Sample records for rev ensemble conversion

  1. Third-order-harmonic generation in coherently spinning molecules

    NASA Astrophysics Data System (ADS)

    Prost, E.; Zhang, H.; Hertz, E.; Billard, F.; Lavorel, B.; Bejot, P.; Zyss, Joseph; Averbukh, Ilya Sh.; Faucher, O.

    2017-10-01

    The rotational Doppler effect occurs when circularly polarized light interacts with a rotating anisotropic material. It is manifested by the appearance of a spectral shift ensuing from the transfer of angular momentum and energy between radiation and matter. Recently, we reported terahertz-range rotational Doppler shifts produced in third-order nonlinear optical conversion [O. Faucher et al., Phys. Rev. A 94, 051402(R) (2016), 10.1103/PhysRevA.94.051402]. The experiment was performed in an ensemble of coherently spinning molecules prepared by a short laser pulse exhibiting a twisted linear polarization. The present work provides an extensive analysis of the rotational Doppler effect in third-order-harmonic generation from spinning linear molecules. The underlying physics is investigated both experimentally and theoretically. The implication of the rotational Doppler effect in higher-order processes like high-order-harmonic generation is discussed.

  2. Holographic Jet Shapes and their Evolution in Strongly Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Brewer, Jasmine; Rajagopal, Krishna; Sadofyev, Andrey; van der Schee, Wilke

    2017-11-01

    Recently our group analyzed how the probability distribution for the jet opening angle is modified in an ensemble of jets that has propagated through an expanding cooling droplet of plasma [K. Rajagopal, A. V. Sadofyev, W. van der Schee, Phys. Rev. Lett. 116 (2016) 211603]. Each jet in the ensemble is represented holographically by a string in the dual 4+1- dimensional gravitational theory with the distribution of initial energies and opening angles in the ensemble given by perturbative QCD. In [K. Rajagopal, A. V. Sadofyev, W. van der Schee, Phys. Rev. Lett. 116 (2016) 211603], the full string dynamics were approximated by assuming that the string moves at the speed of light. We are now able to analyze the full string dynamics for a range of possible initial conditions, giving us access to the dynamics of holographic jets just after their creation. The nullification timescale and the features of the string when it has nullified are all results of the string evolution. This emboldens us to analyze the full jet shape modification, rather than just the opening angle modification of each jet in the ensemble as in [K. Rajagopal, A. V. Sadofyev, W. van der Schee, Phys. Rev. Lett. 116 (2016) 211603]. We find the result that the jet shape scales with the opening angle at any particular energy. We construct an ensemble of dijets with energies and energy asymmetry distributions taken from events in proton-proton collisions, opening angle distribution as in [K. Rajagopal, A. V. Sadofyev, W. van der Schee, Phys. Rev. Lett. 116 (2016) 211603], and jet shape taken from proton-proton collisions and scaled according to our result. We study how these observables are modified after we send the ensemble of dijets through the strongly-coupled plasma.

  3. Accuracy of the microcanonical Lanczos method to compute real-frequency dynamical spectral functions of quantum models at finite temperatures.

    PubMed

    Okamoto, Satoshi; Alvarez, Gonzalo; Dagotto, Elbio; Tohyama, Takami

    2018-04-01

    We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long et al. [Phys. Rev. B 68, 235106 (2003)PRBMDO0163-182910.1103/PhysRevB.68.235106] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based on the microcanonical ensemble, which becomes exact in the thermodynamic limit. To apply the microcanonical ensemble at a fixed temperature, one has to find energy eigenstates with the energy eigenvalue corresponding to the internal energy in the canonical ensemble. Here, we propose to use thermal pure quantum state methods by Sugiura and Shimizu [Phys. Rev. Lett. 111, 010401 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.010401] to obtain the internal energy. After obtaining the energy eigenstates using the Lanczos diagonalization method, dynamical quantities are computed via a continued fraction expansion, a standard procedure for Lanczos-based numerical methods. Using one-dimensional antiferromagnetic Heisenberg chains with S=1/2, we demonstrate that the proposed procedure is reasonably accurate, even for relatively small systems.

  4. Accuracy of the microcanonical Lanczos method to compute real-frequency dynamical spectral functions of quantum models at finite temperatures

    NASA Astrophysics Data System (ADS)

    Okamoto, Satoshi; Alvarez, Gonzalo; Dagotto, Elbio; Tohyama, Takami

    2018-04-01

    We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long et al. [Phys. Rev. B 68, 235106 (2003), 10.1103/PhysRevB.68.235106] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based on the microcanonical ensemble, which becomes exact in the thermodynamic limit. To apply the microcanonical ensemble at a fixed temperature, one has to find energy eigenstates with the energy eigenvalue corresponding to the internal energy in the canonical ensemble. Here, we propose to use thermal pure quantum state methods by Sugiura and Shimizu [Phys. Rev. Lett. 111, 010401 (2013), 10.1103/PhysRevLett.111.010401] to obtain the internal energy. After obtaining the energy eigenstates using the Lanczos diagonalization method, dynamical quantities are computed via a continued fraction expansion, a standard procedure for Lanczos-based numerical methods. Using one-dimensional antiferromagnetic Heisenberg chains with S =1 /2 , we demonstrate that the proposed procedure is reasonably accurate, even for relatively small systems.

  5. Link-Prediction Enhanced Consensus Clustering for Complex Networks (Open Access)

    DTIC Science & Technology

    2016-05-20

    92:022816. Available from: http://link.aps.org/doi/10.1103/PhysRevE.92.022816. doi: 10. 1103 /PhysRevE.92.022816 16. Aldecoa R, Marín I. Exploring the...from: http://link.aps.org/doi/10.1103/PhysRevE.80.056117. doi: 10. 1103 /PhysRevE.80.056117 18. Dahlin J, Svenson P. Ensemble approaches for improving...046110. Available from: http://link.aps.org/doi/10.1103/PhysRevE.81.046110. doi: 10. 1103 /PhysRevE.81.046110 28. Gfeller D, Chappelier JC, De Los Rios P

  6. The total probabilities from high-resolution ensemble forecasting of floods

    NASA Astrophysics Data System (ADS)

    Olav Skøien, Jon; Bogner, Konrad; Salamon, Peter; Smith, Paul; Pappenberger, Florian

    2015-04-01

    Ensemble forecasting has for a long time been used in meteorological modelling, to give an indication of the uncertainty of the forecasts. As meteorological ensemble forecasts often show some bias and dispersion errors, there is a need for calibration and post-processing of the ensembles. Typical methods for this are Bayesian Model Averaging (Raftery et al., 2005) and Ensemble Model Output Statistics (EMOS) (Gneiting et al., 2005). There are also methods for regionalizing these methods (Berrocal et al., 2007) and for incorporating the correlation between lead times (Hemri et al., 2013). To make optimal predictions of floods along the stream network in hydrology, we can easily use the ensemble members as input to the hydrological models. However, some of the post-processing methods will need modifications when regionalizing the forecasts outside the calibration locations, as done by Hemri et al. (2013). We present a method for spatial regionalization of the post-processed forecasts based on EMOS and top-kriging (Skøien et al., 2006). We will also look into different methods for handling the non-normality of runoff and the effect on forecasts skills in general and for floods in particular. Berrocal, V. J., Raftery, A. E. and Gneiting, T.: Combining Spatial Statistical and Ensemble Information in Probabilistic Weather Forecasts, Mon. Weather Rev., 135(4), 1386-1402, doi:10.1175/MWR3341.1, 2007. Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T.: Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation, Mon. Weather Rev., 133(5), 1098-1118, doi:10.1175/MWR2904.1, 2005. Hemri, S., Fundel, F. and Zappa, M.: Simultaneous calibration of ensemble river flow predictions over an entire range of lead times, Water Resour. Res., 49(10), 6744-6755, doi:10.1002/wrcr.20542, 2013. Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M.: Using Bayesian Model Averaging to Calibrate Forecast Ensembles, Mon. Weather Rev., 133(5), 1155-1174, doi:10.1175/MWR2906.1, 2005. Skøien, J. O., Merz, R. and Blöschl, G.: Top-kriging - Geostatistics on stream networks, Hydrol. Earth Syst. Sci., 10(2), 277-287, 2006.

  7. Accuracy of the microcanonical Lanczos method to compute real-frequency dynamical spectral functions of quantum models at finite temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, Satoshi; Alvarez, Gonzalo; Dagotto, Elbio

    We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long et al. [Phys. Rev. B 68, 235106 (2003)] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based on the microcanonical ensemble, which becomes exact in the thermodynamic limit. To apply the microcanonical ensemble at a fixed temperature, one has to find energy eigenstates with the energy eigenvalue corresponding to the internal energy in the canonical ensemble. Here in this paper, we propose to use thermal pure quantum state methods by Sugiura and Shimizu [Phys. Rev. Lett. 111, 010401 (2013)] tomore » obtain the internal energy. After obtaining the energy eigenstates using the Lanczos diagonalization method, dynamical quantities are computed via a continued fraction expansion, a standard procedure for Lanczos-based numerical methods. Using one-dimensional antiferromagnetic Heisenberg chains with S = 1/2, we demonstrate that the proposed procedure is reasonably accurate, even for relatively small systems.« less

  8. Accuracy of the microcanonical Lanczos method to compute real-frequency dynamical spectral functions of quantum models at finite temperatures

    DOE PAGES

    Okamoto, Satoshi; Alvarez, Gonzalo; Dagotto, Elbio; ...

    2018-04-20

    We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long et al. [Phys. Rev. B 68, 235106 (2003)] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based on the microcanonical ensemble, which becomes exact in the thermodynamic limit. To apply the microcanonical ensemble at a fixed temperature, one has to find energy eigenstates with the energy eigenvalue corresponding to the internal energy in the canonical ensemble. Here in this paper, we propose to use thermal pure quantum state methods by Sugiura and Shimizu [Phys. Rev. Lett. 111, 010401 (2013)] tomore » obtain the internal energy. After obtaining the energy eigenstates using the Lanczos diagonalization method, dynamical quantities are computed via a continued fraction expansion, a standard procedure for Lanczos-based numerical methods. Using one-dimensional antiferromagnetic Heisenberg chains with S = 1/2, we demonstrate that the proposed procedure is reasonably accurate, even for relatively small systems.« less

  9. Soliton triads ensemble in frequency conversion: from inverse scattering theory to experimental observation.

    PubMed

    Baronio, Fabio; Andreana, Marco; Conforti, Matteo; Manili, Gabriele; Couderc, Vincent; De Angelis, Costantino; Barthélémy, Alain

    2011-07-04

    We consider the spectral theory of three-wave interactions to predict the initiation, formation and dynamics of an ensemble of bright-dark-bright soliton triads in frequency conversion processes. Spatial observation of non-interacting triads ensemble in a KTP crystal confirms theoretical prediction and numerical simulations.

  10. An Ensemble of Atomic Fountains

    DTIC Science & Technology

    2012-05-01

    1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 ph as e (n s) 56000559005580055700 MJD 8 10-16 2 4 6 8 10-15 2 4 ov er la pp in g Al la n de vi at io n 104... Metrologia 49, 49-56 (2012). [3] N. Ashby et al., Phys. Rev. Lett. 98, 070802 (2007). [4] S. J. Ferrell, et al., Phys. Rev. A 76, 062104 (2007). [5] T. M

  11. Charge transfer excitations from exact and approximate ensemble Kohn-Sham theory

    NASA Astrophysics Data System (ADS)

    Gould, Tim; Kronik, Leeor; Pittalis, Stefano

    2018-05-01

    By studying the lowest excitations of an exactly solvable one-dimensional soft-Coulomb molecular model, we show that components of Kohn-Sham ensembles can be used to describe charge transfer processes. Furthermore, we compute the approximate excitation energies obtained by using the exact ensemble densities in the recently formulated ensemble Hartree-exchange theory [T. Gould and S. Pittalis, Phys. Rev. Lett. 119, 243001 (2017)]. Remarkably, our results show that triplet excitations are accurately reproduced across a dissociation curve in all cases tested, even in systems where ground state energies are poor due to strong static correlations. Singlet excitations exhibit larger deviations from exact results but are still reproduced semi-quantitatively.

  12. Crossover between the Gaussian orthogonal ensemble, the Gaussian unitary ensemble, and Poissonian statistics.

    PubMed

    Schweiner, Frank; Laturner, Jeanine; Main, Jörg; Wunner, Günter

    2017-11-01

    Until now only for specific crossovers between Poissonian statistics (P), the statistics of a Gaussian orthogonal ensemble (GOE), or the statistics of a Gaussian unitary ensemble (GUE) have analytical formulas for the level spacing distribution function been derived within random matrix theory. We investigate arbitrary crossovers in the triangle between all three statistics. To this aim we propose an according formula for the level spacing distribution function depending on two parameters. Comparing the behavior of our formula for the special cases of P→GUE, P→GOE, and GOE→GUE with the results from random matrix theory, we prove that these crossovers are described reasonably. Recent investigations by F. Schweiner et al. [Phys. Rev. E 95, 062205 (2017)2470-004510.1103/PhysRevE.95.062205] have shown that the Hamiltonian of magnetoexcitons in cubic semiconductors can exhibit all three statistics in dependence on the system parameters. Evaluating the numerical results for magnetoexcitons in dependence on the excitation energy and on a parameter connected with the cubic valence band structure and comparing the results with the formula proposed allows us to distinguish between regular and chaotic behavior as well as between existent or broken antiunitary symmetries. Increasing one of the two parameters, transitions between different crossovers, e.g., from the P→GOE to the P→GUE crossover, are observed and discussed.

  13. Total probabilities of ensemble runoff forecasts

    NASA Astrophysics Data System (ADS)

    Olav Skøien, Jon; Bogner, Konrad; Salamon, Peter; Smith, Paul; Pappenberger, Florian

    2017-04-01

    Ensemble forecasting has a long history from meteorological modelling, as an indication of the uncertainty of the forecasts. However, it is necessary to calibrate and post-process the ensembles as the they often exhibit both bias and dispersion errors. Two of the most common methods for this are Bayesian Model Averaging (Raftery et al., 2005) and Ensemble Model Output Statistics (EMOS) (Gneiting et al., 2005). There are also methods for regionalizing these methods (Berrocal et al., 2007) and for incorporating the correlation between lead times (Hemri et al., 2013). Engeland and Steinsland Engeland and Steinsland (2014) developed a framework which can estimate post-processing parameters varying in space and time, while giving a spatially and temporally consistent output. However, their method is computationally complex for our larger number of stations, which makes it unsuitable for our purpose. Our post-processing method of the ensembles is developed in the framework of the European Flood Awareness System (EFAS - http://www.efas.eu), where we are making forecasts for whole Europe, and based on observations from around 700 catchments. As the target is flood forecasting, we are also more interested in improving the forecast skill for high-flows rather than in a good prediction of the entire flow regime. EFAS uses a combination of ensemble forecasts and deterministic forecasts from different meteorological forecasters to force a distributed hydrologic model and to compute runoff ensembles for each river pixel within the model domain. Instead of showing the mean and the variability of each forecast ensemble individually, we will now post-process all model outputs to estimate the total probability, the post-processed mean and uncertainty of all ensembles. The post-processing parameters are first calibrated for each calibration location, but we are adding a spatial penalty in the calibration process to force a spatial correlation of the parameters. The penalty takes distance, stream-connectivity and size of the catchment areas into account. This can in some cases have a slight negative impact on the calibration error, but avoids large differences between parameters of nearby locations, whether stream connected or not. The spatial calibration also makes it easier to interpolate the post-processing parameters to uncalibrated locations. We also look into different methods for handling the non-normal distributions of runoff data and the effect of different data transformations on forecasts skills in general and for floods in particular. Berrocal, V. J., Raftery, A. E. and Gneiting, T.: Combining Spatial Statistical and Ensemble Information in Probabilistic Weather Forecasts, Mon. Weather Rev., 135(4), 1386-1402, doi:10.1175/MWR3341.1, 2007. Engeland, K. and Steinsland, I.: Probabilistic postprocessing models for flow forecasts for a system of catchments and several lead times, Water Resour. Res., 50(1), 182-197, doi:10.1002/2012WR012757, 2014. Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T.: Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation, Mon. Weather Rev., 133(5), 1098-1118, doi:10.1175/MWR2904.1, 2005. Hemri, S., Fundel, F. and Zappa, M.: Simultaneous calibration of ensemble river flow predictions over an entire range of lead times, Water Resour. Res., 49(10), 6744-6755, doi:10.1002/wrcr.20542, 2013. Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M.: Using Bayesian Model Averaging to Calibrate Forecast Ensembles, Mon. Weather Rev., 133(5), 1155-1174, doi:10.1175/MWR2906.1, 2005.

  14. A comparison of ensemble post-processing approaches that preserve correlation structures

    NASA Astrophysics Data System (ADS)

    Schefzik, Roman; Van Schaeybroeck, Bert; Vannitsem, Stéphane

    2016-04-01

    Despite the fact that ensemble forecasts address the major sources of uncertainty, they exhibit biases and dispersion errors and therefore are known to improve by calibration or statistical post-processing. For instance the ensemble model output statistics (EMOS) method, also known as non-homogeneous regression approach (Gneiting et al., 2005) is known to strongly improve forecast skill. EMOS is based on fitting and adjusting a parametric probability density function (PDF). However, EMOS and other common post-processing approaches apply to a single weather quantity at a single location for a single look-ahead time. They are therefore unable of taking into account spatial, inter-variable and temporal dependence structures. Recently many research efforts have been invested in designing post-processing methods that resolve this drawback but also in verification methods that enable the detection of dependence structures. New verification methods are applied on two classes of post-processing methods, both generating physically coherent ensembles. A first class uses the ensemble copula coupling (ECC) that starts from EMOS but adjusts the rank structure (Schefzik et al., 2013). The second class is a member-by-member post-processing (MBM) approach that maps each raw ensemble member to a corrected one (Van Schaeybroeck and Vannitsem, 2015). We compare variants of the EMOS-ECC and MBM classes and highlight a specific theoretical connection between them. All post-processing variants are applied in the context of the ensemble system of the European Centre of Weather Forecasts (ECMWF) and compared using multivariate verification tools including the energy score, the variogram score (Scheuerer and Hamill, 2015) and the band depth rank histogram (Thorarinsdottir et al., 2015). Gneiting, Raftery, Westveld, and Goldman, 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., {133}, 1098-1118. Scheuerer and Hamill, 2015. Variogram-based proper scoring rules for probabilistic forecasts of multivariate quantities. Mon. Wea. Rev. {143},1321-1334. Schefzik, Thorarinsdottir, Gneiting. Uncertainty quantification in complex simulation models using ensemble copula coupling. Statistical Science {28},616-640, 2013. Thorarinsdottir, M. Scheuerer, and C. Heinz, 2015. Assessing the calibration of high-dimensional ensemble forecasts using rank histograms, arXiv:1310.0236. Van Schaeybroeck and Vannitsem, 2015: Ensemble post-processing using member-by-member approaches: theoretical aspects. Q.J.R. Meteorol. Soc., 141: 807-818.

  15. Total probabilities of ensemble runoff forecasts

    NASA Astrophysics Data System (ADS)

    Olav Skøien, Jon; Bogner, Konrad; Salamon, Peter; Smith, Paul; Pappenberger, Florian

    2016-04-01

    Ensemble forecasting has for a long time been used as a method in meteorological modelling to indicate the uncertainty of the forecasts. However, as the ensembles often exhibit both bias and dispersion errors, it is necessary to calibrate and post-process them. Two of the most common methods for this are Bayesian Model Averaging (Raftery et al., 2005) and Ensemble Model Output Statistics (EMOS) (Gneiting et al., 2005). There are also methods for regionalizing these methods (Berrocal et al., 2007) and for incorporating the correlation between lead times (Hemri et al., 2013). Engeland and Steinsland Engeland and Steinsland (2014) developed a framework which can estimate post-processing parameters which are different in space and time, but still can give a spatially and temporally consistent output. However, their method is computationally complex for our larger number of stations, and cannot directly be regionalized in the way we would like, so we suggest a different path below. The target of our work is to create a mean forecast with uncertainty bounds for a large number of locations in the framework of the European Flood Awareness System (EFAS - http://www.efas.eu) We are therefore more interested in improving the forecast skill for high-flows rather than the forecast skill of lower runoff levels. EFAS uses a combination of ensemble forecasts and deterministic forecasts from different forecasters to force a distributed hydrologic model and to compute runoff ensembles for each river pixel within the model domain. Instead of showing the mean and the variability of each forecast ensemble individually, we will now post-process all model outputs to find a total probability, the post-processed mean and uncertainty of all ensembles. The post-processing parameters are first calibrated for each calibration location, but assuring that they have some spatial correlation, by adding a spatial penalty in the calibration process. This can in some cases have a slight negative impact on the calibration error, but makes it easier to interpolate the post-processing parameters to uncalibrated locations. We also look into different methods for handling the non-normal distributions of runoff data and the effect of different data transformations on forecasts skills in general and for floods in particular. Berrocal, V. J., Raftery, A. E. and Gneiting, T.: Combining Spatial Statistical and Ensemble Information in Probabilistic Weather Forecasts, Mon. Weather Rev., 135(4), 1386-1402, doi:10.1175/MWR3341.1, 2007. Engeland, K. and Steinsland, I.: Probabilistic postprocessing models for flow forecasts for a system of catchments and several lead times, Water Resour. Res., 50(1), 182-197, doi:10.1002/2012WR012757, 2014. Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T.: Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation, Mon. Weather Rev., 133(5), 1098-1118, doi:10.1175/MWR2904.1, 2005. Hemri, S., Fundel, F. and Zappa, M.: Simultaneous calibration of ensemble river flow predictions over an entire range of lead times, Water Resour. Res., 49(10), 6744-6755, doi:10.1002/wrcr.20542, 2013. Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M.: Using Bayesian Model Averaging to Calibrate Forecast Ensembles, Mon. Weather Rev., 133(5), 1155-1174, doi:10.1175/MWR2906.1, 2005.

  16. Generalized eigenstate typicality in translation-invariant quasifree fermionic models

    NASA Astrophysics Data System (ADS)

    Riddell, Jonathon; Müller, Markus P.

    2018-01-01

    We demonstrate a generalized notion of eigenstate thermalization for translation-invariant quasifree fermionic models: the vast majority of eigenstates satisfying a finite number of suitable constraints (e.g., fixed energy and particle number) have the property that their reduced density matrix on small subsystems approximates the corresponding generalized Gibbs ensemble. To this end, we generalize analytic results by H. Lai and K. Yang [Phys. Rev. B 91, 081110(R) (2015), 10.1103/PhysRevB.91.081110] and illustrate the claim numerically by example of the Jordan-Wigner transform of the XX spin chain.

  17. Spin-charge conversion in disordered two-dimensional electron gases lacking inversion symmetry

    NASA Astrophysics Data System (ADS)

    Huang, Chunli; Milletarı, Mirco; Cazalilla, Miguel A.

    2017-11-01

    We study the spin-charge conversion mechanisms in a two-dimensional gas of electrons moving in a smooth disorder potential by accounting for both Rashba-type and Mott's skew scattering contributions. We find that the quantum interference effects between spin-flip and skew scattering give rise to anisotropic spin precession scattering (ASP), a direct spin-charge conversion mechanism that was discovered in an earlier study of graphene decorated with adatoms [Huang et al., Phys. Rev. B 94, 085414 (2016), 10.1103/PhysRevB.94.085414]. Our findings suggest that, together with other spin-charge conversion mechanisms such as the inverse galvanic effect, ASP is a fairly universal phenomenon that should be present in disordered two-dimensional systems lacking inversion symmetry.

  18. Exact Results for the Nonergodicity of d -Dimensional Generalized Lévy Walks

    NASA Astrophysics Data System (ADS)

    Albers, Tony; Radons, Günter

    2018-03-01

    We provide analytical results for the ensemble-averaged and time-averaged squared displacement, and the randomness of the latter, in the full two-dimensional parameter space of the d -dimensional generalized Lévy walk introduced by Shlesinger et al. [Phys. Rev. Lett. 58, 1100 (1987), 10.1103/PhysRevLett.58.1100]. In certain regions of the parameter plane, we obtain surprising results such as the divergence of the mean-squared displacements, the divergence of the ergodicity breaking parameter despite a finite mean-squared displacement, and subdiffusion which appears superdiffusive when one only considers time averages.

  19. Ensembles of physical states and random quantum circuits on graphs

    NASA Astrophysics Data System (ADS)

    Hamma, Alioscia; Santra, Siddhartha; Zanardi, Paolo

    2012-11-01

    In this paper we continue and extend the investigations of the ensembles of random physical states introduced in Hamma [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.040502 109, 040502 (2012)]. These ensembles are constructed by finite-length random quantum circuits (RQC) acting on the (hyper)edges of an underlying (hyper)graph structure. The latter encodes for the locality structure associated with finite-time quantum evolutions generated by physical, i.e., local, Hamiltonians. Our goal is to analyze physical properties of typical states in these ensembles; in particular here we focus on proxies of quantum entanglement as purity and α-Renyi entropies. The problem is formulated in terms of matrix elements of superoperators which depend on the graph structure, choice of probability measure over the local unitaries, and circuit length. In the α=2 case these superoperators act on a restricted multiqubit space generated by permutation operators associated to the subsets of vertices of the graph. For permutationally invariant interactions the dynamics can be further restricted to an exponentially smaller subspace. We consider different families of RQCs and study their typical entanglement properties for finite time as well as their asymptotic behavior. We find that area law holds in average and that the volume law is a typical property (that is, it holds in average and the fluctuations around the average are vanishing for the large system) of physical states. The area law arises when the evolution time is O(1) with respect to the size L of the system, while the volume law arises as is typical when the evolution time scales like O(L).

  20. Stochastic and equilibrium pictures of the ultracold Fano-Feshbach-resonance molecular conversion rate

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Tomotake; Watanabe, Shinichi; Zhang, Chen; Greene, Chris H.

    2013-05-01

    The ultracold molecular conversion rate occurring in an adiabatic ramp through a Fano-Feshbach resonance is studied and compared in two statistical models. One model, the so-called stochastic phase-space sampling (SPSS) [Hodby , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.94.120402 94, 120402 (2005)] evaluates the overlap of two atomic distributions in phase space by sampling atomic pairs according to a phase-space criterion. The other model, the chemical equilibrium theory (ChET) [Watabe and Nikuni, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.77.013616 77, 013616 (2008)] considers atomic and molecular distributions in the limit of the chemical and thermal equilibrium. The present study applies SPSS and ChET to a prototypical system of K+K→ K2 in all the symmetry combinations, namely Fermi-Fermi, Bose-Bose, and Bose-Fermi cases. To examine implications of the phase-space criterion for SPSS, the behavior of molecular conversion is analyzed using four distinct geometrical constraints. Our comparison of the results of SPSS with those of ChET shows that while they appear similar in most situations, the two models give rise to rather dissimilar behaviors when the presence of a Bose-Einstein condensate strongly affects the molecule formation.

  1. Local box-counting dimensions of discrete quantum eigenvalue spectra: Analytical connection to quantum spectral statistics

    NASA Astrophysics Data System (ADS)

    Sakhr, Jamal; Nieminen, John M.

    2018-03-01

    Two decades ago, Wang and Ong, [Phys. Rev. A 55, 1522 (1997)], 10.1103/PhysRevA.55.1522 hypothesized that the local box-counting dimension of a discrete quantum spectrum should depend exclusively on the nearest-neighbor spacing distribution (NNSD) of the spectrum. In this Rapid Communication, we validate their hypothesis by deriving an explicit formula for the local box-counting dimension of a countably-infinite discrete quantum spectrum. This formula expresses the local box-counting dimension of a spectrum in terms of single and double integrals of the NNSD of the spectrum. As applications, we derive an analytical formula for Poisson spectra and closed-form approximations to the local box-counting dimension for spectra having Gaussian orthogonal ensemble (GOE), Gaussian unitary ensemble (GUE), and Gaussian symplectic ensemble (GSE) spacing statistics. In the Poisson and GOE cases, we compare our theoretical formulas with the published numerical data of Wang and Ong and observe excellent agreement between their data and our theory. We also study numerically the local box-counting dimensions of the Riemann zeta function zeros and the alternate levels of GOE spectra, which are often used as numerical models of spectra possessing GUE and GSE spacing statistics, respectively. In each case, the corresponding theoretical formula is found to accurately describe the numerically computed local box-counting dimension.

  2. Human REV3 DNA Polymerase Zeta Localizes to Mitochondria and Protects the Mitochondrial Genome.

    PubMed

    Singh, Bhupendra; Li, Xiurong; Owens, Kjerstin M; Vanniarajan, Ayyasamy; Liang, Ping; Singh, Keshav K

    2015-01-01

    To date, mitochondrial DNA polymerase γ (POLG) is the only polymerase known to be present in mammalian mitochondria. A dogma in the mitochondria field is that there is no other polymerase present in the mitochondria of mammalian cells. Here we demonstrate localization of REV3 DNA polymerase in the mammalian mitochondria. We demonstrate localization of REV3 in the mitochondria of mammalian tissue as well as cell lines. REV3 associates with POLG and mitochondrial DNA and protects the mitochondrial genome from DNA damage. Inactivation of Rev3 leads to reduced mitochondrial membrane potential, reduced OXPHOS activity, and increased glucose consumption. Conversely, inhibition of the OXPHOS increases expression of Rev3. Rev3 expression is increased in human primary breast tumors and breast cancer cell lines. Inactivation of Rev3 decreases cell migration and invasion, and localization of Rev3 in mitochondria increases survival and the invasive potential of cancer cells. Taken together, we demonstrate that REV3 functions in mammalian mitochondria and that mitochondrial REV3 is associated with the tumorigenic potential of cells.

