Sample records for reu site program

  1. An Analysis of NSF Geosciences Research Experience for Undergraduate Site Programs from 2009 to 2012

    NASA Astrophysics Data System (ADS)

    Rom, E. L.; Patino, L. C.; Gonzales, J.; Weiler, C. S.; Antell, L.; Colon, Y.; Sanchez, S. C.

    2012-12-01

    The Research Experience for Undergraduate (REU) Program at the U.S. National Science Foundation (NSF) provides undergraduate students from across the nation the opportunity to conduct research at a different institution and in an area that may not be available at their home campus. REU Sites funded by the Directorate of Geosciences provide student research opportunities in earth, ocean, atmospheric and geospace research. This paper provides an overview of the Geosciences REU Site programs run from 2009 to 2012. Information was gathered from over 45 REU sites each year on recruitment methods, student demographics, enrichment activities, and fields of research. The internet is the most widely used mechanism to recruit participants. The admissions rate for REU Sites in Geosciences varies by discipline but averages between 6% to 18% each year, with the majority of participants being rising seniors and juniors. A few Sites include rising sophomores and freshmen. Most students attend PhD granting institutions. Among the participants, gender distribution depends on discipline, with atmospheric and geospace sciences having more male than female participants, but ocean and earth sciences having a majority of female participants. Regarding ethnic diversity, the REU Sites reflect the difficulty of attracting diverse students into Geosciences as a discipline; a large majority of the participants are Caucasian or Asian students. Furthermore, participants from minority-serving institutions or community colleges constitute a small percentage of those taking part in these research experiences. The enrichment activities are very similar across the REU Sites, and mimic well activities common to the scientific community, including intellectual exchange of ideas (lab meetings, seminars, and professional meetings), networking and social activities. Results from this study will be used to examine strengths in the REU Sites in the Geosciences and opportunities for improvement in the program. The data provided here also represent an excellent benchmark by which to measure future changes in student participation and program design that may result from 2012 changes in the REU program solicitation. For example, one important change is that REU programs are now required to include greater participation of students who are attending non-research institutions.

  2. 2012 NNIN REU Program | National Nanotechnology Infrastructure Network

    Science.gov Websites

    Effects of RAD51 Assembly on dsDNA with Magnetic Tweezers, page 26 Morgan McGuinness, page NNIN iREU Site Kelly Suralik, page NNIN iREU Site: Japan Effects of Membrane Surface Modification on Calcium Carbonate REU Site: Howard University Controlling and Understanding the Effects of Reactive Colloids' Packing on

  3. An Analysis of NSF Geosciences Research Experience for Undergraduate Site Programs from 2009 through 2011

    NASA Astrophysics Data System (ADS)

    Rom, E. L.; Patino, L. C.; Weiler, S.; Sanchez, S. C.; Colon, Y.; Antell, L.

    2011-12-01

    The Research Experience for Undergraduate (REU) Program at the U.S. National Science Foundation (NSF) provides U.S. undergraduate students from any college or university the opportunity to conduct research at a different institution and gain a better understanding of research career pathways. The Geosciences REU Sites foster research opportunities in areas closely aligned with geoscience programs, particularly those related to earth, atmospheric and ocean sciences. The aim of this paper is to provide an overview of the Geosciences REU Site programs run in 2009 through 2011. A survey requesting information on recruitment methods, student demographics, enrichment activities, and fields of research was sent to the Principal Investigators of each of the active REU Sites. Over 70% of the surveys were returned with the requested information from about 50 to 60 sites each year. The internet is the most widely used mechanism to recruit participants, with personal communication as the second most important recruiting tool. The admissions rate for REU Sites in Geosciences varies from less than 10% to 50%, with the majority of participants being rising seniors and juniors. Many of the participants come from non-PhD granting institutions. Among the participants, gender distribution varies by discipline, with ocean sciences having a large majority of women and earth sciences having a majority of men. Regarding ethnic diversity, the REU Sites reflect the difficulty of attracting diverse students into Geosciences as a discipline; a large majority of participants are Caucasian and Asian students. Furthermore, participants from minority-serving institutions and community colleges constitute a small percentage of those taking part in these research experiences. The enrichment activities are very similar across the REU Sites, and mimic activities common to the scientific community, including intellectual exchange of ideas (lab meetings, seminars, and professional meetings), networking and social activities. The results from this survey will be used to examine strengths in the REU Sites in the Geosciences, opportunities that may be under utilized, and community needs to enhance this NSF wide program.

  4. An Analysis of NSF Geosciences 2009 Research Experience for Undergraduate Site Programs

    NASA Astrophysics Data System (ADS)

    Sanchez, S. C.; Patino, L. C.; Rom, E. L.; Weiler, S. C.

    2009-12-01

    The Research Experience for Undergraduate (REU) Program at the U.S. National Science Foundation (NSF) provides undergraduate students the opportunity to conduct research at different institutions and in areas that may not be available in their home campuses. The Geosciences REU Sites foster research opportunities in areas closely aligned with undergraduate majors and facilitates discovery of the multidisciplinary nature of the Geosciences. The aim of this paper is to provide an overview of the Geosciences REU Site programs run in 2009. A survey requesting information on recruitment methods, student demographics, enrichment activities, and fields of research was sent to the Principal Investigators of each of the 50 active REU Sites; over 70% of the surveys were returned with the requested information. The internet is the most widely used mechanism to recruit participants, but the survey did not distinguish among different tools like websites, emails, social networks, etc. The admissions rate for REU Sites in Geosciences varies from less than 10% to 50%, with the majority of participants being rising seniors and juniors. A few Sites include rising sophomores. At least 40% of the participants come from non-PhD granting institutions. Among the participants, gender distribution is balanced, with a slightly larger number of female participants. Regarding ethnic diversity, the REU Sites reflect the difficulty of attracting diverse students into Geosciences as a discipline; more than 75% of the participants are Caucasian and Asian students. Furthermore, participants from minority-serving institutions constitute a small percentage of those taking part in these research experiences. The enrichment activities are very similar across the REU Sites, and mimic well activities common to the scientific community, including intellectual exchange of ideas (lab meetings, seminars, and professional meetings), networking and social activities. There are some clear similarities among REU Sites managed by the three divisions in the Directorate of Geosciences (e.g. recruitment tools, academic level of participants, and enrichment activities), but other aspects vary among the Sites managed by the different divisions (e.g. admissions rate, diversity, and distribution among research disciplines). The results from this survey will be used to examine strengths in the REU Sites in the Geosciences, opportunities that may be under utilized, and community needs to enhance this NSF wide program.

  5. Participant Trends in the Geosciences Research Experiences for Undergraduates Program

    NASA Astrophysics Data System (ADS)

    Walters, C. K.; Patino, L. C.; Rom, E. L.; Adams, A. S.

    2016-12-01

    The National Science Foundation (NSF) supports programs for undergraduate students to gain experience in research. In 2016, there were nearly 60 active Research Experience for Undergraduate (REU) sites across the nation that provided research opportunities in Geosciences (GEO). At these REU sites, students carried out independent research projects and had the chance to present the information at national conferences. The participants often joined research groups that included other undergraduate and graduate students, postdoctoral scholars, and investigators. Between 2009 and 2016, there were over 26,000 applications to GEO REU sites and about 1,953 applicants were selected to participate. Data for GEO REU sites has been collected using two mechanisms, direct queries to the REU site managers (2009-2012, and 2016) and analysis of award progress reports (2014-2015). The information collected since 2009 has provided a temporal description of who is participating in the GEO REU sites (e.g. gender, demographics, academic level). The analysis of the trends in the REU sites has shown an increase of women participating in the research opportunities across all disciplines, to the point that in some sites there is need to increase the participation of men. The number of minority and underrepresented students has also increased. Throughout this period, the academic level of the participants in GEO REU sites has also changed; the number of students who have completed only the first or second year of college has increased. The trends in the data allow NSF to understand who is participating in the REUs and to incentivize the research community to engage students who will benefit from these experiences, but who are not currently participating.

  6. Who is looking for an internship and successful in obtaining one? Examining application data from REU programs funded through NSF GEO

    NASA Astrophysics Data System (ADS)

    Hubenthal, M.; Kelly, M.

    2017-12-01

    The Directorate for Geosciences (GEO) at the National Science Foundation (NSF) is currently funding 60 Research Experiences for Undergraduate (REU) sites. Each site offers opportunities for 8 to 12 undergraduates to participate in research within solid earth, oceans, atmospheric and cryosphere sciences. Because applicant data is collected at individual REU sites, the exact number of unique applicants to all REU sites, and the demographics of this national applicant pool has not been previously reported. While some sites do provide some of this information to NSF in annual reports, obtaining and combining such data is problematic because the percentage of individuals that apply to multiple programs is unknown and generally believed anecdotally to be high, especially for students traditionally underrepresented in the geosciences. Understanding both the scale and makeup of the national applicant pool is important for several reasons. First, very little is known about how the supply and geographic location of slots in REU programs compares to the demand from undergraduate STEM majors interested in research experiences. Second, research into internship programs and their role in the career development process are limited by a lack of baseline data that includes both successful and unsuccessful internship applicants across the various sub-disciplines of the Earth sciences. Finally, designing and refining efforts to engage underrepresented populations in STEM research, and measuring the impact of such efforts is difficult without baseline data for comparison. We will present aggregate application data from up to 20 GEO REU funded programs. These programs represent Oceans, Atmospheres and Earth Science research areas and includes over a thousand applicants. Preliminary analysis suggests the number of unique applicants in the pool is higher than anecdotally predicted. Similarly, unique applicants from underrepresented communities also appears higher than anticipated.

  7. Supporting REU Leaders and Effective Workforce Development in the Geosciences

    NASA Astrophysics Data System (ADS)

    Sloan, V.; Haacker, R.

    2014-12-01

    Research shows that research science experiences for undergraduates are key to the engagement of students in science, and teach critical thinking and communication, as well as the professional development skills. Nonetheless, undergraduate research programs are time and resource intensive, and program managers work in relative isolation from each other. The benefits of developing an REU community include sharing strategies and policies, developing collaborative efforts, and providing support to each other. This paper will provide an update on efforts to further develop the Geoscience REU network, including running a national workshop, an email listserv, workshops, and the creation of online resources for REU leaders. The goal is to strengthen the connections between REU community members, support the sharing of best practices in a changing REU landscape, and to make progress in formalizing tools for REU site managers.

  8. Preparing undergraduates for the future of scientific collaboration: Benefits, challenges and technological solutions in Distributed REU Sites

    NASA Astrophysics Data System (ADS)

    Hubenthal, M.; Anagnos, T.

    2012-12-01

    As research problems increasingly require multi-disciplinary approaches they naturally foster scientific collaborations between geographically distributed colleagues. This increasing trend in scientific research, the rapid evolution of communication technology, cognitive research into distance education, and the current generation of undergraduate students' eagerness to embrace and use technology, increases the relevance of distributed REU sites. Like traditional REU sites that host a cohort of students in one geographic location, distributed REU sites also seek to attract, nurture, and retain students in a STEM career pipeline. Distributed REU sites are unique in that some or all of the interns are geographically distributed during the research period. This arrangement allows the REU site to capitalize on distributed scientific resources such as field sites, research facilities, or human capital. At their core, distributed REU sites are fundamentally constructed of elements that have proven to be effective components of any undergraduate research experience. They also strive to develop and employ specialized programming that leverages collaboration tools through a cyberinfrastructure to enable interns to develop meaningful social and academic relationships with one another. Since 2006 the IRIS Consortium and NEES have facilitated separate, NSF funded, distributed REU Sites. Implementation and evaluations of these programs have revealed a number of successes and benefits. Longitudinal tracking indicates that distributed REU Sites are at least as successful as traditional sites in attracting, nurturing, and retaining students in a STEM career pipeline. A distributed arrangement also offers benefits over a traditional REU site, such as the flexibility to place interns at a variety of institutions with mentors making only an annual commitment to participate. This ensures that all mentors are eager to participate and are concerned with their intern's growth. It also exposes all interns to a larger spectrum of research topics and approaches within a field than would be available within a single research site. Evaluations also reveal that fostering social and academic interactions among interns working on generally unrelated projects at separate locations is challenging and requires a consistent, focused effort by the program. In part this is because creating a cohort experience in this situation requires a layer of interaction beyond the networks naturally establish by the interns when co-located. A critical first step is to establish a social presence among the group. This occurs through early face-to-face meetings and then is carried forward as interns transition to virtual interactions. These virtual interactions occur through a variety of technological solutions. Both commercially and freely available technologies such as blogging software, Facebook, an online course management system, virtual worlds, and a variety of online conferencing applications are used to connect the students both synchronously and asynchronously. We have documented the strengths and weaknesses of these individual solutions and show how combinations, combined with programmatic interventions, can offer a suite of functionality necessary to facilitate both social and academic interactions and influence career paths.

  9. Multidisciplinary "Boot Camp" Training in Cellular Bioengineering to Accelerate Research Immersion for REU Participants

    ERIC Educational Resources Information Center

    Shreiber, David I.; Moghe, Prabhas V.; Roth, Charles M.

    2015-01-01

    Research Experiences for Undergraduates (REU) sites widely serve as the first major research gateway for undergraduates seeking a structured research experience. Given their lack of prior research skills, and the highly compressed duration of the REU programs, these students frequently encounter barriers to a seamless transition into a new…

  10. Serving Community College Students: Student Preparation, Development and Growth through the REU Experience

    NASA Astrophysics Data System (ADS)

    Kim, C. S.; Osborn, J.; Smith, M.

    2014-12-01

    Effectively recruiting and engaging community college students in STEM research experiences is an increasingly important goal of the NSF but has not historically been the primary focus of most NSF-REU Site programs. The Summer Undergraduate Research Fellowship in Earth and Environmental Sciences (SURFEES) program at Chapman University, a primarily undergraduate institution in Southern California, is the site of the first NSF-REU program in the NSF's Division of Earth Sciences that selects participants exclusively from local partnering community colleges. Building on and now running parallel with a successful internally-funded summer research program already in place and available only to Chapman undergraduates, the SURFEES program incorporates specific mentor and participant pre-experience training, pre-, mid-, and post-assessment instruments, and programming targeted to the earth and environmental sciences as well as to community college students. Perhaps most importantly, the application, selection and pairing of student participants with faculty mentors was conducted with specific goals of identifying those applicants with the greatest potential for a transformative experience while also meeting self-defined targets of under-represented minority, female, and low-income participants. Initial assessment results of the first participant cohort from summer 2014 and lessons learned for creating/adapting an NSF-REU site to involve community college students will be discussed.

  11. Under the hood of IRIS's Distributed REU Site

    NASA Astrophysics Data System (ADS)

    Hubenthal, M.; Taber, J.

    2014-12-01

    Since 1998 the IRIS Undergraduate Internship Program has provided research experiences for up to 15 students each summer. Through this 9 to 11 week internship program, students take part in an intensive week-long preparatory course, and work with leaders in seismological research, in both lab-base and field-based settings, to produce research products worthy of presentation and recognition at large professional conferences. The IRIS internship program employs a distributed REU model that has been demonstrated to bond students into a cohort, and maintain group cohesion despite students conducting their research at geographically distributed sites. Over the past 16 years the program has encountered numerous anticipated and unanticipated challenges. The primary challenges have involved exploring how to modify the REU-system to produce outcomes that are better aligned with our programmatic goals. For example, some questions we have attempted to address include: How can the success of an REU site be measured? How do you find, interest, and recruit under-represented minorities into a geophysics program? Can the program increase the probability of interns receiving some minimal level of mentoring across the program? While it is likely that no single answer to these questions exists, we have developed and piloted a number of strategies. These approaches have been developed through a process of identifying relevant research results from other REUs and combing this information with data from our own programmatic evaluations. This data informs the development of specific changes within our program which are then measured as a feedback. We will present our current strategies to address each questions along with measures of their effectiveness. In addition to broad scale systematic issues, we have also placed significant effort into responding to smaller, process challenges that all REU sites face. These range from simple logistical issues (e.g. liability), to educational issues (e.g. what "assignments" are meaningful but not so overwhelming as to take away from research time), to longer term issues such as building an effective alumni network, tracking participants, and maintaining funding. While each REU is unique, we will share our approaches to dealing with these issues, as such topics may be of use to other REUs.

  12. REU Site: CUNY/GISS CGCR - Increasing Diversity in Earth and Space Science and Space Technology Research

    NASA Astrophysics Data System (ADS)

    Johnson, L. P.; Marchese, P.; Carlson, B. E.; Howard, A. M.; Damas, M. C.; Boxe, C.; Sohl, L. E.; Cheung, T. D.; Zavala-Gutierrez, R.; Jiang, M.

    2016-12-01

    This presentation describes student projects and accomplishments of the NSF REU Site: The City University of New York / NASA Goddard Institute for Space Studies Center for Global Climate Research. These student experiences contribute to the preparation of a diverse workforce in the areas of ocean modeling, planetary atmospheres, atmospheric science, climate change, heliophysics and space technology. It is important to motivate students to continue their studies towards advanced degrees and pursue careers related to these fields of study. This is best accomplished by involving undergraduates in research. For the past three years, this REU Site has supported research for more than 35 students, approximately 60 percent from underrepresented minorities and 35 percent female. All the students have progressed towards their degrees and some have advanced to graduate study. This program is supported by NSF award AGS-1359293 REU Site: CUNY/GISS Center for Global Climate Research and the NASA New York State Space Grant Consortium and in collaboration with the NASA Goddard Institute for Space Studies (GISS).

  13. Wyoming Infrared Observatory's Summer Undergraduate Research Assistantship Program: 10 Years of REU

    NASA Astrophysics Data System (ADS)

    Canterna, R.; Beck, K.; Hickman, M. A.

    1996-05-01

    The Wyoming Infrared Observatory's Summer Undergraduate Research Assistantship Program (SURAP) will complete its tenth year as an NSF REU site. Using the theme, a tutorial in research, SURAP has provided research experience for over 90 students from all regions of the United States. We will present typical histories of past students to illustrate the impact an REU experience has on the scientific careers of these students. Demographic data will be presented to show the diverse backgrounds of our SURAP students. A short film describing our science ethics seminar will be available for later presentation.

  14. The SARA REU Site Program

    NASA Astrophysics Data System (ADS)

    Wood, M. A.; Oswalt, T. D.; SARA Collaboration

    2000-12-01

    We present an overview of the Research Experiences for Undergraduates (REU) Site Program hosted by the Southeastern Association for Research in Astronomy (SARA) for the past 6 years. SARA is a consortium of the six universities: Florida Institute of Technology, East Tennessee State University, Florida International University, The University of Georgia, Valdosta State University, and Clemson University. We host 10-11 student interns per year out of an application pool of ~150-200. Recruiting flyers are sent to the ~3400 undergraduate institutions in the United States, and we use a web-based application form and review process. We are a distributed REU Site, but come together for group meetings at the beginning and end of the summer program and stay in contact in between using email list manager software. Interns complete a research project working one-on-one with a faculty mentor, and each intern travels to observe at the SARA Observatory at Kitt Peak National Observatory. Interns give both oral and display presentations of their results at the final group meeting. In addition, all interns write a paper for publication in the IAPPP Communications, an international amateur-professional journal, and several present at professional meetings and in refereed publications. We include in the group meetings a ``how-to'' session on giving talks and posters, an Ethics Session, and a session on Women in Astronomy. This work was supported by the NSF Research Experiences for Undergraduates (REU) Site Program through grant AST 96169939 to The Florida Institute of Technology.

  15. Results from a Pilot REU Program: Exploring the Cosmos Using Sloan Digital Sky Survey Data

    NASA Astrophysics Data System (ADS)

    Chanover, Nancy J.; Holley-Bockelmann, Kelly; Holtzman, Jon A.

    2017-01-01

    In the Summer of 2016 we conducted a 10-week pilot Research Experience for Undergraduates (REU) program aimed at increasing the participation of underrepresented minority undergraduate students in research using data from the Sloan Digital Sky Survey (SDSS). This program utilized a distributed REU model, whereby students worked with SDSS scientists on exciting research projects while serving as members of a geographically distributed research community. The format of this REU is similar to that of the SDSS collaboration itself, and since this collaboration structure has become a model for the next generation of large scale astronomical surveys, the students participating in the SDSS REU received early exposure and familiarity with this approach to collaborative scientific research. The SDSS REU also provided the participants with a low-risk opportunity to audition for graduate schools and to explore opportunities afforded by a career as a research scientist. The six student participants were placed at SDSS REU host sites at the Center for Astrophysics at Harvard University, University of Wisconsin-Madison, Vanderbilt University, and the University of Portsmouth. Their research projects covered a broad range of topics related to stars, galaxies, and quasars, all making use of SDSS data. At the start of the summer the REU students participated in a week-long Boot Camp at NMSU, which served as a program orientation, an introduction to skills relevant to their research projects, and an opportunity for team-building and cohort-forming. To foster a sense of community among our distributed students throughout the summer, we conducted a weekly online meeting for all students in the program via virtual meeting tools. These virtual group meetings served two purposes: as a weekly check-in to find out how their projects were progressing, and to conduct professional development seminars on topics of interest and relevance to the REU participants. We discuss the outcomes of this pilot REU program and future plans for involving underrepresented minority undergraduate students in SDSS-related research. This work was supported by a grant from Sloan Foundation to the Astrophysical Research Consortium.

  16. Mentoring For Success: REU Program That Help Every Student Succeed

    NASA Astrophysics Data System (ADS)

    Bingham, B. L.

    2015-12-01

    NSF REU site programs provide remarkable opportunities for students to experience first-hand the challenges and rewards of science research. Because REU positions are relatively scarce, applicant pools are large, and it is easy to fill available positions with students who already have well-developed research skills and proven abilities to excel academically. Advisors bringing REU participants into their labs may see this as the ideal situation. However, using experience and academic record as the primary selection criteria ignores an enormous pool of talented students who have simply never been in a position to show, or discover themselves, what they can do. Reaching this audience requires a shift in strategy: recruiting in ways that reach students who are unaware of REU opportunities; adjusting our selection criteria to look beyond academics and experience, putting as much emphasis on future potential as we do on past performance; finding, or developing, mentors who share this broader vision of working with students; and providing an institutional culture that ensure every student has the kind of multi-node support network that maximizes his or her success. REU programs should be primary tools to developing a deeper and broader science workforce. Achieving that goal will require innovative approaches to finding, recruiting, and mentoring participants.

  17. Broadening participation in Research Experiences for Undergraduates (REU) programs: an evaluation of the team research model for undergraduate research experiences

    NASA Astrophysics Data System (ADS)

    Berthelote, A. R.; Geraghty Ward, E. M.; Dalbotten, D. M.

    2014-12-01

    The REU site on sustainable land and water resources has a goal of broadening participation in the geosciences by underrepresented groups and particularly Native American students. We are evaluating modifications to the traditional REU model in order to better support these students. First, we review a team research model for REU students, where students are placed on teams and work together in peer groups supported by a team of mentors. Second, the REU takes place in locations that have high populations of Native American students to remove barriers to participation for non-traditional students. Finally, the teams do research on issues related to local concerns with cultural focus. Traditional REU models (1 faculty to 1 student/on campus) have been shown to be effective in supporting student movement into graduate programs but often fail to attract a diverse group of candidates. In addition, they rely for success on the relationship between faculty and student, which can often be undermined by unrealistic expectations on the part of the student about the mentor relationship, and can be exacerbated by cultural misunderstanding, conflicting discourse, or students' personal or family issues. At this REU site, peer mentorship and support plays a large role. Students work together to select their research question, follow the project to completion and present the results. Students from both native and non-native backgrounds learn about the culture of the partner reservations and work on a project that is of immediate local concern. The REU also teaches students protocols for working on Native American lands that support good relations between reservation and University. Analysis of participant data gathered from surveys and interview over the course of our 3-year program indicates that the team approach is successful. Students noted that collaborating with other teams was rewarding and mentors reported positively about their roles in providing guidance for the student's future plans. While there are still challenges to this approach (e.g. optimal team size and structure, interpersonal conflicts among team members, geographically dispersed teams), the model has proven effective in recruiting and retaining students from culturally, geographically, and economically diverse backgrounds.

  18. Opening the Conversation on REU Assessment and Evaluation

    NASA Astrophysics Data System (ADS)

    Pressley, S. N.; LeBeau, J. E.

    2015-12-01

    Project evaluation is a key component to ensuring success of any Research Experience for Undergraduates (REU) program. The Washington State University (WSU) Regional Atmospheric Chemistry: State-of-the-art Measurement and Modeling in the Pacific Northwest REU Site employs a mixed method approach to determine what is working well and what can use improvement (formative evaluation) and to determine impact and effectiveness of the project in reaching the stated goals (summative evaluation). Quantitative data is collected via a pre-/post-test measuring participants' research self-efficacy (RSE), motivation, background information, extent of socialization, and their interpretation of the value of the REU experience. Qualitative data is gathered through individual interviews with the REU students (at the beginning and end of the program) and faculty mentors (at the end). Beginning interviews focus on expectations for the REU program and student backgrounds. End interviews focus on student RSE development, interpretations of their experience, and the value of the experience. Faculty mentors are interviewed to gather insight on student performance in the program and perspectives on the overall success of the program in meeting the proposed goals. Students are provided an opportunity to comment on the strengths and weaknesses of workshops, providing critical feedback to the particular instructor and enabling the faculty to modify the workshop content and activities in future years. Finally, research results are evaluated during the final poster presentation, and faculty are interviewed to report on their perception of how each student learned and gained knowledge during the program. To evaluate the retention of students in engineering and science and identify chosen career paths, a longitudinal survey was created and it is administered via email each year. Many REU programs also employ the Undergraduate Research Students Self-Assessment (URSSA) online tool designed for evaluating REU experiences (University of Colorado at Boulder). Information presented in this presentation will include a discussion of the current tools used as described above as well as a discussion of the pros/cons of using URSSA. One of the concerns with using URSSA in conjunction with the other assessment tools is "survey fatigue".

  19. The ASSURE Summer REU Program: Introducing research to first-generation and underserved undergraduates through space sciences and engineering projects

    NASA Astrophysics Data System (ADS)

    Barron, Darcy; Peticolas, Laura; Multiverse Team at UC Berkeley's Space Sciences Lab

    2018-01-01

    The Advancing Space Science through Undergraduate Research Experience (ASSURE) summer REU program is an NSF-funded REU site at the Space Sciences Lab at UC Berkeley that first started in summer 2014. The program recruits students from all STEM majors, targeting underserved students including community college students and first-generation college students. The students have little or no research experience and a wide variety of academic backgrounds, but have a shared passion for space sciences and astronomy. We will describe our program's structure and the components we have found successful in preparing and supporting both the students and their research advisors for their summer research projects. This includes an intensive first week of introductory lectures and tutorials at the start of the program, preparing students for working in an academic research environment. The program also employs a multi-tiered mentoring system, with layers of support for the undergraduate student cohort, as well as graduate student and postdoctoral research advisors.

  20. REU Program | CTIO

    Science.gov Websites

    Optical Astronomy Observatories (NOAO), located in La Serena, Chile, offers 10 week Undergraduate Research REU/PIA English/Spanish Astronomy Dictionary REU/PIA Current and Previous Programs CTIO REU/PIA Alumni

  1. Multilevel approach to mentoring in the Research Experiences for Undergraduates programs

    NASA Astrophysics Data System (ADS)

    Bonine, K. E.; Dontsova, K.; Pavao-Zuckerman, M.; Paavo, B.; Hogan, D.; Oberg, E.; Gay, J.

    2015-12-01

    This presentation focuses on different types of mentoring for students participating in Research Experiences for Undergraduates programs with examples, including some new approaches, from The Environmental and Earth Systems Research Experiences for Undergraduates Program at Biosphere 2. While traditional faculty mentors play essential role in students' development as researchers and professionals, other formal and informal mentoring can be important component of the REU program and student experiences. Students receive mentoring from program directors, coordinators, and on site undergraduate advisors. While working on their research projects, REU students receive essential support and mentoring from undergraduate and graduate students and postdoctoral scientists in the research groups of their primary mentors. Cohort living and group activities give multiple opportunities for peer mentoring where each student brings their own strengths and experiences to the group. Biosphere 2 REU program puts strong emphasis on teaching students to effectively communicate their research to public. In order to help REUs learn needed skills the outreach personnel at Biosphere 2 mentor and advise students both in groups and individually, in lecture format and by personal example, on best outreach approaches in general and on individual outreach projects students develop. To further enhance and strengthen outreach mentoring we used a novel approach of blending cohort of REU students with the Cal Poly STAR (STEM Teacher And Researcher) Program fellows, future K-12 STEM teachers who are gaining research experience at Biosphere 2. STAR fellows live together with the REU students and participate with them in professional development activities, as well as perform research side by side. Educational background and experiences gives these students a different view and better preparation and tools to effectively communicate and adapt science to lay audiences, a challenge commonly facing researchers but rarely taught to future scientists. In addition, REU students act as mentors themselves to the middle and high school students in Biosphere 2 Science Academy sharing with them exciting research they are doing and their experiences about doing science and life in college.

  2. Exploration of the impacts of distributed-site Research Experiences for Undergraduates using pre-/post- student interviews

    NASA Astrophysics Data System (ADS)

    Colella, H.; Hubenthal, M.; Brudzinski, M. R.

    2013-12-01

    The benefits for student participants of undergraduate research opportunities have been well documented. However, advancements in information and communications technologies (ICT) and cultural shifts around online education and virtual peer-to-peer interaction have lead to new models in which to structure such experiences. Currently, these ICT-enabled Research Experiences for Undergraduates (REU) programs connect geographically distributed interns in supportive e-learning communities while maintaining a traditional local mentoring arrangement. To document and explore the effects of distributed REU Sites in more depth, six interns from such a program, the Incorporated Research Institution for Seismology (IRIS) REU, were selected at random and asked to be interviewed about the REU experience. The primary targets of the interviews are to understand the mentor/mentee relationships, feeling of support and development and value of near-peer and far-peer relationships throughout their internship in a distributed REU program, and whether they receive the training necessary to gain confidence as a researcher. We also examine the various communication technologies as well as best practices and strategies that can increase intern connectedness. Pre-internship interviews were conducted in-person at the start of the centralized internship orientation week, while post-internship interviews were virtual (e.g. video chat with Skype or Google Hangout). These semi-structured interviews have full audio recordings and subsequent transcriptions. An additional, virtual follow-up interview will be conducted next spring after the interns have an opportunity to attend and present their research at a national conference (e.g., AGU). Interview material will be analyzed through a process of coding, sorting, local integration, and inclusive integration. Results will also be triangulated with pre- and post- survey data both from participants and other survey data from previous years of the IRIS program. Our presentation will highlight the key findings of these analyses. GeoCorps and RESESS will begin to employ this interview style assessment beginning this fall and next year, respectively, which will facilitate detailed comparisons between distributed and non-distributed REU approaches.

  3. Developing and Implementing an REU Program Philosophy

    NASA Astrophysics Data System (ADS)

    LaDue, D. S.

    2013-12-01

    Each individual REU and REU-like program takes place in different fields, in unique contexts, with unique individuals, some of whom are different each year. Because of this, copying program elements from one year to another, or from another program, may not recreate outcomes. Having an underlying program philosophy, or approach to the program, creates the conditions for innovation and creativity to provide new spark to a program each year. As a former REU participant in a nuclear physics REU, and now an adult learning scientist, the director of the National Weather Center REU Program focuses on clarifying goals and outcomes of the program to the participants, and adapting the program each year to best help each participant learn research skills, reflect upon their experiences with research, and find leads to careers that would suit them well. How decisions are made regarding what types of activities to do every year will be contrasted with how other activities are created or adapted according to the needs of the unique individual students. Consideration is also given toward trends in the field, such as exposing participants to whatever current lively discussions are taking place locally or in the broader field.

  4. The REU Program in Solar Physics at Montana State University

    NASA Astrophysics Data System (ADS)

    Martens, Petrus C.; Canfield, R. C.; McKenzie, D. M.

    2007-05-01

    The Solar Physics group at Montana State University has organized an annual summer REU program in Solar Physics, Astronomy, and Space Physics since 1999, with NSF funding since 2003. The number of students applying and being admitted to the program has increased every year, and we have been very successful in attracting female participants. A great majority of our REU alumni have chosen career paths in the sciences, and, according to their testimonies, our REU program has played a significant role in their decisions. From the start our REU program has had an important international component through a close collaboration with the University of St. Andrews in Scotland. In our poster we will describe the goals, organization, scientific contents, international aspects, and results, and present statistics on applications, participants, gender balance, and diversity.

  5. Coordinating a Large, Amalgamated REU Program with Multiple Funding Sources

    ERIC Educational Resources Information Center

    Fiorini, Eugene; Myers, Kellen; Naqvi, Yusra

    2017-01-01

    In this paper, we discuss the challenges of organizing a large REU program amalgamated from multiple funding sources, including diverse participants, mentors, and research projects. We detail the program's structure, activities, and recruitment, and we hope to demonstrate that the organization of this REU is not only beneficial to its…

  6. The University of Minnesota Morris - N.S.F. REU Program: Twenty years of encouraging women to participate in the Geological Sciences

    NASA Astrophysics Data System (ADS)

    Cotter, J. F.

    2009-12-01

    The goal of the UMM - REU program is to nurture the development of women in the geological sciences. Women are historically under-represented in the geological sciences. This program introduces undergraduate women to research project design and independent data collection and analysis designed to increase student’s scientific skills, introduce them to new fields of study, and to develop academic/professional confidence. In so doing, the program tries to encourage students to continue their education at the graduate level and/or to pursue a career in the Geosciences. The program was first proposed in 1988 and was run during the summers of 1989, '90, '91, '94, '95, '97, ’99, 2000, 05, 07, and 09 (in 1996 and 1998 a similar program was run at Gustavus Adolphus College). The focus of the program is field and laboratory research to determine the origin and history of glacial deposits in west-central Minnesota and the late Paleozoic Glacial deposits of the Parana Basin, Brazil. Much of the success of the program can be attributed to developing student “ownership” of their individual projects, their particular REU group, and the UMM-REU program overall. Research projects are selected and designed by the participants. Frequently considered are: research subject, location of field area and geologic techniques employed. Both project ownership and team building is encouraged by participant led weekly visits to field areas and frequent group discussions of research problems, successes and major gaffes. Additional team building activities include: 1) living in the same on-campus apartments and Brazilian B&B, 2) organized social activities, 3) international travel and working with Brazilian (women) students, 4) readings and discussions on "women in geology”, 5) shared strategies and concerns for career choices and; 6) participation in the "Friends of UMM-REU" conference (an "informal" presentation of results). Finally, an emphasis is placed on the utilization of the support network that has developed among the UMM-REU alumni. Participants read publications by past UMM-REU researchers, they are encouraged to contact alumni for information and advice, and alumni are invited back to mentor participants, provide insights and interact socially. UMM-REU reunions are held on a regular basis. The UMM-REU network is growing. Ninety-three women from 30 institutions have participated in the UMM-REU program. Participants have published four papers and 75 abstracts. Initial career trajectories are good. Of the 80 UMM-REU alumni that have (to date) received a bachelor degree: 29 went directly into careers in the sciences or teaching and 46 enrolled in graduate (9 have completed Ph.D.s). Over the long term results are also good. Of the 93 UMM-REU participants only 13 are not now pursuing degrees or working in careers in the sciences. Research for this study was funded by a grant from the N.S.F.-R.E.U. Program, including NSF-EAR 9820249 and NSF-EAR 0640575.

  7. A Reassessment of the Impact of Astronomy REU Programs on Female Students

    NASA Astrophysics Data System (ADS)

    Slater, Stephanie J.; Slater, T. F.

    2008-05-01

    For many years, federal agencies have enthusiastically supported Research Experiences for Undergraduates (REU) programs to engage students in research experiences to encourage them to continue to pursue astronomy career paths. Despite widespread tacit agreement that such experiences are critically important to filling the STEM career pipeline, there has been insufficient evaluation published to substantiate these impacts, with what little is described focusing on building students’ confidence and enculturation into the scientific enterprise. Upon closer inspection the data that exists, it appears that REU's may have little impact on participants’ career decisions, with the small number of those who do alter their intentions in favor of attending being balanced out by those who decide not to attend. This scenario begs the question of do REU programs create students who will go on to STEM careers or, alternatively, do REU programs simply attract students who are already pre-destined for STEM careers? This study chose to approach the problem using a mixed method, ex post facto design. Using six years of data, pre- and post- interview transcripts were compared to career decisions to develop a framework through which to further interview participants with regard to which career pathway decisions they are making. An interview process was then used to develop a new model that explained both these participants’ choices and findings in previous research. Data suggests that the nature and perceived quality of an REU experience is largely irrelevant to STEM career pursuit. For participants who were already committed to graduate studies, the REU was a means to enhance their candidacy for admissions. Those least likely to attend graduate school were those who were not committed prior to the REU. For these participants the REU served as a means to enhance their resumes for post-graduation employment.

  8. Simulations, Imaging, and Modeling: A Unique Theme for an Undergraduate Research Program in Biomechanics.

    PubMed

    George, Stephanie M; Domire, Zachary J

    2017-07-01

    As the reliance on computational models to inform experiments and evaluate medical devices grows, the demand for students with modeling experience will grow. In this paper, we report on the 3-yr experience of a National Science Foundation (NSF) funded Research Experiences for Undergraduates (REU) based on the theme simulations, imaging, and modeling in biomechanics. While directly applicable to REU sites, our findings also apply to those creating other types of summer undergraduate research programs. The objective of the paper is to examine if a theme of simulations, imaging, and modeling will improve students' understanding of the important topic of modeling, provide an overall positive research experience, and provide an interdisciplinary experience. The structure of the program and the evaluation plan are described. We report on the results from 25 students over three summers from 2014 to 2016. Overall, students reported significant gains in the knowledge of modeling, research process, and graduate school based on self-reported mastery levels and open-ended qualitative responses. This theme provides students with a skill set that is adaptable to other applications illustrating the interdisciplinary nature of modeling in biomechanics. Another advantage is that students may also be able to continue working on their project following the summer experience through network connections. In conclusion, we have described the successful implementation of the theme simulation, imaging, and modeling for an REU site and the overall positive response of the student participants.

  9. Strategies for broadening participation in the Maryland Sea Grant REU program

    NASA Astrophysics Data System (ADS)

    Moser, F. C.; Kramer, J.; Allen, J. R.

    2011-12-01

    A core goal of the ocean science community is to increase gender and ethnic diversity in its scientific workforce. Maryland Sea Grant strives to provide women and students from underrepresented groups in marine science opportunities to participate in its NSF-supported Research Experiences for Undergraduates (REU) program in estuarine processes. While women currently dominate the applicant student pool, and often the accepted student pool, we are trying a variety of strategies to increase the number of applicants and accepted students from underrepresented groups who might not otherwise be lured into marine science research and, ultimately, careers. For example, we have built partnerships with multicultural-focused undergraduate research programs and institutions, which can raise awareness about our REU program and its commitment to broadening diversity. Further, we work to attract first generation college students, students from small colleges with limited marine science opportunities and students from varied racial and ethnic backgrounds using such strategies as: 1) developing trust and partnerships with faculty at minority serving institutions; 2) expanding our outreach in advertising our program; 3) recruiting potential applicants at professional meetings; 4) targeting minority serving institutions within and beyond our region; 5) encouraging our REU alumni to promote our REU program among their peers; and 6) improving our application process. We believe these efforts contribute to the increase in the diversity of our summer-supported students and the change in the composition of our applicant pool over the last decade. Although we cannot definitively identify which strategies are the most effective at broadening participation in our program, we attribute most of our improvements to some combination of these strategies. In addition, pre- and post-surveying of our REU students improves our understanding of effective tools for recruiting and adapting our program to better serve a diversity of students and to promote a life-long interest in marine science. To help sustain long-term outcomes, we are exploring ways to work directly with minority-serving institutions to build 'bridging REU programs' that can train prospective REU students and thus enlarge the pool of potential applicants to recruit.

  10. The Assessment of the Impact of REU Programs on Student Classroom Performance

    NASA Astrophysics Data System (ADS)

    Hughes, Chris

    2009-03-01

    Supporters of undergraduate research claim that the research experience enhances the success of students in their classes and promotes their progress toward completing a science major. Since there are many other variables that can influence a student's progress through a curriculum, it is frequently difficult to compare students from undergraduate research programs with a suitable control group. At James Madison University, a significant number of chemistry and physics majors participate in summer REU programs on campus. However, since JMU is among the top 10% of undergraduate institutions in the US in undergraduate physics enrollment, there are also a significant number who choose not to stay on campus for summer research. Using several years worth of data, we have determined the change in the GPAs of REU students (N=75) from the semester before the REU to the semester after the REU and compared these with the students who did not participate in summer research (N=663). We have found that the REU students' average GPA increased by a statistically significant amount while the non-REU students' average GPA was unchanged to within a standard deviation. We will also discuss other assessment methods used at JMU and some of the limitations in the interpretation of this study.

  11. A new approach to assess student perceptions of gains from an REU program

    NASA Astrophysics Data System (ADS)

    Houser, C.; Cahill, A. T.; Lemmons, K.

    2013-12-01

    Research Experience for Undergraduate (REU) programs are designed to recruit students to science and engineering research careers by allowing the students to conduct research with faculty mentors. The success of REU programs is commonly assessed based on student perceptions of gains using a simple Likert scale. Because students tend to be positive about all aspects of their research experience, the results of the Likert scale tend to be meaningless. An alternative assessment technique, similar to Q-analysis, is used to assess the perceived outcomes of an international REU program hosted by Texas A&M University. Students were required to sort commonly identified REU outcomes into a normal distribution, from most agree to least agree, based on what they perceive as their personal gains from the program. Factor analysis reveals 3 groups of students who believe that they gained field and analytical skills (Group 1), greater competence in research and self-confidence (Group 2), and an improved understanding of the scientific method (Group 3). Student perceptions appear to depend on whether the student had previous research experience through classes and/or as a research assistant at their home institution. A comparison to a similar sort of REU outcomes by the faculty mentors suggests that there is a slight disconnect in the perceived gains by the students between the student participants and the faculty mentors.

  12. Online Resources and Community Support for REU Leaders

    NASA Astrophysics Data System (ADS)

    Sloan, V.; Haacker, R.

    2015-12-01

    Creating and running undergraduate research programs is very time and resource intensive, and leaders work in relative isolation, managing every aspect of REU programs. This paper will give an update on new tools, resources, and support gathered from the geoscience REU community and made available through the SOARS Center for Undergraduate Research via the web, a listserv, and workshops. These include advice and tools on topics such as broadening participation, ethics and safety training, and communicating with mentors. The demand from the private sector for graduates to be more adaptable, adept at problem solving, and skilled at writing and presenting (Chronicle for Higher Education, 2012) increases the need for the REU community to provide professional development for students. As a result, we are also working to provide materials and webinars on teaching interns how to prepare talks and posters, how to write their internship experience into their résumé, and about graduate school and other non-academic career paths. REUs continue to successfully attract strong students into STEM fields, and the quality of these programs is enhanced by the generous sharing of insight and tools within the GEO REU community (ucar.scied.edu/soars/reu).

  13. Tracking Student Participants from a REU Site with NAE Grand Challenges as the Common Theme

    ERIC Educational Resources Information Center

    Burkett, Susan; Dye, Tabatha; Johnson, Pauline

    2015-01-01

    The National Academy of Engineering (NAE) Grand Challenges provides the theme for this NSFfunded Research Experience for Undergraduates (REU) site. Research topics, with their broad societal impact, allow undergraduate students from multiple engineering disciplines and computer science to work together on exciting and critical problems. The…

  14. Critical Components of a Successful Undergraduate Research Experience in the Geosciences for Minority Students

    NASA Astrophysics Data System (ADS)

    Liou-Mark, J.; Blake, R.; Chukuigwe, C.

    2013-12-01

    For the past five years, the New York City College of Technology has administered a successful National Science Foundation (NSF) Research Experience for Undergraduates (REU) program. The program provides rich, substantive, academic and life-transformative STEM educational experiences for students who would otherwise not pursue STEM education altogether or would not pursue STEM education through to the graduate school level. The REU Scholars are provided with an opportunity to conduct intensive satellite and ground-based remote sensing research at the National Oceanic and Atmospheric Administration Cooperative Remote Sensing Science and Technology Center (NOAA-CREST). Candidates for the program are recruited from the City University of New York's twenty-three separate campuses. These students engage in a research experience that spans the summer and the fall and spring semesters. Eighty-four percent (84%) of the program participants are underrepresented minorities in STEM, and they are involved in a plethora of undergraduate research best practice activities that include: training courses in MATLAB programming, Geographic Information Systems, and Remote Sensing; workshops in Research Ethics, Scientific Writing, and Oral and Poster Research Presentations; national, regional, and local conference presentations; graduate school support; and geoscience exposure events at national laboratories, agencies, and research facilities. To enhance their success in the program, the REU Scholars are also provided with a comprehensive series of safety nets that include a multi-tiered mentoring design specifically to address critical issues faced by this diverse population. Since the inception of the REU program in 2008, a total of 61 undergraduate students have finished or are continuing with their research or are pursuing their STEM endeavors. All the REU Scholars conducted individual satellite and ground-based remote sensing research projects that ranged from the study of hurricanes to atmospheric water vapor distribution to spectral analysis of soil moisture. Of the 61 REU Scholars, 18.0% (11) are in graduate school in the STEM disciplines, 16.5% (10) have graduated and are in the STEM workforce, and 65.5% (40) continue to pursue their STEM degrees. All of the REU Scholars have made oral and poster presentations at local, region, and/or national conferences. Five of them have won first place recognition for their research, and three students will be co-authors for three peer-reviewed publications and two book chapters. (This program is supported by NSF REU grant #1062934.)

  15. NURail Research Experience for Undergraduates (REU) Summer Program in Multimodal Freight Transportation Risk.

    DOT National Transportation Integrated Search

    2013-08-01

    NURail hosted an REU Summer Program in Multimodal Freight Transportation Risk at the Rail Transportation and Engineering Center (RailTEC) in the Department of Civil and Environmental Engineering at the University of Illinois at Urbana-Champaign (UIUC...

  16. Student Feedback of Career Development Workshops for Program Improvement

    NASA Astrophysics Data System (ADS)

    LeBeau, J. E.; Pressley, S. N.

    2016-12-01

    A number of techniques are employed each year to evaluate the effectiveness of and to identify opportunities for improvement in the Laboratory for Atmospheric Research (LAR) REU program at Washington State University. For example, information gathered from pre-/post-surveys and pre-/post-interviews provides information regarding students' perceptions and levels of experience with the scientific process, career and academic goals, and motivation for joining the REU program. Poster session rubrics assess students' abilities to summarize their experiences in a professional setting. Alumni surveys gauge former participants' perceptions of the REU experience. One seemingly simple and highly useful, but often less documented, component of the evaluation process for program improvement is the use of workshop feedback forms. Weekly workshops are designed to provide students with enhanced knowledge and skills in the area of atmospheric chemistry as well as research design skills, academic and career guidance, and presentation skills. According to previous years' evaluation reports, workshops are largely beneficial to students for learning new skills. Yet, students suggest a number of recommendations that may benefit any REU program, such as: providing slides beforehand to provide a framework for the upcoming workshop, having instructors speak in more student-friendly language, covering higher-level topics, and including more hands-on, instructor-guided practice during the workshops. Thus, workshop feedback forms provide meaningful feedback to increase learning outcomes and enhance the REU student experience. This presentation will offer ideas gathered from over five years of workshop feedback forms that, while somewhat specific to workshops offered for the LAR REU, can offer faculty and PIs insight into the student experience, enhancing their ability to improve programming and achieve greater learning outcomes.

  17. UAHuntsville-NASA MSFC Heliophysics REU: A Model for Recruiting Targeted Groups

    NASA Astrophysics Data System (ADS)

    Farid, S.; Heerikhuisen, J.; Winebarger, A. R.

    2014-12-01

    In 2011, researchers from the University of Alabama-Huntsville Center for Space Plasma and Aeronomic Research Center (CSPAR) and NASA Marshall Space Fight Center (MSFC) received a 3-year NSF award to create a REU site specifically designed to increase the participation of underrepresented groups in the Geo-sciences, specifically Heliophysics, and to reduce the attrition rate of sophomores by engaging them in research. This program has been highly successful. In three years of operation, we have increased in the diversity of applicant pool and selected participants, increased the number of inexperienced participants and made measurable impacts on the students' perceptions of graduate school and Heliophysics careers, and produced research with significant scientific merit. We attribute the success of the program to our proactive recruitment of first and second year students, underrepresented groups, and students from small universities. Key factors in our efforts include: 1) In person school visits of targeted schools 2.) Establishing relationships with faculty at targeted schools. 3.) An inclusive selection process that considers the availability of research at the students home institution 4.) A reduced focus on GPA and more focus on recommendation letters as indicators of success 5.) A successful cohort of experienced and inexperienced students 6.) The unique learning environment fostered by UAH-CSPAR and NASA-MSFC scientists. In this presentation, we review our strategies and suggest techniques to recruit targeted groups to similar REU programs.

  18. Creating a Research Experience for Undergraduates that meets the Student Halfway: The REU Site on Sustainable Land and Water Resources

    NASA Astrophysics Data System (ADS)

    Dalbotten, D. M.; Hill, K. M.; Berthelote, A. R.; Ito, E.; Pellerin, H.; Howes, T.; Myrbo, A.

    2012-12-01

    There are excellent opportunities for undergraduate students to participate in research programs across the country, but often they suffer from a lack of applicants from underrepresented groups and non-traditional students. Potential applicants are out there, but too often they are lost through the recruitment and application process. We present the results here of a decade of experience in reaching the students where they are at, metaphorically and physically. Each aspect of the REU recruitment and application process will be considered in terms of barriers to participation that occur before the student even applies, in the program design and application process. We examine the application itself, the recruiting process, reaching students through their mentors and student organizations, the non-traditional student, and how programs can be constructed that allow for a wider diversity of participants. The Research Experience for Undergraduates on Sustainable Land and Water Resources strives to meet the student at least halfway through our unique program design. Our team-orientated REU places teams of students at three sites: Salish Kootenai College on the Flathead Reservation in Montana, the Fond du Lac Band of Lake Superior Chippewa Reservation in Northern Minnesota, and at the University of Minnesota, Minneapolis. Students from across the country participate in research related to land and water resources while also learning about the sustainable management practices of these communities. Every effort is made to include the non-traditional student, including parents, through the design of the program, the materials we recruit with, and our application process. Students learn about all aspects of research, from experimental design, to field and laboratory practices, to modeling and quantitative analysis. In addition, all of our mentors are encouraged to work as a team to meet the individual needs of the students in our program—academic, cultural, and social—and work for student success.

  19. Ten-Year Retrospective Longitudinal-Study of Student Perspectives on Value of REU

    NASA Astrophysics Data System (ADS)

    Slater, T. F.; Slater, S. J.

    2013-12-01

    For more than two decades, federal agencies have been enthusiastically supporting summer research experiences for undergraduates. These REU programs are tacitly intended to increase retention and provide "an important educational experience" for undergraduates, particularly women, minorities and underrepresented groups. Numerous authors (viz., Laursen, Lopatto, Dolan, among many others) have enthusiastically described positive impacts of summer REU programs from exit interview data. These results include enhanced persistence to pursue STEM careers and confirmed desire to attend graduate school in the field targeted by a particular REU. Perhaps surprisingly, negative student experiences are rarely described in the scholarly literature, but do appear in more informal publications (viz., Gueterma, 2007). One wonders how REU alumni, looking back over their entire collective portfolio of experiences, now perceive the educational value of their REU experience relative to their other educational experiences. To obtain a backwards-looking, reflective description from REU alumni on the value of their REU experiences, we conducted a 10-year, two-stage study was designed to explore the ways in which the REU acted as an educational experience for 51 women from a single geoscience sub-discipline. The first phase was an ex post facto longitudinal analysis of data, including multiple interviews with each participant during their REU, annual open-ended alumni surveys, faculty interviews, and extensive field notes, over a 10-year period. This analysis informed the second phase, a clinical interview. Over 10 hours of interviews with 8 participants were conducted and analyzed. These 8 participants were selected to represent a variety of career stages, and for their potential to reflect on a wide variety of educational experiences. Results from the interviews, done many years after their REU experience, indicate that the interviewees' REU did not provide a substantive educational experience related to the nature of scientific work, the scientific process, or the culture of academia when considered in a comparative context of students' other educational experiences. Results further indicated that the REU did not serve to transform participants' conceptions about themselves as situated in science, and learning gains with regard to other aspects of the self, were somewhat limited. Instead, the data suggests that these women arrived at the REU with pre-existing and remarkably strong conceptions in these areas, and that the REU did not functional to alter those states. These conceptions were frequently the result of interactions with mentors/scientists from middle school until well into the undergraduate period.

  20. Evaluating Student Success and Outcomes in the Scripps Institution of Oceanography REU Program

    NASA Astrophysics Data System (ADS)

    Teranes, J. L.; Kohne, L.

    2013-12-01

    The NSF foundation-wide REU program exists to help attract and retain a diverse pool of talented undergraduate students in STEM fields. These goals are particularly relevant in earth and marine sciences because relatively few minority students traditionally seek careers in these fields and only account for an extremely small percentage of Ph.D. degrees earned. The Scripps Undergraduate Research Fellowship (SURF) REU program is a 10-week summer program currently in its third year of funding. The SURF program invites 10-15 undergraduate students from across the country to Scripps to participate in high quality collaborative research with Scripps faculty and researchers. Program components also include research seminars, career and graduate school preparation, GRE-prep courses, field trips and social activities. The project's goal, broadly, is to increase the participation of underrepresented minorities in marine science and related disciplines at a national level. Our program includes a comprehensive evaluation and assessment plan to help us understand the impact of this REU experience on the student participant. Our assessment consists of paired pre- and post-survey questions to estimate student growth in the following areas as related to earth and marine sciences: (1) increased knowledge and skills (2) increased confidence in ability to conduct research (3) improved attitudes and interest in the field and (4) more ambitious career goals. Assessment results from the last two cohorts have helped refine our recruitment and selection strategies. In the first year of our program, we focused almost exclusively on recruiting underrepresented minority students; over of the participants represented ethic groups considered to be underrepresented in STEM fields. However, participants did not demonstrate overall significant pre/post gains in any of the goal areas, mostly because pre-survey scores indicated that the students were already very strong in all goal areas. In years 2 and 3 our recruitment has continued to target underrepresented minorities, but our selection criteria now includes the following factors in order to better identify students who would most greatly benefit from the program: (1) students who have not had significant research experience (2) students who have not yet had significant exposure to the field (3) first-generation college students and (4) students who may not be as high achieving as other applicants, but who might have more opportunity for growth in the program. This modified selection and recruitment strategy has been successful, our 2012 cohort recorded higher demonstrated and perceived impacts in all goal areas. Our experience has demonstrated that, in order to have the most significant impact, REU Sites must be active in recruiting and involving students who are not already well positioned for success in STEM careers.

  1. Introducing Ethics to Chemistry Students in a "Research Experiences for Undergraduates" (REU) Program

    ERIC Educational Resources Information Center

    Hanson, Mark J.

    2015-01-01

    A three-day ethics seminar introduced ethics to undergraduate environmental chemistry students in the Research Experiences for Undergraduates (REU) program. The seminar helped students become sensitive to and understand the ethical and values dimensions of their work as researchers. It utilized a variety of resources to supplement lectures and…

  2. Single Investigator or Group Projects? Which is the More Successful Model for a REU Site?

    NASA Astrophysics Data System (ADS)

    Boush, L. P.; Myrbo, A.; Berman, M. J.; Gnivecki, P.; Michelson, A.; Brady, K. L.

    2012-12-01

    Undergraduate research programs have become popular and effective mechanisms for developing future geoscientists and increasing participation of under-represented groups in the sciences. There are many models for implementing such programs that span different philosophies and goals. Our Research Experience for Undergraduates (REU) program in the Bahamas is in the second of its three year award and has used two different models each year of its operation. In the first year, we used the individual student project model, where students pursued their own research much like an honors or masters thesis approach. Specifically, students did individual projects in four areas: paleobiology, geoarcheology, geobiology and limnogeology. In the second year, we used the team concept model, where students were divided into two teams, coring different lakes. The students combined efforts in both the field and lab, doing basic limnology of the basins, and then collecting and analyzing the cores that they took. While both pedagogy models were successful in teaching basic science skills in the field and lab, each one had different strengths and weaknesses. The single investigator model allowed students to have complete intellectual ownership of their projects, while the group model allowed students to work together in teams and produce a more comprehensive dataset that was higher quality and more likely to be published. In addition, while student knowledge gains were statistically the same for both years, the attitudes towards science scores were higher for the 'team model' year than for the single investigator. Since one of the goals of the REU program is to engage students and foster a desire to continue scientific inquiry or careers in science, the 'team model' could be regarded as more successful. It also allowed higher quality datasets to be produced and a more realistic view of how most science is done—in a collaborative, multidisciplinary way. Each student learned all of the field and lab techniques and helped one another as a cooperative group but was held individually responsible for various aspects of the data collection and analysis. Further, it can be argued that in the short amount of time allotted for REU projects (8-10 weeks), it is difficult for inexperienced students to design a publishable project; and one could question if this is the appropriate venue for having students initiate either projects that are too large to do in the timeframe of the REU or too specific or limited in data and methods to be significant scientific contributions. Thus, we will pursue the 'team model' in our third year of our REU project because it has yielded better scientific outcomes and more satisfying experiences for our students.

  3. Teachers, Researchers, and Students Collaborating in Arctic Climate Change Research: The Partnership Between the Svalbard REU and ARCUS PolarTREC programs

    NASA Astrophysics Data System (ADS)

    Roof, S.; Warburton, J.; Oddo, B.; Kane, M.

    2007-12-01

    Since 2004, the Arctic Research Consortium of the U.S. (ARCUS) "TREC" program (Teachers and Researchers Exploring and Collaborating, now "PolarTREC") has sent four K-12 teachers to Svalbard, Norway to work alongside researchers and undergraduate students conducting climate change research as part of the Svalbard Research Experiences for Undergraduates (REU) Program. The benefits of this scientist/educator/student partnership are many. Researchers benefit from teacher participation as it increases their understanding of student learning and the roles and responsibilities of K-12 teachers. The TREC teacher contributes to the research by making observations, analyzing data, and carrying heavy loads of equipment. In collaborating with K- 12 teachers, undergraduate student participants discover the importance of teamwork in science and the need for effective communication of scientific results to a broad audience. The questions that K-12 teachers ask require the scientists and students in our program to explain their work in terms that non-specialists can understand and appreciate. The K-12 teacher provides a positive career role model and several Svalbard REU undergraduate students have pursued K-12 teaching careers after graduating. TREC teachers benefit from working alongside the researchers and by experiencing the adventures of real scientific research in a remote arctic environment. They return to their schools with a heightened status that allows them to share the excitement and importance of scientific research with their students. Together, all parties contribute to greatly enhance public outreach. With ARCUS logistical support, TREC teachers and researchers do live web conferences from the field, reaching hundreds of students and dozens of school administrators and even local politicians. Teachers maintain web journals, describing the daily activities and progress of the researcher team. Online readers from around the world write in to ask questions, which the TREC teacher answers after consulting the research team. TREC teachers have developed and distributed teaching modules using real questions and data from the research program. Our collaboration is successful in part because the teachers are well prepared by ARCUS in advance of the field experience and the Svalbard REU leaders treat the TREC teacher as a senior member of the research team. Reliable telephone and internet communication from the field site is also important because it greatly facilitates the daily outreach. Our success is measured by the hundreds of K-12 students exposed to arctic climate change research (some of which are now going to college to pursue geoscience studies!) and the mutual desire for continued collaboration between the Svalbard REU Program and the ARCUS PolarTREC Program.

  4. REU in Physics at Kansas State University--- an Evolving Program

    NASA Astrophysics Data System (ADS)

    Corwin, Kristan; Glymour, Bruce; Lara, Amy; Weaver, Larry; Zollman, Dean

    2009-03-01

    The REU site in the Physics Department at Kansas State University, funded by NSF for 13 years between 1992 and 2007, originally focused on atomic collision physics. Now the theme has broadened to include laser-matter interactions on atomic and nanoscales, and an ethics component is incorporated. Students study how atoms and molecules interact with ultra-fast optical and x-ray pulses, reveal the structure of nanoparticle crystallization and gel formation with scattered laser light, and develop computer codes for atomic interactions in Bose-Einstein condensates and nanoparticle self-assembly from lattices to gels; some have traveled to Japan for neutrino experiments. The students we select come primarily from smaller colleges and universities in the Midwest where research opportunities are limited. Prof. Weaver, who has served as PI since 1992, facilitates their transition from a teaching to research environment through lectures and individual interactions. Our program is in a period of transition. While Prof. Weaver continues to be the ``impedance match'' between students and mentors, other leadership roles are gradually being assumed by a team of faculty members who strive to preserve the intimacy and excellence of the program.

  5. A Research Experiences for Undergraduates program (REU) Program Designed to Recruit, Engage and Prepare a Diverse Student Population for Careers in Ocean Sciences.

    NASA Astrophysics Data System (ADS)

    Clarkston, B. E.; Garza, C.

    2016-02-01

    The problem of improving diversity within the Ocean Sciences workforce—still underperforming relative to other scientific disciplines—can only be addressed by first recruiting and engaging a more diverse student population into the discipline, then retaining them in the workforce. California State University, Monterey Bay (CSUMB) is home to the Monterey Bay Regional Ocean Science Research Experiences for Undergraduates (REU) program. As an HSI with strong ties to multiple regional community colleges and other Predominantly Undergraduate Institutions (PUIs) in the CSU system, the Monterey Bay REU is uniquely positioned to address the crucial recruitment and engagement of a diverse student body. Eleven sophomore and junior-level undergraduate students are recruited per year from academic institutions where research opportunities in STEM are limited and from groups historically underrepresented in the Ocean Sciences, including women, underrepresented minorities, persons with disabilities, and veterans. During the program, students engage in a 10-week original research project guided by a faculty research mentor in one of four themes: Oceanography, Marine Biology and Ecology, Ocean Engineering, and Marine Geology. In addition to research, students develop scientific self-efficacy and literacy skills through rigorous weekly professional development workshops in which they practice critical thinking, ethical decision-making, peer review, writing and oral communication skills. These workshops include tangible products such as an NSF-style proposal paper, Statement of Purpose and CV modelled for the SACNAS Travel Award Application, research abstract, scientific report and oral presentation. To help retain students in Ocean Sciences, students build community during the REU by living together in the CSUMB dormitories; post-REU, students stay connected through an online facebook group, LinkedIn page and group webinars. To date, the REU has supported 22 students in two cohorts (2014, 2015) and here we present successes, challenges and lessons learned for an innovative program designed to recruit, engage and prepare students for Ocean Science careers.

  6. REU program in Solar Physics at Montana State University

    NASA Astrophysics Data System (ADS)

    Martens, P. C.; Canfield, R. C.; McKenzie, D. M.

    2005-12-01

    I will present an overview of the REU program in Solar Physics and Space Weather that has existed since 1999 at Montana State University, since 2003 with NSF support. I will briefly describe the goals, organization, scientific contents and results, and present statistics on applications, participants, gender balance, and diversity. This will be concluded by an overview of our plans for the future,

  7. The Role of Minority Serving Institutions and REU Programs for Enhancing Diversity in Astronomy

    NASA Astrophysics Data System (ADS)

    Stassun, K. G.

    2002-12-01

    In this Special Session we will highlight the important role of Minority Serving Institutions in preparing future minority astronomers. Minority Serving Institutions include Historically Black Colleges and Universities (HBCUs), Hispanic Serving Institutions (HSIs), and Tribal Colleges and Universities (TCUs). We will also stress the role that REU (Research Experiences for Undergraduates) programs can have in enhancing diversity in astronomy. The session will feature a panel of invited speakers from Minority Serving Institutions and REU programs who will present viewpoints, strategies, and discussion on processes that encourage and mentor individuals who elect to pursue science-related careers including astronomy and astrophysics. Specific objectives for the Session include: Report to the AAS membership on the important role played by Minority Serving Institutions, where these institutions are, the populations they serve; Introduce the AAS membership to representatives from various Minority Serving Institutions, including an HBCU, an HSI, a TCU, and a community college, and to representatives from REU programs; Provide an opportunity for representatives from these institutions to describe their role in preparing minority undergraduates in the sciences, how their programs bridge to PhD-granting programs in astronomy, and ways they suggest for the AAS to help enhance these bridges; Provide an opportunity for AAS members to dialogue with these representatives, hopefully resulting in specific ``action items" that will serve to strengthen partnerships with Minority Serving Institutions.

  8. Four years of REU in South Texas: Fostering the Participation of Hispanic Students in Marine Science Research

    NASA Astrophysics Data System (ADS)

    Buskey, E. J.; Erdner, D.

    2011-12-01

    Our REU site is a ten-week summer program that is currently in its fourth year and has served 37 undergraduate students in that time. The range of environments present in south Texas, including barrier islands, estuaries and hypersaline lagoons, and the inherent climatic variability of the region make it an excellent natural laboratory for studying the effects of both natural and human-driven change. REU projects to date have focused on many of the pressing environmental concerns in the region, including the impacts of land use and freshwater demand on the transport of water and waterborne constituents to coastal waters, harmful algal blooms, effects of nutrient loads on coastal ecosystems, and hypoxia. The program begins with a 2 day research cruise that serves as an immediate introduction to local biota and methods in marine science, and it brings the students and mentors together as a group in a more informal setting. The students then carry out independent research projects under the mentorship of a faculty member, and attend workshops on responsible research, graduate school, and science careers. Our program also benefits from a close interaction with the Mission-Aransas National Estuarine Research Reserve, exposing the students to applied research of relevance to coastal management issues. One of the primary goals of our program is to foster the retention of underrepresented groups, particularly Hispanics, in Science, Technology, Engineering, and Mathematics (STEM) fields by increasing their participation in undergraduate research experiences. We have targeted Hispanic students because our institute is located in a state where 37% of the population is Hispanic, and in a region where the proportion of Hispanic students is even higher. Our recruiting efforts have included advertising the program via in-person presentations at minority serving institutions (UT El Paso, UT San Antonio), and on list-serves for professional societies and sites at minority serving institutions. We have also directly contacted academic advisors at undergraduate institutions, especially those with marine sciences degrees and/or a significant proportion of Hispanic enrollment. Despite these directed efforts, however, program surveys show that the most common ways that students find out about our program are by 1) searching the NSF REU website, 2) general online searches (e.g. Google), and 3) from a professor or advisor. In terms of student participation, we feel that we are making progress in entraining Hispanic students into undergraduate research. The participation rate for Hispanic students in our program (21%) was twice that of their 10% nationwide undergraduate STEM enrollment rate. Hispanic students also make up a greater proportion of the offers relative to the applicant pool and accept offers more frequently. Nonetheless, we continue to seek new recruiting strategies, in order to increase the participation rate of Hispanic students, in a state where Hispanic STEM enrollment rates above 50% are common.

  9. Biosphere 2, a nexus of partner networks that improve student experiences and outcomes

    NASA Astrophysics Data System (ADS)

    Dontsova, K.; Bonine, K. E.; Batchelor, R. L.; Brinkworth, C.; Keller, J. M.; Hogan, D.; Treloar, D.

    2017-12-01

    University of Arizona (UA) Biosphere 2 co-convenes several internship opportunities for undergraduate students, including 1) NSF-funded Research Experiences for Undergraduates (REU) Site: "Biosphere 2 Earth Systems Research for Environmental Solutions", 2) NSF-funded INCLUDES program "Collaborative Research: Integrating Indigenous and Western Knowledge to Transform Learning and Discovery in the Geosciences" executed in collaboration with the University Corporation for Atmospheric Research (UCAR), and 3) STEM Teacher and Researcher (STAR) Fellows Program in partnership with California Polytechnic State University - San Luis Obispo. In addition, the B2 REU Site partners with several UA organizations linking research to stakeholders, such as UA Cooperative Extension, Institute of the Environment, and the Water Resources Research Center, and with the UA Graduate College's Undergraduate Research Opportunities Consortium (UROC), which connects a diverse portfolio of summer research programs across the UA campus. Connections among these programs and organizations allow us to improve student experiences and outcomes by leveraging organizational, mentor, and peer diversity and expertise. Each partnership brings unique benefits for the students - from access to teaching experience and perspectives that STAR Fellows provide, to a multitude of professional development programs made possible by pooled resources of UROC participants, to access to networks and knowledge from our outreach partners, to opportunities for continued multi-year learning and support with INCLUDES and UCAR. Coming together allows all partners to better apply outside resources, expertise, and knowledge to bring more value to the students and to help students enrich themselves as well as partner organizations and program participants.

  10. SAGE (Summer of Applied Geophysical Experience): Learning Geophysics by Doing Geophysics

    NASA Astrophysics Data System (ADS)

    Jiracek, G. R.; Baldridge, W. S.; Biehler, S.; Braile, L. W.; Ferguson, J. F.; Gilpin, B. E.; Pellerin, L.

    2005-12-01

    SAGE, a field-based educational program in applied geophysical methods has been an REU site for 16 years and completed its 23rd year of operation in July 2005. SAGE teaches the major geophysical exploration methods (including seismics, gravity, magnetics, and electromagnetics) and applies them to the solution of specific local and regional geologic problems. These include delineating buried hazardous material; mapping archaeological sites; and studying the structure, tectonics, and water resources of the Rio Grande rift in New Mexico. Nearly 600 graduates, undergraduates, and professionals have attended SAGE since 1983. Since 1990 REU students have numbered 219 coming from dozens of different campuses. There have been 124 underrepresented REU students including 100 women, 14 Hispanics, 7 Native Americans, and 3 African Americans. Tracking of former REU students has revealed that 81% have gone on to graduate school. Keys to the success of SAGE are hands-on immersion in geophysics for one month and a partnership between academia, industry, and a federal laboratory. Successful approaches at SAGE include: 1) application of the latest equipment by all students; 2) continued updating of equipment, computers, and software by organizing universities and industry affiliates; 3) close ties with industry who provide supplemental instruction, furnish new equipment and software, and alert students to the current industry trends and job opportunities; 4) two-team, student data analysis structure that simultaneously addresses specific geophysical techniques and their integration; and 5) oral and written reports patterned after professional meetings and journals. An eight member, 'blue ribbon' advisory panel from academia, industry, and the federal government has been set up to maintain the vitality of SAGE by addressing such issues as funding, new faculty, organization, and vision. SAGE is open to students from any university (or organization) with backgrounds including geophysics, geology, engineering, physics, and mathematics. SAGE is sponsored by the Los Alamos National Laboratory Branch of the University of California's Institute of Geophysics and Planetary Physics. More information is available on the SAGE web site at http://www.sage.lanl.gov/.

  11. Building diversity in REU programs through MIMSUP at the Shannon Point Marine Center

    NASA Astrophysics Data System (ADS)

    Bingham, B. L.; Sulkin, S.

    2011-12-01

    The road to a career in the ocean sciences can be long and challenging, particularly for students from racial/ethnic groups underrepresented in the field. For the past 21 years, faculty and staff at the Shannon Point Marine Center, Western Washington University have annually administered the NSF-funded Multicultural Initiative in the Marine Sciences: Undergraduate Participation (MIMSUP) program. The goal of MIMSUP is to increase diversity in the ocean sciences by moving students though their undergraduate programs into advanced education and leadership positions in the field. Helping students find positions in REU and other focused research programs is an important step along this path. Primary obstacles for the students include 1) a lack of knowledge about opportunities available to them, 2) a lack of experience preparing quality applications and 3) a lack of confidence in their ability to compete for positions. Focused mentoring, with an emphasis on skills development is important in helping outstanding, though inexperienced, students find and excel in REU programs.

  12. Life in the Universe - Astronomy and Planetary Science Research Experience for Undergraduates at the SETI Institute

    NASA Astrophysics Data System (ADS)

    Chiar, J.; Phillips, C. B.; Rudolph, A.; Bonaccorsi, R.; Tarter, J.; Harp, G.; Caldwell, D. A.; DeVore, E. K.

    2016-12-01

    The SETI Institute hosts an Astrobiology Research Experience for Undergraduates (REU) program. Beginning in 2013, we partnered with the Physics and Astronomy Dept. at Cal Poly Pomona, a Hispanic-serving university, to recruit underserved students. Over 11 years, we have served 155 students. We focus on Astrobiology since the Institute's mission is to explore, understand and explain the origin, nature and prevalence of life in the universe. Our REU students work with mentors at the Institute - a non-profit organization located in California's Silicon Valley-and at the nearby NASA Ames Research Center. Projects span research on survival of microbes under extreme conditions, planetary geology, astronomy, the Search for Extraterrestrial Intelligence (SETI), extrasolar planets and more. The REU program begins with an introductory lectures by Institute scientists covering the diverse astrobiology subfields. A week-long field trip to the SETI Institute's Allen Telescope Array (Hat Creek Radio Astronomy Observatory in Northern California) and field experiences at hydrothermal systems at nearby Lassen Volcanic National Park immerses students in radio astronomy and SETI, and extremophile environments that are research sites for astrobiologists. Field trips expose students to diverse environments and allow them to investigate planetary analogs as our scientists do. Students also participate in local trips to the California Academy of Sciences and other nearby locations of scientific interest, and attend the weekly scientific colloquium hosted by the SETI Institute at Microsoft, other seminars and lectures at SETI Institute and NASA Ames. The students meet and present at a weekly journal club where they hone their presentation skills, as well as share their research progress. At the end of the summer, the REU interns present their research projects at a session of the Institute's colloquium. As a final project, students prepare a 2-page formal abstract and 15-minute presentation that mirrors the requirements for professional conference presentations. In collaboration with the mentors, successful projects are selected and funded for submission to national scientific conferences during the subsequent academic year. This program is funded by the NSF AST Grant # 1359346.

  13. Successes and Challenges in the SAGE (Summer of Applied Geophysical Experience) REU Program

    NASA Astrophysics Data System (ADS)

    Braile, L. W.; Baldridge, W. S.; Pellerin, L.; Ferguson, J. F.; Bedrosian, P.; Biehler, S.; Jiracek, G. R.; Snelson, C. M.; Kelley, S.; McPhee, D.

    2014-12-01

    The SAGE program was initiated in 1983 to provide an applied geophysics research and education experience for students. Since 1983, 820 students have completed the SAGE summer program. Beginning in 1992, with funding from the NSF, SAGE has included an REU (Research Experience for Undergraduates) experience for selected undergraduate students from U.S. colleges and universities. Since 1992, 380 undergraduate REU students have completed the SAGE program. The four week, intensive, summer program is based in Santa Fe, New Mexico, and involves students in learning geophysical theory and applications; collection of geophysical field data in the northern Rio Grande Rift area; data processing, modeling and interpretation; and presentation (oral and written) of results of each student's research results. Students (undergraduates, graduates and professionals) and faculty are together on a school campus for the summer program. Successful strategies (developed over the years) of the program include teamwork experience, mentoring of REUs (by faculty and more senior students), cultural interchange due to students from many campuses across the U.S. and international graduate students, including industry visitors who work with the students and provide networking, a capstone experience of the summer program that includes all students making a "professional-meeting" style presentation of their research and submitting a written report, a follow-up workshop for the REU students to enhance and broaden their experience, and providing professional development for the REUs through oral or poster presentations and attendance at a professional meeting. Program challenges include obtaining funding from multiple sources; significant time investment in program management, reporting, and maintaining contact with our many funding sources and industry affiliates; and, despite significant efforts, limited success in recruiting racial and ethnic minority students to the program.

  14. Developing virtual REU cohorts: Reflections from the IRIS Undergraduate Internship Program

    NASA Astrophysics Data System (ADS)

    Hubenthal, M.; Taber, J.; Aster, R.; Frassetto, A.

