PubMed

    Xu, Kan; Uchida, Kenzo; Nakajima, Hideaki; Kobayashi, Shigeru; Baba, Hisatoshi

    2006-08-01

    Immunohistochemical analysis after adenovirus (AdV)-mediated BDNF gene transfer in and around the area of mechanical compression in the cervical spinal cord of the hyperostotic mouse (twy/twy). To investigate the neuroprotective effect of targeted AdV-BDNF gene transfection in the twy mouse with spontaneous chronic compression of the spinal cord motoneurons. Several studies reported the neuroprotective effects of neurotrophins on injured spinal cord. However, no report has described the effect of targeted retrograde neurotrophic gene delivery on motoneuron survival in chronic compression lesions of the cervical spinal cord resembling lesions of myelopathy. LacZ marker gene using adenoviral vector (AdV-LacZ) was used to evaluate retrograde delivery from the sternomastoid muscle in adult twy mice (16-week-old) and (control). Four weeks after the AdV-LacZ or AdV-BDNF injection, the compressed cervical spinal cord was removed en bloc for immunohistologic investigation of b-galactosidase activity and immunoreactivity and immunoblot analyses of BDNF. The number of anterior horn neurons was counted using Nissl, ChAT and AChE staining. Spinal accessory motoneurons between C1 and C3 segments were successfully transfected by AdV-LacZ in both twy and ICR mice after targeted intramuscular injection. Immunoreactivity to BDNF was significantly stronger in AdV-BDNF-gene transfected twy mice than in AdV-LacZ-gene transfected mice. At the cord level showing the maximum compression in AdV-BDNF-transfected twy mice, the number of anterior horn neurons was sinificantly higher in the topographic neuronal cell counting of Nissl-, ChAT-, and AChE-stained samples than in AdV-LacZ-injected twy mice. Targeted AdV-BDNF-gene delivery significantly increased Nissl-stained anterior horn neurons and enhanced cholinergic enzyme activities in the twy. Our results suggest that targeted retrograde AdV-BDNF-gene in vivo delivery may enhance neuronal survival even under chronic mechanical compression.

  9. Identification of preoptic sleep neurons using retrograde labelling and gene profiling.

    PubMed

    Chung, Shinjae; Weber, Franz; Zhong, Peng; Tan, Chan Lek; Nguyen, Thuc Nghi; Beier, Kevin T; Hörmann, Nikolai; Chang, Wei-Cheng; Zhang, Zhe; Do, Johnny Phong; Yao, Shenqin; Krashes, Michael J; Tasic, Bosiljka; Cetin, Ali; Zeng, Hongkui; Knight, Zachary A; Luo, Liqun; Dan, Yang

    2017-05-25

    In humans and other mammalian species, lesions in the preoptic area of the hypothalamus cause profound sleep impairment, indicating a crucial role of the preoptic area in sleep generation. However, the underlying circuit mechanism remains poorly understood. Electrophysiological recordings and c-Fos immunohistochemistry have shown the existence of sleep-active neurons in the preoptic area, especially in the ventrolateral preoptic area and median preoptic nucleus. Pharmacogenetic activation of c-Fos-labelled sleep-active neurons has been shown to induce sleep. However, the sleep-active neurons are spatially intermingled with wake-active neurons, making it difficult to target the sleep neurons specifically for circuit analysis. Here we identify a population of preoptic area sleep neurons on the basis of their projection target and discover their molecular markers. Using a lentivirus expressing channelrhodopsin-2 or a light-activated chloride channel for retrograde labelling, bidirectional optogenetic manipulation, and optrode recording, we show that the preoptic area GABAergic neurons projecting to the tuberomammillary nucleus are both sleep active and sleep promoting. Furthermore, translating ribosome affinity purification and single-cell RNA sequencing identify candidate markers for these neurons, and optogenetic and pharmacogenetic manipulations demonstrate that several peptide markers (cholecystokinin, corticotropin-releasing hormone, and tachykinin 1) label sleep-promoting neurons. Together, these findings provide easy genetic access to sleep-promoting preoptic area neurons and a valuable entry point for dissecting the sleep control circuit.

  10. Characteristics of mucosally projecting myenteric neurones in the guinea-pig proximal colon

    PubMed Central

    Neunlist, Michel; Dobreva, Gisela; Schemann, Michael

    1999-01-01

    Using retrograde tracing with 1,1′-didodecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI) in combination with electrophysiological and immunohistochemical techniques we determined the properties of the putative intrinsic primary afferent myenteric neurones with mucosal projections in the guinea-pig proximal colon. Eighty-four out of eighty-five DiI-labelled myenteric neurones were AH neurones with a late after-hyperpolarization. Thirty-three per cent of them exhibited atropine- and tetrodotoxin-resistant spontaneously occurring hyperpolarizing potentials (SHPs) during which the membrane resistance and excitability decreased. DiI-labelled AH neurones had multipolar Dogiel type II morphology, primarily of the dendritic type. Sixty-one per cent of the neurones were immunoreactive for choline acetyltransferase (ChAT) and calbindin (Calb) and 23% were ChAT positive but Calb negative. DiI-labelled neurones did not receive fast excitatory postsynaptic potentials but 94% (34/36) received slow excitatory postsynaptic potentials (sEPSPs). The neurokinin-3 (NK-3) agonist (MePhe7)-NKB but not the NK-1 agonist [(SAR9,Met(O2)11]-SP mimicked this response. The NK-3 receptor antagonist SR 142801 (1 μm) significantly decreased the amplitude and duration of the sEPSPs; the NK-1 receptor antagonist CP-99,994 (1 μm) was ineffective. Atropine (0.5 μm) increased the duration but not the amplitude of the sEPSPs. Microejection of 100 mM sodium butyrate onto the neurones induced in 90% of the DiI-labelled neurones a transient depolarization associated with an increased excitability. In neurones with SHPs sodium butyrate evoked, additionally, a late onset hyperpolarization. Perfusion of 0.1-10 mM sodium butyrate induced a dose-dependent increase in neuronal excitability. Sodium butyrate was ineffective when applied directly onto the mucosa. Mucosally projecting myenteric neurones of the colon are multipolar AH neurones with NK-3-mediated slow EPSPs and somal butyrate sensitivity. PMID:10332100

  11. Role played by periaqueductal gray neurons in parasympathetically mediated fear bradycardia in conscious rats.

    PubMed

    Koba, Satoshi; Inoue, Ryo; Watanabe, Tatsuo

    2016-06-01

    Freezing, a characteristic pattern of defensive behavior elicited by fear, is associated with a decrease in the heart rate. Central mechanisms underlying fear bradycardia are poorly understood. The periaqueductal gray (PAG) in the midbrain is known to contribute to autonomic cardiovascular adjustments associated with various emotional behaviors observed during active or passive defense reactions. The purpose of this study was to elucidate the role played by PAG neurons in eliciting fear bradycardia. White noise sound (WNS) exposure at 90 dB induced freezing behavior and elicited bradycardia in conscious rats. The WNS exposure-elicited bradycardia was mediated parasympathetically because intravenous administration of atropine abolished the bradycardia (P < 0.05). Moreover, WNS exposure-elicited bradycardia was mediated by neuronal activation of the lateral/ventrolateral PAG (l/vlPAG) because bilateral microinjection of muscimol, a GABAA agonist, into the l/vlPAG significantly suppressed the bradycardia. It is noted that muscimol microinjected bilaterally into the dorsolateral PAG had no effect on WNS exposure-elicited bradycardia. Furthermore, retrograde neuronal tracing experiments combined with immunohistochemistry demonstrated that a number of l/vlPAG neurons that send direct projections to the nucleus ambiguus (NA) in the medulla, a major origin of parasympathetic preganglionic neurons to the heart, were activated by WNS exposure. Based on these findings, we propose that the l/vlPAG-NA monosynaptic pathway transmits fear-driven central signals, which elicit bradycardia through parasympathetic outflow. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  12. Retrograde Amnesia for Episodic and Semantic Memories in Amnestic Mild Cognitive Impairment.

    PubMed

    De Simone, Maria Stefania; Fadda, Lucia; Perri, Roberta; De Tollis, Massimo; Aloisi, Marta; Caltagirone, Carlo; Carlesimo, Giovanni Augusto

    2017-01-01

    Retrograde amnesia (RA), which includes loss of memory for past personal events (autobiographical RA) and for acquired knowledge (semantic RA), has been largely documented in patients with amnestic mild cognitive impairment (aMCI). However, previous studies have produced controversial results particularly concerning the temporal extent of memory impairment. Here we investigated whether, with the onset of hippocampal pathology, age of memory acquisition and retrieval frequency play different roles in modulating the progressive loss of semantic and episodic contents of retrograde memory respectively. For this purpose, aMCI patients and healthy controls were tested for the ability to recall semantic and autobiographical information related to famous public events as a function of both age of acquisition and retrieval frequency. In aMCI patients, we found that the impairment in recollecting past personal incidents was modulated by the combined action of memory age and retrieval frequency, because older and more frequently retrieved episodes are less susceptible to loss than more recent and less frequently retrieved ones. On the other side, we found that the loss of semantic information depended only on memory age, because the remoteness of the trace allows for better preservation of the memory. Our results provide evidence that the loss of the two components of retrograde memory is regulated by different mechanisms. This supports the view that diverse neural mechanisms are involved in episodic and semantic memory trace storage and retrieval, as postulated by the Multiple Trace Theory.

  13. Pituitary adenylate cyclase-activating polypeptide stimulates glucose production via the hepatic sympathetic innervation in rats.

    PubMed

    Yi, Chun-Xia; Sun, Ning; Ackermans, Mariette T; Alkemade, Anneke; Foppen, Ewout; Shi, Jing; Serlie, Mireille J; Buijs, Ruud M; Fliers, Eric; Kalsbeek, Andries

    2010-07-01

    The unraveling of the elaborate brain networks that control glucose metabolism presents one of the current challenges in diabetes research. Within the central nervous system, the hypothalamus is regarded as the key brain area to regulate energy homeostasis. The aim of the present study was to investigate the hypothalamic mechanism involved in the hyperglycemic effects of the neuropeptide pituitary adenylyl cyclase-activating polypeptide (PACAP). Endogenous glucose production (EGP) was determined during intracerebroventricular infusions of PACAP-38, vasoactive intestinal peptide (VIP), or their receptor agonists. The specificity of their receptors was examined by coinfusions of receptor antagonists. The possible neuronal pathway involved was investigated by 1) local injections in hypothalamic nuclei, 2) retrograde neuronal tracing from the thoracic spinal cord to hypothalamic preautonomic neurons together with Fos immunoreactivity, and 3) specific hepatic sympathetic or parasympathetic denervation to block the autonomic neuronal input to liver. Intracerebroventricular infusion of PACAP-38 increased EGP to a similar extent as a VIP/PACAP-2 (VPAC2) receptor agonist, and intracerebroventricular administration of VIP had significantly less influence on EGP. The PACAP-38 induced increase of EGP was significantly suppressed by preinfusion of a VPAC2 but not a PAC1 receptor antagonist, as well as by hepatic sympathetic but not parasympathetic denervation. In the hypothalamus, Fos immunoreactivity induced by PACAP-38 was colocalized within autonomic neurons in paraventricular nuclei projecting to preganglionic sympathetic neurons in the spinal cord. Local infusion of PACAP-38 directly into the PVN induced a significant increase of EGP. This study demonstrates that PACAP-38 signaling via sympathetic preautonomic neurons located in the paraventricular nucleus is an important component in the hypothalamic control of hepatic glucose production.

  14. Axonal ramification of neurons in the nucleus reticularis tegmenti pontis projecting to the paramedian lobule in the rabbit cerebellum.

    PubMed

    Bukowska, Dorota; Mierzejewska-Krzyzowska, Barbara; Zguczyński, Leszek

    2005-01-01

    Projections of the nucleus reticularis tegmenti pontis (NRTP) to the cerebellar paramedian lobule were examined in the rabbit by means of the double fluorescent retrograde tract-tracing method. The rabbit NRTP is composed of a medial, large part comprising zones A (dorsomedial), B (central) and C (lateral), and of a lateral, small part (the processus tegmentosus lateralis; PTL). Following unilateral injections of Fast Blue (FB) into the rostral part of the paramedian lobule (rPML) and of Diamidino Yellow (DY) into the caudal part (cPML), known to receive spinal inputs from forelimb and hindlimb, respectively, substantial numbers of single labeled neurons were found in all bilateral NRTP divisions, apart from the zone C. Most projection neurons to the PML were located in the medial and medioventral regions of the zone B. Smaller numbers of projection neurons were located in the PTL, zone A and outside the zone B among fibers of the medial lemniscus. The pattern of FB and DY labeling suggested that neurons projecting to the rPML and cPML originated in common rather than separate regions within the NRTP. In addition, a small percentage (mean 1.3%) of double FB+DY labeled neurons were detected with a clear contralateral preponderance, among single labeled FB or DY cells. In spite of the rarity, all the NRTP neurons giving rise to intralobular collateral projections can be regarded as potential sources of simultaneous modulating influences upon two functional different forelimb (rPML) and hindlimb (cPML) regions. The findings have been discussed in relation to earlier studies in other species and commented on with respect to the possible functional meaning of these projections.

  15. Comparison of projection neurons in the pontine nuclei and the nucleus reticularis tegmenti pontis of the rat.

    PubMed

    Schwarz, C; Thier, P

    1996-12-16

    Dendritic features of identified projection neurons in two precerebellar nuclei, the pontine nuclei (PN) and the nucleus reticularis tegmenti pontis (NRTP) were established by using a combination of retrograde tracing (injection of fluorogold or rhodamine labelled latex micro-spheres into the cerebellum) with subsequent intracellular filling (lucifer yellow) in fixed slices of pontine brainstem. A multivariate analysis revealed that parameters selected to characterize the dendritic tree such as size of dendritic field, number of branching points, and length of terminal dendrites did not deviate significantly between different regions of the PN and the NRTP. On the other hand, projection neurons in ventral regions of the PN were characterized by an irregular coverage of their distal dendrites by appendages while those in the dorsal PN and the NRTP were virtually devoid of them. The NRTP, dorsal, and medial PN tended to display larger somata and more primary dendrites than ventral regions of the PN. These differences, however, do not allow the differentiation of projection neurons within the PN from those in the NRTP. They rather reflect a dorso-ventral gradient ignoring the border between the nuclei. Accordingly, a cluster analysis did not differentiate distinct types of projection neurons within the total sample. In both nuclei, multiple linear regression analysis revealed that the size of dendritic fields was strongly correlated with the length of terminal dendrites while it did not depend on other parameters of the dendritic field. Thus, larger dendritic fields seem not to be accompanied by a higher complexity but rather may be used to extend the reach of a projection neuron within the arrangement of afferent terminals. We suggest that these similarities within dendritic properties in PN and NRTP projection neurons reflect similar processing of afferent information in both precerebellar nuclei.

  16. Neuroanatomical evidence for a role of central melanocortin-4 receptors and oxytocin in the efferent control of the rodent clitoris and vagina.

    PubMed

    Gelez, Helene; Poirier, Sarah; Facchinetti, Patricia; Allers, Kelly A; Wayman, Chris; Alexandre, Laurent; Giuliano, François

    2010-06-01

    The clitoris and the vagina are the main peripheral anatomical structures involved in physiological changes related to sexual arousal and orgasm. Their efferent control and, more particularly, the neurochemical phenotype of these descending neuronal pathways remain largely uncharacterized. To examine if brain neurons involved in the efferent control of the clitoris and the vagina possess melanocortin-4 receptor (MC4-R) and/or contain oxytocin (OT). Neurons involved in the efferent control of the vagina and clitoris were identified following visualization of pseudorabies virus (PRV) retrograde tracing. PRV was injected into the vagina and clitoris in adult rats in estrous. On the fifth day postinjection, animals were humanely sacrificed, and brains were removed and sectioned, and processed for PRV visualization. The neurochemical phenotype of PRV-positive neurons was identified using double or triple immunocytochemical labeling against PRV, MC4-R, and OT. Double and triple labeling were quantified using confocal laser scanning microscopy. Neuroanatomical brain distribution, number and percentage of double-labeled PRV/MC4-R and PRV-/OT-positive neurons, and triple PRV-/MC4-R-/OT-labeled neurons. The majority of PRV immunopositive neurons which also expressed immunoreactivity for MC4-R were located in the paraventricular and arcuate nuclei of the hypothalamus. The majority of PRV positive neurons which were immunoreactive (IR) for OT were located in the paraventricular nucleus (PVN), medial preoptic area (MPOA), and lateral hypothalamus. PRV positive neurons were more likely to be IR for MC4-R than for OT. Scattered triple-labeled PRV/MC4-R/OT neurons were detected in the MPOA and the PVN. These data strongly suggest that MC4-R and, to a less extent, OT are involved in the efferent neuronal control of the clitoris and vagina, and consequently facilitate our understanding of how the melanocortinergic pathway regulates female sexual function.

  17. Topographically Organized Projection to Posterior Insular Cortex from the Posterior Portion of the Ventral Medial Nucleus (VMpo) in the Long-tailed Macaque Monkey

    PubMed Central

    Craig, A.D. (Bud)

    2014-01-01

    Prior anterograde tracing work identified somatotopically organized lamina I trigemino- and spino-thalamic terminations in a cytoarchitectonically distinct portion of posterolateral thalamus of the macaque monkey, named the posterior part of the ventral medial nucleus (VMpo; Craig, 2004b). Microelectrode recordings from clusters of selectively thermoreceptive or nociceptive neurons were used to guide precise micro-injections of various tracers in VMpo. A prior report (Craig and Zhang, 2006) described retrograde tracing results, which confirmed the selective lamina I input to VMpo and the antero-posterior (head to foot) topography. The present report describes the results of micro-injections of anterograde tracers placed at different levels in VMpo, based on the antero-posterior topographic organization of selectively nociceptive units and clusters over nearly the entire extent of VMpo. Each injection produced dense, patchy terminal labeling in a single coherent field within a distinct granular cortical area centered in the fundus of the superior limiting sulcus. The terminations were distributed with a consistent antero-posterior topography over the posterior half of the superior limiting sulcus. These observations demonstrate a specific VMpo projection area in dorsal posterior insular cortex that provides the basis for a somatotopic representation of selectively nociceptive lamina I spinothalamic activity. These results also identify the VMpo terminal area as the posterior half of interoceptive cortex; the anterior half receives input from the vagal-responsive and gustatory neurons in the basal part of the ventral medial nucleus (VMb). PMID:23853108

  18. Efferent pathways of the mouse lateral habenula

    PubMed Central

    Quina, Lely A.; Tempest, Lynne; Ng, Lydia; Harris, Julie; Ferguson, Susan; Jhou, Thomas; Turner, Eric E.

    2014-01-01

    The lateral habenula (LHb) is part of the habenula complex of the dorsal thalamus. Recent studies of the LHb have focused on its projections to the ventral tegmental area (VTA) and rostromedial tegmental nucleus (RMTg), which contain GABAergic neurons that mediate reward prediction error via inhibition of dopaminergic activity. However, older studies in the rat have also identified LHb outputs to the lateral and posterior hypothalamus, median raphe, dorsal raphe, and dorsal tegmentum. Although these studies have shown that the medial and lateral divisions of the LHb have somewhat distinct projections, the topographic specificity of LHb efferents is not completely understood, and the relative extent of these projections to brainstem targets is unknown. Here we have used anterograde tracing with adeno-associated virus mediated expression of green fluorescent protein, combined with serial two-photon tomography, to map the efferents of the LHb on a standard coordinate system for the entire mouse brain, and reconstruct the efferent pathways of the LHb in three dimensions. Using automated quantitation of fiber density, we show that in addition to the RMTg, the median raphe, caudal dorsal raphe, and pontine central gray are major recipients of LHb efferents. Using retrograde tract tracing with cholera toxin subunit B, we show that LHb neurons projecting to the hypothalamus, VTA, median raphe, and caudal dorsal raphe, and pontine central gray reside in characteristic, but sometimes overlapping regions of the LHb. Together these results provide the anatomical basis for systematic studies of LHb function in neural circuits and behavior in mice. PMID:25099741

  19. A Motor-Driven Mechanism for Cell-Length Sensing

    PubMed Central

    Rishal, Ida; Kam, Naaman; Perry, Rotem Ben-Tov; Shinder, Vera; Fisher, Elizabeth M.C.; Schiavo, Giampietro; Fainzilber, Mike

    2012-01-01

    Summary Size homeostasis is fundamental in cell biology, but it is not clear how large cells such as neurons can assess their own size or length. We examined a role for molecular motors in intracellular length sensing. Computational simulations suggest that spatial information can be encoded by the frequency of an oscillating retrograde signal arising from a composite negative feedback loop between bidirectional motor-dependent signals. The model predicts that decreasing either or both anterograde or retrograde signals should increase cell length, and this prediction was confirmed upon application of siRNAs for specific kinesin and/or dynein heavy chains in adult sensory neurons. Heterozygous dynein heavy chain 1 mutant sensory neurons also exhibited increased lengths both in vitro and during embryonic development. Moreover, similar length increases were observed in mouse embryonic fibroblasts upon partial downregulation of dynein heavy chain 1. Thus, molecular motors critically influence cell-length sensing and growth control. PMID:22773964

  20. Direct and Retrograde Transduction of Nigral Neurons with AAV6, 8, and 9 and Intraneuronal Persistence of Viral Particles

    PubMed Central

    Aebischer, Patrick

    2013-01-01

    Abstract Recombinant adeno-associated viral (AAV) vectors of serotypes 6, 8, and 9 were characterized as tools for gene delivery to dopaminergic neurons in the substantia nigra for future gene therapeutic applications in Parkinson's disease. While vectors of all three serotypes transduced nigral dopaminergic neurons with equal efficiency when directly injected to the substantia nigra, AAV6 was clearly superior to AAV8 and AAV9 for retrograde transduction of nigral neurons after striatal delivery. For sequential transduction of nigral dopaminergic neurons, the combination of AAV9 with AAV6 proved to be more powerful than AAV8 with AAV6 or repeated AAV6 administration. Surprisingly, single-stranded viral genomes persisted in nigral dopaminergic neurons within cell bodies and axon terminals in the striatum, and intact assembled AAV capsid was enriched in nuclei of nigral neurons, 4 weeks after virus injections to the substantia nigra. 6-Hydroxydopamine (6-OHDA)–induced degeneration of dopaminergic neurons in the substantia nigra reduced the number of viral genomes in the striatum, in line with viral genome persistence in axon terminals. However, 6-OHDA–induced axonal degeneration did not induce any transsynaptic spread of AAV infection in the striatum. Therefore, the potential presence of viral particles in axons may not represent an important safety issue for AAV gene therapy applications in neurodegenerative diseases. PMID:23600720

  1. Live-cell imaging of retrograde transport initiation in primary neurons.

    PubMed

    Nirschl, Jeffrey J; Holzbaur, Erika L F

    2016-01-01

    Axonal transport is an essential function in neurons, as mutations in either motor proteins or their adaptors cause neurodegeneration. While some mutations cause a complete block in axonal transport, other mutations affect transport more subtly. This is especially true of mutations identified in human patients, many of which impair but do not block motor function in the cell. Dissecting the pathogenic mechanisms of these more subtle mutations requires assays that can tease apart the distinct phases of axonal transport, including transport initiation, sustained/regulated motility, and cargo-specific sorting or delivery. Here, we describe a live-cell photobleaching assay to assess retrograde flux from the distal axon tip, a measure for distal transport initiation. We have previously used this method to show that the CAP-Gly domain of DCTN1 is required for efficient retrograde transport initiation in the distal axon, but it is not required to maintain retrograde flux along the mid-axon (Moughamian & Holzbaur, 2012). This approach has allowed us to examine the effects of disease-causing mutations in the axonal transport machinery, and in combination with other assays, will be useful in determining the mechanisms and regulation of axonal transport in normal and diseased conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Delusion of inanimate doubles: description of a case of focal retrograde amnesia.

    PubMed

    Abbate, Carlo; Trimarchi, Pietro Davide; Salvi, Gian Pietro; Quarenghi, Anna Maria; Vergani, Carlo; Luzzatti, Claudio

    2012-01-01

    This paper reports the case of a patient, M.P., who developed delusion of inanimate doubles, without Capgras syndrome, after traumatic brain injury. His delusional symptoms were studied longitudinally and the cognitive impairments associated with delusion were investigated. Data suggest that M.P. did 'perceive' the actual differences between doubles and originals rather than 'confabulate' them. The cognitive profile, characterized by retrograde episodic amnesia, but neither object processing impairment nor confabulations, supports this hypothesis. The study examines the nature of object misidentification based on Ellis' and Staton's account and proposes a new account based on concurrent unbiased retrieval of semantic memory traces and biased recollection of episodic memory traces.

  3. Testosterone Rapidly Augments Retrograde Endocannabinoid Signaling in Proopiomelanocortin Neurons to Suppress Glutamatergic Input from Steroidogenic Factor 1 Neurons via Upregulation of Diacylglycerol Lipase-α

    PubMed Central

    Conde, Kristie; Fabelo, Carolina; Krause, William C.; Propst, Robert; Goethel, Jordan; Fischer, Daniel; Hur, Jin; Meza, Cecilia; Ingraham, Holly A.; Wagner, Edward J.

    2018-01-01

    Testosterone exerts profound effects on reproduction and energy homeostasis. Like other orexigenic hormones, it increases endocannabinoid tone within the hypothalamic feeding circuitry. Therefore, we tested the hypothesis that testosterone upregulates the expression of diacylglycerol lipase (DAGL)α in the hypothalamic arcuate nucleus (ARC) to increase energy intake via enhanced endocannabinoid-mediated retrograde inhibition of anorexigenic proopiomelanocortin (POMC) neurons. Energy intake, meal patterns, and energy expenditure were evaluated in orchidectomized, male guinea pigs treated subcutaneously with testosterone propionate (TP; 400 μg) or its sesame oil vehicle (0.1 mL). TP rapidly increased energy intake, meal size, O2 consumption, CO2 production, and metabolic heat production, all of which were antagonized by prior administration of the DAGL inhibitor orlistat (3 μg) into the third ventricle. These orlistat-sensitive, TP-induced increases in energy intake and expenditure were temporally associated with a significant elevation in ARC DAGLα expression. Electrophysiological recordings in hypothalamic slices revealed that TP potentiated depolarization-induced suppression of excitatory glutamatergic input onto identified ARC POMC neurons, which was also abolished by orlistat (3 μM), the CB1 receptor antagonist AM251 (1 μM), and the AMP-activated protein kinase inhibitor compound C (30 μM) and simulated by transient bath application of the dihydrotestosterone mimetic Cl-4AS-1 (100 nM) and testosterone-conjugated bovine serum albumin (100 nM). Thus, testosterone boosts DAGLα expression to augment retrograde, presynaptic inhibition of glutamate release onto ARC POMC neurons that, in turn, increases energy intake and expenditure. These studies advance our understanding of how androgens work within the hypothalamic feeding circuitry to affect changes in energy balance. PMID:27871072

  4. Mitochondrial deficits and abnormal mitochondrial retrograde axonal transport play a role in the pathogenesis of mutant Hsp27-induced Charcot Marie Tooth Disease.

    PubMed

    Kalmar, Bernadett; Innes, Amy; Wanisch, Klaus; Kolaszynska, Alicia Koyen; Pandraud, Amelie; Kelly, Gavin; Abramov, Andrey Y; Reilly, Mary M; Schiavo, Giampietro; Greensmith, Linda

    2017-09-01

    Mutations in the small heat shock protein Hsp27, encoded by the HSPB1 gene, have been shown to cause Charcot Marie Tooth Disease type 2 (CMT-2) or distal hereditary motor neuropathy (dHMN). Protein aggregation and axonal transport deficits have been implicated in the disease. In this study, we conducted analysis of bidirectional movements of mitochondria in primary motor neuron axons expressing wild type and mutant Hsp27. We found significantly slower retrograde transport of mitochondria in Ser135Phe, Pro39Leu and Arg140Gly mutant Hsp27 expressing motor neurons than in wild type Hsp27 neurons, although anterograde movement velocities remained normal. Retrograde transport of other important cargoes, such as the p75 neurotrophic factor receptor was minimally altered in mutant Hsp27 neurons, implicating that axonal transport deficits primarily affect mitochondria and the axonal transport machinery itself is less affected. Investigation of mitochondrial function revealed a decrease in mitochondrial membrane potential in mutant Hsp27 expressing motor axons, as well as a reduction in mitochondrial complex 1 activity, increased vulnerability of mitochondria to mitochondrial stressors, leading to elevated superoxide release and reduced mitochondrial glutathione (GSH) levels, although cytosolic GSH remained normal. This mitochondrial redox imbalance in mutant Hsp27 motor neurons is likely to cause low level of oxidative stress, which in turn will contribute to, and indeed may be the underlying cause of the deficits in mitochondrial axonal transport. Together, these findings suggest that the mitochondrial abnormalities in mutant Hsp27-induced neuropathies may be a primary cause of pathology, leading to further deficits in the mitochondrial axonal transport and onset of disease. © The Author 2017. Published by Oxford University Press.

  5. Mitochondrial deficits and abnormal mitochondrial retrograde axonal transport play a role in the pathogenesis of mutant Hsp27-induced Charcot Marie Tooth Disease

    PubMed Central

    Innes, Amy; Wanisch, Klaus; Kolaszynska, Alicia Koyen; Pandraud, Amelie; Kelly, Gavin; Abramov, Andrey Y.; Reilly, Mary M.; Schiavo, Giampietro; Greensmith, Linda

    2017-01-01

    Abstract Mutations in the small heat shock protein Hsp27, encoded by the HSPB1 gene, have been shown to cause Charcot Marie Tooth Disease type 2 (CMT-2) or distal hereditary motor neuropathy (dHMN). Protein aggregation and axonal transport deficits have been implicated in the disease. In this study, we conducted analysis of bidirectional movements of mitochondria in primary motor neuron axons expressing wild type and mutant Hsp27. We found significantly slower retrograde transport of mitochondria in Ser135Phe, Pro39Leu and Arg140Gly mutant Hsp27 expressing motor neurons than in wild type Hsp27 neurons, although anterograde movement velocities remained normal. Retrograde transport of other important cargoes, such as the p75 neurotrophic factor receptor was minimally altered in mutant Hsp27 neurons, implicating that axonal transport deficits primarily affect mitochondria and the axonal transport machinery itself is less affected. Investigation of mitochondrial function revealed a decrease in mitochondrial membrane potential in mutant Hsp27 expressing motor axons, as well as a reduction in mitochondrial complex 1 activity, increased vulnerability of mitochondria to mitochondrial stressors, leading to elevated superoxide release and reduced mitochondrial glutathione (GSH) levels, although cytosolic GSH remained normal. This mitochondrial redox imbalance in mutant Hsp27 motor neurons is likely to cause low level of oxidative stress, which in turn will contribute to, and indeed may be the underlying cause of the deficits in mitochondrial axonal transport. Together, these findings suggest that the mitochondrial abnormalities in mutant Hsp27-induced neuropathies may be a primary cause of pathology, leading to further deficits in the mitochondrial axonal transport and onset of disease. PMID:28595321

  6. Melanin-concentrating hormone and neuropeptide EI projections from the lateral hypothalamic area and zona incerta to the medial septal nucleus and spinal cord: a study using multiple neuronal tracers.

    PubMed

    Bittencourt, J C; Elias, C F

    1998-09-14

    The projection pathways of neurons containing melanin-concentrating hormone (MCH) and neuropeptide EI (NEI), two peptides colocalized in the lateral hypothalamic area (LHA) of the rat, were mapped using the retrogradely transported fluorescent dyes, true blue (TB) and diamidino yellow (DY). TB and DY were injected into the medial septum/diagonal band complex (MS/DBC) and the thoracic level of the spinal cord (SpCd), respectively. Brains from rats receiving only one or both tracer injections were immunohistochemically stained for MCH in the spinal cord and NEI in the forebrain. In the MS/DBC, NEI-immunoreactive (-ir) fibers are concentrated in the MS and in the vertical and horizontal limbs of the DBC. In the SpCd, MCH-ir fibers are concentrated primarily in lamina X. Of the diencephalic NEI-ir neurons, 37.15% project to the MS/DBC and reside in the rostromedial zona incerta (ZIm), in the LHAt and LHAp, and in the perifornical region. Of the diencephalic MCH-ir neurons, 20.2% project to the SpCd and reside in the LHAt and LHAp. In addition, 2. 2% of the MCH-ir cells and 8.7% of the NEI-ir cells in the hypothalamus were labeled with both retrograde tracers and thus project to both the MS/DBC and SpCd. These dual projection neurons are located mainly in the LHAt and LHAp. Anterograde injections of the tracer Phaseolus vulgaris leucoagglutinin into the LHAt and ZIm corroborated our findings in the retrograde studies. Potential autonomic and behavioral roles of the NEI and MCH systems in the MS/DBC and the SpCd are discussed. Copyright 1998 Elsevier Science B. V.

  7. Orexin-A projections to the caudal medulla and orexin-induced c-Fos expression, food intake, and autonomic function.

    PubMed

    Zheng, Huiyuan; Patterson, Laurel M; Berthoud, Hans-Rudolf

    2005-05-02

    Orexin-expressing neurons in the hypothalamus project throughout the neuraxis and are involved in regulation of the sleep/wake cycle, food intake, and autonomic functions. Here we specifically analyze the anatomical organization of orexin projections to the dorsal vagal complex (DVC) and raphe pallidus and effects on ingestive behavior and autonomic functions of local orexin-A administration in nonanesthetized rats. Retrograde tracing experiments revealed that as many as 20% of hypothalamic orexin neurons project to the DVC, where they form straight varicose axon profiles, some of which are in close anatomical apposition with tyrosine hydroxylase (TH)-, glucagon-like peptide-1-, gamma-aminobutyric acid-, and nitric oxide synthase-immunoreactive neurons in a nonselective manner. Similar contacts were frequently observed with neurons of the nucleus of the solitary tract whose activation by gastrointestinal food stimuli was demonstrated by the expression of nuclear c-Fos immunoreactivity. Orexin-A administration to the fourth ventricle induced significant Fos-expression throughout the DVC compared with saline control injections, with about 20-25% of TH-ir neurons among the stimulated ones. Fourth ventricular orexin injections also significantly stimulated chow and water intake in nonfood-deprived rats. Direct bilateral injections of orexin into the DVC increased intake of palatable high-fat pellets. Orexin-ir fibers also innervated raphe pallidus. Fourth ventricular orexin-A (1 nmol) activated Fos expression in the raphe pallidus and C1/A1 catecholaminergic neurons in the ventral medulla and increased body temperature, heart rate, and locomotor activity. The results confirm that hypothalamomedullary orexin projections are involved in a variety of physiological functions, including ingestive behavior and sympathetic outflow. Copyright 2005 Wiley-Liss, Inc.

  8. Gene expression profiling of two distinct neuronal populations in the rodent spinal cord.

    PubMed

    Ryge, Jesper; Westerdahl, Ann-Charlotte; Alstrøm, Preben; Kiehn, Ole

    2008-01-01

    In the field of neuroscience microarray gene expression profiles on anatomically defined brain structures are being used increasingly to study both normal brain functions as well as pathological states. Fluorescent tracing techniques in brain tissue that identifies distinct neuronal populations can in combination with global gene expression profiling potentially increase the resolution and specificity of such studies to shed new light on neuronal functions at the cellular level. We examine the microarray gene expression profiles of two distinct neuronal populations in the spinal cord of the neonatal rat, the principal motor neurons and specific interneurons involved in motor control. The gene expression profiles of the respective cell populations were obtained from amplified mRNA originating from 50-250 fluorescently identified and laser microdissected cells. In the data analysis we combine a new microarray normalization procedure with a conglomerate measure of significant differential gene expression. Using our methodology we find 32 genes to be more expressed in the interneurons compared to the motor neurons that all except one have not previously been associated with this neuronal population. As a validation of our method we find 17 genes to be more expressed in the motor neurons than in the interneurons and of these only one had not previously been described in this population. We provide an optimized experimental protocol that allows isolation of gene transcripts from fluorescent retrogradely labeled cell populations in fresh tissue, which can be used to generate amplified aRNA for microarray hybridization from as few as 50 laser microdissected cells. Using this optimized experimental protocol in combination with our microarray analysis methodology we find 49 differentially expressed genes between the motor neurons and the interneurons that reflect the functional differences between these two cell populations in generating and transmitting the motor output in the rodent spinal cord.

  9. Gene Expression Profiling of Two Distinct Neuronal Populations in the Rodent Spinal Cord

    PubMed Central

    Alstrøm, Preben; Kiehn, Ole

    2008-01-01

    Background In the field of neuroscience microarray gene expression profiles on anatomically defined brain structures are being used increasingly to study both normal brain functions as well as pathological states. Fluorescent tracing techniques in brain tissue that identifies distinct neuronal populations can in combination with global gene expression profiling potentially increase the resolution and specificity of such studies to shed new light on neuronal functions at the cellular level. Methodology/Principal Findings We examine the microarray gene expression profiles of two distinct neuronal populations in the spinal cord of the neonatal rat, the principal motor neurons and specific interneurons involved in motor control. The gene expression profiles of the respective cell populations were obtained from amplified mRNA originating from 50–250 fluorescently identified and laser microdissected cells. In the data analysis we combine a new microarray normalization procedure with a conglomerate measure of significant differential gene expression. Using our methodology we find 32 genes to be more expressed in the interneurons compared to the motor neurons that all except one have not previously been associated with this neuronal population. As a validation of our method we find 17 genes to be more expressed in the motor neurons than in the interneurons and of these only one had not previously been described in this population. Conclusions/Significance We provide an optimized experimental protocol that allows isolation of gene transcripts from fluorescent retrogradely labeled cell populations in fresh tissue, which can be used to generate amplified aRNA for microarray hybridization from as few as 50 laser microdissected cells. Using this optimized experimental protocol in combination with our microarray analysis methodology we find 49 differentially expressed genes between the motor neurons and the interneurons that reflect the functional differences between these two cell populations in generating and transmitting the motor output in the rodent spinal cord. PMID:18923679

  10. VGLUT1 or VGLUT2 mRNA-positive neurons in spinal trigeminal nucleus provide collateral projections to both the thalamus and the parabrachial nucleus in rats.

    PubMed

    Zhang, Chun-Kui; Li, Zhi-Hong; Qiao, Yu; Zhang, Ting; Lu, Ya-Cheng; Chen, Tao; Dong, Yu-Lin; Li, Yun-Qing; Li, Jin-Lian

    2018-04-12

    The trigemino-thalamic (T-T) and trigemino-parabrachial (T-P) pathways are strongly implicated in the sensory-discriminative and affective/emotional aspects of orofacial pain, respectively. These T-T and T-P projection fibers originate from the spinal trigeminal nucleus (Vsp). We previously determined that many vesicular glutamate transporter (VGLUT1 and/or VGLUT2) mRNA-positive neurons were distributed in the Vsp of the adult rat, and most of these neurons sent their axons to the thalamus or cerebellum. However, whether VGLUT1 or VGLUT2 mRNA-positive projection neurons exist that send their axons to both the thalamus and the parabrachial nucleus (PBN) has not been reported. Thus, in the present study, dual retrograde tract tracing was used in combination with fluorescence in situ hybridization (FISH) for VGLUT1 or VGLUT2 mRNA to identify the existence of VGLUT1 or VGLUT2 mRNA neurons that send collateral projections to both the thalamus and the PBN. Neurons in the Vsp that send collateral projections to both the thalamus and the PBN were mainly VGLUT2 mRNA-positive, with a proportion of 90.3%, 93.0% and 85.4% in the oral (Vo), interpolar (Vi) and caudal (Vc) subnucleus of the Vsp, respectively. Moreover, approximately 34.0% of the collateral projection neurons in the Vc showed Fos immunopositivity after injection of formalin into the lip, and parts of calcitonin gene-related peptide (CGRP)-immunopositive axonal varicosities were in direct contact with the Vc collateral projection neurons. These results indicate that most collateral projection neurons in the Vsp, particularly in the Vc, which express mainly VGLUT2, may relay orofacial nociceptive information directly to the thalamus and PBN via axon collaterals.

  11. Projection-specific visual feature encoding by layer 5 cortical subnetworks

    PubMed Central

    Lur, Gyorgy; Vinck, Martin A.; Tang, Lan; Cardin, Jessica A.; Higley, Michael J.

    2016-01-01

    Summary Primary neocortical sensory areas act as central hubs, distributing afferent information to numerous cortical and subcortical structures. However, it remains unclear whether each downstream target receives distinct versions of sensory information. We used in vivo calcium imaging combined with retrograde tracing to monitor visual response properties of three distinct subpopulations of projection neurons in primary visual cortex. While there is overlap across the groups, on average corticotectal (CT) cells exhibit lower contrast thresholds and broader tuning for orientation and spatial frequency in comparison to corticostriatal (CS) cells, while corticocortical (CC) cells have intermediate properties. Noise correlational analyses support the hypothesis that CT cells integrate information across diverse layer 5 populations, whereas CS and CC cells form more selectively interconnected groups. Overall, our findings demonstrate the existence of functional subnetworks within layer 5 that may differentially route visual information to behaviorally relevant downstream targets. PMID:26972011

  12. Impairments in Fear Conditioning in Mice Lacking the nNOS Gene

    ERIC Educational Resources Information Center

    Kelley, Jonathan B.; Balda, Mara A.; Anderson, Karen L.; Itzhak, Yossef

    2009-01-01

    The fear conditioning paradigm is used to investigate the roles of various genes, neurotransmitters, and substrates in the formation of fear learning related to contextual and auditory cues. In the brain, nitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS) functions as a retrograde neuronal messenger that facilitates synaptic…

  13. Amygdala Lesions Reduce Cataplexy in Orexin KO mice

    PubMed Central

    Burgess, C.R.; Oishi, Y.; Mochizuki, T.; Peever, J.H.; Scammell, T.E.

    2013-01-01

    Narcolepsy is characterized by excessive sleepiness and cataplexy, sudden episodes of muscle weakness during waking that are thought to be an intrusion of REM sleep muscle atonia into wakefulness. One of the most striking aspects of cataplexy is that it is often triggered by strong, generally positive emotions, but little is known about the neural pathways through which positive emotions trigger muscle atonia. We hypothesized that the amygdala is functionally important for cataplexy because the amygdala has a role in processing emotional stimuli and it contains neurons that are active during cataplexy. Using anterograde and retrograde tracing in mice, we found that GABAergic neurons in the central nucleus of the amygdala heavily innervate neurons that maintain waking muscle tone such as those in the ventrolateral periaqueductal grey, lateral pontine tegmentum, locus coeruleus, and dorsal raphe. We then found that bilateral, excitotoxic lesions of the amygdala markedly reduced cataplexy in orexin knockout mice, a model of narcolepsy. These lesions did not alter basic sleep/wake behavior, but substantially reduced the triggering of cataplexy. Lesions also reduced the cataplexy events triggered by conditions associated with high arousal and positive emotions (i.e., wheel running and chocolate). These observations demonstrate that the amygdala is a functionally important part of the circuitry underlying cataplexy and suggest that increased amygdala activity in response to emotional stimuli could directly trigger cataplexy by inhibiting brainstem regions that suppress muscle atonia. PMID:23739970

  14. Amygdala lesions reduce cataplexy in orexin knock-out mice.

    PubMed

    Burgess, Christian R; Oishi, Yo; Mochizuki, Takatoshi; Peever, John H; Scammell, Thomas E

    2013-06-05

    Narcolepsy is characterized by excessive sleepiness and cataplexy, sudden episodes of muscle weakness during waking that are thought to be an intrusion of rapid eye movement sleep muscle atonia into wakefulness. One of the most striking aspects of cataplexy is that it is often triggered by strong, generally positive emotions, but little is known about the neural pathways through which positive emotions trigger muscle atonia. We hypothesized that the amygdala is functionally important for cataplexy because the amygdala has a role in processing emotional stimuli and it contains neurons that are active during cataplexy. Using anterograde and retrograde tracing in mice, we found that GABAergic neurons in the central nucleus of the amygdala heavily innervate neurons that maintain waking muscle tone such as those in the ventrolateral periaqueductal gray, lateral pontine tegmentum, locus ceruleus, and dorsal raphe. We then found that bilateral, excitotoxic lesions of the amygdala markedly reduced cataplexy in orexin knock-out mice, a model of narcolepsy. These lesions did not alter basic sleep-wake behavior but substantially reduced the triggering of cataplexy. Lesions also reduced the cataplexy events triggered by conditions associated with high arousal and positive emotions (i.e., wheel running and chocolate). These observations demonstrate that the amygdala is a functionally important part of the circuitry underlying cataplexy and suggest that increased amygdala activity in response to emotional stimuli could directly trigger cataplexy by inhibiting brainstem regions that suppress muscle atonia.

  15. Glial Control of Endocannabinoid Heterosynaptic Modulation in Hypothalamic Magnocellular Neuroendocrine Cells

    PubMed Central

    Popescu, Ion R.

    2013-01-01

    Cannabinoid receptors are functionally operant at both glutamate and GABA synapses on hypothalamic magnocellular neuroendocrine cells; however, retrograde endocannabinoid actions are evoked at only glutamate synapses. We tested whether the functional targeting of evoked retrograde endocannabinoid actions to glutamate, and not GABA, synapses on magnocellular neurons is the result of the spatial restriction of extracellular endocannabinoids by astrocytes. Whole-cell GABA synaptic currents were recorded in magnocellular neurons in rat hypothalamic slices following manipulations to reduce glial buffering of extracellular signals. Depolarization- and glucocorticoid-evoked retrograde endocannabinoid suppression of synaptic GABA release was not detected under normal conditions, but occurred in both oxytocin and vasopressin neurons under conditions of attenuated glial coverage and depressed glial metabolic function, suggesting an emergent endocannabinoid modulation of GABA synapses with the loss of astrocyte function. Tonic endocannabinoid suppression of GABA release was insensitive to glial manipulation. Blocking cannabinoid transport mimicked, and increasing the extracellular viscosity reversed, the effect of suppressed glial buffering on the endocannabinoid modulation of GABA release. Evoked, but not tonic, endocannabinoid modulation of GABA synapses was mediated by 2-arachidonoylglycerol. Therefore, depolarization- and glucocorticoid-evoked 2-arachidonoylglycerol release from magnocellular neurons is spatially restricted to glutamate synapses by astrocytes, but spills over onto GABA synapses under conditions of reduced astrocyte buffering; tonic endocannabinoid modulation of GABA release, in contrast, is likely mediated by anandamide and is insensitive to astrocytic buffering. Astrocytes, therefore, provide dynamic control of stimulus-evoked 2-arachidonoylglycerol, but not tonic anandamide, regulation of GABA synaptic inputs to magnocellular neuroendocrine cells under different physiological conditions. PMID:24227742

  16. Prenatal nicotinic exposure prolongs superior laryngeal C-fiber-mediated apnea and bradycardia through enhancing neuronal TRPV1 expression and excitation.

    PubMed

    Gao, Xiuping; Zhao, Lei; Zhuang, Jianguo; Zang, Na; Xu, Fadi

    2017-10-01

    Maternal cigarette smoke, including prenatal nicotinic exposure (PNE), is responsible for sudden infant death syndrome (SIDS). The fatal events of SIDS are characterized by severe bradycardia and life-threatening apneas. Although activation of transient receptor potential vanilloid 1 (TRPV1) of superior laryngeal C fibers (SLCFs) could induce bradycardia and apnea and has been implicated in SIDS pathogenesis, how PNE affects the SLCF-mediated cardiorespiratory responses remains unexplored. Here, we tested the hypothesis that PNE would aggravate the SLCF-mediated apnea and bradycardia via up-regulating TRPV1 expression and excitation of laryngeal C neurons in the nodose/jugular (N/J) ganglia. To this end, we compared the following outcomes between control and PNE rat pups at postnatal days 11-14: 1 ) the cardiorespiratory responses to intralaryngeal application of capsaicin (10 µg/ml, 50 µl), a selective stimulant for TRPV1 receptors, in anesthetized preparation; 2 ) immunoreactivity and mRNA of TRPV1 receptors of laryngeal sensory C neurons in the N/J ganglia retrogradely traced by 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate; and 3 ) TRPV1 currents and electrophysiological characteristics of these neurons by using whole-cell patch-clamp technique in vitro Our results showed that PNE markedly prolonged the apneic response and exacerbated the bradycardic response to intralaryngeal perfusion of capsaicin, which was associated with up-regulation of TRPV1 expression in laryngeal C neurons. In addition, PNE increased the TRPV1 currents, depressed the slow delayed rectifier potassium currents, and increased the resting membrane potential of these neurons. Our results suggest that PNE is capable of aggravating the SLCF-mediated apnea and bradycardia through TRPV1 sensitization and neuronal excitation, which may contribute to the pathogenesis of SIDS.-Gao, X., Zhao, L., Zhuang, J., Zang, N., Xu, F. Prenatal nicotinic exposure prolongs superior laryngeal C-fiber-mediated apnea and bradycardia through enhancing neuronal TRPV1 expression and excitation. © FASEB.

  17. Investigation of the therapeutic potential of N-acetyl cysteine and the tools used to define nigrostriatal degeneration in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nouraei, Negin; Zarger, Lauren; Weilnau, Justin N.

    The glutathione precursor N-acetyl-L-cysteine (NAC) is currently being tested on Parkinson's patients for its neuroprotective properties. Our studies have shown that NAC can elicit protection in glutathione-independent manners in vitro. Thus, the goal of the present study was to establish an animal model of NAC-mediated protection in which to dissect the underlying mechanism. Mice were infused intrastriatally with the oxidative neurotoxicant 6-hydroxydopamine (6-OHDA; 4 μg) and administered NAC intraperitoneally (100 mg/kg). NAC-treated animals exhibited higher levels of the dopaminergic terminal marker tyrosine hydroxylase (TH) in the striatum 10d after 6-OHDA. As TH expression is subject to stress-induced modulation, we infusedmore » the tracer FluoroGold into the striatum to retrogradely label nigrostriatal projection neurons. As expected, nigral FluoroGold staining and cell counts of FluoroGold{sup +} profiles were both more sensitive measures of nigrostriatal degeneration than measurements relying on TH alone. However, NAC failed to protect dopaminergic neurons 3 weeks following 6-OHDA, an effect verified by four measures: striatal TH levels, nigral TH levels, nigral TH{sup +} cell counts, and nigral FluoroGold levels. Some degree of mild toxicity of FluoroGold and NAC was evident, suggesting that caution must be exercised when relying on FluoroGold as a neuron-counting tool and when designing experiments with long-term delivery of NAC—such as clinical trials on patients with chronic disorders. Finally, the strengths and limitations of the tools used to define nigrostriatal degeneration are discussed. - Highlights: • N-acetyl cysteine (NAC) was injected into animals infused with the toxicant 6-OHDA. • Retrograde tracing with FluoroGold was used to define nigrostriatal cell loss. • Infrared Odyssey imaging and cell counts were used to screen for nigral cell loss. • NAC protected transiently against 6-OHDA but this effect waned over time. • Mildly toxic effects of chronic NAC delivery may influence future clinical trials.« less

  18. Pseudotyped Lentiviral Vectors for Retrograde Gene Delivery into Target Brain Regions

    PubMed Central

    Kobayashi, Kenta; Inoue, Ken-ichi; Tanabe, Soshi; Kato, Shigeki; Takada, Masahiko; Kobayashi, Kazuto

    2017-01-01

    Gene transfer through retrograde axonal transport of viral vectors offers a substantial advantage for analyzing roles of specific neuronal pathways or cell types forming complex neural networks. This genetic approach may also be useful in gene therapy trials by enabling delivery of transgenes into a target brain region distant from the injection site of the vectors. Pseudotyping of a lentiviral vector based on human immunodeficiency virus type 1 (HIV-1) with various fusion envelope glycoproteins composed of different combinations of rabies virus glycoprotein (RV-G) and vesicular stomatitis virus glycoprotein (VSV-G) enhances the efficiency of retrograde gene transfer in both rodent and nonhuman primate brains. The most recently developed lentiviral vector is a pseudotype with fusion glycoprotein type E (FuG-E), which demonstrates highly efficient retrograde gene transfer in the brain. The FuG-E–pseudotyped vector permits powerful experimental strategies for more precisely investigating the mechanisms underlying various brain functions. It also contributes to the development of new gene therapy approaches for neurodegenerative disorders, such as Parkinson’s disease, by delivering genes required for survival and protection into specific neuronal populations. In this review article, we report the properties of the FuG-E–pseudotyped vector, and we describe the application of the vector to neural circuit analysis and the potential use of the FuG-E vector in gene therapy for Parkinson’s disease. PMID:28824385

  19. Recycling of Kinesin-1 Motors by Diffusion after Transport

    PubMed Central

    Blasius, T. Lynne; Reed, Nathan; Slepchenko, Boris M.; Verhey, Kristen J.

    2013-01-01

    Kinesin motors drive the long-distance anterograde transport of cellular components along microtubule tracks. Kinesin-dependent transport plays a critical role in neurogenesis and neuronal function due to the large distance separating the soma and nerve terminal. The fate of kinesin motors after delivery of their cargoes is unknown but has been postulated to involve degradation at the nerve terminal, recycling via retrograde motors, and/or recycling via diffusion. We set out to test these models concerning the fate of kinesin-1 motors after completion of transport in neuronal cells. We find that kinesin-1 motors are neither degraded nor returned by retrograde motors. By combining mathematical modeling and experimental analysis, we propose a model in which the distribution and recycling of kinesin-1 motors fits a “loose bucket brigade” where individual motors alter between periods of active transport and free diffusion within neuronal processes. These results suggest that individual kinesin-1 motors are utilized for multiple rounds of transport. PMID:24098765

  20. The nestin-expressing and non-expressing neurons in rat basal forebrain display different electrophysiological properties and project to hippocampus

    PubMed Central

    2011-01-01

    Background Nestin-immunoreactive (nestin-ir) neurons have been identified in the medial septal/diagonal band complex (MS/DBB) of adult rat and human, but the significance of nestin expression in functional neurons is not clear. This study investigated electrophysiological properties and neurochemical phenotypes of nestin-expressing (nestin+) neurons using whole-cell recording combined with single-cell RT-PCR to explore the significance of nestin expression in functional MS/DBB neurons. The retrograde labelling and immunofluorescence were used to investigate the nestin+ neuron related circuit in the septo-hippocampal pathway. Results The results of single-cell RT-PCR showed that 87.5% (35/40) of nestin+ cells expressed choline acetyltransferase mRNA (ChAT+), only 44.3% (35/79) of ChAT+ cells expressed nestin mRNA. Furthermore, none of the nestin+ cells expressed glutamic acid decarboxylases 67 (GAD67) or vesicular glutamate transporters (VGLUT) mRNA. All of the recorded nestin+ cells were excitable and demonstrated slow-firing properties, which were distinctive from those of GAD67 or VGLUT mRNA-positive neurons. These results show that the MS/DBB cholinergic neurons could be divided into nestin-expressing cholinergic neurons (NEChs) and nestin non-expressing cholinergic neurons (NNChs). Interestingly, NEChs had higher excitability and received stronger spontaneous excitatory synaptic inputs than NNChs. Retrograde labelling combined with choline acetyltransferase and nestin immunofluorescence showed that both of the NEChs and NNChs projected to hippocampus. Conclusions These results suggest that there are two parallel cholinergic septo-hippocampal pathways that may have different functions. The significance of nestin expressing in functional neurons has been discussed. PMID:22185478

  1. Ultrastructure of the rostral ventral respiratory group neurons in the ventrolateral medulla of the rat.

    PubMed

    Hayakawa, Tetsu; Takanaga, Akinori; Tanaka, Koichi; Maeda, Seishi; Seki, Makoto

    2004-11-19

    The neurons in the ventrolateral medulla that project to the spinal cord are called the rostral ventral respiratory group (rVRG) because they activate spinal respiratory motor neurons. We retrogradely labeled rVRG neurons with Fluoro-Gold (FG) injections into the fourth cervical spinal cord segment to determine their distribution. The rostral half of the rVRG was located in the area ventral to the semicompact formation of the nucleus ambiguus (AmS). A cluster of the neurons moved dorsally and intermingled with the palatopharyngeal motor neurons at the caudal end of the AmS. The caudal half of the rVRG was located in the area including the loose formation of the nucleus ambiguus caudal to the AmS. We also labeled the rVRG neurons retrogradely with wheat germ agglutinin-horseradish peroxidase (WGA-HRP) to determine their ultrastructural characteristics. The neurons of the rVRG were medium to large (38.1 x 22.1 microm), oval or ellipsoid in shape, and had a dark cytoplasm containing numerous free ribosomes, rough endoplasmic reticulum (rER), mitochondria, Golgi apparatuses, lipofuscin granules and a round nucleus with an invaginated nuclear membrane. The average number of axosomatic terminals in a profile was 33.2. The number of axosomatic terminals containing round vesicles and making asymmetric synaptic contacts (Gray's type I) was almost equal to those containing pleomorphic vesicles and making symmetric synaptic contacts (Gray's type II). The axodendritic terminals were large (1.55 microm), and about 60% of them were Gray's type I. The rVRG neurons have ultrastructural characteristics, which are different from the palatopharyngeal motor neurons or the prorpiobulbar neurons.

  2. Glycinergic Input to the Mouse Basal Forebrain Cholinergic Neurons

    PubMed Central

    Bardóczi, Zsuzsanna; Pál, Balázs; Kőszeghy, Áron; Wilheim, Tamás; Záborszky, László; Liposits, Zsolt

    2017-01-01

    The basal forebrain (BF) receives afferents from brainstem ascending pathways, which has been implicated first by Moruzzi and Magoun (1949) to induce forebrain activation and cortical arousal/waking behavior; however, it is very little known about how brainstem inhibitory inputs affect cholinergic functions. In the current study, glycine, a major inhibitory neurotransmitter of brainstem neurons, and gliotransmitter of local glial cells, was tested for potential interaction with BF cholinergic (BFC) neurons in male mice. In the BF, glycine receptor α subunit-immunoreactive (IR) sites were localized in choline acetyltransferase (ChAT)-IR neurons. The effect of glycine on BFC neurons was demonstrated by bicuculline-resistant, strychnine-sensitive spontaneous IPSCs (sIPSCs; 0.81 ± 0.25 × 10−1 Hz) recorded in whole-cell conditions. Potential neuronal as well as glial sources of glycine were indicated in the extracellular space of cholinergic neurons by glycine transporter type 1 (GLYT1)- and GLYT2-IR processes found in apposition to ChAT-IR cells. Ultrastructural analyses identified synapses of GLYT2-positive axon terminals on ChAT-IR neurons, as well as GLYT1-positive astroglial processes, which were localized in the vicinity of synapses of ChAT-IR neurons. The brainstem raphe magnus was determined to be a major source of glycinergic axons traced retrogradely from the BF. Our results indicate a direct effect of glycine on BFC neurons. Furthermore, the presence of high levels of plasma membrane glycine transporters in the vicinity of cholinergic neurons suggests a tight control of extracellular glycine in the BF. SIGNIFICANCE STATEMENT Basal forebrain cholinergic (BFC) neurons receive various activating inputs from specific brainstem areas and channel this information to the cortex via multiple projections. So far, very little is known about inhibitory brainstem afferents to the BF. The current study established glycine as a major regulator of BFC neurons by (1) identifying glycinergic neurons in the brainstem projecting to the BF, (2) showing glycine receptor α subunit-immunoreactive (IR) sites in choline acetyltransferase (ChAT)-IR neurons, (3) demonstrating glycine transporter type 2 (GLYT2)-positive axon terminals synapsing on ChAT-IR neurons, and (4) localizing GLYT1-positive astroglial processes in the vicinity of synapses of ChAT-IR neurons. The effect of glycine on BFC neurons was demonstrated by bicuculline-resistant, strychnine-sensitive spontaneous IPSCs recorded in whole-cell conditions. PMID:28874448

  3. Distinct subclassification of DRG neurons innervating the distal colon and glans penis/distal urethra based on the electrophysiological current signature

    PubMed Central

    Petruska, Jeffrey C.; Cooper, Brian Y.; Johnson, Richard D.

    2014-01-01

    Spinal sensory neurons innervating visceral and mucocutaneous tissues have unique microanatomic distribution, peripheral modality, and physiological, pharmacological, and biophysical characteristics compared with those neurons that innervate muscle and cutaneous tissues. In previous patch-clamp electrophysiological studies, we have demonstrated that small- and medium-diameter dorsal root ganglion (DRG) neurons can be subclassified on the basis of their patterns of voltage-activated currents (VAC). These VAC-based subclasses were highly consistent in their action potential characteristics, responses to algesic compounds, immunocytochemical expression patterns, and responses to thermal stimuli. For this study, we examined the VAC of neurons retrogradely traced from the distal colon and the glans penis/distal urethra in the adult male rat. The afferent population from the distal colon contained at least two previously characterized cell types observed in somatic tissues (types 5 and 8), as well as four novel cell types (types 15, 16, 17, and 18). In the glans penis/distal urethra, two previously described cell types (types 6 and 8) and three novel cell types (types 7, 14, and 15) were identified. Other characteristics, including action potential profiles, responses to algesic compounds (acetylcholine, capsaicin, ATP, and pH 5.0 solution), and neurochemistry (expression of substance P, CGRP, neurofilament, TRPV1, TRPV2, and isolectin B4 binding) were consistent for each VAC-defined subgroup. With identification of distinct DRG cell types that innervate the distal colon and glans penis/distal urethra, future in vitro studies related to the gastrointestinal and urogenital sensory function in normal as well as abnormal/pathological conditions may be benefitted. PMID:24872531

  4. Distinct subclassification of DRG neurons innervating the distal colon and glans penis/distal urethra based on the electrophysiological current signature.

    PubMed

    Rau, Kristofer K; Petruska, Jeffrey C; Cooper, Brian Y; Johnson, Richard D

    2014-09-15

    Spinal sensory neurons innervating visceral and mucocutaneous tissues have unique microanatomic distribution, peripheral modality, and physiological, pharmacological, and biophysical characteristics compared with those neurons that innervate muscle and cutaneous tissues. In previous patch-clamp electrophysiological studies, we have demonstrated that small- and medium-diameter dorsal root ganglion (DRG) neurons can be subclassified on the basis of their patterns of voltage-activated currents (VAC). These VAC-based subclasses were highly consistent in their action potential characteristics, responses to algesic compounds, immunocytochemical expression patterns, and responses to thermal stimuli. For this study, we examined the VAC of neurons retrogradely traced from the distal colon and the glans penis/distal urethra in the adult male rat. The afferent population from the distal colon contained at least two previously characterized cell types observed in somatic tissues (types 5 and 8), as well as four novel cell types (types 15, 16, 17, and 18). In the glans penis/distal urethra, two previously described cell types (types 6 and 8) and three novel cell types (types 7, 14, and 15) were identified. Other characteristics, including action potential profiles, responses to algesic compounds (acetylcholine, capsaicin, ATP, and pH 5.0 solution), and neurochemistry (expression of substance P, CGRP, neurofilament, TRPV1, TRPV2, and isolectin B4 binding) were consistent for each VAC-defined subgroup. With identification of distinct DRG cell types that innervate the distal colon and glans penis/distal urethra, future in vitro studies related to the gastrointestinal and urogenital sensory function in normal as well as abnormal/pathological conditions may be benefitted. Copyright © 2014 the American Physiological Society.

  5. The distribution of TRPV1 and TRPV2 in the rat pharynx.

    PubMed

    Sasaki, Rika; Sato, Tadasu; Yajima, Takehiro; Kano, Mitsuhiro; Suzuki, Toshihiko; Ichikawa, Hiroyuki

    2013-07-01

    Immunohistochemistry for two nociceptive transducers, the transient receptor potential cation channel subfamily V members 1 (TRPV1) and 2 (TRPV2), was performed on the pharynx and its adjacent regions. TRPV1-immunoreactivity (IR) was detected in nerve fibers beneath and within the epithelium and/or taste bud-like structure. In the pharynx, these nerve fibers were abundant in the naso-oral part and at the border region of naso-oral and laryngeal parts. They were also numerous on the laryngeal side of the epiglottis and in the soft palate. TRPV2-IR was expressed by dendritic cells in the pharynx and epiglottis, as well as in the root of the tongue and soft palate. These cells were located in the epithelium and lamina propria. TRPV2-immunoreactive (IR) dendritic cells were numerous in the naso-oral part of the pharynx, epiglottis, and tongue. Abundance of TRPV2-IR dendritic processes usually obscured the presence of TRPV2-IR nerve fibers in these portions. However, some TRPV2-IR nerve fibers could be observed in the epithelium of the soft palate. Retrograde tracing method also revealed that sensory neurons which innervate the pharynx or soft palate were abundant in the jugular-petrosal ganglion complex and relatively rare in the nodose ganglion. In the jugular-petrosal ganglion complex, TRPV1- and TRPV2-IR were expressed by one-third of pharyngeal and soft palate neurons. TRPV2-IR was also detected in 11.5 % pharyngeal and 30.9 % soft palate neurons in the complex. Coexpression of TRPV1 and CGRP was frequent among pharyngeal and soft palate neurons. The present study suggests that TRPV1- and TRPV2-IR jugular-petrosal neurons may be associated with the regulation of the swallowing reflex.

  6. Changes of cervical dorsal root ganglia induced by compression injury and decompression procedure: a novel rat model of cervical radiculoneuropathy.

    PubMed

    Tang, Zhan-Ying; Shu, Bing; Cui, Xue-Jun; Zhou, Chong-Jian; Shi, Qi; Holz, Jonathan; Wang, Yong-Jun

    2009-02-11

    Our study aimed to establish a model of compression injury of cervical dorsal root ganglia (DRG) in the rat and to investigate the pathological changes following compression injury and decompression procedures. Thirty rats were divided into three groups: control group receiving sham surgery, compression group undergoing surgery to place a micro-silica gel on C6 DRG, and decompression group with subsequent decompression procedure. The samples harvested from the different groups were examined with light microscopy, ultrastructural analysis, and horseradish peroxidase (HRP) retrograde tracing techniques. Apoptosis of DRG neurons was demonstrated with TUNEL staining. Changes in PGE2 and PLA2 in DRG neurons were detected with enzyme-linked immunosorbent assay (ELISA). Local expression of vascular endothelial growth factor (VEGF) was monitored with immunohistochemistry. DRG neurons in the compression group became swollen with vacuolar changes in cytoplasm. Decompression procedure partially ameliorated the resultant compression pathology. Ultrastructural examination showed a large number of swollen vacuoles, demyelinated nerve root fibers, absence of Schwann cells, and proliferation in the surrounding connective tissues in the compression group. Compared to the control group, the compression group showed a significant decrease in the number of the HRP-labeled cells and a significant increase in levels of PGE2 and PLA2, in the expression of VEGF protein, and in the number of apoptotic DRG neurons. These findings demonstrate that compression results in local inflammation, followed by increased apoptosis and upregulation of VEGF. We conclude that such a model provides a tool to study the pathogenesis and treatment of cervical radiculoneuropathy.

  7. Neuronal Diversity in GABAergic Long-Range Projections from the Hippocampus

    PubMed Central

    Jinno, Shozo; Klausberger, Thomas; Marton, Laszlo F.; Dalezios, Yannis; Roberts, J. David B.; Fuentealba, Pablo; Bushong, Eric A.; Henze, Darrell; Buzsáki, György; Somogyi, Peter

    2008-01-01

    The formation and recall of sensory, motor, and cognitive representations require coordinated fast communication among multiple cortical areas. Interareal projections are mainly mediated by glutamatergic pyramidal cell projections; only few long-range GABAergic connections have been reported. Using in vivo recording and labeling of single cells and retrograde axonal tracing, we demonstrate novel long-range GABAergic projection neurons in the rat hippocampus: (1) somatostatin- and predominantly mGluR1α-positive neurons in stratum oriens project to the subiculum, other cortical areas, and the medial septum; (2) neurons in stratum oriens, including somatostatin-negative ones; and (3) trilaminar cells project to the subiculum and/or other cortical areas but not the septum. These three populations strongly increase their firing during sharp wave-associated ripple oscillations, communicating this network state to the septotemporal system. Finally, a large population of somatostatin-negative GABAergic cells in stratum radiatum project to the molecular layers of the subiculum, presubiculum, retrosplenial cortex, and indusium griseum and fire rhythmically at high rates during theta oscillations but do not increase their firing during ripples. The GABAergic projection axons have a larger diameter and thicker myelin sheet than those of CA1 pyramidal cells. Therefore, rhythmic IPSCs are likely to precede the arrival of excitation in cortical areas (e.g., subiculum) that receive both glutamatergic and GABAergic projections from the CA1 area. Other areas, including the retrosplenial cortex, receive only rhythmic GABAergic CA1 input. We conclude that direct GABAergic projections from the hippocampus to other cortical areas and the septum contribute to coordinating oscillatory timing across structures. PMID:17699661

  8. End-to-side neurorrhaphy repairs peripheral nerve injury: sensory nerve induces motor nerve regeneration.

    PubMed

    Yu, Qing; Zhang, She-Hong; Wang, Tao; Peng, Feng; Han, Dong; Gu, Yu-Dong

    2017-10-01

    End-to-side neurorrhaphy is an option in the treatment of the long segment defects of a nerve. It involves suturing the distal stump of the disconnected nerve (recipient nerve) to the side of the intimate adjacent nerve (donor nerve). However, the motor-sensory specificity after end-to-side neurorrhaphy remains unclear. This study sought to evaluate whether cutaneous sensory nerve regeneration induces motor nerves after end-to-side neurorrhaphy. Thirty rats were randomized into three groups: (1) end-to-side neurorrhaphy using the ulnar nerve (mixed sensory and motor) as the donor nerve and the cutaneous antebrachii medialis nerve as the recipient nerve; (2) the sham group: ulnar nerve and cutaneous antebrachii medialis nerve were just exposed; and (3) the transected nerve group: cutaneous antebrachii medialis nerve was transected and the stumps were turned over and tied. At 5 months, acetylcholinesterase staining results showed that 34% ± 16% of the myelinated axons were stained in the end-to-side group, and none of the myelinated axons were stained in either the sham or transected nerve groups. Retrograde fluorescent tracing of spinal motor neurons and dorsal root ganglion showed the proportion of motor neurons from the cutaneous antebrachii medialis nerve of the end-to-side group was 21% ± 5%. In contrast, no motor neurons from the cutaneous antebrachii medialis nerve of the sham group and transected nerve group were found in the spinal cord segment. These results confirmed that motor neuron regeneration occurred after cutaneous nerve end-to-side neurorrhaphy.