  3. Essential Dynamics of Secondary Eyewall Formation

    DTIC Science & Technology

    2013-10-01

    pronounced subsidence and greatly diminished radar reflectivity (Houze et al. 2007) that is clearly discernable between the two eyewalls. The sub- siding...Part I: Assimilation of T- PARC data based on the ensemble Kalman filter (EnKF). Mon. Wea. Rev., 140, 506–527. Zhang, D.-L., Y. Liu, andM. K. Yau, 2001

  4. Reliable probabilities through statistical post-processing of ensemble predictions

    NASA Astrophysics Data System (ADS)

    Van Schaeybroeck, Bert; Vannitsem, Stéphane

    2013-04-01

    We develop post-processing or calibration approaches based on linear regression that make ensemble forecasts more reliable. We enforce climatological reliability in the sense that the total variability of the prediction is equal to the variability of the observations. Second, we impose ensemble reliability such that the spread around the ensemble mean of the observation coincides with the one of the ensemble members. In general the attractors of the model and reality are inhomogeneous. Therefore ensemble spread displays a variability not taken into account in standard post-processing methods. We overcome this by weighting the ensemble by a variable error. The approaches are tested in the context of the Lorenz 96 model (Lorenz 1996). The forecasts become more reliable at short lead times as reflected by a flatter rank histogram. Our best method turns out to be superior to well-established methods like EVMOS (Van Schaeybroeck and Vannitsem, 2011) and Nonhomogeneous Gaussian Regression (Gneiting et al., 2005). References [1] Gneiting, T., Raftery, A. E., Westveld, A., Goldman, T., 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Weather Rev. 133, 1098-1118. [2] Lorenz, E. N., 1996: Predictability - a problem partly solved. Proceedings, Seminar on Predictability ECMWF. 1, 1-18. [3] Van Schaeybroeck, B., and S. Vannitsem, 2011: Post-processing through linear regression, Nonlin. Processes Geophys., 18, 147.

  5. Method of inducing surface ensembles on a metal catalyst

    DOEpatents

    Miller, Steven S.

    1989-01-01

    A method of inducing surface ensembles on a transition metal catalyst used in the conversion of a reactant gas or gas mixture, such as carbon monoxide and hydrogen into hydrocarbons (the Fischer-Tropsch reaction) is disclosed which comprises adding a Lewis base to the syngas (CO+H.sub.2) mixture before reaction takes place. The formation of surface ensembles in this manner restricts the number and types of reaction pathways which will be utilized, thus greatly narrowing the product distribution and maximizing the efficiency of the Fischer-Tropsch reaction. Similarly, amines may also be produced by the conversion of reactant gas or gases, such as nitrogen, hydrogen, or hydrocarbon constituents.

  6. Method of inducing surface ensembles on a metal catalyst

    DOEpatents

    Miller, S.S.

    1987-10-02

    A method of inducing surface ensembles on a transition metal catalyst used in the conversion of a reactant gas or gas mixture, such as carbon monoxide and hydrogen into hydrocarbons (the Fischer-Tropsch reaction) is disclosed which comprises adding a Lewis base to the syngas (CO + H/sub 2/) mixture before reaction takes place. The formation of surface ensembles in this manner restricts the number and types of reaction pathways which will be utilized, thus greatly narrowing the product distribution and maximizing the efficiency of the Fischer-Tropsch reaction. Similarly, amines may also be produced by the conversion of reactant gas or gases, such as nitrogen, hydrogen, or hydrocarbon constituents.

  7. Gaussian memory in kinematic matrix theory for self-propellers.

    PubMed

    Nourhani, Amir; Crespi, Vincent H; Lammert, Paul E

    2014-12-01

    We extend the kinematic matrix ("kinematrix") formalism [Phys. Rev. E 89, 062304 (2014)], which via simple matrix algebra accesses ensemble properties of self-propellers influenced by uncorrelated noise, to treat Gaussian correlated noises. This extension brings into reach many real-world biological and biomimetic self-propellers for which inertia is significant. Applying the formalism, we analyze in detail ensemble behaviors of a 2D self-propeller with velocity fluctuations and orientation evolution driven by an Ornstein-Uhlenbeck process. On the basis of exact results, a variety of dynamical regimes determined by the inertial, speed-fluctuation, orientational diffusion, and emergent disorientation time scales are delineated and discussed.

  8. Crossover ensembles of random matrices and skew-orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Santosh, E-mail: skumar.physics@gmail.com; Pandey, Akhilesh, E-mail: ap0700@mail.jnu.ac.in

    2011-08-15

    Highlights: > We study crossover ensembles of Jacobi family of random matrices. > We consider correlations for orthogonal-unitary and symplectic-unitary crossovers. > We use the method of skew-orthogonal polynomials and quaternion determinants. > We prove universality of spectral correlations in crossover ensembles. > We discuss applications to quantum conductance and communication theory problems. - Abstract: In a recent paper (S. Kumar, A. Pandey, Phys. Rev. E, 79, 2009, p. 026211) we considered Jacobi family (including Laguerre and Gaussian cases) of random matrix ensembles and reported exact solutions of crossover problems involving time-reversal symmetry breaking. In the present paper we givemore » details of the work. We start with Dyson's Brownian motion description of random matrix ensembles and obtain universal hierarchic relations among the unfolded correlation functions. For arbitrary dimensions we derive the joint probability density (jpd) of eigenvalues for all transitions leading to unitary ensembles as equilibrium ensembles. We focus on the orthogonal-unitary and symplectic-unitary crossovers and give generic expressions for jpd of eigenvalues, two-point kernels and n-level correlation functions. This involves generalization of the theory of skew-orthogonal polynomials to crossover ensembles. We also consider crossovers in the circular ensembles to show the generality of our method. In the large dimensionality limit, correlations in spectra with arbitrary initial density are shown to be universal when expressed in terms of a rescaled symmetry breaking parameter. Applications of our crossover results to communication theory and quantum conductance problems are also briefly discussed.« less

  9. Thermodynamic-ensemble independence of solvation free energy.

    PubMed

    Chong, Song-Ho; Ham, Sihyun

    2015-02-10

    Solvation free energy is the fundamental thermodynamic quantity in solution chemistry. Recently, it has been suggested that the partial molar volume correction is necessary to convert the solvation free energy determined in different thermodynamic ensembles. Here, we demonstrate ensemble-independence of the solvation free energy on general thermodynamic grounds. Theoretical estimates of the solvation free energy based on the canonical or grand-canonical ensemble are pertinent to experiments carried out under constant pressure without any conversion.

  10. Correlations after quantum quenches in the XXZ spin chain: failure of the generalized Gibbs ensemble.

    PubMed

    Pozsgay, B; Mestyán, M; Werner, M A; Kormos, M; Zaránd, G; Takács, G

    2014-09-12

    We study the nonequilibrium time evolution of the spin-1/2 anisotropic Heisenberg (XXZ) spin chain, with a choice of dimer product and Néel states as initial states. We investigate numerically various short-ranged spin correlators in the long-time limit and find that they deviate significantly from predictions based on the generalized Gibbs ensemble (GGE) hypotheses. By computing the asymptotic spin correlators within the recently proposed quench-action formalism [Phys. Rev. Lett. 110, 257203 (2013)], however, we find excellent agreement with the numerical data. We, therefore, conclude that the GGE cannot give a complete description even of local observables, while the quench-action formalism correctly captures the steady state in this case.

  11. Ramsey interferometry of Rydberg ensembles inside microwave cavities

    NASA Astrophysics Data System (ADS)

    Sommer, Christian; Genes, Claudiu

    2018-06-01

    We study ensembles of Rydberg atoms in a confined electromagnetic environment such as is provided by a microwave cavity. The competition between standard free space Ising type and cavity-mediated interactions leads to the emergence of different regimes where the particle‑particle couplings range from the typical van der Waals r ‑6 behavior to r ‑3 and to r-independence. We apply a Ramsey spectroscopic technique to map the two-body interactions into a characteristic signal such as intensity and contrast decay curves. As opposed to previous treatments requiring high-densities for considerable contrast and phase decay (Takei et al 2016 Nat. Comms. 7 13449; Sommer et al 2016 Phys. Rev. A 94 053607), the cavity scenario can exhibit similar behavior at much lower densities.

  12. Atom Interferometry on Atom Chips - A Novel Approach Towards Precision Inertial Navigation System - PINS

    DTIC Science & Technology

    2010-06-01

    Demonstration of an area-enclosing guided-atom interferometer for rotation sensing, Phys. Rev. Lett. 99, 173201 (2007). 4. Heralded Single- Magnon Quantum...excitations are quantized spin waves ( magnons ), such that transitions between its energy levels ( magnon number states) correspond to highly directional...polarization storage in the form of a single collective-spin excitation ( magnon ) that is shared between two spatially overlapped atomic ensembles

  13. Rigorous proof for the nonlocal correlation function in the transverse Ising model with ring frustration.

    PubMed

    Dong, Jian-Jun; Zheng, Zhen-Yu; Li, Peng

    2018-01-01

    An unusual correlation function was conjectured by Campostrini et al. [Phys. Rev. E 91, 042123 (2015)PLEEE81539-375510.1103/PhysRevE.91.042123] for the ground state of a transverse Ising chain with geometrical frustration. Later, we provided a rigorous proof for it and demonstrated its nonlocal nature based on an evaluation of a Toeplitz determinant in the thermodynamic limit [J. Stat. Mech. (2016) 11310210.1088/1742-5468/2016/11/113102]. In this paper, we further prove that all the low excited energy states forming the gapless kink phase share the same asymptotic correlation function with the ground state. As a consequence, the thermal correlation function almost remains constant at low temperatures if one assumes a canonical ensemble.

  14. Boiling point determination using adiabatic Gibbs ensemble Monte Carlo simulations: Application to metals described by embedded-atom potentials

    NASA Astrophysics Data System (ADS)

    Gelb, Lev D.; Chakraborty, Somendra Nath

    2011-12-01

    The normal boiling points are obtained for a series of metals as described by the "quantum-corrected Sutton Chen" (qSC) potentials [S.-N. Luo, T. J. Ahrens, T. Çağın, A. Strachan, W. A. Goddard III, and D. C. Swift, Phys. Rev. B 68, 134206 (2003)]. Instead of conventional Monte Carlo simulations in an isothermal or expanded ensemble, simulations were done in the constant-NPH adabatic variant of the Gibbs ensemble technique as proposed by Kristóf and Liszi [Chem. Phys. Lett. 261, 620 (1996)]. This simulation technique is shown to be a precise tool for direct calculation of boiling temperatures in high-boiling fluids, with results that are almost completely insensitive to system size or other arbitrary parameters as long as the potential truncation is handled correctly. Results obtained were validated using conventional NVT-Gibbs ensemble Monte Carlo simulations. The qSC predictions for boiling temperatures are found to be reasonably accurate, but substantially underestimate the enthalpies of vaporization in all cases. This appears to be largely due to the systematic overestimation of dimer binding energies by this family of potentials, which leads to an unsatisfactory description of the vapor phase.

  15. Quantum teleportation between remote atomic-ensemble quantum memories.

    PubMed

    Bao, Xiao-Hui; Xu, Xiao-Fan; Li, Che-Ming; Yuan, Zhen-Sheng; Lu, Chao-Yang; Pan, Jian-Wei

    2012-12-11

    Quantum teleportation and quantum memory are two crucial elements for large-scale quantum networks. With the help of prior distributed entanglement as a "quantum channel," quantum teleportation provides an intriguing means to faithfully transfer quantum states among distant locations without actual transmission of the physical carriers [Bennett CH, et al. (1993) Phys Rev Lett 70(13):1895-1899]. Quantum memory enables controlled storage and retrieval of fast-flying photonic quantum bits with stationary matter systems, which is essential to achieve the scalability required for large-scale quantum networks. Combining these two capabilities, here we realize quantum teleportation between two remote atomic-ensemble quantum memory nodes, each composed of ∼10(8) rubidium atoms and connected by a 150-m optical fiber. The spin wave state of one atomic ensemble is mapped to a propagating photon and subjected to Bell state measurements with another single photon that is entangled with the spin wave state of the other ensemble. Two-photon detection events herald the success of teleportation with an average fidelity of 88(7)%. Besides its fundamental interest as a teleportation between two remote macroscopic objects, our technique may be useful for quantum information transfer between different nodes in quantum networks and distributed quantum computing.

  16. Random matrix theory of singular values of rectangular complex matrices I: Exact formula of one-body distribution function in fixed-trace ensemble

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adachi, Satoshi; Toda, Mikito; Kubotani, Hiroto

    The fixed-trace ensemble of random complex matrices is the fundamental model that excellently describes the entanglement in the quantum states realized in a coupled system by its strongly chaotic dynamical evolution [see H. Kubotani, S. Adachi, M. Toda, Phys. Rev. Lett. 100 (2008) 240501]. The fixed-trace ensemble fully takes into account the conservation of probability for quantum states. The present paper derives for the first time the exact analytical formula of the one-body distribution function of singular values of random complex matrices in the fixed-trace ensemble. The distribution function of singular values (i.e. Schmidt eigenvalues) of a quantum state ismore » so important since it describes characteristics of the entanglement in the state. The derivation of the exact analytical formula utilizes two recent achievements in mathematics, which appeared in 1990s. The first is the Kaneko theory that extends the famous Selberg integral by inserting a hypergeometric type weight factor into the integrand to obtain an analytical formula for the extended integral. The second is the Petkovsek-Wilf-Zeilberger theory that calculates definite hypergeometric sums in a closed form.« less

  17. Ensemble density variational methods with self- and ghost-interaction-corrected functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastorczak, Ewa; Pernal, Katarzyna, E-mail: pernalk@gmail.com

    2014-05-14

    Ensemble density functional theory (DFT) offers a way of predicting excited-states energies of atomic and molecular systems without referring to a density response function. Despite a significant theoretical work, practical applications of the proposed approximations have been scarce and they do not allow for a fair judgement of the potential usefulness of ensemble DFT with available functionals. In the paper, we investigate two forms of ensemble density functionals formulated within ensemble DFT framework: the Gross, Oliveira, and Kohn (GOK) functional proposed by Gross et al. [Phys. Rev. A 37, 2809 (1988)] alongside the orbital-dependent eDFT form of the functional introducedmore » by Nagy [J. Phys. B 34, 2363 (2001)] (the acronym eDFT proposed in analogy to eHF – ensemble Hartree-Fock method). Local and semi-local ground-state density functionals are employed in both approaches. Approximate ensemble density functionals contain not only spurious self-interaction but also the so-called ghost-interaction which has no counterpart in the ground-state DFT. We propose how to correct the GOK functional for both kinds of interactions in approximations that go beyond the exact-exchange functional. Numerical applications lead to a conclusion that functionals free of the ghost-interaction by construction, i.e., eDFT, yield much more reliable results than approximate self- and ghost-interaction-corrected GOK functional. Additionally, local density functional corrected for self-interaction employed in the eDFT framework yields excitations energies of the accuracy comparable to that of the uncorrected semi-local eDFT functional.« less

  18. Biophysical Characteristics of Chemical Protective Ensemble With and Without Body Armor

    DTIC Science & Technology

    2015-07-01

    Environmental Medicine Natick, MA 01760-5007 Standard Form 298 (Rev. 8/98) REPORT DOCUMENTATION PAGE Prescribed by ANSI Std. Z39.18 Form Approved OMB...members deployed to Iraq/Afghanistan, heat injuries totally 909, 58 of these being heat stroke [1]. While these incidences are relatively high across...As homeotherms, metabolic energy production (?̇?) in humans is a natural process, where ~20% of this energy results in useful mechanical work and

  19. Control of Goos-Hänchen shift via input probe field intensity

    NASA Astrophysics Data System (ADS)

    Ziauddin; Lee, Ray-Kuang; Qamar, Sajid

    2016-11-01

    We suggest a scheme to control Goos-Hänchen (GH) shift in an ensemble of strongly interacting Rydberg atoms, which act as super-atoms due to the dipole blockade mechanism. The ensemble of three-level cold Rydberg-dressed (87Rb) atoms follows a cascade configurations where two fields, i.e, a strong control and a weak field are employed [D. Petrosyan, J. Otterbach, and M. Fleischhauer, Phys. Rev. Lett. 107, 213601 (2011)]. The propagation of probe field is influenced by two-photon correlation within the blockade distance, which are damped due to the saturation of super-atoms. The amplitude of GH shift in the reflected light depends on the intensity of probe field. We observe large negative GH shift in the reflected light for small values of the probe field intensities.

  20. Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network.

    PubMed

    Ikuta, Rikizo; Kobayashi, Toshiki; Kawakami, Tetsuo; Miki, Shigehito; Yabuno, Masahiro; Yamashita, Taro; Terai, Hirotaka; Koashi, Masato; Mukai, Tetsuya; Yamamoto, Takashi; Imoto, Nobuyuki

    2018-05-21

    Long-lifetime quantum storages accessible to the telecom photonic infrastructure are essential to long-distance quantum communication. Atomic quantum storages have achieved subsecond storage time corresponding to 1000 km transmission time for a telecom photon through a quantum repeater algorithm. However, the telecom photon cannot be directly interfaced to typical atomic storages. Solid-state quantum frequency conversions fill this wavelength gap. Here we report on the experimental demonstration of a polarization-insensitive solid-state quantum frequency conversion to a telecom photon from a short-wavelength photon entangled with an atomic ensemble. Atom-photon entanglement has been generated with a Rb atomic ensemble and the photon has been translated to telecom range while retaining the entanglement by our nonlinear-crystal-based frequency converter in a Sagnac interferometer.

  1. Entropy and density of states from isoenergetic nonequilibrium processes

    NASA Astrophysics Data System (ADS)

    Adib, Artur B.

    2005-05-01

    Two identities in statistical mechanics involving entropy differences (or ratios of densities of states) at constant energy are derived. The first provides a nontrivial extension of the Jarzynski equality to the microcanonical ensemble [C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)], which can be seen as a “fast-switching” version of the adiabatic switching method for computing entropies [M. Watanabe and W. P. Reinhardt, Phys. Rev. Lett. 65, 3301 (1990)]. The second is a thermodynamic integration formula analogous to a well-known expression for free energies, and follows after taking the quasistatic limit of the first. Both identities can be conveniently used in conjunction with a scaling relation (herein derived) that allows one to extrapolate measurements taken at a single energy to a wide range of energy values. Practical aspects of these identities in the context of numerical simulations are discussed.

  2. Avoiding the ensemble decorrelation problem using member-by-member post-processing

    NASA Astrophysics Data System (ADS)

    Van Schaeybroeck, Bert; Vannitsem, Stéphane

    2014-05-01

    Forecast calibration or post-processing has become a standard tool in atmospheric and climatological science due to the presence of systematic initial condition and model errors. For ensemble forecasts the most competitive methods derive from the assumption of a fixed ensemble distribution. However, when independently applying such 'statistical' methods at different locations, lead times or for multiple variables the correlation structure for individual ensemble members is destroyed. Instead of reastablishing the correlation structure as in Schefzik et al. (2013) we instead propose a calibration method that avoids such problem by correcting each ensemble member individually. Moreover, we analyse the fundamental mechanisms by which the probabilistic ensemble skill can be enhanced. In terms of continuous ranked probability score, our member-by-member approach amounts to skill gain that extends for lead times far beyond the error doubling time and which is as good as the one of the most competitive statistical approach, non-homogeneous Gaussian regression (Gneiting et al. 2005). Besides the conservation of correlation structure, additional benefits arise including the fact that higher-order ensemble moments like kurtosis and skewness are inherited from the uncorrected forecasts. Our detailed analysis is performed in the context of the Kuramoto-Sivashinsky equation and different simple models but the results extent succesfully to the ensemble forecast of the European Centre for Medium-Range Weather Forecasts (Van Schaeybroeck and Vannitsem, 2013, 2014) . References [1] Gneiting, T., Raftery, A. E., Westveld, A., Goldman, T., 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Weather Rev. 133, 1098-1118. [2] Schefzik, R., T.L. Thorarinsdottir, and T. Gneiting, 2013: Uncertainty Quantification in Complex Simulation Models Using Ensemble Copula Coupling. To appear in Statistical Science 28. [3] Van Schaeybroeck, B., and S. Vannitsem, 2013: Reliable probabilities through statistical post-processing of ensemble forecasts. Proceedings of the European Conference on Complex Systems 2012, Springer proceedings on complexity, XVI, p. 347-352. [4] Van Schaeybroeck, B., and S. Vannitsem, 2014: Ensemble post-processing using member-by-member approaches: theoretical aspects, under review.

  3. Cross Modulation of Two Laser Beams at the Individual-Photon Level

    DTIC Science & Technology

    2014-09-12

    medium, such that the photons travel as slow-light polaritons [15,25,26], whose atomic excitation component can block the transmission of another light...through the ensemble, traveling in the medium as slow-light polaritons , a superposition of a photon and a collective atomic excitation to the state...unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 slow-light polariton , the polariton’s atomic component in state jci reduces

  4. Using Amphiphilic Nanostructures to Enable Long-Range Ensemble Coalescence and Surface Rejuvenation in Dropwise Condensation

    DTIC Science & Technology

    2012-01-01

    in high-humidity environments. Nature-inspired superhydrophobic surfaces have been actively explored to enhance heat and mass transfer rates by...challenge with superhydrophobic surfaces, as observed in nature on the lotus leaf21 and on synthetic surfaces,22,23 is that they are often rendered...Dynamics. Rev. Mod. Phys. 1985, 57, 827–863. 2. Kim, S. H. Fabrication of Superhydrophobic Surfaces. J. Adhes. Sci. Technol. 2008, 22, 235–250. 3

  5. Controlling Quantum-dot Light Absorption and Emission by a Surface-plasmon Field

    DTIC Science & Technology

    2014-11-03

    as well as photon conversion by a surface-plasmon- polariton near field is explored for a quantum dot located above a metal surface. In contrast to the...2009). 7. D. Dini, R. Köhler, A. Tredicucci, G. Biasiol, and L. Sorba, “Microcavity polariton splitting of intersubband transitions,” Phys. Rev. Lett...S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett. 105

  6. Boiling point determination using adiabatic Gibbs ensemble Monte Carlo simulations: application to metals described by embedded-atom potentials.

    PubMed

    Gelb, Lev D; Chakraborty, Somendra Nath

    2011-12-14

    The normal boiling points are obtained for a series of metals as described by the "quantum-corrected Sutton Chen" (qSC) potentials [S.-N. Luo, T. J. Ahrens, T. Çağın, A. Strachan, W. A. Goddard III, and D. C. Swift, Phys. Rev. B 68, 134206 (2003)]. Instead of conventional Monte Carlo simulations in an isothermal or expanded ensemble, simulations were done in the constant-NPH adabatic variant of the Gibbs ensemble technique as proposed by Kristóf and Liszi [Chem. Phys. Lett. 261, 620 (1996)]. This simulation technique is shown to be a precise tool for direct calculation of boiling temperatures in high-boiling fluids, with results that are almost completely insensitive to system size or other arbitrary parameters as long as the potential truncation is handled correctly. Results obtained were validated using conventional NVT-Gibbs ensemble Monte Carlo simulations. The qSC predictions for boiling temperatures are found to be reasonably accurate, but substantially underestimate the enthalpies of vaporization in all cases. This appears to be largely due to the systematic overestimation of dimer binding energies by this family of potentials, which leads to an unsatisfactory description of the vapor phase. © 2011 American Institute of Physics

  7. Quantum teleportation between remote atomic-ensemble quantum memories

    PubMed Central

    Bao, Xiao-Hui; Xu, Xiao-Fan; Li, Che-Ming; Yuan, Zhen-Sheng; Lu, Chao-Yang; Pan, Jian-Wei

    2012-01-01

    Quantum teleportation and quantum memory are two crucial elements for large-scale quantum networks. With the help of prior distributed entanglement as a “quantum channel,” quantum teleportation provides an intriguing means to faithfully transfer quantum states among distant locations without actual transmission of the physical carriers [Bennett CH, et al. (1993) Phys Rev Lett 70(13):1895–1899]. Quantum memory enables controlled storage and retrieval of fast-flying photonic quantum bits with stationary matter systems, which is essential to achieve the scalability required for large-scale quantum networks. Combining these two capabilities, here we realize quantum teleportation between two remote atomic-ensemble quantum memory nodes, each composed of ∼108 rubidium atoms and connected by a 150-m optical fiber. The spin wave state of one atomic ensemble is mapped to a propagating photon and subjected to Bell state measurements with another single photon that is entangled with the spin wave state of the other ensemble. Two-photon detection events herald the success of teleportation with an average fidelity of 88(7)%. Besides its fundamental interest as a teleportation between two remote macroscopic objects, our technique may be useful for quantum information transfer between different nodes in quantum networks and distributed quantum computing. PMID:23144222

  8. Towards an Einstein-Podolsky-Rosen paradox between two macroscopic atomic ensembles at room temperature

    NASA Astrophysics Data System (ADS)

    He, Q. Y.; Reid, M. D.

    2013-06-01

    Experiments have reported the entanglement of two spatially separated macroscopic atomic ensembles at room temperature (Krauter et al 2011 Phys. Rev. Lett. 107 080503; Julsgaard et al 2001 Nature 413 400). We show how an Einstein-Podolsky-Rosen (EPR) paradox is realizable with this experiment. Our proposed test involves violation of an inferred Heisenberg uncertainty principle, which is a sufficient condition for an EPR paradox. This is a stronger test of nonlocality than entanglement. Our proposal would enable the first definitive confirmation of quantum EPR paradox correlations between two macroscopic objects at room temperature. This is a necessary intermediate step towards a nonlocal experiment with causal measurement separations. As well as having fundamental significance, the realization of an atomic EPR paradox could provide a resource for novel applications in quantum technology.

  9. Mass density fluctuations in quantum and classical descriptions of liquid water

    NASA Astrophysics Data System (ADS)

    Galib, Mirza; Duignan, Timothy T.; Misteli, Yannick; Baer, Marcel D.; Schenter, Gregory K.; Hutter, Jürg; Mundy, Christopher J.

    2017-06-01

    First principles molecular dynamics simulation protocol is established using revised functional of Perdew-Burke-Ernzerhof (revPBE) in conjunction with Grimme's third generation of dispersion (D3) correction to describe the properties of water at ambient conditions. This study also demonstrates the consistency of the structure of water across both isobaric (NpT) and isothermal (NVT) ensembles. Going beyond the standard structural benchmarks for liquid water, we compute properties that are connected to both local structure and mass density fluctuations that are related to concepts of solvation and hydrophobicity. We directly compare our revPBE results to the Becke-Lee-Yang-Parr (BLYP) plus Grimme dispersion corrections (D2) and both the empirical fixed charged model (SPC/E) and many body interaction potential model (MB-pol) to further our understanding of how the computed properties herein depend on the form of the interaction potential.

  10. Mass density fluctuations in quantum and classical descriptions of liquid water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galib, Mirza; Duignan, Timothy T.; Misteli, Yannick

    First principles molecular dynamics simulation protocol is established using revised functional of Perdew-Burke-Ernzerhof (revPBE) in conjunction with Grimme's third generation of dispersion (D3) correction to describe properties of water at ambient conditions. This study also demonstrates the consistency of the structure of water across both isobaric (NpT) and isothermal (NVT) ensembles. Going beyond the standard structural benchmarks for liquid water, we compute properties that are connected to both local structure and mass density fluctuations that are related to concepts of solvation and hydrophobicity. We directly compare our revPBE results to the Becke-Lee-Yang-Parr (BLYP) plus Grimme dispersion corrections (D2) and bothmore » the empirical fixed charged model (SPC/E) and many body interaction potential model (MB-pol) to further our understanding of how the computed properties herein depend on the form of the interaction potential.« less

  11. Hydrogen Production from Water by Photosynthesis System I for Use as Fuel in Energy Conversion Devices (a.k.a. Understanding Photosystem I as a Biomolecular Reactor for Energy Conversion)

    DTIC Science & Technology

    2014-04-01

    the longevity of this active biofilm was demonstrated, where PSI monolayers were stable and active for at least three hours of illumination...Kerfeld, C. A.; Krogmann, D. W. Photosynthetic Cytochromes c in Cyanobacteria, Algae , and Plants. Annu Rev Plant Phys 1998, 49, 397–425. 3

  12. State-to-state, multi-collision, energy transfer in H-H2 gas ensembles.

    PubMed

    McCaffery, Anthony J; Marsh, Richard J

    2013-12-21

    We use our recently developed computational model of energy flow in gas ensembles to study translation-to-internal energy conversion in an ensemble consisting of H2(0; 0) in a bath of H atoms. This mixture is found in plasmas of industrial importance and also in interstellar clouds. The storage of energy of relative motion as rovibrational energy of H2 represents a potential mechanism for cooling translation. This may have relevance in astrophysical contexts such as the post-recombination epoch of the early universe when hydrogenic species dominated and cooling was a precondition for the formation of structured objects. We find that conversion of translational motion to H2 vibration and rotation is fast and, in our closed system, is complete within around 100 cycles of ensemble collisions. Large amounts of energy become stored as H2 vibration and a tentative mechanism for this unequal energy distribution is suggested. The "structured dis-equilibrium" we observe is found to persist through many collision cycles. In contrast to the rapidity of excitation, the relaxation of H2(6; 10) in H is very slow and not complete after 10(5) collision cycles. The quasi-equilibrium modal temperatures of translation, rotation, and vibration are found to scale linearly with collision energy but at different rates. This may be useful in estimating the partitioning of energy within a given H + H2 ensemble.

  13. Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells.

    PubMed

    Grecco, H E; Lidke, K A; Heintzmann, R; Lidke, D S; Spagnuolo, C; Martinez, O E; Jares-Erijman, E A; Jovin, T M

    2004-11-01

    In this work, we characterized streptavidin-conjugated quantum dots (QDs) manufactured by Quantum Dot Corporation. We present data on: (1) two-photon excitation; (2) fluorescence lifetimes; (3) ensemble and single QD emission anisotropy; (4) QDs as donors for Forster resonance energy transfer (FRET); and (5) spectral conversion of QDs exposed to high-intensity illumination. We also demonstrate the utility of QDs for (1) imaging the binding and uptake of biotinylated transferrin on living cells, and (2) resolving by fluorescence lifetime imaging microscopy (FLIM) signals originating from QDs from those of spatially and spectrally overlapping visible fluorescent proteins (VFPs). (c) 2005 Wiley-Liss, Inc.

  14. Interpolation of property-values between electron numbers is inconsistent with ensemble averaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miranda-Quintana, Ramón Alain; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1; Ayers, Paul W.