    2007-12-01

    Beginning in 2006, the IRIS Education and Outreach program received funding from the National Science Foundation (EAR-0453427) to explore a novel approach to the traditional Research Experience for Undergraduates (REU) model. This model blends the spirit of an REU program, which traditionally hosts participants in one location with successful prior IRIS experience hosting students at widely separated institutions to participate in summer research. A unique feature the IRIS Undergraduate Internship Program is that throughout the summer, interns form and sustain a virtual community, offering assistance, sharing ideas, asking questions, and relaying life experiences while conducting their research at diverse institutions. Key to IRIS's REU model is a combination of: one-on-one mentoring by researchers at IRIS institutions across the US, developing a strong unity among interns through both face-to-face and on-line interactions, participation of an IRIS REU alumni mentor to provide both group and intern-specific guidance developing interns' abilities to self-evaluate and work independently, through carefully designed web-based tools, and increasing interns' awareness of the IRIS and broader Earth Science community; demonstrating the role they will play in this larger community. Virtual interaction is facilitated by 1) bringing students together for face-to-face contact, through a week long orientation held annually at the IRIS PASSCAL Instrument Center on the campus of the New Mexico Institute of Mining and Technology, and 2) the community enabling web infrastructure at http://www.iris.edu/internship/. During the orientation students engage in classes in geophysics basics, career preparation, as well as training to communicate virtually. Our experiences and evaluations from the 2006 and 2007 field seasons have:shown the increasing demand for electronic advertising of REU programs, provided support for several assumptions of the model including the key role of both the orientation week and the alumni mentor, revealed the important role of blogs and discussion forums in the mentoring and self-reflection process, as well as additional technical enhancements to improve the virtual cohort, produced concrete examples of the model applied at its best, and helped the program identify challenges the model faces, e.g communicating during remote fieldwork and sustaining intern's attention and participation in the virtual community.

  15. Starting and Running an REU for Minorities and Women

    ERIC Educational Resources Information Center

    Davenport, Dennis E.; Porter, Bonita

    2008-01-01

    The decreasing number of U.S. citizens with advanced degrees in the mathematical sciences is a growing concern. Also of concern is the small number of advanced degrees in the sciences going to African Americans, Latinos, and women. Several Research Experience for Undergraduates (REU) programs have been developed to address these issues. In this…

  16. Configuring The REU Experience To Maximize Student Collaboration

    NASA Astrophysics Data System (ADS)

    Majkowski, L.; Pullin, M. J.

    2012-12-01

    The New Mexico Tech NSF-funded REU Program, Interdisciplinary Science for the Environment (ISE), hosted six cohorts of students between 2005 and 2010. The program ran for eight weeks during the first cycle and nine weeks during the second cycle, bringing in an average of twelve student participants per year. Students were provided with a stipend, food allowance, travel from home to New Mexico Tech, and free campus housing. The program sponsored weekend group field trips to scientific, environmental, and cultural sites of significance in New Mexico. For the second cycle, the ISE shared some programmatic elements with the New Mexico EPSCoR Undergraduate Research Opportunities Program (UROP). The majority of the research projects focused on the geosciences, with interdepartmental participation from researchers in earth science, hydrology, chemistry, environmental science, and biology. The ISE adopted a non-traditional approach to matching student participants with research projects and faculty mentors. Students were selected from different disciplines to work together in pairs on each project. This model provided the students with a peer collaborator in addition to the guidance of their faculty mentors and support from graduate students associated with the different projects. The focus on cohort, both within the individual research projects and each year's group, enabled and enhanced the students' critical thinking, problem-solving and teamwork skills. Students would routinely seek out the advice of their peers when they hit a roadblock in their research. This collaboration also occurred across the boundaries of the ISE and UROP cohorts. Long-term follow up has shown that a significant number of the student participants have continued on to graduate school. Students credit the program with developing their capacity to work on complex problems in an interdisciplinary group environment. Additionally, many students have continued contact with their research partners, faculty mentors and other members of their REU cohort.

  17. The educational function of an astronomy REU program as described by participating women

    NASA Astrophysics Data System (ADS)

    Slater, Stephanie Jean

    The long-running REU-program is tacitly intended to increase retention and provide "an important educational experience" for undergraduates, particularly women, minorities and underrepresented groups. This longitudinal, two-stage study was designed to explore the ways in which REUs acted as educational experiences for 51 women in the field of astronomy, in an attempt to develop a theory of experience related to the REU. Stage-1 consisted of an ex post facto analysis of data collected over 8 years, including multiple interviews with each participant during their REU, annual open-ended alumni surveys, faculty interviews, and extensive field notes. All data were analyzed using a theoretical framework of continuity and interaction, in a search for transformative experiences. Four findings emerged, related to developing understandings of the nature of professional scientific work, the scientific process, the culture of academia, and an understanding of the "self." Analysis provided an initial theory that was used to design the Stage-2 interview protocol. In Stage-2, over 10 hours of interviews were conducted with 8 participants selected for their potential to disconfirm the initial theory. Results indicate that the REU provided a limited impact in terms of participants' knowledge of professional astronomy as a largely computer-based endeavor. The REU did not provide a substantive educational experience related to the nature of scientific work, the scientific process, the culture of academia, participants' conceptions about themselves as situated in science, or other aspects of the "self". Instead, the data suggests that these women began the REU with pre-existing and remarkably strong conceptions in these areas, and that the REU did not function to alter those states. These conceptions were frequently associated with other mentors/scientist interactions, from middle school into the undergraduate years. Instructors and family members also served as crucial forces in shaping highly developed, stable science identities. Sustained relationships with mentors were particularly transformational. These findings motivate an ongoing research agenda of long-term mentoring relationships for women in the sciences, at a variety of stages and across multiple disciplines.

  18. REU Programs at Field Research Stations Offer Unique Advantages that may Enhance Retention of Students in STEM Fields.

    NASA Astrophysics Data System (ADS)

    Kim, D. Y.; Marinelli, R. L.; Heidelberg, K., IV

    2014-12-01

    Studies have shown that undergraduate participation in research opportunities strengthens the retention of students in STEM fields. Increasing students' confidence levels in their scientific abilities, aiding in the development of their scientific identity, and strengthening their sense of belonging to a scientific community have been cited as important contributing factors. Research field stations offer unique advantages that amplify these benefits by challenging students to plan and work in the field, enhancing networking opportunities with multi-disciplinary professionals from numerous institutions and hierarchical levels, and creating a stronger sense of belonging and comradery within a science community. The USC Wrigley Institute for Environmental Studies' (WIES) Research Experiences for Undergraduates (REU) program is an 8-week program that begins on the main USC campus in Los Angeles and moves to a marine field station on Catalina Island during weeks 2-7, before returning to the mainland to complete the last week of the program. This unique model provides REU students with an opportunity to become integrated into faculty mentors' labs on the main campus, while exposing them to life as a researcher at a field station, both of which contribute significantly to the students' development as a scientist. Here, we present the WIES REU model and include a discussion of benefits and challenges to this unique infrastructure.

  19. The Educational Function of an Astronomy Research Experience for Undergraduates Program as Described by Female Participants

    NASA Astrophysics Data System (ADS)

    Slater, Stephanie

    2010-01-01

    The long-running REU-program is tacitly intended to increase retention and provide "an important educational experience" for undergraduates, particularly women, minorities and underrepresented groups. This longitudinal, two-stage study was designed to explore the ways in which the REU acted as an educational experience for 51 women in the field of astronomy. Stage-1 consisted of an ex post facto analysis of data collected over 8 years, including multiple interviews with each participant during their REU, annual open-ended alumni surveys, faculty interviews, and extensive field notes. Four themes emerged, related to developing understandings of the nature of professional scientific work, the scientific process, the culture of academia, and an understanding of the "self." Analysis provided an initial theory that was used to design the Stage-2 interview protocol. In Stage-2, over 10 hours of interviews were conducted with 8 participants selected for their potential to disconfirm the initial theory. Results indicate that the REU provided a limited impact in terms of participants’ knowledge of professional astronomy as a largely computer-based endeavor. The REU did not provide a substantive educational experience related to the nature of scientific work, the scientific process, the culture of academia, participants' conceptions about themselves as situated in science, or other aspects of the "self,” were limited. Instead, the data suggests that these women began the REU with pre-existing and remarkably strong conceptions in these areas, and that the REU did not functional to alter those states. These conceptions were frequently associated with other mentors/scientist interactions, from middle school into the undergraduate years. Instructors and family members also served as crucial forces in shaping highly developed, stable science identities. Sustained relationships with mentors were particularly transformational. These findings motivate an ongoing research agenda of long-term mentoring relationships for women in the sciences, at a variety of stages and across multiple disciplines.

  20. Evaluating Research Ethics Training in the Maryland Sea Grant REU Program

    NASA Astrophysics Data System (ADS)

    Allen, M. R.; Kumi, G. A.; Kumi, B. C.; Moser, F. C.

    2016-02-01

    The NSF's Research Experiences for Undergraduates (REU) program is an opportunity to cultivate responsible research practices in researchers at an early stage in their career. However, teaching responsible research conduct and science ethics in this program has been challenging because of a lack of consensus regarding which instructional methods are most effective for educating students about ethical concepts and establishing the process of ethical decision-making. Over the last 15 years, Maryland Sea Grant's REU ethics program has evolved by exploring different teaching models and looking for ways to effectively engage upper level undergraduates throughout their summer experience in ethical responsibility training. Since 2007, we have adopted a concerted experiential learning approach that includes an ethics seminar, role playing, case studies, and reflection. Currently, our summer long ethics training includes: 1) an interactive seminar; 2) a workshop with role playing and case studies; 3) 1-2 readings; and 4) a roundtable discussion with faculty mentors and their mentees to discuss researchers' real-world experiences with ethical dilemmas. Within the last 3 years, we have expanded our student learning outcomes assessments by administering pre- and post-program surveys to assess ethical skills students acquire through the program. Reevaluations administered three and six years after the REU experience will measure long term effectiveness of the training. Results from the first group of students reveal a greater awareness of ethical issues following our summer program. Students show a high level of competence about "black and white" issues (falsification, fabrication, plagiarism), but are more challenged by ethical "gray areas" such as data ownership and authorship. Results suggest many undergraduates come to research programs with basic ethics training, but benefit from our additional focus on complex ethical dilemmas.

  1. Using a Summer REU to Help Develop the Next Generation of Mathematical Ecologists.

    PubMed

    Bennie, Barbara; Eager, Eric Alan; Peirce, James P; Sandland, Gregory J

    2018-04-01

    Understanding the complexities of environmental issues requires individuals to bring together ideas and data from different disciplines, including ecology and mathematics. With funding from the national science foundation (NSF), scientists from the University of Wisconsin-La Crosse and the US geological survey held a research experience for undergraduates (REU) program in the summer of 2016. The goals of the program were to expose students to open problems in the area of mathematical ecology, motivate students to pursue STEM-related positions, and to prepare students for research within interdisciplinary, collaborative settings. Based on backgrounds and interests, eight students were selected to participate in one of two research projects: wind energy and wildlife conservation or the establishment and spread of waterfowl diseases. Each research program was overseen by a mathematician and a biologist. Regardless of the research focus, the program first began with formal lectures to provide students with foundational knowledge followed by student-driven research projects. Throughout this period, student teams worked in close association with their mentors to create, parameterize and evaluate ecological models to better understand their systems of interest. Students then disseminated their results at local, regional, and international meetings and through publications (one in press and one in progress). Direct and indirect measures of student development revealed that our REU program fostered a deep appreciation for and understanding of mathematical ecology. Finally, the program allowed students to gain experiences working with individuals with different backgrounds and perspectives. Taken together, this REU program allowed us to successfully excite, motivate and prepare students for future positions in the area of mathematical biology, and because of this it can be used as a model for interdisciplinary programs at other institutions.

  2. Long-term Academic and Career Impacts of Undergraduate Research: Diverse Pathways to Geoscience Careers Following a Summer Atmospheric Science Research Internship

    NASA Astrophysics Data System (ADS)

    Trott, C. D.; Sample McMeeking, L. B.; Boyd, K.; Bowker, C.

    2015-12-01

    Research experiences for undergraduates (REU) have been shown to support the success of STEM undergraduates through improving their research skills, ability to synthesize knowledge, and personal and professional development, all while socializing them into the nature of science. REUs are further intended to support STEM career choice and professional advancement, and have thus played a key role in diversity efforts. Recruiting and retaining diverse students in STEM through REUs is of particular importance in the geosciences, where women and ethnic minorities continue to be significantly underrepresented. However, few studies have examined the long-term impacts of these REUs on students' academic and career trajectories. Further, those that do exist primarily study the experiences of current graduate students, scientists, and faculty members—that is, those who have already persisted—which overlooks the multiple academic and career paths REU students might follow and may preclude a thorough examination of REUs' diversity impacts. In this long-term retrospective study of the academic and career impacts of a REU program at a large Western U.S. research university, we interviewed 17 former REU participants on their expectations prior to their REU participation, their experiences during the REU, the immediate outcomes from the experience, and its long-term impacts on their academic and career choices. To address gaps in the existing literature on REU impacts, we purposively sampled students who have taken a variety of educational and career paths, including those not engaged in science research. Despite varied trajectories, the majority of the students we interviewed have persisted in the geosciences and attest to the REU's profound impact on their career-related opportunities and choices. This presentation describes students' diverse STEM pathways and discusses how students' REU expectations, experiences, and immediate outcomes continued to make an impact long-term.

  3. Calcium II K Line as a Measure of Activity: Meshing Sac Peak and Solis Measurements

    NASA Astrophysics Data System (ADS)

    Urbach, Elana; Earley, J.; Keil, S.

    2012-05-01

    The Calcium II K line is an important indicator of solar and stellar activity. Disk integrated Ca K measurements have been taken at the Evans Solar Facility at Sacramento Peak Observatory since 1976. This instrument will be shut down by the end of the year, and the observations will be continued by the Solis Integrated Sunlight Spectrometer (ISS), which has been taking measurements since 2006. We attempt to regress the measurements from Sacramento Peak and ISS. In addition, we compare the Ca K measurements with disk averaged line of sight magnetic field measurements, which will help us predict the magnetic field of other stars. We also compare the measurements with Lyman α, allowing us to use Ca K as an extreme ultraviolet (EUV) proxy. This work is carried out through the National Solar Observatory Research Experiences for Undergraduate (REU) [or Research Experiences for Teachers (RET)] site program, which is co-funded by the Department of Defense in partnership with the National Science Foundation REU/RET Program. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.

  4. Partnerships for building strong internship and research experiences for undergraduates

    NASA Astrophysics Data System (ADS)

    Goehring, L.; Haacker-Santos, R.; Dutilly, E.

    2013-12-01

    REU and internship site directors often operate in geographic and institutional isolation from each other, unable to share best practices or resources. When collaboration is possible, benefits for both the students and leaders of these programs can be achieved. In 2013, the SOARS REU program, hosted at the National Center for Atmospheric Research (NCAR), supported the National Ecological Observatory Network (NEON) in creating a new internship program aimed at engaging undergraduate science and engineering students in NEON's work. Both student programs share the objective of reaching underrepresented groups in STEM. The year long collaboration allowed NEON to learn best practices in recruitment and support of students, mentor training, and program development, and to customize its internship according to its organization i.e., a science/engineering observatory under construction. Both programs shared several elements: students were housed together so that interns could tap into a larger cohort of supportive peers; students participated in a joint leadership training to strengthen cross program mentoring; and students met weekly for a scientific communications workshop. Having multiple science disciplines represented enhanced the workshop as students learned about writing styles and cultures of each other's fields, fostering an appreciation of different scientific disciplines and interdisciplinary thinking. Finally, at the end of the summer, students presented their findings in a joint poster session. We found that collaboration between programs led to increased recruitment of students from diverse backgrounds and support of students through stronger cohorts, shared trainings, and enhanced program content. In this presentation we share findings of our programs' evaluations and make recommendations on building collaborative partnerships for internships and research experiences for undergraduates.

  5. Undergraduates study climate change science, philosophy, and public policy

    NASA Astrophysics Data System (ADS)

    Bullock, Mark A.; Frodeman, Robert L.

    The National Science Foundation's (NSF) Research Experience for Undergraduates (REU) program provides undergraduate students with the opportunity to participate in ongoing scientific research. Existing either as stand-alone summer programs or as supplementary components to existing NSF research grants, the REU program focuses on introducing aspiring young scientists to the delights and complexities of science. Global Climate Change and Society (GCCS) is an intensive, 8-week REU program that began a 3-year run in the summer of 2001.Developed by a philosopher at the Colorado School of Mines, and a planetary scientist at Southwest Research Institute in Boulder, Colrado, GCCS is a unique experiment in research and pedagogy that introduces students to science by using a distinctive approach. Choosing as its topic the questions surrounding global climate change, the program explores the interwoven scientific, philosophical, and public policy issues that make the climate change debate such a volatile topic in contemporary society. Last summer, the program selected 12 undergraduates through a nationally advertised competition. Student interns came from diverse academic and cultural backgrounds and included physics, philosophy and public policy majors from elite liberal arts schools, major research institutions, and mainstream state universities. The program was held at the University of Colorado and the National Center for Atmospheric Research (NCAR), in Boulder, Colorado (Figure 1).

  6. UAHuntsville and NASA-MSFC Heliophysics REU: Year One Strategy and Results

    NASA Astrophysics Data System (ADS)

    Farid, S.; Heerikhuisen, J.; Winebarger, A. R.

    2012-12-01

    Scientists from the University of Alabama in Huntsville and NASA Marshall Space Fight Center (MSFC) received a 3-year National Science Foundation (NSF) award to create a unique Heliophysics Research Experience for Undergraduates (REU). For 10 weeks, 10 undergraduate students engaged in cutting edge heliophysics research with NASA or UAHuntsville astrophysicists specializing in research from the solar interior to the heliopause. Research projects included theory, modeling, computer simulations, data analysis and instrument design. The primary objectives of this REU are to 1.) increase minority participation in science, technology and mathematics (STEM) fields in general, and heliophysics in particular, and 2.) decrease the STEM attrition rate in first and second year students. This REU is unique because of our focus on recruiting talented students that may not have otherwise participated in an REU. In addition to the usual criteria of most REUs, consideration of need was also given to those students who were sophomores, students with little or no previous research experience, those from small or non-PhD granting institutions, students with less than average GPA, minorities, women, etc. In this poster, we review the effectiveness of the first year strategy. We evaluate the recruitment and application process, mentor placement, living and working arrangements, introductory tutorials, and merit of final research projects. We present modifications for next year's effort, and make suggestions to similar REU programs.

  7. Coronal Seismology: The Search for Propagating Waves in Coronal Loops

    NASA Astrophysics Data System (ADS)

    Schad, Thomas A.; Seeley, D.; Keil, S. L.; Tomczyk, S.

    2007-05-01

    We report on Doppler observations of the solar corona obtained in the Fe XeXIII 1074.7nm coronal emission line with the HAO Coronal Multi-Channel Polarimeter (CoMP) mounted on the NSO Coronal One Shot coronagraph located in the Hilltop Facility of NSO/Sacramento Peak. The COMP is a tunable filtergraph instrument that records the entire corona from the edge of the occulting disk at approximately 1.03 Rsun out to 1.4 Rsun with a spatial resolution of about 4” x 4”. COMP can be rapidly scanned through the spectral line while recording orthogonal states of linear and circular polarization. The two dimensional spatial resolution allows us to correlate temporal fluctuations observed in one part of the corona with those seen at other locations, in particular along coronal loops. Using cross spectral analysis we find that the observations reveal upward propagating waves that are characterized by Doppler shifts with rms velocities of 0.3 km/s, peak wave power in the 3-5 mHz frequency range, and phase speeds 1-3 Mm/s. The wave trajectories are consistent with the direction of the magnetic field inferred from the linear polarization measurements. We discuss the phase and coherence of these waves as a function of height in the corona and relate our findings to previous observations. The observed waves appear to be Alfvenic in character. "Thomas Schad was supported through the National Solar Observatory Research Experiences for Undergraduate (REU) site program, which is co-funded by the Department of Defense in partnership with the National Science Foundation REU Program." Daniel Seeley was supported through the National Solar Observatory Research Experience for Teachers (RET) site program, which is funded by the National Science Foundation RET program.

  8. The role of the faculty mentor to the REU experience: insights from an international REU

    NASA Astrophysics Data System (ADS)

    Houser, C.; Cahill, A. T.; Lemmons, K.

    2012-12-01

    The Texas A&M REU in Costa Rica provides students with an opportunity to participate in research on the ecohydrology of a tropical pre-montane forest. The international and field components of this program require both that students to work in research clusters of several faculty and students, and that each of the clusters contribute to a primary research question of closing the water budget for a small watershed. Specifically, students and faculty participate in precipitation (P), evapotranspiration (E), hydrology (Q) or subsurface storage (DS) research clusters. It is argued that having the students at a central research station location and focusing their research on a common research problem is an important aspect of an international REU program to avoid a feeling of isolation and to ensure that the students remain safe in their research and during their free time. However, this shared experience and research question can highlight differences among the faculty mentors and make the students evaluate their individual experience more critically. To better understand the relationship between the REU student and their faculty mentor(s), we have been conducting pre- and post-surveys, interviews, and focus groups to understand their experience in the REU and the manner in which the faculty mentor can affect that experience and the desire to continue in research. Results of the pre-trip survey suggest that the undergraduate students are most concerned about their projects and show little no concern about the faculty mentor with whom they will be completing their research. Post-trip results from 2011 and 2012 suggest that mentors had a much greater impact on the experience than expected. Many students said that their future research/graduate school plans were significantly affected by their REU mentor relationship. One student said that by working closely with mentors, "you know that what you are doing and learning is pertinent because you are learning it from actual researchers." The overall results suggest that the student-to-mentor relationship created through these authentic experiences is highly influential in either encouraging or discouraging students to conduct future research and/or attend graduate school.

  9. The Cerro Tololo Inter-American Observatory Summer Student Programs in La Serena, Chile

    NASA Astrophysics Data System (ADS)

    Kaleida, Catherine C.; Smith, C.; Van Der Bliek, N. S.; James, D.

    2014-01-01

    The Cerro Tololo Inter-American Observatory (CTIO) offers positions for U.S. and Chilean student interns during the Chilean summer months of January-March (northern winter semester) at the CTIO offices in La Serena, Chile. CTIO is part of the National Optical Astronomy Observatory (NOAO) of the United States, focused on the development of astronomy in the southern hemisphere. Six undergraduate research assistantships are offered for U.S. physics and astronomy undergraduate students through the NSF-funded Research Experiences for Undergraduates (REU) program. The CTIO-funded Prácticas de Investigación en Astronomía (PIA) program is run concurrently with the REU program, and offers two research assistantships for Chilean undergraduate or 1st or 2nd year masters students, also at the CTIO offices in La Serena, Chile. The CTIO REU and PIA programs provide exceptional opportunities for students considering a career in astronomy to engage in substantive research activities with scientists working at the forefront of contemporary astrophysics. Student participants work on specific research projects in close collaboration with members of the CTIO scientific and technical staff, such as galaxy clusters, gravitational lensing, supernovae, planetary nebulae, stellar populations, star clusters, star formation, variable stars and interstellar medium. The CTIO REU and PIA programs emphasize observational techniques and provide opportunities for direct observational experience using CTIO's state-of-the-art telescopes and instrumentation. The programs run for 10 weeks, from mid-January to the end of March. A two-night observing run on Cerro Tololo and a field trip to another observatory in Chile are included for students of both programs. These positions are full time, and those selected will receive a modest stipend and subsidized housing on the grounds of the offices of CTIO in La Serena, as well as travel costs to and from La Serena. In addition, the students have the opportunity attend the American Astronomical Society (AAS) winter meeting to present their research the year following the program.

  10. Effective Recruiting and Intrusive Retention Strategies for Diversifying the Geosciences through a Research Experiences for Undergraduate Program

    NASA Astrophysics Data System (ADS)

    Liou-Mark, J.; Blake, R.; Norouzi, H.; Yuen-Lau, L.; Ikramova, M.

    2016-12-01

    Worse than in most Science, Technology, Engineering, and Mathematics (STEM) fields, underrepresented minority (URM) groups in the geosciences are reported to be farthest beneath the national benchmarks. Even more alarming, the geosciences have the lowest diversity of all the STEM disciplines at all three levels of higher education. In order to increase the number of underrepresented groups in the geosciences, a National Science Foundation funded Research Experiences for Undergraduates (REU) program at the New York City College of Technology has implemented effective recruitment strategies to attract and retain diverse student cohorts. Recruitment efforts include: 1) establishing partnership with the local community colleges; 2) forging collaborations with scientists of color; 3) reaching out to the geoscience departments; and 4) forming relationships with STEM organizations. Unlike the other REU programs which primarily provide a summer-only research experience, this REU program engages students in a year-long research experience. Students begin their research in the summer for nine weeks, and they continue their research one day a week in the fall and spring semesters. During the academic year, they present their projects at conferences. They also serve as STEM ambassadors to community and high school outreach events. This one-year triad connection of 1) professional organizations/conferences, 2) continual research experience, and 3) service constituent has resulted in higher retention and graduation rates of URMs in the STEM disciplines. Both formative and summative program assessment have uncovered and shown that strong recruitment efforts accompanied by intrusive retention strategies are essential to: a) sustain and support STEM URMs in developing confidence as scientists; b) create formal and informal STEM communities; and c) provide a clear pathway to advanced degrees and to the geoscience workforce. This project is supported by NSF REU Grant #1560050.

  11. Maximizing a Multilevel Mentoring Model to Improve Research Experiences for Undergraduates Student Outcomes

    NASA Astrophysics Data System (ADS)

    Moser, F. C.; Allen, M. R.; Clark, J.

    2016-12-01

    Since 1989 the Maryland Sea Grant REU program's mentoring approach evolved considerably from a near `hands-off' approach to one that explores ways to maximize mentoring effectiveness. Our current model creates a multi-tiered system: the REU - research mentor relationship remains central to setting the student's science project, but greater student growth is supported by REU program leaders, visiting researchers, graduate students, and peer and near-peer mentors. Evaluation of our evolving mentoring program suggests our approach is successful and serves a diversity of students well, but we recognize the challenge of devising an evaluation system, given our limited annual cohort number (15 - 17 students), that fully captures the nuances of student - mentor relationships. We present multiple years of data on student skills, networks of relationships, student goals, and mentor goals using qualitative, quantitative and interview assessments. Further, we explore opportunities to strengthen our efforts and evolve our evaluation approach as we aspire to more accurately identify the components of our multilevel mentoring model that contribute most significantly to student success.

  12. 2012 Summer Research Experiences for Undergraduates at Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Castelaz, Michael W.; Cline, J. D.; Whitworth, C.; Clavier, D.; Owen, L.

    2013-01-01

    Pisgah Astronomical Research Institute (PARI) offers research experiences for undergraduates (REU). PARI receives support for the internships from the NC Space Grant Consortium, NSF awards, private donations, and industry partner funding. The PARI REU program began in 2001 with 4 students and has averaged 6 students per year over the past 11 years. This year PARI hosted 8 funded REU students. Mentors for the interns include PARI’s Science, Education, and Information Technology staff and visiting faculty who are members of the PARI Research Faculty Affiliate program. Students work with mentors on radio and optical astronomy research, electrical engineering for robotic control of instruments, software development for instrument control and software for citizen science projects, and science education by developing curricula and multimedia and teaching high school students in summer programs at PARI. At the end of the summer interns write a paper about their research which is published in the annually published PARI Summer Student Proceedings. Several of the students have presented their results at AAS Meetings. We will present a summary of specific research conducted by the students with their mentors and the logistics for hosting the PARI undergraduate internship program.

  13. Assessing Student Outcomes of Undergraduate Research with URSSA, the Undergraduate Student Self-Assessment Instrument

    NASA Astrophysics Data System (ADS)

    Laursen, S. L.; Weston, T. J.; Thiry, H.

    2012-12-01

    URSSA is the Undergraduate Research Student Self-Assessment, an online survey instrument for programs and departments to use in assessing the student outcomes of undergraduate research (UR). URSSA focuses on what students learn from their UR experience, rather than whether they liked it. The online questionnaire includes both multiple-choice and open-ended items that focus on students' gains from undergraduate research. These gains include skills, knowledge, deeper understanding of the intellectual and practical work of science, growth in confidence, changes in identity, and career preparation. Other items probe students' participation in important research-related activities that lead to these gains (e.g. giving presentations, having responsibility for a project). These activities, and the gains themselves, are based in research and thus constitute a core set of items. Using these items as a group helps to align a particular program assessment with research-demonstrated outcomes. Optional items may be used to probe particular features that are augment the research experience (e.g. field trips, career seminars, housing arrangements). The URSSA items are based on extensive, interview-based research and evaluation work on undergraduate research by our group and others. This grounding in research means that URSSA measures what we know to be important about the UR experience The items were tested with students, revised and re-tested. Data from a large pilot sample of over 500 students enabled statistical testing of the items' validity and reliability. Optional items about UR program elements were developed in consultation with UR program developers and leaders. The resulting instrument is flexible. Users begin with a set of core items, then customize their survey with optional items to probe students' experiences of specific program elements. The online instrument is free and easy to use, with numeric results available as raw data, summary statistics, cross-tabs, and graphs, and as raw, downloadable data. Finally, URSSA has high content validity based on its research grounding and rigorous development. We will present examples of how URSSA has been used in evaluations of UR programs. A multi-year evaluation of a university-based UR program shows that URSSA items are sensitive to differences in students' prior level of experience with research. For example, experienced student researchers reported greater gains than did their peers new to UR in understanding the process of research and in coming to see themselves as scientists. These differences are consistent with interview data that suggest a developmental progression of gains as students pursue research and gain confidence in their ability to contribute meaningfully. A second example comes from a multi-site evaluation of sites funded by the National Science Foundation's Research Experience for Undergraduates (REU) program in Biology. This study acquired data from nearly 800 students at some 60 Bio REU sites in 2010 and 2011. Results reveal differences in gains among demographic groups, and the general strength of these well-planned programs relative to a comparison sample of UR programs that are not part of REU. Our presentation will demonstrate the evaluative use of URSSA and its potential applications to undergraduate research in the geosciences.

  14. Introducing ethics to chemistry students in a "Research Experiences for Undergraduates" (REU) program.

    PubMed

    Hanson, Mark J

    2015-01-01

    A three-day ethics seminar introduced ethics to undergraduate environmental chemistry students in the Research Experiences for Undergraduates (REU) program. The seminar helped students become sensitive to and understand the ethical and values dimensions of their work as researchers. It utilized a variety of resources to supplement lectures and class discussion on a variety of issues. Students learned about the relevance of ethics to research, skills in moral reasoning, and the array of ethical issues facing various aspects of scientific research. © 2015 The International Union of Biochemistry and Molecular Biology.

  15. REU Students' Initial Perceptions of Scientific Ethics

    NASA Astrophysics Data System (ADS)

    Murphy, Sytil; Zollman, Dean

    2010-10-01

    One goal of undergraduate research, particularly Research Experience for Undergraduates (REU) programs, is to help students become aware of the importance of ethical conduct in research. The Survey of Undergraduate Research Experiences (SURE) indicates that biology students believe they learn more about ethical conduct from their research experiences than physics students. Motivated by this, we initiated a study of both biology and physics REU students at Kansas State University consisting of pre- and post-interviews regarding their understanding of ethics with results to be compared to the SURE. This paper presents the students' initial perceptions (from the pre-interview) of how ethical issues impact science in general as well as their own specific work. We also discuss the differences in the interview responses of the two groups.

  16. Integrating Research and Extension for the Nsf-Reu Program in Water Resources

    NASA Astrophysics Data System (ADS)

    Judge, J.; Migliaccio, K.; Gao, B.; Shukla, S.; Ehsani, R.; McLamore, E.

    2011-12-01

    Providing positive and meaningful research experiences to students in their undergraduate years is critical for motivating them to pursue advanced degrees or research careers in science and engineering. Such experiences not only offer training for the students in problem solving and critical thinking via hands-on projects, but also offer excellent mentoring and recruiting opportunities for the faculty advisors. The goal of the Research Experience for Undergraduates (REU) Program in the Agricultural and Biological Engineering Department (ABE) at the University of Florida (UF) is to provide eight undergraduate students a unique opportunity to conduct research in water resources using interdisciplinary approaches, integrating research and extension. The students are selected from diverse cultural and educational backgrounds. The eight-week REU Program utilizes the extensive infrastructure of UF - Institute of Food and Agricultural Sciences (IFAS) through the Research and Education Centers (RECs). Two students are paired to participate in their own project under the direct supervision of one of the four research mentors. Four of the eight students are located at the main campus, in Gainesville, Fl, and four remaining students are located off-campus, at the RECs, where some of the ABE faculty are located. The students achieve an enriching cohort experience through social networking, daily blogs, and weekly video conferences to share their research and other REU experiences. The students are co-located during the Orientation week and also during the 5-day Florida Waters Tour. Weekly group meetings and guest lectures are conducted via synchronously through video conferencing. The integration of research and extension is naturally achieved through the projects at the RECs, the guest lectures, Extension workshops, and visits to the Water Management Districts in Florida. In the last two years of the Program, we have received over 80 applicants, from four-year and advanced degree offering institutions and a variety of majors such as Geology, Meteorology, Environmental Sciences & Engineering, Civil Engineering, Water Resources, Agricultural Engineering, Physics, Geography, Chemical Engineering, to name a few. This model of providing integrated research and extension opportunities in hydrology where not all the REU participants are physically co-located, is unique and can be extended to other disciplines.

  17. A Combined Study of Photospheric Magnetic and Current Helicities and Subsurface Kinetic Helicities of Solar Active Regions during 2006-2012

    NASA Astrophysics Data System (ADS)

    Seligman, Darryl; Petrie, G.; Komm, R.

    2014-01-01

    We compare the average photospheric current helicity H_c, photospheric twist parameter α (a well-known proxy for the full relative magnetic helicity), and subsurface kinetic helicity K_h for 128 active regions observed between 2006-2012. We use 1436 Hinode photospheric vector magnetograms and subsurface fluid velocity data from GONG Dopplergrams. We find a significant hemispheric bias in all three parameters. The K_h parameter is preferentially positive/negative in the southern/northern hemisphere. The H_c and α parameters have the same bias for strong fields |{B}|>1000 G). We examine the temporal variability of each parameter for each active region and identify a significant subset of regions whose three helicity parameters all exhibit clear increasing or decreasing trends. The temporal profiles of these regions have the same bias: positive/negative helicity in the northern/southern hemisphere. The results are consistent with Longcope et al.'s Σ-effect. This work is carried out through the National Solar Observatory Research Experiences for Undergraduate (REU) site program, which is co-funded by the Department of Defense in partnership with the NSF REU Program. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.

  18. Supporting a Diverse Community of Undergraduate Researchers in Satellite and Ground-Based Remote Sensing

    NASA Astrophysics Data System (ADS)

    Blake, R.; Liou-Mark, J.

    2012-12-01

    The U.S. remains in grave danger of losing its global competitive edge in STEM. To find solutions to this problem, the Obama Administration proposed two new national initiatives: the Educate to Innovate Initiative and the $100 million government/private industry initiative to train 100,000 STEM teachers and graduate 1 million additional STEM students over the next decade. To assist in ameliorating the national STEM plight, the New York City College of Technology has designed its NSF Research Experience for Undergraduate (REU) program in satellite and ground-based remote sensing to target underrepresented minority students. Since the inception of the program in 2008, a total of 45 undergraduate students of which 38 (84%) are considered underrepresented minorities in STEM have finished or are continuing with their research or are pursuing their STEM endeavors. The program is comprised of the three primary components. The first component, Structured Learning Environments: Preparation and Mentorship, provides the REU Scholars with the skill sets necessary for proficiency in satellite and ground-based remote sensing research. The students are offered mini-courses in Geographic Information Systems, MATLAB, and Remote Sensing. They also participate in workshops on the Ethics of Research. Each REU student is a member of a team that consists of faculty mentors, post doctorate/graduate students, and high school students. The second component, Student Support and Safety Nets, provides undergraduates a learning environment that supports them in becoming successful researchers. Special networking and Brown Bag sessions, and an annual picnic with research scientists are organized so that REU Scholars are provided with opportunities to expand their professional community. Graduate school support is provided by offering free Graduate Record Examination preparation courses and workshops on the graduate school application process. Additionally, students are supported by college counselors. Many of the students are first generation college students who often face issues that can impede their academic progress. The last component, Vision and Impetus for Advancement, allows REU Scholars to see themselves as STEM scientists and workforce professionals. Exposure trips provide students with an opportunity to meet scientists working in industry. Additionally, the students also present their research and participate at local, regional, and national conferences. Furthermore, since many of the students were never given the chance to visit STEM-focused industries and conferences. The program, therefore, helps to broaden their STEM experience. Of the 38 REU Scholars, 16%(6) of them are in graduate school in the STEM disciplines, 21%(8) of them have graduated and are in the STEM workforce, and 63%(24) of them continue to pursue their STEM degrees. Three of the students have won first place recognition for their research, and two of the students will be co-authors for two peer-review publications and one book chapter. Additionally, survey results show that 84% of the student participants now indicate interest in pursuing Master's degrees in STEM and 75% indicate interest in pursuing doctoral degrees in STEM. This program is supported by NSF REU grant #1062934.

  19. Building a Network of Internships for a Diverse Geoscience Community

    NASA Astrophysics Data System (ADS)

    Sloan, V.; Haacker-Santos, R.; Pandya, R.

    2011-12-01

    Individual undergraduate internship programs, however effective, are not sufficient to address the lack of diversity in the geoscience workforce. Rather than competing with each other for a small pool of students from historically under-represented groups, REU and internship programs might share recruiting efforts and application processes. For example, in 2011, the RESESS program at UNAVCO and the SOARS program at UCAR shared recruiting websites and advertising. This contributed to a substantial increase in the number of applicants to the RESESS program, the majority of which were from historically under-represented groups. RESESS and SOARS shared qualified applications with other REU/internship programs and helped several additional minority students secure summer internships. RESESS and SOARS also leveraged their geographic proximity to pool resources for community building activities, a two-day science field trip, a weekly writing workshop, and our final poster session. This provided our interns with an expanded network of peers and gave our staff opportunities to work together on planning. Recently we have reached out to include other programs and agencies in activities for our interns, such as mentoring high-school students, leading outreach to elementary school students, and exposing our interns to geoscience careers options and graduate schools. Informal feedback from students suggests that they value these interactions and appreciate learning with interns from partner programs. Through this work, we are building a network of program managers who support one another professionally and share effective strategies. We would like to expand that network, and future plans include a workshop with university partners and an expanded list of REU programs to explore further collaborations.

  20. University of Maryland MRSEC - Research: Highlights

    Science.gov Websites

    ; National Labs International Educational Education Pre-College Programs Homeschool Programs Undergraduate Perspective at UMD MRSEC Nanoscience Camp Annual Middle School Student Science Conference (SSC) Pre ) Activities UMD-MRSEC Research Experience for Undergraduates Program (REU) Pre-Engineering Program

  1. Multi-Mission System Architecture Platform: Design and Verification of the Remote Engineering Unit

    NASA Technical Reports Server (NTRS)

    Sartori, John

    2005-01-01

    The Multi-Mission System Architecture Platform (MSAP) represents an effort to bolster efficiency in the spacecraft design process. By incorporating essential spacecraft functionality into a modular, expandable system, the MSAP provides a foundation on which future spacecraft missions can be developed. Once completed, the MSAP will provide support for missions with varying objectives, while maintaining a level of standardization that will minimize redesign of general system components. One subsystem of the MSAP, the Remote Engineering Unit (REU), functions by gathering engineering telemetry from strategic points on the spacecraft and providing these measurements to the spacecraft's Command and Data Handling (C&DH) subsystem. Before the MSAP Project reaches completion, all hardware, including the REU, must be verified. However, the speed and complexity of the REU circuitry rules out the possibility of physical prototyping. Instead, the MSAP hardware is designed and verified using the Verilog Hardware Definition Language (HDL). An increasingly popular means of digital design, HDL programming provides a level of abstraction, which allows the designer to focus on functionality while logic synthesis tools take care of gate-level design and optimization. As verification of the REU proceeds, errors are quickly remedied, preventing costly changes during hardware validation. After undergoing the careful, iterative processes of verification and validation, the REU and MSAP will prove their readiness for use in a multitude of spacecraft missions.

  2. Creating Authentic Geoscience Research Experiences for Underrepresented Students in Two-Year Undergraduate Programs

    NASA Astrophysics Data System (ADS)

    Liou-Mark, J.; Blake, R.

    2014-12-01

    With community college and two-year program students playing pivotal roles in advancing the nation's STEM agenda now and throughout the remainder of this young millennia, it is incumbent on educators to devise innovative and sustainable STEM initiatives to attract, retain, graduate, and elevate these students to four-year programs and beyond. Involving these students in comprehensive, holistic research experiences is one approach that has paid tremendous dividends. The New York City College of Technology (City Tech) was recently awarded a National Science Foundation Research Experiences for Undergraduates (REU) supplemental grant to integrate a community college/two-year program component into its existing REU program. The program created an inviting and supportive community of scholars for these students, nurtured them through strong, dynamic mentoring, provided them with the support structures needed for successful scholarship, and challenged them to attain the same research prominence as their Bachelor degree program companions. Along with their colleagues, the community college/two-year program students were given an opportunity to conduct intensive satellite and ground-based remote sensing research at the National Oceanic and Atmospheric Administration Cooperative Remote Sensing Science and Technology Center (NOAA-CREST) at City College and its CREST Institute Center for Remote Sensing and Earth System Science (ReSESS) at City Tech. This presentation highlights the challenges, the rewards, and the lessons learned from this necessary and timely experiment. Preliminary results indicate that this paradigm for geoscience inclusion and high expectation has been remarkably successful. (The program is supported by NSF REU grant #1062934.)

  3. Using local research sites to engage undergraduates in environmental science research

    NASA Astrophysics Data System (ADS)

    Varner, R. K.

    2016-12-01

    For the first time in their undergraduate experience, students in the University of New Hampshire's Techniques in Environmental Science course are immersed in learning approaches to scientific investigation that they can implement as part of their senior capstone research experience or other REU type programs. The course begins with an understanding of the value of note taking in the field and working collaboratively in groups. The students then embark upon a series of field experiences that include using both simple and complex tools for mapping elevation, species composition and above ground biomass estimates in a forest and wetland, carbon cycling through measurement of greenhouse gas exchange at both a wetland and at an organic dairy farm, assessing hydrology and water quality through both ground and surface water measurements at locations on campus, and finally analysis of atmospheric chemistry data collected locally. Over the course of a semester the students learn how to describe their methodology and the importance of their work concisely. Eventually the students are given instrumentation and a field site and learn to ask their own research question and develop their approach to answering it. This course model provides a foundation for students to pursue their capstone research experiences but also for understanding complex environmental questions such as the impact of land use change on water and air quality and carbon cycling and its role in our climate system. Students are provided a unique opportunity to address questions at field sites that are local and are part of larger research programs which allows for a larger context to place their work. This course has also been a framework for the NSF funded REU program- Northern Ecosystems Research for Undergraduates (EAR#1063037). Sallie's Fen, a wetland research site, is used as an initial field setting for students to learn techniques, build their ability to ask research questions and to plan research approaches, all skills required for them to be successful in their research in northern Sweden where they spend the next four weeks studying the impact of climate change in a region of thawing permafrost.

  4. REU Solar and Space Physics Summer School

    NASA Astrophysics Data System (ADS)

    Snow, M. A.; Wood, E. L.

    2011-12-01

    The Research Experience for Undergrads (REU) program in Solar and Space Physics at the University of Colorado begins with a week of lectures and labs on Solar and Space Physics. The students in our program come from a variety of majors (physics, engineering, meteorology, etc.) and from a wide range of schools (small liberal arts colleges up through large research universities). The majority of the students have never been exposed to solar and space physics before arriving in Boulder to begin their research projects. We have developed a week-long crash course in the field using the expertise of scientists in Boulder and the labs designed by the Center for Integrated Space Weather Modeling (CISM).

  5. Insights from an 8-Year Longitudinal Study of Female REU Participants

    NASA Astrophysics Data System (ADS)

    Slater, S. J.

    2009-12-01

    The long-running REU program is tacitly intended to increase retention and provide "an important educational experience" for undergraduates, particularly women, minorities and underrepresented groups. This 8-year, two-stage study was designed to explore the ways in which the REU acted as an educational experience for 51 women from a single scientific discipline. This paper describes the results of that analysis in two sections. The first section describes the results from an ex post facto longitudinal data analysis. This data included multiple interviews with each participant during their REU, annual open-ended alumni surveys, faculty interviews, and extensive field notes, over an 8-year period. As a result of this analysis, four themes emerged, related to developing understandings of the nature of professional scientific work, the nature of the scientific process, the culture of academia, and finally, an understanding of the "self." This analysis served as an initial theory that was used to design the second stage, interview protocol. In the second stage over 10 hours of interviews with 8 participants were conducted and analyzed. These 8 participants were selected to represent a variety of career stages, and for their potential to disconfirm the initial theory. Analysis of this interview data failed to provide disconfirming evidence. Results from this study indicate that the REU did not provide a substantive educational experience related to the nature of scientific work, the scientific process, or the culture of academia. Results further indicated that the REU did not serve to transform participants' conceptions about themselves as situated in science, and learning gains with regard to other aspects of the self, were somewhat limited. Instead, the data suggests that these women arrived at the REU with pre-existing and remarkably strong conceptions in these areas, and that the REU did not functional to alter those states. These conceptions were frequently the result of interactions with mentors/scientists from middle school until well into the undergraduate period. Formal and informal interactions with research scientists and instructors, in addition to family members, served as crucial forces in shaping highly developed, stable science identities. Sustained interactions with a single mentor at a home institution were particularly transformational. This study suggests further studies into the impact of long-term mentors on women in the sciences, at a variety of stages and across multiple disciplines.

  6. Increasing Diversity in Global Climate Change Research for Undergraduates

    NASA Astrophysics Data System (ADS)

    Johnson, L. P.; Marchese, P.; Carlson, B. E.; Howard, A. M.; Peteet, D. M.; Rosenzweig, C.; Druyan, L. M.; Fulakeza, M.; Gaffin, S.; Austin, S. A.; Cheung, T. D.; Damas, M. C.; Boxe, C.; Prince, T.; Ng, C.; Frost, J.

    2014-12-01

    Global Climate Change and the ability to predict the effects of forcings and feedback mechanisms on global and local climate are critical to the survival of the inhabitants of planet Earth. It is therefore important to motivate students to continue their studies towards advanced degrees and pursue careers related to climate change. This is best accomplished by involving undergraduates in global climate change research. This Research Experience for Undergraduates (REU) initiative is based at the City University of New York (CUNY) and the Goddard Institute for Space Studies (GISS), and is supported by NASA and NSF. Mentors for the primarily summer research experiences include CUNY faculty and GISS scientists. Research topics include the Wetland Carbon Project, The Cooling Power Of Urban Vegetation, Internal Ocean Mixing, El Niño Southern Oscillation, Pollution Transport and Tropospheric Ozone. Students are recruited from CUNY colleges and other colleges and universities. The program maintains an emphasis on under-represented minorities and females. Approximately sixty percent of the undergraduate students are under-represented minorities and forty percent are female. The project is supported by NSF award AGS-1359293 REU Site: CUNY/GISS Center for Global Climate Research.

  7. The Effectiveness of the AAS REU Program

    NASA Astrophysics Data System (ADS)

    Hemenway, M. K.; Boyce, P. B.; Milkey, R. W.

    1996-05-01

    In an attempt to address the particular needs of astronomy faculty and undergraduate students, in 1991 the Education Office of the American Astronomical Society approached the National Science Foundation with a unique proposal for funding through the Research Experiences for Undergraduates program. The goals of the AAS program were to "slow the hemorrhage of students out of science...", extend the REU program to non-NSF-funded scientists, to reach under-represented women and minority students particularly in small educational institutions, and to encourage research scientists there to mentor students. As this grant has now expired, the AAS has surveyed the 44 mentors and their students to assess the program's effect on the mentor and the mentor's career; the educational institution; and the student's education and career choices. More than half the mentors responded by the abstract deadline. The program clearly had an effect upon the individuals involved. The greatest effect (in 85% of the cases) was to develop more interest in the mentor's research project both among the students and among the mentor's faculty colleagues. The mentors rated the grant to be a medium or strong factor in their student's decision to pursue graduate study, which 90% of them did. All but one of the AAS-REU students attended an AAS meeting and 3/4 of those gave a paper on their project research. Over 90% of the mentors felt that the research experience strongly promoted a greater interest in science, a greater understanding of science and a desire to continue in science. According to the mentors, this was a very positive and beneficial program for the students as well as for themselves.

  8. The University of Texas Science and Engineering Apprentice Program as a Model for an REU Site

    NASA Astrophysics Data System (ADS)

    Davis, M. B.; Blankenship, D. D.; Ellins, K. E.

    2004-12-01

    The University of Texas Institute for Geophysics at (UTIG) is one of five research labs in the Austin area that hosts recent high school graduates for summer research projects through the Applied Research Lab Science and Engineering Apprenticeship Program (SEAP). The SEAP is a program designed to provide summer research opportunities to recent high school undergraduates who excel in science and math. UTIG has been a large proponent of the SEAP and has typically mentored two to four students each year and a total alumni of about twenty. The program has successfully targeted groups that are typically underrepresented in sciences and engineering. Current statistics show that 25% of past SEAP students are members of an ethnic minority and 80% of SEAP students are female. Many of these students have stayed on after the summer program and continued to work part-time or return during summers to UTIG while completing their undergraduate careers. A significant portion of these students present results at professional meetings and ultimately commit to careers in science and engineering, both in industry and academia. SEAP students at UTIG work alongside scientists and graduate students as part of a team, and, through this interaction, improve their scientific knowledge and problem solving skills. Both graduate and undergraduate students involved in NSF-funded research grants mentor the SEAP students, giving them the opportunity to work on their own research problem while contributing data and interpretation to a more fundamental research problem. By uniting student research under the umbrella of Antarctic ice sheet research, students learn how their individual research projects relate to the more unifying science problem centered on ice sheet variability, and Antarctic continental evolution. They also gain an understanding of how research is carried out. At the same time, scientists and graduate students learn how to communicate their knowledge so that it is interesting and relevant to student learning. We are interested in expanding the SEAP model for student research to a scale that can support multidisciplinary REU site activities by extending research possibilities into polar research, marine studies, seismology, planetary science, and science education at UTIG in future years.

  9. Evaluating Student Success and Progress in the Maryland Sea Grant REU Program

    NASA Astrophysics Data System (ADS)

    Moser, F. C.; Allen, M. R.; Clark, J.

    2012-12-01

    The Maryland Sea Grant's Research Experiences for Undergraduate (REU) 12-week summer program is in its 24th year. This estuarine science-focused program has evolved, based in part on our use of assessment tools to measure the program's effectiveness. Our goal is to understand the REU program's effectiveness in such areas as improving student understanding of scientific research, scientific ethics and marine science careers. Initially, our assessment approach was limited to short surveys that used qualitative answers from students about their experience. However, in the last decade we have developed a more comprehensive approach to measure program effectiveness. Currently, we use paired pre- and post-survey questions to estimate student growth during the program. These matching questions evaluate the student's change in knowledge and perception of science research over the course of the summer program. Additionally, we administer several surveys during the 12 weeks of the program to measure immediate responses of students to program activities and to gauge the students' evolving attitudes to customize each year's program. Our 2011 cohort showed consistent improvement in numerous areas, including understanding the nature of science (pre: 4.35, post: 4.64 on a 5 point scale), what graduate school is like (3.71, 4.42), the job of a researcher (4.07, 4.50), and career options in science (3.86, 4.42). Student confidence also increased in numerous skills required for good scientists. To analyze the long-term impact of our program, we survey our alumni to assess graduate degrees earned and career choices. A large percentage (72%) of our tracked alumni have continued on to graduate school, with subsequent careers spanning the academic (51%), public (24%) and private (25%) sectors. These assessments demonstrate that our program is successful in meeting our key objectives of strengthening the training of undergraduates in the sciences and retaining them in marine science careers.

  10. Research, Recruitment, and Assessment Strategies From The Dune Undergraduate Geomorphology and Geochronology (DUGG) REU Site at the University of Wisconsin-Platteville

    NASA Astrophysics Data System (ADS)

    Rawling, J.; Presiado, R. S.; Hanson, P. R.

    2013-12-01

    The goals of the DUGG REU project included providing students with 1) significant field and laboratory training in geomorphology and geochronology, 2) an opportunity to participate in a project of regional significance to geomorphologists and Quaternary scientists and 3) cohort building opportunities resulting in relationships that will serve them throughout their graduate and/or professional STEM careers. Each cohort was provided with three opportunities to visit their chosen study sites and collect data. Students were introduced to their sites with geophysical surveying by conducting ground-penetrating radar transects. During the second and third field excursions students collected subsurface sediment samples with either a bucket auger or a portable vibracoring device. Student generated data from previous trips, including preliminary OSL data before the third trip, better informed subsequent sampling strategies. In total, the students measured the particle-size distributions from ~950 samples taken from 160 sites and dated 65 sand samples using optically-stimulated luminescence (OSL) dating. Efforts made to ensure a diverse applicant pool included the standard NSF and university websites, targeted emails, targeted recruitment at conferences, university visits, and collaborations with other undergraduate research centers. In total, approximately 25% of the participating DUGG students were members of minority groups underrepresented in the sciences (n=5), 65% were women (n=14) and one was a veteran of the Iraq conflict. The DUGG project included a Council on Undergraduate Research review during year one of the program to have external input on the project, and an aggressive internal assessment protocol that evaluated five measures related to the impact the project was having on the students. Over the three years of the project, the multiple annual program assessments were able to document increases in participants' technology literacy, perception toward geosciences, research techniques, and oral presentation skills from the beginning to the end of each DUGG cycle. The DUGG program also yielded effective gains in the student's geoscience content knowledge as measured by the assessment instruments. It is clear from the project assessments that the three years of DUGG had significant successes, and was a direct result of the careful consideration of each year's experience and evaluations. The combination of multiple visits to the research sites, rapid data turn around, diversity recruitment, and rigorous assessment ensured the successful achievement of the program goals and resulted in exceptional experiences for the DUGG students.

  11. The Community Mentoring REU: A Novel Paradigm for Research Experiences for Undergraduates Programs

    NASA Astrophysics Data System (ADS)

    Kobulnicky, Henry; Maierhofer, Lara; Kobulnicky, Carol; Dale, Daniel A.

    2018-01-01

    Research Experience for Undergraduates programs were conceived to promote entry of college students into STEM disciplines. Evidence suggests that participating in REUs increases interest in STEM, conveys skills leading to STEM jobs and graduate study, increases science self-efficacy, builds professional networks for young scientists, and cultivates identity as a scientist. Nevertheless, the factors that mediate desired outcomes are still poorly understood, and persistence of negative mentoring experiences among REU participants motivates the design and study of novel approaches to preparing future STEM professionals. During five summers spanning 2012-2016 we implemented a "Community Mentoring" paradigm at the University of Wyoming's 10-week Astronomy REU program. In contrast to "traditional model (TM)" REUs that pair a single senior scientist mentor with a single junior mentee, community mentoring (CM) unites 6-8 undergraduates with 3-5 faculty (perhaps assisted by a graduate student or postdoc) on a collaborative team addressing a single science goal. In CM, students have access to a pool of mentors and a peer group reading the same literature, working in a common location, sharing equipment (in this case the WIRO 2.3 meter telescope), sharing data, and learning the same analysis skills. The community interacts daily, modeling the highly collaborative nature of modern scientific teams. Our study used an electronic survey consisting of 24 questions to compare a cohort of 28 CM students to a national control group of 77 students who conducted REUs elsewhere during the same period, typically under the TM. CM students report a significantly higher level of "learning from their peers", "learning to work on a science team", and "sense of community" compared to the TM cohort. The CM cohort also reports a higher overall level of satisfaction with the REU and a lower level of negative experiences, such as finding it difficult to get time with a mentor. This talk will review other lessons learned in five years of community mentoring as it describes an alternative paradigm for REUs.

  12. Teaching Global Change in Local Places: The HERO Research Experiences for Undergraduates Program

    ERIC Educational Resources Information Center

    Yarnal, Brent; Neff, Rob

    2007-01-01

    The Human-Environment Research Observatory (HERO) Research Experience for Undergraduates (REU) program aimed to develop the next generation of researchers working on place-based human-environment problems. The program followed a cooperative learning model to foster an integrated approach to geographic research and to build collaborative research…

  13. Networking for Successful Diversity Recruiting: Creating a Highly Diverse Research Experiences for Undergraduates Program by Networking with Mentors, Faculty, and Students.

    NASA Astrophysics Data System (ADS)

    Dalbotten, D. M.; Berthelote, A.; Watts, N. B.

    2017-12-01

    Successfully recruiting for diversity begins as you plan your program and make sure that all elements of the program support diverse participation. The REU on Sustainable Land and Water Resources continues to be one of the most diverse NSF-funded Research Experience for Undergraduate Programs in the geosciences. Every aspect of the program, from recruiting, the application process, selecting participants, and the methods developed to support participant success have been scrutinized and tailored towards broadening participation. While the focus of the research has been on collaboration with Native American reservations to create community-based participatory research projects and improving access for Native American students, the PIs strive for ethnic and cultural diversity of the participants. Emphasis on networking and building relationships with minority-serving institutions has led to increasing numbers of underrepresented students applying to the REU. In 2017, a full 30% of our applications were from underrepresented groups. The authors will discuss methods for improved diversity recruiting, as well as ways to make every aspect of your program support diversity in the geosciences.

  14. Over a Decade of Lessons Learned from an REU Program in the Science of Global Change and Sustainability

    NASA Astrophysics Data System (ADS)

    Hersh, E. S.; James, E. W.; Banner, J. L.

    2014-12-01

    The Research Experience for Undergraduates (REU) in "The Science of Global Change and Sustainability" at the University of Texas at Austin Environmental Science Institute (ESI) has just completed its twelfth summer. The program has 113 REU alumni plus 5 Research Experience for Teachers (RET) alumni, selected from a competitive pool of 976 applicants (~14% acceptance rate), 68% from 61 smaller colleges and universities (of 79 schools represented), 40% of those who self-reported coming from demographics underrepresented in STEM, and with nearly 70% women. Students conduct independent research under the supervision of a faculty mentor in four major interdisciplinary themes: Impacts on Ecosystems, Impacts on Watersheds and the Land Surface, Campus Sustainability, and Reconstructing Past Global Change. These themes bridge chemistry, biology, ecology, environmental policy, civil and environmental engineering, marine science, and geological science. The summer cohort participates in weekly research and professional development seminars along with group field exercises. Topics include graduate school, career preparation, research ethics, sustainability, global change, environmental justice, and research communication. These activities plus the student's individual research comprise a portfolio that culminates in a reflection essay integrating the concepts, methods, and perspectives gained over the 10-week program. Program alumni were surveyed in 2014 to gauge long-term impact and outcomes. Of the 76 surveyed from 2006-2013, 39% responded. 67% have earned or are working on a graduate degree, and 94% of the graduate programs are in STEM. 93% of the responding alumni felt that the program "influenced my job and educational choices" and 97% felt that the program "helped me better understand scientific research." 40% presented their findings at a conference and 17% authored or co-authored a peer-reviewed publication. This presentation will include a discussion of best practices and lessons learned over twelve years, such as strategies to increase cohort diversity, innovative activities, and results from long-term program evaluation on attitudes toward STEM careers and program outcomes.

  15. Virtual cohorts and face-to-face recruitment: Strategies for cultivating the next generation of the IRIS Community

    NASA Astrophysics Data System (ADS)

    Hubenthal, M.; Wysession, M. E.; Aster, R. C.

    2009-12-01

    Since 1998, the IRIS Consortium REU program has facilitated research opportunities and career development for 71 undergraduate students to work with leaders in seismological research, travel to exciting locations for fieldwork, and engage in significant research for presentation and recognition at major professional conferences. A principal program goal is to encourage more students, representing a more diverse population, to choose careers in Earth science. Of the forty-six internship alumni that have completed their undergraduate degrees thus far, 85% have attained or are currently pursuing a graduate degree in a geoscience field and an additional 6% are working in a geoscience career with an undergraduate degree. The IRIS Consortium’s program differs from traditional REUs in that students are hosted at IRIS member institutions that are geographically distributed. To capture the sprit of a traditional REU cohort, IRIS has developed and refined a model that bonds students into a cohort. Key to the model are: a) research projects that have a common focus within seismology, b) a weeklong orientation where students get to know one another, share common experiences and establish a “social presence” with the other interns, c) a cyber infrastructure to maintain their connectedness in a way that enables both learning and collaboration, d) an alumni mentor that supports the interns and serves both as a role model and an unbiased and experienced third-party to the mentor/mentee relationship, and e) an alumni reception, and scientific presentation, at the annual Fall AGU Meeting to reconnect and share experiences. Through their virtual community interns offer each other assistance, share ideas, ask questions, and relate life experiences while conducting their own unique research. In addition to developing a model for encouraging virtual cohorts, IRIS has also carefully examined recruitment strategies to increase and diversify the applicant pool. Based on applicant surveys we believe that the best method to advertise REU programs has shifted away from the traditional and expensive hardcopy fliers tacked to bulletin board in the halls of science departments. Instead we have found that the two most common methods for students to learn about the program were by visiting the IRIS website to view video clips or slideshow presentations and via personal notification/encouragement from faculty or staff at their institutions. The importance of personal notification was even more pronounced for applicants from minority serving institutions. Given the importance both the web and faculty advising in encouraging students to apply, the IRIS REU has adopted the following three recruitment strategies: 1) Engage students through the website by providing access to traditional text and photos, narrated video clips and other media, as well as links to previous intern’s blogs, 2) Empower and encourage faculty to recruit students by providing resources for easy use in classes such as annotated slideshows and narrated videos, and 3) Reach out to minority students personally through a speaker series featuring minority alumni of the IRIS REU program.

  16. Small Friends of Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Nunez, Luis Ernesto; Johnson, John A.

    2017-01-01

    Hot Jupiters are Jupiter-sized gas giant exoplanets that closely orbit their host star in periods of about 10 days or less. Early models hypothesized that these exoplanets formed away from the star, then over time drifted to their characteristically closer locations. However, new theories predict that Hot Jupiters form at their close proximity during the process of core accretion (Batygin et al. 2015). In fact, a super-Earth and a Neptune-sized exoplanet have already been detected in the Hot Jupiter-hosting star WASP-47 (Becker et al. 2015). We will present our analysis of radial velocity time series plots to determine whether low-mass, short-period planets have been previously overlooked in systems of stars which host Hot Jupiters.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851.

  17. RNA Secondary Structure Prediction by Using Discrete Mathematics: An Interdisciplinary Research Experience for Undergraduate Students

    PubMed Central

    Ellington, Roni; Wachira, James

    2010-01-01

    The focus of this Research Experience for Undergraduates (REU) project was on RNA secondary structure prediction by using a lattice walk approach. The lattice walk approach is a combinatorial and computational biology method used to enumerate possible secondary structures and predict RNA secondary structure from RNA sequences. The method uses discrete mathematical techniques and identifies specified base pairs as parameters. The goal of the REU was to introduce upper-level undergraduate students to the principles and challenges of interdisciplinary research in molecular biology and discrete mathematics. At the beginning of the project, students from the biology and mathematics departments of a mid-sized university received instruction on the role of secondary structure in the function of eukaryotic RNAs and RNA viruses, RNA related to combinatorics, and the National Center for Biotechnology Information resources. The student research projects focused on RNA secondary structure prediction on a regulatory region of the yellow fever virus RNA genome and on an untranslated region of an mRNA of a gene associated with the neurological disorder epilepsy. At the end of the project, the REU students gave poster and oral presentations, and they submitted written final project reports to the program director. The outcome of the REU was that the students gained transferable knowledge and skills in bioinformatics and an awareness of the applications of discrete mathematics to biological research problems. PMID:20810968

  18. RNA secondary structure prediction by using discrete mathematics: an interdisciplinary research experience for undergraduate students.

    PubMed

    Ellington, Roni; Wachira, James; Nkwanta, Asamoah

    2010-01-01

    The focus of this Research Experience for Undergraduates (REU) project was on RNA secondary structure prediction by using a lattice walk approach. The lattice walk approach is a combinatorial and computational biology method used to enumerate possible secondary structures and predict RNA secondary structure from RNA sequences. The method uses discrete mathematical techniques and identifies specified base pairs as parameters. The goal of the REU was to introduce upper-level undergraduate students to the principles and challenges of interdisciplinary research in molecular biology and discrete mathematics. At the beginning of the project, students from the biology and mathematics departments of a mid-sized university received instruction on the role of secondary structure in the function of eukaryotic RNAs and RNA viruses, RNA related to combinatorics, and the National Center for Biotechnology Information resources. The student research projects focused on RNA secondary structure prediction on a regulatory region of the yellow fever virus RNA genome and on an untranslated region of an mRNA of a gene associated with the neurological disorder epilepsy. At the end of the project, the REU students gave poster and oral presentations, and they submitted written final project reports to the program director. The outcome of the REU was that the students gained transferable knowledge and skills in bioinformatics and an awareness of the applications of discrete mathematics to biological research problems.

  19. Proto-Typing Research Aimed for Secondary School Students and Teachers

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Fersch, A.; Barringer, D.; Pompea, S. M.

    2011-12-01

    In workshops on GLOBE at Night, teacher professional development has begun on using night sky brightness data and bat telemetry data to do scientific research in the classroom. The study looks at the effects of light pollution on the flight paths of threatened and endangered (T&E) bats between their day roosts and night foraging areas. A jump-start in getting secondary school students involved was the BioBlitz event in Tucson, Arizona in October 2011. During the 24-hour event, night Sky Quality Meter (SQM) data was taken across the Saguaro National Park West, through Tucson and across the Saguaro National Park East. The program had its beginning with a pair of Research Experiences for Undergraduates (REU) students and their advisor. Through the collaboration of the National Science Foundation's REU program, the National Optical Astronomy Observatory's GLOBE at Night program and the U.S. Arizona Game and Fish Department (AzGFD), two REU students along with their advisor used data from the GLOBE at Night project and telemetry tracking data of lesser long-nosed bats to study the effects of light pollution on the flight paths of the bats between their day roosts and night foraging areas around the city of Tucson, AZ. During the summer of 2010, the first REU student used the visual limiting magnitude data from GLOBE at Night and, with the assistance of the AzGFD, ran compositional analyses with respect to the bats' flight paths to determine whether the bats were selecting for or against flight through regions of particular night sky brightness levels. The bats selected for the regions in which the limiting sky magnitudes fell between the ranges of 2.8-3.0 to 3.6-3.8 and 4.4-4.6 to 5.0-5.2, suggesting that the lesser long-nosed bat can tolerate a fair degree of urbanization. Three areas of systematic uncertainty were identified of which 2 could be addressed the following summer. Due to a relatively large uncertainty in each individually measured visual limiting magnitude, Sky Quality Meter (SQM) measurements were subsequently used as a more objective source of data. In addition, the area over which the data was taken was expanded to redress spurious edge effects in making contour maps. During the summer of 2011, the second REU student took more SQM data and, with the SQM database from GLOBE at Night and the assistance of the AzGFD, performed a logistic regression analysis with respect to the bats' flight paths to determine whether the bats preferred or avoided flight through regions of particular night sky brightness levels. During the presentation, we will provide more on the analysis and conclusions of the research, as well as the extension of the program to secondary students and teachers. Should the conclusion be that the bats are preferentially staying in darker areas, a next step for students and teachers would include helping to maintain a dark corridor where the T&E lesser long nosed bats travel between roosts and foraging areas. Should this prototype project succeed, it will be used as a template for other REU and secondary school research projects on endangered animals across the U.S. affected by light pollution. Teacher professional development will play a big role in the program's future success.

  20. An evaluation capacity building toolkit for principal investigators of undergraduate research experiences: A demonstration of transforming theory into practice.

    PubMed

    Rorrer, Audrey S

    2016-04-01

    This paper describes the approach and process undertaken to develop evaluation capacity among the leaders of a federally funded undergraduate research program. An evaluation toolkit was developed for Computer and Information Sciences and Engineering(1) Research Experiences for Undergraduates(2) (CISE REU) programs to address the ongoing need for evaluation capacity among principal investigators who manage program evaluation. The toolkit was the result of collaboration within the CISE REU community with the purpose being to provide targeted instructional resources and tools for quality program evaluation. Challenges were to balance the desire for standardized assessment with the responsibility to account for individual program contexts. Toolkit contents included instructional materials about evaluation practice, a standardized applicant management tool, and a modulated outcomes measure. Resulting benefits from toolkit deployment were having cost effective, sustainable evaluation tools, a community evaluation forum, and aggregate measurement of key program outcomes for the national program. Lessons learned included the imperative of understanding the evaluation context, engaging stakeholders, and building stakeholder trust. Results from project measures are presented along with a discussion of guidelines for facilitating evaluation capacity building that will serve a variety of contexts. Copyright © 2016. Published by Elsevier Ltd.

  1. Enriching the Research Experiences for Undergraduates in Geoscience Through Student Feedback

    NASA Astrophysics Data System (ADS)

    Sears, R. F.; Bank, C. G.

    2014-12-01

    Research Experiences for Undergraduates (REU) allow students to work alongside professionals while they conduct scientific research and offer excellent opportunities to expose students to the practical components of their university education. Indeed, anecdotal evidence shows that a well-planned REU builds teamwork skills, provides a deeper understanding of the science learned in the classroom, and allows students to experience the various stages of science and thus consider wider career options. However, such evidence is difficult to measure. In this presentation we will present preliminary results from a survey of 2nd and 3rd year students who have been engaged in separate interdisciplinary projects (a geophysical survey in South Africa to assist archaeologists, and a forensic study in collaboration with the provincial police). Our before and after surveys address criteria such as students' understanding of scientific methodology, familiarity with the topic and tools for the research, expectations of the study and of themselves, and logistics of doing science. It is our hope that the student voices we present will help REU program coordinators to address limitations and establish best practices to provide the richest possible learning experience.

  2. Reconfiguring REU programs to build links between institutions is an efficiient way of expanding student participation in research.

    NASA Astrophysics Data System (ADS)

    Halpern, J. B.

    2016-12-01

    There is good evidence that STEM career recruiting would be bettered by a shift in REU programs from an individual student focus to building institutional links with faculty participation. This would improve recruiting, duration and the scientific productivity of the REU system. Student commitment would benefit from a more sophisticated and productive project that this would enable as would research groups and mentors at all institutions. Such programs build long lasting links between the institutions and individual faculty. For teaching institutions, scientifically centered collaborations bring faculty and students into the research culture. Faculty who teach at such institutions will maintain their research skills as well as their links to the field and gain respect both internally and externally. Visibility of the collaboration at the non-research centered institution will attract other students into the area. An on-going collaboration offers benefits to the research institution as well. First, recruitment becomes less hit and miss because the partners have observed and taught their students. Second partners will provide appropriate training and context before the summer starts for new students. Third, the availability of partners to help mentoring the students during the summer and into the academic year makes it easier for graduate students, post-docs and the research university faculty as well. Fourth, a good collaboration builds respect and understanding on all sides, which, since many in the research group will go on to teach at teaching centered institutions is important. Building respect for transfer students from Community Colleges and smaller teaching institutions among the research faculty is another benefit. I will describe programs that I have designed an led that successfully implement these ideas.

  3. Determination of the Fundamental Properties of the Eclipsing Binary V541 Cygni

    NASA Astrophysics Data System (ADS)

    McGruder, Chima; Torres, Guillermo; Siverd, Robert; Pepper, Joshua; Rodriguez, Joseph; KELT Collaboration

    2017-01-01

    We report new high-resolution spectroscopic observations of the B-type detached spectroscopic eclipsing binary V541 Cygni (e = 0.465 and P =15.34 days). We combine analysis of these new spectra with analysis of V-band photometry from the literature to obtain the most precise measurements of the fundamental properties of the stars to date (yielding ~1% errors in the masses and ~2% for the radii). A comparison with current stellar evolution models indicates good fits for an age of ~ 200 million years and [Fe/H] ~ -0.2. Available eclipse timings gathered over 40 years were used to re-determine the apsidal motion of the system, dω/dt = 0.993 degs/cent, which is larger than what theory suggests.The SAO REU program was funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  4. Assessment of the benefits of a summer undergraduate research program for physics and chemistry majors

    NASA Astrophysics Data System (ADS)

    Hughes, Chris; MacDonald, Gina

    2006-11-01

    Presently at James Madison University, there are slightly more than 100 physics majors and 150 chemistry majors. Each summer, a significant fraction of these students participate in either the chemistry or interdisciplinary materials science Research Experiences for Undergraduates (REU) program on campus. This provides a large pool of students from which to draw data comparing the influence of undergraduate research on both classroom performance and attitudes toward science as a profession. By analyzing the grade point averages of chemistry and physics majors, we have shown slightly larger increases from spring semester to fall semester for students who participated in the REU than those who did not. We have also measured changes in attitudes using surveys of the students both at the beginning and at the end of the summer experience. An analysis of these surveys will be presented.

  5. Summer Research Experiences for Science and Art Teachers to Explore Astrobiology

    NASA Astrophysics Data System (ADS)

    Cola, J.; Gaucher, E.; Snell, T.; Greenwood, J.; Angra, A.; Zimmerman, C.; Williams, L. D.

    2012-12-01

    The Georgia Tech Center for Ribosomal Origins and Evolution, a center funded by the NASA Astrobiology Institute, developed an educational program titled, "Life on the Edge: Astrobiology." The purpose of the program was to provide high school educators with the exposure, materials, and skills necessary to prepare our future workforce and to foster student interest in scientific discovery on Earth and throughout the universe. In an effort to promote and encourage entry into teaching careers, Georgia Tech paired teachers in the Georgia Intern-Fellowship for Teachers (GIFT) program with undergraduate students interested in becoming a teacher through the NSF Pre-Teaching REU program. The GIFT and Pre-Teaching fellows investigated extremophiles, which became the focus of a week-long, "Life on the Edge: Astrobiology " summer program developed by three high school educators, two undergraduate students and faculty in the Schools of Biology, and Chemistry and Biochemistry at Georgia Tech. Twenty high school students were introduced to hands-on activities, such as astrobiology inspired art and techniques such as genomic DNA purification, gel electrophoresis, and Polymerase Chain Reaction (PCR). The impact of the Astrobiology program on the GIFT researchers, Pre-Teaching REU students, high school students, and faculty are discussed.

  6. Participatory Action Research Experiences for Undergraduates

    NASA Astrophysics Data System (ADS)

    Sample McMeeking, L. B.; Weinberg, A. E.

    2013-12-01

    Research experiences for undergraduates (REU) have been shown to be effective in improving undergraduate students' personal/professional development, ability to synthesize knowledge, improvement in research skills, professional advancement, and career choice. Adding to the literature on REU programs, a new conceptual model situating REU within a context of participatory action research (PAR) is presented and compared with data from a PAR-based coastal climate research experience that took place in Summer 2012. The purpose of the interdisciplinary Participatory Action Research Experiences for Undergraduates (PAREU) model is to act as an additional year to traditional, lab-based REU where undergraduate science students, social science experts, and community members collaborate to develop research with the goal of enacting change. The benefits to traditional REU's are well established and include increased content knowledge, better research skills, changes in attitudes, and greater career awareness gained by students. Additional positive outcomes are expected from undergraduate researchers (UR) who participate in PAREU, including the ability to better communicate with non-scientists. With highly politicized aspects of science, such as climate change, this becomes especially important for future scientists. Further, they will be able to articulate the relevance of science research to society, which is an important skill, especially given the funding climate where agencies require broader impacts statements. Making science relevant may also benefit URs who wish to apply their science research. Finally, URs will gain social science research skills by apprenticing in a research project that includes science and social science research components, which enables them to participate in future education and outreach. The model also positively impacts community members by elevating their voices within and outside the community, particularly in areas severely underserved socially and politically. The PAREU model empowers the community to take action from the research they, themselves, conducted, and enables them to carry out future research. Finally, many of these communities (and the general public) lack the understanding of the nature of science, which leads to ignorance on the part of citizens in areas of science such as climate change. By participating in science/social science research, community members gain a better understanding of the nature of science, making them more informed citizens. The PAREU model is theoretically grounded in decades of research in social science and documented impacts of student research experiences. In addition to providing practical benefits for communities with needs solvable by scientific research, the model builds on and expands student skills gained from traditional REU programs Deep and sustained engagement among scientists, social scientists, and community leaders is expected to create better informed citizens and improve their ability to solve problems.