  9. End-to-side neurorrhaphy repairs peripheral nerve injury: sensory nerve induces motor nerve regeneration

    PubMed Central

    Yu, Qing; Zhang, She-hong; Wang, Tao; Peng, Feng; Han, Dong; Gu, Yu-dong

    2017-01-01

    End-to-side neurorrhaphy is an option in the treatment of the long segment defects of a nerve. It involves suturing the distal stump of the disconnected nerve (recipient nerve) to the side of the intimate adjacent nerve (donor nerve). However, the motor-sensory specificity after end-to-side neurorrhaphy remains unclear. This study sought to evaluate whether cutaneous sensory nerve regeneration induces motor nerves after end-to-side neurorrhaphy. Thirty rats were randomized into three groups: (1) end-to-side neurorrhaphy using the ulnar nerve (mixed sensory and motor) as the donor nerve and the cutaneous antebrachii medialis nerve as the recipient nerve; (2) the sham group: ulnar nerve and cutaneous antebrachii medialis nerve were just exposed; and (3) the transected nerve group: cutaneous antebrachii medialis nerve was transected and the stumps were turned over and tied. At 5 months, acetylcholinesterase staining results showed that 34% ± 16% of the myelinated axons were stained in the end-to-side group, and none of the myelinated axons were stained in either the sham or transected nerve groups. Retrograde fluorescent tracing of spinal motor neurons and dorsal root ganglion showed the proportion of motor neurons from the cutaneous antebrachii medialis nerve of the end-to-side group was 21% ± 5%. In contrast, no motor neurons from the cutaneous antebrachii medialis nerve of the sham group and transected nerve group were found in the spinal cord segment. These results confirmed that motor neuron regeneration occurred after cutaneous nerve end-to-side neurorrhaphy. PMID:29171436

  10. Parabrachial complex links pain transmission to descending pain modulation.

    PubMed

    Roeder, Zachary; Chen, QiLiang; Davis, Sophia; Carlson, Jonathan D; Tupone, Domenico; Heinricher, Mary M

    2016-12-01

    The rostral ventromedial medulla (RVM) has a well-documented role in pain modulation and exerts antinociceptive and pronociceptive influences mediated by 2 distinct classes of neurons, OFF-cells and ON-cells. OFF-cells are defined by a sudden pause in firing in response to nociceptive inputs, whereas ON-cells are characterized by a "burst" of activity. Although these reflex-related changes in ON- and OFF-cell firing are critical to their pain-modulating function, the pathways mediating these responses have not been identified. The present experiments were designed to test the hypothesis that nociceptive input to the RVM is relayed through the parabrachial complex (PB). In electrophysiological studies, ON- and OFF-cells were recorded in the RVM of lightly anesthetized male rats before and after an infusion of lidocaine or muscimol into PB. The ON-cell burst and OFF-cell pause evoked by noxious heat or mechanical probing were substantially attenuated by inactivation of the lateral, but not medial, parabrachial area. Retrograde tracing studies showed that neurons projecting to the RVM were scattered throughout PB. Few of these neurons expressed calcitonin gene-related peptide, suggesting that the RVM projection from PB is distinct from that to the amygdala. These data show that a substantial component of "bottom-up" nociceptive drive to RVM pain-modulating neurons is relayed through the PB. While the PB is well known as an important relay for ascending nociceptive information, its functional connection with the RVM allows the spinoparabrachial pathway to access descending control systems as part of a recurrent circuit.

  11. Vesicular Glutamate Transporters: Spatio-Temporal Plasticity following Hearing Loss

    PubMed Central

    Fyk-Kolodziej, Bozena; Shimano, Takashi; Gong, Tzy-Wen; Holt, Avril Genene

    2011-01-01

    An immunocytochemical comparison of vGluT1 and vGluT3 in the cochlear nucleus (CN) of deafened versus normal hearing rats showed the first example of vGluT3 immunostaining in the dorsal and ventral CN and revealed temporal and spatial changes in vGluT1 localization in the CN after cochlear injury. In normal hearing rats vGluT1 immunostaining was restricted to terminals on CN neurons while vGluT3 immunolabeled the somata of the neurons. This changed in the VCN three days following deafness, where vGluT1 immunostaining was no longer seen in large auditory nerve terminals but was instead found in somata of VCN neurons. In the DCN, while vGluT1 labeling of terminals decreased, there was no labeling of neuronal somata. Therefore, loss of peripheral excitatory input results in co-localization of vGluT1 and vGluT3 in VCN neuronal somata. Postsynaptic glutamatergic neurons can use retrograde signaling to control their presynaptic inputs and these results suggest vGluTs could play a role in regulating retrograde signaling in the CN under different conditions of excitatory input. Changes in vGluT gene expression in CN neurons were found three weeks following deafness using qRT-PCR with significant increases in vGluT1 gene expression in both ventral and dorsal CN while vGluT3 gene expression decreased in VCN but increased in DCN. PMID:21211553

  12. Alterations of neurochemical expression of the coeliac-superior mesenteric ganglion complex (CSMG) neurons supplying the prepyloric region of the porcine stomach following partial stomach resection.

    PubMed

    Palus, Katarzyna; Całka, Jarosław

    2016-03-01

    The purpose of the present study was to determine the response of the porcine coeliac-superior mesenteric ganglion complex (CSMG) neurons projecting to the prepyloric area of the porcine stomach to peripheral neuronal damage following partial stomach resection. To identify the sympathetic neurons innervating the studied area of stomach, the neuronal retrograde tracer Fast Blue (FB) was applied to control and partial stomach resection (RES) groups. On the 22nd day after FB injection, following laparotomy, the partial resection of the previously FB-injected stomach prepyloric area was performed in animals of RES group. On the 28th day, all animals were re-anaesthetized and euthanized. The CSMG complex was then collected and processed for double-labeling immunofluorescence. In control animals, retrograde-labelled perikarya were immunoreactive to tyrosine hydroxylase (TH), dopamine β-hydroxylase (DβH), neuropeptide Y (NPY) and galanin (GAL). Partial stomach resection decreased the numbers of FB-positive neurons immunopositive for TH and DβH. However, the strong increase of NPY and GAL expression, as well as de novo-synthesis of neuronal nitric oxide synthase (nNOS) and leu5-Enkephalin (LENK) was noted in studied neurons. Furthermore, FB-positive neurons in all pigs were surrounded by a network of cocaine- and amphetamine-regulated transcript peptide (CART)-, calcitonin gene-related peptide (CGRP)-, and substance P (SP)-, vasoactive intestinal peptide (VIP)-, LENK- and nNOS- immunoreactive nerve fibers. This may suggest neuroprotective contribution of these neurotransmitters in traumatic responses of sympathetic neurons to peripheral axonal damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. DeepNeuron: an open deep learning toolbox for neuron tracing.

    PubMed

    Zhou, Zhi; Kuo, Hsien-Chi; Peng, Hanchuan; Long, Fuhui

    2018-06-06

    Reconstructing three-dimensional (3D) morphology of neurons is essential for understanding brain structures and functions. Over the past decades, a number of neuron tracing tools including manual, semiautomatic, and fully automatic approaches have been developed to extract and analyze 3D neuronal structures. Nevertheless, most of them were developed based on coding certain rules to extract and connect structural components of a neuron, showing limited performance on complicated neuron morphology. Recently, deep learning outperforms many other machine learning methods in a wide range of image analysis and computer vision tasks. Here we developed a new Open Source toolbox, DeepNeuron, which uses deep learning networks to learn features and rules from data and trace neuron morphology in light microscopy images. DeepNeuron provides a family of modules to solve basic yet challenging problems in neuron tracing. These problems include but not limited to: (1) detecting neuron signal under different image conditions, (2) connecting neuronal signals into tree(s), (3) pruning and refining tree morphology, (4) quantifying the quality of morphology, and (5) classifying dendrites and axons in real time. We have tested DeepNeuron using light microscopy images including bright-field and confocal images of human and mouse brain, on which DeepNeuron demonstrates robustness and accuracy in neuron tracing.

  14. Intraspinal AAV Injections Immediately Rostral to a Thoracic Spinal Cord Injury Site Efficiently Transduces Neurons in Spinal Cord and Brain

    PubMed Central

    Klaw, Michelle C; Xu, Chen; Tom, Veronica J

    2013-01-01

    In the vast majority of studies utilizing adeno-associated virus (AAV) in central nervous system applications, including those published with spinal cord injury (SCI) models, AAV has been administered at the level of the cell body of neurons targeted for genetic modification, resulting in transduction of neurons in the vicinity of the injection site. However, as SCI interrupts many axon tracts, it may be more beneficial to transduce a diverse pool of supraspinal neurons. We determined if descending axons severed by SCI are capable of retrogradely transporting AAV to remotely transduce a variety of brain regions. Different AAV serotypes encoding the reporter green fluorescent protein (GFP) were injected into gray and white matter immediately rostral to a spinal transection site. This resulted in the transduction of thousands of neurons within the spinal cord and in multiple regions within the brainstem that project to spinal cord. In addition, we established that different serotypes had disparate regional specificity and that AAV5 transduced the most brain and spinal cord neurons. This is the first demonstration that retrograde transport of AAV by axons severed by SCI is an effective means to transduce a collection of supraspinal neurons. Thus, we identify a novel, minimally invasive means to transduce a variety of neuronal populations within both the spinal cord and the brain following SCI. This paradigm to broadly distribute viral vectors has the potential to be an important component of a combinatorial strategy to promote functional axonal regeneration. PMID:23881451

  15. [RECONSTRUCTION OF LOWER EXTREMITY FUNCTION OF COMPLETE SPINAL CORD INJURY RATS BY FIRST NEURON CONNECTION].

    PubMed

    Wang, Fangyong; Yuan, Yuan; Li, Jianjun

    2015-12-01

    To investigate the effects of the first neuron connection for the reconstruction of lower extremity function of complete spinal cord injury rats. Forty adult female Sprague Dawley rats of 300-350 g in weight were selected to prepare the models of L₁ transverse spinal cord injury. After 2 weeks of establishing model, the rats were randomly divided into control group (n = 20) and experimental group (n = 20). In the experimental group, the right hind limb function was reconstructed directly by the first neuron; in the control group, the other treatments were the same to the experimental group except that the distal tibial nerve and the proximal femoral nerve were not sutured. The recovery of motor function of lower extremity was observed by the Basso-Beattie-Bresnahan (BBB) scoring system on bilateral hind limbs at 7, 30, 50, and 70 days after operation. The changes of the spinal cord were observed by HE staining, neurofilament 200 immunohistochemistry staining, and the technique of horseradish peroxidase (HRP) tracing. After establishing models, 6 rats died. The right hind limb had no obvious recovery of the motor function, with the BBB score of 0 in 2 groups; the left hind limb motor function was recovered in different degrees, and there was no significant difference in BBB score between 2 groups (P > 0.05). In the experimental group, HE staining showed that the spinal cord was reconstructed with the sciatic nerve, which was embedded in the spinal cord, and the sciatic nerve membrane was clearly identified, and there was no obvious atrophy in the connecting part of the spinal cord. In the experimental group, the expression of nerve fiber was stained with immunohistochemistry, and the axons of the spinal cord were positively by stained and the peripheral nerve was connected with the spinal cord. HRP labelled synapses were detected by HRP retrograde tracing in the experimental group, while there was no HRP labelled synapse in the control group. Direct reconstruction of the first neurons is sufficient in the regeneration of corresponding neural circuit by the growth of residual axon; but the motor function recovery of the target muscles innervated by peripheral nerve is not observed.

  16. Testing the effectiveness and the contribution of experimental supercharge (reversed) end-to-side nerve transfer.

    PubMed

    Nadi, Mustafa; Ramachandran, Sudheesh; Islam, Abir; Forden, Joanne; Guo, Gui Fang; Midha, Rajiv

    2018-05-18

    OBJECTIVE Supercharge end-to-side (SETS) transfer, also referred to as reverse end-to-side transfer, distal to severe nerve compression neuropathy or in-continuity nerve injury is gaining clinical popularity despite questions about its effectiveness. Here, the authors examined SETS distal to experimental neuroma in-continuity (NIC) injuries for efficacy in enhancing neuronal regeneration and functional outcome, and, for the first time, they definitively evaluated the degree of contribution of the native and donor motor neuron pools. METHODS This study was conducted in 2 phases. In phase I, rats (n = 35) were assigned to one of 5 groups for unilateral sciatic nerve surgeries: group 1, tibial NIC with distal peroneal-tibial SETS; group 2, tibial NIC without SETS; group 3, intact tibial and severed peroneal nerves; group 4, tibial transection with SETS; and group 5, severed tibial and peroneal nerves. Recovery was evaluated biweekly using electrophysiology and locomotion tasks. At the phase I end point, after retrograde labeling, the spinal cords were analyzed to assess the degree of neuronal regeneration. In phase II, 20 new animals underwent primary retrograde labeling of the tibial nerve, following which they were assigned to one of the following 3 groups: group 1, group 2, and group 4. Then, secondary retrograde labeling from the tibial nerve was performed at the study end point to quantify the native versus donor regenerated neuronal pool. RESULTS In phase I studies, a significantly increased neuronal regeneration in group 1 (SETS) compared with all other groups was observed, but with modest (nonsignificant) improvement in electrophysiological and behavioral outcomes. In phase II experiments, the authors discovered that secondary labeling in group 1 was predominantly contributed from the donor (peroneal) pool. Double-labeling counts were dramatically higher in group 2 than in group 1, suggestive of hampered regeneration from the native tibial motor neuron pool across the NIC segment in the presence of SETS. CONCLUSIONS SETS is indeed an effective strategy to enhance axonal regeneration, which is mainly contributed by the donor neuronal pool. Moreover, the presence of a distal SETS coaptation appears to negatively influence neuronal regeneration across the NIC segment. The clinical significance is that SETS should only employ synergistic donors, as the use of antagonistic donors can downgrade recovery.

  17. The postsynaptic t-SNARE Syntaxin 4 controls traffic of Neuroligin 1 and Synaptotagmin 4 to regulate retrograde signaling.

    PubMed

    Harris, Kathryn P; Zhang, Yao V; Piccioli, Zachary D; Perrimon, Norbert; Littleton, J Troy

    2016-05-25

    Postsynaptic cells can induce synaptic plasticity through the release of activity-dependent retrograde signals. We previously described a Ca(2+)-dependent retrograde signaling pathway mediated by postsynaptic Synaptotagmin 4 (Syt4). To identify proteins involved in postsynaptic exocytosis, we conducted a screen for candidates that disrupted trafficking of a pHluorin-tagged Syt4 at Drosophila neuromuscular junctions (NMJs). Here we characterize one candidate, the postsynaptic t-SNARE Syntaxin 4 (Syx4). Analysis of Syx4 mutants reveals that Syx4 mediates retrograde signaling, modulating the membrane levels of Syt4 and the transsynaptic adhesion protein Neuroligin 1 (Nlg1). Syx4-dependent trafficking regulates synaptic development, including controlling synaptic bouton number and the ability to bud new varicosities in response to acute neuronal stimulation. Genetic interaction experiments demonstrate Syx4, Syt4, and Nlg1 regulate synaptic growth and plasticity through both shared and parallel signaling pathways. Our findings suggest a conserved postsynaptic SNARE machinery controls multiple aspects of retrograde signaling and cargo trafficking within the postsynaptic compartment.

  18. The underside of the cerebral cortex: layer V/VI spiny inverted neurons

    PubMed Central

    Mendizabal-Zubiaga, Juan L; Reblet, Concepcion; Bueno-Lopez, Jose L

    2007-01-01

    This paper presents an account of past and current research on spiny inverted neurons – alternatively also known as ‘inverted pyramidal neurons’– in rats, rabbits and cats. In our laboratory, we have studied these cells with a battery of techniques suited for light and electron microscopy, including Nissl staining, Golgi impregnation, dye intracellular filling and axon retrograde track-tracing. Our results show that spiny inverted neurons make up less than 8.5 and 5.5% of all cortical neurons in the primary and secondary rabbit visual cortex, respectively. Infragranular spiny inverted neurons constitute 15 and 8.5% of infragranular neurons in the same animal and areas. Spiny inverted neurons congregate at layers V–VI in all studied species. Studies have also revealed that spiny inverted neurons are excitatory neurons which furnish axons for various cortico-cortical, cortico-claustral and cortico-striatal projections, but not for non-telencephalic centres such as the lateral and medial geniculate nuclei, the colliculi or the pons. As a group, each subset of inverted cells contributing to a given projection is located below the pyramidal neurons whose axons furnish the same centre. Spiny inverted neurons are particularly conspicuous as a source of the backward cortico-cortical projection to primary visual cortex and from this to the claustrum. Indeed, they constitute up to 82% of the infragranular cells that furnish these projections. Spiny inverted neurons may be classified into three subtypes according to the point of origin of the axon on the cell: the somatic basal pole which faces the cortical outer surface, the somatic flank and the reverse apical dendrite. As seen with electron microscopy, the axon initial segments of these subtypes are distinct from one another, not only in length and thickness, but also in the number of received synaptic boutons. All of these anatomical features together may support a synaptic-input integration which is peculiar to spiny inverted neurons. In this way, two differently qualified streams of axonal output may coexist in a projection which arises from a particular infragranular point within a given cortical area; one stream would be furnished by the typical pyramidal neurons, whereas spiny inverted neurons would constitute the other source of distinct information flow. PMID:17635629

  19. Investigating sub-spine actin dynamics in rat hippocampal neurons with super-resolution optical imaging.

    PubMed

    Tatavarty, Vedakumar; Kim, Eun-Ji; Rodionov, Vladimir; Yu, Ji

    2009-11-09

    Morphological changes in dendritic spines represent an important mechanism for synaptic plasticity which is postulated to underlie the vital cognitive phenomena of learning and memory. These morphological changes are driven by the dynamic actin cytoskeleton that is present in dendritic spines. The study of actin dynamics in these spines traditionally has been hindered by the small size of the spine. In this study, we utilize a photo-activation localization microscopy (PALM)-based single-molecule tracking technique to analyze F-actin movements with approximately 30-nm resolution in cultured hippocampal neurons. We were able to observe the kinematic (physical motion of actin filaments, i.e., retrograde flow) and kinetic (F-actin turn-over) dynamics of F-actin at the single-filament level in dendritic spines. We found that F-actin in dendritic spines exhibits highly heterogeneous kinematic dynamics at the individual filament level, with simultaneous actin flows in both retrograde and anterograde directions. At the ensemble level, movements of filaments integrate into a net retrograde flow of approximately 138 nm/min. These results suggest a weakly polarized F-actin network that consists of mostly short filaments in dendritic spines.

  20. Bidirectional Control of Anxiety-Related Behaviors in Mice: Role of Inputs Arising from the Ventral Hippocampus to the Lateral Septum and Medial Prefrontal Cortex.

    PubMed

    Parfitt, Gustavo Morrone; Nguyen, Robin; Bang, Jee Yoon; Aqrabawi, Afif J; Tran, Matthew M; Seo, D Kanghoon; Richards, Blake A; Kim, Jun Chul

    2017-07-01

    Anxiety is an adaptive response to potentially threatening situations. Exaggerated and uncontrolled anxiety responses become maladaptive and lead to anxiety disorders. Anxiety is shaped by a network of forebrain structures, including the hippocampus, septum, and prefrontal cortex. In particular, neural inputs arising from the ventral hippocampus (vHPC) to the lateral septum (LS) and medial prefrontal cortex (mPFC) are thought to serve as principal components of the anxiety circuit. However, the role of vHPC-to-LS and vHPC-to-mPFC signals in anxiety is unclear, as no study has directly compared their behavioral contribution at circuit level. We targeted LS-projecting vHPC cells and mPFC-projecting vHPC cells by injecting the retrogradely propagating canine adenovirus encoding Cre recombinase into the LS or mPFC, and injecting a Cre-responsive AAV (AAV8-hSyn-FLEX-hM3D or hM4D) into the vHPC. Consequences of manipulating these neurons were examined in well-established tests of anxiety. Chemogenetic manipulation of LS-projecting vHPC cells led to bidirectional changes in anxiety: activation of LS-projecting vHPC cells decreased anxiety whereas inhibition of these cells produced opposite anxiety-promoting effects. The observed anxiety-reducing function of LS-projecting cells was in contrast with the function of mPFC-projecting cells, which promoted anxiety. In addition, double retrograde tracing demonstrated that LS- and mPFC-projecting cells represent two largely anatomically distinct cell groups. Altogether, our findings suggest that the vHPC houses discrete populations of cells that either promote or suppress anxiety through differences in their projection targets. Disruption of the intricate balance in the activity of these two neuron populations may drive inappropriate behavioral responses seen in anxiety disorders.

  1. Selective binding, uptake, and retrograde transport of tetanus toxin by nerve terminals in the rat iris. An electron microscope study using colloidal gold as a tracer

    PubMed Central

    1978-01-01

    A series of specific macromolecules (tetanus toxin, cholera toxin, nerve growth factor [NGF], and several lectins) have been shown to be transported retrogradely with high selectivity from terminals to cell bodies in various types of neurons. Under identical experimental conditions (low protein concentrations injected), most other macromolecules, e.g. horseradish peroxidase (HRP), albumin, ferritin, are not transported in detectable amounts. In the present EM study, we demonstrate selective binding of tetanus toxin to the surface membrane of nerve terminals, followed by uptake and subsequent retorgrade axonal transport. Tetanus toxin or albumin was adsorbed to colloidal gold particles (diam 200 A). The complex was shown to be stable and well suited as an EM tracer. 1-4 h after injection into the anterior eye chamber of adult rats, tetanus toxin-gold particles were found to be selectively associated with membranes of nerve terminals and preterminal axons. Inside terminals and axons, the tracer was localized mainly in smooth endoplasmic reticulum (SER)-like membrane compartments. In contrast, association of albumin-gold complexes with nervous structures was never observed, in spite of extensive uptake into fibroblasts. Electron microscope and biochemical experiments showed selective retrograde transport of tetanus toxin-gold complexes to the superior cervical ganglion. Specific binding to membrane components at nerve terminals and subsequent internalization and retrograde transport may represent an important pathway for macromolecules carrying information from target organs to the perikarya of their innervating neurons. PMID:659508

  2. Vesicular glutamate transporter 1 (VGLUT1)- and VGLUT2-immunopositive axon terminals on the rat jaw-closing and jaw-opening motoneurons.

    PubMed

    Park, Sook Kyung; Ko, Sang Jin; Paik, Sang Kyoo; Rah, Jong-Cheol; Lee, Kea Joo; Bae, Yong Chul

    2018-02-23

    To provide information on the glutamatergic synapses on the trigeminal motoneurons, which may be important for understanding the mechanism of control of jaw movements, we investigated the distribution of vesicular glutamate transporter (VGLUT)1-immunopositive (+) and VGLUT2 + axon terminals (boutons) on the rat jaw-closing (JC) and jaw-opening (JO) motoneurons, and their morphological determinants of synaptic strength by retrograde tracing, electron microscopic immunohistochemistry, and quantitative ultrastructural analysis. We found that (1) the large majority of VGLUT + boutons on JC and JO motoneurons were VGLUT2+, (2) the density of VGLUT1 + boutons terminating on JC motoneurons was significantly higher than that on JO motoneurons, (3) the density of VGLUT1 + boutons terminating on non-primary dendrites of JC motoneurons was significantly higher than that on somata or primary dendrites, whereas the density of VGLUT2 + boutons was not significantly different between JC and JO motoneurons and among various compartments of the postsynaptic neurons, and (4) the bouton volume, mitochondrial volume, and active zone area of the VGLUT1 + boutons forming synapses on JC motoneurons were significantly bigger than those of VGLUT2 + boutons. These findings suggest that JC and JO motoneurons receive glutamatergic input primarily from VGLUT2-expressing intrinsic neurons (premotoneurons), and may be controlled differently by neurons in the trigeminal mesencephalic nucleus and by glutamatergic premotoneurons.

  3. Rapidly transported organelles containing membrane and cytoskeletal components: their relation to axonal growth

    PubMed Central

    1987-01-01

    We have examined the movements, composition, and cellular origin of phase-dense varicosities in cultures of chick sympathetic and sensory neurons. These organelles are variable in diameter (typically between 0.2 and 2 microns) and undergo saltatory movements both towards and away from the neuronal cell body. Their mean velocities vary inversely with the size of the organelle and are greater in the retrograde than the anterograde direction. Organelles stain with the lipophilic dye 1, 1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine and with antibodies to cytoskeletal components. In cultures double-stained with antibodies to alpha-tubulin and 70-kD neurofilament protein (NF-L), approximately 40% of the organelles stain for tubulin, 30% stain for NF- L, 10% stain for both tubulin and NF-L, and 40% show no staining with either antibody. The association of cytoskeletal proteins with the organelles shows that these proteins are able to move by a form of rapid axonal transport. Under most culture conditions the predominant direction of movement is towards the cell body, suggesting that the organelles are produced at or near the growth cone. Retrograde movements continue in culture medium lacking protein or high molecular mass components and increase under conditions in which the advance of the growth cone is arrested. There is a fourfold increase in the number of organelles moving retrogradely in neurites that encounter a substratum-associated barrier to elongation; retrograde movements increase similarly in cultures exposed to cytochalasin at levels known to block growth cone advance. No previously described organelle shows behavior coordinated with axonal growth in this way. We propose that the organelles contain membrane and cytoskeletal components that have been delivered to the growth cone, by slow or fast anterograde transport, in excess of the amounts required to synthesize more axon. In view of their rapid mobility and variable contents, we suggest that they be called "neuronal parcels." PMID:3693400

  4. Neuronal and Astrocytic Monoacylglycerol Lipase Limit the Spread of Endocannabinoid Signaling in the Cerebellum.

    PubMed

    Chen, Yao; Liu, Xiaojie; Vickstrom, Casey R; Liu, Michelle J; Zhao, Li; Viader, Andreu; Cravatt, Benjamin F; Liu, Qing-Song

    2016-01-01

    Endocannabinoids are diffusible lipophilic molecules that may spread to neighboring synapses. Monoacylglycerol lipase (MAGL) is the principal enzyme that degrades the endocannabinoid 2-arachidonoylglycerol (2-AG). Using knock-out mice in which MAGL is deleted globally or selectively in neurons and astrocytes, we investigated the extent to which neuronal and astrocytic MAGL limit the spread of 2-AG-mediated retrograde synaptic depression in cerebellar slices. A brief tetanic stimulation of parallel fibers in the molecular layer induced synaptically evoked suppression of excitation (SSE) in Purkinje cells, and both neuronal and astrocytic MAGL contribute to the termination of this form of endocannabinoid-mediated synaptic depression. The spread of SSE among Purkinje cells occurred only after global knock-out of MAGL or pharmacological blockade of either MAGL or glutamate uptake, but no spread was detected following neuron- or astrocyte-specific deletion of MAGL. The spread of endocannabinoid signaling was also influenced by the spatial pattern of synaptic stimulation, because it did not occur at spatially dispersed parallel fiber synapses induced by stimulating the granular layer. The tetanic stimulation of parallel fibers did not induce endocannabinoid-mediated synaptic suppression in Golgi cells even after disruption of MAGL and glutamate uptake, suggesting that heightened release of 2-AG by Purkinje cells does not spread the retrograde signal to parallel fibers that innervate Golgi cells. These results suggest that both neuronal and astrocytic MAGL limit the spatial diffusion of 2-AG and confer synapse-specificity of endocannabinoid signaling.

  5. Retrograde Semaphorin-Plexin Signaling Drives Homeostatic Synaptic Plasticity

    PubMed Central

    Orr, Brian O.; Fetter, Richard D.; Davis, Graeme W.

    2017-01-01

    Homeostatic signaling systems ensure stable, yet flexible neural activity and animal behavior1–4. Defining the underlying molecular mechanisms of neuronal homeostatic signaling will be essential in order to establish clear connections to the causes and progression of neurological disease. Presynaptic homeostatic plasticity (PHP) is a conserved form of neuronal homeostatic signaling, observed in organisms ranging from Drosophila to human1,5. Here, we demonstrate that Semaphorin2b (Sema2b) is target-derived signal that acts upon presynaptic PlexinB (PlexB) receptors to mediate the retrograde, homeostatic control of presynaptic neurotransmitter release at the Drosophila neuromuscular junction. Sema2b-PlexB signaling regulates the expression of PHP via the cytoplasmic protein Mical and the oxoreductase-dependent control of presynaptic actin6,7. During neural development, Semaphorin-Plexin signaling instructs axon guidance and neuronal morphogenesis8–10. Yet, Semaphorins and Plexins are also expressed in the adult brain11–16. Here we demonstrate that Semaphorin-Plexin signaling controls presynaptic neurotransmitter release. We propose that Sema2b-PlexB signaling is an essential platform for the stabilization of synaptic transmission throughout life. PMID:28953869

  6. Autophagy-mediated Regulation of BACE1 Protein Trafficking and Degradation*

    PubMed Central

    Feng, Tuancheng; Tammineni, Prasad; Agrawal, Chanchal; Jeong, Yu Young

    2017-01-01

    β-Site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is the major neuronal β-secretase for amyloid-β generation and is degraded in lysosomes. The autophagy-lysosomal system plays a key role in the maintenance of cellular homeostasis in neurons. Recent studies established that nascent autophagosomes in distal axons move predominantly in the retrograde direction toward the soma, where mature lysosomes are mainly located. However, it remains unknown whether autophagy plays a critical role in regulation of BACE1 trafficking and degradation. Here, we report that induction of neuronal autophagy enhances BACE1 turnover, which is suppressed by lysosomal inhibition. A significant portion of BACE1 is recruited to the autophagy pathway and co-migrates robustly with autophagic vacuoles along axons. Moreover, we reveal that autophagic vacuole-associated BACE1 is accumulated in the distal axon of Alzheimer's disease-related mutant human APP transgenic neurons and mouse brains. Inducing autophagy in mutant human APP neurons augments autophagic retention of BACE1 in distal axons, leading to enhanced β-cleavage of APP. This phenotype can be reversed by Snapin-enhanced retrograde transport, which facilitates BACE1 trafficking to lysosomes for degradation. Therefore, our study provides new insights into autophagy-mediated regulation of BACE1 turnover and APP processing, thus building a foundation for future development of potential Alzheimer's disease therapeutic strategies. PMID:28028177

  7. Emotion strengthens high priority memory traces but weakens low priority memory traces

    PubMed Central

    Sakaki, Michiko; Fryer, Kellie; Mather, Mara

    2014-01-01

    When encountering emotional events, memory for those events is typically enhanced. But it has been unclear how emotionally arousing events influence memory for preceding information. Does emotional arousal induce retrograde amnesia or retrograde enhancement? The current study revealed that this depends on the top-down goal relevance of the preceding information. Across three studies, we found that emotional arousal induced by one image facilitated memory for the preceding neutral item when people prioritized that neutral item. In contrast, an emotional image impaired memory for the preceding neutral item when people did not prioritize that neutral item. Emotional arousal elicited by negative and positive pictures both showed this pattern of enhancing or impairing memory for the preceding stimulus depending on its priority. These results indicate that emotional arousal amplifies the effects of top-down priority in memory formation. PMID:24311478

  8. Tectonigral Projections in the Primate: A Pathway for Pre-Attentive Sensory Input to Midbrain Dopaminergic Neurons

    PubMed Central

    May, Paul J.; McHaffie, John G.; Stanford, Terrence R.; Jiang, Huai; Costello, M. Gabriela; Coizet, Veronique; Hayes, Lauren M.; Haber, Suzanne N.; Redgrave, Peter

    2010-01-01

    Much of the evidence linking the short-latency phasic signaling of midbrain dopaminergic neurons with reward-prediction errors used in learning and habit formation comes from recording the visual responses of monkey dopaminergic neurons. However, the information encoded by dopaminergic neuron activity is constrained by the qualities of the afferent visual signals made available to these cells. Recent evidence from rats and cats indicates the primary source of this visual input originates subcortically, via a direct tectonigral projection. The present anatomical study sought to establish whether a direct tectonigral projection is a significant feature of the primate brain. Injections of anterograde tracers into the superior colliculus of macaque monkeys labelled terminal arbors throughout the substantia nigra, with the densest terminations in the dorsal tier. Labelled boutons were found in close association (possibly indicative of synaptic contact) with ventral midbrain neurons staining positively for the dopaminergic marker tyrosine hydroxylase. Injections of retrograde tracer confined to the macaque substantia nigra retrogradely labelled small to medium sized neurons in the intermediate and deep layers of the superior colliculus. Together, these data indicate that a direct tectonigral projection is also a feature of the monkey brain, and therefore likely to have been conserved throughout mammalian evolution. Insofar as the superior colliculus is configured to detect unpredicted, biologically salient, sensory events, it may be safer to regard the phasic responses of midbrain dopaminergic neurons as ‘sensory prediction errors’ rather than ‘reward prediction errors’, in which case, dopamine-based theories of reinforcement learning will require revision. PMID:19175405

  9. The nervus terminalis in the mouse: light and electron microscopic immunocytochemical studies.

    PubMed

    Jennes, L

    1987-01-01

    The distribution of gonadotropin-releasing hormone (GnRH)-containing neurons and fibers in the olfactory bulb was studied with light and electron microscopic immunohistochemistry in combination with retrograde transport of "True Blue" and horseradish peroxidase and lesion experiments. GnRH-positive neurons are found in the septal roots of the nervus terminalis, in the ganglion terminale, intrafascicularly throughout the nervus terminalis, in a dorso-ventral band in the caudal olfactory bulb, in various layers of the main and accessory olfactory bulb, and in the basal aspects of the nasal epithelium. Electron microscopic studies show that the nerve fibers in the nervus terminalis are not myelinated and are not surrounded by Schwann cell sheaths. In the ganglion terminale, "smooth" GnRH neurons are seen in juxtaposition to immunonegative neurons. Occasionally, axosomatic specializations are found in the ganglion terminale, but such synaptic contacts are not seen intrafascicularly in the nervus terminalis. Retrograde transport studies indicate that certain GnRH neurons in the septal roots of the nervus terminalis were linked to the amygdala. In addition, a subpopulation of nervus terminalis-related GnRH neurons has access to fenestrated capillaries whereas other GnRH neurons terminate at the nasal epithelium. Lesions of the nervus terminalis caudal to the ganglion terminale result in sprouting of GnRH fibers at both sites of the knife cut. The results suggest that GnRH in the olfactory system of the mouse can influence a variety of target sites either via the blood stream, via the external cerebrospinal fluid or via synaptic/asynaptic contacts with, for example, the receptor cells in the nasal mucosa.

  10. The GABAergic Gudden's dorsal tegmental nucleus: A new relay for serotonergic regulation of sleep-wake behavior in the mouse.

    PubMed

    Chazalon, Marine; Dumas, Sylvie; Bernard, Jean-François; Sahly, Iman; Tronche, François; de Kerchove d'Exaerde, Alban; Hamon, Michel; Adrien, Joëlle; Fabre, Véronique; Bonnavion, Patricia

    2018-06-13

    Serotonin (5-HT) neurons are involved in wake promotion and exert a strong inhibitory influence on rapid eye movement (REM) sleep. Such effects have been ascribed, at least in part to the action of 5-HT at post-synaptic 5-HT 1A receptors (5-HT 1A R) in the brainstem, a major wake/REM sleep regulatory center. However, the neuroanatomical substrate through which 5-HT 1A R influence sleep remains elusive. We therefore investigated whether a brainstem structure containing a high density of 5-HT 1A R mRNA, the GABAergic Gudden's dorsal tegmental nucleus (DTg), may contribute to 5-HT-mediated regulatory mechanisms of sleep-wake stages. We first found that bilateral lesions of the DTg promote wake at the expense of sleep. In addition, using local microinjections into the DTg in freely moving mice, we showed that local activation of 5-HT 1A R by the prototypical agonist 8-OH-DPAT enhances wake and reduces deeply REM sleep duration. The specific involvement of 5-HT 1A R in the latter effects was further demonstrated by ex vivo extracellular recordings showing that the selective 5-HT 1A R antagonist WAY 100635 prevented DTg neuron inhibition by 8-OH-DPAT. We next found that GABAergic neurons of the ventral DTg exclusively targets/connects glutamatergic neurons of the lateral mammillary nucleus (LM) in the posterior hypothalamus by means of anterograde and retrograde tracing techniques using cre driver mouse lines and a modified rabies virus. Altogether, our findings strongly support the idea that 5-HT-driven enhancement of wake results from 5-HT 1A R-mediated inhibition of DTg GABAergic neurons that would in turn disinhibit glutamatergic neurons in the mammillary bodies. We therefore propose a Raphe→DTg→LM pathway as a novel regulatory circuit underlying 5-HT modulation of arousal. Copyright © 2018. Published by Elsevier Ltd.

  11. Glucagon-like peptide-1 regulates brown adipose tissue thermogenesis via the gut-brain axis in rats.

    PubMed

    Krieger, Jean-Philippe; Santos da Conceição, Ellen Paula; Sanchez-Watts, Graciela; Arnold, Myrtha; Pettersen, Klaus G; Mohammed, Mazher; Modica, Salvatore; Lossel, Pius; Morrison, Shaun F; Madden, Christopher J; Watts, Alan G; Langhans, Wolfgang; Lee, Shin J

    2018-05-30

    Endogenous intestinal glucagon-like peptide-1 (GLP-1) controls satiation and glucose metabolism via vagal afferent neurons (VAN). Recently, VAN have received increasing attention for their role in brown adipose tissue (BAT) thermogenesis. It is however unclear whether VAN GLP-1 receptor (GLP-1R) signaling affects BAT thermogenesis and energy expenditure (EE), and whether this VAN mechanism contributes to energy balance. First, we tested the effect of the GLP-1R agonist Exendin-4 (Ex4, 0.3 μg/kg IP) on EE and BAT thermogenesis, and whether these effects require VAN GLP-1R signaling, using a rat model with a selective Glp1r knockdown (kd) in VAN. Second, we examined the role of VAN GLP-1R in energy balance during chronic high-fat diet (HFD) feeding in VAN Glp1r kd rats. Lastly, we used viral transsynaptic tracers to identify the possible neuronal substrates of such a gut-BAT interaction. VAN Glp1r kd attenuated the acute suppressive effects of Ex4 on EE and BAT thermogenesis. Consistent with this finding, the VAN Glp1r kd increased EE and BAT activity, diminished body weight gain, and improved insulin sensitivity compared to HFD-fed controls. Anterograde transsynaptic viral tracing of VAN infected major hypothalamic and hindbrain areas involved in BAT sympathetic regulation. Moreover, retrograde tracing from BAT combined with laser capture microdissection revealed that a population of VAN expressing Glp1r is synaptically connected to the BAT. Our findings reveal a novel role of VAN GLP-1R signaling in the regulation of EE and BAT thermogenesis, and imply that through this gut-brain-BAT connection intestinal GLP-1 plays a role in HFD-induced metabolic syndrome.

  12. Spontaneous regeneration of the corticospinal tract after transection in young rats: a key role of reactive astrocytes in making favorable and unfavorable conditions for regeneration.

    PubMed

    Iseda, T; Nishio, T; Kawaguchi, S; Yamanoto, M; Kawasaki, T; Wakisaka, S

    2004-01-01

    We demonstrated the occurrence of marked regeneration of the corticospinal tract (CST) after a single transection and failure of regeneration after a repeated transection in young rats. To provide convincing evidence for the complete transection and regeneration we used retrograde neuronal double labeling. Double-labeled neurons that took up the first tracer from the transection site and the second tracer from the injection site caudal to the transection site were observed in the sensorimotor cortex. The anterograde tracing method revealed various patterns of regeneration. In the most successful cases the vast majority of regenerated fibers descended in the normal tract and terminated normally whereas a trace amount of fibers coursed aberrantly. In the less successful cases fibers descended partly normally and partly aberrantly or totally aberrantly. To clarify the role of astrocytes in determining the success or failure of regeneration we compared expression of glial fibrillary acidic protein (GFAP), vimentin and neurofilament (NF) immunoreactivity (IR) in the lesion between single and repeated transections. In either transection, astrocytes disappeared from the CST near the lesion site as early as 3 h after lesioning. However, by 24 h after a single transection, immature astrocytes coexpressing GFAP- and vimentin-IR appeared in the former astrocyte-free area and NF-positive axons crossed the lesion. By contrast, after a repeated transection the astrocyte-free area spread and NF-positive axons never crossed the lesion. It appears likely that the major sign, and possibly cause of failure of regeneration is the prolonged disappearance of astrocytes in the lesioned tract area. Copyright 2004 IBRO

  13. Efferent pathways of the mouse lateral habenula.

    PubMed

    Quina, Lely A; Tempest, Lynne; Ng, Lydia; Harris, Julie A; Ferguson, Susan; Jhou, Thomas C; Turner, Eric E

    2015-01-01

    The lateral habenula (LHb) is part of the habenula complex of the dorsal thalamus. Recent studies of the LHb have focused on its projections to the ventral tegmental area (VTA) and rostromedial tegmental nucleus (RMTg), which contain γ-aminobutyric acid (GABA)ergic neurons that mediate reward prediction error via inhibition of dopaminergic activity. However, older studies in the rat have also identified LHb outputs to the lateral and posterior hypothalamus, median raphe, dorsal raphe, and dorsal tegmentum. Although these studies have shown that the medial and lateral divisions of the LHb have somewhat distinct projections, the topographic specificity of LHb efferents is not completely understood, and the relative extent of these projections to brainstem targets is unknown. Here we have used anterograde tracing with adeno-associated virus-mediated expression of green fluorescent protein, combined with serial two-photon tomography, to map the efferents of the LHb on a standard coordinate system for the entire mouse brain, and reconstruct the efferent pathways of the LHb in three dimensions. Using automated quantitation of fiber density, we show that in addition to the RMTg, the median raphe, caudal dorsal raphe, and pontine central gray are major recipients of LHb efferents. By using retrograde tract tracing with cholera toxin subunit B, we show that LHb neurons projecting to the hypothalamus, VTA, median raphe, caudal dorsal raphe, and pontine central gray reside in characteristic, but sometimes overlapping regions of the LHb. Together these results provide the anatomical basis for systematic studies of LHb function in neural circuits and behavior in mice. J. Comp. Neurol. 523:32-60, 2015. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  14. Integration of faces and vocalizations in ventral prefrontal cortex: Implications for the evolution of audiovisual speech

    PubMed Central

    Romanski, Lizabeth M.

    2012-01-01

    The integration of facial gestures and vocal signals is an essential process in human communication and relies on an interconnected circuit of brain regions, including language regions in the inferior frontal gyrus (IFG). Studies have determined that ventral prefrontal cortical regions in macaques [e.g., the ventrolateral prefrontal cortex (VLPFC)] share similar cytoarchitectonic features as cortical areas in the human IFG, suggesting structural homology. Anterograde and retrograde tracing studies show that macaque VLPFC receives afferents from the superior and inferior temporal gyrus, which provide complex auditory and visual information, respectively. Moreover, physiological studies have shown that single neurons in VLPFC integrate species-specific face and vocal stimuli. Although bimodal responses may be found across a wide region of prefrontal cortex, vocalization responsive cells, which also respond to faces, are mainly found in anterior VLPFC. This suggests that VLPFC may be specialized to process and integrate social communication information, just as the IFG is specialized to process and integrate speech and gestures in the human brain. PMID:22723356

  15. Replication-deficient adenovirus vector transfer of gfp reporter gene into supraoptic nucleus and subfornical organ neurons

    NASA Technical Reports Server (NTRS)

    Vasquez, E. C.; Johnson, R. F.; Beltz, T. G.; Haskell, R. E.; Davidson, B. L.; Johnson, A. K.

    1998-01-01

    The present studies used defined cells of the subfornical organ (SFO) and supraoptic nuclei (SON) as model systems to demonstrate the efficacy of replication-deficient adenovirus (Ad) encoding green fluorescent protein (GFP) for gene transfer. The studies investigated the effects of both direct transfection of the SON and indirect transfection (i.e., via retrograde transport) of SFO neurons. The SON of rats were injected with Ad (2 x 10(6) pfu) and sacrificed 1-7 days later for cell culture of the SON and of the SFO. In the SON, GFP fluorescence was visualized in both neuronal and nonneuronal cells while only neurons in the SFO expressed GFP. Successful in vitro transfection of cultured cells from the SON and SFO was also achieved with Ad (2 x 10(6) to 2 x 10(8) pfu). The expression of GFP in in vitro transfected cells was higher in nonneuronal (approximately 28% in SON and SFO) than neuronal (approximately 4% in SON and 10% in SFO) cells. The expression of GFP was time and viral concentration related. No apparent alterations in cellular morphology of transfected cells were detected and electrophysiological characterization of transfected cells was similar between GFP-expressing and nonexpressing neurons. We conclude that (1) GFP is an effective marker for gene transfer in living SON and SFO cells, (2) Ad infects both neuronal and nonneuronal cells, (3) Ad is taken up by axonal projections from the SON and retrogradely transported to the SFO where it is expressed at detectable levels, and (4) Ad does not adversely affect neuronal viability. These results demonstrate the feasibility of using adenoviral vectors to deliver genes to the SFO-SON axis. Copyright 1998 Academic Press.

  16. Activation of reciprocal pathways between arcuate nucleus and ventrolateral periaqueductal gray during electroacupuncture: involvement of VGLUT3

    PubMed Central

    Guo, Zhi-Ling; Longhurst, John C.

    2010-01-01

    Electroacupuncture (EA) at the Jianshi-Neiguan acupoints (P5-P6, overlying the median nerve) attenuates sympathoexcitatory responses through activation of the arcuate nucleus (ARC) and ventrolateral periaqueductal gray (vlPAG). Activation of the ARC or vlPAG respectively leads to neuronal excitation of the both nuclei during EA. However, direct projections between these two nuclei that could participate in central neural processing during EA have not been identified. The vesicular glutamate transporter 3 (VGLUT3) marks glutamatergic neurons. Thus, the present study evaluated direct neuronal projections between the ARC and vlPAG during EA, focusing on neurons containing VGLUT3. Seven to ten days after unilateral microinjection of a rodamine-conjugated microsphere retrograde tracer (100 nl) into the vlPAG or ARC, rats were subjected to EA or served as a sham-operated control. Low frequency (2 Hz) EA was performed bilaterally for 30 min at the P5-P6 acupoints. Perikarya containing the microsphere tracer were found in the ARC and vlPAG of both groups. Compared to controls (needle placement without electrical stimulation), c-Fos immunoreactivity and neurons double-labeled with c-Fos, an immediate early gene and the tracer were increased significantly in the ARC and vlPAG of EA-treated rats (both P<0.01). Moreover, some neurons were triple-labeled with c-Fos, the retrograde tracer and VGLUT3 in the two nuclei following EA stimulation (P<0.01, both nuclei). These results suggest that direct reciprocal projections between the ARC and vlPAG are available to participate in prolonged modulation by EA of sympathetic activity and that VGLUT3-containing neurons are an important neuronal phenotype involved in this process. PMID:20836994

  17. Coexpression of VGLUT1 and VGLUT2 in trigeminothalamic projection neurons in the principal sensory trigeminal nucleus of the rat.

    PubMed

    Ge, Shun-Nan; Ma, Yun-Fei; Hioki, Hiroyuki; Wei, Yan-Yan; Kaneko, Takeshi; Mizuno, Noboru; Gao, Guo-Dong; Li, Jin-Lian

    2010-08-01

    VGLUT1 and VGLUT2 have been reported to show complementary distributions in most brain regions and have been assumed to define distinct functional elements. In the present study, we first investigated the expression of VGLUT1 and VGLUT2 in the trigeminal sensory nuclear complex of the rat by dual-fluorescence in situ hybridization. Although VGLUT1 and/or VGLUT2 mRNA signals were detected in all the nuclei, colocalization was found only in the principal sensory trigeminal nucleus (Vp). About 64% of glutamatergic Vp neurons coexpressed VGLUT1 and VGLUT2, and the others expressed either VGLUT1 or VGLUT2, indicating that Vp neurons might be divided into three groups. We then injected retrograde tracer into the thalamic regions, including the posteromedial ventral nucleus (VPM) and posterior nuclei (Po), and observed that the majority of both VGLUT1- and VGLUT2-expressing Vp neurons were retrogradely labeled with the tracer. We further performed anterograde labeling of Vp neurons and observed immunoreactivies for anterograde tracer, VGLUT1, and VGLUT2 in the VPM and Po. Most anterogradely labeled axon terminals showed immunoreactivities for both VGLUT1 and VGLUT2 in the VPM and made asymmetric synapses with dendritic profiles of VPM neurons. On the other hand, in the Po, only a few axon terminals were labeled with anterograde tracer, and they were positive only for VGLUT2. The results indicated that Vp neurons expressing VGLUT1 and VGLUT2 project to the VPM, but not to the Po, although the functional differences of three distinct populations of Vp neurons, VGLUT1-, VGLUT2-, and VGLUT1/VGLUT2-expressing ones, remain unsettled. (c) 2010 Wiley-Liss, Inc.

  18. Deep learning and shapes similarity for joint segmentation and tracing single neurons in SEM images

    NASA Astrophysics Data System (ADS)

    Rao, Qiang; Xiao, Chi; Han, Hua; Chen, Xi; Shen, Lijun; Xie, Qiwei

    2017-02-01

    Extracting the structure of single neurons is critical for understanding how they function within the neural circuits. Recent developments in microscopy techniques, and the widely recognized need for openness and standardization provide a community resource for automated reconstruction of dendritic and axonal morphology of single neurons. In order to look into the fine structure of neurons, we use the Automated Tape-collecting Ultra Microtome Scanning Electron Microscopy (ATUM-SEM) to get images sequence of serial sections of animal brain tissue that densely packed with neurons. Different from other neuron reconstruction method, we propose a method that enhances the SEM images by detecting the neuronal membranes with deep convolutional neural network (DCNN) and segments single neurons by active contour with group shape similarity. We joint the segmentation and tracing together and they interact with each other by alternate iteration that tracing aids the selection of candidate region patch for active contour segmentation while the segmentation provides the neuron geometrical features which improve the robustness of tracing. The tracing model mainly relies on the neuron geometrical features and is updated after neuron being segmented on the every next section. Our method enables the reconstruction of neurons of the drosophila mushroom body which is cut to serial sections and imaged under SEM. Our method provides an elementary step for the whole reconstruction of neuronal networks.

  19. Ghrelin fibers from lateral hypothalamus project to nucleus tractus solitaries and are involved in gastric motility regulation in cisplatin-treated rats.

    PubMed

    Gong, Yanling; Liu, Yang; Liu, Fei; Wang, Shasha; Jin, Hong; Guo, Feifei; Xu, Luo

    2017-03-15

    Ghrelin can alleviate cancer chemotherapy-induced dyspepsia in rodents, though the neural mechanisms involved are not known. Therefore, ghrelin projections from the lateral hypothalamus (LH) and its involvement in the regulation of gastric motility in cisplatin-treated rats were investigated with a multi-disciplined approach. Retrograde tracing combined with fluoro-immunohistochemical staining were used to investigate ghrelin fiber projections arising from LH and projecting to nucleus tractus solitaries (NTS). Results revealed that ghrelin fibers originating in LH project to NTS. Expression of ghrelin and its receptor growth hormone secretagogue receptor (GHS-R1a) in LH and NTS were detected by Western Blot. 2days after cisplatin dosing, expression of ghrelin in LH decreased while GHS-R1a in both LH and NTS increased. In electrophysiological experiments, the effects of N-methyl-d-aspartate (NMDA) microinjection in LH on neuronal discharge of gastric distension-responsive neurons in NTS and gastric motility were assessed. NMDA in LH excited most of ghrelin-responsive gastric distension (GD)-sensitive neurons in NTS and promoted gastric motility. This effect was partially blocked by ghrelin antibody in NTS. Furthermore, the excitatory effects of NMDA in cisplatin-treated rats were weaker than those in saline-treated rats. Behaviorally, cisplatin induced a significant increase of kaolin consumption and decrease of food intake. These studies reveal a decreased expression of ghrelin in LH and up-regulation of GHS-R1a in LH and NTS, which are involved in the regulation of GD neuronal discharge in NTS and gastric motility. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Sex-specific neuroanatomical correlates of fear expression in prefrontal-amygdala circuits.

    PubMed

    Gruene, Tina M; Roberts, Elian; Thomas, Virginia; Ronzio, Ashley; Shansky, Rebecca M

    2015-08-01

    The neural projections from the infralimbic region of the prefrontal cortex to the amygdala are important for the maintenance of conditioned fear extinction. Neurons in this pathway exhibit a unique pattern of structural plasticity that is sex-dependent, but the relationship between the morphologic characteristics of these neurons and successful extinction in male and female subjects is unknown. Using classic cued fear conditioning and an extinction paradigm in large cohorts of male and female rats, we identified subpopulations of both sexes that exhibited high (HF) or low (LF) levels of freezing on an extinction retrieval test, representing failed or successful extinction maintenance, respectively. We combined retrograde tracing with fluorescent intracellular microinjections to perform three-dimensional reconstructions of infralimbic neurons that project to the basolateral amygdala in these groups. The HF and LF male rats exhibited neuroanatomical distinctions that were not observed in HF or LF female rats. A retrospective analysis of behavior during fear conditioning and extinction revealed that despite no overall sex differences in freezing behavior, HF and LF phenotypes emerged in male rats during extinction and in female rats during fear conditioning, which does not involve infralimbic-basolateral amygdala neurons. Our results suggest that the neural processes underlying successful or failed extinction maintenance may be sex-specific. These findings are relevant not only to future basic research on sex differences in fear conditioning and extinction but also to exposure-based clinical therapies, which are similar in premise to fear extinction and which are primarily used to treat disorders that are more common in women than in men. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Postsynaptic Depolarization Enhances GABA Drive to Dorsomedial Hypothalamic Neurons through Somatodendritic Cholecystokinin Release.

    PubMed

    Crosby, Karen M; Baimoukhametova, Dinara V; Bains, Jaideep S; Pittman, Quentin J

    2015-09-23

    Somatodendritically released peptides alter synaptic function through a variety of mechanisms, including autocrine actions that liberate retrograde transmitters. Cholecystokinin (CCK) is a neuropeptide expressed in neurons in the dorsomedial hypothalamic nucleus (DMH), a region implicated in satiety and stress. There are clear demonstrations that exogenous CCK modulates food intake and neuropeptide expression in the DMH, but there is no information on how endogenous CCK alters synaptic properties. Here, we provide the first report of somatodendritic release of CCK in the brain in male Sprague Dawley rats. CCK is released from DMH neurons in response to repeated postsynaptic depolarizations, and acts in an autocrine fashion on CCK2 receptors to enhance postsynaptic NMDA receptor function and liberate the retrograde transmitter, nitric oxide (NO). NO subsequently acts presynaptically to enhance GABA release through a soluble guanylate cyclase-mediated pathway. These data provide the first demonstration of synaptic actions of somatodendritically released CCK in the hypothalamus and reveal a new form of retrograde plasticity, depolarization-induced potentiation of inhibition. Significance statement: Somatodendritic signaling using endocannabinoids or nitric oxide to alter the efficacy of afferent transmission is well established. Despite early convincing evidence for somatodendritic release of neurohypophysial peptides in the hypothalamus, there is only limited evidence for this mode of release for other peptides. Here, we provide the first evidence for somatodendritic release of the satiety peptide cholecystokinin (CCK) in the brain. We also reveal a new form of synaptic plasticity in which postsynaptic depolarization results in enhancement of inhibition through the somatodendritic release of CCK. Copyright © 2015 the authors 0270-6474/15/3513160-11$15.00/0.

  2. Retrograde transport of (/sup 3/H)-D-aspartate label by cochlear and vestibular efferent neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarz, D.W.; Schwarz, I.E.

    1988-01-01

    (/sup 3/H)-D-aspartic acid was injected into the inner ear of rats. After a six hour survival time, labeled cells were found at all locations known to contain efferent cochlear or vestibular neurons. Most labeled neurons were found in the ipsilateral lateral superior olivary nucleus (LSO), although both ventral nuclei of the trapezoid body (VTB), group E, and the caudal pontine reticular nucleus (CPR) just adjacent to the ascending limb of the facial nerve also contained labeled cells. Because not all efferent neurons in the rat could be previously shown to be cholinergic, aspartate and glutamate are efferent transmitter candidates.

  3. A case of persistent retrograde amnesia following a dissociative fugue: neuropsychological and neurofunctional underpinnings of loss of autobiographical memory and self-awareness.

    PubMed

    Hennig-Fast, Kristina; Meister, Franziska; Frodl, Thomas; Beraldi, Anna; Padberg, Frank; Engel, Rolf R; Reiser, Maximilian; Möller, Hans-Jürgen; Meindl, Thomas

    2008-10-01

    Autobiographical memory relies on complex interactions between episodic memory contents, associated emotions and a sense of self-continuity over the course of one's life. This paper reports a study based upon the case of the patient NN who suffered from a complete loss of autobiographical memory and awareness of identity subsequent to a dissociative fugue. Neuropsychological, behavioral, and functional neuroimaging tests converged on the conclusion that NN suffered from a selective retrograde amnesia following an episode of dissociative fugue, during which he had lost explicit knowledge and vivid memory of his personal past. NN's loss of self-related memories was mirrored in neurobiological changes after the fugue whereas his semantic memory remained intact. Although NN still claimed to suffer from a stable loss of autobiographical, self-relevant memories 1 year after the fugue state, a proportionate improvement in underlying fronto-temporal neuronal networks was evident at this point in time. In spite of this improvement in neuronal activation, his anterograde visual memory had been decreased. It is posited that our data provide evidence for the important role of visual processing in autobiographical memory as well as for the efficiency of protective control mechanisms that constitute functional retrograde amnesia.

  4. Emotion strengthens high-priority memory traces but weakens low-priority memory traces.

    PubMed

    Sakaki, Michiko; Fryer, Kellie; Mather, Mara

    2014-02-01

    When people encounter emotional events, their memory for those events is typically enhanced. But it has been unclear how emotionally arousing events influence memory for preceding information. Does emotional arousal induce retrograde amnesia or retrograde enhancement? The current study revealed that this depends on the top-down goal relevance of the preceding information. Across three studies, we found that emotional arousal induced by one image facilitated memory for the preceding neutral item when people prioritized that neutral item. In contrast, an emotionally arousing image impaired memory for the preceding neutral item when people did not prioritize that neutral item. Emotional arousal elicited by both negative and positive pictures showed this pattern of enhancing or impairing memory for the preceding stimulus depending on its priority. These results indicate that emotional arousal amplifies the effects of top-down priority in memory formation.

  5. Spinally projecting preproglucagon axons preferentially innervate sympathetic preganglionic neurons

    PubMed Central

    Llewellyn-Smith, I.J.; Marina, N.; Manton, R.N.; Reimann, F.; Gribble, F.M.; Trapp, S.

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) affects central autonomic neurons, including those controlling the cardiovascular system, thermogenesis, and energy balance. Preproglucagon (PPG) neurons, located mainly in the nucleus tractus solitarius (NTS) and medullary reticular formation, produce GLP-1. In transgenic mice expressing glucagon promoter-driven yellow fluorescent protein (YFP), these brainstem PPG neurons project to many central autonomic regions where GLP-1 receptors are expressed. The spinal cord also contains GLP-1 receptor mRNA but the distribution of spinal PPG axons is unknown. Here, we used two-color immunoperoxidase labeling to examine PPG innervation of spinal segments T1–S4 in YFP-PPG mice. Immunoreactivity for YFP identified spinal PPG axons and perikarya. We classified spinal neurons receiving PPG input by immunoreactivity for choline acetyltransferase (ChAT), nitric oxide synthase (NOS) and/or Fluorogold (FG) retrogradely transported from the peritoneal cavity. FG microinjected at T9 defined cell bodies that supplied spinal PPG innervation. The deep dorsal horn of lower lumbar cord contained YFP-immunoreactive neurons. Non-varicose, YFP-immunoreactive axons were prominent in the lateral funiculus, ventral white commissure and around the ventral median fissure. In T1–L2, varicose, YFP-containing axons closely apposed many ChAT-immunoreactive sympathetic preganglionic neurons (SPN) in the intermediolateral cell column (IML) and dorsal lamina X. In the sacral parasympathetic nucleus, about 10% of ChAT-immunoreactive preganglionic neurons received YFP appositions, as did occasional ChAT-positive motor neurons throughout the rostrocaudal extent of the ventral horn. YFP appositions also occurred on NOS-immunoreactive spinal interneurons and on spinal YFP-immunoreactive neurons. Injecting FG at T9 retrogradely labeled many YFP-PPG cell bodies in the medulla but none of the spinal YFP-immunoreactive neurons. These results show that brainstem PPG neurons innervate spinal autonomic and somatic motor neurons. The distributions of spinal PPG axons and spinal GLP-1 receptors correlate well. SPN receive the densest PPG innervation. Brainstem PPG neurons could directly modulate sympathetic outflow through their spinal inputs to SPN or interneurons. PMID:25450967

  6. How Does the Sparse Memory “Engram” Neurons Encode the Memory of a Spatial–Temporal Event?

    PubMed Central

    Guan, Ji-Song; Jiang, Jun; Xie, Hong; Liu, Kai-Yuan

    2016-01-01

    Episodic memory in human brain is not a fixed 2-D picture but a highly dynamic movie serial, integrating information at both the temporal and the spatial domains. Recent studies in neuroscience reveal that memory storage and recall are closely related to the activities in discrete memory engram (trace) neurons within the dentate gyrus region of hippocampus and the layer 2/3 of neocortex. More strikingly, optogenetic reactivation of those memory trace neurons is able to trigger the recall of naturally encoded memory. It is still unknown how the discrete memory traces encode and reactivate the memory. Considering a particular memory normally represents a natural event, which consists of information at both the temporal and spatial domains, it is unknown how the discrete trace neurons could reconstitute such enriched information in the brain. Furthermore, as the optogenetic-stimuli induced recall of memory did not depend on firing pattern of the memory traces, it is most likely that the spatial activation pattern, but not the temporal activation pattern of the discrete memory trace neurons encodes the memory in the brain. How does the neural circuit convert the activities in the spatial domain into the temporal domain to reconstitute memory of a natural event? By reviewing the literature, here we present how the memory engram (trace) neurons are selected and consolidated in the brain. Then, we will discuss the main challenges in the memory trace theory. In the end, we will provide a plausible model of memory trace cell network, underlying the conversion of neural activities between the spatial domain and the temporal domain. We will also discuss on how the activation of sparse memory trace neurons might trigger the replay of neural activities in specific temporal patterns. PMID:27601979

  7. How Does the Sparse Memory "Engram" Neurons Encode the Memory of a Spatial-Temporal Event?

    PubMed

    Guan, Ji-Song; Jiang, Jun; Xie, Hong; Liu, Kai-Yuan

    2016-01-01

    Episodic memory in human brain is not a fixed 2-D picture but a highly dynamic movie serial, integrating information at both the temporal and the spatial domains. Recent studies in neuroscience reveal that memory storage and recall are closely related to the activities in discrete memory engram (trace) neurons within the dentate gyrus region of hippocampus and the layer 2/3 of neocortex. More strikingly, optogenetic reactivation of those memory trace neurons is able to trigger the recall of naturally encoded memory. It is still unknown how the discrete memory traces encode and reactivate the memory. Considering a particular memory normally represents a natural event, which consists of information at both the temporal and spatial domains, it is unknown how the discrete trace neurons could reconstitute such enriched information in the brain. Furthermore, as the optogenetic-stimuli induced recall of memory did not depend on firing pattern of the memory traces, it is most likely that the spatial activation pattern, but not the temporal activation pattern of the discrete memory trace neurons encodes the memory in the brain. How does the neural circuit convert the activities in the spatial domain into the temporal domain to reconstitute memory of a natural event? By reviewing the literature, here we present how the memory engram (trace) neurons are selected and consolidated in the brain. Then, we will discuss the main challenges in the memory trace theory. In the end, we will provide a plausible model of memory trace cell network, underlying the conversion of neural activities between the spatial domain and the temporal domain. We will also discuss on how the activation of sparse memory trace neurons might trigger the replay of neural activities in specific temporal patterns.

  8. The mesencephalic reticular formation as a conduit for primate collicular gaze control: tectal inputs to neurons targeting the spinal cord and medulla.

    PubMed

    Perkins, Eddie; Warren, Susan; May, Paul J

    2009-08-01

    The superior colliculus (SC), which directs orienting movements of both the eyes and head, is reciprocally connected to the mesencephalic reticular formation (MRF), suggesting the latter is involved in gaze control. The MRF has been provisionally subdivided to include a rostral portion, which subserves vertical gaze, and a caudal portion, which subserves horizontal gaze. Both regions contain cells projecting downstream that may provide a conduit for tectal signals targeting the gaze control centers which direct head movements. We determined the distribution of cells targeting the cervical spinal cord and rostral medullary reticular formation (MdRF), and investigated whether these MRF neurons receive input from the SC by the use of dual tracer techniques in Macaca fascicularis monkeys. Either biotinylated dextran amine or Phaseolus vulgaris leucoagglutinin was injected into the SC. Wheat germ agglutinin conjugated horseradish peroxidase was placed into the ipsilateral cervical spinal cord or medial MdRF to retrogradely label MRF neurons. A small number of medially located cells in the rostral and caudal MRF were labeled following spinal cord injections, and greater numbers were labeled in the same region following MdRF injections. In both cases, anterogradely labeled tectoreticular terminals were observed in close association with retrogradely labeled neurons. These close associations between tectoreticular terminals and neurons with descending projections suggest the presence of a trans-MRF pathway that provides a conduit for tectal control over head orienting movements. The medial location of these reticulospinal and reticuloreticular neurons suggests this MRF region may be specialized for head movement control. (c) 2009 Wiley-Liss, Inc.

  9. Synaptic plasticity in the medial vestibular nuclei: role of glutamate receptors and retrograde messengers in rat brainstem slices.

    PubMed

    Grassi, S; Pettorossi, V E

    2001-08-01

    The analysis of cellular-molecular events mediating synaptic plasticity within vestibular nuclei is an attempt to explain the mechanisms underlying vestibular plasticity phenomena. The present review is meant to illustrate the main results, obtained in vitro, on the mechanisms underlying long-term changes in synaptic strength within the medial vestibular nuclei. The synaptic plasticity phenomena taking place at the level of vestibular nuclei could be useful for adapting and consolidating the efficacy of vestibular neuron responsiveness to environmental requirements, as during visuo-vestibular recalibration and vestibular compensation. Following a general introduction on the most salient features of vestibular compensation and visuo-vestibular adaptation, which are two plastic events involving neuronal circuitry within the medial vestibular nuclei, the second and third sections describe the results from rat brainstem slice studies, demonstrating the possibility to induce long-term potentiation and depression in the medial vestibular nuclei, following high frequency stimulation of the primary vestibular afferents. In particular the mechanisms sustaining the induction and expression of vestibular long-term potentiation and depression, such as the role of various glutamate receptors and retrograde messengers have been described. The relevant role of the interaction between the platelet-activating factor, acting as a retrograde messenger, and the presynaptic metabotropic glutamate receptors, in determining the full expression of vestibular long-term potentiation is also underlined. In addition, the mechanisms involved in vestibular long-term potentiation have been compared with those leading to long-term potentiation in the hippocampus to emphasize the most significant differences emerging from vestibular studies. The fourth part, describes recent results demonstrating the essential role of nitric oxide, another retrograde messenger, in the induction of vestibular potentiation. Finally the fifth part suggests the possible functional significance of different action times of the two retrograde messengers and metabotropic glutamate receptors, which are involved in mediating the presynaptic mechanism sustaining vestibular long-term potentiation.

  10. Individual neurons in the rat lateral habenular complex project mostly to the dopaminergic ventral tegmental area or to the serotonergic raphe nuclei.

    PubMed

    Bernard, René; Veh, Rüdiger W

    2012-08-01

    The lateral habenular complex (LHb) is a bilateral epithalamic brain structure involved in the modulation of ascending monoamine systems in response to afferents from limbic regions and basal ganglia. The LHb is implicated in various biological functions, such as reward, sleep-wake cycle, feeding, pain processing, and memory formation. The modulatory role of the LHb is partially assumed by putative spontaneously active LHb neurons projecting to the dopaminergic ventral tegmental area (VTA) and to the serotonergic median (MnR) and dorsal raphe nuclei (DR). All four nuclei form a complex and coordinated network to evoke appropriate responses to reward-related stimuli. At present it is not known whether individual LHb neurons project to only one or to more than one monoaminergic nucleus. To answer this question, we made dual injections of two different retrograde tracers into the rat VTA and either DR or MnR. Tracers were visualized by immunohistochemistry. In coronal sections, the different retrogradly labeled habenular neurons were quantified and assigned to the corresponding habenular subnuclei. Our results show that 1) the distribution of neurons in the LHb projecting to the three monoamine nuclei is similar and exhibits a great overlap, 2) the vast majority of LHb projection neurons target one monoaminergic nucleus only, and 3) very few, heterogeneously distributed LHb neurons project to both dopaminergic and serotonergic nuclei. These results imply that the LHb forms both separate and interconnected circuits with each monoaminergic nucleus, permitting the LHb to modulate its output to different monoamine systems either independently or jointly. Copyright © 2012 Wiley Periodicals, Inc.

  11. Synaptic sprouting increases the uptake capacities of motoneurons in amyotrophic lateral sclerosis mice

    PubMed Central

    Millecamps, Stéphanie; Nicolle, Delphine; Ceballos-Picot, Irène; Mallet, Jacques; Barkats, Martine

    2001-01-01

    Using adenoviruses encoding reporter genes as retrograde tracers, we assessed the capacity of motoneurons to take up and retrogradely transport adenoviral particles injected into the muscles of transgenic mice expressing the G93A human superoxide dismutase mutation, a model of amyotrophic lateral sclerosis. Surprisingly, transgene expression in the motoneurons was significantly higher in symptomatic mice than in control or presymptomatic mice. Using botulinum toxin to induce nerve sprouting at neuromuscular junctions, we showed that the unexpectedly high level of motoneurons retrograde transduction results, at least in part, from newly acquired uptake properties of the sprouts. These findings demonstrate the remarkable uptake properties of amyotrophic lateral sclerosis motoneurons in response to denervation and the rationale of using intramuscular injections of adenoviruses to overexpress therapeutic proteins in motor neuron diseases. PMID:11404466

  12. A Virtual Reality Visualization Tool for Neuron Tracing

    PubMed Central

    Usher, Will; Klacansky, Pavol; Federer, Frederick; Bremer, Peer-Timo; Knoll, Aaron; Angelucci, Alessandra; Pascucci, Valerio

    2017-01-01

    Tracing neurons in large-scale microscopy data is crucial to establishing a wiring diagram of the brain, which is needed to understand how neural circuits in the brain process information and generate behavior. Automatic techniques often fail for large and complex datasets, and connectomics researchers may spend weeks or months manually tracing neurons using 2D image stacks. We present a design study of a new virtual reality (VR) system, developed in collaboration with trained neuroanatomists, to trace neurons in microscope scans of the visual cortex of primates. We hypothesize that using consumer-grade VR technology to interact with neurons directly in 3D will help neuroscientists better resolve complex cases and enable them to trace neurons faster and with less physical and mental strain. We discuss both the design process and technical challenges in developing an interactive system to navigate and manipulate terabyte-sized image volumes in VR. Using a number of different datasets, we demonstrate that, compared to widely used commercial software, consumer-grade VR presents a promising alternative for scientists. PMID:28866520

  13. A Virtual Reality Visualization Tool for Neuron Tracing.

    PubMed

    Usher, Will; Klacansky, Pavol; Federer, Frederick; Bremer, Peer-Timo; Knoll, Aaron; Yarch, Jeff; Angelucci, Alessandra; Pascucci, Valerio

    2018-01-01

    Tracing neurons in large-scale microscopy data is crucial to establishing a wiring diagram of the brain, which is needed to understand how neural circuits in the brain process information and generate behavior. Automatic techniques often fail for large and complex datasets, and connectomics researchers may spend weeks or months manually tracing neurons using 2D image stacks. We present a design study of a new virtual reality (VR) system, developed in collaboration with trained neuroanatomists, to trace neurons in microscope scans of the visual cortex of primates. We hypothesize that using consumer-grade VR technology to interact with neurons directly in 3D will help neuroscientists better resolve complex cases and enable them to trace neurons faster and with less physical and mental strain. We discuss both the design process and technical challenges in developing an interactive system to navigate and manipulate terabyte-sized image volumes in VR. Using a number of different datasets, we demonstrate that, compared to widely used commercial software, consumer-grade VR presents a promising alternative for scientists.