    2016-06-28

    In this work we explore the physical foundations of models that study the variation of the ground state energy with respect to the number of electrons (E vs. N models), in terms of general grand-canonical (GC) ensemble formulations. In particular, we focus on E vs. N models that interpolate the energy between states with integer number of electrons. We show that if the interpolation of the energy corresponds to a GC ensemble, it is not differentiable. Conversely, if the interpolation is smooth, then it cannot be formulated as any GC ensemble. This proves that interpolation of electronic properties between integermore » electron numbers is inconsistent with any form of ensemble averaging. This emphasizes the role of derivative discontinuities and the critical role of a subsystem’s surroundings in determining its properties.« less

  15. Nitride Metal-Semiconductor Superlattices for Solid State Thermionic Energy Conversion

    NASA Astrophysics Data System (ADS)

    Wortman, Robert; Schroeder, Jeremy; Burmistrova, Polina; Zebarjadi, Mona; Bian, Zhixi; Shakouri, Ali; Sands, Timothy

    2009-03-01

    A new class of thermoelectric materials based off of superlattices have been proposed that show a potential for enhanced thermoelectric performance^1,2. The increase of thermoelectric figure-of-merit ZT of these materials is due to both the energy filtering effect of the Schottky barriers as well as the reduced thermal conductivity that results from increased interface density. Our work has centered on the metal-semiconductor materials system of HfN-ScN. These are both high temperature materials (Tm> 2500C). They have the same rocksalt crystal structure and similar lattice constants, allowing epitaxial growth. We have grown superlattices of these materials via DC magnetron sputtering. Results from x-ray diffraction, and electrical and thermal tests will be presented. Their potential as thermoelectric energy conversion materials will be discussed. 1 G. D. Mahan et al, Phys. Rev. Lett., 80, 4016 (1998) 2 D. Vashaee et al, Phys. Rev. Lett. 92, 106103 (2004)

  16. Dynamics of weakly inhomogeneous oscillator populations: perturbation theory on top of Watanabe-Strogatz integrability

    NASA Astrophysics Data System (ADS)

    Vlasov, Vladimir; Rosenblum, Michael; Pikovsky, Arkady

    2016-08-01

    As has been shown by Watanabe and Strogatz (WS) (1993 Phys. Rev. Lett. 70 2391), a population of identical phase oscillators, sine-coupled to a common field, is a partially integrable system: for any ensemble size its dynamics reduce to equations for three collective variables. Here we develop a perturbation approach for weakly nonidentical ensembles. We calculate corrections to the WS dynamics for two types of perturbations: those due to a distribution of natural frequencies and of forcing terms, and those due to small white noise. We demonstrate that in both cases, the complex mean field for which the dynamical equations are written is close to the Kuramoto order parameter, up to the leading order in the perturbation. This supports the validity of the dynamical reduction suggested by Ott and Antonsen (2008 Chaos 18 037113) for weakly inhomogeneous populations.

  17. Quenching the XXZ spin chain: quench action approach versus generalized Gibbs ensemble

    NASA Astrophysics Data System (ADS)

    Mestyán, M.; Pozsgay, B.; Takács, G.; Werner, M. A.

    2015-04-01

    Following our previous work (Pozsgay et al 2014 Phys. Rev. Lett. 113 117203) we present here a detailed comparison of the quench action approach and the predictions of the generalized Gibbs ensemble, with the result that while the quench action formalism correctly captures the steady state, the GGE does not give a correct description of local short-distance correlation functions. We extend our studies to include another initial state, the so-called q-dimer state. We present important details of our construction, including new results concerning exact overlaps for the dimer and q-dimer states, and we also give an exact solution of the quench-action-based overlap-TBA for the q-dimer. Furthermore, we extend our computations to include the xx spin correlations besides the zz correlations treated previously, and give a detailed discussion of the underlying reasons for the failure of the GGE, especially in the light of new developments.

  18. Transition-Metal Chalcogenide/Graphene Ensembles for Light-Induced Energy Applications.

    PubMed

    Kagkoura, Antonia; Skaltsas, Theodosis; Tagmatarchis, Nikos

    2017-09-21

    Recently, nanomaterials that harvest solar energy and convert it to other forms of energy are of great interest. In this context, transition metal chalcogenides (TMCs) have recently been in the spotlight due to their optoelectronic properties that render them potential candidates mainly in energy conversion applications. Integration of TMCs onto a strong electron-accepting material, such as graphene, yielding novel TMC/graphene ensembles is of high significance, since photoinduced charge-transfer phenomena, leading to intra-ensemble charge separation, may occur. In this review, we highlight the utility of TMC/graphene ensembles, with a specific focus on latest trends in applications, while their synthetic routes are also discussed. In fact, TMC/graphene ensembles are photocatalytically active and superior as compared to intact TMCs analogues, when examined toward photocatalytic H 2 evolution, dye degradation and redox transformations of organic compounds. Moreover, TMC/graphene ensembles have shown excellent prospect when employed in photovoltaics and biosensing applications. Finally, the future prospects of such materials are outlined. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ensemble forecasting for renewable energy applications - status and current challenges for their generation and verification

    NASA Astrophysics Data System (ADS)

    Pinson, Pierre

    2016-04-01

    The operational management of renewable energy generation in power systems and electricity markets requires forecasts in various forms, e.g., deterministic or probabilistic, continuous or categorical, depending upon the decision process at hand. Besides, such forecasts may also be necessary at various spatial and temporal scales, from high temporal resolutions (in the order of minutes) and very localized for an offshore wind farm, to coarser temporal resolutions (hours) and covering a whole country for day-ahead power scheduling problems. As of today, weather predictions are a common input to forecasting methodologies for renewable energy generation. Since for most decision processes, optimal decisions can only be made if accounting for forecast uncertainties, ensemble predictions and density forecasts are increasingly seen as the product of choice. After discussing some of the basic approaches to obtaining ensemble forecasts of renewable power generation, it will be argued that space-time trajectories of renewable power production may or may not be necessitate post-processing ensemble forecasts for relevant weather variables. Example approaches and test case applications will be covered, e.g., looking at the Horns Rev offshore wind farm in Denmark, or gridded forecasts for the whole continental Europe. Eventually, we will illustrate some of the limitations of current frameworks to forecast verification, which actually make it difficult to fully assess the quality of post-processing approaches to obtain renewable energy predictions.

  20. Meta-heuristic CRPS minimization for the calibration of short-range probabilistic forecasts

    NASA Astrophysics Data System (ADS)

    Mohammadi, Seyedeh Atefeh; Rahmani, Morteza; Azadi, Majid

    2016-08-01

    This paper deals with the probabilistic short-range temperature forecasts over synoptic meteorological stations across Iran using non-homogeneous Gaussian regression (NGR). NGR creates a Gaussian forecast probability density function (PDF) from the ensemble output. The mean of the normal predictive PDF is a bias-corrected weighted average of the ensemble members and its variance is a linear function of the raw ensemble variance. The coefficients for the mean and variance are estimated by minimizing the continuous ranked probability score (CRPS) during a training period. CRPS is a scoring rule for distributional forecasts. In the paper of Gneiting et al. (Mon Weather Rev 133:1098-1118, 2005), Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is used to minimize the CRPS. Since BFGS is a conventional optimization method with its own limitations, we suggest using the particle swarm optimization (PSO), a robust meta-heuristic method, to minimize the CRPS. The ensemble prediction system used in this study consists of nine different configurations of the weather research and forecasting model for 48-h forecasts of temperature during autumn and winter 2011 and 2012. The probabilistic forecasts were evaluated using several common verification scores including Brier score, attribute diagram and rank histogram. Results show that both BFGS and PSO find the optimal solution and show the same evaluation scores, but PSO can do this with a feasible random first guess and much less computational complexity.

  1. On Statistics of Bi-Orthogonal Eigenvectors in Real and Complex Ginibre Ensembles: Combining Partial Schur Decomposition with Supersymmetry

    NASA Astrophysics Data System (ADS)

    Fyodorov, Yan V.

    2018-06-01

    We suggest a method of studying the joint probability density (JPD) of an eigenvalue and the associated `non-orthogonality overlap factor' (also known as the `eigenvalue condition number') of the left and right eigenvectors for non-selfadjoint Gaussian random matrices of size {N× N} . First we derive the general finite N expression for the JPD of a real eigenvalue {λ} and the associated non-orthogonality factor in the real Ginibre ensemble, and then analyze its `bulk' and `edge' scaling limits. The ensuing distribution is maximally heavy-tailed, so that all integer moments beyond normalization are divergent. A similar calculation for a complex eigenvalue z and the associated non-orthogonality factor in the complex Ginibre ensemble is presented as well and yields a distribution with the finite first moment. Its `bulk' scaling limit yields a distribution whose first moment reproduces the well-known result of Chalker and Mehlig (Phys Rev Lett 81(16):3367-3370, 1998), and we provide the `edge' scaling distribution for this case as well. Our method involves evaluating the ensemble average of products and ratios of integer and half-integer powers of characteristic polynomials for Ginibre matrices, which we perform in the framework of a supersymmetry approach. Our paper complements recent studies by Bourgade and Dubach (The distribution of overlaps between eigenvectors of Ginibre matrices, 2018. arXiv:1801.01219).

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Sun, C.P.

    We study the propagation of a probe light in an ensemble of {lambda}-type atoms, utilizing the dynamic symmetry as recently discovered when the atoms are coupled to a classical control field and a quantum probe field [Sun et al., Phys. Rev. Lett. 91, 147903 (2003)]. Under two-photon resonance, we calculate the group velocity of the probe light with collective atomic excitations. Our result gives the dependence of the group velocity on the common one-photon detuning, and can be compared with the recent experiment of E. E. Mikhailov, Y. V. Rostovtsev, and G. R. Welch, e-print quant-ph/0309173.

  3. Nanostructured Composite Materials for High Temperature Thermoelectric Energy Conversion

    DTIC Science & Technology

    2012-08-29

    34 Phys. Rev. B 83, p. 085204, 2011. http://dx.doi.org/10.1103/PhysRevB.83.085204 IF: 3.772 [2] P. Maji, N. J. Takas , D. K. Misra, H...J. Salvador, N. J. Takas , G. Wang, M. R. Shabetai, A. Pant, P. Paudel, C. Uher, K. L. Stokes, and P. F. P. Poudeu, "Thermal and Electronic Charge...dx.doi.Org/10.1016/i.issc.2011.08.036 IF: 2.261 [4] N. Takas , P. Sahoo, D. Misra, H. Zhao, N. Henderson, K. L. Stokes, and P. Poudeu, "Effects of Ir

  4. Entanglement-assisted transformation is asymptotically equivalent to multiple-copy transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan Runyao; Feng Yuan; Ying Mingsheng

    2005-08-15

    We show that two ways of manipulating quantum entanglement - namely, entanglement-assisted local transformation [D. Jonathan and M. B. Plenio, Phys. Rev. Lett. 83, 3566 (1999)] and multiple-copy transformation [S. Bandyopadhyay, V. Roychowdhury, and U. Sen, Phys. Rev. A 65, 052315 (2002)]--are equivalent in the sense that they can asymptotically simulate each other's ability to implement a desired transformation from a given source state to another given target state with the same optimal success probability. As a consequence, this yields a feasible method to evaluate the optimal conversion probability of an entanglement-assisted transformation.

  5. A Converse Approach to NMR Chemical Shifts for Norm-Conserving Pseudopotentials

    NASA Astrophysics Data System (ADS)

    Lopez, Graham; Ceresoli, Davide; Marzari, Nicola; Thonhauser, Timo

    2010-03-01

    Building on the recently developed converse approach for the ab-initio calculation of NMR chemical shifts [1], we present a corresponding framework that is suitable in connection with norm-conserving pseudopotentials. Our approach uses the GIPAW transformation [2] to set up a formalism where the derivative of the orbital magnetization [3] is taken with respect to a microscopic, localized magnetic dipole in the presence of pseudopotentials. The advantages of our method are that it is conceptually simple, the need for a linear-response framework is avoided, and it is applicable to large systems. We present results for calculations of several well-studied systems, including the carbon, hydrogen, fluorine, and phosphorus shifts in various molecules and solids. Our results are in very good agreement with both linear-response calculations and experimental results.[4pt] [1] T. Thonhauser et al., J. Chem. Phys. 131, 101101 (2009).[2] C. J. Pickard and F. Mauri, Phys. Rev. B 63, 245101 (2001).[3] T. Thonhauser et al., Phys. Rev. Lett. 95, 137205 (2005).

  6. Weak values, quantum trajectories, and the cavity-QED experiment on wave-particle correlation

    NASA Astrophysics Data System (ADS)

    Wiseman, H. M.

    2002-03-01

    Weak values as introduced by Aharonov, Albert, and Vaidman (AAV) are ensemble-average values for the results of weak measurements. They are interesting when the ensemble is preselected on a particular initial state and postselected on a particular final measurement result. It is shown that weak values arise naturally in quantum optics, as weak measurements occur whenever an open system is monitored (as by a photodetector). The quantum-trajectory theory is used to derive a generalization of AAV's formula to include (a) mixed initial conditions, (b) nonunitary evolution, (c) a generalized (nonprojective) final measurement, and (d) a non-back-action-evading weak measurement. This theory is applied to the recent cavity-QED experiment demonstrating wave particle duality [G. T. Foster, L. A. Orozco, H. M. Castro-Beltran, and H. J. Carmichael, Phys. Rev. Lett. 85, 3149 (2000)]. It is shown that the ``fractional-order'' correlation function measured in that experiment can be recast as a weak value in a form as simple as that introduced by AAV.

  7. A gain-loss framework based on ensemble flow forecasts to switch the urban drainage-wastewater system management towards energy optimization during dry periods

    NASA Astrophysics Data System (ADS)

    Courdent, Vianney; Grum, Morten; Munk-Nielsen, Thomas; Mikkelsen, Peter S.

    2017-05-01

    Precipitation is the cause of major perturbation to the flow in urban drainage and wastewater systems. Flow forecasts, generated by coupling rainfall predictions with a hydrologic runoff model, can potentially be used to optimize the operation of integrated urban drainage-wastewater systems (IUDWSs) during both wet and dry weather periods. Numerical weather prediction (NWP) models have significantly improved in recent years, having increased their spatial and temporal resolution. Finer resolution NWP are suitable for urban-catchment-scale applications, providing longer lead time than radar extrapolation. However, forecasts are inevitably uncertain, and fine resolution is especially challenging for NWP. This uncertainty is commonly addressed in meteorology with ensemble prediction systems (EPSs). Handling uncertainty is challenging for decision makers and hence tools are necessary to provide insight on ensemble forecast usage and to support the rationality of decisions (i.e. forecasts are uncertain and therefore errors will be made; decision makers need tools to justify their choices, demonstrating that these choices are beneficial in the long run). This study presents an economic framework to support the decision-making process by providing information on when acting on the forecast is beneficial and how to handle the EPS. The relative economic value (REV) approach associates economic values with the potential outcomes and determines the preferential use of the EPS forecast. The envelope curve of the REV diagram combines the results from each probability forecast to provide the highest relative economic value for a given gain-loss ratio. This approach is traditionally used at larger scales to assess mitigation measures for adverse events (i.e. the actions are taken when events are forecast). The specificity of this study is to optimize the energy consumption in IUDWS during low-flow periods by exploiting the electrical smart grid market (i.e. the actions are taken when no events are forecast). Furthermore, the results demonstrate the benefit of NWP neighbourhood post-processing methods to enhance the forecast skill and increase the range of beneficial uses.

  8. Post-recombination early Universe cooling by translation-internal inter-conversion: The role of minor constituents.

    PubMed

    McCaffery, Anthony J

    2015-09-14

    Little is known of the mechanism by which H and H2, the principal constituents of the post-re-combination early Universe, cooled sufficiently to permit cluster formation, nucleosynthesis, and, eventually, the formation of structured objects. Radiative decay primarily cools the internal modes of H2, as Δj = - 2 jumps accompany quadrupolar emission. This, however, would be a self-limiting mechanism. In this work, a translational energy cooling mechanism based on collision-induced, translation-to-internal mode conversion, is extended, following an earlier study [A. J. McCaffery and R. J. Marsh, J. Chem. Phys. 139, 234310 (2013)] of ensembles comprising H2 in a H atom bath gas. Here, the possible influence of minor species, such as HD, on this cooling mechanism is investigated. Results suggest that the influence of HD is small but not insignificant. Conversion is very rapid and an overall translation-to-internal energy conversion efficiency of some 5% could be expected. This finding may be of use in the further development of models of this complex phase of early Universe evolution. An unexpected finding in this study was that H2 + HD ensembles are capable of very rapid translation-to-internal conversion with efficiencies of >40% and relaxation rates that appear to be relatively slow. This may have potential as an energy storage mechanism.

  9. Post-recombination early Universe cooling by translation–internal inter-conversion: The role of minor constituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffery, Anthony J., E-mail: A.J.McCaffery@sussex.ac.uk

    Little is known of the mechanism by which H and H{sub 2}, the principal constituents of the post-re-combination early Universe, cooled sufficiently to permit cluster formation, nucleosynthesis, and, eventually, the formation of structured objects. Radiative decay primarily cools the internal modes of H{sub 2}, as Δj = − 2 jumps accompany quadrupolar emission. This, however, would be a self-limiting mechanism. In this work, a translational energy cooling mechanism based on collision-induced, translation-to-internal mode conversion, is extended, following an earlier study [A. J. McCaffery and R. J. Marsh, J. Chem. Phys. 139, 234310 (2013)] of ensembles comprising H{sub 2} in amore » H atom bath gas. Here, the possible influence of minor species, such as HD, on this cooling mechanism is investigated. Results suggest that the influence of HD is small but not insignificant. Conversion is very rapid and an overall translation-to-internal energy conversion efficiency of some 5% could be expected. This finding may be of use in the further development of models of this complex phase of early Universe evolution. An unexpected finding in this study was that H{sub 2} + HD ensembles are capable of very rapid translation-to-internal conversion with efficiencies of >40% and relaxation rates that appear to be relatively slow. This may have potential as an energy storage mechanism.« less

  10. Autonomous propulsion of carbon nanotubes powered by a multienzyme ensemble.

    PubMed

    Pantarotto, Davide; Browne, Wesley R; Feringa, Ben L

    2008-04-07

    Covalent attachment of the enzymes glucose oxidase and catalase to carbon nanotubes enables the tandem catalytic conversion of glucose and H(2)O(2) formed to power autonomous movement of the nanotubes.

  11. Improving the accuracy of protein stability predictions with multistate design using a variety of backbone ensembles.

    PubMed

    Davey, James A; Chica, Roberto A

    2014-05-01

    Multistate computational protein design (MSD) with backbone ensembles approximating conformational flexibility can predict higher quality sequences than single-state design with a single fixed backbone. However, it is currently unclear what characteristics of backbone ensembles are required for the accurate prediction of protein sequence stability. In this study, we aimed to improve the accuracy of protein stability predictions made with MSD by using a variety of backbone ensembles to recapitulate the experimentally measured stability of 85 Streptococcal protein G domain β1 sequences. Ensembles tested here include an NMR ensemble as well as those generated by molecular dynamics (MD) simulations, by Backrub motions, and by PertMin, a new method that we developed involving the perturbation of atomic coordinates followed by energy minimization. MSD with the PertMin ensembles resulted in the most accurate predictions by providing the highest number of stable sequences in the top 25, and by correctly binning sequences as stable or unstable with the highest success rate (≈90%) and the lowest number of false positives. The performance of PertMin ensembles is due to the fact that their members closely resemble the input crystal structure and have low potential energy. Conversely, the NMR ensemble as well as those generated by MD simulations at 500 or 1000 K reduced prediction accuracy due to their low structural similarity to the crystal structure. The ensembles tested herein thus represent on- or off-target models of the native protein fold and could be used in future studies to design for desired properties other than stability. Copyright © 2013 Wiley Periodicals, Inc.

  12. On the incidence of meteorological and hydrological processors: Effect of resolution, sharpness and reliability of hydrological ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Abaza, Mabrouk; Anctil, François; Fortin, Vincent; Perreault, Luc

    2017-12-01

    Meteorological and hydrological ensemble prediction systems are imperfect. Their outputs could often be improved through the use of a statistical processor, opening up the question of the necessity of using both processors (meteorological and hydrological), only one of them, or none. This experiment compares the predictive distributions from four hydrological ensemble prediction systems (H-EPS) utilising the Ensemble Kalman filter (EnKF) probabilistic sequential data assimilation scheme. They differ in the inclusion or not of the Distribution Based Scaling (DBS) method for post-processing meteorological forecasts and the ensemble Bayesian Model Averaging (ensemble BMA) method for hydrological forecast post-processing. The experiment is implemented on three large watersheds and relies on the combination of two meteorological reforecast products: the 4-member Canadian reforecasts from the Canadian Centre for Meteorological and Environmental Prediction (CCMEP) and the 10-member American reforecasts from the National Oceanic and Atmospheric Administration (NOAA), leading to 14 members at each time step. Results show that all four tested H-EPS lead to resolution and sharpness values that are quite similar, with an advantage to DBS + EnKF. The ensemble BMA is unable to compensate for any bias left in the precipitation ensemble forecasts. On the other hand, it succeeds in calibrating ensemble members that are otherwise under-dispersed. If reliability is preferred over resolution and sharpness, DBS + EnKF + ensemble BMA performs best, making use of both processors in the H-EPS system. Conversely, for enhanced resolution and sharpness, DBS is the preferred method.

  13. Deleted in breast cancer 1 (DBC1) protein regulates hepatic gluconeogenesis.

    PubMed

    Nin, Veronica; Chini, Claudia C S; Escande, Carlos; Capellini, Verena; Chini, Eduardo N

    2014-02-28

    Liver gluconeogenesis is essential to provide energy to glycolytic tissues during fasting periods. However, aberrant up-regulation of this metabolic pathway contributes to the progression of glucose intolerance in individuals with diabetes. Phosphoenolpyruvate carboxykinase (PEPCK) expression plays a critical role in the modulation of gluconeogenesis. Several pathways contribute to the regulation of PEPCK, including the nuclear receptor Rev-erbα and the histone deacetylase SIRT1. Deleted in breast cancer 1 (DBC1) is a nuclear protein that binds to and regulates both Rev-erbα and SIRT1 and, therefore, is a candidate to participate in the regulation of PEPCK. In this work, we provide evidence that DBC1 regulates glucose metabolism and the expression of PEPCK. We show that DBC1 levels decrease early in the fasting state. Also, DBC1 KO mice display higher gluconeogenesis in a normal and a high-fat diet. DBC1 absence leads to an increase in PEPCK mRNA and protein expression. Conversely, overexpression of DBC1 results in a decrease in PEPCK mRNA and protein levels. DBC1 regulates the levels of Rev-erbα, and manipulation of Rev-erbα activity or levels prevents the effect of DBC1 on PEPCK. In addition, Rev-erbα levels decrease in the first hours of fasting. Finally, knockdown of the deacetylase SIRT1 eliminates the effect of DBC1 knockdown on Rev-erbα levels and PEPCK expression, suggesting that the mechanism of PEPCK regulation is, at least in part, dependent on the activity of this enzyme. Our results point to DBC1 as a novel regulator of gluconeogenesis.

  14. Stirling Engine Gets Revisited

    ERIC Educational Resources Information Center

    Thompson, Frank

    2010-01-01

    One of the basic truths regarding energy conversion is that no thermodynamic cycle can be devised that is more efficient than a Carnot cycle operating between the same temperature limits. The efficiency of the Stirling cycle (patented by Rev. Robert Stirling in 1816) can approach that of the Carnot cycle and yet has not had the commercial success…

  15. Using infinite-volume, continuum QED and lattice QCD for the hadronic light-by-light contribution to the muon anomalous magnetic moment

    NASA Astrophysics Data System (ADS)

    Blum, Thomas; Christ, Norman; Hayakawa, Masashi; Izubuchi, Taku; Jin, Luchang; Jung, Chulwoo; Lehner, Christoph

    2017-08-01

    In our previous work, Blum et al. [Phys. Rev. Lett. 118, 022005 (2017), 10.1103/PhysRevLett.118.022005], the connected and leading disconnected hadronic light-by-light contributions to the muon anomalous magnetic moment (g -2 ) have been computed using lattice QCD ensembles corresponding to physical pion mass generated by the RBC/UKQCD Collaboration. However, the calculation is expected to suffer from a significant finite-volume error that scales like 1 /L2 where L is the spatial size of the lattice. In this paper, we demonstrate that this problem is cured by treating the muon and photons in infinite-volume, continuum QED, resulting in a weighting function that is precomputed and saved with affordable cost and sufficient accuracy. We present numerical results for the case when the quark loop is replaced by a muon loop, finding the expected exponential approach to the infinite volume limit and consistency with the known analytic result. We have implemented an improved weighting function which reduces both discretization and finite-volume effects arising from the hadronic part of the amplitude.

  16. Progress towards practical device-independent quantum key distribution with spontaneous parametric down-conversion sources, on-off photodetectors, and entanglement swapping

    NASA Astrophysics Data System (ADS)

    Seshadreesan, Kaushik P.; Takeoka, Masahiro; Sasaki, Masahide

    2016-04-01

    Device-independent quantum key distribution (DIQKD) guarantees unconditional security of a secret key without making assumptions about the internal workings of the devices used for distribution. It does so using the loophole-free violation of a Bell's inequality. The primary challenge in realizing DIQKD in practice is the detection loophole problem that is inherent to photonic tests of Bell' s inequalities over lossy channels. We revisit the proposal of Curty and Moroder [Phys. Rev. A 84, 010304(R) (2011), 10.1103/PhysRevA.84.010304] to use a linear optics-based entanglement-swapping relay (ESR) to counter this problem. We consider realistic models for the entanglement sources and photodetectors: more precisely, (a) polarization-entangled states based on pulsed spontaneous parametric down-conversion sources with infinitely higher-order multiphoton components and multimode spectral structure, and (b) on-off photodetectors with nonunit efficiencies and nonzero dark-count probabilities. We show that the ESR-based scheme is robust against the above imperfections and enables positive key rates at distances much larger than what is possible otherwise.

  17. Mode conversion between Alfvén wave eigenmodes in axially inhomogeneous two-ion-species plasmas

    NASA Astrophysics Data System (ADS)

    Roberts, D. R.; Hershkowitz, N.; Tataronis, J. A.

    1990-04-01

    The uniform cylindrical plasma model of Litwin and Hershkowitz [Phys. Fluids 30, 1323 (1987)] is shown to predict mode conversion between the lowest radial order m=+1 fast magnetosonic surface and slow ion-cyclotron global eigenmodes of the Alfvén wave at the light-ion species Alfvén resonance of a cold two-ion plasma. A hydrogen (h)-deuterium (d) plasma is examined in experiments. The fast mode is efficiently excited by a rotating field antenna array at ω˜Ωh in the central cell of the Phaedrus-B tandem mirror [Phys. Rev. Lett. 51, 1955(1983)]. Radially scanned magnetic probes observe the propagating eigenmode wave fields within a shallow central cell magnetic gradient in which the conversion zone is axially localized according to nd/nh. A low radial-order slow ion-cyclotron mode, observed in the vicinity of the conversion zone, gives evidence for the predicted mode conversion.

  18. Assessing the impact of land use change on hydrology by ensemble modelling (LUCHEM) II: Ensemble combinations and predictions

    USGS Publications Warehouse

    Viney, N.R.; Bormann, H.; Breuer, L.; Bronstert, A.; Croke, B.F.W.; Frede, H.; Graff, T.; Hubrechts, L.; Huisman, J.A.; Jakeman, A.J.; Kite, G.W.; Lanini, J.; Leavesley, G.; Lettenmaier, D.P.; Lindstrom, G.; Seibert, J.; Sivapalan, M.; Willems, P.

    2009-01-01

    This paper reports on a project to compare predictions from a range of catchment models applied to a mesoscale river basin in central Germany and to assess various ensemble predictions of catchment streamflow. The models encompass a large range in inherent complexity and input requirements. In approximate order of decreasing complexity, they are DHSVM, MIKE-SHE, TOPLATS, WASIM-ETH, SWAT, PRMS, SLURP, HBV, LASCAM and IHACRES. The models are calibrated twice using different sets of input data. The two predictions from each model are then combined by simple averaging to produce a single-model ensemble. The 10 resulting single-model ensembles are combined in various ways to produce multi-model ensemble predictions. Both the single-model ensembles and the multi-model ensembles are shown to give predictions that are generally superior to those of their respective constituent models, both during a 7-year calibration period and a 9-year validation period. This occurs despite a considerable disparity in performance of the individual models. Even the weakest of models is shown to contribute useful information to the ensembles they are part of. The best model combination methods are a trimmed mean (constructed using the central four or six predictions each day) and a weighted mean ensemble (with weights calculated from calibration performance) that places relatively large weights on the better performing models. Conditional ensembles, in which separate model weights are used in different system states (e.g. summer and winter, high and low flows) generally yield little improvement over the weighted mean ensemble. However a conditional ensemble that discriminates between rising and receding flows shows moderate improvement. An analysis of ensemble predictions shows that the best ensembles are not necessarily those containing the best individual models. Conversely, it appears that some models that predict well individually do not necessarily combine well with other models in multi-model ensembles. The reasons behind these observations may relate to the effects of the weighting schemes, non-stationarity of the climate series and possible cross-correlations between models. Crown Copyright ?? 2008.

  19. Quantum turbulence and correlations in Bose-Einstein condensate collisions

    NASA Astrophysics Data System (ADS)

    Norrie, A. A.; Ballagh, R. J.; Gardiner, C. W.

    2006-04-01

    We investigate numerically simulated collisions between experimentally realistic Bose-Einstein condensate wave packets, within a regime where highly populated scattering haloes are formed. The theoretical basis for this work is the truncated Wigner method, for which we present a detailed derivation, paying particular attention to its validity regime for colliding condensates. This paper is an extension of our previous Letter [A. A. Norrie, R. J. Ballagh, and C. W. Gardiner, Phys. Rev. Lett. 94, 040401 (2005)], and we investigate both single-trajectory solutions, which reveal the presence of quantum turbulence in the scattering halo, and ensembles of trajectories, which we use to calculate quantum-mechanical correlation functions of the field.