  7. Best Practices at the Lamont-Doherty Earth Observatory (LDEO) REU Site

    NASA Astrophysics Data System (ADS)

    Abbott, D. H.

    2014-12-01

    At the LDEO REU site, we take student health and safety very seriously. In 2014, we gave the students training on laboratory safety, fire safety, and a Title IX orientation covering discrimination and sexual harassment. We also compile emergency contact information for all the students and distribute it to students, mentors and the administration. Students choose a research project and mentors then pick the best student for their project. Because the mentors choose the student, they are more invested in the student. Students and mentors are encouraged to interact before the program starts, both through discussions and assigned background reading. During these discussions, research projects are often modified to better-fit students interests and skill levels. During the program, we facilitate student-mentor interaction by conducting three research-focusing sessions with small groups of students. Students give 20-minute long oral presentations on the progress of their research and answer questions about their project. Mentors prepare the students for these sessions, thereby increasing student knowledge about their research project. Mid-way through the summer, students write a 3-page proposal about their research as part of a special seminar on scientific writing. The students also participate in a final poster session that is attended by the LDEO community. We maximize student engagement by giving students a choice of research projects that are specifically selected for their suitability for and interest among undergraduates. The track record of mentors is also considered. Mentors must be in residence at LDEO during most of the intern program and arrange a suitable co-mentor during any absences. Mentors must be individuals who are able to encourage the students while giving them constructive input on the progress of their research project. We also encourage students to present their research results at a national scientific meeting. Students and mentors are given a schedule at the start of the summer that includes the abstract deadlines for major national meetings. When it is possible, we fund each student's attendance of a national meeting. Enthusiastic students who wish to attend a second meeting are given information on how to apply for funding to support attendance.

  8. Research Ethics with Undergraduates in Summer Research Training Programs

    NASA Astrophysics Data System (ADS)

    Cheung, I.; Yalcin, K.

    2016-02-01

    Many undergraduate research training programs incorporate research ethics into their programs and some are required. Engaging students in conversations around challenging topics such as conflict of interest, cultural and gender biases, what is science and what is normative science can difficult in newly formed student cohorts. In addition, discussing topics with more distant impacts such as science and policy, intellectual property and authorship, can be difficult for students in their first research experience that have more immediate concerns about plagiarism, data manipulation, and the student/faculty relationship. Oregon State University's Research Experience for Undergraduates (REU) in Ocean Sciences: From Estuaries to the Deep Sea as one model for incorporating a research ethics component into summer undergraduate research training programs. Weaved into the 10-week REU program, undergraduate interns participate in a series of conversations and a faculty mentor panel focused on research ethics. Topics discussed are in a framework for sharing myths, knowledge and personal experiences on issues in research with ethical implications. The series follows guidelines and case studies outlined from the text, On Being A Scientist: Responsible Conduct In Research Committee on Science, Engineering, and Public Policy, National Academy of Sciences.

  9. The Scientific and Engineering Student Internship (SESI) Program at NASA's GSFC

    NASA Astrophysics Data System (ADS)

    Bruhweiler, F.; Verner, E.; Rabin, D. M.

    2011-12-01

    Through our Scientific and Engineering Student Internship (SESI) program we have provided exceptional research opportunities for undergraduate and graduate students in one of the world's premier research centers dedicated to the Sun and its heliosphere, the Heliophysics Science Division at NASA/Goddard Space Flight Center. NASA/GSFC and the NSF/REU program have funded this activity jointly. These opportunities combine the advantages of the stimulating, multi-disciplinary, environment of a NASA laboratory with the guidance provided by researchers who are, in addition, committed to education and the encouragement of women, under-represented minorities, and students with disabilities. Opportunities also exist for non-U.S. citizens as well. Moreover, the surrounding Washington, DC area provides a variety of social and educational activities for our participating students. Our 19 years of experience has served as an effective catalyst, enabling us to establish a formal program for students interested in Solar and Space Physics at NASA and to develop more NASA-funded opportunities for students, in addition to those funded by NSF/REU awards. This has allowed us to present a combined NSF/REU and NASA-funded program for undergraduates at NASA/GSFC. This synergistic program exposes our student interns to a very wide range of projects and ideas, normally unavailable in other programs. We have had roughly 300 students (about 1/2 being supported by NSF) actively participate in over 200 different research opportunities. These research projects have spanned the spectrum, ranging from theoretical modeling associated with space weather, developing instrumentation for space missions, analysis of spacecraft data, including 'hands-on' experience with sounding rockets and working in the clean environs of GSFC's Detector Development Laboratory. Although SESI is largely a summer program, a number of students, often through other funding sources, continue their research projects during subsequent summers or in the academic year. Further information can be obtained at http://iacs.cua.edu and http://sesi.gsfc.nasa.gov/ This program is funded through NSF grant AGS-1062729 and NASA/GSFC grant NNX11AJ04G.

  10. An REU Experience with Micro Assembly Workcell Research

    ERIC Educational Resources Information Center

    Stapleton, William; Asiabanpour, Bahram; Jimenez, Jesus; Um, Dugan

    2010-01-01

    Under an NSF REU center grant REU-0755355 entitled "Micro/Nano Assembly Workcell Via Micro Visual Sensing and Haptic Feedback", Texas A&M University-Corpus Christi and Texas State University-San Marcos collaboratively hosted two groups of 10 students from different backgrounds for 10 weeks each in Summer 2008 and 2009 respectively.…

  11. Assessing Student-Mentor Interaction During a Summer REU for Two Year College Students

    NASA Astrophysics Data System (ADS)

    Doser, D. I.; Olivarez, A.; Rohrbaugh, R.; Villalobos, J. I.

    2017-12-01

    UTEP-ROCCS (Research Opportunities for Community College Students) is a summer REU program designed exclusively for two-year college students. The program differs from other summer REU's in several ways. First, the participants are only in El Paso during the month of June to begin their research projects, with subsequent research carried out at their home institutions with intensive virtual mentoring in July. Second, the mentoring team is a unique mix of 2-year and 4-year college faculty and undergraduate juniors and seniors. Our first cohort of 6 ROCCS students began their research in June 2017 supported by 2 UTEP undergraduate mentors and 5 faculty mentors. Preliminary results of a series of 4 weekly road checks indicate that 95% of the time the participants felt the faculty and student mentors were supportive, encouraging, and able to respond to their questions and concerns. All felt they received constructive, useful critiques of their field and research work, were motivated by the mentors to learn more and were challenged to extend their abilities and skills for the success of their research projects. Over 70% of the time they felt the mentors encouraged them by suggesting appropriate and available resources when they were struggling. And, most importantly, over 96% of the time they felt the experience stimulated their interest in geology as a future career. We hope to observe similar trends in the road checks of July 2017 as participants prepare their results for the AGU's fall virtual undergraduate poster session.

  12. Discovery and Characterization of Gravitationally Lensed X-ray Sources in the CLASH Sample

    NASA Astrophysics Data System (ADS)

    Pasha, Imad; Van Weeren, Reinout J.; Santos, Felipe A.

    2017-01-01

    We present the discovery of ~20 gravitationally lensed X-ray sources in the Cluster Lensing And Supernova survey with Hubble (CLASH) survey, a sample of massive clusters of galaxies between z ~ 0.2-0.9 observed with the Hubble Space Telescope (HST). By combining CLASH imaging with Chandra X-ray Observatory observations of the same clusters, we select those sources in the HST images which are gravitationally lensed X-ray sources behind the clusters. Of those discovered sources, we determine various properties including source redshifts and magnifications, as well as performing X-ray spectral fits to determine source fluxes and luminosities. Prior to this study, only four lensed X-ray sources behind clusters have been found, thus to the best of our knowledge, our program is the first to systematically categorize lensed X-ray sources behind galaxy clusters.This work was supported by the SAO REU program, which is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  13. Astrobiology Research Experience for Undergraduates: An Interdisciplinary REU Program at the SETI Institute

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Devore, E. K.

    2009-12-01

    The SETI Institute hosts a summer Astrobiology Research Experience for Undergraduates program for highly motivated students interested in astrobiology research. Students work with scientists at the SETI Institute and at the nearby NASA Ames Research Center on projects spanning the field of astrobiology from microbiology to planetary geology to astronomy and astrophysics. Each student is mentored by a scientist for his/her summer research project. As astrobiology is interdisciplinary, the first week includes a seminar series to provide a broad foundation in the field as the students begin their research projects. The 10-week program includes a week-long field trip to the SETI Institute’s Allen Telescope Array, located at the Hat Creek Radio Astronomy Observatory in Northern California, as well as a field experience at hydrothermal systems at nearby Lassen Volcanic National Park. Students also participate in local field trips to places like the California Academy of Sciences and other nearby locations of scientific interest, and attend seminars, lectures, and discussions on astrobiology. Students are also invited to attend events at nearby NASA Ames Research Center, which offers the opportunity to interact with other undergraduate and graduate students participating in NASA summer programs. At the end of the program, students write up and present their research projects, and mentors recommend some projects for submission to a national scientific conference, which the selected students will be funded to attend. The Astrobiology REU program emphasizes three main areas, which are listed in the table along with typical project themes. Each year, specific student research projects are described on the website, and students are asked to select the three that most interest them as a part of their applications. Applications are due in early February. Typically, 10 students apply for each available position. Students have been selected from colleges and universities national-wide, including community colleges. The Astrobiology REU program has served 4 classes of students, and is funded through summer of 2011. A total of 61 students have participated (12 in 2006, 17 in 2007, 17 in 2008, and 15 in 2009); all have successfully completed their internships. Of these students, 59% were women, and 21% were minorities. To date 18 students have gone on to graduate studies, in Master’s or PhD programs at schools including Harvard, UC Berkeley, UC Santa Cruz, Stanford, Univ. of Nebraska, and many others, in fields including astronomy, optical science, space life sciences, geology, physics, mechanical engineering, and molecular and cellular biology. The SETI Institute is a non-profit private scientific research institution located in California’s Silicon Valley. The Astrobiology REU program is supported by National Science Foundation Grant AST-0852095 with additional funding from NASA’s Astrobiology Institute, the SETI Institute and private donors.Main research areas and typical project themes

  14. Successes, Challenges and Lessons Learned for Recruiting, Engaging and Preparing a Diverse Student Population for 21st Century Careers in Ocean Sciences.

    NASA Astrophysics Data System (ADS)

    Clarkston, B. E.; Garza, C.

    2015-12-01

    Diversity within the Ocean Sciences workforce is still underperforming relative to other scientific disciplines, a problem that will be only be solved by recruiting, engaging and retaining a more diverse student population. The Monterey Bay Regional Ocean Science Research Experiences for Undergraduates program is housed at California State University, Monterey Bay (CSUMB), an HSI with strong connections to multiple regional community colleges and other Predominantly Undergraduate Institutions (PUIs) in the CSU system. From this unique position, 11 sophomore and junior-level undergraduate students are recruited per year from academic institutions where research opportunities in STEM are limited and from groups historically underrepresented in the Ocean Sciences, including women, underrepresented minorities, persons with disabilities, and veterans. During the program, students engage in a 10-week original research project guided by a faculty research mentor in one of four themes: Oceanography, Marine Biology and Ecology, Ocean Engineering, and Marine Geology. In addition to research, students engage in rigorous weekly professional development workshops in which they practice critical thinking, ethical decision-making, peer review, writing and oral communication skills. These workshops include tangible products such as an NSF-style proposal paper, Statement of Purpose and CV modelled for the SACNAS Travel Award Application, research abstract, scientific report and oral presentation. To help retain students in Ocean Sciences, students build community during the REU by living together in the CSUMB dormitories; post-REU, students stay connected through an online facebook group, LinkedIn page and group webinars. To date, the REU has supported 22 students in two cohorts (2014, 2015) and here we present successes, challenges and lessons learned for a program designed to prepare students for 21st century Ocean Science careers.

  15. Unique aspects of Colorado State University`s REU Program in Radar and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Hefner, E.; Chandrasekar, V.

    2005-12-01

    The primary mission for CSU`s REU program on radars is to create a real-life research experience for the undergraduates participating during the summer. The students are provided with a basic description of their unique research project and paired with a graduate mentor and/or faculty member. Even though the students are paired with a graduate mentor that has extensive knowledge of the assigned topic, the students are responsible for developing the project through their own efforts. Each student is also required to obtain a fundamental grasp of radar basics through independent study and a series of small lectures put on by researchers at CSU. As part of the real-life research each student is exposed to, every student has to develop and hone his or her presentation and writing skills with weekly presentations and mandatory proposal and report submittals. The program is structured such that each student has access to a vast resource of technical knowledge in the form of published documents and other researchers. This allows students that learn through different mediums to have all the necessary resources available to them. While the students are performing research in areas that have not been explored before, they are also given the opportunity to explore the differences between undergraduate and graduate school. Each student is given the ability to participate in GRE prep courses. Students are given the opportunity to assess their educations, and if they find through their research that they enjoy a specific topic or are lacking necessary background information, then they can choose to register for specific courses in the upcoming fall semester. Along with influencing course selection among the REU students, the students bring their experiences and newly developed research skills back to school with them.

  16. Low-Latitude Solar Coronal Hole Formation

    NASA Astrophysics Data System (ADS)

    Haislmaier, Karl; Petrie, G.

    2013-01-01

    Little is known about the origin of low-latitude solar coronal holes (CHs) and their relation to the magnetic flux distribution of the underlying Solar Photosphere. Two recent reports (Karachik et al. 2010, Wang et al. 2010) suggest that CH formation might be correlated with the decay of active regions (ARs) in the photosphere. In order to explore the nature and extent of such correlations, we surveyed GONG (Global Oscillations Network Group) synoptic magnetograms and STEREO (Solar TErrestrial RElations Observatory) synoptic extreme ultraviolet images of Carrington rotations 2047-2112. From these two data sets, 41 AR-CH pairs were identified, accounting for ~34% of all ARs that appeared during the surveyed rotations. Each of these AR-CH pairs fell into one of two general classes: 1) those where the CHs were associated with the leading polarity fluxes of decaying ARs whose lagging fluxes largely decayed away, and 2) those where the CHs were associated with the lagging fluxes of surviving ARs. Perhaps surprisingly, the positive and negative fluxes of the ARs generally remained well balanced after their CHs developed. Extrapolated coronal potential-field source-surface (PFSS) models linked the CH creation and development to changes in magnetic connectivity with the surroundings as the AR flux became more diffuse over time. These considerations lead us to conclude that CHs are associated with low intensity, unipolar magnetic flux regions in the photosphere, which are most readily created by the turbulent diffusion and decay of AR flux. This work is carried out through the National Solar Observatory Research Experiences for Undergraduate (REU) site program, which is co-funded by the Department of Defense in partnership with the National Science Foundation REU Program. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.

  17. Field Geophysics at SAGE: Strategies for Effective Education

    NASA Astrophysics Data System (ADS)

    Braile, L. W.; Baldridge, W. S.; Jiracek, G. R.; Biehler, S.; Ferguson, J. F.; Pellerin, L.; McPhee, D. K.; Bedrosian, P. A.; Snelson, C. M.; Hasterok, D. P.

    2011-12-01

    SAGE (Summer of Applied Geophysical Experience) is a unique program of education and research in geophysical field methods for undergraduate and graduate students from any university and for professionals. The core program is held for 4 weeks each summer in New Mexico and for an additional week in the following academic year in San Diego for U.S. undergraduates supported by the NSF Research Experience for Undergraduates (REU) program. Since SAGE was initiated in 1983, 730 students have participated in the program. NSF REU funding for SAGE began in 1990 and 319 REU students have completed SAGE through 2011. The primary objectives of SAGE are to teach the major geophysical exploration methods (seismic, gravity, magnetics, electromagnetics); apply these methods to the solution of specific problems (environmental, archaeological, hydrologic, geologic structure and stratigraphy); gain experience in processing, modeling and interpretation of geophysical data; and integrate the geophysical models and interpretations with geology. Additional objectives of SAGE include conducting research on the Rio Grande rift of northern New Mexico, and providing information on geophysics careers and professional development experiences to SAGE participants. Successful education, field and research strategies that we have implemented over the years include: 1. learn by doing; 2. mix lecture/discussion, field work, data processing and analysis, modeling and interpretation, and presentation of results; 3. a two-tier team approach - method/technique oriented teams and interpretation/integration teams (where each team includes persons representing different methods), provides focus, in-depth study, opportunity for innovation, and promotes teamwork and a multi-disciplinary approach; 4. emphasis on presentations/reports - each team (and all team members) make presentation, each student completes a written report; 5. experiment design discussion - students help design field program and consider issues - safety, constraints, data quality/quantity, research objective, educational experience, survey parameters, why multidisciplinary?, etc.; 6. knowledge of multiple geophysical field methods (each student works with all methods); 7. information on geophysics careers and networking provided by industry visitors; 8. measures of success of the program include high rate of continuation to graduate school and careers in geophysics, support and feedback from industry participants and visitors, student evaluations at end of program, presentations at professional meetings, publications, and faculty evaluation of student work.

  18. Increasing Diversity in Global Climate Change, Space Weather and Space Technology Research and Education

    NASA Astrophysics Data System (ADS)

    Johnson, L. P.; Austin, S. A.; Howard, A. M.; Boxe, C.; Jiang, M.; Tulsee, T.; Chow, Y. W.; Zavala-Gutierrez, R.; Barley, R.; Filin, B.; Brathwaite, K.

    2015-12-01

    This presentation describes projects at Medgar Evers College of the City University of New York that contribute to the preparation of a diverse workforce in the areas of ocean modeling, planetary atmospheres, space weather and space technology. Specific projects incorporating both undergraduate and high school students include Assessing Parameterizations of Energy Input to Internal Ocean Mixing, Reaction Rate Uncertainty on Mars Atmospheric Ozone, Remote Sensing of Solar Active Regions and Intelligent Software for Nano-satellites. These projects are accompanied by a newly developed Computational Earth and Space Science course to provide additional background on methodologies and tools for scientific data analysis. This program is supported by NSF award AGS-1359293 REU Site: CUNY/GISS Center for Global Climate Research and the NASA New York State Space Grant Consortium.

  19. Key Actions of Successful Summer Research Mentors

    ERIC Educational Resources Information Center

    Raman, D. Raj; Geisinger, Brandi N.; Kemis, Mari R.; de la Mora, Arlene

    2016-01-01

    Summer research opportunities for undergraduates, such as those supported by the National Science Foundation's Research Experience for Undergraduates (REU) program, can be critical experiences that help persuade students to pursue research through graduate studies. Studies analyzing the key actions of successful mentors are scarce. The goal of…

  20. Description and comparison of excretory urography performed during radiography and computed tomography for evaluation of the urinary system in healthy New Zealand White rabbits (Oryctolagus cuniculus).

    PubMed

    Vilalta, Laura; Altuzarra, Raul; Espada, Yvonne; Dominguez, Elisabet; Novellas, Rosa; Martorell, Jaime

    2017-04-01

    OBJECTIVE To evaluate the usefulness of excretory urography performed during radiography (REU) and CT (CTEU) in healthy rabbits, determine timings of urogram phases, and compare sensitivities of REU and CTEU for detection of these phases. ANIMALS 13 New Zealand White rabbits (Oryctolagus cuniculus). PROCEDURES Rabbits were screened for signs of systemic and urinary tract disease. An REU examination of each was performed, followed ≥ 5 days later by a CTEU examination. Contrast images from each modality were evaluated for quality of opacification and intervals between initiation of contrast medium administration and detection of various urogram phases. RESULTS Excretory urograms of excellent diagnostic quality were achieved with both imaging modalities. For all rabbits, the nephrographic phase of the urogram appeared in the first postcontrast REU image (obtained between 34 and 40 seconds after initiation of contrast medium administration) and at a median interval of 20 seconds in CTEU images. The pyelographic phase began at a median interval of 1.63 minutes with both imaging modalities. Contrast medium was visible within the urinary bladder at a median interval of 2.20 minutes. Median interval to the point at which the nephrogram and pyelogram were no longer visible in REU images was 8 hours and 2.67 hours, respectively. The CTEU technique was better than the REU technique for evaluating renal parenchyma. CONCLUSIONS AND CLINICAL RELEVANCE Findings suggested that REU and, particularly, CTEU may be valuable tools for the diagnosis of renal and urinary tract disease in rabbits; however, additional evaluation in diseased rabbits is required.

  1. Engaging Diverse Students Through International Collaboration and Professional Preparation

    NASA Astrophysics Data System (ADS)

    Feineman, M. D.; Nyblade, A.; Webb, S. J.

    2016-12-01

    The AfricaArray-Bushveld REU is a partnership between the Pennsylvania State University and the University of the Witwatersrand. The primary goal is to engage a diverse cohort of students in international scientific collaboration through a program of training, field work, and laboratory and/or computational analysis. At least 50% of the student participants each year are from under-represented minorities. Students spend 2-3 weeks at Penn State, then 3 weeks in South Africa, followed by another 2-3 weeks in the US. The introductory 2-3 week session at Penn State is devoted to ethics and safety training, the human history, culture, and geologic history of South Africa, and Earth Science Literacy. Upon arriving in South Africa, the students are placed into field groups with students, post-docs, and faculty from Wits and other African nations participating in the AfricaArray Geophysics Field School. Each disciplinary group includes at least 1 mentor from the US and 1 from South Africa. Students spend time collecting rock samples for geochemical analysis, installing and servicing seismometers, and/or collecting data from the shallow subsurface using a variety of geophysical techniques. All students attend lectures by faculty at Wits, receive training in proper use and maintenance of scientific instrumentation, and interact with industry representatives. The culmination of this part of the REU is a day of oral presentations, where all students (REU and AfricaArray Geophysics Field School) share their experiences and data. After returning to the US, students engage in geochemical analysis, processing of seismic data, and modeling geophysical data. In addition to faculty mentors, the students work closely with graduate students and post-docs. All participate in mentor-led discussions about future career paths and graduate school options. As a capstone to the REU, each student writes a conference abstract and gives a poster presentation of their research. Each abstract includes co-authors from the US and South Africa, and these have been presented by students at SACNAS, NABG, GSA, and AGU meetings. At the end of the REU, students participating in anonymous surveys report feeling more confident in their ability to contribute to an international scientific collaboration and to complete a graduate degree in geosciences.

  2. REU Site: Yosemite Research Training in Environmental Science

    NASA Astrophysics Data System (ADS)

    Conklin, M. H.; Dayrat, B.

    2009-12-01

    The Yosemite Research Training in Environmental Science offers undergraduate students a unique opportunity to actively experience field research in Environmental Science in a premier National Park, over a nine-week period in the summer. The Yosemite REU is a collaboration between three institutions: the University of California at Merced, Yosemite National Park, and the USGS Western Ecological Research Center. Student activities mainly consist of individual research projects, spanning a broad range of disciplines such as Ecology, Geosciences, Biodiversity, Conservation, Restoration, and Hydrology. All projects include a strong field component. Students are exposed to the benefits of multi-disciplinary research in weekly meetings in which all students talk about their most recent work. Students present their research in Yosemite Valley at the end of the program before a public audience (including visitors). Research training is provided by mentors from UC Merced (Schools of Natural Sciences, Engineering, and Social Sciences) and the USGS Western Ecological Research Center. In addition to their interactions with their mentors and other faculty, students have opportunities to meet with NPS professionals engaged in park-related activities, to learn more about the integration of science with resources management and about potential careers in research and science outside academia. Students also participate in field trips led by UCM, USGS, and NPS scientists, focusing on Yosemite and the Sierra Nevada. Students attend a weekly seminar in Environmental Science with a broad diversity of speakers, including researchers as well as other science-related professionals, such as freelance science writers and illustrators, as well as NPS scientists and staff. Finally, student participants engage in several other activities, including outreach (e.g., a day-long meeting with high-school Central Valley students from underrepresented minorities). The Yosemite REU has already run for 2 years (with funds still available for another summer in 2010). Each year, eight students have been selected from a large pool of at least 150 complete applications, nationwide (with about 20 to 25% being students from under-represented minorities). Each year, five students out of eight have been from under-represented minorities.

  3. Pills and pints: risky drinking and alcohol-related harms among regular ecstasy users in Australia.

    PubMed

    Kinner, Stuart A; George, Jessica; Johnston, Jennifer; Dunn, Matthew; Degenhardt, Louisa

    2012-05-01

    A significant proportion of young Australians engage in risky alcohol consumption, and an increasing minority are regular ecstasy (3,4-methylenedioxymethamphetamine) users. Risky alcohol use, alone or in combination with ecstasy, is associated with a range of acute and chronic health risks. The aim of this study was to document the incidence and some health-related correlates of alcohol use, and concurrent alcohol and ecstasy use, among a large, national sample of regular ecstasy users (REU) in Australia. National, cross-sectional surveys of REU in Australia 2003-2008. Among REU in 2008 (n=678) usual alcohol use, psychological distress and health-related quality of life were measured using the Alcohol Use Disorders Identification Test, Kessler Psychological Distress Scale and Short Form-8 Survey respectively. Among REU in 2008, 36% reported high-risk patterns of usual alcohol consumption, 62% reported usually consuming more than five standard drinks with ecstasy, and 24% reported currently experiencing high or very high levels of psychological distress. Controlling for age and education, high-risk drinking among REU was associated with higher levels of psychological distress and poorer health-related functioning; however, the associations between concurrent alcohol and ecstasy use, and health outcomes, were not significant (P>0.05). A large and increasing proportion of REU in Australia engage in high-risk patterns of alcohol consumption, including in combination with ecstasy. High-risk alcohol consumption among this group is associated with adverse health-related outcomes. Prevention and harm reduction interventions for REU should incorporate messages about the risks associated with alcohol use. There is an ongoing need for youth-specific, coordinated alcohol and other drug and mental health services. © 2011 Australasian Professional Society on Alcohol and other Drugs.

  4. Socio-contextual Determinants of Research Evidence Use in Public-Youth Systems of Care.

    PubMed

    Garcia, Antonio R; Kim, Minseop; Palinkas, Lawrence A; Snowden, Lonnie; Landsverk, John

    2016-07-01

    Recent efforts have been devoted to understanding the conditions by which research evidence use (REU) is facilitated from the perspective of system leaders in the context of implementing evidence-based child mental health interventions. However, we have limited understanding of the extent to which outer contextual factors influence REU. Outer contextual factors for 37 counties in California were gathered from public records in 2008; and child welfare, juvenile justice, and mental health system leaders' perceptions of their REU were measured via a web-based survey from 2010 to 2012. Results showed that leaders with higher educational attainment and in counties with lower expenditures on inpatient mental health services were significantly associated with higher REU. Positive relationships between gathering research evidence and racial minority concentration and poverty at the county level were also detected. Results underscore the need to identify the organizational and socio-political factors by which mental health services and resources meet client demands that influence REU, and to recruit and retain providers with a graduate degree to negotiate work demands and interpret research evidence.

  5. A Study of Spatially-Coincident IceCube Neutrinos and Fermi Gamma-Ray Sources

    NASA Astrophysics Data System (ADS)

    Seymour, Hannah; Mukherjee, Reshmi; Shaevitz, Michael; Santander, Marcos

    2016-03-01

    The IceCube neutrino telescope has detected very-high-energy neutrino events with energies between several hundred TeV to a few PeV beginning inside the detector. These events are unlikely to have originated in the atmosphere, and are suspected to come from astrophysical sources, the likes of which can also be observed in gamma rays by the Fermi Gamma-Ray Space Telescope. We present an analysis of archival GeV gamma-ray data collected with the Large Area Telescope onboard the Fermi satellite to search for gamma-ray sources spatially coincident with the locations of high-enery muon neutrinos detected by IceCube. The combined detection of gamma rays and neutrinos from an astrophysical source will allow us to identify cosmic-ray acceleration sites. With gratitude to the Nevis Laboratories REU program.

  6. Selectivity of adsorption of gases on doped graphene

    NASA Astrophysics Data System (ADS)

    Nnabugwu, Jordan; Maiga, Sidi; Gatica, Silvina

    We report our results on the selectivity of carbon dioxide being adsorbed onto doped graphene. Using the Ideal Adsorption Solution theory (IAST) we calculate the selectivity using the uptake pressures of pure gases. We focus on the adsorption of atmospheric gases such as carbon dioxide (CO2) , Nitrogen (N2) , and Methane (CH4) on a pure and doped monolayer graphene slab placed at the bottom of a simulation cell. Grand Canonical Monte Carlo (GCMC) simulations allow us to calculate the amount of gases adsorbed at a given temperature and pressure of the system. We found that including impurities of varying strength and concentration can increase significantly the selectivity at room temperature. Financial support from the National Science Foundation Research Experiences for Undergraduates Program for the REU Site in Physics at Howard University (NSF Award No. PHY-1358727) is gratefully acknowledged.

  7. Engaging Women in Computer Science and Engineering: Promising Practices for Promoting Gender Equity in Undergraduate Research Experiences

    ERIC Educational Resources Information Center

    Kim, Karen A.; Fann, Amy J.; Misa-Escalante, Kimberly O.

    2011-01-01

    Building on research that identifies and addresses issues of women's underrepresentation in computing, this article describes promising practices in undergraduate research experiences that promote women's long-term interest in computer science and engineering. Specifically, this article explores whether and how REU programs include programmatic…

  8. Is Episodic Accretion Necessary to Resolve the Luminosity Problem in Low-Mass Protostars?

    NASA Astrophysics Data System (ADS)

    Sevrinsky, Raymond Andrew; Dunham, Michael

    2017-01-01

    In this contribution, we compare the results of protostellar accretion simulations for scenarios both containing and lacking episodic accretion activity. We determine synthetic observational signatures for collapsing protostars by taking hydrodynamical simulations predicting highly variable episodic accretion events, filtering out the stochastic behavior by applying power law fits to the mass accretion rates onto the disk and central star, and using the filtered rates as inputs to two-dimensional radiative transfer calculations. The spectral energy distributions generated by these calculations are used to calculate standard observational signatures of Lbol and Tbol, and compared directly to a sample of 230 embedded protostars. We explore the degree to which these continually declining accretion models successfully reproduce the observed spread of protostellar luminosities, and examine their consistency with the prior variable models to investigate the degree to which episodic accretion bursts are necessary in protostellar formation theories to match observations of field protostars. The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  9. Volcanic Surface Deformation in Dominica From GPS Geodesy: Results From the 2007 NSF- REU Site

    NASA Astrophysics Data System (ADS)

    Murphy, R.; James, S.; Styron, R. H.; Turner, H. L.; Ashlock, A.; Cavness, C.; Collier, X.; Fauria, K.; Feinstein, R.; Staisch, L.; Williams, B.; Mattioli, G. S.; Jansma, P. E.; Cothren, J.

    2007-12-01

    GPS measurements have been collected on the island of Dominica in the Lesser Antilles between 2001 and 2007, with five month-long campaigns completed in June of each year supported in part by a NSF REU Site award for the past two years. All GPS data were collected using dual-frequency, code-phase receivers and geodetic-quality antenna, primarily choke rings. Three consecutive 24 hr observation days were normally obtained for each site. Precise station positions were estimated with GIPSY-OASISII using an absolute point positioning strategy and final, precise orbits, clocks, earth orientation parameters, and x-files. All position estimates were updated to ITRF05 and a revised Caribbean Euler pole was used to place our observations in a CAR-fixed frame. Time series were created to determine the velocity of each station. Forward and inverse elastic half-space models with planar (i.e. dike) and Mogi (i.e. point) sources were investigated. Inverse modeling was completed using a downhill simplex method of function minimization. Selected site velocities were used to create appropriate models for specific regions of Dominica, which correspond to known centers of pre-historic volcanic or recent shallow, seismic activity. Because of the current distribution of GPS sites with robust velocity estimates, we limit our models to possible magmatic activity in the northern, proximal to the volcanic centers of Morne Diablotins and Morne aux Diables, and southern, proximal to volcanic centers of Soufriere and Morne Plat Pays, regions of the island. Surface deformation data from the northernmost sites may be fit with the development of a several km-long dike trending approximately northeast- southwest. Activity in the southern volcanic centers is best modeled by an expanding point source at approximately 1 km depth.

  10. What Knowledge of Responsible Conduct of Research Do Undergraduates Bring to Their Undergraduate Research Experiences?

    ERIC Educational Resources Information Center

    Mabrouk, Patricia Ann

    2016-01-01

    Over a three-year period, chemistry and engineering students participating in six Research Experience for Undergraduates (REU) programs were surveyed before and after participating in a research ethics training workshop. The goal was to learn what undergraduate students already knew about key concepts in research ethics at the start of their…

  11. IBP's Four-Prong Approach for Broadening Participation in the STEM Community

    NASA Astrophysics Data System (ADS)

    Ricciardi, L.; Fauver, A.; Johnson, A.; Detrick, L.; Siegfried, D.; Thomas, S.; Valaitis, S.

    2013-12-01

    The goal of the Institute for Broadening Participation (IBP) is to increase diversity in the Science, Technology, Engineering and Mathematics (STEM) workforce. As a freestanding non-profit dedicated to this work IBP is uniquely positioned to provide resources to faculty and students that individual institutions and disciplinary based programs cannot. Through its initial work with the NSF Integrative Graduate Education and Research Traineeship (IGERT), Research Experiences for Undergraduates (REU), and Alliance for Graduate Education and the Professoriate (AGEP) programs, IBP developed a four-pronged approach open to all members of the STEM community nationally for addressing the problem of underrepresentation: Synthesizing information - compiling and translating best practices into materials and resources accessible and useful to a broad national audience; Creating and maintaining strategic web resources - making information on programs, best practices, and references easily available to a wide audience including students, faculty, and administrators; Extensive face-to-face and virtual outreach - drawing constituents to the resources available via IBP that support students and faculty through the entire STEM pathway; and Catalyzing partnerships - cultivating a community of practice and culture of diversity, to reduce isolation among diversity practitioners, and to increase information sharing. IBP is also home to several successful initiatives that use both virtual and face-to-face components to bring together underrepresented students with established underrepresented and other scientists in academia, government and industry. These connections provide underrepresented students with supportive mentoring, networking opportunities, and professional skill development contributing to an overall improved retention rate of underrepresented students majoring in STEM degrees. IBP's initiatives include the NASA One Stop Shopping Initiative (NASA OSSI), Pathways to Ocean Science, Pathways to Engineering, and the Minorities Striving and Pursuing Higher Degrees of Success (MS PHD'S) Professional Development program in Earth System Science (ESS). NASA OSSI recruits and facilitates student engagement in NASA student education and employment opportunities. Pathways to Ocean Science connects and supports underrepresented students with REU programs in Ocean Sciences and serves as a resource for REU program directors. Pathways to Engineering synthesized mentoring resources into an online mentoring manual for underrepresented STEM students that has been extensively vetted by mentoring experts throughout the country. MS PHD'S, an award-winning professional development program for underrepresented students, focuses on increasing the retention rate of underrepresented students receiving advanced degrees in ESS. As of August 2013, 213 students have participated in the program. 67 of those students are currently enrolled in a PhD. program. Another 47 have completed their PhD and are actively engaged in the ESS workforce.

  12. Accelerated Learning: Undergraduate Research Experiences at the Texas A&M Cyclotron Institute

    NASA Astrophysics Data System (ADS)

    Yennello, S. J.

    The Texas A&M Cyclotron Institute (TAMU CI) has had an NSF funded Research Experiences for Undergraduates program since 2004. Each summer about a dozen students from across the country join us for the 10-week program. They are each imbedded in one of the research groups of the TAMU CI and given their own research project. While the main focus of their effort is their individual research project, we also have other activities to broaden their experience. For instance, one of those activities has been involvement in a dedicated group experiment. Because not every experimental group will run during those 10 weeks and the fact that some of the students are in theory research groups, a group research experience allows everyone to actually be involved in an experiment using the accelerator. In stark contrast to the REU students' very focused experience during the summer, Texas A&M undergraduates can be involved in research projects at the Cyclotron throughout the year, often for multiple years. This extended exposure enables Texas A&M students to have a learning experience that cannot be duplicated without a local accelerator. The motivation for the REU program was to share this accelerator experience with students who do not have that opportunity at their home institution.

  13. The "art" of science communication in undergraduate research training

    NASA Astrophysics Data System (ADS)

    Fatemi, F. R.; Stockwell, J.; Pinheiro, V.; White, B.

    2016-12-01

    Student creation of well-designed and engaging visuals in science communication can enhance their deep learning while streamlining the transmission of information to their audience. However, undergraduate research training does not frequently emphasize the design aspect of science communication. We devised and implemented a new curricular component to the Lake Champlain NSF Research Experiences for Undergraduates (REU) program in Vermont. We took a holistic approach to communication training, with a targeted module in "art and science". Components to the module included: 1) an introduction to environmental themes in fine art, 2) a photography assignment in research documentation, 3) an overview of elements of design (e.g., color, typography, hierarchy), 4) a graphic design workshop using tools in Powerpoint, and 5) an introduction to scientific illustration. As part of the REU program, students were asked to document their work through photographs, and develop an infographic or scientific illustration complementary to their research. The "art and science" training culminated with a display and critique of their visual work. We report on student responses to the "art and science" training from exit interviews and survey questions. Based on our program, we identify a set of tools that mentors can use to enhance their student's ability to engage with a broad audience.

  14. A Case Study of URM Retention through IBP's Professional Development and Mentoring Activities

    NASA Astrophysics Data System (ADS)

    Johnson, A.; Williamson Whitney, V.; Ricciardi, L.; Detrick, L.; Siegfried, D.; Fauver, A.; Ithier-Guzman, W.; Thomas, S. H.; Valaitis, S.

    2012-12-01

    As a free-standing not for profit organization, the Institute for Broadening Participation (IBP) hosts a variety of initiatives designed to increase the retention of underrepresented minority (URM) students pursuing pathways in STEM. Successful initiatives include virtual and face-to-face components that bring together URM students with established URM and other scientists in academia, government and industry. These connections provide URM students with supportive mentoring, networking opportunities, and professional skill development contributing to an overall improved retention rate of URM students majoring in STEM degrees. IBP's initiatives include the NASA One Stop Shopping Initiative (NASA OSSI), Pathways to Ocean Science, Pathways to Engineering, and the Minorities Striving and Pursuing Higher Degrees of Success (MS PHD'S) Professional Development program in Earth System Science (ESS). The NASA OSSI initiative recruits and facilitates student engagement in NASA student education and employment opportunities. Through IBP's virtual and person-to-person communications, students learn how to identify, apply to, and participate in NASA programs. Pathways to Ocean Science connects and supports URM students with REU programs in the Ocean Sciences while serving as a resource for REU program directors. As one of IBP's newest initiatives, Pathways to Engineering has synthesized mentoring resources into an online mentoring manual for URM STEM students that has been extensively vetted by mentoring experts throughout the country. The manual which is organized by user groups serves as an e-forum providing undergraduates, graduates, postdocs, faculty members and project directors with valuable resources to facilitate a positive REU experience. This mentoring initiative also provides a mechanism for submitting new resources and inviting feedback in mentoring best practices throughout the STEM community. MS PHD'S, one of IBP's longest running and most successful initiatives, focuses on increasing the retention rate of URM students receiving advanced degrees in Earth system science. Through a three-phase structure of activities, the program addresses major barriers to retention in ESS including isolation, lack of preparation and professional development, and lack of mentoring. Program activities center on peer-to-peer community building, professional development exercises, networking experiences, one-on-one mentoring, and a facilitated virtual community. MS PHD'S participants report a reduced sense of isolation, an increased sense of community, and a higher level of confidence about their ability to succeed in their chosen field. As of August 2012, 189 students have participated in the program. 60 of those students are currently enrolled in a PhD. program. Another 35 have completed their PhD and are actively engaged in the ESS workforce.

  15. Excitation of levels in Li6 by inelastic electron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernheim, M.; Bishop, G. R.

    1963-07-01

    Inelastic scattering of electrons from metallic targets of Li 6 was studied as part of a program to establish the validity of the Born approximation calculation of the cross section. This calculation predicts the separation of the inelastic form factor into two contributions corresponding to the absorption of longitudinal and transverse virtual photons by the bombarded system. (R.E.U.)

  16. You can see galaxies from your computer | CTIO

    Science.gov Websites

    Calendar Activities NOAO-S EPO Programs CADIAS Astro Chile Hugo E. Schwarz Telescope Dark Sky Education Preserving the Dark Skies La Oficina de Protección de la Calidad del Cielo del Norte de Chile - OPCC Light Pollution StarLight Universe The World at Night (TWAN) International Dark-Sky Association (IDA) Students REU

  17. Redshift Evolution of Non-Gaussianity in Cosmic Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Sullivan, James; Wiegand, Alexander; Eisenstein, Daniel

    2018-01-01

    We probe the higher-order galaxy clustering in the final data release (DR12) of the Sloan Digital Sky Survey using germ-grain Minkowski Functionals (MFs). Our data selection contains 979,430 BOSS galaxies from both the northern and southern galactic caps over the redshift range 0.2 - 0.6. We extract the higher-order parts of the MFs and find deviations from the case without higher order MFs with chi-squared values of order 1000 for 24 degrees of freedom across the entire data selection. We show the MFs to be sensitive to contributions up to the five-point correlation function across the entire data selection. We measure significant redshift evolution in the higher-order functionals for the first time, with a percentage growth between redshift bins of approximately 20 % in both galactic caps. This is a nearly a factor of 2 greater than similar growth in the two-point correlation function and will allow for tests of non-linear structure growth by comparing the three-point and higher-order parts to their expected theoretical values. The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.

  18. The AGN Luminosity Fraction in Galaxy Mergers

    NASA Astrophysics Data System (ADS)

    Dietrich, Jeremy; Weiner, Aaron; Ashby, Matthew; Martinez-Galarza, Juan Rafael; Smith, Howard Alan

    2017-01-01

    Galaxy mergers are key events in galaxy evolution, generally triggering massive starbursts and AGNs. However, in these chaotic systems, it is not yet known what fraction each of these two mechanisms contributes to the total luminosity. Here we measure and model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) in up to 33 broad bands from the UV to the far-IR for 23 IR-luminous galaxies to estimate the fraction of the bolometric IR luminosity that can be attributed to the AGN. The galaxies are split nearly evenly into two subsamples: late-stage mergers, found in the IRAS Revised Bright Galaxy Sample or Faint Source Catalog, and early-stage mergers found in the Spitzer Interacting Galaxy Sample. We find that the AGN contribution to the total IR luminosity varies greatly from system to system, from 0% up to ~90%, but is substantially greater in the later-stage and brighter mergers. This is consistent with what is known about galaxy evolution and the triggering of AGNs.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  19. Deep Chandra Observations of Abell 586: A Remarkably Relaxed Non-Cool-Core Cluster

    NASA Astrophysics Data System (ADS)

    Richstein, Hannah; Su, Yuanyuan

    2018-01-01

    The dichotomy between cool-core and non-cool-core clusters has been a lasting perplexity in extragalactic astronomy. Nascent cores in non-cool-core clusters may have been disrupted by major mergers, yet the dichotomy cannot be reproduced in cosmology simulations. We present deep Chandra observations of the massive galaxy cluster Abell 586, which resides at z=0.17, thus allowing its gas properties to be measured out to its virial radius. Abell 586 appears remarkably relaxed with a nearly spherical X-ray surface brightness distribution and without any offset between its X-ray and optical centroids. We measure that its temperature profile does not decrease towards the cluster center and its central entropy stays above 100 keV cm2. A non-cool-core emerges in Abell 586 in the absence of any disruptions on the large scale. Our study demonstrates that non-cool-core clusters can be formed without major mergers. The origins of some non-cool-core clusters may be related to conduction, AGN feedback, or preheating.The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.

  20. Place-based research project design for 10-week REU and two-week "mini-REU" internships using lake sediment cores

    NASA Astrophysics Data System (ADS)

    Myrbo, A.; Howes, T.; Thompson, R.; Drake, C.; Woods, P.; Schuldt, N.; Borkholder, B.; Marty, J.; Lafrancois, T.; Pellerin, H.

    2012-12-01

    Lake sediment cores provide scalable, interdisciplinary research projects that are well suited for summer internships such as the NSF-REU (Research Experience for Undergraduates). Short paleorecords (100-500 years or about a meter of core) are easy to collect and are tractable in terms of sample numbers (Myrbo et al. 2011). Many students find it compelling to reconstruct the recent past; choosing sites with cultural or historical significance is another way to make research seem more relevant. We present the results and experiences of designing two- and ten-week individual, group, and team research projects. Each of these projects contributes to the findings of a collaborative inquiry by the Fond du Lac Band of Lake Superior Chippewa (FDL) and the University of Minnesota (UMN). Research questions are determined and framed by FDL Resource Management, and student projects are supported and advised by both FDL and UMN scientists. The research is focused on the past environmental conditions of on- and off-Reservation wild rice lakes and the surrounding landscapes and people, and includes the study of biological and chemical proxies as well as historical records. Over the past three years, this approach has enabled diverse groups of students to conduct authentic and original basic research that also has applications to management and planning issues for Tribal resource managers, and to develop skills that are portable to other management and academic settings. These compelling "short" time scale projects can serve as a gateway for students to further pursue science including longer term paleorecords, climate change research, other disciplines in ecology, water resources, geography, archeology, and geology, as well as humanities research areas such as history and landscape architecture. An overarching goal is to help students understand current environmental change in the context of long-term changes, pre-industrial human land use, and accelerated Anthropocene impacts. The two-week "mini-REU" was designed to attract students with little or no independent research experience, who might be intimidated by applying for a ten-week internship away from home (but who might apply for one after completing a good mini-REU). The arc of research, from site selection to field work and lab work to data interpretation and poster presentation, must be encompassed in these brief projects, so group projects with clear goals are best suited for mini-REUs. The May 2012 project, with twelve students in four research proxy groups (charcoal, phytoliths, plant macrofossils, and zooplankton), demonstrated that a FDL lake, Rice Portage, had extensive wild rice habitat prior to early 20th-century Euroamerican ditching; this proof was required in order for FDL to gain a permit from the Army Corps of Engineers to raise the lake level as part of a wild rice restoration effort. Each proxy group had one research advisor (a graduate student or soft money researcher), plus one UMN über-advisor for the project as a whole, as well as the Fond du Lac resource manager. All of these advisors also work with the 10-week interns throughout the summer.

  1. Improving Program Design and Assessment with Broadening Participation Resources

    NASA Astrophysics Data System (ADS)

    Siegfried, D.; Johnson, A.; Thomas, S. H.; Fauver, A.; Detrick, L.

    2012-12-01

    Many theoretical and research-based approaches suggest how to best use mentoring to enhance an undergraduate research program. The Institute for Broadening Participation's Pathways to Engineering and Pathways to Ocean Sciences projects synthesized a set of mentoring studies, theoretical sources, and other texts pertinent to undergraduate research program design into a suite of practical tools that includes an online mentoring manual, an online reference library of mentoring and diversity literature, and practical guides such as Using Social Media to Build Diversity in Your REU. The overall goal is to provide easy-to-access resources that can assist faculty and program directors in implementing or honing the mentoring elements in their research programs for undergraduates. IBP's Online Mentoring Manual addresses common themes, such as modeling, student self-efficacy, career development, retention and evaluation. The Online Diversity Reference Library provides a comprehensive, annotated selection of key policy documents, research studies, intervention studies, and other texts on broadening participation in science, technology, engineering and mathematics. IBP's suite of tools provides the theoretical underpinnings and research findings that can help leaders in education integrate site-appropriate mentoring elements into their educational programs. Program directors and faculty from a variety of program types and disciplines have benefitted from using the Manual and other resources. IBP continues the work of translating and synthesizing theory to practice and welcomes your participation and partnership in that effort.

  2. Collaborative, Early-undergraduate-focused REU Programs at Savannah State University have been Vital to Growing a Demographically Diverse Ocean Science Community

    NASA Astrophysics Data System (ADS)

    Gilligan, M. R.; Cox, T. M.; Hintz, C. J.

    2011-12-01

    Formal support for undergraduates to participate in marine/ocean science research at Savannah State University (SSU), a historically-Black unit of the University System of Georgia, began in 1989 with funding from the National Science Foundation for an unsolicited proposal (OCE-8919102, 34,935). Today SSU, which has offered B.S degrees since 1979 and M.S. degrees since 2001 in Marine Sciences, is making major contributions nationally to demographic diversity in ocean sciences. 33% of Master's degrees in marine/ocean sciences earned by African Americans in the U.S. from 2004-2007 were earned at SSU. 10% of African American Master's and Doctoral students in marine/ ocean sciences in 2007 were either enrolled in the Master's program at SSU or were former SSU students enrolled in Doctoral programs elsewhere. Collaborative REU programs that focus on early (freshman and sophomore) undergraduate students have been a consistent and vital part of that success. In the most recent iteration of our summer REU program we used six of the best practices outlined in the literature to increase success and retention of underrepresented minority students in STEM fields: early intervention, strong mentoring, research experience, career counseling, financial support, workshops and seminars. The early intervention with strong mentoring has proven successful in several metrics: retention in STEM majors (96%), progression to graduate school (50%), and continuation to later research experiences (75%). Research mentors include faculty at staff at SSU, the Skidaway Institute of Oceanography, Gray's Reef National Marine Sanctuary and Georgia Tech-Savannah. Formal collaborative and cooperative agreements, externally-funded grants, and contracts in support of student research training have proven to be critical in providing resources for growth and improvement marine science curricular options at the University. Since 1981 the program has had four formal partnerships and 36 funded grant awards and contracts totaling 11.7 million. HBCUs are disproportionately more effective in training significant numbers of African American students in the sciences. Although they enrolled only 11.1% of African-American undergraduates and 9.4% of African American graduate students in fall 2007 in the U.S., they awarded 33.3% of undergraduate and 24% of master's degrees earned by African-Americans in Biological, biomedical and, physical sciences, and science technologies in 2006 and 2007. Commitments to the development of non-traditional academic and research programs at HBCUs and other minority serving institutions should be expanded to increase demographic diversity in the ocean sciences.

  3. Broadening Participation: Mentoring Community College Students in a Geoscience REU

    NASA Astrophysics Data System (ADS)

    Smith, M.; Osborn, J.

    2015-12-01

    Increasingly, REUs are recruiting from community colleges as a means of broadening participation of underrepresented minorities, women, and low-income students in STEM. As inclusion of community college students becomes normalized, defining the role of science faculty and preparing them to serve as mentors to community college students is a key component of well-designed programs. This session will present empirical research regarding faculty mentoring in the first two years of an NSF-REU grant to support community college students in a university's earth and environmental science labs. Given the documented benefits of undergraduate research on students' integration into the scientific community and their career trajectory in STEM, the focus of the investigation has been on the processes and impact of mentoring community college STEM researchers at a university serving a more traditionally privileged population; the degree to which the mentoring relationships have addressed community college students needs including their emotional, cultural and resource needs; and gaps in mentor training and the mentoring relationship identified by mentors and students.

  4. Cornell Astronomy REU: Casting a Wide Net to Increase Access to Research Opportunities

    NASA Astrophysics Data System (ADS)

    Fernandez de Castro, Patricia; Haynes, Martha P.

    2018-01-01

    We describe a Research Experience for Undergraduates program in astrophysics and planetary science hosted in a major university setting that is geared especially but not exclusively to students who matriculate at smaller colleges and universities without major astronomy research programs, have not previously had off-campus research experiences and/or have non-traditional academic backgrounds.Individual research projects which students undertake with faculty mentors and their research groups are the keystone of the program. Built around this central activity are a set of other components that aim to expose students to the broad areas of astrophysical and planetary science research and to foster their appreciation of the research enterprise and their possible place within it. We describe the professional development activities that are offered to students, including lectures and workshops on a broad range of topics in astrophysics and planetary science, research group meetings, tutorials on research and scientific presentation skills, participation in outreach, education on the graduate school experience and application process, and discussions of the scientific enterprise, career paths and options in astronomy and related fields as well as the role REU group meetings with the program director (which complement meetings students attend within the context of their research group) play in developing students’ scientific competencies and pre-professional development. Also described are program elements that aim to make the program accessible to all students, including older students, those in relationships or with children as well as cohort building. Finally, we discuss lessons learned on how recruiting on merit and suitability to the research projects on offer, with a strong emphasis on smaller colleges and universities without major astronomy research programs can work towards a broader and more inclusive recruitment.This work was supported by NSF award AST-1156780.

  5. Attracting Students Into Science: Insights From a Summer Research Internship Program for Community College Students in Colorado

    NASA Astrophysics Data System (ADS)

    Anderson, S. P.; Smith, L. K.; Gold, A. U.; Batchelor, R. L.; Monday, B.

    2014-12-01

    Research Experience for Undergraduates (REU) programs commonly serve students already committed to careers in science. To spark student interest in the sciences early in their college career, the CIRES diversity initiative teamed with the Boulder Creek Critical Zone Observatory to build an REU for Colorado community college students. A group of 7 students was selected from consideration of diversity, prior training, and personal statements. Each student was paired with a research science mentor. Field excursions and team-building exercises filled the first week of the 8-week program. Students received weekly training in science communication, responsible conduct of research, use of spreadsheet and graphing software, and statistical analysis. Each student presented their research in a poster session, an oral presentation, and a written report. Several aspects of this pilot program worked well. The students formed a very supportive cohort, despite the fact that they were not in residence. Cohesion grew out of the immersion in field trips, and was reinforced with weekly check-ins. The trainings were essential for seeing projects through to written and oral presentations. Teaming students for fieldwork was an effective strategy to build support, and reduce mentor fatigue. Each student produced useful data. In the future, we would include a workshop on personal finances to address a clear need. Transportation support will be provided. A residential program might attract some but could preclude participation of students with families or other life-issues. Personal tutoring tailored to research projects would address low math skills. All 7 students completed the program; several elected to submit to the undergraduate virtual poster session at Fall AGU. Students all reported enormous personal and academic growth. Some are discussing transfer and graduate school opportunities with their mentors. The enthusiasm and appreciation of the students was unparalleled.

  6. Black Hole Masses for Type I Active Galactic Nuclei in the Chandra Cosmos Legacy Survey

    NASA Astrophysics Data System (ADS)

    Nagaraj, Gautam; Fornasini, Francesca; Civano, Francesca Maria

    2018-01-01

    Tight local relations between SMBH masses and galaxy properties have established the fundamental connection between SMBHs and their host galaxies. However, in order to better understand the coevolution of SMBHs and their host galaxies over cosmic time, we need measurements of black hole masses, AGN luminosities, and galaxy stellar masses from sizable samples of AGN covering lower luminosities than the brightest quasars spanning a wide redshift range. In this study, we report masses of the SMBHs of 224 Type I AGNs from the Chandra COSMOS Legacy Survey as determined by the line widths of Mg II 2798, Hb 4862, and Ha 6564 via scaling relations derived from reverberation mapping. Preliminary comparison with host galaxy luminosities and stellar masses suggests an increase in Eddington ratio with redshift, consistent with previous studies. In addition, our derived SMBH masses fall above the local AGN MBH--M* (galactic stellar mass) relation from Reines & Volonteri (2015), but it is still not clear whether this results from redshift evolution of the MBH--M* relation or from the incompleteness of the spectroscopic surveys available. The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.

  7. The Evolution of Galaxies Through the Spatial Distribution of Their Globular Clusters: the Brightest Galaxies in Fornax

    NASA Astrophysics Data System (ADS)

    Zegeye, David W.

    2018-01-01

    We present a study of the evolution of the 10 brightest galaxies in the Fornax Cluster, as reconstructed through their Globular Cluster (GC) populations. GCs can be characterized by their projected two-dimensional (2D) spatial distribution. Over- or under-densities in the GC distribution, can be linked to events in the host galaxy assembly history, and used to constrain the properties of their progenitors. With HST/ACS imaging, we identified significant structures in the GC distribution of the 10 galaxies investigated, with some of the galaxies possessing structures with >10-sigma significance. GC over-densities have been found within the galaxies, with significant differences between the red and blue GC population. For elongated galaxies, structures are preferentially to be aligned along the major axis. Fornax Cluster galaxies appear to be more dynamically relaxed than the Virgo Cluster galaxies previously investigated with the same methodology by D'Abrusco et al. (2016). However, from these observations, the evident imprints left in the spatial distribution of GCs in these galaxies suggest a similarly intense history of interactions.The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.

  8. Investigating Supermassive Black Hole Spin at Different Redshift

    NASA Astrophysics Data System (ADS)

    Sinanan-Singh, Jasmine

    2018-01-01

    Supermassive black hole (SMBH) spin encodes vital information about the history of SMBH growth. High spins indicate a history of growth through large mass accretion events, which spin-up the black hole; Intermediate spins indicate a history of galactic mergers, which don't tend to systemcatically spin-up or spin-down black holes; low spins are attributed to successive, small accretion events with random orientations. Examining spin over different redshifts will help us understand the relative growth of SMBHs by mergers or accretion over cosmic time, an important part of understanding how SMBHs and their host galaxies co-evolved over time. To study spin, we compute the Fe K alpha emission line from the X-ray spectra of AGN sources in the Chandra-COSMOS Legacy Survey. We stack rest frame AGN spectra to improve the signal-to-noise ratio since the photon counts are low for individual spectra, and then average the spectra using an unwieghted mean. Our method is derived from Corral et al. (2008). We test our method on the two brightest sources in the COSMOS Survey and compute the rest frame average Fe K alpha emission line for different redshift bins. The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.

  9. The Effects of Galaxy Interactions on Star Formation

    NASA Astrophysics Data System (ADS)

    Beverage, Aliza; Weiner, Aaron; Ramos Padilla, Andres; Ashby, Matthew; Smith, Howard A.

    2018-01-01

    Galaxy interactions are key events in galaxy evolution, and are widely thought to trigger significant increases in star formation. However, the mechanisms and timescales for these increases are still not well understood. In order to probe the effects of mergers, we undertook an investigation based on the Spitzer Interacting Galaxies Survey (SIGS), a sample of 102 nearby galaxies in 48 systems ranging from weakly interacting to near coalescence. Our study is unique in that we use both broadband photometry and a large sample of objects chosen to be statistically meaningful. Our data come from 32 broad bands ranging from the UV to far-IR, and we model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) to estimate physical characteristics for each galaxy. We find marginal statistical correlations between galaxy interaction strength and dust luminosity and the distribution of dust mass as a function of heating intensity. The specific star formation rates, however, do not show any enhancement across the interaction stages. This result challenges conventional wisdom that mergers induce star formation throughout galaxy interaction.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  10. Using REU Projects and Crowdsourcing to Facilitate Learning on Demand

    ERIC Educational Resources Information Center

    Liu, Hong P.; Klein, Jerry E.

    2013-01-01

    With the increasing complexity of technology and large quantities of data in our digital age, learning and training has become a major cost of employers. Employee competence depends more and more on how quickly one can acquire new knowledge and solve problems to meet pressing deadlines. This paper presents a practical method to use REU (Research…

  11. Building Capacity Through Hands-on Computational Internships to Assure Reproducible Results and Implementation of Digital Documentation in the ICERT REU Program

    NASA Astrophysics Data System (ADS)

    Gomez, R.; Gentle, J.

    2015-12-01

    Modern data pipelines and computational processes require that meticulous methodologies be applied in order to insure that the source data, algorithms, and results are properly curated, managed and retained while remaining discoverable, accessible, and reproducible. Given the complexity of understanding the scientific problem domain being researched, combined with the overhead of learning to use advanced computing technologies, it becomes paramount that the next generation of scientists and researchers learn to embrace best-practices. The Integrative Computational Education and Research Traineeship (ICERT) is a National Science Foundation (NSF) Research Experience for Undergraduates (REU) Site at the Texas Advanced Computing Center (TACC). During Summer 2015, two ICERT interns joined the 3DDY project. 3DDY converts geospatial datasets into file types that can take advantage of new formats, such as natural user interfaces, interactive visualization, and 3D printing. Mentored by TACC researchers for ten weeks, students with no previous background in computational science learned to use scripts to build the first prototype of the 3DDY application, and leveraged Wrangler, the newest high performance computing (HPC) resource at TACC. Test datasets for quadrangles in central Texas were used to assemble the 3DDY workflow and code. Test files were successfully converted into a stereo lithographic (STL) format, which is amenable for use with a 3D printers. Test files and the scripts were documented and shared using the Figshare site while metadata was documented for the 3DDY application using OntoSoft. These efforts validated a straightforward set of workflows to transform geospatial data and established the first prototype version of 3DDY. Adding the data and software management procedures helped students realize a broader set of tangible results (e.g. Figshare entries), better document their progress and the final state of their work for the research group and community, helped students and researchers follow a clear set of formats and fill in the necessary details that may be lost otherwise, and exposed the students to the next generation workflows and practices for digital scholarship and scientific inquiry for converting geospatial data into formats that are easy to reuse.

  12. Overview of an REU program: A case study in gender parity, ethnic diversity, and community college students

    NASA Astrophysics Data System (ADS)

    Pearson, J. K.; Noriega, G.; Benthien, M. L.

    2017-12-01

    The Undergraduate Studies in Earthquake Information Technology (USEIT) is an REU Internship Program focused in multi-disciplinary, collaborative research offered through the Southern California Earthquake Center (SCEC); a research consortium focused on earthquake science. USEIT is an 8-week intensive undergraduate research program. The program is designed for interns to work as a collaborative engine to solve an overarching real-world earthquake problem referred to as the "Grand Challenge". The interns are organized in teams and paired with mentors that have expertise in their specific task in the Grand Challenge. The program is focused around earthquake system science, where students have the opportunity to use super computers, programming platforms, geographic information systems, and internally designed and developed visualization software. The goal of the USEIT program is to motivate undergraduates from diverse backgrounds towards careers in science and engineering through team-based research in the field of earthquake information technology. Efforts are made to recruit students with diverse backgrounds, taking into consideration gender, ethnic background, socioeconomic standing, major, college year, and institution type (2-year and 4-year colleges). USEIT has a partnership with two local community colleges to recruit underserved students. Our emphasis is to attract students that would 1) grow and develop technical skills, soft skills, and confidence from the program, and 2) provide perspective and innovation to the program. USEIT offers on-campus housing to provide a submerged learning environment, recruits diverse majors to foster interdisciplinary collaboration, maintains a full time in lab mentor for day-to-day intern needs, takes students on field trips to provide context to their research, and plans activities and field trips for team building and morale. Each year metrics are collected through exit surveys, personal statements, and intern experience statements. We highlight lessons learned, including a need for pre-program engagement to ensure student success.

  13. The C-MORE Scholars Program: Engaging minority students in STEM through undergraduate research

    NASA Astrophysics Data System (ADS)

    Gibson, B. A.; Bruno, B. C.

    2010-12-01

    There have been several studies that show how undergraduate research experiences (REU) have a positive impact on a student’s academic studies and career path, including being a positive influence toward improving the student's lab skills and ability to work independently. Moreover, minority students appear to relate to science, technology, engineering, and mathematics (STEM) concepts better when they are linked with (1) a service learning component, and (2) STEM courses that include a cultural and social aspect that engages the student in a way that does not distract from the student’s technical learning. It is also known that a “place-based” approach that incorporates traditional (indigenous) knowledge can help engage underrepresented minority groups in STEM disciplines and increase science literacy. Based on the methods and best practices used by other minority serving programs and described in the literature, the Center for Microbial Oceanography: Research and Education (C-MORE) has successfully developed an academic-year REU to engage and train the next generation of scientists. The C-MORE Scholars Program provides undergraduate students majoring in an ocean or earth science-related field, especially underrepresented students such as Native Hawaiians and Pacific Islanders, the opportunity to participate in unique and cutting edge hands-on research experiences. The program appoints awardees at one of three levels based on previous research and academic experience, and students can progress through the various tiers as their skills and STEM content knowledge develop. All awardees receive guidance on a research project from a mentor who is a scientist at the university and/or industry. A key component of the program is the inclusion of professional development activities to help the student continue towards post graduation education or prepare for career opportunities after they receive their undergraduate STEM degree.

  14. Undergraduate research in geochemistry at a larger university: developing a community of undergraduate and graduate researchers.

    NASA Astrophysics Data System (ADS)

    Ryan, J. G.

    2003-12-01

    Faculty at state research universities can find the paired requirements of establishing research programs and developing a "pipeline" of graduate students to be the most challenging aspects of their jobs, especially with shrinking pools of graduate applicants. These problems may be more acute for laboratory-based geochemists, as few graduate candidates possess the requisite quantitative and chemical backgrounds. The need to "get my research going" at the University of South Florida led me to work primarily with undergraduates, as a) they were available and interested, b) they required no more laboratory training than M.S. students; and c) small-dollar funds were available to support them, both in-house and via NSF REU Supplements. Some senior colleagues argued that this approach would hinder my developing a graduate program as is necessary for tenure. This contention turned out to be untrue. My success in undergraduate research draws funding (in NSF REU Site and disciplinary research grants), has attracted outside MS and Ph.D. candidates, and has retained quality in-house students seeking MS degrees. Students working with me join a laboratory community in which undergraduate and graduate researchers are on equal footing in terms of access to instrumentation and other facilities. I work with all my students, irrespective of rank, as members of a cooperative research group. I encourage and expect that technical instruction I provide to any individual will be passed on to their colleagues, which helps develop a "lab culture" of best practices, and ingrains new knowledge and skills through the act of teaching them to others. Maintaining this research environment requires active recruitment of capable graduate AND undergraduate students, regular monitoring of laboratory practices, and ready availability for consultation and mentoring. One must be cognizant of the differing time commitment issues of undergraduates and graduates, and set research goals appropriately. Undergraduate research projects in which 3-4 students work together to collect necessary data can get around the class vs. research scheduling issues they face as they can share the laboratory workload through the week. Group projects can thus collect larger bodies of data, allowing students to address more substantive problems.

  15. O2(b1Σg+, v = 0, 1) Relative Yield in O(1D) + O2 Energy Transfer

    NASA Astrophysics Data System (ADS)

    Kostko, O.; Raj, S.; Campbell, K. M.; Pejakovic, D. A.; Slanger, T. G.; Kalogerakis, K. S.

    2012-04-01

    Energy transfer from excited O(1D) atoms to ground-state O2(X3Σg-) leads to production of O2 in the first two vibrational levels of the O2(b1Σg+) state: O(1D) + O2 → O(3P ) + O2(b1Σg+, v = 0, 1). Subsequent radiative decay of O2(b1Σg+, v = 0, 1) to the ground state results in the Atmospheric Band emission, a prominent feature of the terrestrial airglow. The relative yield for production of O2(b1Σg+, v = 0, 1) in the above process, k1/k0, is an important parameter in modeling of the observed O2 Atmospheric Band emission intensities. In the laboratory experiments, the output of a pulsed fluorine laser at 157 nm is used to photodissociate molecular oxygen in an O2/N2 mixture flowing through a heated gas cell. Photodissociation of O2 produces a ground-state O(3P ) atom and an excited O(1D) atom. O(1D) rapidly transfers energy to the remaining O2 to produce O2(b1Σg+, v = 0, 1). The populations of O2(b1Σg+, v = 0, 1) are monitored by observing emissions in the O2(b-X) 0-0 and 1-0 bands at 762 and 688 nm, respectively. The value of k1/k0 is extracted from the time-dependent O2(b1Σg+, v = 0, 1) fluorescence signals using computer simulations. We find that production of v = 1 is substantially larger than that of v = 0. We will present measurements on k1/k0 and its temperature dependence, and discuss the significance of these and other relevant laboratory measurements on the interpretation of the O2 Atmospheric Band emission. This work was supported by the US National Science Foundation (NSF) Aeronomy Program under grant AGS-0937317. The fluorine laser was purchased under grant ATM-0216583 from the NSF Major Research Instrumentation Program. The participation of Sumana Raj and Kendrick M. Campbell was supported by a Research Experiences for Undergraduates (REU) site, co-funded by the Division of Physics of the NSF and the Department of Defense in partnership with the NSF REU program (PHY-1002892).

  16. The Svalbard REU Program: Undergraduates Pursuing Arctic Climate Change Research on Svalbard, Norway

    NASA Astrophysics Data System (ADS)

    Roof, S.; Werner, A.

    2007-12-01

    The Svalbard Research Experiences for Undergraduates (REU) program sponsored by the Arctic Natural Sciences Program of the National Science Foundation has been successfully providing international field research experiences since 2004. Each year, 7-9 undergraduate students have participated in 4-5 weeks of glacial geology and climate change fieldwork on Spitsbergen in the Svalbard archipelago in the North Atlantic (76- 80° N lat.). While we continue to learn new and better ways to run our program, we have learned specific management and pedagogical strategies that allow us to streamline our logistics and to provide genuine, meaningful research opportunities to undergraduate students. We select student participants after extensive nationwide advertising and recruiting. Even before applying to the program, students understand that they will be doing meaningful climate change science, will take charge of their own project, and will be expected to continue their research at their home institution. We look for a strong commitment of support from a student's advisor at their home institution before accepting students into our program. We present clear information, including participant responsibilities, potential risks and hazards, application procedures, equipment needed, etc on our program website. The website also provides relevant research papers and data and results from previous years, so potential participants can see how their efforts will contribute to growing body of knowledge. New participants meet with the previous years' participants at a professional meeting (our "REUnion") before they start their field experience. During fieldwork, students are expected to develop research questions and test their own hypotheses while providing and responding to peer feedback. Professional assessment by an independent expert provides us with feedback that helps us improve logistical procedures and shape our educational strategies. The assessment also shows us how participant attitudes toward science and research evolved during their participation. Finally, close collaboration with a local institution, the Norwegian University System on Svalbard (UNIS), has not only been essential to the success of our program, but also highly rewarding.

  17. Accurate Masses, Radii, and Temperatures for the Eclipsing Binary V2154 Cyg, and Tests of Stellar Evolution Models

    NASA Astrophysics Data System (ADS)

    Bright, Jane; Torres, Guillermo

    2018-01-01

    We report new spectroscopic observations of the F-type triple system V2154 Cyg, in which two of the stars form an eclipsing binary with a period of 2.6306303 ± 0.0000038 days. We combine the results from our spectroscopic analysis with published light curves in the uvby Strömgren passbands to derive the first reported absolute dimensions of the stars in the eclipsing binary. The masses and radii are measured with high accuracy to better than 1.5% precision. For the primary and secondary respectively, we find that the masses are 1.269 ± 0.017 M⊙ and 0.7542 ± 0.0059 M⊙, the radii are 1.477 ± 0.012 R⊙ and 0.7232 ± 0.0091R⊙, and the temperatures are 6770 ± 150 K and 5020 ± 150 K. Current models of stellar evolution agree with the measured properties of the primary, but the secondary is larger than predicted. This may be due to activity in the secondary, as has been shown for other systems with a star of similar mass with this same discrepancy.The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution. GT acknowledges partial support for this work from NSF grant AST-1509375.

  18. Improving Undergraduate Research Experiences With An Intentional Mentoring Program: Lessons Learned Through Assessment of Keck Geology Consortium Programs

    NASA Astrophysics Data System (ADS)

    Wirth, K. R.; Garver, J. I.; Greer, L.; Pollock, M.; Varga, R. J.; Davidson, C. M.; Frey, H. M.; Hubbard, D. K.; Peck, W. H.; Wobus, R. A.

    2015-12-01

    The Keck Geology Consortium, with support from the National Science Foundation (REU Program) and ExxonMobil, is a collaborative effort by 18 colleges to improve geoscience education through high-quality research experiences. Since its inception in 1987 more than 1350 undergraduate students and 145 faculty have been involved in 189 yearlong research projects. This non-traditional REU model offers exceptional opportunities for students to address research questions at a deep level, to learn and utilize sophisticated analytical methods, and to engage in authentic collaborative research that culminates in an undergraduate research symposium and published abstracts volume. The large numbers of student and faculty participants in Keck projects also affords a unique opportunity to study the impacts of program design on undergraduate research experiences in the geosciences. Students who participate in Keck projects generally report significant gains in personal and professional dimensions, as well as in clarification of educational and career goals. Survey data from student participants, project directors, and campus advisors identify mentoring as one of the most critical and challenging elements of successful undergraduate research experiences. Additional challenges arise from the distributed nature of Keck projects (i.e., participants, project directors, advisors, and other collaborators are at different institutions) and across the span of yearlong projects. In an endeavor to improve student learning about the nature and process of science, and to make mentoring practices more intentional, the Consortium has developed workshops and materials to support both project directors and campus research advisors (e.g., best practices for mentoring, teaching ethical professional conduct, benchmarks for progress, activities to support students during research process). The Consortium continues to evolve its practices to better support students from underrepresented groups.

  19. Research Experience for Undergraduates: Understanding the Arctic as a System

    NASA Astrophysics Data System (ADS)

    Alexeev, V. A.; Walsh, J. E.; Arp, C. D.; Hock, R.; Euskirchen, E. S.; Kaden, U.; Polyakov, I.; Romanovsky, V. E.; Trainor, S.

    2017-12-01

    Today, more than ever, an integrated cross-disciplinary approach is necessary to understand and explain changes in the Arctic and the implications of those changes. Responding to needs in innovative research and education for understanding high-latitude rapid climate change, scientists at the International Arctic research Center of the University of Alaska Fairbanks (UAF) established a new REU (=Research Experience for Undergraduates) NSF-funded site, aiming to attract more undergraduates to arctic sciences. The science focus of this program, building upon the research strengths of UAF, is on understanding the Arctic as a system with emphasis on its physical component. The goals, which were to disseminate new knowledge at the frontiers of polar science and to ignite the enthusiasm of the undergraduates about the Arctic, are pursued by involving undergraduate students in research and educational projects with their mentors using the available diverse on-campus capabilities. IARC hosted the first group of eight students this past summer, focusing on a variety of different disciplines of the Arctic System Science. Students visited research sites around Fairbanks and in remote parts of Alaska (Toolik Lake Field Station, Gulkana glacier, Bonanza Creek, Poker Flats, the CRREL Permafrost Tunnel and others) to see and experience first-hand how the arctic science is done. Each student worked on a research project guided by an experienced instructor. The summer program culminated with a workshop that consisted of reports from the students about their experiences and the results of their projects.

  20. Pathways to URM Retention: IBP's Professional Development and Mentoring Activities

    NASA Astrophysics Data System (ADS)

    Johnson, A.; Williamson Whitney, V.; Ricciardi, L.; Detrick, L.; Siegfried, D.; Fauver, A.; Ithier-Guzman, W.; Thomas, S. H.; Valaitis, S.

    2013-05-01

    As a not for profit organization, the Institute for Broadening Participation (IBP) hosts a variety of initiatives designed to increase the retention of underrepresented minority (URM) students pursuing pathways in STEM. IBP also assists with formative program evaluation design and implementation to help strengthen URM recruitment and retention elements. Successful initiatives include virtual and face-to-face components that bring together URM students with established URM and other scientists in academia, government and industry. These connections provide URMs with mentoring, networking opportunities, and professional skill development contributing to an improved retention rate of URM students. IBP's initiatives include the NASA One Stop Shopping Initiative (NASA OSSI), Pathways to Ocean Science and Engineering, and the Minorities Striving and Pursuing Higher Degrees of Success (MS PHD'S) in Earth System Science (ESS) Professional Development Program. The NASA OSSI recruits and facilitates student engagement in NASA education and employment opportunities. Pathways to Ocean Science connects and supports URM students with Ocean Science REU programs and serves as a resource for REU program directors. Pathways to Engineering has synthesized mentoring resources into an online mentoring manual for URM students that has been extensively vetted by mentoring experts throughout the country. The mentoring manual, which is organized by roles, provides undergraduates, graduates, postdocs, faculty and project directors with valuable resources. MS PHD'S, one of IBP's longest running and most successful initiatives, focuses on increasing the retention rate of URM students receiving advanced degrees in ESS. The program addresses barriers to retention in ESS including isolation, lack of preparation and professional development, and lack of mentoring. Program activities center on peer-to-peer community building, professional development exercises, networking experiences, one-on-one mentoring, and a facilitated virtual community. MS PHD'S students report a reduced sense of isolation, an increased sense of community, and a higher level of confidence about their ability to succeed in their chosen field. 42 MS PHD'S alumni have completed their PhD and are actively engaged in the ESS workforce.