  14. A Circuit for Motor Cortical Modulation of Auditory Cortical Activity

    PubMed Central

    Nelson, Anders; Schneider, David M.; Takatoh, Jun; Sakurai, Katsuyasu; Wang, Fan

    2013-01-01

    Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and drive auditory hallucinations in pathological states, the synaptic organization and function of circuitry linking the motor and auditory cortices remain unclear. Here we describe experiments in the mouse that characterize circuitry well suited to transmit motor-related signals to the auditory cortex. Using retrograde viral tracing, we established that neurons in superficial and deep layers of the medial agranular motor cortex (M2) project directly to the auditory cortex and that the axons of some of these deep-layer cells also target brainstem motor regions. Using in vitro whole-cell physiology, optogenetics, and pharmacology, we determined that M2 axons make excitatory synapses in the auditory cortex but exert a primarily suppressive effect on auditory cortical neuron activity mediated in part by feedforward inhibition involving parvalbumin-positive interneurons. Using in vivo intracellular physiology, optogenetics, and sound playback, we also found that directly activating M2 axon terminals in the auditory cortex suppresses spontaneous and stimulus-evoked synaptic activity in auditory cortical neurons and that this effect depends on the relative timing of motor cortical activity and auditory stimulation. These experiments delineate the structural and functional properties of a corticocortical circuit that could enable movement-related suppression of auditory cortical activity. PMID:24005287

  15. Serotonin 2B Receptors in Mesoaccumbens Dopamine Pathway Regulate Cocaine Responses.

    PubMed

    Doly, Stéphane; Quentin, Emily; Eddine, Raphaël; Tolu, Stefania; Fernandez, Sebastian P; Bertran-Gonzalez, Jesus; Valjent, Emmanuel; Belmer, Arnauld; Viñals, Xavier; Callebert, Jacques; Faure, Philippe; Meye, Frank J; Hervé, Denis; Robledo, Patricia; Mameli, Manuel; Launay, Jean-Marie; Maldonado, Rafael; Maroteaux, Luc

    2017-10-25

    Addiction is a maladaptive pattern of behavior following repeated use of reinforcing drugs in predisposed individuals, leading to lifelong changes. Common among these changes are alterations of neurons releasing dopamine in the ventral and dorsal territories of the striatum. The serotonin 5-HT 2B receptor has been involved in various behaviors, including impulsivity, response to antidepressants, and response to psychostimulants, pointing toward putative interactions with the dopamine system. Despite these findings, it remains unknown whether 5-HT 2B receptors directly modulate dopaminergic activity and the possible mechanisms involved. To answer these questions, we investigated the contribution of 5-HT 2B receptors to cocaine-dependent behavioral responses. Male mice permanently lacking 5-HT 2B receptors, even restricted to dopamine neurons, developed heightened cocaine-induced locomotor responses. Retrograde tracing combined with single-cell mRNA amplification indicated that 5-HT 2B receptors are expressed by mesolimbic dopamine neurons. In vivo and ex vivo electrophysiological recordings showed that 5-HT 2B -receptor inactivation in dopamine neurons affects their neuronal activity and increases AMPA-mediated over NMDA-mediated excitatory synaptic currents. These changes are associated with lower ventral striatum dopamine activity and blunted cocaine self-administration. These data identify the 5-HT 2B receptor as a pharmacological intermediate and provide mechanistic insight into attenuated dopamine tone following exposure to drugs of abuse. SIGNIFICANCE STATEMENT Here we report that mice lacking 5-HT 2B receptors totally or exclusively in dopamine neurons exhibit heightened cocaine-induced locomotor responses. Despite the sensitized state of these mice, we found that associated changes include lower ventral striatum dopamine activity and lower cocaine operant self-administration. We described the selective expression of 5-HT 2B receptors in a subpopulation of dopamine neurons sending axons to the ventral striatum. Increased bursting in vivo properties of these dopamine neurons and a concomitant increase in AMPA synaptic transmission to ex vivo dopamine neurons were found in mice lacking 5-HT 2B receptors. These data support the idea that the chronic 5-HT 2B -receptor inhibition makes mice behave like animals already exposed to cocaine with higher cocaine-induced locomotion associated with changes in dopamine neuron reactivity. Copyright © 2017 the authors 0270-6474/17/3710373-17$15.00/0.

  16. Serotonergic systems associated with arousal and vigilance behaviors following administration of anxiogenic drugs.

    PubMed

    Abrams, J K; Johnson, P L; Hay-Schmidt, A; Mikkelsen, J D; Shekhar, A; Lowry, C A

    2005-01-01

    Serotonergic systems play important roles in modulating behavioral arousal, including behavioral arousal and vigilance associated with anxiety states. To further our understanding of the neural systems associated with increases in anxiety states, we investigated the effects of multiple anxiogenic drugs on topographically organized subpopulations of serotonergic neurons using double immunohistochemical staining for c-Fos and tryptophan hydroxylase combined with topographical analysis of the rat dorsal raphe nucleus (DR). Anxiogenic drugs with diverse pharmacological properties including the adenosine receptor antagonist caffeine, the serotonin 5-HT2A/2C receptor agonist m-chlorophenyl piperazine (mCPP), the alpha2-adrenoreceptor antagonist yohimbine, and the benzodiazepine receptor partial inverse agonist N-methyl-beta-carboline-3-carboxamide (FG-7142) induced increases in behavioral arousal and vigilance behaviors consistent with an increase in anxiety state. In addition, these anxiogenic drugs, excluding yohimbine, had convergent actions on an anatomically-defined subset of serotonergic neurons within the middle and caudal, dorsal subdivision of the DR. High resolution topographical analysis revealed that at the mid-rostrocaudal level, caffeine and FG-7142 had convergent effects on c-Fos expression in serotonergic neurons that were restricted to a previously undefined region, which we have named the shell region of the dorsal part of the dorsal raphe nucleus (DRDSh), that overlaps the anatomical border between the dorsal part of the dorsal raphe nucleus, the ventral part of the dorsal raphe nucleus (DRV), and the ventrolateral part of the dorsal raphe nucleus (DRVL). Retrograde tracing methods revealed that DRDSh contains large numbers of neurons projecting to the basolateral amygdaloid nucleus, a forebrain structure important for emotional appraisal and modulation of anxiety-related physiological and behavioral responses. Together these findings support the hypothesis that there is a functional topographical organization in the DR and are consistent with the hypothesis that anxiogenic drugs have selective actions on a subpopulation of serotonergic neurons projecting to a distributed central autonomic and emotional motor control system regulating anxiety states and anxiety-related physiological and behavioral responses.

  17. A Hypothalamic Switch for REM and Non-REM Sleep.

    PubMed

    Chen, Kai-Siang; Xu, Min; Zhang, Zhe; Chang, Wei-Cheng; Gaj, Thomas; Schaffer, David V; Dan, Yang

    2018-03-07

    Rapid eye movement (REM) and non-REM (NREM) sleep are controlled by specific neuronal circuits. Here we show that galanin-expressing GABAergic neurons in the dorsomedial hypothalamus (DMH) comprise separate subpopulations with opposing effects on REM versus NREM sleep. Microendoscopic calcium imaging revealed diverse sleep-wake activity of DMH GABAergic neurons, but the galanin-expressing subset falls into two distinct groups, either selectively activated (REM-on) or suppressed (REM-off) during REM sleep. Retrogradely labeled, preoptic area (POA)-projecting galaninergic neurons are REM-off, whereas the raphe pallidus (RPA)-projecting neurons are primarily REM-on. Bidirectional optogenetic manipulations showed that the POA-projecting neurons promote NREM sleep and suppress REM sleep, while the RPA-projecting neurons have the opposite effects. Thus, REM/NREM switch is regulated antagonistically by DMH galaninergic neurons with intermingled cell bodies but distinct axon projections. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. LC3 binding to the scaffolding protein JIP1 regulates processive dynein-driven transport of autophagosomes.

    PubMed

    Fu, Meng-Meng; Nirschl, Jeffrey J; Holzbaur, Erika L F

    2014-06-09

    Autophagy is essential for maintaining cellular homeostasis in neurons, where autophagosomes undergo robust unidirectional retrograde transport along axons. We find that the motor scaffolding protein JIP1 binds directly to the autophagosome adaptor LC3 via a conserved LIR motif. This interaction is required for the initial exit of autophagosomes from the distal axon, for sustained retrograde transport along the midaxon, and for autophagosomal maturation in the proximal axon. JIP1 binds directly to the dynein activator dynactin but also binds to and activates kinesin-1 in a phosphorylation-dependent manner. Following JIP1 depletion, phosphodeficient JIP1-S421A rescues retrograde transport, while phosphomimetic JIP1-S421D aberrantly activates anterograde transport. During normal autophagosome transport, residue S421 of JIP1 may be maintained in a dephosphorylated state by autophagosome-associated MKP1 phosphatase. Moreover, binding of LC3 to JIP1 competitively disrupts JIP1-mediated activation of kinesin. Thus, dual mechanisms prevent aberrant activation of kinesin to ensure robust retrograde transport of autophagosomes along the axon. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Arp2/3 complex–dependent actin networks constrain myosin II function in driving retrograde actin flow

    PubMed Central

    Yang, Qing; Zhang, Xiao-Feng; Pollard, Thomas D.

    2012-01-01

    The Arp2/3 complex nucleates actin filaments to generate networks at the leading edge of motile cells. Nonmuscle myosin II produces contractile forces involved in driving actin network translocation. We inhibited the Arp2/3 complex and/or myosin II with small molecules to investigate their respective functions in neuronal growth cone actin dynamics. Inhibition of the Arp2/3 complex with CK666 reduced barbed end actin assembly site density at the leading edge, disrupted actin veils, and resulted in veil retraction. Strikingly, retrograde actin flow rates increased with Arp2/3 complex inhibition; however, when myosin II activity was blocked, Arp2/3 complex inhibition now resulted in slowing of retrograde actin flow and veils no longer retracted. Retrograde flow rate increases induced by Arp2/3 complex inhibition were independent of Rho kinase activity. These results provide evidence that, although the Arp2/3 complex and myosin II are spatially segregated, actin networks assembled by the Arp2/3 complex can restrict myosin II–dependent contractility with consequent effects on growth cone motility. PMID:22711700

  20. NDE1 and GSK3β Associate with TRAK1 and Regulate Axonal Mitochondrial Motility: Identification of Cyclic AMP as a Novel Modulator of Axonal Mitochondrial Trafficking.

    PubMed

    Ogawa, Fumiaki; Murphy, Laura C; Malavasi, Elise L V; O'Sullivan, Shane T; Torrance, Helen S; Porteous, David J; Millar, J Kirsty

    2016-05-18

    Mitochondria are essential for neuronal function, providing the energy required to power neurotransmission, and fulfilling many important additional roles. In neurons, mitochondria must be efficiently transported to sites, including synapses, where their functions are required. Neurons, with their highly elongated morphology, are consequently extremely sensitive to defective mitochondrial trafficking which can lead to neuronal ill-health/death. We recently demonstrated that DISC1 associates with mitochondrial trafficking complexes where it associates with the core kinesin and dynein adaptor molecule TRAK1. We now show that the DISC1 interactors NDE1 and GSK3β also associate robustly with TRAK1 and demonstrate that NDE1 promotes retrograde axonal mitochondrial movement. GSK3β is known to modulate axonal mitochondrial motility, although reports of its actual effect are conflicting. We show that, in our system, GSK3β promotes anterograde mitochondrial transport. Finally, we investigated the influence of cAMP elevation upon mitochondrial motility, and found a striking increase in mitochondrial motility and retrograde movement. DISC1, NDE1, and GSK3β are implicated as risk factors for major mental illness. Our demonstration that they function together within mitochondrial trafficking complexes suggests that defective mitochondrial transport may be a contributory disease mechanism in some cases of psychiatric disorder.

  1. Effect of streptozotocin-induced diabetes on motor representations in the motor cortex and corticospinal tract in rats.

    PubMed

    Muramatsu, Ken; Ikutomo, Masako; Tamaki, Toru; Shimo, Satoshi; Niwa, Masatoshi

    2018-02-01

    Motor disorders in patients with diabetes are associated with diabetic peripheral neuropathy, which can lead to symptoms such as lower extremity weakness. However, it is unclear whether central motor system disorders can disrupt motor function in patients with diabetes. In a streptozotocin-induced rat model of type 1 diabetes, we used intracortical microstimulation to evaluate motor representations in the motor cortex, recorded antidromic motor cortex responses to spinal cord stimulation to evaluate the function of corticospinal tract (CST) axons, and used retrograde labeling to evaluate morphological alterations of CST neurons. The diabetic rats exhibited size reductions in the hindlimb area at 4 weeks and in trunk and forelimb areas after 13 weeks, with the hindlimb and trunk area reductions being the most severe. Other areas were unaffected. Additionally, we observed reduced antidromic responses in CST neurons with axons projecting to lumbar spinal segments (CST-L) but not in those with axons projecting to cervical segments (CST-C). This was consistent with the observation that retrograde-labeled CST-L neurons were decreased in number following tracer injection into the spinal cord in diabetic animals but that CST-C neurons were preserved. These results show that diabetes disrupts the CST system components controlling hindlimb and trunk movement. This disruption may contribute to lower extremity weakness in patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. On remembering and forgetting our autobiographical pasts: retrograde amnesia and Andrew Mayes's contribution to neuropsychological method.

    PubMed

    Kopelman, M D; Bright, P

    2012-11-01

    Andrew Mayes's contribution to the neuropsychology of memory has consisted in steadily teasing out the nature of the memory deficit in the amnesic syndrome. This has been done with careful attention to matters of method at all stages. This particularly applies to his investigations of forgetting rates in amnesia and to his studies of retrograde amnesia. Following a brief outline of his work, the main current theories of retrograde amnesia are considered: consolidation theory, episodic-to-semantic shift theory, and multiple trace theory. Findings across the main studies in Alzheimer dementia are reviewed to illustrate what appears to be consistently found, and what is much more inconsistent. A number of problems and issues in current theories are then highlighted--including the nature of the temporal gradient, correlations with the extent of temporal lobe damage, what we would expect 'normal' remote memory curves to look like, how they would appear in focal retrograde amnesia, and whether we can pinpoint retrograde amnesia to hippocampal/medial temporal damage on the basis of existing studies. A recent study of retrograde amnesia is re-analysed to demonstrate temporal gradients on recollected episodic memories in hippocampal/medial temporal patients. It is concluded that there are two requirements for better understanding of the nature of retrograde amnesia: (i) a tighter, Mayesian attention to method in terms of both the neuropsychology and neuroimaging in investigations of retrograde amnesia; and (ii) acknowledging that there may be multiple factors underlying a temporal gradient, and that episodic and semantic memory show important interdependencies at both encoding and retrieval. Such factors may be critical to understanding what is remembered and what is forgotten from our autobiographical pasts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Neurient: An Algorithm for Automatic Tracing of Confluent Neuronal Images to Determine Alignment

    PubMed Central

    Mitchel, J.A.; Martin, I.S.

    2013-01-01

    A goal of neural tissue engineering is the development and evaluation of materials that guide neuronal growth and alignment. However, the methods available to quantitatively evaluate the response of neurons to guidance materials are limited and/or expensive, and may require manual tracing to be performed by the researcher. We have developed an open source, automated Matlab-based algorithm, building on previously published methods, to trace and quantify alignment of fluorescent images of neurons in culture. The algorithm is divided into three phases, including computation of a lookup table which contains directional information for each image, location of a set of seed points which may lie along neurite centerlines, and tracing neurites starting with each seed point and indexing into the lookup table. This method was used to obtain quantitative alignment data for complex images of densely cultured neurons. Complete automation of tracing allows for unsupervised processing of large numbers of images. Following image processing with our algorithm, available metrics to quantify neurite alignment include angular histograms, percent of neurite segments in a given direction, and mean neurite angle. The alignment information obtained from traced images can be used to compare the response of neurons to a range of conditions. This tracing algorithm is freely available to the scientific community under the name Neurient, and its implementation in Matlab allows a wide range of researchers to use a standardized, open source method to quantitatively evaluate the alignment of dense neuronal cultures. PMID:23384629

  4. Unimodal primary sensory cortices are directly connected by long-range horizontal projections in the rat sensory cortex.

    PubMed

    Stehberg, Jimmy; Dang, Phat T; Frostig, Ron D

    2014-01-01

    Research based on functional imaging and neuronal recordings in the barrel cortex subdivision of primary somatosensory cortex (SI) of the adult rat has revealed novel aspects of structure-function relationships in this cortex. Specifically, it has demonstrated that single whisker stimulation evokes subthreshold neuronal activity that spreads symmetrically within gray matter from the appropriate barrel area, crosses cytoarchitectural borders of SI and reaches deeply into other unimodal primary cortices such as primary auditory (AI) and primary visual (VI). It was further demonstrated that this spread is supported by a spatially matching underlying diffuse network of border-crossing, long-range projections that could also reach deeply into AI and VI. Here we seek to determine whether such a network of border-crossing, long-range projections is unique to barrel cortex or characterizes also other primary, unimodal sensory cortices and therefore could directly connect them. Using anterograde (BDA) and retrograde (CTb) tract-tracing techniques, we demonstrate that such diffuse horizontal networks directly and mutually connect VI, AI and SI. These findings suggest that diffuse, border-crossing axonal projections connecting directly primary cortices are an important organizational motif common to all major primary sensory cortices in the rat. Potential implications of these findings for topics including cortical structure-function relationships, multisensory integration, functional imaging, and cortical parcellation are discussed.

  5. Unimodal primary sensory cortices are directly connected by long-range horizontal projections in the rat sensory cortex

    PubMed Central

    Stehberg, Jimmy; Dang, Phat T.; Frostig, Ron D.

    2014-01-01

    Research based on functional imaging and neuronal recordings in the barrel cortex subdivision of primary somatosensory cortex (SI) of the adult rat has revealed novel aspects of structure-function relationships in this cortex. Specifically, it has demonstrated that single whisker stimulation evokes subthreshold neuronal activity that spreads symmetrically within gray matter from the appropriate barrel area, crosses cytoarchitectural borders of SI and reaches deeply into other unimodal primary cortices such as primary auditory (AI) and primary visual (VI). It was further demonstrated that this spread is supported by a spatially matching underlying diffuse network of border-crossing, long-range projections that could also reach deeply into AI and VI. Here we seek to determine whether such a network of border-crossing, long-range projections is unique to barrel cortex or characterizes also other primary, unimodal sensory cortices and therefore could directly connect them. Using anterograde (BDA) and retrograde (CTb) tract-tracing techniques, we demonstrate that such diffuse horizontal networks directly and mutually connect VI, AI and SI. These findings suggest that diffuse, border-crossing axonal projections connecting directly primary cortices are an important organizational motif common to all major primary sensory cortices in the rat. Potential implications of these findings for topics including cortical structure-function relationships, multisensory integration, functional imaging, and cortical parcellation are discussed. PMID:25309339

  6. Somatic spikes regulate dendritic signaling in small neurons in the absence of backpropagating action potentials.

    PubMed

    Myoga, Michael H; Beierlein, Michael; Regehr, Wade G

    2009-06-17

    Somatic spiking is known to regulate dendritic signaling and associative synaptic plasticity in many types of large neurons, but it is unclear whether somatic action potentials play similar roles in small neurons. Here we ask whether somatic action potentials can also influence dendritic signaling in an electrically compact neuron, the cerebellar stellate cell (SC). Experiments were conducted in rat brain slices using a combination of imaging and electrophysiology. We find that somatic action potentials elevate dendritic calcium levels in SCs. There was little attenuation of calcium signals with distance from the soma in SCs from postnatal day 17 (P17)-P19 rats, which had dendrites that averaged 60 microm in length, and in short SC dendrites from P30-P33 rats. Somatic action potentials evoke dendritic calcium increases that are not affected by blocking dendritic sodium channels. This indicates that dendritic signals in SCs do not rely on dendritic sodium channels, which differs from many types of large neurons, in which dendritic sodium channels and backpropagating action potentials allow somatic spikes to control dendritic calcium signaling. Despite the lack of active backpropagating action potentials, we find that trains of somatic action potentials elevate dendritic calcium sufficiently to release endocannabinoids and retrogradely suppress parallel fiber to SC synapses in P17-P19 rats. Prolonged SC firing at physiologically realistic frequencies produces retrograde suppression when combined with low-level group I metabotropic glutamate receptor activation. Somatic spiking also interacts with synaptic stimulation to promote associative plasticity. These findings indicate that in small neurons the passive spread of potential within dendrites can allow somatic spiking to regulate dendritic calcium signaling and synaptic plasticity.

  7. Amygdala connections with jaw, tongue and laryngo-pharyngeal premotor neurons.

    PubMed

    Van Daele, D J; Fazan, V P S; Agassandian, K; Cassell, M D

    2011-03-17

    As the central nucleus (CE) is the only amygdaloid nucleus to send axons to the pons and medulla, it is thought to be involved in the expression of conditioned responses by accessing hindbrain circuitry generating stereotypic responses to aversive stimuli. Responses to aversive oral stimuli include gaping and tongue protrusion generated by central pattern generators and other premotor neurons in the ponto-medullary reticular formation. We investigated central nucleus connections with the reticular formation by identifying premotor reticular formation neurons through the retrograde trans-synaptic transport of pseudorabies virus (PRV) inoculated into masseter, genioglossus, thyroarytenoid or inferior constrictor muscles in combination with anterograde labeling of CE axons with biotinylated dextran amine. Three dimensional mapping of PRV infected premotor neurons revealed specific clusters of these neurons associated with different oro-laryngo-pharyngeal muscles, particularly in the parvicellular reticular formation. CE axon terminals were concentrated in certain parvicellular clusters but overall putative contacts were identified with premotor neurons associated with all four oro-laryngo-pharyngeal muscles investigated. We also mapped the retrograde trans-synaptic spread of PRV through the various nuclei of the amygdaloid complex. Medial CE was the first amygdala structure infected (4 days post-inoculation) with trans-synaptic spread to the lateral CE and the caudomedial parvicellular basolateral nucleus by day 5 post-inoculation. Infected neurons were only very rarely found in the lateral capsular CE and the lateral nucleus and then at only the latest time points. The data demonstrate that the CE is directly connected with clusters of reticular premotor neurons that may represent complex pattern generators and/or switching elements for the generation of stereotypic oral and laryngo-pharyngeal movements during aversive oral stimulation. Serial connections through the amygdaloid complex linked with the oro-laryngo-pharyngeal musculature appear quite distinct from those believed to sub-serve fear responses, suggesting there are distinct "channels" for the acquisition and expression of particular conditioned behaviors. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Automated method for tracing leading and trailing processes of migrating neurons in confocal image sequences

    NASA Astrophysics Data System (ADS)

    Kerekes, Ryan A.; Gleason, Shaun S.; Trivedi, Niraj; Solecki, David J.

    2010-03-01

    Segmentation, tracking, and tracing of neurons in video imagery are important steps in many neuronal migration studies and can be inaccurate and time-consuming when performed manually. In this paper, we present an automated method for tracing the leading and trailing processes of migrating neurons in time-lapse image stacks acquired with a confocal fluorescence microscope. In our approach, we first locate and track the soma of the cell of interest by smoothing each frame and tracking the local maxima through the sequence. We then trace the leading process in each frame by starting at the center of the soma and stepping repeatedly in the most likely direction of the leading process. This direction is found at each step by examining second derivatives of fluorescent intensity along curves of constant radius around the current point. Tracing terminates after a fixed number of steps or when fluorescent intensity drops below a fixed threshold. We evolve the resulting trace to form an improved trace that more closely follows the approximate centerline of the leading process. We apply a similar algorithm to the trailing process of the cell by starting the trace in the opposite direction. We demonstrate our algorithm on two time-lapse confocal video sequences of migrating cerebellar granule neurons (CGNs). We show that the automated traces closely approximate ground truth traces to within 1 or 2 pixels on average. Additionally, we compute line intensity profiles of fluorescence along the automated traces and quantitatively demonstrate their similarity to manually generated profiles in terms of fluorescence peak locations.

  9. Arc expression identifies the lateral amygdala fear memory trace

    PubMed Central

    Gouty-Colomer, L A; Hosseini, B; Marcelo, I M; Schreiber, J; Slump, D E; Yamaguchi, S; Houweling, A R; Jaarsma, D; Elgersma, Y; Kushner, S A

    2016-01-01

    Memories are encoded within sparsely distributed neuronal ensembles. However, the defining cellular properties of neurons within a memory trace remain incompletely understood. Using a fluorescence-based Arc reporter, we were able to visually identify the distinct subset of lateral amygdala (LA) neurons activated during auditory fear conditioning. We found that Arc-expressing neurons have enhanced intrinsic excitability and are preferentially recruited into newly encoded memory traces. Furthermore, synaptic potentiation of thalamic inputs to the LA during fear conditioning is learning-specific, postsynaptically mediated and highly localized to Arc-expressing neurons. Taken together, our findings validate the immediate-early gene Arc as a molecular marker for the LA neuronal ensemble recruited during fear learning. Moreover, these results establish a model of fear memory formation in which intrinsic excitability determines neuronal selection, whereas learning-related encoding is governed by synaptic plasticity. PMID:25802982

  10. Sympathetic preganglionic efferent and afferent neurons mediated by the greater splanchnic nerve in rabbit

    NASA Technical Reports Server (NTRS)

    Torigoe, Yasuhiro; Cernucan, Roxana D.; Nishimoto, Jo Ann S.; Blanks, Robert H. I.

    1985-01-01

    As a part of the study of the vestibular-autonomic pathways involved in motion sickness, the location and the morphology of preganglionic sympathetic neurons (PSNs) projecting via the greater splanchnic nerve were examined. Retrograde labeling of neurons was obtained by application of horseradish peroxidase to the cut end of the greater splanchnic nerve. Labeled PSNs were found, ipsilaterally, within the T1 to T11 spinal cord segments, with the highest density of neurons in T6. Most PSNs were located within the intermediolateral column, but a significant portion also occurred within the lateral funiculus, the intercalated region, and the central autonomic area; the proportion of labeling between the four regions depended on the spinal cord segment.

  11. The Influence of Prolonged Acetylsalicylic Acid Supplementation-Induced Gastritis on the Neurochemistry of the Sympathetic Neurons Supplying Prepyloric Region of the Porcine Stomach.

    PubMed

    Palus, Katarzyna; Całka, Jarosław

    2015-01-01

    This experiment was designed to establish the localization and neurochemical phenotyping of sympathetic neurons supplying prepyloric area of the porcine stomach in a physiological state and during acetylsalicylic acid (ASA) induced gastritis. In order to localize the sympathetic perikarya the stomachs of both control and acetylsalicylic acid treated (ASA group) animals were injected with neuronal retrograde tracer Fast Blue (FB). Seven days post FB injection, animals were divided into a control and ASA supplementation group. The ASA group was given 100 mg/kg of b.w. ASA orally for 21 days. On the 28th day all pigs were euthanized with gradual overdose of anesthetic. Then fourteen-micrometer-thick cryostat sections were processed for routine double-labeling immunofluorescence, using primary antisera directed towards tyrosine hydroxylase (TH), dopamine β-hydroxylase (DβH), neuropeptide Y (NPY), galanin (GAL), neuronal nitric oxide synthase (nNOS), leu 5-enkephalin (LENK), cocaine- and amphetamine- regulated transcript peptide (CART), calcitonin gene-related peptide (CGRP), substance P (SP) and vasoactive intestinal peptide (VIP). The data obtained in this study indicate that postganglionic sympathetic nerve fibers supplying prepyloric area of the porcine stomach originate from the coeliac-cranial mesenteric ganglion complex (CCMG). In control animals, the FB-labelled neurons expressed TH (94.85 ± 1.01%), DβH (97.10 ± 0.97%), NPY (46.88 ± 2.53%) and GAL (8.40 ± 0.53%). In ASA group, TH- and DβH- positive nerve cells were reduced (85.78 ± 2.65% and 88.82 ± 1.63% respectively). Moreover, ASA- induced gastritis resulted in increased expression of NPY (76.59 ± 3.02%) and GAL (26.45 ± 2.75%) as well as the novo-synthesis of nNOS (6.13 ± 1.11%) and LENK (4.77 ± 0.42%) in traced CCMG neurons. Additionally, a network of CART-, CGRP-, SP-, VIP-, LENK-, nNOS- immunoreactive (IR) nerve fibers encircling the FB-positive perikarya were observed in both intact and ASA-treated animals. The results of this study indicate involvement of these neuropeptides in the development or presumably counteraction of gastric inflammation.

  12. Are memory traces localized or distributed?

    PubMed

    Thompson, R F

    1991-01-01

    Evidence supports the view that "memory traces" are formed in the hippocampus and in the cerebellum in classical conditioning of discrete behavioral responses (e.g. eyeblink conditioning). In the hippocampus, learning results in long-lasting increases in excitability of pyramidal neurons that appear to be localized to these neurons (i.e. changes in membrane properties and receptor function). However, these learning-altered pyramidal neurons are distributed widely throughout CA3 and CA1. Although it plays a key role in certain aspects of classical conditioning, the hippocampus is not necessary for learning and memory of the basic conditioned responses. The cerebellum and its associated brain stem circuitry, on the other hand, does appear to be essential (necessary and sufficient) for learning and memory of the conditioned response. Evidence to date is most consistent with a localized trace in the interpositus nucleus and multiple localized traces in cerebellar cortex, each involving relatively large ensembles of neurons. Perhaps "procedural" memory traces are relatively localized and "declarative" traces more widely distributed.

  13. Automated Tracing of Horizontal Neuron Processes During Retinal Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerekes, Ryan A; Martins, Rodrigo; Dyer, Michael A

    2011-01-01

    In the developing mammalian retina, horizontal neurons undergo a dramatic reorganization oftheir processes shortly after they migrate to their appropriate laminar position. This is an importantprocess because it is now understood that the apical processes are important for establishing theregular mosaic of horizontal cells in the retina and proper reorganization during lamination isrequired for synaptogenesis with photoreceptors and bipolar neurons. However, this process isdifficult to study because the analysis of horizontal neuron anatomy is labor intensive and time-consuming. In this paper, we present a computational method for automatically tracing the three-dimensional (3-D) dendritic structure of horizontal retinal neurons in two-photonmore » laser scanningmicroscope (TPLSM) imagery. Our method is based on 3-D skeletonization and is thus able topreserve the complex structure of the dendritic arbor of these cells. We demonstrate theeffectiveness of our approach by comparing our tracing results against two sets of semi-automatedtraces over a set of 10 horizontal neurons ranging in age from P1 to P5. We observe an averageagreement level of 81% between our automated trace and the manual traces. This automatedmethod will serve as an important starting point for further refinement and optimization.« less

  14. Immunoglobulin Fc gamma receptor promotes immunoglobulin uptake, immunoglobulin-mediated calcium increase, and neurotransmitter release in motor neurons

    NASA Technical Reports Server (NTRS)

    Mohamed, Habib A.; Mosier, Dennis R.; Zou, Ling L.; Siklos, Laszlo; Alexianu, Maria E.; Engelhardt, Jozsef I.; Beers, David R.; Le, Wei-dong; Appel, Stanley H.

    2002-01-01

    Receptors for the Fc portion of immunoglobulin G (IgG; FcgammaRs) facilitate IgG uptake by effector cells as well as cellular responses initiated by IgG binding. In earlier studies, we demonstrated that amyotrophic lateral sclerosis (ALS) patient IgG can be taken up by motor neuron terminals and transported retrogradely to the cell body and can alter the function of neuromuscular synapses, such as increasing intracellular calcium and spontaneous transmitter release from motor axon terminals after passive transfer. In the present study, we examined whether FcgammaR-mediated processes can contribute to these effects of ALS patient immunoglobulins. F(ab')(2) fragments (which lack the Fc portion) of ALS patient IgG were not taken up by motor axon terminals and were not retrogradely transported. Furthermore, in a genetically modified mouse lacking the gamma subunit of the FcR, the uptake of whole ALS IgG and its ability to enhance intracellular calcium and acetylcholine release were markedly attenuated. These data suggest that FcgammaRs appear to participate in IgG uptake into motor neurons as well as IgG-mediated increases in intracellular calcium and acetylcholine release from motor axon terminals. Copyright 2002 Wiley-Liss, Inc.

  15. Retrograde double-labeling demonstrates convergent afferent innervation of the prostate and bladder.

    PubMed

    Lee, Sanghee; Yang, Guang; Xiang, William; Bushman, Wade

    2016-06-01

    Prostatic inflammation is a common histologic finding in men with lower urinary tract symptoms (LUTS). It has been postulated that prostatic inflammation could sensitize afferent neurons innervating the bladder and thereby produce changes in voiding behavior. In support of this, we demonstrate an anatomic basis for pelvic cross-talk involving the prostate and bladder. Retrograde labeling was performed by an application of a neuro-tracer Fast Blue (FB) to one side of either the anterior prostate (AP), dorsal lateral prostate (DLP)/ventral prostate (VP), bladder, or seminal vesicle (SV). Examination of dorsal root ganglion (DRG) neuron labeling revealed shared afferent innervation of the prostate and bladder at spinal segments of T13, L1, L2, L6, and S1. Dual labeling was performed by an application of FB and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyaine perchlorate (DiI) to the AP and bladder, respectively. We observed double-labeled DRG neurons at T13, L1, L2, L6, and S1--a finding that proves convergent innervation of prostate and bladder. Our observations demonstrate the potential for neural cross-talk between the prostate and bladder and support a postulated mechanism that prostatic inflammation may induce hyper-sensitization of bladder afferents and produce irritative LUTS. © 2016 Wiley Periodicals, Inc.

  16. From synapse to nucleus and back again--communication over distance within neurons.

    PubMed

    Fainzilber, Mike; Budnik, Vivian; Segal, Rosalind A; Kreutz, Michael R

    2011-11-09

    How do neurons integrate intracellular communication from synapse to nucleus and back? Here we briefly summarize aspects of this topic covered by a symposium at Neuroscience 2011. A rich repertoire of signaling mechanisms link both dendritic terminals and axon tips with neuronal soma and nucleus, using motor-dependent transport machineries to traverse the long intracellular distances along neuronal processes. Activation mechanisms at terminals include localized translation of dendritic or axonal RNA, proteolytic cleavage of receptors or second messengers, and differential phosphorylation of signaling moieties. Signaling complexes may be transported in endosomes, or as non-endosomal complexes associated with importins and dynein. Anterograde transport of RNA granules from the soma to neuronal processes, coupled with retrograde transport of proteins translated locally at terminals or within processes, may fuel ongoing bidirectional communication between soma and synapse to modulate synaptic plasticity as well as neuronal growth and survival decisions.

  17. Active transport of vesicles in neurons is modulated by mechanical tension.

    PubMed

    Ahmed, Wylie W; Saif, Taher A

    2014-03-27

    Effective intracellular transport of proteins and organelles is critical in cells, and is especially important for ensuring proper neuron functionality. In neurons, most proteins are synthesized in the cell body and must be transported through thin structures over long distances where normal diffusion is insufficient. Neurons transport subcellular cargo along axons and neurites through a stochastic interplay of active and passive transport. Mechanical tension is critical in maintaining proper function in neurons, but its role in transport is not well understood. To this end, we investigate the active and passive transport of vesicles in Aplysia neurons while changing neurite tension via applied strain, and quantify the resulting dynamics. We found that tension in neurons modulates active transport of vesicles by increasing the probability of active motion, effective diffusivity, and induces a retrograde bias. We show that mechanical tension modulates active transport processes in neurons and that external forces can couple to internal (subcellular) forces and change the overall transport dynamics.

  18. Active transport of vesicles in neurons is modulated by mechanical tension

    PubMed Central

    Ahmed, Wylie W.; Saif, Taher A.

    2014-01-01

    Effective intracellular transport of proteins and organelles is critical in cells, and is especially important for ensuring proper neuron functionality. In neurons, most proteins are synthesized in the cell body and must be transported through thin structures over long distances where normal diffusion is insufficient. Neurons transport subcellular cargo along axons and neurites through a stochastic interplay of active and passive transport. Mechanical tension is critical in maintaining proper function in neurons, but its role in transport is not well understood. To this end, we investigate the active and passive transport of vesicles in Aplysia neurons while changing neurite tension via applied strain, and quantify the resulting dynamics. We found that tension in neurons modulates active transport of vesicles by increasing the probability of active motion, effective diffusivity, and induces a retrograde bias. We show that mechanical tension modulates active transport processes in neurons and that external forces can couple to internal (subcellular) forces and change the overall transport dynamics. PMID:24670781

  19. Changes in central sodium and not osmolarity or lactate induce panic-like responses in a model of panic disorder.

    PubMed

    Molosh, Andre I; Johnson, Philip L; Fitz, Stephanie D; Dimicco, Joseph A; Herman, James P; Shekhar, Anantha

    2010-05-01

    Panic disorder is a severe anxiety disorder characterized by recurrent panic attacks that can be consistently provoked with intravenous (i.v.) infusions of hypertonic (0.5 M) sodium lactate (NaLac), yet the mechanism/CNS site by which this stimulus triggers panic attacks is unclear. Chronic inhibition of GABAergic synthesis in the dorsomedial hypothalamus/perifornical region (DMH/PeF) of rats induces a vulnerability to panic-like responses after i.v. infusion of 0.5 M NaLac, providing an animal model of panic disorder. Using this panic model, we previously showed that inhibiting the anterior third ventricle region (A3Vr; containing the organum vasculosum lamina terminalis, the median preoptic nucleus, and anteroventral periventricular nucleus) attenuates cardiorespiratory and behavioral responses elicited by i.v. infusions of NaLac. In this study, we show that i.v. infusions of 0.5 M NaLac or sodium chloride, but not iso-osmolar D-mannitol, increased 'anxiety' (decreased social interaction) behaviors, heart rate, and blood pressure responses. Using whole-cell patch-clamp preparations, we also show that bath applications of NaLac (positive control), but not lactic acid (lactate stimulus) or D-mannitol (osmolar stimulus), increases the firing rates of neurons in the A3Vr, which are retrogradely labeled from the DMH/PeF and which are most likely glutamatergic based on a separate study using retrograde tracing from the DMH/PeF in combination with in situ hybridization for vesicular glutamate transporter 2. These data show that hypertonic sodium, but not hyper-osmolarity or changes in lactate, is the key stimulus that provokes panic attacks in panic disorder, and is consistent with human studies.

  20. Different mechanisms of secondary neuronal damage in thalamic nuclei after focal cerebral ischemia in rats.

    PubMed

    Dihné, Marcel; Grommes, Christian; Lutzenburg, Michael; Witte, Otto W; Block, Frank

    2002-12-01

    After focal cerebral ischemia, depending on its localization and extent, secondary neuronal damage may occur that is remote from the initial lesion. In this study differences in secondary damage of the ventroposterior thalamic nucleus (VPN) and the reticular thalamic nucleus (RTN) were investigated with the use of different ischemia models. Transient middle cerebral artery occlusion (MCAO) leads to cortical infarction, including parts of the basal ganglia such as the globus pallidus, and to widespread edema. Photothrombotic ischemia generates pure cortical infarcts sparing the basal ganglia and with only minor edema. Neuronal degeneration was quantified within the ipsilateral RTN and VPN 14 days after ischemia. Glial reactions were studied with the use of immunohistochemistry. MCAO resulted in delayed neuronal cell loss of the ipsilateral VPN and RTN. Glial activation occurred in both nuclei beginning after 24 hours. Photothrombotic ischemia resulted in delayed neuronal cell loss only within the VPN. Even 2 weeks after photothrombotic ischemia, glial activation could only be seen within the VPN. Pure cortical infarcts after photothrombotic ischemia, without major edema and without effects on the globus pallidus of the basal ganglia, only lead to secondary VPN damage that is possibly due to retrograde degeneration. MCAO, which results in infarction of cortex and globus pallidus and which causes widespread edema, leads to secondary damage in the VPN and RTN. Thus, additional RTN damage may be due to loss of protective GABAergic input from the globus pallidus to the RTN or due to the extensive edema. Retrograde degeneration is not possible because the RTN, in contrast to the VPN, has no efferents to the cortex.

  1. Automatic parameter estimation of multicompartmental neuron models via minimization of trace error with control adjustment.

    PubMed

    Brookings, Ted; Goeritz, Marie L; Marder, Eve

    2014-11-01

    We describe a new technique to fit conductance-based neuron models to intracellular voltage traces from isolated biological neurons. The biological neurons are recorded in current-clamp with pink (1/f) noise injected to perturb the activity of the neuron. The new algorithm finds a set of parameters that allows a multicompartmental model neuron to match the recorded voltage trace. Attempting to match a recorded voltage trace directly has a well-known problem: mismatch in the timing of action potentials between biological and model neuron is inevitable and results in poor phenomenological match between the model and data. Our approach avoids this by applying a weak control adjustment to the model to promote alignment during the fitting procedure. This approach is closely related to the control theoretic concept of a Luenberger observer. We tested this approach on synthetic data and on data recorded from an anterior gastric receptor neuron from the stomatogastric ganglion of the crab Cancer borealis. To test the flexibility of this approach, the synthetic data were constructed with conductance models that were different from the ones used in the fitting model. For both synthetic and biological data, the resultant models had good spike-timing accuracy. Copyright © 2014 the American Physiological Society.

  2. Projections of the nucleus of the optic tract to the nucleus reticularis tegmenti pontis and prepositus hypoglossi nucleus in the pigmented rat as demonstrated by anterograde and retrograde transport methods.

    PubMed

    Korp, B G; Blanks, R H; Torigoe, Y

    1989-01-01

    The visual pathways from the nucleus of the optic tract (NOT) to the nucleus reticularis tegmenti pontis (NRTP) and prepositus hypoglossi nucleus (ph) were studied following injections of tritiated leucine into the NOT of pigmented rats. The cell bodies of origin of the pretectal-NRTP, NRTP-ph, and pretectal-ph projections were determined using retrograde horseradish peroxidase (HRP) technique. The pretectum projects strongly to the rostral two-thirds of the central and pericentral subdivisions of the NRTP and sends a remarkably smaller projection to the ph. Both are entirely ipsilateral. The fibers destined for the ph travel with the NOT-NRTP bundle, pass through the NRTP, traverse the medial longitudinal fasciculus, and are distributed to the rostral one-half of the ph. The retrograde HRP studies confirm these pathways. The pretectal projections to the NRTP arise from neurons in the rostromedial NOT; those to the ph are located primarily in the rostral NOT although small numbers are found within the anterior, posterior, and olivary pretectal nuclei. Of major importance is the fact that the ph injections retrogradely label neurons within the NRTP and the adjacent paramedian pontine reticular formation. This NRTP-ph projection is entirely bilateral and arises from parts of both subdivisions of the nucleus targeted by NOT afferents. Both the direct NOT-ph and indirect NOT-NRTP-ph connections provide the anatomical basis for the relay of visual (optokinetic) information to the perihypoglossal complex and, presumably, by virtue of reciprocal ph-vestibular nuclear connections, to the vestibular nuclei itself. Such pathways confirm previous physiological studies in rat and, in particular, clarify the contrasting effects of electrolytic lesions of NRTP in rat which completely abolishes optokinetic nystagmus (OKN) (Cazin et al., 1980a) vs kainic acid lesions which produce only minor effects on OKN slow velocity (Hess et al., 1988). Given these differential effects, one concludes that the critical pathway for OKN passes in relation to, but is not significantly relayed by, the neurons of the NRTP or adjacent pontine tegmentum. The present studies suggest that one such fiber system is the NOT-ph bundle. How this relatively small projection compares to other possible fiber of passage systems remains to be determined electrophysiologically.

  3. Peptide amphiphile nanofiber hydrogel delivery of sonic hedgehog protein to the cavernous nerve to promote regeneration and prevent erectile dysfunction.

    PubMed

    Choe, Shawn; Bond, Christopher W; Harrington, Daniel A; Stupp, Samuel I; McVary, Kevin T; Podlasek, Carol A

    2017-01-01

    Erectile dysfunction (ED) has high impact on quality of life in prostatectomy, diabetic and aging patients. An underlying mechanism is cavernous nerve (CN) injury, which causes ED in up to 80% of prostatectomy patients. We examine how sonic hedgehog (SHH) treatment with innovative peptide amphiphile nanofiber hydrogels (PA), promotes CN regeneration after injury. SHH and its receptors patched (PTCH1) and smoothened (SMO) are localized in PG neurons and glia. SMO undergoes anterograde transport to signal to downstream targets. With crush injury, PG neurons degenerate and undergo apoptosis. SHH protein decreases, SMO localization changes to the neuronal cell surface, and anterograde transport stops. With SHH treatment SHH is taken up at the injury site and undergoes retrograde transport to PG neurons, allowing SMO transport to occur, and neurons remain intact. SHH treatment prevents neuronal degeneration, maintains neuronal, glial and downstream target signaling, and is significant as a regenerative therapy. Published by Elsevier Inc.

  4. Role of Immediate-Early Genes in Synaptic Plasticity and Neuronal Ensembles Underlying the Memory Trace

    PubMed Central

    Minatohara, Keiichiro; Akiyoshi, Mika; Okuno, Hiroyuki

    2016-01-01

    In the brain, neuronal gene expression is dynamically changed in response to neuronal activity. In particular, the expression of immediate-early genes (IEGs) such as egr-1, c-fos, and Arc is rapidly and selectively upregulated in subsets of neurons in specific brain regions associated with learning and memory formation. IEG expression has therefore been widely used as a molecular marker for neuronal populations that undergo plastic changes underlying formation of long-term memory. In recent years, optogenetic and pharmacogenetic studies of neurons expressing c-fos or Arc have revealed that, during learning, IEG-positive neurons encode and store information that is required for memory recall, suggesting that they may be involved in formation of the memory trace. However, despite accumulating evidence for the role of IEGs in synaptic plasticity, the molecular and cellular mechanisms associated with this process remain unclear. In this review, we first summarize recent literature concerning the role of IEG-expressing neuronal ensembles in organizing the memory trace. We then focus on the physiological significance of IEGs, especially Arc, in synaptic plasticity, and describe our hypotheses about the importance of Arc expression in various types of input-specific circuit reorganization. Finally, we offer perspectives on Arc function that would unveil the role of IEG-expressing neurons in the formation of memory traces in the hippocampus and other brain areas. PMID:26778955

  5. The goldfish nervus terminalis: a luteinizing hormone-releasing hormone and molluscan cardioexcitatory peptide immunoreactive olfactoretinal pathway.

    PubMed

    Stell, W K; Walker, S E; Chohan, K S; Ball, A K

    1984-02-01

    Antisera to two putative neurotransmitters, luteinizing hormone-releasing hormone (LHRH) and molluscan cardioexcitatory tetrapeptide (H-Phe-Met-Arg-Phe-NH2; FMRF-amide), bind specifically to neurites in the inner nuclear and inner plexiform layers of the goldfish retina. Retrograde labeling showed that intraocular axon terminals originate from the nervus terminalis, whose cell bodies are located in the olfactory nerves. Double immunocytochemical and retrograde labeling showed that some terminalis neurons project to the retina; others may project only within the brain. All terminalis neurons having proven retinal projections were both LHRH- and FMRF-amide-immunoreactive. The activity of retinal ganglion cells was recorded with microelectrodes in isolated superfused goldfish retinas. In ON- and OFF-center double-color-opponent cells, micromolar FMRF-amide and salmon brain gonadotropin-releasing factor ( [Trp7, Leu8] LHRH) caused increased spontaneous activity in the dark, loss of light-induced inhibition, and increased incidence of light-entrained pulsatile response. The nervus terminalis is therefore a putatively peptidergic retinopetal projection. Sex-related olfactory stimuli may act through it, thereby modulating the output of ganglion cells responsive to color contrast.

  6. Phosphatidylserine Ameliorates Neurodegenerative Symptoms and Enhances Axonal Transport in a Mouse Model of Familial Dysautonomia

    PubMed Central

    Naftelberg, Shiran; Abramovitch, Ziv; Gluska, Shani; Yannai, Sivan; Joshi, Yuvraj; Donyo, Maya; Ben-Yaakov, Keren; Gradus, Tal; Zonszain, Jonathan; Farhy, Chen; Ashery-Padan, Ruth

    2016-01-01

    Familial Dysautonomia (FD) is a neurodegenerative disease in which aberrant tissue-specific splicing of IKBKAP exon 20 leads to reduction of IKAP protein levels in neuronal tissues. Here we generated a conditional knockout (CKO) mouse in which exon 20 of IKBKAP is deleted in the nervous system. The CKO FD mice exhibit developmental delays, sensory abnormalities, and less organized dorsal root ganglia (DRGs) with attenuated axons compared to wild-type mice. Furthermore, the CKO FD DRGs show elevated HDAC6 levels, reduced acetylated α-tubulin, unstable microtubules, and impairment of axonal retrograde transport of nerve growth factor (NGF). These abnormalities in DRG properties underlie neuronal degeneration and FD symptoms. Phosphatidylserine treatment decreased HDAC6 levels and thus increased acetylation of α-tubulin. Further PS treatment resulted in recovery of axonal outgrowth and enhanced retrograde axonal transport by decreasing histone deacetylase 6 (HDAC6) levels and thus increasing acetylation of α-tubulin levels. Thus, we have identified the molecular pathway that leads to neurodegeneration in FD and have demonstrated that phosphatidylserine treatment has the potential to slow progression of neurodegeneration. PMID:27997532

  7. Phosphatidylserine Ameliorates Neurodegenerative Symptoms and Enhances Axonal Transport in a Mouse Model of Familial Dysautonomia.

    PubMed

    Naftelberg, Shiran; Abramovitch, Ziv; Gluska, Shani; Yannai, Sivan; Joshi, Yuvraj; Donyo, Maya; Ben-Yaakov, Keren; Gradus, Tal; Zonszain, Jonathan; Farhy, Chen; Ashery-Padan, Ruth; Perlson, Eran; Ast, Gil

    2016-12-01

    Familial Dysautonomia (FD) is a neurodegenerative disease in which aberrant tissue-specific splicing of IKBKAP exon 20 leads to reduction of IKAP protein levels in neuronal tissues. Here we generated a conditional knockout (CKO) mouse in which exon 20 of IKBKAP is deleted in the nervous system. The CKO FD mice exhibit developmental delays, sensory abnormalities, and less organized dorsal root ganglia (DRGs) with attenuated axons compared to wild-type mice. Furthermore, the CKO FD DRGs show elevated HDAC6 levels, reduced acetylated α-tubulin, unstable microtubules, and impairment of axonal retrograde transport of nerve growth factor (NGF). These abnormalities in DRG properties underlie neuronal degeneration and FD symptoms. Phosphatidylserine treatment decreased HDAC6 levels and thus increased acetylation of α-tubulin. Further PS treatment resulted in recovery of axonal outgrowth and enhanced retrograde axonal transport by decreasing histone deacetylase 6 (HDAC6) levels and thus increasing acetylation of α-tubulin levels. Thus, we have identified the molecular pathway that leads to neurodegeneration in FD and have demonstrated that phosphatidylserine treatment has the potential to slow progression of neurodegeneration.

  8. Neurotrophin trafficking by anterograde transport.

    PubMed

    Altar, C A; DiStefano, P S

    1998-10-01

    The ever-unfolding biology of NGF is consistent with a target-derived retrograde mode of action in peripheral and central neurons. However, another member of the neurotrophin family, brain-derived neurotrophic factor (BDNF), is present within nerve terminals in certain regions of the brain and PNS that do not contain the corresponding mRNA. Recent studies have shown that the endogenous neurotrophins, BDNF and neurotrophin-3 (NT-3), are transported anterogradely by central and peripheral neurons. The supply of BDNF by afferents is consistent with their presynaptic synthesis, vesicular storage, release and postsynaptic actions. Anterograde axonal transport provides an 'afferent supply' of BDNF and NT-3 to neurons and target tissues, where they function as trophic factors and as neurotransmitters.

  9. Eye-rotation-induced spatial reorganization of horizontal connections in field 17 of the cat cortex.

    PubMed

    Shkorbatova, P Yu; Alekseenko, S V

    2006-06-01

    Six cats with rotation of one or both eyes (strabismus) produced surgically in the early postnatal period demonstrated torsional deviation of the eyes by 10-20 degrees in addition to the rotation. The spatial distribution of retrograde labeled neurons in field 17 was studied by microiontophoretic administration of horseradish peroxidase into individual cortical columns in fields 17 and 18. These studies showed that rotation of the eyes increased the extent of horizontal neuronal connections in field 17 along the projection of the vertical meridian of the field of vision. It is suggested that this reorganization of neuronal connections may support functional changes compensating for eye rotation, as described in the literature.

  10. Selective Expression of a Sodium Pump Isozyme by Cough Receptors and Evidence for Its Essential Role in Regulating Cough

    PubMed Central

    Mazzone, Stuart B.; Reynolds, Sandra M.; Mori, Nanako; Kollarik, Marian; Farmer, David G.; Myers, Allen C.

    2009-01-01

    We have identified a distinct subtype of airway vagal afferent nerve that plays an essential role in regulating the cough reflex. These afferents are exquisitely sensitive to punctate mechanical stimuli, acid, and decreases in extracellular chloride concentrations, but are insensitive to capsaicin, bradykinin, histamine, adenosine, serotonin, or changes in airway intraluminal pressures. In this study we used intravital imaging, retrograde neuronal tracing, and electrophysiological analyses to characterize the structural basis for their peculiar mechanical sensitivity and to further characterize the regulation of their excitability. In completing these experiments, we uncovered evidence for an essential role of an isozyme of Na+-K+ ATPase in regulating cough. These vagal sensory neurons arise bilaterally from the nodose ganglia and are selectively and brilliantly stained intravitally with the styryl dye FM2-10. Cough receptor terminations are confined and adherent to the extracellular matrix separating the airway epithelium and smooth muscle layers, a site of extensive remodeling in asthma and chronic obstructive pulmonary disease. The cough receptor terminals uniquely express the α3 subunit of Na+-K+ ATPase. Intravital staining of cough receptors by FM2-10, cough receptor excitability in vitro, and coughing in vivo are potently and selectively inhibited by the sodium pump inhibitor ouabain. These data provide the first detailed morphological description of the peripheral terminals of the sensory nerves regulating cough and identify a selective molecular target for their modulation. PMID:19864578

  11. The Ste20 Family Kinases MAP4K4, MINK1, and TNIK Converge to Regulate Stress-Induced JNK Signaling in Neurons.

    PubMed

    Larhammar, Martin; Huntwork-Rodriguez, Sarah; Rudhard, York; Sengupta-Ghosh, Arundhati; Lewcock, Joseph W

    2017-11-15

    The c-Jun- N -terminal kinase (JNK) signaling pathway regulates nervous system development, axon regeneration, and neuronal degeneration after acute injury or in chronic neurodegenerative disease. Dual leucine zipper kinase (DLK) is required for stress-induced JNK signaling in neurons, yet the factors that initiate DLK/JNK pathway activity remain poorly defined. In the present study, we identify the Ste20 kinases MAP4K4, misshapen-like kinase 1 (MINK1 or MAP4K6) and TNIK Traf2- and Nck-interacting kinase (TNIK or MAP4K7), as upstream regulators of DLK/JNK signaling in neurons. Using a trophic factor withdrawal-based model of neurodegeneration in both male and female embryonic mouse dorsal root ganglion neurons, we show that MAP4K4, MINK1, and TNIK act redundantly to regulate DLK activation and downstream JNK-dependent phosphorylation of c-Jun in response to stress. Targeting MAP4K4, MINK1, and TNIK, but not any of these kinases individually, is sufficient to protect neurons potently from degeneration. Pharmacological inhibition of MAP4Ks blocks stabilization and phosphorylation of DLK within axons and subsequent retrograde translocation of the JNK signaling complex to the nucleus. These results position MAP4Ks as important regulators of the DLK/JNK signaling pathway. SIGNIFICANCE STATEMENT Neuronal degeneration occurs in disparate circumstances: during development to refine neuronal connections, after injury to clear damaged neurons, or pathologically during disease. The dual leucine zipper kinase (DLK)/c-Jun- N -terminal kinase (JNK) pathway represents a conserved regulator of neuronal injury signaling that drives both neurodegeneration and axon regeneration, yet little is known about the factors that initiate DLK activity. Here, we uncover a novel role for a subfamily of MAP4 kinases consisting of MAP4K4, Traf2- and Nck-interacting kinase (TNIK or MAP4K7), and misshapen-like kinase 1 (MINK1 or MAP4K6) in regulating DLK/JNK signaling in neurons. Inhibition of these MAP4Ks blocks stress-induced retrograde JNK signaling and protects from neurodegeneration, suggesting that these kinases may represent attractive therapeutic targets. Copyright © 2017 the authors 0270-6474/17/3711074-11$15.00/0.

  12. Neurons of self-defence: neuronal innervation of the exocrine defence glands in stick insects.

    PubMed

    Stolz, Konrad; von Bredow, Christoph-Rüdiger; von Bredow, Yvette M; Lakes-Harlan, Reinhard; Trenczek, Tina E; Strauß, Johannes

    2015-01-01

    Stick insects (Phasmatodea) use repellent chemical substances (allomones) for defence which are released from so-called defence glands in the prothorax. These glands differ in size between species, and are under neuronal control from the CNS. The detailed neural innervation and possible differences between species are not studied so far. Using axonal tracing, the neuronal innervation is investigated comparing four species. The aim is to document the complexity of defence gland innervation in peripheral nerves and central motoneurons in stick insects. In the species studied here, the defence gland is innervated by the intersegmental nerve complex (ISN) which is formed by three nerves from the prothoracic (T1) and suboesophageal ganglion (SOG), as well as a distinct suboesophageal nerve (Nervus anterior of the suboesophageal ganglion). In Carausius morosus and Sipyloidea sipylus, axonal tracing confirmed an innervation of the defence glands by this N. anterior SOG as well as N. anterior T1 and N. posterior SOG from the intersegmental nerve complex. In Peruphasma schultei, which has rather large defence glands, only the innervation by the N. anterior SOG was documented by axonal tracing. In the central nervous system of all species, 3-4 neuron types are identified by axonal tracing which send axons in the N. anterior SOG likely innervating the defence gland as well as adjacent muscles. These neurons are mainly suboesophageal neurons with one intersegmental neuron located in the prothoracic ganglion. The neuron types are conserved in the species studied, but the combination of neuron types is not identical. In addition, the central nervous system in S. sipylus contains one suboesophageal and one prothoracic neuron type with axons in the intersegmental nerve complex contacting the defence gland. Axonal tracing shows a very complex innervation pattern of the defence glands of Phasmatodea which contains different neurons in different nerves from two adjacent body segments. The gland size correlates to the size of a neuron soma in the suboesophageal ganglion, which likely controls gland contraction. In P. schultei, the innervation pattern appears simplified to the anterior suboesophageal nerve. Hence, some evolutionary changes are notable in a conserved neuronal network.

  13. Neuronal activity-dependent membrane traffic at the neuromuscular junction

    PubMed Central

    Miana-Mena, Francisco Javier; Roux, Sylvie; Benichou, Jean-Claude; Osta, Rosario; Brûlet, Philippe

    2002-01-01

    During development and also in adulthood, synaptic connections are modulated by neuronal activity. To follow such modifications in vivo, new genetic tools are designed. The nontoxic C-terminal fragment of tetanus toxin (TTC) fused to a reporter gene such as LacZ retains the retrograde and transsynaptic transport abilities of the holotoxin itself. In this work, the hybrid protein is injected intramuscularly to analyze in vivo the mechanisms of intracellular and transneuronal traffics at the neuromuscular junction (NMJ). Traffic on both sides of the synapse are strongly dependent on presynaptic neural cell activity. In muscle, a directional membrane traffic concentrates β-galactosidase-TTC hybrid protein into the NMJ postsynaptic side. In neurons, the probe is sorted across the cell to dendrites and subsequently to an interconnected neuron. Such fusion protein, sensitive to presynaptic neuronal activity, would be extremely useful to analyze morphological changes and plasticity at the NMJ. PMID:11880654

  14. Difference in trafficking of brain-derived neurotrophic factor between axons and dendrites of cortical neurons, revealed by live-cell imaging

    PubMed Central

    Adachi, Naoki; Kohara, Keigo; Tsumoto, Tadaharu

    2005-01-01

    Background Brain-derived neurotrophic factor (BDNF), which is sorted into a regulated secretory pathway of neurons, is supposed to act retrogradely through dendrites on presynaptic neurons or anterogradely through axons on postsynaptic neurons. Depending on which is the case, the pattern and direction of trafficking of BDNF in dendrites and axons are expected to be different. To address this issue, we analyzed movements of green fluorescent protein (GFP)-tagged BDNF in axons and dendrites of living cortical neurons by time-lapse imaging. In part of the experiments, the expression of BDNF tagged with cyan fluorescent protein (CFP) was compared with that of nerve growth factor (NGF) tagged with yellow fluorescent protein (YFP), to see whether fluorescent protein-tagged BDNF is expressed in a manner specific to this neurotrophin. Results We found that BDNF tagged with GFP or CFP was expressed in a punctated manner in dendrites and axons in about two-thirds of neurons into which plasmid cDNAs had been injected, while NGF tagged with GFP or YFP was diffusely expressed even in dendrites in about 70% of the plasmid-injected neurons. In neurons in which BDNF-GFP was expressed as vesicular puncta in axons, 59 and 23% of the puncta were moving rapidly in the anterograde and retrograde directions, respectively. On the other hand, 64% of BDNF-GFP puncta in dendrites did not move at all or fluttered back and forth within a short distance. The rest of the puncta in dendrites were moving relatively smoothly in either direction, but their mean velocity of transport, 0.47 ± 0.23 (SD) μm/s, was slower than that of the moving puncta in axons (0.73 ± 0.26 μm/s). Conclusion The present results show that the pattern and velocity of the trafficking of fluorescence protein-tagged BDNF are different between axons and dendrites, and suggest that the anterograde transport in axons may be the dominant stream of BDNF to release sites. PMID:15969745

  15. Choline acetyltransferase expression during a putative developmental waiting period.

    PubMed

    Simmons, D D; Bertolotto, C; Kim, J; Raji-Kubba, J; Mansdorf, N

    1998-07-27

    The relationship between the cholinergic expression, morphological development, and target cell innervation of olivocochlear (OC) efferent neurons was investigated in the postnatal hamster. Similar to what was found in previous studies, tracer injections into the contralateral cochlea labeled cells bodies retrogradely in periolivary regions and labeled cell bodies only rarely in the lateral superior olive (LSO). Few morphological differences were found among cell bodies labeled between postnatal day 1 (P1) and P30. Tracer injections into the crossed OC bundles within the brainstem anterogradely labeled terminals below the inner hair cells of the cochlea prior to P5 and labeled terminals below outer hair cells after P5, consistent with a period of transient innervation, as hypothesized previously. Within the superior olive, choline acetyltransferase (ChAT) was expressed differentially. In periolivary regions, ChAT was expressed as early as P0. ChAT-immunoreactive cell bodies in periolivary regions were similar morphologically to retrogradely labeled OC neurons. In contrast, within the LSO, ChAT was not expressed until after P2. Consistent with a medical OC projection to the cochlea at early postnatal ages, ChAT immunoreactivity was detected below inner hair cells as early as P2 but was not detected below outer hair cells until after P6. Our results suggest that medial OC neurons not only provide transient connections to inner hair cells but also may express ChAT when they are below inner hair cells. Furthermore, these results raise the possibility that OC neurons may be capable of acetylcholine synthesis and release prior to or simultaneous with their innervation of the cochlea.

  16. Anatomical and Molecular Properties of Long Descending Propriospinal Neurons in Mice

    PubMed Central

    Flynn, Jamie R.; Conn, Victoria L.; Boyle, Kieran A.; Hughes, David I.; Watanabe, Masahiko; Velasquez, Tomoko; Goulding, Martyn D.; Callister, Robert J.; Graham, Brett A.

    2017-01-01

    Long descending propriospinal neurons (LDPNs) are interneurons that form direct connections between cervical and lumbar spinal circuits. LDPNs are involved in interlimb coordination and are important mediators of functional recovery after spinal cord injury (SCI). Much of what we know about LDPNs comes from a range of species, however, the increased use of transgenic mouse lines to better define neuronal populations calls for a more complete characterisation of LDPNs in mice. In this study, we examined the cell body location, inhibitory neurotransmitter phenotype, developmental provenance, morphology and synaptic inputs of mouse LDPNs throughout the cervical and upper thoracic spinal cord. LDPNs were retrogradely labelled from the lumbar spinal cord to map cell body locations throughout the cervical and upper thoracic segments. Ipsilateral LDPNs were distributed throughout the dorsal, intermediate and ventral grey matter as well as the lateral spinal nucleus and lateral cervical nucleus. In contrast, contralateral LDPNs were more densely concentrated in the ventromedial grey matter. Retrograde labelling in GlyT2GFP and GAD67GFP mice showed the majority of inhibitory LDPNs project either ipsilaterally or adjacent to the midline. Additionally, we used several transgenic mouse lines to define the developmental provenance of LDPNs and found that V2b positive neurons form a subset of ipsilaterally projecting LDPNs. Finally, a population of Neurobiotin (NB) labelled LDPNs were assessed in detail to examine morphology and plot the spatial distribution of contacts from a variety of neurochemically distinct axon terminals. These results provide important baseline data in mice for future work on their role in locomotion and recovery from SCI. PMID:28220062

  17. Exclusion of Integrins from CNS Axons Is Regulated by Arf6 Activation and the AIS

    PubMed Central

    Franssen, Elske H. P.; Zhao, Rong-Rong; Koseki, Hiroaki; Kanamarlapudi, Venkateswarlu; Hoogenraad, Casper C.

    2015-01-01

    Integrins are adhesion and survival molecules involved in axon growth during CNS development, as well as axon regeneration after injury in the peripheral nervous system (PNS). Adult CNS axons do not regenerate after injury, partly due to a low intrinsic growth capacity. We have previously studied the role of integrins in axon growth in PNS axons; in the present study, we investigate whether integrin mechanisms involved in PNS regeneration may be altered or lacking from mature CNS axons by studying maturing CNS neurons in vitro. In rat cortical neurons, we find that integrins are present in axons during initial growth but later become restricted to the somato-dendritic domain. We investigated how this occurs and whether it can be altered to enhance axonal growth potential. We find a developmental change in integrin trafficking; transport becomes predominantly retrograde throughout axons, but not dendrites, as neurons mature. The directionality of transport is controlled through the activation state of ARF6, with developmental upregulation of the ARF6 GEF ARNO enhancing retrograde transport. Lowering ARF6 activity in mature neurons restores anterograde integrin flow, allows transport into axons, and increases axon growth. In addition, we found that the axon initial segment is partly responsible for exclusion of integrins and removal of this structure allows integrins into axons. Changing posttranslational modifications of tubulin with taxol also allows integrins into the proximal axon. The experiments suggest that the developmental loss of regenerative ability in CNS axons is due to exclusion of growth-related molecules due to changes in trafficking. PMID:26019348

  18. Xenopus cytoplasmic linker–associated protein 1 (XCLASP1) promotes axon elongation and advance of pioneer microtubules

    PubMed Central

    Marx, Astrid; Godinez, William J.; Tsimashchuk, Vasil; Bankhead, Peter; Rohr, Karl; Engel, Ulrike

    2013-01-01

    Dynamic microtubules (MTs) are required for neuronal guidance, in which axons extend directionally toward their target tissues. We found that depletion of the MT-binding protein Xenopus cytoplasmic linker–associated protein 1 (XCLASP1) or treatment with the MT drug Taxol reduced axon outgrowth in spinal cord neurons. To quantify the dynamic distribution of MTs in axons, we developed an automated algorithm to detect and track MT plus ends that have been fluorescently labeled by end-binding protein 3 (EB3). XCLASP1 depletion reduced MT advance rates in neuronal growth cones, very much like treatment with Taxol, demonstrating a potential link between MT dynamics in the growth cone and axon extension. Automatic tracking of EB3 comets in different compartments revealed that MTs increasingly slowed as they passed from the axon shaft into the growth cone and filopodia. We used speckle microscopy to demonstrate that MTs experience retrograde flow at the leading edge. Microtubule advance in growth cone and filopodia was strongly reduced in XCLASP1-depleted axons as compared with control axons, but actin retrograde flow remained unchanged. Instead, we found that XCLASP1-depleted growth cones lacked lamellipodial actin organization characteristic of protrusion. Lamellipodial architecture depended on XCLASP1 and its capacity to associate with MTs, highlighting the importance of XCLASP1 in actin–microtubule interactions. PMID:23515224

  19. Live imaging of mitochondrial dynamics in CNS dopaminergic neurons in vivo demonstrates early reversal of mitochondrial transport following MPP+ exposure

    PubMed Central

    Dukes, April A.; Bai, Qing; Van Laar, Victor S.; Zhou, Yangzhong; Ilin, Vladimir; David, Christopher N.; Agim, Zeynep S.; Bonkowsky, Joshua L.; Cannon, Jason R.; Watkins, Simon C.; St. Croix, Claudette M.; Burton, Edward A.; Berman, Sarah B.

    2016-01-01

    Extensive convergent evidence collectively suggests that mitochondrial dysfunction is central to the pathogenesis of Parkinson’s disease (PD). Recently, changes in the dynamic properties of mitochondria have been increasingly implicated as a key proximate mechanism underlying neurodegeneration. However, studies have been limited by the lack of a model in which mitochondria can be imaged directly and dynamically in dopaminergic neurons of the intact vertebrate CNS. We generated transgenic zebrafish in which mitochondria of dopaminergic neurons are labeled with a fluorescent reporter, and optimized methods allowing direct intravital imaging of CNS dopaminergic axons and measurement of mitochondrial transport in vivo. The proportion of mitochondria undergoing axonal transport in dopaminergic neurons decreased overall during development between 2 days post-fertilization (dpf) and 5dpf, at which point the major period of growth and synaptogenesis of the relevant axonal projections is complete. Exposure to 0.5 – 1.0mM MPP+ between 4 – 5 dpf did not compromise zebrafish viability or cause detectable changes in the number or morphology of dopaminergic neurons, motor function or monoaminergic neurochemistry. However, 0.5mM MPP+ caused a 300% increase in retrograde mitochondrial transport and a 30% decrease in anterograde transport. In contrast, exposure to higher concentrations of MPP+ caused an overall reduction in mitochondrial transport. This is the first time mitochondrial transport has been observed directly in CNS dopaminergic neurons of a living vertebrate and quantified in a PD model in vivo. Our findings are compatible with a model in which damage at presynaptic dopaminergic terminals causes an early compensatory increase in retrograde transport of compromised mitochondria for degradation in the cell body. These data are important because manipulation of early pathogenic mechanisms might be a valid therapeutic approach to PD. The novel transgenic lines and methods we developed will be useful for future studies on mitochondrial dynamics in health and disease. PMID:27452482

  20. Live imaging of mitochondrial dynamics in CNS dopaminergic neurons in vivo demonstrates early reversal of mitochondrial transport following MPP(+) exposure.