  20. Protective measurement of the wave function of a single squeezed harmonic-oscillator state

    NASA Astrophysics Data System (ADS)

    Alter, Orly; Yamamoto, Yoshihisa

    1996-05-01

    A scheme for the "protective measurement"

    [Phys. Rev. A 47, 4616 (1993)]
    of the wave function of a squeezed harmonic-oscillator state is described. This protective measurement is shown to be equivalent to a measurement of an ensemble of states. The protective measurement, therefore, allows for a definition of the quantum wave function on a single system. Yet, this equivalency also suggests that both measurement schemes account for the epistemological meaning of the wave function only. The protective measurement requires a full a priori knowledge of the measured state. The intermediate cases, in which only partial a priori information is given, are also discussed.

  1. Endo- vs. exogenous shocks and relaxation rates in book and music “sales”

    NASA Astrophysics Data System (ADS)

    Lambiotte, R.; Ausloos, M.

    2006-04-01

    In this paper, we analyse the response of music and book sales to an external field and a buyer herding. We distinguish endogenous and exogenous shocks. We focus on some case studies, whose data have been collected from ranking on amazon.com. We show that an ensemble of equivalent systems quantitatively respond in a same way to a similar “external shock”, indicating roads to universality features. In contrast to Sornette et al. [Phys. Rev. Lett. 93 (2004) 228701] who seemed to find power-law behaviours, in particular at long times, a law interpreted in terms of an epidemic activity, we observe that the relaxation process can be as well seen as an exponential one that saturates toward an asymptotic state, itself different from the pre-shock state. By studying an ensemble of 111 shocks, on books or records, we show that exogenous and endogenous shocks are discriminated by their short-time behaviour: the relaxation time seems to be twice shorter in endogenous shocks than in exogenous ones. We interpret the finding through a simple thermodynamic model with a dissipative force.

  2. Selective Coupling Enhances Harmonic Generation of Whispering-Gallery Modes

    NASA Astrophysics Data System (ADS)

    Trainor, Luke S.; Sedlmeir, Florian; Peuntinger, Christian; Schwefel, Harald G. L.

    2018-02-01

    We demonstrate second-harmonic generation (SHG) in an x -cut congruent lithium niobate (LN) whispering-gallery mode (WGM) resonator. First, we show theoretically that independent control of the coupling of the pump and signal modes is optimal for high conversion rates. A coupling scheme based on our earlier work [F. Sedlmeir et al., Phys. Rev. Applied 7, 024029 (2017), 10.1103/PhysRevApplied.7.024029] is then implemented experimentally to verify this improvement. Thereby, we are able to improve on the efficiency of SHG by more than an order of magnitude by selectively outcoupling using a LN prism, utilizing the birefringence of it and the resonator in kind. This method is also applicable to other nonlinear processes in WGM resonators.

  3. Genetic Feedback Regulation of Frontal Cortical Neuronal Ensembles Through Activity-Dependent Arc Expression and Dopaminergic Input.

    PubMed

    Mastwal, Surjeet; Cao, Vania; Wang, Kuan Hong

    2016-01-01

    Mental functions involve coordinated activities of specific neuronal ensembles that are embedded in complex brain circuits. Aberrant neuronal ensemble dynamics is thought to form the neurobiological basis of mental disorders. A major challenge in mental health research is to identify these cellular ensembles and determine what molecular mechanisms constrain their emergence and consolidation during development and learning. Here, we provide a perspective based on recent studies that use activity-dependent gene Arc/Arg3.1 as a cellular marker to identify neuronal ensembles and a molecular probe to modulate circuit functions. These studies have demonstrated that the transcription of Arc is activated in selective groups of frontal cortical neurons in response to specific behavioral tasks. Arc expression regulates the persistent firing of individual neurons and predicts the consolidation of neuronal ensembles during repeated learning. Therefore, the Arc pathway represents a prototypical example of activity-dependent genetic feedback regulation of neuronal ensembles. The activation of this pathway in the frontal cortex starts during early postnatal development and requires dopaminergic (DA) input. Conversely, genetic disruption of Arc leads to a hypoactive mesofrontal dopamine circuit and its related cognitive deficit. This mutual interaction suggests an auto-regulatory mechanism to amplify the impact of neuromodulators and activity-regulated genes during postnatal development. Such a mechanism may contribute to the association of mutations in dopamine and Arc pathways with neurodevelopmental psychiatric disorders. As the mesofrontal dopamine circuit shows extensive activity-dependent developmental plasticity, activity-guided modulation of DA projections or Arc ensembles during development may help to repair circuit deficits related to neuropsychiatric disorders.

  4. Improving Weather Forecasts Through Reduced Precision Data Assimilation

    NASA Astrophysics Data System (ADS)

    Hatfield, Samuel; Düben, Peter; Palmer, Tim

    2017-04-01

    We present a new approach for improving the efficiency of data assimilation, by trading numerical precision for computational speed. Future supercomputers will allow a greater choice of precision, so that models can use a level of precision that is commensurate with the model uncertainty. Previous studies have already indicated that the quality of climate and weather forecasts is not significantly degraded when using a precision less than double precision [1,2], but so far these studies have not considered data assimilation. Data assimilation is inherently uncertain due to the use of relatively long assimilation windows, noisy observations and imperfect models. Thus, the larger rounding errors incurred from reducing precision may be within the tolerance of the system. Lower precision arithmetic is cheaper, and so by reducing precision in ensemble data assimilation, we can redistribute computational resources towards, for example, a larger ensemble size. Because larger ensembles provide a better estimate of the underlying distribution and are less reliant on covariance inflation and localisation, lowering precision could actually allow us to improve the accuracy of weather forecasts. We will present results on how lowering numerical precision affects the performance of an ensemble data assimilation system, consisting of the Lorenz '96 toy atmospheric model and the ensemble square root filter. We run the system at half precision (using an emulation tool), and compare the results with simulations at single and double precision. We estimate that half precision assimilation with a larger ensemble can reduce assimilation error by 30%, with respect to double precision assimilation with a smaller ensemble, for no extra computational cost. This results in around half a day extra of skillful weather forecasts, if the error-doubling characteristics of the Lorenz '96 model are mapped to those of the real atmosphere. Additionally, we investigate the sensitivity of these results to observational error and assimilation window length. Half precision hardware will become available very shortly, with the introduction of Nvidia's Pascal GPU architecture and the Intel Knights Mill coprocessor. We hope that the results presented here will encourage the uptake of this hardware. References [1] Peter D. Düben and T. N. Palmer, 2014: Benchmark Tests for Numerical Weather Forecasts on Inexact Hardware, Mon. Weather Rev., 142, 3809-3829 [2] Peter D. Düben, Hugh McNamara and T. N. Palmer, 2014: The use of imprecise processing to improve accuracy in weather & climate prediction, J. Comput. Phys., 271, 2-18

  5. Amplified Sensitivity of Nitrogen-Vacancy Spins in Nanodiamonds Using All-Optical Charge Readout.

    PubMed

    Hopper, David A; Grote, Richard R; Parks, Samuel M; Bassett, Lee C

    2018-04-23

    Nanodiamonds containing nitrogen-vacancy (NV) centers offer a versatile platform for sensing applications spanning from nanomagnetism to in vivo monitoring of cellular processes. In many cases, however, weak optical signals and poor contrast demand long acquisition times that prevent the measurement of environmental dynamics. Here, we demonstrate the ability to perform fast, high-contrast optical measurements of charge distributions in ensembles of NV centers in nanodiamonds and use the technique to improve the spin-readout signal-to-noise ratio through spin-to-charge conversion. A study of 38 nanodiamonds with sizes ranging between 20 and 70 nm, each hosting a small ensemble of NV centers, uncovers complex, multiple time scale dynamics due to radiative and nonradiative ionization and recombination processes. Nonetheless, the NV-containing nanodiamonds universally exhibit charge-dependent photoluminescence contrasts and the potential for enhanced spin readout using spin-to-charge conversion. We use the technique to speed up a T 1 relaxometry measurement by a factor of 5.

  6. Mode conversion between Alfven wave eigenmodes in axially inhomogeneous two-ion-species plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, D.R.; Hershkowitz, N.; Tataronis, J.A.

    The uniform cylindrical plasma model of Litwin and Hershkowitz (Phys. Fluids {bold 30}, 1323 (1987)) is shown to predict mode conversion between the lowest radial order {ital m}=+1 fast magnetosonic surface and slow ion-cyclotron global eigenmodes of the Alfven wave at the light-ion species Alfven resonance of a cold two-ion plasma. A hydrogen ({ital h})--deuterium ({ital d}) plasma is examined in experiments. The fast mode is efficiently excited by a rotating field antenna array at {omega}{similar to}{Omega}{sub {ital h}} in the central cell of the Phaedrus-B tandem mirror (Phys. Rev. Lett. {bold 51}, 1955(1983)). Radially scanned magnetic probes observe themore » propagating eigenmode wave fields within a shallow central cell magnetic gradient in which the conversion zone is axially localized according to {ital n}{sub {ital d}}/{ital n}{sub {ital h}}. A low radial-order slow ion-cyclotron mode, observed in the vicinity of the conversion zone, gives evidence for the predicted mode conversion.« less

  7. Many-body calculations of low energy eigenstates in magnetic and periodic systems with self healing diffusion Monte Carlo: steps beyond the fixed-phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reboredo, Fernando A.

    The self-healing diffusion Monte Carlo algorithm (SHDMC) [Reboredo, Hood and Kent, Phys. Rev. B {\\bf 79}, 195117 (2009), Reboredo, {\\it ibid.} {\\bf 80}, 125110 (2009)] is extended to study the ground and excited states of magnetic and periodic systems. A recursive optimization algorithm is derived from the time evolution of the mixed probability density. The mixed probability density is given by an ensemble of electronic configurations (walkers) with complex weight. This complex weigh allows the amplitude of the fix-node wave function to move away from the trial wave function phase. This novel approach is both a generalization of SHDMC andmore » the fixed-phase approximation [Ortiz, Ceperley and Martin Phys Rev. Lett. {\\bf 71}, 2777 (1993)]. When used recursively it improves simultaneously the node and phase. The algorithm is demonstrated to converge to the nearly exact solutions of model systems with periodic boundary conditions or applied magnetic fields. The method is also applied to obtain low energy excitations with magnetic field or periodic boundary conditions. The potential applications of this new method to study periodic, magnetic, and complex Hamiltonians are discussed.« less

  8. A New Approach to Monte Carlo Simulations in Statistical Physics

    NASA Astrophysics Data System (ADS)

    Landau, David P.

    2002-08-01

    Monte Carlo simulations [1] have become a powerful tool for the study of diverse problems in statistical/condensed matter physics. Standard methods sample the probability distribution for the states of the system, most often in the canonical ensemble, and over the past several decades enormous improvements have been made in performance. Nonetheless, difficulties arise near phase transitions-due to critical slowing down near 2nd order transitions and to metastability near 1st order transitions, and these complications limit the applicability of the method. We shall describe a new Monte Carlo approach [2] that uses a random walk in energy space to determine the density of states directly. Once the density of states is known, all thermodynamic properties can be calculated. This approach can be extended to multi-dimensional parameter spaces and should be effective for systems with complex energy landscapes, e.g., spin glasses, protein folding models, etc. Generalizations should produce a broadly applicable optimization tool. 1. A Guide to Monte Carlo Simulations in Statistical Physics, D. P. Landau and K. Binder (Cambridge U. Press, Cambridge, 2000). 2. Fugao Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001); Phys. Rev. E64, 056101-1 (2001).

  9. Two-sided estimates of minimum-error distinguishability of mixed quantum states via generalized Holevo-Curlander bounds

    NASA Astrophysics Data System (ADS)

    Tyson, Jon

    2009-03-01

    We prove a concise factor-of-2 estimate for the failure rate of optimally distinguishing an arbitrary ensemble of mixed quantum states, generalizing work of Holevo [Theor. Probab. Appl. 23, 411 (1978)] and Curlander [Ph.D. Thesis, MIT, 1979]. A modification to the minimal principle of Cocha and Poor [Proceedings of the 6th International Conference on Quantum Communication, Measurement, and Computing (Rinton, Princeton, NJ, 2003)] is used to derive a suboptimal measurement which has an error rate within a factor of 2 of the optimal by construction. This measurement is quadratically weighted and has appeared as the first iterate of a sequence of measurements proposed by Ježek et al. [Phys. Rev. A 65, 060301 (2002)]. Unlike the so-called pretty good measurement, it coincides with Holevo's asymptotically optimal measurement in the case of nonequiprobable pure states. A quadratically weighted version of the measurement bound by Barnum and Knill [J. Math. Phys. 43, 2097 (2002)] is proven. Bounds on the distinguishability of syndromes in the sense of Schumacher and Westmoreland [Phys. Rev. A 56, 131 (1997)] appear as a corollary. An appendix relates our bounds to the trace-Jensen inequality.

  10. UNICON: A Powerful and Easy-to-Use Compound Library Converter.

    PubMed

    Sommer, Kai; Friedrich, Nils-Ole; Bietz, Stefan; Hilbig, Matthias; Inhester, Therese; Rarey, Matthias

    2016-06-27

    The accurate handling of different chemical file formats and the consistent conversion between them play important roles for calculations in complex cheminformatics workflows. Working with different cheminformatic tools often makes the conversion between file formats a mandatory step. Such a conversion might become a difficult task in cases where the information content substantially differs. This paper describes UNICON, an easy-to-use software tool for this task. The functionality of UNICON ranges from file conversion between standard formats SDF, MOL2, SMILES, PDB, and PDBx/mmCIF via the generation of 2D structure coordinates and 3D structures to the enumeration of tautomeric forms, protonation states, and conformer ensembles. For this purpose, UNICON bundles the key elements of the previously described NAOMI library in a single, easy-to-use command line tool.

  11. NREL Fuels and Engines R&D Revs Up Vehicle Efficiency, Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    NREL bridges fuels and engines R&D to maximize vehicle efficiency and performance. The lab’s fuels and engines research covers the full spectrum of innovation—from fuel chemistry, conversion, and combustion to the evaluation of how fuels interact with engine and vehicle design. This innovative approach has the potential to positively impact our economy, national energy security, and air quality.

  12. The Jarzynski identity derived from general Hamiltonian or non-Hamiltonian dynamics reproducing NVT or NPT ensembles

    NASA Astrophysics Data System (ADS)

    Cuendet, Michel A.

    2006-10-01

    The Jarzynski identity (JI) relates nonequilibrium work averages to thermodynamic free energy differences. It was shown in a recent contribution [M. A. Cuendet, Phys. Rev. Lett. 96, 120602 (2006)] that the JI can, in particular, be derived directly from the Nosé-Hoover thermostated dynamics. This statistical mechanical derivation is particularly relevant in the framework of molecular dynamics simulation, because it is based solely on the equations of motion considered and is free of any additional assumptions on system size or bath coupling. Here, this result is generalized to a variety of dynamics, along two directions. On the one hand, specific improved thermostating schemes used in practical applications are treated. These include Nosé-Hoover chains, higher moment thermostats, as well as an isothermal-isobaric scheme yielding the JI in the NPT ensemble. On the other hand, the theoretical generality of the new derivation is explored. Generic dynamics with arbitrary coupling terms and an arbitrary number of thermostating variables, both non-Hamiltonian and Hamiltonian, are shown to imply the JI. In particular, a nonautonomous formulation of the generalized Nosé-Poincaré thermostat is proposed. Finally, general conditions required for the JI derivation are briefly discussed.

  13. Monte Carlo simulations for the free energies of C60 and C70 fullerene crystals by acceptance ratio method and expanded ensemble method

    NASA Astrophysics Data System (ADS)

    Kim, Minkyu; Chang, Jaeeon; Sandler, Stanley I.

    2014-02-01

    Accurate values of the free energies of C60 and C70 fullerene crystals are obtained using expanded ensemble method and acceptance ratio method combined with the Einstein-molecule approach. Both simulation methods, when tested for Lennard-Jones crystals, give accurate results of the free energy differing from each other in the fifth significant digit. The solid-solid phase transition temperature of C60 crystal is determined from free energy profiles, and found to be 260 K, which is in good agreement with experiment. For C70 crystal, using the potential model of Sprik et al. [Phys. Rev. Lett. 69, 1660 (1992)], low-temperature solid-solid phase transition temperature is found to be 160 K determined from the free energy profiles. Whereas this is somewhat lower than the experimental value, it is in agreement with conventional molecular simulations, which validates the methodological consistency of the present simulation method. From the calculations of the free energies of C60 and C70 crystals, we note the significance of symmetry number for crystal phase needed to properly account for the indistinguishability of orientationally disordered states.

  14. Exploring the propagation of relativistic quantum wavepackets in the trajectory-based formulation

    NASA Astrophysics Data System (ADS)

    Tsai, Hung-Ming; Poirier, Bill

    2016-03-01

    In the context of nonrelativistic quantum mechanics, Gaussian wavepacket solutions of the time-dependent Schrödinger equation provide useful physical insight. This is not the case for relativistic quantum mechanics, however, for which both the Klein-Gordon and Dirac wave equations result in strange and counterintuitive wavepacket behaviors, even for free-particle Gaussians. These behaviors include zitterbewegung and other interference effects. As a potential remedy, this paper explores a new trajectory-based formulation of quantum mechanics, in which the wavefunction plays no role [Phys. Rev. X, 4, 040002 (2014)]. Quantum states are represented as ensembles of trajectories, whose mutual interaction is the source of all quantum effects observed in nature—suggesting a “many interacting worlds” interpretation. It is shown that the relativistic generalization of the trajectory-based formulation results in well-behaved free-particle Gaussian wavepacket solutions. In particular, probability density is positive and well-localized everywhere, and its spatial integral is conserved over time—in any inertial frame. Finally, the ensemble-averaged wavepacket motion is along a straight line path through spacetime. In this manner, the pathologies of the wave-based relativistic quantum theory, as applied to wavepacket propagation, are avoided.

  15. Dynamics of drive systems for wind energy conversion

    NASA Technical Reports Server (NTRS)

    Martinez-Sanchez, M.

    1978-01-01

    Calculations are performed to determine the dynamic effects of mechanical power transmission from the nacelle of a horizontal axis wind machine to the ground or to an intermediate level. It is found that resonances are likely at 2 or 4/REV, but they occur at low power only, and seem easily correctable. Large reductions are found in the harmonic torque inputs to the generator at powers near rated.

  16. Genomic Comparison of Escherichia coli O104:H4 Isolates from 2009 and 2011 Reveals Plasmid, and Prophage Heterogeneity, Including Shiga Toxin Encoding Phage stx2

    DTIC Science & Technology

    2012-11-01

    306. 70. Smith DL, Rooks DJ, Fogg PC, Darby AC, Thomson NR, et al. (2012) Comparative genomics of Shiga toxin encoding bacteriophages. BMC Genomics 13...genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68: 560–602. 77. Smith DL, Wareing BM, Fogg PCM, Riley LM, Spencer M, et al

  17. Direct Energy Conversion Literature Abstracts

    DTIC Science & Technology

    1962-12-01

    1961. are reviewed. Various types of solar power systems are discussed and compar- " Methods are discussed for providing ed with respect to weight...electron gas to and relate to thermoelectric methods ; convert heat to electrical energy with no thermionic, photovoltaic and electro- moving mechanical...Europ.Mach.Rev. 11:20-25,1961. appears most practical source. Direct methods of generating electrical 2853 energy without the use of fossil fuels are Power

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufman, Allan N.; Tracy, Eugene R.; Brizard, Alain J.

    The process of resonant wave conversion (often called linear mode conversion) has traditionally been analyzed with a spatially one-dimensional slab model, for which the rays propagate in a two-dimensional phase space. However, it has recently been shown [E. R. Tracy and A. N. Kaufman, Phys. Rev. Lett. 91, 130402 (2003)] that multidimensional rays have a helical structure for conversion in two or more spatial dimensions (if their dispersion matrix is generic). In that case, a one-dimensional model is inadequate; a correct analysis requires two spatial dimensions and, thus, four-dimensional phase space. A cold-plasma model is introduced in this paper whichmore » exhibits ray helicity in conversion regions where the density and magnetic field gradients are significantly nonparallel. For illustration, such regions are identified in a model of the poloidal plane of a deuterium-tritium tokamak plasma. In each conversion region, characterized by a six-sector topology, rays in the sector for incident and reflected magnetosonic waves exhibit significant helicity. A detailed analytic and numerical study of helical rays in this sector is developed for a 'symmetric-wedge' model.« less

  19. Progress towards a loophole-free test of nonlocality

    NASA Astrophysics Data System (ADS)

    McCusker, Kevin; Christensen, Bradley; Kwiat, Paul; Altepeter, Joseph

    2012-02-01

    We report on our progress towards a loophole-free test of nonlocality using spontaneous parametric down-conversion (SPDC). While the timing loophole can be easily closed in such a system by moving the detectors far apart [1], closing the detector loophole is significantly more difficult. In the standard Bell entangled states with the maximal violation of the CHSH inequality [2], an overall efficiency of 83% is required. This limit can be lowered to 67% by using non-maximally entangled states (although sensitivity to noise is greatly increased) [3]. We are carefully engineering our source to achieve maximal heralding efficiency, by optimizing both the spatial and spectral filtering, while keeping noise low using high-extinction-ratio polarizing beamsplitters. Combined with high-efficiency detectors, either optimized visible-light photon counters [4] or transition-edge sensors [5], closure of the detection loophole is within reach. [4pt] [1] G. Weihs et al., Phys. Rev. Lett. 81, 5039 (1998).[2] J. F. Clauser et al., Phys. Rev. Lett. 23, 880 (1969).[3] P.H. Eberhard, Phys. Rev. A 47, R747 (1993).[4] S. Takeuchi et al., Appl. Phys. Lett. 74, 1063 (1999).[5] A. E. Lita, A. J. Miller, and S. Nam, Opt. Exp. 16, 3032 (2008).

  20. Gold nanoclusters-Cu(2+) ensemble-based fluorescence turn-on and real-time assay for acetylcholinesterase activity and inhibitor screening.

    PubMed

    Sun, Jian; Yang, Xiurong

    2015-12-15

    Based on the specific binding of Cu(2+) ions to the 11-mercaptoundecanoic acid (11-MUA)-protected AuNCs with intense orange-red emission, we have proposed and constructed a novel fluorescent nanomaterials-metal ions ensemble at a nonfluorescence off-state. Subsequently, an AuNCs@11-MUA-Cu(2+) ensemble-based fluorescent chemosensor, which is amenable to convenient, sensitive, selective, turn-on and real-time assay of acetylcholinesterase (AChE), could be developed by using acetylthiocholine (ATCh) as the substrate. Herein, the sensing ensemble solution exhibits a marvelous fluorescent enhancement in the presence of AChE and ATCh, where AChE hydrolyzes its active substrate ATCh into thiocholine (TCh), and then TCh captures Cu(2+) from the ensemble, accompanied by the conversion from fluorescence off-state to on-state of the AuNCs. The AChE activity could be detected less than 0.05 mU/mL within a good linear range from 0.05 to 2.5 mU/mL. Our proposed fluorescence assay can be utilized to evaluate the AChE activity quantitatively in real biological sample, and furthermore to screen the inhibitor of AChE. As far as we know, the present study has reported the first analytical proposal for sensing AChE activity in real time by using a fluorescent nanomaterials-Cu(2+) ensemble or focusing on the Cu(2+)-triggered fluorescence quenching/recovery. This strategy paves a new avenue for exploring the biosensing applications of fluorescent AuNCs, and presents the prospect of AuNCs@11-MUA-Cu(2+) ensemble as versatile enzyme activity assay platforms by means of other appropriate substrates/analytes. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Progressive Design of Plasmonic Metal-Semiconductor Ensemble toward Regulated Charge Flow and Improved Vis-NIR-Driven Solar-to-Chemical Conversion.

    PubMed

    Han, Chuang; Quan, Quan; Chen, Hao Ming; Sun, Yugang; Xu, Yi-Jun

    2017-04-01

    Surface plasmon resonance (SPR)-mediated photocatalysis without the bandgap limitations of traditional semiconductor has aroused significant attention in solar-to-chemical energy conversion. However, the photocatalytic efficiency barely initiated by the SPR effects is still challenged by the low concentration and ineffective extraction of energetic hot electrons, slow charge migration rates, random charge diffusion directions, and the lack of highly active sites for redox reactions. Here, the tunable, progressive harvesting of visible-to-near infrared light (vis-NIR, λ > 570 nm) by designing plasmonic Au nanorods and metal (Au, Ag, or Pt) nanoparticle codecorated 1D CdS nanowire (1D CdS NW) ensemble is reported. The intimate integration of these metal nanostructures with 1D CdS NWs promotes the extraction and manipulated directional separation and migration of hot charge carriers in a more effective manner. Such cooperative synergy with tunable control of interfacial interaction, morphology optimization, and cocatalyst strategy results in the distinctly boosted performance for vis-NIR-driven plasmonic photocatalysis. This work highlights the significance of rationally progressive design of plasmonic metal-semiconductor-based composite system for boosting the regulated directional flow of hot charge carrier and thus the more efficient use of broad-spectrum solar energy conversion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Quantitative study of fluctuation effects by fast lattice Monte Carlo simulations: Compression of grafted homopolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pengfei; Wang, Qiang, E-mail: q.wang@colostate.edu

    2014-01-28

    Using fast lattice Monte Carlo (FLMC) simulations [Q. Wang, Soft Matter 5, 4564 (2009)] and the corresponding lattice self-consistent field (LSCF) calculations, we studied a model system of grafted homopolymers, in both the brush and mushroom regimes, in an explicit solvent compressed by an impenetrable surface. Direct comparisons between FLMC and LSCF results, both of which are based on the same Hamiltonian (thus without any parameter-fitting between them), unambiguously and quantitatively reveal the fluctuations/correlations neglected by the latter. We studied both the structure (including the canonical-ensemble averages of the height and the mean-square end-to-end distances of grafted polymers) and thermodynamicsmore » (including the ensemble-averaged reduced energy density and the related internal energy per chain, the differences in the Helmholtz free energy and entropy per chain from the uncompressed state, and the pressure due to compression) of the system. In particular, we generalized the method for calculating pressure in lattice Monte Carlo simulations proposed by Dickman [J. Chem. Phys. 87, 2246 (1987)], and combined it with the Wang-Landau–Optimized Ensemble sampling [S. Trebst, D. A. Huse, and M. Troyer, Phys. Rev. E 70, 046701 (2004)] to efficiently and accurately calculate the free energy difference and the pressure due to compression. While we mainly examined the effects of the degree of compression, the distance between the nearest-neighbor grafting points, the reduced number of chains grafted at each grafting point, and the system fluctuations/correlations in an athermal solvent, the θ-solvent is also considered in some cases.« less

  3. Optical manipulation of electron spin in quantum dot systems

    NASA Astrophysics Data System (ADS)

    Villas-Boas, Jose; Ulloa, Sergio; Govorov, Alexander

    2006-03-01

    Self-assembled quantum dots (QDs) are of particular interest for fundamental physics because of their similarity with atoms. Coupling two of such dots and addressing them with polarized laser light pulses is perhaps even more interesting. In this paper we use a multi-exciton density matrix formalism to model the spin dynamics of a system with single or double layers of QDs. Our model includes the anisotropic electron-hole exchange in the dots, the presence of wetting layer states, and interdot tunneling [1]. Our results show that it is possible to switch the spin polarization of a single self-assembled quantum dot under elliptically polarized light by increasing the laser intensity. In the nonlinear mechanism described here, intense elliptically polarized light creates an effective exchange channel between the exciton spin states through biexciton states, as we demonstrate by numerical and analytical methods. We further show that the effect persists in realistic ensembles of dots, and we propose alternative ways to detect it. We also extend our study to a double layer of quantum dots, where we find a competition between Rabi frequency and tunneling oscillations. [1] J. M. Villas-Boas, S. E. Ulloa, and A. O. Govorov, Phys. Rev. Lett. 94, 057404 (2005); Phys. Rev. B 69, 125342 (2004).

  4. The Wang-Landau Sampling Algorithm

    NASA Astrophysics Data System (ADS)

    Landau, David P.

    2003-03-01

    Over the past several decades Monte Carlo simulations[1] have evolved into a powerful tool for the study of wide-ranging problems in statistical/condensed matter physics. Standard methods sample the probability distribution for the states of the system, usually in the canonical ensemble, and enormous improvements have been made in performance through the implementation of novel algorithms. Nonetheless, difficulties arise near phase transitions, either due to critical slowing down near 2nd order transitions or to metastability near 1st order transitions, thus limiting the applicability of the method. We shall describe a new and different Monte Carlo approach [2] that uses a random walk in energy space to determine the density of states directly. Once the density of states is estimated, all thermodynamic properties can be calculated at all temperatures. This approach can be extended to multi-dimensional parameter spaces and has already found use in classical models of interacting particles including systems with complex energy landscapes, e.g., spin glasses, protein folding models, etc., as well as for quantum models. 1. A Guide to Monte Carlo Simulations in Statistical Physics, D. P. Landau and K. Binder (Cambridge U. Press, Cambridge, 2000). 2. Fugao Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001); Phys. Rev. E64, 056101-1 (2001).

  5. Optimally Squeezed Spin States

    NASA Astrophysics Data System (ADS)

    Rojo, Alberto

    2004-03-01

    We consider optimally spin-squeezed states that maximize the sensitivity of the Ramsey spectroscopy, and for which the signal to noise ratio scales as the number of particles N. Using the variational principle we prove that these states are eigensolutions of the Hamiltonian H(λ)=λ S_z^2-S_x, and that, for large N, the states become equivalent to the quadrature squeezed states of the harmonic oscillator. We present numerical results that illustrate the validity of the equivalence. We also present results of spin squeezing via atom-field interactions within the context of the Tavis-Cummings model. An ensemble of N two-level atoms interacts with a quantized cavity field. For all the atoms initially in their ground states, it is shown that spin squeezing of both the atoms and the field can be achieved provided the initial state of the cavity field has coherence between number states differing by 2. Most of the discussion is restricted to the case of a cavity field initially in a coherent state, but initial squeezed states for the field are also discussed. An analytic solution is found that is valid in the limit that the number of atoms is much greater than unity. References: A. G. Rojo, Phys. Rev A, 68, 013807 (2003); Claudiu Genes, P. R. Berman, and A. G. Rojo Phys. Rev. A 68, 043809 (2003).