  1. A Detailed Analysis of the Physical Conditions in the Infrared Dark Clouds in the Region IGGC 16/23

    NASA Astrophysics Data System (ADS)

    Scibelli, Samantha; Tolls, Volker

    2017-01-01

    There is an ongoing debate about why the star formation rate is low in the Galactic Center and Galactic Bar region of the Milky Way. Clump 2 is located at a distance of ~400 pc from the Galactic Center in the Galactic Bar region near the edge of the Central Molecular Zone (CMZ). Molecular clouds in this region are too distant to be influenced by the central black hole. However, despite of its location, Clump 2 is comprised of molecular clouds that show the same low star formation rate as those in the Galactic Center. Using Herschel PACS and SPIRE and APEX dust continuum emission data, our measurements indicate that cores in the IGGC 16/23 region have dust masses and densities comparable to those of more typical star-forming molecular clouds in the solar neighborhood. In addition, we analyzed Herschel HIFI high-J 12CO emission line observations supplemented by MOPRA molecular line observations. We find that the IGGC 16/23 region is composed of many smaller cores with different systemic velocities in the same line of sight advocating that additional analysis should be done to provide better constraints on the core sizes and masses to confirm that the core masses are below their virial masses and, thus, are not collapsing.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  2. Understanding Measurements Returned by the Helioseismic and Magnetic Imager

    NASA Astrophysics Data System (ADS)

    Cohen, Daniel Parke; Criscuoli, Serena

    2014-06-01

    The Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO) observes the Sun at the FeI 6173 Å line and returns full disk maps of line-of-sight observables including the magnetic field flux, FeI line width, line depth, and continuum intensity. To properly interpret such data it is important to understand any issues with the HMI and the pipeline that produces these observables. At this aim, HMI data were analyzed at both daily intervals for a span of 3 years at disk center in the quiet Sun and hourly intervals for a span of 200 hours around an active region. Systematic effects attributed to issues with instrument adjustments and re-calibrations, variations in the transmission filters and the orbital velocities of the SDO were found while the actual physical evolutions of such observables were difficult to determine. Velocities and magnetic flux measurements are less affected, as the aforementioned effects are partially compensated for by the HMI algorithm; the other observables are instead affected by larger uncertainties. In order to model these uncertainties, the HMI pipeline was tested with synthetic spectra generated through various 1D atmosphere models with radiative transfer code (the RH code). It was found that HMI estimates of line width, line depth, and continuum intensity are highly dependent on the shape of the line, and therefore highly dependent on the line-of-sight angle and the magnetic field associated to the model. The best estimates are found for Quiet regions at disk center, for which the relative differences between theoretical and HMI algorithm values are 6-8% for line width, 10-15% for line depth, and 0.1-0.2% for continuum intensity. In general, the relative difference between theoretical values and HMI estimates increases toward the limb and with the increase of the field; the HMI algorithm seems to fail in regions with fields larger than ~2000 G. This work is carried out through the National Solar Observatory Research Experiences for Undergraduate (REU) site program, which is co-funded by the Department of Defense in partnership with the NSF REU Program. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.

  3. Crystal methamphetamine smoking among regular ecstasy users in Australia: increases in use and associations with harm.

    PubMed

    Kinner, Stuart A; Degenhardt, Louisa

    2008-05-01

    This study examined (a) changes in crystal methamphetamine use among regular ecstasy users (REU) in Australia and (b) associations of crystal use and smoking with demographics, drug use and harm. Cross-sectional surveys (2000-06) of REU in three Australian capital cities, and in 2006, 750 REU in all Australian capital cities. The interview included: demographics, drug use, risk behaviour, recent criminal activity and methamphetamine dependence using Severity of Dependence Scale. There was little change in overall methamphetamine use, but a marked increase in crystal methamphetamine smoking. Among recent methamphetamine users in 2006 (n = 606), crystal methamphetamine users (n = 364) reported more frequent methamphetamine use and higher levels of dependence. Compared with those who had used only other forms of methamphetamine, recent crystal methamphetamine users were more likely to 'binge' on drugs for > or = 48 hours, engage in crime and experience financial and legal problems related to drug use. Non-smoking crystal methamphetamine users (n = 78) more often reported recent injecting and heroin use. Recent smokers were more likely to have: greater polydrug use, recently overdosed on a 'party drug', and accessed medical services for their drug use. Many of these associations were accounted for by their injecting and heavier methamphetamine use, rather than smoking per se. Crystal methamphetamine smoking among REU has increased markedly and is associated with significant harm. This appears related to smokers' heavier levels of methamphetamine use. Effective harm reduction strategies should be tailored to these specific risks.

  4. Building Opportunities for Environmental Education Through Student Development of Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Moysey, S. M.; Boyer, D. M.; Mobley, C.; Byrd, V. L.

    2014-12-01

    It is increasingly common to utilize simulations and games in the classroom, but learning opportunities can also be created by having students construct these cyberinfrastructure resources themselves. We outline two examples of such projects completed during the summer of 2014 within the NSF ACI sponsored REU Site: Research Experiences for Undergraduates in Collaborative Data Visualization Applications at Clemson University (Award 1359223). The first project focuses on the development of immersive virtual reality field trips of geologic sites using the Oculus Rift headset. This project developed a platform which will allow users to navigate virtual terrains derived from real-world data obtained from the US Geological Survey and Google Earth. The system provides users with the ability to partake in an interactive first-person exploration of a region, such as the Grand Canyon, and thus makes an important educational contribution for students without access to these environmental assets in the real world. The second project focused on providing players visual feedback about the sustainability of their practices within the web-based, multiplayer watershed management game Naranpur Online. Identifying sustainability indicators that communicate meaningful information to players and finding an effective way to visualize these data were a primary challenge faced by the student researcher working on this project. To solve this problem the student translated findings from the literature to the context of the game to develop a hierarchical set of relative sustainability criteria to be accessed by players within a sustainability dashboard. Though the REU focused on visualization, both projects forced the students to transform their thinking to address higher-level questions regarding the utilization and communication of environmental data or concepts, thus enhancing the educational experience for themselves and future students.

  5. A Search for Satellites of Kuiper Belt Object 55636 from the 2009 October 9 Occultation

    NASA Astrophysics Data System (ADS)

    Jensen-Clem, Rebecca; Elliot, J. L.; Person, M. J.; Zuluaga, C. A.; Bosh, A. S.; Adams, E. R.; Brothers, T. C.; Gulbis, A. A. S.; Levine, S. E.; Lockhart, M.; Zangari, A. M.; Babcock, B. A.; DuPre, K.; Pasachoff, J. M.; Souza, S. P.; Rosing, W.; Secrest, N.; Bright, L.; Dunham, E. W.; Kakkala, M.; Tilleman, T.; Rapoport, S.; Zambrano-Marin, L.; Wolf, J.; Morzinski, K.

    2011-01-01

    A world-wide observing campaign of 21 telescopes at 18 sites was organized by Elliot et al. (2010 Nature 465, 897) to observe the 2009 Oct. 9 stellar occultation of 2UCAC 41650964 (UCAC2 magnitude 13.1) by the Kuiper Belt object 55636 (visual magnitude 19.6). Integration times varied between 0.05 seconds at the Vatican Advanced Technology Telescope and 5 seconds at Mauna Kea mid-level. Data from the two sites that successfully observed the occultation (Haleakala and the Mauna Kea mid-level) were analyzed by Elliot et al. (2010) to determine the diameter and albedo of 55636. In this study, we use the entire data set to search for signatures of occultations by nearby satellites. One satellite previously discovered with occultation data is Neptune's moon Larissa, which was detected during Neptune's close approach to a star in 1982 (Reitsema et al. 1982). No satellites are found in this study, and upper limits will be reported on satellite radii within the volume probed (2 x 10-8 of the Hill Sphere). This work was supported, in part, by NASA Grants NNX10AB27G (MIT), NNX08AO50G (Williams College), and NNH08AI17I (USNO-FS) and NSF Grant AST-0406493 (MIT). Student participation was supported in part by NSF's REU program and NASA's Massachusetts Space Grant.

  6. POCA Update: An NSF PAARE Project

    NASA Astrophysics Data System (ADS)

    Walter, Donald K.; Brittain, S. D.; Cash, J. L.; Hartmann, D. H.; Howell, S. B.; King, J. R.; Leising, M. D.; Mayo, E. A.; Mighell, K. J.; Smith, D. M., Jr.

    2011-01-01

    We report on the status of "A Partnership in Observational and Computational Astronomy (POCA)” under the NSF's "Partnerships in Astronomy and Astrophysics Research and Education (PAARE)" program. This partnership includes South Carolina State University (a Historically Black College/University), Clemson University (a Ph.D. granting institution) and the National Optical Astronomy Observatory. We have reached the midpoint of this 5-year award and discuss the successes, challenges and obstacles encountered to date. Included is a summary of our summer REU program, the POCA graduate fellowship program, faculty research capacity building, outreach activities, increased use of NSF facilities and shared resources. Additional POCA research presentations by the authors are described elsewhere in these proceedings. Support for this work was provided by the NSF PAARE program to South Carolina State University under award AST-0750814 as well as resources and support provided by Clemson University and the National Optical Astronomy Observatory.

  7. Reynolds numbers and the elliptic approximation near the ultimate state of turbulent Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    He, Xiaozhou; van Gils, Dennis P. M.; Bodenschatz, Eberhard; Ahlers, Guenter

    2015-06-01

    We report results of Reynolds-number measurements, based on multi-point temperature measurements and the elliptic approximation (EA) of He and Zhang (2006 Phys. Rev. E 73 055303), Zhao and He (2009 Phys. Rev. E 79 046316) for turbulent Rayleigh-Bénard convection (RBC) over the Rayleigh-number range {10}11≲ {\\text{}}{Ra}≲ 2× {10}14 and for a Prandtl number Pr ≃ 0.8. The sample was a right-circular cylinder with the diameter D and the height L both equal to 112 cm. The Reynolds numbers ReU and ReV were obtained from the mean-flow velocity U and the root-mean-square fluctuation velocity V, respectively. Both were measured approximately at the mid-height of the sample and near (but not too near) the side wall close to a maximum of ReU. A detailed examination, based on several experimental tests, of the applicability of the EA to turbulent RBC in our parameter range is provided. The main contribution to ReU came from a large-scale circulation in the form of a single convection roll with the preferred azimuthal orientation of its down flow nearly coinciding with the location of the measurement probes. First we measured time sequences of ReU(t) and ReV(t) from short (10 s) segments which moved along much longer sequences of many hours. The corresponding probability distributions of ReU(t) and ReV(t) had single peaks and thus did not reveal significant flow reversals. The two averaged Reynolds numbers determined from the entire data sequences were of comparable size. For {\\text{}}{Ra}\\lt {\\text{}}{{Ra}}1*≃ 2× {10}13 both ReU and ReV could be described by a power-law dependence on Ra with an exponent ζ close to 0.44. This exponent is consistent with several other measurements for the classical RBC state at smaller Ra and larger Pr and with the Grossmann-Lohse (GL) prediction for ReU (Grossmann and Lohse 2000 J. Fluid. Mech. 407 27; Grossmann and Lohse 2001 86 3316; Grossmann and Lohse 2002 66 016305) but disagrees with the prediction \\zeta ≃ 0.33 by GL (Grossmann and Lohse 2004 Phys. Fluids 16 4462) for ReV. At {\\text{}}{Ra}={\\text{}}{{Ra}}2*≃ 7× {10}13 the dependence of ReV on Ra changed, and for larger Ra {\\text{}}{{Re}}V˜ {\\text{}}{{Ra}}0.50+/- 0.02, consistent with the prediction for ReU (Grossmann and Lohse 2000 J. Fluid. Mech. 407 27; Grossmann and Lohse Phys. Rev. Lett. 2001 86 3316; Grossmann and Lohse Phys. Rev. E 2002 66 016305; Grossmann and Lohse 2012 Phys. Fluids 24 125103) in the ultimate state of RBC.

  8. CATE 2016 Indonesia: normalized radial graded filtering, site-to-site image registration, and preliminary results

    NASA Astrophysics Data System (ADS)

    Jensen, L.; Kovac, S. A.; Hare, H. S.; Mitchell, A. M.; McKay, M. A.; Bosh, R.; Watson, Z.; Penn, M.

    2016-12-01

    An area of the solar corona from 1 out to approximately 2.5 solar radii is currently poorly sampled in astronomy. This is largely due to difficulties inherent in observing the sun from space and from the ground. Specifically focusing on ground based observations, the main problem is scattered light in the Earth's atmosphere and in the telescopes themselves. A total solar eclipse solves this problem by blocking the light from the photosphere of the sun before it enters the atmosphere, reducing the scattered light in the atmosphere by a factor of 10,000. However, using a total solar eclipse introduces another challenge due to the small window of time it provides. At any given location in 2017, the totality will last for only about 2.5 minutes and such a small data set limits the studies that can be done on the inner corona. The Citizen Continental-America Telescopic Eclipse Experiment plans to overcome this issue by taking advantage of America's infrastructure and using 60 identical telescopes to collect continuous data of the solar eclipse as the shadow travels from Oregon to South Carolina. By splicing these data together 90 minutes of one-of-a-kind data can be collected, revealing the dynamics of the inner corona as never seen before. For the 2016 Indonesian total solar eclipse the CATE project collected data using 5 sites along the eclipse path. These data were then used to develop processing programs to use on future data. These processes included site-to-site image registration as well as normalized radial graded filtering of the images. Programs were also developed to begin performing studies on the data including overlapping CATE and LASCO space telescope data for a total coronal image as well as thread tracing routines to quantify direction in the coronal filaments. This work was made possible through the National Solar Observatory Research Experiences for Undergraduates (REU) Program, which is funded by the National Science Foundation (NSF). The NSO Training for 2017 Citizen CATE Experiment, funded by NASA (NASA NNX16AB92A), also provided support for this project. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the NSF.

  9. Implementation of an interactive database interface utilizing HTML, PHP, JavaScript, and MySQL in support of water quality assessments in the Northeastern North Carolina Pasquotank Watershed

    NASA Astrophysics Data System (ADS)

    Guion, A., Jr.; Hodgkins, H.

    2015-12-01

    The Center of Excellence in Remote Sensing Education and Research (CERSER) has implemented three research projects during the summer Research Experience for Undergraduates (REU) program gathering water quality data for local waterways. The data has been compiled manually utilizing pen and paper and then entered into a spreadsheet. With the spread of electronic devices capable of interacting with databases, the development of an electronic method of entering and manipulating the water quality data was pursued during this project. This project focused on the development of an interactive database to gather, display, and analyze data collected from local waterways. The database and entry form was built in MySQL on a PHP server allowing participants to enter data from anywhere Internet access is available. This project then researched applying this data to the Google Maps site to provide labeling and information to users. The NIA server at http://nia.ecsu.edu is used to host the application for download and for storage of the databases. Water Quality Database Team members included the authors plus Derek Morris Jr., Kathryne Burton and Mr. Jeff Wood as mentor.

  10. Formative Assessment as a Tool to Benefit the Student/Mentor Relationship in the Northern Ecosystem Research for Undergraduates (NERU) Project

    NASA Astrophysics Data System (ADS)

    Froburg, E.; Varner, R. K.

    2016-12-01

    Partners in the Northern Ecosystem Research for Undergraduates (NERU) project, funded by the NSF Research Experience for Undergraduates (REU) program, have developed a multi-instrument formative assessment approach aimed at maintaining a responsive relationship between undergraduate participants and their research mentors. All evaluation is conducted independent of the NERU scientific/mentor team, by the Joan and James Leitzel Center for Mathematics, Science, and Engineering Education. The 10-week summer research experience has 3 components. 1) REU fellows spend the first 3-weeks at the University of New Hampshire, where they acquire background knowledge of Earth System Science and biogeochemistry; 2) students spend the following 4-weeks at the Abisko Scientific Research Station in research co-mentored by UNH-based and ANS-based scientists; and 3) fellows return to UNH to complete any additional analytical work, synthesize their results, and prepare their projects for presentation. There are three primary tools that are used formatively, and the results are integrated over multiple time periods. Application and Pre-program Survey: Although these two instruments are primarily components of participant recruitment and the summative program metrics, they also provide a baseline understanding of student preparation and perspectives. Mentor Pairing Survey: This component was added prior to the fourth year of the program, in response to specific trends in participant feedback. The survey is completed by both participants and mentors, and is designed to match research goals, skills, and personalities. Focus Groups: Two focus group sessions are held during the summer research experience—one midway through the 3rd week, just prior to departure for Sweden, and a second session just prior to completion of the 10-week summer program. These focus groups provide immediate feedback on, and opportunity for response to, student concerns in a range of areas. Participants are also encouraged to approach the evaluator individually. Taken as a whole, formative assessment allows the project team to respond immediately to specific participant concerns, and to also make longer-term programmatic changes reflective of trends in survey and focus group responses.

  11. Undergraduate Research in Geoscience with Students from Two-year Colleges: SAGE 2YC Resources

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Hodder, J.; Macdonald, H.; Baer, E. M.; Blodgett, R. H.

    2014-12-01

    Undergraduate research experiences are important for the development of expertise in geoscience disciplines. These experiences have been shown to help students learn content and skills, promote students' cognitive and affective development, and develop students' sense of self. Early exposure to research experiences has shown to be effective in the recruitment of students, improved retention and persistence in degree programs, motivation for students to learn and increase self-efficacy, improved attitudes and values about science, and overall increased student success. Just as departments at four-year institutions (4YCs) are increasingly integrating research into their introductory courses, two-year college (2YC) geoscience faculty have a great opportunity to ground their students in authentic research. The Undergraduate Research with Two-year College Students website developed by SAGE 2YC: Supporting and Advancing Geoscience Education at Two-year Colleges provides ideas and advice for 2YC and 4YC faculty who want to get more 2YC students involved in research. The continuum of possibilities for faculty to explore includes things that can be done at 2YCs (eg. doing research as part of a regular course, developing a course specifically around research on a particular topic, or independent study), done in collaboration with other local institutions (eg. using their facilities, conducting joint class research, or using research to support transfer programs), and by involving students in the kind of organized Undergraduate Research programs run by a number of institutions and organizations. The website includes profiles illustrating how 2YC geoscience faculty have tackled these various models of research and addressed potential challenges such as lack of time, space, and funding as part of supporting the wide diversity of students that attend 2YCs, most of whom have less experience than that of rising seniors who are the traditional REU participant. The website also provides resources on effective strategies for developing REU programs for community college students, examples of successful multi-year programs, links to other projects working on undergraduate research in the first two years, and references for further reading. serc.carleton.edu/sage2yc/studentsuccess/ug-research/

  12. Pluto's Atmosphere from the July 2010 Stellar Occultation

    NASA Astrophysics Data System (ADS)

    Person, Michael J.; Elliot, J. L.; Bosh, A. S.; Gulbis, A. A. S.; Jensen-Clem, R.; Lockhart, M. F.; Zangari, A. M.; Zuluaga, C. A.; Levine, S. E.; Pasachoff, J. M.; Souza, S. P.; Lu, M.; Malamut, C.; Rojo, P.; Bailyn, C. D.; MacDonald, R. K. D.; Ivarsen, K. M.; Reichart, D. E.; LaCluyze, A. P.; Nysewander, M. C.; Haislip, J. B.

    2010-10-01

    We have observed the 4 July 2010 stellar occultation by Pluto as part of our program of monitoring Pluto's atmospheric changes over the last decade. Successful observations were obtained from three sites: Cerro Calan and Cerro Tololo, Chile, as well as the HESS-project site (High Energy Stereoscopic System) in southwestern Namibia. Successful telescope apertures ranged from 0.45 m to 1.0 m and resulted in seven occultation light curves for the event from among the three sites. Simultaneous analysis of the seven light curves indicates that Pluto's atmosphere continues to be stable, as the calculated atmospheric radii are consistent with those detected in 2006 (Elliot et al., AJ 134, 1, 2007) and 2007 (Person et al., AJ 136, 1510, 2008), continuing the stability that followed the large pressure increase detected between 1988 (Millis et al., Icarus 105, 282, 1993) and 2002 (Elliot et al., Nature 424, 165, 2003). We will present the overall astrometric solution as well as current profiles for Pluto's upper atmospheric temperature and pressure obtained from inversion of the light curves (Elliot, Person, and Qu, AJ 126, 1041, 2003). This work was supported, in part, by grants NNX10AB27G to MIT, NNX08AO50G to Williams College, and NNH08AI17I to the USNO from NASA's Planetary Astronomy Division. The 0.75-m ATOM (Automatic Telescope for Optical Monitoring) light curve was obtained with the generous assistance of the HESS-project staff, arranged by Stefan Wagner and Marcus Hauser of the University of Heidelberg. The 0.45-m Goto telescope at Cerro Calán National Astronomical Observatory, Universidad de Chile, was donated by the Government of Japan. PROMPT (Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes) observations at Cerro Tololo were made possible by the Robert Martin Ayers Science Fund. Student participation was supported in part by NSF's REU program and NASA's Massachusetts Space Grant.

  13. Temperature Dependence of O2(b1Σ ^+g, v = 0 and 1) Relative Yield in O(1D) + O2 Energy Transfer

    NASA Astrophysics Data System (ADS)

    Kostko, O.; Raj, S.; Campbell, K.; Pejakovic, D. A.; Kalogerakis, K.

    2011-12-01

    Energy transfer from excited O(1D) atoms to ground-state O2(X3Σ ^-g) leads to production of O2 in the first two vibrational levels of the O2 (b1Σ ^+g) state: O(1D) + O2 -> O(3P) + O2(b1Σ ^+g, v = 0, 1). Subsequent radiative decay of O2(b1Σ ^+g, v = 0, 1) to the ground state results in the Atmospheric Band emission, a prominent feature of the terrestrial airglow. The relative yield for production of O2(b1Σ ^+g, v = 0 and 1) in the above process, k1/k0, is an important parameter in modeling of the observed Atmospheric Band emission intensities. Recent measurements at room temperature have shown that production of O2(b1Σ ^+g, v = 1) dominates that of O2(b1Σ ^+g, v = 0), with k1/k0 having a value of approximately 3.5 [1]. In the laboratory experiments, the output of a pulsed fluorine laser at 157 nm is used to photodissociate molecular oxygen in an O2/N2 mixture flowing through a heated gas cell. Photodissociation of O2 produces a ground-state O(3P) atom and an excited O(1D) atom. O(1D) rapidly transfers energy to the remaining O2 to produce O2(b1Σ ^+g, v = 0, 1). The populations of O2(b1Σ ^+g, v = 0 and 1) are monitored by observing emissions in the O2(b--X) 0--0 and 1--0 bands at 762 and 688 nm, respectively. The value of k1/k0 is extracted from the time-dependent O2(b1Σ ^+g, v = 0 and 1) fluorescence signals using computer simulations. We will present measurements on the temperature dependence of k1/k0 and discuss their atmospheric significance. This work was supported by the US National Science Foundation (NSF) Aeronomy Program under grant AGS-0937317. The fluorine laser was purchased under grant ATM-0216583 from the NSF Major Research Instrumentation Program. S. Raj and K. M. Campbell participated in a Research Experiences for Undergraduates (REU) site, co-funded by the Division of Physics of the NSF and the Department of Defense in partnership with the NSF REU program under grant PHY-1002892. [1] K. S. Kalogerakis, D. A. Pejaković, R. A. Copeland, T. G. Slanger (2005), Relative Yield of O2(b1Σ ^+g, v = 0 and 1) in O(1D) + O2 Collisions, Eos Trans. AGU, 86(52), Fall Meet. Suppl., Abstract SA11A-0220.

  14. The Dense Gas Fraction in the Central Molecular Zone in the Milky Way

    NASA Astrophysics Data System (ADS)

    Vargas-Salazar, Irene; Battersby, Cara; Walker, Daniel; Zhang, Qizhou; CMZoom

    2017-01-01

    The Central Molecular Zone (CMZ), a large reservoir of dense molecular gas occupying the central 500pc of the Milky Way, is an extreme star-formation environment where the validity of star formation prescriptions can be tested. The star formation rate (SFR) in the CMZ is about an order of magnitude lower than predicted by the currently accepted prescriptions. An international team lead by PIs Battersby and Keto conducted a survey from 2013-2016 called CMZoom using the Submillimeter Array (SMA) to characterize star formation within resolved molecular clouds in this extreme region. One of the main goals of this survey is to further quantify and understand the low SFR found in this region of the Galaxy. Here, we use the CASA software package to run synthetic observations of hydrodynamical simulations of molecular clouds and vary the observation parameters in such a way that we explore the real parameter space that was probed during the survey. The purpose of this is to investigate how the different observational parameters affect the resultant data. Afterwards, we estimate the “dense gas fraction” (DGF) found in regions across the CMZ. This estimate was found by using the interferometric flux from SMA and the single-dish flux from the Bolocam Galactic Plane Survey. We analyzed the effects that different locations of the CMZ had on these approximate DGF. With these simulations and DGF estimates, we are able to generate improved methods to analyze the data from this survey that will help understand star formation in an extreme environment.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no.1262851, and by the Smithsonian Institution.

  15. Research Experience for Undergraduates Program in Multidisciplinary Environmental Science

    NASA Astrophysics Data System (ADS)

    Wu, M. S.

    2012-12-01

    During summers 2011 and 12 Montclair State University hosted a Research Experience for Undergraduates Program (REU) in transdisciplinary, hands-on, field-oriented research in environmental sciences. Participants were housed at the Montclair State University's field station situated in the middle of 30,000 acres of mature forest, mountain ridges and freshwater streams and lakes within the Kittatinny Mountains of Northwest New Jersey, Program emphases were placed on development of project planning skills, analytical skills, creativity, critical thinking and scientific report preparation. Ten students were recruited in spring with special focus on recruiting students from underrepresented groups and community colleges. Students were matched with their individual research interests including hydrology, erosion and sedimentation, environmental chemistry, and ecology. In addition to research activities, lectures, educational and recreational field trips, and discussion on environmental ethics and social justice played an important part of the program. The ultimate goal of the program is to facilitate participants' professional growth and to stimulate the participants' interests in pursuing Earth Science as the future career of the participants.

  16. The 2012 CASPER Physics Circus

    NASA Astrophysics Data System (ADS)

    Carmona Reyes, Jorge; Land-Zandstra, Anne; Cheng, Joyce; Douglass, Angela; Harris, Brandon; Zhang, Zhuanhao; Chen, Mudi; Matthews, Lorin; Hyde, Truell

    2012-10-01

    The CASPER Physics Circus is one component of a CASPER ongoing educational outreach initiative known as the CASPER Seamless Pathway. The Physics Circus is funded by the United States Department of Education and is designed to increase interest in, engagement with, and understanding of science, technology, engineering and mathematics (STEM) within students in grades 6 through 12. The program's material and curriculum is aligned with both TEKS (Texas Essentials Knowledge and Skills) and National Science and Mathematics Standards, with its components (theatre, hands-on exhibitions, game show, professional development and curriculum) reinforcing these goals in a creative and entertaining format. Pre- and post-assessments measuring both content understanding and attitude towards science were conducted for a representative sample of the cohort and the analyzed data will be presented. The role the Circus plays within CASPER's Seamless Pathway will also be discussed along with other current CASPER programs including its High School Scholars program, CASPER's Interns program and CASPER NSF funded REU/RET programs for college undergraduates and K-12 teachers.

  17. Educational Outreach at CASPER

    NASA Astrophysics Data System (ADS)

    Hyde, Truell; Smith, Bernard; Carmona-Reyes, Jorge

    2007-11-01

    The CASPER Educational Outreach program with support from the Department of Education, the Department of Labor and the National Science Foundation advances physics education through a variety of avenues including CASPER's REU / RET program, High School Scholars Program, spiral curriculum development program and the CASPER Physics Circus. These programs impact K-12 teachers and students providing teachers with curriculum, supporting hands-on material and support for introducing plasma and basic physical science into the classroom. The most visible of the CASPER outreach programs is the Physics Circus, created during the 1999-2000 school year and funded since that time through two large grants from the Department of Education. The Physics Circus is part of GEAR UP Waco (Gaining Early Awareness and Readiness for Undergraduate Programs) and was originally one of 185 grants awarded nationwide by the U. S. Department of Education in 1999 to help 200,000 disadvantaged children prepare for and gain a pathway to undergraduate programs. The CASPER Physics Circus is composed of intense science explorations, physics demonstrations, hands-on interactive displays, theatrical performances, and excellent teaching experiences. Examples and efficacy data from the above will be discussed.

  18. War-gaming application for future space systems acquisition: MATLAB implementation of war-gaming acquisition models and simulation results

    NASA Astrophysics Data System (ADS)

    Vienhage, Paul; Barcomb, Heather; Marshall, Karel; Black, William A.; Coons, Amanda; Tran, Hien T.; Nguyen, Tien M.; Guillen, Andy T.; Yoh, James; Kizer, Justin; Rogers, Blake A.

    2017-05-01

    The paper describes the MATLAB (MathWorks) programs that were developed during the REU workshop1 to implement The Aerospace Corporation developed Unified Game-based Acquisition Framework and Advanced Game - based Mathematical Framework (UGAF-AGMF) and its associated War-Gaming Engine (WGE) models. Each game can be played from the perspectives of the Department of Defense Acquisition Authority (DAA) or of an individual contractor (KTR). The programs also implement Aerospace's optimum "Program and Technical Baseline (PTB) and associated acquisition" strategy that combines low Total Ownership Cost (TOC) with innovative designs while still meeting warfighter needs. The paper also describes the Bayesian Acquisition War-Gaming approach using Monte Carlo simulations, a numerical analysis technique to account for uncertainty in decision making, which simulate the PTB development and acquisition processes and will detail the procedure of the implementation and the interactions between the games.

  19. Undergraduate Research Experiences in Support of Dryland Monitoring: Field and Satellite Remote Sensing of Change in Savanna Structure, Biomass, and Carbon after Prescribed Fires

    NASA Astrophysics Data System (ADS)

    Washington-Allen, R. A.; Twidwell, D. L., Jr.; Mendieta, V. P.; Delgado, A.; Redman, B.; Trollope, W. S.; Trollope, L.; Govender, N.; Smit, I.; Popescu, S. C.; de Bruno Austin, C.; Reeves, M. C.

    2009-12-01

    The status and trend of degradation in the world’s Drylands, that support over 1.2 billion people, is unknown because monitoring & assessment has not occurred on a globally consistent basis and skilled personnel with a cultivated interest in natural resource science and management are lacking. A major monitoring dataset is the 37-year Landsat data archive that has been released free to the world, but this dataset requires persons who understand how to process and interpret this and similar datasets applicable to the desertification problem. The College of Agriculture & Life Sciences (COALS) at Texas A&M University (TAMU) has an initiative to provide undergraduates with both international and research experiences. The lead author used start-up money, USFS project funds for livestock footprint studies in the US, and seed money from COALS to 1) develop academic mentor contacts in Mozambique, Namibia, Botswana, South Africa, and Tunisia to prepare a National Science Foundation Research Experience for Undergraduates (NSF-REU) Site proposal and 2) launch a pilot REU for two TAMU undergraduate students. Mr. Delgado and Mr. Redman received lidar processing and visualization, field survey training on global positioning systems (GPS), terrestrial LIDAR, and ground penetrating radar technologies and conducted carbon change studies by collecting pre- and post-fire laser scans on experimental burn (EPB) sites in Texas and South Africa. Mr. Redman also developed GIS databases of Landsat timeseries for these EPBs and others in southern Africa. Mr. Delgado participated in the Savanna Fire Ignition Research Experiment (SavFIRE) in Kruger National Park (KNP) by collected laser scan data on 3 EPBs. He also received mentoring from Dr. Winston Trollope, a prominent fire ecologist, and Mr. Chris Austin both of Working with Fire International and Navashni Govender, KNP’s Fire Ecologist. He also was an active participant in a NASA sponsored workshop on remote sensing of global savannas.

  20. Probing Protoplanetary Disk Upper Atmospheres for Heating and Dust Settling Using Synthetic CO Spectra

    NASA Astrophysics Data System (ADS)

    Lewis, Josiah; Brittain, S. D.

    2010-01-01

    CO emission is a useful probe of the warm gas distribution in the planet forming regions of disks around Herbig Ae/Be stars. We model UV fluoresced and thermally excited CO in the circumstellar disks of several HAeBes. We find indications of dust settling in the upper atmospheres of HD 141569 and HD 7048 and a correlation between PAH luminosity and gas heating in these two systems. This project was funded by a partnership between the National Science Foundation (NSF AST-0552798), Research Experiences for Undergraduates (REU), and the Department of Defense (DoD) ASSURE (Awards to Stimulate and Support Undergraduate Research Experiences) programs.

  1. Research Experience for Undergraduates: A Non-Traditional Approach

    NASA Astrophysics Data System (ADS)

    Carrick, T. L.; Miller, K. C.; Hagedorn, E.; Velasco, A. A.

    2012-12-01

    Research experiences for undergraduates (REUs) have been documented to be an effective way to increase student retention in the Science, Technology, Engineering and Mathematics (STEM) by exposing students to research. REUs typically run during the summer months, allowing students to travel to different universities away from their home institutions. We created an REU program, Pathways Research Experience for undergraduates Program (PREP) that ran during the fall and spring academic semesters and focused on the geosciences. These students were provided with a monthly stipend to work with a research mentor, and they were required to attend a weekly professional development meeting led by the Pathways PIs and the program coordinator. The weekly training program focused on research skills, presentation skills, and graduate school preparation. Since a majority of students at University of Texas at El Paso (a Hispanic Serving Institution with 70% Hispanic and 10% Mexican students) must work outside the university while attending college, the stipends enabled students to remain on campus to "work", with the hope that this may contribute to their overall academic success. By spending more time on campus, the participants were able to interact more with faculty and other students, both at the undergraduate and graduate levels. Participants were chosen on a basis of GPA and the contents of an application that included a statement of purpose, a resume, a transcript, and at least one letter of recommendation. Once the student was selected, they were required to find a mentor and research project. Through an analysis of surveys, we have found that participants enjoy the meetings, which gave them a sense of belonging to a group, and an additional source of academic support. Participants were also expected to take part in outreach activities as part of our goal to create a geosciences network in El Paso. With this REU approach, we believe that our success rate suggests that this approach works well in Hispanic Serving Institutions: 51% of our participants have gone on to graduate school, 22% are still undergraduates, 17% are unknown, 5% are in industry and 5% are teaching.

  2. The Svalbard REU Program: A High-Latitude Undergraduate Research Program in Glacial, Fluvial and Marine Processes Relevant to Arctic Climate Change

    NASA Astrophysics Data System (ADS)

    Powell, R.; Brigham-Grette, J.; Cumpston, R.; Trusel, L.; Werner, A.; Roof, S.; Retelle, M.

    2005-12-01

    A pilot-study field season was conducted this past summer from the most northerly permanent settlement in the world as part of our ongoing Svalbard REU program funded by the National Science Foundation (award OPP-0244097). Ny Alesund, on the island of Spitsbergen, Svalbard, is an international research center operated by Norway, and during summers, hosts about 100 scientists from over 15 nations. With NSF support, the US now participates in a new marine laboratory that opened this year, and we made that our operations center. The success of our field program is enhanced by tight logistics and research objectives integrated with UNIS (the University Centre on Svalbard), the Norwegian Polar Institute and Kings Bay AS. Our program provides genuine research experiences in Arctic Quaternary science for undergraduates. Research focuses on modern glacial sedimentation processes relevant to understanding records of past climate changes preserved in marine and lacustrine basins. Students in this marine portion of the program had a total immersion experience, being surrounded by scientists from different nations and from disciplines differing widely from theirs. They interacted with these scientists formally and informally, discussing their science plans, attending weekly science talks, and enjoying conversations at meal times. First, we introduced the students to arctic glacial and marine systems, and then through discussion and demonstration they developed their own research plans and made decisions on modifying sampling schemes through the field season. Studies focused on sediment transport and deposition in Kongsfjorden by polythermal tidewater glaciers, icebergs, meltwater streams and marine currents. Students sampled glaciers and icebergs for debris concentrations, collected seawater samples for suspended sediment concentrations, performed CTD casts to define water column structure, conducted bathymetric profiling using GPS control, and collected fjord sediment samples with small box-cores and short gravity cores. Also students were able to initially process samples in the marine lab. But in a practical sense they also learned survival away from home comforts, and how to deal and cope with unexpected occurrences as always arise when working in these environments. They are currently conducting laboratory research on samples and reducing and analyzing data, which will lead to theses and presentations at scientific meetings.

  3. CATE 2016 Indonesia: Camera, Software, and User Interface

    NASA Astrophysics Data System (ADS)

    Kovac, S. A.; Jensen, L.; Hare, H. S.; Mitchell, A. M.; McKay, M. A.; Bosh, R.; Watson, Z.; Penn, M.

    2016-12-01

    The Citizen Continental-America Telescopic Eclipse (Citizen CATE) Experiment will use a fleet of 60 identical telescopes across the United States to image the inner solar corona during the 2017 total solar eclipse. For a proof of concept, five sites were hosted along the path of totality during the 2016 total solar eclipse in Indonesia. Tanjung Pandan, Belitung, Indonesia was the first site to experience totality. This site had the best seeing conditions and focus, resulting in the highest quality images. This site proved that the equipment that is going to be used is capable of recording high quality images of the solar corona. Because 60 sites will be funded, each set up needs to be cost effective. This requires us to use an inexpensive camera, which consequently has a small dynamic range. To compensate for the corona's intensity drop off factor of 1,000, images are taken at seven frames per second, at exposures 0.4ms, 1.3ms, 4.0ms, 13ms, 40ms, 130ms, and 400ms. Using MatLab software, we are able to capture a high dynamic range with an Arduino that controls the 2448 x 2048 CMOS camera. A major component of this project is to train average citizens to use the software, meaning it needs to be as user friendly as possible. The CATE team is currently working with MathWorks to create a graphic user interface (GUI) that will make data collection run smoothly. This interface will include tabs for alignment, focus, calibration data, drift data, GPS, totality, and a quick look function. This work was made possible through the National Solar Observatory Research Experiences for Undergraduates (REU) Program, which is funded by the National Science Foundation (NSF). The NSO Training for 2017 Citizen CATE Experiment, funded by NASA (NASA NNX16AB92A), also provided support for this project. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the NSF.

  4. Designing Effective Undergraduate Research Experiences

    NASA Astrophysics Data System (ADS)

    Severson, S.

    2010-12-01

    I present a model for designing student research internships that is informed by the best practices of the Center for Adaptive Optics (CfAO) Professional Development Program. The dual strands of the CfAO education program include: the preparation of early-career scientists and engineers in effective teaching; and changing the learning experiences of students (e.g., undergraduate interns) through inquiry-based "teaching laboratories." This paper will focus on the carry-over of these ideas into the design of laboratory research internships such as the CfAO Mainland internship program as well as NSF REU (Research Experiences for Undergraduates) and senior-thesis or "capstone" research programs. Key ideas in maximizing student learning outcomes and generating productive research during internships include: defining explicit content, scientific process, and attitudinal goals for the project; assessment of student prior knowledge and experience, then following up with formative assessment throughout the project; setting reasonable goals with timetables and addressing motivation; and giving students ownership of the research by implementing aspects of the inquiry process within the internship.

  5. PhAst: A Flexible IDL Astronomical Image Viewer

    NASA Astrophysics Data System (ADS)

    Rehnberg, Morgan; Crawford, R.; Trueblood, M.; Mighell, K.

    2012-01-01

    We present near-Earth asteroid data analyzed with PhAst, a new IDL astronomical image viewer based on the existing application ATV. PhAst opens, displays, and analyzes an arbitrary number of FITS images. Analysis packages include image calibration, photometry, and astrometry (provided through an interface with SExtractor, SCAMP, and missFITS). PhAst has been designed to generate reports for Minor Planet Center reporting. PhAst is cross platform (Linux/Mac OSX/Windows for image viewing and Linux/Mac OSX for image analysis) and can be downloaded from the following website at NOAO: http://www.noao.edu/staff/mighell/phast/. Rehnberg was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program and the Department of Defense ASSURE program through Scientific Program Order No. 13 (AST-0754223) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF.

  6. The Effects of Commercial Airline Traffic on LSST Observing Efficiency

    NASA Astrophysics Data System (ADS)

    Gibson, Rose; Claver, Charles; Stubbs, Christopher

    2016-01-01

    The Large Synoptic Survey Telescope (LSST) is a ten-year survey that will map the southern sky in six different filters 800 times before the end of its run. In this paper, we explore the primary effect of airline traffic on scheduling the LSST observations in addition to the secondary effect of condensation trails, or contrails, created by the presence of the aircraft. The large national investment being made in LSST implies that small improvments observing efficiency through aircraft and contrail avoidance can result in a significant improvement in the quality of the survey and its science. We have used the Automatic Dependent Surveillance-Broadcast (ADS-B) signals received from commercial aircraft to monitor and record activity over the LSST site. We installed a ADS-B ground station on Cerro Pachón, Chile consiting of a1090Mhz antenna on the Andes Lidar Observatory feeding a RTL2832U software defined radio. We used dump1090 to convert the received ADS-B telementry into Basestation format, where we found that during the busiest time of the night there were only 4 signals being received each minute on average, which will have very small direct effect, if any, on the LSST observing scheduler. As part of future studies we will examin the effects of contrals on LSST observations. Gibson was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experience for Undergraduates Program (AST-1262829).

  7. Reflections on the development and implementation of an early warning system for ecstasy and related drug markets in Australia.

    PubMed

    Kinner, Stuart A; Degenhardt, Louisa

    2006-09-01

    Regular and systematic monitoring of drug markets provides the basis for evidence-based policy. In Australia, trends in ecstasy and related drug (ERD) markets have been monitored in selected jurisdictions since 2000 and nationally since 2003, by the Party Drugs Initiative (PDI). The PDI maximises the validity of conclusions by triangulating information from (a) interviews with regular ecstasy users (REU), (b) interviews with key experts and (c) indicator data. There is currently no other system in Australia for monitoring these markets systematically; however, the value of the PDI has been constrained by the quality of available data. Difficulties in recruiting and interviewing appropriate consumers (REU) and key experts have been experienced, but largely overcome. Limitations of available indicator data from both health and law enforcement continue to present challenges and there remains considerable scope for enhancing existing routine data collection systems, to facilitate monitoring of ERD markets. With an expanding market for ecstasy and related drugs in Australia, and in the context of indicator data that continue to be limited in scope and detail, there is a strong argument for the continued collection of annual, comparable data from a sentinel group of REU, such as those recruited for the PDI.

  8. Advancing Space Sciences through Undergraduate Research Experiences at UC Berkeley's Space Sciences Laboratory - a novel approach to undergraduate internships for first generation community college students

    NASA Astrophysics Data System (ADS)

    Raftery, C. L.; Davis, H. B.; Peticolas, L. M.; Paglierani, R.

    2015-12-01

    The Space Sciences Laboratory at UC Berkeley launched an NSF-funded Research Experience for Undergraduates (REU) program in the summer of 2015. The "Advancing Space Sciences through Undergraduate Research Experiences" (ASSURE) program recruited heavily from local community colleges and universities, and provided a multi-tiered mentorship program for students in the fields of space science and engineering. The program was focussed on providing a supportive environment for 2nd and 3rd year undergraduates, many of whom were first generation and underrepresented students. This model provides three levels of mentorship support for the participating interns: 1) the primary research advisor provides academic and professional support. 2) The program coordinator, who meets with the interns multiple times per week, provides personal support and helps the interns to assimilate into the highly competitive environment of the research laboratory. 3) Returning undergraduate interns provided peer support and guidance to the new cohort of students. The impacts of this program on the first generation students and the research mentors, as well as the lessons learned will be discussed.

  9. Modeling Spectral Variations of Dusty Circumstellar Envelopes During Microlensing Events

    NASA Astrophysics Data System (ADS)

    Bunker, Christina; Ignace, R.; Bjorkman, J. E.

    2007-12-01

    Microlensing surveys have proven to be tremendously fruitful in providing valuable data products for many fields of astrophysics, from eclipse lightcurves for substellar candidates to limb darkening in stellar atmospheres. We report on a program of modeling observables from microlensing of circumstellar envelopes, particularly those of red giant stars that are the most likely to show finite source effects. Recent modeling results for the time dependent spectral energy distributions from microlensing of dusty winds are presented. In effect, wavelength-dependent continuum variations that occur as the lens-star separation changes can provide information about the emissivity distribution of dust in the wind. This project was funded by a partnership between the National Science Foundation (NSF AST-0552798), Research Experiences for Undergraduates (REU), and the Department of Defense (DoD) ASSURE (Awards to Stimulate and Support Undergraduate Research Experiences) programs.

  10. Enabling University Satellites to Travel to the Moon and Beyond

    NASA Astrophysics Data System (ADS)

    Siy, Grace; Branam, Richard

    2017-11-01

    Electric propulsion is a method of creating thrust for space exploration that requires less propellant than traditional chemical rockets by producing much higher exhaust velocities, and subsequently costing less. Currently, such forms of propulsion are unable to generate the vast amounts of thrust that traditional thrusters do, thus research is being done in the area. The focus of this project is Hall Effect thrusters, a specific type of ion propulsion. The distinctive feature of these thrusters are magnets which capture the electrons from the cathode. These electrons ionize the propellant gas and then interact with the present electric field to accelerate the resulting ions, generating thrust. The objectives of this project include building two Hall thrusters with different magnet configurations, collecting performance data, and testing with a Faraday probe that directly measures current density. The first magnet configuration will be a conventional Hall Effect thruster arrangement, while the second thruster's magnets are arranged to create a significantly stronger magnetic field. The performance data and Faraday probe results will be used to determine the level of improvement between the thrusters. The goal is to integrate a Hall Effect propulsion system into the university's Cube-Sat program. Special Acknowledgement of the REU Site: Fluid Mechanics with Analysis using Computations and Experiments (FM-ACE) EEC 1659710.

  11. Update on the Citizen CATE Experiment: Indonesia to 2017

    NASA Astrophysics Data System (ADS)

    McKay, Myles; Penn, Matt; Baer, Robert; Bosh, Robert; Garrison, David; Gelderman, Richard; Hare, Honor; Isberner, Fred; Jensen, Logan; Kovac, Sarah; Mitchell, Adriana; Pierce, Michael; Thompson, Patricia; Ursache, Andrei; Varsik, John R.; Walter, Donald K.; Watson, Zachary; Young, David T.; Citizen CATE Team

    2017-01-01

    The Citizen Continental-America Telescopic Eclipse (CATE) Experiment is a team of students, citizen scientists and professional astronomers who will operate 60 identical telescopes distributed across the country in the path of totality from Oregon to South Carolina during the 21 August 2017 solar eclipse. The project goal is to produce a 90-minute time sequence of calibrated white light images of the solar corona. This unprecedented, continuous, temporal coverage during totality will allow us to address questions related to the dynamics in the inner 2.5 Rsun of the corona.Field testing of the equipment began with one setup located on the Faroe Islands during the March 2015 total solar eclipse. Here we report on the more recent March 2016 eclipse where five CATE teams were sent to Indonesia. This group included university undergraduate students, their faculty mentors and other professional scientists. CATE completed a successful field testing of multiple sites near the equator that were distributed over 20 degrees in longitude. We conclude our discussion with how the experience gained over the past two years is being put to use as we prepare for the full implementation of the CATE Network in August 2017.This work was supported in part by funding from NASA SMD grant NNX16AB92A and the NSF REU program through AST-1460743.

  12. Unique educational opportunities at the Missouri University research reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketring, A.R.; Ross, F.K.; Spate, V.

    1997-12-01

    Since the Missouri University Research Reactor (MURR) went critical in 1966, it has been a center where students from many departments conduct their graduate research. In the past three decades, hundreds of graduate students from the MU departments of chemistry, physics, anthropology, nuclear engineering, etc., have received masters and doctoral degrees based on research using neutrons produced at MURR. More recently, the educational opportunities at MURR have been expanded to include undergraduate students and local high school students. Since 1989 MURR has participated in the National Science Foundation-funded Research Experience for Undergraduates (REU) program. As part of this program, undergraduatemore » students from universities and colleges throughout the United States come to MURR and get hands-on research experience during the summer. Another program, started in 1994 by the Nuclear Analysis Program at MURR, allows students from a local high school to conduct a neutron activation analysis (NAA) experiment. We also conduct tours of the center, where we describe the research and educational programs at MURR to groups of elementary school children, high school science teachers, state legislators, professional organizations, and many other groups.« less

  13. The Aysen Glacier Trail (AGT): Fostering leadership and personal growth towards understanding our place in the environment through experiential learning and scientific inquiry in northern Patagonia, Chile

    NASA Astrophysics Data System (ADS)

    Sincavage, R.; Chambers, F. B.; Leidich, J.

    2017-12-01

    The Colonia Glacier, a low elevation mid-latitude glacier, drains the lee side of the central division of the Northern Patagonian Ice Field (NPI). As such, it serves as a microcosm of conditions on the NPI as a whole. Glaciers of this type have experienced extreme variability in Holocene thickness and extent, making them excellent indicators of local and regional climate conditions. Glacial lake outburst floods (GLOFs) originating in the remote Cachet Basin, dammed by the Colonia Glacier, have increased in frequency from once every 10 years to 3 times annually since 2008. These flood events are important in that they 1.) directly impact the livelihoods of downstream residents, 2.) may be linked to the overall health of the Colonia Glacier and, to a larger extent, the NPI, 3.) provide a natural laboratory for studying the dynamics of large flood events, and 4.) have downcut the sediments sequestered in the upper basin, revealing a rich Holocene sedimentologic and climate record. With improved access to this remote region through local partners in recent years, outstanding opportunities for scientific discovery, education, and outreach exist in one of the most beautiful and least-studied glacial regions on Earth. We propose establishing an NSF REU site here to further develop the abundant educational and research opportunities in this spectacular locale. We envision students participating under the REU will receive a broad-based background in glaciology and sedimentology prior to the field experience, and then participate in basic field research led by the PIs into understanding recent and Holocene linkages between climate change and the glacio-fluvio geomorphology of the NPI. A pilot program of 13 U.S. and Chilean students with wide-ranging backgrounds and degree levels was conducted in the winter of 2015-16. A two week backcountry trek across rocky terrain, mountain streams, active glaciers, and proglacial lakes in this seldom-visited region immersed the students in the glacial geomorphology of the region. All students identified the course as a life-changing experience, both in their increase in knowledge of the subject matters of glacial geomorphology, climate, and sedimentology/stratigraphy, as well as leadership skills, wilderness travel, and local culture.

  14. Single Particle Jumps in Sheared SiO2

    NASA Astrophysics Data System (ADS)

    McMahon, Sean; Vollmayr-Lee, Katharina; Cookmeyer, Jonathan; Horbach, Juergen

    We study the dynamics of a sheared glass via molecular dynamics simulations. Using the BKS potential we simulate the strong glass former SiO2. The system is initially well equilibrated at a high temperature, then quenched to a temperature below the glass transition, and, after a waiting time at the desired low temperature, sheared with constant strain rate. We present preliminary results of an analysis of single particle trajectories of the sheared glass. We acknowledge the support via NSF REU Grant #PHY-1156964, DoD ASSURE program, and NSF-MRI CHE-1229354 as part of the MERCURY high-performance computer consortium. We thank G.P. Shrivastav, Ch. Scherer and B. Temelso.

  15. Administration, Best Practices, and Evaluation of the National Weather Center REU Program

    NASA Astrophysics Data System (ADS)

    Zaras, D. S.; Gonzalez-Espada, W.

    2005-12-01

    The National Weather Center Research Experiences for Undergraduates program in Norman, Oklahoma, is a unique undergraduate career exploration experience, drawing upon the resources available in the National Weather Center's (NWC) state, federal, and university groups. This program takes full advantage of our location by including a wide variety of professionals from throughout the NWC community as mentors and contributors of lectures, workshops, tours, field trips, and job shadow experiences to expose the students to a broad spectrum of research topics and careers in meteorology. Students actively practice good research methodology by being paired with mentors who are productive researchers. The program aims to provide a strong and transformative educational experience that models the life of a scientist. This presentation will include a brief overview of program administration, analysis of applicant characteristics, "best practices" learned since 2001, and new additions to the NWC program funded through a 2-Year Extension for Special Creativity. The presentation will conclude with a brief evaluation of how well the program meets its goals of helping students clarify graduate school and career plans, and build self-efficacy regarding their potential for a career in scientific research.

  16. Monte Carlo simulation of a photodisintegration of 3 H experiment in Geant4

    NASA Astrophysics Data System (ADS)

    Gray, Isaiah

    2013-10-01

    An upcoming experiment involving photodisintegration of 3 H at the High Intensity Gamma-Ray Source facility at Duke University has been simulated in the software package Geant4. CAD models of silicon detectors and wire chambers were imported from Autodesk Inventor using the program FastRad and the Geant4 GDML importer. Sensitive detectors were associated with the appropriate logical volumes in the exported GDML file so that changes in detector geometry will be easily manifested in the simulation. Probability distribution functions for the energy and direction of outgoing protons were generated using numerical tables from previous theory, and energies and directions were sampled from these distributions using a rejection sampling algorithm. The simulation will be a useful tool to optimize detector geometry, estimate background rates, and test data analysis algorithms. This work was supported by the Triangle Universities Nuclear Laboratory REU program at Duke University.

  17. Challenges and Opportunities in Interdisciplinary Materials Research Experiences for Undergraduates

    NASA Astrophysics Data System (ADS)

    Vohra, Yogesh; Nordlund, Thomas

    2009-03-01

    The University of Alabama at Birmingham (UAB) offer a broad range of interdisciplinary materials research experiences to undergraduate students with diverse backgrounds in physics, chemistry, applied mathematics, and engineering. The research projects offered cover a broad range of topics including high pressure physics, microelectronic materials, nano-materials, laser materials, bioceramics and biopolymers, cell-biomaterials interactions, planetary materials, and computer simulation of materials. The students welcome the opportunity to work with an interdisciplinary team of basic science, engineering, and biomedical faculty but the challenge is in learning the key vocabulary for interdisciplinary collaborations, experimental tools, and working in an independent capacity. The career development workshops dealing with the graduate school application process and the entrepreneurial business activities were found to be most effective. The interdisciplinary university wide poster session helped student broaden their horizons in research careers. The synergy of the REU program with other concurrently running high school summer programs on UAB campus will also be discussed.

  18. A search for inversion layers in hot Jupiters with high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Hood, Callie; Birkby, Jayne; Lopez-Morales, Mercedes

    2017-01-01

    At present, the existence of thermal inversion layers in hot Jupiter atmospheres is uncertain due to conflicting results on their detection. However, understanding the thermal structure of exoplanet atmospheres is crucial to measuring their chemical compositions because the two quantities are highly interdependent. Here, we present high-resolution infrared spectroscopy of a hot Jupiter taken at 3.5 μm with CRIRES (R~100,000) on the Very Large Telescope. We directly detect the spectrum of the planet by tracing the radial-velocity shift of water features in its atmosphere during approximately one tenth of its orbit. We removed telluric contamination effects and the lines of the host star from our observed combined light spectra using singular value decomposition, then cross-correlated these processed spectra with a grid of high spectral resolution molecular templates containing features from water, methane, and carbon dioxide. The templates included atmospheric profiles with and without thermal inversion i.e. emission and absorption lines, respectively. We find evidence of water emission features in the planet’s dayside spectrum at a signal-to-noise of 4.7, indicative of a thermal inversion in the planet's atmosphere within the pressures ranges probed by our observations. The direct detection of emission lines at high spectral resolution in the planet spectrum make it one of the most unambiguous detections of a thermal inversion layer in an exoplanet atmosphere to date. However, we are carrying out further data analysis to ensure the robustness of the signal. Future observations of other molecules that could cause inversion layers, e.g. titanium oxide, would provide strong additional evidence of the inversion and help further our understanding of the behavior of highly irradiated giant planet atmospheres.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution. This work was performed in part under contract with the California Institute of Technology/Jet Propulsion Laboratory funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute.

  19. The Relationship Between Infrared Dark Cloud and Stellar Properties

    NASA Astrophysics Data System (ADS)

    Calahan, Jenny; Hora, Joseph L.

    2018-01-01

    Massive stars are known to form within infrared dark clouds (IRDCs), but many details about how molecular clouds collapse and form stars remain poorly understood.We determine the relationship between the dark cloud mass and the population of young stellar objects (YSOs) associated with the cloud to shed light on the physical processes occurring within these star forming regions. We chose to use a sample of IRDCs and YSOs within the Cygnus-X region, a close-by giant star formation complex that has every stage of star formation represented. Using observations from IRAC, MIPS, PACS, and SPIRE on Spitzer and Herschel we identified a sample of 30,903 YSOs and 167 IRDCs. We derived the class of each YSO as well as the mass of YSO and IRDCs from the flux information. Using these parameters, as well as their locations in the cloud, we were sorted IRDC fragments into larger filaments and associate a set of YSOs with each IRDC. By measuring and comparing parameters such as YSO total mass, number of YSOs, Class 0, Class I, and Class II populations, distance from host filament, and filament mass we tested for correlations between the YSO and IRDC parameters. Using this treasure trove of information, we find that Class 0 and I objects are located more closely to their host IRDC than their Class II counterparts. We also find that high-density IRDCs are better environments for star formation than low-density IRDCs. However, we find no correlation between the total mass of the IRDC and the largest YSO mass in the IRDC, suggesting that IRDCs of any mass can have massive YSOs associated with them.The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.

  20. Modern Process Studies in Kongsfjord, Svalbard: Arctic Geoscience Research Experience for U.S. Undergraduates (Svalbard REU)

    NASA Astrophysics Data System (ADS)

    Powell, R. D.; Brigham-Grette, J.

    2011-12-01

    The Svalbard REU (Research Experience for Undergraduates) program focuses on understanding how high latitude glaciers, meltwater streams, and sedimentation in lakes and fjords respond to changing climate. Since summer of 2004, six under-graduate students have been selected to participate in the summer field program. Students work on individual projects and in close conjunction with faculty advisors and other student researchers. They formulate their own research questions, develop their project, and complete their field research during a five-week program on Svalbard, Norway. Following the summer program, students complete their projects at their home institution during the following academic year as a senior thesis. A spring symposium brings all participants back together again with their final results. The most recent field season was completed in Kongsfjord (79N) showing that the contemporary studies of tidewater glacier margins provide an unparalleled opportunity for introducing motivated third year undergraduate students to the challenges and rewards of polar geoscientific field research. Rates of rapid change in this high-latitude Arctic environment emphasize the complexity of the Earth System at the interface of the ocean, atmosphere and cryosphere. Given background information in glacial and marine geology, glaciology, hydrology, climatology and fjord oceanography not routinely offered in undergraduate curricula, students develop the science questions to be addressed and establish a field plan for instrumentation and sampling. Working together in small boats in one of the most challenging natural environments, the students expand their leadership skills, learn the value of teamwork and collaborative data sharing while maintaining a strong sense of ownership over their individual science projects. The rigors of studying an actively calving tidewater glacier also builds on their outdoor skills, especially when it is necessary to improvise and become resourceful due to instrumentation failures or weather-related delays. Self-confidence and problem solving skills emerge from both field and laboratory research operations when students draw upon and expand their base of practical knowledge via trial and error. Logistical facilities in Ny Alesund offer an international experience with opportunities for dialog with scientists of a wide variety of disciplines working at research stations representing more than 12 different European and Asian countries. The program is funded by the NSF's Office of Polar Programs and has close ties and collaboration with the Norwegian University in Svalbard (UNIS) and Norsk Polar Institute scientists. NSF also funds a science teacher as a PolarTREC participant.

  1. First Observations of a Stellar Occultation by KBO (50000) Quaoar from MIT's George R. Wallace, Jr., Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Sallum, Stephanie; Brothers, T.; Elliot, J. L.; Person, M. J.; Bosh, A. S.; Zangari, A.; Zuluaga, C.; Levine, S.; Bright, L.; Sheppard, S.; Tilleman, T.

    2011-05-01

    Here we report the first recorded observations of a stellar occultation by Kuiper Belt Object (KBO) (50000) Quaoar. We detected a single-chord stellar occultation by Quaoar of a magnitude 16.2 star designated 26029635 UCAC2 (2MASS ID 1275509401), which occurred on 11 February 2011 UT. The prediction of the occultation was made using long baseline astrometric observations of Quaoar from several sites as part of the MIT Planetary Astronomy Laboratory's continuing effort to improve KBO positions for occultation prediction. The successful observations were made with a Celestron C14 0.36 m telescope and an SBIG STL-1001E CCD camera on a Paramount ME robotic mount. These observations show that a relatively accessible level of astronomical equipment, of the class often used by amateur astronomers, can be used to record KBO occultations. The data were taken at MIT's George R. Wallace, Jr., Astrophysical Observatory in Westford, MA. A light curve was generated from the data using aperture photometry on the individual images and is presented here. This light curve is being analyzed by Person et al. (this meeting) to provide constraints on Quaoar's size. We also discuss various observing strategies that could be used in the future to optimize the data from this type of event. This work was supported in part by grant NNX10AB27G to MIT from NASA's Planetary Astronomy Division. Student participation was supported in part by NSF's REU program, MIT's Undergraduate Research Opportunities Program, NASA's Massachusetts Space Grant, and the George R. Wallace, Jr., Astrophysical Observatory.

  2. Roughness Effects on the Formation of a Leading Edge Vortex

    NASA Astrophysics Data System (ADS)

    Elliott, Cassidy; Lang, Amy; Wahidi, Redha; Wilroy, Jacob

    2017-11-01

    Microscopic scales cover the wings of Monarch butterflies, creating a patterned surface that acts as a natural energy capture mechanism. This patterning is thought to delay the growth of the leading edge vortex (LEV) produced by the flapping motion of a wing. Increased skin friction caused by the scales leads to a weaker LEV being shed into the butterfly's wake, lessening drag and increasing flight efficiency. To test how this roughness effects LEV formation, a plate of random roughness was designed in SolidWorks and printed on the Objet 30 Pro 3D printer. A 2x3x5 cubic foot tow tank was used to test the rough plate at Reynold's numbers of 1500, 3000, and 6000 (velocities of 8, 16, and 32 mm/s) at an angle of attack of 45 degrees. Images were captured of the LEV generated when the plate was towed upwards through the particle-seeded flow. These images were used to determine the XY velocity of the particles using a technique called Digital Particle Image Velocimetry (DPIV). Codes written in MATLAB were used to track and measure the strength of the LEV. Circulation values for the randomly-rough plate were then compared to the same values generated in a previous experiment that used a smooth plate and a grooved plate to determine the effect of the patterning on vortex development. Funding for this research project was provided by the National Science Foundation under the Research Experience for Undergraduates (REU) program (REU Supplement CBET 1628600 under CBET 1335848).

  3. Implementing the correlated fermi gas nuclear model for quasielastic neutrino-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Tockstein, Jameson

    2017-09-01

    When studying neutrino oscillations an understanding of charged current quasielastic (CCQE) neutrino-nucleus scattering is imperative. This interaction depends on a nuclear model as well as knowledge of form factors. Neutrino experiments, such as MiniBooNE, often use the Relativistic Fermi Gas (RFG) nuclear model. Recently, the Correlated Fermi Gas (CFG) nuclear model was suggested in, based on inclusive and exclusive scattering experiments at JLab. We implement the CFG model for CCQE scattering. In particular, we provide analytic expressions for this implementation that can be used to analyze current and future neutrino CCQE data. This project was supported through the Wayne State University REU program under NSF Grant PHY-1460853 and by the DOE Grant DE-SC0007983.

  4. CAMPARE and Cal-Bridge: Two Institutional Networks Increasing Diversity in Astronomy

    NASA Astrophysics Data System (ADS)

    Rudolph, Alexander L.; Impey, Chris David; Phillips, Cynthia B.; Povich, Matthew S.; Prather, Edward E.; Smecker-Hane, Tammy A.

    2015-01-01

    We describe two programs, CAMPARE and Cal-Bridge, with the common mission of increasing participation of groups traditionally underrepresented in astronomy, particularly underrepresented minorities and women, through summer research opportunities, in the case of CAMPARE, scholarships in the case of Cal-Bridge, and significant mentoring in both programs, leading to an increase in their numbers successfully pursuing a PhD in the field.CAMPARE is an innovative REU-like summer research program, currently in its sixth year, comprising a network of comprehensive universities and community colleges in Southern California and Arizona (most of which are minority serving institutions), and ten major research institutions (University of Arizona Steward Observatory, the SETI Institute, JPL, Caltech, and the five Southern California UC campuses, UCLA, UCI, UCSD, UCR, and UCSB).In its first five summers, CAMPARE sent a total of 49 students from 10 different CSU and community college campuses to 5 research sites of the program. Of these 49 participants, 25 are women and 24 are men; 22 are Hispanic, 4 are African American, and 1 is Native American, including 6 female Hispanic and 2 female African-American participants. Twenty-one (21) CAMPARE participants have graduated from college, and more than half (11) have attended or are attending a graduate program, including 8 enrolled in PhD or Master's-to-PhD programs. Over twenty CAMPARE students have presented at the AAS and other national meetings.The Cal-Bridge program is a diverse network of higher education institutions in Southern California, including 5 UC campuses, 8 CSU campuses, and 7 community colleges dedicated to the goal of increasing the number of underrepresented minority and female students attending graduate school in astronomy or related fields. We have recently selected our inaugural group of five 2014 Cal-Bridge Scholars, including four women (two Hispanic and one part Native American), and one Hispanic man.Once selected, the Cal-Bridge Scholars benefit from three years of financial support, intensive, joint mentoring by CSU and UC faculty, professional development workshops, and exposure to research opportunities at the participating UC campuses.

  5. CAMPARE and Cal-Bridge: Two Institutional Networks Increasing Diversity in Astronomy

    NASA Astrophysics Data System (ADS)

    Rudolph, Alexander L.; Impey, Chris David; Phillips, Cynthia B.; Povich, Matthew S.; Prather, Edward E.; Smecker-Hane, Tammy A.

    2015-01-01

    We describe two programs, CAMPARE and Cal-Bridge, with the common mission of increasing participation of groups traditionally underrepresented in astronomy, particularly underrepresented minorities and women, through summer research opportunities, in the case of CAMPARE, scholarships in the case of Cal-Bridge, and significant mentoring in both programs, leading to an increase in their numbers successfully pursuing a PhD in the field.CAMPARE is an innovative REU-like summer research program, currently in its sixth year, comprising a network of comprehensive universities and community colleges in Southern California and Arizona (most of which are minority serving institutions), and ten major research institutions (University of Arizona Steward Observatory, the SETI Institute, JPL, Caltech, and the five Southern California UC campuses, UCLA, UCI, UCSD, UCR, and UCSB).In its first five summers, CAMPARE sent a total of 49 students from 10 different CSU and community college campuses to 5 research sites of the program. Of these 49 participants, 25 are women and 24 are men; 22 are Hispanic, 4 are African American, and 1 is Native American, including 6 female Hispanic and 2 female African-American participants. Twenty-one (21) CAMPARE participants have graduated from college, and more than half (11) have attended or are attending a graduate program, including 8 enrolled in PhD or Master's-to-PhD programs. Over twenty CAMPARE students have presented at the AAS and other national meetings.The Cal-Bridge program is a diverse network of higher education institutions in Southern California, including 5 UC campuses, 8 CSU campuses, and 7 community colleges dedicated to the goal of increasing the number of underrepresented minority and female students attending graduate school in astronomy or related fields. We have recently selected our inaugural group of five 2014 Cal-Bridge Scholars, including four women (two Hispanic and one part Native American), and one Hispanic man.Once selected, Cal-Bridge Scholars benefit from financial support, intensive, joint mentoring by CSU and UC faculty, professional development workshops, and exposure to research opportunities at the participating UC campuses.

  6. Integration of NASA Research into Undergraduate Education in Math, Science, Engineering and Technology at North Carolina A&T State University

    NASA Technical Reports Server (NTRS)

    Monroe, Joseph; Kelkar, Ajit

    2003-01-01

    The NASA PAIR program incorporated the NASA-Sponsored research into the undergraduate environment at North Carolina Agricultural and Technical State University. This program is designed to significantly improve undergraduate education in the areas of mathematics, science, engineering, and technology (MSET) by directly benefiting from the experiences of NASA field centers, affiliated industrial partners and academic institutions. The three basic goals of the program were enhancing core courses in MSET curriculum, upgrading core-engineering laboratories to compliment upgraded MSET curriculum, and conduct research training for undergraduates in MSET disciplines through a sophomore shadow program and through Research Experience for Undergraduates (REU) programs. Since the inception of the program nine courses have been modified to include NASA related topics and research. These courses have impacted over 900 students in the first three years of the program. The Electrical Engineering circuit's lab is completely re-equipped to include Computer controlled and data acquisition equipment. The Physics lab is upgraded to implement better sensory data acquisition to enhance students understanding of course concepts. In addition a new instrumentation laboratory in the department of Mechanical Engineering is developed. Research training for A&T students was conducted through four different programs: Apprentice program, Developers program, Sophomore Shadow program and Independent Research program. These programs provided opportunities for an average of forty students per semester.

  7. AstroCom NYC: Equity, Inclusion, and the Next Generation of Astrophysicists

    NASA Astrophysics Data System (ADS)

    Paglione, Timothy; Ford, Saavik; Robbins, Dennis; Agueros, Marcel A.; Mac Low, Mordecai-Mark

    2017-01-01

    AstroCom NYC is an undergraduate mentoring program designed to improve urban minority student access to opportunities in astrophysical research by greatly enhancing partnerships between research astronomers in New York City (City University of New York - an MSI, American Museum of Natural History, and Columbia). AstroCom NYC provides centralized, personalized mentoring as well as financial and academic support, to CUNY undergraduates throughout their studies, plus the resources and opportunities to further CUNY faculty research with students. The goal is that students’ residency at AMNH helps them build a sense of belonging in the field, and readies and inspires them for graduate study. AstroCom NYC provides a rigorous Methods of Scientific Research course developed specifically to this purpose, a laptop, research and career mentors, outreach activities, scholarships and stipends, Metrocards, and regular assessment for maximum effectiveness. The goal of this support is to remove barriers to access and success. AMNH serves as the central hub for our faculty and students, who are otherwise dispersed among all five boroughs of the City. We welcomed our fourth cohort last year, along with 25 additional students through a NASA community college initiative. Our advanced AstroCom NYC students earned external summer internships at REU sites, and we had our first graduate school acceptance. We review plans for Year 5, when we have a number of graduate school applicants, and our deepening participation and leadership within partner activities.

  8. Searching for Spectroscopic Signs of Termination Shocks in Solar Flares

    NASA Astrophysics Data System (ADS)

    Galan, G.; Polito, V.; Reeves, K.

    2017-12-01

    The standard flare model predicts the presence of a termination shock located above the flare loop tops, however terminations shocks have not yet been well observed. We analyze flare observations by the Interface Region Imaging Spectrograph (IRIS), which provides cotemporal UV imaging and spectral data. Specifically, we study plasma emissions in the Fe XXI line, formed at the very hot plasma temperatures in flares (> 10 MK). Imaging observations that point to shocks include fast hot reconnection downflows above the loop tops and localized dense, bright plasma at the loop tops; spectral signatures that suggest shocks in the locality of the loop tops include redshifts and nonthermal broadening of the Fe XXI line. We identify possibly significant redshifts in some on-disk flare events observed by IRIS. Redshifts are observed in the vicinity of the bright loop top source that is thought to coincide with the site of the shock. In these events, the Fe XXI emissions at the time of the redshifted structures are dominated by at the at-rest components. The much more less intense redshifted components are broader, with velocities of 200 km/s. The spatial location of these shifts might indicate plasma motions and speeds indicative of termination shocks. This work is supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313, and by NASA Grant NNX15AJ93G. Keywords: Solar flares, Solar magnetic reconnection, Termination shocks

  9. Fatty acids as biomarkers for food web structure in the eastern North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Behrens, J.; Aluwihare, L.; Stephens, B. M.

    2015-12-01

    Resulting from a NSF funded REU program at Scripps Institution of Oceanography in 2015, this research utilized gas chromatography-mass spectrometry (GC-MS) to analyze the fatty acid composition of suspended particulate organic matter (POM) and zooplankton (ZP; primarily copepods). Samples analyzed for this study were collected simultaneously from surface waters approximately 9 miles off the coast of San Diego in June 2015. I was testing the hypothesis that essential fatty acids in ZP should reflect their diet, in particular, distinguishing contributions from a microbial versus traditional food web. Food web structure in this region of the ocean has been shown to be sensitive to climate change on inter-annual and longer timescales. Thus, a proxy that identifies restructuring of food webs would be useful for examining the response of ocean ecosystems to future climate change. Lipids were extracted from ZP and POM using a modified Bligh and Dyer method with sonication. Following saponification free fatty acids and other lipids were further purified using column chromatography. Polar functional groups in lipids were then methylated prior to GC-MS analysis. In addition, 2-dimensional GCxGC with time of flight MS was used to distinguish polyunsaturated fatty acid isomers. My poster will present initial findings of shared fatty acids of zooplankton and POM suspended material from the Northern Pacific collection site. Further research will be focused on analyzing the hydrogen isotope composition of fatty acids in zooplankton and suspended DOM obtained at the collection site to further characterize and increase certainty on the role of microbes and phytoplankton in the region's food-web to distinguish prokaryotic and eukaryotic sources.

  10. Characterizing Gaint Exoplanets through Multiwavelength Transit Observations

    NASA Astrophysics Data System (ADS)

    Kasper, David; Cole, Jackson L.; Gardner, Cristilyn N.; Garver, Bethany R.; Jarka, Kyla L.; Kar, Aman; McGough, Aylin M.; PeQueen, David J.; Rivera, Daniel Ivan; Jang-Condell, Hannah; Kobulnicky, Henry A.; Dale, Daniel A.

    2018-01-01

    Observing the characteristics of giant exoplanets is possible with ground-based telescopes and modern observational methods. We are performing characterizations of multiple giant exoplanets based on 85 allotted nights of transit observations with the 2.3 m Wyoming Infrared Observatory using Sloan filters. In particular, constraints can be made on the atmospheres of our targets from the wavelength (in)dependence in the depth of the transit observations. We present early multiwavelength photometric results on the exoplanet HD 189733 b with comparison to literature sources to exemplify the methodology employed. In total, 15 exoplanets were observed across multiple wavelengths. The majority of the observing allotted to the project was completed as part of the 2017 Summer REU at the University of Wyoming. This work will significantly contribute to the growing number of observed atmospheres and influence interpretation of future WFIRST, JWST, and TESS targets. This work is supported by the National Science Foundation under REU grant AST 1560461.

  11. Spectroscopic Observations of a Solar Flare and the Associated Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Murray, S.; Tian, H.; McKillop, S.

    2013-12-01

    We used data from the EUV Imaging Spectrometer (EIS) on board Hinode to examine a coronal mass ejection and a preceding flare observed on 21 November 2012 between 15:00 and 17:00 UT. Images from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory were used to align the data from EIS with specific events occurring. We analyzed spectra of a few emission lines at three locations on the flare site and one location in the erupting prominence. On the flare site, we found line profiles showing typical characteristics of chromospheric evaporation: downflows at cooler lines and upflows at hotter lines. At one particular location on the flare site, we clearly identified dominant downflows on the order of 100 km/s in lines through Fe VIII to Fe XVI. To the best of our knowledge, this is the first time that such strong high-speed downflows have been spectroscopically observed in the impulsive phase of solar flares. The profile of the Fe VIII 184.54 line reveals two peaks and we were able to use the double Gaussian fit to separate the rapid downflows of dense material from the nearly stationary coronal background emission. For the erupting prominence, we were able to analyze multiple lines, cooler and warmer, of interest using this double Gaussian fit to separate the background emission from the emission of the ejected material. Our results show that the LOS velocities of the ejected material are about 100 km/s in the lower corona. Additionally, in each region of interest, we used the ratio of the density-sensitive line pair FeXII 195/186 to determine the electron density. Our results clearly show that the coronal densities were greatly enhanced during the flare. The density of the ejected material is also much larger than the typical coronal density. This research was supported by the NSF grant for the Solar Physics REU Program at the Smithsonian Astrophysical Observatory (AGS-1263241).