    PubMed

    Dukes, April A; Bai, Qing; Van Laar, Victor S; Zhou, Yangzhong; Ilin, Vladimir; David, Christopher N; Agim, Zeynep S; Bonkowsky, Joshua L; Cannon, Jason R; Watkins, Simon C; Croix, Claudette M St; Burton, Edward A; Berman, Sarah B

    2016-11-01

    Extensive convergent evidence collectively suggests that mitochondrial dysfunction is central to the pathogenesis of Parkinson's disease (PD). Recently, changes in the dynamic properties of mitochondria have been increasingly implicated as a key proximate mechanism underlying neurodegeneration. However, studies have been limited by the lack of a model in which mitochondria can be imaged directly and dynamically in dopaminergic neurons of the intact vertebrate CNS. We generated transgenic zebrafish in which mitochondria of dopaminergic neurons are labeled with a fluorescent reporter, and optimized methods allowing direct intravital imaging of CNS dopaminergic axons and measurement of mitochondrial transport in vivo. The proportion of mitochondria undergoing axonal transport in dopaminergic neurons decreased overall during development between 2days post-fertilization (dpf) and 5dpf, at which point the major period of growth and synaptogenesis of the relevant axonal projections is complete. Exposure to 0.5-1.0mM MPP(+) between 4 and 5dpf did not compromise zebrafish viability or cause detectable changes in the number or morphology of dopaminergic neurons, motor function or monoaminergic neurochemistry. However, 0.5mM MPP(+) caused a 300% increase in retrograde mitochondrial transport and a 30% decrease in anterograde transport. In contrast, exposure to higher concentrations of MPP(+) caused an overall reduction in mitochondrial transport. This is the first time mitochondrial transport has been observed directly in CNS dopaminergic neurons of a living vertebrate and quantified in a PD model in vivo. Our findings are compatible with a model in which damage at presynaptic dopaminergic terminals causes an early compensatory increase in retrograde transport of compromised mitochondria for degradation in the cell body. These data are important because manipulation of early pathogenic mechanisms might be a valid therapeutic approach to PD. The novel transgenic lines and methods we developed will be useful for future studies on mitochondrial dynamics in health and disease. Published by Elsevier Inc.

  1. PIKfyve mediates the motility of late endosomes and lysosomes in neuronal dendrites.

    PubMed

    Tsuruta, Fuminori; Dolmetsch, Ricardo E

    2015-09-25

    The endosome/lysosome system in the nervous system is critically important for a variety of neuronal functions such as neurite outgrowth, retrograde transport, and synaptic plasticity. In neurons, the endosome/lysosome system is crucial for the activity-dependent internalization of membrane proteins and contributes to the regulation of lipid level on the plasma membrane. Although homeostasis of membrane dynamics plays important roles in the properties of central nervous systems, it has not been elucidated how endosome/lysosome system is regulated. Here, we report that phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) mediates the motility of late endosomes and lysosomes in neuronal dendrites. Endosomes and lysosomes are highly motile in resting neurons, however knockdown of PIKfyve led to a significant reduction in late endosomes and lysosomes motility. We also found that vesicle acidification is crucial for their motility and PIKfyve is associated with this process indirectly. These data suggest that PIKfyve mediates vesicle motility through the regulation of vesicle integrity in neurons. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Interneuronal Transfer and Distal Action of Tetanus Toxin and Botulinum Neurotoxins A and D in Central Neurons.

    PubMed

    Bomba-Warczak, Ewa; Vevea, Jason D; Brittain, Joel M; Figueroa-Bernier, Annette; Tepp, William H; Johnson, Eric A; Yeh, Felix L; Chapman, Edwin R

    2016-08-16

    Recent reports suggest that botulinum neurotoxin (BoNT) A, which is widely used clinically to inhibit neurotransmission, can spread within networks of neurons to have distal effects, but this remains controversial. Moreover, it is not known whether other members of this toxin family are transferred between neurons. Here, we investigate the potential distal effects of BoNT/A, BoNT/D, and tetanus toxin (TeNT), using central neurons grown in microfluidic devices. Toxins acted upon the neurons that mediated initial entry, but all three toxins were also taken up, via an alternative pathway, into non-acidified organelles that mediated retrograde transport to the somato-dendritic compartment. Toxins were then released into the media, where they entered and exerted their effects upon upstream neurons. These findings directly demonstrate that these agents undergo transcytosis and interneuronal transfer in an active form, resulting in long-distance effects. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Collateral projections of nucleus raphe dorsalis neurones to the caudate-putamen and region around the nucleus raphe magnus and nucleus reticularis gigantocellularis pars alpha in the rat.

    PubMed

    Li, Y Q; Kaneko, T; Mizuno, N

    2001-02-16

    It was examined whether or not the nucleus raphe dorsalis (RD) neurons projecting to the caudate-putamen (CPu) might also project to the motor-controlling region around the nucleus raphe magnus (NRM) and nucleus reticularis gigantocellularis pars alpha (Gia) in the rat. Single RD neurons projecting to the CPu and NRM/Gia by way of axon collaterals were identified by the retrograde double-labeling method with fluorescent dyes, Fast Blue and Diamidino Yellow, which were injected respectively into the CPu and NRM/Gia. Then, serotonin (5-HT)-like immunoreactivity of the double-labeled RD neurons was examined immunohistochemically; approximately 60% of the double-labeled RD neurons showed 5-HT-like immunoreactivity. The results indicated that some of serotonergic and non-serotonergic RD neurons might control motor functions simultaneously at the levels of the CPu and NRM/Gia by way of axon collaterals.

  4. Strategies for targeting primate neural circuits with viral vectors

    PubMed Central

    El-Shamayleh, Yasmine; Ni, Amy M.

    2016-01-01

    Understanding how the brain works requires understanding how different types of neurons contribute to circuit function and organism behavior. Progress on this front has been accelerated by optogenetics and chemogenetics, which provide an unprecedented level of control over distinct neuronal types in small animals. In primates, however, targeting specific types of neurons with these tools remains challenging. In this review, we discuss existing and emerging strategies for directing genetic manipulations to targeted neurons in the adult primate central nervous system. We review the literature on viral vectors for gene delivery to neurons, focusing on adeno-associated viral vectors and lentiviral vectors, their tropism for different cell types, and prospects for new variants with improved efficacy and selectivity. We discuss two projection targeting approaches for probing neural circuits: anterograde projection targeting and retrograde transport of viral vectors. We conclude with an analysis of cell type-specific promoters and other nucleotide sequences that can be used in viral vectors to target neuronal types at the transcriptional level. PMID:27052579

  5. Characterization of ionic currents of cells of the subfornical organ that project to the supraoptic nuclei

    NASA Technical Reports Server (NTRS)

    Johnson, R. F.; Beltz, T. G.; Jurzak, M.; Wachtel, R. E.; Johnson, A. K.

    1999-01-01

    The subfornical organ (SFO) is a forebrain structure that converts peripheral blood-borne signals reflecting the hydrational state of the body to neural signals and then through efferent fibers conveys this information to several central nervous system structures. One of the forebrain areas receiving input from the SFO is the supraoptic nucleus (SON), a source of vasopressin synthesis and control of release from the posterior pituitary. Little is known of the transduction and transmission processes by which this conversion of systemic information to brain input occurs. As a step in elucidating these mechanisms, the present study characterized the ionic currents of dissociated cells of the SFO that were identified as neurons that send efferents to the SON. A retrograde tracer was injected into the SON area in eleven-day-old rats. After three days for retrograde transport of the label, the SFOs of these animals were dissociated and plated for tissue culture. The retrograde tracer was used to identify the soma of SFO cells projecting to the SON so that voltage-dependent ionic currents using whole-cell voltage clamp methods could be studied. The three types of currents in labeled SFO neurons were characterized as a 1) rapid, transient inward current that can be blocked by tetrodotoxin (TTX) characteristic of a sodium current; 2) slow-onset sustained outward current that can be blocked by tetraethylammonium (TEA) characteristic of a delayed rectifier potassium current; and 3) remaining outward current that has a rapid-onset and transient characteristic of a potassium A-type current. Copyright 1999 Elsevier Science B.V.

  6. Neurotrophin signaling endosomes; biogenesis, regulation, and functions

    PubMed Central

    Yamashita, Naoya; Kuruvilla, Rejji

    2016-01-01

    In the nervous system, communication between neurons and their post-synaptic target cells is critical for the formation, refinement and maintenance of functional neuronal connections. Diffusible signals secreted by target tissues, exemplified by the family of neurotrophins, impinge on nerve terminals to influence diverse developmental events including neuronal survival and axonal growth. Key mechanisms of action of target-derived neurotrophins include the cell biological processes of endocytosis and retrograde trafficking of their Trk receptors from growth cones to cell bodies. In this review, we summarize the molecular mechanisms underlying this endosome-mediated signaling, focusing on the instructive role of neurotrophin signaling itself in directing its own trafficking. Recent studies have linked impaired neurotrophin trafficking to neurodevelopmental disorders, highlighting the relevance of neurotrophin endosomes in human health. PMID:27327126

  7. Temporal Discontiguity Is neither Necessary nor Sufficient for Learning-Induced Effects on Adult Neurogenesis

    PubMed Central

    Leuner, Benedetta; Waddell, Jaylyn; Gould, Elizabeth; Shors, Tracey J.

    2012-01-01

    Some, but not all, types of learning and memory can influence neurogenesis in the adult hippocampus. Trace eyeblink conditioning has been shown to enhance the survival of new neurons, whereas delay eyeblink conditioning has no such effect. The key difference between the two training procedures is that the conditioning stimuli are separated in time during trace but not delay conditioning. These findings raise the question of whether temporal discontiguity is necessary for enhancing the survival of new neurons. Here we used two approaches to test this hypothesis. First, we examined the influence of a delay conditioning task in which the duration of the conditioned stimulus (CS) was increased nearly twofold, a procedure that critically engages the hippocampus. Although the CS and unconditioned stimulus are contiguous, this very long delay conditioning procedure increased the number of new neurons that survived. Second, we examined the influence of learning the trace conditioned response (CR) after having acquired the CR during delay conditioning, a procedure that renders trace conditioning hippocampal-independent. In this case, trace conditioning did not enhance the survival of new neurons. Together, these results demonstrate that associative learning increases the survival of new neurons in the adult hippocampus, regardless of temporal contiguity. PMID:17192426

  8. Diversity of layer 5 projection neurons in the mouse motor cortex

    PubMed Central

    Oswald, Manfred J.; Tantirigama, Malinda L. S.; Sonntag, Ivo; Hughes, Stephanie M.; Empson, Ruth M.

    2013-01-01

    In the primary motor cortex (M1), layer 5 projection neurons signal directly to distant motor structures to drive movement. Despite their pivotal position and acknowledged diversity these neurons are traditionally separated into broad commissural and corticofugal types, and until now no attempt has been made at resolving the basis for their diversity. We therefore probed the electrophysiological and morphological properties of retrogradely labeled M1 corticospinal (CSp), corticothalamic (CTh), and commissural projecting corticostriatal (CStr) and corticocortical (CC) neurons. An unsupervised cluster analysis established at least four phenotypes with additional differences between lumbar and cervical projecting CSp neurons. Distinguishing parameters included the action potential (AP) waveform, firing behavior, the hyperpolarisation-activated sag potential, sublayer position, and soma and dendrite size. CTh neurons differed from CSp neurons in showing spike frequency acceleration and a greater sag potential. CStr neurons had the lowest AP amplitude and maximum rise rate of all neurons. Temperature influenced spike train behavior in corticofugal neurons. At 26°C CTh neurons fired bursts of APs more often than CSp neurons, but at 36°C both groups fired regular APs. Our findings provide reliable phenotypic fingerprints to identify distinct M1 projection neuron classes as a tool to understand their unique contributions to motor function. PMID:24137110

  9. Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping.

    PubMed

    Beier, Kevin T; Steinberg, Elizabeth E; DeLoach, Katherine E; Xie, Stanley; Miyamichi, Kazunari; Schwarz, Lindsay; Gao, Xiaojing J; Kremer, Eric J; Malenka, Robert C; Luo, Liqun

    2015-07-30

    Dopamine (DA) neurons in the midbrain ventral tegmental area (VTA) integrate complex inputs to encode multiple signals that influence motivated behaviors via diverse projections. Here, we combine axon-initiated viral transduction with rabies-mediated trans-synaptic tracing and Cre-based cell-type-specific targeting to systematically map input-output relationships of VTA-DA neurons. We found that VTA-DA (and VTA-GABA) neurons receive excitatory, inhibitory, and modulatory input from diverse sources. VTA-DA neurons projecting to different forebrain regions exhibit specific biases in their input selection. VTA-DA neurons projecting to lateral and medial nucleus accumbens innervate largely non-overlapping striatal targets, with the latter also sending extensive extra-striatal axon collaterals. Using electrophysiology and behavior, we validated new circuits identified in our tracing studies, including a previously unappreciated top-down reinforcing circuit from anterior cortex to lateral nucleus accumbens via VTA-DA neurons. This study highlights the utility of our viral-genetic tracing strategies to elucidate the complex neural substrates that underlie motivated behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. A microinjection technique for targeting regions of embryonic and neonatal mouse brain in vivo

    PubMed Central

    Davidson, Steve; Truong, Hai; Nakagawa, Yasushi; Giesler, Glenn J

    2009-01-01

    A simple pressure injection technique was developed to deliver substances into specific regions of the embryonic and neonatal mouse brain in vivo. The retrograde tracers Fluorogold and cholera toxin B subunit were used to test the validity of the technique. Injected animals survived the duration of transport (24–48 hrs) and then were sacrificed and perfused with fixative. Small injections (≤ 50 nL) were contained within targeted structures of the perinatal brain and labeled distant cells of origin in several model neural pathways. Traced neural pathways in the perinatal mouse were further examined with immunohistochemical methods to test the feasibility of double labeling experiments during development. Several experimental situations in which this technique would be useful are discussed, for example, to label projection neurons in slice or culture preparations of mouse embryos and neonates. The administration of pharmacological or genetic vectors directly into specific neural targets during development should also be feasible. An examination of the form of neural pathways during early stages of life may lead to insights regarding the functional changes that occur during critical periods of development and provide an anatomic basis for some neurodevelopmental disorders. PMID:19840780

  11. Reconsolidation: A Brief History, A Retrieval View, and Some Recent Issues

    ERIC Educational Resources Information Center

    Riccio, David C.; Millin, Paula M.; Bogart, Adam R.

    2006-01-01

    This review briefly traces some of the history of the phenomenon of what has come to be called "reconsolidation." The early findings of retrograde amnesia for an old but reactivated memory led to several interesting but largely behaviorally oriented studies. With only a few sporadic exceptions, research in the area languished until about 2000,…

  12. Growth Cone Biomechanics in Peripheral and Central Nervous System Neurons

    NASA Astrophysics Data System (ADS)

    Urbach, Jeffrey; Koch, Daniel; Rosoff, Will; Geller, Herbert

    2012-02-01

    The growth cone, a highly motile structure at the tip of an axon, integrates information about the local environment and modulates outgrowth and guidance, but little is known about effects of external mechanical cues and internal mechanical forces on growth-cone mediated guidance. We have investigated neurite outgrowth, traction forces and cytoskeletal substrate coupling on soft elastic substrates for dorsal root ganglion (DRG) neurons (from the peripheral nervous system) and hippocampal neurons (from the central) to see how the mechanics of the microenvironment affect different populations. We find that the biomechanics of DRG neurons are dramatically different from hippocampal, with DRG neurons displaying relatively large, steady traction forces and maximal outgrowth and forces on substrates of intermediate stiffness, while hippocampal neurons display weak, intermittent forces and limited dependence of outgrowth and forces on substrate stiffness. DRG growth cones have slower rates of retrograde actin flow and higher density of localized paxillin (a protein associated with substrate adhesion complexes) compared to hippocampal neurons, suggesting that the difference in force generation is due to stronger adhesions and therefore stronger substrate coupling in DRG growth cones.

  13. Acute Stress Suppresses Synaptic Inhibition and Increases Anxiety via Endocannabinoid Release in the Basolateral Amygdala

    PubMed Central

    Itoga, Christy A.; Fisher, Marc O.; Solomonow, Jonathan; Roltsch, Emily A.; Gilpin, Nicholas W.

    2016-01-01

    Stress and glucocorticoids stimulate the rapid mobilization of endocannabinoids in the basolateral amygdala (BLA). Cannabinoid receptors in the BLA contribute to anxiogenesis and fear-memory formation. We tested for rapid glucocorticoid-induced endocannabinoid regulation of synaptic inhibition in the rat BLA. Glucocorticoid application to amygdala slices elicited a rapid, nonreversible suppression of spontaneous, but not evoked, GABAergic synaptic currents in BLA principal neurons; the effect was also seen with a membrane-impermeant glucocorticoid, but not with intracellular glucocorticoid application, implicating a membrane-associated glucocorticoid receptor. The glucocorticoid suppression of GABA currents was not blocked by antagonists of nuclear corticosteroid receptors, or by inhibitors of gene transcription or protein synthesis, but was blocked by inhibiting postsynaptic G-protein activity, suggesting a postsynaptic nongenomic steroid signaling mechanism that stimulates the release of a retrograde messenger. The rapid glucocorticoid-induced suppression of inhibition was prevented by blocking CB1 receptors and 2-arachidonoylglycerol (2-AG) synthesis, and it was mimicked and occluded by CB1 receptor agonists, indicating it was mediated by the retrograde release of the endocannabinoid 2-AG. The rapid glucocorticoid effect in BLA neurons in vitro was occluded by prior in vivo acute stress-induced, or prior in vitro glucocorticoid-induced, release of endocannabinoid. Acute stress also caused an increase in anxiety-like behavior that was attenuated by blocking CB1 receptor activation and inhibiting 2-AG synthesis in the BLA. Together, these findings suggest that acute stress causes a long-lasting suppression of synaptic inhibition in BLA neurons via a membrane glucocorticoid receptor-induced release of 2-AG at GABA synapses, which contributes to stress-induced anxiogenesis. SIGNIFICANCE STATEMENT We provide a cellular mechanism in the basolateral amygdala (BLA) for the rapid stress regulation of anxiogenesis in rats. We demonstrate a nongenomic glucocorticoid induction of long-lasting suppression of synaptic inhibition that is mediated by retrograde endocannabinoid release at GABA synapses. The rapid glucocorticoid-induced endocannabinoid suppression of synaptic inhibition is initiated by a membrane-associated glucocorticoid receptor in BLA principal neurons. We show that acute stress increases anxiety-like behavior via an endocannabinoid-dependent mechanism centered in the BLA. The stress-induced endocannabinoid modulation of synaptic transmission in the BLA contributes, therefore, to the stress regulation of anxiety, and may play a role in anxiety disorders of the amygdala. PMID:27511017

  14. Control of synaptic function by endocannabinoid-mediated retrograde signaling.

    PubMed

    Kano, Masanobu

    2014-01-01

    Since the first reports in 2001, great advances have been made towards the understanding of endocannabinoid-mediated synaptic modulation. Electrophysiological studies have revealed that one of the two major endocannabinoids, 2-arachidonoylglycerol (2-AG), is produced from membrane lipids upon postsynaptic Ca(2+) elevation and/or activation of Gq/11-coupled receptors, and released from postsynaptic neurons. The released 2-AG then acts retrogradely onto presynaptic cannabinoid CB1 receptors and induces suppression of neurotransmitter release either transiently or persistently. These forms of 2-AG-mediated retrograde synaptic modulation are functional throughout the brain. The other major endocannabinoid, anandamide, mediates a certain form of endocannabinoid-mediated long-term depression (LTD). Anandamide also functions as an agonist for transient receptor potential vanilloid receptor type 1 (TRPV1) and mediates endocannabinoid-independent and TRPV1-dependent forms of LTD. It has also been demonstrated that the endocannabinoid system itself is plastic, which can be either up- or down-regulated by experimental or environmental conditions. In this review, I will make an overview of the mechanisms underlying endocannabinoid-mediated synaptic modulation.

  15. Control of synaptic function by endocannabinoid-mediated retrograde signaling

    PubMed Central

    KANO, Masanobu

    2014-01-01

    Since the first reports in 2001, great advances have been made towards the understanding of endocannabinoid-mediated synaptic modulation. Electrophysiological studies have revealed that one of the two major endocannabinoids, 2-arachidonoylglycerol (2-AG), is produced from membrane lipids upon postsynaptic Ca2+ elevation and/or activation of Gq/11-coupled receptors, and released from postsynaptic neurons. The released 2-AG then acts retrogradely onto presynaptic cannabinoid CB1 receptors and induces suppression of neurotransmitter release either transiently or persistently. These forms of 2-AG-mediated retrograde synaptic modulation are functional throughout the brain. The other major endocannabinoid, anandamide, mediates a certain form of endocannabinoid-mediated long-term depression (LTD). Anandamide also functions as an agonist for transient receptor potential vanilloid receptor type 1 (TRPV1) and mediates endocannabinoid-independent and TRPV1-dependent forms of LTD. It has also been demonstrated that the endocannabinoid system itself is plastic, which can be either up- or down-regulated by experimental or environmental conditions. In this review, I will make an overview of the mechanisms underlying endocannabinoid-mediated synaptic modulation. PMID:25169670

  16. The goldfish nervus terminalis: a luteinizing hormone-releasing hormone and molluscan cardioexcitatory peptide immunoreactive olfactoretinal pathway.

    PubMed Central

    Stell, W K; Walker, S E; Chohan, K S; Ball, A K

    1984-01-01

    Antisera to two putative neurotransmitters, luteinizing hormone-releasing hormone (LHRH) and molluscan cardioexcitatory tetrapeptide (H-Phe-Met-Arg-Phe-NH2; FMRF-amide), bind specifically to neurites in the inner nuclear and inner plexiform layers of the goldfish retina. Retrograde labeling showed that intraocular axon terminals originate from the nervus terminalis, whose cell bodies are located in the olfactory nerves. Double immunocytochemical and retrograde labeling showed that some terminalis neurons project to the retina; others may project only within the brain. All terminalis neurons having proven retinal projections were both LHRH- and FMRF-amide-immunoreactive. The activity of retinal ganglion cells was recorded with microelectrodes in isolated superfused goldfish retinas. In ON- and OFF-center double-color-opponent cells, micromolar FMRF-amide and salmon brain gonadotropin-releasing factor ( [Trp7, Leu8] LHRH) caused increased spontaneous activity in the dark, loss of light-induced inhibition, and increased incidence of light-entrained pulsatile response. The nervus terminalis is therefore a putatively peptidergic retinopetal projection. Sex-related olfactory stimuli may act through it, thereby modulating the output of ganglion cells responsive to color contrast. Images PMID:6199789

  17. A dopaminergic projection to the rat mammillary nuclei demonstrated by retrograde transport of wheat germ agglutinin-horseradish peroxidase and tyrosine hydroxylase immunohistochemistry

    NASA Technical Reports Server (NTRS)

    Gonzalo-Ruiz, A.; Alonso, A.; Sanz, J. M.; Llinas, R. R.

    1992-01-01

    The presence and distribution of dopaminergic neurons and terminals in the hypothalamus of the rat were studied by tyrosine hydroxylase (TH) immunohistochemistry. Strongly labelled TH-immunoreactive neurons were seen in the dorsomedial hypothalamic nucleus, periventricular region, zona incerta, arcuate nucleus, and supramammillary nucleus. A few TH-positive neurons were also identified in the dorsal and ventral premammillary nucleus, as well as the lateral hypothalamic area. TH-immunoreactive fibres and terminals were unevenly distributed in the mammillary nuclei; small, weakly labelled terminals were scattered in the medial mammillary nucleus, while large, strongly labelled, varicose terminals were densely concentrated in the internal part of the lateral mammillary nucleus. A few dorsoventrally oriented TH-positive axon bundles were also identified in the lateral mammillary nucleus. A dopaminergic projection to the mammillary nuclei from the supramammillary nucleus and lateral hypothalamic area was identified by double labelling with retrograde transport of wheat germ agglutinin-horseradish peroxidase and TH-immunohistochemistry. The lateral mammillary nucleus receives a weak dopaminergic projection from the medial, and stronger projections from the lateral, caudal supramammillary nucleus. The double-labelled neurons in the lateral supramammillary nucleus appear to encapsulate the caudal end of the mammillary nuclei. The medial mammillary nucleus receives a very light dopaminergic projection from the caudal lateral hypothalamic area. These results suggest that the supramammillary nucleus is the principal source of the dopaminergic input to the mammillary nuclei, establishing a local TH-pathway in the mammillary complex. The supramammillary cell groups are able to modulate the limbic system through its dopaminergic input to the mammillary nuclei as well as through its extensive dopaminergic projection to the lateral septal nucleus.

  18. Transsynaptic trophic effects of steroid hormones in an avian model of adult brain plasticity

    PubMed Central

    Brenowitz, Eliot A.

    2014-01-01

    The avian song control system provides an excellent model for studying transsynaptic trophic effects of steroid sex hormones. Seasonal changes in systemic testosterone (T) and its metabolites regulate plasticity of this system. Steroids interact with the neurotrophin brain-derived neurotrophic factor (BDNF) to influence cellular processes of plasticity in nucleus HVC of adult birds, including the addition of newborn neurons. This interaction may also occur transsynpatically; T increases the synthesis of BDNF in HVC, and BDNF protein is then released by HVC neurons on to postsynaptic cells in nucleus RA where it has trophic effects on activity and morphology. Androgen action on RA neurons increases their activity and this has a retrograde trophic effect on the addition of new neurons to HVC. The functional linkage of sex steroids to BDNF may be of adaptive value in regulating the trophic effects of the neurotrophin and coordinating circuit function in reproductively relevant contexts. PMID:25285401

  19. Interlaminar and lateral excitatory amino acid connections in the striate cortex of monkey.

    PubMed

    Kisvarday, Z F; Cowey, A; Smith, A D; Somogyi, P

    1989-02-01

    The intrinsic excitatory amino acid pathways within the striate cortex of monkeys were studied by autoradiographic detection of retrogradely labeled somata following microinjections of D-3H-aspartate (D-3H-Asp) into different layers. The labeled amino acid was selectively accumulated by subpopulations of neurons and, to a small extent, by glial cells, the latter mainly in the supragranular layers. Immunocytochemical detection of neurons containing GABA showed that, apart from a few cells exclusively in layer I, GABAergic neurons do not accumulate D-3H-Asp. Several lines of evidence suggest that D-3H-Asp uptake occurred only at nerve terminals; thus, the pattern of perikaryal labeling allowed the delineation of interlaminar and lateral projections. Neurons in layer I probably project laterally, and layer I receives wide-ranging projections from layer IVB and layer V from cells up to 1300 microns laterally. Some neurons in layer II send a focused projection to lower layer VI. Some neurons in layers II/III project up to 1 mm laterally within their own layer, but relatively few neurons can be labeled in these projections. Similarly, in layers II/III few neurons can be retrogradely labeled from layers V and upper VI, and this projection is organized such that cells closer to the pia project deeper in layer V/VI. The connections of layer IVA could not be revealed separately because of the difficulty of confining injections to this thin sublamina. Neurons in layer IVB project up to 1300 microns within IVB itself. A small number of cells from IVB also project to layers III, IVC-alpha, V, and VI with much more restricted lateral spread. Neurons in upper IVC-alpha send axons to layer IVB with at least 600-800 microns lateral spread. Neurons in lower IVC-alpha/upper IVC-beta project to layer III with at least 300-500 microns lateral spread. The bottom 50-80 microns of layer IVC-beta contains neurons with a very focused projection, apparently exclusively to the layer III/IVA border region. Both layers IVC alpha and beta have rich connections within themselves, the beta sublayer having more restricted lateral connections. Some neurons in layer IVC-beta give a laterally restricted small input to layers IVC-alpha and IVB. Both IVC-alpha and -beta project to layers V and VI, and these projections are spread at least 400 microns laterally. Neurons in layer V project to all layers, but the projection to layers I-III and within layer V itself spread much further laterally than the projections to layers IV and VI.(ABSTRACT TRUNCATED AT 400 WORDS)

  20. Spontaneous laryngeal reinnervation following chronic recurrent laryngeal nerve injury.

    PubMed

    Kupfer, Robbi A; Old, Matthew O; Oh, Sang Su; Feldman, Eva L; Hogikyan, Norman D

    2013-09-01

    To enhance understanding of spontaneous laryngeal muscle reinnervation following severe recurrent laryngeal nerve injury by testing the hypotheses that 1) nerve fibers responsible for thyroarytenoid muscle reinnervation can originate from multiple sources and 2) superior laryngeal nerve is a source of reinnervation. Prospective, controlled, animal model. A combination of retrograde neuronal labeling techniques, immunohistochemistry, electromyography, and sequential observations of vocal fold mobility were employed in rat model of chronic recurrent laryngeal nerve injury. The current study details an initial set of experiments in sham surgical and denervated group animals and a subsequent set of experiments in a denervated group. At 3 months after recurrent laryngeal nerve resection, retrograde brainstem neuronal labeling identified cells in the characteristic superior laryngeal nerve cell body location as well as cells in a novel caudal location. Regrowth of neuron fibers across the site of previous recurrent laryngeal nerve resection was seen in 87% of examined animals in the denervated group. Electromyographic data support innervation by both the superior and recurrent laryngeal nerves following chronic recurrent laryngeal nerve injury. Following chronic recurrent laryngeal nerve injury in the rat, laryngeal innervation is demonstrated through the superior laryngeal nerve from cells both within and outside of the normal cluster of cells that supply the superior laryngeal nerve. The recurrent laryngeal nerve regenerates across a surgically created gap, but functional significance of regenerated nerve fibers is unclear. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  1. Three subdivisions of the auditory midbrain in chicks (Gallus gallus) identified by their afferent and commissural projections

    PubMed Central

    Wang, Yuan; Karten, Harvey J.

    2010-01-01

    The auditory midbrain is a site of convergence of multiple auditory channels from the brainstem. In birds, two separate ascending channels have been identified, through which time and intensity information is sent to nucleus mesencephalicus lateralis, pars dorsalis (MLd), the homologue of the central nucleus of mammalian inferior colliculus. Using in vivo anterograde and retrograde tracing techniques, the current study provides two lines of anatomical evidence supporting the presence of a third ascending channel to the chick MLd. First, three non-overlapping zones of MLd receive inputs from three distinct cell groups in the caudodorsal brainstem. The projections from nucleus angularis (NA) and nucleus laminaris (NL) are predominately contralateral and may correspond to the time and intensity channels. A rostromedial portion of MLd receives bilateral projections mainly from the Regio Intermedius, an interposed region of cells lying at a caudal level between NL and NA, as well as scattered neurons embedded in 8th nerve tract, and probably a very ventral region of NA. Second, the bilateral zones of MLd on two sides of the brain are reciprocally connected and do not interact with other zones of MLd via commissural connections. In contrast, the NL-recipient zone projects contralaterally upon the NA-recipient zone. The structural separation of the third pathway from the NA and NL projections suggests a third information-processing channel, in parallel with the time and intensity channels. Neurons in the third channel appear to process very low frequency information including infrasound, probably utilizing different mechanisms than that underlying higher frequency processing. PMID:20148439

  2. Involvement of lateral septum in alcohol's dopamine-elevating effect in the rat.

    PubMed

    Jonsson, Susanne; Morud, Julia; Stomberg, Rosita; Ericson, Mia; Söderpalm, Bo

    2017-01-01

    Drugs of abuse share the ability to increase extracellular dopamine (DA) levels in the mesolimbic DA system. This effect has been linked to positive and reinforcing experiences of drug consumption and is presumed to be of importance for continued use, as well as for the development of dependence and addiction. Previous rat studies from our lab have implicated a neuronal circuitry involving glycine receptors in nucleus accumbens (nAc) and, secondarily, nicotinic acetylcholine receptors in the ventral tegmental area (VTA) in ethanol's (EtOH) DA-elevating effect. The work presented here, performed in male Wistar rats, suggests that the lateral septum (LS), which has previously been associated with different aspects of EtOH-related behaviour, is involved as well. In vivo microdialysis methodology demonstrated that blocking the generation of action potentials in LS using tetrodotoxin prevented a DA increase in nAc after accumbal EtOH perfusion. Retrograde tracing and polymerase chain reaction (PCR) were used to identify and characterize cells projecting to VTA from nAc/LS and from LS to nAc. Based on the PCR results, cells projecting from both LS/nAc to anterior VTA and from LS to nAc were mainly GABAergic neurons expressing glycine receptors, and these cells are presumed to be involved in mediating the DA-elevating effect of EtOH. These results provide further evidence implicating LS in the reinforcing effects of EtOH. Additional studies are needed to investigate LS involvement in EtOH consumption behaviour and its potential role in the development of dependence and addiction. © 2015 Society for the Study of Addiction.

  3. The Molecular Basis of Memory

    PubMed Central

    2012-01-01

    We propose a tripartite biochemical mechanism for memory. Three physiologic components are involved, namely, the neuron (individual and circuit), the surrounding neural extracellular matrix, and the various trace metals distributed within the matrix. The binding of a metal cation affects a corresponding nanostructure (shrinking, twisting, expansion) and dielectric sensibility of the chelating node (address) within the matrix lattice, sensed by the neuron. The neural extracellular matrix serves as an electro-elastic lattice, wherein neurons manipulate multiple trace metals (n > 10) to encode, store, and decode coginive information. The proposed mechanism explains brains low energy requirements and high rates of storage capacity described in multiples of Avogadro number (NA = 6 × 1023). Supportive evidence correlates memory loss to trace metal toxicity or deficiency, or breakdown in the delivery/transport of metals to the matrix, or its degradation. Inherited diseases revolving around dysfunctional trace metal metabolism and memory dysfunction, include Alzheimer's disease (Al, Zn, Fe), Wilson’s disease (Cu), thalassemia (Fe), and autism (metallothionein). The tripartite mechanism points to the electro-elastic interactions of neurons with trace metals distributed within the neural extracellular matrix, as the molecular underpinning of “synaptic plasticity” affecting short-term memory, long-term memory, and forgetting. PMID:23050060

  4. Anterograde and retrograde amnesia in a person with bilateral fornix lesions following removal of a colloid cyst.

    PubMed

    Poreh, Amir; Winocur, Gordon; Moscovitch, Morris; Backon, Matti; Goshen, Elinor; Ram, Zvi; Feldman, Zeev

    2006-01-01

    AD, a 45-year-old man, presented with a severe and global anterograde amnesia following surgery for removal of a colloid cyst. Structural neuroimaging confirmed bilateral lesions to the fornix and a small lesion in the basal forebrain. Testing for remote episodic memory of autobiographical events, and for remote semantic memory of personal and public events, and of famous people, revealed that AD had a severe retrograde amnesia for autobiographical episodes that covered his entire lifetime, and a time-limited retrograde amnesia for semantic memory. Because the fornix and basal forebrain lesions disrupted major afferent and efferent pathways of the hippocampus, it was concluded that the integrity of the hippocampus and its projections are needed to retain and/or recover autobiographical memories no matter how old they are. By contrast, hippocampal contribution to semantic memory is time-limited. These findings were interpreted as consistent with Multiple Trace Theory, which holds that the hippocampal system is essential for recovering contextually rich memories no matter how old they are, but is not needed for recovering semantic memories.

  5. GABAergic inputs to the nucleus rotundus (pulvinar inferior) of the pigeon (columba livia).

    PubMed

    Mpodozis, J; Cox, K; Shimizu, T; Bischof, H J; Woodson, W; Karten, H J

    1996-10-14

    The avian nucleus rotundus, a nucleus that appears to be homologous to the inferior/ caudal pulvinar of mammals, is the major target of an ascending retino-tecto-thalamic pathway. Further clarification of the inputs to the rotundus and their functional properties will contribute to our understanding of the fundamental role of the ascending tectal inputs to the telencephalon in all vertebrates, including mammals. We found that the rotundus contains a massive plexus of glutamic acid decarboxylase (GAD)-immunoreactive axons using antibodies against GAD. The cells within the rotundus, however, were not immunoreactive for GAD. The retrograde tracer cholera toxin B fragment was injected into the rotundus to establish the location of the afferent neurons and determine the source of the gamma-aminobutyric acid (GABA) inputs into the rotundus. In addition to the recognized bilateral inputs from layer 13 of the tectum, we found intense retrograde labeling of neurons within the ipsilateral nuclei subpretectalis (SP), subpretectalis-caudalis (SPcd), interstitio-pretecto-subpretectalis (IPS), posteroventralis thalami (PV), and reticularis superior thalami (RS). All the neurons of the SP, SPcd, IPS, and PV were intensely GAD-immunoreactive. The neurons of layer 13 of the tectum were not immunoreactive for GAD. Following the destruction of the ipsilateral SP/IPS complex, we found a major reduction in the intensity of the GAD axonal immunoreactivity within the ipsilateral rotundus, but this destruction did not diminish the intensity of the GAD-immunoreactivity within the contralateral rotundus. Our studies indicated that the source of the massive GAD-immunoreactive plexus within the rotundus was from the ipsilateral SP, SPcd, IPS, and PV nuclei. These nuclei, in turn, received ipsilateral tectal input via collaterals of the neurons of layer 13 in the course of their projections upon the rotundus. We suggest that the direct bilateral tecto-rotundal projections are excitatory, whereas the indirect ipsilateral projections from the SP/IPS and PV are mainly inhibitory, possibly acting via a GABA-A receptor.

  6. Functional Characterization of Lamina X Neurons in ex-Vivo Spinal Cord Preparation.

    PubMed

    Krotov, Volodymyr; Tokhtamysh, Anastasia; Kopach, Olga; Dromaretsky, Andrew; Sheremet, Yevhenii; Belan, Pavel; Voitenko, Nana

    2017-01-01

    Functional properties of lamina X neurons in the spinal cord remain unknown despite the established role of this area for somatosensory integration, visceral nociception, autonomic regulation and motoneuron output modulation. Investigations of neuronal functioning in the lamina X have been hampered by technical challenges. Here we introduce an ex-vivo spinal cord preparation with both dorsal and ventral roots still attached for functional studies of the lamina X neurons and their connectivity using an oblique LED illumination for resolved visualization of lamina X neurons in a thick tissue. With the elaborated approach, we demonstrate electrophysiological characteristics of lamina X neurons by their membrane properties, firing pattern discharge and fiber innervation (either afferent or efferent). The tissue preparation has been also probed using Ca 2+ imaging with fluorescent Ca 2+ dyes (membrane-impermeable or -permeable) to demonstrate the depolarization-induced changes in intracellular calcium concentration in lamina X neurons. Finally, we performed visualization of subpopulations of lamina X neurons stained by retrograde labeling with aminostilbamidine dye to identify sympathetic preganglionic and projection neurons in the lamina X. Thus, the elaborated approach provides a reliable tool for investigation of functional properties and connectivity in specific neuronal subpopulations, boosting research of lamina X of the spinal cord.

  7. Cevimeline enhances the excitability of rat superior salivatory neurons.

    PubMed

    Ueda, Hirotaka; Mitoh, Yoshihiro; Ichikawa, Hiroyuki; Kobashi, Motoi; Yamashiro, Takashi; Matsuo, Ryuji

    2009-01-01

    Cevimeline, a therapeutic drug for xerostomia, is an agonist of muscarinic acetylcholine receptors (mAChRs), and directly stimulates the peripheral mAChRs of the salivary glands. Since cevimeline is distributed in the brain after its oral administration, it is possible that it affects the central nervous system. However, it is unknown how cevimeline affects the superior salivatory (SS) neurons, which control submandibular salivation. In the present study, we examined the effects of cevimeline on the SS neurons using the whole-cell patch-clamp technique in brain slices. In Wistar rats (6-10 days), the SS neurons were retrogradely labeled by Texas Red applied to the chorda-lingual nerve. Two days after injection, whole-cell recordings were obtained from the labeled cells, and miniature excitatory postsynaptic currents (mEPSCs) were examined. Cevimeline induced the inward currents dose-dependently and increased the frequency of mEPSCs. Therefore, it is suggested that cevimeline enhances the excitability via post- and presynaptic muscarinic receptors in the rat SS neurons. In conclusion, cevimeline may enhance the excitability of the SS neurons.

  8. Phosphatidylinositol 3-kinase activity in murine motoneuron disease: the progressive motor neuropathy mouse.

    PubMed

    Wagey, R; Lurot, S; Perrelet, D; Pelech, S L; Sagot, Y; Krieger, C

    2001-01-01

    A murine model of motoneuron disease, the pmn/pmn mouse, shows a reduction in the retrograde transport of fluorescent probes applied directly onto the cut end of sciatic nerve. Brain-derived neurotrophic factor (BDNF), when co-applied with fluorescent tracers, increases the number of retrograde labelled motoneurons. We demonstrate here that spinal cord tissue from pmn/pmn mice had significantly reduced phosphatidylinositol 3-kinase activity and expression in the particulate fraction compared to controls, without changes in the activities or expression of the downstream kinases, protein kinase B/Akt or Erk1. Systemic administration of BDNF augmented phosphatidylinositol 3-kinase specific activity in spinal cord tissue from pmn/pmn and control mice, with a greater elevation in the particulate fractions of pmn/pmn mice than in controls. We examined the effect of inhibitors of phosphatidylinositol 3-kinase and mitogen-activated protein kinase kinase on the retrograde labelling of motoneurons, 24h following the direct application of inhibitors and Fluorogold to the cut end of sciatic nerve in control and pmn/pmn mice (labelling index). The mitogen-activated protein kinase kinase inhibitor PD 98059 had no effect on the labelling index in control or pmn/pmn mice. In the absence of exogenous BDNF, phosphatidylinositol 3-kinase inhibitors reduced the number of labelled motoneurons in control mice, without changing the labelling index in pmn/pmn. Co-application of phosphatidylinositol 3-kinase inhibitors with BDNF to the cut end of sciatic nerve blocked the action of BDNF on retrograde labelling in pmn/pmn mice. These results indicate that the retrograde labelling of motoneurons is mediated by phosphatidylinositol 3-kinase-dependent and -independent pathways. In pmn/pmn mice, phosphatidylinositol 3-kinase activity in spinal neurons is below the level required for optimal retrograde labelling of motoneurons and labelling can be augmented by the administration of growth factors stimulating phosphatidylinositol 3-kinase activity. The data indicate that phosphatidylinositol 3-kinase activity is important in the uptake and/or retrograde transport of substances by motoneurons and is altered in this model of motoneuron diseases.

  9. Presynaptic Regulation of Leptin in a Defined Lateral Hypothalamus-Ventral Tegmental Area Neurocircuitry Depends on Energy State.

    PubMed

    Liu, Jing-Jing; Bello, Nicholas T; Pang, Zhiping P

    2017-12-06

    Synaptic transmission controls brain activity and behaviors, including food intake. Leptin, an adipocyte-derived hormone, acts on neurons located in the lateral hypothalamic area (LHA) to maintain energy homeostasis and regulate food intake behavior. The specific synaptic mechanisms, cell types, and neural projections mediating this effect remain unclear. In male mice, using pathway-specific retrograde tracing, whole-cell patch-clamp recordings and post hoc cell type identification, we found that leptin reduces excitatory synaptic strength onto both melanin-concentrating hormone- and orexin-expressing neurons projecting from the LHA to the ventral tegmental area (VTA), which may affect dopamine signaling and motivation for feeding. A presynaptic mechanism mediated by distinct intracellular signaling mechanisms may account for this regulation by leptin. The regulatory effects of leptin depend on intact leptin receptor signaling. Interestingly, the synaptic regulatory function of leptin in the LHA-to-VTA neuronal pathway is highly sensitive to energy states: both energy deficiency (acute fasting) and excessive energy storage (high-fat diet-induced obesity) blunt the effect of leptin. These data revealed that leptin may regulate synaptic transmission in the LHA-to-VTA neurocircuitry in an inverted "U-shape" fashion dependent on plasma glucose levels and related to metabolic states. SIGNIFICANCE STATEMENT The lateral hypothalamic area (LHA) to ventral tegmental area (VTA) projection is an important neural pathway involved in balancing whole-body energy states and reward. We found that the excitatory synaptic inputs to both orexin- and melanin-concentrating hormone expressing LHA neurons projecting to the VTA were suppressed by leptin, a peptide hormone derived from adipocytes that signals peripheral energy status to the brain. Interestingly, energy states seem to affect how leptin regulates synaptic transmission since both the depletion of energy induced by acute food deprivation and excessive storage of energy by high-fat diet feeding dampen the suppressive effect of leptin on synaptic transmission. Together, these data show that leptin regulates synaptic transmission and might be important for maintaining energy homeostasis. Copyright © 2017 the authors 0270-6474/17/3711854-13$15.00/0.

  10. Excitatory Hindbrain–Forebrain Communication Is Required for Cisplatin-Induced Anorexia and Weight Loss

    PubMed Central

    Alhadeff, Amber L.; Holland, Ruby A.; Zheng, Huiyuan; Rinaman, Linda; Grill, Harvey J.

    2017-01-01

    Cisplatin chemotherapy is commonly used to treat cancer despite severe energy balance side effects. In rats, cisplatin activates nucleus tractus solitarius (NTS) projections to the lateral parabrachial nucleus (lPBN) and calcitonin-gene related peptide (CGRP) projections from the lPBN to the central nucleus of the amygdala (CeA). We demonstrated previously that CeA glutamate receptor signaling mediates cisplatin-induced anorexia and body weight loss. Here, we used neuroanatomical tracing, immunofluorescence, and confocal imaging to demonstrate that virtually all NTS→lPBN and lPBN→CeA CGRP projections coexpress vesicular glutamate transporter 2 (VGLUT2), providing evidence that excitatory projections mediate cisplatin-induced energy balance dysregulation. To test whether lPBN→CeA projection neurons are required for cisplatin-induced anorexia and weight loss, we inhibited these neurons chemogenetically using a retrograde Cre-recombinase-expressing canine adenovirus-2 in combination with Cre-dependent inhibitory Designer Receptors Exclusive Activated by Designer Drugs (DREADDs) before cisplatin treatment. Inhibition of lPBN→CeA neurons attenuated cisplatin-induced anorexia and body weight loss significantly. Using a similar approach, we additionally demonstrated that inhibition of NTS→lPBN neurons attenuated cisplatin-induced anorexia and body weight loss significantly. Together, our data support the view that excitatory hindbrain–forebrain projections are necessary for cisplatin's untoward effects on energy intake, elucidating a key neuroanatomical circuit driving pathological anorexia and weight loss that accompanies chemotherapy treatment. SIGNIFICANCE STATEMENT Chemotherapy treatments are commonly used to treat cancers despite accompanying anorexia and weight loss that may limit treatment adherence and reduce patient quality of life. Strikingly, we lack a neural understanding of, and effective treatments for, chemotherapy-induced anorexia and weight loss. The current data characterize the excitatory nature of neural projections activated by cisplatin in rats and reveal the necessity of specific hindbrain–forebrain projections for cisplatin-induced anorexia and weight loss. Together, these findings help to characterize the neural mechanisms mediating cisplatin-induced anorexia, advancing opportunities to develop better-tolerated chemotherapies and adjuvant therapies to prevent anorexia and concurrent nutritional deficiencies during cancer treatment. PMID:28077715

  11. Excitatory Hindbrain-Forebrain Communication Is Required for Cisplatin-Induced Anorexia and Weight Loss.

    PubMed

    Alhadeff, Amber L; Holland, Ruby A; Zheng, Huiyuan; Rinaman, Linda; Grill, Harvey J; De Jonghe, Bart C

    2017-01-11

    Cisplatin chemotherapy is commonly used to treat cancer despite severe energy balance side effects. In rats, cisplatin activates nucleus tractus solitarius (NTS) projections to the lateral parabrachial nucleus (lPBN) and calcitonin-gene related peptide (CGRP) projections from the lPBN to the central nucleus of the amygdala (CeA). We demonstrated previously that CeA glutamate receptor signaling mediates cisplatin-induced anorexia and body weight loss. Here, we used neuroanatomical tracing, immunofluorescence, and confocal imaging to demonstrate that virtually all NTS→lPBN and lPBN→CeA CGRP projections coexpress vesicular glutamate transporter 2 (VGLUT2), providing evidence that excitatory projections mediate cisplatin-induced energy balance dysregulation. To test whether lPBN→CeA projection neurons are required for cisplatin-induced anorexia and weight loss, we inhibited these neurons chemogenetically using a retrograde Cre-recombinase-expressing canine adenovirus-2 in combination with Cre-dependent inhibitory Designer Receptors Exclusive Activated by Designer Drugs (DREADDs) before cisplatin treatment. Inhibition of lPBN→CeA neurons attenuated cisplatin-induced anorexia and body weight loss significantly. Using a similar approach, we additionally demonstrated that inhibition of NTS→lPBN neurons attenuated cisplatin-induced anorexia and body weight loss significantly. Together, our data support the view that excitatory hindbrain-forebrain projections are necessary for cisplatin's untoward effects on energy intake, elucidating a key neuroanatomical circuit driving pathological anorexia and weight loss that accompanies chemotherapy treatment. Chemotherapy treatments are commonly used to treat cancers despite accompanying anorexia and weight loss that may limit treatment adherence and reduce patient quality of life. Strikingly, we lack a neural understanding of, and effective treatments for, chemotherapy-induced anorexia and weight loss. The current data characterize the excitatory nature of neural projections activated by cisplatin in rats and reveal the necessity of specific hindbrain-forebrain projections for cisplatin-induced anorexia and weight loss. Together, these findings help to characterize the neural mechanisms mediating cisplatin-induced anorexia, advancing opportunities to develop better-tolerated chemotherapies and adjuvant therapies to prevent anorexia and concurrent nutritional deficiencies during cancer treatment. Copyright © 2017 the authors 0270-6474/17/370362-09$15.00/0.

  12. Corticotrigeminal Projections from the Insular Cortex to the Trigeminal Caudal Subnucleus Regulate Orofacial Pain after Nerve Injury via Extracellular Signal-Regulated Kinase Activation in Insular Cortex Neurons.

    PubMed

    Wang, Jian; Li, Zhi-Hua; Feng, Ban; Zhang, Ting; Zhang, Han; Li, Hui; Chen, Tao; Cui, Jing; Zang, Wei-Dong; Li, Yun-Qing

    2015-01-01

    Cortical neuroplasticity alterations are implicated in the pathophysiology of chronic orofacial pain. However, the relationship between critical cortex excitability and orofacial pain maintenance has not been fully elucidated. We recently demonstrated a top-down corticospinal descending pain modulation pathway from the anterior cingulate cortex (ACC) to the spinal dorsal horn that could directly regulate nociceptive transmission. Thus, we aimed to investigate possible corticotrigeminal connections that directly influence orofacial nociception in rats. Infraorbital nerve chronic constriction injury (IoN-CCI) induced significant orofacial nociceptive behaviors as well as pain-related negative emotions such as anxiety/depression in rats. By combining retrograde and anterograde tract tracing, we found powerful evidence that the trigeminal caudal subnucleus (Vc), especially the superficial laminae (I/II), received direct descending projections from granular and dysgranular parts of the insular cortex (IC). Extracellular signal-regulated kinase (ERK), an important signaling molecule involved in neuroplasticity, was significantly activated in the IC following IoN-CCI. Moreover, in IC slices from IoN-CCI rats, U0126, an inhibitor of ERK activation, decreased both the amplitude and the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and reduced the paired-pulse ratio (PPR) of Vc-projecting neurons. Additionally, U0126 also reduced the number of action potentials in the Vc-projecting neurons. Finally, intra-IC infusion of U0126 obviously decreased Fos expression in the Vc, accompanied by the alleviation of both nociceptive behavior and negative emotions. Thus, the corticotrigeminal descending pathway from the IC to the Vc could directly regulate orofacial pain, and ERK deactivation in the IC could effectively alleviate neuropathic pain as well as pain-related negative emotions in IoN-CCI rats, probably through this top-down pathway. These findings may help researchers and clinicians to better understand the underlying modulation mechanisms of orofacial neuropathic pain and indicate a novel mechanism of ERK inhibitor-induced analgesia.

  13. Aspirin attenuates spontaneous recurrent seizures in the chronically epileptic mice.

    PubMed

    Zhu, Kun; Hu, Ming; Yuan, Bo; Liu, Jian-Xin; Liu, Yong

    2017-08-01

    Neuroinflammatory processes are pathologic hallmarks of both experimental and human epilepsy, and could be implicated in the neuronal hyperexcitability. Aspirin represents one of the non-selective nonsteroidal anti-inflammatory drugs with fewer side effects in long-term application. This study was carried out to assess the anti-epileptic effects of aspirin when administered during the chronic stage of temporal lobe epilepsy [TLE] in mice. The alteration of hippocampal neurogenesis was also examined for raising a possible mechanism underlying the protective effect of anti-inflammatory treatment in the TLE. Two months after pilocarpine-induced status epilepticus, the chronically epileptic mice were treated with aspirin (20 mg, 60 mg or 80 mg/kg) once a day for 10 weeks. Spontaneous recurrent seizures were monitored by video camera for 2 weeks. To evaluate the profile of hippocampal neurogenesis, the newly generated cells in the dentate gyrus were labeled by the proliferation marker BrdU. The newborn neurons that extended axons to CA3 area were visualized by cholera toxin B subunit retrograde tracing. Administration of aspirin with a dosage of 60 mg or 80 mg/kg initiated at 2 months after pilocarpine-induced status epilepticus significantly reduced the frequency and duration of spontaneous recurrent seizures. Aspirin treatment also increased the number of newborn neurons with anatomic integration through improving the survival of the newly generated cells. Aspirin treatment during the chronic stage of TLE could attenuate the spontaneous recurrent seizures in mice. Promotion of hippocampal neurogenesis and inhibition of COX-PGE2 pathway might partly contribute to this anti-epileptic effect. Highlights • Aspirin attenuates spontaneous recurrent seizures of chronically epileptic mice • Aspirin increases neurogenesis of chronically epileptic hippocampus by improving the survival of newly generated cells • Promotion of hippocampal neurogenesis and inhibition of COX-PGE2 pathway might partly contribute to anti-epileptic effects of aspirin.

  14. Trophic factors in neurologic disease.

    PubMed

    Stewart, S S; Appel, S H

    1988-01-01

    Recent studies suggest that diffusible factors released by neural targets enhance the survival, growth, and differentiation of neurons both peripherally and in the central nervous system. Evidence for such trophic factors exists for many of the neural systems involved in the degenerative neurologic diseases Alzheimer's disease, parkinsonism, and amyotrophic lateral sclerosis. It is our hypothesis that for each of these disorders there is both a primary insult and a secondary effect. The primary insult may have multiple etiologies, but the secondary effect is the result of retrograde degeneration. Such retrograde degeneration occurs because of an impairment of trophic factor function or an inadequacy of trophic effects to keep pace with the primary destructive process. Accordingly, it may be possible to exploit such trophic mechanisms to define further the pathobiology of neural degeneration and to develop specific treatments for currently incurable illnesses.

  15. Identification of growth hormone-releasing hormone and somatostatin neurons projecting to the median eminence in normal and growth hormone-deficient Ames dwarf mice.

    PubMed

    Romero, M I; Phelps, C J

    1997-02-01

    In the spontaneous mutant Ames dwarf mouse, GH deficiency coincides with a dramatic increase in the expression of both mRNA and peptide for stimulatory GHRH and reduced expression of GH-inhibitory somatostatin (SRIH) mRNA and peptide. However, both GHRH and SRIH are markedly reduced in the dwarf median eminence (ME), suggesting that ME innervation by GHRH and SRIH neurons may be aberrant in the absence of GH. In order to test this hypothesis, the number of GHRH and SRIH ME-projecting neurons was evaluated in normal and dwarf mice using a combination of retrograde tract-tracing and neuron phenotype identification by immunocytochemistry (ICC). Adult animals were injected intraperitoneally with the fluorescent tract-tracer fluorogold (FG), which, in the brain, is taken up only by axons terminating in areas deprived of the blood-brain barrier, such as the ME. Visualization of FG was achieved by either UV illumination or ICC, and was combined as appropriate with fluorescence or bright-field ICC for GHRH or SRIH. Cells immunoreactive for GHRH or SRIH and labeled with FG were quantified at each 180-microns rostral-to-caudal level through the hypothalamus. As reported previously, the total number of hypophysiotropic GHRH neurons was markedly increased in dwarf compared with that in normal mice. However, a similar percentage of ME-innervating GHRH cells was estimated in dwarf (73 +/- 4%) and normal (76 +/- 3%) animals. Such a percentage in dwarfs thus represents a larger population of ME-projecting GHRH cells (749 +/- 53) than in normal mice (128 +/- 15). Increased numbers of FG-labeled GHRH neurons in dwarfs were located at the middle and posterior levels of the arcuate nucleus (2.08, 2.26 and 2.44 mm posterior to bregma). The percentage of FG-labeled SRIH neurons was also similar for dwarf (83 +/- 2%) and normal (87 +/- 2%) mice. Because the total SRIH-immunoreactive neuronal population in dwarfs is significantly reduced compared to that in normal animals, the similar FG-labeled percentage reflects a reduced number of SRIH cells projecting to ME in dwarf (1,376 +/- 104) compared with normal (3,192 +/- 267) mice. Fewer FG-labeled SRIH cells were found in dwarfs at every anterior-to-posterior level of the periventricular nucleus (p < 0.01 for comparisons at 0.28, 0.46, 0.64, and 1.0, and p < 0.05 for comparison at 1.18 mm posterior to the bregma). The present study indicates that the reduction in GHRH and SRIH immunoreactivity in the dwarf ME may result from different phenomena for each neuronal population. The reduction in GHRH immunostaining in the ME, despite a marked increase in the total ME-projecting GHRH neurons, may be interpreted as increased GHRH release, with consequent depletion of the ME stores. In contrast, the deficit in ME SRIH may be proportional to the deficit in the number of detectable SRIH periventricular nucleus neurons.

  16. Single-cell analysis of peptide expression and electrophysiology of right parietal neurons involved in male copulation behavior of a simultaneous hermaphrodite.

    PubMed

    El Filali, Z; de Boer, P A C M; Pieneman, A W; de Lange, R P J; Jansen, R F; Ter Maat, A; van der Schors, R C; Li, K W; van Straalen, N M; Koene, J M

    2015-12-01

    Male copulation is a complex behavior that requires coordinated communication between the nervous system and the peripheral reproductive organs involved in mating. In hermaphroditic animals, such as the freshwater snail Lymnaea stagnalis, this complexity increases since the animal can behave both as male and female. The performance of the sexual role as a male is coordinated via a neuronal communication regulated by many peptidergic neurons, clustered in the cerebral and pedal ganglia and dispersed in the pleural and parietal ganglia. By combining single-cell matrix-assisted laser mass spectrometry with retrograde staining and electrophysiology, we analyzed neuropeptide expression of single neurons of the right parietal ganglion and their axonal projections into the penial nerve. Based on the neuropeptide profile of these neurons, we were able to reconstruct a chemical map of the right parietal ganglion revealing a striking correlation with the earlier electrophysiological and neuroanatomical studies. Neurons can be divided into two main groups: (i) neurons that express heptapeptides and (ii) neurons that do not. The neuronal projection of the different neurons into the penial nerve reveals a pattern where (spontaneous) activity is related to branching pattern. This heterogeneity in both neurochemical anatomy and branching pattern of the parietal neurons reflects the complexity of the peptidergic neurotransmission involved in the regulation of male mating behavior in this simultaneous hermaphrodite.

  17. Organization of projections from the raphe nuclei to the vestibular nuclei in rats

    NASA Technical Reports Server (NTRS)

    Halberstadt, A. L.; Balaban, C. D.

    2003-01-01

    Previous anatomic and electrophysiological evidence suggests that serotonin modulates processing in the vestibular nuclei. This study examined the organization of projections from serotonergic raphe nuclei to the vestibular nuclei in rats. The distribution of serotonergic axons in the vestibular nuclei was visualized immunohistochemically in rat brain slices using antisera directed against the serotonin transporter. The density of serotonin transporter-immunopositive fibers is greatest in the superior vestibular nucleus and the medial vestibular nucleus, especially along the border of the fourth ventricle; it declines in more lateral and caudal regions of the vestibular nuclear complex. After unilateral iontophoretic injections of Fluoro-Gold into the vestibular nuclei, retrogradely labeled neurons were found in the dorsal raphe nucleus (including the dorsomedial, ventromedial and lateral subdivisions) and nucleus raphe obscurus, and to a minor extent in nucleus raphe pallidus and nucleus raphe magnus. The combination of retrograde tracing with serotonin immunohistofluorescence in additional experiments revealed that the vestibular nuclei receive both serotonergic and non-serotonergic projections from raphe nuclei. Tracer injections in densely innervated regions (especially the medial and superior vestibular nuclei) were associated with the largest numbers of Fluoro-Gold-labeled cells. Differences were observed in the termination patterns of projections from the individual raphe nuclei. Thus, the dorsal raphe nucleus sends projections that terminate predominantly in the rostral and medial aspects of the vestibular nuclear complex, while nucleus raphe obscurus projects relatively uniformly throughout the vestibular nuclei. Based on the topographical organization of raphe input to the vestibular nuclei, it appears that dense projections from raphe nuclei are colocalized with terminal fields of flocculo-nodular lobe and uvula Purkinje cells. It is hypothesized that raphe-vestibular connections are organized to selectively modulate processing in regions of the vestibular nuclear complex that receive input from specific cerebellar zones. This represents a potential mechanism whereby motor activity and behavioral arousal could influence the activity of cerebellovestibular circuits.

  18. A new mode of mitochondrial transport and polarized sorting regulated by Dynein, Milton and Miro.

    PubMed

    Melkov, Anna; Baskar, Raju; Alcalay, Yehonatan; Abdu, Uri

    2016-11-15

    Intrinsic cell microtubule (MT) polarity, together with molecular motors and adaptor proteins, determines mitochondrial polarized targeting and MT-dependent transport. In polarized cells, such as neurons, mitochondrial mobility and transport require the regulation of kinesin and dynein by two adaptor proteins, Milton and Miro. Recently, we found that dynein heavy chain 64C (Dhc64C) is the primary motor protein for both anterograde and retrograde transport of mitochondria in the Drosophila bristle. In this study, we show that a molecular lesion in the Dhc64C allele that reduced bristle mitochondrial velocity generated a variant that acts as a 'slow' dynein in an MT-gliding assay, indicating that dynein directly regulates mitochondrial transport. We also showed that in milton-RNAi flies, mitochondrial flux into the bristle shaft, but not velocity, was significantly reduced. Surprisingly, mitochondria retrograde flux, but not net velocity, was significantly decreased in miro-RNAi flies. We thus reveal a new mode of mitochondrial sorting in polarized cell growth, whereby bi-directional mitochondrial transport undertaken exclusively by dynein is regulated by Milton in the anterograde direction and by a Miro-dependent switch to the retrograde direction. © 2016. Published by The Company of Biologists Ltd.

  19. Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer's disease amyloid plaques.

    PubMed

    Gowrishankar, Swetha; Yuan, Peng; Wu, Yumei; Schrag, Matthew; Paradise, Summer; Grutzendler, Jaime; De Camilli, Pietro; Ferguson, Shawn M

    2015-07-14

    Through a comprehensive analysis of organellar markers in mouse models of Alzheimer's disease, we document a massive accumulation of lysosome-like organelles at amyloid plaques and establish that the majority of these organelles reside within swollen axons that contact the amyloid deposits. This close spatial relationship between axonal lysosome accumulation and extracellular amyloid aggregates was observed from the earliest stages of β-amyloid deposition. Notably, we discovered that lysosomes that accumulate in such axons are lacking in multiple soluble luminal proteases and thus are predicted to be unable to efficiently degrade proteinaceous cargos. Of relevance to Alzheimer's disease, β-secretase (BACE1), the protein that initiates amyloidogenic processing of the amyloid precursor protein and which is a substrate for these proteases, builds up at these sites. Furthermore, through a comparison between the axonal lysosome accumulations at amyloid plaques and neuronal lysosomes of the wild-type brain, we identified a similar, naturally occurring population of lysosome-like organelles in neuronal processes that is also defined by its low luminal protease content. In conjunction with emerging evidence that the lysosomal maturation of endosomes and autophagosomes is coupled to their retrograde transport, our results suggest that extracellular β-amyloid deposits cause a local impairment in the retrograde axonal transport of lysosome precursors, leading to their accumulation and a blockade in their further maturation. This study both advances understanding of Alzheimer's disease brain pathology and provides new insights into the subcellular organization of neuronal lysosomes that may have broader relevance to other neurodegenerative diseases with a lysosomal component to their pathology.

  20. Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer’s disease amyloid plaques

    PubMed Central

    Gowrishankar, Swetha; Yuan, Peng; Wu, Yumei; Schrag, Matthew; Paradise, Summer; Grutzendler, Jaime; De Camilli, Pietro; Ferguson, Shawn M.

    2015-01-01

    Through a comprehensive analysis of organellar markers in mouse models of Alzheimer’s disease, we document a massive accumulation of lysosome-like organelles at amyloid plaques and establish that the majority of these organelles reside within swollen axons that contact the amyloid deposits. This close spatial relationship between axonal lysosome accumulation and extracellular amyloid aggregates was observed from the earliest stages of β-amyloid deposition. Notably, we discovered that lysosomes that accumulate in such axons are lacking in multiple soluble luminal proteases and thus are predicted to be unable to efficiently degrade proteinaceous cargos. Of relevance to Alzheimer’s disease, β-secretase (BACE1), the protein that initiates amyloidogenic processing of the amyloid precursor protein and which is a substrate for these proteases, builds up at these sites. Furthermore, through a comparison between the axonal lysosome accumulations at amyloid plaques and neuronal lysosomes of the wild-type brain, we identified a similar, naturally occurring population of lysosome-like organelles in neuronal processes that is also defined by its low luminal protease content. In conjunction with emerging evidence that the lysosomal maturation of endosomes and autophagosomes is coupled to their retrograde transport, our results suggest that extracellular β-amyloid deposits cause a local impairment in the retrograde axonal transport of lysosome precursors, leading to their accumulation and a blockade in their further maturation. This study both advances understanding of Alzheimer’s disease brain pathology and provides new insights into the subcellular organization of neuronal lysosomes that may have broader relevance to other neurodegenerative diseases with a lysosomal component to their pathology. PMID:26124111

  1. Projections of Somatosensory Cortex and Frontal Eye Fields onto Incertotectal Neurons in the Cat

    PubMed Central

    Perkins, Eddie; Warren, Susan; Lin, Rick C.-S.; May, Paul J.

    2014-01-01

    The goal of this study was to determine whether the input-output characteristics of the zona incerta (ZI) are appropriate for it to serve as a conduit for cortical control over saccade-related activity in the superior colliculus. The study utilized the neuronal tracers wheat germ agglutinin-horseradish peroxidase (WGA-HRP) and biotinylated dextran amine (BDA) in the cat. Injections of WGA-HRP into primary somatosensory cortex (SI) revealed sparse, widespread nontopographic projections throughout ZI. In addition, region-specific areas of more intense termination were present in ventral ZI, although strict topography was not observed. In comparison, the frontal eye fields (FEF) also projected sparsely throughout ZI, but terminated more heavily, medially, along the border between the two sublaminae. Furthermore, retrogradely labeled incertocortical neurons were observed in both experiments. The relationship of these two cortical projections to incertotectal cells was also directly examined by retrogradely labeling incertotectal cells with WGA-HRP in animals that had also received cortical BDA injections. Labeled axonal arbors from both SI and FEF had thin, sparsely branched axons with numerous en passant boutons. They formed numerous close associations with the somata and dendrites of WGA-HRP-labeled incertotectal cells. In summary, these results indicate that both sensory and motor cortical inputs to ZI display similar morphologies and distributions. In addition, both display close associations with incertotectal cells, suggesting direct synaptic contact. From these data, we conclude that inputs from somatosensory and FEF cortex both play a role in controlling gaze-related activity in the superior colliculus by way of the inhibitory incertotectal projection. PMID:17083121

  2. A single-trace dual-process model of episodic memory: a novel computational account of familiarity and recollection.

    PubMed

    Greve, Andrea; Donaldson, David I; van Rossum, Mark C W

    2010-02-01

    Dual-process theories of episodic memory state that retrieval is contingent on two independent processes: familiarity (providing a sense of oldness) and recollection (recovering events and their context). A variety of studies have reported distinct neural signatures for familiarity and recollection, supporting dual-process theory. One outstanding question is whether these signatures reflect the activation of distinct memory traces or the operation of different retrieval mechanisms on a single memory trace. We present a computational model that uses a single neuronal network to store memory traces, but two distinct and independent retrieval processes access the memory. The model is capable of performing familiarity and recollection-based discrimination between old and new patterns, demonstrating that dual-process models need not to rely on multiple independent memory traces, but can use a single trace. Importantly, our putative familiarity and recollection processes exhibit distinct characteristics analogous to those found in empirical data; they diverge in capacity and sensitivity to sparse and correlated patterns, exhibit distinct ROC curves, and account for performance on both item and associative recognition tests. The demonstration that a single-trace, dual-process model can account for a range of empirical findings highlights the importance of distinguishing between neuronal processes and the neuronal representations on which they operate.

  3. Excitatory inputs to four types of spinocerebellar tract neurons in the cat and the rat thoraco-lumbar spinal cord

    PubMed Central

    Shrestha, Sony Shakya; Bannatyne, B Anne; Jankowska, Elzbieta; Hammar, Ingela; Nilsson, Elin; Maxwell, David J

    2012-01-01

    The cerebellum receives information from the hindlimbs through several populations of spinocerebellar tract neurons. Although the role of these neurons has been established in electrophysiological experiments, the relative contribution of afferent fibres and central neurons to their excitatory input has only been estimated approximately so far. Taking advantage of differences in the immunohistochemistry of glutamatergic terminals of peripheral afferents and of central neurons (with vesicular glutamate transporters VGLUT1 or VGLUT2, respectively), we compared sources of excitatory input to four populations of spinocerebellar neurons in the thoraco-lumbar spinal cord: dorsal spinocerebellar tract neurons located in Clarke's column (ccDSCT) and in the dorsal horn (dhDSCT) and ventral spinocerebellar tract (VSCT) neurons including spinal border (SB) neurons. This was done on 22 electrophysiologically identified intracellularly labelled neurons in cats and on 80 neurons labelled by retrograde transport of cholera toxin b subunit injected into the cerebellum of rats. In both species distribution of antibodies against VGLUT1 and VGLUT2 on SB neurons (which have dominating inhibitory input from limb muscles), revealed very few VGLUT1 contacts and remarkably high numbers of VGLUT2 contacts. In VSCT neurons with excitatory afferent input, the number of VGLUT1 contacts was relatively high although VGLUT2 contacts likewise dominated, while the proportions of VGLUT1 and VGLUT2 immunoreactive terminals were the reverse on the two populations of DSCT neurons. These findings provide morphological evidence that SB neurons principally receive excitatory inputs from central neurons and provide the cerebellum with information regarding central neuronal activity. PMID:22371473

  4. Excitatory inputs to four types of spinocerebellar tract neurons in the cat and the rat thoraco-lumbar spinal cord.

    PubMed

    Shrestha, Sony Shakya; Bannatyne, B Anne; Jankowska, Elzbieta; Hammar, Ingela; Nilsson, Elin; Maxwell, David J

    2012-04-01

    The cerebellum receives information from the hindlimbs through several populations of spinocerebellar tract neurons. Although the role of these neurons has been established in electrophysiological experiments, the relative contribution of afferent fibres and central neurons to their excitatory input has only been estimated approximately so far. Taking advantage of differences in the immunohistochemistry of glutamatergic terminals of peripheral afferents and of central neurons (with vesicular glutamate transporters VGLUT1 or VGLUT2, respectively), we compared sources of excitatory input to four populations of spinocerebellar neurons in the thoraco-lumbar spinal cord: dorsal spinocerebellar tract neurons located in Clarke's column (ccDSCT) and in the dorsal horn (dhDSCT) and ventral spinocerebellar tract (VSCT) neurons including spinal border (SB) neurons. This was done on 22 electrophysiologically identified intracellularly labelled neurons in cats and on 80 neurons labelled by retrograde transport of cholera toxin b subunit injected into the cerebellum of rats. In both species distribution of antibodies against VGLUT1 and VGLUT2 on SB neurons (which have dominating inhibitory input from limb muscles), revealed very few VGLUT1 contacts and remarkably high numbers of VGLUT2 contacts. In VSCT neurons with excitatory afferent input, the number of VGLUT1 contacts was relatively high although VGLUT2 contacts likewise dominated, while the proportions of VGLUT1 and VGLUT2 immunoreactive terminals were the reverse on the two populations of DSCT neurons. These findings provide morphological evidence that SB neurons principally receive excitatory inputs from central neurons and provide the cerebellum with information regarding central neuronal activity.