  6. Entanglement via Faraday effect - an old tool at a new job for Quantum Networks

    NASA Astrophysics Data System (ADS)

    Polzik, Eugene

    2002-05-01

    A new approach to the problem of the quantum interface between light and atoms has been developed [1,2]. The method utilizes free space dispersive interaction of pulses of light with spin polarized atomic ensembles. Entanglement between the polarization state of light and the collective spin state of atoms is established by measurement, more precisely by detection of light in certain polarization basis. In the first demonstration of this approach [3] we have generated a long-lived entangled state of two separate macroscopic atomic samples by a polarization measurement on light transmitted through the samples. We then have shown that this approach also works for mapping of a quantum state of light onto long-lived atomic spin state [4] paving the road towards realization of the quantum memory for light. Progress with other communication protocols such as atomic state teleportation and multiparty networks will be presented. 1. A. Kuzmich and E. S. Polzik, Phys. Rev. Lett. (2000) 85, 5639. 2. Lu-Ming Duan, J.I. Cirac, P. Zoller and E. S. Polzik, Phys. Rev. Lett. (2000) 85, (25), 5643. 3. B. Julsgaard, A. Kozhekin, and E. S. Polzik, Nature, 413, 400 (2001). 4. J. L. Sorensen, B. Julsgaard, C. Schori and E. S. Polzik, submitted for publication.

  7. The U.S. Energy Dilemma: The Gap between Today’s Requirements and Tomorrow’s Potential.

    DTIC Science & Technology

    1973-07-01

    Possible Solutions . ........ .. 142 Use of Low-Sulfur Coal ................ 43 Flue - Gas Desulfurization ................ 43 Coal Cleaning...1) use of low-sulfur coal, (2) flue - gas desulfurization , (3) coal cleaning, (4) coal refining, and (5) coal conversion. Use of Low-Sulfur Coal The...to the same point (Skillings Mining Rev., 1973). Flue - Gas Desulfurization With standards based on sulfur dioxide emissions per million Btu, rather than

  8. Kr II Laser-Induced Fluorescence for Measuring Plasma Acceleration (Preprint)

    DTIC Science & Technology

    2012-02-01

    Unclassified b. ABSTRACT Unclassified c. THIS PAGE Unclassified SAR 13 19b. TELEPHONE NUMBER (include area code) N /A Standard Form 298 (Rev. 8...thruster operation was measured with a cold cathode ionization gauge to be 1×10−3 Pa, corrected for krypton (N2 conversion to Kr pressure multiplicative...the breathing mode oscillation is correlated to the width of the veloc- ity distributions. Therefore, reducing discharge channel plasma turbulence will

  9. One-dimensional reduction of viscous jets. II. Applications

    NASA Astrophysics Data System (ADS)

    Pitrou, Cyril

    2018-04-01

    In a companion paper [Phys. Rev. E 97, 043115 (2018), 10.1103/PhysRevE.97.043115], a formalism allowing to describe viscous fibers as one-dimensional objects was developed. We apply it to the special case of a viscous fluid torus. This allows to highlight the differences with the basic viscous string model and with its viscous rod model extension. In particular, an elliptic deformation of the torus section appears because of surface tension effects, and this cannot be described by viscous string nor viscous rod models. Furthermore, we study the Rayleigh-Plateau instability for periodic deformations around the perfect torus, and we show that the instability is not sufficient to lead to the torus breakup in several droplets before it collapses to a single spherical drop. Conversely, a rotating torus is dynamically attracted toward a stationary solution, around which the instability can develop freely and split the torus in multiple droplets.

  10. Identification of nonclassical properties of light with multiplexing layouts

    NASA Astrophysics Data System (ADS)

    Sperling, J.; Eckstein, A.; Clements, W. R.; Moore, M.; Renema, J. J.; Kolthammer, W. S.; Nam, S. W.; Lita, A.; Gerrits, T.; Walmsley, I. A.; Agarwal, G. S.; Vogel, W.

    2017-07-01

    In Sperling et al. [Phys. Rev. Lett. 118, 163602 (2017), 10.1103/PhysRevLett.118.163602], we introduced and applied a detector-independent method to uncover nonclassicality. Here, we extend those techniques and give more details on the performed analysis. We derive a general theory of the positive-operator-valued measure that describes multiplexing layouts with arbitrary detectors. From the resulting quantum version of a multinomial statistics, we infer nonclassicality probes based on a matrix of normally ordered moments. We discuss these criteria and apply the theory to our data which are measured with superconducting transition-edge sensors. Our experiment produces heralded multiphoton states from a parametric down-conversion light source. We show that the known notions of sub-Poisson and sub-binomial light can be deduced from our general approach, and we establish the concept of sub-multinomial light, which is shown to outperform the former two concepts of nonclassicality for our data.

  11. The synthesis and the chemical and physical properties of non-aqueous silylamine solvents for carbon dioxide capture.

    PubMed

    Rohan, Amy L; Switzer, Jackson R; Flack, Kyle M; Hart, Ryan J; Sivaswamy, Swetha; Biddinger, Elizabeth J; Talreja, Manish; Verma, Manjusha; Faltermeier, Sean; Nielsen, Paul T; Pollet, Pamela; Schuette, George F; Eckert, Charles A; Liotta, Charles L

    2012-11-01

    Silylamine reversible ionic liquids were designed to achieve specific physical properties in order to address effective CO₂ capture. The reversible ionic liquid systems reported herein represent a class of switchable solvents where a relatively non-polar silylamine (molecular liquid) is reversibly transformed to a reversible ionic liquid (RevIL) by reaction with CO₂ (chemisorption). The RevILs can further capture additional CO₂ through physical absorption (physisorption). The effects of changes in structure on (1) the CO₂ capture capacity (chemisorption and physisorption), (2) the viscosity of the solvent systems at partial and total conversion to the ionic liquid state, (3) the energy required for reversing the CO₂ capture process, and (4) the ability to recycle the solvents systems are reported. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Chirality, Metallicity, and Transition Dependent Asymmetries in Resonance Raman Excitation Profiles of Chirality-Enriched Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Doorn, Stephen; Duque, Juan; Telg, Hagen; Haroz, Erik; Tu, Xiaomin; Zheng, Ming

    2014-03-01

    Access to carbon nanotube samples enriched in single chiralities allows the observation of new photophysical behaviors obscured or difficult to demonstrate in mixed-chirality ensembles. Recent examples include the observation of strongly asymmetric G-band excitation profiles resulting from non-Condon effects1 and the unambiguous demonstration of Raman interference effects.2 We present here our most recent results demonstrating the generality of the non-Condon behavior to include metallic species (specifically several armchair chiralities). Additionally, the Eii dependence in non-Condon behavior with excitations from E11 thru E44 for both RBM and G modes will be discussed. 1. J.G. Duque, et. al., ACS Nano, 5, 5233 (2011). 2. J.G. Duque, et. al., Phys. Rev. Lett. 108, 117404 (2012).

  13. Hydrodynamic limit of the Yukawa one-component plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salin, Gwenaeel

    This paper presents a detailed mathematical analysis of the dynamical correlation of density fluctuations of the Yukawa one component plasma in the framework of linearized hydrodynamics. In particular, expressions for the hydrodynamic modes which hold both for the plasma and the neutral fluid are derived. This work constitutes an extension of the computation of the dynamical structure factor in the hydrodynamic limit done by Vieillefosse and Hansen [Phys. Rev. A 12, 1106 (1975)]. As a typical result of Yukawa plasma, a coupling appears between thermal and mechanical effects in the damping of the sound modes, which does not exist inmore » the classical one component plasma. Theoretical and numerical results obtained by means of equilibrium molecular-dynamic simulations in the microcanonical ensemble are compared and discussed.« less

  14. Conversion of spin current into charge current in a topological insulator: Role of the interface

    NASA Astrophysics Data System (ADS)

    Dey, Rik; Prasad, Nitin; Register, Leonard F.; Banerjee, Sanjay K.

    2018-05-01

    Three-dimensional spin current density injected onto the surface of a topological insulator (TI) produces a two-dimensional charge current density on the surface of the TI, which is the so-called inverse Edelstein effect (IEE). The ratio of the surface charge current density on the TI to the spin current density injected across the interface defined as the IEE length was shown to be exactly equal to the mean free path in the TI determined to be independent of the electron transmission rate across the interface [Phys. Rev. B 94, 184423 (2016), 10.1103/PhysRevB.94.184423]. However, we find that the transmission rate across the interface gives a nonzero contribution to the transport relaxation rate in the TI as well as to the effective IEE relaxation rate (over and above any surface hybridization effects), and the IEE length is always less than the original mean free path in the TI without the interface. We show that both the IEE relaxation time and the transport relaxation time in the TI are modified by the interface transmission time. The correction becomes significant when the transmission time across the interface becomes comparable to or less than the original momentum scattering time in the TI. This correction is similar to experimental results in Rashba electron systems in which the IEE relaxation time was found shorter in the case of direct interface with metal in which the interface transmission rate will be much higher, compared to interfaces incorporating insulating oxides. Our results indicate the continued importance of the interface to obtain a better spin-to-charge current conversion and a limitation to the conversion efficiency due to the quality of the interface.

  15. Predication of different stages of Alzheimer's disease using neighborhood component analysis and ensemble decision tree.

    PubMed

    Jin, Mingwu; Deng, Weishu

    2018-05-15

    There is a spectrum of the progression from healthy control (HC) to mild cognitive impairment (MCI) without conversion to Alzheimer's disease (AD), to MCI with conversion to AD (cMCI), and to AD. This study aims to predict the different disease stages using brain structural information provided by magnetic resonance imaging (MRI) data. The neighborhood component analysis (NCA) is applied to select most powerful features for prediction. The ensemble decision tree classifier is built to predict which group the subject belongs to. The best features and model parameters are determined by cross validation of the training data. Our results show that 16 out of a total of 429 features were selected by NCA using 240 training subjects, including MMSE score and structural measures in memory-related regions. The boosting tree model with NCA features can achieve prediction accuracy of 56.25% on 160 test subjects. Principal component analysis (PCA) and sequential feature selection (SFS) are used for feature selection, while support vector machine (SVM) is used for classification. The boosting tree model with NCA features outperforms all other combinations of feature selection and classification methods. The results suggest that NCA be a better feature selection strategy than PCA and SFS for the data used in this study. Ensemble tree classifier with boosting is more powerful than SVM to predict the subject group. However, more advanced feature selection and classification methods or additional measures besides structural MRI may be needed to improve the prediction performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Molecular simulations of Hugoniots of detonation product mixtures at chemical equilibrium: Microscopic calculation of the Chapman-Jouguet state

    NASA Astrophysics Data System (ADS)

    Bourasseau, Emeric; Dubois, Vincent; Desbiens, Nicolas; Maillet, Jean-Bernard

    2007-08-01

    In this work, we used simultaneously the reaction ensemble Monte Carlo (ReMC) method and the adaptive Erpenbeck equation of state (AE-EOS) method to directly calculate the thermodynamic and chemical equilibria of mixtures of detonation products on the Hugoniot curve. The ReMC method [W. R. Smith and B. Triska, J. Chem. Phys. 100, 3019 (1994)] allows us to reach the chemical equilibrium of a reacting mixture, and the AE-EOS method [J. J. Erpenbeck, Phys. Rev. A 46, 6406 (1992)] constrains the system to satisfy the Hugoniot relation. Once the Hugoniot curve of the detonation product mixture is established, the Chapman-Jouguet (CJ) state of the explosive can be determined. A NPT simulation at PCJ and TCJ is then performed in order to calculate direct thermodynamic properties and the following derivative properties of the system using a fluctuation method: calorific capacities, sound velocity, and Grüneisen coefficient. As the chemical composition fluctuates, and the number of particles is not necessarily constant in this ensemble, a fluctuation formula has been developed to take into account the fluctuations of mole number and composition. This type of calculation has been applied to several usual energetic materials: nitromethane, tetranitromethane, hexanitroethane, PETN, and RDX.

  17. Molecular simulations of Hugoniots of detonation product mixtures at chemical equilibrium: microscopic calculation of the Chapman-Jouguet state.

    PubMed

    Bourasseau, Emeric; Dubois, Vincent; Desbiens, Nicolas; Maillet, Jean-Bernard

    2007-08-28

    In this work, we used simultaneously the reaction ensemble Monte Carlo (ReMC) method and the adaptive Erpenbeck equation of state (AE-EOS) method to directly calculate the thermodynamic and chemical equilibria of mixtures of detonation products on the Hugoniot curve. The ReMC method [W. R. Smith and B. Triska, J. Chem. Phys. 100, 3019 (1994)] allows us to reach the chemical equilibrium of a reacting mixture, and the AE-EOS method [J. J. Erpenbeck, Phys. Rev. A 46, 6406 (1992)] constrains the system to satisfy the Hugoniot relation. Once the Hugoniot curve of the detonation product mixture is established, the Chapman-Jouguet (CJ) state of the explosive can be determined. A NPT simulation at P(CJ) and T(CJ) is then performed in order to calculate direct thermodynamic properties and the following derivative properties of the system using a fluctuation method: calorific capacities, sound velocity, and Gruneisen coefficient. As the chemical composition fluctuates, and the number of particles is not necessarily constant in this ensemble, a fluctuation formula has been developed to take into account the fluctuations of mole number and composition. This type of calculation has been applied to several usual energetic materials: nitromethane, tetranitromethane, hexanitroethane, PETN, and RDX.

  18. Spatial and Spin Symmetry Breaking in Semidefinite-Programming-Based Hartree-Fock Theory.

    PubMed

    Nascimento, Daniel R; DePrince, A Eugene

    2018-05-08

    The Hartree-Fock problem was recently recast as a semidefinite optimization over the space of rank-constrained two-body reduced-density matrices (RDMs) [ Phys. Rev. A 2014 , 89 , 010502(R) ]. This formulation of the problem transfers the nonconvexity of the Hartree-Fock energy functional to the rank constraint on the two-body RDM. We consider an equivalent optimization over the space of positive semidefinite one-electron RDMs (1-RDMs) that retains the nonconvexity of the Hartree-Fock energy expression. The optimized 1-RDM satisfies ensemble N-representability conditions, and ensemble spin-state conditions may be imposed as well. The spin-state conditions place additional linear and nonlinear constraints on the 1-RDM. We apply this RDM-based approach to several molecular systems and explore its spatial (point group) and spin ( Ŝ 2 and Ŝ 3 ) symmetry breaking properties. When imposing Ŝ 2 and Ŝ 3 symmetry but relaxing point group symmetry, the procedure often locates spatial-symmetry-broken solutions that are difficult to identify using standard algorithms. For example, the RDM-based approach yields a smooth, spatial-symmetry-broken potential energy curve for the well-known Be-H 2 insertion pathway. We also demonstrate numerically that, upon relaxation of Ŝ 2 and Ŝ 3 symmetry constraints, the RDM-based approach is equivalent to real-valued generalized Hartree-Fock theory.

  19. A variational ensemble scheme for noisy image data assimilation

    NASA Astrophysics Data System (ADS)

    Yang, Yin; Robinson, Cordelia; Heitz, Dominique; Mémin, Etienne

    2014-05-01

    Data assimilation techniques aim at recovering a system state variables trajectory denoted as X, along time from partially observed noisy measurements of the system denoted as Y. These procedures, which couple dynamics and noisy measurements of the system, fulfill indeed a twofold objective. On one hand, they provide a denoising - or reconstruction - procedure of the data through a given model framework and on the other hand, they provide estimation procedures for unknown parameters of the dynamics. A standard variational data assimilation problem can be formulated as the minimization of the following objective function with respect to the initial discrepancy, η, from the background initial guess: δ« J(η(x)) = 1∥Xb (x) - X (t ,x)∥2 + 1 tf∥H(X (t,x ))- Y (t,x)∥2dt. 2 0 0 B 2 t0 R (1) where the observation operator H links the state variable and the measurements. The cost function can be interpreted as the log likelihood function associated to the a posteriori distribution of the state given the past history of measurements and the background. In this work, we aim at studying ensemble based optimal control strategies for data assimilation. Such formulation nicely combines the ingredients of ensemble Kalman filters and variational data assimilation (4DVar). It is also formulated as the minimization of the objective function (1), but similarly to ensemble filter, it introduces in its objective function an empirical ensemble-based background-error covariance defined as: B ≡ <(Xb - )(Xb - )T>. (2) Thus, it works in an off-line smoothing mode rather than on the fly like sequential filters. Such resulting ensemble variational data assimilation technique corresponds to a relatively new family of methods [1,2,3]. It presents two main advantages: first, it does not require anymore to construct the adjoint of the dynamics tangent linear operator, which is a considerable advantage with respect to the method's implementation, and second, it enables the handling of a flow-dependent background error covariance matrix that can be consistently adjusted to the background error. These nice advantages come however at the cost of a reduced rank modeling of the solution space. The B matrix is at most of rank N - 1 (N is the size of the ensemble) which is considerably lower than the dimension of state space. This rank deficiency may introduce spurious correlation errors, which particularly impact the quality of results associated with a high resolution computing grid. The common strategy to suppress these distant correlations for ensemble Kalman techniques is through localization procedures. In this paper we present key theoretical properties associated to different choices of methods involved in this setup and compare with an incremental 4DVar method experimentally the performances of several variations of an ensemble technique of interest. The comparisons have been led on the basis of a Shallow Water model and have been carried out both with synthetic data and real observations. We particularly addressed the potential pitfalls and advantages of the different methods. The results indicate an advantage in favor of the ensemble technique both in quality and computational cost when dealing with incomplete observations. We highlight as the premise of using ensemble variational assimilation, that the initial perturbation used to build the initial ensemble has to fit the physics of the observed phenomenon . We also apply the method to a stochastic shallow-water model which incorporate an uncertainty expression if the subgrid stress tensor related to the ensemble spread. References [1] A. C. Lorenc, The potential of the ensemble kalman filter for nwp - a comparison with 4d-var, Quart. J. Roy. Meteor. Soc., Vol. 129, pp. 3183-3203, 2003. [2] C. Liu, Q. Xiao, and B. Wang, An Ensemble-Based Four-Dimensional Variational Data Assimilation Scheme. Part I: Technical Formulation and Preliminary Test, Mon. Wea. Rev., Vol. 136(9), pp. 3363-3373, 2008. [3] M. Buehner, Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi- operational NWP setting, Quart. J. Roy. Meteor. Soc., Vol. 131(607), pp. 1013-1043, April 2005.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufman, Allan N.; Tracy, Eugene R.; Brizard, Alain J.

    The process of resonant wave conversion (often called linear mode conversion) has traditionally been analyzed with a spatially one-dimensional slab model, for which the rays propagate in a two-dimensional phase space. However, it has recently been shown [E.R. Tracy and A.N. Kaufman, Phys. Rev. Lett. 91, 130402 (2003)] that multidimensional rays have a helical structure for conversion in two or more spatial dimensions (if their dispersion matrix is generic). In that case, a one-dimensional model is inadequate; a correct analysis requires two spatial dimensions and, thus, four-dimensional phase space. In this paper we show that a cold plasma model willmore » exhibit ray helicity in conversion regions where the density and magnetic field gradients are significantly non-parallel. For illustration, we examine a model of the poloidal plane of a deuterium-tritium tokamak plasma, and identify such a region. In this region, characterized by a six-sector topology, rays in the sector for incident and reflected magnetosonic waves exhibit significant helicity. We introduce a ''symmetric-wedge'' model, to develop a detailed analytic and numerical study of helical rays in this sector.« less

  1. Triplet correlation functions in liquid water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhabal, Debdas; Chakravarty, Charusita, E-mail: charus@chemistry.iitd.ac.in; Singh, Murari

    Triplet correlations have been shown to play a crucial role in the transformation of simple liquids to anomalous tetrahedral fluids [M. Singh, D. Dhabal, A. H. Nguyen, V. Molinero, and C. Chakravarty, Phys. Rev. Lett. 112, 147801 (2014)]. Here we examine triplet correlation functions for water, arguably the most important tetrahedral liquid, under ambient conditions, using configurational ensembles derived from molecular dynamics (MD) simulations and reverse Monte Carlo (RMC) datasets fitted to experimental scattering data. Four different RMC data sets with widely varying hydrogen-bond topologies fitted to neutron and x-ray scattering data are considered [K. T. Wikfeldt, M. Leetmaa, M.more » P. Ljungberg, A. Nilsson, and L. G. M. Pettersson, J. Phys. Chem. B 113, 6246 (2009)]. Molecular dynamics simulations are performed for two rigid-body effective pair potentials (SPC/E and TIP4P/2005) and the monatomic water (mW) model. Triplet correlation functions are compared with other structural measures for tetrahedrality, such as the O–O–O angular distribution function and the local tetrahedral order distributions. In contrast to the pair correlation functions, which are identical for all the RMC ensembles, the O–O–O triplet correlation function can discriminate between ensembles with different degrees of tetrahedral network formation with the maximally symmetric, tetrahedral SYM dataset displaying distinct signatures of tetrahedrality similar to those obtained from atomistic simulations of the SPC/E model. Triplet correlations from the RMC datasets conform closely to the Kirkwood superposition approximation, while those from MD simulations show deviations within the first two neighbour shells. The possibilities for experimental estimation of triplet correlations of water and other tetrahedral liquids are discussed.« less

  2. Variety of Behavior of Equity Returns in Financial Markets

    NASA Astrophysics Data System (ADS)

    Bonanno, Giovanni; Lillo, Fabrizio; Mantegna, Rosario N.

    2001-03-01

    The price dynamics of a set of equities traded in an efficient market is pretty complex. It consists of almost not redundant time series which have (i) long-range correlated volatility and (ii) cross-correlation between each pair of equities. We perform a study of the statistical properties of an ensemble of equities returns which is fruitful to elucidate the nature and role of time and ensemble correlation. Specifically, we investigate a statistical ensemble of daily returns of n equities traded in United States financial markets. For each trading day of our database, we study the ensemble return distribution. We find that a typical ensemble return distribution exists in most of the trading days [1] with the exception of crash and rally days and of the days following to these extreme events [2]. We analyze each ensemble return distribution by extracting its first two central moments. We call the second moment of the ensemble return distribution the variety of the market. We choose this term because high variety implies a variated behavior of the equities returns in the considered day. We observe that the mean return and the variety are fluctuating in time and are stochastic processes themselves. The variety is a long-range correlated stochastic process. Customary time-averaged statistical properties of time series of stock returns are also considered. In general, time-averaged and portfolio-averaged returns have different statistical properties [1]. We infer from these differences information about the relative strength of correlation between equities and between different trading days. We also compare our empirical results with those predicted by the single-index model and we conclude that this simple model is unable to explain the statistical properties of the second moment of the ensemble return distribution. Correlation between pairs of equities are continuously present in the dynamics of a stock portfolio. Hence, it is relevant to investigate pair correlation in a efficient and original way. We propose to investigate these correlations at a daily and intra daily time horizon with a method based on concepts of random frustrated systems. Specifically, a hierarchical organization of the investigated equities is obtained by determining a metric distance between stocks and by investigating the properties of the subdominant ultrametric associated with it [3]. The high-frequency cross-correlation existing between pairs of equities are investigated in a set of 100 stocks traded in US equity markets. The decrease of the cross-correlation between the equity returns observed for diminishing time horizons progressively changes the nature of the hierarchical structure associated to each different time horizon [4]. The nature of the correlation present between pairs of time series of equity returns collected in a portfolio has a strong influence on the variety of the market. We finally discuss the relation between pair correlation and variety of an ensemble return distribution. References [1] Fabrizio Lillo and Rosario N. Mantegna, Variety and volatility in financial markets, Phys. Rev. E 62, 6126-6134 (2000). [2] Fabrizio Lillo and Rosario N. Mantegna, Symmetry alteration of ensemble return distribution in crash and rally days of financial market, Eur. Phys. J. B 15, 603-606 (2000). [3] Rosario N. Mantegna, Hierarchical structure in financial markets, Eur. Phys. J. B 11, 193-197 (1999). [4] Giovanni Bonanno, Fabrizio Lillo, and Rosario N. Mantegna, High-frequency cross-correlation in a set of stocks, Quantitative Finance (in press).

  3. Irreversible Catalyst Activation Enables Hyperpolarization and Water Solubility for NMR Signal Amplification by Reversible Exchange

    DTIC Science & Technology

    2016-09-12

    Phys. Rev. Lett. 1986 , 57, 2645−2648. (8) Goldman, M.; Johannesson, H. Conversion of a Proton Pair Para Order into C-13 Polarization by Rf...A.; Harris, K.; Batchelder, L. S.; Bhattacharya, P.; Ross , B. D.; Weitekamp, D. P. PASADENA Hyperpolarization of Succinic Acid for MRI and NMR...Bhattacharya, P.; Chekmenev, E. Y.; Perman, W. H.; Harris, K. C.; Lin, A. P.; Norton, V. A.; Tan, C. T.; Ross , B. D.; Weitekamp, D. P. Towards

  4. Ethnicity identification from face images

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoguang; Jain, Anil K.

    2004-08-01

    Human facial images provide the demographic information, such as ethnicity and gender. Conversely, ethnicity and gender also play an important role in face-related applications. Image-based ethnicity identification problem is addressed in a machine learning framework. The Linear Discriminant Analysis (LDA) based scheme is presented for the two-class (Asian vs. non-Asian) ethnicity classification task. Multiscale analysis is applied to the input facial images. An ensemble framework, which integrates the LDA analysis for the input face images at different scales, is proposed to further improve the classification performance. The product rule is used as the combination strategy in the ensemble. Experimental results based on a face database containing 263 subjects (2,630 face images, with equal balance between the two classes) are promising, indicating that LDA and the proposed ensemble framework have sufficient discriminative power for the ethnicity classification problem. The normalized ethnicity classification scores can be helpful in the facial identity recognition. Useful as a "soft" biometric, face matching scores can be updated based on the output of ethnicity classification module. In other words, ethnicity classifier does not have to be perfect to be useful in practice.

  5. MicroRNA Intercellular Transfer and Bioelectrical Regulation of Model Multicellular Ensembles by the Gap Junction Connectivity.

    PubMed

    Cervera, Javier; Meseguer, Salvador; Mafe, Salvador

    2017-08-17

    We have studied theoretically the microRNA (miRNA) intercellular transfer through voltage-gated gap junctions in terms of a biophysically grounded system of coupled differential equations. Instead of modeling a specific system, we use a general approach describing the interplay between the genetic mechanisms and the single-cell electric potentials. The dynamics of the multicellular ensemble are simulated under different conditions including spatially inhomogeneous transcription rates and local intercellular transfer of miRNAs. These processes result in spatiotemporal changes of miRNA, mRNA, and ion channel protein concentrations that eventually modify the bioelectrical states of small multicellular domains because of the ensemble average nature of the electrical potential. The simulations allow a qualitative understanding of the context-dependent nature of the effects observed when specific signaling molecules are transferred through gap junctions. The results suggest that an efficient miRNA intercellular transfer could permit the spatiotemporal control of small cellular domains by the conversion of single-cell genetic and bioelectric states into multicellular states regulated by the gap junction interconnectivity.

  6. Genetic code mutations: the breaking of a three billion year invariance.

    PubMed

    Mat, Wai-Kin; Xue, Hong; Wong, J Tze-Fei

    2010-08-20

    The genetic code has been unchanging for some three billion years in its canonical ensemble of encoded amino acids, as indicated by the universal adoption of this ensemble by all known organisms. Code mutations beginning with the encoding of 4-fluoro-Trp by Bacillus subtilis, initially replacing and eventually displacing Trp from the ensemble, first revealed the intrinsic mutability of the code. This has since been confirmed by a spectrum of other experimental code alterations in both prokaryotes and eukaryotes. To shed light on the experimental conversion of a rigidly invariant code to a mutating code, the present study examined code mutations determining the propagation of Bacillus subtilis on Trp and 4-, 5- and 6-fluoro-tryptophans. The results obtained with the mutants with respect to cross-inhibitions between the different indole amino acids, and the growth effects of individual nutrient withdrawals rendering essential their biosynthetic pathways, suggested that oligogenic barriers comprising sensitive proteins which malfunction with amino acid analogues provide effective mechanisms for preserving the invariance of the code through immemorial time, and mutations of these barriers open up the code to continuous change.

  7. Analysis of trends in experimental observables: Reconstruction of the implosion dynamics and implications for fusion yield extrapolation for direct-drive cryogenic targets on OMEGA

    NASA Astrophysics Data System (ADS)

    Bose, A.; Betti, R.; Mangino, D.; Woo, K. M.; Patel, D.; Christopherson, A. R.; Gopalaswamy, V.; Mannion, O. M.; Regan, S. P.; Goncharov, V. N.; Edgell, D. H.; Forrest, C. J.; Frenje, J. A.; Gatu Johnson, M.; Yu Glebov, V.; Igumenshchev, I. V.; Knauer, J. P.; Marshall, F. J.; Radha, P. B.; Shah, R.; Stoeckl, C.; Theobald, W.; Sangster, T. C.; Shvarts, D.; Campbell, E. M.

    2018-06-01

    This paper describes a technique for identifying trends in performance degradation for inertial confinement fusion implosion experiments. It is based on reconstruction of the implosion core with a combination of low- and mid-mode asymmetries. This technique was applied to an ensemble of hydro-equivalent deuterium-tritium implosions on OMEGA which achieved inferred hot-spot pressures ≈56 ± 7 Gbar [Regan et al., Phys. Rev. Lett. 117, 025001 (2016)]. All the experimental observables pertaining to the core could be reconstructed simultaneously with the same combination of low and mid-modes. This suggests that in addition to low modes, which can cause a degradation of the stagnation pressure, mid-modes are present which reduce the size of the neutron and x-ray producing volume. The systematic analysis shows that asymmetries can cause an overestimation of the total areal density in these implosions. It is also found that an improvement in implosion symmetry resulting from correction of either the systematic mid or low modes would result in an increase in the hot-spot pressure from 56 Gbar to ≈ 80 Gbar and could produce a burning plasma when the implosion core is extrapolated to an equivalent 1.9 MJ symmetric direct illumination [Bose et al., Phys. Rev. E 94, 011201(R) (2016)].