  12. Development of a 3-D Nuclear Event Visualization Program Using Unity

    NASA Astrophysics Data System (ADS)

    Kuhn, Victoria

    2017-09-01

    Simulations have become increasingly important for science and there is an increasing emphasis on the visualization of simulations within a Virtual Reality (VR) environment. Our group is exploring this capability as a visualization tool not just for those curious about science, but also for educational purposes for K-12 students. Using data collected in 3-D by a Time Projection Chamber (TPC), we are able to visualize nuclear and cosmic events. The Unity game engine was used to recreate the TPC to visualize these events and construct a VR application. The methods used to create these simulations will be presented along with an example of a simulation. I will also present on the development and testing of this program, which I carried out this past summer at MSU as part of an REU program. We used data from the S πRIT TPC, but the software can be applied to other 3-D detectors. This work is supported by the U.S. Department of Energy under Grant Nos. DE-SC0014530, DE-NA0002923 and US NSF under Grant No. PHY-1565546.

  13. YKL-40 expression in CD14+ liver cells in acute and chronic injury

    PubMed Central

    Pizano-Martínez, Oscar; Yañez-Sánchez, Irinea; Alatorre-Carranza, Pilar; Miranda-Díaz, Alejandra; Ortiz-Lazareno, Pablo C; García-Iglesias, Trinidad; Daneri-Navarro, Adrian; Mercado, Mónica Vázquez-Del; Fafutis-Morris, Mary; Delgado-Rizo, Vidal

    2011-01-01

    AIM: To demonstrate that CD14+ cells are an important source of the growth factor YKL-40 in acute and chronic liver damage. METHODS: Rats were inoculated with one dose of CCl4 to induce acute damage. Liver biopsies were obtained at 0, 6, 12, 24, 48 and 72 h. For chronic damage, CCl4 was administered three days per week for 6 or 8 wk. Tissue samples were collected, and cellular populations were isolated by liver digestion and purified by cell sorting. YKL-40 mRNA and protein expression were evaluated by real-time polymerase chain reaction and western blot. RESULTS: Acute liver damage induced a rapid increase of YKL-40 mRNA beginning at 12 h. Expression peaked at 24 h, with a 26-fold increase over basal levels. By 72 h however, YKL-40 expression levels had nearly returned to control levels. On the other hand, chronic damage induced a sustained increase in YKL-40 expression, with 7- and 9-fold higher levels at 6 and 8 wk, respectively. The pattern of YKL-40 expression in different subpopulations showed that CD14+ cells, which include Kupffer cells, are a source of YKL-40 after acute damage at 72 h [0.09 relative expression units (REU)] as well as after chronic injury at 6 wk (0.11 REU). Hepatocytes, in turn, accounted for 0.06 and 0.01 REU after 72 h (acute) or 6 wk (chronic), respectively. The rest of the CD14- cells (including T lymphocytes, B lymphocytes, natural killer and natural killer T cells) yielded 0.07 and 0.15 REU at 72 h and 6 wk, respectively. YKL-40 protein expression in liver was detected at 72 h as well as 6 and 8 wk, with the highest expression relative to controls (11-fold; P ≤ 0.05) seen at 6 wk. Macrophages were stimulated by lipopolysaccharide. We demonstrate that under these conditions, these cells showed maximum expression of YKL-40 at 12 h, with P < 0.05 compared with controls. CONCLUSION: Hepatic CD14+ cells are an YKL-40 mRNA and protein source in acute and chronic liver injury, with expression patterns similar to growth factors implicated in inflammation-fibrogenesis. PMID:21987626

  14. Computing wave functions in multichannel collisions with non-local potentials using the R-matrix method

    NASA Astrophysics Data System (ADS)

    Bonitati, Joey; Slimmer, Ben; Li, Weichuan; Potel, Gregory; Nunes, Filomena

    2017-09-01

    The calculable form of the R-matrix method has been previously shown to be a useful tool in approximately solving the Schrodinger equation in nuclear scattering problems. We use this technique combined with the Gauss quadrature for the Lagrange-mesh method to efficiently solve for the wave functions of projectile nuclei in low energy collisions (1-100 MeV) involving an arbitrary number of channels. We include the local Woods-Saxon potential, the non-local potential of Perey and Buck, a Coulomb potential, and a coupling potential to computationally solve for the wave function of two nuclei at short distances. Object oriented programming is used to increase modularity, and parallel programming techniques are introduced to reduce computation time. We conclude that the R-matrix method is an effective method to predict the wave functions of nuclei in scattering problems involving both multiple channels and non-local potentials. Michigan State University iCER ACRES REU.

  15. Analyzing Hydrogen Recombination Lines in the Infrared and Optical to Determine Extinction and SFRs of Local LIRGs

    NASA Astrophysics Data System (ADS)

    Payne, Anna; Inami, Hanae

    2015-01-01

    We report on measurements for dust extinction and star formation rates (SFRs) for luminous infrared galaxies (LIRGs). We utilized the hydrogen recombination lines Brα, Hα, and Hβ observed in the infrared and optical wavelengths with AKARI and the Lick Observatory's Kast Double spectrograph to produce spectra. By calculating Brα/Hα ratios for the target galaxies, extinction is estimated. A possible correlation between higher LIR, IR/UV, specific SFRs and higher Brα/Hα has been found. Through comparisons with Hα/Hβ, it may be possible to determine if Hα is, in fact, underestimating extinction, since Hα is more strongly affected by extinction compared to longer wavelengths such as Brα. The accuracy of using Hα in extinction corrections is important for SFR studies, and, thus, one goal is to find a more accurate reddening correction factor. Payne was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  16. Leveraging community support for Education and Outreach: The IRIS E&O Program

    NASA Astrophysics Data System (ADS)

    Taber, J.; Hubenthal, M.; Wysession, M. E.

    2009-12-01

    The IRIS E&O Program was initiated 10 years ago, some 15 years after the creation of the IRIS Consortium, as IRIS members increasingly recognized the fundamental need to communicate the results of scientific research more effectively and to attract more students to study Earth science. Since then, IRIS E&O has received core funding through successive 5-year cooperative agreements with NSF, based on proposals submitted by IRIS. While a small fraction of the overall Consortium budget, this consistent funding has allowed the development of strong, long-term elements within the E&O Program, including summer internships, IRIS/USGS museum displays, seismographs in schools, IRIS/SSA Distinguished Lecture series, and professional development for middle school and high school teachers. Reliable funding has allowed us to develop expertise in these areas due to the longevity of the programs and the continuous improvement resulting from ongoing evaluations. Support from Consortium members, including volunteering time and expertise, has been critical for the program, as the Consortium has to continually balance the value of E&O products versus equipment and data services for seismology research. The E&O program also provides service to the Consortium, such as PIs being able to count on and leverage IRIS resources when defining the broader impacts of their own research. The reliable base has made it possible to build on the core elements with focused and innovative proposals, allowing, for example, the expansion of our internship program into a full REU site. Developing collaborative proposals with other groups has been a key strategy where IRIS E&O's long-term viability can be combined with expertise from other organizations to develop new products and services. IRIS can offer to continue to reliably deliver and maintain products after the end of a 2-3 year funding cycle, which can greatly increase the reach of the project. Consortium backing has also allowed us to establish an educational fund in honor of the late John Lahr. This fund, which is comprised of individual donations, is being used to provide seismographs to schools along with professional development and ongoing support from the E&O program. We are also developing a plan for attracting larger private and/or foundation funds for new E&O activities, leveraging the reputation of a long-term program.

  17. The Effects of Hemodynamic Shear Stress on Stemness of Acute Myelogenous Leukemia (AML)

    NASA Astrophysics Data System (ADS)

    Raddatz, Andrew; Triantafillu, Ursula; Kim, Yonghyun (John)

    2015-11-01

    Cancer stem cells (CSCs) have recently been identified as the root cause of tumors generated from cancer cell populations. This is because these CSCs are drug-resistant and have the ability to self-renew and differentiate. Current methods of culturing CSCs require much time and money, so cancer cell culture protocols, which maximize yield of CSCs are needed. It was hypothesized that the quantity of Acute myelogenous leukemia stem cells (LSCs) would increase after applying shear stress to the leukemia cells based on previous studies with breast cancer in bioreactors. The shear stress was applied by pumping the cells through narrow tubing to mimic the in vivo bloodstream environment. In support of the hypothesis, shear stress was found to increase the amount of LSCs in a given leukemia population. This work was supported by NSF REU Site Award 1358991.

  18. Aerodynamic Analysis of Morphing Blades

    NASA Astrophysics Data System (ADS)

    Harris, Caleb; Macphee, David; Carlisle, Madeline

    2016-11-01

    Interest in morphing blades has grown with applications for wind turbines and other aerodynamic blades. This passive control method has advantages over active control methods such as lower manufacturing and upkeep costs. This study has investigated the lift and drag forces on individual blades with experimental and computational analysis. The goal has been to show that these blades delay stall and provide larger lift-to-drag ratios at various angles of attack. Rigid and flexible airfoils were cast from polyurethane and silicone respectively, then lift and drag forces were collected from a load cell during 2-D testing in a wind tunnel. Experimental data was used to validate computational models in OpenFOAM. A finite volume fluid-structure-interaction solver was used to model the flexible blade in fluid flow. Preliminary results indicate delay in stall and larger lift-to-drag ratios by maintaining more optimal angles of attack when flexing. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  19. Observations on Leading-Edge Vortex Development

    NASA Astrophysics Data System (ADS)

    Glenn, Michael; Lang, Amy; Wahidi, Redha; Wilroy, Jacob

    2016-11-01

    Most of an insect's lift comes from the leading edge vortex (LEV) that they produce when flapping their wings. There are many variables that make a LEV either stronger or weaker such as: roughness from the scales on their wings, angle of attack (AoA) of wing, size of the wing, and speed of the wing during flapping motion. Experiments were conducted to study LEV development to gain a better understanding of butterfly flight and the importance of LEV formation. The variables emphasized in this particular experiment were the chord length Reynolds numbers. Two smooth plates of 4 inches and 7 inches were compared in this experiment with Re of 1500 and 3000. Matlab was used to track the LEV location and calculate the vorticity and circulation magnitudes. Differences in LEV vortex strength as a function of chord length will be presented. Funding was provided by NSF REU site Grant EEC 1358991 and CBET Grant 1628600.

  20. OVII and Temperature Limits on the Local Hot Bubble

    NASA Astrophysics Data System (ADS)

    Pirtle, Robert; Petre, N.; McCammon, D.; Morgan, K.; Sauter, P.; Clavadetscher, K.; Fujimoto, R.; Hagihara, T.; Masui, K.; Mitsuda, K.; Takei, Y.; Wang, Q. D.; Yamasaki, N. Y.; Yao, Y.; Yoshino, T.

    2013-01-01

    The observed ¼-keV (ROSAT R12 band) X-ray background originates largely in a region of hot ionized gas roughly 100 pc in extent surrounding the Sun known as the Local Hot Bubble (LHB). The observed flux is quite uniform at low latitudes (|b| < 30°), but there a several large areas at intermediate and high latitudes that are enhanced by factors of 2 - 3. Charge exchange between highly charged ions in the Solar wind and interstellar neutral H and He moving through interplanetary space might provide a very roughly isotropic contribution about equal to the low- latitude flux (Koutroumpa et al. 2008), but cannot produce the enhancements. Correlations with the interstellar absorbing column show that some of these bright regions are apparently due to clumps of hot gas in the Galactic halo, while many of them show no correlation and must be due to extensions of the LHB (Kuntz & Snowden 2000, Bellm & Vaillancourt 2005). Global fits of simple plasma emission spectra give temperatures near 1.0 x 106 K for both LHB and halo emission, but the possibility of a substantial contamination by charge exchange could distort this result in unknown ways. Thermal excitation of O VII is strongly temperature dependent in this range, so we have tried to correlate O VII fluxes measured with Suzaku with variations in ¼-keV intensity from the ROSAT R12 band map to determine the temperature. We take eleven O VII intensity measurements from Yoshino et al. (2009), one from Masui et al. (2009), and an additional eighteen from archival Suzaku pointings and correlate these with the R12 band local and halo intensities as separated by Kunzt & Snowden (2000). The lack of detectable correlation in both cases strongly limits any O VII production by the material producing the enhancements, and upper limits to the temperatures are set. This work was supported in part by the National Science Foundation's REU program through NSF Award AST-1004881 and by NASA grant NNX09AF09G. *present address: Department of Physics, Lewis & Clark College, Portland, OR. This work was supported in part by the National Science Foundation's REU program through NSF Award AST-1004881.

  1. Supporting student skill development in undergraduate research experiences through the development of a self-reflection guide

    NASA Astrophysics Data System (ADS)

    Hubenthal, M.; Brudzinski, M.

    2016-12-01

    There has been an increased emphasis on documenting the benefits of participating in undergraduate research opportunities (URO) and developing an understanding of the factors that influence these benefits. While tools to effectively measure the behavior, attitude, skills, interest, and/or knowledge (BASIK) that result from UROs have matured, little focus has been placed on developing practical tools and strategies to support students and mentors as they work to develop the BASIK being measured. Viewed through the lens of constructivism, a URO can be examined as a cognitive apprenticeship (CA) where learning occurs through several key methods: modeling, coaching, scaffolding, articulation, reflection, and exploration. In a study of UROs as CA, Feldman et al., (2013) found reflection to be one of the least commonly initiated methods employed by interns and mentors, and concluded, "there is need for professors to be more proactive in helping their students gain intellectual proficiency". This work, in its pilot stages, seeks to address this gap through the development of an intern self-reflection guide and implementation plan to further increase students' skill development. The guide is being developed based on IRIS's existing self-reflection tool. However, it has recently been revised to bring its constructs and items into better alignment with those of the Undergraduate Research Student Self-Assessment (URSSA) tool. The URSSA was selected because it is designed to measure skills and has recently undergone a validation study. In addition, it serves as the basis for the development of a new tool, the NSF Biology REU CORE. The revised self-reflection guide and protocol were piloted this summer in IRIS Summer REU program. The alignment between the constructs of the URSSA and the self-reflection guide will be presented along with findings from the 2016 program evaluation. Future development of the intervention will include a validation of the items on the self-reflection guide as well as the development of additional guidance for the mentors about the implementation process. Feldman, A., Divoll, K. A., & Rogan-Klyve, A. (2013). Becoming Researchers: The Participation of Undergraduate and Graduate Students in Scientific Research Groups. Science Education, 97(2), 218-243.

  2. Upgrade to the Cryogenic Hydrogen Gas Target Monitoring System

    NASA Astrophysics Data System (ADS)

    Slater, Michael; Tribble, Robert

    2013-10-01

    The cryogenic hydrogen gas target at Texas A&M is a vital component for creating a secondary radioactive beam that is then used in experiments in the Momentum Achromat Recoil Spectrometer (MARS). A stable beam from the K500 superconducting cyclotron enters the gas cell and some incident particles are transmuted by a nuclear reaction into a radioactive beam, which are separated from the primary beam and used in MARS experiments. The pressure in the target chamber is monitored so that a predictable isotope production rate can be assured. A ``black box'' received the analog pressure data and sent RS232 serial data through an outdated serial connection to an outdated Visual Basic 6 (VB6) program, which plotted the chamber pressure continuously. The black box has been upgraded to an Arduino UNO microcontroller [Atmel Inc.], which can receive the pressure data and output via USB to a computer. It has been programmed to also accept temperature data for future upgrade. A new computer program, with updated capabilities, has been written in Python. The software can send email alerts, create audible alarms through the Arduino, and plot pressure and temperature. The program has been designed to better fit the needs of the users. Funded by DOE and NSF-REU Program.

  3. An Integrative and Collaborative Approach to Creating a Diverse and Computationally Competent Geoscience Workforce

    NASA Astrophysics Data System (ADS)

    Moore, S. L.; Kar, A.; Gomez, R.

    2015-12-01

    A partnership between Fort Valley State University (FVSU), the Jackson School of Geosciences at The University of Texas (UT) at Austin, and the Texas Advanced Computing Center (TACC) is engaging computational geoscience faculty and researchers with academically talented underrepresented minority (URM) students, training them to solve grand challenges . These next generation computational geoscientists are being trained to solve some of the world's most challenging geoscience grand challenges requiring data intensive large scale modeling and simulation on high performance computers . UT Austin's geoscience outreach program GeoFORCE, recently awarded the Presidential Award in Excellence in Science, Mathematics and Engineering Mentoring, contributes to the collaborative best practices in engaging researchers with URM students. Collaborative efforts over the past decade are providing data demonstrating that integrative pipeline programs with mentoring and paid internship opportunities, multi-year scholarships, computational training, and communication skills development are having an impact on URMs developing middle skills for geoscience careers. Since 1997, the Cooperative Developmental Energy Program at FVSU and its collaborating universities have graduated 87 engineers, 33 geoscientists, and eight health physicists. Recruited as early as high school, students enroll for three years at FVSU majoring in mathematics, chemistry or biology, and then transfer to UT Austin or other partner institutions to complete a second STEM degree, including geosciences. A partnership with the Integrative Computational Education and Research Traineeship (ICERT), a National Science Foundation (NSF) Research Experience for Undergraduates (REU) Site at TACC provides students with a 10-week summer research experience at UT Austin. Mentored by TACC researchers, students with no previous background in computational science learn to use some of the world's most powerful high performance computing resources to address a grand geosciences problem. Students increase their ability to understand and explain the societal impact of their research and communicate the research to multidisciplinary and lay audiences via near-peer mentoring, poster presentations, and publication opportunities.

  4. Information Management Strategies for Program Tracking and Formative Evaluation

    NASA Astrophysics Data System (ADS)

    Siegfried, D.; Detrick, L.; Valaitis, S.; Johnson, A.; Thomas, S. H.; Fauver, A.

    2013-05-01

    The Institute for Broadening Participation (IBP) has developed information management systems to facilitate programmatic formative evaluation, tracking and outreach activities. Nearly a decade of design solutions and technical implementations in support of IBP's professional development and mentoring programs for students (including the "Pathways to Ocean Science," "Minorities Striving and Pursuing Higher Degrees of Success" in Earth System Science, and "Pathways to Engineering") has provided IBP with a toolbox of proven strategies for addressing program engagement and participant tracking, outreach, and a variety of other information management needs. In this session, IBP will use case-specific examples to share general design strategies for program participant and activities data collection in REUs and other program types. The cases will illustrate an approach that begins with a review of program logic, objectives, expected outcomes, constraints and requirements, which then informs a comprehensive system design. When implemented, such information systems improve administrative efficiency through streamlined data collection processes and easy-to-use data capture forms, and a corresponding set of reporting tools provides access to data that is crucial for ongoing program improvement. IBP presents this information in response to collaborations with administrators of Research Experience for Undergraduates (REU) programs as well as longer duration programs, who have expressed the need for more comprehensive and easy to use information systems. Recently IBP has also worked with the directors of NSF and NASA funded programs seeking assistance in addressing their formative evaluation needs including system design, information collection, and reporting efforts.

  5. In Search of Stellar Music: Finding Pulsators for the TESS Mission

    NASA Astrophysics Data System (ADS)

    Richey-Yowell, Tyler; Pepper, Joshua; KELT Collaboration

    2017-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will search for small transiting exoplanets orbiting bright stars. One of the additional mission objectives is to observe oscillating variable stars to precisely measure these stars’ masses, radii, and internal structures. Since TESS can observe only a limited number of stars with high enough cadence to detect these oscillations, it is necessary to identify candidates that will yield the most valuable results. Using data from the Kilodegree Extremely Little Telescope (KELT), we searched for bright stars showing oscillations to be included as TESS targets. We found 2,108 variable stars with B-V < 0.5 and P < 5 days. Further analysis will be carried out to establish final candidates. This project was funded by the National Science Foundation grant PHY-1359195 to the Lehigh University REU program.

  6. PRISM Polarimetry of Massive Stars

    NASA Astrophysics Data System (ADS)

    Kerkstra, Brennan; Lomax, Jamie R.; Bjorkman, Karen S.; Bjorkman, Jon Eric; Skiff, Brian; Covey, Kevin R.; Wisniewski, John P.

    2016-01-01

    We present the early results from our long-term, multi-epoch filter polarization survey of massive stars in and around young Galactic clusters. These BVRI polarization data were obtained using the PRISM instrument mounted on the 1.8m Perkins Telescope at Lowell Observatory. We first detail the creation of our new semi-automated polarization data reduction pipeline that we developed to process these data. Next, we present our analysis of the instrumental polarization properties of the PRISM instrument, via observations of polarized and unpolarized standard stars. Finally, we present early results on the total and intrinsic polarization behavior of several isolated, previously suggested classical Be stars, and discuss these results in the context of the larger project.BK acknowledges support from a NSF/REU at the University of Oklahoma. This program was also supported by NSF-AST 11411563, 1412110, and 1412135.

  7. NOAA's Undergraduate Scholarship Program Outcomes and Opportunities

    NASA Astrophysics Data System (ADS)

    Kaplan, M.; Jabanoski, K.; Christenson, T.

    2017-12-01

    NOAA supports about 115 - 150 undergraduates per year through the Ernest F. Hollings Scholarship and the Educational Partnership Program Undergraduate Scholarship. These programs provide tuition support and paid summer internships at NOAA to exceptional students majoring in the geosciences. Multiple methods were used to evaluate program outcomes and track the career trajectories, including mining LinkedIn data and conducting evaluation surveys of recipients as well as students who applied but did not receive the award. Results show more than 75% of scholars continued on to graduate school, primarily in a NOAA mission fields. This compared to only 56% of nonrecipients. More than 60% of alumni had at least one professional record, with the most alumni working in private industry, followed by nongovernmental organizations and federal, state and local government. The evaluation identified 77 other scholarship programs applied to by NOAA scholarship recipients. The most commonly reported program was the NSF Research Experiences for Undergraduates (REU) for which 20% of scholars applied and 46% of applications were successful. Other common scholarships included the Goldwater Scholarship (received by 5% of NOAA scholars) and the Udall Scholarship (received by 4% of scholars). In the most recent class of 118 undergraduate scholars, 24% reported having another research experience by the time they arrived for orientation at the end of their sophomore year. These results suggest coordination across scholarship opportunities may be useful to engage and retain students in geoscience fields.

  8. Climate Change and Impacts Research Experiences for Urban Students

    NASA Astrophysics Data System (ADS)

    Marchese, P.; Carlson, B. E.; Rosenzweig, C.; Austin, S. A.; Peteet, D. M.; Druyan, L.; Fulakeza, M.; Gaffin, S.; Scalzo, F.; Frost, J.; Moshary, F.; Greenbaum, S.; Cheung, T. K.; Howard, A.; Steiner, J. C.; Johnson, L. P.

    2011-12-01

    Climate change and impacts research for undergraduate urban students is the focus of the Center for Global Climate Research (CGCR). We describe student research and significant results obtained during the Summer 2011. The NSF REU site, is a collaboration between the City University of New York (CUNY) and the NASA Goddard Institute for Space Studies (GISS). The research teams are mentored by NASA scientists and CUNY faculty. Student projects include: Effects of Stratospheric Aerosols on Tropical Cyclone Activity in the North Atlantic Basin; Comparison of Aerosol Optical Depth and Angstrom Exponent Retrieved by AERONET, MISR, and MODIS Measurements; White Roofs to the Rescue: Combating the Urban Heat Island Effect; Tropospheric Ozone Investigations in New York City; Carbon Sequestration with Climate Change in Alaskan Peatlands; Validating Regional Climate Models for Western Sub-Sahara Africa; Bio-Remediation of Toxic Waste Sites: Mineral Characteristics of Cyanide-Treated Mining Waste; Assessment of an Ocean Mixing Parameterization for Climate Studies; Comparative Wind Speed through Doppler Sounding with Pulsed Infrared LIDAR; and Satellite Telemetry and Communications. The CGCR also partners with the New York City Research Initiative (NYCRI) at GISS. The center is supported by NSF ATM-0851932 and the American Recovery and Reinvestment Act of 2009 (ARRA).

  9. A Spitzer/glimpse Search For Galaxies: What Zone Of Avoidance?

    NASA Astrophysics Data System (ADS)

    Parsons, Lamarr; Benjamin, R. A.; GLIMPSE Team

    2007-12-01

    We report the results of a visual search for galaxy candidates in an area of twelve square degrees covered by the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire-3D (GLIMPSE-3D) Spitzer Legacy programs. The areas searched consisted of three 2x2 degree blocks, with galactic coordinates centered at (330, -02), (330, +02) and (331, -02). All three regions were imaged for 2.4 seconds in the 3.6, 4.5, 5.8 and 8.0 µm bands using IRAC on the Spitzer Space Telescope. We report a total of 114 galaxy candidates, yielding an average of 9.5 candidates per square degree. We also show that the galaxy detection rate is dependent on galactic latitude, probably due to the lower diffuse 8 micron background at high latitudes. We have found that the detection rate increases from 4 per square degree (at b=1º) to 12 per square degree (at b=3º). We present the physical parameters of these galaxies, discuss their clustering, and note which have been previously detected in other wavebands/surveys. This work was supported by the National Science Foundation's REU program and the Department of Defense's ASSURE program through NSF Award AST-0453442.

  10. Variability of Massive Young Stellar Objects in Cygnus-X

    NASA Astrophysics Data System (ADS)

    Thomas, Nancy H.; Hora, J. L.; Smith, H. A.

    2013-01-01

    Young stellar objects (YSOs) are stars in the process of formation. Several recent investigations have shown a high rate of photometric variability in YSOs at near- and mid-infrared wavelengths. Theoretical models for the formation of massive stars (1-10 solar masses) remain highly idealized, and little is known about the mechanisms that produce the variability. An ongoing Spitzer Space Telescope program is studying massive star formation in the Cygnus-X region. In conjunction with the Spitzer observations, we have conducted a ground-based near-infrared observing program of the Cygnus-X DR21 field using PAIRITEL, the automated infrared telescope at Whipple Observatory. Using the Stetson index for variability, we identified variable objects and a number of variable YSOs in our time-series PAIRITEL data of DR21. We have searched for periodicity among our variable objects using the Lomb-Scargle algorithm, and identified periodic variable objects with an average period of 8.07 days. Characterization of these variable and periodic objects will help constrain models of star formation present. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 0754568 and by the Smithsonian Institution.

  11. Complex Plasma Physics and Rising Above the Gathering Storm

    NASA Astrophysics Data System (ADS)

    Hyde, Truell

    2008-11-01

    Research in complex plasma is prevalent across a variety of regimes ranging from the majority of plasma processing environments to many astrophysical settings. Dust particles suspended within such plasmas acquire a charge from collisions with electrons and ions in the plasma. Depending upon the ratio of their interparticle potential energy to their average kinetic energy, once charged these particles can form a gaseous, liquid or crystalline structure with short to longer range ordering. The field of complex plasmas thus offers research opportunities across a wide range of academic disciplines including physics, chemistry, biology, mathematics, electrical engineering and nanoscience. The field of complex plasmas also offers unique educational research opportunities for combating many of the issues raised in Rising Above the Gathering Storm, recently published by the National Academies Press. CASPER's Educational Outreach programs, supported by the National Science Foundation, the Department of Education and the Department of Labor takes advantage of these opportunities through a variety of avenues including a REU / RET program, a High School Scholars Program, integrated curriculum development and the CASPER Physics Circus. Together, these programs impact thousands of students and parents while providing K-12 teachers with curriculum, supporting hands-on material and support for introducing plasma and basic physical science concepts into the classroom. Both research results and educational outreach concepts from the above will be discussed.

  12. Highlighting Successful Strategies for Engaging Minority Students in the Geosciences

    NASA Astrophysics Data System (ADS)

    Liou-Mark, J.; Blake, R.; Norouzi, H.; Vladutescu, D. V.; Yuen-Lau, L.

    2017-12-01

    Igniting interest and creativity in students for the geosciences oftentimes require innovation, bold `outside-the-box' thinking, and perseverance, particularly for minority students for whom the preparation for the discipline and its lucrative pathways to the geoscience workforce are regrettably unfamiliar and woefully inadequate. The enrollment, retention, participation, and graduation rates of minority students in STEM generally and in the geosciences particularly remain dismally low. However, a coupled, strategic geoscience model initiative at the New York City College of Technology (City Tech) of the City University of New York has been making steady in-roads of progress, and it offers practical solutions to improve minority student engagement in the geosciences. Aided by funding from the National Science Foundation (NSF), two geoscience-centric programs were created from NSF REU and NSF IUSE grants, and these programs have been successfully implemented and administered at City Tech. This presentation shares the hybrid geoscience research initiatives, the multi-tiered mentoring structures, the transformative geoscience workforce preparation, and a plethora of other vital bastions of support that made the overall program successful. Minority undergraduate scholars of the program have either moved on to graduate school, to the geoscience workforce, or they persist with greater levels of success in their STEM disciplines.

  13. Life's Lessons in the Lab: A Summer of Learning from Undergraduate Research Experiences

    ERIC Educational Resources Information Center

    Nadelson, Louis S.; Warner, Don; Brown, Eric

    2015-01-01

    Research experiences for undergraduates (REUs) seek to increase the participating students' knowledge and perceptions of scientific research through engagement in laboratory research and related activities. Various REU outcomes have been investigated including influence on participants' content knowledge, career plans, and general perceptions of…

  14. SUSTAINABLE MANAGEMENT APPROACHES AND REVITALIZATION TOOLS-ELECTRONIC (SMARTE): OVERVIEW AND DEMONSTRATION FOR FINAL PHASE 3 CONFERENCE

    EPA Science Inventory

    The U.S. contingent of the U.S.-German Bilateral Working Group is developing Sustainable Management Approaches and Revitalization Tools-electronic (SMARTe). SMARTe is a web-based, decision support system designed to assist stakeholders in developing and evaluating alternative reu...

  15. 77 FR 49832 - Notice of Intent To Seek Approval To Establish an Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-17

    ... in basic and applied research in STEM. Consult With Other Agencies & the Public NSF has not consulted...). SUPPLEMENTARY INFORMATION: Title: Grantee Reporting Requirements for the Research Experiences for Undergraduates... Information Collection The Research Experiences for Undergraduates (REU) Reporting Module is a component of...

  16. Visualizing Gaia Data with Science Teachers at AMNH

    NASA Astrophysics Data System (ADS)

    Faherty, Jacqueline K.; Desir, Deion; Coker, Kristina; Nelson, Olivia; Vasquez, Chelsea; Smithka, Iliya

    2018-01-01

    The American Museum of Natural History is an accredited graduate school and offers an innovative Master of Arts in Teaching (MAT) degree that leverages its unique scientific resources and long history of leadership in teacher education and professional development. The MAT program consists of 15-months of intensive mentoring, classroom experience, lab work, and professional development with AMNH scientists and educators. It is then followed by a 4 year commitment by all degree awardees to teach at an in needs New York high school. During the second summer of their first 15 months of the program, students are paired with a scientific mentor to obtain an REU like experience in Astronomy, Geology or Paleontology. During the summer of 2017 five teachers worked on incorporating a subset of the Tycho Gaia Astrometric Survey into the Partiview open source software. The result is an interactive experience where we can fly live through all of TGAS and highlight nearby clusters and associations. The tool is (1) a demonstration of the power of Partiview at visualizing a vast dataset such as Gaia, and (2) an extremely powerful instrument for teaching science through visualization.

  17. Supernova Photometric Lightcurve Classification

    NASA Astrophysics Data System (ADS)

    Zaidi, Tayeb; Narayan, Gautham

    2016-01-01

    This is a preliminary report on photometric supernova classification. We first explore the properties of supernova light curves, and attempt to restructure the unevenly sampled and sparse data from assorted datasets to allow for processing and classification. The data was primarily drawn from the Dark Energy Survey (DES) simulated data, created for the Supernova Photometric Classification Challenge. This poster shows a method for producing a non-parametric representation of the light curve data, and applying a Random Forest classifier algorithm to distinguish between supernovae types. We examine the impact of Principal Component Analysis to reduce the dimensionality of the dataset, for future classification work. The classification code will be used in a stage of the ANTARES pipeline, created for use on the Large Synoptic Survey Telescope alert data and other wide-field surveys. The final figure-of-merit for the DES data in the r band was 60% for binary classification (Type I vs II).Zaidi was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  18. Social and ethical dimensions of nanoscale science and engineering research.

    PubMed

    Sweeney, Aldrin E

    2006-07-01

    Continuing advances in human ability to manipulate matter at the atomic and molecular levels (i.e. nanoscale science and engineering) offer many previously unimagined possibilities for scientific discovery and technological development. Paralleling these advances in the various science and engineering sub-disciplines is the increasing realization that a number of associated social, ethical, environmental, economic and legal dimensions also need to be explored. An important component of such exploration entails the identification and analysis of the ways in which current and prospective researchers in these fields conceptualize these dimensions of their work. Within the context of a National Science Foundation funded Research Experiences for Undergraduates (REU) program in nanomaterials processing and characterization at the University of Central Florida (2002-2004), here I present for discussion (i) details of a "nanotechnology ethics" seminar series developed specifically for students participating in the program, and (ii) an analysis of students' and participating research faculty's perspectives concerning social and ethical issues associated with nanotechnology research. I conclude with a brief discussion of implications presented by these issues for general scientific literacy and public science education policy.

  19. The Snapshot A Star SurveY (SASSY)

    NASA Astrophysics Data System (ADS)

    Garani, Jasmine I.; Nielsen, Eric; Marchis, Franck; Liu, Michael C.; Macintosh, Bruce; Rajan, Abhijith; De Rosa, Robert J.; Jinfei Wang, Jason; Esposito, Thomas M.; Best, William M. J.; Bowler, Brendan; Dupuy, Trent; Ruffio, Jean-Baptiste

    2018-01-01

    The Snapshot A Star Survey (SASSY) is an adaptive optics survey conducted using NIRC2 on the Keck II telescope to search for young, self-luminous planets and brown dwarfs (M > 5MJup) around high mass stars (M > 1.5 M⊙). We present the results of a custom data reduction pipeline developed for the coronagraphic observations of our 200 target stars. Our data analysis method includes basic near infrared data processing (flat-field correction, bad pixel removal, distortion correction) as well as performing PSF subtraction through a Reference Differential Imaging algorithm based on a library of PSFs derived from the observations using the pyKLIP routine. We present the results from the pipeline of a few stars from the survey with analysis of candidate companions. SASSY is sensitive to companions 600,000 times fainter than the host star withint the inner few arcseconds, allowing us to detect companions with masses ~8MJup at age 110 Myr. This work was supported by the Leadership Alliance's Summer Research Early Identification Program at Stanford University, the NSF REU program at the SETI Institute and NASA grant NNX14AJ80G.

  20. Experimental Study of Unsteady Flow Separation in a Laminar Boundary Layer

    NASA Astrophysics Data System (ADS)

    Bonacci, Andrew; Lang, Amy; Wahidi, Redha; Santos, Leonardo

    2017-11-01

    Flow separation, caused by an adverse pressure gradient, is a major problem in many applications. Reversing flow near the wall is the first sign of incipient separation and can bristle shark scales which may be linked to a passive, flow actuated separation control mechanism. An investigation of how this backflow forms and how it interacts with shark skin is of interest due to the fact that this could be used as a bioinspired means of initiating flow control. A water tunnel experiment aims to study unsteady separation with a focus on the reversing flow development near the wall within a flat plate laminar boundary layer (Re on order of 105) as an increasing adverse pressure gradient is induced by a rotating cylinder. Unsteady reversing flow development is documented using DPIV. Funding was provided by the National Science Foundation under the Research Experience for Undergraduates (REU) program (EEC 1659710) and the Army Research Office.

  1. Characteristics of an Imaging Polarimeter for the Powell Observatory

    NASA Astrophysics Data System (ADS)

    Hall, Shannon; Henson, G.

    2010-01-01

    A dual-beam imaging polarimeter has been built for use on the 14 inch Schmidt-Cassegrain telescope at the ETSU Harry D. Powell Observatory. The polarimeter includes a rotating half-wave plate and a Wollaston prism to separate light into two orthogonal linearly polarized rays. A TEC cooled CCD camera is used to detect the modulated polarized light. We present here measurements of the polarization of polarimetric standard stars. By measuring unpolarized and polarized standard stars we are able to establish the instrumental polarization and the efficiency of the instrument. The polarimeter will initially be used as a dedicated instrument in an ongoing project to monitor the eclipsing binary star, Epsilon Aurigae. This project was funded by a partnership between the National Science Foundation (NSF AST-0552798), Research Experience for Undergraduates (REU), and the Department of Defense (DoD) ASSURE (Awards to Stimulate and Support Undergraduate Research Experiences) programs.

  2. Mapping the Habitable Zone of Exoplanets with a 2D Energy Balance Model

    NASA Astrophysics Data System (ADS)

    Moon, Nicole Taylor; Dr. Lisa Kaltenegger, Dr. Ramses Ramirez

    2018-01-01

    Traditionally, the habitable zone has been defined as the distance at which liquid water could exist on the surface of a rocky planet. However, different complexity models (simplified and fast:1D, and complex and time-intense:3D) models derive different boundaries for the habitable zone. The goal of this project was to test a new intermediate complexity 2D Energy Balance model, add a new ice albedo feedback mechanism, and derive the habitable zone boundaries. After completing this first project, we also studied how other feedback mechanisms, such as the presence of clouds and the carbonate-silicate cycle, effected the location of the habitable zone boundaries using this 2D model. This project was completed as part of a 2017 summer REU program hosted by Cornell's Center for Astrophysics and Plantary Sciecne and in partnership with the Carl Sagan Institute.

  3. Production of Radioactive Beams on the Proton Dripline Using MARS at Texas A&M

    NASA Astrophysics Data System (ADS)

    Roundey, Rebekah; Roeder, Brian; Youngs, Michael

    2017-09-01

    Exotic nuclei near the proton dripline are of interest for research in nuclear astrophysics, especially in the study of the r-p process. A 58Ni on Ni reaction at higher energies has been shown to successfully populate isotopes on the dripline, but this reaction has not previously been used at the Cyclotron Institute. In this experiment, a 58Ni beam at 36 MeV/u was impinged on Nickel and Beryllium targets to determine which isotopes could be produced. The resulting fragments were measured with two Silicon detectors in order to determine energy loss and production rates for each isotope. The effects of the different targets and the presence of a Carbon stripper foil on production rates will be presented and compared with simulations from the LISE++ program. Funded by a NSF REU Grant (PHY-1659847) and a DOE Grant (DE-FG02-93ER40773).

  4. LiDAR Mapping of Earthquake Uplifted Paleo-shorelines, Southern Wairarapa Coast, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Valenciano, J.; Angenent, J.; Marshall, J. S.; Clark, K.; Litchfield, N. J.

    2017-12-01

    The Hikurangi subduction margin along the east coast of the North Island, New Zealand accommodates oblique convergence of the Pacific Plate westward beneath the Australian plate at 45 mm/yr. Pronounced forearc uplift occurs at the southern end of the margin along the Wairarapa coast, onshore of the subducting Hikurangi plateau. Along a narrow coastal lowland, a series of uplifted Holocene marine terraces and beach ridges preserve a geologic record of prehistoric coseismic uplift events. In January 2017, we participated in the Research Experience for Undergraduates (REU) program of the NSF SHIRE Project (Subduction at Hikurangi Integrated Research Experiment). We visited multiple coastal sites for reconnaissance fieldwork to select locations for future in-depth study. For the coastline between Flat Point and Te Kaukau Point, we used airborne LiDAR data provided by Land Information New Zealand (LINZ) to create ArcGIS digital terrain models for mapping and correlating uplifted paleo-shorelines. Terrace elevations derived from the LiDAR data were calibrated through the use of Real Time Kinematic (RTK) GPS surveying at one field site (Glenburn Station). Prior field mapping and radiocarbon dating results (Berryman et al., 2001; Litchfield and Clark, 2015) were used to guide our LiDAR mapping efforts. The resultant maps show between four and seven uplifted terraces and associated beach ridges along this coastal segment. At some sites, terrace mapping and lateral correlation are impeded by discontinuous exposures and the presence of landslide debris, alluvial fan deposits, and sand dunes. Tectonic uplift along the southern Hikurangi margin is generated by a complex interaction between deep megathrust slip and shallow upper-plate faulting. Each uplifted Holocene paleo-shoreline is interpreted to represent a single coseismic uplift event. Continued mapping, surveying, and age dating may help differentiate between very large margin-wide megathrust earthquakes (M8.0-9.0+) and smaller, more localized upper-plate thrust events (M7.0-8.0). Both of these earthquake types pose a significant seismic and tsunami hazard for New Zealand residents.

  5. Trio of stellar occultations by Pluto One Year Prior to New Horizons' Arrival

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Person, Michael J.; Bosh, Amanda S.; Gulbis, Amanda A. S.; Zuluaga, Carlos A.; Levine, Stephen; Osip, David J.; Schiff, Adam R.; Seeger, Christina H.; Babcock, Bryce A.; Rojo, Patricio; Kosiarek, Molly R.; Servajean, Elise

    2015-01-01

    Our campaign in July 2014 yielded three successful stellar occultations (~m=15, 17, and 18) of Pluto (~m=14), observed from telescopes in New Zealand, Australia, and Chile. Telescopes involved included Chile: Magellan's Clay (6.5 m), SOAR (4.1 m), Carnegie's DuPont (2.4 m); Australia: AAT (4 m); and Canterbury's Mt. John McLellan (1-m); as well as various smaller telescopes in Australia and Chile. One of the events was also observed, with negative results, from GROND on La Silla (2.2 m) and SMARTS's ANDICAM at CTIO (1.3 m). Though our observations were coordinated across continents, each successfully observed event was seen from only one site because of bad weather at the other sites. Two of the events were uniquely observed from Mt. John (Pasachoff et al., DPS 2014) and one, with only Chile sites in the predicted path, from the Clay (Person et al., DPS 2014). This last event was expected to be of the brightest star with the largest telescope we have ever observed for a Pluto occultation, but clouds arrived at the 6.5-m Clay 90 s before the predicted time; a 1% occultation was nonetheless seen and eventually, confirmed by Keck AO observations, to be of a 15th magnitude star previously hidden in the brightness of the 12th mag star. Our scientific conclusion is that as of these observations, one year before New Horizons' passage of Pluto, the atmosphere of Pluto remained robust and of the same size. Details on our analysis of the three events will be presented.Acknowledgments: This work was supported in part by NASA Planetary Astronomy grants to Williams College (NNX12AJ29G) and to MIT (NNX10AB27G), as well as grants from USRA (#8500-98-003) and Ames Research (#NAS2-97-01) to Lowell Observatory. A.R.S. was supported by NSF grant AST-1005024 for the Keck Northeast Astronomy Consortium REU, with partial support from U.S. DoD's ASSURE program. P.R. acknowledges support from FONDECYT through grant 1120299. J.M.P. thanks Andrew Ingersoll and Caltech Planetary Astronomy for hospitality.

  6. Development of a global education environment to study the Equatorial Ionosphere with Cognitive Radars

    NASA Astrophysics Data System (ADS)

    Urbina, J. V.

    2011-12-01

    The author has recently been awarded the NSF Career award to develop a radar with cognitive sensing capabilities to study Equatorial plasma instabilities in the Peruvian Andes. Educational research has shown that a rich learning environment contributes tremendously toward improvement in learning achievements and also attitudes toward studies. One of the benefits of this project is that it provides such an environment and a global platform to involve several students at both graduate and undergraduate levels from the US, Puerto Rico, and Peru, and who will benefit from designing, installing, and deploying a radar in multi-instrument science campaigns. In addition to working in the laboratories, students will gain invaluable real world experience building this complex instrument and making it work under challenging conditions at remote sites. The PI will describe how these components are being developed in a Freshman Seminar course and Graduate courses in the Department of Electrical Engineering at Penn State University, and how they are aligned well with the department's and university's strategy for greater global engagement through a network of Global Engagement Nodes in South America (GENSA). The issues of mentoring, recruitment, and retention become particularly important in consideration of the educational objective of this career project to involve underrepresented students with diverse backgrounds and interest them in research projects. The author is working very closely with the Office of Engineering Diversity to leverage existing programs at Penn State designed to increase the participation of women and minority students in science and engineering research: (a) WISER (Women In Science and Engineering Research), and (b) MURE (Minority Undergraduate Research Experience). The Electrical Engineering Department at Penn State is also currently an NSF REU (Research Experience for Undergraduates) site. The PI will also present his efforts in connecting his career project in providing research experiences during summer to underrepresented groups as well as students from schools without extensive research environments.

  7. Experimental Study of Unsteady Separation in a Laminar Boundary Layer

    NASA Astrophysics Data System (ADS)

    Bonacci, Andrew; Lang, Amy; Wahidi, Redha; Santos, Leo

    2016-11-01

    Separation, caused by an adverse pressure gradient, can be a major problem to aircraft. Reversing flow occurs in separated regions and an investigation of how this backflow forms is of interest due to the fact that this could be used as a means of initiating flow control. Specifically, backflow can bristle shark scales which may be linked to a passive, flow actuated separation control mechanism. An experiment was conducted in a water tunnel to replicate separation, with a focus on the reversing flow development near the wall within a laminar boundary layer. Using a rotating cylinder, an adverse pressure gradient was induced creating a separated region over a flat plate. In this experiment the boundary layer grows to sizes great enough that the scale of the flow is increased, making it more measurable to DPIV. In the future, this research can be utilized to better understand flow control mechanisms such as those enabled by shark skin. Funding from Army Research Office and NSF REU site Grant EEC 1358991 is greatly appreciated.

  8. Camera Development for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Moncada, Roberto Jose

    2017-01-01

    With the Cherenkov Telescope Array (CTA), the very-high-energy gamma-ray universe, between 30 GeV and 300 TeV, will be probed at an unprecedented resolution, allowing deeper studies of known gamma-ray emitters and the possible discovery of new ones. This exciting project could also confirm the particle nature of dark matter by looking for the gamma rays produced by self-annihilating weakly interacting massive particles (WIMPs). The telescopes will use the imaging atmospheric Cherenkov technique (IACT) to record Cherenkov photons that are produced by the gamma-ray induced extensive air shower. One telescope design features dual-mirror Schwarzschild-Couder (SC) optics that allows the light to be finely focused on the high-resolution silicon photomultipliers of the camera modules starting from a 9.5-meter primary mirror. Each camera module will consist of a focal plane module and front-end electronics, and will have four TeV Array Readout with GSa/s Sampling and Event Trigger (TARGET) chips, giving them 64 parallel input channels. The TARGET chip has a self-trigger functionality for readout that can be used in higher logic across camera modules as well as across individual telescopes, which will each have 177 camera modules. There will be two sites, one in the northern and the other in the southern hemisphere, for full sky coverage, each spanning at least one square kilometer. A prototype SC telescope is currently under construction at the Fred Lawrence Whipple Observatory in Arizona. This work was supported by the National Science Foundation's REU program through NSF award AST-1560016.

  9. RNA Secondary Structure Prediction by Using Discrete Mathematics: An Interdisciplinary Research Experience for Undergraduate Students

    ERIC Educational Resources Information Center

    Ellington, Roni; Wachira, James; Nkwanta, Asamoah

    2010-01-01

    The focus of this Research Experience for Undergraduates (REU) project was on RNA secondary structure prediction by using a lattice walk approach. The lattice walk approach is a combinatorial and computational biology method used to enumerate possible secondary structures and predict RNA secondary structure from RNA sequences. The method uses…

  10. The UCAR SOARS Program: Strategies for Supplementing Undergraduate Research Experience

    NASA Astrophysics Data System (ADS)

    Pandya, R. E.

    2005-12-01

    Many REU programs have a goal of recruiting students to continue in the sciences. Undergraduate research is a successful strategy for engaging talented undergraduates to think about a career in science, encouraging them to purse graduate degrees, and for preparing them to succeed in graduate school. In the Significant Opportunities for Atmospheric Research (SOARS) program, we supplement undergraduate research with several strategies as part of an undergraduate-to-graduate bridge program aimed at broadening participation in the atmospheric and related sciences. In addition to a 10-week research program, SOARS also includes a formal mentoring program, writing workshop, vigorous learning community, and extensive professional development opportunities. Our presentation will describe these research-extending strategies in SOARS in more detail, with an eye toward how such strategies might be adapted for other programs. To do this, we will draw on the results of a major, independent evaluation of the SOARS program to determine the relative importance of these strategies in the overall success of the SOARS program. In the 10 yeas since SOARS creations, 98 students have participated in the program. Of those participants, 18 are still enrolled as undergraduates, and 55 have gone on to purse graduate school in the atmospheric sciences. Overall, this represents a graduate school placement rate of 69% and an overall retention rate of 82%. Of the 27 SOARS participants who have entered the workforce, 23 are in STEM related disciplines. Finally, 3 SOARS participants have already earned their PhD, and 32 have earned Master's. These numbers are especially significant given that SOARS participants come from groups that have been historically under-represented in the atmospheric sciences.

  11. Population Synthesis of Radio and Y-ray Millisecond Pulsars Using Markov Chain Monte Carlo

    NASA Astrophysics Data System (ADS)

    Gonthier, Peter L.; Billman, C.; Harding, A. K.

    2013-04-01

    We present preliminary results of a new population synthesis of millisecond pulsars (MSP) from the Galactic disk using Markov Chain Monte Carlo techniques to better understand the model parameter space. We include empirical radio and γ-ray luminosity models that are dependent on the pulsar period and period derivative with freely varying exponents. The magnitudes of the model luminosities are adjusted to reproduce the number of MSPs detected by a group of ten radio surveys and by Fermi, predicting the MSP birth rate in the Galaxy. We follow a similar set of assumptions that we have used in previous, more constrained Monte Carlo simulations. The parameters associated with the birth distributions such as those for the accretion rate, magnetic field and period distributions are also free to vary. With the large set of free parameters, we employ Markov Chain Monte Carlo simulations to explore the large and small worlds of the parameter space. We present preliminary comparisons of the simulated and detected distributions of radio and γ-ray pulsar characteristics. We express our gratitude for the generous support of the National Science Foundation (REU and RUI), Fermi Guest Investigator Program and the NASA Astrophysics Theory and Fundamental Program.

  12. University of Maryland MRSEC - News

    Science.gov Websites

    . Come by to make silly putty polymers, UV-sensitive color-changing bead bracelets, or try out the UV -sensitive color-changing nail polish. We hope to see you there! [04/18/13] Former MRSEC REU Student PowerPoint, you may download the free PowerPoint Viewer to view the slides. [07/06/12] MRSEC Ph.D. student

  13. Measurement of Motion Transfer Functions for Mirror Suspensions

    NASA Astrophysics Data System (ADS)

    Stuver, Amber; Beilby, Mark; Glancy, Aran; Gonzalez, Gabriela

    2001-04-01

    Interferometric gravitational wave detectors, such as LIGO, use mirrors suspended in pendulums. The current LIGO dectors use simple pendulums, but advanced LIGO detectors will use multiple pendulums with some stages on soft vertical springs. A drawback of the a multiple pendulum design is that it is difficult to model and predict cross couplings from one vibrational mode to another due to slight unavoidable asymmetries in the real system. Of most concern are the couplings to motion along the optical axis and into angular motions, which have the most potential to contaminate data. Our research focuses on the experimental testing of the pendulum designs for cross couplings with a special dedicated shaking stage. The cross couplings in each degree of freedom, their isolation and damping are investigated in this research though the measurement of transfer functions as filtered though the suspension system. This research is supported by The Pennsylvania State University, the NSF Grant no. PHY-9870032, and the REU program at The Pennsylvania State University.

  14. Vibration isolation/suppression: research experience for undergraduates in mechatronics and smart structures

    NASA Astrophysics Data System (ADS)

    Fonda, James; Rao, Vittal S.; Sana, Sridhar

    2001-08-01

    This paper provides an account of a student research project conducted under the sponsoring of the National Science Foundation (NSF) program on Research Experience for Undergraduates (REU) in Mechatronics and Smart Strictures in the summer of 2000. The objective of the research is to design and test a stand-alone controller for a vibration isolation/suppression system. The design specification for the control system is to suppress the vibrations induced by the external disturbances by at least fiver times and hence to achieve vibration isolation. Piezo-electric sensors and actuators are utilized for suppression of unwanted vibrations. Various steps such as modeling of the system, controller design, simulation, closed-loop testing using d- Space rapid prototyping system, and analog control implementation are discussed in the paper. Procedures for data collection, the trade-offs carried out in the design, and analog controller implementation issues are also presented in the paper. The performances of various controllers are compared. The experiences of an undergraduate student are summarized in the conclusion of the paper.

  15. SNR 1E0102.2-7219 after Six Years with Chandra

    NASA Astrophysics Data System (ADS)

    Rutkowski, M. J.; Schlegel, E. M.; Keohane, J.

    2005-12-01

    We present Chandra X-ray Observatory archived observations of the supernova remnant 1E0102.2-7219 in the Small Magellanic Cloud. Combining 22 ACIS-I observations for 230 ks of total exposure time, we present ACIS images with an unprecedented signal to noise ratio for this remnant. We present three upper limits on the X-ray flux for the remnant's elusive central compact object, which are consistent with current neutron star cooling models, based on a Cas A-like blackbody spectrum. Additionally, we discuss the elliptical structure of the remnant and the relative positions of the blast wave, the reverse shock, and the extent of 1E0102.2-7219's rim. This research was supported by the NSF REU Program at SAO under Eric Schlegel, whose research was supported by contract number NAS8-39073 from NASA to SAO for operation of the Chandra X-Ray Observatory. Jonathan Keohane's research was supported by Chandra award GO3-4070C.

  16. Multiple Near Wake Patterns Behind Annular Rings

    NASA Astrophysics Data System (ADS)

    Zhang, Jinzhong; Higuchi, Hiroshi; Muzas, Brian K.; Furuya, Shojiro

    1996-11-01

    Wake interactions behind concentric annular rings at different spacing ratios were experimentally investigated. The flow visualization, laser Doppler velocimetry data and results from the particle tracking velocimetry are presented and discussed. Jets through individual slots merged in multiply-stable, axisymmetric manners. Most flow patterns were persistent unless the flow was strongly disturbed. The vortex interactions from individual annular elements were also axisymmetric in the near wake. This is in contrast to the asymmetric flows observed earlier behind two-dimensional slotted plates (Higuchi et al. J. Aircraft 26 1989, Phys. Fluids 6(1), 1994). The intermediate wake, however, was dominated by large scale, three-dimensional wake motions even at moderate porosity. Onset of the specific flow patterns was associated with the interactions among start-up vortices. Given model geometry, different turbulent structures and mean velocity profiles were observed in the intermediate wake depending on the near wake pattern. *BKM was a NSF-REU Program undergrad. from Princeton U. and SF was from Mitsubishi Heavy Industries. This work was suppoted in part by the Naval Air Warfare Center.

  17. An Analysis of Coupling between the x1 and x12 Interferometers for LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Howard, Brittany

    2017-01-01

    Due to tolerances in the manufacturing process, noise from the jittering of the spacecraft housing LISA Pathfinder (LPF) is appearing in the differential measurement between its two test masses (TM's). This phenomenon manifests as a small but measurable coupling between the readouts of LPF's two heterodyne interferometers, x1 and x12. In this study, two LISA Pathfinder experiments are analyzed using three methods in an effort to characterize and quantify the coupling as well as to potentially identify its source. The main question considered is this: does the coupling change with the absolute displacement between the TM's? As a result of this work, reliable values for coupling between LPF's x1 and x12 interferometers are found, and they are seen to depend on the absolute displacement between the test masses to some degree. Completed at the Albert Einstein Institute for Gravitational Physics under the International REU program from the University of Florida.

  18. Lost in Loess: Paleomagnetic investigation into loess and tephra deposits in interior Alaska

    NASA Astrophysics Data System (ADS)

    Semler, L.; Arnold, K. E.; Williams, D.; Morton, J.; Layer, P. W.; Stone, D. B.; Beget, J.; Schaefer, J.

    2003-12-01

    As a part of a NSF-funded Research Experience for Undergraduates (REU) program at the University of Alaska Fairbanks, loess and tephra samples were collected at a road cut near Tok, Alaska, to determine if the site was suitable for paleoclimate reconstruction of the Pleistocene. Oriented cubes and cores were obtained from a section of loess just below the Sheep Creek tephra dated at 190 +/- 20 ka, through the Tetlin tephra (1.2 meters below the Sheep Creek tephra) dated at 630 +/- 50 ka to two meters below the Tetlin tephra. The accumulated amount of loess between dated tephra layers suggests a span of more than one million years for the whole section assuming a constant sedimentation rate for the loess. The samples were measured for natural remanent magnetization (NRM) and magnetic susceptibility before magnetic cleaning techniques (Alternating Field Demagnetization and Thermal Demagnetization) were employed. Samples were analyzed using a cryogenic magnetometer. The demagnetizations show stable magnetic vectors and demonstrate that loess is a reliable paleomagnetic recorder. At Tok, we found that the entire section is of normal polarity and shows no sign of the 780 ka Brunhes-Matuyama polarity reversal, which was expected to be 42 cm below the Tetlin tephra. Absence of the reversal may be due to discontinuities or other changes in the sedimentation rate in the loess, a problem with the sampling methods, or incorrect ages of the tephras. Based on our studies, we feel that changing rates of loess deposition or other unseen discontinuities are the reason the reversal was not found. Because of the uncertainty of the depositional history of the Tok loess, this section is not useful for obtaining a continuous record of ancient climate.

  19. CTIO History | CTIO

    Science.gov Websites

    Preserving the Dark Skies La Oficina de Protección de la Calidad del Cielo del Norte de Chile - OPCC Light Pollution StarLight Universe The World at Night (TWAN) International Dark-Sky Association (IDA) Students REU ‹› You are here CTIO Home » About » CTIO History CTIO History Brief History of THE CERRO

  20. Analysis of the WindSat Receiver Frequency Passbands

    DTIC Science & Technology

    2014-09-12

    water vapor ( PWV ) calculated for each atmospheric profile. The differences for the 18.7 and 23.8 GHz bands vary with PWV . Modeled Tb’s for receiver...precipitable water vapor ( PWV ). WindSat Receiver Frequency Passbands 11 22 24 26 28 30 32 34 36 38 40 REU Temperature (°C) 0 1 2 3 4 5 P er ce nt o f O cc

  1. An REU Project on the Precambrian Rocks of Yellowstone National Park: Some lessons learned

    NASA Astrophysics Data System (ADS)

    Henry, D.; Mogk, D. W.; Mueller, P. A.; Foster, D. A.

    2014-12-01

    An NSF-funded REU project (2011-2013), based in Yellowstone National Park (YNP), was designed to characterize the geology, geochemistry and geochronology of Precambrian rocks in northern YNP. Over two field seasons two cadres of 12 students (12 women and 12 men) were chosen from small-to-large state universities and private colleges. REU students participated in three major activities constituting a complete research experience: Field studies involved geologic mapping and sampling of Precambrian basement; formulation of testable research questions by smaller working groups; and mapping and sampling projects to address research questions; Analytical studies, sample preparation immediately followed field work with petrographic analysis at students' home institutions and a week-long visit to analytical laboratories to conduct follow-up studies by small research groups during the academic year (Univ. Florida - geochemistry and geochronology; Univ. Minnesota - EMPA analysis); Communicating results, each working group submitted an abstract and collectively presented 13 posters at the 2011 and 2012 GSA Rocky Mountain sectional meetings. We used directed discovery to engage students in a community of practice in the field and found that a long apprenticeship (2-3 weeks) is optimal for novice-master interactions in exploring natural setting. Initial group hikes were used to normalize methods and language of the discipline. Students developed a sense of ownership of the overall project and assumed personal responsibility for directed research projects. Training was provided to: guide students in selection and appropriate use of tools; develop sampling strategies; discuss communal ethics, values, and expectations; develop efficient work habits; stimulate independent thinking; and engage decision-making. It was important to scaffold the field experience to students' level of development to lead to mastery. Analytical activities were designed from rock to analysis so that each group mastered all preparation steps and instrumental techniques under supervision of graduate mentors and lab managers leading to a clearer understanding of data interpretation. Students were communally engaged in abstract and poster preparation to ensure proper focus, scientific breadth, and style of presentation.

  2. The Effects of AR on Membrane Wing Performance in Low Re Flight

    NASA Astrophysics Data System (ADS)

    Jordan, Alex; Hubner, James

    2011-11-01

    There is increased interest in the design of micro air vehicles (MAVs) due to their military reconnaissance and surveying capabilities. Research has shown that the use of membrane wings in low Reynolds number flight results in performance characteristics that, when compared to rigid wing counterparts of similar geometry, are beneficial. An experimental study was performed to determine if the benefits of membrane wings change when AR is decreased. The membrane wings used silicon rubber affixed to aluminum frames of repeated cell geometry. The wings tested employed 1, 3, 5 and 9 cells and had ARs of 0.9, 2.6, 4.1, and 4.33 respectively. Measurements of lift and drag at a Reynolds number of 49,000 were acquired over a range of angles of attack. Vibration frequencies of the membranes were obtained via high-speed imagery. Comparisons of lift and drag data for the flat plates and membrane wings showed that the membrane wings with ARs of 0.9 and 2.6 did not show the same performance benefits as the higher AR membrane wings. Funded by NSF REU Site #1062611.

  3. Supramolecular Polymer Nanocomposites - Improvement of Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Hinricher, Jesse; Neikirk, Colin; Priestley, Rodney

    2015-03-01

    Supramolecular polymers differ from traditional polymers in that their repeat units are connected by hydrogen bonds that can reversibly break and form under various stimuli. They can be more easily recycled than conventional materials, and their highly temperature dependent viscosities result in reduced energy consumption and processing costs. Furthermore, judicious selection of supramolecular polymer architecture and functionality allows the design of advanced materials including shape memory and self-healing materials. Supramolecular polymers have yet to see widespread use because they can't support much weight due to their inherent mechanical weakness. In order to address this issue, the mechanical strength of supramolecular polymer nanocomposites based on ureidopyrmidinone (UPy) telechelic poly(caprolactone) doped with surface activated silica nanoparticles was investigated by tensile testing and dynamic mechanical analysis. The effects of varying amounts and types of nanofiller surface functionality were investigated to glean insight into the contributions of filler-filler and filler-matrix interactions to mechanical reinforcement in supramolecular polymer nanocomposites. MRSEC NSF DMR 0819860 (PI: Prof. N. Phuan Ong) REU Site Grant: NSF DMR-1156422 (PI: Prof. Mikko Haataja)

  4. Effects of porous insert on flame dynamics in a lean premixed swirl-stabilized combustor

    NASA Astrophysics Data System (ADS)

    Brown, Marcus; Agrawal, Ajay; Allen, James; Kornegay, John

    2016-11-01

    In this study, we investigated different methods of determining the effect a porous insert has on flame dynamics during lean premixed combustion. A metallic porous insert is used to mitigate instabilities in a swirl-stabilized combustor. Thermoacoustic instabilities are seen as negative consequences of lean premixed combustion and eliminating them is the motivation for our research. Three different diagnostics techniques with high-speed Photron SA5 cameras were used to monitor flame characteristics. Particle image velocimetry (PIV) was used to observe vortical structures and recirculation zones within the combustor. Using planar laser induced fluorescence (PLIF), we were able to observe changes in the reaction zones during instabilities. Finally, utilizing a color high-speed camera, visual images depicting a flame's oscillations during the instability were captured. Using these monitoring techniques, we are able to support the claims made in previous studies stating that the porous insert in the combustor significantly reduces the thermoacoustic instability. Funding for this research was provided by the NSF REU site Grant EEC 1358991 and NASA Grant NNX13AN14A.

  5. The effect of butterfly-scale inspired patterning on leading-edge vortex growth

    NASA Astrophysics Data System (ADS)

    Wilroy, Jacob; Lang, Amy

    2015-11-01

    Leading edge vortices (LEVs) are important for generating thrust and lift in flapping flight, and the surface patterning (scales) on butterfly wings is hypothesized to play a role in the vortex formation of the LEV. To simplify this complex flow problem, an experiment was designed to focus on the alteration of 2-D vortex development with a variation in surface patterning. Specifically, the secondary vorticity generated by the LEV interacting at the patterned surface was studied and the subsequent affect on the growth rate of the circulation in the LEV. For this experiment we used butterfly inspired grooves attached to a flat plate and compared the vortex formation to a smooth plate case as the plate moved vertically. The plate is impulsively started in quiescent water and flow fields at Re = 1500, 3000, and 6000 are examined using Digital Particle Image Velocimetry (DPIV). The vortex formation time is 3.0 and is based on the flat plate travel length and chord length. We would like to thank the National Science Foundation REU Site Award 1358991 for funding this research.

  6. The Effective and Evolving Role of Graduate Students in the SURFO REU Program

    NASA Astrophysics Data System (ADS)

    Pockalny, R. A.

    2005-12-01

    The Summer Undergraduate Research Fellowships in Oceanography (SURFO) program is a 10-week research/educational program designed to expose 9 undergraduates per year to cutting-edge, authentic oceanographic research at the Graduate School of Oceanography/University of Rhode Island. The SURFO program primarily focuses on the more quantitative aspects of oceanography (e.g., physical oceanography, geophysical fluid dynamics and marine geophysics), which closely parallel the strengths of GSO/URI. Thus, the primary undergraduate population targeted by the program includes students from various disciplines, but with strong backgrounds in math, physics, computer science, and engineering. Over its 20-year existence, the SURFO program has continuously evolved; however, three basics goals of the program have been maintained: 1) expose students to the breadth and depth of oceanography, 2) provide students with an authentic research experience, and 3) integrate/assimilate students into the lifestyle and community of a graduate research institution. An integral component for achieving these goals has been the inclusion of graduate students as workshop leaders/instructors, research mentors, and social directors. In these roles the graduate students act as a 'big brother/sister' to transition the undergraduates into the academic and research community. The graduate students also initially behave as liaisons between the senior researcher and the SURFO participant by fielding questions and concerns the undergraduate may be too intimidated to voice. As the summer progresses, the graduate students typically evolve into a lead research advisor and begin to learn effective techniques for advising students. Responses from SURFO participants on exit questionnaires frequently comment on how their experience and research project were directly affected by the extent of graduate student participation during the summer. Anecdotal evidence also indicates the participating graduate students gain maturity in their approach to research and become more willing advisees.

  7. Valuing Professional Development Components for Emerging Undergraduate Researchers

    NASA Astrophysics Data System (ADS)

    Cheung, I.

    2015-12-01

    In 2004 the Hatfield Marine Science Center (HMSC) at Oregon State University (OSU) established a Research Experience for Undergraduates (REU) program to engage undergraduate students in hands-on research training in the marine sciences. The program offers students the opportunity to conduct research focused on biological and ecological topics, chemical and physical oceanography, marine geology, and atmospheric science. In partnership with state and federal government agencies, this ten-week summer program has grown to include 20+ students annually. Participants obtain a background in the academic discipline, professional development training, and research experience to make informed decisions about careers and advanced degrees in marine and earth system sciences. Professional development components of the program are designed to support students in their research experience, explore career goals and develop skills necessary to becoming a successful young marine scientist. These components generally include seminars, discussions, workshops, lab tours, and standards of conduct. These componentscontribute to achieving the following professional development objectives for the overall success of new emerging undergraduate researchers: Forming a fellowship of undergraduate students pursuing marine research Stimulating student interest and understanding of marine research science Learning about research opportunities at Oregon State University "Cross-Training" - broadening the hands-on research experience Exploring and learning about marine science careers and pathways Developing science communication and presentation skills Cultivating a sense of belonging in the sciences Exposure to federal and state agencies in marine and estuarine science Academic and career planning Retention of talented students in the marine science Standards of conduct in science Details of this program's components, objectives and best practices will be discussed.

  8. From the Sea to the Mountains: A Soils and Geomorphology Field Tour of North Carolina USA

    NASA Astrophysics Data System (ADS)

    Lindbo, David L.; Vepraskas, Michael; Kleiss, Joseph

    2015-04-01

    During the course of this tour students are introduced to the wide variety of soils and landscapes found across the state of North Carolina. These soils will be representative of the land regions of the southeastern United States. The soils in parts of this region are some of the oldest in the U.S. and are among the least fertile. North Carolina is divided into three distinct land regions: Coastal Plain, Piedmont, and Blue Ridge Belt (mountains). This tour includes sites in all three of these regions. The book entitled Soil Systems of North Carolina gives complete information about the soils across North Carolina and serves as a reference about soils as well as the types of parent materials encountered on the tour. North Carolina soils vary in elevation from sea level near the coast to approximately 2000 m at Mt. Mitchell which is the highest peak in the eastern U.S. The soils and landscapes in this region are not static, but change in response to natural and human forces. The natural forces center around climatic factors such as hurricanes that bring high wind velocities and exceptionally large rainfall amounts (>50 cm/day). These cause erosion of our coast, massive flooding, migration of sand dunes, and contribute to landslides in the western portion of the state. All of these make living here a challenge. The state contains soils in the thermic, mesic, and frigid temperature regimes. You will examine soils in all three temperature regimes on this trip. The diversity of soils also affects land use. Issues with drainage, septic systems, compaction, landslides and urbanization are highlighted at appropriate sites throughout the tour. At each of the stops soil profile and landscape are examined. Detailed profile descriptions and analytical data are provided for each pedon to assist in classification. Selected objectives and discussion points for each stop are likewise provided in order to promote discussion and identify the principle reasons for making a site visit. The discussion points are used loosely, and we encourage students ask any questions that they would like to discuss. The tour has been offered to our students since 2002 and is now being expanded to be part of our REU (research education for undergraduates) program that will be offered for the first time later this year.

  9. Solar Neutrinos. II. Experimental

    DOE R&D Accomplishments Database

    Davis, Raymond Jr.

    1964-01-01

    A method is described for observing solar neutrinos from the reaction Cl{sup 37}(nu,e{sup -})Ar{sup 37} in C{sub 2}Cl{sub 4}. Two 5 00-gal tanks of C{sub 2}Cl{sub 4} were placed in a limestone mine (1800 m.w.e.) and the resulting Ar{sup 37} activity induced by cosmic mesons( mu ) was measured to determine the necessary conditions for solar neutrino observations. (R.E.U.)

  10. Not Business-as-Usual: Resetting Expectations for Recruitment, Engagement & Professional Development of Today's URM in Geosciences

    NASA Astrophysics Data System (ADS)

    Auzenne, K.; Teranes, J. L.

    2017-12-01

    "The significant problems we have cannot be solved at the same level of thinking with which we created them." - Albert Einstein. In order to successfully recruit and retain today's URM in geosciences, we must think critically and strategically about how opportunities for professional engagement and skills-building are marketed, structured and implemented at various stages of an individual's career, and how those opportunities may be viewed and/or experienced differently by URM students and professionals. This presentation will discuss how modern professional development strategies for URMs should include: (1) clearly defined expectations that acknowledge cultural differences and challenges; (2) supportive exposure to experiences and individuals, such as role models, mentors and potential advisors; (3) constructive skill-building experiences that foster confidence and a sense of belonging, and (4) a demonstrated institutional commitment to diversity and inclusion from leadership that translates into visible resources and support. The presentation will highlight examples of these efforts and outcomes at the Scripps Institution of Oceanography, including the Scripps Undergraduate Research Fellowship (SURF) Program, a NSF-funded Research Experiences for Undergraduates (REU). With a commitment to enhancing diversity and inclusion, the SURF program has used the strategies above to help recruit and retain URM, women and veterans in graduate school and careers in the geosciences.

  11. The Benefits of Peer-Mentoring in Undergraduate Group Research Projects at The University of Arizona

    NASA Astrophysics Data System (ADS)

    Hardegree-Ullman, Kevin; McGraw, A. M.; Towner, A. P.; Walker-LaFollette, A.; Robertson, A.; Smith, C.; Turner, J.; Biddle, L. I.; Thompson, R.

    2013-06-01

    According to the American Institute of Physics, the number of graduate students enrolled in astronomy programs in the US has been steadily increasing in the past 15 years. Research experience is one of the key factors graduate admissions committees look for when choosing students. The University of Arizona Astronomy Club is setting a new precedent in research by having students introduce other students to research. This eases the transition to research projects, and allows students to work in a comfortable setting without the sometimes-overwhelming cognitive disconnect between a professor and their students. The University of Arizona's research projects have many benefits to all students involved. It is well established that people learn a subject best when they have to teach it to others. Students leading the projects learn alongside their peers in a peer-mentoring setting. When project leaders move on in their academic career, other project members can easily take the lead. Students learn how to work in teams, practice effective communication skills, and begin the processes of conducting a full research project, which are essential skills for all budding scientists. These research projects also give students hands-on research experience that supplement and greatly expand on concepts taught in the classroom, and make them more attractive to graduate schools and REU programs.

  12. Spectral Classification of Heavily Reddened Stars by CO Absorption Strength

    NASA Astrophysics Data System (ADS)

    Garling, Christopher; Bary, Jeffrey S.; Huard, Tracy L.

    2017-01-01

    The nature of dust grains in dense molecular clouds can be explored by obtaining spectra of giant stars located behind the clouds and examining the wavelength-dependent attentuation of their light. This approach requires the intrinsic spectra of the background stars to be known, which can be achieved by determining their spectral types. In the K-band spectra of cool giant stars, several temperature-sensitive CO absorption bands serve as good spectral type indicators. Taking advantage of the SpeX Infrared Telescope Facility Spectral Library, near-infrared spectra collected with TripleSpec and the 3.5-meter ARC Telescope at Apache Point Observatory, and a previously constructed CO spectral index, we make precise spectral determinations of 20 giant stars located behind two dense cloud cores: CB188 and L429C. With spectral types in hand, we then utilize Markov Chain Monte Carlo techniques to constrain extinctions along these lines of sight. The spectral typing method will be described and assessed as well as its success at finding a couple of incorrectly spectral typed stars in the SpeX Library. Funding for this program was provided by a NSF REU grant to the Keck Northeast Astronomy Consortium and a grant from the NASA Astrophysics Data Analysis Program.

  13. K-12 Professional Development at the Harvard Forest LTER

    NASA Astrophysics Data System (ADS)

    Bennett, K.

    2012-12-01

    As part of the Long Term Ecological Research (LTER) program, the Harvard Forest in Petersham, Massachusetts seeks to train the next generation of researchers, by involving K-12 grade students and their teachers in hands-on, field-based, ecological research in their own schoolyard and community. Students learn to collect data on important long-term ecological issues and processes. Student data are then shared on the Harvard Forest website. To prepare teachers for project protocols, teachers are given direct access to Harvard ecologists with professional development workshops and on-line resources. With the Harvard Forest Schoolyard LTER program, students can participate in three different research projects focusing on phenology, invasive insects, and vernal pools. Teachers attend the Summer Institute for Teachers to learn project content and methods. They return in fall to participate in one of three levels of data workshops to learn how to input, manage, and analyze project data. In the spring, teachers again meet with the Harvard ecologists about project protocols, and to share, through a series of teacher presentations, the ways these project themes are being integrated into class curricula. These professional development opportunities result in long term collaborative partnerships with local schools and the Harvard Forest LTER. In addition to the LTER Schoolyard Ecology Program, the Harvard Forest has supported a successful Research Experience for Teachers (RET) program for the last six years. Throughout the summer, teachers work on research projects alongside Harvard Forest and affiliated scientists, post-docs, graduate students, and REU's (Research Experience for Undergraduates). The RET program provides teachers with the opportunity to build scientific knowledge, develop an understanding of research methods, and translate their new knowledge and experiences into cutting edge classroom lessons. The past two summers I have worked with Dr. Andrew Richardson's Phenocam project, a network of near remote sensing digital phenology cameras that send images of forest, shrub, and grassland vegetation cover at more than 130 diverse sites in North America to the digital archives at the University of New Hampshire. Our school district is now part of this network providing a digital image every half hour of the mixed deciduous/ coniferous forest canopy due north from Overlook Middle School in Ashburnham, Massachusetts. As a part of the Phenocam network, students at the K-12 level have expanded the scope of phenological monitoring that is part of the Harvard Forest LTER Schoolyard Ecology Program protocol, Buds, Leaves, and Global Warming. I have developed a series of lessons comparing student data to phenology data derived from Phenocam network images and Modis satellites. The Phenocam Project and the RET program is supported by NASA.