  5. dnc-1/dynactin 1 Knockdown Disrupts Transport of Autophagosomes and Induces Motor Neuron Degeneration

    PubMed Central

    Ikenaka, Kensuke; Kawai, Kaori; Katsuno, Masahisa; Huang, Zhe; Jiang, Yue-Mei; Iguchi, Yohei; Kobayashi, Kyogo; Kimata, Tsubasa; Waza, Masahiro; Tanaka, Fumiaki; Mori, Ikue; Sobue, Gen

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. We previously showed that the expression of dynactin 1, an axon motor protein regulating retrograde transport, is markedly reduced in spinal motor neurons of sporadic ALS patients, although the mechanisms by which decreased dynactin 1 levels cause neurodegeneration have yet to be elucidated. The accumulation of autophagosomes in degenerated motor neurons is another key pathological feature of sporadic ALS. Since autophagosomes are cargo of dynein/dynactin complexes and play a crucial role in the turnover of several organelles and proteins, we hypothesized that the quantitative loss of dynactin 1 disrupts the transport of autophagosomes and induces the degeneration of motor neuron. In the present study, we generated a Caenorhabditis elegans model in which the expression of DNC-1, the homolog of dynactin 1, is specifically knocked down in motor neurons. This model exhibited severe motor defects together with axonal and neuronal degeneration. We also observed impaired movement and increased number of autophagosomes in the degenerated neurons. Furthermore, the combination of rapamycin, an activator of autophagy, and trichostatin which facilitates axonal transport dramatically ameliorated the motor phenotype and axonal degeneration of this model. Thus, our results suggest that decreased expression of dynactin 1 induces motor neuron degeneration and that the transport of autophagosomes is a novel and substantial therapeutic target for motor neuron degeneration. PMID:23408943

  6. Cell-type specific circuit connectivity of hippocampal CA1 revealed through Cre-dependent rabies tracing

    PubMed Central

    Sun, Yanjun; Nguyen, Amanda; Nguyen, Joseph; Le, Luc; Saur, Dieter; Choi, Jiwon; Callaway, Edward M.; Xu, Xiangmin

    2014-01-01

    Summary We applied a new Cre-dependent, genetically modified rabies-based tracing system to map direct synaptic connections to CA1 excitatory and inhibitory neuron types in mouse hippocampus. We found common inputs to excitatory and inhibitory CA1 neurons from CA3, CA2, entorhinal cortex and the medial septum (MS), and unexpectedly also from the subiculum. Excitatory CA1 neurons receive inputs from both cholinergic and GABAergic MS neurons while inhibitory CA1 neurons receive a great majority of input from GABAergic MS neurons; both cell types also receive weaker input from glutamatergic MS neurons. Comparisons of inputs to CA1 PV+ interneurons versus SOM+ interneurons showed similar strengths of input from the subiculum, but PV+ interneurons receive much stronger input than SOM+ neurons from CA3, entorhinal cortex and MS. Differential input from CA3 to specific CA1 cell types was also demonstrated functionally using laser scanning photostimulation and whole cell recordings. PMID:24656815

  7. Neurocircuitry of fear extinction in adult and juvenile rats.

    PubMed

    Ganella, Despina E; Nguyen, Ly Dao; Lee-Kardashyan, Luba; Kim, Leah E; Paolini, Antonio G; Kim, Jee Hyun

    2018-06-10

    In contrast to adult rodents, juvenile rodents fail to show relapse following extinction of conditioned fear. Using different retrograde tracers injected into the infralimbic cortex (IL) and the ventral hippocampus (vHPC) in conjunction with c-Fos and parvalbumin (PV) immunochemistry, we investigated the neurocircuitry of extinction in juvenile and adult rats. Regardless of fear extinction or retrieval, juvenile rats had more c-Fos+ neurons in the basolateral amygdala (BLA) compared to adults, and showed a higher proportion of c-Fos+ IL-projecting neurons. Adult rats had more activated vHPC-projecting BLA neurons following extinction compared to retrieval, a difference not observed in juvenile rats. The number of activated vHPC- or IL-projecting BLA neurons was significantly correlated with freezing levels in adult, but not juvenile, rats. We also identified neurons in the BLA that simultaneously project to the IL and vHPC activated in the retrieval groups at both ages. This study provides novel insight into the neural process underlying extinction, especially in the juvenile period. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Microtubule nucleation and organization in dendrites

    PubMed Central

    Delandre, Caroline; Amikura, Reiko; Moore, Adrian W.

    2016-01-01

    ABSTRACT Dendrite branching is an essential process for building complex nervous systems. It determines the number, distribution and integration of inputs into a neuron, and is regulated to create the diverse dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton is critical to provide structure and exert force during dendrite branching. It also supports the functional requirements of dendrites, reflected by differential microtubule architectural organization between neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by anterograde microtubule polymerization events in nascent branches. The polarities of microtubule polymerization events are regulated by the position and orientation of microtubule nucleation events in the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how regulating this balance can generate neuron type-specific morphologies. PMID:27097122

  9. Early postnatal ozone exposure alters rat nodose and jugular sensory neuron development

    PubMed Central

    Zellner, Leor C.; Brundage, Kathleen M.; Hunter, Dawn D.; Dey, Richard D.

    2011-01-01

    Sensory neurons originating in nodose and jugular ganglia that innervate airway epithelium (airway neurons) play a role in inflammation observed following exposure to inhaled environmental irritants such as ozone (O3). Airway neurons can mediate airway inflammation through the release of the neuropeptide substance P (SP). While susceptibility to airway irritants is increased in early life, the developmental dynamics of afferent airway neurons are not well characterized. The hypothesis of this study was that airway neuron number might increase with increasing age, and that an acute, early postnatal O3 exposure might increase both the number of sensory airway neurons as well as the number SP-containing airway neurons. Studies using Fischer 344 rat pups were conducted to determine if age or acute O3 exposure might alter airway neuron number. Airway neurons in nodose and jugular ganglia were retrogradely labeled, removed, dissociated, and counted by means of a novel technique employing flow cytometry. In Study 1, neuron counts were conducted on postnatal days (PD) 6, 10, 15, 21, and 28. Numbers of total and airway neurons increased significantly between PD6 and PD10, then generally stabilized. In Study 2, animals were exposed to O3 (2 ppm) or filtered air (FA) on PD5 and neurons were counted on PD10, 15, 21, and 28. O3-exposed animals displayed significantly less total neurons on PD21 than FA controls. This study shows that age-related changes in neuron number occur, and that an acute, early postnatal O3 exposure significantly alters sensory neuron development. PMID:22140294

  10. An image registration pipeline for analysis of transsynaptic tracing in mice

    NASA Astrophysics Data System (ADS)

    Kutten, Kwame S.; Eacker, Stephen M.; Dawson, Valina L.; Dawson, Ted M.; Ratnanather, Tilak; Miller, Michael I.

    2016-03-01

    Parkinson's Disease (PD) is a movement disorder characterized by the loss of dopamine neurons in the substantia nigra pars compacta (SNpc) and norepinephrine neurons in the locus coeruleus (LC). To further understand the pathophysiology of PD, the input neurons of the SNpc and LC will be transsynapticly traced in mice using a fluorescent recombinant rabies virus (RbV) and imaged using serial two-photon tomography (STP). A mapping between these images and a brain atlas must be found to accurately determine the locations of input neurons in the brain. Therefore a registration pipeline to align the Allen Reference Atlas (ARA) to these types of images was developed. In the preprocessing step, a brain mask was generated from the transsynaptic tracing images using simple morphological operators. The masks were then registered to the ARA using Large Deformation Diffeomorphic Metric Mapping (LDDMM), an algorithm specialized for calculating anatomically realistic transforms between images. The pipeline was then tested on an STP scan of a mouse brain labeled by an adeno-associated virus (AAV). Based on qualitative evaluation of the registration results, the pipeline was found to be sufficient for use with transsynaptic RbV tracing.

  11. The dynamic time course of memory recovery in transient global amnesia.

    PubMed

    Guillery-Girard, B; Desgranges, B; Urban, C; Piolino, P; de la Sayette, V; Eustache, F

    2004-11-01

    To investigate the dynamic time course of transient global amnesia (TGA)--that is, the process of recovery and the interindividual variability--by testing four patients during the day of TGA itself (on three occasions) and at follow up (on two occasions). A specially designed protocol focusing on semantic (both conceptual and autobiographical knowledge) and episodic (both anterograde and retrograde components) memory. Every patient showed marked impairment of both anterograde and retrograde episodic memory during the acute phase, with a relative preservation of personal and conceptual semantic knowledge. During the following phase, the authors observed similarities and differences among the patients' patterns of recovery. In general, retrograde amnesia recovered before the anterograde amnesia and anterograde episodic memory was recovered gradually in every case. In contrast, shrinkage of retrograde amnesia was more heterogeneous. In two of the patients, this shrinkage followed a chronological gradient and the most remote events were recovered first. In the two other patients, it depended more on the strength of the trace, and there was no temporal gradient. For the latter, an executive deficit could account for difficulties in accessing both conceptual knowledge and autobiographical memories. This profile of recovery suggests a "neocortical to medial temporal" process in every case, and the possibility of an additional frontal dysfunction in some cases. Hence, the acute phase seems to be characterised by a common episodic impairment. This variability between subjects appears in the recovery phase with two different patterns of impairment.

  12. The Highly conserved gonadotropin-releasing hormone-2 form acts as a melatonin-releasing factor in the pineal of a teleost fish, the european sea bass Dicentrarchus labrax.

    PubMed

    Servili, Arianna; Lethimonier, Christèle; Lareyre, Jean-Jacques; López-Olmeda, José Fernando; Sánchez-Vázquez, Francisco Javier; Kah, Olivier; Muñoz-Cueto, José Antonio

    2010-05-01

    With the exception of modern mammals, most vertebrate species possess two GnRH genes, GnRH-1 and GnRH-2. In addition, in many teleost fish, there is a third gene called GnRH-3. If the main function of GnRH-1 is unambiguously to stimulate gonadotropin release, the other two GnRH forms still lack clear functions. This is particularly true for the highly conserved GnRH-2 that encodes chicken GnRH-II. This GnRH variant is consistently expressed in neurons of the dorsal synencephalon in most vertebrate groups but still has no clear functions supported by anatomical, pharmacological, and physiological data. In this study performed on a perciform fish, the European sea bass, we show for the first time that the pineal organ receives GnRH-2-immunoreactive fibers originating from the synencephalic GnRH-2 neurons. This was shown through a combination of retrograde tracing and immunohistochemistry, using highly specific antibodies. Supporting the presence of GnRH-2 functional targets, RT-PCR data together with the in situ hybridization studies showed that the sea bass pineal gland strongly expressed a GnRH receptor (dlGnRHR-II-2b) with clear selectivity for GnRH-2 and, to a lesser extent, the dlGnRHR-II-1a subtype. Finally, in vitro and in vivo experiments demonstrate stimulatory effects of GnRH-2 on nocturnal melatonin secretion by the sea bass pineal organ. Altogether, these data provide, for the first time in a vertebrate species, converging evidence supporting a role of GnRH-2 in the modulation of fish pineal functions.

  13. Functional role of A-type potassium currents in rat presympathetic PVN neurones

    PubMed Central

    Sonner, Patrick M; Stern, Javier E

    2007-01-01

    Despite the fact that paraventricular nucleus (PVN) neurones innervating the rostral ventrolateral medulla (RVLM) play important roles in the control of sympathetic function both in physiological and pathological conditions, the precise mechanisms controlling their activity are still incompletely understood. In the present study, we evaluated whether the transient outward potassium current IA is expressed in PVN-RVLM neurones, characterized its biophysical and pharmacological properties, and determined its role in shaping action potentials and firing discharge in these neurones. Patch-clamp recordings obtained from retrogradely labelled, PVN-RVLM neurones indicate that a 4-AP sensitive, TEA insensitive current, with biophysical properties consistent with IA, is present in these neurones. Pharmacological blockade of IA depolarized resting Vm and prolonged Na+ action potential duration, by increasing its width and by slowing down its decay time course. Interestingly, blockade of IA either increased or decreased the firing activity of PVN-RVLM neurones, supporting the presence of subsets of PVN-RVLM neurones differentially modulated by IA. In all cases, the effects of IA on firing activity were prevented by a broad spectrum Ca2+ channel blocker. Immunohistochemical studies suggest that IA in PVN-RVLM neurons is mediated by Kv1.4 and/or Kv4.3 channel subunits. Overall, our results demonstrate the presence of IA in PVN-RVLM neurones, which actively modulates their action potential waveform and firing activity. These studies support IA as an important intrinsic mechanism controlling neuronal excitability in this central presympathetic neuronal population. PMID:17525115

  14. Dendrites of medial olivocochlear neurons in mouse.

    PubMed

    Brown, M C; Levine, J L

    2008-06-12

    Stains for acetylcholinesterase (AChE) and retrograde labeling with Fluorogold (FG) were used to study olivocochlear neurons and their dendritic patterns in mice. The two methods gave similar results for location and number of somata. The total number of medial olivocochlear (MOC) neurons in the ventral nucleus of the trapezoid body (VNTB) is about 170 per side. An additional dozen large olivocochlear neurons are located in the dorsal periolivary nucleus (DPO). Dendrites of all of these neurons are long and extend in all directions from the cell bodies, a pattern that contrasts with the sharp frequency tuning of their responses. For VNTB neurons, there were greater numbers of dendrites directed medially than laterally and those directed medially were longer (on average, 25-50% longer). Dendrite extensions were most pronounced for neurons located in the rostral portion of the VNTB. When each dendrite from a single neuron was represented as a vector, and all the vectors summed, the result was also skewed toward the medial direction. DPO neurons, however, had more symmetric dendrites that projected into more dorsal parts of the trapezoid body, suggesting that this small group of olivocochlear neurons has very different physiological properties. Dendrites of both types of neurons were somewhat elongated rostrally, about 20% longer than those directed caudally. These results can be interpreted as extensions of dendrites of olivocochlear neurons toward their synaptic inputs: medially to meet crossing fibers from the cochlear nucleus that are part of the MOC reflex pathway, and rostrally to meet descending inputs from higher centers.

  15. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy.

    PubMed

    Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J

    2012-06-20

    The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.

  16. Stargazin-related protein γ7 is associated with signalling endosomes in superior cervical ganglion neurons and modulates neurite outgrowth

    PubMed Central

    Waithe, Dominic; Ferron, Laurent; Dolphin, Annette C.

    2011-01-01

    The role(s) of the newly discovered stargazin-like γ-subunit proteins remains unclear; although they are now widely accepted to be transmembrane AMPA receptor regulatory proteins (TARPs), rather than Ca2+ channel subunits, it is possible that they have more general roles in trafficking within neurons. We previously found that γ7 subunit is associated with vesicles when it is expressed in neurons and other cells. Here, we show that γ7 is present mainly in retrogradely transported organelles in sympathetic neurons, where it colocalises with TrkA–YFP, and with the early endosome marker EEA1, suggesting that γ7 localises to signalling endosomes. It was not found to colocalise with markers of the endoplasmic reticulum, mitochondria, lysosomes or late endosomes. Furthermore, knockdown of endogenous γ7 by short hairpin RNA transfection into sympathetic neurons reduced neurite outgrowth. The same was true in the PC12 neuronal cell line, where neurite outgrowth was restored by overexpression of human γ7. These findings open the possibility that γ7 has an essential trafficking role in relation to neurite outgrowth as a component of endosomes involved in neurite extension and growth cone remodelling. PMID:21610096

  17. Time-dependent reorganization of the brain components underlying memory retention in trace eyeblink conditioning.

    PubMed

    Takehara, Kaori; Kawahara, Shigenori; Kirino, Yutaka

    2003-10-29

    Many studies have confirmed the time-limited involvement of the hippocampus in mnemonic processes and suggested that there is reorganization of the responsible brain circuitry during memory consolidation. To clarify such reorganization, we chose trace classical eyeblink conditioning, in which hippocampal ablation produces temporally graded retrograde amnesia. Here, we extended the temporal characterization of retrograde amnesia to other regions that are involved in acquisition during this task: the medial prefrontal cortex (mPFC) and the cerebellum. At a various time interval after establishing the trace conditioned response (CR), rats received an aspiration of one of the three regions. After recovery, the animals were tested for their CR retention. When ablated 1 d after the learning, both the hippocampal lesion and the cerebellar lesion group of rats exhibited a severe impairment in retention of the CR, whereas the mPFC lesion group showed only a slight decline. With an increase in interval between the lesion and the learning, the effect of the hippocampal lesion diminished and that of the mPFC lesion increased. When ablated 4 weeks after the learning, the hippocampal lesion group exhibited as robust CRs as its corresponding control group. In contrast, the mPFC lesion and the cerebellar lesion groups failed to retain the CRs. These results indicate that the hippocampus and the cerebellum, but only marginally the mPFC, constitute a brain circuitry that mediates recently acquired memory. As time elapses, the circuitry is reorganized to use mainly the mPFC and the cerebellum, but not the hippocampus, for remotely acquired memory.

  18. Internal pallidum and substantia nigra control different parts of the mesopontine reticular formation in primate.

    PubMed

    Rolland, Anne-Sophie; Karachi, Carine; Muriel, Marie-Paule; Hirsch, Etienne C; François, Chantal

    2011-08-01

    The locomotor area has recently emerged as a target for deep brain stimulation to lessen gait disturbances in advanced parkinsonian patients. An important step in choosing this target is to define anatomical limits of its 2 components, the pedunculopontine nucleus and the cuneiform nucleus, their connections with the basal ganglia, and their output descending pathway. Based on the hypothesis that pedunculopontine nucleus controls locomotion whereas cuneiform nucleus controls axial posture, we analyzed whether both nuclei receive inputs from the internal pallidum and substantia nigra using anterograde and retrograde tract tracing in monkeys. We also examined whether these nuclei convey descending projections to the reticulospinal pathway. Pallidal terminals were densely distributed and restricted to the pedunculopontine nucleus, whereas nigral terminals were diffusely observed in the whole extent of both the pedunculopontine nucleus and the cuneiform nucleus. Moreover, nigral terminals formed symmetric synapses with pedunculopontine nucleus and cuneiform nucleus dendrites. Retrograde tracing experiments confirmed these results because labeled cell bodies were observed in both the internal pallidum and substantia nigra after pedunculopontine nucleus injection, but only in the substantia nigra after cuneiform nucleus injection. Furthermore, anterograde tracing experiments revealed that the pedunculopontine nucleus and cuneiform nucleus project to large portions of the pontomedullary reticular formation. This is the first anatomical evidence that the internal pallidum and the substantia nigra control different parts of the brain stem and can modulate the descending reticulospinal pathway in primates. These findings support the functional hypothesis that the nigro-cuneiform nucleus pathway could control axial posture whereas the pallido-pedunculopontine nucleus pathway could modulate locomotion. Copyright © 2011 Movement Disorder Society.

  19. Conditional Sox9 ablation improves locomotor recovery after spinal cord injury by increasing reactive sprouting.

    PubMed

    McKillop, William M; York, Elisa M; Rubinger, Luc; Liu, Tony; Ossowski, Natalie M; Xu, Kathy; Hryciw, Todd; Brown, Arthur

    2016-09-01

    The absence of axonal regeneration after spinal cord injury (SCI) has been attributed to the up-regulation of axon-repelling molecules, such as chondroitin sulfate proteoglycans (CSPGs) present in the glial scar that forms post-SCI. We previously identified the transcription factor SOX9 as a key up-regulator of CSPG production and also demonstrated that conditional Sox9 ablation leads to decreased CSPG levels and improved recovery of hind limb function after SCI. We herein demonstrate increased neural input onto spinal neurons caudal to the lesion in spinal cord injured Sox9 conditional knock out mice as indicated by increased levels of the presynaptic markers synaptophysin and vesicular glutamate transporter 1 (VGLUT1) compared to controls. Axonal sparing, long-range axonal regeneration and reactive sprouting were investigated as possible explanations for the increase in neural inputs caudal to the lesion and for the improved locomotor outcomes in spinal cord-injured Sox9 conditional knock out mice. Whereas retrograde tract-tracing studies failed to reveal any evidence for increased axonal sparing or for long-range regeneration in the Sox9 conditional knock out mice, anterograde tract-tracing experiments demonstrated increased reactive sprouting caudal to the lesion after SCI. Finally we demonstrate that application of a broad spectrum MMP inhibitor to reduce CSPG degradation in Sox9 conditional knock out mice prevents the improvements in locomotor recovery observed in untreated Sox9 conditional knock out mice. These results suggest that improved recovery of locomotor function in Sox9 conditional knock out mice after SCI is due to increased reactive sprouting secondary to reduced CSPG levels distal to the lesion. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Connections of the juxtaventromedial region of the lateral hypothalamic area in the male rat

    PubMed Central

    Hahn, Joel D.; Swanson, Larry W.

    2015-01-01

    Evolutionary conservation of the hypothalamus attests to its critical role in the control of fundamental behaviors. However, our knowledge of hypothalamic connections is incomplete, particularly for the lateral hypothalamic area (LHA). Here we present the results of neuronal pathway-tracing experiments to investigate connections of the LHA juxtaventromedial region, which is parceled into dorsal (LHAjvd) and ventral (LHAjvv) zones. Phaseolus vulgaris leucoagglutinin (PHAL, for outputs) and cholera toxin B subunit (CTB, for inputs) coinjections were targeted stereotaxically to the LHAjvd/v. Results: LHAjvd/v connections overlapped highly but not uniformly. Major joint outputs included: Bed nuc. stria terminalis (BST), interfascicular nuc. (BSTif) and BST anteromedial area, rostral lateral septal (LSr)- and ventromedial hypothalamic (VMH) nuc., and periaqueductal gray. Prominent joint LHAjvd/v input sources included: BSTif, BST principal nuc., LSr, VMH, anterior hypothalamic-, ventral premammillary-, and medial amygdalar nuc., and hippocampal formation (HPF) field CA1. However, LHAjvd HPF retrograde labeling was markedly more abundant than from the LHAjvv; in the LSr this was reversed. Furthermore, robust LHAjvv (but not LHAjvd) targets included posterior- and basomedial amygdalar nuc., whereas the midbrain reticular nuc. received a dense input from the LHAjvd alone. Our analyses indicate the existence of about 500 LHAjvd and LHAjvv connections with about 200 distinct regions of the cerebral cortex, cerebral nuclei, and cerebrospinal trunk. Several highly LHAjvd/v-connected regions have a prominent role in reproductive behavior. These findings contrast with those from our previous pathway-tracing studies of other LHA medial and perifornical tier regions, with different connectional behavioral relations. The emerging picture is of a highly differentiated LHA with extensive and far-reaching connections that point to a role as a central coordinator of behavioral control. PMID:26074786

  1. Feature selection for the classification of traced neurons.

    PubMed

    López-Cabrera, José D; Lorenzo-Ginori, Juan V

    2018-06-01

    The great availability of computational tools to calculate the properties of traced neurons leads to the existence of many descriptors which allow the automated classification of neurons from these reconstructions. This situation determines the necessity to eliminate irrelevant features as well as making a selection of the most appropriate among them, in order to improve the quality of the classification obtained. The dataset used contains a total of 318 traced neurons, classified by human experts in 192 GABAergic interneurons and 126 pyramidal cells. The features were extracted by means of the L-measure software, which is one of the most used computational tools in neuroinformatics to quantify traced neurons. We review some current feature selection techniques as filter, wrapper, embedded and ensemble methods. The stability of the feature selection methods was measured. For the ensemble methods, several aggregation methods based on different metrics were applied to combine the subsets obtained during the feature selection process. The subsets obtained applying feature selection methods were evaluated using supervised classifiers, among which Random Forest, C4.5, SVM, Naïve Bayes, Knn, Decision Table and the Logistic classifier were used as classification algorithms. Feature selection methods of types filter, embedded, wrappers and ensembles were compared and the subsets returned were tested in classification tasks for different classification algorithms. L-measure features EucDistanceSD, PathDistanceSD, Branch_pathlengthAve, Branch_pathlengthSD and EucDistanceAve were present in more than 60% of the selected subsets which provides evidence about their importance in the classification of this neurons. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Protection of dopaminergic neurons by electroconvulsive shock in an animal model of Parkinson's disease.

    PubMed

    Anastasia, Agustín; de Erausquin, Gabriel A; Wojnacki, José; Mascó, Daniel H

    2007-11-01

    Electroconvulsive shock (ECS) improves motor function in Parkinson's disease. In rats, ECS stimulates the expression of various factors some of which have been proposed to exert neuroprotective actions. We have investigated the effects of ECS on 6-hydroxydopamine (6-OHDA)-injected rats. Three weeks after a unilateral administration of 6-OHDA, 85-95% nigral dopaminergic neurons are lost. Chronic ECS prevented this cell loss, protect the nigrostriatal pathway (assessed by FloroGold retrograde labeling) and reduce motor impairment in 6-OHDA-treated animals. Injection of 6-OHDA caused loss of expression of glial cell-line derived neurotrophic factor (GDNF) in the substantia nigra. Chronic ECS completely prevented this loss of GDNF expression in 6-OHDA-treated animals. We also found that protected dopaminergic neurons co-express GDNF receptor proteins. These results strongly suggest that endogenous changes in GDNF expression may participate in the neuroprotective mechanism of ECS against 6-OHDA induced toxicity.

  3. Inoculation of α-synuclein preformed fibrils into the mouse gastrointestinal tract induces Lewy body-like aggregates in the brainstem via the vagus nerve.

    PubMed

    Uemura, Norihito; Yagi, Hisashi; Uemura, Maiko T; Hatanaka, Yusuke; Yamakado, Hodaka; Takahashi, Ryosuke

    2018-05-11

    Intraneuronal α-synuclein (α-Syn) aggregates known as Lewy bodies (LBs) and the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) are the pathological hallmarks of Parkinson's disease (PD). Braak's hypothesis based on autopsy studies suggests that Lewy pathology initially occurs in the enteric nervous system (ENS) and then travels retrogradely to the dorsal motor nucleus of the vagus nerve (dmX), proceeding from there in a caudo-rostral direction. Recent evidence that α-Syn aggregates propagate between interconnected neurons supports this hypothesis. However, there is no direct evidence demonstrating this transmission from the ENS to the dmX and then to the SNpc. We inoculated α-Syn preformed fibrils (PFFs) or phosphate-buffered saline (PBS) into the mouse gastric wall and analyzed the progression of the pathology. The mice inoculated with α-Syn PFFs, but not with PBS, developed phosphorylated α-Syn (p-α-Syn)-positive LB-like aggregates in the dmX at 45 days postinoculation. This aggregate formation was completely abolished when vagotomy was performed prior to inoculation of α-Syn PFFs, suggesting that the aggregates in the dmX were retrogradely induced via the vagus nerve. Unexpectedly, the number of neurons containing p-α-Syn-positive aggregates in the dmX decreased over time, and no further caudo-rostral propagation beyond the dmX was observed up to 12 months postinoculation. P-α-Syn-positive aggregates were also present in the myenteric plexus at 12 months postinoculation. However, unlike in patients with PD, there was no cell-type specificity in neurons containing those aggregates in this model. These results indicate that α-Syn PFF inoculation into the mouse gastrointestinal tract can induce α-Syn pathology resembling that of very early PD, but other factors are apparently required if further progression of PD pathology is to be replicated in this animal model.

  4. Reticular Formation Connections Underlying Horizontal Gaze: The Central Mesencephalic Reticular Formation (cMRF) as a Conduit for the Collicular Saccade Signal.

    PubMed

    Wang, Niping; Perkins, Eddie; Zhou, Lan; Warren, Susan; May, Paul J

    2017-01-01

    The central mesencephalic reticular formation (cMRF) occupies much of the core of the midbrain tegmentum. Physiological studies indicate that it is involved in controlling gaze changes, particularly horizontal saccades. Anatomically, it receives input from the ipsilateral superior colliculus (SC) and it has downstream projections to the brainstem, including the horizontal gaze center located in the paramedian pontine reticular formation (PPRF). Consequently, it has been hypothesized that the cMRF plays a role in the spatiotemporal transformation needed to convert spatially coded collicular saccade signals into the temporally coded signals utilized by the premotor neurons of the horizontal gaze center. In this study, we used neuroanatomical tracers to examine the patterns of connectivity of the cMRF in macaque monkeys in order to determine whether the circuit organization supports this hypothesis. Since stimulation of the cMRF produces contraversive horizontal saccades and stimulation of the horizontal gaze center produces ipsiversive saccades, this would require an excitatory cMRF projection to the contralateral PPRF. Injections of anterograde tracers into the cMRF did produce labeled terminals within the PPRF. However, the terminations were denser ipsilaterally. Since the PPRF located contralateral to the movement direction is generally considered to be silent during a horizontal saccade, we then tested the hypothesis that this ipsilateral reticuloreticular pathway might be inhibitory. The ultrastructure of ipsilateral terminals was heterogeneous, with some displaying more extensive postsynaptic densities than others. Postembedding immunohistochemistry for gamma-aminobutyric acid (GABA) indicated that only a portion (35%) of these cMRF terminals are GABAergic. Dual tracer experiments were undertaken to determine whether the SC provides input to cMRF reticuloreticular neurons projecting to the ipsilateral pons. Retrogradely labeled reticuloreticular neurons were predominantly distributed in the ipsilateral cMRF. Anterogradely labeled tectal terminals were observed in close association with a portion of these retrogradely labeled reticuloreticular neurons. Taken together, these results suggest that the SC does have connections with reticuloreticular neurons in the cMRF. However, the predominantly excitatory nature of the ipsilateral reticuloreticular projection argues against the hypothesis that this cMRF pathway is solely responsible for producing a spatiotemporal transformation of the collicular saccade signal.

  5. Neuronize: a tool for building realistic neuronal cell morphologies

    PubMed Central

    Brito, Juan P.; Mata, Susana; Bayona, Sofia; Pastor, Luis; DeFelipe, Javier; Benavides-Piccione, Ruth

    2013-01-01

    This study presents a tool, Neuronize, for building realistic three-dimensional models of neuronal cells from the morphological information extracted through computer-aided tracing applications. Neuronize consists of a set of methods designed to build 3D neural meshes that approximate the cell membrane at different resolution levels, allowing a balance to be reached between the complexity and the quality of the final model. The main contribution of the present study is the proposal of a novel approach to build a realistic and accurate 3D shape of the soma from the incomplete information stored in the digitally traced neuron, which usually consists of a 2D cell body contour. This technique is based on the deformation of an initial shape driven by the position and thickness of the first order dendrites. The addition of a set of spines along the dendrites completes the model, building a final 3D neuronal cell suitable for its visualization in a wide range of 3D environments. PMID:23761740

  6. Neuronize: a tool for building realistic neuronal cell morphologies.

    PubMed

    Brito, Juan P; Mata, Susana; Bayona, Sofia; Pastor, Luis; Defelipe, Javier; Benavides-Piccione, Ruth

    2013-01-01

    This study presents a tool, Neuronize, for building realistic three-dimensional models of neuronal cells from the morphological information extracted through computer-aided tracing applications. Neuronize consists of a set of methods designed to build 3D neural meshes that approximate the cell membrane at different resolution levels, allowing a balance to be reached between the complexity and the quality of the final model. The main contribution of the present study is the proposal of a novel approach to build a realistic and accurate 3D shape of the soma from the incomplete information stored in the digitally traced neuron, which usually consists of a 2D cell body contour. This technique is based on the deformation of an initial shape driven by the position and thickness of the first order dendrites. The addition of a set of spines along the dendrites completes the model, building a final 3D neuronal cell suitable for its visualization in a wide range of 3D environments.

  7. Activation of satellite glial cells in trigeminal ganglion following dental injury and inflammation.

    PubMed

    Liu, Haichao; Zhao, Lei; Gu, Wenzhen; Liu, Qin; Gao, Zhixiong; Zhu, Xiao; Wu, Zhi; He, Hongwen; Huang, Fang; Fan, Wenguo

    2018-06-01

    Satellite glial cells (SGCs), a peripheral neuroglial cell, surround neurons and form a complete envelope around individual sensory neurons in the trigeminal ganglia (TG), which may be involved in modulating neurons in inflammation. The purpose of this study was to determine the effect of dental injury and inflammation on SGCs in the TG. Pulp exposure (PX) was performed on the first maxillary molar of 28 rats. The neurons innervating injured tooth in TG were labeled by the retrograde transport of fluoro-gold (FG). Specimens were collected at 1, 3, 7, 14, 21 and 28 days after PX and stained immunohistochemically for glial fibrillary acid protein (GFAP), a marker of SGCs activation, in the TG. We observed that GFAP-immunoreactivity (IR) SGCs enclosed FG-labeled neurons increased in a time-dependent manner after PX. The neurons surrounded by GFAP-IR SGCs were mainly small and medium in size. The GFAP-IR SGCs encircled neurons increased significantly in the maxillary nerve region of the TG at 7-28 days following PX. The results show that dental injury and inflammation induced SGCs activation in the TG. It indicates that activation of SGCs might be implicated in the peripheral mechanisms of pain following dental injury and inflammation.

  8. Localization of the kinesin adaptor proteins trafficking kinesin proteins 1 and 2 in primary cultures of hippocampal pyramidal and cortical neurons.

    PubMed

    Loss, Omar; Stephenson, F Anne

    2015-07-01

    Neuronal function requires regulated anterograde and retrograde trafficking of mitochondria along microtubules by using the molecular motors kinesin and dynein. Previous work has established that trafficking kinesin proteins (TRAKs),TRAK1 and TRAK2, are kinesin adaptor proteins that link mitochondria to kinesin motor proteins via an acceptor protein in the mitochondrial outer membrane, etc. the Rho GTPase Miro. Recent studies have shown that TRAK1 preferentially controls mitochondrial transport in axons of hippocampal neurons by virtue of its binding to both kinesin and dynein motor proteins, whereas TRAK2 controls mitochondrial transport in dendrites resulting from its binding to dynein. This study further investigates the subcellular localization of TRAK1 and TRAK2 in primary cultures of hippocampal and cortical neurons by using both commercial antibodies and anti-TRAK1 and anti-TRAK2 antibodies raised in our own laboratory (in-house). Whereas TRAK1 was prevalently localized in axons of hippocampal and cortical neurons, TRAK2 was more prevalent in dendrites of hippocampal neurons. In cortical neurons, TRAK2 was equally distributed between axons and dendrites. Some qualitative differences were observed between commercial and in-house-generated antibody immunostaining. © 2015 Wiley Periodicals, Inc.

  9. Developmental emergence of different forms of neuromodulation in Aplysia sensory neurons.

    PubMed

    Marcus, E A; Carew, T J

    1998-04-14

    The capacity for neuromodulation and biophysical plasticity is a defining feature of most mature neuronal cell types. In several cases, modulation at the level of the individual neuron has been causally linked to changes in the functional output of a neuronal circuit and subsequent adaptive changes in the organism's behavioral responses. Understanding how such capacity for neuromodulation develops therefore may provide insights into the mechanisms both of neuronal development and learning and memory. We have examined the development of multiple forms of neuromodulation triggered by a common neurotransmitter, serotonin, in the pleural sensory neurons of Aplysia californica. We have found that multiple signaling cascades within a single neuron develop sequentially, with some being expressed only very late in development. In addition, our data suggest a model in which, within a single neuromodulatory pathway, the elements of the signaling cascade are developmentally expressed in a "retrograde" manner with the ionic channel that is modulated appearing early in development, functional elements in the second messenger cascade appearing later, and finally, coupling of the second messenger cascade to the serotonin receptor appearing quite late. These studies provide the characterization of the development of neuromodulation at the level of an identified cell type and offer insights into the potential roles of neuromodulatory processes in development and adult plasticity.

  10. In vivo targeted gene delivery to peripheral neurons mediated by neurotropic poly(ethylene imine)-based nanoparticles

    PubMed Central

    Lopes, Cátia DF; Oliveira, Hugo; Estevão, Inês; Pires, Liliana Raquel; Pêgo, Ana Paula

    2016-01-01

    A major challenge in neuronal gene therapy is to achieve safe, efficient, and minimally invasive transgene delivery to neurons. In this study, we report the use of a nonviral neurotropic poly(ethylene imine)-based nanoparticle that is capable of mediating neuron-specific transfection upon a subcutaneous injection. Nanoparticles were targeted to peripheral neurons by using the nontoxic carboxylic fragment of tetanus toxin (HC), which, besides being neurotropic, is capable of being retrogradely transported from neuron terminals to the cell bodies. Nontargeted particles and naked plasmid DNA were used as control. Five days after treatment by subcutaneous injection in the footpad of Wistar rats, it was observed that 56% and 64% of L4 and L5 dorsal root ganglia neurons, respectively, were expressing the reporter protein. The delivery mediated by HC-functionalized nanoparticles spatially limited the transgene expression, in comparison with the controls. Histological examination revealed no significant adverse effects in the use of the proposed delivery system. These findings demonstrate the feasibility and safety of the developed neurotropic nanoparticles for the minimally invasive delivery of genes to the peripheral nervous system, opening new avenues for the application of gene therapy strategies in the treatment of peripheral neuropathies. PMID:27354797

  11. Lissencephaly-1 dependent axonal retrograde transport of L1-type CAM Neuroglian in the adult drosophila central nervous system

    PubMed Central

    Börner, Jana; Slipchuk, Olesya; Kakad, Priyanka; Lee, LaTasha H.; Qureshi, Aater; Pielage, Jan

    2017-01-01

    Here, we established the Drosophila Giant Fiber neurons (GF) as a novel model to study axonal trafficking of L1-type Cell Adhesion Molecules (CAM) Neuroglian (Nrg) in the adult CNS using live imaging. L1-type CAMs are well known for their importance in nervous system development and we previously demonstrated a role for Nrg in GF synapse formation. However, in the adult they have also been implicated in synaptic plasticity and regeneration. In addition, to its canonical role in organizing cytoskeletal elements at the plasma membrane, vertebrate L1CAM has also been shown to regulate transcription indirectly as well as directly via its import to the nucleus. Here, we intend to determine if the sole L1CAM homolog Nrg is retrogradley transported and thus has the potential to relay signals from the synapse to the soma. Live imaging of c-terminally tagged Nrg in the GF revealed that there are at least two populations of retrograde vesicles that differ in speed, and either move with consistent or varying velocity. To determine if endogenous Nrg is retrogradely transported, we inhibited two key regulators, Lissencephaly-1 (Lis1) and Dynactin, of the retrograde motor protein Dynein. Similar to previously described phenotypes for expression of poisonous subunits of Dynactin, we found that developmental knock down of Lis1 disrupted GF synaptic terminal growth and that Nrg vesicles accumulated inside the stunted terminals in both mutant backgrounds. Moreover, post mitotic Lis1 knock down in mature GFs by either RNAi or Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) induced mutations, resulted in normal length terminals with fully functional GF synapses which also exhibited severe accumulation of endogenous Nrg vesicles. Thus, our data suggests that accumulation of Nrg vesicles is due to failure of retrograde transport rather than a failure of terminal development. Together with the finding that post mitotic knock down of Lis1 also disrupted retrograde transport of tagged Nrg vesicles in GF axons, it demonstrates that endogenous Nrg protein is transported from the synapse to the soma in the adult central nervous system in a Lis1-dependent manner. PMID:28837701

  12. Lissencephaly-1 dependent axonal retrograde transport of L1-type CAM Neuroglian in the adult drosophila central nervous system.

    PubMed

    Kudumala, Sirisha R; Penserga, Tyrone; Börner, Jana; Slipchuk, Olesya; Kakad, Priyanka; Lee, LaTasha H; Qureshi, Aater; Pielage, Jan; Godenschwege, Tanja A

    2017-01-01

    Here, we established the Drosophila Giant Fiber neurons (GF) as a novel model to study axonal trafficking of L1-type Cell Adhesion Molecules (CAM) Neuroglian (Nrg) in the adult CNS using live imaging. L1-type CAMs are well known for their importance in nervous system development and we previously demonstrated a role for Nrg in GF synapse formation. However, in the adult they have also been implicated in synaptic plasticity and regeneration. In addition, to its canonical role in organizing cytoskeletal elements at the plasma membrane, vertebrate L1CAM has also been shown to regulate transcription indirectly as well as directly via its import to the nucleus. Here, we intend to determine if the sole L1CAM homolog Nrg is retrogradley transported and thus has the potential to relay signals from the synapse to the soma. Live imaging of c-terminally tagged Nrg in the GF revealed that there are at least two populations of retrograde vesicles that differ in speed, and either move with consistent or varying velocity. To determine if endogenous Nrg is retrogradely transported, we inhibited two key regulators, Lissencephaly-1 (Lis1) and Dynactin, of the retrograde motor protein Dynein. Similar to previously described phenotypes for expression of poisonous subunits of Dynactin, we found that developmental knock down of Lis1 disrupted GF synaptic terminal growth and that Nrg vesicles accumulated inside the stunted terminals in both mutant backgrounds. Moreover, post mitotic Lis1 knock down in mature GFs by either RNAi or Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) induced mutations, resulted in normal length terminals with fully functional GF synapses which also exhibited severe accumulation of endogenous Nrg vesicles. Thus, our data suggests that accumulation of Nrg vesicles is due to failure of retrograde transport rather than a failure of terminal development. Together with the finding that post mitotic knock down of Lis1 also disrupted retrograde transport of tagged Nrg vesicles in GF axons, it demonstrates that endogenous Nrg protein is transported from the synapse to the soma in the adult central nervous system in a Lis1-dependent manner.

  13. Visible rodent brain-wide networks at single-neuron resolution

    PubMed Central

    Yuan, Jing; Gong, Hui; Li, Anan; Li, Xiangning; Chen, Shangbin; Zeng, Shaoqun; Luo, Qingming

    2015-01-01

    There are some unsolvable fundamental questions, such as cell type classification, neural circuit tracing and neurovascular coupling, though great progresses are being made in neuroscience. Because of the structural features of neurons and neural circuits, the solution of these questions needs us to break through the current technology of neuroanatomy for acquiring the exactly fine morphology of neuron and vessels and tracing long-distant circuit at axonal resolution in the whole brain of mammals. Combined with fast-developing labeling techniques, efficient whole-brain optical imaging technology emerging at the right moment presents a huge potential in the structure and function research of specific-function neuron and neural circuit. In this review, we summarize brain-wide optical tomography techniques, review the progress on visible brain neuronal/vascular networks benefit from these novel techniques, and prospect the future technical development. PMID:26074784

  14. 3-dimensional electron microscopic imaging of the zebrafish olfactory bulb and dense reconstruction of neurons.

    PubMed

    Wanner, Adrian A; Genoud, Christel; Friedrich, Rainer W

    2016-11-08

    Large-scale reconstructions of neuronal populations are critical for structural analyses of neuronal cell types and circuits. Dense reconstructions of neurons from image data require ultrastructural resolution throughout large volumes, which can be achieved by automated volumetric electron microscopy (EM) techniques. We used serial block face scanning EM (SBEM) and conductive sample embedding to acquire an image stack from an olfactory bulb (OB) of a zebrafish larva at a voxel resolution of 9.25×9.25×25 nm 3 . Skeletons of 1,022 neurons, 98% of all neurons in the OB, were reconstructed by manual tracing and efficient error correction procedures. An ergonomic software package, PyKNOSSOS, was created in Python for data browsing, neuron tracing, synapse annotation, and visualization. The reconstructions allow for detailed analyses of morphology, projections and subcellular features of different neuron types. The high density of reconstructions enables geometrical and topological analyses of the OB circuitry. Image data can be accessed and viewed through the neurodata web services (http://www.neurodata.io). Raw data and reconstructions can be visualized in PyKNOSSOS.

  15. 3-dimensional electron microscopic imaging of the zebrafish olfactory bulb and dense reconstruction of neurons

    PubMed Central

    Wanner, Adrian A.; Genoud, Christel; Friedrich, Rainer W.

    2016-01-01

    Large-scale reconstructions of neuronal populations are critical for structural analyses of neuronal cell types and circuits. Dense reconstructions of neurons from image data require ultrastructural resolution throughout large volumes, which can be achieved by automated volumetric electron microscopy (EM) techniques. We used serial block face scanning EM (SBEM) and conductive sample embedding to acquire an image stack from an olfactory bulb (OB) of a zebrafish larva at a voxel resolution of 9.25×9.25×25 nm3. Skeletons of 1,022 neurons, 98% of all neurons in the OB, were reconstructed by manual tracing and efficient error correction procedures. An ergonomic software package, PyKNOSSOS, was created in Python for data browsing, neuron tracing, synapse annotation, and visualization. The reconstructions allow for detailed analyses of morphology, projections and subcellular features of different neuron types. The high density of reconstructions enables geometrical and topological analyses of the OB circuitry. Image data can be accessed and viewed through the neurodata web services (http://www.neurodata.io). Raw data and reconstructions can be visualized in PyKNOSSOS. PMID:27824337

  16. Peripheral hyperpolarization-activated cyclic nucleotide-gated channels contribute to inflammation-induced hypersensitivity of the rat temporomandibular joint.

    PubMed

    Hatch, R J; Jennings, E A; Ivanusic, J J

    2013-08-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels conduct an inward cation current (Ih ) that contributes to the maintenance of neuronal membrane potential and have been implicated in a number of animal models of neuropathic and inflammatory pain. In the current study, we investigated HCN channel involvement in inflammatory pain of the temporomandibular joint (TMJ). The contribution of HCN channels to inflammation (complete Freund's adjuvant; CFA)-induced mechanical hypersensitivity of the rat TMJ was tested with injections of the HCN channel blocker ZD7288. Retrograde labelling and immunohistochemistry was used to explore HCN channel expression in sensory neurons that innervate the TMJ. Injection of CFA into the TMJ (n = 7) resulted in a significantly increased mechanical sensitivity relative to vehicle injection (n = 7) (p < 0.05). The mechanical hypersensitivity generated by CFA injection was blocked by co-injection of ZD7288 with the CFA (n = 7). Retrograde labelling and immunohistochemistry experiments revealed expression predominantly of HCN1 and HCN2 channel subunits in trigeminal ganglion neurons that innervate the TMJ (n = 3). No change in the proportion or intensity of HCN channel expression was found in inflamed (n = 6) versus control (n = 5) animals at the time point tested. Our findings suggest a role for peripheral HCN channels in inflammation-induced pain of the TMJ. Peripheral application of a HCN channel blocker could provide therapeutic benefit for inflammatory TMJ pain and avoid side effects associated with activation of HCN channels in the central nervous system. © 2012 European Federation of International Association for the Study of Pain Chapters.

  17. A novel in vivo method for isolating antibodies from a phage display library by neuronal retrograde transport selectively yields antibodies against p75(NTR.).

    PubMed

    Tani, Hiroaki; Osbourn, Jane K; Walker, Edward H; Rush, Robert A; Ferguson, Ian A

    2013-01-01

    The neurotrophin receptor p75(NTR) is utilized by a variety of pathogens to gain entry into the central nervous system (CNS). We tested if this entry portal might be exploited using a phage display library to isolate internalizing antibodies that target the CNS in vivo. By applying a phage library that expressed human single chain variable fragment (scFv) antibodies on their surface to a transected sciatic nerve, we showed that (1) phage conjugated to anti-p75(NTR) antibody or phage scFv library pre-panned against p75(NTR) are internalized by neurons expressing p75(NTR); (2) subsequent retrograde axonal transport separates internalized phage from the applied phage; and, (3) internalized phage can be recovered from a proximal ligature made on a nerve. This approach resulted in 13-fold increase in the number of phage isolated from the injured nerve compared with the starting population, and isolation of 18 unique internalizing p75(NTR) antibodies that were transported from the peripheral nerve into the spinal cord, through the blood-brain barrier. In addition, antibodies recognizing other potentially internalized antigens were identified through in vivo selection using a fully diverse library. Because p75(NTR) expression is upregulated in motor neurons in response to injury and in disease, the p75(NTR) antibodies may have substantial potential for cell-targeted drug/gene delivery. In addition, this novel selection method provides the potential to generate panels of antibodies that could be used to identify further internalization targets, which could aid drug delivery across the blood-brain barrier.

  18. A novel in vivo method for isolating antibodies from a phage display library by neuronal retrograde transport selectively yields antibodies against p75NTR

    PubMed Central

    Tani, Hiroaki; Osbourn, Jane K.; Walker, Edward H.; Rush, Robert A.; Ferguson, Ian A.

    2013-01-01

    The neurotrophin receptor p75NTR is utilized by a variety of pathogens to gain entry into the central nervous system (CNS). We tested if this entry portal might be exploited using a phage display library to isolate internalizing antibodies that target the CNS in vivo. By applying a phage library that expressed human single chain variable fragment (scFv) antibodies on their surface to a transected sciatic nerve, we showed that (1) phage conjugated to anti-p75NTR antibody or phage scFv library pre-panned against p75NTR are internalized by neurons expressing p75NTR; (2) subsequent retrograde axonal transport separates internalized phage from the applied phage; and, (3) internalized phage can be recovered from a proximal ligature made on a nerve. This approach resulted in 13-fold increase in the number of phage isolated from the injured nerve compared with the starting population, and isolation of 18 unique internalizing p75NTR antibodies that were transported from the peripheral nerve into the spinal cord, through the blood-brain barrier. In addition, antibodies recognizing other potentially internalized antigens were identified through in vivo selection using a fully diverse library. Because p75NTR expression is upregulated in motor neurons in response to injury and in disease, the p75NTR antibodies may have substantial potential for cell-targeted drug/gene delivery. In addition, this novel selection method provides the potential to generate panels of antibodies that could be used to identify further internalization targets, which could aid drug delivery across the blood-brain barrier. PMID:23549155

  19. Muscarinic receptor immunoreactivity in the superior salivatory nucleus neurons innervating the salivary glands of the rat.

    PubMed

    Ueda, Hirotaka; Mitoh, Yoshihiro; Fujita, Masako; Kobashi, Motoi; Yamashiro, Takashi; Sugimoto, Tomosada; Ichikawa, Hiroyuki; Matsuo, Ryuji

    2011-07-15

    The superior salivatory nucleus (SSN) contains preganglionic parasympathetic neurons to the submandibular and sublingual salivary glands. Cevimeline, a muscarinic acetylcholine receptor agonist, stimulates the salivary glands and is presently used as sialogogue in the treatment of dry mouth. Since cevimeline passes through the blood-brain barrier, it is also able to act on muscarinic acetylcholine receptors in the central nervous system. Our preliminary experiment using the whole-cell patch-clamp technique has shown that cevimeline excites SSN neurons in rat brain slices, suggesting that SSN neurons have muscarinic acetylcholine receptors; however, it is unclear which subtypes of muscarinic acetylcholine receptors exist in SSN neurons. In the present study, we investigated immunohistochemically muscarinic acetylcholine receptor subtypes, M1 receptor (M1R), M2R, M3R, M4R, and M5R in SSN neurons. SSN neurons innervating the salivary glands, retrogradely labeled with a fluorescent tracer from the chorda-lingual nerve, mostly expressed M3R immunoreactivity (-ir) (92.3%) but not M1R-ir. About half of such SSN neurons also showed M2R- (40.1%), M4R- (54.0%) and M5R-ir (46.0%); therefore, it is probable that SSN neurons co-express M3R-ir with at least two of the other muscarinic receptor subtypes. This is the first report to show that SSN neurons contain muscarinic acetylcholine receptors. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Orexin Gene Transfer into Zona Incerta Neurons Suppresses Muscle Paralysis in Narcoleptic Mice

    PubMed Central

    Liu, Meng; Konadhode, RodaRani; Begum, Suraiya; Pelluru, Dheeraj; Gerashchenko, Dmitry; Sakurai, Takeshi; Yanagisawa, Masashi; van den Pol, Anthony N.

    2011-01-01

    Cataplexy, a sudden unexpected muscle paralysis, is a debilitating symptom of the neurodegenerative sleep disorder, narcolepsy. During these attacks, the person is paralyzed, but fully conscious and aware of their surroundings. To identify potential neurons that might serve as surrogate orexin neurons to suppress such attacks, the gene for orexin (hypocretin), a peptide lost in most human narcoleptics, was delivered into the brains of the orexin-ataxin-3 transgenic mouse model of human narcolepsy. Three weeks after the recombinant adenoassociated virus (rAAV)-mediated orexin gene transfer, sleep–wake behavior was assessed. rAAV-orexin gene delivery into neurons of the zona incerta (ZI), or the lateral hypothalamus (LH) blocked cataplexy. Orexin gene transfer into the striatum or in the melanin-concentrating hormone neurons in the ZI or LH had no such effect, indicating site specificity. In transgenic mice lacking orexin neurons but given rAAV-orexin, detectable levels of orexin-A were evident in the CSF, indicating release of the peptide from the surrogate neurons. Retrograde tracer studies showed that the amygdala innervates the ZI consistent with evidence that strong emotions trigger cataplexy. In turn, the ZI projects to the locus ceruleus, indicating that the ZI is part of a circuit that stabilizes motor tone. Our results indicate that these neurons might also be recruited to block the muscle paralysis in narcolepsy. PMID:21508228

  1. Adeno-Associated Virus Serotypes 1, 8, and 9 Share Conserved Mechanisms for Anterograde and Retrograde Axonal Transport

    PubMed Central

    Castle, Michael J.; Gershenson, Zachary T.; Giles, April R.; Holzbaur, Erika L.F.

    2014-01-01

    Abstract Adeno-associated virus (AAV) vectors often undergo long-distance axonal transport after brain injection. This leads to transduction of brain regions distal to the injection site, although the extent of axonal transport and distal transduction varies widely among AAV serotypes. The mechanisms driving this variability are poorly understood. This is a critical problem for applications that require focal gene expression within a specific brain region, and also impedes the utilization of vector transport for applications requiring widespread delivery of transgene to the brain. Here, we compared AAV serotypes 1 and 9, which frequently demonstrate distal transduction, with serotype 8, which rarely spreads beyond the injection site. To examine directional AAV transport in vitro, we used a microfluidic chamber to apply dye-labeled AAV to the axon termini or to the cell bodies of primary rat embryonic cortical neurons. All three serotypes were actively transported along axons, with transport characterized by high velocities and prolonged runs in both the anterograde and retrograde directions. Coinfection with pairs of serotypes indicated that AAV1, 8, and 9 share the same intracellular compartments for axonal transport. In vivo, both AAV8 and 9 demonstrated anterograde and retrograde transport within a nonreciprocal circuit after injection into adult mouse brain, with highly similar distributions of distal transduction. However, in mass-cultured neurons, we found that AAV1 was more frequently transported than AAV8 or 9, and that the frequency of AAV9 transport could be enhanced by increasing receptor availability. Thus, while these serotypes share conserved mechanisms for axonal transport both in vitro and in vivo, the frequency of transport can vary among serotypes, and axonal transport can be markedly increased by enhancing vector uptake. This suggests that variability in distal transduction in vivo likely results from differential uptake at the plasma membrane, rather than fundamental differences in transport mechanisms among AAV serotypes. PMID:24694006

  2. The neural representation of the gender of faces in the primate visual system: A computer modeling study.

    PubMed

    Minot, Thomas; Dury, Hannah L; Eguchi, Akihiro; Humphreys, Glyn W; Stringer, Simon M

    2017-03-01

    We use an established neural network model of the primate visual system to show how neurons might learn to encode the gender of faces. The model consists of a hierarchy of 4 competitive neuronal layers with associatively modifiable feedforward synaptic connections between successive layers. During training, the network was presented with many realistic images of male and female faces, during which the synaptic connections are modified using biologically plausible local associative learning rules. After training, we found that different subsets of output neurons have learned to respond exclusively to either male or female faces. With the inclusion of short range excitation within each neuronal layer to implement a self-organizing map architecture, neurons representing either male or female faces were clustered together in the output layer. This learning process is entirely unsupervised, as the gender of the face images is not explicitly labeled and provided to the network as a supervisory training signal. These simulations are extended to training the network on rotating faces. It is found that by using a trace learning rule incorporating a temporal memory trace of recent neuronal activity, neurons responding selectively to either male or female faces were also able to learn to respond invariantly over different views of the faces. This kind of trace learning has been previously shown to operate within the primate visual system by neurophysiological and psychophysical studies. The computer simulations described here predict that similar neurons encoding the gender of faces will be present within the primate visual system. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Synaptic and nonsynaptic plasticity approximating probabilistic inference

    PubMed Central

    Tully, Philip J.; Hennig, Matthias H.; Lansner, Anders

    2014-01-01

    Learning and memory operations in neural circuits are believed to involve molecular cascades of synaptic and nonsynaptic changes that lead to a diverse repertoire of dynamical phenomena at higher levels of processing. Hebbian and homeostatic plasticity, neuromodulation, and intrinsic excitability all conspire to form and maintain memories. But it is still unclear how these seemingly redundant mechanisms could jointly orchestrate learning in a more unified system. To this end, a Hebbian learning rule for spiking neurons inspired by Bayesian statistics is proposed. In this model, synaptic weights and intrinsic currents are adapted on-line upon arrival of single spikes, which initiate a cascade of temporally interacting memory traces that locally estimate probabilities associated with relative neuronal activation levels. Trace dynamics enable synaptic learning to readily demonstrate a spike-timing dependence, stably return to a set-point over long time scales, and remain competitive despite this stability. Beyond unsupervised learning, linking the traces with an external plasticity-modulating signal enables spike-based reinforcement learning. At the postsynaptic neuron, the traces are represented by an activity-dependent ion channel that is shown to regulate the input received by a postsynaptic cell and generate intrinsic graded persistent firing levels. We show how spike-based Hebbian-Bayesian learning can be performed in a simulated inference task using integrate-and-fire (IAF) neurons that are Poisson-firing and background-driven, similar to the preferred regime of cortical neurons. Our results support the view that neurons can represent information in the form of probability distributions, and that probabilistic inference could be a functional by-product of coupled synaptic and nonsynaptic mechanisms operating over several timescales. The model provides a biophysical realization of Bayesian computation by reconciling several observed neural phenomena whose functional effects are only partially understood in concert. PMID:24782758

  4. Effects of cevimeline on excitability of parasympathetic preganglionic neurons in the superior salivatory nucleus of rats.

    PubMed

    Mitoh, Yoshihiro; Ueda, Hirotaka; Ichikawa, Hiroyuki; Fujita, Masako; Kobashi, Motoi; Matsuo, Ryuji

    2017-09-01

    The superior salivatory nucleus (SSN) contains parasympathetic preganglionic neurons innervating the submandibular and sublingual salivary glands. Cevimeline, a muscarinic acetylcholine receptor (mAChR) agonist, is a sialogogue that possibly stimulates SSN neurons in addition to the salivary glands themselves because it can cross the blood-brain barrier (BBB). In the present study, we examined immunoreactivities for mAChR subtypes in SSN neurons retrogradely labeled with a fluorescent tracer in neonatal rats. Additionally, we examined the effects of cevimeline in labeled SSN neurons of brainstem slices using a whole-cell patch-clamp technique. Mainly M1 and M3 receptors were detected by immunohistochemical staining, with low-level detection of M4 and M5 receptors and absence of M2 receptors. Most (110 of 129) SSN neurons exhibited excitatory responses to application of cevimeline. In responding neurons, voltage-clamp recordings showed that 84% (101/120) of the neurons exhibited inward currents. In the neurons displaying inward currents, the effects of the mAChR antagonists were examined. A mixture of M1 and M3 receptor antagonists most effectively reduced the peak amplitude of inward currents, suggesting that the excitatory effects of cevimeline on SSN neurons were mainly mediated by M1 and M3 receptors. Current-clamp recordings showed that application of cevimeline induced membrane depolarization (9/9 neurons). These results suggest that most SSN neurons are excited by cevimeline via M1 and M3 muscarinic receptors. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Distribution and Intrinsic Membrane Properties of Basal Forebrain GABAergic and Parvalbumin Neurons in the Mouse

    PubMed Central

    McKenna, James T.; Yang, Chun; Franciosi, Serena; Winston, Stuart; Abarr, Kathleen K.; Rigby, Matthew S.; Yanagawa, Yuchio; McCarley, Robert W.; Brown, Ritchie E.

    2013-01-01

    The basal forebrain (BF) strongly regulates cortical activation, sleep homeostasis, and attention. Many BF neurons involved in these processes are GABAergic, including a subpopulation of projection neurons containing the calcium-binding protein, parvalbumin (PV). However, technical difficulties in identification have prevented a precise mapping of the distribution of GABAergic and GABA/PV+ neurons in the mouse or a determination of their intrinsic membrane properties. Here we used mice expressing fluorescent proteins in GABAergic (GAD67-GFP knock-in mice) or PV+ neurons (PV-Tomato mice) to study these neurons. Immunohistochemical staining for GABA in GAD67-GFP mice confirmed that GFP selectively labeled BF GABAergic neurons. GFP+ neurons and fibers were distributed throughout the BF, with the highest density in the magnocellular preoptic area (MCPO). Immunohistochemistry for PV indicated that the majority of PV+ neurons in the BF were large (>20 μm) or medium-sized (15–20 μm) GFP+ neurons. Most medium and large-sized BF GFP+ neurons, including those retrogradely labeled from the neocortex, were fast-firing and spontaneously active in vitro. They exhibited prominent hyperpolarization-activated inward currents and subthreshold “spikelets,” suggestive of electrical coupling. PV+ neurons recorded in PV-Tomato mice had similar properties but had significantly narrower action potentials and a higher maximal firing frequency. Another population of smaller GFP+ neurons had properties similar to striatal projection neurons. The fast firing and electrical coupling of BF GABA/PV+ neurons, together with their projections to cortical interneurons and the thalamic reticular nucleus, suggest a strong and synchronous control of the neocortical fast rhythms typical of wakefulness and REM sleep. PMID:23254904

  6. A population of large neurons in laminae III and IV of the rat spinal cord that have long dorsal dendrites and lack the neurokinin 1 receptor

    PubMed Central

    Polgár, Erika; Thomson, Suzanne; Maxwell, David J; Al-Khater, Khulood; Todd, Andrew J

    2007-01-01

    The dorsal horn of the rat spinal cord contains a population of large neurons with cell bodies in laminae III or IV, that express the neurokinin 1 receptor (NK1r) and have long dorsal dendrites that branch extensively within the superficial laminae. In this study, we have identified a separate population of neurons that have similar dendritic morphology, but lack the NK1r. These cells also differ from the NK1r-expressing neurons in that they have significantly fewer contacts from substance P-containing axons and are not retrogradely labelled following injection of tracer into the caudal ventrolateral medulla. We also provide evidence that these cells do not belong to the postsynaptic dorsal column pathway or the spinothalamic tract. It is therefore likely that these cells do not have supraspinal projections. They may provide a route through which information transmitted by C fibres that lack neuropeptides is conveyed to deeper laminae. The present findings demonstrate the need for caution when attempting to classify neurons solely on the basis of somatodendritic morphology. PMID:17880393

  7. Synuclein impairs trafficking and signaling of BDNF in a mouse model of Parkinson's disease.

    PubMed

    Fang, Fang; Yang, Wanlin; Florio, Jazmin B; Rockenstein, Edward; Spencer, Brian; Orain, Xavier M; Dong, Stephanie X; Li, Huayan; Chen, Xuqiao; Sung, Kijung; Rissman, Robert A; Masliah, Eliezer; Ding, Jianqing; Wu, Chengbiao

    2017-06-20

    Recent studies have demonstrated that hyperphosphorylation of tau protein plays a role in neuronal toxicities of α-synuclein (ASYN) in neurodegenerative disease such as familial Alzheimer's disease (AD), dementia with Lewy bodies (DLB) and Parkinson's disease. Using a transgenic mouse model of Parkinson's disease (PD) that expresses GFP-ASYN driven by the PDGF-β promoter, we investigated how accumulation of ASYN impacted axonal function. We found that retrograde axonal trafficking of brain-derived neurotrophic factor (BDNF) in DIV7 cultures of E18 cortical neurons was markedly impaired at the embryonic stage, even though hyperphosphorylation of tau was not detectable in these neurons at this stage. Interestingly, we found that overexpressed ASYN interacted with dynein and induced a significant increase in the activated levels of small Rab GTPases such as Rab5 and Rab7, both key regulators of endocytic processes. Furthermore, expression of ASYN resulted in neuronal atrophy in DIV7 cortical cultures of either from E18 transgenic mouse model or from rat E18 embryos that were transiently transfected with ASYN-GFP for 72 hrs. Our studies suggest that excessive ASYN likely alters endocytic pathways leading to axonal dysfunction in embryonic cortical neurons in PD mouse models.

  8. Endoscope disinfection and its pitfalls--requirement for retrograde surveillance cultures.

    PubMed

    Buss, A J; Been, M H; Borgers, R P; Stokroos, I; Melchers, W J; Peters, F T; Limburg, A J; Degener, J E

    2008-04-01

    Several endoscopy-related outbreaks of infection have been reported in recent years. For early recognition of inadequate disinfection of endoscopes we designed a microbiological surveillance system to evaluate the efficacy of the cleaning and disinfection procedure, and to trace disinfection problems to individual endoscopes or washer-disinfectors. Our surveillance protocol included anterograde and retrograde sampling, a decision algorithm, genetic fingerprinting, and scanning electron microscopy. Over a period of 29 months we found an increasing number of patient-ready endoscopes testing positive for Candida species other than albicans, especially C. parapsilosis. These yeasts were also isolated from the washer-disinfectors. The number of positive tests for Candida species varied from 1 out of 21 to 14 out of 27 samples from nine frequently used endoscopes. The number of colony-forming units per milliliter ranged from 1 - 10 to 3000 for endoscopes and 0.002 to 0.06 for the washer disinfectors. DNA fingerprinting was not able to discriminate different strains within C. parapsilosis. Our protocol was able to detect a structural problem in the endoscope disinfection process. Retrograde sampling was crucial for this purpose, because it has much higher sensitivity than anterograde sampling. Endoscopes with damaged working channels are probably the source of the contamination problem with Candida species.

  9. Retrograde amnesia in patients with hippocampal, medial temporal, temporal lobe, or frontal pathology.

    PubMed

    Bright, Peter; Buckman, Joseph; Fradera, Alex; Yoshimasu, Haruo; Colchester, Alan C F; Kopelman, Michael D

    2006-01-01

    There is considerable controversy concerning the theoretical basis of retrograde amnesia (R.A.). In the present paper, we compare medial temporal, medial plus lateral temporal, and frontal lesion patients on a new autobiographical memory task and measures of the more semantic aspects of memory (famous faces and news events). Only those patients with damage extending beyond the medial temporal cortex into the lateral temporal regions showed severe impairment on free recall remote memory tasks, and this held for both the autobiographical and the more semantic memory tests. However, on t-test analysis, the medial temporal group was impaired in retrieving recent autobiographical memories. Within the medial temporal group, those patients who had combined hippocampal and parahippocampal atrophy (H+) on quantified MRI performed somewhat worse on the semantic tasks than those with atrophy confined to the hippocampi (H-), but scores were very similar on autobiographical episodic recall. Correlational analyses with regional MRI volumes showed that lateral temporal volume was correlated significantly with performance on all three retrograde amnesia tests. The findings are discussed in terms of consolidation, reconsolidation, and multiple trace theory: We suggest that a widely distributed network of regions underlies the retrieval of past memories, and that the extent of lateral temporal damage appears to be critical to the emergence of a severe remote memory impairment.

  10. WGA-Alexa conjugates for axonal tracing

    PubMed Central

    Levy, Sabrina L.; White, Joshua J.; Lackey, Elizabeth P.; Schwartz, Lindsey; Sillitoe, Roy V.

    2017-01-01

    Anatomical labeling approaches are essential for understanding brain organization. Among these approaches are various methods of performing tract tracing. However, a major hurdle to overcome when marking neurons in vivo is visibility. Poor visibility makes it challenging to image a desired neuronal pathway so that it can be easily differentiated from a closely neighboring pathway. As a result, it becomes impossible to analyze individual projections or their connections. The tracer that is chosen for a given purpose has a major influence on the quality of the tracing. Here, we describe the wheat germ agglutinin (WGA) tracer conjugated to Alexa fluorophores for reliable high-resolution tracing of central nervous system projections. Using the mouse cerebellum as a model system, we implement WGA-Alexa tracing for marking and mapping neural circuits that control motor function. We also show its utility for marking localized regions of the cerebellum after performing single-unit extracellular recordings in vivo. PMID:28398642

  11. Mutations in DYNC1H1 cause severe intellectual disability with neuronal migration defects.

    PubMed

    Willemsen, Marjolein H; Vissers, Lisenka E L; Willemsen, Michèl A A P; van Bon, Bregje W M; Kroes, Thessa; de Ligt, Joep; de Vries, Bert B; Schoots, Jeroen; Lugtenberg, Dorien; Hamel, Ben C J; van Bokhoven, Hans; Brunner, Han G; Veltman, Joris A; Kleefstra, Tjitske

    2012-03-01

    DYNC1H1 encodes the heavy chain protein of the cytoplasmic dynein 1 motor protein complex that plays a key role in retrograde axonal transport in neurons. Furthermore, it interacts with the LIS1 gene of which haploinsufficiency causes a severe neuronal migration disorder in humans, known as classical lissencephaly or Miller-Dieker syndrome. To describe the clinical spectrum and molecular characteristics of DYNC1H1 mutations. A family based exome sequencing approach was used to identify de novo mutations in patients with severe intellectual disability. In this report the identification of two de novo missense mutations in DYNC1H1 (p.Glu1518Lys and p.His3822Pro) in two patients with severe intellectual disability and variable neuronal migration defects is described. Since an autosomal dominant mutation in DYNC1H1 was previously identified in a family with the axonal (type 2) form of Charcot- Marie-Tooth (CMT2) disease and mutations in Dync1h1 in mice also cause impaired neuronal migration in addition to neuropathy, these data together suggest that mutations in DYNC1H1 can lead to a broad phenotypic spectrum and confirm the importance of DYNC1H1 in both central and peripheral neuronal functions.