  8. Analysis of trends in experimental observables: Reconstruction of the implosion dynamics and implications for fusion yield extrapolation for direct-drive cryogenic targets on OMEGA

    DOE PAGES

    Bose, A.; Betti, R.; Mangino, D.; ...

    2018-05-29

    This paper describes a technique for identifying trends in performance degradation for inertial con finement fusion implosion experiments. It is based on reconstruction of the implosion core with a combination of low- and mid-mode asymmetries. This technique was applied to an ensemble of hydro-equivalent deuterium-tritium implosions on OMEGA that achieved inferred hot-spot pressures ≈56 ± 7 Gbar [S. Regan et al., Phys. Rev. Lett. 117, 025001 (2016)]. All the experimental observables pertaining to the core could be reconstructed simultaneously with the same combination of low and mid modes. This suggests that in addition to low modes, that can cause amore » degradation of the stagnation pressure, mid modes are present that reduce the size of the neutron and x-ray producing volume. The systematic analysis shows that asymmetries can cause an overestimation of the total areal density in these implosions. Finally, it is also found that an improvement in implosion symmetry resulting from correction of either the systematic mid or low modes would result in an increase of the hot-spot pressure from 56 Gbar to ≈ 80 Gbar and could produce a burning plasma when the implosion core is extrapolated to an equivalent 1.9 MJ symmetric direct illumination [A. Bose et al., Phys. Rev. E 94, 011201(R) (2016)].« less

  9. Analysis of trends in experimental observables: Reconstruction of the implosion dynamics and implications for fusion yield extrapolation for direct-drive cryogenic targets on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, A.; Betti, R.; Mangino, D.

    This paper describes a technique for identifying trends in performance degradation for inertial con finement fusion implosion experiments. It is based on reconstruction of the implosion core with a combination of low- and mid-mode asymmetries. This technique was applied to an ensemble of hydro-equivalent deuterium-tritium implosions on OMEGA that achieved inferred hot-spot pressures ≈56 ± 7 Gbar [S. Regan et al., Phys. Rev. Lett. 117, 025001 (2016)]. All the experimental observables pertaining to the core could be reconstructed simultaneously with the same combination of low and mid modes. This suggests that in addition to low modes, that can cause amore » degradation of the stagnation pressure, mid modes are present that reduce the size of the neutron and x-ray producing volume. The systematic analysis shows that asymmetries can cause an overestimation of the total areal density in these implosions. Finally, it is also found that an improvement in implosion symmetry resulting from correction of either the systematic mid or low modes would result in an increase of the hot-spot pressure from 56 Gbar to ≈ 80 Gbar and could produce a burning plasma when the implosion core is extrapolated to an equivalent 1.9 MJ symmetric direct illumination [A. Bose et al., Phys. Rev. E 94, 011201(R) (2016)].« less

  10. Fireball as the result of self-organization of an ensemble of diamagnetic electron-ion nanoparticles in molecular gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopasov, V. P., E-mail: lopas@iao.ru

    The conditions for dissipative self-organization of a fireball (FB) is a molecular gas by means of a regular correction of an elastic collision of water and nitrogen molecules by the field of a coherent bi-harmonic light wave (BLW) are presented. The BWL field is generated due to conversion of energy of a linear lightning discharge into light energy. A FB consists of two components: an ensemble of optically active diamagnetic electron-ion nanoparticles and a standing wave of elliptical polarization (SWEP). It is shown that the FB lifetime depends on the energies accumulated by nanoparticles and the SWEP field and onmore » the stability of self-oscillations of the energy between nanoparticles and SWEP.« less

  11. Stereo-selective partitioning of translation-to-internal energy conversion in gas ensembles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffery, Anthony J., E-mail: A.J.McCaffery@sussex.ac.uk

    2014-11-07

    A recent computational study of translation-to-internal energy transfer to H{sub 2} (v = 0,j = 0), hereinafter denoted H{sub 2} (0;0), in a bath of H atoms [A. J. McCaffery and R. J. Marsh, J. Chem. Phys. 139, 234310 (2013)] revealed an unexpected energy partitioning in which the H{sub 2} vibrational temperature greatly exceeds that of rotation. This occurs despite rotation and vibration distributions being close to Boltzmann from early in ensemble evolution. In this work, the study is extended to include H{sub 2} (0;0), O{sub 2} (0;0), and HF (0;0) in a wide range of atomic bath gases comprisingmore » some 22 ensembles in all. Translation-to-internal energy conversion in the systems studied was found to be relatively inefficient, falling approximately with (√μ′){sup −1} as bath gas mass increases, where μ′ is the reduced mass of the diatomic–bath gas pair. In all 22 systems studied, T{sub v} exceeds T{sub r} – by a factor > 4 for some pairs. Analysis of the constraints that influence (0;0) → (1;j) excitation for each diatomic–atom pair in momentum–angular momentum space demonstrates that a vibrational preference results from energy constraints that limit permitted collision trajectories to those of low effective impact parameter, i.e., to those that are axial or near axial on impact with the Newton surface. This implies that a steric constraint is an inherent feature of vibration-rotation excitation and arises because momentum and energy barriers must be overcome before rotational states may be populated in the higher vibrational level.« less

  12. Flexible chain molecules in the marginal and concentrated regimes: universal static scaling laws and cross-over predictions.

    PubMed

    Laso, Manuel; Karayiannis, Nikos Ch

    2008-05-07

    We present predictions for the static scaling exponents and for the cross-over polymer volumetric fractions in the marginal and concentrated solution regimes. Corrections for finite chain length are made. Predictions are based on an analysis of correlated fluctuations in density and chain length, in a semigrand ensemble in which mers and solvent sites exchange identities. Cross-over volumetric fractions are found to be chain length independent to first order, although reciprocal-N corrections are also estimated. Predicted scaling exponents and cross-over regimes are compared with available data from extensive off-lattice Monte Carlo simulations [Karayiannis and Laso, Phys. Rev. Lett. 100, 050602 (2008)] on freely jointed, hard-sphere chains of average lengths from N=12-500 and at packing densities from dilute ones up to the maximally random jammed state.

  13. Femtosecond two-photon photoassociation of hot magnesium atoms: A quantum dynamical study using thermal random phase wavefunctions

    NASA Astrophysics Data System (ADS)

    Amaran, Saieswari; Kosloff, Ronnie; Tomza, Michał; Skomorowski, Wojciech; Pawłowski, Filip; Moszynski, Robert; Rybak, Leonid; Levin, Liat; Amitay, Zohar; Berglund, J. Martin; Reich, Daniel M.; Koch, Christiane P.

    2013-10-01

    Two-photon photoassociation of hot magnesium atoms by femtosecond laser pulses, creating electronically excited magnesium dimer molecules, is studied from first principles, combining ab initio quantum chemistry and molecular quantum dynamics. This theoretical framework allows for rationalizing the generation of molecular rovibrational coherence from thermally hot atoms [L. Rybak, S. Amaran, L. Levin, M. Tomza, R. Moszynski, R. Kosloff, C. P. Koch, and Z. Amitay, Phys. Rev. Lett. 107, 273001 (2011)]. Random phase thermal wavefunctions are employed to model the thermal ensemble of hot colliding atoms. Comparing two different choices of basis functions, random phase wavefunctions built from eigenstates are found to have the fastest convergence for the photoassociation yield. The interaction of the colliding atoms with a femtosecond laser pulse is modeled non-perturbatively to account for strong-field effects.

  14. Annealed importance sampling with constant cooling rate

    NASA Astrophysics Data System (ADS)

    Giovannelli, Edoardo; Cardini, Gianni; Gellini, Cristina; Pietraperzia, Giangaetano; Chelli, Riccardo

    2015-02-01

    Annealed importance sampling is a simulation method devised by Neal [Stat. Comput. 11, 125 (2001)] to assign weights to configurations generated by simulated annealing trajectories. In particular, the equilibrium average of a generic physical quantity can be computed by a weighted average exploiting weights and estimates of this quantity associated to the final configurations of the annealed trajectories. Here, we review annealed importance sampling from the perspective of nonequilibrium path-ensemble averages [G. E. Crooks, Phys. Rev. E 61, 2361 (2000)]. The equivalence of Neal's and Crooks' treatments highlights the generality of the method, which goes beyond the mere thermal-based protocols. Furthermore, we show that a temperature schedule based on a constant cooling rate outperforms stepwise cooling schedules and that, for a given elapsed computer time, performances of annealed importance sampling are, in general, improved by increasing the number of intermediate temperatures.

  15. The effect of an infinite plane-wave approximation on calculations for second-harmonic generation in a one-dimensional nonlinear crystal

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Zhao, Li-Ming

    2012-05-01

    In this paper, the second-harmonic generation (SHG) in a one-dimensional nonlinear crystal that is embedded in air is investigated. Previously, the identical configuration was studied in Li Z. Y. et al., Phys. Rev. B, 60 (1999) 10644, without the use of the slowly varying amplitude approximation (SVAA), but by adopting the infinite plane-wave approximation (PWA), despite the fact that this approximation is not quite applicable to such a system. We calculate the SHG conversion efficiency without a PWA, and compare the results with those from the quoted reference. The investigation reveals that conversion efficiencies of SHG as calculated by the two methods appear to exhibit significant differences, and that the SHG may be modulated by the field of a fundamental wave (FW). The ratio between SHG conversion efficiencies as produced by the two methods shows a periodic variation, and this oscillatory behavior is fully consistent with the variation in transmittance of the FW. Quasi-phase matching (QPM) is also studied, and we find that the location of the peak for SHG conversion efficiency deviates from Δd=0, which differs from the conventional QPM results.

  16. Conversion of Low Quality Waste Heat to Electric Power with Small-Scale Organic Rankine Cycle (ORC) Engine/Generator Technology

    DTIC Science & Technology

    2016-08-01

    REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1...urrendy valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) , 2. REPORT TYPE 3. DATES COVERED (From...NUMBER (Include area code) 919-282-1050 Standard Form 298 (Rev. 8198) Pntscnbed by ANSI Std. Z39.18 Cost & Performance Report 58XX i COST

  17. EQCM Measurements: Redox-Induced Changes in Solvent and Ion Content in Anchored Redox Monolayers of Organosulfur Compounds and Their Electrocatalysis on Gold Electrodes

    DTIC Science & Technology

    1990-08-01

    Langmuir, I. J. Am. Chem. Soc. 1917, 39, 1848-1906. b ) Blodgett, K. B . J. Am. Chem. Soc. 1935, 57, 1007-1022. c) Blinov , L. M. Russ. Chem. Rev. 1988, 52...pressure producing a polarization b ) Converse piezoelectric effect (structural deformation) caused by applying a potential across the crystal...of Ferrocenamide phenyl disulfide in: A) IM HC104, B ) IM HNO 3 , and C) iM H2 SO4 versus SSCE ....... ...... ................ s34 Figure 3.7 Study of

  18. Survey for Ortho-to-Para Abundance Ratios (OPRs) of NH2 in Comets: Revisit to the Meaning of OPRs of Cometary Volatiles

    NASA Astrophysics Data System (ADS)

    Kawakita, Hideyo; Shinnaka, Yoshiharu; Jehin, Emmanuel; Decock, Alice; Hutsemekers, Damien; Manfroid, Jean

    2016-10-01

    Since molecules having identical protons can be classified into nuclear-spin isomers (e.g., ortho-H2O and para-H2O for water) and their inter-conversions by radiative and non-destructive collisional processes are believed to be very slow, the ortho-to-para abundance ratios (OPRs) of cometary volatiles such as H2O, NH3 and CH4 in coma have been considered as primordial characters of cometary molecules [1]. Those ratios are usually interpreted as nuclear-spin temperatures although the real meaning of OPRs is in strong debate. Recent progress in laboratory studies about nuclear-spin conversion in gas- and solid-phases [2,3] revealed short-time nuclear-spin conversions for water, and we have to reconsider the interpretation for observed OPRs of cometary volatiles. We have already performed the survey for OPRs of NH2 in more than 20 comets by large aperture telescopes with high-resolution spectrographs (UVES/VLT, HDS/Subaru, etc.) in the optical wavelength region [4]. The observed OPRs of ammonia estimated from OPRs of NH2, cluster around ~1.1 (cf. 1.0 as a high-temperature limit), indicative of ~30 K as nuclear-spin temperatures. We present our latest results for OPRs of cometary NH2 and discuss about the real meaning of OPRs of cometary ammonia, in relation to OPRs of water in cometary coma. Chemical processes in the inner coma may play an important role to achieve un-equilibrated OPRs of cometary volatiles in coma.This work was financially supported by MEXT Supported Program for the Strategic Research Foundation at Private Universities, 2014-2018 (No. S1411028) (HK) and by Graint-in-Aid for JSPS Fellows, 15J10864 (YS).References:[1] Mumma & Charnley, 2011, Annu. Rev. Astro. Astrophys. 49, 471.[2] Hama & Watanabe, 2013, Chem. Rev. 113, 8783.[3] Hama et al., 2008, Science 351, 6268.[4] Shinnaka et al., 2011, ApJ 729, 81.

  19. Uncertainties in climate change projections for viticulture in Portugal

    NASA Astrophysics Data System (ADS)

    Fraga, Helder; Malheiro, Aureliano C.; Moutinho-Pereira, José; Pinto, Joaquim G.; Santos, João A.

    2013-04-01

    The assessment of climate change impacts on viticulture is often carried out using regional climate model (RCM) outputs. These studies rely on either multi-model ensembles or on single-model approaches. The RCM-ensembles account for uncertainties inherent to the different models. In this study, using a 16-RCM ensemble under the IPCC A1B scenario, the climate change signal (future minus recent-past, 2041-2070 - 1961-2000) of 4 bioclimatic indices (Huglin Index - HI, Dryness Index - DI, Hydrothermal Index - HyI and CompI - Composite Index) over mainland Portugal is analysed. A normalized interquartile range (NIQR) of the 16-member ensemble for each bioclimatic index is assessed in order to quantify the ensemble uncertainty. The results show significant increases in the HI index over most of Portugal, with higher values in Alentejo, Trás-os-Montes and Douro/Porto wine regions, also depicting very low uncertainty. Conversely, the decreases in the DI pattern throughout the country show large uncertainties, except in Minho (northwestern Portugal), where precipitation reaches the highest amounts in Portugal. The HyI shows significant decreases in northwestern Portugal, with relatively low uncertainty all across the country. The CompI depicts significant decreases over Alentejo and increases over Minho, though decreases over Alentejo reveal high uncertainty, while increases over Minho show low uncertainty. The assessment of the uncertainty in climate change projections is of great relevance for the wine industry. Quantifying this uncertainty is crucial, since different models may lead to quite different outcomes and may thereby be as crucial as climate change itself to the winemaking sector. This work is supported by European Union Funds (FEDER/COMPETE - Operational Competitiveness Programme) and by national funds (FCT - Portuguese Foundation for Science and Technology) under the project FCOMP-01-0124-FEDER-022692.

  20. Charged particle dynamics in multiple colliding electromagnetic waves. Survey of random walk, Lévy flights, limit circles, attractors and structurally determinate patterns

    NASA Astrophysics Data System (ADS)

    Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J. K.; Bulanov, S. S.; Gong, Z.; Yan, X. Q.; Kando, M.

    2017-04-01

    The multiple colliding laser pulse concept formulated by Bulanov et al. (Phys. Rev. Lett., vol. 104, 2010b, 220404) is beneficial for achieving an extremely high amplitude of coherent electromagnetic field. Since the topology of electric and magnetic fields of multiple colliding laser pulses oscillating in time is far from trivial and the radiation friction effects are significant in the high field limit, the dynamics of charged particles interacting with the multiple colliding laser pulses demonstrates remarkable features corresponding to random walk trajectories, limit circles, attractors, regular patterns and Lévy flights. Under extremely high intensity conditions the nonlinear dissipation mechanism stabilizes the particle motion resulting in the charged particle trajectory being located within narrow regions and in the occurrence of a new class of regular patterns made by the particle ensembles.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agostini, Federica; Abedi, Ali; Suzuki, Yasumitsu

    The decomposition of electronic and nuclear motion presented in Abedi et al. [Phys. Rev. Lett. 105, 123002 (2010)] yields a time-dependent potential that drives the nuclear motion and fully accounts for the coupling to the electronic subsystem. Here, we show that propagation of an ensemble of independent classical nuclear trajectories on this exact potential yields dynamics that are essentially indistinguishable from the exact quantum dynamics for a model non-adiabatic charge transfer problem. We point out the importance of step and bump features in the exact potential that are critical in obtaining the correct splitting of the quasiclassical nuclear wave packetmore » in space after it passes through an avoided crossing between two Born-Oppenheimer surfaces and analyze their structure. Finally, an analysis of the exact potentials in the context of trajectory surface hopping is presented, including preliminary investigations of velocity-adjustment and the force-induced decoherence effect.« less

  2. Phase diagram of two-dimensional hard ellipses.

    PubMed

    Bautista-Carbajal, Gustavo; Odriozola, Gerardo

    2014-05-28

    We report the phase diagram of two-dimensional hard ellipses as obtained from replica exchange Monte Carlo simulations. The replica exchange is implemented by expanding the isobaric ensemble in pressure. The phase diagram shows four regions: isotropic, nematic, plastic, and solid (letting aside the hexatic phase at the isotropic-plastic two-step transition [E. P. Bernard and W. Krauth, Phys. Rev. Lett. 107, 155704 (2011)]). At low anisotropies, the isotropic fluid turns into a plastic phase which in turn yields a solid for increasing pressure (area fraction). Intermediate anisotropies lead to a single first order transition (isotropic-solid). Finally, large anisotropies yield an isotropic-nematic transition at low pressures and a high-pressure nematic-solid transition. We obtain continuous isotropic-nematic transitions. For the transitions involving quasi-long-range positional ordering, i.e., isotropic-plastic, isotropic-solid, and nematic-solid, we observe bimodal probability density functions. This supports first order transition scenarios.

  3. Charged particle dynamics in multiple colliding electromagnetic waves. Survey of random walk, Lévy flights, limit circles, attractors and structurally determinate patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J. K.

    The multiple colliding laser pulse concept formulated by Bulanovet al.(Phys. Rev. Lett., vol. 104, 2010b, 220404) is beneficial for achieving an extremely high amplitude of coherent electromagnetic field. Since the topology of electric and magnetic fields of multiple colliding laser pulses oscillating in time is far from trivial and the radiation friction effects are significant in the high field limit, the dynamics of charged particles interacting with the multiple colliding laser pulses demonstrates remarkable features corresponding to random walk trajectories, limit circles, attractors, regular patterns and Lévy flights. Lastly, under extremely high intensity conditions the nonlinear dissipation mechanism stabilizes the particle motionmore » resulting in the charged particle trajectory being located within narrow regions and in the occurrence of a new class of regular patterns made by the particle ensembles.« less

  4. Charged particle dynamics in multiple colliding electromagnetic waves. Survey of random walk, Lévy flights, limit circles, attractors and structurally determinate patterns

    DOE PAGES

    Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J. K.; ...

    2017-03-09

    The multiple colliding laser pulse concept formulated by Bulanovet al.(Phys. Rev. Lett., vol. 104, 2010b, 220404) is beneficial for achieving an extremely high amplitude of coherent electromagnetic field. Since the topology of electric and magnetic fields of multiple colliding laser pulses oscillating in time is far from trivial and the radiation friction effects are significant in the high field limit, the dynamics of charged particles interacting with the multiple colliding laser pulses demonstrates remarkable features corresponding to random walk trajectories, limit circles, attractors, regular patterns and Lévy flights. Lastly, under extremely high intensity conditions the nonlinear dissipation mechanism stabilizes the particle motionmore » resulting in the charged particle trajectory being located within narrow regions and in the occurrence of a new class of regular patterns made by the particle ensembles.« less

  5. Shear failure of granular materials

    NASA Astrophysics Data System (ADS)

    Degiuli, Eric; Balmforth, Neil; McElwaine, Jim; Schoof, Christian; Hewitt, Ian

    2012-02-01

    Connecting the macroscopic behavior of granular materials with the microstructure remains a great challenge. Recent work connects these scales with a discrete calculus [1]. In this work we generalize this formalism from monodisperse packings of disks to 2D assemblies of arbitrarily shaped grains. In particular, we derive Airy's expression for a symmetric, divergence-free stress tensor. Using these tools, we derive, from first-principles and in a mean-field approximation, the entropy of frictional force configurations in the Force Network Ensemble. As a macroscopic consequence of the Coulomb friction condition at contacts, we predict shear failure at a critical shear stress, in accordance with the Mohr-Coulomb failure condition well known in engineering. Results are compared with numerical simulations, and the dependence on the microscopic geometric configuration is discussed. [4pt] [1] E. DeGiuli & J. McElwaine, PRE 2011. doi: 10.1103/PhysRevE.84.041310

  6. Extended Coherence Time on the Clock Transition of Optically Trapped Rubidium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleine Buening, G.; Will, J.; Ertmer, W.

    2011-06-17

    Optically trapped ensembles are of crucial importance for frequency measurements and quantum memories but generally suffer from strong dephasing due to inhomogeneous density and light shifts. We demonstrate a drastic increase of the coherence time to 21 s on the magnetic field insensitive clock transition of {sup 87}Rb by applying the recently discovered spin self-rephasing [C. Deutsch et al., Phys. Rev. Lett. 105, 020401 (2010)]. This result confirms the general nature of this new mechanism and thus shows its applicability in atom clocks and quantum memories. A systematic investigation of all relevant frequency shifts and noise contributions yields a stabilitymore » of 2.4x10{sup -11{tau}-1/2}, where {tau} is the integration time in seconds. Based on a set of technical improvements, the presented frequency standard is predicted to rival the stability of microwave fountain clocks in a potentially much more compact setup.« less

  7. Neuronal ensemble control of prosthetic devices by a human with tetraplegia

    NASA Astrophysics Data System (ADS)

    Hochberg, Leigh R.; Serruya, Mijail D.; Friehs, Gerhard M.; Mukand, Jon A.; Saleh, Maryam; Caplan, Abraham H.; Branner, Almut; Chen, David; Penn, Richard D.; Donoghue, John P.

    2006-07-01

    Neuromotor prostheses (NMPs) aim to replace or restore lost motor functions in paralysed humans by routeing movement-related signals from the brain, around damaged parts of the nervous system, to external effectors. To translate preclinical results from intact animals to a clinically useful NMP, movement signals must persist in cortex after spinal cord injury and be engaged by movement intent when sensory inputs and limb movement are long absent. Furthermore, NMPs would require that intention-driven neuronal activity be converted into a control signal that enables useful tasks. Here we show initial results for a tetraplegic human (MN) using a pilot NMP. Neuronal ensemble activity recorded through a 96-microelectrode array implanted in primary motor cortex demonstrated that intended hand motion modulates cortical spiking patterns three years after spinal cord injury. Decoders were created, providing a `neural cursor' with which MN opened simulated e-mail and operated devices such as a television, even while conversing. Furthermore, MN used neural control to open and close a prosthetic hand, and perform rudimentary actions with a multi-jointed robotic arm. These early results suggest that NMPs based upon intracortical neuronal ensemble spiking activity could provide a valuable new neurotechnology to restore independence for humans with paralysis.

  8. Atom-chip-based quantum gravimetry for the precise determination of absolute gravity

    NASA Astrophysics Data System (ADS)

    Abend, Sven; Schubert, Christian; Ertmer, Wolfgang; Rasel, Ernst

    2017-04-01

    We present a novel technique for the precise measurement of absolute local gravity with a quantum gravimeter based on an atom chip. Atom interferometry utilizes the interference of matter waves interrogated by laser light to read out inertial forces. Today's generation of these devices typically operate with test mass samples, that consists of ensembles of laser cooled atoms. Their performance is limited by the velocity spread and finite-size of the test masses that impose systematic uncertainties at the level of a few μGal [1]. Rather than laser cooled atoms we employ quantum degenerate ensembles, so called Bose-Einstein condensates [2], as ultra-sensitive probes for gravity. These sources offer unique properties that will allow to overcome the current limitations in the next generation of sensors. Furthermore, atom-chip technology offers the possibility to generate Bose-Einstein condensates in a fast and reliable way. We present a lab-based prototype that uses the atom chip itself to retro-reflect the interrogation laser and thus serves as inertial reference inside the vacuum [3]. With this setup, it is possible to demonstrate all necessary steps to measure gravity, including the preparation of the source, spanning an interferometer as well as the detection of the output signal. All steps are pursued on a baseline of 1 cm right below the atom chip and to analyze relevant systematic effects. In the framework of the center of excellence geoQ a next generation device is under construction at the Institut für Quantenoptik, that will target for in-field measurements. This device will feature a state-of-the-art atom-chip source with a high-flux of ultra-cold atoms at a repetition rate of 1-2 Hz [4]. The device will be characterized in cooperation with the Müller group at the Institut für Erdmessung the sensor and finally employed in a campaign to measure the Fennoscandian uplift at the level of 1 μGal. The presented work is supported by the CRC 1227 DQ-mat, the CRC 1128 geo-Q, the RTG 1729, the QUEST-LFS, by the German Space Agency (DLR) with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557. [1] A. Peters et al., Nature 400, 849, 1999; A. Louchet-Chauvet et al., New J. Phys. 13, 065026, 2011; C. Freier et al., J. of Phys.: Conf. Series 723, 012050, 2016; V. Schkolnik et al., Appl. Phys. B 120, 311-316 (2015). [2] K. B. Davis et al., Phys. Rev. Lett. 74, 5202, 1995; M. H. Anderson et al., Science 269, 198, 1995; C. C. Bradley et al., Phys. Rev. Lett. 75, 1687, 1995. [3] S. Abend et al., Phys. Rev. Lett. 117, 203003, 2016. [4] J. Rudolph et al., New J. Phys. 17, 065001, 2015.

  9. Adaptive Green-Kubo estimates of transport coefficients from molecular dynamics based on robust error analysis

    NASA Astrophysics Data System (ADS)

    Jones, Reese E.; Mandadapu, Kranthi K.

    2012-04-01

    We present a rigorous Green-Kubo methodology for calculating transport coefficients based on on-the-fly estimates of: (a) statistical stationarity of the relevant process, and (b) error in the resulting coefficient. The methodology uses time samples efficiently across an ensemble of parallel replicas to yield accurate estimates, which is particularly useful for estimating the thermal conductivity of semi-conductors near their Debye temperatures where the characteristic decay times of the heat flux correlation functions are large. Employing and extending the error analysis of Zwanzig and Ailawadi [Phys. Rev. 182, 280 (1969)], 10.1103/PhysRev.182.280 and Frenkel [in Proceedings of the International School of Physics "Enrico Fermi", Course LXXV (North-Holland Publishing Company, Amsterdam, 1980)] to the integral of correlation, we are able to provide tight theoretical bounds for the error in the estimate of the transport coefficient. To demonstrate the performance of the method, four test cases of increasing computational cost and complexity are presented: the viscosity of Ar and water, and the thermal conductivity of Si and GaN. In addition to producing accurate estimates of the transport coefficients for these materials, this work demonstrates precise agreement of the computed variances in the estimates of the correlation and the transport coefficient with the extended theory based on the assumption that fluctuations follow a Gaussian process. The proposed algorithm in conjunction with the extended theory enables the calculation of transport coefficients with the Green-Kubo method accurately and efficiently.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todt, Michael A.; Isenberg, Allan E.; Nanayakkara, Sanjini U.

    Semiconducting transition-metal dichalcogenide (TMD) nanoflake thin films are promising large-area electrodes for photo-electrochemical solar energy conversion applications. However, their energy conversion efficiencies are typically much lower than those of bulk electrodes. It is unclear to what extent this efficiency gap stems from differences among nanoflakes (e.g., area, thickness, and surface structural features). It is also unclear whether individual exfoliated nanoflakes can achieve energy conversion efficiencies similar to those of bulk crystals. Here, we use a single-nanoflake photo-electrochemical approach to show that there are both highly active and completely inactive nanoflakes within a film. For the exfoliated MoSe 2 samples studiedmore » herein, 7% of nanoflakes are highly active champions, whose photocurrent efficiency exceeds that of the bulk crystal. However, 66% of nanoflakes are inactive spectators, which are mostly responsible for the overall lower photocurrent efficiency compared to the bulk crystal. The photocurrent collection efficiency increases with nanoflake area and decreases more at perimeter edges than at interior step edges. These observations, which are hidden in ensemble-level measurements, reveal the underlying performance issues of exfoliated TMD electrodes for photo-electrochemical energy conversion applications.« less

  11. Uncertainty, Sensitivity Analysis, and Causal Identification in the Arctic using a Perturbed Parameter Ensemble of the HiLAT Climate Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunke, Elizabeth Clare; Urrego Blanco, Jorge Rolando; Urban, Nathan Mark

    Coupled climate models have a large number of input parameters that can affect output uncertainty. We conducted a sensitivity analysis of sea ice proper:es and Arc:c related climate variables to 5 parameters in the HiLAT climate model: air-ocean turbulent exchange parameter (C), conversion of water vapor to clouds (cldfrc_rhminl) and of ice crystals to snow (micro_mg_dcs), snow thermal conduc:vity (ksno), and maximum snow grain size (rsnw_mlt). We used an elementary effect (EE) approach to rank their importance for output uncertainty. EE is an extension of one-at-a-time sensitivity analyses, but it is more efficient in sampling multi-dimensional parameter spaces. We lookedmore » for emerging relationships among climate variables across the model ensemble, and used causal discovery algorithms to establish potential pathways for those relationships.« less

  12. Decoherence of entangled states by colored noise: application to precision measurements

    NASA Astrophysics Data System (ADS)

    Andre, Axel; Sorensen, Anders; Lukin, Mikhail; van der Wal, Caspar

    2003-05-01

    Controlled manipulation of quantum systems can lead to a number of exciting new applications in quantum information science, from quantum computation to applications in precision measurements. In many such applications, decoherence is a key factor to take into account and ultimately determines the feasibility or usefulness of the proposal. The decoherence of quantum mechanical degrees of freedom is usually modeled through their interaction with a bath consisting of a large number of harmonic oscillators. The separation of energy scales between the energy of the oscillators and the interaction energy leads to separation of time scales so that the decoherence process can be modeled effectively by a markovian process (infinitely short reservoir correlation time). Low-lying state are long-lived and are therefore ideally suited for storage of quantum information and long-lived quantum memory. Due to their long lifetime, these states are sensitive to the low frequency noise of the environment. In particular 1/f noise is dominating at low frequencies and this changes the form of the decoherence. In this case, non-exponential decay is to be expected so that the importance of decoherence depends on the time-scale. We consider the accuracy of frequency measurements using the Ramsey technique when the ensemble of atoms is subject to colored noise during the measurement. It has been shown that the use of entangled states of atomic ensembles (so-called spin squeezed states) may lead to an improvement in the accuracy of frequency measurements when the system is noiseless [1]. To assess the usefulness in a real setup decoherence has to be taken into account. It has been shown that for white noise spectra the net improvement is very small [2], this conclusion is however changed significantly when the system is influenced by colored noise. We study phase noise of the reference oscillator in frequency measurements and show that for non-white noise spectra (e.g. when the noise power increases at low frequencies such as for 1/f noise) there is a net improvement in accuracy when using spin-squeezed states as compared with non-entangled states. [1] D.J. Wineland et al., Phys. Rev. A 50, 67 (1994). [2] S.F. Huelga et al., Phys. Rev. Lett. 79, 3865 (1997).