  14. EXCITATION OF LEVELS IN Li$sup 7$ BY INELASTIC ELECTRON SCATTERING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernheim, M; Bishop, G R

    1963-07-15

    Cross sections for the excitation of some levels in Li/sup 7/ up to 8- Mev excitation energy were measured by the iiielastic scattering of electrons for a variety of incident electron energies and scatiering angles. The cross section calculated in first Dorn approximation is expected to be valid for this nucleus. The calculated angular distribution is given for different spin and parity and for different levels of excitation. (R.E.U.)

  15. Star Formation and AGN Activity in Ultraluminous Infrared Galaxies at z > 1.15

    NASA Astrophysics Data System (ADS)

    Baldassare, Vivienne; Kartaltepe, J.

    2012-01-01

    We studied active galactic nucleus (AGN) activity and star formation in a sample of 52 luminous and ultraluminous infrared galaxies ((U)LIRGs) with 1.17 < z < 1.602 and LIR > 1011.5 Lsolar. ULIRGs get their extreme infrared luminosities from the heating of dust by star formation and/or AGN. Studies done in the local universe have revealed that all local ULIRGs are mergers (Sanders & Mirabel 1996), and have proposed evolutionary schemes in which early merger stages are dominated by starbursts, intermediate merger stages are dominated by starburst-AGN composite objects, and late merger stages are dominated by AGN (Yuan et al. 2010). They have also shown that most ULIRGs with LIR > 1012.4-12.5 Lsolar appear AGN-like (Tran et al. 2001). We used near infrared spectroscopy in order to determine whether these trends extend to high redshift, utilizing the [NII]/H-alpha and [OIII]/H-beta line ratios to plot our objects on a BPT diagram which classifies them as star forming, AGN, or composite. We find that many of the objects in our sample show evidence of mergers or interactions, and that all objects in our sample with LIR >1012.5 Lsolar are AGN or composite objects. Vivienne Baldassare was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program and the Department of Defense ASSURE program through Scientific Program Order No. 13 (AST-0754223) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF.

  16. Year 4 Of The NSF-funded PAARE Project At SC State

    NASA Astrophysics Data System (ADS)

    Walter, Donald K.; Brittain, S. D.; Cash, J. L.; Hartmann, D. H.; Howell, S. B.; King, J. R.; Leising, M. D.; Mayo, E. A.; Mighell, K. J.; Smith, D. M.

    2012-01-01

    We summarize the progress made through Year 4 of "A Partnership in Observational and Computational Astronomy (POCA)". This NSF-funded project is part of the "Partnerships in Astronomy and Astrophysics Research and Education (PAARE)" program. Our partnership includes South Carolina State University (a Historically Black College/University), Clemson University (a Ph.D. granting institution) and the National Optical Astronomy Observatory. Fellowships provided by POCA as well as recruitment efforts on the national level have resulted in enrolling a total of four underrepresented minorities into the Ph.D. program in astronomy at Clemson. We report on the success and challenges to recruiting students into the undergraduate physics major with astronomy option at SC State. Our summer REU program under POCA includes underrepresented students from across the country conducting research at each of our three institutions. Examples are given of our inquiry-based, laboratory exercises and web- based activities related to cosmology that have been developed with PAARE funding. We discuss our ground-based photometric and spectroscopic study of RV Tauri and Semi-Regular variables which has been expanded to include successful Cycle 2 Kepler observations of a dozen of these objects reported elsewhere at this conference (see D.K. Walter, et.al.). Support for the POCA project is provided by the NSF PAARE program to South Carolina State University under award AST-0750814 as well as resources and support provided by Clemson University and the National Optical Astronomy Observatory. Support for the Kepler observations is provided by NASA to South Carolina State University under award NNX11AB82G.

  17. Searching for Faint Planetary Nebulae Using Digital Sky Surveys

    NASA Astrophysics Data System (ADS)

    Jacoby, George; Kronberger, M.; Patchick, D.; Teutsch, P.; Saloranta, J.; Howell, M.; Crisp, R.; Riddle, D.; Acker, A.; Frew, D.; Parker, Q.; Kaplan, E.

    2010-01-01

    Recent H-alpha surveys such as SHS and IPHAS have improved the completeness of the Galactic planetary nebula (PN) census. We now know of 3,000 PNe in the Galaxy, but this is far short of most estimates, typically 25,000 - 50,000 for the total population. The size of the Galactic PN population is required to derive an accurate estimate of the chemical enrichment rates of nitrogen, carbon, and helium. More importantly, a high PN count (>20,000) is strong evidence that most 1-8 M(Sun) main sequence stars will go through a PN phase, while a low count (<10,000) argues that special conditions (e.g., a close binary interaction) are required to form a PN and suggests that the Sun will not produce one. We describe a technique for finding hundreds of PNe by visually scanning the existing data collections of the digital sky surveys, thereby improving the census of Galactic PNe. We will also report on the actual yield of PN found with this technique after spectroscopic verification. This has been a collaborative effort between a group of dedicated amateur astronomers (Deepskyhunters) with follow-up by professionals using WIYN, OHP, and SAAO. Evan Kaplan was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program and the Department of Defense ASSURE program through Scientific Program Order No. 13 (AST-0754223) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF.

  18. Embedding Climate Services

    NASA Astrophysics Data System (ADS)

    Shafer, M.; Boone, M.; Keim, B. D.

    2015-12-01

    With the rapidly-increasing number of climate services providers, the landscape for putting climate into practice is getting both easier to access and more confusing. Each provider serves a different clientele, and in so doing draws more stakeholder organizations into the sphere of those using climate information in decision-making. The challenge has been in connecting these new stakeholders with expertise that may reside within a different provider organization. To help close the gap, the Southern Climate Impacts Planning Program (SCIPP; http://www.southernclimate.org), a NOAA RISA Team, initiated a summer internship program, where students with expertise in meteorology or climatology would work for an organization more closely aligned with another climate services provider network. The format was patterned after the successful NSF-funded Research Experience for Undergraduates (REU) program at the National Weather Center, where students are selected from undergraduate programs across the nation to spend a summer conducting research under a scientific mentor. The SCIPP initiative flipped this model, instead sending students to organizations with operational needs for climate information to work under their mentorship in partnership with SCIPP scientists. Over the past two summers, SCIPP has recruited students to work at landscape-based (Gulf Coast Joint Venture and National Wetlands Research Center) and community-based (Tulsa Partners) organizations. Students worked alongside the organizations' staff on a daily basis and were supported through periodic calls with the SCIPP team to help identify appropriate datasets and work through methodological issues. This presentation will discuss how these relationships were created, the expertise of each of the organizations involved, and outcomes from the projects.

  19. Velocity Distributions of Interplanetary Dust Derived from Astronomical Sky Spectra

    NASA Astrophysics Data System (ADS)

    Huestis, D. L.; Ali, S.; Cosby, P. C.; Slanger, T. G.

    2001-11-01

    Characterization of interplanetary dust is important for understanding the creation by accretion of planets and moons, the development of planetary atmospheres, and, potentially, for the initiation of prebiotic chemistry. The recent COBE mission has provided a profile in ecliptic coordinates of the distribution of interplanetary dust particles through their thermal infrared emission. Additional information about interplanetary dust can be extracted from its visible spectrum of scattered sunlight, called Zodiacal Light. Night sky spectra taken at large-aperture telescopes using high-resolution echelle spectrographs reveal Fraunhofer absorption features in the Zodiacal Light spectrum of scattered sunlight, a nuisance in subtraction from the spectrum of the extraterrestrial object under investigation. We are analyzing the intensity modulations and Doppler shifts of solar Fraunhofer absorption lines in the Zodiacal Light component of sky spectra, donated by collaborating astronomers using Keck/HIRES and other high-performance astronomical facilities. Our objectives include velocity distributions of interplanetary dust and improved separation of terrestrial and extraterrestrial sources in sky spectra. Participation of S. Ali was made possible by a grant from the NSF Physics Research Experiences for Undergraduates (REU) program.

  20. Alfvén Wave Heating Model of an Active Region and Comparisons with the EIS Observations

    NASA Astrophysics Data System (ADS)

    Lawless, A. P.; Asgari-Targhi, M.

    2013-12-01

    We study the generation and dissipation of Alfvén waves in open and closed field lines using the images from the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) (van Ballegouijen et al. 2011; Asgari-Targhi & van Ballegouijen 2012; Asgari et al. 2013). The goal is to search for observational evidence of Alfvén waves in the solar corona and to understand their role in coronal heating. We focus on one particular active region on the 10th of December 2007. Using the MDI magnetogram and the potential field modeling of this region, we create three-dimensional MHD models for several open and closed field lines in different locations in the active region. For each model, we compute the temperature, pressure, magnetic field strength, average heating rate, and other parameters along the loop. We then compare these results with the EIS observations. This research is supported by the NSF grant for the Solar physics REU Program at the Smithsonian Astrophysical Observatory (AGS-1263241) and contract SP02H1701R from Lockheed-Martin to SAO.

  1. Development of a Bio-inspired Microflap Array for Passive Control of Flow Separation

    NASA Astrophysics Data System (ADS)

    Devey, Sean; Morris, Jackson; Hubner, Paul; Lang, Amy

    2017-11-01

    The shortfin mako shark benefits from its flexible microscopic scales, or denticles; which can passively limit flow separation in water. These denticles can be passively actuated by incipient reversing flow in the lower 5% of the boundary layer, thereby impeding further flow reversal and promoting increased momentum exchange. In air, an array of flow actuated microflaps has the potential to provide similar benefits to man-made systems. Multiple iterations of microflap arrays have been developed and tested in the University of Alabama's Boundary Layer Tunnel. A variety of 3D-printed flaps derived from mako denticle geometries were arranged in rows with freedom to rotate, like mako denticles, to angles up to 50 degrees. Placing the microflap array in separated flow regions allowed for direct observation of the microflap response. Like mako denticles, microflaps with lengths of about 4 mm have been shown to actuate in response to reversing surface flows. This presentation will focus on the development and implementation of passive microflap arrays. This research was supported by Boeing, the US Army, and the National Science Foundation REU program.

  2. Characterizing and Quantifying Time Dependent Night Sky Brightness In and Around Tucson, Arizona

    NASA Astrophysics Data System (ADS)

    Nydegger, Rachel

    2014-01-01

    As part of a Research Experience for Undergraduates (REU) program with the National Optical Astronomy Observatory (NOAO), I (with mentor Dr. Constance Walker of NOAO) characterized light pollution in and near Tucson, Arizona using eight Sky Quality Meters (SQMs). In order to analyze the data in a consistent way for comparison, we created a standard procedure for reduction and analysis using python and MATLAB. The series of python scripts remove faulty data and examine specifically anthropogenic light pollution by excluding contributions made by the sun, moon, and the Milky Way. We then use MATLAB codes to illustrate how the light pollution changes in relation to time, distance from the city, and airglow. Data are then analyzed by a recently developed sky brightness model created by Dan Duriscoe of the National Park Service. To quantify the measurements taken by SQMs, we tested the wavelength sensitivity of the devices used for the data collection. The findings from the laboratory testing have prompted innovations for the SQMs as well as given a sense of how data gathered by these devices should be treated.

  3. Measuring M Dwarf Rotation in the Pan-STARRS 1 Medium Deep Survey

    NASA Astrophysics Data System (ADS)

    Fong, Erin R.; Williams, Peter K. G.; Berger, Edo

    2016-01-01

    The rise of large-format CCDs and automated detection methods has greatly increased the tractability of large-scale studies of stellar rotation. Studies of the relationship between stellar rotation and magnetic activity show a strong correlation, supporting the concept of a rotationally-driven dynamo. However, the number of confirmed rotation periods for stars in the fully convective regime, whose magnetic dynamos are less well understood, remains low. Here we report on ongoing work to measure rotation periods for the M dwarf stellar population observed by the Pan-STARRS 1 Medium Deep Survey (PS1/MDS). We refine an initial sample of around 4.3 million sources using color cuts in each of the five Pan-STARRS 1 filters. Of these sources, we estimate there to be around 135,000 sources which are candidate M dwarfs with a spectral type of M1 or higher. We discuss the outcomes of various rotation period detection methods and present preliminary results. This work is supported in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851 and by the Smithsonian Institution.

  4. Measuring the Accelerations of Water Megamasers in Active Galaxy J0437+2456

    NASA Astrophysics Data System (ADS)

    Turner, Jeremy; Jeremy Turner

    2018-01-01

    The Megamaser Cosmology Project is measuring the Hubble constant using observations of 22 GHz water megamasers in the accretion disks of active galaxies within the Hubble flow. This approach uses the dynamics of the megamaser disks to determine their physical sizes and thereby find the angular-diameter distances to galaxies without relying on the cosmic distance ladder. We present Green Bank Telescope observations and analysis of the maser disk in the galaxy J0437+2456, which encircles a 2.9×106 M⊙ supermassive black hole. With spectral monitoring observations spanning over four years, we measure the centripetal acceleration of each individual maser component by tracking its velocity drift over time. These accelerations will be used in later work to model the maser disk and determine the distance to the galaxy. Our acceleration measurements use an iterative least squares fitting technique. For the systemic maser features, we find a mean acceleration of 1.87 ± 0.47 km/s/yr. This project was completed as part of the NSF REU program at NRAO.

  5. Folding of non-Euclidean curved shells

    NASA Astrophysics Data System (ADS)

    Bende, Nakul; Evans, Arthur; Innes-Gold, Sarah; Marin, Luis; Cohen, Itai; Santangelo, Christian; Hayward, Ryan

    2015-03-01

    Origami-based folding of 2D sheets has been of recent interest for a variety of applications ranging from deployable structures to self-folding robots. Though folding of planar sheets follows well-established principles, folding of curved shells involves an added level of complexity due to the inherent influence of curvature on mechanics. In this study, we use principles from differential geometry and thin shell mechanics to establish fundamental rules that govern folding of prototypical creased shells. In particular, we show how the normal curvature of a crease line controls whether the deformation is smooth or discontinuous, and investigate the influence of shell thickness and boundary conditions. We show that snap-folding of shells provides a route to rapid actuation on time-scales dictated by the speed of sound. The simple geometric design principles developed can be applied at any length-scale, offering potential for bio-inspired soft actuators for tunable optics, microfluidics, and robotics. This work was funded by the National Science Foundation through EFRI ODISSEI-1240441 with additional support to S.I.-G. through the UMass MRSEC DMR-0820506 REU program.

  6. Atmospheric Effects on Cosmic Ray Air Showers Observed with HAWC

    NASA Astrophysics Data System (ADS)

    Young, Steven

    2014-01-01

    The High Altitude Water Cherenkov Gamma Ray detector (HAWC), currently under construction on the Sierra Negra volcano near Puebla, Mexico, can be used to study solar physics with its scaler data acquisition system. Increases in the scaler rates are used to observe GeV cosmic rays from solar flares while decreases in the rates show the heliospheric disturbances associated with coronal mass ejections. However, weather conditions and height-dependent state variables such as pressure and temperature affect the production of extensive particle air showers that can be detected by the scaler system. To see if these atmospheric effects can be removed, we obtained local weather data from the Global Data Assimilation System (GDAS) and the local weather station at HAWC. The scaler pulse rates were then correlated to the pressure and temperature. We present data from a Forbush decrease observed by HAWC following a significant coronal mass ejection in April 2013, and describe our efforts to remove atmospheric variations from the scaler counts. This work was partially supported by the National Science Foundation’s REU program through NSF Award AST-1004881 to the University of Wisconsin-Madison.

  7. Dynamics of molecular hydrogen in crystalline silicon

    NASA Astrophysics Data System (ADS)

    Fowler, W. Beall; Walters, Peter; Stavola, Michael

    2002-03-01

    We have studied the dynamics of interstitial molecular hydrogen in crystalline silicon by using a potential energy function for the molecule that consists of the superposition of potentials for two separated atomic hydrogens as generated from the quantum-mechanical calculations of Porter et al.(1) The rotational properties were calculated using the approach of Martin and Fowler (2) and the vibrational properties of the molecules as a whole were obtained. Results for molecular hydrogen, deuterium, and HD indicate nearly free rotational motion, consistent with shallow rotational potentials. Confinement of the molecules leads to center-of-mass vibrations of a few hundred wave numbers and dynamical "off-centeredness" that breaks tetrahedral symmetry for the high-frequency stretch vibrations. These and other results have helped to interpret recent experiments on these systems (3). This work was supported by the NSF REU program at Lehigh University. 1. A. R. Porter et al., Phys. Rev. B 60, 13 534 (1999). 2. K. R. Martin and W. B. Fowler, Phys. Rev. B 52, 16 516 (1995). 3. E Chen, M. Stavola, W. B. Fowler, and P. Walters (to be published).

  8. Deployment Completion Report.

    DTIC Science & Technology

    1983-02-24

    LEI’I’EMOF C4KDATION IN PRCESS / AWWRED BY HIGHER AUTHORTIY: 25 COMAND LEPI!ERS OF CMNTION: 20 -.ERITORIOS MAST: 0 EEPI F PUBLIC AEAI S N RELEASES: 45...for the work re-U maining. A decision was made to concentrate work on the telephone, public address, and fire alarm connections of the 200 pair cable...the battalion finished the work at NAS. Rather than initiate work in NAVCAMS, the decision was made to shut down the project until turnover thereby

  9. Application of Piezoelectrics to Flapping-Wing MAVs

    NASA Astrophysics Data System (ADS)

    Widstrand, Alex; Hubner, J. Paul

    2015-11-01

    Micro air vehicles (MAVs) are a class of unmanned aerial vehicles that are size-restricted and operate at low velocities and low Reynolds numbers. An ongoing challenge with MAVs is that their flight-related operations are highly constrained by their size and weight, which limits battery size and, therefore, available power. One type of MAV called an ornithopter flies using flapping wings to create both lift and thrust, much like birds and insects do. Further bio-inspiration from bats led to the design of membrane wings for these vehicles, which provide aerodynamic benefits through passive vibration. In an attempt to capitalize on this vibration, a piezoelectric film, which generates a voltage when stressed, was investigated as the wing surface. Two wing planforms with constant area were designed and fabricated. The goal was to measure the wings' flight characteristics and output energy in freestream conditions. Complications with the flapper arose which prevented wind tunnel tests from being performed; however, energy data was obtained from table-top shaker tests. Preliminary results indicate that wing shape affects the magnitude of the charge generated, with a quarter-elliptic planform outperforming a rectangular planform. Funding provided by NSF REU Site Award number 1358991.

  10. Effect of physical variables on capture of magnetic nanoparticles in simulated blood vessels

    NASA Astrophysics Data System (ADS)

    Zhang, Minghui; Brazel, Christopher

    2011-11-01

    This study investigated how the percent capture of magnetic nanoparticles in a simulated vessel varies with physical variables. Magnetic nanoparticles (MNPs) can used as part of therapeutic or diagnostic materials for cancer patients. By capturing these devices with a magnetic field, the particles can be concentrated in an area of diseased tissue. In this study, flow of nanoparticles in simulated blood vessels was used to determine the affect of applying an external magnetic field. This study used maghemite nanoparticles as the MNPs and either water or Fetal Bovine Serum as the carrier fluid. A UV-Vis collected capture data. The percent capture of MNPs was positively influenced by five physical variables: larger vessel diameters, lower linear flow velocity, higher magnetic field strength, better dispersion, lower MNP concentration, and lower protein content in fluid. Free MNPs were also compared to micelles, with the free particles having more successful magnetic capture. Four factors contributed to these trends: the strength of the magnetic field's influence on the MNPs, the MNPs' interactions with other particles and the fluid, the momentum of the nanoparticles, and magnetic mass to total mass ratio of the flowing particles. Funded by NSF REU Site #1062611.

  11. Stagnation, circulation, and erosion of granular materials through belt conveyor sluice gate

    NASA Astrophysics Data System (ADS)

    Pohlman, Nicholas; Moralda, Michael; Dunne, Ryan

    2013-11-01

    Control of flow rates in conversion reactors for discrete materials like biomass can be achieved in belt conveyors through a combination of belt speed, hopper size, and aperture opening. As material is extracted from the bottom of the storage hopper, other material cannot achieve plug flow and therefore is restricted from exiting through a sluice-gate type opening. The excess material moves vertically from the opening causing a pile up and recirculation back along the free surface of the hopper. Experimental results obtained through high speed imaging show the position of the stagnation point as well as the rate of circulation is dependent on the mass flow rate achieved and instantaneous fill level. The movement of material into the plug flow along the belt allows verification of deposition models on erodible beds rather than rigid surfaces with artificial roughness of glued particles. Similarly, the pile-up at the exit influences the efficiency of the transport affecting the narrow energy return on investment of biomass resources. The laboratory-scale behavior can therefore be translated into industrial performance metrics for increased operational efficiency. This work is supported by the NSF REU Site Operation E-Tank under award number 1156789.

  12. Characterizing Giant Exoplanets through Multiwavelength Transit Observations: HD 189733b

    NASA Astrophysics Data System (ADS)

    Kar, Aman; Cole, Jackson Lane; Gardner, Cristilyn N.; Garver, Bethany Ray; Jarka, Kyla L.; McGough, Aylin Marie; PeQueen, David Jeffrey; Rivera, Daniel Ivan; Kasper, David; Jang-Condell, Hannah; Kobulnicky, Henry; Dale, Daniel

    2018-01-01

    Observing the transits of exoplanets in multiple wavelengths enables the characterization of their atmospheres. We used the Wyoming Infrared Observatory to obtain high precision photometry on HD 189733b, one of the most studied exoplanets. We employed the photometry package AIJ and Bayesian statistics in our analysis. Preliminary results suggest a wavelength dependence in the size of the exoplanet, indicative of scattering in the atmosphere. This work is supported by the National Science Foundation under REU grant AST 1560461.

  13. The California Central Coast Research Partnership: Building Relationships, Partnerships, and Paradigms for University-Industry Research Collaboration

    DTIC Science & Technology

    2010-03-08

    on the Cell Cycle and Development of Sea Urchins NATIONAL SCIENCE FOUNDATION (RUI) Lab Technician TBD Adams, Nikki 04-144 08/01/04-07/31/09...376,678 Mass spectroscopy analysis of effects of ultraviolet radiation on the proteome of sea urchin embryos CSUPERB: CSU FACULTY-STUDENT COLLABORATIVE...Development of Sea Urchins NATIONAL SCIENCE FOUNDATION (REU) 07-250 06/01/07-07/31/08 $6,000 CHRISTOPHER CLARK Clark, Christopher Moline, Mark Personnel

  14. Population Synthesis of Radio and Gamma-ray Pulsars using the Maximum Likelihood Approach

    NASA Astrophysics Data System (ADS)

    Billman, Caleb; Gonthier, P. L.; Harding, A. K.

    2012-01-01

    We present the results of a pulsar population synthesis of normal pulsars from the Galactic disk using a maximum likelihood method. We seek to maximize the likelihood of a set of parameters in a Monte Carlo population statistics code to better understand their uncertainties and the confidence region of the model's parameter space. The maximum likelihood method allows for the use of more applicable Poisson statistics in the comparison of distributions of small numbers of detected gamma-ray and radio pulsars. Our code simulates pulsars at birth using Monte Carlo techniques and evolves them to the present assuming initial spatial, kick velocity, magnetic field, and period distributions. Pulsars are spun down to the present and given radio and gamma-ray emission characteristics. We select measured distributions of radio pulsars from the Parkes Multibeam survey and Fermi gamma-ray pulsars to perform a likelihood analysis of the assumed model parameters such as initial period and magnetic field, and radio luminosity. We present the results of a grid search of the parameter space as well as a search for the maximum likelihood using a Markov Chain Monte Carlo method. We express our gratitude for the generous support of the Michigan Space Grant Consortium, of the National Science Foundation (REU and RUI), the NASA Astrophysics Theory and Fundamental Program and the NASA Fermi Guest Investigator Program.

  15. The Kinetics of Oxygen Atom Recombination in the Presence of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Jamieson, C. S.; Garcia, R. M.; Pejakovic, D.; Kalogerakis, K.

    2009-12-01

    Understanding processes involving atomic oxygen is crucial for the study and modeling of composition, energy transfer, airglow, and transport dynamics in planetary atmospheres. Significant gaps and uncertainties exist in the understanding of these processes and often the relevant input from laboratory measurements is missing or outdated. We are conducting laboratory experiments to measure the rate coefficient for O + O + CO2 recombination and investigating the O2 excited states produced following the recombination. These measurements will provide key input for a quantitative understanding and reliable modeling of the atmospheres of the CO2 planets and their airglow. An excimer laser providing pulsed output at either 193 nm or 248 nm is employed to produce O atoms by dissociating carbon dioxide, nitrous oxide, or ozone. In an ambient-pressure background of CO2, O atoms recombine in a time scale of a few milliseconds. Detection of laser-induced fluorescence at 845 nm following two-photon excitation near 226 nm monitors the decay of the oxygen atom population. From the temporal evolution of the signal the recombination rate coefficient is extracted. Fluorescence spectroscopy is used to detect the products of O-atom recombination and subsequent relaxation in CO2. This work is supported by the US National Science Foundation’s (NSF) Planetary Astronomy Program. Rosanne Garcia’s participation was funded by the NSF Research Experiences for Undergraduates (REU) Program.

  16. A WISE Selection of MIR AGN in Different Environments

    NASA Astrophysics Data System (ADS)

    Cheeseboro, Belinda D.; Norman, Dara J.

    2015-01-01

    This study was undertaken to understand the role of large scale environment in the evolution of MIR-selected AGN. In this study we examine AGN candidates in two types of environments: 7 clusters and 6 blank fields. Two types of clusters were studied in this project: 3 virialized and 4 non-virialized. The redshift of the clusters ranged 0.22≤z≤0.28. We used the mid-infrared WISE All-Sky database to identify AGN, applying various methods to refine our AGN candidate selection. To ascertain if there is an excess or deficit of MIR AGN in galaxy clusters vs. blank fields, we compared the AGN candidate distributions in virialized vs. non-virialized clusters to the blank fields. After close examination and comparison of the results to X-ray selected AGN from the Gilmour et al. (2009) study, we concluded that we do not detect an excess or deficit of MIR AGN in our clusters whether the cluster was virialized or non-virialized. This contrasted the conclusion of the Gilmour et al. (2009) study where there was an excess of X-Ray selected AGN in clusters.We also note an interesting feature in our WISE color-color plots that might be used for further investigation.Cheeseboro was supported by the NOAO/KPNO ResearchExperiences for Undergraduates (REU) Program which is funded by theNational Science Foundation Research Experiences for UndergraduatesProgram (AST-1262829).

  17. The CNO Bi-cycle in the Open Cluster NGC 752

    NASA Astrophysics Data System (ADS)

    Hawkins, Keith; Schuler, S.; King, J.; The, L.

    2011-01-01

    The CNO bi-cycle is the primary energy source for main sequence stars more massive than the sun. To test our understanding of stellar evolution models using the CNO bi-cycle, we have undertaken light-element (CNO) abundance analysis of three main sequence dwarf stars and three red giant stars in the open cluster NGC 752 utilizing high resolution (R 50,000) spectroscopy from the Keck Observatory. Preliminary results indicate, as expected, there is a depletion of carbon in the giants relative to the dwarfs. Additional analysis is needed to determine if the amount of depletion is in line with model predictions, as seen in the Hyades open cluster. Oxygen abundances are derived from the high-excitation O I triplet, and there is a 0.19 dex offset in the [O/H] abundances between the giants and dwarfs which may be explained by non-local thermodynamic equilibrium (NLTE), although further analysis is needed to verify this. The standard procedure for spectroscopically determining stellar parameters used here allows for a measurement of the cluster metallicity, [Fe/H] = 0.04 ± 0.02. In addition to the Fe abundances we have determined Na, Mg, and Al abundances to determine the status of other nucleosynthesis processes. The Na, Mg and Al abundances of the giants are enhanced relative to the dwarfs, which is consistent with similar findings in giants of other open clusters. Support for K. Hawkins was provided by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program and the Department of Defense ASSURE program through Scientific Program Order No. 13 (AST-0754223) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF.

  18. A Summer Research Experience in Particle Physics Using Skype

    NASA Astrophysics Data System (ADS)

    Johnston, Curran; Alexander, Steven; Mahmood, A. K.

    2012-10-01

    This last summer I did research in particle physics as part of a ``remote REU.'' This poster will describe that experience and the results of my project which was to experimentally verify the mass ranges of the Z' boson. Data from the LHC's Atlas detector was filtered by computers to select for likely Z boson decays; my work was in noting all instances of Z or Z' boson decays in one thousand events and their masses, separating the Z from Z' bosons, and generating histograms of the masses.

  19. Critique of FY 1984 Advertising Mix Test of Wharton Center for Applied Research.

    DTIC Science & Technology

    1986-09-01

    experiment and the selection of ADIs for the Reduced advertising Cells in the 1979 Navy Enlistment Marketing Experiment (reported in Marketing Science...AD-Ai?3 653 CRITIQUE OF FY 1984 ADVERTISING NIX TEST OF MHARTON i/1 CENTER FOR APPLIED RE..(U) TEXAS UNIV AT AUSTIN CENTER FOR CYBERNETIC STUDIES A...L4 11.6 M)CROCOPY RESOLUTION TEST CHART NA1I0NAL BUREAU Of SOANDARDS, I%3-A .A ’~A~ J ~. Research Report CCS 546 CRITIQUE OF FY 1984 ADVERTISING MIX

  20. Isochrone Fittings for the Open Star Clusters NGC 3680 and Melotte 66

    NASA Astrophysics Data System (ADS)

    Guillemaud, Nikolas; Frinchaboy, P. M.; Thompson, B. A.

    2013-01-01

    I will be displaying the results from isochrone fittings on two open star clusters. The stellar evolution models used to generate the isochrones are from Dartmouth (Dotter et al. 2007) and Padova (Mango et al. 2008). Both of the models were applied to two star clusters: NGC 3680 and Melotte 66. The analysis is performed by utilizing infrared observations from the CPAPIR instrument; which is operated in conjunction with CTIO’s 1.5m telescope. This research was made possible by the NSF’s REU grant; award number 0851558.

  1. Driving Sodium-Potassium Pumps With An Oscillating Electric Field: Effects On Muscle Recovery In The Human Biceps Brachii

    NASA Astrophysics Data System (ADS)

    Bovyn, Matt; Chen, Wei; Lanes, Olivia; Mast, Jason

    2013-03-01

    Dr. Chen has developed a technique called synchronization modulation, which uses an oscillating electric field to increase the rate at which the sodium-potassium pumps in the cell membrane work. Because the sodium-potassium pump is integral in the recovery of skeletal muscle fibers after an action potential, we investigated the effects of applying synchronization modulation to muscles which had already undergone fatigue due to repeated action potentials during exercise. Fatigue was induced in human subjects' biceps brachii through isometric contraction. Surface electromyography measurements of fatigue index were used to quantify how the muscle recovered over the minutes following fatigue, both when synchronization modulation was applied and when it was absent. The preliminary results were inconclusive, but it is hoped that in later work it will be shown that applying synchronization modulation is effective in increasing the rate at which the muscle recovers to its initial state. This would demonstrate not only that synchronization modulation can be successfully applied to human muscle, but also that it has many potential applications in sports medicine and novel disease treatments. Work done as part of an REU program at the University of South Florida

  2. Frequency Domain Multiplexing for Use With NaI[Tl] Detectors

    NASA Astrophysics Data System (ADS)

    Belling, Samuel; Coherent Collaboration

    2017-09-01

    A process used in many forms of signal communication known as multiplexing is adapted for the purpose of combining signals from NaI[Tl] detectors so that fewer digitizer channels can be used to process the signal information from large experiments within the COHERENT collaboration. Each signal is passed through a ringing circuit to modulate it with a characteristic frequency. Information about the signal can be extracted from its amplitude, frequency, and phase. Simulations in LTSpice show that an operational amplifier circuit with a parallel LRC feedback loop can serve as the modulating circuit. Several such circuits can be constructed and housed compactly in a unit, and fed to an inverting, summing amplifier with tunable gain, such that the signals are carried by one cable. The signals are analyzed based on a Fourier transform after being digitized. The results show that the energy, channel, and time of the original interaction can be recovered by this process. In some cases it is possible through filtering and deconvolution to recover the shape of the original signal. The effort is ongoing, but with the design presented it is possible to multiplex 10 detectors into a single digitizer channel. NSF REU Program at Duke University.

  3. Laser Measurements of the H Atom + Ozone Rate Constant at Atmospheric Temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Smith, G. P.; Peng, J.; Reppert, K. J.; Callahan, S. L.

    2015-12-01

    The exothermic H + O3 reaction produces OH(v) Meinel band emissions, used to derive mesospheric H concentrations and chemical heating rates. We have remeasured its rate constant to reduce resulting uncertainties and the measurement extend to lower mesospheric temperatures using modern laser techniques. H atoms are produced by pulsed ultraviolet laser trace photolysis of O3, followed by reaction of O(D) with added H2. A second, delayed, frequency-mixed dye laser measures the reaction decay rate with the remaining ozone by laser induced fluorescence. We monitor either the H atom decay by 2 photon excitation at 205 nm and detection of red fluorescence, or the OH(v=9) product time evolution with excitation of the B-X (0,9) band at 237 nm and emission in blue B-A bands. By cooling the enclosed low pressure flow cell we obtained measurements from 146-305 K. Small kinetic modeling corrections are made for secondary regeneration of H atoms. The results fully confirm the current NASA JPL recommendation for this rate constant, and establish its extrapolation down to the lower temperatures of the mesosphere. This work was supported by the NSF Aeronomy Program and an NSF Physics summer REU student grant.

  4. Enhancing the Portability of GBT Data

    NASA Astrophysics Data System (ADS)

    Cowan, A. W.; Radziwill, N.; Fleming, D.; Sessoms, E.

    2003-12-01

    The Green Bank Telescope currently produces its raw data as a suite of FITS files, which are then consolidated and pre-processed before being packaged into a Measurement Set (the data structure understood by AIPS++). The separation of data adds to the complexity of data analysis, and we would like to reduce the artificial complexity involved in reading the data. Also, in order to support a broader cross-section of observers' backgrounds and interests, we would like to begin supporting data reduction packages in addition to AIPS++. Therefore, GBT data must be readily accessible to IDL, CLASS, and other data reduction packages, as well as any software that observers write themselves. In pursuit of this goal, we are currently developing a unified FITS data product that contains the entirety of the data and can be readily assimilated into multiple software packages. During the summer of 2003, prototyping exercises were initiated based on the SDFITS convention, which have led to an alpha-test period now in progress. This poster discusses the process of generating the unified FITS data product and details the current status of the project. Thanks to the National Science Foundation REU program for their financial support.

  5. Upgrading the Arecibo Potassium Lidar Receiver for Meridional Wind Measurements

    NASA Astrophysics Data System (ADS)

    Piccone, A. N.; Lautenbach, J.

    2017-12-01

    Lidar can be used to measure a plethora of variables: temperature, density of metals, and wind. This REU project is focused on the set up of a semi steerable telescope that will allow the measurement of meridional wind in the mesosphere (80-105 km) with Arecibo Observatory's potassium resonance lidar. This includes the basic design concept of a steering system that is able to turn the telescope to a maximum of 40°, alignment of the mirror with the telescope frame to find the correct focusing, and the triggering and programming of a CCD camera. The CCD camera's purpose is twofold: looking though the telescope and matching the stars in the field of view with a star map to accurately calibrate the steering system and determining the laser beam properties and position. Using LabVIEW, the frames from the CCD camera can be analyzed to identify the most intense pixel in the image (and therefore the brightest point in the laser beam or stars) by plotting average pixel values per row and column and locating the peaks of these plots. The location of this pixel can then be plotted, determining the jitter in the laser and position within the field of view of the telescope.

  6. Optical design of a robotic TV camera probe for minimally invasive abdominal surgery

    NASA Astrophysics Data System (ADS)

    Todaro, Susanna; He, Weiyi; Killinger, Dennis

    2011-03-01

    Minimally invasive techniques are a promising new field of surgery; however, they limit the surgeon's access points and maneuverability. In order to increase the number of access points in minimally invasive abdominal surgery, a proposed implantable medical probe braces to the abdominal wall and provides illumination and video signal. The probe is cylindrical, about 25 mm long and 10 mm in diameter. A ring of LEDs on the end of the probe illuminates the tissue, and the resulting image is focused onto an HD video detector. It was necessary to apply beam-shaping reflectors to collimate the light onto a small target area, to avoid illuminating areas not picked up by the video. These reflectors were designed and simulated using the optical ray tracing software TracePro. Two LED chip geometries and three types of reflector geometries were analyzed, and the parameters for each geometry were optimized. For the straight-edged reflectors, the intensity patterns and optimization were compared to experimental results. Although parabolic reflectors produced the best collimation, cone reflectors with a 20-degree half-angle produced significant collimation at a much cheaper price. This work was supported by NSF REU program (award No DMR-1004873).

  7. Commissioning a Rotating Target Wheel Assembly for Heavy Element Studies

    NASA Astrophysics Data System (ADS)

    Fields, L. D.; Bennett, M. E.; Mayorov, D. A.; Folden, C. M.

    2013-10-01

    The heaviest elements are produced artificially by fusing nuclei of light elements within an accelerator to form heavier nuclei. The most direct method to increase the production rate of nuclei is to increase the beam intensity, necessitating the use of a rotating target to minimize damage to the target by deposited heat. Such a target wheel was constructed for heavy element research at Texas A&M University, Cyclotron Institute, consisting of a wheel with three banana-shaped target cutouts. The target is designed to rotate at 1700 rpm, and a fiber optic cable provides a signal to trigger beam pulsing in order to avoid irradiating the spokes between target segments. Following minor mechanical modifications and construction of a dedicated electrical panel, the rotating target assembly was commissioned for a beam experiment. A 15 MeV/u beam of 20Ne was delivered from the K500 cyclotron and detected by a ruggedized silicon detector. The beam pulsing response time was characterized as a function of the rational frequency of the target wheel. Preliminary analysis suggests that the K500 is capable of pulsing at rates of up to 250 Hz, which is sufficient for planned future experiments. Funded by DOE and NSF-REU Program.

  8. The Snapshot A-Star SurveY (SASSY)

    NASA Astrophysics Data System (ADS)

    Garani, Jasmine; Nielsen, Eric L.; Marchis, Franck; Liu, Michael C.; Macintosh, Bruce; Rajan, Abhijith; De Rosa, Robert J.; Wang, Jason; Esposito, Thomas; Best, William M. J.; Bowler, Brendan P.; Dupuy, Trent J.; Ruffio, Jean-Baptise

    2017-01-01

    We present the Snapshot A-Star SurveY (SASSY), an adaptive optics survey conducted using NIRC2 on the Keck II telescope to search for young, self-luminious planets and brown dwarfs (M > 5MJup) around high mass stars (M > 1.5 M⊙). We describe a custom data-reduction pipeline developed for the coronagraphic observations of our 200 target stars. Our data analysis method includes basic near infrared data processing (flat-field correction, bad pixel removal, distortion correction) as well as performing PSF subtraction through a Reference Differential Imaging algorithm based on a library of PSFs derived from the observations using the pyKLIP routine. We present early results from the survey including planet and brown dwarf candidates and the status of ongoing follow-up observations. Utilizing the high contrast of Keck NIRC2 coronagraphic observations, SASSY reaches sensitivity to brown dwarfs and planetary mass companions at separations between 0.6'' and 4''. With over 200 stars observed we are tripling the number of high-mass stars imaged at these contrasts and sensitivities compared to previous surveys. This work was supported by the NSF REU program at the SETI Institute and NASA grant NNX14AJ80G.

  9. Roughness Effects on the Formation of a Leading Edge Vortex

    NASA Astrophysics Data System (ADS)

    Elliott, Cassidy; Lang, Amy; Wahidi, Redha; Wilroy, Jacob

    2016-11-01

    Microscopic scales cover the wings of Monarch butterflies, creating a patterned surface. This patterning is an important natural flow control mechanism that is thought to delay the growth of the leading edge vortex (LEV) produced by the flapping motion of a wing. The increased skin friction caused by the scales leads to a weaker LEV being shed into the butterfly's wake, lessening drag and increasing flight efficiency. To test this theory, a plate of random roughness was designed in SolidWorks and printed on the Objet 30 Pro 3D printer. A 2x3x5 cubic foot tow tank was used to test the rough plate at Reynold's numbers of 1500, 3000, and 6000 (velocities of 8, 16, and 32 mm/s) at an angle of attack of 45 degrees. Particle Image Velocimetry (PIV) captured images of the LEV generated by the plate when towed upwards through the particle-seeded flow. Codes written in MatLab were used to automatically track and determine the strength of the LEV. Circulation values for the randomly-rough plate were then compared to the same values generated in a previous experiment that used a smooth plate and a grooved plate to determine the effect of the patterning on vortex development. Funding provided by NSF REU site Grant EEC 1358991 and CBET 1628600.

  10. A flow separation study over a shortfin mako shark pectoral fin

    NASA Astrophysics Data System (ADS)

    Bradshaw, Michael; Lang, Amy; Wahidi, Redha; Smith, Drew; Motta, Philip

    2011-11-01

    Many animals possess performance enhancing mechanisms, such as the denticles found on the skin of the shortfin mako shark (Isurus oxyrinchus). The shortfin mako, one of the fastest sharks on the planet, is covered by small, tooth-like scales that vary in bristling capability. Previous biological findings have shown that the scales increase in flexibility from the leading to trailing edge over the pectoral fin. As this fin is a primary control surface, the scale bristling may provide a mechanism for separation control that leads to decreased drag and increased maneuverability. Such findings can potentially lead to the development of similar micro-scale mechanisms to improve the efficiency of aerospace design. A left pectoral fin (71 cm span) was tested in a water tunnel facility under static and dynamic conditions. Digital Particle Image Velocimetry (DPIV) was used to characterize the flow over the fin. Various angles of attack at two speeds were tested (Re of 44,500 and 68,000). Two chord-wise locations, approximately mid-span where three-dimensional effects were minimized, were viewed to analyze the flow. After the initial testing, the fin was painted to eliminate the effect of the scales and retested to observe flow separation. Supported by REU SITE EEC grant number 1062611.

  11. Testing Iodine as a New Fuel for Cathodes

    NASA Astrophysics Data System (ADS)

    Glad, Harley; Branam, Richard; Rogers, Jim; Warren, Matthew; Burleson, Connor; Siy, Grace

    2017-11-01

    The objective of this research is to demonstrate the viability of using iodine as an alternative space propulsion propellant. The demonstration requires the testing of a cathode with xenon and then the desired element iodine. Currently, cathodes run on noble gases such as xenon which must be stored in high pressure canisters and is very expensive. These shortcomings have led to researching possible substitutes. Iodine was decided as a suitable candidate because it's cheaper, can be stored as a solid, and has similar mass properties as xenon. In this research, cathodes will be placed in a vacuum chamber and operated on both gases to observe their performance, allowing us to gain a better understanding of iodine's behavior. Several planned projects depend on the knowledge gained from this project, such as larger scaled tests and iodine fed hall thrusters. The tasks of this project included protecting the stainless-steel vacuum chamber by gold plating and Teflon® coating, building a stand to hold the cathode, creating an anode resistant to iodine, and testing the cathode once setup was complete. The successful operation of the cathode was demonstrated. However, the experimental setup proved ineffective at controlling the iodine flow. Current efforts are focused on this problem. REU Site: Fluid Mechanics with Analysis using Computations and Experiments NSF Grant EEC 1659710.

  12. Flexible Blades for Wind Turbines

    NASA Astrophysics Data System (ADS)

    Collins, Madeline Carlisle; Macphee, David; Harris, Caleb

    2016-11-01

    Previous research has shown that windmills with flexible blades are more efficient than those with rigid blades. Flexibility offers passive pitch control, preferable to active pitch control which is costly and requires maintenance. Flexible blades morph such that the blade more closely resembles its design point at part load and over load. The lift-to-drag ratios on individual blades was investigated. A mold was designed and machined from an acrylic slab for the casting of blades with a NACA 0012 cross section. A flexible blade was cast from silicone and a rigid blade was cast from polyurethane. Each of these blades was tested in a wind tunnel, cantilever mounted, spanning the whole test section. The angle of attack was varied by rotating the mount. All tests were performed at the same wind speed. A load cell within the mount measured forces on the blade, from which the lift and drag forces were calculated. The stall point for the flexible blade occurred later than for the rigid blade, which agrees with previous research. Lift-to-drag ratios were larger for the flexible blade at all angles of attack tested. Flexible blades seem to be a viable option for passive pitch control. Future research will include different airfoil cross sections, wind speeds, and blade materials. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  13. DECam Survey for Substellar and Low-mass Stellar Members of Sco-Cen

    NASA Astrophysics Data System (ADS)

    Mamajek, Eric E.; Moolekamp, Fred; James, David; Luhman, Kevin; Pecaut, Mark; Metchev, Stanimir A.; Denbo, Sara; Bell, Cameron P. M.

    2017-01-01

    We present the results of a DECam imaging survey for low-mass stellar and substellar objects in the nearby Sco-Cen OB association. The DECam survey was taken in izY bands in 2013 and 2015 and covered $\\sim$87 deg$^2$ in the two nearest and oldest subgroups, Upper Cen-Lup ($\\sim$142 pc) and Lower Cen-Cru ($\\sim$118 pc; both with mean ages $\\sim$16 Myr). Using color-magnitude and proper motion selection, we identify 391 candidate Sco-Cen members with masses ranging from near the D-burning limit of $\\sim$13 M$_{Jup}$, through the H-burning limit, up to $\\sim$0.4 M$_\\odot$. Our initial spectroscopic follow-up with the ARCoIRIS and COSMOS spectrographs for 19 objects have yielded young M dwarfs showing signatures of low surface-gravity. Our survey yields the first constraints on the substellar and low-mass initial mass function and disk fraction in the two oldest Sco-Cen subgroups, and will yield a large sample of young, low-surface gravity M and L-type objects of constrained age, distance, and chemical composition. We acknowledge support from NSF award AST-1313029 and the REU Site in Physics and Astrophysics at the University of Rochester supported by NSF award PHY-1156339.

  14. Identifying Massive Runaway Stars by Detecting Infrared Bowshock Nebula: Four OB Stars and a New Massive Early-B Binary System

    NASA Astrophysics Data System (ADS)

    Sorber, Rebecca L.; Rebecca L. Sorber, Henry A. Kobulnicky, Daniel A. Dale, Matthew S. Povich, William T. Chick, Heather N. Wernke, Julian E. Andrews, Stephan Munari, Grace M. Olivier, Danielle Schurhammer

    2016-01-01

    Though the main sequence evolution of OB type stars is relatively well known, the mass loss rates for these stars are still highly uncertain. Some OB stars are gravitationally ejected from their birth sites, traveling at speeds of 30 km/s or more which results in a prominent bowshock nebulae. We identified OB bowshock candidates at low Galactic latitudes by visual inspection of the Wide-field Infrared Survey Explorer (WISE) 22-micron images. Each candidate was observed using the Longslit Spectrograph at the Wyoming Infrared Observatory (WIRO) 2.3 meter telescope. We present here the results from observing four such candidates, and all four are confirmed as early type stars: GO92.3191+0.0591 (B1V) (aka ALS11826), GO86.551014-1.0873935 (B2V; a probable short-period binary), G076.6921-2.4071 (B5V), and G075.5711-0.2558 (B0V) (aka HD 194303). These results enlarge the sample of candidate runaway massive stars hosting bowshocks and provide a promising sample of such objects for studying stellar mass loss. This work is supported by the National Science Foundation Grants AST-1063146 (REU), AST-1411851 (RUI), and AST-1412845.

  15. Research Opportunities in Solid Earth Science (RESESS): Broadening Participation in Geology and Geophysics (Invited)

    NASA Astrophysics Data System (ADS)

    Eriksson, S. C.; Hubenthal, M.

    2009-12-01

    RESESS is a multi-year, paid, summer research internship program designed for students from underrepresented groups. The students receive extensive mentoring in science research and communication and become part of a community that provides ongoing support. This has been possible in the initial 5 years of the program through collaboration with Significant Opportunities in Atmospheric Research and Science (SOARS), where solid earth students have been an integral part of the SOARS cohort, benefiting from social as well as educational interactions. 11 students have taken part in RESESS for at least one year and of these, four students have graduated in geoscience and entered graduate programs in geophysics and one was recently awarded an NSF graduate fellowship. Students have presented over 20 posters at national science meetings, and one has co-authored a peer-reviewed article. 23 scientists have mentored students over the past 5 years and 17 percent of these mentors are from underrepresented groups in science; 19 other scientists and university/science consortia staff have mentored students in written and verbal presentations and supported their integration into the local communities. Mentorship over a period of years is one important hallmark of this program as students have benefited from the support of UNAVCO, IRIS, USGS, and university scientists and staff during the summer, academic year, and at professional meetings such as AGU, GSA, NABGG, and SACNAS as well as consortia and project science workshops (UNAVCO, IRIS, and EarthScope). One goal of the project has been to educate the scientific community on the benefits of mentoring undergraduate students from underrepresented groups in STEM fields. Increasingly, scientists are approaching RESESS to include this program in their implementation of broader impacts. RESESS has been funded by NSF for the next five years with plans to expand the number of students, geographic and scientific diversity, and sources of funding for a sustainable program. Collaboration with the IRIS REU program and major research programs such as POLENET began over the past three years. Synergistic activities will be increased with the inauguration of the IRIS Minority Speakers Series, partnership with the Colorado Diversity Initiative, and expanded recruitment and research opportunities from universities and colleges nation-wide.

  16. Assessing ocean vertical mixing schemes for the study of climate change

    NASA Astrophysics Data System (ADS)

    Howard, A. M.; Lindo, F.; Fells, J.; Tulsee, V.; Cheng, Y.; Canuto, V.

    2014-12-01

    Climate change is a burning issue of our time. It is critical to know the consequences of choosing "business as usual" vs. mitigating our emissions for impacts e.g. ecosystem disruption, sea-level rise, floods and droughts. To make predictions we must model realistically each component of the climate system. The ocean must be modeled carefully as it plays a critical role, including transporting heat and storing heat and dissolved carbon dioxide. Modeling the ocean realistically in turn requires physically based parameterizations of key processes in it that cannot be explicitly represented in a global climate model. One such process is vertical mixing. The turbulence group at NASA-GISS has developed a comprehensive new vertical mixing scheme (GISSVM) based on turbulence theory, including surface convection and wind shear, interior waves and double-diffusion, and bottom tides. The GISSVM is tested in stand-alone ocean simulations before being used in coupled climate models. It is also being upgraded to more faithfully represent the physical processes. To help assess mixing schemes, students use data from NASA-GISS to create visualizations and calculate statistics including mean bias and rms differences and correlations of fields. These are created and programmed with MATLAB. Results with the commonly used KPP mixing scheme and the present GISSVM and candidate improved variants of GISSVM will be compared between stand-alone ocean models and coupled models and observations. This project introduces students to modeling of a complex system, an important theme in contemporary science and helps them gain a better appreciation of climate science and a new perspective on it. They also gain familiarity with MATLAB, a widely used tool, and develop skills in writing and understanding programs. Moreover they contribute to the advancement of science by providing information that will help guide the improvement of the GISSVM and hence of ocean and climate models and ultimately our understanding and prediction of climate. The PI is both a member of the turbulence group at NASA-GISS and an associate professor at Medgar Evers College of CUNY, a minority serving institution in an urban setting in central Brooklyn. This Project is supported by NSF award AGS-1359293 REU site: CUNY/GISS Center for Global Climate Research.

  17. The New York City Research Initiative: A Model for Undergraduate and High School Student Research in Earth and Space Sciences and Space Technology

    NASA Astrophysics Data System (ADS)

    Scalzo, F.; Frost, J.; Carlson, B. E.; Marchese, P.; Rosenzweig, C.; Austin, S. A.; Peteet, D. M.; Druyan, L.; Fulakeza, M.; Gaffin, S.; Baruh, H.; Decker, S.; Thangam, S.; Miles, J.; Moshary, F.; Rossow, W.; Greenbaum, S.; Cheung, T. K.; Johnson, L. P.

    2010-12-01

    1 Frank Scalzo, 1 Barbara Carlson, 2 Leon Johnson, 3 Paul Marchese, 1 Cynthia Rosenzweig, 2 Shermane Austin, 1 Dorothy Peteet, 1 Len Druyan, 1 Matthew Fulakeza, 1 Stuart Gaffin, 4 Haim Baruh, 4 Steven Decker, 5 Siva Thangam, 5 Joe Miles, 6 James Frost, 7 Fred Moshary, 7 William Rossow, 7 Samir Ahmed, 8 Steven Greenbaum and 3 Tak Cheung 1 NASA Goddard Institute for Space Studies, USA 2 Physical, Environmental and Computer Sciences, Medgar Evers College, CUNY, Brooklyn, NY, USA 3 Physics, Queensborough Community College, CUNY, Queens, NY, USA 4 Rutgers University, Newark, NJ, USA 5 Stevens Institute of Technology, Hoboken, NJ, USA 6 Physics, LaGuardia Community College, CUNY, Queens, NY, USA 7 Electrical Engineering, City College of New York, CUNY, USA 8 Physics, Hunter College, CUNY, USA The New York City Research Initiative (NYCRI) is a research and academic program that involves high school, undergraduate and graduate students, and high school teachers in research teams under the mentorship of college/university principal investigator of NASA funded projects and/or NASA scientists. The principal investigators are at 7 colleges/universities within a 20-mile radius of New York City (NYC and Northern New Jersey), as well as the NASA Goddard Institute of Space Studies. The program supports research in Earth Science, Space Science, and Space Technology. Research investigations include: Sea Surface Temperature and Precipitation in the West African Monsoon, Urban Heat Island: Sun and Rain Effects, Decadal Changes in Aerosol and Asthma, Variations in Salinity and River Discharge in the Hudson River Estuary, Environmental Change in the Hudson Estuary Wetlands, Verification of Winter Storm Scale Developed for Nor’easters, Solar Weather and Tropical Cyclone Activity, Tropospheric and Stratospheric Ozone Investigation in Metropolitan NYC, Aerosol Optical Depth through use of a MFRSR, Detection of Concentration in the Atmosphere Using a Quantum Cascade Laser System, Optimization Model for Future Lunar Colony, Models of Space Travel, and NMR Investigation of MnO2 Infused Carbon Nanofoams. We describe student research, significant results and enrichment activities during the Summer 2010. The NYCRI partners with the CUNY-GISS Center for Global Climate Change, an NSF REU Site. The NYCRI is supported by NASAâ^À^Ùs Earth Science Office, GSFC Education Office, as well as NASA and NSF awards to NYCRI College/University Principal Investigators.

  18. Enhancing Parent Involvement in NC-CCSS for K-2 Mathematics

    NASA Astrophysics Data System (ADS)

    Johnson, D.

    2014-12-01

    Key Terms:Parent Involvement, Common Core State Standards, Homework, K - 2 Mathematics In this study, the 2014 REU math team developed and provided a workshop that assisted parents in understanding the North Carolina Common Core State Standards for K-2 Mathematics to assist with student homework assignments. Parent involvement is defined as parent participating in the educational processes and experiences of their children. A chi-square analysis was used to analyze data collected from the pre survey and the post survey administered to participants in the workshop. The study revealed all of the individual components of parent involvement were positively and significantly related to educational goals. The study identified various aspects of parent involvement that yielded statistically significant results in affirming that parent involvement attributed to urban student achievement. These findings were particularly helpful for indicating which kinds of parent involvement influenced academic success. Most notably, parent expectations and styles demonstrated a strong relationship with scholastic outcomes. Parent expectations and styles created an educationally oriented ambience that established an understanding of the certain level of support the child needed to succeed academically. The REU mathematics team focused on three essential questions in this study: (1) What practices will increase parent awareness of K-2 NC-CCSS for mathematics at P. W. Moore Elementary School? (2) What methods can be used to strengthen parent skills in assisting with mathematics homework assignments at P. W. Moore Elementary School? (3) What actions can be taken to motivate parent involvement in the school improvement process focusing on mathematics at P. W. Moore Elementary School?

  19. Two-Decade Monitoring of MWC349 in Optical and Radio: New Results

    NASA Astrophysics Data System (ADS)

    Thomashow, Eydon; Jorgenson, Regina A.; Strelnitski, Vladimir; Walker, Gary; Maria Mitchell Observatory (MMO) Research Experiences for Undergraduate (REU) Interns, 2017

    2018-01-01

    Maria Mitchell Observatory (MMO) has completed the two-decade long monitoring of MWC 349 in the optical and radio domains. This poster presentation will be primarily devoted to the new results obtained by optical photometry with broad and narrow band filters and observations of the variability in the masing H30 radio line during the observational season of 2017. The H30 emission arises in the circumstellar disk of the MWC 349A component of the visual double star (with 2.4 arcsec separation between the A and B components). Variable optical emission is also believed to be due to star A. By combining our optical observations with earlier MMO observations, we not only confirmed the previously known quasi-period of ~230 days, but confirmed a second period of ~700 days. One of the most interesting results of radio monitoring is the long-term variability of the systemic radial velocity of star A, as determined through averaging the radial velocities of the two masing peaks arising in the circumstellar disk. This may be the first case where a possible hidden close companion of a star (a lower mass star or a massive protoplanet) is detected by monitoring the radial velocity of the star via the spectral line radiation from its disk. E.T. completed this project as a 2017 MMO NSF REU intern and would like to thank the other interns for their help in conducting the optical observations. This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.

  20. Line Bisector Variations in Stars with Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Povich, M. S.; Giampapa, M. S.; Valenti, J. A.; Tilleman, T.

    1999-12-01

    We present the results from a high-resolution, synoptic spectroscopic program of observation of ten F- and G-type stars, seven of which exhibit periodic radial velocity variations attributed to the presence of one or more substellar companions. The observations were obtained from 1998 March to 1999 February using the 1.52-m NSO McMath-Pierce Solar Telescope Facility on Kitt Peak in conjunction with the solar-stellar spectrograph. The spectra were acquired with a resolving power of approximately 1.2 x 105. The line bisector was then derived from unblended photospheric features. In particular, we define the velocity displacement of the spectral line bisector and determine the bisector amplitude for the Fe I absorption line at 625.26 nm in order to search for variations in the line asymmetry over time. Such variations could mimic Doppler shifts in observations with lower spectral resolution. Examination of the bisector velocity displacement over the time span of our observations reveals no substantial difference between stars with planetary companions and those without reported companions. We find no correlation between the bisector variations and the orbital phase of a substellar companion in any of our target stars. Simulations of a periodic signal with noise levels based on our measurement errors suggest that we can exclude bisector variations with amplitudes greater than about 20 m s-1. These results support the conclusion that extrasolar planets best explain the observed periodic variations in radial velocity. This work was supported by a NASA grant to the NOAO under the auspices of the Origins of Solar Systems Program. MP gratefully acknowledges support from the NSF-sponsored Research Experience for Undergraduates (REU) program at the NOAO. The NOAO is operated by AURA, Inc., under a cooperative agreement with the NSF.

  1. Characterizing Giant Exoplanets through Multiwavelength Transit Observations: KELT-9b

    NASA Astrophysics Data System (ADS)

    Gardner, Cristilyn N.; Cole, Jackson L.; Garver, Bethany R.; Jarka, Kyla L.; Kar, Aman; McGough, Aylin M.; PeQueen, David J.; Rivera, Daniel I.; Kasper, David; Jang-Condell, Hannah; Kobulnicky, Henry A.; Dale, Daniel A.

    2018-01-01

    Multiwavelength observations of host stellar light scattered through an exoplanet's atmosphere during a transit characterizes exoplanetary parameters. Using the Wyoming Infrared Observatory 2.3-meter telescope, we observed primary transits of KELT-9b in the ugriz Sloan filters. We present an analysis of the phase-folded transit observations of KELT-9b using a Bayesian statistical approach. By plotting the transit depth as a function of wavelength, our preliminary results are indicative of scattering in the atmosphere surrounding KELT-9b. This work is supported by the National Science Foundation under REU grant AST 1560461 and PAARE grant AST 1559559.

  2. M-X Environmental Technical Report. Environmental Characteristics of Alternative Designated Deployment Areas, Land Ownership/Land Use Patterns.

    DTIC Science & Technology

    1980-12-22

    i - ishing supply of water from the Ogalalla Basin in the TX-NM reu, especially after the year 2000. Prior to that year there3 is pr . be additional...Table 3.1.1-4 confirm these observations. Due to the arid environment of the Great Basin almost all of the harvested cropland occurs on land which is...counties, through 2000.1 SIN ANII. BAI N BASIN B-\\SI :,A ,IE.ACHS BASIN NAM.\\EAC E NUMBhR CRLE! big Smoky Valley Coal Valley N-171 0 Tonopah Flat) N-137A

  3. Spatial variability of soil and vegetation characteristics in an urban park in Tel-Aviv

    NASA Astrophysics Data System (ADS)

    Sarah, Pariente; Zhevelev, Helena M.; Oz, Atar

    2010-05-01

    Mosaic-like spatial patterns, consisting of divers soil microenvironments, characterize the landscapes of many urban parks. These microenvironments may differ in their pedological, hydrological and floral characteristics, and they play important roles in urban ecogeomorphic system functioning. In and around a park covering 50 ha in Tel Aviv, Israel, soil properties and herbaceous vegetation were measured in eight types of microenvironments. Six microenvironments were within the park: area under Ceratonia siliqua (Cs-U), area under Ficus sycomorus (Fi-U), a rest area under F. sycomorus (Re-U), an open area with bare soil (Oa-S), an open area with biological crusts (Oa-C), and an open area with herbaceous vegetation (Oa-V). Outside the park were two control microenvironments, located, respectively, on a flat area (Co-P) and an inclined open area (Co-S). The soil was sampled from two depths (0-2 and 5-10 cm), during the peak of the growing season (March). For each soil sample, moisture content, organic matter content, CaCO3 content, texture, pH, electrical conductivity, and soluble ions contents were determined in 1:1 water extraction. In addition, prior to the soil sampling, vegetation cover, number of species, and species diversity of herbaceous vegetation were measured. The barbecue fires and visitors in each of the microenvironments were counted. Whereas the soil organic matter and vegetation in Fi-U differed from those in the control(Co-P, Co-S), those in Oa-V were similar to those in the control. Fi-U was characterized by higher values of soil moisture, organic matter, penetration depth, and vegetation cover than Cs-U. Open microenvironments within the park (Oa-S, Oa-C, Oa-V) showed lower values of soil penetration than the control microenvironments. In Oa-V unique types of plants such as Capsella bursa-pastoris and Anagallis arvensis, which did not appear in the control microenvironments, were found. This was true also for Fi-U, in which species like Oxalis pes-caprae were found. Significant differences in soil and vegetation properties were found between Re-U and the rest of microenvironments. Differences in levels of human activities, in addition to differences in vegetation types, increased the spatial heterogeneity of soil properties. The rest microenvironment (Re-U) exhibited degraded soil conditions and can be regarded as forming the fragile areas of the park. An urban park offers potential for presence and growth of natural vegetation and, therefore, also for preservation of biodiversity. Natural vegetation, in its role as a part of the urban park, enriches the landscape diversity and thereby may contribute to the enjoyment of the visitors in the park.

  4. Searching for Flickering Giants in the Ursa Minor Dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Montiel, Edward J.; Mighell, K. J.

    2010-01-01

    We present a preliminary analysis of three epochs of archival Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC2) observations of a single field in the Ursa Minor (UMi) dwarf spheroidal (dSph) galaxy. These observations were obtained in 2000, 2002, and 2004 (GO-7341, GO-8776, GO-2004; PI: Olszewski). We expand upon the work of Mighell and Roederer 2004 who reported the existence of low-amplitude variability in red giant stars in the UMi dSph. We report the 16 brightest point sources (F606W <= 21.5 mag) that we are able to match between all 3 epochs. The 112 observations were analyzed with HSTphot. We tested for variability with a chi-squared statistic that had a softened photometric error where 0.01 mag was added in quadrature to the reported HSTphot photometric error. We find that all 13 stars and 3 probable galaxies exhibit the same phenomenon as described in Mighell and Roederer with peak to peak amplitudes ranging from 54 to 125 mmags on 10 minute timescales. If these objects were not varying, the deviates should be normally distributed. However, we find that the deviates have a standard deviation of 1.4. This leads to three possible conclusions: (1) the observed phenomenon is real, (2) an additional systematic error of 7 mmag needs to be added to account for additional photometric errors (possibly due to dithering), or (3) there was a small instrumental instability with the WFPC2 instrument from 2000 to 2004. E.J.M. was supported by the NOAO/KPNO Research Experience for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program and the Department of Defense ASSURE program through Scientific Program Order No. 13 (AST-0754223) of the Cooperative Agreement No.AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF.

  5. Application of Geographic Information System (GIS) in Student Experiential Learning on Climate Change and Sustainability

    NASA Astrophysics Data System (ADS)

    Ozbay, G.; Sriharan, S.; Fan, C.; Prakash, A.; San Juan, F.

    2016-12-01

    Consortium of minority serving institutions including Delaware State University, Virginia State University, Morgan State University, University of Alaska Fairbanks, and Elizabeth City State University have collaborated on various student experiential learning programs to expand the technology-based education by incorporating Geographic Information System (GIS) technique to promote student learning on climate change and sustainability. Specific objectives of this collaborative programs are to: (i) develop new or enhance existing courses of Introduction to Geographic Information System (GIS) and Introduction to Remote Sensing, (ii) enhance teaching and research capabilities through faculty professional development workshops, (iii) engage minority undergraduates in GIS and remote sensing research via experiential learning activities including summer internship, workshop, and work study experience. Ultimate goal is to prepare pipeline of minority task force with skills in GIS and remote sensing application in climate sciences. Various research projects were conducted on topics such as carbon footprint, atmospheric CO2, wildlife diversity, ocean circulation, wild fires, geothermal exploration, etc. Students taking GIS and remote sensing courses often express interests to be involved in research projects to enhance their knowledge and obtain research skills. Of about 400 students trained, approximately 30% of these students were involved in research experience in our programs since 2004. The summer undergraduate research experiences (REU) have offered hands-on research experience to the students on climate change and sustainability. Previous studies indicate that students who are previously exposed to environmental science only by a single field trip or an introductory course could be still at risk of dropping out of this field in their early years of the college. The research experience, especially at early college years, would significantly increase the participation and retention of students in climate sciences and sustainability by creating and maintaining interest in these areas. These programs promoted active recruitment of faculty, staff, and students, fostered the development of partnerships, and enhanced related skill sets among students in GIS and remote sensing.

  6. Light Pollution Around Tucson, AZ And Its Effect On The Spatial Distribution Of Lesser Long-nosed Bats

    NASA Astrophysics Data System (ADS)

    Fersch, Alisa; Walker, C.

    2012-01-01

    Light pollution is a well-known problem for astronomers. It is also gaining attention as an ecological issue. The federally endangered Lesser Long-Nosed Bat (Leptonycteris cursoae) resides for part of the year near Tucson, Arizona. It is possible that this species tends to avoid light. Excess artificial light would therefore interfere with the bats’ flight patterns and foraging habits. In order to test this hypothesis, we quantified night sky brightness with data from the citizen-science campaign GLOBE at Night. Using direct measurements taken with a Sky Quality Meter (SQM), we created a contour map of the artificial night sky brightness around Tucson. When this map is compared to the approximate flight paths of the lesser long-nosed bat, we can see that the bats do appear to be avoiding the brightest area of Tucson. We also used logistic regression to analyze what combination of ecological variables (ecoregion, vegetation cover, landform and light) best describes the observed spatial distribution of lesser long-nosed bats. Of the models that were tested, light alone was not a good predictor of the bat presence or absence. However, light in addition to vegetation and ecoregion was the best model. This information can be useful for making decisions about lighting codes in areas of the city that the bats tend to traverse. The contour map of light pollution in Tucson will be useful for both future astronomy and ecology studies and can also be used for public outreach about light pollution. Fersch was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program and the Department of Defense ASSURE program through Scientific Program Order No. 13 (AST-0754223) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF.

  7. Rationale and Initial Design for a Virtual Undergraduate Internship in Astronomy

    NASA Astrophysics Data System (ADS)

    Berryhill, Katie; Slater, T. F.; Slater, S. J.

    2012-01-01

    In recent decades, research experiences for undergraduates (REUs) programs have provided students with opportunities to spend a summer working on a research project with a faculty mentor. The aim of these programs has generally been to take up the challenge of the Boyer-2 report to introduce research-based learning into the undergraduate experience (Boyer 1998). Recent efforts have been aimed at encouraging women and underrepresented minorities to pursue STEM careers. With the advent of successful models for online degree programs that can add to the STEM workforce pipeline, there is now the possibility of expanding these research experiences to include the new diverse demographic of previously untapped online learners. Many online learners are working adults, and therefore do not have the same flexibility as traditional undergraduates to attend a summer REU at another institution, nor do they have the opportunity for internships at their home institution. This project is intended to leverage significant developments in rapidly emerging social media; investments in Internet-accessible telescopes for professional and amateur use; and contemporary advances in the learning sciences to build pathways through long-term, collaborative, astronomy research projects. The first stage involves developing initial research protocols and online mentoring infrastructures for establishing an ongoing national program for virtual astronomy internships for undergraduate STEM majors. Underlying this project is a plan for students to work collaboratively alongside active professional and amateur astronomers to conduct original research using remotely controlled and robotic telescopes. We anticipate that by the start of this project, more than 100 robotic and remotely controlled telescopes will exist around the world (mo-www.harvard.edu/OWN, aavso.org/aavsonet, and lcogt.net among others) providing continuous world-wide coverage. We plan to test and iteratively build a successful infrastructure for students to take advantage of these and other rapidly emerging resources and support an expansion of the STEM career workforce.

  8. Production of Short-Lived 37K

    NASA Astrophysics Data System (ADS)

    Stephens, Heather; Melconian, Dan; Shidling, Praveen

    2011-03-01

    The purpose of our work during the summer months of 2010 was to produce a beam of 37 K with >= 99 % purity and characterize in detail the remaining contaminants. A projectile beam of 38 Ar at 25 and 29 MeV/nucleon from the K500 cyclotron generated the 37 K by reacting with an H2 gas target. The MARS spectrometer was then used to separate the reaction products of interest from the primary beam and other unwanted reaction products. From analysis of our production experiment, we were able to successfully produce 807 counts/nC of 37 K with 99.19% purity at 25MeV/u and 1756 counts/nC with 98.93% purity at 29MeV/u. The purity of this beam and rate of production is more than adequate for use in determining the half-life of 37 K, the next step to be done by the team in August 2010. This measurement will be accomplished by implanting the activity into a Mylar tape, placing it between two high-efficiency gas counters and counting the amount of beta decays as a function of time. It is expected the half-life will be measured using the 37 K produced from 38 Ar at 29MeV/u. Funded by DOE and NSF-REU Program.

  9. Production of Short-Lived 37 K

    NASA Astrophysics Data System (ADS)

    Stephens, Heather; Melconian, Dan; Shidling, Praveen

    2011-04-01

    The purpose of our work during the summer months of 2010 was to produce a beam of 37 K with >= 99% purity and characterize in detail the remaining contaminants. A projectile beam of 38Ar at 25 and 29 MeV/nucleon from the K500 cyclotron generated the 37 K by reacting with an H2 gas target. The MARS spectrometer was then used to separate the reaction products of interest from the primary beam and other unwanted reaction products. From analysis of our production experiment, we were able to successfully produce 807 counts/nC of 37 K with 99.19% purity at 25MeV/u and 1756 counts/nC with 98.93% purity at 29MeV/u. The purity of this beam and rate of production is more than adequate for use in determining the half-life of 37 K, the next step to be done by the team in August 2010. This measurement will be accomplished by implanting the activity into a Mylar tape, placing it between two high-efficiency gas counters and counting the amount of beta decays as a function of time. It is expected the half-life will be measured using the 37 K produced from 38Ar at 29MeV/u. Funded by DOE and NSF-REU Program

  10. The Search for Transients and Variables in the LSST Pathfinder Survey

    NASA Astrophysics Data System (ADS)

    Gorsuch, Mary Katherine; Kotulla, Ralf

    2018-01-01

    This research was completed during participation in the NSF-REU program at University of Wisconsin-Madison. Two fields of a few square degrees, close to the galactic plane, were imaged on the WIYN 3.5 meter telescope during the commissioning of the One Degree Imager (ODI) focal plane. These images were taken with repeated, shorter exposures in order to model an LSST-like cadence. This data was taken in order to identify transient and variable light sources. This was done by using Source Extractor to generate a catalog of all sources in each exposure, and inserting this data into a larger photometry database composed of all exposures for each field. A Python code was developed to analyze the data and isolate sources of interest from a large data set. We found that there were some discrepancies in the data, which lead to some interesting results that we are looking into further. Variable and transient sources, while relatively well understood, are not numerous in current cataloging systems. This will be a major undertaking of the Large Synoptic Survey Telescope (LSST), which this project is a precursor to. Locating these sources may give us a better understanding of where these sources are located and how they impact their surroundings.

  11. The Connection Between Solar Coronal Cavities and Solar Filaments

    NASA Astrophysics Data System (ADS)

    Zawadzki, B.; Karna, N.; Prchlik, J.; Reeves, K.; Kempton, D.; Angryk, R.

    2017-12-01

    Filaments are structures in the solar corona made up of relatively cool, dense, partially ionized plasma. Coronal cavities, circular or elliptical regions of low plasma density, are observed above prominences on the solar limb when viewed in EUV and white light coronal images. Since most filament/cavity eruptions lead to a coronal mass ejection (CME), determining the likelihood of an eruption event will improve our ability to predict space weather. We examine SDO/AIA cavity metadata and HEK filament metadata to determine which cavities are associated with which filaments from 2012 to 2015. Our study involved 140 cavities and 368 filaments that appeared poleward of +-30 degrees. We categorized the cavities and filaments based on the stability of the structures, defined by whether or not the cavity and filament exist long enough to track fully across the solar disk. Using these categories we perform a statistical study on various filament qualities within the metadata. Our findings indicate that filaments with cavities are observed more often at high latitude in compared to filaments without cavities. Moreover, our study indicates that a statistically significant difference exists between the filament length and tilt distributions for certain categories. This work supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313, and the NSF-DIBBS project, grant number ACI-1443061.

  12. First Observation of a Hall Effect in a Dusty Plasma: A Charged Granular Flow with Relevance to Planetary Rings

    NASA Astrophysics Data System (ADS)

    Eiskowitz, Skylar; Ballew, Nolan; Rojas, Rubén; Lathrop, Daniel

    2017-11-01

    The particles in Saturn's rings exhibit complex dynamic behavior. They experience solar radiation pressure, electromagnetic forces, and granular collisions. To investigate the possibility of the Hall Effect in the dusty plasma that comprise Saturn's rings, we have built an experiment that demonstrates the Hall Effect in granular matter. We focus on the Hall Effect because the rings' grains become collisionally charged and experience Saturn's dipolar magnetic field and Lorentz forces as they orbit. The experimental setup includes a closed ring-like track where granular matter is forced to circulate driven by compressed air. The structure sits between two electromagnets so that a portion of the track experiences up to a 0.2 T magnetic field. We vary the strength of the field and the speed of the particles. We report the voltage differences between two conducting plates on opposite sides of the track. If Saturn's rings do experience the Hall Effect, the inside and outside of the rings will develop a charge separation that can lead to a radial electric field and various phenomena including orbital effects due to the additional electric forces. Observational evidence from Cassini suggests that Saturn's rings exhibit lighting, supporting the notion that they are electrically charged. TREND REU program sponsored by the National Science Foundation.

  13. Heating of Dust in Gamma-Ray Burst Environments

    NASA Astrophysics Data System (ADS)

    Hackett, Brianne; Updike, A. C.; Hartmann, D. H.