  12. Laterodorsal Nucleus of the Thalamus: A Processor of Somatosensory Inputs

    PubMed Central

    BEZDUDNAYA, TATIANA; KELLER, ASAF

    2009-01-01

    The laterodorsal (LD) nucleus of the thalamus has been considered a “higher order” nucleus that provides inputs to limbic cortical areas. Although its functions are largely unknown, it is often considered to be involved in spatial learning and memory. Here we provide evidence that LD is part of a hitherto unknown pathway for processing somatosensory information. Juxtacellular and extracellular recordings from LD neurons reveal that they respond to vibrissa stimulation with short latency (median = 7 ms) and large magnitude responses (median = 1.2 spikes/stimulus). Most neurons (62%) had large receptive fields, responding to six and more individual vibrissae. Electrical stimulation of the trigeminal nucleus interpolaris (SpVi) evoked short latency responses (median = 3.8 ms) in vibrissa-responsive LD neurons. Labeling produced by anterograde and retrograde neuroanatomical tracers confirmed that LD neurons receive direct inputs from SpVi. Electrophysiological and neuroanatomical analyses revealed also that LD projects upon the cingulate and retrosplenial cortex, but has only sparse projections to the barrel cortex. These findings suggest that LD is part of a novel processing stream involved in spatial orientation and learning related to somatosensory cues. PMID:18273888

  13. Enriched environment protects the nigrostriatal dopaminergic system and induces astroglial reaction in the 6-OHDA rat model of Parkinson's disease.

    PubMed

    Anastasía, Agustín; Torre, Luciana; de Erausquin, Gabriel A; Mascó, Daniel H

    2009-05-01

    Enriched environment (EE) is neuroprotective in several animal models of neurodegeneration. It stimulates the expression of trophic factors and modifies the astrocyte cell population which has been said to exert neuroprotective effects. We have investigated the effects of EE on 6-hydroxydopamine (6-OHDA)-induced neuronal death after unilateral administration to the medial forebrain bundle, which reaches 85-95% of dopaminergic neurons in the substantia nigra after 3 weeks. Continuous exposure to EE 3 weeks before and after 6-OHDA injection prevents neuronal death (assessed by tyrosine hydroxylase staining), protects the nigrostriatal pathway (assessed by Fluorogold retrograde labeling) and reduces motor impairment. Four days after 6-OHDA injection, EE was associated with a marked increase in glial fibrillary acidic protein staining and prevented neuronal death (assessed by Fluoro Jade-B) but not partial loss of tyrosine hydroxylase staining in the anterior substantia nigra. These results robustly demonstrate that EE preserves the entire nigrostriatal system against 6-OHDA-induced toxicity, and suggests that an early post-lesion astrocytic reaction may participate in the neuroprotective mechanism.

  14. Dual leucine zipper kinase-dependent PERK activation contributes to neuronal degeneration following insult

    PubMed Central

    Larhammar, Martin; Huntwork-Rodriguez, Sarah; Jiang, Zhiyu; Solanoy, Hilda; Sengupta Ghosh, Arundhati; Wang, Bei; Kaminker, Joshua S; Huang, Kevin; Eastham-Anderson, Jeffrey; Siu, Michael; Modrusan, Zora; Farley, Madeline M; Tessier-Lavigne, Marc; Lewcock, Joseph W; Watkins, Trent A

    2017-01-01

    The PKR-like endoplasmic reticulum kinase (PERK) arm of the Integrated Stress Response (ISR) is implicated in neurodegenerative disease, although the regulators and consequences of PERK activation following neuronal injury are poorly understood. Here we show that PERK signaling is a component of the mouse MAP kinase neuronal stress response controlled by the Dual Leucine Zipper Kinase (DLK) and contributes to DLK-mediated neurodegeneration. We find that DLK-activating insults ranging from nerve injury to neurotrophin deprivation result in both c-Jun N-terminal Kinase (JNK) signaling and the PERK- and ISR-dependent upregulation of the Activating Transcription Factor 4 (ATF4). Disruption of PERK signaling delays neurodegeneration without reducing JNK signaling. Furthermore, DLK is both sufficient for PERK activation and necessary for engaging the ISR subsequent to JNK-mediated retrograde injury signaling. These findings identify DLK as a central regulator of not only JNK but also PERK stress signaling in neurons, with both pathways contributing to neurodegeneration. DOI: http://dx.doi.org/10.7554/eLife.20725.001 PMID:28440222

  15. Segregation of feedforward and feedback projections in mouse visual cortex

    PubMed Central

    Berezovskii, Vladimir K.; Nassi, Jonathan J.; Born, Richard T.

    2011-01-01

    Hierarchical organization is a common feature of mammalian neocortex. Neurons that send their axons from lower to higher areas of the hierarchy are referred to as “feedforward” (FF) neurons, whereas those projecting in the opposite direction are called “feedback” (FB) neurons. Anatomical, functional and theoretical studies suggest that these different classes of projections play fundamentally different roles in perception. In primates, laminar differences in projection patterns often distinguish the two projection streams. In rodents, however, these differences are less clear, despite an established hierarchy of visual areas. Thus the rodent provides a strong test of the hypothesis that FF and FB neurons form distinct populations. We tested this hypothesis by injecting retrograde tracers into two different hierarchical levels of mouse visual cortex (areas 17 and AL) and then determining the relative proportions of double-labeled FB and FF neurons in an area intermediate to them (LM). Despite finding singly labeled neurons densely intermingled with no laminar segregation, we found few double-labeled neurons (~5% of each singly labeled population). We also examined the development of FF and FB connections. FF connections were present at the earliest time-point we examined (postnatal day two, P2), while FB connections were not detectable until P11. Our findings indicate that, even in cortices without laminar segregation of FF and FB neurons, the two projection systems are largely distinct at the neuronal level and also differ with respect to the timing of their outgrowth. PMID:21618232

  16. Neurochemical diversity of afferent neurons that transduce sensory signals from dog ventricular myocardium

    PubMed Central

    Hoover, Donald B.; Shepherd, Angela V.; Southerland, E. Marie; Armour, J. Andrew; Ardell, Jeffrey L.

    2008-01-01

    While much is known about the influence of ventricular afferent neurons on cardiovascular function in the dog, identification of the neurochemicals transmitting cardiac afferent signals to central neurons is lacking. Accordingly, we identified ventricular afferent neurons in canine dorsal root ganglia (DRG) and nodose ganglia by retrograde labeling after injecting horseradish peroxidase (HRP) into the anterior right and left ventricles. Primary antibodies from three host species were used in immunohistochemical experiments to simultaneously evaluate afferent somata for the presence of HRP and markers for two neurotransmitters. Only a small percentage (2%) of afferent somata were labeled with HRP. About half of the HRP-identified ventricular afferent neurons in T3 DRG also stained for substance P (SP), calcitonin gene-related peptide (CGRP), or neuronal nitric oxide synthase (nNOS), either alone or with two markers colocalized. Ventricular afferent neurons and the general population of T3 DRG neurons showed the same labeling profiles; CGRP (alone or colocalized with SP) being the most common (30–40% of ventricular afferent somata in T3 DRG). About 30% of the ventricular afferent neurons in T2 DRG displayed CGRP immunoreactivity and binding of the putative nociceptive marker IB4. Ventricular afferent neurons of the nodose ganglia were distinct from those in the DRG by having smaller size and lacking immunoreactivity for SP, CGRP, and nNOS. These findings suggest that ventricular sensory information is transferred to the central nervous system by relatively small populations of vagal and spinal afferent neurons and that spinal afferents use a variety of neurotransmitters. PMID:18558516

  17. Nicotine recruits a local glutamatergic circuit to excite septohippocampal GABAergic neurons.

    PubMed

    Wu, Min; Hajszan, Tibor; Leranth, Csaba; Alreja, Meenakshi

    2003-09-01

    Tonic impulse flow in the septohippocampal GABAergic pathway is essential for normal cognitive functioning and is sustained, in part, by acetylcholine (ACh) that is released locally via axon collaterals of septohippocampal cholinergic neurons. Septohippocampal cholinergic neurons degenerate in Alzheimer's disease and other neurodegenerative disorders. While the importance of the muscarinic effects of ACh on septohippocampal GABAergic neurons is well recognized, the nicotinic effects of ACh remain unstudied despite the reported benefits of nicotine on cognitive functioning. In the present study, using electrophysiological recordings in a rat brain slice preparation, rapid applications of nicotine excited 90% of retrogradely labelled septohippocampal GABA-type neurons with an EC50 of 17 microm and increased the frequency of spontaneously occurring, impulse-dependent fast GABAergic and glutamatergic synaptic currents via the alpha4beta2-nicotinic receptor. Interestingly, tetrodotoxin blocked all effects of nicotine on septohippocampal GABAergic type neurons, suggesting involvement of indirect mechanisms. We demonstrate that the effects of nicotine on septohippocampal GABA-type neurons involve recruitment of a novel, local glutamatergic circuitry as (i). Group I metabotropic glutamatergic receptor antagonists reduced the effects of nicotine; (ii). the number of nicotine responsive neurons was significantly reduced in recordings from slices that had been trimmed so as to reduce the number of glutamate-containing neurons within the slice preparation; (iii). in light and ultrastructural double immunocytochemical labelling studies vesicular glutamate 2 transporter immunoreactive terminals made synaptic contacts with parvalbumin-immunoreactive septohippocampal GABAergic neurons. The discovery of a local glutamatergic circuit within the septum may provide another avenue for restoring septohippocampal GABAergic functions in neurodegenerative disorders associated with a loss of septohippocampal cholinergic neurons.

  18. Neurochemical diversity of afferent neurons that transduce sensory signals from dog ventricular myocardium.

    PubMed

    Hoover, Donald B; Shepherd, Angela V; Southerland, E Marie; Armour, J Andrew; Ardell, Jeffrey L

    2008-08-18

    While much is known about the influence of ventricular afferent neurons on cardiovascular function in the dog, identification of the neurochemicals transmitting cardiac afferent signals to central neurons is lacking. Accordingly, we identified ventricular afferent neurons in canine dorsal root ganglia (DRG) and nodose ganglia by retrograde labeling after injecting horseradish peroxidase (HRP) into the anterior right and left ventricles. Primary antibodies from three host species were used in immunohistochemical experiments to simultaneously evaluate afferent somata for the presence of HRP and markers for two neurotransmitters. Only a small percentage (2%) of afferent somata were labeled with HRP. About half of the HRP-identified ventricular afferent neurons in T(3) DRG also stained for substance P (SP), calcitonin gene-related peptide (CGRP), or neuronal nitric oxide synthase (nNOS), either alone or with two markers colocalized. Ventricular afferent neurons and the general population of T(3) DRG neurons showed the same labeling profiles; CGRP (alone or colocalized with SP) being the most common (30-40% of ventricular afferent somata in T(3) DRG). About 30% of the ventricular afferent neurons in T(2) DRG displayed CGRP immunoreactivity and binding of the putative nociceptive marker IB(4). Ventricular afferent neurons of the nodose ganglia were distinct from those in the DRG by having smaller size and lacking immunoreactivity for SP, CGRP, and nNOS. These findings suggest that ventricular sensory information is transferred to the central nervous system by relatively small populations of vagal and spinal afferent neurons and that spinal afferents use a variety of neurotransmitters.

  19. Bronchopulmonary C-fibers' IL1RI contributes to the prolonged apneic response to intra-atrial injection of capsaicin by prenatal nicotinic exposure in rat pups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Lei; Zhuang, Jianguo; Xu, Fadi, E-mail: fxu@

    Prenatal nicotinic exposure (PNE) as a SIDS model reportedly sensitizes bronchopulmonary C-fibers (PCFs), contributing to the prolonged PCF-mediated apnea in rat pups, but the relevant mechanisms are not fully understood. Pulmonary IL-1β upregulated by cigarette smoke is known to stimulate or sensitize PCFs acting via IL-1 type I receptor (IL1RI) and inhibit inspiration frequency. Because of its upregulation observed in SIDS victims, we hypothesized that PNE increased pulmonary IL-1β release and IL1RI expression in pulmonary C-neurons via action on α7 nicotinic acetylcholine receptors (α7nAChR) to induce the prolonged PCF-mediated apnea. IL-1β in BALF and IL1RI in the nodose/jugular (N/J) ganglionmore » and vagal pulmonary C-neurons retrogradely-traced were compared between Ctrl (saline) and PNE pups and among the vehicle-treated Ctrl and PNE and methyllycaconitine (a selective α7nAChR antagonist)-treated PNE pups. The effect of IL-1RI blockade (IL-1Ra) on the PCF-mediated apnea was also compared between Ctrl and PNE pups. PNE significantly elevated IL-1β in BALF and upregulated IL1RI gene and protein expression in N/J ganglia and gene in vagal pulmonary C-neurons. All of these responses were eliminated by pretreatment with blockade of α7nAChR. In addition, the prolonged PCF-mediated apnea in PNE pups was significantly shortened by right atrial bolus injection of IL-1Ra. We conclude that PNE enhances pulmonary IL-1β release and PCF IL1RI expression acting via α7nAChR in contributing to sensitization of PCFs and prolongation of the PCF-mediated apneic response. - Highlights: • PNE increased pulmonary IL-1β release and IL1R1 expression in the N/J ganglia. • PNE elevated IL1R1 mRNA in vagal pulmonary C-neurons. • Blockage of peripheral IL1R1 reduced the PNE-induced PCF sensitization. • PNE induced the changes in IL-1β and IL1R1 dependent on action of α7nAChR.« less

  20. A-type potassium channels differentially tune afferent pathways from rat solitary tract nucleus to caudal ventrolateral medulla or paraventricular hypothalamus

    PubMed Central

    Bailey, T W; Hermes, S M; Whittier, K L; Aicher, S A; Andresen, M C

    2007-01-01

    The solitary tract nucleus (NTS) conveys visceral information to diverse central networks involved in homeostatic regulation. Although afferent information content arriving at various CNS sites varies substantially, little is known about the contribution of processing within the NTS to these differences. Using retrograde dyes to identify specific NTS projection neurons, we recently reported that solitary tract (ST) afferents directly contact NTS neurons projecting to caudal ventrolateral medulla (CVLM) but largely only indirectly contact neurons projecting to the hypothalamic paraventricular nucleus (PVN). Since intrinsic properties impact information transmission, here we evaluated potassium channel expression and somatodendritic morphology of projection neurons and their relation to afferent information output directed to PVN or CVLM pathways. In slices, tracer-identified projection neurons were classified as directly or indirectly (polysynaptically) coupled to ST afferents by EPSC latency characteristics (directly coupled, jitter < 200 μs). In each neuron, voltage-dependent potassium currents (IK) were evaluated and, in representative neurons, biocytin-filled structures were quantified. Both CVLM- and PVN-projecting neurons had similar, tetraethylammonium-sensitive IK. However, only PVN-projecting NTS neurons displayed large transient, 4aminopyridine-sensitive, A-type currents (IKA). PVN-projecting neurons had larger cell bodies with more elaborate dendritic morphology than CVLM-projecting neurons. ST shocks faithfully (> 75%) triggered action potentials in CVLM-projecting neurons but spike output was uniformly low (< 20%) in PVN-projecting neurons. Pre-conditioning hyperpolarization removed IKA inactivation and attenuated ST-evoked spike generation along PVN but not CVLM pathways. Thus, multiple differences in structure, organization, synaptic transmission and ion channel expression tune the overall fidelity of afferent signals that reach these destinations. PMID:17510187

  1. Mitochondrial dynamics and bioenergetic dysfunction is associated with synaptic alterations in mutant SOD1 motor neurons

    PubMed Central

    Magrané, Jordi; Sahawneh, Mary Anne; Przedborski, Serge; Estévez, Álvaro G.; Manfredi, Giovanni

    2012-01-01

    Mutations in Cu,Zn superoxide dismutase (SOD1) cause familial amyotrophic lateral sclerosis (FALS), a rapidly fatal motor neuron disease. Mutant SOD1 has pleiotropic toxic effects on motor neurons, among which mitochondrial dysfunction has been proposed as one of the contributing factors in motor neuron demise. Mitochondria are highly dynamic in neurons; they are constantly reshaped by fusion and move along neurites to localize at sites of high-energy utilization, such as synapses. The finding of abnormal mitochondria accumulation in neuromuscular junctions, where the SOD1-FALS degenerative process is though to initiate, suggests that impaired mitochondrial dynamics in motor neurons may be involved in pathogenesis. We addressed this hypothesis by live imaging microscopy of photo-switchable fluorescent mitoDendra in transgenic rat motor neurons expressing mutant or wild type human SOD1. We demonstrate that mutant SOD1 motor neurons have impaired mitochondrial fusion in axons and cell bodies. Mitochondria also display selective impairment of retrograde axonal transport, with reduced frequency and velocity of movements. Fusion and transport defects are associated with smaller mitochondrial size, decreased mitochondrial density, and defective mitochondrial membrane potential. Furthermore, mislocalization of mitochondria at synapses among motor neurons, in vitro, correlates with abnormal synaptic number, structure, and function. Dynamics abnormalities are specific to mutant SOD1 motor neuron mitochondria, since they are absent in wild type SOD1 motor neurons, they do not involve other organelles, and they are not found in cortical neurons. Taken together, these results suggest that impaired mitochondrial dynamics may contribute to the selective degeneration of motor neurons in SOD1-FALS. PMID:22219285

  2. Dissecting the role of Engrailed in adult dopaminergic neurons--Insights into Parkinson disease pathogenesis.

    PubMed

    Rekaik, Hocine; Blaudin de Thé, François-Xavier; Prochiantz, Alain; Fuchs, Julia; Joshi, Rajiv L

    2015-12-21

    The homeoprotein Engrailed (Engrailed-1/Engrailed-2, collectively En1/2) is not only a survival factor for mesencephalic dopaminergic (mDA) neurons during development, but continues to exert neuroprotective and physiological functions in adult mDA neurons. Loss of one En1 allele in the mouse leads to progressive demise of mDA neurons in the ventral midbrain starting from 6 weeks of age. These mice also develop Parkinson disease-like motor and non-motor symptoms. The characterization of En1 heterozygous mice have revealed striking parallels to central mechanisms of Parkinson disease pathogenesis, mainly related to mitochondrial dysfunction and retrograde degeneration. Thanks to the ability of homeoproteins to transduce cells, En1/2 proteins have also been used to protect mDA neurons in various experimental models of Parkinson disease. This neuroprotection is partly linked to the ability of En1/2 to regulate the translation of certain nuclear-encoded mitochondrial mRNAs for complex I subunits. Other transcription factors that govern mDA neuron development (e.g. Foxa1/2, Lmx1a/b, Nurr1, Otx2, Pitx3) also continue to function for the survival and maintenance of mDA neurons in the adult and act through partially overlapping but also diverse mechanisms. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Developmental Connectivity and Molecular Phenotypes of Unique Cortical Projection Neurons that Express a Synapse-Associated Receptor Tyrosine Kinase.

    PubMed

    Kast, Ryan J; Wu, Hsiao-Huei; Levitt, Pat

    2017-11-28

    The complex circuitry and cell-type diversity of the cerebral cortex are required for its high-level functions. The mechanisms underlying the diversification of cortical neurons during prenatal development have received substantial attention, but understanding of neuronal heterogeneity is more limited during later periods of cortical circuit maturation. To address this knowledge gap, connectivity analysis and molecular phenotyping of cortical neuron subtypes that express the developing synapse-enriched MET receptor tyrosine kinase were performed. Experiments used a MetGFP transgenic mouse line, combined with coexpression analysis of class-specific molecular markers and retrograde connectivity mapping. The results reveal that MET is expressed by a minor subset of subcerebral and a larger number of intratelencephalic projection neurons. Remarkably, MET is excluded from most layer 6 corticothalamic neurons. These findings are particularly relevant for understanding the maturation of discrete cortical circuits, given converging evidence that MET influences dendritic elaboration and glutamatergic synapse maturation. The data suggest that classically defined cortical projection classes can be further subdivided based on molecular characteristics that likely influence synaptic maturation and circuit wiring. Additionally, given that MET is classified as a high confidence autism risk gene, the data suggest that projection neuron subpopulations may be differentially vulnerable to disorder-associated genetic variation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. The PDAPP mouse model of Alzheimer's disease: locus coeruleus neuronal shrinkage.

    PubMed

    German, Dwight C; Nelson, Omar; Liang, Fen; Liang, Chang-Lin; Games, Dora

    2005-11-28

    Alzheimer's disease is characterized by neuronal degeneration in the cerebral cortex and hippocampus and subcortical neuronal degeneration in such nuclei as the locus coeruleus (LC). Transgenic mice overexpressing mutant human amyloid precursor protein V717F, PDAPP mice, develop several Alzheimer's disease-like lesions. The present study sought to determine whether there is also loss of LC noradrenergic neurons or evidence of degenerative changes in these animals. PDAPP hemizygous and wild-type littermate control mice were examined at 23 months of age, at a time when there are numerous amyloid-beta (Abeta) plaques in the neocortex and hippocampus. Tissue sections were stained immunohistochemically with an antibody against tyrosine hydroxylase (TH) to identify LC neurons. Computer imaging procedures were used to count the TH-immunoreactive somata in sections through the rostral-caudal extent of the nucleus. There was no loss of LC neurons in the hemizygous mice. In a second experiment, homozygous PDAPP and wild-type mice were examined, at 2 months and 24 months of age. Again there was no age-related loss of neurons in the homozygous animals. In the portion of the LC where neurons reside that project to the cortex and hippocampus, however, the neurons were decreased in size selectively in the 24-month-old transgenic animals. These data indicate that overt LC cell loss does not occur following abundant overexpression of Abeta peptide. However, the selective size reduction of the LC neuronal population projecting to cortical and hippocampal regions containing Abeta-related neuropathology implies that these cells may be subjected to a retrograde-mediated stress. Copyright 2005 Wiley-Liss, Inc.

  5. Identification of neurons that express ghrelin receptors in autonomic pathways originating from the spinal cord.

    PubMed

    Furness, John B; Cho, Hyun-Jung; Hunne, Billie; Hirayama, Haruko; Callaghan, Brid P; Lomax, Alan E; Brock, James A

    2012-06-01

    Functional studies have shown that subsets of autonomic preganglionic neurons respond to ghrelin and ghrelin mimetics and in situ hybridisation has revealed receptor gene expression in the cell bodies of some preganglionic neurons. Our present goal has been to determine which preganglionic neurons express ghrelin receptors by using mice expressing enhanced green fluorescent protein (EGFP) under the control of the promoter for the ghrelin receptor (also called growth hormone secretagogue receptor). The retrograde tracer Fast Blue was injected into target organs of reporter mice under anaesthesia to identify specific functional subsets of postganglionic sympathetic neurons. Cryo-sections were immunohistochemically stained by using anti-EGFP and antibodies to neuronal markers. EGFP was detected in nerve terminal varicosities in all sympathetic chain, prevertebral and pelvic ganglia and in the adrenal medulla. Non-varicose fibres associated with the ganglia were also immunoreactive. No postganglionic cell bodies contained EGFP. In sympathetic chain ganglia, most neurons were surrounded by EGFP-positive terminals. In the stellate ganglion, neurons with choline acetyltransferase immunoreactivity, some being sudomotor neurons, lacked surrounding ghrelin-receptor-expressing terminals, although these terminals were found around other neurons. In the superior cervical ganglion, the ghrelin receptor terminals innervated subgroups of neurons including neuropeptide Y (NPY)-immunoreactive neurons that projected to the anterior chamber of the eye. However, large NPY-negative neurons projecting to the acini of the submaxillary gland were not innervated by EGFP-positive varicosities. In the celiaco-superior mesenteric ganglion, almost all neurons were surrounded by positive terminals but the VIP-immunoreactive terminals of intestinofugal neurons were EGFP-negative. The pelvic ganglia contained groups of neurons without ghrelin receptor terminal innervation and other groups with positive terminals around them. Ghrelin receptors are therefore expressed by subgroups of preganglionic neurons, including those of vasoconstrictor pathways and of pathways controlling gut function, but are absent from some other neurons, including those innervating sweat glands and the secretomotor neurons that supply the submaxillary salivary glands.

  6. Cell intrinsic control of axon regeneration

    PubMed Central

    Mar, Fernando M; Bonni, Azad; Sousa, Mónica M

    2014-01-01

    Although neurons execute a cell intrinsic program of axonal growth during development, following the establishment of connections, the developmental growth capacity declines. Besides environmental challenges, this switch largely accounts for the failure of adult central nervous system (CNS) axons to regenerate. Here, we discuss the cell intrinsic control of axon regeneration, including not only the regulation of transcriptional and epigenetic mechanisms, but also the modulation of local protein translation, retrograde and anterograde axonal transport, and microtubule dynamics. We further explore the causes underlying the failure of CNS neurons to mount a vigorous regenerative response, and the paradigms demonstrating the activation of cell intrinsic axon growth programs. Finally, we present potential mechanisms to support axon regeneration, as these may represent future therapeutic approaches to promote recovery following CNS injury and disease. PMID:24531721

  7. Loss of visceral pain following colorectal distension in an endothelin-3 deficient mouse model of Hirschsprung's disease

    PubMed Central

    Zagorodnyuk, Vladimir P; Kyloh, Melinda; Nicholas, Sarah; Peiris, Heshan; Brookes, Simon J; Chen, Bao Nan; Spencer, Nick J

    2011-01-01

    Abstract Endothelin peptides and their endogenous receptors play a major role in nociception in a variety of different organs. They also play an essential role in the development of the enteric nervous system. Mice with deletions of the endothelin-3 gene (lethal spotted mice, ls/ls) develop congenital aganglionosis. However, little is known about how nociception might be affected in the aganglionic rectum of mice deficient in endothelin-3. In this study we investigated changes in spinal afferent innervation and visceral pain transmission from the aganglionic rectum in ls/ls mice. Electromyogram recordings from anaesthetized ls/ls mice revealed a deficit in visceromotor responses arising from the aganglionic colorectum in response to noxious colorectal distension. Loss of visceromotor responses (VMRs) in ls/ls mice was selective, as no reduction in VMRs was detected after stimulation of the bladder or somatic organs. Calcitonin gene related peptide (CGRP) immunoreactivity, retrograde neuronal tracing and extracellular afferent recordings from the aganglionic rectum revealed decreased colorectal spinal innervation, combined with a reduction in mechanosensitivity of rectal afferents. The sensory defect in ls/ls mice is primarily associated with changes in low threshold wide dynamic range rectal afferents. In conclusion, disruption of endothelin 3 gene expression not only affects development and function of the enteric nervous system, but also specific classes of spinal rectal mechanoreceptors, which are required for visceral nociception from the colorectum. PMID:21320883

  8. Distribution and ultrastructure of dopaminergic neurons in the dorsal motor nucleus of the vagus projecting to the stomach of the rat.

    PubMed

    Hayakawa, Tetsu; Takanaga, Akinori; Tanaka, Koichi; Maeda, Seishi; Seki, Makoto

    2004-04-23

    Almost all parasympathetic preganglionic motor neurons contain acetylcholine, whereas quite a few motor neurons in the dorsal motor nucleus of the vagus (DMV) contain dopamine. We determined the distribution and ultrastructure of these dopaminergic neurons with double-labeling immunohistochemistry for tyrosine hydroxylase (TH) and the retrograde tracer cholera toxin subunit b (CTb) following its injection into the stomach. A few TH-immunoreactive (TH-ir) neurons were found in the rostral half of the DMV, while a moderate number of these neurons were found in the caudal half. Most of the TH-ir neurons (78.4%) were double-labeled for CTb in the half of the DMV caudal to the area postrema, but only a few TH-ir neurons (5.5%) were double-labeled in the rostral half. About 20% of gastric motor neurons showed TH-immunoreactivity in the caudal half of the DMV, but only 0.3% were TH-ir in the rostral half. In all gastric motor neurons, 8.1% were double-labeled for TH. The ultrastructure of the TH-ir neurons in the caudal DMV was determined with immuno-gold-silver labeling. The TH-ir neurons were small (20.4 x 12.4 microm), round or oval, and contained numerous mitochondria, many free ribosomes, several Golgi apparatuses, a round nucleus and a few Nissl bodies. The average number of axosomatic terminals per section was 4.0. More than half of them contained round synaptic vesicles and made asymmetric synaptic contacts (Gray's type I). Most of the axodendritic terminals contacting TH-ir dendrites were Gray's type I (90%), but a few contained pleomorphic vesicles and made symmetric synaptic contacts (Gray's type II).

  9. Transient Receptor Potential Vanilloid Type 1–Dependent Regulation of Liver-Related Neurons in the Paraventricular Nucleus of the Hypothalamus Diminished in the Type 1 Diabetic Mouse

    PubMed Central

    Gao, Hong; Miyata, Kayoko; Bhaskaran, Muthu D.; Derbenev, Andrei V.; Zsombok, Andrea

    2012-01-01

    The paraventricular nucleus (PVN) of the hypothalamus controls the autonomic neural output to the liver, thereby participating in the regulation of hepatic glucose production (HGP); nevertheless, mechanisms controlling the activity of liver-related PVN neurons are not known. Transient receptor potential vanilloid type 1 (TRPV1) is involved in glucose homeostasis and colocalizes with liver-related PVN neurons; however, the functional role of TRPV1 regarding liver-related PVN neurons has to be elucidated. A retrograde viral tracer was used to identify liver-related neurons within the brain-liver circuit in control, type 1 diabetic, and insulin-treated mice. Our data indicate that TRPV1 regulates liver-related PVN neurons. This TRPV1-dependent excitation diminished in type 1 diabetic mice. In vivo and in vitro insulin restored TRPV1 activity in a phosphatidylinositol 3-kinase/protein kinase C–dependent manner and stimulated TRPV1 receptor trafficking to the plasma membrane. There was no difference in total TRPV1 protein expression; however, increased phosphorylation of TRPV1 receptors was observed in type 1 diabetic mice. Our data demonstrate that TRPV1 plays a pivotal role in the regulation of liver-related PVN neurons. Moreover, TRPV1-dependent excitation of liver-related PVN neurons diminishes in type 1 diabetes, thus indicating that the brain-liver autonomic circuitry is altered in type 1 diabetes and may contribute to the autonomic dysfunction of HGP. PMID:22492526

  10. Hypothalamic hypocretinergic/orexinergic neurons projecting to the oral pontine rapid eye movement sleep inducing site in the cat.

    PubMed

    García-García, Berta; Reinoso-Suárez, Fernando; Rodrigo-Angulo, Margarita L

    2013-05-01

    The cat ventral oral pontine reticular nucleus (vRPO) is responsible for the generation and maintenance of rapid eye movement (REM) sleep. Hypothalamic neurons containing the peptide hypocretin-1 (also called orexin-A) which will be herewith defined as orexinergic (Orx) neurons, occupy a pre-eminent place in the integration and stabilization of arousal networks as well as in the physiopathology of narcolepsy/cataplexy. In the previous investigations, low-volume and dose microinjections of hypocretin-1 in cat vRPO produced a specific and significant suppression of REM sleep. The aim of this study is to map the hypothalamic Orx neurons that project to the vRPO and suppress REM sleep generation in the cat. Five adult cats received microinjections of the retrograde tracer cholera toxin (CTb) into the vRPO. Brains were processed employing both CTb staining and antiorexin-A immunocytochemistry techniques. A large number of double-labeled neurons (Orx-CTb) intermingled with the single CTb-positive and single Orx neurons were detected in the ipsilateral lateral, perifornical, dorsal, anterior, perimammillothalamic, and posterior hypothalamic areas but were very scarce in the paraventricular, dorsomedial, ventromedial, and periventricular hypothalamic nuclei. A considerable number of double-labeled neurons were also observed in both the dorsal and the lateral hypothalamic areas in the contralateral hypothalamus. Our results suggest that the widely distributed Orx neuronal hypothalamic groups could physiologically inhibit REM sleep generation in vRPO. Copyright © 2013 Wiley Periodicals, Inc.

  11. Feed-forward and feedback projections of midbrain reticular formation neurons in the cat

    PubMed Central

    Perkins, Eddie; May, Paul J.; Warren, Susan

    2014-01-01

    Gaze changes involving the eyes and head are orchestrated by brainstem gaze centers found within the superior colliculus (SC), paramedian pontine reticular formation (PPRF), and medullary reticular formation (MdRF). The mesencephalic reticular formation (MRF) also plays a role in gaze. It receives a major input from the ipsilateral SC and contains cells that fire in relation to gaze changes. Moreover, it provides a feedback projection to the SC and feed-forward projections to the PPRF and MdRF. We sought to determine whether these MRF feedback and feed-forward projections originate from the same or different neuronal populations by utilizing paired fluorescent retrograde tracers in cats. Specifically, we tested: 1. whether MRF neurons that control eye movements form a single population by injecting the SC and PPRF with different tracers, and 2. whether MRF neurons that control head movements form a single population by injecting the SC and MdRF with different tracers. In neither case were double labeled neurons observed, indicating that feedback and feed-forward projections originate from separate MRF populations. In both cases, the labeled reticulotectal and reticuloreticular neurons were distributed bilaterally in the MRF. However, neurons projecting to the MdRF were generally constrained to the medial half of the MRF, while those projecting to the PPRF, like MRF reticulotectal neurons, were spread throughout the mediolateral axis. Thus, the medial MRF may be specialized for control of head movements, with control of eye movements being more widespread in this structure. PMID:24454280

  12. Feed-forward and feedback projections of midbrain reticular formation neurons in the cat.

    PubMed

    Perkins, Eddie; May, Paul J; Warren, Susan

    2014-01-10

    Gaze changes involving the eyes and head are orchestrated by brainstem gaze centers found within the superior colliculus (SC), paramedian pontine reticular formation (PPRF), and medullary reticular formation (MdRF). The mesencephalic reticular formation (MRF) also plays a role in gaze. It receives a major input from the ipsilateral SC and contains cells that fire in relation to gaze changes. Moreover, it provides a feedback projection to the SC and feed-forward projections to the PPRF and MdRF. We sought to determine whether these MRF feedback and feed-forward projections originate from the same or different neuronal populations by utilizing paired fluorescent retrograde tracers in cats. Specifically, we tested: 1. whether MRF neurons that control eye movements form a single population by injecting the SC and PPRF with different tracers, and 2. whether MRF neurons that control head movements form a single population by injecting the SC and MdRF with different tracers. In neither case were double labeled neurons observed, indicating that feedback and feed-forward projections originate from separate MRF populations. In both cases, the labeled reticulotectal and reticuloreticular neurons were distributed bilaterally in the MRF. However, neurons projecting to the MdRF were generally constrained to the medial half of the MRF, while those projecting to the PPRF, like MRF reticulotectal neurons, were spread throughout the mediolateral axis. Thus, the medial MRF may be specialized for control of head movements, with control of eye movements being more widespread in this structure.

  13. PAR(2) and temporomandibular joint inflammation in the rat.

    PubMed

    Denadai-Souza, A; Cenac, N; Casatti, C A; Câmara, P R de Souza; Yshii, L M; Costa, S K P; Vergnolle, N; Muscará, M N

    2010-10-01

    The proteinase-activated receptor 2 (PAR(2)) is a putative therapeutic target for arthritis. We hypothesized that the early pro-inflammatory effects secondary to its activation in the temporomandibular joint (TMJ) are mediated by neurogenic mechanisms. Immunofluorescence analysis revealed a high degree of neurons expressing PAR(2) in retrogradely labeled trigeminal ganglion neurons. Furthermore, PAR(2) immunoreactivity was observed in the lining layer of the TMJ, co-localizing with the neuronal marker PGP9.5 and substance-P-containing peripheral sensory nerve fibers. The intra-articular injection of PAR(2) agonists into the TMJ triggered a dose-dependent increase in plasma extravasation, neutrophil influx, and induction of mechanical allodynia. The pharmacological blockade of natural killer 1 (NK(1)) receptors abolished PAR(2)-induced plasma extravasation and inhibited neutrophil influx and mechanical allodynia. We conclude that PAR(2) activation is pro-inflammatory in the TMJ, through a neurogenic mechanism involving NK(1) receptors. This suggests that PAR(2) is an important component of innate neuro-immune response in the rat TMJ.

  14. Internalization and Axonal Transport of the HIV Glycoprotein gp120

    PubMed Central

    Berth, Sarah; Caicedo, Hector Hugo; Sarma, Tulika; Morfini, Gerardo

    2015-01-01

    The HIV glycoprotein gp120, a neurotoxic HIV glycoprotein that is overproduced and shed by HIV-infected macrophages, is associated with neurological complications of HIV such as distal sensory polyneuropathy, but interactions of gp120 in the peripheral nervous system remain to be characterized. Here, we demonstrate internalization of extracellular gp120 in a manner partially independent of binding to its coreceptor CXCR4 by F11 neuroblastoma cells and cultured dorsal root ganglion neurons. Immunocytochemical and pharmacological experiments indicate that gp120 does not undergo trafficking through the endolysosomal pathway. Instead, gp120 is mainly internalized through lipid rafts in a cholesterol-dependent manner, with a minor fraction being internalized by fluid phase pinocytosis. Experiments using compartmentalized microfluidic chambers further indicate that, after internalization, endocytosed gp120 selectively undergoes retrograde but not anterograde axonal transport from axons to neuronal cell bodies. Collectively, these studies illuminate mechanisms of gp120 internalization and axonal transport in peripheral nervous system neurons, providing a novel framework for mechanisms for gp120 neurotoxicity. PMID:25636314

  15. Target-Derived Neurotrophins Coordinate Transcription and Transport of Bclw to Prevent Axonal Degeneration

    PubMed Central

    Cosker, Katharina E.; Pazyra-Murphy, Maria F.; Fenstermacher, Sara J.

    2013-01-01

    Establishment of neuronal circuitry depends on both formation and refinement of neural connections. During this process, target-derived neurotrophins regulate both transcription and translation to enable selective axon survival or elimination. However, it is not known whether retrograde signaling pathways that control transcription are coordinated with neurotrophin-regulated actions that transpire in the axon. Here we report that target-derived neurotrophins coordinate transcription of the antiapoptotic gene bclw with transport of bclw mRNA to the axon, and thereby prevent axonal degeneration in rat and mouse sensory neurons. We show that neurotrophin stimulation of nerve terminals elicits new bclw transcripts that are immediately transported to the axons and translated into protein. Bclw interacts with Bax and suppresses the caspase6 apoptotic cascade that fosters axonal degeneration. The scope of bclw regulation at the levels of transcription, transport, and translation provides a mechanism whereby sustained neurotrophin stimulation can be integrated over time, so that axonal survival is restricted to neurons connected within a stable circuit. PMID:23516285

  16. An engram found? Evaluating the evidence from fruit flies.

    PubMed

    Gerber, Bertram; Tanimoto, Hiromu; Heisenberg, Martin

    2004-12-01

    Is it possible to localize a memory trace to a subset of cells in the brain? If so, it should be possible to show: first, that neuronal plasticity occurs in these cells. Second, that neuronal plasticity in these cells is sufficient for memory. Third, that neuronal plasticity in these cells is necessary for memory. Fourth, that memory is abolished if these cells cannot provide output during testing. And fifth, that memory is abolished if these cells cannot receive input during training. With regard to olfactory learning in flies, we argue that the notion of the olfactory memory trace being localized to the Kenyon cells of the mushroom bodies is a reasonable working hypothesis.

  17. Autoradiographic labeling of the cholinergic habenulo-interpeduncular projection.

    PubMed

    Villani, L; Contestabile, A; Fonnum, F

    1983-12-11

    The transmitter-specific autoradiographic method has been used to retrogradely trace the habenulo-interpeduncular cholinergic projection. [3H]Choline injection in the interpeduncular nucleus resulted in remarkable labeling of the fasciculus retroflexus and in very strong accumulation of silver grains in the medial habenula. Brainstem nuclei sending non-cholinergic projections to the interpeduncular nucleus were not labeled. The present findings strongly support the notion of a cholinergic medial habenula-interpeduncular nucleus projection in agreement with recent immunohistochemical evidence, but in contrast to previous immunocytochemical and pharmacohistochemical results.

  18. Reticular Formation Connections Underlying Horizontal Gaze: The Central Mesencephalic Reticular Formation (cMRF) as a Conduit for the Collicular Saccade Signal

    PubMed Central

    Wang, Niping; Perkins, Eddie; Zhou, Lan; Warren, Susan; May, Paul J.

    2017-01-01

    The central mesencephalic reticular formation (cMRF) occupies much of the core of the midbrain tegmentum. Physiological studies indicate that it is involved in controlling gaze changes, particularly horizontal saccades. Anatomically, it receives input from the ipsilateral superior colliculus (SC) and it has downstream projections to the brainstem, including the horizontal gaze center located in the paramedian pontine reticular formation (PPRF). Consequently, it has been hypothesized that the cMRF plays a role in the spatiotemporal transformation needed to convert spatially coded collicular saccade signals into the temporally coded signals utilized by the premotor neurons of the horizontal gaze center. In this study, we used neuroanatomical tracers to examine the patterns of connectivity of the cMRF in macaque monkeys in order to determine whether the circuit organization supports this hypothesis. Since stimulation of the cMRF produces contraversive horizontal saccades and stimulation of the horizontal gaze center produces ipsiversive saccades, this would require an excitatory cMRF projection to the contralateral PPRF. Injections of anterograde tracers into the cMRF did produce labeled terminals within the PPRF. However, the terminations were denser ipsilaterally. Since the PPRF located contralateral to the movement direction is generally considered to be silent during a horizontal saccade, we then tested the hypothesis that this ipsilateral reticuloreticular pathway might be inhibitory. The ultrastructure of ipsilateral terminals was heterogeneous, with some displaying more extensive postsynaptic densities than others. Postembedding immunohistochemistry for gamma-aminobutyric acid (GABA) indicated that only a portion (35%) of these cMRF terminals are GABAergic. Dual tracer experiments were undertaken to determine whether the SC provides input to cMRF reticuloreticular neurons projecting to the ipsilateral pons. Retrogradely labeled reticuloreticular neurons were predominantly distributed in the ipsilateral cMRF. Anterogradely labeled tectal terminals were observed in close association with a portion of these retrogradely labeled reticuloreticular neurons. Taken together, these results suggest that the SC does have connections with reticuloreticular neurons in the cMRF. However, the predominantly excitatory nature of the ipsilateral reticuloreticular projection argues against the hypothesis that this cMRF pathway is solely responsible for producing a spatiotemporal transformation of the collicular saccade signal. PMID:28487639

  19. Y-27632, a Rho-associated protein kinase inhibitor, attenuates neuronal cell death after transient retinal ischemia.

    PubMed

    Hirata, Akira; Inatani, Masaru; Inomata, Yasuya; Yonemura, Naoko; Kawaji, Takahiro; Honjo, Megumi; Tanihara, Hidenobu

    2008-01-01

    Transient retinal ischemia induces the death of retinal neuronal cells. Postischemic damage is associated with the infiltration of leukocytes into the neural tissue through vascular endothelia. The current study aimed to investigate whether this damage was attenuated by the inhibition of Rho/ROCK (Rho kinases) signaling, recently shown to play a critical role in the transendothelial migration of leukocytes. Y-27632, a selective inhibitor of ROCK, was injected intravitreally into rat eyes with transient retinal ischemia. Cell loss of the ganglion cell layer (GCL) and thinning of the inner plexiform layer (IPL) with and without the administration of Y-27632 were evaluated by histological analysis, TUNEL assay and retrograde labeling of retinal ganglion cells (RGCs). To examine the attenuation of leukocyte infiltration in postischemic retinas with the administration of Y-27632, silver nitrate staining and immunohistochemistry using an anti-LCA antibody were performed. Cell loss of the GCL and thinning of the IPL were significantly attenuated when 100 nmol Y-27632 was administered within three hours of the induction of ischemia. TUNEL assay and retrograde labeling of RGCs showed a decreased number of apoptotic cells and an increased number of RGCs in Y-27632-injected retinas. Moreover, silver nitrate staining and immunohistochemical analysis using an anti-LCA antibody showed that Y-27632 injection dramatically inhibited leukocyte infiltration and endothelial disarrangement. Our data suggest that inhibition of Rho/ROCK signaling offers neuroprotective therapy against postischemic neural damage, by regulating leukocyte infiltration in the neural tissue.

  20. Viral-genetic tracing of the input-output organization of a central noradrenaline circuit.

    PubMed

    Schwarz, Lindsay A; Miyamichi, Kazunari; Gao, Xiaojing J; Beier, Kevin T; Weissbourd, Brandon; DeLoach, Katherine E; Ren, Jing; Ibanes, Sandy; Malenka, Robert C; Kremer, Eric J; Luo, Liqun

    2015-08-06

    Deciphering how neural circuits are anatomically organized with regard to input and output is instrumental in understanding how the brain processes information. For example, locus coeruleus noradrenaline (also known as norepinephrine) (LC-NE) neurons receive input from and send output to broad regions of the brain and spinal cord, and regulate diverse functions including arousal, attention, mood and sensory gating. However, it is unclear how LC-NE neurons divide up their brain-wide projection patterns and whether different LC-NE neurons receive differential input. Here we developed a set of viral-genetic tools to quantitatively analyse the input-output relationship of neural circuits, and applied these tools to dissect the LC-NE circuit in mice. Rabies-virus-based input mapping indicated that LC-NE neurons receive convergent synaptic input from many regions previously identified as sending axons to the locus coeruleus, as well as from newly identified presynaptic partners, including cerebellar Purkinje cells. The 'tracing the relationship between input and output' method (or TRIO method) enables trans-synaptic input tracing from specific subsets of neurons based on their projection and cell type. We found that LC-NE neurons projecting to diverse output regions receive mostly similar input. Projection-based viral labelling revealed that LC-NE neurons projecting to one output region also project to all brain regions we examined. Thus, the LC-NE circuit overall integrates information from, and broadcasts to, many brain regions, consistent with its primary role in regulating brain states. At the same time, we uncovered several levels of specificity in certain LC-NE sub-circuits. These tools for mapping output architecture and input-output relationship are applicable to other neuronal circuits and organisms. More broadly, our viral-genetic approaches provide an efficient intersectional means to target neuronal populations based on cell type and projection pattern.

  1. Conditional Viral Tract Tracing Delineates the Projections of the Distinct Kisspeptin Neuron Populations to Gonadotropin-Releasing Hormone (GnRH) Neurons in the Mouse.

    PubMed

    Yip, Siew Hoong; Boehm, Ulrich; Herbison, Allan E; Campbell, Rebecca E

    2015-07-01

    Kisspeptin neurons play an essential role in the regulation of fertility through direct regulation of the GnRH neurons. However, the relative contributions of the two functionally distinct kisspeptin neuron subpopulations to this critical regulation are not fully understood. Here we analyzed the specific projection patterns of kisspeptin neurons originating from either the rostral periventricular nucleus of the third ventricle (RP3V) or the arcuate nucleus (ARN) using a cell-specific, viral-mediated tract-tracing approach. We stereotaxically injected a Cre-dependent recombinant adenovirus encoding farnesylated enhanced green fluorescent protein into the ARN or RP3V of adult male and female mice expressing Cre recombinase in kisspeptin neurons. Fibers from ARN kisspeptin neurons projected widely; however, we did not find any evidence for direct contact with GnRH neuron somata or proximal dendrites in either sex. In contrast, we identified RP3V kisspeptin fibers in close contact with GnRH neuron somata and dendrites in both sexes. Fibers originating from both the RP3V and ARN were observed in close contact with distal GnRH neuron processes in the ARN and in the lateral and internal aspects of the median eminence. Furthermore, GnRH nerve terminals were found in close contact with the proximal dendrites of ARN kisspeptin neurons in the ARN, and ARN kisspeptin fibers were found contacting RP3V kisspeptin neurons in both sexes. Together these data delineate selective zones of kisspeptin neuron inputs to GnRH neurons and demonstrate complex interconnections between the distinct kisspeptin populations and GnRH neurons.

  2. Guidance of Axons by Local Coupling of Retrograde Flow to Point Contact Adhesions.

    PubMed

    Nichol, Robert H; Hagen, Kate M; Lumbard, Derek C; Dent, Erik W; Gómez, Timothy M

    2016-02-17

    Growth cones interact with the extracellular matrix (ECM) through integrin receptors at adhesion sites termed point contacts. Point contact adhesions link ECM proteins to the actin cytoskeleton through numerous adaptor and signaling proteins. One presumed function of growth cone point contacts is to restrain or "clutch" myosin-II-based filamentous actin (F-actin) retrograde flow (RF) to promote leading edge membrane protrusion. In motile non-neuronal cells, myosin-II binds and exerts force upon actin filaments at the leading edge, where clutching forces occur. However, in growth cones, it is unclear whether similar F-actin-clutching forces affect axon outgrowth and guidance. Here, we show in Xenopus spinal neurons that RF is reduced in rapidly migrating growth cones on laminin (LN) compared with non-integrin-binding poly-d-lysine (PDL). Moreover, acute stimulation with LN accelerates axon outgrowth over a time course that correlates with point contact formation and reduced RF. These results suggest that RF is restricted by the assembly of point contacts, which we show occurs locally by two-channel imaging of RF and paxillin. Further, using micropatterns of PDL and LN, we demonstrate that individual growth cones have differential RF rates while interacting with two distinct substrata. Opposing effects on RF rates were also observed in growth cones treated with chemoattractive and chemorepulsive axon guidance cues that influence point contact adhesions. Finally, we show that RF is significantly attenuated in vivo, suggesting that it is restrained by molecular clutching forces within the spinal cord. Together, our results suggest that local clutching of RF can control axon guidance on ECM proteins downstream of axon guidance cues. Here, we correlate point contact adhesions directly with clutching of filamentous actin retrograde flow (RF), which our findings strongly suggest guides developing axons. Acute assembly of new point contact adhesions is temporally and spatially linked to attenuation of RF at sites of forward membrane protrusion. Importantly, clutching of RF is modulated by extracellular matrix (ECM) proteins and soluble axon guidance cues, suggesting that it may regulate axon guidance in vivo. Consistent with this notion, we found that RF rates of spinal neuron growth cones were slower in vivo than what was observed in vitro. Together, our study provides the best evidence that growth cone-ECM adhesions clutch RF locally to guide axons in vivo. Copyright © 2016 the authors 0270-6474/16/362267-16$15.00/0.

  3. Noradrenaline Triggers GABAA Inhibition of Bed Nucleus of the Stria Terminalis Neurons Projecting to the Ventral Tegmental Area

    PubMed Central

    Dumont, Éric C.; Williams, John T.

    2014-01-01

    The lateral part of the ventral bed nucleus of the stria terminalis (vlBNST) is a critical site for the antiaversive effects of noradrenergic drugs during opioid withdrawal. The objective of the present study is to identify the cellular action(s) of noradrenaline in the vlBNST after withdrawal from a 5 d treatment with morphine. The vlBNST is a heterogeneous cell group with multiple efferent projections. Therefore, neurons projecting to the midbrain were identified by retrograde transport of fluorescent microspheres injected in the ventral tegmental area (VTA). Whole-cell voltage clamp recordings of these neurons and of those sharing physiological properties were done in brain slices. Noradrenaline activated α1-adrenergic receptors to increase GABAA-IPSC frequency. Noradrenaline produced a similar increase in GABAA-IPSCs during acute opioid withdrawal, but this increase resulted from activation of β-adrenergic receptors, adenylyl cyclase, and protein kinase A, as well as α1-adrenergic receptors. Given that neurons in the vlBNST send an excitatory projection to the VTA, noradrenaline may reduce excitatory drive to mesolimbic dopamine cells. This mechanism might contribute to the withdrawal-induced inhibition of dopamine neurons and explain how noradrenergic drugs microinjected into the vlBNST reduce aversive aspects of opioid withdrawal. PMID:15385602

  4. Peripheral territory and neuropeptides of the trigeminal ganglion neurons centrally projecting through the oculomotor nerve demonstrated by fluorescent retrograde double-labeling combined with immunocytochemistry.

    PubMed

    Bortolami, R; Calzà, L; Lucchi, M L; Giardino, L; Callegari, E; Manni, E; Pettorossi, V E; Barazzoni, A M; Lalatta Costerbosa, G

    1991-04-26

    The peripheral territories of sheep trigeminal neurons which send their central process to the brainstem through the oculomotor nerve were investigated by the use of fluorescent tracers in double-labeling experiments. For this purpose Diamidino yellow (DY) injection into the oculomotor nerve was combined with Fast blue (FB) injection either into the extraocular muscles (EOMs), or the cornea, or the superior eyelid. Double-labeled DY + FB cells were found in the ophthalmic region of the trigeminal ganglion in addition to single-labeled DY or FB cells. The DY and DY + FB-labeled trigeminal cells were analysed immunocytochemically for their content of substance P (SP)-, calcitonin gene-related peptide (CGRP)-, and cholecystokinin-8 (CCK-8)-like. All single-labeled DY cells showed SP-, CGRP- or CCK-8-like immunoreactivity. Double-labeled DY + FB neurons innervating the EOMs were immunoreactive for each of the three peptides, whereas double-labeled neurons supplying the cornea were only CGRP-like positive. The findings suggest that, in the sheep, trigeminal neurons which send their process centrally through the oculomotor nerve supply the EOMs, the cornea, and the superior eyelid and contain neuropeptides which are usually associated with pain sensation.

  5. Projections from the rostral mesencephalic reticular formation to the spinal cord - An HRP and autoradiographical tracing study in the cat

    NASA Technical Reports Server (NTRS)

    Holstege, G.; Cowie, R. J.

    1989-01-01

    Horseradish peroxidase was injected, or implanted unilaterally, into various levels of the spinal cord of anesthetized cats, to trace the distribution of projections to the spinal cord, of neurons in Field H of Forel, including the rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF), and the interstitial nucleus of Cajal with adjacent reticular formation (INC-RF). Results indicate that, unlike the neurons projecting to the extraocular muscle motoneurons, the major portion of the spinally projecting neurons are not located in the riMLF or INC proper, but in adjacent areas, i.e., the ventral and lateral parts of the caudal third of the Field H of Forel and in the INC-RF. Neurons in caudal Field H of Forel, project, via the ventral part of the ventral funicululs, to the lateral part of the upper cervical ventral horn.

  6. Motor neuron mitochondrial dysfunction in spinal muscular atrophy

    PubMed Central

    Miller, Nimrod; Shi, Han; Zelikovich, Aaron S.; Ma, Yong-Chao

    2016-01-01

    Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality, predominantly affects high metabolic tissues including motor neurons, skeletal muscles and the heart. Although the genetic cause of SMA has been identified, mechanisms underlying tissue-specific vulnerability are not well understood. To study these mechanisms, we carried out a deep sequencing analysis of the transcriptome of spinal motor neurons in an SMA mouse model, in which we unexpectedly found changes in many genes associated with mitochondrial bioenergetics. Importantly, functional measurement of mitochondrial activities showed decreased basal and maximal mitochondrial respiration in motor neurons from SMA mice. Using a reduction-oxidation sensitive GFP and fluorescence sensors specifically targeted to mitochondria, we found increased oxidative stress level and impaired mitochondrial membrane potential in motor neurons affected by SMA. In addition, mitochondrial mobility was impaired in SMA disease conditions, with decreased retrograde transport but no effect on anterograde transport. We also found significantly increased fragmentation of the mitochondrial network in primary motor neurons from SMA mice, with no change in mitochondria density. Electron microscopy study of SMA mouse spinal cord revealed mitochondria fragmentation, edema and concentric lamellar inclusions in motor neurons affected by the disease. Intriguingly, these functional and structural deficiencies in the SMA mouse model occur during the presymptomatic stage of disease, suggesting a role in initiating SMA. Altogether, our findings reveal a critical role for mitochondrial defects in SMA pathogenesis and suggest a novel target for improving tissue health in the disease. PMID:27488123

  7. Fate-mapping the mammalian hindbrain: segmental origins of vestibular projection neurons assessed using rhombomere-specific Hoxa2 enhancer elements in the mouse embryo.

    PubMed

    Pasqualetti, Massimo; Díaz, Carmen; Renaud, Jean-Sébastien; Rijli, Filippo M; Glover, Joel C

    2007-09-05

    As a step toward generating a fate map of identified neuron populations in the mammalian hindbrain, we assessed the contributions of individual rhombomeres to the vestibular nuclear complex, a major sensorimotor area that spans the entire rhombencephalon. Transgenic mice harboring either the lacZ or the enhanced green fluorescent protein reporter genes under the transcriptional control of rhombomere-specific Hoxa2 enhancer elements were used to visualize rhombomere-derived domains. We labeled functionally identifiable vestibular projection neuron groups retrogradely with conjugated dextran-amines at successive embryonic stages and obtained developmental fate maps through direct comparison with the rhombomere-derived domains in the same embryos. The fate maps show that each vestibular neuron group derives from a unique rostrocaudal domain that is relatively stable developmentally, suggesting that anteroposterior migration is not a major contributor to the rostrocaudal patterning of the vestibular system. Most of the groups are multisegmental in origin, and each rhombomere is fated to give rise to two or more vestibular projection neuron types, in a complex pattern that is not segmentally iterated. Comparison with studies in the chicken embryo shows that the rostrocaudal patterning of identified vestibular projection neuron groups is generally well conserved between avians and mammalians but that significant species-specific differences exist in the rostrocaudal limits of particular groups. This mammalian hindbrain fate map can be used as the basis for targeting genetic manipulation to specific subpopulations of vestibular projection neurons.

  8. Neurochemical differences between target-specific populations of rat dorsal raphe projection neurons.

    PubMed

    Prouty, Eric W; Chandler, Daniel J; Waterhouse, Barry D

    2017-11-15

    Serotonin (5-HT)-containing neurons in the dorsal raphe (DR) nucleus project throughout the forebrain and are implicated in many physiological processes and neuropsychiatric disorders. Diversity among these neurons has been characterized in terms of their neurochemistry and anatomical organization, but a clear sense of whether these attributes align with specific brain functions or terminal fields is lacking. DR 5-HT neurons can co-express additional neuroactive substances, increasing the potential for individualized regulation of target circuits. The goal of this study was to link DR neurons to a specific functional role by characterizing cells according to both their neurotransmitter expression and efferent connectivity; specifically, cells projecting to the medial prefrontal cortex (mPFC), a region implicated in cognition, emotion, and responses to stress. Following retrograde tracer injection, brainstem sections from Sprague-Dawley rats were immunohistochemically stained for markers of serotonin, glutamate, GABA, and nitric oxide (NO). 98% of the mPFC-projecting serotonergic neurons co-expressed the marker for glutamate, while the markers for NO and GABA were observed in 60% and less than 1% of those neurons, respectively. To identify potential target-specific differences in co-transmitter expression, we also characterized DR neurons projecting to a visual sensory structure, the lateral geniculate nucleus (LGN). The proportion of serotonergic neurons co-expressing NO was greater amongst cells targeting the mPFC vs LGN (60% vs 22%). The established role of 5-HT in affective disorders and the emerging role of NO in stress signaling suggest that the impact of 5-HT/NO co-localization in DR neurons that regulate mPFC circuit function may be clinically relevant. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Feature-Specific Organization of Feedback Pathways in Mouse Visual Cortex.

    PubMed

    Huh, Carey Y L; Peach, John P; Bennett, Corbett; Vega, Roxana M; Hestrin, Shaul

    2018-01-08

    Higher and lower cortical areas in the visual hierarchy are reciprocally connected [1]. Although much is known about how feedforward pathways shape receptive field properties of visual neurons, relatively little is known about the role of feedback pathways in visual processing. Feedback pathways are thought to carry top-down signals, including information about context (e.g., figure-ground segmentation and surround suppression) [2-5], and feedback has been demonstrated to sharpen orientation tuning of neurons in the primary visual cortex (V1) [6, 7]. However, the response characteristics of feedback neurons themselves and how feedback shapes V1 neurons' tuning for other features, such as spatial frequency (SF), remain largely unknown. Here, using a retrograde virus, targeted electrophysiological recordings, and optogenetic manipulations, we show that putatively feedback neurons in layer 5 (hereafter "L5 feedback") in higher visual areas, AL (anterolateral area) and PM (posteromedial area), display distinct visual properties in awake head-fixed mice. AL L5 feedback neurons prefer significantly lower SF (mean: 0.04 cycles per degree [cpd]) compared to PM L5 feedback neurons (0.15 cpd). Importantly, silencing AL L5 feedback reduced visual responses of V1 neurons preferring low SF (mean change in firing rate: -8.0%), whereas silencing PM L5 feedback suppressed responses of high-SF-preferring V1 neurons (-20.4%). These findings suggest that feedback connections from higher visual areas convey distinctly tuned visual inputs to V1 that serve to boost V1 neurons' responses to SF. Such like-to-like functional organization may represent an important feature of feedback pathways in sensory systems and in the nervous system in general. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits.

    PubMed

    Zhang, Yan; Kerman, Ilan A; Laque, Amanda; Nguyen, Phillip; Faouzi, Miro; Louis, Gwendolyn W; Jones, Justin C; Rhodes, Chris; Münzberg, Heike

    2011-02-02

    Brown adipose tissue (BAT) thermogenesis is critical to maintain homoeothermia and is centrally controlled via sympathetic outputs. Body temperature and BAT activity also impact energy expenditure, and obesity is commonly associated with decreased BAT capacity and sympathetic tone. Severely obese mice that lack leptin or its receptor (LepRb) show decreased BAT capacity, sympathetic tone, and body temperature and thus are unable to adapt to acute cold exposure (Trayhurn et al., 1976). LepRb-expressing neurons are found in several hypothalamic sites, including the dorsomedial hypothalamus (DMH) and median preoptic area (mPOA), both critical sites to regulate sympathetic, thermoregulatory BAT circuits. Specifically, a subpopulation in the DMH/dorsal hypothalamic area (DHA) is stimulated by fever-inducing endotoxins or cold exposure (Dimicco and Zaretsky, 2007; Morrison et al., 2008). Using the retrograde, transsynaptic tracer pseudorabies virus (PRV) injected into the BAT of mice, we identified PRV-labeled LepRb neurons in the DMH/DHA and mPOA (and other sites), thus indicating their involvement in the regulation of sympathetic BAT circuits. Indeed, acute cold exposure induced c-Fos (as a surrogate for neuronal activity) in DMH/DHA LepRb neurons, and a large number of mPOA LepRb neurons project to the DMH/DHA. Furthermore, DMH/DHA LepRb neurons (and a subpopulation of LepRb mPOA neurons) project and synaptically couple to rostral raphe pallidus neurons, consistent with the current understanding of BAT thermoregulatory circuits from the DMH/DHA and mPOA (Dimicco and Zaretsky, 2007; Morrison et al., 2008). Thus, these data present strong evidence that LepRb neurons in the DMH/DHA and mPOA mediate thermoregulatory leptin action.

  11. Spinal afferent neurons projecting to the rat lung and pleura express acid sensitive channels

    PubMed Central

    Groth, Michael; Helbig, Tanja; Grau, Veronika; Kummer, Wolfgang; Haberberger, Rainer V

    2006-01-01

    Background The acid sensitive ion channels TRPV1 (transient receptor potential vanilloid receptor-1) and ASIC3 (acid sensing ion channel-3) respond to tissue acidification in the range that occurs during painful conditions such as inflammation and ischemia. Here, we investigated to which extent they are expressed by rat dorsal root ganglion neurons projecting to lung and pleura, respectively. Methods The tracer DiI was either injected into the left lung or applied to the costal pleura. Retrogradely labelled dorsal root ganglion neurons were subjected to triple-labelling immunohistochemistry using antisera against TRPV1, ASIC3 and neurofilament 68 (marker for myelinated neurons), and their soma diameter was measured. Results Whereas 22% of pulmonary spinal afferents contained neither channel-immunoreactivity, at least one is expressed by 97% of pleural afferents. TRPV1+/ASIC3- neurons with probably slow conduction velocity (small soma, neurofilament 68-negative) were significantly more frequent among pleural (35%) than pulmonary afferents (20%). TRPV1+/ASIC3+ neurons amounted to 14 and 10% respectively. TRPV1-/ASIC3+ neurons made up between 44% (lung) and 48% (pleura) of neurons, and half of them presumably conducted in the A-fibre range (larger soma, neurofilament 68-positive). Conclusion Rat pleural and pulmonary spinal afferents express at least two different acid-sensitive channels that make them suitable to monitor tissue acidification. Patterns of co-expression and structural markers define neuronal subgroups that can be inferred to subserve different functions and may initiate specific reflex responses. The higher prevalence of TRPV1+/ASIC3- neurons among pleural afferents probably reflects the high sensitivity of the parietal pleura to painful stimuli. PMID:16813657

  12. Laterodorsal nucleus of the thalamus: A processor of somatosensory inputs.

    PubMed

    Bezdudnaya, Tatiana; Keller, Asaf

    2008-04-20

    The laterodorsal (LD) nucleus of the thalamus has been considered a "higher order" nucleus that provides inputs to limbic cortical areas. Although its functions are largely unknown, it is often considered to be involved in spatial learning and memory. Here we provide evidence that LD is part of a hitherto unknown pathway for processing somatosensory information. Juxtacellular and extracellular recordings from LD neurons reveal that they respond to vibrissa stimulation with short latency (median = 7 ms) and large magnitude responses (median = 1.2 spikes/stimulus). Most neurons (62%) had large receptive fields, responding to six and more individual vibrissae. Electrical stimulation of the trigeminal nucleus interpolaris (SpVi) evoked short latency responses (median = 3.8 ms) in vibrissa-responsive LD neurons. Labeling produced by anterograde and retrograde neuroanatomical tracers confirmed that LD neurons receive direct inputs from SpVi. Electrophysiological and neuroanatomical analyses revealed also that LD projects upon the cingulate and retrosplenial cortex, but has only sparse projections to the barrel cortex. These findings suggest that LD is part of a novel processing stream involved in spatial orientation and learning related to somatosensory cues. (c) 2008 Wiley-Liss, Inc.

  13. Anatomy of the Vestibulo-automatic Outflow to the Gut

    NASA Technical Reports Server (NTRS)

    Torigoe, Y.

    1985-01-01

    Motion sickness can be induced by vestibular effects on the sympathetic portion of the autonomic nervous system. However, the pathways linking the vestibular and autonomic pathways are unknown. As a first step in this analysis, the locations of preganglionic sympathetic neurons (PSN) and dorsal root afferent ganglionic neurons (DRG) which supply sympathetic innervation to major portions of the gastrointestinal tract in rabbits were identified. The objective of a second series of experiments is to determine which of the brainstem nuclei project to the autonomic regions of the spinal cord that control gastrointestinal motility. To achieve this goal, a trans-synaptic retrograde tracer (3H-tetanus toxoid) is applied to the greater splanchnic nerve. This method allows the labeling of neurons within the brainstem that project only to the preganglionic synpathetic neurons. One structure that has been strongly implicated in mediating vestibulo-autonomic control is the cerebellum (i.e., nodulus and uvula). The outflow of these lobules to the autonomic regions of the brainstem is mediated by the fastigial nucleus. To determine the precise projections of the fastigial nucleus to the brainstem nuclei involved in emesis, anterograde tracer (3H-leucine) was injected into the fastigial nucleus in a third series of experiments.

  14. Individual differences and vulnerability to drug addiction: a focus on the endocannabinoid system.

    PubMed

    Sagheddu, Claudia; Melis, Miriam

    2015-01-01

    Vulnerability to drug addiction depends upon the interactions between the biological makeup of the individual, the environment, and age. These interactions are complex and difficult to tease apart. Since dopamine is involved in the rewarding effects of drugs of abuse, it is postulated that innate differences in mesocorticolimbic pathway can influence the response to drug exposure. In particular, higher and lower expression of dopamine D2 receptors in the ventral striatum (i.e. a marker of dopamine function) has been considered a putative protective and a risk factor, respectively, that can influence one's susceptibility to continued drug abuse as well as the transition to addiction. This phenomenon, which is phylogenetically preserved, appears to be a compensatory change to increased impulse activity of midbrain dopamine neurons. Hence, dopamine neuronal excitability plays a fundamental role in the diverse stages of the drug addiction cycle. In this review, a framework for the evidence that modulation of dopamine neuronal activity plays in the context of vulnerability to drug addiction will be presented. Furthermore, since endogenous cannabinoids serve as retrograde messengers to shape afferent neuronal activity in a short- and long-lasting fashion, their role in individual differences and vulnerability to drug addiction will be discussed.

  15. Rab5 and its effector FHF contribute to neuronal polarity through dynein-dependent retrieval of somatodendritic proteins from the axon

    PubMed Central

    Guo, Xiaoli; Farías, Ginny G.; Mattera, Rafael; Bonifacino, Juan S.

    2016-01-01

    An open question in cell biology is how the general intracellular transport machinery is adapted to perform specialized functions in polarized cells such as neurons. Here we illustrate this adaptation by elucidating a role for the ubiquitous small GTPase Ras-related protein in brain 5 (Rab5) in neuronal polarity. We show that inactivation or depletion of Rab5 in rat hippocampal neurons abrogates the somatodendritic polarity of the transferrin receptor and several glutamate receptor types, resulting in their appearance in the axon. This loss of polarity is not caused primarily by increased transport from the soma to the axon but rather by decreased retrieval from the axon to the soma. Retrieval is also dependent on the Rab5 effector Fused Toes (FTS)–Hook–FTS and Hook-interacting protein (FHIP) (FHF) complex, which interacts with the minus-end–directed microtubule motor dynein and its activator dynactin to drive a population of axonal retrograde carriers containing somatodendritic proteins toward the soma. These findings emphasize the importance of both biosynthetic sorting and axonal retrieval for the polarized distribution of somatodendritic receptors at steady state. PMID:27559088

  16. Neurotrophin Signaling via Long-Distance Axonal Transport

    NASA Astrophysics Data System (ADS)

    Chowdary, Praveen D.; Che, Dung L.; Cui, Bianxiao

    2012-05-01

    Neurotrophins are a family of target-derived growth factors that support survival, development, and maintenance of innervating neurons. Owing to the unique architecture of neurons, neurotrophins that act locally on the axonal terminals must convey their signals across the entire axon for subsequent regulation of gene transcription in the cell nucleus. This long-distance retrograde signaling, a motor-driven process that can take hours or days, has been a subject of intense interest. In the last decade, live-cell imaging with high sensitivity has significantly increased our capability to track the transport of neurotrophins, their receptors, and subsequent signals in real time. This review summarizes recent research progress in understanding neurotrophin-receptor interactions at the axonal terminal and their transport dynamics along the axon. We emphasize high-resolution studies at the single-molecule level and also discuss recent technical advances in the field.

  17. Cortical and subcortical afferents to the nucleus reticularis tegmenti pontis and basal pontine nuclei in the macaque monkey.