  13. Spatiotemporal structure of biphoton entanglement in type-II parametric down-conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brambilla, E.; Caspani, L.; Lugiato, L. A.

    2010-07-15

    We investigate the spatiotemporal structure of the biphoton correlation in type-II parametric down-conversion (PDC). As in type-I PDC [Phys. Rev. Lett. 102, 223601 (2009)], we find that the correlation is nonfactorizable in space and time. Differently from type I, the type-II correlation in the spontaneous regime displays an asymmetric V-shaped structure in any cross section including time and one transverse dimension. This asymmetry along the temporal coordinate originates from the signal-idler group velocity mismatch and tends to disappear as the parametric gain is raised. We observe a progressive transition toward a symmetric X-shaped geometry similar to that found in typemore » I when stimulated PDC becomes dominant. We also give quantitative evaluations of the localization in space and in time of the correlation, analyze its behavior for different crystal tuning angles, and underline qualitative differences with respect to type-I PDC.« less

  14. Mathematical modeling of elementary trapping-reduction processes in positron annihilation lifetime spectroscopy: methodology of Ps-to-positron trapping conversion

    NASA Astrophysics Data System (ADS)

    Shpotyuk, Ya; Cebulski, J.; Ingram, A.; Shpotyuk, O.

    2017-12-01

    Methodological possibilities of positron annihilation lifetime (PAL) spectroscopy in application to nanostructurized substances treated within three-term fitting procedure are reconsidered to parameterize their atomic-deficient structural arrangement. In contrast to conventional three-term fitting analysis of the detected PAL spectra based on admixed positron trapping and positronium (Ps) decaying, the nanostructurization due to guest nanoparticles embedded in host matrix is considered as producing modified trapping, which involves conversion between these channels. The developed approach referred to as x3-x2-coupling decomposition algorithm allows estimation free volumes of interfacial voids responsible for positron trapping and bulk lifetimes in nanoparticle-embedded substances. This methodology is validated using experimental data of Chakraverty et al. [Phys. Rev. B71 (2005) 024115] on PAL study of composites formed by guest NiFe2O4 nanocrystals grown in host SiO2 matrix.

  15. Assessment of Mediterranean cyclones in the multi-ensemble EC-Earth

    NASA Astrophysics Data System (ADS)

    Gil, Victoria; Liberato, Margarida L. R.; Trigo, Isabel F.; Trigo, Ricardo M.

    2015-04-01

    The geographical location and characteristics of the Mediterranean basin make this a particularly active region in terms of cyclone forming and re-development (Trigo et al., 2002). The area is affected by moving depressions, most originated over the North Atlantic, which may later be forced by the orography surrounding the Mediterranean Sea and enhanced by the local source of moisture and heat fluxes over the Sea itself. The present work analyses the response of Mediterranean cyclones to climate change by means of 7 ensemble members of EC-EARTH model from CMIP5 (Fifth Coupled Model Intercomparison Project). We restrict the analysis to a relatively small subset (7 members) of the total number of ensemble members available in order to take into account only the members present in the three selected experiments for robust detection of extra-tropical cyclones in the Mediterranean (Trigo, 2006). We have applied the standard procedure by comparing a common 25-year period of the historical (1980-2004), present day simulations, and the future climate simulations (2074-2098) forced by RCP4.5 and RCP8.5 scenarios. The study area corresponds to the window between 10°W-42°E and 27°N-48°N. The analysis is performed with a focus in spatial distribution density and main characteristics of the overall cyclones for winter (DJF) and summer (JJA) seasons. Despite the discrepancies in cyclone numbers when compared with the ERA Interim common period (reducing to only 72% in DJF and 78% in JJA), the ensemble average matches relatively well the main spatial patterns of areas. Results indicate that the ensemble average is characterized by a small decrease in winter (-3%) and a notable increase in summer (+10%) in total number of cyclones and that the individual ensemble members reveal small spread. Such tendency is particularly pronounced under the high RCP8.5 emission scenario being more moderated under the RCP4.5 scenario. Additionally, an assessment of changes in the annual cycle suggests a slight decrease of the spring maximum and a pronounced increase in the summer maximum. The cyclone characteristics obtained from the ensemble members of EC-Earth indicate that summer cyclones will tend to be slower, less intense but will have a faster deepening phase. Part of the summer enhanced activity is in areas dominated by thermal lows. Trigo I.F., G. R. Bigg and T.D. Davies, 2002: Climatology of cyclogenesis mechanisms in the Mediterranean. Mon. Wea. Rev. 130, 549-569. Trigo, I. F., 2006: Climatology and Interannual Variability of Storm-Tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR Reanalyses. Clim. Dynam., 26, 127-143. Acknowledgements: This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER- 019524 (PTDC/AAC-CLI/121339/2010).

  16. Pre-relaxation in weakly interacting models

    NASA Astrophysics Data System (ADS)

    Bertini, Bruno; Fagotti, Maurizio

    2015-07-01

    We consider time evolution in models close to integrable points with hidden symmetries that generate infinitely many local conservation laws that do not commute with one another. The system is expected to (locally) relax to a thermal ensemble if integrability is broken, or to a so-called generalised Gibbs ensemble if unbroken. In some circumstances expectation values exhibit quasi-stationary behaviour long before their typical relaxation time. For integrability-breaking perturbations, these are also called pre-thermalisation plateaux, and emerge e.g. in the strong coupling limit of the Bose-Hubbard model. As a result of the hidden symmetries, quasi-stationarity appears also in integrable models, for example in the Ising limit of the XXZ model. We investigate a weak coupling limit, identify a time window in which the effects of the perturbations become significant and solve the time evolution through a mean-field mapping. As an explicit example we study the XYZ spin-\\frac{1}{2} chain with additional perturbations that break integrability. One of the most intriguing results of the analysis is the appearance of persistent oscillatory behaviour. To unravel its origin, we study in detail a toy model: the transverse-field Ising chain with an additional nonlocal interaction proportional to the square of the transverse spin per unit length (2013 Phys. Rev. Lett. 111 197203). Despite being nonlocal, this belongs to a class of models that emerge as intermediate steps of the mean-field mapping and shares many dynamical properties with the weakly interacting models under consideration.

  17. Noise-assisted energy transfer from the dilation of the set of one-electron reduced density matrices

    NASA Astrophysics Data System (ADS)

    Chakraborty, Romit; Mazziotti, David A.

    2017-05-01

    Noise-assisted energy transfer can be explained geometrically in terms of the set of one-electron reduced density matrices (1-RDMs) [R. Chakraborty and D. A. Mazziotti, Phys. Rev. A 91, 010101(R) (2015)]. In this paper, we examine the geometric picture of quantum noise for the seven-chromophore Fenna-Matthews-Olson (FMO) complex. Noise expands the feasible set of orbital occupation trajectories to the target state through the violation of the pure-state N-representability conditions on the 1-RDM, known as the generalized Pauli constraints. While the generalized Pauli constraints are not explicitly known for seven-electron systems, we are able to treat a seven-exciton model of the FMO complex through the use of generalized Pauli constraints for p qubits which are known for arbitrary p. In the model, we find that while dephasing noise alone produces a trajectory of ensemble states that neither expands the set of 1-RDMs nor reaches the reaction center, the inclusion of both dephasing and dissipation expands the set of 1-RDMs and exhibits an efficient energy transfer to the reaction center. The degree to which the noise expands the set of 1-RDMs, violating the generalized Pauli constraints, is quantified by the distance of the 1-RDM outside its pure set to the distance of the 1-RDM inside its ensemble set. The geometric picture of energy transfer has applications to general quantum systems in chemistry and physics.

  18. Dose and release pattern of anabolic implants affects growth of finishing beef steers across days on feed.

    PubMed

    Parr, S L; Chung, K Y; Hutcheson, J P; Nichols, W T; Yates, D A; Streeter, M N; Swingle, R S; Galyean, M L; Johnson, B J

    2011-03-01

    Four experiments evaluated the effect of implant dose and release pattern on performance and carcass traits of crossbred beef steers. In Exp. 1, steers (4 to 7 pens/treatment; initial BW = 315 kg) were fed an average of 174 d. Treatments were 1) no implant (NI); 2) Revalor-S [120 mg of trenbolone acetate (TBA) and 24 mg of estradiol 17β (E(2)); REV-S]; 3) Revalor-IS followed by REV-S (cumulatively 200 mg of TBA and 40 mg of E(2); reimplanted at 68 to 74 d; REV-IS/S); and 4) Revalor-XS (200 mg of TBA and 40 mg of E(2); REV-X). Carcass-adjusted final BW was greater (P < 0.05) for REV-X and REV-IS/S than for REV-S (610, 609, and 598 kg, respectively). Daily DMI did not differ (P > 0.10) among the 3 implants, but carcass-adjusted G:F was greater (P < 0.05) for REV-X and REV-IS/S than for REV-S (0.197 and 0.195 vs. 0.188). Both HCW and LM area were greater (P < 0.05) for REV-X and REV-IS/S than for REV-S. Marbling scores were greatest (P < 0.05) for REV-S and least (P < 0.05) for REV-IS/S; REV-X was intermediate to NI and REV-IS/S. In Exp. 2, steers (10 pens/treatment; initial BW = 391 kg) were fed 131 d, with treatments of REV-S, REV-IS/S (reimplanted at 44 to 47 d), and REV-X. Carcass-adjusted final BW (598 kg), ADG (1.6 kg), DMI (9.4 kg), G:F (0.17), and HCW did not differ (P > 0.10) among treatments. The percentage of Choice was less (P < 0.05) and percentage of Select greater (P < 0.05) for REV-IS/S than for REV-S and REV-X. In Exp. 3, steers (10 pens/treatment; initial BW = 277 kg) were fed 197 d and received either REV-IS/S (reimplanted at 90 to 103 d) or REV-X. Carcass-adjusted final BW (625 vs. 633 kg) and ADG (1.81 vs. 1.76 kg) were greater (P < 0.05) for REV-X-implanted steers. Daily DMI did not differ, but G:F tended (P < 0.10) to be increased and HCW was greater (P < 0.05) for REV-X than for REV-IS/S. In Exp. 4, steers (8 pens/treatment; initial BW = 238 kg) were fed 243 d and received either REV-IS/S (reimplanted at 68 to 71 d) or REV-X. Carcass-adjusted final BW (612 kg), ADG (1.54 kg), DMI (7.55), and G:F (0.21) did not differ (P > 0.10) for REV-IS/S and REV-X-implanted steers. Carcass traits did not differ among implants, but the percentage of Choice carcasses was greater (P < 0.05) and percentage of Select was less (P < 0.05) for REV-X than for REV-IS/S. These data indicate that when TBA/E(2) dose is equal, the altered release rate of REV-X can improve performance and quality grade, but these effects depend on duration of the feeding period and timing of initial and terminal implants.

  19. A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band.

    PubMed

    Albrecht, Boris; Farrera, Pau; Fernandez-Gonzalvo, Xavier; Cristiani, Matteo; de Riedmatten, Hugues

    2014-02-27

    Coherently converting the frequency and temporal waveform of single and entangled photons will be crucial to interconnect the various elements of future quantum information networks. Of particular importance is the quantum frequency conversion of photons emitted by material systems able to store quantum information, so-called quantum memories. There have been significant efforts to implement quantum frequency conversion using nonlinear crystals, with non-classical light from broadband photon-pair sources and solid-state emitters. However, solid state quantum frequency conversion has not yet been achieved with long-lived optical quantum memories. Here we demonstrate an ultra-low-noise solid state photonic quantum interface suitable for connecting quantum memories based on atomic ensembles to the telecommunication fibre network. The interface is based on an integrated-waveguide nonlinear device. We convert heralded single photons at 780 nm from a rubidium-based quantum memory to the telecommunication wavelength of 1,552 nm, showing significant non-classical correlations between the converted photon and the heralding signal.

  20. Photonic quantum state transfer between a cold atomic gas and a crystal.

    PubMed

    Maring, Nicolas; Farrera, Pau; Kutluer, Kutlu; Mazzera, Margherita; Heinze, Georg; de Riedmatten, Hugues

    2017-11-22

    Interfacing fundamentally different quantum systems is key to building future hybrid quantum networks. Such heterogeneous networks offer capabilities superior to those of their homogeneous counterparts, as they merge the individual advantages of disparate quantum nodes in a single network architecture. However, few investigations of optical hybrid interconnections have been carried out, owing to fundamental and technological challenges such as wavelength and bandwidth matching of the interfacing photons. Here we report optical quantum interconnection of two disparate matter quantum systems with photon storage capabilities. We show that a quantum state can be transferred faithfully between a cold atomic ensemble and a rare-earth-doped crystal by means of a single photon at 1,552  nanometre telecommunication wavelength, using cascaded quantum frequency conversion. We demonstrate that quantum correlations between a photon and a single collective spin excitation in the cold atomic ensemble can be transferred to the solid-state system. We also show that single-photon time-bin qubits generated in the cold atomic ensemble can be converted, stored and retrieved from the crystal with a conditional qubit fidelity of more than 85 per cent. Our results open up the prospect of optically connecting quantum nodes with different capabilities and represent an important step towards the realization of large-scale hybrid quantum networks.

  1. Single-ping ADCP measurements in the Strait of Gibraltar

    NASA Astrophysics Data System (ADS)

    Sammartino, Simone; García Lafuente, Jesús; Naranjo, Cristina; Sánchez Garrido, José Carlos; Sánchez Leal, Ricardo

    2016-04-01

    In most Acoustic Doppler Current Profiler (ADCP) user manuals, it is widely recommended to apply ensemble averaging of the single-pings measurements, in order to obtain reliable observations of the current speed. The random error related to the single-ping measurement is typically too high to be used directly, while the averaging operation reduces the ensemble error of a factor of approximately √N, with N the number of averaged pings. A 75 kHz ADCP moored in the western exit of the Strait of Gibraltar, included in the long-term monitoring of the Mediterranean outflow, has recently served as test setup for a different approach to current measurements. The ensemble averaging has been disabled, while maintaining the internal coordinate conversion made by the instrument, and a series of single-ping measurements has been collected every 36 seconds during a period of approximately 5 months. The huge amount of data has been fluently handled by the instrument, and no abnormal battery consumption has been recorded. On the other hand a long and unique series of very high frequency current measurements has been collected. Results of this novel approach have been exploited in a dual way: from a statistical point of view, the availability of single-ping measurements allows a real estimate of the (a posteriori) ensemble average error of both current and ancillary variables. While the theoretical random error for horizontal velocity is estimated a priori as ˜2 cm s-1 for a 50 pings ensemble, the value obtained by the a posteriori averaging is ˜15 cm s-1, with an asymptotical behavior starting from an averaging size of 10 pings per ensemble. This result suggests the presence of external sources of random error (e.g.: turbulence), of higher magnitude than the internal sources (ADCP intrinsic precision), which cannot be reduced by the ensemble averaging. On the other hand, although the instrumental configuration is clearly not suitable for a precise estimation of turbulent parameters, some hints of the turbulent structure of the flow can be obtained by the empirical computation of zonal Reynolds stress (along the predominant direction of the current) and rate of production and dissipation of turbulent kinetic energy. All the parameters show a clear correlation with tidal fluctuations of the current, with maximum values coinciding with flood tides, during the maxima of the outflow Mediterranean current.

  2. Transient enhancement and spectral narrowing of the photothermal effect of plasmonic nanoparticles under pulsed excitation.

    PubMed

    Lukianova-Hleb, Ekaterina Y; Volkov, Alexey N; Wu, Xiangwei; Lapotko, Dmitri O

    2013-02-06

    The transient 100-fold enhancement and spectral narrowing to 2 nm of the photothermal conversion by solid gold nanospheres under near-infrared excitation with a short laser pulse is reported. This non-stationary effect was observed for a wide range of optical fluences starting from 10 mJ cm(-2) for single nanospheres, their ensembles and aggregated clusters in water, in vitro and in vivo. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Reliability ensemble averaging of 21st century projections of terrestrial net primary productivity reduces global and regional uncertainties

    NASA Astrophysics Data System (ADS)

    Exbrayat, Jean-François; Bloom, A. Anthony; Falloon, Pete; Ito, Akihiko; Smallman, T. Luke; Williams, Mathew

    2018-02-01

    Multi-model averaging techniques provide opportunities to extract additional information from large ensembles of simulations. In particular, present-day model skill can be used to evaluate their potential performance in future climate simulations. Multi-model averaging methods have been used extensively in climate and hydrological sciences, but they have not been used to constrain projected plant productivity responses to climate change, which is a major uncertainty in Earth system modelling. Here, we use three global observationally orientated estimates of current net primary productivity (NPP) to perform a reliability ensemble averaging (REA) method using 30 global simulations of the 21st century change in NPP based on the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) business as usual emissions scenario. We find that the three REA methods support an increase in global NPP by the end of the 21st century (2095-2099) compared to 2001-2005, which is 2-3 % stronger than the ensemble ISIMIP mean value of 24.2 Pg C y-1. Using REA also leads to a 45-68 % reduction in the global uncertainty of 21st century NPP projection, which strengthens confidence in the resilience of the CO2 fertilization effect to climate change. This reduction in uncertainty is especially clear for boreal ecosystems although it may be an artefact due to the lack of representation of nutrient limitations on NPP in most models. Conversely, the large uncertainty that remains on the sign of the response of NPP in semi-arid regions points to the need for better observations and model development in these regions.

  4. Hydrologic trade-offs in conjunctive use management.

    PubMed

    Bredehoeft, John

    2011-01-01

    An aquifer, in a stream/aquifer system, acts as a storage reservoir for groundwater. Groundwater pumping creates stream depletion that recharges the aquifer. As wells in the aquifer are moved away from the stream, the aquifer acts to filter out annual fluctuations in pumping; with distance the stream depletion tends to become equal to the total pumping averaged as an annual rate, with only a small fluctuation. This is true for both a single well and an ensemble of wells. A typical growing season in much of the western United States is 3 to 4 months. An ensemble of irrigation wells spread more or less uniformly across an aquifer several miles wide, pumping during the growing season, will deplete the stream by approximately one-third of the total amount of water pumped during the growing season. The remaining two-thirds of stream depletion occurs outside the growing season. Furthermore, it takes more than a decade of pumping for an ensemble of wells to reach a steady-state condition in which the impact on the stream is the same in succeeding years. After a decade or more of pumping, the depletion is nearly constant through the year, with only a small seasonal fluctuation: ±10%. Conversely, stream depletion following shutting down the pumping from an ensemble of wells takes more than a decade to fully recover from the prior pumping. Effectively managing a conjunctive groundwater and surface water system requires integrating the entire system into a single management institution with a long-term outlook. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  5. Ensemble composition and activity levels of insectivorous bats in response to management intensification in coffee agroforestry systems.

    PubMed

    Williams-Guillén, Kimberly; Perfecto, Ivette

    2011-01-26

    Shade coffee plantations have received attention for their role in biodiversity conservation. Bats are among the most diverse mammalian taxa in these systems; however, previous studies of bats in coffee plantations have focused on the largely herbivorous leaf-nosed bats (Phyllostomidae). In contrast, we have virtually no information on how ensembles of aerial insectivorous bats--nearly half the Neotropical bat species--change in response to habitat modification. To evaluate the effects of agroecosystem management on insectivorous bats, we studied their diversity and activity in southern Chiapas, Mexico, a landscape dominated by coffee agroforestry. We used acoustic monitoring and live captures to characterize the insectivorous bat ensemble in forest fragments and coffee plantations differing in the structural and taxonomic complexity of shade trees. We captured bats of 12 non-phyllostomid species; acoustic monitoring revealed the presence of at least 12 more species of aerial insectivores. Richness of forest bats was the same across all land-use types; in contrast, species richness of open-space bats increased in low shade, intensively managed coffee plantations. Conversely, only forest bats demonstrated significant differences in ensemble structure (as measured by similarity indices) across land-use types. Both overall activity and feeding activity of forest bats declined significantly with increasing management intensity, while the overall activity, but not feeding activity, of open-space bats increased. We conclude that diverse shade coffee plantations in our study area serve as valuable foraging and commuting habitat for aerial insectivorous bats, and several species also commute through or forage in low shade coffee monocultures.

  6. Generation, storage, and retrieval of nonclassical states of light using atomic ensembles

    NASA Astrophysics Data System (ADS)

    Eisaman, Matthew D.

    This thesis presents the experimental demonstration of several novel methods for generating, storing, and retrieving nonclassical states of light using atomic ensembles, and describes applications of these methods to frequency-tunable single-photon generation, single-photon memory, quantum networks, and long-distance quantum communication. We first demonstrate emission of quantum-mechanically correlated pulses of light with a time delay between the pulses that is coherently controlled by utilizing 87Rb atoms. The experiment is based on Raman scattering, which produces correlated pairs of excited atoms and photons, followed by coherent conversion of the atomic states into a different photon field after a controllable delay. We then describe experiments demonstrating a novel approach for conditionally generating nonclassical pulses of light with controllable photon numbers, propagation direction, timing, and pulse shapes. We observe nonclassical correlations in relative photon number between correlated pairs of photons, and create few-photon light pulses with sub-Poissonian photon-number statistics via conditional detection on one field of the pair. Spatio-temporal control over the pulses is obtained by exploiting long-lived coherent memory for photon states and electromagnetically induced transparency (EIT) in an optically dense atomic medium. Finally, we demonstrate the use of EIT for the controllable generation, transmission, and storage of single photons with tunable frequency, timing, and bandwidth. To this end, we study the interaction of single photons produced in a "source" ensemble of 87Rb atoms at room temperature with another "target" ensemble. This allows us to simultaneously probe the spectral and quantum statistical properties of narrow-bandwidth single-photon pulses, revealing that their quantum nature is preserved under EIT propagation and storage. We measure the time delay associated with the reduced group velocity of the single-photon pulses and report observations of their storage and retrieval. Together these experiments utilize atomic ensembles to realize a narrow-bandwidth single-photon source, single-photon memory that preserves the quantum nature of the single photons, and a primitive quantum network comprised of two atomic-ensemble quantum memories connected by a single photon in an optical fiber. Each of these experimental demonstrations represents an essential element for the realization of long-distance quantum communication.

  7. Next generation extended Lagrangian first principles molecular dynamics

    NASA Astrophysics Data System (ADS)

    Niklasson, Anders M. N.

    2017-08-01

    Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.

  8. Next generation extended Lagrangian first principles molecular dynamics.

    PubMed

    Niklasson, Anders M N

    2017-08-07

    Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.

  9. Vanishing spin stiffness in the spin-1/2 Heisenberg chain for any nonzero temperature

    NASA Astrophysics Data System (ADS)

    Carmelo, J. M. P.; Prosen, T.; Campbell, D. K.

    2015-10-01

    Whether at the zero spin density m =0 and finite temperatures T >0 the spin stiffness of the spin-1 /2 X X X chain is finite or vanishes remains an unsolved and controversial issue, as different approaches yield contradictory results. Here we explicitly compute the stiffness at m =0 and find strong evidence that it vanishes. In particular, we derive an upper bound on the stiffness within a canonical ensemble at any fixed value of spin density m that is proportional to m2L in the thermodynamic limit of chain length L →∞ , for any finite, nonzero temperature, which implies the absence of ballistic transport for T >0 for m =0 . Although our method relies in part on the thermodynamic Bethe ansatz (TBA), it does not evaluate the stiffness through the second derivative of the TBA energy eigenvalues relative to a uniform vector potential. Moreover, we provide strong evidence that in the thermodynamic limit the upper bounds on the spin current and stiffness used in our derivation remain valid under string deviations. Our results also provide strong evidence that in the thermodynamic limit the TBA method used by X. Zotos [Phys. Rev. Lett. 82, 1764 (1999), 10.1103/PhysRevLett.82.1764] leads to the exact stiffness values at finite temperature T >0 for models whose stiffness is finite at T =0 , similar to the spin stiffness of the spin-1 /2 Heisenberg chain but unlike the charge stiffness of the half-filled 1D Hubbard model.

  10. Single-Nanoflake Photo-Electrochemistry Reveals Champion and Spectator Flakes in Exfoliated MoSe 2 Films

    DOE PAGES

    Todt, Michael A.; Isenberg, Allan E.; Nanayakkara, Sanjini U.; ...

    2018-03-06

    Semiconducting transition-metal dichalcogenide (TMD) nanoflake thin films are promising large-area electrodes for photo-electrochemical solar energy conversion applications. However, their energy conversion efficiencies are typically much lower than those of bulk electrodes. It is unclear to what extent this efficiency gap stems from differences among nanoflakes (e.g., area, thickness, and surface structural features). It is also unclear whether individual exfoliated nanoflakes can achieve energy conversion efficiencies similar to those of bulk crystals. Here, we use a single-nanoflake photo-electrochemical approach to show that there are both highly active and completely inactive nanoflakes within a film. For the exfoliated MoSe 2 samples studiedmore » herein, 7% of nanoflakes are highly active champions, whose photocurrent efficiency exceeds that of the bulk crystal. However, 66% of nanoflakes are inactive spectators, which are mostly responsible for the overall lower photocurrent efficiency compared to the bulk crystal. The photocurrent collection efficiency increases with nanoflake area and decreases more at perimeter edges than at interior step edges. These observations, which are hidden in ensemble-level measurements, reveal the underlying performance issues of exfoliated TMD electrodes for photo-electrochemical energy conversion applications.« less

  11. Incorporating abundance information and guiding variable selection for climate-based ensemble forecasting of species' distributional shifts.

    PubMed

    Tanner, Evan P; Papeş, Monica; Elmore, R Dwayne; Fuhlendorf, Samuel D; Davis, Craig A

    2017-01-01

    Ecological niche models (ENMs) have increasingly been used to estimate the potential effects of climate change on species' distributions worldwide. Recently, predictions of species abundance have also been obtained with such models, though knowledge about the climatic variables affecting species abundance is often lacking. To address this, we used a well-studied guild (temperate North American quail) and the Maxent modeling algorithm to compare model performance of three variable selection approaches: correlation/variable contribution (CVC), biological (i.e., variables known to affect species abundance), and random. We then applied the best approach to forecast potential distributions, under future climatic conditions, and analyze future potential distributions in light of available abundance data and presence-only occurrence data. To estimate species' distributional shifts we generated ensemble forecasts using four global circulation models, four representative concentration pathways, and two time periods (2050 and 2070). Furthermore, we present distributional shifts where 75%, 90%, and 100% of our ensemble models agreed. The CVC variable selection approach outperformed our biological approach for four of the six species. Model projections indicated species-specific effects of climate change on future distributions of temperate North American quail. The Gambel's quail (Callipepla gambelii) was the only species predicted to gain area in climatic suitability across all three scenarios of ensemble model agreement. Conversely, the scaled quail (Callipepla squamata) was the only species predicted to lose area in climatic suitability across all three scenarios of ensemble model agreement. Our models projected future loss of areas for the northern bobwhite (Colinus virginianus) and scaled quail in portions of their distributions which are currently areas of high abundance. Climatic variables that influence local abundance may not always scale up to influence species' distributions. Special attention should be given to selecting variables for ENMs, and tests of model performance should be used to validate the choice of variables.

  12. Nuclear Export Signal Masking Regulates HIV-1 Rev Trafficking and Viral RNA Nuclear Export.

    PubMed

    Behrens, Ryan T; Aligeti, Mounavya; Pocock, Ginger M; Higgins, Christina A; Sherer, Nathan M

    2017-02-01

    HIV-1's Rev protein forms a homo-oligomeric adaptor complex linking viral RNAs to the cellular CRM1/Ran-GTP nuclear export machinery through the activity of Rev's prototypical leucine-rich nuclear export signal (NES). In this study, we used a functional fluorescently tagged Rev fusion protein as a platform to study the effects of modulating Rev NES identity, number, position, or strength on Rev subcellular trafficking, viral RNA nuclear export, and infectious virion production. We found that Rev activity was remarkably tolerant of diverse NES sequences, including supraphysiological NES (SNES) peptides that otherwise arrest CRM1 transport complexes at nuclear pores. Rev's ability to tolerate a SNES was both position and multimerization dependent, an observation consistent with a model wherein Rev self-association acts to transiently mask the NES peptide(s), thereby biasing Rev's trafficking into the nucleus. Combined imaging and functional assays also indicated that NES masking underpins Rev's well-known tendency to accumulate at the nucleolus, as well as Rev's capacity to activate optimal levels of late viral gene expression. We propose that Rev multimerization and NES masking regulates Rev's trafficking to and retention within the nucleus even prior to RNA binding. HIV-1 infects more than 34 million people worldwide causing >1 million deaths per year. Infectious virion production is activated by the essential viral Rev protein that mediates nuclear export of intron-bearing late-stage viral mRNAs. Rev's shuttling into and out of the nucleus is regulated by the antagonistic activities of both a peptide-encoded N-terminal nuclear localization signal and C-terminal nuclear export signal (NES). How Rev and related viral proteins balance strong import and export activities in order to achieve optimal levels of viral gene expression is incompletely understood. We provide evidence that multimerization provides a mechanism by which Rev transiently masks its NES peptide, thereby biasing its trafficking to and retention within the nucleus. Targeted pharmacological disruption of Rev-Rev interactions should perturb multiple Rev activities, both Rev-RNA binding and Rev's trafficking to the nucleus in the first place. Copyright © 2017 American Society for Microbiology.