    2010-01-01

    We report observations in the R-band of the afterglow of GRB 090618 with the SARA 0.9m telescope at Kitt Peak National Observatory. The lightcurve can be fit with a broken power law, with a possible jet break at t j ˜ 0.74 days. The foreground extinction to this burst is A R = 0.036 while the extinction in the host galaxy is undetermined. We also carry out a study of dust destruction due to heating by the prompt and early afterglow emission from the gamma-ray bursts. Dust can be destroyed to distances of several parsecs, so that the local environment of a GRB may not contribute significantly to the possible obscuration. While multiband photometry of GRB afterglows offers a powerful probe of dust evolution to large redshifts, the effects of the intense GRB radiation on dust in its vicinity must be taken into account. This project was funded by a partnership between the National Science Foundation (NSF AST-0552798), Research Experiences for Undergraduates (REU), and the Department of Defense (DoD) ASSURE (Awards to Stimulate and Support Undergraduate Research Experiences) programs. We thank S. Brittain, A. Colson, J. Lewis, and M. Kronberg for obtaining the CCD images with the SARA telescope. This project has also benefited from discussions with Renata Cumbee and Shanna Estes.

  14. 3D Radiative Hydrodynamics Simulations of Protoplanetary Disks: A Comparison Between Two Radiative Cooling Algorithms

    NASA Astrophysics Data System (ADS)

    Lord, Jesse W.; Boley, A. C.; Durisen, R. H.

    2006-12-01

    We present a comparison between two three-dimensional radiative hydrodynamics simulations of a gravitationally unstable 0.07 Msun protoplanetary disk around a 0.5 Msun star. The first simulation is the radiatively cooled disk described in Boley et al. (2006, ApJ, 651). This simulation employed an algorithm that uses 3D flux-limited diffusion wherever the vertical Rosseland optical depth is greater than 2/3, which defines the optically thick region. The optically thin atmosphere of the disk, which cools according to its emissivity, is coupled to the optically thick region through an Eddington-like boundary condition. The second simulation employed an algorithm that uses a combination of solving the radiative transfer equation along rays in the z direction and flux limited diffusion in the r and phi directions on a cylindrical grid. We compare the following characteristics of the disk simulations: the mass transport and torques induced by gravitational instabilities, the effective temperature profiles of the disks, the gravitational and Reynolds stresses measured in the disk and those expected in an alpha-disk, and the amplitudes of the Fourier modes. This work has been supported by the National Science Foundation through grant AST-0452975 (astronomy REU program to Indiana University).

  15. Optimizing the LSST Dither Pattern for Survey Uniformity

    NASA Astrophysics Data System (ADS)

    Awan, Humna; Gawiser, Eric J.; Kurczynski, Peter; Carroll, Christopher M.; LSST Dark Energy Science Collaboration

    2015-01-01

    The Large Synoptic Survey Telescope (LSST) will gather detailed data of the southern sky, enabling unprecedented study of Baryonic Acoustic Oscillations, which are an important probe of dark energy. These studies require a survey with highly uniform depth, and we aim to find an observation strategy that optimizes this uniformity. We have shown that in the absence of dithering (large telescope-pointing offsets), the LSST survey will vary significantly in depth. Hence, we implemented various dithering strategies, including random and repulsive random pointing offsets and spiral patterns with the spiral reaching completion in either a few months or the entire ten-year run. We employed three different implementations of dithering strategies: a single offset assigned to all fields observed on each night, offsets assigned to each field independently whenever the field is observed, and offsets assigned to each field only when the field is observed on a new night. Our analysis reveals that large dithers are crucial to guarantee survey uniformity and that assigning dithers to each field independently whenever the field is observed significantly increases this uniformity. These results suggest paths towards an optimal observation strategy that will enable LSST to achieve its science goals.We gratefully acknowledge support from the National Science Foundation REU program at Rutgers, PHY-1263280, and the Department of Energy, DE-SC0011636.

  16. Identifying Extraplanar Diffuse Ionized Gas in a Sample of MaNGA Galaxies

    NASA Astrophysics Data System (ADS)

    Hubbard, Ryan J.; Diamond-Stanic, Aleksandar M.; MaNGA Team

    2016-01-01

    The efficiency with which galaxies convert gas into stars is driven by the continuous cycle of accretion and feedback processes within the circumgalactic medium. Extraplanar diffuse ionized gas (eDIG) can provide insights into the tumultuous processes that govern the evolution of galactic disks because eDIG emission traces both inflowing and outflowing gas. With the help of state-of-the-art, spatially-resolved spectroscopy from MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), we developed a computational method to identify eDIG based on the strength of and spatial extent of optical emission lines for a diverse sample of 550 nearby galaxies. This sample includes roughly half of the MaNGA galaxies that will become publicly available in summer 2016 as part of the Thirteenth Data Release of the Sloan Digital Sky Survey. We identified signatures of eDIG in 8% of the galaxies in this sample, and we found that these signatures are particularly common among galaxies with active star formation and inclination angles >45 degrees. Our analysis of the morphology, incidence, and kinematics of eDIG has important implications for current models of accretion and feedback processes that regulate star formation in galaxies. We acknowledge support from the Astrophysics REU program at the University of Wisconsin-Madison, the National Astronomy Consortium, and The Grainger Foundation.

  17. The Optical Variability of the Blazar 3C 454.3 over Three Decades from the Colgate University Foggy Bottom Observatory

    NASA Astrophysics Data System (ADS)

    Balonek, Thomas J.; Weaver, Zachary R.; Didio, Nicholas; Jenks, Leah; Morris, Carolyn; Stahlin, Ryan; Zagorac, Jovana; Chapman, Katie; D'Auteuil, Brian; Karnes, Katherine L.; Reding, Joshua S.; Sabyr, Alina; Zhang, Saiyang; Boni, Samantha; Rose, Caitlin; Rilinger, Anneliese

    2017-01-01

    Using images from the ongoing quasar monitoring program at Colgate University’s Foggy Bottom Observatory (FBO), we present a twenty-eight year light curve of the blazar 3C 454.3 in Johnson-Cousins V, R, and I filters. Using additional data from several sources, we construct an historic light curve going back to 1899. We compare the variations in several outbursts beginning with the great outburst of 2005. Following its historic minimum in 2012 (R=16.4 magnitude), 3C 454.3 has exhibited several outbursts, always remaining above a base level of 15.8 magnitude. Short timescale activity with duration of hours to days and brightness range of a magnitude or smaller are superposed on the longer-term events. We investigate the characteristic timescales and intensities of these events. We observe V-R and R-I color index variations that are correlated with brightness. The most recent flare, June 2016, has been studied by Weaver & Balonek (2017, at this conference). We gratefully acknowledge support through Colgate University’s Justus and Jayne Schlichting Student Research and NASC Division funds, a National Science Foundation REU grant (AST-1005024) to the Keck Northeast Astronomy Consortium, and the NASA / New York Space Grant.

  18. A highly sensitive magnetic biosensor for detection and quantification of anticancer drugs tagged to superparamagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Wingo, J.; Devkota, J.; Mai, T. T. T.; Nguyen, X. P.; Mukherjee, P.; Srikanth, H.; Phan, M. H.; Vietnam Academy of Science and Technology Collaboration; University of South Florida Team

    2014-03-01

    A precise detection of low concentrations of biomolecules attached to magnetic nanoparticles in complex biological systems is a challenging task and requires biosensors with improved sensitivity. Here, we present a highly sensitive magnetic biosensor based on the magneto-reactance (MX) effect of a Co65Fe4Ni2Si15B14 amorphous ribbon with nanohole-patterned surface for detection and quantification of anticancer drugs (Curcumin) tagged to Fe3O4 nanoparticles. The detection and quantification of Curcumin were assessed by the change in MX of the ribbon subject to varying concentrations of the functionalized Fe3O4 nanoparticles. A high capacity of the MX-based biosensor in quantitative analysis of the nanoparticles was achieved in the range of 0 - 50 ng/ml, beyond which the detection sensitivity (η) remained unchanged. The η of the biosensor reached an extremely high value of 30%, which is about 4-5 times higher than that of a magneto-impedance (MI) based biosensor. This biosensor is well suited for detection of low-concentration magnetic biomarkers in biological systems. This work was supported by was supported by the Florida Cluster for Advanced Smart Sensor Technologies, USAMRMC (Grant # W81XWH-07-1-0708), and the NSF-funded REU program at the USF.

  19. Reversing flow causes passive shark scale actuation in a separating turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Lang, Amy; Gemmell, Bradford; Motta, Phil; Habegger, Laura; Du Clos, Kevin; Devey, Sean; Stanley, Caleb; Santos, Leo

    2017-11-01

    Control of flow separation by shortfin mako skin in experiments has been demonstrated, but the mechanism is still poorly understood yet must be to some extent Re independent. The hypothesized mechanisms inherent in the shark skin for controlling flow separation are: (1) the scales, which are capable of being bristled only by reversing flow, inhibit flow reversal events from further development into larger-scale separation and (2) the cavities formed when scales bristle induces mixing of high momentum flow towards the wall thus energizing the flow close to the surface. Two studies were carried out to measure passive scale actuation caused by reversing flow. A small flow channel induced an unsteady, wake flow over the scales prompting reversing flow events and scale actuation. To resolve the flow and scale movements simultaneously we used specialized optics at high magnification (1 mm field of view) at 50,000 fps. In another study, 3D printed models of shark scales, or microflaps (bristling capability up to 50 degrees), were set into a flat plate. Using a tripped, turbulent boundary layer grown over the long flat plate and a localized adverse pressure gradient, a separation bubble was generated within which the microflaps were placed. Passive flow actuation of both shark scales and microflaps by reversing flow was observed. Funding from Army Research Office and NSF REU site Grant.

  20. LED Illuminators for the SNAP Calibration

    NASA Astrophysics Data System (ADS)

    Misra, Amit; Baptista, B.; Mufson, S.; Mostek, N.

    2007-12-01

    The Supernova Acceleration Probe, or SNAP, is a proposed satellite mission that will study dark energy to better understand what is driving the universe's accelerated expansion. One of the goals of SNAP is to control systematic color uncertainties to less than 2%. The work described here is directed at the development of a flight calibration illumination system for SNAP that minimizes systematic errors in color. The system is based on LEDs as the illumination lamps. LEDs are compact, long-lived, and low power illuminators, which make them attractive for space missions lasting several years. This poster discusses optical measurements of pulsed, thermally controlled LEDs obtained from commercial vendors. Measurements over short (over the span of one day) and long (over the span of weeks) time scales have shown that the irradiance of the LEDs we tested is constant at the 0.3% level. In these measurements we paid particular attention to the influence of junction heating. Measurements of LED irradiance versus the duty cycle of the pulsed LED show that in general the LED irradiance increases as the junction temperature increases. Additionally, the FWHM of the spectrum also increases as the temperature increases. However, measurements of LED irradiance versus temperature as regulated a by a thermal controller circuit, show that the LED irradiance decreases as the temperature increases. This work has been supported by the National Science Foundation under grant AST-0452975 (REU-Site to Indiana U.).

  1. New Low-Mass Wide Companions to Members of the Sco-Cen OB Association

    NASA Astrophysics Data System (ADS)

    Finn, Molly; Mamajek, Eric E.; Luhman, Kevin; Murphy, Simon

    2017-01-01

    We have conducted a survey for wide common proper motion companions to 512 members of the Upper Cen-Lup (UCL) and Lower Cen-Cru (LCC) subgroups of the Sco-Cen OB association using astrometry and photometry from the SPM4 catalog. Companion candidates were selected within 3 arcminutes (23 kau = 0.11 pc at d = 130 pc). We find that 12% of the Sco-Cen members have stellar companions in the separation range 3-20 kau. Optical spectra of 16 candidate companions were taken with the new COSMOS spectrograph on the Blanco 4-m telescope and the Wide Field Spectrograph on the Australian National University 2.3-m telescope. The spectroscopic survey yielded 14 M-type stars with Na I surface gravity index indicative of pre-MS status, of which half were Li-rich (along with two background giant interlopers). Seven stars in the range M1-M4.5 appear to be Li depleted, but otherwise seem to be pre-MS due to their chromospheric activity, low surface gravity via the Na I index, and their co- movement with other young stars in Sco-Cen. We suggest that these stars represent the Li depletion boundary for UCL and LCC. We acknowledge support from NSF award AST-1313029 and the REU Site in Physics and Astrophysics at the University of Rochester supported by NSF award PHY-1156339.

  2. Airflow Actuation of Shortfin Mako Shark Denticles

    NASA Astrophysics Data System (ADS)

    Devey, Sean; Hubner, Paul; Lang, Amy

    2016-11-01

    The shortfin mako shark is covered in microscopic scales called denticles, which may act as a mechanism for passive flow control. Recent research has investigated the theory that reversing flow could passively bristle these denticles, which could delay flow separation. Water tunnel studies have supported this theory, yet a wind tunnel study at a greater dynamic pressure found no significant differences between an airfoil covered with mako skin and a smooth airfoil. A likely cause is that surface tension between denticles, which must be wet to retain flexibility, prevented bristling. This would not be an issue in water. To determine what reverse airflow characteristics cause denticle bristling in air, a benchtop study was conducted in which a jet of air was impinged upon a sample of wet mako skin in the reverse flow direction. A microscope and camera captured video of the denticles under the air jet, and image analysis techniques were used to detect bristling. Analysis shows sporadic bristling around 16 m/s (q = 150 Pa) but full bristling does not occur until above 35 m/s (q = 740 Pa). The free stream velocities required to achieve such reversal speeds are much higher. For this reason, mechanical analogues will be used rather than real skin in future studies of this mechanism. Funding from Boeing and NSF REU site Grant EEC 1358991 is greatly appreciated.

  3. NHERI: Advancing the Research Infrastructure of the Multi-Hazard Community

    NASA Astrophysics Data System (ADS)

    Blain, C. A.; Ramirez, J. A.; Bobet, A.; Browning, J.; Edge, B.; Holmes, W.; Johnson, D.; Robertson, I.; Smith, T.; Zuo, D.

    2017-12-01

    The Natural Hazards Engineering Research Infrastructure (NHERI), supported by the National Science Foundation (NSF), is a distributed, multi-user national facility that provides the natural hazards research community with access to an advanced research infrastructure. Components of NHERI are comprised of a Network Coordination Office (NCO), a cloud-based cyberinfrastructure (DesignSafe-CI), a computational modeling and simulation center (SimCenter), and eight Experimental Facilities (EFs), including a post-disaster, rapid response research facility (RAPID). Utimately NHERI enables researchers to explore and test ground-breaking concepts to protect homes, businesses and infrastructure lifelines from earthquakes, windstorms, tsunamis, and surge enabling innovations to help prevent natural hazards from becoming societal disasters. When coupled with education and community outreach, NHERI will facilitate research and educational advances that contribute knowledge and innovation toward improving the resiliency of the nation's civil infrastructure to withstand natural hazards. The unique capabilities and coordinating activities over Year 1 between NHERI's DesignSafe-CI, the SimCenter, and individual EFs will be presented. Basic descriptions of each component are also found at https://www.designsafe-ci.org/facilities/. Additionally to be discussed are the various roles of the NCO in leading development of a 5-year multi-hazard science plan, coordinating facility scheduling and fostering the sharing of technical knowledge and best practices, leading education and outreach programs such as the recent Summer Institute and multi-facility REU program, ensuring a platform for technology transfer to practicing engineers, and developing strategic national and international partnerships to support a diverse multi-hazard research and user community.

  4. Population Synthesis of Radio and Y-ray Normal, Isolated Pulsars Using Markov Chain Monte Carlo

    NASA Astrophysics Data System (ADS)

    Billman, Caleb; Gonthier, P. L.; Harding, A. K.

    2013-04-01

    We present preliminary results of a population statistics study of normal pulsars (NP) from the Galactic disk using Markov Chain Monte Carlo techniques optimized according to two different methods. The first method compares the detected and simulated cumulative distributions of series of pulsar characteristics, varying the model parameters to maximize the overall agreement. The advantage of this method is that the distributions do not have to be binned. The other method varies the model parameters to maximize the log of the maximum likelihood obtained from the comparisons of four-two dimensional distributions of radio and γ-ray pulsar characteristics. The advantage of this method is that it provides a confidence region of the model parameter space. The computer code simulates neutron stars at birth using Monte Carlo procedures and evolves them to the present assuming initial spatial, kick velocity, magnetic field, and period distributions. Pulsars are spun down to the present and given radio and γ-ray emission characteristics, implementing an empirical γ-ray luminosity model. A comparison group of radio NPs detected in ten-radio surveys is used to normalize the simulation, adjusting the model radio luminosity to match a birth rate. We include the Fermi pulsars in the forthcoming second pulsar catalog. We present preliminary results comparing the simulated and detected distributions of radio and γ-ray NPs along with a confidence region in the parameter space of the assumed models. We express our gratitude for the generous support of the National Science Foundation (REU and RUI), Fermi Guest Investigator Program and the NASA Astrophysics Theory and Fundamental Program.

  5. Radial-Velocity Signatures of Magnetic Features on the Sun Observed as a Star

    NASA Astrophysics Data System (ADS)

    Palumbo, M. L., III; Haywood, R. D.; Saar, S. H.; Dupree, A. K.; Milbourne, T. W.

    2017-12-01

    In recent years, the search for Earth-mass planets using radial-velocity measurements has become increasingly limited by signals arising from stellar activity. Individual magnetic features induce localized changes in intensity and velocity, which combine to change the apparent radial velocity of the star. Therefore it is critical to identify an indicator of activity-driven radial-velocity variations on the timescale of stellar rotation periods. We use 617.3 nm photospheric filtergrams, magnetograms, and dopplergrams from SDO/HMI and 170.0 nm chromospheric filtergrams from AIA to identify magnetically-driven solar features and reconstruct the integrated solar radial velocity with six samples per day over the course of 2014. Breaking the solar image up into regions of umbrae, penumbrae, quiet Sun, network, and plages, we find a distinct variation in the center-to-limb intensity-weighted velocity for each region. In agreement with past studies, we find that the suppression of convective blueshift is dominated by plages and network, rather than dark photospheric features. In the future, this work will be highly useful for identifying indicators which correlate with rotationally modulated radial-velocity variations. This will allow us to break the activity barrier that currently precludes the precise characterization of exoplanet properties at the lowest masses. This work was supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313. This work was performed in part under contract with the California Institute of Technology (Caltech)/Jet Propulsion Laboratory (JPL) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute.

  6. Research Experiences for Undergraduates in Estuarine and Atmospheric Processes

    NASA Astrophysics Data System (ADS)

    Aller, J. Y.

    2009-12-01

    Our program in the School of Marine and Atmospheric Sciences at Stony Brook University is unique in emphasizing the interdisciplinary study of coastal ocean and atmospheric processes. We attract a large number of both male and female undergraduate applicants representing diverse ethnic groups from across the country. Many are multi-discipline majors merging geology, biology, chemistry, or physics with engineering, and/or mathematics and welcome the opportunity to combine their academic training to examine environmental problems. Our goal is a program reflective of today’s world and environmental challenges, one that provides a ‘hands-on’ research experience which illustrates the usefulness of scientific research for understanding real-world problems or phenomena, and one in which students are challenged to apply their academic backgrounds to develop intuition about natural systems and processes. Projects this past summer focused on assessing climate change and its effects on coastal environments and processes. Projects addressed the implications of a changing global climate over the next 50 years on hydrologic cycles and coastal environments like barrier islands and beaches, on seasonal weather conditions and extreme events, on aerosols and the Earth’s radiative balance, and on aquatic habitats and biota. Collaborative field and laboratory or computer-based projects involving two or three REU students, graduate students, and several mentors, enable undergraduate students appreciate the importance of teamwork in addressing specific scientific questions or gaining maximum insight into a particular phenomenon or process. We believe that our approach allows students to understand what their role will be as scientists in the next phase of our earth’s evolution.

  7. Cost-Effectiveness of Management Activities Related to the Interaction between the California Sea Lion and the Southern California Shark Gill-Net Fishery.

    DTIC Science & Technology

    1983-03-01

    t:ar czly he mad=- after all ths eccnoa_-c a*:a social -- cot cn,c1:..nc State manaqpm=rnt hav-= cezn studie;cd. Such a analysis fc= all. th-, fishe...rsula- the pc-ul-- nn aze not known. To cope with these problems An procedure, :elferred :o as the= lyzamlc response me:thcd (DM) was %dev=eloped and is_...19E2 d(:llars amour :-s 7o $726. These reu..ssuccest : -:he tc-al estimaiand loss in 1932 was prxatlJ 16. 4. Valua cf Acous-,:al ?lavbac k -i:t

  8. Characterizing Giant Exoplanets through Multiwavelength Transit Observations: HAT-P-14 b & TrES-1 b

    NASA Astrophysics Data System (ADS)

    Rivera, Daniel Ivan; Cole, Jackson Lane; Gardner, Cristilyn N.; Garver, Bethany Ray; Jarka, Kyla L.; Kar, Aman; McGough, Aylin Marie; PeQueen, David Jeffrey; Kasper, David; Jang-Condell, Hannah; Kobulnicky, Henry; Dale, Daniel

    2018-01-01

    Much current work focuses on characterizing exoplanets. We observed several known exoplanets using the 2.3 meter Wyoming Infrared Observatory over the course of ten weeks using the ugriz Sloan filters. Our goal was to quantify planet-to-star radius ratio, a ratio that is potentially wavelength dependent due to exoplanet atmospherics. We present the results for exoplanets HAT-P 14 b and TrES-1 b. Complementary data from the literature are utilized to supplement our analysis. This work is supported by the National Science Foundation under REU grant AST 1560461 and PAARE grant AST 1559559.

  9. A Study of Issues Related to Recruitment of Enlisted Personnel for the Reserve Components. Volume 2. Data Tables. Wave II.

    DTIC Science & Technology

    1980-07-01

    19.5 11.6 11.1 64 59 67 Other related behavioral intent ions Ver" or someNi-at like]v to: 1ook for a job, or look to change jobs (Q. 31c) 55.2 51.2...are significantly more Zikely than men to expreb6 popensity for changing the toutine in theiA ti6e. Dther related behavioral intentions Very or...S7RD-fl149 171 A STUDY OF ISSUES RELATED TO RECRUITMENT OF ENLISTD 14l PERSONNEL FOR THE RE..(U) ASSOCIATES FOR RESEARCH IN BEHAVIOR IN

  10. Tribal and Indigenous Geoscience and Earth System Science: Ensuring the Evolution and Practice of Underrepresented Scientists and Researchers in the 21ST Century and Beyond

    NASA Astrophysics Data System (ADS)

    Bolman, J.

    2014-12-01

    The time is critical for Tribal, Indigenous and Underrepresented K-12/university students and communities to accept the duty to provide representation in Earth System Sciences/Geosciences fields of study and professions. Tribal nations in the U.S have a unique legal status rooted in a complex relationship between the U.S. federal government, individual state/local governments and Tribal authorities. Although geosciences are often at the center of these relationships, especially as they pertain to the development of natural resources, tribal economics, and environmental stewardship, Tribal/Indigenous people remain severely underrepresented in advanced geoscience education. Our students and communities have responded to the invitation. To represent and most important develop and lead research initiatives. Leadership is a central focus of the invitation to participate, as Tribal people have immense responsibility for significant landscapes across North American Continent, critical natural resources and millennia of unpretentious natural evolution with the localized native geologies, species and environmental systems. INRSEP and Pacific Northwest Tribal Nations found sustaining relationships with the Geoscience Alliance, MS PHD's, Woods Hole PEP, Native American Pacific Islander Research Experience (NAPIRE) and LSAMP programs, in addition to state/federal agencies, has advanced culturally-relevant STEM research. Research foundationally grounded on traditional ecological knowledge, individual and Tribal self-determination. A key component is student research experiences within their ancestral homelands and traversing to REU's in multiple national and international Tribal/Indigenous ancestral territories. The relationships also serve an immense capacity in tracking student achievement, promoting best practices in research development and assessing outcomes. The model has significantly improved the success of students completing STEM graduate programs. The presentation will highlight lessons learned on how to 1) Ensure a diverse cohort/community of student, professionals and researchers; 2) Evolve intergenerational mentoring processes/outcomes; 3) Innovate research and programs; and 4) Advance the broader impact of geosciences research and outcomes.

  11. The Ground-Based Transmission Spectrum of HD 189733b as Generated Through Multiple Broadband Filter Observations

    NASA Astrophysics Data System (ADS)

    Kasper, David; Cole, Jackson L.; Gardner, Cristilyn N.; Garver, Bethany; Jarka, Kyla L.; Kar, Aman; McGough, Aylin M.; PeQueen, David J.; Rivera, Daniel Ivan; Jang-Condell, Hannah; Kobulnicky, Henry A.; Dale, Daniel A.

    2018-06-01

    We present new multi-broadband transit photometry of HD 189733b observed with the Wyoming Infrared Observatory. With an ensemble of Sloan filter observations across multiple transits we have created an ultra-low resolution transmission spectrum to discern the nature of the exoplanet atmosphere. This data set exemplifies the capabilities of the 2.3 m observatory. The analysis was performed with a Markov-Chain Monte-Carlo method assisted by a Gaussian-processes regression model. These observations were taken as part of the University of Wyoming's 2017 Research Experience for Undergraduates (REU) and represent one of multiple hot Jupiter exoplanet targets for which we have transit event observations in multiple broadband filters.

  12. USEPA'S SITE PROGRAM IMPACT ON THE DEVELOPMENT AND USE OF INNOVATIVE HAZARDOUS WASTE TREATMENT

    EPA Science Inventory

    The USEPA's SITE Program was created to meet the increased demand for innovative technologies for hazardous waste treatment. The primary mission of the SITe Program is to expedite the cleanup of sites on the NPL. The SITE Program has two components: The Demonstration Program and ...

  13. The Sunnel: Engaging Visitors in Solar Research via a Tunnel Through the Sun

    NASA Astrophysics Data System (ADS)

    DeMuth, Nora H.; Walker, C. E.

    2006-12-01

    The publicly accessible hallway space inside the McMath-Pierce Solar Telescope building on Kitt Peak has great untapped potential to house a display that would be relevant and understandable to KPNO visitors without the need for mediation or further explanation. An effective display would unite background content on solar physics and astronomy, and information on current solar research techniques and results in an accessible way that would excite and engage visitors. Considering these requirements, we created a concept currently dubbed the Sunnel (for “Sun-tunnel”). The Sunnel consists of two 95by 13-foot murals of the layers of the Sun stretching down the visitor hallway in the McMath-Pierce Solar Telescope. Temperatures of the layers are represented by the colors of the peak in the corresponding black-body curves, and solar features such as sunspots and pressure waves are represented by abstract designs flowing along the walls. A photon path will be laid on the floor using tiles, and several posters highlighting current solar research and background science content relevant to solar research will be displayed on one wall. An audio tour featuring interviews with solar researchers guides visitors along the Sunnel, engaging them and supporting deeper appreciation of the solar research. Installation of the murals is scheduled for early 2007, just in time to celebrate the International Heliophysical Year. DeMuth's research was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation through Scientific Program Order No. 3 (AST-0243875) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF.

  14. The Massive Black Hole in the Dwarf Galaxy NGC 4486B

    NASA Astrophysics Data System (ADS)

    Bender, A.; Green, R. F.; Gebhardt, K.; Bower, G. A.; Kormendy, J.; Lauer, T.; Richstone, D. O.; STIS IDT Galaxy Nuclei Team; Nuker Team

    2003-12-01

    We report results from the application of a three-integral galactic dynamical model to NGC 4486B. This dwarf E1 companion to M87 has long been known to be an outlier in the Fundamental Plane. Kormendy and Magorrian et al. found a substantial central black hole mass, making it an outlier in the MBH to Lbulge relationship as well. From the modeling we are able to determine the extent to which NGC 4486B follows the MBH - sigma relation more closely than the other bulge galaxy relationships. The other unique feature NGC 4486B exhibits is a double nucleus structure, the second of only two observed. We combine the high resolution of STIS spectra with ground based data to form a more complete description of the line-of-sight velocity distributions (LOSVDs) in the nuclear region of NGC 4486B. Through the increased resolution of the dynamics and the three-integral model, we place an improved constraint on the mass-to-light ratio and black hole mass. Bender's research was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation through Scientific Program Order No. 3 (AST-0243875) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF. RG and GB were supported by NASA for the STIS Instrument Definition Team. This work is a collaboration with the STIS Instrument Definition Team galaxy nuclei group, which also includes John Hutchings, Charles Joseph, Mary Elizabeth Kaiser, Charles Nelson, Donna Weistrop, and Bruce Woodgate. This work is a collaboration with the Nuker Team, which also includes Ralf Bender, Alan Dressler, Sandra Faber, Alex Filippenko, Carl Grillmair, Luis Ho, John Magorrian, Jason Pinkney, Christos Siopis, and Scott Tremaine.

  15. Gas-Expanded Liquids: Synergism of Experimental and Computational Determinations of Local Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles A. Eckert; Charles L. Liotta; Rigoberto Hernandez

    2007-06-26

    This project focuses on the characterization of a new class of solvent systems called gas-expanded liquids (GXLs), targeted for green-chemistry processing. The collaboration has adopted a synergistic approach combining elements of molecular dynamics (MD) simulation and spectroscopic experiments to explore the local solvent behavior that could not be studied by simulation or experiment alone. The major accomplishments from this project are: • Applied MD simulations to explore the non-uniform structure of CO2/methanol and CO2/acetone GXLs and studied their dynamic behavior with self-diffusion coefficients and correlation functions • Studied local solvent structure and solvation behavior with a combination of spectroscopy andmore » MD simulations • Measured transport properties of heterocyclic solutes in GXLs through Taylor-Aris diffusion techniques and compared these findings to those of MD simulations • Probed local polarity and specific solute-solvent interactions with Diels-Alder and SN2 reaction studies The broader scientific impact resulting from the research activities of this contract have been recognized by two recent awards: the Presidential Green Chemistry Award (Eckert & Liotta) and a fellowship in the American Association for the Advancement of Science (Hernandez). In addition to the technical aspects of this contract, the investigators have been engaged in a number of programs extending the broader impacts of this project. The project has directly supported the development of two postdoctoral researcher, four graduate students, and five undergraduate students. Several of the undergraduate students were co-funded by a Georgia Tech program, the Presidential Undergraduate Research Award. The other student, an African-American female graduated from Georgia Tech in December 2005, and was co-funded through an NSF Research and Education for Undergraduates (REU) award.« less

  16. Static and Alternating Field Magnetic Capture and Heating of Iron Oxide Nanoparticles in Simulated Blood Vessels

    NASA Astrophysics Data System (ADS)

    Lee, Joanne Haeun; Shah, Rhythm R.; Brazel, Christopher S.

    2014-11-01

    Targeted drug delivery and localized hyperthermia are being studied as alternatives to conventional cancer treatments, which can affect the whole body and indiscriminately kill healthy cells. Magnetic nanoparticles (MNPs) have potential as drug carriers that can be captured and trigger hyperthermia at the site of the tumor by applying an external magnetic field. This study focuses on comparing the capture efficiency of the magnetic field applied by a static magnet to an alternating current coil. The effect of particle size, degree of dispersion, and the frequency of the AC field on capture and heating were studied using 3 different dispersions: 16 nm maghemite in water, 50 nm maghemite in dopamine, and 20--30 nm magnetite in dimercaptosuccinic acid. A 480G static field captured more MNPs than a similar 480G AC field at either 194 or 428 kHz; however, the AC field also allowed heating. The MNPs in water had a lower capture and heating efficiency than the larger, dopamine-coated MNPs. This finding was supported by dynamic light scattering data showing the particle size distribution and vibrating sample magnetometry data showing that the larger MNPs in the dopamine solution have a higher field of coercivity, exhibit ferrimagnetism and allow for better capture while smaller (16 nm) MNPs exhibit superparamagnetism. The dispersions that captured the best also heated the best. NSF ECE Grant #1358991 supported the first author as an REU student.

  17. Particle-Induced Gamma-ray Emission Spectroscopy Over a Broad Range of Elements

    NASA Astrophysics Data System (ADS)

    Olds, Hannah; Wilkinson, John; Tighe, Meghanne; McLallen, Walter; McGuire, Patrick

    2017-09-01

    Ion beam analysis is a common application of nuclear physics that allows elemental and isotopic information about materials to be determined from accelerated light ion beams One of the best know ion beam analysis techniques is Particle-Induced Gamma-ray Emission (PIGE) spectroscopy, which can be used ex vacuo to identify the elements of interest in almost any solid target. The energies of the gamma-rays emitted by excited nuclei will be unique to each element and depend on its nuclear structure. For the most sensitivity, the accelerated ions should exceed the Coulomb barrier of the target, but many isotopes are known to be accessible to PIGE even below the Coulomb barrier. To explore the sensitivity of PIGE across the periodic table, PIGE measurements were made on elements with Z = 5, 9, 11-15, 17, 19-35, 37, 42, 44-48, 53, 56, 60, 62, 73, and 74 using 3.4 MeV protons. These measurements will be compared with literature values and be used as a basis for comparison with higher-energy proton beams available at the University of Notre Dame's St. Andre accelerator when it comes online this Fall. The beam normalization technique of using atmospheric argon and its 1459 keV gamma-ray to better estimate the integrated beam on target will also be discussed. Funded by the NSF REU program and the University of Notre Dame.

  18. Characterization of Passive Flow-Actuated Microflaps Inspired by Shark Skin for Separation Control

    NASA Astrophysics Data System (ADS)

    Morris, Jackson; Devey, Sean; Lang, Amy; Hubner, Paul

    2017-11-01

    Thanks to millions of years of natural selection, sharks have evolved into quick apex predators. Previous research has proven shark skin to reduce flow separation, which would result in lower pressure drag. Mako shark skin is made up of microscopic scales on the order of 0.2 mm in size. These scales are hypothesized to be a flow control mechanism, capable of being passively actuated by reversed flow. We believe shark scales are strategically sized to interact with the lower 5 percent of the boundary layer, where reversed flow occurs near the wall. Previous wind tunnel research has shown that it is possible to passively actuate 2D flaps in the lower regions of the boundary layer. This research aims to identify reverse flow conditions that will cause small 3D flaps to actuate. Several sets of microflaps (about 4 mm in length) geometrically similar to shark scales were 3D printed. These microflaps were tested in a low-speed wind tunnel in various reverse flow conditions. Microflaps were observed to be actuated by the reversing flow and flow conditions were characterized using a hot-wire probe. These microflaps have the potential to mimic the mako shark type of flow control in air, passively actuated by reverse flow conditions. This research was supported by Boeing, the US Army, and the National Science Foundation REU program.

  19. Modeling Continental Rifts and Melting Under Precambrian Mantle Conditions: Effects of Mantle Potential Temperature and Rheology

    NASA Astrophysics Data System (ADS)

    Hansen, M.; Moucha, R.; Rooney, T. O.; Stein, S.; Stein, C. A.

    2016-12-01

    The Mid-Continent Rift System (MCRS) is a 2000 kilometer-long failed rift which formed within the Precambrian continent of Laurentia ca. 1.1 Ga. The MCRS is part of the Keweenaw large igneous province (LIP), and is dominantly composed of flood basalts, with subordinate rhyolite. While continental rifts and LIPs are frequently spatially related, it is unusual for a rift to be filled with flood basalts. Existing work has suggested that the presence of large volumes of flood basalts within the MCRS is the result of the rift interacting with anomalously hot mantle material, possibly a mantle plume. However, ambient mantle conditions were much hotter during the late Proterozoic than in the modern mantle. This raises the question - could rifting alone generate the significant volume of decompressive melt from the ambient atmosphere without the need for a mantle plume? In this contribution, we utilize a 2D particle-in-cell thermomechanical visco-elasto-plastic code (e.g. Gerya, 2010; & references therein) to numerically explore the parameter space: specifically, the mantle potential temperature, plume excess temperature and volume, extension rates and rheology, and estimate the amount of melt produced in a Precambrian continental rift setting. *This submission is a result of Hansen's participation in GLADE, a nine week summer REU program directed by Dave Stegman (SIO/UCSD).

  20. The Jena Diversity Model: Towards a Richer Representation of the Terrestrial Biosphere for Earth System Modelling

    NASA Astrophysics Data System (ADS)

    Pavlick, R.; Reu, B.; Bohn, K.; Dyke, J.; Kleidon, A.

    2010-12-01

    The terrestrial biosphere is a complex, self-organizing system which is continually both adapting to and altering its global environment. It also exhibits a vast diversity of vegetation forms and functioning. However, the terrestrial biosphere components within current state-of-the-art Earth System Models abstract this diversity in to a handful of relatively static plant functional types. These coarse and static representations of functional diversity might contribute to overly pessimistic projections regarding terrestrial ecosystem responses to scenarios of global change (e.g. Amazonian and boreal forest diebacks). In the Jena Diversity (JeDi) model, we introduce a new approach to vegetation modelling with a richer representation of functional diversity, based not on plant functional types, but on unavoidable plant ecophysiological trade-offs, which we hypothesize should be more stable in time. The JeDi model tests a large number of plant growth strategies. Each growth strategy is simulated using a set of randomly generated parameter values, which characterize its functioning in terms of carbon allocation, ecophysiology, and phenology, which are then linked to the growing conditions at the land surface. The model is constructed in such a way that these parameters inherently lead to ecophysiological trade-offs, which determine whether a growth strategy is able to survive and reproduce under the prevalent climatic conditions. Kleidon and Mooney (2000) demonstrated that this approach is capable of reproducing the geographic distribution of species richness. More recently, we have shown the JeDi model can explain other biogeographical phenomena including the present-day global pattern of biomes (Reu et al., accepted), ecosystem evenness (Kleidon et al. 2009), and possible mechanisms for biome shifts and biodiversity changes under scenarios of global warming (Reu et al., submitted). We have also evaluated the simulated biogeochemical fluxes from JeDi against a variety of site, field, and satellite observations (Pavlick et al., submitted) following a protocol established by the Carbon-Land Model Intercomparison Project (Randerson et al. 2009). We found that the global patterns of biogeochemical fluxes and land surface properties are reasonably well simulated using this bottom-up trade-off approach and compare favorably with other state of the art terrestrial biosphere models. Here, we present some results from JeDi simulations, wherein we varied the modelled functional diversity to quantify its impact on terrestrial biogeochemical fluxes under both present-day conditions and projected scenarios of global change. We also present results from a set of simulations wherein we vary the ability of the modelled ecosystems to adapt through changes in functional composition, leading to different projection responses of the carbon cycle to global warming. This plant functional tradeoff approach sets the foundation for many applications, including exploring the emergence and climatic impacts of major vegetation transitions throughout the last 400 million years as well as quantifying the significance of preserving functional diversity to hedge against uncertain climates in the future.

  1. Cognitive Factors that Impact Learning in the Field: Observations from an REU Project on Precambrian Rocks of Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Henry, D.; Mogk, D. W.; Goodwin, C.

    2011-12-01

    Field work requires cognitive processing on many different levels, and constitutes a powerful and important learning environment. To be effective and meaningful, the context of field work must be fully understood in terms of key research questions, earlier published work, regional geology, geologic history, and geologic processes. Scale(s) of observation and sample selection methods and strategies must be defined. Logistical decisions must be made about equipment needed, points of access, and navigation in the field. Professional skills such as field note-taking, measuring structural data, and rock descriptions must be employed, including appropriate use of field tools. Interpretations of geologic features in the field must be interpreted through recall of concepts from the geologic knowledge base (e.g. crystallization history of igneous rocks interpreted through phase diagrams). Field workers need to be able to self-monitor and self-regulate their actions (metacognitively), and make adjustments to daily plans as needed. The results of field work must be accurately and effectively communicated to other geoscientists. Personal and professional ethics and values are brought to bear as decisions are made about whether or not the work has been satisfactorily completed at a field site. And, all of this must be done against a back drop of environmental factors that affect the ability to do this work (e.g. inclement weather, bears, impassable landscapes). The simultaneous relevance of all these factors creates a challenging, but rewarding environment for learning on many different scales. During our REU project to study the Precambrian rocks in the back country of Yellowstone National Park (YNP), we considered these cognitive factors in designing our project curriculum. To reduce the "novelty space" of the project a website was developed that described the project goals and expected outcomes, introduced primary literature, and alerted students about the physical demands of working in YNP.. Daily field activities were designed to scaffold accrued knowledge by placing specific new experiences in the path of students to sequentially build their own understanding of local geology. Students gained increasing responsibility and autonomy for developing daily research objectives and plans, and for decision-making while in the field. Instructors demonstrated specific field skills, and used "talk-through" approaches to explain what, why, and how we conduct our own investigations. We were particularly interested in helping students make the first inscriptions of their interpretations of nature in field notes, sketches, and maps, and in using embodiment (positioning oneself in space to correctly make observations and collect data) to foster learning. In the course of this study we videotaped students in the field to document the evolution of their field skills. Observations, interviews and surveys of students indicate that students' confidence in their abilities to conduct geologic research in the field increased by 20-40% (Likert scale) in this project. By explicitly addressing cognitive demands, students working in the field can achieve significant learning gains.

  2. Site Remediation Technology InfoBase: A Guide to Federal Programs, Information Resources, and Publications on Contaminated Site Cleanup Technologies. First Edition

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Table of Contents: Federal Cleanup Programs; Federal Site Remediation Technology Development Assistance Programs; Federal Site Remediation Technology Development Electronic Data Bases; Federal Electronic Resources for Site Remediation Technology Information; Other Electronic Resources for Site Remediation Technology Information; Other Electronic Resources for Site Remediation Technology Information; Selected Bibliography: Federal Publication on Alternative and Innovative Site Remediation; and Appendix: Technology Program Contacts.

  3. Genome characterization of sugarcane yellow leaf virus from China reveals a novel recombinant genotype.

    PubMed

    Lin, Yi-Hua; Gao, San-Ji; Damaj, Mona B; Fu, Hua-Ying; Chen, Ru-Kai; Mirkov, T Erik

    2014-06-01

    Sugarcane yellow leaf virus (SCYLV; genus Polerovirus, family Luteoviridae) is a recombinant virus associated with yellow leaf disease, a serious threat to sugarcane in China and worldwide. Among the nine known SCYLV genotypes existing worldwide, COL, HAW, REU, IND, CHN1, CHN2, BRA, CUB and PER, the last five have been reported in China. In this study, the complete genome sequences (5,880 nt) of GZ-GZ18 and HN-CP502 isolates from the Chinese provinces of Guizhou and Hainan, respectively, were cloned, sequenced and characterized. Phylogenetic analysis showed that, among 29 SCYLV isolates described worldwide, the two Chinese isolates clustered together into an independent clade based on the near-complete genome nucleotide (ORF0-ORF5) or amino acid sequences of individual genes, except for the MP protein (ORF4). We propose that the two isolates represent a novel genotype, CHN3, diverging from other genotypes by 1.7-13.6 % nucleotide differences in ORF0-ORF5, and 2.7-28.1 %, 1.8-20.4 %, 0.5-5.1 % and 2.7-15.9 % amino acid differences in P0 (ORF0), RdRp (RNA-dependent RNA polymerase) (ORF1+2), CP (coat protein) (ORF3) and RT (readthrough protein) (ORF3+5), respectively. CHN3 was closely related to the BRA, HAW and PER genotypes, differing by 1.7-3.8 % in the near-complete genome nucleotide sequence. Recombination analysis further identified CHN3 as a new recombinant strain, arising from the major parent CHN-HN1 and the minor parent CHN-GD-WY19. Recombination breakpoints were distributed mostly within the RdRp region in CHN3 and the four significant recombinant genotypes, IND, REU, CUB and BRA. Recombination is considered to contribute significantly to the evolution and emergence of such new SCYLV variants.

  4. 9 CFR 149.9 - Pilot program sites.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Pilot program sites. 149.9 Section 149... LIVESTOCK IMPROVEMENT VOLUNTARY TRICHINAE CERTIFICATION PROGRAM § 149.9 Pilot program sites. Pork production sites participating in an APHIS-approved trichinae pilot program at the time of implementation of the...

  5. 9 CFR 149.9 - Pilot program sites.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Pilot program sites. 149.9 Section 149... LIVESTOCK IMPROVEMENT VOLUNTARY TRICHINAE CERTIFICATION PROGRAM § 149.9 Pilot program sites. Pork production sites participating in an APHIS-approved trichinae pilot program at the time of implementation of the...

  6. Characterizing Giant Exoplanets through Multiwavelength Transit Observations: HAT-P-57 b

    NASA Astrophysics Data System (ADS)

    Garver, Bethany Ray; Cole, Jackson Lane; Gardner, Cristilyn N.; Jarka, Kyla L.; Kar, Aman; McGough, Aylin M.; PeQueen, David Jeffrey; Rivera, Daniel Ivan; Kasper, David; Jang-Condell, Hannah; Kobulnicky, Henry; Dale, Daniel

    2018-01-01

    Giant planets have thick atmospheres. By observing transits through multiple filters at different wavelengths, we can make constraints on the atmospheres of those planets. When the planets are observed via transit, Rayleigh scattering can cause the transit depth to vary with wavelength. HAT-P-57 b is a giant exoplanet that is observable using the 2.3-meter telescope at the Wyoming Infrared Observatory. We observed half of a transit of HAT-P-57 b using Sloan filters g, r, i, and z. We present early results showing a variation in calculated radius with wavelength. Further observations are needed to confirm this variation and measure it more accurately. This work is supported by the National Science Foundation under REU grant AST 1560461.

  7. Integrated Tactical Communications System (INTACS) Management Plan, Methodology and Procedures Relationships and Responsibilities Resources.

    DTIC Science & Technology

    1980-05-01

    414 :>1 r. Aj J- QC ) 7) 4 u ) be 4- i.- . C u ... C). 0 0 - (.- twI m; : cu c w0" ZAWa -- u a C >X cr <) L-- ri U -4A. r-0 L bo a)- -C4.C C/d -4 CP...based upon experience obtained from the current AII’!S supported by contract. The 4 Clerk Typists, GS4, 322 -series are recrmc,nded based upon the...Clerk Typist GS 4 . 322 C 4 2 1 1 TOTAL 42 3 16 13 10 * AERB Validated TABLE E-III SYSTE:.S INTEGfATIO:D & , ..1.AGE>,T P’AGSO:ZXL a. aQ tE.2 AI)P Reu i

  8. 78 FR 12259 - Unmanned Aircraft System Test Site Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ...-0061] Unmanned Aircraft System Test Site Program AGENCY: Federal Aviation Administration (FAA), DOT... Defense, develop a test site program for the integration of unmanned aircraft systems in to the National Airspace System. The overall purpose of this test site program is to develop a body of data and operational...

  9. 22 CFR 502.3 - Availability of program materials on public Web sites.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... sites. 502.3 Section 502.3 Foreign Relations BROADCASTING BOARD OF GOVERNORS DOMESTIC REQUESTS FOR BROADCASTING BOARD OF GOVERNORS PROGRAM MATERIALS § 502.3 Availability of program materials on public Web sites... information Web sites designed for foreign audiences. To access currently-available Agency program materials...

  10. Hand Society and Matching Program Web Sites Provide Poor Access to Information Regarding Hand Surgery Fellowship.

    PubMed

    Hinds, Richard M; Klifto, Christopher S; Naik, Amish A; Sapienza, Anthony; Capo, John T

    2016-08-01

    The Internet is a common resource for applicants of hand surgery fellowships, however, the quality and accessibility of fellowship online information is unknown. The objectives of this study were to evaluate the accessibility of hand surgery fellowship Web sites and to assess the quality of information provided via program Web sites. Hand fellowship Web site accessibility was evaluated by reviewing the American Society for Surgery of the Hand (ASSH) on November 16, 2014 and the National Resident Matching Program (NRMP) fellowship directories on February 12, 2015, and performing an independent Google search on November 25, 2014. Accessible Web sites were then assessed for quality of the presented information. A total of 81 programs were identified with the ASSH directory featuring direct links to 32% of program Web sites and the NRMP directory directly linking to 0%. A Google search yielded direct links to 86% of program Web sites. The quality of presented information varied greatly among the 72 accessible Web sites. Program description (100%), fellowship application requirements (97%), program contact email address (85%), and research requirements (75%) were the most commonly presented components of fellowship information. Hand fellowship program Web sites can be accessed from the ASSH directory and, to a lesser extent, the NRMP directory. However, a Google search is the most reliable method to access online fellowship information. Of assessable programs, all featured a program description though the quality of the remaining information was variable. Hand surgery fellowship applicants may face some difficulties when attempting to gather program information online. Future efforts should focus on improving the accessibility and content quality on hand surgery fellowship program Web sites.

  11. New Initiatives for a Successful Diversity Program at the University of New Orleans

    NASA Astrophysics Data System (ADS)

    Serpa, L.; Hall, F.

    2002-12-01

    The Geoscience Program at the University of New Orleans has been actively working to increase diversity in the Geosciences since 1974 when Dr. Louis Fernandez (now at Cal State San Bernardino) initiated a summer field trip for local minority high school juniors and seniors. That early effort was funded with a grant from the National Science Foundation. After the NSF support ended, the department and local Petroleum companies maintained the program continuously to the present. The summer field trip has been a major source of minority geoscientists nationally and our minority enrollment has grown rapidly during the past approximately 5 years primarily as a result of significant additional scholarship support from industry. Based on our preliminary success, we decided to make a major effort to expand our program beyond the basic field trip and scholarships. In particular, with a grant from the National Science Foundation Geoscience Diversity program beginning this past year, we have 1) initiated a new summer field program for high school freshmen and sophomores that focus on our local environment, 2) created a summer field trip for K-12 science teachers, 3) developed a new program of independent research for our undergraduate students and 4) brought in our first two visiting professors. The new summer program involved 10 students in a 2-1/2 week series of classes, field trips and camping activities. In addition to studying the environment, students produced a movie about their experiences and a website. We anticipate a larger group of students in next year's program and that several of this past summer's participants will apply to go on our field trip for Juniors and Seniors when they are eligible. The first summer field trip for teachers focused on the area around the Teton Mountains and Yellowstone National park in Wyoming and Idaho. We devoted considerable time to learning basic geologic principles and collecting rock and fossil samples, outside of the national parks, for their classrooms. The teachers prepared material on our field trip stops and we videotaped their presentations at the outcrops for future use in the classroom. Seven undergraduate students conducted independent research as part of our new program. One participated in a REU project in Rhode Island and the other six conducted a variety of independent projects at UNO. Two of these projects have produced abstracts for national meetings and others are anticipated. Finally, we have supported two visiting faculty to provide role models and classes relevant to our minority students. It is too early to assess the full success of most of these new initiatives but the independent research has clearly given our students an improved attitude about themselves and what they want to do with their future.

  12. Accessibility and content of individualized adult reconstructive hip and knee/musculoskeletal oncology fellowship web sites.

    PubMed

    Young, Bradley L; Cantrell, Colin K; Patt, Joshua C; Ponce, Brent A

    2018-06-01

    Accessible, adequate online information is important to fellowship applicants. Program web sites can affect which programs applicants apply to, subsequently altering interview costs incurred by both parties and ultimately impacting rank lists. Web site analyses have been performed for all orthopaedic subspecialties other than those involved in the combined adult reconstruction and musculoskeletal (MSK) oncology fellowship match. A complete list of active programs was obtained from the official adult reconstruction and MSK oncology society web sites. Web site accessibility was assessed using a structured Google search. Accessible web sites were evaluated based on 21 previously reported content criteria. Seventy-four adult reconstruction programs and 11 MSK oncology programs were listed on the official society web sites. Web sites were identified and accessible for 58 (78%) adult reconstruction and 9 (82%) MSK oncology fellowship programs. No web site contained all content criteria and more than half of both adult reconstruction and MSK oncology web sites failed to include 12 of the 21 criteria. Several programs participating in the combined Adult Reconstructive Hip and Knee/Musculoskeletal Oncology Fellowship Match did not have accessible web sites. Of the web sites that were accessible, none contained comprehensive information and the majority lacked information that has been previously identified as being important to perspective applicants.

  13. 75 FR 22391 - Notice of Web Site Publication for the Climate Program Office

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ...-01] Notice of Web Site Publication for the Climate Program Office AGENCY: Climate Program Office (CPO... its Web site at http://www.climate.noaa.gov . FOR FURTHER INFORMATION CONTACT: Eric Locklear; Chief... information is available on the Climate Program Office Web site pertaining to the CPO's research strategies...

  14. USEPA SITE PROGRAM APPROACH TO TECHNOLOGY TRANSFER AND REGULATORY ACCEPTANCE

    EPA Science Inventory

    The USEPA's SITE program was created to meet the demand for innovative technologies for hazardous waste treatment. The primary mission of the SITe Program is to expedite the cleanup of sites on the NPL. These sites often have multiple contaminants in soil and groundwater, and few...

  15. Growing Diversity in Space Weather and Climate Change Research

    NASA Astrophysics Data System (ADS)

    Johnson, L. P.; Ng, C.; Marchese, P.; Austin, S.; Frost, J.; Cheung, T. D.; Robbins, I.; Carlson, B. E.; Steiner, J. C.; Tremberger, G.; Paglione, T.; Damas, C.; Howard, A.; Scalzo, F.

    2013-12-01

    Space Weather and Global Climate Impacts are critical items on the present national and international science agendas. Understanding and forecasting solar activity is increasingly important for manned space flight, unmanned missions (including communications satellites, satellites that monitor the space and earth environment), and regional power grids. The ability to predict the effects of forcings and feedback mechanisms on global and local climate is critical to survival of the inhabitants of planet Earth. It is therefore important to motivate students to continue their studies via advanced degrees and pursue careers related to these areas. This CUNY-based initiative, supported by NASA and NSF, provided undergraduate research experience for more than 70 students in topics ranging from urban impacts of global climate change to magnetic rope structure, solar flares and CMEs. Other research topics included investigations of the ionosphere using a CubeSat, stratospheric aerosols in Jupiter's atmosphere, and ocean climate modeling. Mentors for the primarily summer research experiences included CUNY faculty, GISS and GSFC scientists. Students were recruited from CUNY colleges as well as other colleges including Spelman, Cornell, Rutgers and SUNY colleges. Fifty-eight percent of the undergraduate students were under-represented minorities and thirty-four percent were female. Many of the research teams included high school teachers and students as well as graduate students. Supporting workshops for students included data analysis and visualization tools, space weather, planetary energy balance and BalloonSats. The project is supported by NASA awards NNX10AE72G and NNX09AL77G, and NSF REU Site award 0851932.

  16. Structure and Dynamics of Quiescent Prominence Eruptions

    NASA Astrophysics Data System (ADS)

    Lu, Muzhou; Su, Y.; Adriaan van Ballegooijen, A.

    2012-05-01

    We present a survey on the fine structure and dynamics of quiescent prominence eruptions observed both on the disk and at the limb. We have identified 45 quiescent prominence eruptions by looking at the SDO (Solar Dynamics Observatory)/AIA (Atmospheric Imaging Assembly) daily movies from April to June in 2011. Among these events, there are 24 symmetric eruptions (coherent loop-like eruptions) and 21 asymmetric eruptions (one footpoint lifts off) as shown by AIA and STEREO/EUVI observations. Vertical filament threads are identified in 10 out of the 45 events, while horizontal threads are observed in almost all eruptions. We find 23 events with twisting/untwisting motions. For 14 selected limb events, we carry out a detailed study of the eruption dynamics using AIA observations at 304 Å. We find that the initial heights of these erupting prominences are located around 50-110 Mm above the limb. The eruptions start from a speed of less than 5 km/s, then increase to several tens km/s in the AIA field of view. The maximum speed of these events is 50 km/s. The acceleration plots show a positive acceleration in the range of 0 to 20 m/s^2. No significant difference is identified in the dynamics of the symmetric and asymmetric eruptions. Acknowledgments. This project is supported by the NASA contract SP02H1701R from LMSAL to Smithsonian Astrophysical Observatory (SAO). M. Lu is supported under the NSF-REU solar physics program at SAO, grant number ATM-0851866.

  17. Accredited hand surgery fellowship Web sites: analysis of content and accessibility.

    PubMed

    Trehan, Samir K; Morrell, Nathan T; Akelman, Edward

    2015-04-01

    To assess the accessibility and content of accredited hand surgery fellowship Web sites. A list of all accredited hand surgery fellowships was obtained from the online database of the American Society for Surgery of the Hand (ASSH). Fellowship program information on the ASSH Web site was recorded. All fellowship program Web sites were located via Google search. Fellowship program Web sites were analyzed for accessibility and content in 3 domains: program overview, application information/recruitment, and education. At the time of this study, there were 81 accredited hand surgery fellowships with 169 available positions. Thirty of 81 programs (37%) had a functional link on the ASSH online hand surgery fellowship directory; however, Google search identified 78 Web sites. Three programs did not have a Web site. Analysis of content revealed that most Web sites contained contact information, whereas information regarding the anticipated clinical, research, and educational experiences during fellowship was less often present. Furthermore, information regarding past and present fellows, salary, application process/requirements, call responsibilities, and case volume was frequently lacking. Overall, 52 of 81 programs (64%) had the minimal online information required for residents to independently complete the fellowship application process. Hand fellowship program Web sites could be accessed either via the ASSH online directory or Google search, except for 3 programs that did not have Web sites. Although most fellowship program Web sites contained contact information, other content such as application information/recruitment and education, was less frequently present. This study provides comparative data regarding the clinical and educational experiences outlined on hand fellowship program Web sites that are of relevance to residents, fellows, and academic hand surgeons. This study also draws attention to various ways in which the hand surgery fellowship application process can be made more user-friendly and efficient. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  18. SITE TECHNOLOGY PROFILES, TENTH EDITION, VOLUME I - DEMONSTRATION PROGRAM

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program, now in its thirteenth year, is an integral part of EPA's research into alternative cleanup methods for hazardous waste sites around the nation. The SITE Program was created to encourage the development and routine us...

  19. The comparative effectiveness of clinic, work-site, phone, and Web-based tobacco treatment programs.

    PubMed

    An, Lawrence C; Betzner, Anne; Schillo, Barbara; Luxenberg, Michael G; Christenson, Matthew; Wendling, Ann; Saul, Jessie E; Kavanaugh, Annette

    2010-10-01

    Tobacco treatment programs may be offered in clinical settings, at work-sites, via telephone helplines, or over the Internet. Little comparative data exist regarding the real-world effectiveness of these programs. This paper compares the reach, effectiveness, and costs of these different modes of cessation assistance. This is an observational study of cohorts of participants in Minnesota's QUITPLAN programs in 2004. Cessation assistance was provided in person at 9 treatment centers, using group counseling at 68 work-sites, via a telephone helpline, or via the Internet. The main outcomes of the study are enrollment by current smokers, self-reported 30-day abstinence, and cost per quit. Reach was calculated statewide for the helpline and Web site, regionally for the treatment centers, and for the employee population for work-site programs. Enrollment was greatest for the Web site (n = 4,698), followed by the helpline (n = 2,351), treatment centers (n = 616), and work-sites (n = 479). The Web site attracted younger smokers. Smokers at treatment centers had higher levels of nicotine dependence. The helpline reached more socially disadvantaged smokers. Responder 30-day abstinence rates were higher for the helpline (29.3%), treatment centers (25.8%), and work-sites (19.6%) compared with the online program (12.5%). These differences persisted after controlling for baseline differences in participant characteristics and use of pharmacological therapy. The cost per quit was lowest for the Web site program ($291 per quit, 95% CI = $229-$372). Treatment center, work-site, helpline, and Web site programs differ in their reach, effectiveness, and estimated cost per quit. Each program plays a part in assisting populations of tobacco users in quitting.

  20. 22 CFR 502.6 - Terms of use for accessing program materials available on agency Web sites.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... available on agency Web sites. 502.6 Section 502.6 Foreign Relations BROADCASTING BOARD OF GOVERNORS... program materials available on agency Web sites. (a) By accessing Agency Web sites, Requestors agree to all the Terms of Use available on those Web sites. (b) All Requestors are advised that Agency program...

  1. SITE TECHNOLOGY PROFILES, TENTH EDITION, VOLUME 3 - MEASUREMENT AND MONITORING PROGRAM

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program, now in its thirteenth year, is an integral part of EPA's research into alternative cleanup methods for hazardous waste sites around the nation. The SITE Program was created to encourage the development and routine us...

  2. SITE TECHNOLOGY PROFILES, TENTH EDITION, VOLUME 2 - EMERGING TECHNOLOGY PROGRAM

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program, now in its thirteenth year, is an integral part of EPA's research into alternative cleanup methods for hazardous waste sites around the nation. The SITE Program was created to encourage the development and routine us...

  3. SITE TECHNOLOGY PROFILES - 11TH EDITION - DEMONSTRATION PROGRAM, VOLUME 1

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program, now in its eleventh year is an integral part of EPA's research into alternative cleanup methods for hazardous waste sites around the nation. The SITE Program was created to encourage the development and routine use o...

  4. DEVELOPMENT OF EMERGING TECHNOLOGIES WITHIN THE SITE PROGRAM

    EPA Science Inventory

    The Site Program is formed by five research programs: the Demonstration Program, the Emerging Technology Program, the Measurement and Monitoring Technology Development Program, the Innovative Technology Program, and the Technology Transfer Program. The Emerging Technology (ET) P...

  5. SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM: PROGRESS AND ACCOMPLISHMENTS - FISCAL YEAR 1991

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) program was the first major program for demonstrating and evaluating full-scale innovative treatment technologies at hazardous waste sites. Having concluded its fifth year, the SITE program is recognized as a leading advocate ...

  6. THE SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM; ANNUAL REPORT TO CONGRESS, FY 1998

    EPA Science Inventory

    This document summarizes the accomplishments and activities of the Superfund Innovative Technology Evaluation (SITE) Program for 1998. General information on the SITE program is presented. In addition, cost savings effected by the SITE program were estimated and are presented. ...

  7. Accumulation of BSA in Packed-bed Microfluidics

    NASA Astrophysics Data System (ADS)

    Summers, Samantha; Hu, Chuntian; Hartman, Ryan

    2012-11-01

    Alzheimers and Parkinsons are two diseases that are associated with protein deposition in the brain, causing loss of either cognitive or muscle functioning. Protein deposition diseases are considered progressive diseases since the continual aggregation of protein causes the patient's symptoms to slowly worsen over time. There are currently no known means of treatment for protein deposition diseases. Our goal is to understand the potential for packed-bed microfluidics to study protein accumulation. Measurement of the resistance to flow through micro-scale packed-beds is critical to understanding the process of protein accumulation. Aggregation in bulk is fundamentally different from accumulation on surfaces. Our study attempts to distinguish between either mechanism. The results from our experiments involving protein injection through a microfluidic system will be presented and discussed. Funding received by NSF REU Grant 1062611.

  8. SITE TECHNOLOGY PROFILES - 11TH EDITION, EMERGING TECHNOLOGY PROGRAM, VOLUME 2

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program, now in its eleventh year is an integral part of EPA's research into alternative cleanup methods for hazardous waste sites around the nation. The SITE Program was created to encourage the development and routine use o...

  9. SITE TECHNOLOGY PROFILES - 11TH EDITION, MEASUREMENT AND MONITORING PROGRAM, VOLUME 3

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program, now in its eleventh year is an integral part of EPA's research into alternative cleanup methods for hazardous waste sites around the nation. The SITE Program was created to encourage the development and routine use o...

  10. The Savannah River Site`s Groundwater Monitoring Program. First quarter 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted during the first quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program`s activities; and serves as an official document of the analytical results.

  11. 78 FR 76187 - 30-Day Notice of Proposed Information Collection: Exchange Programs Alumni Web Site Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-16

    ...: Exchange Programs Alumni Web Site Registration ACTION: Notice of request for public comment and submission... Information Collection: Exchange Programs Alumni Web site Registration. OMB Control Number: 1405-0192. Type of... proposed collection: The International Exchange Alumni Web site requires information to process users...

  12. ADDENDUM TO SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM TECHNOLOGY PROFILES, TENTH EDITION, VOLUME 1 - DEMONSTRATION PROGRAM

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program, now in its thirteenth year, is an integral part of EPA's research into alternative cleanup methods for hazardous waste sites around the nation. The SITE Program was created to encourage the development and routine us...

  13. THE SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM: PROGRESS AND ACCOMPLISHMENTS - FISCAL YEAR 1990 A FOURTH REPORT TO CONGRESS

    EPA Science Inventory

    The SITE Program was the first major program for demonstrating and evaluating fullscale innovative treatment technologies at hazardous waste sites. Having concluded its fourth year, the SITE Program is recognized as a leading advocate of innovative technology development and comm...

  14. The Savannah River Site`s groundwater monitoring program. First quarter 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program`s activities and rationale, and serves as an official document of the analytical results.

  15. Development of clinical sites.

    PubMed

    O'Brien, Mary

    2015-02-01

    Clinical experiences are vital to all types of healthcare educational programs. Supervised clinical experiences provide the opportunity for the learner to apply didactic knowledge and theory to real world situations and hone skills necessary for entry into practice. Nurse anesthesia programs utilize a wide variety of clinical sites to expose student registered nurse anesthetists to experiences that will prepare them clinically, academically and professionally to enter practice as a Certified Registered Nurse Anesthetist. This article describes the process of developing a clinical site. A thorough evaluation will determine the types of experiences meant to be offered at the site, the resources available to house and educate the students, and how to evaluate the effectiveness of the clinical site. Open communication between the clinical coordinator and the program director or designee is essential to ensure success of the clinical site. The Council on Accreditation of Nurse Anesthesia Educational Programs has resources available to guide those interested in becoming a clinical site, as well as for program administrators who seek to add new experiences to their programs.

  16. The effects of workplace health promotion on absenteeism and employment costs in a large industrial population.

    PubMed Central

    Bertera, R L

    1990-01-01

    We evaluated the impact of a comprehensive workplace health promotion program on absences among full-time employees in a large, multi-location, diversified industrial company. A pretest-posttest control group design was used to study 41 intervention sites and 19 control sites with 29,315 and 14,573 hourly employees, respectively. Blue-collar employees at intervention sites experienced an 14.0 percent decline in disability days over two years versus a 5.8 percent decline at control sites. This resulted in a net difference of 11,726 fewer disability days over two years at program sites compared with non-program sites. Savings due to lower disability costs at intervention sites offset program costs in the first year, and provided a return of $2.05 for every dollar invested in the program by the end of the second year. These results suggest that comprehensive workplace health promotion programs can reduce disability days among blue collar employees and provide a good return on investment. PMID:2382748

  17. 78 FR 18932 - Public Meeting: Unmanned Aircraft Systems Test Site Program; Privacy Approach

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... operation of the UAS Test Sites. They are not intended to pre-determine the long- term policy and regulatory...-0061] Public Meeting: Unmanned Aircraft Systems Test Site Program; Privacy Approach AGENCY: Federal... the unmanned aircraft systems (UAS) test site program. The FAA is seeking the views from the public...

  18. 75 FR 66413 - 30-Day Notice of Proposed Information Collection: Exchange Programs Alumni Web Site Registration...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ...: Exchange Programs Alumni Web Site Registration, DS-7006 ACTION: Notice of request for public comment and... Collection The Exchange Programs Alumni Web site requires information to process users' voluntary requests for participation in the Web site. Other than contact information, which is required for website...

  19. Oak Ridge Environmental Information System (ORIES) site workstation information packet for OREIS V1.2. Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voorhees, L.D.; McCord, R.A.; Durfee, R.C.

    1993-02-01

    The OREIS site workstation information packet was developed to accompany the OREIS site workstations, which are being delivered to the Environmental Restoration programs at the five DOE-OR sites. The packet is written specifically for the Site ER program staff at each of the five Sites who have been designated the OREIS contact by their ER program manager, and is not intended for general distribution. The packet provides an overview of the components of OREIS, points to more detailed information provided in the accompanying vendor and OREIS developed manuals, and includes information on training opportunities and user support.

  20. Contracts and Management Services FY 1996 Site Support Program Plan: WBS 6.10.14. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knoll, J.M. Jr.

    1995-09-01

    This is the Contracts and Management Services site support program plan for the US DOE Hanford site. The topics addressed in the program plan include a mission statement, program objectives, planning assumptions, program constraints, work breakdown structure, milestone list, milestone description sheets, and activity detail including cost accounting narrative summary, approved funding budget, and activity detailed description.

  1. 3D Simulations of Supernova Remnants from Type Ia Supernova Models

    NASA Astrophysics Data System (ADS)

    Johnson, Heather; Reynolds, S. P.; Frohlich, C.; Blondin, J. M.

    2014-01-01

    Type Ia supernovae (SNe) originate from thermonuclear explosions of white dwarfs. A great deal is still unknown about the explosion mechanisms, particularly the degree of asymmetry. However, Type Ia supernova remnants (SNRs) can bear the imprint of asymmetry long after the explosion. A SNR of interest is G1.9+0.3, the youngest Galactic SNR, which demonstrates an unusual spatial distribution of elements in the ejecta. While its X-ray spectrum is dominated by synchrotron emission, spectral lines of highly ionized Si, S, and Fe are seen in a few locations, with Fe near the edge of the remnant and with strongly varying Fe/Si ratios. An asymmetric explosion within the white dwarf progenitor may be necessary to explain these unusual features of G1.9+0.3, in particular the shocked Fe at large radii. We use the VH-1 hydrodynamics code to evolve initial Type Ia explosion models in 1, 2, and 3 dimensions at an age of 100 seconds provided by other researchers to study asymmetry, the ignition properties, and the nucleosynthesis resulting from these explosions. We follow the evolution of these models interacting with a uniform external medium to a few hundred years in age. We find the abundance and location of ejecta elements from our models to be inconsistent with the observations of G1.9+0.3; while our models show asymmetric element distributions, we find no tendency for iron-group elements to be found beyond intermediate-mass elements, or for significant iron to be reverse-shocked at all at the age of G1.9+0.3. We compare the amounts of shocked iron-group and intermediate-mass elements as a function of time in the different models. Some new kind of explosion asymmetry may be required to explain G1.9+0.3. This work was performed as part of NC State University's Undergraduate Research in Computational Astrophysics (URCA) program, an REU program supported by the National Science Foundation through award AST-1032736.

  2. Bayesian analysis of X-ray jet features of the high redshift quasar jets observed with Chandra

    NASA Astrophysics Data System (ADS)

    McKeough, Kathryn; Siemiginowska, Aneta; Kashyap, Vinay; Stein, Nathan; Cheung, Chi C.

    2015-01-01

    X-ray emission of powerful quasar jets may be a result of the inverse Compton (IC) process in which the Cosmic Microwave Background (CMB) photons gain energy by interactions with the jet's relativistic electrons. However, there is no definite evidence that IC/CMB process is responsible for the observed X-ray emission of large scale jets. A step toward understanding the X-ray emission process is to study the Radio and X-ray morphologies of the jet. Results from Chandra X-ray and multi-frequency VLA imaging observations of a sample of 11 high- redshift (z > 2) quasars with kilo-parsec scale radio jets are reported. The sample consists of a set of four z ≥ 3.6 flat-spectrum radio quasars, and seven intermediate redshift (z = 2.1 - 2.9) quasars comprised of four sources with integrated steep radio spectra and three with flat radio spectra.We implement a Bayesian image analysis program, Low-count Image Reconstruction and Analysis (LIRA) , to analyze jet features in the X-ray images of the high redshift quasars. Out of the 36 regions where knots are visible in the radio jets, nine showed detectable X-ray emission. Significant detections are based on the upper bound p-value test based on LIRA simulations. The X-ray and radio properties of this sample combined are examined and compared to lower-redshift samples.This work is supported in part by the National Science Foundation REU and the Department of Defense ASSURE programs under NSF Grant no.1262851 and by the Smithsonian Institution, and by NASA Contract NAS8-39073 to the Chandra X-ray Center (CXC). This research has made use of data obtained from the Chandra Data Archive and Chandra Source Catalog, and software provided by the CXC in the application packages CIAO, ChIPS, and Sherpa. Work is also supported by the Chandra grant GO4-15099X.

  3. Alignment and Calibration of an Airborne Infrared Spectrometer

    NASA Astrophysics Data System (ADS)

    Vira, A.

    2017-12-01

    The airborne infrared spectrometer (AIR-Spec) will measure the coronal plasma emission lines in the infrared at high spatial and spectral resolution. These results will enhance our understanding of the coronal dynamics and improve solar forecasting models. To measure the infrared coronal emission lines, the airborne system will fly on the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) during the total solar eclipse in August 2017. The flight path was calculated to maximize the observation time. A detailed analysis of our flight path will be reported. The optical system consists of a fast steering mirror, telescope, grating spectrometer, and slit-jaw imager. Light from the sun is directed into the f/15 telescope by a fast steering mirror. The telescope focuses the light on the slitjaw and the remaining light enters the grating spectrometer through the slit. The poster will include a discussion of the alignment procedures for the telescope and spectrograph. All of the spectrometer optics are cooled to cryogenic temperatures, which complicates the alignment process. After the telescope and spectrometer are aligned independently, the telescope needs to be precisely aligned to the spectrometer. Several alignment methods were used to ensure that the telescope is focused at the slitjaw and normal to the spectrometer. In addition to the optical alignment, there are a few calibrations to complete: 1) flat field, 2) spectral, and 3) radiometric. The flat field gives us a measure of the pixel to pixel variations. The spectral calibration is used to determine the conversion factor between wavelength and pixel. The radiometric calibration is used to map the camera output to radiance. All these calibrations are necessary for processing our data from the solar eclipse. We will report on our methods and results for the optical alignment and calibration for AIR-Spec. AIR-Spec is supported by NSF and Smithsonian Institution through the Major Research Instrumentation program. This work is supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313.

  4. Investigating the Orbital Period Valley of Giant Planets in Kepler Data

    NASA Astrophysics Data System (ADS)

    Thomas, Brianna P.; Birkby, Jayne L.

    2016-01-01

    Transit light curves contain a wealth of information about the basic properties of a planet, such as its radius, semi-major axis, and orbital period. For the latter property, there is a distinct lack of planets with periods between 10 to 100 days. This gap could be caused by something as simple as observational bias, or as prominent as planetary formation or migration. Here, we report an investigation into the atmosphere of planets within this orbital period valley, to search for differences that may indicate a different formation mechanism or migration path to those outside of it. We do this by searching for the secondary eclipse of planets in the valley in order to measure their albedos. We determined an optimal target for this: KOI-366 b (P ~ 75 days). However, we find that despite the exquisite precision of Kepler data, it cannot constrain the albedo for this long-orbit planet candidate. We measure a 1σ upper limit on the geometric albedo of Ag,1σ ≤ 2.0. We highlight that additional scatter in the light curve is likely caused by a ~ 2-day pulsation of the giant host star, and that further data is required to measure the secondary eclipse. KOI-366 is one of the best suited of all host stars with long period exoplanet candidates for follow-up due to its relatively bright magnitude (Kp = 11.7 mag), but the full investigation of the reflective properties of long period planets may require space-based observations from future instruments, such as WFIRST, that will be more sensitive to objects further away from their host stars. This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution. This work was performed in part under contract with the Jet Propulsion Laboratory (JPL) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute.

  5. Automation of the Lowell Observatory 0.8-m Telescope

    NASA Astrophysics Data System (ADS)

    Buie, M. W.

    2001-11-01

    In the past year I have converted the Lowell Observatory 0.8-m telescope from a classically scheduled and operated telescope to an automated facility. The new setup uses an existing CCD camera and the existing telescope control system. The key steps in the conversion were writing a new CCD control and data acquisition module plus writing communication and queue control software. The previous CCD control program was written for DOS and much of the code was reused for this project. The entire control system runs under Linux and consists of four daemons: MOVE, PCCD, CMDR, and PCTL. The MOVE daemon is a process that communciates with the telescope control system via an RS232 port, keeping track of its state and forwarding commands from other processes to the telescope. The PCCD daemon controls the CCD camera and collects data. The CMDR daemon maintains a FIFO queue of commands to be executed during the night. The PCTL daemon receives notification from any other deamon of execution failures and sends an error code to the on-duty observer via a numeric pager. This system runs through the night much as you would traditionally operate a telescope. However, this system permits queuing up all the commands for a night and they execute one after another in sequence. Additional commands are needed to replace the normal human interaction during observing (ie., target acquisition, field registration, focusing). Also, numerous temporal synchronization commands are required so that observations happen at the right time. The system was used for this year's photometric monitoring of Pluto and Triton and is in general use for 2/3 of time on the telescope. Pluto observations were collected on 30 nights out of a potential pool of 90 nights. Detailed system design and capabilites plus sample observations will be presented. Also, a live demonstration will be provided if the weather is good. This work was supported by NASA Grant NAG5-4210 and the NSF REU Program grant to NAU.