    PubMed

    Giolli, R A; Gregory, K M; Suzuki, D A; Blanks, R H; Lui, F; Betelak, K F

    2001-01-01

    Anatomical findings are presented that identify cortical and subcortical sources of afferents to the nucleus reticularis tegmenti pontis (NRTP) and basal pontine nuclei. Projections from the middle temporal visual area (MT), medial superior temporal visual area (MST), lateral intraparietal area (LIP), and areas 7a and 7b to the basal pontine nuclei were studied using 3H-leucine autoradiography. The results complemented a parallel study of retrograde neuronal labeling attributable to injecting WGA-HRP into NRTP and neighboring pontine nuclei. Small 3H-leucine injections confined to MT, MST, LIP, area 7a, or area 7b, produced multiple patches of pontine terminal label distributed as follows: (1) An injection within MT produced terminal label limited to the dorsolateral and lateral pontine nuclei. (2) Injections restricted to MST or LIP showed patches of terminal label in the dorsal, dorsolateral, lateral, and peduncular pontine nuclei. (3) Area 7a targets the dorsal, dorsolateral, lateral, peduncular, and ventral pontine nuclei, whereas area 7b projects, additionally, to the dorsomedial and paramedian pontine nuclei. Notably, no projections were seen to NRTP from any of these cortical areas. In contrast, injections made by other investigators into cortical areas anterior to the central sulcus revealed cerebrocortical afferents to NRTP, in addition to nuclei of the basal pontine gray. With our pontine WGA-HRP injections, retrograde neuronal labeling was observed over a large extent of the frontal cortex continuing onto the medial surface which included the lining of the cingulate sulcus and cingulate gyrus. Significant subcortical sources for afferents to the NRTP and basal pontine nuclei were the zona incerta, ventral mesencephalic tegmentum, dorsomedial hypothalamic area, rostral interstitial nucleus of the medial longitudinal fasciculus, red nucleus, and subthalamic nucleus. The combined anterograde and retrograde labeling data indicated that visuo-motor cortico-pontine pathways arising from parietal cortices target only the basal pontine gray, whereas the NRTP, together with select pontine nuclei, is a recipient of afferents from frontal cortical areas. The present findings implicate the existence of parallel direct and indirect cortico-pontine pathways from frontal motor-related cortices to NRTP and neighboring pontine nuclei.

  18. Plasticity of synaptic connections in sensory-motor pathways of the adult locust flight system.

    PubMed

    Wolf, H; Büschges, A

    1997-09-01

    We investigated possible roles of retrograde signals and competitive interactions in the lesion-induced reorganization of synaptic contacts in the locust CNS. Neuronal plasticity is elicited in the adult flight system by removal of afferents from the tegula, a mechanoreceptor organ at the base of the wing. We severed one hindwing organ and studied the resulting rearrangement of synaptic contacts between flight interneurons and afferent neurons from the remaining three tegulae (2 forewing, 1 hindwing). This was done by electric stimulation of afferents and intracellular recording from interneurons (and occasionally motoneurons). Two to three weeks after unilateral tegula lesion, connections between tegula afferents and flight interneurons were altered in the following way. 1) Axons from the forewing tegula on the operated side had established new synaptic contacts with metathoracic elevator interneurons. In addition, the amplitude of compound excitatory postsynaptic potentials elicited by electric stimulation was increased, indicating that a larger number of afferents connected to any given interneuron. 2) On the side contralateral to the lesion, connectivity between axons from the forewing tegula and elevator interneurons was decreased. 3) The efficacy of the (remaining) hindwing afferents appeared to be increased with regard to both synaptic transmission to interneurons and impact on flight motor pattern. 4) Flight motoneurons, which are normally restricted to the ipsilateral hemiganglion, sprouted across the ganglion midline after unilateral tegula removal and apparently established new synaptic contacts with tegula afferents on that side. The changes on the operated side are interpreted as occupation of synaptic space vacated on the interneurons by the severed hindwing afferents. On the contralateral side, the changes in synaptic contact must be elicited by retrograde signals from bilaterally arborizing flight interneurons, because tegula projections remain strictly ipsilateral. The pattern of changes suggests competitive interactions between forewing and hindwing afferents. The present investigation thus presents evidence that the CNS of the mature locust is capable of extensive synaptic rearrangement in response to injury and indicates for the first time the action of retrograde signals from interneurons.

  19. Inflammation-induced increase in nicotinic acetylcholine receptor current in cutaneous nociceptive DRG neurons from the adult rat.

    PubMed

    Zhang, X-L; Albers, K M; Gold, M S

    2015-01-22

    The goals of the present study were to determine (1) the properties of the nicotinic acetylcholine receptor (nAChR) currents in rat cutaneous dorsal root ganglion (DRG) neurons; (2) the impact of nAChR activation on the excitability of cutaneous DRG neurons; and (3) the impact of inflammation on the density and distribution of nAChR currents among cutaneous DRG neurons. Whole-cell patch-clamp techniques were used to study retrogradely labeled DRG neurons from naïve and complete Freund's adjuvant inflamed rats. Nicotine-evoked currents were detectable in ∼70% of the cutaneous DRG neurons, where only one of two current types, fast or slow currents based on rates of activation and inactivation, was present in each neuron. The biophysical and pharmacological properties of the fast current were consistent with nAChRs containing an α7 subunit while those of the slow current were consistent with nAChRs containing α3/β4 subunits. The majority of small diameter neurons with fast current were IB4- while the majority of small diameter neurons with slow current were IB4+. Preincubation with nicotine (1 μM) produced a transient (1 min) depolarization and increase in the excitability of neurons with fast current and a decrease in the amplitude of capsaicin-evoked current in neurons with slow current. Inflammation increased the current density of both slow and fast currents in small diameter neurons and increased the percentage of neurons with the fast current. With the relatively selective distribution of nAChR currents in putative nociceptive cutaneous DRG neurons, our results suggest that the role of these receptors in inflammatory hyperalgesia is likely to be complex and dependent on the concentration and timing of acetylcholine release in the periphery. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Retrograde influences of SCG axotomy on uninjured preganglionic neurons.

    PubMed

    Gannon, Sean M; Hawk, Kiel; Walsh, Brian F; Coulibaly, Aminata; Isaacson, Lori G

    2018-07-15

    There is evidence that neuronal injury can affect uninjured neurons in the same neural circuit. The overall goal of this study was to understand the effects of peripheral nerve injury on uninjured neurons located in the central nervous system (CNS). As a model, we examined whether axotomy (transection of postganglionic axons) of the superior cervical ganglion (SCG) affected the uninjured, preganglionic neurons that innervate the SCG. At 7 days post-injury a reduction in choline acetyltransferase (ChAT) and synaptophysin immunoreactivity in the SCG, both markers for preganglionic axons, was observed, and this reduction persisted at 8 and 12 weeks post-injury. No changes were observed in the number or size of the parent cell bodies in the intermediolateral cell column (IML) of the spinal cord, yet synaptic input to the IML neurons was decreased at both 8 and 12 weeks post-injury. In order to understand the mechanisms underlying these changes, protein levels of brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB) were examined and reductions were observed at 7 days post-injury in both the SCG and spinal cord. Taken together these results suggest that axotomy of the SCG led to reduced BDNF in the SCG and spinal cord, which in turn influenced ChAT and synaptophysin expression in the SCG and also contributed to the altered synaptic input to the IML neurons. More generally these findings provide evidence that the effects of peripheral injury can cascade into the CNS and affect uninjured neurons. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. 5,7-Dihydroxitryptamine toxicity to serotonergic neurons in serum free raphe cultures.

    PubMed

    Capela, João Paulo; Lautenschlager, Marion; Dirnagl, Ulrich; Bastos, Maria Lourdes; Carvalho, Félix; Meisel, Andreas

    2008-07-07

    5,7-Dihydroxytryptamine (5,7-DHT), is an experimentally widely used selective serotonergic neurotoxin, though the mechanisms of toxicity remain to be fully elucidated. In the present study, we evaluated 5,7-dihydroxitryptamine (5,7-DHT) induced serotonergic neurotoxicity in foetal raphe serum free cultures from the rat. For this purpose, a model of foetal raphe serum free neuronal cultures from the rat was established, containing about 16% serotonergic neurons and studied up to 3 months. Two weeks old raphe cultures were exposed to the serotonergic neurotoxin 5,7-DHT (concentration range 10-100 microM) for 72 h, after which the medium was replaced and neurotoxicity was evaluated by immunocitochemistry 1 week later. Lactate dehydrogenase release into the medium, 72 h after exposure to 5,7-DHT, showed a concentration-dependent neurotoxicity. To access morphologically the serotonergic toxicity tryptophan hydroxylase (TPH) was used as a specific marker of these neurons. Immunocitochemistry using TPH antisera showed a concentration-dependent serotonergic neurotoxicity induced by 5,7-DHT. Serotonergic neurons showed the typical pattern of "pruning" accompanied by axon terminals and dendrites loss, which were either partial or total. The axotomy induced by the neurotoxin was morphologically characteristic of retrograde axonal degeneration. Fluoxetine (0.1 microM) pre-treatment reduced 5,7-DHT-induced serotonergic neurotoxicity. These results indicate that the mechanism by which 5,7-DHT-induces serotonergic neurotoxicity is, at least partially, dependent on the toxin uptake by the serotonin transporter. Finally, we have established a robust model of primary raphe neuronal culture to evaluate serotonergic neurons development and the mechanisms of toxicity involving this neuronal population.

  2. Somatostatin and its 2A receptor in dorsal root ganglia and dorsal horn of mouse and human: expression, trafficking and possible role in pain

    PubMed Central

    2014-01-01

    Background Somatostatin (SST) and some of its receptor subtypes have been implicated in pain signaling at the spinal level. In this study we have investigated the role of SST and its sst2A receptor (sst2A) in dorsal root ganglia (DRGs) and spinal cord. Results SST and sst2A protein and sst2 transcript were found in both mouse and human DRGs, sst2A-immunoreactive (IR) cell bodies and processes in lamina II in mouse and human spinal dorsal horn, and sst2A-IR nerve terminals in mouse skin. The receptor protein was associated with the cell membrane. Following peripheral nerve injury sst2A-like immunoreactivity (LI) was decreased, and SST-LI increased in DRGs. sst2A-LI accumulated on the proximal and, more strongly, on the distal side of a sciatic nerve ligation. Fluorescence-labeled SST administered to a hind paw was internalized and retrogradely transported, indicating that a SST-sst2A complex may represent a retrograde signal. Internalization of sst2A was seen in DRG neurons after systemic treatment with the sst2 agonist octreotide (Oct), and in dorsal horn and DRG neurons after intrathecal administration. Some DRG neurons co-expressed sst2A and the neuropeptide Y Y1 receptor on the cell membrane, and systemic Oct caused co-internalization, hypothetically a sign of receptor heterodimerization. Oct treatment attenuated the reduction of pain threshold in a neuropathic pain model, in parallel suppressing the activation of p38 MAPK in the DRGs Conclusions The findings highlight a significant and complex role of the SST system in pain signaling. The fact that the sst2A system is found also in human DRGs and spinal cord, suggests that sst2A may represent a potential pharmacologic target for treatment of neuropathic pain. PMID:24521084

  3. Neuroma prevention by end-to-side neurorraphy: an experimental study in rats.

    PubMed

    Aszmann, Oskar C; Korak, Klaus J; Rab, Matthias; Grünbeck, Matthias; Lassmann, Hans; Frey, Manfred

    2003-11-01

    The successful treatment of painful neuromas remains a difficult goal to attain. In this report we explore the feasibility of neuroma prevention by insertion of the proximal end of a nerve through an end-to-side neurorraphy into an adjacent mixed nerve to provide a pathway and target for axons deprived of their end organ. Experiments were performed on a total of twenty 250-g Sprague-Dawley rats. Two groups of 10 animals were prepared. Group A served as an anatomic control. In group B the right saphenous nerve was transected and implanted end-to-side through an epineurial window into the tibial nerve distal to the trifurcation of the sciatic nerve. After 12 weeks the corresponding sensory neurons were identified by retrograde labeling techniques and histomorphometric analysis of the proximal and distal tibial nerve segments, and regular histology of the end-to-side site were performed. The results of the retrograde labeling of the corresponding sensory neuron pool of the saphenus nerve showed extensive labelling of the L1 to L3 spinal ganglions after intracutaneous tracer application of the planta pedis. The morphology of the end-to-side coaptation site and histomorphologic analysis prove that sensory neurons penetrate the perineurial sheath and axons regenerate along the tibial Schwann cell tubes toward their targets. Axons of a severed peripheral nerve that are provided with a pathway and target through an end-to-side coaptation will either be pruned or establish some type of end-organ contact so that a neuroma can be prevented. Whether these axons will lead to disturbing sensations such as paresthesia or dysesthesia in the newly found environment or remain silent codwellers, this experiment cannot answer. Long-term results of future clinical work will have to decide whether the prevention of the neuroma through end-to-side coaptation will be an appropriate therapy for this difficult problem.

  4. Transneuronal pathways to the vestibulocerebellum

    NASA Technical Reports Server (NTRS)

    Kaufman, G. D.; Mustari, M. J.; Miselis, R. R.; Perachio, A. A.

    1996-01-01

    The alpha-herpes virus (pseudorabies, PRV) was used to observe central nervous system (CNS) pathways associated with the vestibulocerebellar system. Retrograde transneuronal migration of alpha-herpes virions from specific lobules of the gerbil and rat vestibulo-cerebellar cortex was detected immunohistochemically. Using a time series analysis, progression of infection along polyneuronal cerebellar afferent pathways was examined. Pressure injections of > 20 nanoliters of a 10(8) plaque forming units (pfu) per ml solution of virus were sufficient to initiate an infectious locus which resulted in labeled neurons in the inferior olivary subnuclei, vestibular nuclei, and their afferent cell groups in a progressive temporal fashion and in growing complexity with increasing incubation time. We show that climbing fibers and some other cerebellar afferent fibers transported the virus retrogradely from the cerebellum within 24 hours. One to three days after cerebellar infection discrete cell groups were labeled and appropriate laterality within crossed projections was preserved. Subsequent nuclei labeled with PRV after infection of the flocculus/paraflocculus, or nodulus/uvula, included the following: vestibular (e.g., z) and inferior olivary nuclei (e.g., dorsal cap), accessory oculomotor (e.g., Darkschewitsch n.) and accessory optic related nuclei, (e.g., the nucleus of the optic tract, and the medial terminal nucleus); noradrenergic, raphe, and reticular cell groups (e.g., locus coeruleus, dorsal raphe, raphe pontis, and the lateral reticular tract); other vestibulocerebellum sites, the periaqueductal gray, substantia nigra, hippocampus, thalamus and hypothalamus, amygdala, septal nuclei, and the frontal, cingulate, entorhinal, perirhinal, and insular cortices. However, there were differences in the resulting labeling between infection in either region. Double-labeling experiments revealed that vestibular efferent neurons are located adjacent to, but are not included among, flocculus-projecting supragenual neurons. PRV transport from the vestibular labyrinth and cervical muscles also resulted in CNS infections. Virus propagation in situ provides specific connectivity information based on the functional transport across synapses. The findings support and extend anatomical data regarding vestibulo-olivo-cerebellar pathways.

  5. Short-Term Memory Trace in Rapidly Adapting Synapses of Inferior Temporal Cortex

    PubMed Central

    Sugase-Miyamoto, Yasuko; Liu, Zheng; Wiener, Matthew C.; Optican, Lance M.; Richmond, Barry J.

    2008-01-01

    Visual short-term memory tasks depend upon both the inferior temporal cortex (ITC) and the prefrontal cortex (PFC). Activity in some neurons persists after the first (sample) stimulus is shown. This delay-period activity has been proposed as an important mechanism for working memory. In ITC neurons, intervening (nonmatching) stimuli wipe out the delay-period activity; hence, the role of ITC in memory must depend upon a different mechanism. Here, we look for a possible mechanism by contrasting memory effects in two architectonically different parts of ITC: area TE and the perirhinal cortex. We found that a large proportion (80%) of stimulus-selective neurons in area TE of macaque ITCs exhibit a memory effect during the stimulus interval. During a sequential delayed matching-to-sample task (DMS), the noise in the neuronal response to the test image was correlated with the noise in the neuronal response to the sample image. Neurons in perirhinal cortex did not show this correlation. These results led us to hypothesize that area TE contributes to short-term memory by acting as a matched filter. When the sample image appears, each TE neuron captures a static copy of its inputs by rapidly adjusting its synaptic weights to match the strength of their individual inputs. Input signals from subsequent images are multiplied by those synaptic weights, thereby computing a measure of the correlation between the past and present inputs. The total activity in area TE is sufficient to quantify the similarity between the two images. This matched filter theory provides an explanation of what is remembered, where the trace is stored, and how comparison is done across time, all without requiring delay period activity. Simulations of a matched filter model match the experimental results, suggesting that area TE neurons store a synaptic memory trace during short-term visual memory. PMID:18464917

  6. Short- and long-term memory in Drosophila require cAMP signaling in distinct neuron types.

    PubMed

    Blum, Allison L; Li, Wanhe; Cressy, Mike; Dubnau, Josh

    2009-08-25

    A common feature of memory and its underlying synaptic plasticity is that each can be dissected into short-lived forms involving modification or trafficking of existing proteins and long-term forms that require new gene expression. An underlying assumption of this cellular view of memory consolidation is that these different mechanisms occur within a single neuron. At the neuroanatomical level, however, different temporal stages of memory can engage distinct neural circuits, a notion that has not been conceptually integrated with the cellular view. Here, we investigated this issue in the context of aversive Pavlovian olfactory memory in Drosophila. Previous studies have demonstrated a central role for cAMP signaling in the mushroom body (MB). The Ca(2+)-responsive adenylyl cyclase RUTABAGA is believed to be a coincidence detector in gamma neurons, one of the three principle classes of MB Kenyon cells. We were able to separately restore short-term or long-term memory to a rutabaga mutant with expression of rutabaga in different subsets of MB neurons. Our findings suggest a model in which the learning experience initiates two parallel associations: a short-lived trace in MB gamma neurons, and a long-lived trace in alpha/beta neurons.

  7. Spatial updating in area LIP is independent of saccade direction.

    PubMed

    Heiser, Laura M; Colby, Carol L

    2006-05-01

    We explore the world around us by making rapid eye movements to objects of interest. Remarkably, these eye movements go unnoticed, and we perceive the world as stable. Spatial updating is one of the neural mechanisms that contributes to this perception of spatial constancy. Previous studies in macaque lateral intraparietal cortex (area LIP) have shown that individual neurons update, or "remap," the locations of salient visual stimuli at the time of an eye movement. The existence of remapping implies that neurons have access to visual information from regions far beyond the classically defined receptive field. We hypothesized that neurons have access to information located anywhere in the visual field. We tested this by recording the activity of LIP neurons while systematically varying the direction in which a stimulus location must be updated. Our primary finding is that individual neurons remap stimulus traces in multiple directions, indicating that LIP neurons have access to information throughout the visual field. At the population level, stimulus traces are updated in conjunction with all saccade directions, even when we consider direction as a function of receptive field location. These results show that spatial updating in LIP is effectively independent of saccade direction. Our findings support the hypothesis that the activity of LIP neurons contributes to the maintenance of spatial constancy throughout the visual field.

  8. Elevated Arc/Arg 3.1 protein expression in the basolateral amygdala following auditory trace-cued fear conditioning.

    PubMed

    Chau, Lily S; Prakapenka, Alesia; Fleming, Stephen A; Davis, Ashley S; Galvez, Roberto

    2013-11-01

    The underlying neuronal mechanisms of learning and memory have been heavily explored using associative learning paradigms. Two of the more commonly employed learning paradigms have been contextual and delay fear conditioning. In fear conditioning, a subject learns to associate a neutral stimulus (conditioned stimulus; CS), such as a tone or the context of the room, with a fear provoking stimulus (unconditioned stimulus; US), such as a mild footshock. Utilizing these two paradigms, various analyses have elegantly demonstrated that the amygdala plays a role in both fear-related associative learning paradigms. However, the amygdala's involvement in trace fear conditioning, a forebrain-dependent fear associative learning paradigm that has been suggested to tap into higher cognitive processes, has not been closely investigated. Furthermore, to our knowledge, the specific amygdala nuclei involved with trace fear conditioning has not been examined. The present study used Arc expression as an activity marker to determine the amygdala's involvement in trace fear associative learning and to further explore involvement of specific amygdalar nuclei. Arc is an immediate early gene that has been shown to be associated with neuronal activation and is believed to be necessary for neuronal plasticity. Findings from the present study demonstrated that trace-conditioned mice, compared to backward-conditioned (stimulation-control), delay-conditioned and naïve mice, exhibited elevated amygdalar Arc expression in the basolateral (BLA) but not the central (CeA) or the lateral amygdala (LA). These findings are consistent with previous reports demonstrating that the amygdala plays a critical role in trace conditioning. Furthermore, these findings parallel studies demonstrating hippocampal-BLA activation following contextual fear conditioning, suggesting that trace fear conditioning and contextual fear conditioning may involve similar amygdala nuclei. Together, findings from this study demonstrate similarities in the pathway for trace and contextual fear conditioning, and further suggest possible underlying mechanisms for acquisition and consolidation of these two types of fear-related learning. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Ghrelin decreases firing activity of gonadotropin-releasing hormone (GnRH) neurons in an estrous cycle and endocannabinoid signaling dependent manner.

    PubMed

    Farkas, Imre; Vastagh, Csaba; Sárvári, Miklós; Liposits, Zsolt

    2013-01-01

    The orexigenic peptide, ghrelin is known to influence function of GnRH neurons, however, the direct effects of the hormone upon these neurons have not been explored, yet. The present study was undertaken to reveal expression of growth hormone secretagogue receptor (GHS-R) in GnRH neurons and elucidate the mechanisms of ghrelin actions upon them. Ca(2+)-imaging revealed a ghrelin-triggered increase of the Ca(2+)-content in GT1-7 neurons kept in a steroid-free medium, which was abolished by GHS-R-antagonist JMV2959 (10 µM) suggesting direct action of ghrelin. Estradiol (1nM) eliminated the ghrelin-evoked rise of Ca(2+)-content, indicating the estradiol dependency of the process. Expression of GHS-R mRNA was then confirmed in GnRH-GFP neurons of transgenic mice by single cell RT-PCR. Firing rate and burst frequency of GnRH-GFP neurons were lower in metestrous than proestrous mice. Ghrelin (40 nM-4 μM) administration resulted in a decreased firing rate and burst frequency of GnRH neurons in metestrous, but not in proestrous mice. Ghrelin also decreased the firing rate of GnRH neurons in males. The ghrelin-evoked alterations of the firing parameters were prevented by JMV2959, supporting the receptor-specific actions of ghrelin on GnRH neurons. In metestrous mice, ghrelin decreased the frequency of GABAergic mPSCs in GnRH neurons. Effects of ghrelin were abolished by the cannabinoid receptor type-1 (CB1) antagonist AM251 (1µM) and the intracellularly applied DAG-lipase inhibitor THL (10 µM), indicating the involvement of retrograde endocannabinoid signaling. These findings demonstrate that ghrelin exerts direct regulatory effects on GnRH neurons via GHS-R, and modulates the firing of GnRH neurons in an ovarian-cycle and endocannabinoid dependent manner.

  10. Trigeminal ganglion neuron subtype-specific alterations of CaV2.1 calcium current and excitability in a Cacna1a mouse model of migraine

    PubMed Central

    Fioretti, B; Catacuzzeno, L; Sforna, L; Gerke-Duncan, M B; van den Maagdenberg, A M J M; Franciolini, F; Connor, M; Pietrobon, D

    2011-01-01

    Abstract Familial hemiplegic migraine type-1 (FHM1), a monogenic subtype of migraine with aura, is caused by gain-of-function mutations in CaV2.1 (P/Q-type) calcium channels. The consequences of FHM1 mutations on the trigeminovascular pathway that generates migraine headache remain largely unexplored. Here we studied the calcium currents and excitability properties of two subpopulations of small-diameter trigeminal ganglion (TG) neurons from adult wild-type (WT) and R192Q FHM1 knockin (KI) mice: capsaicin-sensitive neurons without T-type calcium currents (CS) and capsaicin-insensitive neurons characterized by the expression of T-type calcium currents (CI-T). Small TG neurons retrogradely labelled from the dura are mostly CS neurons, while CI-T neurons were not present in the labelled population. CS and CI-T neurons express CaV2.1 channels with different activation properties, and the CaV2.1 channels are differently affected by the FHM1 mutation in the two TG neuron subtypes. In CI-T neurons from FHM1 KI mice there was a larger P/Q-type current density following mild depolarizations, a larger action potential (AP)-evoked calcium current and a longer AP duration when compared to CI-T neurons from WT mice. In striking contrast, the P/Q-type current density, voltage dependence and kinetics were not altered by the FHM1 mutation in CS neurons. The excitability properties of mutant CS neurons were also unaltered. Congruently, the FHM1 mutation did not alter depolarization-evoked CGRP release from the dura mater, while CGRP release from the trigeminal ganglion was larger in KI compared to WT mice. Our findings suggest that the facilitation of peripheral mechanisms of CGRP action, such as dural vasodilatation and nociceptor sensitization at the meninges, does not contribute to the generation of headache in FHM1. PMID:22005682

  11. Grain-scale Sr isotope heterogeneity in amphibolite (retrograded UHP eclogite, Dabie terrane): Implications for the origin and flow behavior of retrograde fluids during slab exhumation

    NASA Astrophysics Data System (ADS)

    Guo, Shun; Yang, Yueheng; Chen, Yi; Su, Bin; Gao, Yijie; Zhang, Lingmin; Liu, Jingbo; Mao, Qian

    2016-12-01

    To constrain the origin and flow behavior of amphibolite-facies retrograde fluids during slab exhumation, we investigate the textures, trace element contents, and in situ strontium (Sr) isotopic compositions (using LA-MC-ICP-MS) of multiple types of epidote and apatite in the UHP eclogite and amphibolites from the Hualiangting area (Dabie terrane, China). The UHP epidote porphyroblasts in the eclogite (Ep-E), which formed at 28-30 kbar and 660-720 °C, contain high amounts of Sr, Pb, Th, Ba, and light rare earth elements (LREEs) and have a narrow range of initial 87Sr/86Sr ratios (0.70431 ± 0.00012 to 0.70454 ± 0.00010). Two types of amphibolite-facies epidote were recognized in the amphibolites. The first type of epidote (Ep-AI) developed in all the amphibolites and has slightly lower trace element contents than Ep-E. The Ep-AI has a same initial 87Sr/86Sr ratio range as the Ep-E and represents the primary amphibolite-facies retrograde product that is associated with an internally buffered fluid at 8.0-10.3 kbar and 646-674 °C. The other type of epidote (Ep-AII) occurs as irregular fragments, veins/veinlets, or reaction rims on the Ep-AI in certain amphibolites. Elemental X-ray maps reveal the presence of Ep-AI relics in the Ep-AII domains (appearing as a patchy texture), which indicates that Ep-AII most likely formed by the partial replacement of the Ep-AI in the presence of an infiltrating fluid. The distinctly lower trace element contents of Ep-AII are ascribed to element scavenging by a mechanism of dissolution-transport-precipitation during replacement. The Ep-AII in an individual amphibolite exhibits large intra- and inter-grain variations in the initial 87Sr/86Sr ratios (0.70493 ± 0.00030 to 0.70907 ± 0.00022), which are between those of the Ep-AI and granitic gneisses (wall rock of the amphibolites, 0.7097-0.7108). These results verify that the infiltrating fluid was externally derived from granitic gneisses. The matrix apatite in the amphibolites has the same initial 87Sr/86Sr ratio range as the Ep-AI, indicating that the amphibolite-facies fluid involved in the apatite crystallization was also internally derived. We propose that at least two separate stages of fluids were accounted for the amphibolite-facies retrogression of the Hualiangting eclogite. The fluid responsible for the growth of most of the amphibolite minerals was locally derived and behaved in a pervasive manner, whereas the influx of gneiss-derived fluid was transient, episodic, and highly channelized with a longer transport distance (> 60 m). The disparate origins and flow behavior of these fluids significantly influence the water budget and element transfer in exhumed HP-UHP slabs. This study also indicates that examining grain-scale Sr isotopic variations provides key information regarding the isotopic (dis)equilibrium, fluid origins, and fluid-flow regimes in metamorphic or metasomatic rocks that form in subduction-zone environments.

  12. Acid-sensing ion channels contribute to chemosensitivity of breathing-related neurons of the nucleus of the solitary tract.

    PubMed

    Huda, Rafiq; Pollema-Mays, Sarah L; Chang, Zheng; Alheid, George F; McCrimmon, Donald R; Martina, Marco

    2012-10-01

    Cellular mechanisms of central pH chemosensitivity remain largely unknown. The nucleus of the solitary tract (NTS) integrates peripheral afferents with central pathways controlling breathing; NTS neurons function as central chemosensors, but only limited information exists concerning the ionic mechanisms involved. Acid-sensing ion channels (ASICs) mediate chemosensitivity in nociceptive terminals, where pH values ∼6.5 are not uncommon in inflammation, but are also abundantly expressed throughout the brain where pHi s tightly regulated and their role is less clear. Here we test the hypothesis that ASICs are expressed in NTS neurons and contribute to intrinsic chemosensitivity and control of breathing. In electrophysiological recordings from acute rat NTS slices, ∼40% of NTS neurons responded to physiological acidification (pH 7.0) with a transient depolarization. This response was also present in dissociated neurons suggesting an intrinsic mechanism. In voltage clamp recordings in slices, a pH drop from 7.4 to 7.0 induced ASIC-like inward currents (blocked by 100 μM amiloride) in ∼40% of NTS neurons, while at pH ≤ 6.5 these currents were detected in all neurons tested; RT-PCR revealed expression of ASIC1 and, less abundantly, ASIC2 in the NTS. Anatomical analysis of dye-filled neurons showed that ASIC-dependent chemosensitive cells (cells responding to pH 7.0) cluster dorsally in the NTS. Using in vivo retrograde labelling from the ventral respiratory column, 90% (9/10) of the labelled neurons showed an ASIC-like response to pH 7.0, suggesting that ASIC currents contribute to control of breathing. Accordingly, amiloride injection into the NTS reduced phrenic nerve activity of anaesthetized rats with an elevated arterial P(CO(2)) .

  13. Gene dosage-dependent rescue of HSP neurite defects in SPG4 patients’ neurons

    PubMed Central

    Havlicek, Steven; Kohl, Zacharias; Mishra, Himanshu K.; Prots, Iryna; Eberhardt, Esther; Denguir, Naime; Wend, Holger; Plötz, Sonja; Boyer, Leah; Marchetto, Maria C.N.; Aigner, Stefan; Sticht, Heinrich; Groemer, Teja W.; Hehr, Ute; Lampert, Angelika; Schlötzer-Schrehardt, Ursula; Winkler, Jürgen; Gage, Fred H.; Winner, Beate

    2014-01-01

    The hereditary spastic paraplegias (HSPs) are a heterogeneous group of motorneuron diseases characterized by progressive spasticity and paresis of the lower limbs. Mutations in Spastic Gait 4 (SPG4), encoding spastin, are the most frequent cause of HSP. To understand how mutations in SPG4 affect human neurons, we generated human induced pluripotent stem cells (hiPSCs) from fibroblasts of two patients carrying a c.1684C>T nonsense mutation and from two controls. These SPG4 and control hiPSCs were able to differentiate into neurons and glia at comparable efficiency. All known spastin isoforms were reduced in SPG4 neuronal cells. The complexity of SPG4 neurites was decreased, which was paralleled by an imbalance of axonal transport with less retrograde movement. Prominent neurite swellings with disrupted microtubules were present in SPG4 neurons at an ultrastructural level. While some of these swellings contain acetylated and detyrosinated tubulin, these tubulin modifications were unchanged in total cell lysates of SPG4 neurons. Upregulation of another microtubule-severing protein, p60 katanin, may partially compensate for microtubuli dynamics in SPG4 neurons. Overexpression of the M1 or M87 spastin isoforms restored neurite length, branching, numbers of primary neurites and reduced swellings in SPG4 neuronal cells. We conclude that neurite complexity and maintenance in HSP patient-derived neurons are critically sensitive to spastin gene dosage. Our data show that elevation of single spastin isoform levels is sufficient to restore neurite complexity and reduce neurite swellings in patient cells. Furthermore, our human model offers an ideal platform for pharmacological screenings with the goal to restore physiological spastin levels in SPG4 patients. PMID:24381312

  14. Direct pyrogenic input from prostaglandin EP3 receptor-expressing preoptic neurons to the dorsomedial hypothalamus

    PubMed Central

    Nakamura, Yoshiko; Nakamura, Kazuhiro; Matsumura, Kiyoshi; Kobayashi, Shigeo; Kaneko, Takeshi; Morrison, Shaun F.

    2008-01-01

    Fever is induced by the neuronal mechanism in the brain. Prostaglandin (PG) E2 acts as a pyrogenic mediator in the preoptic area (POA) probably through the EP3 subtype of PGE receptor expressed on GABAergic neurons, and this PGE2 action triggers neuronal pathways for sympathetic thermogenesis in peripheral effector organs including brown adipose tissue (BAT). To explore pyrogenic efferent pathways from the POA, we here determined projection targets of EP3 receptor-expressing POA neurons with a special focus on rat hypothalamic regions including the dorsomedial hypothalamic nucleus (DMH), which is known as a center for autonomic responses to stress. Among injections of cholera toxin b-subunit (CTb), a retrograde tracer, into hypothalamic regions at the rostrocaudal level of the DMH, injections into the DMH, lateral hypothalamic area (LH), and dorsal hypothalamic area (DH) resulted in EP3 receptor immunolabeling in substantial populations of CTb-labeled neurons in the POA. Bilateral microinjections of muscimol, a GABAA receptor agonist, into the DMH and a ventral region of the DH, but not those into the LH, inhibited thermogenic (BAT sympathetic nerve activity, BAT temperature, core body temperature, and expired CO2) and cardiovascular (arterial pressure and heart rate) responses to an intra-POA PGE2 microinjection. Further immunohistochemical observations revealed close association of POA-derived GABAergic axon swellings with DMH neurons projecting to the medullary raphe regions where sympathetic premotor neurons for febrile and thermoregulatory responses are localized. These results suggest that a direct projection of EP3 receptor-expressing POA neurons to the DMH/DH region mediates febrile responses via a GABAergic mechanism. PMID:16367780

  15. Modeling Axonal Defects in Hereditary Spastic Paraplegia with Human Pluripotent Stem Cells

    PubMed Central

    Denton, Kyle R.; Xu, Chongchong; Shah, Harsh; Li, Xue-Jun

    2016-01-01

    BACKGROUND Cortical motor neurons, also known as upper motor neurons, are large projection neurons whose axons convey signals to lower motor neurons to control the muscle movements. Degeneration of cortical motor neuron axons is implicated in several debilitating disorders, including hereditary spastic paraplegia (HSP) and amyotrophic lateral sclerosis (ALS). Since the discovery of the first HSP gene, SPAST that encodes spastin, over 70 distinct genetic loci associated with HSP have been identified. How the mutations of these functionally diverse genes result in axonal degeneration and why certain axons are affected in HSP remains largely unknown. The development of induced pluripotent stem cell (iPSC) technology has provided researchers an excellent resource to generate patient-specific human neurons to model human neuropathologic processes including axonal defects. METHODS In this article, we will frst review the pathology and pathways affected in the common forms of HSP subtypes by searching the PubMed database. We will then summurize the findings and insights gained from studies using iPSC-based models, and discuss the challenges and future directions. RESULTS HSPs, a heterogeneous group of genetic neurodegenerative disorders, are characterized by lower extremity weakness and spasticity that result from retrograde axonal degeneration of cortical motor neurons. Recently, iPSCs have been generated from several common forms of HSP including SPG4, SPG3A, and SPG11 patients. Neurons derived from HSP iPSCs exhibit disease-relevant axonal defects, such as impaired neurite outgrowth, increased axonal swellings, and reduced axonal transport. CONCLUSION These patient-derived neurons offer unique tools to study the pathogenic mechanisms and explore the treatments for rescuing axonal defects in HSP, as well as other diseases involving axonopathy. PMID:27956894

  16. Fear conditioning leads to alteration in specific genes expression in cortical and thalamic neurons that project to the lateral amygdala.

    PubMed

    Katz, Ira K; Lamprecht, Raphael

    2015-02-01

    RNA transcription is needed for memory formation. However, the ability to identify genes whose expression is altered by learning is greatly impaired because of methodological difficulties in profiling gene expression in specific neurons involved in memory formation. Here, we report a novel approach to monitor the expression of genes after learning in neurons in specific brain pathways needed for memory formation. In this study, we aimed to monitor gene expression after fear learning. We retrogradely labeled discrete thalamic neurons that project to the lateral amygdala (LA) of rats. The labeled neurons were dissected, using laser microdissection microscopy, after fear conditioning learning or unpaired training. The RNAs from the dissected neurons were subjected to microarray analysis. The levels of selected RNAs detected by the microarray analysis to be altered by fear conditioning were also assessed by nanostring analysis. We observed that the expression of genes involved in the regulation of translation, maturation and degradation of proteins was increased 6 h after fear conditioning compared to unpaired or naïve trained rats. These genes were not expressed 24 h after training or in cortical neurons that project to the LA. The expression of genes involved in transcription regulation and neuronal development was altered after fear conditioning learning in the cortical-LA pathway. The present study provides key information on the identity of genes expressed in discrete thalamic and cortical neurons that project to the LA after fear conditioning. Such an approach could also serve to identify gene products as targets for the development of a new generation of therapeutic agents that could be aimed to functionally identified brain circuits to treat memory-related disorders. © 2014 International Society for Neurochemistry.

  17. Protein kinase A-induced internalization of Slack channels from the neuronal membrane occurs by adaptor protein-2/clathrin-mediated endocytosis.

    PubMed

    Gururaj, Sushmitha; Evely, Katherine M; Pryce, Kerri D; Li, Jun; Qu, Jun; Bhattacharjee, Arin

    2017-11-24

    The sodium-activated potassium (K Na ) channel Kcnt1 (Slack) is abundantly expressed in nociceptor (pain-sensing) neurons of the dorsal root ganglion (DRG), where they transmit the large outward conductance I KNa and arbitrate membrane excitability. Slack channel expression at the DRG membrane is necessary for their characteristic firing accommodation during maintained stimulation, and reduced membrane channel density causes hyperexcitability. We have previously shown that in a pro-inflammatory state, a decrease in membrane channel expression leading to reduced Slack-mediated I KNa expression underlies DRG neuronal sensitization. An important component of the inflammatory milieu, PKA internalizes Slack channels from the DRG membrane, reduces I KNa , and produces DRG neuronal hyperexcitability when activated in cultured primary DRG neurons. Here, we show that this PKA-induced retrograde trafficking of Slack channels also occurs in intact spinal cord slices and that it is carried out by adaptor protein-2 (AP-2) via clathrin-mediated endocytosis. We provide mass spectrometric and biochemical evidence of an association of native neuronal AP-2 adaptor proteins with Slack channels, facilitated by a dileucine motif housed in the cytoplasmic Slack C terminus that binds AP-2. By creating a competitive peptide blocker of AP-2-Slack binding, we demonstrated that this interaction is essential for clathrin recruitment to the DRG membrane, Slack channel endocytosis, and DRG neuronal hyperexcitability after PKA activation. Together, these findings uncover AP-2 and clathrin as players in Slack channel regulation. Given the significant role of Slack in nociceptive neuronal excitability, the AP-2 clathrin-mediated endocytosis trafficking mechanism may enable targeting of peripheral and possibly, central neuronal sensitization. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Neuronal Spike Timing Adaptation Described with a Fractional Leaky Integrate-and-Fire Model

    PubMed Central

    Teka, Wondimu; Marinov, Toma M.; Santamaria, Fidel

    2014-01-01

    The voltage trace of neuronal activities can follow multiple timescale dynamics that arise from correlated membrane conductances. Such processes can result in power-law behavior in which the membrane voltage cannot be characterized with a single time constant. The emergent effect of these membrane correlations is a non-Markovian process that can be modeled with a fractional derivative. A fractional derivative is a non-local process in which the value of the variable is determined by integrating a temporal weighted voltage trace, also called the memory trace. Here we developed and analyzed a fractional leaky integrate-and-fire model in which the exponent of the fractional derivative can vary from 0 to 1, with 1 representing the normal derivative. As the exponent of the fractional derivative decreases, the weights of the voltage trace increase. Thus, the value of the voltage is increasingly correlated with the trajectory of the voltage in the past. By varying only the fractional exponent, our model can reproduce upward and downward spike adaptations found experimentally in neocortical pyramidal cells and tectal neurons in vitro. The model also produces spikes with longer first-spike latency and high inter-spike variability with power-law distribution. We further analyze spike adaptation and the responses to noisy and oscillatory input. The fractional model generates reliable spike patterns in response to noisy input. Overall, the spiking activity of the fractional leaky integrate-and-fire model deviates from the spiking activity of the Markovian model and reflects the temporal accumulated intrinsic membrane dynamics that affect the response of the neuron to external stimulation. PMID:24675903

  19. Interlayer neurones in the rat superior colliculus: a tracer study using Dil/Di-ASP.

    PubMed

    Hilbig, H; Schierwagen, A

    1994-01-12

    Five different populations of interlayer neurones (ILNs) can be described after DiI/Di-ASP tracing in rat superior colliculus (SC). All of these labelled neurones preferentially lay in the rostro-medial part of the SC. Most of them are located in the stratum opticum and in the stratum griseum superficiale. Our results indicate that ILNs represent a minority of neurones in the superficial layers but may constitute a substantial population of neurones in the stratum opticum connecting the visual and the multimodal collicular layers.

  20. [Evolutionary significance of reciprocal connections in the turtle tectofugal visual system].

    PubMed

    Kenigfest, N B; Belekhova, M G

    2009-01-01

    In two turtle species--Emys orbicularis and Testudo horsfieldi--by the method of anterograde and retrograde traicing method at the light and electron microscopy level, the existence is proven of direct descending projections from the thalamic nucleus of the tectofugal visual system n. rotunds (Rot) to the optic tectum. After injection of tracers into Rot alone and into Rot with involvement of the tectothalamic tract (Trtth), occasional labeled fibers with varicosities and terminals are revealed predominantly in the deep sublayers of SGFS of the rostral optic tectum, while in the lower amount in other tectal layers. After the tracer injections into the optic tectum, a few retrogradely labeled neurons were found mainly in the Rot ventral parts and within Trtth. Their localization coincides with that of GABA-immunoreactive cells. Electron microscopy showed the existence of many retrogradely labeled dendrites throughout the whole Rot; a few labeled cell bodies were also present there, some of them being also GABA-immunoreactive. These results allow us to conclude about the existence of reciprocal connections between the optic tectum and Rot in turtles, these connections being able to affect processing of visual information in tectum. We suggest that reciprocity of tectothalamic connections might be the ancestral feature of the vertebrate brain; in the course of amniote evolution the functional significance of this feature can be decreased and even lost in parallel with a rise of the role of direct corticotectal projections.

  1. An essential memory trace found.

    PubMed

    Thompson, Richard F

    2013-10-01

    I argue here that we have succeeded in localizing an essential memory trace for a basic form of associative learning and memory--classical conditioning of discrete responses learned with an aversive stimulus--to the anterior interpositus nucleus of the cerebellum. We first identified the entire essential circuit, using eyelid conditioning as the model system, and used reversible inactivation, during training, of critical structures and pathways to localize definitively the essential memory trace. In recognition of the 30th anniversary of Behavioral Neuroscience, I highlight 1 paper (Tracy, Thompson, Krupa, & Thompson, 1998) that was particularly significant for the progress of this research program. In this review, I present definitive evidence that the essential memory trace for eyelid conditioning is localized to the cerebellum and to no other part of the essential circuit, using electrical stimulation of the pontine nuclei-mossy fibers projecting to the cerebellum as the conditional stimulus (CS; it proved to be a supernormal stimulus resulting in much faster learning than with any peripheral CS) and using an electrical stimulus to the output of the cerebellum as a test, which did not change. Pontine patterns of projection to the cerebellum were confirmed with retrograde labeling techniques. 2013 APA, all rights reserved

  2. Ultrastructural study of the GABAergic and cerebellar input to the nucleus reticularis tegmenti pontis.

    PubMed

    Verveer, C; Hawkins, R K; Ruigrok, T J; De Zeeuw, C I

    1997-08-22

    The nucleus reticularis tegmenti pontis is an intermediate of the cerebrocerebellar pathway and serves as a relay centre for sensorimotor and visual information. The central nuclei of the cerebellum provide a dense projection to the nucleus reticularis tegmenti pontis, but it is not known to what extent this projection is excitatory or inhibitory, and whether the terminals of this projection contact the neurons in the nucleus reticularis tegmenti pontis that give rise to the mossy fibre collaterals innervating the cerebellar nuclei. In the present study the nucleus reticularis tegmenti pontis of the cat was investigated at the ultrastructural level following anterograde and retrograde transport of wheat germ agglutinin coupled to horseradish peroxidase (WGA-HRP) from the cerebellar nuclei combined with postembedding GABA immunocytochemistry. The neuropil of this nucleus was found to contain many WGA-HRP labeled terminals, cell bodies and dendrites, but none of these pre- or postsynaptic structures was double labeled with GABA. The vast majority of the WGA-HRP labeled terminals contained clear spherical vesicles, showed asymmetric synapses, and contacted intermediate or distal dendrites. Many of the postsynaptic elements of the cerebellar afferents in the nucleus reticularis tegmenti pontis were retrogradely labeled with WGA-HRP, while relatively few were GABAergic. We conclude that all cerebellar terminals in the nucleus reticularis tegmenti pontis of the cat are nonGABAergic and excitatory, and that they contact predominantly neurons that project back to the cerebellum. Thus, the reciprocal circuit between the cerebellar nuclei and the nucleus reticularis tegmenti pontis appears to be well designed to function as an excitatory reverberating loop.

  3. The translational regulator Cup controls NMJ presynaptic terminal morphology.

    PubMed

    Menon, Kaushiki P; Carrillo, Robert A; Zinn, Kai

    2015-07-01

    During oogenesis and early embryonic development in Drosophila, translation of proteins from maternally deposited mRNAs is tightly controlled. We and others have previously shown that translational regulatory proteins that function during oogenesis also have essential roles in the nervous system. Here we examine the role of Cup in neuromuscular system development. Maternal Cup controls translation of localized mRNAs encoding the Oskar and Nanos proteins and binds to the general translation initiation factor eIF4E. In this paper, we show that zygotic Cup protein is localized to presynaptic terminals at larval neuromuscular junctions (NMJs). cup mutant NMJs have strong phenotypes characterized by the presence of small clustered boutons called satellite boutons. They also exhibit an increase in the frequency of spontaneous glutamate release events (mEPSPs). Reduction of eIF4E expression synergizes with partial loss of Cup expression to produce satellite bouton phenotypes. The presence of satellite boutons is often associated with increases in retrograde bone morphogenetic protein (BMP) signaling, and we show that synaptic BMP signaling is elevated in cup mutants. cup genetically interacts with two genes, EndoA and Dap160, that encode proteins involved in endocytosis that are also neuronal modulators of the BMP pathway. Endophilin protein, encoded by the EndoA gene, is downregulated in a cup mutant. Our results are consistent with a model in which Cup and eIF4E work together to ensure efficient localization and translation of endocytosis proteins in motor neurons and control the strength of the retrograde BMP signal. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The translational regulator Cup controls NMJ presynaptic terminal morphology

    PubMed Central

    Menon, Kaushiki P.; Carrillo, Robert A.; Zinn, Kai

    2015-01-01

    During oogenesis and early embryonic development in Drosophila, translation of proteins from maternally deposited mRNAs is tightly controlled. We and others have previously shown that translational regulatory proteins that function during oogenesis also have essential roles in the nervous system. Here we examine the role of Cup in neuromuscular system development. Maternal Cup controls translation of localized mRNAs encoding the Oskar and Nanos proteins and binds to the general translation initiation factor eIF4E. In this paper, we show that zygotic Cup protein is localized to presynaptic terminals at larval neuromuscular junctions (NMJs). cup mutant NMJs have strong phenotypes characterized by the presence of small clustered boutons called satellite boutons. They also exhibit an increase in the frequency of spontaneous glutamate release events (mEPSPs). Reduction of eIF4E expression synergizes with partial loss of Cup expression to produce satellite bouton phenotypes. The presence of satellite boutons is often associated with increases in retrograde bone morphogenetic protein (BMP) signaling, and we show that synaptic BMP signaling is elevated in cup mutants. cup genetically interacts with four genes (EndoA, WASp, Dap160, and Synj) encoding proteins involved in endocytosis that are also neuronal modulators of the BMP pathway. Endophilin protein, encoded by the EndoA gene, is downregulated in a cup mutant. Our results are consistent with a model in which Cup and eIF4E work together to ensure efficient localization and translation of endocytosis proteins in motor neurons and control the strength of the retrograde BMP signal. PMID:26102195

  5. Agonist activation of cytosolic Ca2+ in subfornical organ cells projecting to the supraoptic nucleus

    NASA Technical Reports Server (NTRS)

    Johnson, R. F.; Beltz, T. G.; Sharma, R. V.; Xu, Z.; Bhatty, R. A.; Johnson, A. K.

    2001-01-01

    The subfornical organ (SFO) is sensitive to both ANG II and ACh, and local application of these agents produces dipsogenic responses and vasopressin release. The present study examined the effects of cholinergic drugs, ANG II, and increased extracellular osmolarity on dissociated, cultured cells of the SFO that were retrogradely labeled from the supraoptic nucleus. The effects were measured as changes in cytosolic calcium in fura 2-loaded cells by using a calcium imaging system. Both ACh and carbachol increased intracellular ionic calcium concentration ([Ca2+]i). However, in contrast to the effects of muscarinic receptor agonists on SFO neurons, manipulation of the extracellular osmolality produced no effects, and application of ANG II produced only moderate effects on [Ca2+]i in a few retrogradely labeled cells. The cholinergic effects on [Ca2+]i could be blocked with the muscarinic receptor antagonist atropine and with the more selective muscarinic receptor antagonists pirenzepine and 4-diphenylacetoxy-N-methylpiperdine methiodide (4-DAMP). In addition, the calcium in the extracellular fluid was required for the cholinergic-induced increase in [Ca2+]i. These findings indicate that ACh acts to induce a functional cellular response in SFO neurons through action on a muscarinic receptor, probably of the M1 subtype and that the increase of [Ca2+]i, at least initially, requires the entry of extracellular Ca2+. Also, consistent with a functional role of M1 receptors in the SFO are the results of immunohistochemical preparations demonstrating M1 muscarinic receptor-like protein present within this forebrain circumventricular organ.

  6. Chlamydomonas Kinesin-II–dependent Intraflagellar Transport (IFT): IFT Particles Contain Proteins Required for Ciliary Assembly in Caenorhabditis elegans Sensory Neurons

    PubMed Central

    Cole, Douglas G.; Diener, Dennis R.; Himelblau, Amy L.; Beech, Peter L.; Fuster, Jason C.; Rosenbaum, Joel L.

    1998-01-01

    We previously described a kinesin-dependent movement of particles in the flagella of Chlamydomonas reinhardtii called intraflagellar transport (IFT) (Kozminski, K.G., K.A. Johnson, P. Forscher, and J.L. Rosenbaum. 1993. Proc. Natl. Acad. Sci. USA. 90:5519–5523). When IFT is inhibited by inactivation of a kinesin, FLA10, in the temperature-sensitive mutant, fla10, existing flagella resorb and new flagella cannot be assembled. We report here that: (a) the IFT-associated FLA10 protein is a subunit of a heterotrimeric kinesin; (b) IFT particles are composed of 15 polypeptides comprising two large complexes; (c) the FLA10 kinesin-II and IFT particle polypeptides, in addition to being found in flagella, are highly concentrated around the flagellar basal bodies; and, (d) mutations affecting homologs of two of the IFT particle polypeptides in Caenorhabditis elegans result in defects in the sensory cilia located on the dendritic processes of sensory neurons. In the accompanying report by Pazour, G.J., C.G. Wilkerson, and G.B. Witman (1998. J. Cell Biol. 141:979–992), a Chlamydomonas mutant (fla14) is described in which only the retrograde transport of IFT particles is disrupted, resulting in assembly-defective flagella filled with an excess of IFT particles. This microtubule- dependent transport process, IFT, defined by mutants in both the anterograde (fla10) and retrograde (fla14) transport of isolable particles, is probably essential for the maintenance and assembly of all eukaryotic motile flagella and nonmotile sensory cilia. PMID:9585417

  7. Postsynaptic Regulation of Long-Term Facilitation in Aplysia

    PubMed Central

    Cai, Diancai; Chen, Shanping; Glanzman, David L.

    2009-01-01

    Summary Repeated exposure to serotonin (5-HT), an endogenous neurotransmitter that mediates behavioral sensitization in Aplysia [1–3], induces long-term facilitation (LTF) of the Aplysia sensorimotor synapse [4]. LTF, a prominent form of invertebrate synaptic plasticity, is believed to play a major role in long-term learning in Aplysia [5]. Until now, LTF has been thought to be due predominantly to cellular processes activated by 5-HT within the presynaptic sensory neuron [6]. Recent work indicates that LTF depends on the increased expression and release of a sensory neuron-specific neuropeptide, sensorin [7]. Sensorin released during LTF appears to bind to autoreceptors on the sensory neuron, thereby activating critical presynaptic signals, including mitogen-activated protein kinase (MAPK) [8, 9]. Here, we show that LTF depends on elevated postsynaptic Ca2+ and postsynaptic protein synthesis. Furthermore, we find that the increased expression of presynaptic sensorin due to 5-HT stimulation requires elevation of postsynaptic intracellular Ca2+. Our results represent perhaps the strongest evidence to date that the increased expression of a specific presynaptic neuropeptide during LTF is regulated by retrograde signals. PMID:18571411

  8. Cell-Specific Activity-Dependent Fractionation of Layer 2/3→5B Excitatory Signaling in Mouse Auditory Cortex

    PubMed Central

    Joshi, Ankur; Middleton, Jason W.; Anderson, Charles T.; Borges, Katharine; Suter, Benjamin A.; Shepherd, Gordon M. G.

    2015-01-01

    Auditory cortex (AC) layer 5B (L5B) contains both corticocollicular neurons, a type of pyramidal-tract neuron projecting to the inferior colliculus, and corticocallosal neurons, a type of intratelencephalic neuron projecting to contralateral AC. Although it is known that these neuronal types have distinct roles in auditory processing and different response properties to sound, the synaptic and intrinsic mechanisms shaping their input–output functions remain less understood. Here, we recorded in brain slices of mouse AC from retrogradely labeled corticocollicular and neighboring corticocallosal neurons in L5B. Corticocollicular neurons had, on average, lower input resistance, greater hyperpolarization-activated current (Ih), depolarized resting membrane potential, faster action potentials, initial spike doublets, and less spike-frequency adaptation. In paired recordings between single L2/3 and labeled L5B neurons, the probabilities of connection, amplitude, latency, rise time, and decay time constant of the unitary EPSC were not different for L2/3→corticocollicular and L2/3→corticocallosal connections. However, short trains of unitary EPSCs showed no synaptic depression in L2/3→corticocollicular connections, but substantial depression in L2/3→corticocallosal connections. Synaptic potentials in L2/3→corticocollicular connections decayed faster and showed less temporal summation, consistent with increased Ih in corticocollicular neurons, whereas synaptic potentials in L2/3→corticocallosal connections showed more temporal summation. Extracellular L2/3 stimulation at two different rates resulted in spiking in L5B neurons; for corticocallosal neurons the spike rate was frequency dependent, but for corticocollicular neurons it was not. Together, these findings identify cell-specific intrinsic and synaptic mechanisms that divide intracortical synaptic excitation from L2/3 to L5B into two functionally distinct pathways with different input–output functions. PMID:25698747

  9. Topography and collateralization of dopaminergic projections to primary motor cortex in rats.

    PubMed

    Hosp, Jonas A; Nolan, Helen E; Luft, Andreas R

    2015-05-01

    Dopaminergic signaling within the primary motor cortex (M1) is necessary for successful motor skill learning. Dopaminergic neurons projecting to M1 are located in the ventral tegmental area (VTA, nucleus A10) of the midbrain. It is unknown which behavioral correlates are encoded by these neurons. The objective here is to investigate whether VTA-M1 fibers are collaterals of projections to prefrontal cortex (PFC) or nucleus accumbens (NAc) or if they form a distinct pathway. In rats, multiple-site retrograde fluorescent tracers were injected into M1, PFC and the core region of the NAc and VTA sections investigated for concomitant labeling of different tracers. Dopaminergic neurons projecting to M1, PFC and NAc were found in nucleus A10 and to a lesser degree in the medial nucleus A9. Neurons show high target specificity, minimal collateral branching to other than their target area and hardly cross the midline. Whereas PFC- and NAc-projecting neurons are indistinguishably intermingled within the ventral portion of dopaminergic nuclei in middle and caudal midbrain, M1-projecting neurons are only located within the dorsal part of the rostral midbrain. Within M1, the forelimb representation receives sevenfold more dopaminergic projections than the hindlimb representation. This strong rostro-caudal gradient as well as the topographical preference to dorsal structures suggest that projections to M1 emerged late in the development of the dopaminergic systems in and form a functionally distinct system.

  10. Property of Regenerating Serotonin Fibers in the Hippocampus of Human Migration Disorders Model

    NASA Astrophysics Data System (ADS)

    Ueda, Shuichi; Ehara, Ayuka; Ohmomo, Hideki

    Individual mood and mental conditions exert a great influence on one's own kansei. Abnormality or dysfunction of the 5-HT neuron system in the developing and/or adult brain is closely associated with their conditions. Thus, the 5-HT neuron system may play an important role in the neuronal mechanisms underlying kansei. Interestingly, previous studies have shown that heterotopic clusters in the hippocampus (hippocampal heterotopia), deriving from neocortical neurons, after prenatally treated with methylazoxymethanol acetate in rat (MAM rat), exhibit abundant 5-HT innervation. After neonatal intracisternal 5, 7-dihydroxytryptamine (DHT) injection, these 5-HT fibers degenerate and disappear throughout the forebrain, and then regenerating 5-HT fibers densely innervate in the hippocampal heterotopia. The 5-HT fiber system in the hippocampal heterotopia of MAM rat provides useful experimental models for study the plasticity of human migration disorder. In the present study, to evaluate the properties of regenerating 5-HT fibers in the hippocampal heterotopia of MAM rats, we examined the origin of these projections by combined retrograde transport and immunohistochemical methods. Prenatal exposure to MAM resulted in the formation of hippocampal heterotopia in the dorsal hippocampus. Regenerating 5-HT fibers formed a dense innervation within the hippocampal heterotopia after neonatal DHT injection. These projections appeared to arise mainly from 5-HT neurons in the median raphe nucleus, with a small portion from 5-HT neurons in the dorsal raphe nucleus. These findings suggest a specific profile of regenerating 5-HT fibers, providing the new insights for serotonergic plasticity.

  11. Infectious Progression of Canine Distemper Virus from Circulating Cerebrospinal Fluid into the Central Nervous System.

    PubMed

    Takenaka, Akiko; Sato, Hiroki; Ikeda, Fusako; Yoneda, Misako; Kai, Chieko

    2016-10-15

    In the current study, we generated recombinant chimeric canine distemper viruses (CDVs) by replacing the hemagglutinin (H) and/or phosphoprotein (P) gene in an avirulent strain expressing enhanced green fluorescent protein (EGFP) with those of a mouse-adapted neurovirulent strain. An in vitro experimental infection indicated that the chimeric CDVs possessing the H gene derived from the mouse-adapted CDV acquired infectivity for neural cells. These cells lack the CDV receptors that have been identified to date (SLAM and nectin-4), indicating that the H protein defines infectivity in various cell lines. The recombinant viruses were administered intracerebrally to 1-week-old mice. Fatal neurological signs of disease were observed only with a recombinant CDV that possessed both the H and P genes of the mouse-adapted strain, similar to the parental mouse-adapted strain, suggesting that both genes are important to drive virulence of CDV in mice. Using this recombinant CDV, we traced the intracerebral propagation of CDV by detecting EGFP. Widespread infection was observed in the cerebral hemispheres and brainstems of the infected mice. In addition, EGFP fluorescence in the brain slices demonstrated a sequential infectious progression in the central nervous system: CDV primarily infected the neuroependymal cells lining the ventricular wall and the neurons of the hippocampus and cortex adjacent to the ventricle, and it then progressed to an extensive infection of the brain surface, followed by the parenchyma and cortex. In the hippocampal formation, CDV spread in a unidirectional retrograde pattern along neuronal processes in the hippocampal formation from the CA1 region to the CA3 region and the dentate gyrus. Our mouse model demonstrated that the main target cells of CDV are neurons in the acute phase and that the virus spreads via neuronal transmission pathways in the hippocampal formation. CDV is the etiological agent of distemper in dogs and other carnivores, and in many respects, the pathogenesis of CDV infection in animals resembles that of measles virus infection in humans. We successfully generated a recombinant CDV containing the H and P genes from a mouse-adapted neurovirulent strain and expressing EGFP. The recombinant CDV exhibited severe neurovirulence with high mortality, comparable to the parental mouse-adapted strain. The mouse-infectious model could become a useful tool for analyzing CDV infection of the central nervous system subsequent to passing through the blood-cerebrospinal fluid barrier and infectious progression in the target cells in acute disease. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Infectious Progression of Canine Distemper Virus from Circulating Cerebrospinal Fluid into the Central Nervous System

    PubMed Central

    Takenaka, Akiko; Sato, Hiroki; Ikeda, Fusako; Yoneda, Misako

    2016-01-01

    ABSTRACT In the current study, we generated recombinant chimeric canine distemper viruses (CDVs) by replacing the hemagglutinin (H) and/or phosphoprotein (P) gene in an avirulent strain expressing enhanced green fluorescent protein (EGFP) with those of a mouse-adapted neurovirulent strain. An in vitro experimental infection indicated that the chimeric CDVs possessing the H gene derived from the mouse-adapted CDV acquired infectivity for neural cells. These cells lack the CDV receptors that have been identified to date (SLAM and nectin-4), indicating that the H protein defines infectivity in various cell lines. The recombinant viruses were administered intracerebrally to 1-week-old mice. Fatal neurological signs of disease were observed only with a recombinant CDV that possessed both the H and P genes of the mouse-adapted strain, similar to the parental mouse-adapted strain, suggesting that both genes are important to drive virulence of CDV in mice. Using this recombinant CDV, we traced the intracerebral propagation of CDV by detecting EGFP. Widespread infection was observed in the cerebral hemispheres and brainstems of the infected mice. In addition, EGFP fluorescence in the brain slices demonstrated a sequential infectious progression in the central nervous system: CDV primarily infected the neuroependymal cells lining the ventricular wall and the neurons of the hippocampus and cortex adjacent to the ventricle, and it then progressed to an extensive infection of the brain surface, followed by the parenchyma and cortex. In the hippocampal formation, CDV spread in a unidirectional retrograde pattern along neuronal processes in the hippocampal formation from the CA1 region to the CA3 region and the dentate gyrus. Our mouse model demonstrated that the main target cells of CDV are neurons in the acute phase and that the virus spreads via neuronal transmission pathways in the hippocampal formation. IMPORTANCE CDV is the etiological agent of distemper in dogs and other carnivores, and in many respects, the pathogenesis of CDV infection in animals resembles that of measles virus infection in humans. We successfully generated a recombinant CDV containing the H and P genes from a mouse-adapted neurovirulent strain and expressing EGFP. The recombinant CDV exhibited severe neurovirulence with high mortality, comparable to the parental mouse-adapted strain. The mouse-infectious model could become a useful tool for analyzing CDV infection of the central nervous system subsequent to passing through the blood-cerebrospinal fluid barrier and infectious progression in the target cells in acute disease. PMID:27489268

  13. Functional and ultrastructural neuroanatomy of interactive intratectal/tectonigral mesencephalic opioid inhibitory links and nigrotectal GABAergic pathways: involvement of GABAA and mu1-opioid receptors in the modulation of panic-like reactions elicited by electrical stimulation of the dorsal midbrain.

    PubMed

    Ribeiro, S J; Ciscato, J G; de Oliveira, R; de Oliveira, R C; D'Angelo-Dias, R; Carvalho, A D; Felippotti, T T; Rebouças, E C C; Castellan-Baldan, L; Hoffmann, A; Corrêa, S A L; Moreira, J E; Coimbra, N C

    2005-12-01

    In the present study, the functional neuroanatomy of nigrotectal-tectonigral pathways as well as the effects of central administration of opioid antagonists on aversive stimuli-induced responses elicited by electrical stimulation of the midbrain tectum were determined. Central microinjections of naloxonazine, a selective mu(1)-opiod receptor antagonist, in the mesencephalic tectum (MT) caused a significant increase in the escape thresholds elicited by local electrical stimulation. Furthermore, either naltrexone or naloxonazine microinjected in the substantia nigra, pars reticulata (SNpr), caused a significant increase in the defensive thresholds elicited by electrical stimulation of the continuum comprised by dorsolateral aspects of the periaqueductal gray matter (dlPAG) and deep layers of the superior colliculus (dlSC), as compared with controls. These findings suggest an opioid modulation of GABAergic inhibitory inputs controlling the defensive behavior elicited by MT stimulation, in cranial aspects. In fact, iontophoretic microinjections of the neurotracer biodextran into the SNpr, a mesencephalic structure rich in GABA-containing neurons, show outputs to neural substrate of the dlSC/dlPAG involved with the generation and organization of fear- and panic-like reactions. Neurochemical lesion of the nigrotectal pathways increased the sensitivity of the MT to electrical (at alertness, freezing and escape thresholds) and chemical (blockade of GABA(A) receptors) stimulation, suggesting a tonic modulatory effect of the nigrotectal GABAergic outputs on the neural networks of the MT involved with the organization of the defensive behavior and panic-like reactions. Labeled neurons of the midbrain tectum send inputs with varicosities to ipsi and contralateral dlSC/dlPAG and ipsilateral substantia nigra, pars reticulata and compacta, in which the anterograde and retrograde tracing from a single injection indicates that the substantia nigra has reciprocal connections with the dlSC/dlPAG featuring close axo-somatic and axo-dendritic appositions in both locations. In addition, ultrastructural approaches show inhibitory axo-axonic synapses in MT and inhibitory axo-somatic/axo-axonic synapses in the SNpr. These findings, in addition to the psychopharmacological evidence for the interaction between opioid and GABAergic mechanisms in the cranial aspects of the MT as well as in the mesencephalic tegmentum, offer a neuroanatomical basis of a pre-synaptic opioid inhibition of GABAergic nigrotectal neurons modulating fear in defensive behavior-related structures of the cranial mesencephalon, in a short link, and through a major neural circuit, also in GABA-containing perikarya and axons of nigrotectal neurons.

  14. A New Tool for Local Manipulation of Neuronal Micro-Circuitry with Ions and Force

    DTIC Science & Technology

    2017-02-07

    lifesci.ucsb.edu Final Report 7/30/2015-9/30/2016 3 neurons, memory , connectivity, microcircuitry 2/7/2017 Our goal is to compute the complete functional... memory trace. To date no functional connectivity map exists for living neurons at the resolution proposed here. In fact, a quantitative model of the...propagation signals are also present in cultures of human iPS-derived neurons and thus could be used to study axonal physiology in human disease models. 3

  15. Role of the mesolimbic cholinergic projection to the septum in the production of 22 kHz alarm calls in rats.

    PubMed

    Bihari, Aurelia; Hrycyshyn, A W; Brudzynski, Stefan M

    2003-05-15

    The role of the ascending cholinergic projection from the laterodorsal tegmental nucleus (LDT) to septum in the production of 22 kHz ultrasonic vocalization was studied in adult rats, using behavioral-pharmacological and anatomical tracing methods. Direct application of carbachol, a muscarinic agonist, into the lateral septal region induced species-typical 22 kHz alarm calls. The septum receives cholinergic input from LDT, thus, activation with glutamate of predominantly cholinergic neurons of the LDT induced comparable 22 kHz alarm calls in the same animals. This glutamate-induced response from LDT was significantly reduced when the lateral septum was pretreated with scopolamine, a cholinergic antagonist. To investigate the localization of the cell groups projecting to septum, the fluorescent retrograde tracer, fluorogold, was pressure injected into the lateral septum and sections from these brains were also immunostained against choline acetyltransferase (ChAT) to visualize cholinergic cell bodies. Several ChAT-fluorogold double-labeled cells within the boundaries of the LDT were found, while other fluorogold-labeled regions did not contain double-labeled cells. These results provide both direct and indirect evidence that at least a part of the mesolimbic ascending cholinergic projection from LDT to septum is involved in the initiation of the 22 kHz vocalization. It is concluded that the septum is an integral part of the medial cholinoceptive vocalization strip and the 22 kHz alarm vocalization is triggered from septum by the cholinergic input from the LDT.

  16. Paraventricular Nucleus Modulates Excitatory Cardiovascular Reflexes during Electroacupuncture

    PubMed Central

    Tjen-A-Looi, Stephanie C.; Guo, Zhi-Ling; Fu, Liang-Wu; Longhurst, John C.

    2016-01-01

    The paraventricular nucleus (PVN) regulates sympathetic outflow and blood pressure. Somatic afferent stimulation activates neurons in the hypothalamic PVN. Parvocellular PVN neurons project to sympathoexcitatory cardiovascular regions of the rostral ventrolateral medulla (rVLM). Electroacupuncture (EA) stimulates the median nerve (P5-P6) to modulate sympathoexcitatory responses. We hypothesized that the PVN and its projections to the rVLM participate in the EA-modulation of sympathoexcitatory cardiovascular responses. Cats were anesthetized and ventilated. Heart rate and mean blood pressure were monitored. Application of bradykinin every 10-min on the gallbladder induced consistent pressor reflex responses. Thirty-min of bilateral EA stimulation at acupoints P5-P6 reduced the pressor responses for at least 60-min. Inhibition of the PVN with naloxone reversed the EA-inhibition. Responses of cardiovascular barosensitive rVLM neurons evoked by splanchnic nerve stimulation were reduced by EA and then restored with opioid receptor blockade in the PVN. EA at P5-P6 decreased splanchnic evoked activity of cardiovascular barosensitive PVN neurons that also project directly to the rVLM. PVN neurons labeled with retrograde tracer from rVLM were co-labeled with μ-opioid receptors and juxtaposed to endorphinergic fibers. Thus, the PVN and its projection to rVLM are important in processing acupuncture modulation of elevated blood pressure responses through a PVN opioid mechanism. PMID:27181844

  17. Selective rab11 transport and the intrinsic regenerative ability of CNS axons

    PubMed Central

    Koseki, Hiroaki; Donegá, Matteo; Lam, Brian YH; Petrova, Veselina; van Erp, Susan; Yeo, Giles SH; Kwok, Jessica CF; ffrench-Constant, Charles

    2017-01-01

    Neurons lose intrinsic axon regenerative ability with maturation, but the mechanism remains unclear. Using an in-vitro laser axotomy model, we show a progressive decline in the ability of cut CNS axons to form a new growth cone and then elongate. Failure of regeneration was associated with increased retraction after axotomy. Transportation into axons becomes selective with maturation; we hypothesized that selective exclusion of molecules needed for growth may contribute to regeneration decline. With neuronal maturity rab11 vesicles (which carry many molecules involved in axon growth) became selectively targeted to the somatodendritic compartment and excluded from axons by predominant retrograde transport However, on overexpression rab11 was mistrafficked into proximal axons, and these axons showed less retraction and enhanced regeneration after axotomy. These results suggest that the decline of intrinsic axon regenerative ability is associated with selective exclusion of key molecules, and that manipulation of transport can enhance regeneration. PMID:28829741

  18. BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons

    PubMed Central

    Dieni, Sandra; Matsumoto, Tomoya; Dekkers, Martijn; Rauskolb, Stefanie; Ionescu, Mihai S.; Deogracias, Ruben; Gundelfinger, Eckart D.; Kojima, Masami; Nestel, Sigrun; Frotscher, Michael

    2012-01-01

    Although brain-derived neurotrophic factor (BDNF) regulates numerous and complex biological processes including memory retention, its extremely low levels in the mature central nervous system have greatly complicated attempts to reliably localize it. Using rigorous specificity controls, we found that antibodies reacting either with BDNF or its pro-peptide both stained large dense core vesicles in excitatory presynaptic terminals of the adult mouse hippocampus. Both moieties were ∼10-fold more abundant than pro-BDNF. The lack of postsynaptic localization was confirmed in Bassoon mutants, a seizure-prone mouse line exhibiting markedly elevated levels of BDNF. These findings challenge previous conclusions based on work with cultured neurons, which suggested activity-dependent dendritic synthesis and release of BDNF. They instead provide an ultrastructural basis for an anterograde mode of action of BDNF, contrasting with the long-established retrograde model derived from experiments with nerve growth factor in the peripheral nervous system. PMID:22412021

  19. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility

    NASA Technical Reports Server (NTRS)

    Morfini, Gerardo; Szebenyi, Gyorgyi; Elluru, Ravindhra; Ratner, Nancy; Brady, Scott T.