  6. A Census of Star Formation and Active Galactic Nuclei Populations in Abell 1689

    NASA Astrophysics Data System (ADS)

    Jones, Logan H.; Atlee, David Wesley

    2016-01-01

    A recent survey of low-z galaxy clusters observed a disjunction between X-ray and mid-infrared selected populations of active galactic nuclei (X-ray and IR AGNs) (Atlee+ 2011, ApJ 729, 22.). Here we present an analysis of near-infrared spectroscopic data of star-forming galaxies in cluster Abell 1689 in order to confirm the identity of some of their IR AGN and to provide a check on their reported star formation rates. Our sample consists of 24 objects in Abell 1689. H and K band spectroscopic observations of target objects and standard stars were obtained by David Atlee between 2010 May 17 and 2011 June 6 using the Large Binocular Telescope's LUCI instrument. After undergoing initial reductions, standard stars were corrected for telluric absorption using TelFit (Gullikson+ 2014, AJ, 158, 53). Raw detector counts were converted to physical units using the wavelength-dependent response of the grating and the star's reported H and K band magnitudes to produce conversion factors that fully correct for instrumental effects. Target spectra were flux-calibrated using the airmass-corrected transmission profiles produced by TelFit and the associated H band conversion factor (or the average of the two factors, for nights with two standard stars). Star formation rates were calculated using the SFR-L(Ha) relation reported in Kennicutt (1998), with the measured luminosity of the Pa-a emission line at the luminosity distance of the cluster used as a proxy for L(Ha) (Kennicutt 1998, ARA&A 36, 189; Hummer & Stoney 1987, MNRAS 346, 1055). The line ratios H2 2.121 mm/Brg and [FeII]/Pab were used to classify targets as starburst galaxies, AGNs, or LINERs (Rodriguez-Ardila+ 2005, MNRAS, 364, 1041). Jones was supported by the NOAO/KPNO Research Experience for Undergraduates (REU) Program, which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  7. Hα Monitoring of Early-Type Emission Line Stars

    NASA Astrophysics Data System (ADS)

    Souza, Steven P.; Boettcher, E.; Wilson, S.; Hosek, M.

    2011-05-01

    We have begun a narrowband imaging program to monitor Hα emission in early-type stars in young open clusters and associations. A minority of early-type stars, particularly Be stars, show Hα in emission due to extended atmospheres and non-equilibrium conditions. Emission features commonly vary irregularly over a range of timescales (Porter, J.M. & Rivinus, T., P.A.S.P. 115:1153-1170, 2003). Some of the brightest such stars, e.g. γ Cas, have been spectroscopically monitored for Hα variability to help constrain models of the unstable disk, but there is relatively little ongoing monitoring in samples including fainter stars (Peters, G., Be Star Newsletter 39:3, 2009). Our program uses matched 5nm-wide on-band (656nm) and off-band (645nm) filters, in conjunction with the Hopkins Observatory 0.6-m telescope and CCD camera. Aperture photometry is done on all early-type stars in each frame, and results expressed as on-band to off-band ratios. Though wavelength-dependent information is lost compared with spectroscopy, imaging allows us to observe much fainter (and therefore many more) objects. Observing young clusters, rather than individual target stars, allows us to record multiple known and candidate emission line stars per frame, and provides multiple "normal" reference stars of similar spectral type. Observations began in the summer of 2010. This project has the potential to produce significant amounts of raw data, so a semi-automated data reduction process has been developed, including astrometric and photometric tasks. Early results, including some preliminary light curves and recovery of known Be stars at least as faint as R=13.9, are presented. We gratefully acknowledge support for student research through an REU grant to the Keck Northeast Astronomy Consortium from the National Science Foundation, and from the Division III Research Funding Committee of Williams College.

  8. Exploring the properties of Solar Prominence Tornados

    NASA Astrophysics Data System (ADS)

    Ahmad, E.; Panesar, N. K.; Sterling, A. C.; Moore, R. L.

    2015-12-01

    Solar prominences consist of relatively cool and dense plasma embedded in the hotter solar corona above the solar limb. They form along magnetic polarity inversion lines, and are magnetically supported against gravity at heights of up to ~100 Mm above the chromosphere. Often, parts of prominences visually resemble Earth-based tornados, with inverted-cone-shaped structures and internal motions suggestive of rotation. These "prominence tornados" clearly possess complex magnetic structure, but it is still not certain whether they actually rotate around a ''rotation'' axis, or instead just appear to do so because of composite internal material motions such as counter-streaming flows or lateral (i.e. transverse to the field) oscillations. Here we study the structure and dynamics of five randomly selected prominences, using extreme ultraviolet (EUV) 171 Å images obtained with high spatial and temporal resolution by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) spacecraft. All of the prominences resided in non-active-region locations, and displayed what appeared to be tornado-like rotational motions. Our set includes examples oriented both broadside and end-on to our line-of-sight. We created time-distance plots of horizontal slices at several different heights of each prominence, to study the horizontal plasma motions. We observed patterns of oscillations at various heights in each prominence, and we measured parameters of these oscillations. We find the oscillation time periods to range over ~50 - 90 min, with average amplitudes of ~6,000 km, and with average velocities of ~7 kms-1. We found similar values for prominences viewed either broadside or end-on; this observed isotropy of the lateral oscillatory motion suggests that the apparent oscillations result from actual rotational plasma motions and/or lateral oscillations of the magnetic field, rather than to counter-streaming flows. This research was supported by the National Science Foundation under Grant No. AGS-1460767; EA participated in the Research Experience for Undergraduates (REU) program, at NASA/MSFC. Additional support was from a grant from the NASA LWS program.

  9. The SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION program - Technology Profiles

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) program was created to evaluate new and promising treatment technologies for cleanup at hazardous waste sites. The mission of the SITE program is to encourage the development and routine use of innovative treatment technologie...

  10. St. Louis Airport Site annual site environmental report. Calendar year 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-04-01

    During 1985, the environmental monitoring program was continued at the St. Louis Airport Site (SLAPS) in St. Louis County, Missouri. The ditches north and south of the site have been designated for cleanup as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a United States Department of Energy (DOE) program to identify, decontaminate, or otherwise control sites where low-level radioactive contamination remains from the early years of the nation's atomic energy program. The site is not currently controlled or regulated by DOE or NRC, although radiological monitoring of the site has been authorized by the DOE. The monitoringmore » program at the SLAPS measures radon gas concentrations in air; external gamma radiation dose rates; and uranium, thorium, and radium concentrations in surface water, groundwater, and sediment. Potential radiation doses to the public are also calculated. Because the site is not controlled or regulated by the DOE, the DOE Derived Concentration Guides (DCGs) are not applicable to SLAPS, but are included as a basis for comparison only. The DOE DCGs and the DOE radiation protection standard have been revised.« less

  11. Evaluation of the Content and Accessibility of Web Sites for Accredited Orthopaedic Trauma Surgery Fellowships.

    PubMed

    Shaath, M Kareem; Yeranosian, Michael G; Ippolito, Joseph A; Adams, Mark R; Sirkin, Michael S; Reilly, Mark C

    2018-05-02

    Orthopaedic trauma fellowship applicants use online-based resources when researching information on potential U.S. fellowship programs. The 2 primary sources for identifying programs are the Orthopaedic Trauma Association (OTA) database and the San Francisco Match (SF Match) database. Previous studies in other orthopaedic subspecialty areas have demonstrated considerable discrepancies among fellowship programs. The purpose of this study was to analyze content and availability of information on orthopaedic trauma surgery fellowship web sites. The online databases of the OTA and SF Match were reviewed to determine the availability of embedded program links or external links for the included programs. Thereafter, a Google search was performed for each program individually by typing the program's name, followed by the term "orthopaedic trauma fellowship." All identified fellowship web sites were analyzed for accessibility and content. Web sites were evaluated for comprehensiveness in mentioning key components of the orthopaedic trauma surgery curriculum. By consensus, we refined the final list of variables utilizing the methodology of previous studies on the topic. We identified 54 OTA-accredited fellowship programs, offering 87 positions. The majority (94%) of programs had web sites accessible through a Google search. Of the 51 web sites found, all (100%) described their program. Most commonly, hospital affiliation (88%), operative experiences (76%), and rotation overview (65%) were listed, and, least commonly, interview dates (6%), selection criteria (16%), on-call requirements (20%), and fellow evaluation criteria (20%) were listed. Programs with ≥2 fellows provided more information with regard to education content (p = 0.0001) and recruitment content (p = 0.013). Programs with Accreditation Council for Graduate Medical Education (ACGME) accreditation status also provided greater information with regard to education content (odds ratio, 4.0; p = 0.0001). Otherwise, no differences were seen by region, residency affiliation, medical school affiliation, or hospital affiliation. The SF Match and OTA databases provide few direct links to fellowship web sites. Individual program web sites do not effectively and completely convey information about the programs. The Internet is an underused resource for fellow recruitment. The lack of information on these sites allows for future opportunity to optimize this resource.

  12. The National Cross-Site Evaluation of High-Risk Youth Programs. Preventing Substance Abuse: Major Findings from the National Cross-Site Evaluation of High-Risk Youth Programs. Monograph Series.

    ERIC Educational Resources Information Center

    Springer, J. Fred; Sambrano, Soledad; Sale, Elizabeth; Kasim, Rafa; Herman, Jack

    This multiple-site study assessed 48 prevention programs for high-risk youth funded by the Center for Substance Abuse Prevention, identifying program characteristics associated with strong substance abuse prevention outcomes. Data analysis indicated that substance abuse programs reduced rates of substance use, and the positive effects of program…

  13. INNOVATIVE SOIL AND GROUNDWATER REMEDIATION: THE SITE PROGRAM EXPERIENCE

    EPA Science Inventory

    The SITE program of the USEPA has been bringing together the private sector, EPA, and other federal and state agencies to succedssfully address complex hazardous waste problems. For more than 15 years, the SITE Program has successfully promoted the development, commercialization ...

  14. SITE: INNOVATION ON THE MOVE

    EPA Science Inventory

    A recent review of the SITE Program indicated that operational shifts are necessary to maintain the program's position as a progressive, "state-of-the-art" leader in the environmental field. The SITE Program will shift from a technology-driven focus to a more integrated approach ...

  15. Characterizing Giant Exoplanets through Multiwavelength Transit Observations: HAT-P-5 b

    NASA Astrophysics Data System (ADS)

    PeQueen, David Jeffrey; Cole, Jackson Lane; Gardner, Cristilyn N.; Garver, Bethany Ray; Jarka, Kyla L.; Kar, Aman; McGough, Aylin M.; Rivera, Daniel Ivan; Kasper, David; Jang-Condell, Hannah; Kobulnicky, Henry; Dale, Daniel

    2018-01-01

    During the summer of 2017, we observed hot Jupiter-type exoplanet transit events using the Wyoming Infrared Observatory’s 2.3 meter telescope. We observed 14 unique exoplanets during transit events; one such target was HAT-P-5 b. In total, we collected 53 usable science images in the Sloan filter set, particularly with the g’, r’, z’, and i’ band wavelength filters. This exoplanet transited approximately 40 minutes earlier than the currently published literature suggests. After reducing the data and running a Markov chain Monte Carlo analysis, we present results describing the planetary radius, semi-major axis, orbital period, and inclination of HAT-P-5 b. Characteristics of Rayleigh scattering are present in the atmosphere of this exoplanet. This work is supported by the National Science Foundation under REU grant AST 1560461.

  16. Using an Iterative Fourier Series Approach in Determining Orbital Elements of Detached Visual Binary Stars

    NASA Astrophysics Data System (ADS)

    Tupa, Peter R.; Quirin, S.; DeLeo, G. G.; McCluskey, G. E., Jr.

    2007-12-01

    We present a modified Fourier transform approach to determine the orbital parameters of detached visual binary stars. Originally inspired by Monet (ApJ 234, 275, 1979), this new method utilizes an iterative routine of refining higher order Fourier terms in a manner consistent with Keplerian motion. In most cases, this approach is not sensitive to the starting orbital parameters in the iterative loop. In many cases we have determined orbital elements even with small fragments of orbits and noisy data, although some systems show computational instabilities. The algorithm was constructed using the MAPLE mathematical software code and tested on artificially created orbits and many real binary systems, including Gliese 22 AC, Tau 51, and BU 738. This work was supported at Lehigh University by NSF-REU grant PHY-9820301.

  17. Simulations of the Neutron Gas in the Inner Crust of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Vandegriff, Elizabeth; Horowitz, Charles; Caplan, Matthew

    2017-09-01

    Inside neutron stars, the structures known as `nuclear pasta' are found in the crust. This pasta forms near nuclear density as nucleons arrange in spaghetti- or lasagna-like structures to minimize their energy. We run classical molecular dynamics simulations to visualize the geometry of this pasta and study the distribution of nucleons. In the simulations, we observe that the pasta is embedded in a gas of neutrons, which we call the `sauce'. In this work, we developed two methods for determining the density of neutrons in the gas, one which is accurate at low temperatures and a second which justifies an extrapolation at high temperatures. Running simulations with no Coulomb interactions, we find that the neutron density increases linearly with temperature for every proton fraction we simulated. NSF REU Grant PHY-1460882 at Indiana University.

  18. The Effects of Scales on Autorotation of Monarch Butterfly Forewings

    NASA Astrophysics Data System (ADS)

    Dechello, Nicole; Lang, Amy

    2014-11-01

    The wings of Monarch butterflies (Danus plexippus) have scales of approximately 100 micrometers that cover their wings in a roof-shingle pattern, and these scales are hypothesized to help improve flight efficiency for their long migration. The aerodynamic effects of the scales, particularly involving the leading edge vortex formation and resulting lift, were investigated by observing the natural autorotation of forewing specimen when dropped in quiescent air. A high-speed camera recorded drop tests of 32 forewings both with scales and after removal of the scales. It was found that the scales, on average, comprised 17% of the forewing mass. Tracking software was used to analyze the videos for several parameters, including descent speed and radius of rotation. NSF ECE Grant #1358991 supported the first author as an research experience for undergraduate (REU) student.

  19. Mapping Dark Matter in Simulated Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Bowyer, Rachel

    2018-01-01

    Galaxy clusters are the most massive bound objects in the Universe with most of their mass being dark matter. Cosmological simulations of structure formation show that clusters are embedded in a cosmic web of dark matter filaments and large scale structure. It is thought that these filaments are found preferentially close to the long axes of clusters. We extract galaxy clusters from the simulations "cosmo-OWLS" in order to study their properties directly and also to infer their properties from weak gravitational lensing signatures. We investigate various stacking procedures to enhance the signal of the filaments and large scale structure surrounding the clusters to better understand how the filaments of the cosmic web connect with galaxy clusters. This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.

  20. 1993 UPDATE OF THE U.S. ENVIRONMENTAL PROTECTION AGENCY'S SITE EMERGING TECHNOLOGY PROGRAM

    EPA Science Inventory

    The Emerging Technology Program (ETP), part of the U.S. EPA`s Superfund Innovative Technology Evaluation (SITE) Program, is continuing to create an environment where technical innovation can accelerate into field and commercial applications for treatment of hazardous waste sites....

  1. 78 FR 68360 - Unmanned Aircraft System Test Site Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ...-0061] Unmanned Aircraft System Test Site Program AGENCY: Federal Aviation Administration (FAA), DOT...'') test site program; response to comments. SUMMARY: On February 22, 2013 the FAA published and requested public comment on the proposed privacy requirements (the ``Draft Privacy Requirements'') for UAS test...

  2. Toward development of a comprehensive external quality assurance program for polyfunctional intracellular cytokine staining assays

    PubMed Central

    Staats, Janet S.; Enzor, Jennifer H.; Sanchez, Ana M.; Rountree, Wes; Chan, Cliburn; Jaimes, Maria; Chan, Ray Chun-Fai; Gaur, Amitabh; Denny, Thomas N.; Weinhold, Kent J.

    2014-01-01

    The External Quality Assurance Program Oversight Laboratory (EQAPOL) Flow Cytometry Program assesses the proficiency of NIH/NIAID/DAIDS-supported and potentially other interested research laboratories in performing Intracellular Cytokine Staining (ICS) assays. The goal of the EQAPOL Flow Cytometry External Quality Assurance Program (EQAP) is to provide proficiency testing and remediation for participating sites. The program is not punitive; rather, EQAPOL aims to help sites identify areas for improvement. EQAPOL utilizes a highly standardized ICS assay to minimize variability and readily identify those sites experiencing technical difficulties with their assays. Here, we report the results of External Proficiency 3 (EP3) where participating sites performed a 7-color ICS assay. On average, sites perform well in the Flow Cytometry EQAP (median score is “Good”). The most common technical issues identified by the program involve protocol adherence and data analysis; these areas have been the focus of site remediation. The EQAPOL Flow Cytometry team is now in the process of expanding the program to 8-color ICS assays. Evaluating polyfunctional ICS responses would align the program with assays currently being performed in support of HIV immune monitoring assays. PMID:24968072

  3. Developing a longitudinal cancer nursing education program in Honduras.

    PubMed

    Sheldon, Lisa Kennedy; Wise, Barbara; Carlson, Julie R; Dowds, Cynthia; Sarchet, Vanessa; Sanchez, Jose Angel

    2013-12-01

    The present paper is a longitudinal study which aims to develop and deliver cancer nursing education conferences in Honduras using volunteer nurse educators. This program intends to (1) perform site assessments of work environments and resources for cancer care in Honduras, (2) develop cancer nursing education programs, (3) survey conference participants continuing education needs, (4) deliver cancer nursing education conferences, and (5) share data with local and global partners for future cancer programs. The study draws on a longitudinal program development with site assessments, data collection, and educational conferences at two time points. Assessments and surveys were used for conference development and delivery by volunteer nurse educators. Site assessments and conferences were delivered twice. Data were collected regarding assessments and surveys to inform program development. Survey data revealed that <4 % had formal training in cancer care and >65 % had internet access. Participants desired more information about handling of chemotherapy, symptom management, and palliative care. Volunteer nurse educators perform site assessments and develop educational programming for cancer nurses. Local and global partners should explore internet-based programs between site visits to create sustainable education programs.

  4. Soil Carbon Dioxide and Methane Fluxes in a Costa Rican Premontane Wet Forest

    NASA Astrophysics Data System (ADS)

    Hempel, L. A.; Schade, G. W.; Pfohl, A.

    2011-12-01

    A significant amount of the global terrestrial biomass is found in tropical forests, and soil respiration is a vital part of its carbon cycling. However, data on soil trace gas flux rates in the tropics are sparse, especially from previously disturbed regions. To expand the database on carbon cycling in the tropics, this study examined soil flux rate and its variability for CO2 and CH4 in a secondary premontane wet forest south of Arenal Volcano in Costa Rica. Data were collected over a six-week period in June and July 2011 during the transition from dry to wet season. Trace gas sampling was performed at three sub-canopy sites of different elevations. The soil is of volcanic origin with a low bulk density, likely an Andisol. An average KCl pH of 4.8 indicates exchangeable aluminum is present, and a NaF pH>11 indicates the soil is dominated by short-range order minerals. Ten-inch diameter PVC rings were used as static flux chambers without soil collars. To find soil CO2 efflux rates, a battery-powered LICOR 840A CO2-H2O Gas Analyzer was used to take measurements in the field, logging CO2 concentration every ten seconds. Additionally, six, 10-mL Nylon syringes were filled with gas samples at 0, 1, 7, 14, 21, and 28 minutes after closing the chambers. These samples were analyzed the same day with a SRI 8610 Gas Chromatograph for concentrations of CO2 and CH4. The average CO2 efflux calculated was 1.7±0.8E-2 g/m2/min, and did not differ between the applied analytical methods. Soil respiration depended strongly on soil moisture, with decreasing efflux rates at higher water-filled pore space values. An annual soil respiration rate of 8.5E3 g/m2/yr was estimated by applying the observed relationship between soil moisture and CO2 efflux to annual soil moisture measurements. The relatively high respiration rates could be caused by the high soil moisture and low soil bulk density, providing optimal conditions for microbial respiration. Several diurnal sampling periods at one site showed that respiration was highest in the early evening, possibly caused by increased root respiration lagging daytime photosynthesis. Measured average CH4 flux was -7.9±6.2E-6 g/m2/min, similar to literature values; its variability was high with no temperature or soil moisture dependence discernible. However, calculated rates show that the forest was a net sink for methane, indicating that the soils were sufficiently well-drained despite high precipitation rates. Future measurements in this NSF-REU program will evaluate the role of water and root respiration in greater detail and will also incorporate sub-canopy and boundary layer gradient measurements to investigate other aspects of the carbon cycle in this environment.

  5. Using Drone Imagery and Photogrammetry to Map Basin Stratigraphy and Structures Exposed in Mine, Road, and Arroyo Outcrops, Santa Rosalia, Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    Banes, A.; Alvarez Ortega, K. G.; Henry, M.; Niemi, T.

    2017-12-01

    During the 2017 Baja Basins Research Experience for Undergraduates (REU), a DJI Phantom 3 Advanced Quadcopter drone equipped with a GPS-enabled, 12 Megapixel camera was manually flown to collect aerial photographs of several geologic outcrops on the Minera Boléo and Lucifer mines in central Baja California Sur. The strip mine faces, roadcuts, and arroyos exposed Neogene to Quaternary sediments of the Santa Rosalía basin including the basal Cu-Zn-Mn-Co-bearing Miocene Boléo Formation that is actively being mined. It is overlain by Plio-Quaternary marine and non-marine deposits. Photographs were collected with a 70% overlap and processed into geographically-referenced, orthophotomosaics using Agisoft Photoscan. The output models have an adequate resolution for viewing bedding and fault characteristics. Measurements can be made inside the 3D models, making drones a useful tool for studying the geometry of stratigraphic, structural, and geomorphologic features. The studied sites included: 1) roadcuts on Mesa Soledad that exposed oblique-slip faults and syntectonically deposited non-marine and marine conglomerates and sandy, fossil-rich Pliocene beach sediment; 2) outcrops of the Boléo Fm in the Texcoco mine area that showed the detailed stratigraphic relationship between ore seams (mantos) and faults; 3) outcrops where sandstone samples were collected for detrital zircon geochronology; 4) strip mine 3120 that exposed faults and folds in the Boléo Formation; and 5) faults in Miocene volcanic rocks in the Arroyo Infierno near the Lucifer mine. This study shows that photogrammetry and modeling of geologic structures exposed in mine and road outcrops can provide useful information for reconstructing basin architecture and clarifying structural evolution of the Santa Rosalia Basin.

  6. Computing Evaporation Using Meteorological Data for Hydrological Budget of Lake Wapalanne in NJ School of Conservation

    NASA Astrophysics Data System (ADS)

    Jordan, J. J.; Barrett, K. R.; Galster, J. C.; Ophori, D. U.; Flores, D.; Kelly, S. A.; Lutey, A. M.

    2011-12-01

    Lake Wapalanne is small manmade lake about 5.4 hectares in northwest New Jersey in the Highlands Physiographic province within permanently protected land. The lake's surrounding area consists of forested vegetation and is relatively unoccupied which minimizes human influence. The lake's small size, minimal external influence, geographic isolation, and protected status provide an optimal research environment to record meteorological data used in calculation of potential evaporation. Between July 7h and August 3rd meteorological data was collected from a professional weather station placed on an island directly in the center of Lake Wapalanne. The Vantage Pro2 weather station provided accurate readings of temperate, humidity, wind-speed and direction, precipitation, and atmospheric pressure. A bathometric survey of the lake was conducted to determine the surface area with variations in depth of the lake's water level. Using the collected weather station data, a rate of potential evaporation was determined with several evaporation equations. A quantified volume was then derived from the rate and surface area of the lake. Using small scale evaporation measurements of known volumes of water within small pans placed in the lake water and National Oceanic and Atmospheric Administration evaporation stations near the experiment site, a comparison and validation of the calculated potential evaporation accuracy and regional evaporation is achieved. This three year study is part of an ongoing NSF Research Experience for Undergraduates (REU) project that encompasses additional topics of lake research; see abstract from Kelly et al. AGU 2011 for more information on the lake's hydrologic budget. The results and methods of this study will be of use in future forecasting and baseline measurements of hydrologic budgets for lakes and reservoirs within regional proximity, which provide drinking water to over five million people in the State of New Jersey.

  7. Using athletic training clinical education standards in radiography.

    PubMed

    Giordano, Shelley; Harris, Katherine

    2012-01-01

    The selection of clinical education sites for radiography students is based on availability, access to radiographic examinations, and appropriate student-to-technologist ratio. Radiography program directors are not required to evaluate sites based on their educational validity (eg, the clinical instructor's knowledge of basic teaching and learning principles, how well the site communicates with the program, or the clinical instructor's involvement in professional organizations). The purpose of this study was to determine if a set of 12 clinical education standards used in athletic training would be applicable and beneficial to radiography program directors when selecting clinical sites for students. A survey concerning the applicability of the athletic training standards to radiography site selection was completed by 270 directors of radiography programs accredited by the Joint Review Committee on Education in Radiologic Technology. The survey results indicated the athletic training clinical education standards were considered applicable to the selection of clinical sites for radiography students and would be beneficial to radiography program directors when selecting sites.

  8. The Baryonic Tully Fisher Relation for the ALFALFA 100 Sample

    NASA Astrophysics Data System (ADS)

    Finney, Elizabeth E.; Haynes, Martha P.; APPSS Team

    2018-01-01

    The APPSS (Arecibo Pisces-Perseus Supercluster Survey) team aims to quantify the over-densities of matter in the Pisces-Perseus Supercluster (PPS) filament by exploring the Baryonic Tully Fisher Relation (BTFR) of the ALFALFA (Arecibo Legacy Fast ALFA) 100 survey – (α.100) and, in the future, using targeted observations of low mass star-forming galaxies. Galaxies in the PPS filament region and its foreground and background voids are influenced by the gravitational pull of the large concentration of matter, and are expected to show velocities that deviate significantly from the smooth Hubble expansion. By deriving the peculiar motions of galaxies in the ALFALFA 100 survey as measured by the BTFR, we will further our understanding of the amount and distribution of the underlying dark matter in the supercluster. In this project, we make a first attempt to investigate the BTFR of the α.100 sample, and discuss our findings. This sample was corrected for inclination, extinction, and other sources of scatter, and a least squares linear regression fit was applied to determine the slope of the BTFR. We compare the slope of the α.100 sample to various literature values, and find that the slope is shallower due to slower-rotating, low-mass galaxies. Investigation of this shallow slope is needed in future work, as well as a modification of the intrinsic axial ratio assumed for this sample of galaxies. EF participated in the summer 2017 REU program in the Center for Astrophysics and Planetary Science at Cornell University under NSF award AST-1659264.

  9. Topology in Synthetic Column Density Maps for Interstellar Turbulence

    NASA Astrophysics Data System (ADS)

    Putko, Joseph; Burkhart, B. K.; Lazarian, A.

    2013-01-01

    We show how the topology tool known as the genus statistic can be utilized to characterize magnetohydrodyanmic (MHD) turbulence in the ISM. The genus is measured with respect to a given density threshold and varying the threshold produces a genus curve, which can suggest an overall ‘‘meatball,’’ neutral, or ‘‘Swiss cheese’’ topology through its integral. We use synthetic column density maps made from three-dimensional 5123 compressible MHD isothermal simulations performed for different sonic and Alfvénic Mach numbers (Ms and MA respectively). We study eight different Ms values each with one sub- and one super-Alfvénic counterpart. We consider sight-lines both parallel (x) and perpendicular (y and z) to the mean magnetic field. We find that the genus integral shows a dependence on both Mach numbers, and this is still the case even after adding beam smoothing and Gaussian noise to the maps to mimic observational data. The genus integral increases with higher Ms values (but saturates after about Ms = 4) for all lines of sight. This is consistent with greater values of Ms resulting in stronger shocks, which results in a clumpier topology. We observe a larger genus integral for the sub-Alfvénic cases along the perpendicular lines of sight due to increased compression from the field lines and enhanced anisotropy. Application of the genus integral to column density maps should allow astronomers to infer the Mach numbers and thus learn about the environments of interstellar turbulence. This work was supported by the National Science Foundation’s REU program through NSF Award AST-1004881.

  10. Analyzing Serendipitous Asteroid Observations in Imaging Data using PHOTOMETRYPIPELINE

    NASA Astrophysics Data System (ADS)

    Ard, Christopher; Mommert, Michael; Trilling, David E.

    2016-10-01

    Asteroids are nearly ubiquitous in the night sky, making them present in the majority of imaging data taken every night. Serendipitous asteroid observations represent a treasure trove to Solar System researchers: accurate positional measurements of asteroids provide important constraints on their sometimes highly uncertain orbits, whereas calibrated photometric measurements can be used to establish rotational periods, intrinsic colors, or photometric phase curves.We present an add-on to the PHOTOMETRYPIPELINE (PP, github.com/mommermi/photometrypipeline, see Poster presentation 123.42) that identifies asteroids that have been observed serendipitously and extracts astrometry and calibrated photometry for these objects. PP is an open-source Python 2.7 software suite that provides image registration, aperture photometry, photometric calibration, and target identification with only minimal human interaction.Asteroids are identified based on approximate positions that are pre-calculated for a range of dates. Using interpolated coordinates, we identify potential asteroids that might be in the observed field and query their exact positions and positional uncertainties from the JPL Horizons system. The method results in robust astrometry and calibrated photometry for all asteroids in the field as a function of time. Our measurements will supplement existing photometric databases of asteroids and improve their orbits.We present first results using this procedure based on imaging data from the Vatican Advanced Technology Telescope.This work was done in the framework of NAU's REU summer program that is supported by NSF grant AST-1461200. PP was developed in the framework of the "Mission Accessible Near-Earth Object Survey" (MANOS) and is supported by NASA SSO grants NNX15AE90G and NNX14AN82G.

  11. Relating Alfvén Wave Heating Model to Observations of a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Yoritomo, J. Y.; Van Ballegooijen, A. A.

    2012-12-01

    We compared images from the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) with simulations of propagating and dissipating Alfvén waves from a three-dimensional magnetohydrodynamic (MHD) model (van Ballegooijen et. al 2011; Asgari-Targhi & van Ballegooijen 2012). The goal was to search for observational evidence of Alfvén waves in the solar corona and understand their role in coronal heating. We looked at one particular active region on the 5th of May 2012. Certain distinct loops in the SDO/AIA observations were selected and expanded. Movies were created from these selections in an attempt to discover transverse motions that may be Alfvén waves. Using a magnetogram of that day and the corresponding synoptic map, a potential field model was created for the active region. Three-dimensional MHD models for several loops in different locations in the active region were created. Each model specifies the temperature, pressure, magnetic field strength, average heating rate, and other parameters along the loop. We find that the heating is intermittent in the loops and reflection occurs at the transition region. For loops at larger and larger height, a point is reached where thermal non-equilibrium occurs. In the center this critical height is much higher than in the periphery of the active region. Lastly, we find that the average heating rate and coronal pressure decrease with increasing height in the corona. This research was supported by an NSF grant for the Smithsonian Astrophysical Observatory (SAO) Solar REU program and a SDO/AIA grant for the Smithsonian Astrophysical Observatory.

  12. 48 CFR 970.5223-3 - Agreement regarding Workplace Substance Abuse Programs at DOE sites.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Workplace Substance Abuse Programs at DOE sites. 970.5223-3 Section 970.5223-3 Federal Acquisition... Agreement regarding Workplace Substance Abuse Programs at DOE sites. As prescribed in 970.2305-4(a), the contracting officer shall insert the following provision: Agreement Regarding Workplace Substance Abuse...

  13. 48 CFR 970.5223-3 - Agreement regarding Workplace Substance Abuse Programs at DOE sites.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Workplace Substance Abuse Programs at DOE sites. 970.5223-3 Section 970.5223-3 Federal Acquisition... Agreement regarding Workplace Substance Abuse Programs at DOE sites. As prescribed in 970.2305-4(a), the contracting officer shall insert the following provision: Agreement Regarding Workplace Substance Abuse...

  14. 48 CFR 970.5223-3 - Agreement regarding Workplace Substance Abuse Programs at DOE sites.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Workplace Substance Abuse Programs at DOE sites. 970.5223-3 Section 970.5223-3 Federal Acquisition... Agreement regarding Workplace Substance Abuse Programs at DOE sites. As prescribed in 970.2305-4(a), the contracting officer shall insert the following provision: Agreement Regarding Workplace Substance Abuse...

  15. 48 CFR 970.5223-3 - Agreement regarding Workplace Substance Abuse Programs at DOE sites.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Workplace Substance Abuse Programs at DOE sites. 970.5223-3 Section 970.5223-3 Federal Acquisition... Agreement regarding Workplace Substance Abuse Programs at DOE sites. As prescribed in 970.2305-4(a), the contracting officer shall insert the following provision: Agreement Regarding Workplace Substance Abuse...

  16. 48 CFR 970.5223-3 - Agreement regarding Workplace Substance Abuse Programs at DOE sites.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Workplace Substance Abuse Programs at DOE sites. 970.5223-3 Section 970.5223-3 Federal Acquisition... Agreement regarding Workplace Substance Abuse Programs at DOE sites. As prescribed in 970.2305-4(a), the contracting officer shall insert the following provision: Agreement Regarding Workplace Substance Abuse...

  17. Environmental Living Program, Book 1: What's Happening.

    ERIC Educational Resources Information Center

    Baldi, Mary Lou

    This booklet documents, in words and pictures, the Environmental Living Program. This program, which has been in operation since 1969, provides overnight living experiences for elementary and secondary school students at cultural, historic, or prehistoric sites. The sites are National and State parks and private sites in California and Arizona.…

  18. The Home Instruction Program for Preschool Youngsters (HIPPY).

    ERIC Educational Resources Information Center

    Baker, Amy J. L.; Piotrkowski, Chaya S.; Brooks-Gunn, Jeanne

    1999-01-01

    Describes the Home Instruction Program for Preschool Youngsters (HIPPY), a two-year home-based early-education intervention program designed to help parents with limited formal education prepare their children for school. Presents findings from a two-site HIPPY study, a one-site case study, and a three-site qualitative study. (SLD)

  19. SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM: TECHNOLOGY WITH AN IMPACT

    EPA Science Inventory

    SITE promotes the development and implementation of innovative technologies for remediating hazardous waste sites and for evaluating the nature and extent of hazardous waste site contamination through four component segments. The SITE Program is a key element in EPA's efforts...

  20. Is Exposure to an Effective Contingency Management Intervention Associated with More Positive Provider Beliefs?

    PubMed Central

    Kirby, Kimberly C.; Carpenedo, Carolyn M.; Stitzer, Maxine L.; Dugosh, Karen L.; Petry, Nancy M.; Roll, John M.; Saladin, Michael E.; Cohen, Allan J.; Hamilton, John; Reese, Karen; Sillo, Gina R.; Stabile, Patricia Quinn; Sterling, Robert C.

    2011-01-01

    This study empirically examined opinions of treatment providers regarding Contingency Management (CM) programs while controlling for experience with a specific efficacious CM program. In addition to empirically describing provider opinions, we examined whether the opinions of providers at the sites that implemented the CM program were more positive than those of matched providers at sites that did not implement it. Participants from 7 CM treatment sites (n = 76) and 7 matched non-participating sites (n = 69) within the same nodes of NIDA's Clinical Trials Network completed the Provider Survey of Incentives (PSI), which assesses positive and negative beliefs about incentive programs. An intent-to-treat analysis found no differences in the PSI summary scores of providers in CM program vs. matched sites, but correcting for experience with tangible incentives showed significant differences, with providers from CM sites reporting more positive opinions than those from matched sites. Some differences were found in opinions regarding costs of incentives and these generally indicated that participants from CM sites were more likely to see the costs as worthwhile. The results from the study suggest that exposing community treatment providers to incentive programs may itself be an effective strategy in prompting the dissemination of CM interventions. PMID:22116009

  1. Evaluation of the content and accessibility of web sites for accredited orthopaedic sports medicine fellowships.

    PubMed

    Mulcahey, Mary K; Gosselin, Michelle M; Fadale, Paul D

    2013-06-19

    The Internet is a common source of information for orthopaedic residents applying for sports medicine fellowships, with the web sites of the American Orthopaedic Society for Sports Medicine (AOSSM) and the San Francisco Match serving as central databases. We sought to evaluate the web sites for accredited orthopaedic sports medicine fellowships with regard to content and accessibility. We reviewed the existing web sites of the ninety-five accredited orthopaedic sports medicine fellowships included in the AOSSM and San Francisco Match databases from February to March 2012. A Google search was performed to determine the overall accessibility of program web sites and to supplement information obtained from the AOSSM and San Francisco Match web sites. The study sample consisted of the eighty-seven programs whose web sites connected to information about the fellowship. Each web site was evaluated for its informational value. Of the ninety-five programs, fifty-one (54%) had links listed in the AOSSM database. Three (3%) of all accredited programs had web sites that were linked directly to information about the fellowship. Eighty-eight (93%) had links listed in the San Francisco Match database; however, only five (5%) had links that connected directly to information about the fellowship. Of the eighty-seven programs analyzed in our study, all eighty-seven web sites (100%) provided a description of the program and seventy-six web sites (87%) included information about the application process. Twenty-one web sites (24%) included a list of current fellows. Fifty-six web sites (64%) described the didactic instruction, seventy (80%) described team coverage responsibilities, forty-seven (54%) included a description of cases routinely performed by fellows, forty-one (47%) described the role of the fellow in seeing patients in the office, eleven (13%) included call responsibilities, and seventeen (20%) described a rotation schedule. Two Google searches identified direct links for 67% to 71% of all accredited programs. Most accredited orthopaedic sports medicine fellowships lack easily accessible or complete web sites in the AOSSM or San Francisco Match databases. Improvement in the accessibility and quality of information on orthopaedic sports medicine fellowship web sites would facilitate the ability of applicants to obtain useful information.

  2. SITE TECHNOLOGY PROFILES - 11TH EDITION, COMPACT DISC

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program, now in its eleventh year is an integral part of EPA's research into alternative cleanup methods for hazardous waste sites around the nation. The SITE Program was created to encourage the development and routine use o...

  3. Maywood Interim Storage Site annual environmental report for calendar year 1991, Maywood, New Jersey. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-01

    This document describes the environmental monitoring program at the Maywood Interim Storage Site (MISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of MISS began in 1984 when congress added the site to the US Department of Energy`s (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a DOE program to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation`s atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at MISS includesmore » sampling networks for radon and thoron concentrations in air; external gamma radiation-exposure; and total uranium, radium-226, radium-228, thorium-232, and thorium-230 concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in surface water, sediment, and groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.« less

  4. Employee Participation Programs: Considerations for the School Site. Studies in Collective Bargaining.

    ERIC Educational Resources Information Center

    National Education Association, Washington, DC. Research Div.

    Site-based decisionmaking programs offer important opportunities for school systems; however, the risks involved are significant and the decision to embrace the concept at the local level is a highly complex one. With site-based decisionmaking programs, teachers are directly involved in making decisions that affect the whole school, not merely…

  5. 78 FR 40820 - 60-Day Notice of Proposed Information Collection: Exchange Programs Alumni Web Site Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-08

    ...: Exchange Programs Alumni Web Site Registration ACTION: Notice of request for public comment. SUMMARY: The... following methods: Web: Persons with access to the Internet may use the Federal Docket Management System... Programs Alumni Web site Registration OMB Control Number: 1405-0192 Type of Request: Extension of an...

  6. 75 FR 25025 - 60-Day Notice of Proposed Information Collection: Exchange Programs Alumni Web Site Registration...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ...: Exchange Programs Alumni Web Site Registration, DS-7006 ACTION: Notice of request for public comments... the Paperwork Reduction Act of 1995. Title of Information Collection: Exchange Programs Alumni Web... techniques or other forms of technology. Abstract of proposed collection: The State Alumni Web site requires...

  7. Niagara Falls Storage Site annual environmental report for calendar year 1991, Lewiston, New York. [Niagara Falls Storage Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-01

    This document describes the environmental monitoring program at the Niagara Falls Storage Site (NFSS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring at NFSS began in 1981. The site is owned by the US Department of Energy (DOE) and is assigned to the DOE Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program atmore » NFSS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and total uranium and radium-226 concentrations in surface water, sediments, and groundwater. Additionally, several nonradiological parameters including seven metals are routinely measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.« less

  8. Ocean Drilling Program: Public Information: News

    Science.gov Websites

    site ODP's main web site ODP/TAMU Science Operator Home Ocean Drilling Program News The Ocean Drilling Program was succeeded in 2003 by the Integrated Ocean Drilling Program (IODP). The IODP U.S. Implementing

  9. Availability of pediatric rheumatology training in United States pediatric residencies.

    PubMed

    Mayer, Michelle L; Brogan, Laura; Sandborg, Christy I

    2006-12-15

    To characterize the availability of pediatric rheumatology training in general pediatric residencies. We surveyed 195 pediatric residency program directors in the US using a combined Web-based and paper-based survey format. The survey asked directors about the availability of an on-site pediatric rheumatologist in their institution, the availability of formal pediatric rheumatology rotations, and the types of physicians involved in teaching curriculum components related to pediatric rheumatology. Survey responses were analyzed using descriptive and bivariate statistics. Of the 195 program directors surveyed, 127 (65%) responded. More than 40% of responding programs did not have a pediatric rheumatologist on site. Programs with on-site pediatric rheumatologists were significantly more likely than those without on-site pediatric rheumatologists to have an on-site pediatric rheumatology rotation available (94% versus 9%; P < 0.001). Although pediatric rheumatologists' involvement in 4 curriculum areas relevant to pediatric rheumatology is nearly universal in programs with on-site pediatric rheumatologists, nearly two-thirds of programs without on-site pediatric rheumatologists rely on internist rheumatologists, general pediatricians, or other physicians to cover these areas. Programs without pediatric rheumatologists on site are less likely to have pediatric rheumatology rotations and are more likely to rely on internist rheumatologists and nonrheumatologists to address rheumatology-related curriculum components. Lack of exposure to pediatric rheumatology during residency may impede general pediatricians' ability to identify and treat children with rheumatic diseases, undermine resident interest in this field, and perpetuate low levels of supply.

  10. The Savannah River Site`s Groundwater Monitoring Program, third quarter 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. Analytical results from third quarter 1991 are listed in this report.

  11. Site Selection for the Disposal of LLW in Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, W.S.; Chi, L.M.; Tien, N.C.

    2006-07-01

    This paper presents the implementation status of the low-level radioactive waste (LLW) disposal program in Taiwan, including the disposal facility regulations, status of waste management, final disposal program, licensing procedures, waste acceptance criteria, site selection criteria and processes and preliminary disposal concepts. The first phase of site selection for low-level radioactive waste final disposal in Taiwan was implemented between 1992 and 2002. The site selection process adopted a Geographic Information System (GIS), Hierarchical Analysis System, Expert Evaluation System, and site reconnaissance. An incentive program for voluntary sites was also initiated. After a series of evaluations and discussion of 30 potentialmore » candidate sites, including 8 recommended sites, 5 qualified voluntary townships, and several remote uninhabited small islets, Hsiao-chiou islet was selected as the first priority candidate site in February 1998. The geological investigation work in Hsiao-chiou was conducted from March 1999 through October 2000. An Environmental Impact Statement Report (EIS) and the Investment Feasibility Study Report (IFS) were submitted to the Environmental Protection Agency (EPA) in November 2000 and to the Ministry of Economic Affairs (MOEA) in June 2001, respectively. Unfortunately, the site investigation was discontinued in 2002 due to political and public acceptance consideration. After years of planning, the second phase of the site selection process was launched in August 2004 and will be conducted through 2008. It is planned that a repository will be constructed in early 2009 and start to operate in 2014. The site selection process for the second phase is based on the earlier work and four potential candidate sites were selected for evaluation until 2005. A near surface disposal concept is proposed for a site located in the Taiwan strait, and cavern disposal concepts are proposed for three other sites located on the main island. This paper presents the implementation status of the LLW disposal program in Taiwan, including the disposal facility regulations, status of waste management, final disposal program, licensing procedures, waste acceptance criteria, site selection criteria and processes, and preliminary disposal concepts 'NIMBY' (Not in my backyard) is a critical problem for implementation of the final disposal project. Resistance from local communities has been continuously received during site characterization. To overcome this, an incentive program to encourage community acceptance has been approved by the Government. Programs for community promotion are being proposed and negotiations are also underway. (authors)« less

  12. Oak Ridge Environmental Information System (ORIES) site workstation information packet for OREIS V1. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voorhees, L.D.; McCord, R.A.; Durfee, R.C.

    1993-02-01

    The OREIS site workstation information packet was developed to accompany the OREIS site workstations, which are being delivered to the Environmental Restoration programs at the five DOE-OR sites. The packet is written specifically for the Site ER program staff at each of the five Sites who have been designated the OREIS contact by their ER program manager, and is not intended for general distribution. The packet provides an overview of the components of OREIS, points to more detailed information provided in the accompanying vendor and OREIS developed manuals, and includes information on training opportunities and user support.

  13. Relationship Between the Number of Clinical Sites in Radiography Programs and Job Placement Rates of Graduates.

    PubMed

    Harrell, Angela; Matthews, Eric

    2016-07-01

    To determine whether a relationship exists between the number of clinical sites available in radiography programs accredited by the Joint Review Committee on Education in Radiologic Technology and the job placement rates of graduates. We performed a secondary analysis of data on job placement rates and the number of clinical sites available in 438 degree-granting radiography programs from January 2015 to March 2015. A weak, negative, nonsignificant correlation existed between the number of clinical sites and the job placement rate (Spearman's rho = -.113, n = 438, P = .018). The coefficient of determination was 1.28%.Discussion Research evaluating factors contributing to graduate employability is limited but indicates no need for radiography program administrators to adjust clinical site numbers solely on the basis of improving graduate employability. The number of clinical sites available in a radiography program is not related to the job placement rate of its graduates. ©2016 American Society of Radiologic Technologists.

  14. 24 CFR 583.320 - Site control.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Site control. 583.320 Section 583... DEVELOPMENT COMMUNITY FACILITIES SUPPORTIVE HOUSING PROGRAM Program Requirements § 583.320 Site control. (a) Site control. (1) Where grant funds will be used for acquisition, rehabilitation, or new construction...

  15. 24 CFR 583.320 - Site control.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 3 2013-04-01 2013-04-01 false Site control. 583.320 Section 583... DEVELOPMENT COMMUNITY FACILITIES SUPPORTIVE HOUSING PROGRAM Program Requirements § 583.320 Site control. (a) Site control. (1) Where grant funds will be used for acquisition, rehabilitation, or new construction...

  16. 24 CFR 583.320 - Site control.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 3 2014-04-01 2013-04-01 true Site control. 583.320 Section 583... DEVELOPMENT COMMUNITY FACILITIES SUPPORTIVE HOUSING PROGRAM Program Requirements § 583.320 Site control. (a) Site control. (1) Where grant funds will be used for acquisition, rehabilitation, or new construction...

  17. 24 CFR 583.320 - Site control.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 3 2011-04-01 2010-04-01 true Site control. 583.320 Section 583... DEVELOPMENT COMMUNITY FACILITIES SUPPORTIVE HOUSING PROGRAM Program Requirements § 583.320 Site control. (a) Site control. (1) Where grant funds will be used for acquisition, rehabilitation, or new construction...

  18. 24 CFR 583.320 - Site control.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 3 2012-04-01 2012-04-01 false Site control. 583.320 Section 583... DEVELOPMENT COMMUNITY FACILITIES SUPPORTIVE HOUSING PROGRAM Program Requirements § 583.320 Site control. (a) Site control. (1) Where grant funds will be used for acquisition, rehabilitation, or new construction...

  19. Executive summary: Weldon Spring Site Environmental Report for calendar year 1992. Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-06-01

    This report has been prepared to provide information about the public safety and environmental protection programs conducted by the Weldon Spring Site Remedial Action Project. The Weldon Spring site is located in southern St. Charles County, Missouri, approximately 48 km (30 mi) west of St. Louis. The site consists of two main areas, the Weldon Spring Chemical Plant and raffinate pits and the Weldon Spring Quarry. The objectives of the Site Environmental Report are to present a summary of data from the environmental monitoring program, to characterize trends and environmental conditions at the site, and to confirm compliance with environmentalmore » and health protection standards and requirements. The report also presents the status of remedial activities and the results of monitoring these activities to assess their impacts on the public and environment. The scope of the environmental monitoring program at the Weldon Spring site has changed since it was initiated. Previously, the program focused on investigations of the extent and level of contaminants in the groundwater, surface waters, buildings, and air at the site. In 1992, the level of remedial activities required monitoring for potential impacts of those activities, particularly on surface water runoff and airborne effluents. This report includes monitoring data from routine radiological and nonradiological sampling activities. These data include estimates of dose to the public from the Weldon Spring site; estimates of effluent releases; and trends in groundwater contaminant levels. Also, applicable compliance requirements, quality assurance programs, and special studies conducted in 1992 to support environmental protection programs are reviewed.« less

  20. Maintaining Large and Small Corporate Websites: San Jose City College's Website Administration Program.

    ERIC Educational Resources Information Center

    Dodge, Lucy

    The report describes San Jose College's (California) two Web site management and design programs, and provides employment information and job market analysis for the field. The College's Web Site Administration and Web Application Solutions programs offer classes designed to give students the necessary skills in administering a Web site and in…

  1. SUMMARY REPORT FOR THE NATIONAL ATMOSPHERIC DEPOSITION PROGRAM/NATIONAL TRENDS NETWORK (NADP/NTN) SITE VISITATION PROGRAM FOR THE PERIOD OCTOBER 1987 THROUGH SEPTEMBER 1988

    EPA Science Inventory

    The U.S Environmental Protection Agency (EPA) provides technical assistance to the NADP/NTN network through a site visitation program. esearch Triangle Institute, as contractor to EPA, conducts these visits. f deficiencies or nonstandard procedures are noted, the site operator an...

  2. Site operator program final report for fiscal years 1992 through 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francfort, J.E.; Bassett, R.R.; Birasco, S.

    The Site Operator Program was an electric vehicle testing and evaluation program sponsored by US Department of Energy and managed at the Idaho National Engineering and Environmental Laboratory. The Program`s goals included the field evaluation of electric vehicles in real-world applications and environments; the support of electric vehicle technology advancement; the development of infrastructure elements necessary to support significant electric vehicle use; and increasing the awareness and acceptance of electric vehicles. This report covers Program activities from 1992 to 1996. The Site Operator Program ended in September 1996, when it was superseded by the Field Operations Program. Electric vehicle testingmore » included baseline performance testing, which was performed in conjunction with EV America. The baseline performance parameters included acceleration, braking, range, energy efficiency, and charging time. The Program collected fleet operations data on electric vehicles operated by the Program`s thirteen partners, comprising electric utilities, universities, and federal agencies. The Program`s partners had over 250 electric vehicles, from vehicle converters and original equipment manufacturers, in their operating fleets. Test results are available via the World Wide Web site at http://ev.inel.gov/sop.« less

  3. The opportunities and challenges of multi-site evaluations: lessons from the jail diversion and trauma recovery national cross-site evaluation.

    PubMed

    Stainbrook, Kristin; Penney, Darby; Elwyn, Laura

    2015-06-01

    Multi-site evaluations, particularly of federally funded service programs, pose a special set of challenges for program evaluation. Not only are there contextual differences related to project location, there are often relatively few programmatic requirements, which results in variations in program models, target populations and services. The Jail Diversion and Trauma Recovery-Priority to Veterans (JDTR) National Cross-Site Evaluation was tasked with conducting a multi-site evaluation of thirteen grantee programs that varied along multiple domains. This article describes the use of a mixed methods evaluation design to understand the jail diversion programs and client outcomes for veterans with trauma, mental health and/or substance use problems. We discuss the challenges encountered in evaluating diverse programs, the benefits of the evaluation in the face of these challenges, and offer lessons learned for other evaluators undertaking this type of evaluation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Gravity effects on wind-induced flutter of leaves

    NASA Astrophysics Data System (ADS)

    Clemmer, Nickalaus; Kopperstad, Karsten; Solano, Tomas; Shoele, Kourosh; Ordonez, Juan

    2017-11-01

    Wind-Induced flutter of leaves depends on both wind velocity and the gravity. To study the gravitational effects on the oscillatory behavior of leaves in the wind, a wind tunnel that can be tilted about the center of the test section is created. This unique rotation capability allows systematic investigation of gravitational effects on the fluttering response of leaves. The flow-induced vibration will be studied for three different leaves at several different tilting angles including the wind travels horizontally, vertically downward and vertically upward. In each situation, the long axis of a leaf is placed parallel to the wind direction and its response is studied at different flow speed. Oscillation of the leaf is recorded via high-speed camera at each of setup, and the effect of the gravity on stabilizing or destabilizing the fluttering response is investigated. Summer REU student at Florida State University.

  5. Micellization and phase transitions in a triblock copolymer-D2O system

    NASA Astrophysics Data System (ADS)

    Odhner, Hosanna; Huff, Alison; Patton, Kelly; Jacobs, D. T.; Clover, Bryna; Greer, Sandra

    2011-03-01

    The triblock copolymer (``unimer'') of PPO-PEO-PPO (commercially known as 17R4) has hydrophobic ends and a hydrophilic center. When placed in D2 O at lower concentrations and temperatures, only a network of unimers exists. However, at higher concentrations or temperatures, micelles of different geometries can form. We have measured the micellization line marking the transition from only unimers to some micelles, as well as a one- to two-phase transition at higher temperatures. This second transition is an Ising-like, LCST critical point, based on the shape of the coexistence curve. We find the LCST to not correspond to the minimum of the cloud point curve, which indicates polydispersity as described by Sollich. We acknowledge the support from Research Corporation, NSF-REU grant DMR 0649112, The College of Wooster, and (for BC and SG) to the donors of the Petroleum Research Fund, administered by the American Chemical Society.

  6. Comparison of Solar and Wind Power Output and Correlation with Real-Time Pricing

    NASA Astrophysics Data System (ADS)

    Hoepfl, Kathryn E.; Compaan, Alvin D.; Solocha, Andrew

    2011-03-01

    This study presents a method that can be used to determine the least volatile power output of a wind and solar hybrid energy system in which wind and solar systems have the same peak power. Hourly data for wind and PV systems in Northwest Ohio are used to show that a combination of both types of sustainable energy sources produces a more stable power output and would be more valuable to the grid than either individually. This method could be used to determine the ideal ratio in any part of the country and should help convince electric utility companies to bring more renewable generation online. This study also looks at real-time market pricing and how each system (solar, wind, and hybrid) correlates with 2009 hourly pricing from the Midwest Interconnect. KEH acknowledges support from the NSF-REU grant PHY-1004649 to the Univ. of Toledo and Garland Energy Systems/Ohio Department of Development.

  7. Spatially Resolved Emission of a z~3 Damped Lyman Alpha Galaxy with Keck/OSIRIS IFU

    NASA Astrophysics Data System (ADS)

    Christenson, Holly; Jorgenson, Regina

    2017-01-01

    The damped Lyman alpha (DLA) class of galaxies contains most of the neutral hydrogen gas over cosmic time. Few DLAs have been detected directly, which limits our knowledge of fundamental properties like size and mass. We present Keck/OSIRIS infrared integral field spectroscopy (IFU) observations of a DLA that was first detected in absorption toward a background quasar. Our observations use the Keck Laser Guide Star Adaptive Optics system to reduce the point-spread function of the quasar, making it possible to spatially resolve the DLA emission. We map this emission in O[III] 5007 Å. At redshift z~3, this DLA represents one of the highest redshift DLAs mapped with IFU spectroscopy. We present measurements of the star formation rate, metallicity, and gas mass of the galaxy.This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.

  8. 10 CFR 26.87 - Collection sites.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Collection sites. 26.87 Section 26.87 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.87 Collection sites. (a) Each FFD program must have one or more designated collection sites that have all necessary personnel...

  9. 10 CFR 26.87 - Collection sites.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Collection sites. 26.87 Section 26.87 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.87 Collection sites. (a) Each FFD program must have one or more designated collection sites that have all necessary personnel...

  10. 10 CFR 26.87 - Collection sites.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Collection sites. 26.87 Section 26.87 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.87 Collection sites. (a) Each FFD program must have one or more designated collection sites that have all necessary personnel...

  11. 10 CFR 26.87 - Collection sites.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Collection sites. 26.87 Section 26.87 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.87 Collection sites. (a) Each FFD program must have one or more designated collection sites that have all necessary personnel...

  12. 10 CFR 26.87 - Collection sites.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Collection sites. 26.87 Section 26.87 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.87 Collection sites. (a) Each FFD program must have one or more designated collection sites that have all necessary personnel...

  13. Superfund Site Assessment Process

    EPA Pesticide Factsheets

    Learn about the site assessment process used by the federal Superfund program to evaluate releases of hazardous substances that may pose a threat to human health or the environment and select an appropriate program for sites needing cleanup.

  14. 76 FR 59182 - Bureau of Educational and Cultural Affairs; Exchange Visitor Program; Summer Work Travel Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-23

    ... Visitor Program; Summer Work Travel Program Sponsor On-Site Reviews ACTION: Notice. SUMMARY: Pursuant to..., the Department announces its intent to conduct on- site reviews of sponsors in the Summer Work Travel... Work Travel Program provides foreign college and university students the opportunity to work and travel...

  15. ESTIMATING INNOVATIVE TECHNOLOGY COSTS FOR THE SITE PROGRAM

    EPA Science Inventory

    Among the objectives of the EPA`s Superfund Innovative Technology Evaluation (SITE) Program are two which pertain to the issue of economics: 1) That the program will provide a projected cost for each treatment technology demonstrated. 2) That the program will attempt to identify ...

  16. Environmental sciences information storage and retrieval system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engstrom, D.E.; White, M.G.; Dunaway, P.B.

    Reynolds Electrical and Engineering Co., Inc. (REECo), has since 1970 accumulated information relating to the AEC's Nevada Applied Ecology Group (NAEG) programs at the Nevada Test Site (NTS). These programs, involving extensive soil, vegetation, and small-animal studies, have generated informational data concerning the collecting, processing, analyzing, and shipping of sample materials to various program participants and contractors. Future plans include incorporation of Lawrence Livermore Laboratory's resuspension study data, REECo's on-site air data, and EPA's large-animal, off-site air, and off-site soil data. (auth)

  17. Sandia National Laboratories, California Environmental Management System program manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Barbara L.

    2012-03-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a setmore » of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories, New Mexico (SNL/NM). Although these groups, from an organizational perspective, are part of Division 8000, they are managed locally and fall under the environmental requirements specific to their New Mexico location. The New Mexico groups in Division 8000 follow the corporate EMS Program for New Mexico operations.« less

  18. Maywood Interim Storage Site annual environmental report for calendar year 1991, Maywood, New Jersey. [Maywood Interim Storage Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1992-09-01

    This document describes the environmental monitoring program at the Maywood Interim Storage Site (MISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of MISS began in 1984 when congress added the site to the US Department of Energy's (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a DOE program to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at MISS includesmore » sampling networks for radon and thoron concentrations in air; external gamma radiation-exposure; and total uranium, radium-226, radium-228, thorium-232, and thorium-230 concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in surface water, sediment, and groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.« less

  19. Communication of Career Pathways Through Associate Degree Program Web Sites: A Baseline Assessment.

    PubMed

    Becker, Ellen A; Vargas, Jenny

    2018-05-08

    The American Association for Respiratory Care sponsored a series of conferences that addressed the competency of the future workforce of respiratory therapists (RTs). Based upon the findings from those conferences, several initiatives emerged that support RTs earning a baccalaureate (or bachelor's) degree. The objective of this study was to identify the ways that associate degree programs communicate career pathways toward a baccalaureate degree through their Web sites. This cross-sectional observational study used a random sample of 100 of the 362 associate degree programs approved by the Commission on Accreditation for Respiratory Care. Data were collected from 3 specific categories: demographic data, baccalaureate completion information, and the Web page location for the program. The presence of statements related to any pathway toward a bachelor's degree, transfer credits, articulation agreements, and links for baccalaureate completion were recorded. The descriptive statistics in this study were reported as total numbers and percentages. Of the 100 programs in the random sample, only 89 were included in the study. Only 39 (44%) programs had links on their program Web site that had any content related to bachelor's degrees, 16 (18%) identified college transfer courses toward a bachelor's degree, and 26 (29%) programs included baccalaureate articulation agreements on their Web site. A minority of associate degree programs communicated career pathway information to their prospective and current students through program Web sites. An informative Web site would make the path more transparent for entry-level students to meet their future educational needs as their careers progress. Copyright © 2018 by Daedalus Enterprises.

  20. SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION (SITE) PROGRAM ANNUAL REPORT TO CONGRESS 2003

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program has successfully promoted the development, commercialization and implementation of innovative hazardous waste treatment technologies for 17 years. SITE offers a mechanism for conducting joint technology demonstration a...

  1. Site support program plan for ICF Kaiser Hanford Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieterle, S.E.

    1996-09-27

    The Fiscal Year (FY) 1997 Inftastructure Program Site Support Program Plan (SSPP) addresses the mission objectives, workscope, work breakdown structures (WBS), management approach, and resource requirements for the Infrastructure Program. Attached to the plan are appendices that provide more detailed information associated with scope definition.

  2. WAG 2 remedial investigation and site investigation site-specific work plan/health and safety checklist for the soil and sediment task. Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holt, V.L.; Burgoa, B.B.

    1993-12-01

    This document is a site-specific work plan/health and safety checklist (WP/HSC) for a task of the Waste Area Grouping 2 Remedial Investigation and Site Investigation (WAG 2 RI&SI). Title 29 CFR Part 1910.120 requires that a health and safety program plan that includes site- and task-specific information be completed to ensure conformance with health- and safety-related requirements. To meet this requirement, the health and safety program plan for each WAG 2 RI&SI field task must include (1) the general health and safety program plan for all WAG 2 RI&SI field activities and (2) a WP/HSC for that particular field task.more » These two components, along with all applicable referenced procedures, must be kept together at the work site and distributed to field personnel as required. The general health and safety program plan is the Health and Safety Plan for the Remedial Investigation and Site Investigation of Waste Area Grouping 2 at the Oak Ridge National Laboratory, Oak Ridge, Tennessee (ORNL/ER-169). The WP/HSCs are being issued as supplements to ORNL/ER-169.« less

  3. Colonie Interim Storage Site environmental report for calendar year 1992, 1130 Central Avenue, Colonie, New York. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-05-01

    This report describes the environmental surveillance program at the Colonie Interim Storage Site (CISS) and provides the results for 1992. The site is located in eastern New York State, approximately 6.4 km (4.0 mi) northwest of downtown Albany. From 1958 to 1984, National Lead (NL) Industries used the facility to manufacture various components from depleted and enriched uranium natural thorium. Environmental monitoring of CISS began in 1984 when Congress added, the site to the US Department of Energy`s (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a program established to identify and decontaminate or otherwise control sites wheremore » residual radioactive materials remain from the early years of the nation`s atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental surveillance program at CISS includes sampling networks for external gamma radiation exposure and for thorium-232 and total uranium concentrations in surface water, sediment, and groundwater. Several chemical parameters are also measured in groundwater, including total metals, volatile organics, and water quality parameters. This surveillance program assists in fulfilling the DOE policy of measuring and monitoring effluents from DOE activities and calculating hypothetical doses. Results are compared with applicable Environmental Protection Agency (EPA) and New York State Department of Environmental Conservation (NYSDEC) standards, DOE derived concentration guides (DCGs), dose limits, and other DOE requirements.« less

  4. H.E.A.L.T.H.: Efficacy of an Internet/Population-Based Behavioral Weight Management Program for the U.S. Army

    PubMed Central

    Stewart, Tiffany; Han, Hongmei; Allen, H. Raymond; Bathalon, COL Gaston; Ryan, Donna H.; Newton, Robert L.; Williamson, Donald A.

    2011-01-01

    Background A significant number of soldiers exceed the maximum allowable weight standards or have body weights approaching the maximum allowable weight standards. This mandates development of scalable approaches to improve compliance with military weight standards. Methods We developed an intervention that included two components: (1) an Internet-based weight management program (Web site) and (2) a promotion program designed to promote and sustain usage of the Web site. The Web site remained online for 37 months, with the Web site promotion program ending after 25 months. Results Soldiers’ demographics were as follows: mean age, 32 years; body mass index (BMI), 28 kg/m2; 31% female; and 58% Caucasian. Civilian demographics were as follows: mean age, 38 years; BMI, 30 kg/m2; 84% female; and 55% Caucasian. Results indicated that 2417 soldiers and 2147 civilians (N = 4564) registered on the Web site. In the first 25 months (phase 1) of the study, new participants enrolled on the Web site at a rate of 88 (soldiers) and 80 (civilians) per month. After the promotion program was removed (phase 2), new participants enrolled at a rate of 18 (soldiers) and 13 (civilians) per month. Utilization of the Web site was associated with self-reported weight loss (p < .0001). Participants who utilized the Web site more frequently lost more weight (p < .0001). Participants reported satisfaction with the Web site. Conclusions The Web site and accompanying promotion program, when implemented at a military base, received satisfactory ratings and benefited a subset of participants in promoting weight loss. This justifies further examination of effectiveness in a randomized trial setting. PMID:21303642

  5. Learning To Hope: A Study of the Adult Education for the Homeless Program.

    ERIC Educational Resources Information Center

    Drury, Darrel; Koloski, Judy

    A comprehensive study of the Adult Education for the Homeless Program (AEH) was conducted using data from the following sources: program files; focus groups conducted with state project administrators; site visits to 9 local programs in 3 states; surveys of 32 state projects, 230 local programs, 588 service delivery sites, and 2,943 program…

  6. Program Director as Webmaster? Analysis of 131 Anesthesiology Department Web Sites and Program Director Web Site Involvement and Opinion Survey.

    PubMed

    Daneshpayeh, Negin; Lee, Howard; Berger, Jeffrey

    2013-01-01

    The last formal review of academic anesthesiology department Web sites (ADWs) for content was conducted in 2009. ADWs have been rated as very important by medical students in researching residency training programs; however, the rapid evolution of sites require that descriptive statistics must be more current to be considered reliable. We set out to provide an updated overview of ADW content and to better understand residency program directors' (PD) role and comfort with ADWs. Two independent reviewers (ND and HL) analyzed all 131 Accreditation Council for Graduate Medical Education (ACGME) accredited ADWs. A binary system (Yes/No) was used to determine which features were present. Reviewer reliability was confirmed with inter-rater reliability and percentage agreement calculation. Additionally, a blinded electronic survey (Survey Monkey, Portland, OR) was sent to anesthesiology residency PDs via electronic mail investigating the audiences for ADWs, the frequency of updates and the degree of PD involvement. 13% of anesthesiology departments still lack a Web site with a homepage with links to the residency program and educational offerings (18% in 2009). Only half (55%) of Web sites contain information for medical students, including clerkship information. Furthermore, programs rarely contain up-to-date calendars (13%), accreditation cycle lengths (11%), accreditation dates (7%) or board pass rates (6%). The PD survey, completed by 42 of 131 PDs, noted a correlation (r = 0.36) between the number of years as PD and the frequency of Web site updates - less experienced PDs appear to update their sites more frequently (p = 0.03). Although 86% of PDs regarded a Web site as "very" important in recruitment, only 9% felt "very" comfortable with the skills required to advertise and market a Web site. Despite the overall increase in ADW content since 2009, privacy concerns, limited resources and time constraints may prevent PDs from providing the most up-to-date Web sites for applicants and other interested audiences. PDs are aware of value of Web sites for recruitment, are typically involved in determining ADW content, but few feel very comfortable marketing a training program on the Web.

  7. DEMONSTRATION AND EVALUATION OF INNOVATIVE REMEDIATION TECHNOLOGIES THROUGH THE EPA SITE PROGRAM

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program has successfuly promoted the development, commercialization and implementation of innovative hazardous waste treatment technologies for 18 years. SITE offers a mechanism for conducting joint technology demonstration an...

  8. Evaluation of the Deadly Liver Mob program: insights for roll-out and scale-up of a pilot program to engage Aboriginal Australians in hepatitis C and sexual health education, screening, and care.

    PubMed

    Treloar, Carla; Hopwood, Max; Cama, Elena; Saunders, Veronica; Jackson, L Clair; Walker, Melinda; Ooi, Catriona; Ubrihien, Ashley; Ward, James

    2018-02-01

    Deadly Liver Mob (DLM) is a peer-driven, incentivised health promotion program aimed at increasing understanding of hepatitis C, promoting harm reduction in relation to injecting drug use, and linking participants to screening for hepatitis C, other blood borne viruses and sexually transmissible infections among Aboriginal people in Western Sydney, NSW. This paper presents the evaluation of a pilot study examining the acceptability of the program as a first step of a scalability assessment. Deadly Liver Mob operated in co-located needle and syringe programs and sexual health clinics in two sites: (Site 1: two and a half years for 2 days/week; Site 2: 1 year for 1 day per week). Comparisons were made of the proportion of Aboriginal clients (Site 1) and occasions of service provided to Aboriginal clients (Site 2) in the 12 months prior and post-introduction of DLM. Interviews were conducted with 13 staff involved in delivery of DLM and with 19 clients. A total of 655 and 55 Aboriginal clients, respectively, attended Site 1 and Site 2 for health education. The proportion of Aboriginal clients attending both sites was significantly higher during the DLM compared with prior to its implementation. Of those attending for health education, 79 and 73%, respectively, attended screening following education. DLM clients strongly endorsed the program. Some staff were concerned about workforce capacity to effectively engage Aboriginal clients with multiple and complex needs, managing the differing aims of the participating services involved, and about offering of incentives for attendance at health services. While acceptability was high among staff and clients and preliminary results show high engagement with Aboriginal communities, this evaluation of a pilot program raises some issues to consider in scale up of DLM to other sites. The initiation of additional DLM sites should address issues of alignment with governing strategies and workforce capacity.

  9. The role of social networking web sites in influencing residency decisions.

    PubMed

    Schweitzer, Justin; Hannan, Alexander; Coren, Joshua

    2012-10-01

    Social networking Web sites such as Facebook have grown rapidly in popularity. It is unknown how such sites affect the ways in which medical trainees investigate and interact with graduate medical education (GME) programs. To evaluate the use of social networking Web sites as a means for osteopathic medical students, interns, residents, and fellows to interact with GME programs and report the degree to which that interaction impacts a medical trainee's choice of GME program. An anonymous, 10-item electronic survey on social networking Web sites was e-mailed to osteopathic medical student, intern, resident, and fellow members of the American College of Osteopathic Family Physicians. The weighted least squares test and the Fisher exact test were used for data analysis. A total of 9606 surveys were distributed, and 992 (10%) were completed. Nine hundred twenty-eight (93%) of the respondents used social networking Web sites, with the most popular services being Facebook (891 [90%]; P=.03), the Student Doctor Network (278 [28%]), and LinkedIn (89 [9%]; P=.03). Three hundred fifty-three respondents (36%; P=.52) were connected with a professional organization and 673 (68%; P=.73) used social networking Web sites for job searching related to GME programs or postresidency employment. Within the population of 497 third-, fourth-, and fifth-year osteopathic medical students, 136 (27%) reported gleaning information about programs through social networking Web sites (P=.01). Within the total population, 100 of 992 (10%) reported that this information influenced their decisions (P=.07). Of note, 144 (14%) of the total 992 respondents reported that the programs they applied to did not have any presence on social networking Web sites (P=.05). Our results indicate that social networking Web sites have a present and growing influence on how osteopathic medical students, interns, residents, and fellows learn about and select a GME program.

  10. Calendar year 2002 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie

    2003-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, oversees TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility.more » This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2002. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 5400.1, General Environmental Protection Program (DOE 1990) and DOE Order 231.1, Environment, Safety, and Health Reporting (DOE 1996).« less

  11. Calendar year 2003 : annual site enviromental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie

    2004-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility.more » This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2003. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2003) and DOE Order 231.1 Chg 2., Environment, Safety, and Health Reporting (DOE 1996).« less

  12. Computer Program for Point Location And Calculation of ERror (PLACER)

    USGS Publications Warehouse

    Granato, Gregory E.

    1999-01-01

    A program designed for point location and calculation of error (PLACER) was developed as part of the Quality Assurance Program of the Federal Highway Administration/U.S. Geological Survey (USGS) National Data and Methodology Synthesis (NDAMS) review process. The program provides a standard method to derive study-site locations from site maps in highwayrunoff, urban-runoff, and other research reports. This report provides a guide for using PLACER, documents methods used to estimate study-site locations, documents the NDAMS Study-Site Locator Form, and documents the FORTRAN code used to implement the method. PLACER is a simple program that calculates the latitude and longitude coordinates of one or more study sites plotted on a published map and estimates the uncertainty of these calculated coordinates. PLACER calculates the latitude and longitude of each study site by interpolating between the coordinates of known features and the locations of study sites using any consistent, linear, user-defined coordinate system. This program will read data entered from the computer keyboard and(or) from a formatted text file, and will write the results to the computer screen and to a text file. PLACER is readily transferable to different computers and operating systems with few (if any) modifications because it is written in standard FORTRAN. PLACER can be used to calculate study site locations in latitude and longitude, using known map coordinates or features that are identifiable in geographic information data bases such as USGS Geographic Names Information System, which is available on the World Wide Web.

  13. Mix It Up! Six Ways To Rethink Tired Summer Reading Programs.

    ERIC Educational Resources Information Center

    Barstow, Barbara; Markey, Penny

    1997-01-01

    Presents six ideas to improve public libraries' summer reading programs. Highlights include creating Web sites; marketing directly to parents rather than to schools through direct mail and collaborative promotion; statewide cooperative programs; the use of teen volunteers; scratch-off game cards; and off-site programs. (LRW)

  14. Educational Evaluation: Key Characteristics. ACER Research Series No. 102.

    ERIC Educational Resources Information Center

    Maling-Keepes, Jillian

    A set of 13 key characteristics is presented as a framework for educational evaluation studies: (1) program's stage of development when evaluator is appointed; (2) program's openness to revision; (3) program uniformity from site to site; (4) specificity of program objectives; (5) evaluator's independence; (6) evaluator's orientation to value…

  15. 48 CFR 923.570 - Workplace substance abuse programs at DOE sites.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Workplace substance abuse... SAFETY, AND DRUG-FREE WORKPLACE Drug-Free Workplace 923.570 Workplace substance abuse programs at DOE... abuse programs are promulgated at 10 CFR part 707, Workplace Substance Abuse Programs at DOE Sites. ...

  16. 48 CFR 923.570 - Workplace substance abuse programs at DOE sites.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Workplace substance abuse... SAFETY, AND DRUG-FREE WORKPLACE Drug-Free Workplace 923.570 Workplace substance abuse programs at DOE... abuse programs are promulgated at 10 CFR part 707, Workplace Substance Abuse Programs at DOE Sites. ...

  17. 48 CFR 923.570 - Workplace substance abuse programs at DOE sites.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Workplace substance abuse... SAFETY, AND DRUG-FREE WORKPLACE Drug-Free Workplace 923.570 Workplace substance abuse programs at DOE... abuse programs are promulgated at 10 CFR part 707, Workplace Substance Abuse Programs at DOE Sites. ...

  18. 48 CFR 923.570 - Workplace substance abuse programs at DOE sites.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Workplace substance abuse... SAFETY, AND DRUG-FREE WORKPLACE Drug-Free Workplace 923.570 Workplace substance abuse programs at DOE... abuse programs are promulgated at 10 CFR part 707, Workplace Substance Abuse Programs at DOE Sites. ...

  19. The Savannah River Site's Groundwater Monitoring Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted during the first quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official document of the analytical results.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility.more » This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b).« less

Top