    2002-01-01

    Membrane-bounded organelles (MBOs) are delivered to different domains in neurons by fast axonal transport. The importance of kinesin for fast antero grade transport is well established, but mechanisms for regulating kinesin-based motility are largely unknown. In this report, we provide biochemical and in vivo evidence that kinesin light chains (KLCs) interact with and are in vivo substrates for glycogen synthase kinase 3 (GSK3). Active GSK3 inhibited anterograde, but not retrograde, transport in squid axoplasm and reduced the amount of kinesin bound to MBOs. Kinesin microtubule binding and microtubule-stimulated ATPase activities were unaffected by GSK3 phosphorylation of KLCs. Active GSK3 was also localized preferentially to regions known to be sites of membrane delivery. These data suggest that GSK3 can regulate fast anterograde axonal transport and targeting of cargos to specific subcellular domains in neurons.

  20. The Medial Paralemniscal Nucleus and Its Afferent Neuronal Connections in Rat

    PubMed Central

    VARGA, TAMÁS; PALKOVITS, MIKLÓS; USDIN, TED BJÖRN; DOBOLYI, ARPÁD

    2009-01-01

    Previously, we described a cell group expressing tuberoinfundibular peptide of 39 residues (TIP39) in the lateral pontomesencephalic tegmentum, and referred to it as the medial paralemniscal nucleus (MPL). To identify this nucleus further in rat, we have now characterized the MPL cytoarchitectonically on coronal, sagittal, and horizontal serial sections. Neurons in the MPL have a columnar arrangement distinct from adjacent areas. The MPL is bordered by the intermediate nucleus of the lateral lemniscus nucleus laterally, the oral pontine reticular formation medially, and the rubrospinal tract ventrally, whereas the A7 noradrenergic cell group is located immediately mediocaudal to the MPL. TIP39-immunoreactive neurons are distributed throughout the cytoarchitectonically defined MPL and constitute 75% of its neurons as assessed by double labeling of TIP39 with a fluorescent Nissl dye or NeuN. Furthermore, we investigated the neuronal inputs to the MPL by using the retrograde tracer cholera toxin B subunit. The MPL has afferent neuronal connections distinct from adjacent brain regions including major inputs from the auditory cortex, medial part of the medial geniculate body, superior colliculus, external and dorsal cortices of the inferior colliculus, periolivary area, lateral preoptic area, hypothalamic ventromedial nucleus, lateral and dorsal hypothalamic areas, subparafascicular and posterior intralaminar thalamic nuclei, periaqueductal gray, and cuneiform nucleus. In addition, injection of the anterograde tracer biotinylated dextran amine into the auditory cortex and the hypothalamic ventromedial nucleus confirmed projections from these areas to the distinct MPL. The afferent neuronal connections of the MPL suggest its involvement in auditory and reproductive functions. PMID:18770870

  1. The medial paralemniscal nucleus and its afferent neuronal connections in rat.

    PubMed

    Varga, Tamás; Palkovits, Miklós; Usdin, Ted Björn; Dobolyi, Arpád

    2008-11-10

    Previously, we described a cell group expressing tuberoinfundibular peptide of 39 residues (TIP39) in the lateral pontomesencephalic tegmentum, and referred to it as the medial paralemniscal nucleus (MPL). To identify this nucleus further in rat, we have now characterized the MPL cytoarchitectonically on coronal, sagittal, and horizontal serial sections. Neurons in the MPL have a columnar arrangement distinct from adjacent areas. The MPL is bordered by the intermediate nucleus of the lateral lemniscus nucleus laterally, the oral pontine reticular formation medially, and the rubrospinal tract ventrally, whereas the A7 noradrenergic cell group is located immediately mediocaudal to the MPL. TIP39-immunoreactive neurons are distributed throughout the cytoarchitectonically defined MPL and constitute 75% of its neurons as assessed by double labeling of TIP39 with a fluorescent Nissl dye or NeuN. Furthermore, we investigated the neuronal inputs to the MPL by using the retrograde tracer cholera toxin B subunit. The MPL has afferent neuronal connections distinct from adjacent brain regions including major inputs from the auditory cortex, medial part of the medial geniculate body, superior colliculus, external and dorsal cortices of the inferior colliculus, periolivary area, lateral preoptic area, hypothalamic ventromedial nucleus, lateral and dorsal hypothalamic areas, subparafascicular and posterior intralaminar thalamic nuclei, periaqueductal gray, and cuneiform nucleus. In addition, injection of the anterograde tracer biotinylated dextran amine into the auditory cortex and the hypothalamic ventromedial nucleus confirmed projections from these areas to the distinct MPL. The afferent neuronal connections of the MPL suggest its involvement in auditory and reproductive functions. (c) 2008 Wiley-Liss, Inc.

  2. SWIFT J1910.2-0546: A Possible Black Hole Binary with a Retrograde Spin or Truncated Disk

    NASA Astrophysics Data System (ADS)

    Reis, R. C.; Reynolds, M. T.; Miller, J. M.; Walton, D. J.; Maitra, D.; King, A.; Degenaar, N.

    2013-12-01

    We present the first results from a long (51 ks) XMM-Newton observation of the Galactic X-ray binary SWIFT J1910.2-0546 in an intermediate state, obtained during its 2012 outburst. A clear, asymmetric iron emission line is observed and physically motivated models are used to fully describe the emission-line profile. Unlike other sources in their intermediate spectral states, the inner accretion disk in SWIFT J1910.2-0546 appears to be truncated, with an inner radius of r in =9.4^{+1.7}_{-1.3} r g at a 90% confidence limit. Quasi-periodic oscillations are also found at approximately 4.5 and 6 Hz, which correlates well with the break frequency of the underlying broad-band noise. Assuming that the line emission traces the innermost stable circular orbit, as would generally be expected for an intermediate state, the current observation of SWIFT J1910.2-0546 may offer the best evidence for a possible retrograde stellar mass black hole with a spin parameter a < - 0.32cJ/GM2 (90% confidence). Although this is an intriguing possibility, there are also a number of alternative scenarios which do not require a retrograde spin. For example, the inner accretion disk may be truncated at an unusually high luminosity in this case, potentially suffering frequent evaporation/condensation, or it could instead be persistently evacuated through mass loss in a relativistic jet. Further observations are required to distinguish between these different interpretations.

  3. Network inference from functional experimental data (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Desrosiers, Patrick; Labrecque, Simon; Tremblay, Maxime; Bélanger, Mathieu; De Dorlodot, Bertrand; Côté, Daniel C.

    2016-03-01

    Functional connectivity maps of neuronal networks are critical tools to understand how neurons form circuits, how information is encoded and processed by neurons, how memory is shaped, and how these basic processes are altered under pathological conditions. Current light microscopy allows to observe calcium or electrical activity of thousands of neurons simultaneously, yet assessing comprehensive connectivity maps directly from such data remains a non-trivial analytical task. There exist simple statistical methods, such as cross-correlation and Granger causality, but they only detect linear interactions between neurons. Other more involved inference methods inspired by information theory, such as mutual information and transfer entropy, identify more accurately connections between neurons but also require more computational resources. We carried out a comparative study of common connectivity inference methods. The relative accuracy and computational cost of each method was determined via simulated fluorescence traces generated with realistic computational models of interacting neurons in networks of different topologies (clustered or non-clustered) and sizes (10-1000 neurons). To bridge the computational and experimental works, we observed the intracellular calcium activity of live hippocampal neuronal cultures infected with the fluorescent calcium marker GCaMP6f. The spontaneous activity of the networks, consisting of 50-100 neurons per field of view, was recorded from 20 to 50 Hz on a microscope controlled by a homemade software. We implemented all connectivity inference methods in the software, which rapidly loads calcium fluorescence movies, segments the images, extracts the fluorescence traces, and assesses the functional connections (with strengths and directions) between each pair of neurons. We used this software to assess, in real time, the functional connectivity from real calcium imaging data in basal conditions, under plasticity protocols, and epileptic conditions.

  4. Expression of the transient receptor potential channels TRPV1, TRPA1 and TRPM8 in mouse trigeminal primary afferent neurons innervating the dura

    PubMed Central

    2012-01-01

    Background Migraine and other headache disorders affect a large percentage of the population and cause debilitating pain. Activation and sensitization of the trigeminal primary afferent neurons innervating the dura and cerebral vessels is a crucial step in the “headache circuit”. Many dural afferent neurons respond to algesic and inflammatory agents. Given the clear role of the transient receptor potential (TRP) family of channels in both sensing chemical stimulants and mediating inflammatory pain, we investigated the expression of TRP channels in dural afferent neurons. Methods We used two fluorescent tracers to retrogradely label dural afferent neurons in adult mice and quantified the abundance of peptidergic and non-peptidergic neuron populations using calcitonin gene-related peptide immunoreactivity (CGRP-ir) and isolectin B4 (IB4) binding as markers, respectively. Using immunohistochemistry, we compared the expression of TRPV1 and TRPA1 channels in dural afferent neurons with the expression in total trigeminal ganglion (TG) neurons. To examine the distribution of TRPM8 channels, we labeled dural afferent neurons in mice expressing farnesylated enhanced green fluorescent protein (EGFPf) from a TRPM8 locus. We used nearest-neighbor measurement to predict the spatial association between dural afferent neurons and neurons expressing TRPA1 or TRPM8 channels in the TG. Results and conclusions We report that the size of dural afferent neurons is significantly larger than that of total TG neurons and facial skin afferents. Approximately 40% of dural afferent neurons exhibit IB4 binding. Surprisingly, the percentage of dural afferent neurons containing CGRP-ir is significantly lower than those of total TG neurons and facial skin afferents. Both TRPV1 and TRPA1 channels are expressed in dural afferent neurons. Furthermore, nearest-neighbor measurement indicates that TRPA1-expressing neurons are clustered around a subset of dural afferent neurons. Interestingly, TRPM8-expressing neurons are virtually absent in the dural afferent population, nor do these neurons cluster around dural afferent neurons. Taken together, our results suggest that TRPV1 and TRPA1 but not TRPM8 channels likely contribute to the excitation of dural afferent neurons and the subsequent activation of the headache circuit. These results provide an anatomical basis for understanding further the functional significance of TRP channels in headache pathophysiology. PMID:22971321

  5. Catecholaminergic neurons projecting to the paraventricular nucleus of the hypothalamus are essential for cardiorespiratory adjustments to hypoxia

    PubMed Central

    King, T. Luise; Ruyle, Brian C.; Kline, David D.; Heesch, Cheryl M.

    2015-01-01

    Brainstem catecholamine neurons modulate sensory information and participate in control of cardiorespiratory function. These neurons have multiple projections, including to the paraventricular nucleus (PVN), which contributes to cardiorespiratory and neuroendocrine responses to hypoxia. We have shown that PVN-projecting catecholaminergic neurons are activated by hypoxia, but the function of these neurons is not known. To test the hypothesis that PVN-projecting catecholamine neurons participate in responses to respiratory challenges, we injected IgG saporin (control; n = 6) or anti-dopamine β-hydroxylase saporin (DSAP; n = 6) into the PVN to retrogradely lesion catecholamine neurons projecting to the PVN. After 2 wk, respiratory measurements (plethysmography) were made in awake rats during normoxia, increasing intensities of hypoxia (12, 10, and 8% O2) and hypercapnia (5% CO2-95% O2). DSAP decreased the number of tyrosine hydroxylase-immunoreactive terminals in PVN and cells counted in ventrolateral medulla (VLM; −37%) and nucleus tractus solitarii (nTS; −36%). DSAP produced a small but significant decrease in respiratory rate at baseline (during normoxia) and at all intensities of hypoxia. Tidal volume and minute ventilation (VE) index also were impaired at higher hypoxic intensities (10-8% O2; e.g., VE at 8% O2: IgG = 181 ± 22, DSAP = 91 ± 4 arbitrary units). Depressed ventilation in DSAP rats was associated with significantly lower arterial O2 saturation at all hypoxic intensities. PVN DSAP also reduced ventilatory responses to 5% CO2 (VE: IgG = 176 ± 21 and DSAP = 84 ± 5 arbitrary units). Data indicate that catecholamine neurons projecting to the PVN are important for peripheral and central chemoreflex respiratory responses and for maintenance of arterial oxygen levels during hypoxic stimuli. PMID:26157062

  6. Orexin neurons are indispensable for prostaglandin E2-induced fever and defence against environmental cooling in mice

    PubMed Central

    Takahashi, Yoshiko; Zhang, Wei; Sameshima, Kohei; Kuroki, Chiharu; Matsumoto, Ami; Sunanaga, Jinko; Kono, Yu; Sakurai, Takeshi; Kanmura, Yuichi; Kuwaki, Tomoyuki

    2013-01-01

    We recently showed using prepro-orexin knockout (ORX-KO) mice and orexin neuron-ablated (ORX-AB) mice that orexin neurons in the hypothalamus, but not orexin peptides per se, are indispensable for stress-induced thermogenesis. To examine whether orexin neurons are more generally involved in central thermoregulatory mechanisms, we applied other forms of thermogenic perturbations, including brain prostaglandin E2 (PGE2) injections which mimic inflammatory fever and environmental cold exposure, to ORX-KO mice, ORX-AB mice and their wild-type (WT) litter mates. ORX-AB mice, but not ORX-KO mice, exhibited a blunted PGE2-induced fever and intolerance to cold (5°C) exposure, and these findings were similar to the results previously obtained with stress-induced thermogenesis. PGE2-induced shivering was also attenuated in ORX-AB mice. Both mutants responded similarly to environmental heating (39°C). In WT and ORX-KO mice, the administration of PGE2 and cold exposure activated orexin neurons, as revealed by increased levels of expression of c-fos. Injection of retrograde tracer into the medullary raphe nucleus revealed direct and indirect projection from the orexin neurons, of which the latter seemed to be preserved in the ORX-AB mice. In addition, we found that glutamate receptor antagonists (d-(–)-2-amino-5-phosphonopentanoic acid and 6-cyano-7-nitroquinoxaline-2,3-dione) but not orexin receptor antagonists (SB334867 and OX2 29) successfully inhibited PGE2-induced fever in WT mice. These results suggest that orexin neurons are important in general thermogenic processes, and their importance is not restricted to stress-induced thermogenesis. In addition, these results indicate the possible involvement of glutamate in orexin neurons implicated in PGE2-induced fever. PMID:23959674

  7. Orexin neurons are indispensable for prostaglandin E2-induced fever and defence against environmental cooling in mice.

    PubMed

    Takahashi, Yoshiko; Zhang, Wei; Sameshima, Kohei; Kuroki, Chiharu; Matsumoto, Ami; Sunanaga, Jinko; Kono, Yu; Sakurai, Takeshi; Kanmura, Yuichi; Kuwaki, Tomoyuki

    2013-11-15

    We recently showed using prepro-orexin knockout (ORX-KO) mice and orexin neuron-ablated (ORX-AB) mice that orexin neurons in the hypothalamus, but not orexin peptides per se, are indispensable for stress-induced thermogenesis. To examine whether orexin neurons are more generally involved in central thermoregulatory mechanisms, we applied other forms of thermogenic perturbations, including brain prostaglandin E2 (PGE2) injections which mimic inflammatory fever and environmental cold exposure, to ORX-KO mice, ORX-AB mice and their wild-type (WT) litter mates. ORX-AB mice, but not ORX-KO mice, exhibited a blunted PGE2-induced fever and intolerance to cold (5°C) exposure, and these findings were similar to the results previously obtained with stress-induced thermogenesis. PGE2-induced shivering was also attenuated in ORX-AB mice. Both mutants responded similarly to environmental heating (39°C). In WT and ORX-KO mice, the administration of PGE2 and cold exposure activated orexin neurons, as revealed by increased levels of expression of c-fos. Injection of retrograde tracer into the medullary raphe nucleus revealed direct and indirect projection from the orexin neurons, of which the latter seemed to be preserved in the ORX-AB mice. In addition, we found that glutamate receptor antagonists (D-(-)-2-amino-5-phosphonopentanoic acid and 6-cyano-7-nitroquinoxaline-2,3-dione) but not orexin receptor antagonists (SB334867 and OX2 29) successfully inhibited PGE2-induced fever in WT mice. These results suggest that orexin neurons are important in general thermogenic processes, and their importance is not restricted to stress-induced thermogenesis. In addition, these results indicate the possible involvement of glutamate in orexin neurons implicated in PGE2-induced fever.

  8. Visuomotor signals for reaching movements in the rostro-dorsal sector of the monkey thalamic reticular nucleus.

    PubMed

    Saga, Yosuke; Nakayama, Yoshihisa; Inoue, Ken-Ichi; Yamagata, Tomoko; Hashimoto, Masashi; Tremblay, Léon; Takada, Masahiko; Hoshi, Eiji

    2017-05-01

    The thalamic reticular nucleus (TRN) collects inputs from the cerebral cortex and thalamus and, in turn, sends inhibitory outputs to the thalamic relay nuclei. This unique connectivity suggests that the TRN plays a pivotal role in regulating information flow through the thalamus. Here, we analyzed the roles of TRN neurons in visually guided reaching movements. We first used retrograde transneuronal labeling with rabies virus, and showed that the rostro-dorsal sector of the TRN (TRNrd) projected disynaptically to the ventral premotor cortex (PMv). In other experiments, we recorded neurons from the TRNrd or PMv while monkeys performed a visuomotor task. We found that neurons in the TRNrd and PMv showed visual-, set-, and movement-related activity modulation. These results indicate that the TRNrd, as well as the PMv, is involved in the reception of visual signals and in the preparation and execution of reaching movements. The fraction of neurons that were non-selective for the location of visual signals or the direction of reaching movements was greater in the TRNrd than in the PMv. Furthermore, the fraction of neurons whose activity increased from the baseline was greater in the TRNrd than in the PMv. The timing of activity modulation of visual-related and movement-related neurons was similar in TRNrd and PMv neurons. Overall, our data suggest that TRNrd neurons provide motor thalamic nuclei with inhibitory inputs that are predominantly devoid of spatial selectivity, and that these signals modulate how these nuclei engage in both sensory processing and motor output during visually guided reaching behavior. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Dissociative amnesia: Disproportionate retrograde amnesia, stressful experiences and neurological circumstances.

    PubMed

    Thomas-Antérion, C

    Dissociative amnesias have been reported in neurological episodes mild enough to not cause any visible lesions on morphological examination. Disproportionate retrograde amnesia with or without identity loss happens in the context of psychological trauma (known or not). In metabolic imaging studies, some authors have reported functional alterations, particularly in the bilateral hippocampus, right temporal regions and inferolateral prefrontal cortex, despite normal morphological imaging. To avoid the presumption of an organic, psychogenic or mixed origin for such changes, De Renzi et al. suggested the term 'functional amnesia' to describe the condition. Patients have sometimes recovered during events similar to those preceding the amnesia in either a spectacular fashion or never. Also, in some cases, distraction or sedation may trigger the start of recovery. During psychotherapy, one patient remembered seeing a car on fire when he was a boy, and his amnesia started when his house was on fire. This suggests control by the frontal cortex, with repression blocking amnesic traces in the new emotional and biological context. Copyright © 2017. Published by Elsevier Masson SAS.

  10. Morphology, classification, and distribution of the projection neurons in the dorsal lateral geniculate nucleus of the rat.

    PubMed

    Ling, Changying; Hendrickson, Michael L; Kalil, Ronald E

    2012-01-01

    The morphology of confirmed projection neurons in the dorsal lateral geniculate nucleus (dLGN) of the rat was examined by filling these cells retrogradely with biotinylated dextran amine (BDA) injected into the visual cortex. BDA-labeled projection neurons varied widely in the shape and size of their cell somas, with mean cross-sectional areas ranging from 60-340 µm(2). Labeled projection neurons supported 7-55 dendrites that spanned up to 300 µm in length and formed dendritic arbors with cross-sectional areas of up to 7.0 × 10(4) µm(2). Primary dendrites emerged from cell somas in three broad patterns. In some dLGN projection neurons, primary dendrites arise from the cell soma at two poles spaced approximately 180° apart. In other projection neurons, dendrites emerge principally from one side of the cell soma, while in a third group of projection neurons primary dendrites emerge from the entire perimeter of the cell soma. Based on these three distinct patterns in the distribution of primary dendrites from cell somas, we have grouped dLGN projection neurons into three classes: bipolar cells, basket cells and radial cells, respectively. The appendages seen on dendrites also can be grouped into three classes according to differences in their structure. Short "tufted" appendages arise mainly from the distal branches of dendrites; "spine-like" appendages, fine stalks with ovoid heads, typically are seen along the middle segments of dendrites; and "grape-like" appendages, short stalks that terminate in a cluster of ovoid bulbs, appear most often along the proximal segments of secondary dendrites of neurons with medium or large cell somas. While morphologically diverse dLGN projection neurons are intermingled uniformly throughout the nucleus, the caudal pole of the dLGN contains more small projection neurons of all classes than the rostral pole.

  11. Impaired white matter connectivity between regions containing mirror neurons, and relationship to negative symptoms and social cognition, in patients with first-episode schizophrenia.

    PubMed

    Saito, Yukiko; Kubicki, Marek; Koerte, Inga; Otsuka, Tatsui; Rathi, Yogesh; Pasternak, Ofer; Bouix, Sylvain; Eckbo, Ryan; Kikinis, Zora; von Hohenberg, Christian Clemm; Roppongi, Tomohide; Del Re, Elisabetta; Asami, Takeshi; Lee, Sang-Hyuk; Karmacharya, Sarina; Mesholam-Gately, Raquelle I; Seidman, Larry J; Levitt, James; McCarley, Robert W; Shenton, Martha E; Niznikiewicz, Margaret A

    2018-02-01

    In schizophrenia, abnormalities in structural connectivity between brain regions known to contain mirror neurons and their relationship to negative symptoms related to a domain of social cognition are not well understood. Diffusion tensor imaging (DTI) scans were acquired in 16 patients with first episode schizophrenia and 16 matched healthy controls. FA and Trace of the tracts interconnecting regions known to be rich in mirror neurons, i.e., anterior cingulate cortex (ACC), inferior parietal lobe (IPL) and premotor cortex (PMC) were evaluated. A significant group effect for Trace was observed in IPL-PMC white matter fiber tract (F (1, 28) = 7.13, p = .012), as well as in the PMC-ACC white matter fiber tract (F (1, 28) = 4.64, p = .040). There were no group differences in FA. In addition, patients with schizophrenia showed a significant positive correlation between the Trace of the left IPL-PMC white matter fiber tract, and the Ability to Feel Intimacy and Closeness score (rho = .57, p = 0.034), and a negative correlation between the Trace of the left PMC-ACC and the Relationships with Friends and Peers score (rho = remove -.54, p = 0.049). We have demonstrated disrupted white mater microstructure within the white matter tracts subserving brain regions containing mirror neurons. We further showed that such structural disruptions might impact negative symptoms and, more specifically, contribute to the inability to feel intimacy (a measure conceptually related to theory of mind) in first episode schizophrenia. Further studies are needed to understand the potential of our results for diagnosis, prognosis and therapeutic interventions.

  12. Immunotoxic destruction of distinct catecholaminergic neuron populations disrupts the reproductive response to glucoprivation in female rats.

    PubMed

    I'Anson, Helen; Sundling, Lois A; Roland, Shannon M; Ritter, Sue

    2003-10-01

    We tested the hypothesis that hindbrain catecholamine (norepinephrine or epinephrine) neurons, in addition to their essential role in glucoprivic feeding, are responsible for suppressing estrous cycles during chronic glucoprivation. Normally cycling female rats were given bilateral injections of the retrogradely transported ribosomal toxin, saporin, conjugated to monoclonal dopamine beta-hydroxylase antibody (DSAP) into the paraventricular nucleus (PVN) of the hypothalamus to selectively destroy norepinephrine and epinephrine neurons projecting to the PVN. Controls were injected with unconjugated saporin. After recovery, we assessed the lesion effects on estrous cyclicity under basal conditions and found that DSAP did not alter estrous cycle length. Subsequently, we examined effects of chronic 2-deoxy-d-glucose-induced glucoprivation on cycle length. After two normal 4- to 5-d cycles, rats were injected with 2-deoxy-d-glucose (200 mg/kg every 6 h for 72 h) beginning 24 h after detection of estrus. Chronic glucoprivation increased cycle length in seven of eight unconjugated saporin rats but in only one of eight DSAP rats. Immunohistochemical results confirmed loss of dopamine beta-hydroxylase immunoreactivity in PVN. Thus, hindbrain catecholamine neurons with projections to the PVN are required for inhibition of reproductive function during chronic glucose deficit but are not required for normal estrous cyclicity when metabolic fuels are in abundance.

  13. Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment.

    PubMed

    Vizi, E S; Fekete, A; Karoly, R; Mike, A

    2010-06-01

    Beyond direct synaptic communication, neurons are able to talk to each other without making synapses. They are able to send chemical messages by means of diffusion to target cells via the extracellular space, provided that the target neurons are equipped with high-affinity receptors. While synaptic transmission is responsible for the 'what' of brain function, the 'how' of brain function (mood, attention, level of arousal, general excitability, etc.) is mainly controlled non-synaptically using the extracellular space as communication channel. It is principally the 'how' that can be modulated by medicine. In this paper, we discuss different forms of non-synaptic transmission, localized spillover of synaptic transmitters, local presynaptic modulation and tonic influence of ambient transmitter levels on the activity of vast neuronal populations. We consider different aspects of non-synaptic transmission, such as synaptic-extrasynaptic receptor trafficking, neuron-glia communication and retrograde signalling. We review structural and functional aspects of non-synaptic transmission, including (i) anatomical arrangement of non-synaptic release sites, receptors and transporters, (ii) intravesicular, intra- and extracellular concentrations of neurotransmitters, as well as the spatiotemporal pattern of transmitter diffusion. We propose that an effective general strategy for efficient pharmacological intervention could include the identification of specific non-synaptic targets and the subsequent development of selective pharmacological tools to influence them.

  14. Paired Helical Filaments from Alzheimer Disease Brain Induce Intracellular Accumulation of Tau Protein in Aggresomes*

    PubMed Central

    Santa-Maria, Ismael; Varghese, Merina; Ksiȩżak-Reding, Hanna; Dzhun, Anastasiya; Wang, Jun; Pasinetti, Giulio M.

    2012-01-01

    Abnormal folding of tau protein leads to the generation of paired helical filaments (PHFs) and neurofibrillary tangles, a key neuropathological feature in Alzheimer disease and tauopathies. A specific anatomical pattern of pathological changes developing in the brain suggests that once tau pathology is initiated it propagates between neighboring neuronal cells, possibly spreading along the axonal network. We studied whether PHFs released from degenerating neurons could be taken up by surrounding cells and promote spreading of tau pathology. Neuronal and non-neuronal cells overexpressing green fluorescent protein-tagged tau (GFP-Tau) were treated with isolated fractions of human Alzheimer disease-derived PHFs for 24 h. We found that cells internalized PHFs through an endocytic mechanism and developed intracellular GFP-Tau aggregates with attributes of aggresomes. This was particularly evident by the perinuclear localization of aggregates and redistribution of the vimentin intermediate filament network and retrograde motor protein dynein. Furthermore, the content of Sarkosyl-insoluble tau, a measure of abnormal tau aggregation, increased 3-fold in PHF-treated cells. An exosome-related mechanism did not appear to be involved in the release of GFP-Tau from untreated cells. The evidence that cells can internalize PHFs, leading to formation of aggresome-like bodies, opens new therapeutic avenues to prevent propagation and spreading of tau pathology. PMID:22496370

  15. Retrograde and transganglionic transport of horseradish peroxidase-conjugated cholera toxin B subunit, wheatgerm agglutinin and isolectin B4 from Griffonia simplicifolia I in primary afferent neurons innervating the rat urinary bladder.

    PubMed

    Wang, H F; Shortland, P; Park, M J; Grant, G

    1998-11-01

    In the present study, we investigated and compared the ability of the cholera toxin B subunit, wheat germ agglutinin and isolectin B4 from Griffonia simplicifolia I conjugated to horseradish peroxidase, to retrogradely and transganglionically label visceral primary afferents after unilateral injections into the rat urinary bladder wall. Horseradish peroxidase histochemical or lectin-immunofluorescence histochemical labelling of bladder afferents was seen in the L6-S1 spinal cord segments and in the T13-L2 and L6-S1 dorsal root ganglia. In the lumbosacral spinal cord, the most intense and extensive labelling of bladder afferents was seen when cholera toxin B subunit-horseradish peroxidase was injected. Cholera toxin B subunit-horseradish peroxidase-labelled fibres were found in Lissauer's tract, its lateral and medial collateral projections, and laminae I and IV-VI of the spinal gray matter. Labelled fibres were numerous in the lateral collateral projection and extended into the spinal parasympathetic nucleus. Labelling from both the lateral and medial projections extended into the dorsal grey commissural region. Wheat germ agglutinin-horseradish peroxidase labelling produced a similar pattern but was not as dense and extensive as that of cholera toxin B subunit-horseradish peroxidase. The isolectin B4 from Griffonia simplicifolia I-horseradish peroxidase-labelled fibres, on the other hand, were fewer and only observed in the lateral collateral projection and occasionally in lamina I. Cell profile counts showed that a larger number of dorsal root ganglion cells were labelled with cholera toxin B subunit-horseradish peroxidase than with wheat germ agglutinin- or isolectin B4-horseradish peroxidase. In the L6-S1 dorsal root ganglia, the majority (81%) of the cholera toxin B subunit-, and almost all of the wheat germ agglutinin- and isolectin B4-immunoreactive cells were RT97-negative (an anti-neurofilament antibody that labels dorsal root ganglion neurons with myelinated fibres). Double labelling with other neuronal markers showed that 71%, 43% and 36% of the cholera toxin B subunit-immunoreactive cells were calcitonin gene-related peptide-, isolectin B4-binding- and substance P-positive, respectively. A few cholera toxin B subunit cells showed galanin-immunoreactivity, but none were somatostatin-, vasoactive intestinal polypeptide-, or neuropeptide Y-immunoreactive or contained fluoride-resistant acid phosphatase. The results show that cholera toxin B subunit-horseradish peroxidase is a more effective retrograde and transganglionic tracer for pelvic primary afferents from the urinary bladder than wheat germ agglutinin-horseradish peroxidase and isolectin B4-horseradish peroxidase, but in contrast to somatic nerves, it is transported mainly by unmyelinated fibres in the visceral afferents.

  16. Tracking memory's trace

    PubMed Central

    Horn, Gabriel; Nicol, Alister U.; Brown, Malcolm W.

    2001-01-01

    There is strong converging evidence that the intermediate and medial part of the hyperstriatum ventrale of the chick brain is a memory store for information acquired through the learning process of imprinting. Neurons in this memory system come, through imprinting, to respond selectively to the imprinting stimulus (IS) neurons and so possess the properties of a memory trace. Therefore, the responses of the intermediate and medial part of the hyperstriatum ventrale neurons to a visual imprinting stimulus were determined before, during, and after training. Of the total recorded population, the proportions of IS neurons shortly after each of two 1-h training sessions were significantly higher (approximately 2 times) than the pretraining proportion. However, ≈4.5 h later this proportion had fallen significantly and did not differ significantly from the pretraining proportion. Nevertheless, ≈21.5 h after the end of training, the proportion of IS neurons was at its highest (approximately 3 times the pretraining level). No significant fluctuations occurred in the proportions of neurons responding to the alternative stimulus. In addition, nonmonotonic changes were found commonly in the activity of 230 of the neurons tracked individually from before training to shortly after the end of training. Thus the pattern of change in responsiveness both at the population level and at the level of individual neurons was highly nonmonotonic. Such a pattern of change is not consistent with simple models of memory based on synaptic strengthening to asymptote. A model is proposed that accounts for the changes in the population responses to the imprinting stimulus in terms of changes in the responses of individual neurons. PMID:11296266

  17. Histological Methods for ex vivo Axon Tracing: A Systematic Review

    PubMed Central

    Heilingoetter, Cassandra L.; Jensen, Matthew B.

    2016-01-01

    Objectives Axon tracers provide crucial insight into the development, connectivity, and function of neural pathways. A tracer can be characterized as a substance that allows for the visualization of a neuronal pathway. Axon tracers have previously been used exclusively with in vivo studies; however, newer methods of axon tracing can be applied to ex vivo studies. Ex vivo studies involve the examination of cells or tissues retrieved from an organism. These post mortem methods of axon tracing offer several advantages, such as reaching inaccessible tissues and avoiding survival surgeries. Methods In order to evaluate the quality of the ex vivo tracing methods, we performed a systematic review of various experimental and comparison studies to discern the optimal method of axon tracing. Results The most prominent methods for ex vivo tracing involve enzymatic techniques or various dyes. It appears that there are a variety of techniques and conditions that tend to give better fluorescent character, clarity, and distance traveled in the neuronal pathway. We found direct comparison studies that looked at variables such as the type of tracer, time required, effect of temperature, and presence of calcium, however, there are other variables that have not been compared directly. Discussion We conclude there are a variety of promising tracing methods available depending on the experimental goals of the researcher, however, more direct comparison studies are needed to affirm the optimal method. PMID:27098542

  18. Histological methods for ex vivo axon tracing: A systematic review.

    PubMed

    Heilingoetter, Cassandra L; Jensen, Matthew B

    2016-07-01

    Axon tracers provide crucial insight into the development, connectivity, and function of neural pathways. A tracer can be characterized as a substance that allows for the visualization of a neuronal pathway. Axon tracers have previously been used exclusively with in vivo studies; however, newer methods of axon tracing can be applied to ex vivo studies. Ex vivo studies involve the examination of cells or tissues retrieved from an organism. These post mortem methods of axon tracing offer several advantages, such as reaching inaccessible tissues and avoiding survival surgeries. In order to evaluate the quality of the ex vivo tracing methods, we performed a systematic review of various experimental and comparison studies to discern the optimal method of axon tracing. The most prominent methods for ex vivo tracing involve enzymatic techniques or various dyes. It appears that there are a variety of techniques and conditions that tend to give better fluorescent character, clarity, and distance traveled in the neuronal pathway. We found direct comparison studies that looked at variables such as the type of tracer, time required, effect of temperature, and presence of calcium, however, there are other variables that have not been compared directly. We conclude there are a variety of promising tracing methods available depending on the experimental goals of the researcher, however, more direct comparison studies are needed to affirm the optimal method.

  19. Repeated Stimulation of Cultured Networks of Rat Cortical Neurons Induces Parallel Memory Traces

    ERIC Educational Resources Information Center

    le Feber, Joost; Witteveen, Tim; van Veenendaal, Tamar M.; Dijkstra, Jelle

    2015-01-01

    During systems consolidation, memories are spontaneously replayed favoring information transfer from hippocampus to neocortex. However, at present no empirically supported mechanism to accomplish a transfer of memory from hippocampal to extra-hippocampal sites has been offered. We used cultured neuronal networks on multielectrode arrays and…

  20. Theta Synchronizes the Activity of Medial Prefrontal Neurons during Learning

    ERIC Educational Resources Information Center

    Paz, Rony; Bauer, Elizabeth P.; Pare, Denis

    2008-01-01

    Memory consolidation is thought to involve the gradual transfer of transient hippocampal-dependent traces to distributed neocortical sites via the rhinal cortices. Recently, medial prefrontal (mPFC) neurons were shown to facilitate this process when their activity becomes synchronized. However, the mechanisms underlying this enhanced synchrony…

  1. Results on a binding neuron model and their implications for modified hourglass model for neuronal network.

    PubMed

    Arunachalam, Viswanathan; Akhavan-Tabatabaei, Raha; Lopez, Cristina

    2013-01-01

    The classical models of single neuron like Hodgkin-Huxley point neuron or leaky integrate and fire neuron assume the influence of postsynaptic potentials to last till the neuron fires. Vidybida (2008) in a refreshing departure has proposed models for binding neurons in which the trace of an input is remembered only for a finite fixed period of time after which it is forgotten. The binding neurons conform to the behaviour of real neurons and are applicable in constructing fast recurrent networks for computer modeling. This paper develops explicitly several useful results for a binding neuron like the firing time distribution and other statistical characteristics. We also discuss the applicability of the developed results in constructing a modified hourglass network model in which there are interconnected neurons with excitatory as well as inhibitory inputs. Limited simulation results of the hourglass network are presented.

  2. Corticosterone Signaling and a Lateral Habenula-Ventral Tegmental Area Circuit Modulate Compulsive Self-Injurious Behavior in a Rat Model.

    PubMed

    Guo, Yujie; Tang, Xun; Zhang, Jichuan; Jin, Sen; Li, Jinnan; Ding, Lufeng; Zhang, Keming; Yang, Chaoyu; Zhou, Hua; He, Xiaobin; Xu, Fuqiang; Bi, Guo-Qiang; Xu, Lin; Lau, Pak-Ming

    2018-06-06

    Self-injurious behavior (SIB) is commonly observed in patients with neuropsychiatric disorders, as well as in nonclinical populations with stress-related mental-health problems. However, the exact circuitry mechanisms underlying SIB have remained poorly understood. Here, with bilateral injection of muscimol into the entopeduncular nucleus (EP), we established a rat model of SIB. Following the muscimol injection, the male rats exhibited in a dose-dependent manner stereotypic self-biting behavior that lasted for hours and often resulted in wounds of various severities. The SIB was associated with an elevated level of serum corticosterone and could be exacerbated by enhancing the corticosterone signaling and, conversely, alleviated by inhibiting the corticosterone signaling. Activity mapping using c-fos immunostaining, combined with connectivity mapping using herpes simplex virus-based anterograde tracing from the EP and pseudorabies virus-based retrograde tracing from the masseter muscle, revealed the potential involvement of many brain areas in SIB. In particular, the lateral habenula (LHb) and the ventral tegmental area (VTA), the two connected brain areas involved in stress response and reward processing, showed a significant increase in neuronal activation during SIB. Furthermore, suppressing the LHb activity or modulating the GABAergic transmission in the VTA could significantly reduce the occurrence of SIB. These results demonstrate the importance of stress hormone signaling and the LHb-VTA circuit in modulating SIB resulting from EP malfunction, and suggest potential targets for therapeutic intervention of SIB and related disorders. SIGNIFICANCE STATEMENT Self-injurious behavior (SIB) occurs in ∼4% of the general population, with substantially higher occurrence among adolescents and patients of neuropsychiatric disorders. Stress has been linked to the occurrence of SIB, yet the underlying mechanisms have remained unclear. Using a rat model of SIB induced by disruption of activity in the entopeduncular nucleus (EP), we found that the behavior is regulated by stress and linked to corticosterone signaling. Viral tracing and c-fos immunostaining revealed the involvement of various subcortical areas, especially the EP-lateral habenula (LHb)-ventral tegmental area (VTA) circuit, in SIB. Furthermore, regulating activity in the LHb or the VTA alleviates SIB. These results may have implications in the development of new strategies for treating SIB. Copyright © 2018 the authors 0270-6474/18/385252-16$15.00/0.

  3. TRPA1 Is Functionally Expressed Primarily by IB4-Binding, Non-Peptidergic Mouse and Rat Sensory Neurons

    PubMed Central

    Stucky, Cheryl L.

    2012-01-01

    Subpopulations of somatosensory neurons are characterized by functional properties and expression of receptor proteins and surface markers. CGRP expression and IB4-binding are commonly used to define peptidergic and non-peptidergic subpopulations. TRPA1 is a polymodal, plasma membrane ion channel that contributes to mechanical and cold hypersensitivity during tissue injury, making it a key target for pain therapeutics. Some studies have shown that TRPA1 is predominantly expressed by peptidergic sensory neurons, but others indicate that TRPA1 is expressed extensively within non-peptidergic, IB4-binding neurons. We used FURA-2 calcium imaging to define the functional distribution of TRPA1 among peptidergic and non-peptidergic adult mouse (C57BL/6J) DRG neurons. Approximately 80% of all small-diameter (<27 µm) neurons from lumbar 1–6 DRGs that responded to TRPA1 agonists allyl isothiocyanate (AITC; 79%) or cinnamaldehyde (84%) were IB4-positive. Retrograde labeling via plantar hind paw injection of WGA-Alexafluor594 showed similarly that most (81%) cutaneous neurons responding to TRPA1 agonists were IB4-positive. Additionally, we cultured DRG neurons from a novel CGRP-GFP mouse where GFP expression is driven by the CGRPα promoter, enabling identification of CGRP-expressing live neurons. Interestingly, 78% of TRPA1-responsive neurons were CGRP-negative. Co-labeling with IB4 revealed that the majority (66%) of TRPA1 agonist responders were IB4-positive but CGRP-negative. Among TRPA1-null DRGs, few small neurons (2–4%) responded to either TRPA1 agonist, indicating that both cinnamaldehyde and AITC specifically target TRPA1. Additionally, few large neurons (≥27 µm diameter) responded to AITC (6%) or cinnamaldehyde (4%), confirming that most large-diameter somata lack functional TRPA1. Comparison of mouse and rat DRGs showed that the majority of TRPA1-responsive neurons in both species were IB4-positive. Together, these data demonstrate that TRPA1 is functionally expressed primarily in the IB4-positive, CGRP-negative subpopulation of small lumbar DRG neurons from rodents. Thus, IB4 binding is a better indicator than neuropeptides for TRPA1 expression. PMID:23133534

  4. Protein Kinase C Activation Promotes Microtubule Advance in Neuronal Growth Cones by Increasing Average Microtubule Growth Lifetimes

    PubMed Central

    Kabir, Nurul; Schaefer, Andrew W.; Nakhost, Arash; Sossin, Wayne S.; Forscher, Paul

    2001-01-01

    We describe a novel mechanism for protein kinase C regulation of axonal microtubule invasion of growth cones. Activation of PKC by phorbol esters resulted in a rapid, robust advance of distal microtubules (MTs) into the F-actin rich peripheral domain of growth cones, where they are normally excluded. In contrast, inhibition of PKC activity by bisindolylmaleimide and related compounds had no perceptible effect on growth cone motility, but completely blocked phorbol ester effects. Significantly, MT advance occurred despite continued retrograde F-actin flow—a process that normally inhibits MT advance. Polymer assembly was necessary for PKC-mediated MT advance since it was highly sensitive to a range of antagonists at concentrations that specifically interfere with microtubule dynamics. Biochemical evidence is presented that PKC activation promotes formation of a highly dynamic MT pool. Direct assessment of microtubule dynamics and translocation using the fluorescent speckle microscopy microtubule marking technique indicates PKC activation results in a nearly twofold increase in the typical lifetime of a MT growth episode, accompanied by a 1.7-fold increase and twofold decrease in rescue and catastrophe frequencies, respectively. No significant effects on instantaneous microtubule growth, shortening, or sliding rates (in either anterograde or retrograde directions) were observed. MTs also spent a greater percentage of time undergoing retrograde transport after PKC activation, despite overall MT advance. These results suggest that regulation of MT assembly by PKC may be an important factor in determining neurite outgrowth and regrowth rates and may play a role in other cellular processes dependent on directed MT advance. PMID:11238458

  5. Silent memory engrams as the basis for retrograde amnesia

    PubMed Central

    Roy, Dheeraj S.; Muralidhar, Shruti; Smith, Lillian M.

    2017-01-01

    Recent studies identified neuronal ensembles and circuits that hold specific memory information (memory engrams). Memory engrams are retained under protein synthesis inhibition-induced retrograde amnesia. These engram cells can be activated by optogenetic stimulation for full-fledged recall, but not by stimulation using natural recall cues (thus, amnesia). We call this state of engrams “silent engrams” and the cells bearing them “silent engram cells.” The retention of memory information under amnesia suggests that the time-limited protein synthesis following learning is dispensable for memory storage, but may be necessary for effective memory retrieval processes. Here, we show that the full-fledged optogenetic recall persists at least 8 d after learning under protein synthesis inhibition-induced amnesia. This long-term retention of memory information correlates with equally persistent retention of functional engram cell-to-engram cell connectivity. Furthermore, inactivation of the connectivity of engram cell ensembles with its downstream counterparts, but not upstream ones, prevents optogenetic memory recall. Consistent with the previously reported lack of retention of augmented synaptic strength and reduced spine density in silent engram cells, optogenetic memory recall under amnesia is stimulation strength-dependent, with low-power stimulation eliciting only partial recall. Finally, the silent engram cells can be converted to active engram cells by overexpression of α-p-21–activated kinase 1, which increases spine density in engram cells. These results indicate that memory information is retained in a form of silent engram under protein synthesis inhibition-induced retrograde amnesia and support the hypothesis that memory is stored as the specific connectivity between engram cells. PMID:29078397

  6. Silent memory engrams as the basis for retrograde amnesia.

    PubMed

    Roy, Dheeraj S; Muralidhar, Shruti; Smith, Lillian M; Tonegawa, Susumu

    2017-11-14

    Recent studies identified neuronal ensembles and circuits that hold specific memory information (memory engrams). Memory engrams are retained under protein synthesis inhibition-induced retrograde amnesia. These engram cells can be activated by optogenetic stimulation for full-fledged recall, but not by stimulation using natural recall cues (thus, amnesia). We call this state of engrams "silent engrams" and the cells bearing them "silent engram cells." The retention of memory information under amnesia suggests that the time-limited protein synthesis following learning is dispensable for memory storage, but may be necessary for effective memory retrieval processes. Here, we show that the full-fledged optogenetic recall persists at least 8 d after learning under protein synthesis inhibition-induced amnesia. This long-term retention of memory information correlates with equally persistent retention of functional engram cell-to-engram cell connectivity. Furthermore, inactivation of the connectivity of engram cell ensembles with its downstream counterparts, but not upstream ones, prevents optogenetic memory recall. Consistent with the previously reported lack of retention of augmented synaptic strength and reduced spine density in silent engram cells, optogenetic memory recall under amnesia is stimulation strength-dependent, with low-power stimulation eliciting only partial recall. Finally, the silent engram cells can be converted to active engram cells by overexpression of α-p-21-activated kinase 1, which increases spine density in engram cells. These results indicate that memory information is retained in a form of silent engram under protein synthesis inhibition-induced retrograde amnesia and support the hypothesis that memory is stored as the specific connectivity between engram cells.

  7. Enhanced Sensitivity to Hyperpolarizing Inhibition in Mesoaccumbal Relative to Nigrostriatal Dopamine Neuron Subpopulations

    PubMed Central

    2017-01-01

    Midbrain dopamine neurons recorded in vivo pause their firing in response to reward omission and aversive stimuli. While the initiation of pauses typically involves synaptic or modulatory input, intrinsic membrane properties may also enhance or limit hyperpolarization, raising the question of how intrinsic conductances shape pauses in dopamine neurons. Using retrograde labeling and electrophysiological techniques combined with computational modeling, we examined the intrinsic conductances that shape pauses evoked by current injections and synaptic stimulation in subpopulations of dopamine neurons grouped according to their axonal projections to the nucleus accumbens or dorsal striatum in mice. Testing across a range of conditions and pulse durations, we found that mesoaccumbal and nigrostriatal neurons differ substantially in rebound properties with mesoaccumbal neurons displaying significantly longer delays to spiking following hyperpolarization. The underlying mechanism involves an inactivating potassium (IA) current with decay time constants of up to 225 ms, and small-amplitude hyperpolarization-activated currents (IH), characteristics that were most often observed in mesoaccumbal neurons. Pharmacological block of IA completely abolished rebound delays and, importantly, shortened synaptically evoked inhibitory pauses, thereby demonstrating the involvement of A-type potassium channels in prolonging pauses evoked by GABAergic inhibition. Therefore, these results show that mesoaccumbal and nigrostriatal neurons display differential responses to hyperpolarizing inhibitory stimuli that favors a higher sensitivity to inhibition in mesoaccumbal neurons. These findings may explain, in part, observations from in vivo experiments that ventral tegmental area neurons tend to exhibit longer aversive pauses relative to SNc neurons. SIGNIFICANCE STATEMENT Our study examines rebound, postburst, and synaptically evoked inhibitory pauses in subpopulations of midbrain dopamine neurons. We show that pauses in dopamine neuron firing, evoked by either stimulation of GABAergic inputs or hyperpolarizing current injections, are enhanced by a subclass of potassium conductances that are recruited at voltages below spike threshold. Importantly, A-type potassium currents recorded in mesoaccumbal neurons displayed substantially slower inactivation kinetics, which, combined with weaker expression of hyperpolarization-activated currents, lengthened hyperpolarization-induced delays in spiking relative to nigrostriatal neurons. These results suggest that input integration differs among dopamine neurons favoring higher sensitivity to inhibition in mesoaccumbal neurons and may partially explain in vivo observations that ventral tegmental area neurons exhibit longer aversive pauses relative to SNc neurons. PMID:28219982

  8. Activity-Induced Remodeling of Olfactory Bulb Microcircuits Revealed by Monosynaptic Tracing

    PubMed Central

    Arenkiel, Benjamin R.; Hasegawa, Hiroshi; Yi, Jason J.; Larsen, Rylan S.; Wallace, Michael L.; Philpot, Benjamin D.; Wang, Fan; Ehlers, Michael D.

    2011-01-01

    The continued addition of new neurons to mature olfactory circuits represents a remarkable mode of cellular and structural brain plasticity. However, the anatomical configuration of newly established circuits, the types and numbers of neurons that form new synaptic connections, and the effect of sensory experience on synaptic connectivity in the olfactory bulb remain poorly understood. Using in vivo electroporation and monosynaptic tracing, we show that postnatal-born granule cells form synaptic connections with centrifugal inputs and mitral/tufted cells in the mouse olfactory bulb. In addition, newly born granule cells receive extensive input from local inhibitory short axon cells, a poorly understood cell population. The connectivity of short axon cells shows clustered organization, and their synaptic input onto newborn granule cells dramatically and selectively expands with odor stimulation. Our findings suggest that sensory experience promotes the synaptic integration of new neurons into cell type-specific olfactory circuits. PMID:22216277

  9. Genetic Approaches to Reveal the Connectivity of Adult-Born Neurons

    PubMed Central

    Arenkiel, Benjamin R.

    2011-01-01

    Much has been learned about the environmental and molecular factors that influence the division, migration, and programmed cell death of adult-born neurons in the mammalian brain. However, detailed knowledge of the mechanisms that govern the formation and maintenance of functional circuit connectivity via adult neurogenesis remains elusive. Recent advances in genetic technologies now afford the ability to precisely target discrete brain tissues, neuronal subtypes, and even single neurons for vital reporter expression and controlled activity manipulations. Here, I review current viral tracing methods, heterologous receptor expression systems, and optogenetic technologies that hold promise toward elucidating the wiring diagrams and circuit properties of adult-born neurons. PMID:21519388

  10. Role of Caspase-8 and Fas in Cell Death After Spinal Cord Injury

    PubMed Central

    Sobrido-Cameán, Daniel; Barreiro-Iglesias, Antón

    2018-01-01

    Spinal cord injury (SCI) causes the death of neurons and glial cells due to the initial mechanical forces (i.e., primary injury) and through a cascade of secondary molecular events (e.g., inflammation or excitotoxicity) that exacerbate cell death. The loss of neurons and glial cells that are not replaced after the injury is one of the main causes of disability after SCI. Evidence accumulated in last decades has shown that the activation of apoptotic mechanisms is one of the factors causing the death of intrinsic spinal cord (SC) cells following SCI. Although this is not as clear for brain descending neurons, some studies have also shown that apoptosis can be activated in the brain following SCI. There are two main apoptotic pathways, the extrinsic and the intrinsic pathways. Activation of caspase-8 is an important step in the initiation of the extrinsic pathway. Studies in rodents have shown that caspase-8 is activated in SC glial cells and neurons and that the Fas receptor plays a key role in its activation following a traumatic SCI. Recent work in the lamprey model of SCI has also shown the retrograde activation of caspase-8 in brain descending neurons following SCI. Here, we review our current knowledge on the role of caspase-8 and the Fas pathway in cell death following SCI. We also provide a perspective for future work on this process, like the importance of studying the possible contribution of Fas/caspase-8 signaling in the degeneration of brain neurons after SCI in mammals. PMID:29666570

  11. Spinally projecting neurons of the dorsal column nucleus in a reptile: locus of origin and trajectory of termination.

    PubMed

    Pritz, M B

    1996-01-01

    Interconnections between the dorsal column nucleus and the spinal cord were investigated in a reptile, Caiman crocodilus. After placement of an anterograde tracer into the dorsal column nucleus, descending fibers are seen to leave this nucleus to enter the dorsal funiculus where they course ventrally to terminate in lamina V of the spinal cord as far caudally as C2. Placement of a retrograde tracer into cut fibers of the cervical spinal cord identified the relay cells of the dorsal column nucleus that project to the spinal cord. These neurons were mainly clustered in a caudal and ventral part of this nucleus. The soma of these spinally projecting cells were small and were generally round or oval in shape. A number of these neurons had the long axis of their soma oriented dorsoventrally, with a primary dendrite extending dorsally. Fibers in the dorsal funiculus that originated from the spinal cord enter the caudal part of the dorsal column nucleus and turn ventral. In the dorsal column nucleus, these axons run parallel to the vertically oriented dendrites of these spinally projecting cells before termination in close relation to the cell bodies of these neurons. Quantitative observations (mean +/- standard error) were made on well labeled neurons and included several measurements: area, perimeter, and degree of eccentricity (greatest width/greatest length) in both the transverse as well as the sagittal plane. These spinally projecting neurons in Caiman are located in the dorsal column nucleus in a position similar to that of spinally projecting cells in cats.

  12. Regulation of Hypothalamic Presympathetic Neurons and Sympathetic Outflow by Group II Metabotropic Glutamate Receptors in Spontaneously Hypertensive Rats.

    PubMed

    Ye, Zeng-You; Li, De-Pei; Pan, Hui-Lin

    2013-08-01

    Increased glutamatergic input in the hypothalamic paraventricular nucleus (PVN) plays an important role in the development of hypertension. Group II metabotropic glutamate receptors are expressed in the PVN, but their involvement in regulating synaptic transmission and sympathetic outflow in hypertension is unclear. Here, we show that the group II metabotropic glutamate receptors agonist (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV) produced a significantly greater reduction in the frequency of spontaneous and miniature excitatory postsynaptic currents and in the amplitude of electrically evoked excitatory postsynaptic currents in retrogradely labeled spinally projecting PVN neurons in spontaneously hypertensive rats (SHRs) than in normotensive control rats. DCG-IV similarly decreased the frequency of GABAergic inhibitory postsynaptic currents of labeled PVN neurons in the 2 groups of rats. Strikingly, DCG-IV suppressed the firing of labeled PVN neurons only in SHRs. DCG-IV failed to inhibit the firing of PVN neurons of SHRs in the presence of ionotropic glutamate receptor antagonists. Lowering blood pressure with celiac ganglionectomy in SHRs normalized the DCG-IV effect on excitatory postsynaptic currents to the same level seen in control rats. Furthermore, microinjection of DCG-IV into the PVN significantly reduced blood pressure and sympathetic nerve activity in SHRs. Our findings provide new information that presynaptic group II metabotropic glutamate receptor activity at the glutamatergic terminals increases in the PVN in SHRs. Activation of group II metabotropic glutamate receptors in the PVN inhibits sympathetic vasomotor tone through attenuation of increased glutamatergic input and neuronal hyperactivity in SHRs.

  13. Anatomical Evidence that the Superior Colliculus Controls Saccades through Central Mesencephalic Reticular Formation Gating of Omnipause Neuron Activity

    PubMed Central

    Wang, Niping; Perkins, Eddie; Zhou, Lan; Warren, Susan

    2013-01-01

    Omnipause neurons (OPNs) within the nucleus raphe interpositus (RIP) help gate the transition between fixation and saccadic eye movements by monosynaptically suppressing activity in premotor burst neurons during fixation, and releasing them during saccades. Premotor neuron activity is initiated by excitatory input from the superior colliculus (SC), but how the tectum's saccade-related activity turns off OPNs is not known. Since the central mesencephalic reticular formation (cMRF) is a major SC target, we explored whether this nucleus has the appropriate connections to support tectal gating of OPN activity. In dual-tracer experiments undertaken in macaque monkeys (Macaca fascicularis), cMRF neurons labeled retrogradely from injections into RIP had numerous anterogradely labeled terminals closely associated with them following SC injections. This suggested the presence of an SC–cMRF–RIP pathway. Furthermore, anterograde tracers injected into the cMRF of other macaques labeled axonal terminals in RIP, confirming this cMRF projection. To determine whether the cMRF projections gate OPN activity, postembedding electron microscopic immunochemistry was performed on anterogradely labeled cMRF terminals with antibody to GABA or glycine. Of the terminals analyzed, 51.4% were GABA positive, 35.5% were GABA negative, and most contacted glycinergic cells. In summary, a trans-cMRF pathway connecting the SC to the RIP is present. This pathway contains inhibitory elements that could help gate omnipause activity and allow other tectal drives to induce the bursts of firing in premotor neurons that are necessary for saccades. The non-GABAergic cMRF terminals may derive from fixation units in the cMRF. PMID:24107960

  14. Anatomical evidence that the superior colliculus controls saccades through central mesencephalic reticular formation gating of omnipause neuron activity.

    PubMed

    Wang, Niping; Perkins, Eddie; Zhou, Lan; Warren, Susan; May, Paul J

    2013-10-09

    Omnipause neurons (OPNs) within the nucleus raphe interpositus (RIP) help gate the transition between fixation and saccadic eye movements by monosynaptically suppressing activity in premotor burst neurons during fixation, and releasing them during saccades. Premotor neuron activity is initiated by excitatory input from the superior colliculus (SC), but how the tectum's saccade-related activity turns off OPNs is not known. Since the central mesencephalic reticular formation (cMRF) is a major SC target, we explored whether this nucleus has the appropriate connections to support tectal gating of OPN activity. In dual-tracer experiments undertaken in macaque monkeys (Macaca fascicularis), cMRF neurons labeled retrogradely from injections into RIP had numerous anterogradely labeled terminals closely associated with them following SC injections. This suggested the presence of an SC-cMRF-RIP pathway. Furthermore, anterograde tracers injected into the cMRF of other macaques labeled axonal terminals in RIP, confirming this cMRF projection. To determine whether the cMRF projections gate OPN activity, postembedding electron microscopic immunochemistry was performed on anterogradely labeled cMRF terminals with antibody to GABA or glycine. Of the terminals analyzed, 51.4% were GABA positive, 35.5% were GABA negative, and most contacted glycinergic cells. In summary, a trans-cMRF pathway connecting the SC to the RIP is present. This pathway contains inhibitory elements that could help gate omnipause activity and allow other tectal drives to induce the bursts of firing in premotor neurons that are necessary for saccades. The non-GABAergic cMRF terminals may derive from fixation units in the cMRF.

  15. Differential regulation of ASICs and TRPV1 by zinc in rat bronchopulmonary sensory neurons.

    PubMed

    Vysotskaya, Zhanna V; Moss, Charles R; Gu, Qihai

    2014-12-01

    Zinc has been known to act as a signaling molecule that regulates a variety of neuronal functions. In this study, we aimed to study the effect of zinc on two populations of acid-sensitive ion channels, acid-sensing ion channels (ASICs), and transient receptor potential vanilloid receptor-1 (TRPV1), in vagal bronchopulmonary sensory neurons. Rat vagal sensory neurons innervating lungs and airways were retrogradely labeled with a fluorescent tracer. Whole-cell perforated patch-clamp recordings were carried out in primarily cultured bronchopulmonary sensory neurons. The acid-evoked ASIC and TRPV1 currents were measured and compared between before and after the zinc pretreatment. ASIC currents were induced by a pH drop from 7.4 to 6.8 or 6.5 in the presence of capsazepine (10 µM), a specific TRPV1 antagonist. Pretreatment with zinc (50 or 300 µM, 2 min) displayed different effects on the two distinct phenotypes of ASIC currents: a marked potentiation on ASIC channels with fast kinetics of activation and inactivation or no significant effect on ASIC currents with slow activation and inactivation. On the other hand, pretreatment with zinc significantly inhibited the acid (pH 5.5 or 5.3)-induced TRPV1 currents. The inhibition was abolished by intracellular chelation of zinc by TPEN (25 µM), indicating that intracellular accumulation of zinc was likely required for its inhibitory effect on TRPV1 channels. Our study showed that zinc differentially regulates the activities of ASICs and TRPV1 channels in rat vagal bronchopulmonary sensory neurons.

  16. Substrate Deformation Predicts Neuronal Growth Cone Advance

    PubMed Central

    Athamneh, Ahmad I.M.; Cartagena-Rivera, Alexander X.; Raman, Arvind; Suter, Daniel M.

    2015-01-01

    Although pulling forces have been observed in axonal growth for several decades, their underlying mechanisms, absolute magnitudes, and exact roles are not well understood. In this study, using two different experimental approaches, we quantified retrograde traction force in Aplysia californica neuronal growth cones as they develop over time in response to a new adhesion substrate. In the first approach, we developed a novel method, to our knowledge, for measuring traction forces using an atomic force microscope (AFM) with a cantilever that was modified with an Aplysia cell adhesion molecule (apCAM)-coated microbead. In the second approach, we used force-calibrated glass microneedles coated with apCAM ligands to guide growth cone advance. The traction force exerted by the growth cone was measured by monitoring the microneedle deflection using an optical microscope. Both approaches showed that Aplysia growth cones can develop traction forces in the 100–102 nN range during adhesion-mediated advance. Moreover, our results suggest that the level of traction force is directly correlated to the stiffness of the microneedle, which is consistent with a reinforcement mechanism previously observed in other cell types. Interestingly, the absolute level of traction force did not correlate with growth cone advance toward the adhesion site, but the amount of microneedle deflection did. In cases of adhesion-mediated growth cone advance, the mean needle deflection was 1.05 ± 0.07 μm. By contrast, the mean deflection was significantly lower (0.48 ± 0.06 μm) when the growth cones did not advance. Our data support a hypothesis that adhesion complexes, which can undergo micron-scale elastic deformation, regulate the coupling between the retrogradely flowing actin cytoskeleton and apCAM substrates, stimulating growth cone advance if sufficiently abundant. PMID:26445437

  17. Anatomical evidence for brainstem circuits mediating feeding motor programs in the leopard frog, Rana pipiens.

    PubMed

    Anderson, C W

    2001-09-01

    Using injections of small molecular weight fluorescein dextran amines, combined with activity-dependent uptake of sulforhodamine 101 (SR101), brainstem circuits presumed to be involved in feeding motor output were investigated. As has been shown previously in other studies, projections to the cerebellar nuclei were identified from the cerebellar cortex, the trigeminal motor nucleus, and the vestibular nuclei. Results presented here suggest an additional pathway from the hypoglossal motor nuclei to the cerebellar nucleus as well as an afferent projection from the peripheral hypoglossal nerve to the Purkinje cell layer of the cerebellar cortex. Injections in the cerebellar cortex combined with retrograde labeling of the peripheral hypoglossal nerve demonstrate anatomical convergence at the level of the medial reticular formation. This suggests a possible integrative region for afferent feedback from the hypoglossal nerve and information through the Purkinje cell layer of the cerebellar cortex. The activity-dependent uptake of SR101 additionally suggests a reciprocal, polysynaptic pathway between this same area of the medial reticular formation and the trigeminal motor nuclei. The trigeminal motor neurons innervate the m adductor mandibulae, the primary mouth-closing muscle. The SR101 uptake clearly labeled the ventrolateral hypoglossal nuclei, the medial reticular formation, and the Purkinje cell layer of the cerebellar cortex. Unlike retrograde labeling of the peripheral hypoglossal nerve, stimulating the hypoglossal nerve while SR101 was bath-applied labeled trigeminal motor neurons. This, combined with the dextran labeling, suggests a reciprocal connection between the trigeminal motor nuclei and the cerebellar nuclei, as well as the medulla. Taken together, these data are important for understanding the neurophysiological pathways used to coordinate the proper timing of an extremely rapid, goal-directed movement and may prove useful for elucidating some of the first principles of sensorimotor integration.

  18. Bidirectional crosstalk between the sensory and sympathetic motor systems innervating brown and white adipose tissue in male Siberian hamsters.

    PubMed

    Ryu, Vitaly; Watts, Alan G; Xue, Bingzhong; Bartness, Timothy J

    2017-03-01

    The brain networks connected to the sympathetic motor and sensory innervations of brown (BAT) and white (WAT) adipose tissues were originally described using two transneuronally transported viruses: the retrogradely transported pseudorabies virus (PRV), and the anterogradely transported H129 strain of herpes simplex virus-1 (HSV-1 H129). Further complexity was added to this network organization when combined injections of PRV and HSV-1 H129 into either BAT or WAT of the same animal generated sets of coinfected neurons in the brain, spinal cord, and sympathetic and dorsal root ganglia. These neurons are well positioned to act as sensorimotor links in the feedback circuits that control each fat pad. We have now determined the extent of sensorimotor crosstalk between interscapular BAT (IBAT) and inguinal WAT (IWAT). PRV152 and HSV-1 H129 were each injected into IBAT or IWAT of the same animal: H129 into IBAT and PRV152 into IWAT. The reverse configuration was applied in a different set of animals. We found single-labeled neurons together with H129+PRV152 coinfected neurons in multiple brain sites, with lesser numbers in the sympathetic and dorsal root ganglia that innervate IBAT and IWAT. We propose that these coinfected neurons mediate sensory-sympathetic motor crosstalk between IBAT and IWAT. Comparing the relative numbers of coinfected neurons between the two injection configurations showed a bias toward IBAT-sensory and IWAT-sympathetic motor feedback loops. These coinfected neurons provide a neuroanatomical framework for functional interactions between IBAT thermogenesis and IWAT lipolysis that occurs with cold exposure, food restriction/deprivation, exercise, and more generally with alterations in adiposity. Copyright © 2017 the American Physiological Society.

  19. Sustained expression of PGC-1α in the rat nigrostriatal system selectively impairs dopaminergic function

    PubMed Central

    Ciron, C.; Lengacher, S.; Dusonchet, J.; Aebischer, P.; Schneider, B.L.

    2012-01-01

    Mitochondrial dysfunction and oxidative stress have been implicated in the etiology of Parkinson's disease. Therefore, pathways controlling mitochondrial activity rapidly emerge as potential therapeutic targets. Here, we explore the neuronal response to prolonged overexpression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), a transcriptional regulator of mitochondrial function, both in vitro and in vivo. In neuronal primary cultures from the ventral midbrain, PGC-1α induces mitochondrial biogenesis and increases basal respiration. Over time, we observe an increasing proportion of the oxygen consumed by neurons which are dedicated to adenosine triphosphate production. In parallel to enhanced oxidative phosphorylation, PGC-1α progressively leads to a decrease in mitochondrial polarization. In the adult rat nigrostriatal system, adeno-associated virus (AAV)-mediated overexpression of PGC-1α induces the selective loss of dopaminergic markers and increases dopamine (DA) catabolism, leading to a reduction in striatal DA content. In addition, PGC-1α prevents the labeling of nigral neurons following striatal injection of the fluorogold retrograde tracer. When PGC-1α is expressed at higher levels following intranigral AAV injection, it leads to overt degeneration of dopaminergic neurons. Finally, PGC-1α overexpression does not prevent nigrostriatal degeneration in pathologic conditions induced by α-synuclein overexpression. Overall, we find that lasting overexpression of PGC-1α leads to major alterations in the metabolic activity of neuronal cells which dramatically impair dopaminergic function in vivo. These results highlight the central role of PGC-1α in the function and survival of dopaminergic neurons and the critical need for maintaining physiological levels of PGC-1α activity. PMID:22246294

  20. Obesity-driven synaptic remodeling affects endocannabinoid control of orexinergic neurons

    PubMed Central

    Cristino, Luigia; Busetto, Giuseppe; Imperatore, Roberta; Ferrandino, Ida; Palomba, Letizia; Silvestri, Cristoforo; Petrosino, Stefania; Orlando, Pierangelo; Bentivoglio, Marina; Mackie, Kenneth; Di Marzo, Vincenzo

    2013-01-01

    Acute or chronic alterations in energy status alter the balance between excitatory and inhibitory synaptic transmission and associated synaptic plasticity to allow for the adaptation of energy metabolism to new homeostatic requirements. The impact of such changes on endocannabinoid and cannabinoid receptor type 1 (CB1)-mediated modulation of synaptic transmission and strength is not known, despite the fact that this signaling system is an important target for the development of new drugs against obesity. We investigated whether CB1-expressing excitatory vs. inhibitory inputs to orexin-A–containing neurons in the lateral hypothalamus are altered in obesity and how this modifies endocannabinoid control of these neurons. In lean mice, these inputs are mostly excitatory. By confocal and ultrastructural microscopic analyses, we observed that in leptin-knockout (ob/ob) obese mice, and in mice with diet-induced obesity, orexinergic neurons receive predominantly inhibitory CB1-expressing inputs and overexpress the biosynthetic enzyme for the endocannabinoid 2-arachidonoylglycerol, which retrogradely inhibits synaptic transmission at CB1-expressing axon terminals. Patch-clamp recordings also showed increased CB1-sensitive inhibitory innervation of orexinergic neurons in ob/ob mice. These alterations are reversed by leptin administration, partly through activation of the mammalian target of rapamycin pathway in neuropeptide-Y-ergic neurons of the arcuate nucleus, and are accompanied by CB1-mediated enhancement of orexinergic innervation of target brain areas. We propose that enhanced inhibitory control of orexin-A neurons, and their CB1-mediated disinhibition, are a consequence of leptin signaling impairment in the arcuate nucleus. We also provide initial evidence of the participation of this phenomenon in hyperphagia and hormonal dysregulation in obesity. PMID:23630288

Top