  13. Nuclear Export Signal Masking Regulates HIV-1 Rev Trafficking and Viral RNA Nuclear Export

    PubMed Central

    Behrens, Ryan T.; Aligeti, Mounavya; Pocock, Ginger M.; Higgins, Christina A.

    2016-01-01

    ABSTRACT HIV-1's Rev protein forms a homo-oligomeric adaptor complex linking viral RNAs to the cellular CRM1/Ran-GTP nuclear export machinery through the activity of Rev's prototypical leucine-rich nuclear export signal (NES). In this study, we used a functional fluorescently tagged Rev fusion protein as a platform to study the effects of modulating Rev NES identity, number, position, or strength on Rev subcellular trafficking, viral RNA nuclear export, and infectious virion production. We found that Rev activity was remarkably tolerant of diverse NES sequences, including supraphysiological NES (SNES) peptides that otherwise arrest CRM1 transport complexes at nuclear pores. Rev's ability to tolerate a SNES was both position and multimerization dependent, an observation consistent with a model wherein Rev self-association acts to transiently mask the NES peptide(s), thereby biasing Rev's trafficking into the nucleus. Combined imaging and functional assays also indicated that NES masking underpins Rev's well-known tendency to accumulate at the nucleolus, as well as Rev's capacity to activate optimal levels of late viral gene expression. We propose that Rev multimerization and NES masking regulates Rev's trafficking to and retention within the nucleus even prior to RNA binding. IMPORTANCE HIV-1 infects more than 34 million people worldwide causing >1 million deaths per year. Infectious virion production is activated by the essential viral Rev protein that mediates nuclear export of intron-bearing late-stage viral mRNAs. Rev's shuttling into and out of the nucleus is regulated by the antagonistic activities of both a peptide-encoded N-terminal nuclear localization signal and C-terminal nuclear export signal (NES). How Rev and related viral proteins balance strong import and export activities in order to achieve optimal levels of viral gene expression is incompletely understood. We provide evidence that multimerization provides a mechanism by which Rev transiently masks its NES peptide, thereby biasing its trafficking to and retention within the nucleus. Targeted pharmacological disruption of Rev-Rev interactions should perturb multiple Rev activities, both Rev-RNA binding and Rev's trafficking to the nucleus in the first place. PMID:27852860

  14. Distinct learning-induced changes in stimulus selectivity and interactions of GABAergic interneuron classes in visual cortex.

    PubMed

    Khan, Adil G; Poort, Jasper; Chadwick, Angus; Blot, Antonin; Sahani, Maneesh; Mrsic-Flogel, Thomas D; Hofer, Sonja B

    2018-06-01

    How learning enhances neural representations for behaviorally relevant stimuli via activity changes of cortical cell types remains unclear. We simultaneously imaged responses of pyramidal cells (PYR) along with parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal peptide (VIP) inhibitory interneurons in primary visual cortex while mice learned to discriminate visual patterns. Learning increased selectivity for task-relevant stimuli of PYR, PV and SOM subsets but not VIP cells. Strikingly, PV neurons became as selective as PYR cells, and their functional interactions reorganized, leading to the emergence of stimulus-selective PYR-PV ensembles. Conversely, SOM activity became strongly decorrelated from the network, and PYR-SOM coupling before learning predicted selectivity increases in individual PYR cells. Thus, learning differentially shapes the activity and interactions of multiple cell classes: while SOM inhibition may gate selectivity changes, PV interneurons become recruited into stimulus-specific ensembles and provide more selective inhibition as the network becomes better at discriminating behaviorally relevant stimuli.

  15. X-ray-generated heralded macroscopical quantum entanglement of two nuclear ensembles.

    PubMed

    Liao, Wen-Te; Keitel, Christoph H; Pálffy, Adriana

    2016-09-19

    Heralded entanglement between macroscopical samples is an important resource for present quantum technology protocols, allowing quantum communication over large distances. In such protocols, optical photons are typically used as information and entanglement carriers between macroscopic quantum memories placed in remote locations. Here we investigate theoretically a new implementation which employs more robust x-ray quanta to generate heralded entanglement between two crystal-hosted macroscopical nuclear ensembles. Mössbauer nuclei in the two crystals interact collectively with an x-ray spontaneous parametric down conversion photon that generates heralded macroscopical entanglement with coherence times of approximately 100 ns at room temperature. The quantum phase between the entangled crystals can be conveniently manipulated by magnetic field rotations at the samples. The inherent long nuclear coherence times allow also for mechanical manipulations of the samples, for instance to check the stability of entanglement in the x-ray setup. Our results pave the way for first quantum communication protocols that use x-ray qubits.

  16. Improved Atomistic Monte Carlo Simulations Demonstrate that Poly-L-Proline Adopts Heterogeneous Ensembles of Conformations of Semi-Rigid Segments Interrupted by Kinks

    PubMed Central

    Radhakrishnan, Aditya; Vitalis, Andreas; Mao, Albert H.; Steffen, Adam T.; Pappu, Rohit V.

    2012-01-01

    Poly-L-proline (PLP) polymers are useful mimics of biologically relevant proline-rich sequences. Biophysical and computational studies of PLP polymers in aqueous solutions are challenging because of the diversity of length scales and the slow time scales for conformational conversions. We describe an atomistic simulation approach that combines an improved ABSINTH implicit solvation model, with conformational sampling based on standard and novel Metropolis Monte Carlo moves. Refinements to forcefield parameters were guided by published experimental data for proline-rich systems. We assessed the validity of our simulation results through quantitative comparisons to experimental data that were not used in refining the forcefield parameters. Our analysis shows that PLP polymers form heterogeneous ensembles of conformations characterized by semi-rigid, rod-like segments interrupted by kinks, which result from a combination of internal cis peptide bonds, flexible backbone ψ-angles, and the coupling between ring puckering and backbone degrees of freedom. PMID:22329658

  17. Temporal correlation and correlated momentum distribution in nonsequential double ionization of Mg by circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Xu, Tong-Tong; Ben, Shuai; Guo, Pei-Ying; Song, Kai-Li; Zhang, Jun; Liu, Xue-Shen

    2017-07-01

    We use the classical ensemble method to investigate the nonsequential double ionization (NSDI) process of Mg atoms in circularly polarized laser fields at a lower laser intensity. We illustrate the temporal correlation of the ‘side-by-side’ and the ‘back-to-back emission’. It indicates that the two electrons are more likely to be emitted at the same time for the ‘side-by-side emission’. We demonstrate the electronic trajectories from recollision-induced ionization (RII) and recollision-induced excitation with subsequent ionization (RESI). The distribution of the angle between the two ionized directions of the two electrons and the ion momentum distribution show that the anticorrelation distribution is dominant in the RESI mechanism and correlation distribution is dominant in the RII mechanism. The momentum distributions of Mg atoms for the slow and the fast electrons present a similar structure to the experimental observation of Ar atoms by Liu et al 2014 (Phys. Rev. Lett. 112 013003).

  18. Breakdown of the classical description of a local system.

    PubMed

    Kot, Eran; Grønbech-Jensen, Niels; Nielsen, Bo M; Neergaard-Nielsen, Jonas S; Polzik, Eugene S; Sørensen, Anders S

    2012-06-08

    We provide a straightforward demonstration of a fundamental difference between classical and quantum mechanics for a single local system: namely, the absence of a joint probability distribution of the position x and momentum p. Elaborating on a recently reported criterion by Bednorz and Belzig [Phys. Rev. A 83, 052113 (2011)] we derive a simple criterion that must be fulfilled for any joint probability distribution in classical physics. We demonstrate the violation of this criterion using the homodyne measurement of a single photon state, thus proving a straightforward signature of the breakdown of a classical description of the underlying state. Most importantly, the criterion used does not rely on quantum mechanics and can thus be used to demonstrate nonclassicality of systems not immediately apparent to exhibit quantum behavior. The criterion is directly applicable to any system described by the continuous canonical variables x and p, such as a mechanical or an electrical oscillator and a collective spin of a large ensemble.

  19. Free-space entangled quantum carpets

    NASA Astrophysics Data System (ADS)

    Barros, Mariana R.; Ketterer, Andreas; Farías, Osvaldo Jiménez; Walborn, Stephen P.

    2017-04-01

    The Talbot effect in quantum physics is known to produce intricate patterns in the probability distribution of a particle, known as "quantum carpets," corresponding to the revival and replication of the initial wave function. Recently, it was shown that one can encode a D -level qudit in such a way that the Talbot effect can be used to process the D -dimensional quantum information [Farías et al., Phys. Rev. A 91, 062328 (2015), 10.1103/PhysRevA.91.062328]. Here we introduce a scheme to produce free-propagating "entangled quantum carpets" with pairs of photons produced by spontaneous parametric down-conversion. First we introduce an optical device that can be used to synthesize arbitrary superposition states of Talbot qudits. Sending spatially entangled photon pairs through a pair of these devices produces an entangled pair of qudits. As an application, we show how the Talbot effect can be used to test a D -dimensional Bell inequality. Numerical simulations show that violation of the Bell inequality depends strongly on the amount of spatial correlation in the initial two-photon state. We briefly discuss how our optical scheme might be adapted to matter wave experiments.

  20. Domain structure and reorientation in CoF e2O4

    NASA Astrophysics Data System (ADS)

    Abes, M.; Koops, C. T.; Hrkac, S. B.; McCord, J.; Urs, N. O.; Wolff, N.; Kienle, L.; Ren, W. J.; Bouchenoire, L.; Murphy, B. M.; Magnussen, O. M.

    2016-05-01

    The microscopic processes underlying magnetostriction in ferrites were studied for the case of CoF e2O4 single crystals by high-resolution in situ x-ray diffraction and complementary magnetic microscopy techniques. The data support the reports of Yang and Ren [Phys. Rev. B 77, 014407 (2008), 10.1103/PhysRevB.77.014407] that magnetostriction in these materials originates from the switching of crystallographic domains, similar to ferroelastic or ferroelectric domain switching, and reveals the presence of two coexisting tetragonal spinel structures, corresponding to domains of high and of low strain. The latter alternate in the crystal, separated by 90° domain boundaries, and can be explained by the effect of internal stress emerging during the transition into the ferrimagnetic phase. During magnetization of the sample two structural transitions are observed: a conversion of the transversal into axial domains at 1.95 kOe and a growth of the high-strain domains at the cost of the low-strain axial domains at 2.8 kOe. These microscopic changes are in good agreement with the macroscopic magnetization and magnetostriction behavior of CoF e2O4 .

  1. Qubit transfer between photons at telecom and visible wavelengths in a slow-light atomic medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gogyan, A.

    We propose a method that enables efficient conversion of the quantum information frequency between different regions of a spectrum of light based on recently demonstrated strong parametric coupling between two narrow-band single-photon pulses propagating in a slow-light atomic medium [N. Sisakyan and Yu. Malakyan, Phys. Rev. A, 75, 063831 (2007)]. We show that an input qubit at telecom wavelength is transformed into another at a visible domain in a lossless and shape-conserving manner while keeping the initial quantum coherence and entanglement. These transformations can be realized with a quantum efficiency close to its maximum value.

  2. Spontaneous parametric down conversion with a depleted pump as an analogue for black hole evaporation/particle production

    NASA Astrophysics Data System (ADS)

    Alsing, P. M.; Fanto, M. L.

    2016-05-01

    In this work we argue that black hole evaporation/particle production has a very close analogy to the laboratory process of spontaneous parametric down conversion, when the pump is allowed to deplete. We present an analytical formulation of the recent one-shot decoupling model that was numerically analyzed in Bradler and Adami Phys. Rev. Lett. 116, 101301 (2016) [arXiv:1505.0284]. We compute the resulting "Page Information" curves, which describe the rate at which information escapes form the black hole as it evaporates, for the reduced density matrices for the evaporating black hole internal degrees of freedom, and emitted Hawking radiation pairs entangled across the horizon. The present work reviews and attempts to elucidate the trilinear Hamiltonian models for black hole evaporation/particle production recently investigated by the authors in Class. Quant. Grav 32, 075010 (2015) [arXiv:1408.4491] and Class. Quant. Grav 33, 015005 (2016) [arXiv:1507.00429].

  3. Rev-erb beta regulates the Srebp-1c promoter and mRNA expression in skeletal muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakrishnan, Sathiya N.; Lau, Patrick; Crowther, Lisa M.

    2009-10-30

    The nuclear hormone receptor, Rev-erb beta operates as a transcriptional silencer. We previously demonstrated that exogenous expression of Rev-erb{beta}{Delta}E in skeletal muscle cells increased Srebp-1c mRNA expression. We validated these in vitro observations by injection of an expression vector driving Rev-erb{beta}{Delta}E expression into mouse tibialis muscle that resulted in increased Srebp-1c mRNA expression. Paradoxically, Rev-erb{beta} siRNA expression in skeletal muscle cells repressed Srebp-1c expression, and indicated that Rev-erb{beta} expression was necessary for Srebp-1c expression. ChIP analysis demonstrated that Rev-erb{beta} was recruited to the Srebp-1c promoter. Moreover, Rev-erb{beta} trans-activated the Srebp-1c promoter, in contrast, Rev-erb{beta} efficiently repressed the Rev-erb{alpha} promoter, amore » previously characterized target gene. Finally, treatment with the Rev-erb agonist (hemin) (i) increased the trans-activation of the Srebp-1c promoter by Rev-erb{beta}; and (ii) increased Rev-erb{beta} and Srebp-1c mRNA expression. These data suggest that Rev-erb{beta} has the potential to activate gene expression, and is a positive regulator of Srebp-1c, a regulator of lipogenesis.« less

  4. Mutational definition of functional domains within the Rev homolog encoded by human endogenous retrovirus K.

    PubMed

    Bogerd, H P; Wiegand, H L; Yang, J; Cullen, B R

    2000-10-01

    Nuclear export of the incompletely spliced mRNAs encoded by several complex retroviruses, including human immunodeficiency virus type 1 (HIV-1), is dependent on a virally encoded adapter protein, termed Rev in HIV-1, that directly binds both to a cis-acting viral RNA target site and to the cellular Crm1 export factor. Human endogenous retrovirus K, a family of ancient endogenous retroviruses that is not related to the exogenous retrovirus HIV-1, was recently shown to also encode a Crm1-dependent nuclear RNA export factor, termed K-Rev. Although HIV-1 Rev and K-Rev display little sequence identity, they share the ability not only to bind to Crm1 and to RNA but also to form homomultimers and shuttle between nucleus and cytoplasm. We have used mutational analysis to identify sequences in the 105-amino-acid K-Rev protein required for each of these distinct biological activities. While mutations in K-Rev that inactivate any one of these properties also blocked K-Rev-dependent nuclear RNA export, several K-Rev mutants were comparable to wild type when assayed for any of these individual activities yet nevertheless defective for RNA export. Although several nonfunctional K-Rev mutants acted as dominant negative inhibitors of K-Rev-, but not HIV-1 Rev-, dependent RNA export, these were not defined by their inability to bind to Crm1, as is seen with HIV-1 Rev. In total, this analysis suggests a functional architecture for K-Rev that is similar to, but distinct from, that described for HIV-1 Rev and raises the possibility that viral RNA export mediated by the approximately 25 million-year-old K-Rev protein may require an additional cellular cofactor that is not required for HIV-1 Rev function.

  5. Music Regulators in Two String Quartets: A Comparison of Communicative Behaviors between Low- and High-Stress Performance Conditions.

    PubMed

    Biasutti, Michele; Concina, Eleonora; Wasley, David; Williamon, Aaron

    2016-01-01

    In ensemble performances, group members use particular bodily behaviors as a sort of "language" to supplement the lack of verbal communication. This article focuses on music regulators, which are defined as signs to other group members for coordinating performance. The following two music regulators are considered: body gestures for articulating attacks (a set of movements externally directed that are used to signal entrances in performance) and eye contact. These regulators are recurring observable behaviors that play an important role in non-verbal communication among ensemble members. To understand how they are used by chamber musicians, video recordings of two string quartet performances (Quartet A performing Bartók and Quartet B performing Haydn) were analyzed under two conditions: a low stress performance (LSP), undertaken in a rehearsal setting, and a high stress performance (HSP) during a public recital. The results provide evidence for more emphasis in gestures for articulating attacks (i.e., the perceived strength of a performed attack-type body gesture) during HSP than LSP. Conversely, no significant differences were found for the frequency of eye contact between HSP and LSP. Moreover, there was variability in eye contact during HSP and LSP, showing that these behaviors are less standardized and may change according to idiosyncratic performance conditions. Educational implications are discussed for improving interpersonal communication skills during ensemble performance.

  6. Music Regulators in Two String Quartets: A Comparison of Communicative Behaviors between Low- and High-Stress Performance Conditions

    PubMed Central

    Biasutti, Michele; Concina, Eleonora; Wasley, David; Williamon, Aaron

    2016-01-01

    In ensemble performances, group members use particular bodily behaviors as a sort of “language” to supplement the lack of verbal communication. This article focuses on music regulators, which are defined as signs to other group members for coordinating performance. The following two music regulators are considered: body gestures for articulating attacks (a set of movements externally directed that are used to signal entrances in performance) and eye contact. These regulators are recurring observable behaviors that play an important role in non-verbal communication among ensemble members. To understand how they are used by chamber musicians, video recordings of two string quartet performances (Quartet A performing Bartók and Quartet B performing Haydn) were analyzed under two conditions: a low stress performance (LSP), undertaken in a rehearsal setting, and a high stress performance (HSP) during a public recital. The results provide evidence for more emphasis in gestures for articulating attacks (i.e., the perceived strength of a performed attack-type body gesture) during HSP than LSP. Conversely, no significant differences were found for the frequency of eye contact between HSP and LSP. Moreover, there was variability in eye contact during HSP and LSP, showing that these behaviors are less standardized and may change according to idiosyncratic performance conditions. Educational implications are discussed for improving interpersonal communication skills during ensemble performance. PMID:27610089

  7. Model Parameter Estimation Using Ensemble Data Assimilation: A Case with the Nonhydrostatic Icosahedral Atmospheric Model NICAM and the Global Satellite Mapping of Precipitation Data

    NASA Astrophysics Data System (ADS)

    Kotsuki, Shunji; Terasaki, Koji; Yashiro, Hasashi; Tomita, Hirofumi; Satoh, Masaki; Miyoshi, Takemasa

    2017-04-01

    This study aims to improve precipitation forecasts from numerical weather prediction (NWP) models through effective use of satellite-derived precipitation data. Kotsuki et al. (2016, JGR-A) successfully improved the precipitation forecasts by assimilating the Japan Aerospace eXploration Agency (JAXA)'s Global Satellite Mapping of Precipitation (GSMaP) data into the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) at 112-km horizontal resolution. Kotsuki et al. mitigated the non-Gaussianity of the precipitation variables by the Gaussian transform method for observed and forecasted precipitation using the previous 30-day precipitation data. This study extends the previous study by Kotsuki et al. and explores an online estimation of model parameters using ensemble data assimilation. We choose two globally-uniform parameters, one is the cloud-to-rain auto-conversion parameter of the Berry's scheme for large scale condensation and the other is the relative humidity threshold of the Arakawa-Schubert cumulus parameterization scheme. We perform the online-estimation of the two model parameters with an ensemble transform Kalman filter by assimilating the GSMaP precipitation data. The estimated parameters improve the analyzed and forecasted mixing ratio in the lower troposphere. Therefore, the parameter estimation would be a useful technique to improve the NWP models and their forecasts. This presentation will include the most recent progress up to the time of the symposium.

  8. New mutations affecting induced mutagenesis in yeast.

    PubMed

    Lawrence, C W; Krauss, B R; Christensen, R B

    1985-01-01

    Previously isolated mutations in baker's yeast, Saccharomyces cerevisiae, that impair induced mutagenesis were all identified with the aid of tests that either exclusively or predominantly detect base-pair substitutions. To avoid this bias, we have screened 11 366 potentially mutant clones for UV-induced reversion of the frameshift allele, his4-38, and have identified 10 mutants that give much reduced yields of revertants. Complementation and recombination tests show that 6 of these carry mutations at the previously known REV1, REV1 and REV3 loci, while the remaining 4 define 3 new genes, REV4 (2 mutations), REV5 and REV6. The rev4 mutations are readily suppressed in many genetic backgrounds and, like the rev5 mutation, impart only a limited deficiency for induced mutagenesis: it is likely, therefore that the REV4+ and REV5+ gene functions are only remotely concerned with this process. The rev6 mutants have a more general deficiency, however, as well as marked sensitivity to UV and an increased spontaneous mutation rate, properties that suggest the REV6 gene is directly involved in mutation induction. The REV5 gene is located about 1 cM proximal to CYC1 on chromosome X.

  9. Some conservative estimates in quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotkov, S. N.

    2006-08-15

    Relationship is established between the security of the BB84 quantum key distribution protocol and the forward and converse coding theorems for quantum communication channels. The upper bound Q{sub c} {approx} 11% on the bit error rate compatible with secure key distribution is determined by solving the transcendental equation H(Q{sub c})=C-bar({rho})/2, where {rho} is the density matrix of the input ensemble, C-bar({rho}) is the classical capacity of a noiseless quantum channel, and H(Q) is the capacity of a classical binary symmetric channel with error rate Q.

  10. Allicin Alleviates Reticuloendotheliosis Virus-Induced Immunosuppression via ERK/Mitogen-Activated Protein Kinase Pathway in Specific Pathogen-Free Chickens

    PubMed Central

    Wang, Liyuan; Jiao, Hongchao; Zhao, Jingpeng; Wang, Xiaojuan; Sun, Shuhong; Lin, Hai

    2017-01-01

    Reticuloendotheliosis virus (REV), a gammaretrovirus in the Retroviridae family, causes an immunosuppressive, oncogenic, and runting–stunting syndrome in multiple avian hosts. Allicin, the main effective component of garlic, has a broad spectrum of pharmacological properties. The hypothesis that allicin could relieve REV-induced immune dysfunction was investigated in vivo and in vitro in the present study. The results showed that dietary allicin supplementation ameliorated REV-induced dysplasia and immune dysfunction in REV-infected chickens. Compared with the control groups, REV infection promoted the expression of inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-10, interferon (IFN)-γ, and tumor necrosis factor-α (TNF-α), whereas, allicin reversed these changes induced by REV infection. The decreased levels of IFN-α, IFN-β, and IL-2 were observed in REV-infected chickens, which were significantly improved by allicin. Allicin suppressed the REV-induced high expression of toll-like receptors (TLRs) as well as melanoma differentiation-associated gene 5 (MDA5) and the activation of mitogen-activated protein kinase (MAPK) and the nuclear factor kappa B p65. REV stimulated the phosphorylation of JNK, ERK, and p38, the downstream key signaling molecules of MAPK pathway, while allicin retarded the augmented phosphorylation level induced by REV infection. The decreased phosphorylation level of ERK was associated with REV replication, suggesting that ERK signaling is involved in REV replication, and allicin can alleviate the REV-induced immune dysfunction by inhibiting the activation of ERK. In addition, REV infection induced oxidative damage in thymus and spleen, whereas allicin treatment significantly decreased the oxidative stress induced by REV infection, suggesting that the antioxidant effect of allicin should be at least partially responsible for the harmful effect of REV infection. In conclusion, the findings suggest that allicin alleviates the inflammation and oxidative damage caused by REV infection and exerts the potential anti-REV effect by blocking the ERK/MAPK pathway. PMID:29312337

  11. Specificity in the immunosuppression induced by avian reticuloendotheliosis virus.

    PubMed Central

    Walker, M H; Rup, B J; Rubin, A S; Bose, H R

    1983-01-01

    Several parameters of the cellular and humoral immune responses of chickens infected with reticuloendotheliosis virus (REV-T), an avian defective acute leukemia virus, or with its helper virus, reticuloendotheliosis-associated virus (REV-A), were evaluated. Spleen cells from chickens infected with REV-T (REV-A) or REV-A exhibited depressed mixed lymphocyte and mitogen responses in vitro. Allograft rejection was delayed by 6 to 14 days in birds infected with REV-A. The specific antitumor cell immune response was also studied by a 51Cr-release cytotoxicity assay. Lymphocytes from chickens infected with low numbers of the REV-T-transformed cells exhibited significant levels of cytolytic reactivity against the 51Cr-labeled REV-T tumor cells in vitro. The mitogen response of lymphocytes from these injected birds was similar to that of uninjected chickens. In contrast, lymphocytes from chickens injected with higher numbers of REV-T-transformed cells exhibited suppressed mitogen reactivity and failed to develop detectable levels of cytotoxic activity directed against the REV-T tumor cells. These results suggest that the general depression of cellular immune competence which occurs during REV-T (REV-A) infection could contribute to the development of this acute leukemia by inhibiting the proliferation of cytotoxic cells directed against the tumor cell antigens. The cytotoxic effect observed after the injection of chickens with non-immunosuppressive levels of REV-T-transformed cells appears to be specific for the REV-T tumor cell antigens since cells transformed by Marek's disease virus or avian erythroblastosis virus were not lysed. In marked contrast, birds whose cellular immune responses were suppressed by infection with REV-A were capable of producing a humoral immune response to viral antigens. Detectable levels of viral antibody, however, did not appear until 12 to 15 days after REV-A infection. Since REV-T (REV-A) induced an acute leukemia resulting in death within 7 to 14 days, it appears unlikely that the ability of chickens to make antiviral antibody influences the development of lethal reticuloendotheliosis. Images PMID:6187691

  12. [Construction of Rev-erbβ gene knockout HEK293 cell line with CRISPR/Cas9 system].

    PubMed

    Chen, Fang; Zhang, Weifeng; Zhao, Junli; Yang, Peiyan; Ma, Rui; Xia, Haibin

    2016-11-01

    Objective To prepare Rev-erbβ knockout HEK293 cells using clustered regularly interspaced short palindromic repeats/Cas 9 nuclease (CRISPR/Cas9) gene editing technology. Methods The knock-in or knockout of Rev-erbβ gene could be realized by single-guide RNA (sgRNA)-mediated Cas9 cutting of target DNA, and followed by DNA homologous recombination or non-homologous end joining-mediated DNA repair. Firstly, four sgRNAs were designed for Rev-erbβ gene. The sgRNA1 and sgRNA2 with the higher activity were respectively used to construct pCMV-hCas9-U6-Rev-erbβ sgRNA1 and pCMV-hCas9-U6-Rev-erbβ sgRNA2. Then, pCMV-hCas9-U6-Rev-erbβ sgRNA1, pCMV-hCas9-U6-Rev-erbβ sgRNA2 and pAd5-E1/hRev-erbβ donor plasmid vectors were co-transfected into HEK293 cells. Through drug screening, cloning and sequencing, the Rev-erbβ gene-knockout HEK293 (Rev-erbβ -/- ) cell lines were obtained with one chain integrated with exogenous gene fragment and the other chain for deletion mutants. Finally, the HEK293 (Rev-erbβ -/- ) cell lines (C3-6) was detected with real-time quantitative PCR and Western blotting. Results Expression of Rev-erbβ mRNA and protein was undetectable in HEK293 Rev-erbβ -/- cell line. Conclusion Using CRISPR/Cas9 technology, the HEK293 Rev-erbβ -/- cell line has been successfully constructed, which would provide an effective tool for the study on the function of Rev-erbβ.

  13. Is the simian virus SV40 associated with idiopathic focal segmental glomerulosclerosis in humans?

    PubMed

    Galdenzi, Gabriella; Lupo, Antonio; Anglani, Franca; Perini, Marino; Galeazzi, Luciano; Giunta, Sergio; Marcantoni, Carmelita; Del Prete, Dorella; Graziotto, Romina; D'angelo, Angela; Maschio, Giuseppe; Gambaro, Giovanni

    2003-01-01

    Glomerulosclerosis was reported in mice transgenic for the simian polyomavirus SV40 early region that contains the transforming sequences encoding the SV40 large T-antigen (TAG). This was discovered when an SV40 epidemic occurred following the use of contaminated polio vaccines during 1955-1963, and led to investigations that showed an association between SV40 infection and tumors in humans. We investigated the possible association of SV40 infection and idiopathic focal segmental glomerulosclerosis (FSGS). The study was performed in 17 Bouin-fixed, paraffin-embedded renal biopsies from FSGS patients and 10 matched biopsies from patients with IgA glomerulonephritis; all patients had undergone polio vaccination in the early 1960s. Extracted DNA was polymerase chain reaction (PCR) amplified using SV.for3/SV.rev primers and GabE1/GabE2 primers; both sets of primers map in the region of SV40 TAG sequences, and amplify a fragment of respectively 105-bp and 135-bp. The biopsies considered were those in which the DNA was sufficiently intact to allow amplification of a fragment of 102-bp of the ApoE gene. Three FSGS and none of the IgA biopsies were positive for the SV.for3/SV.rev fragment. Conversely, amplification with GabE1/GabE2 primers did not lead to any specific product in either the IgA or FSGS biopsies. Restriction fragment length polymorphism and sequencing analyses revealed that the positive results obtained with the SV.for3/SV.rev primers were due to amplicons generated by multiple dimerization of forward and reverse primers. With the limited number of patients investigated, this study excludes the hypothesis that SV40 is associated with idiopathic FSGS.

  14. Comparative study of n-hexane aromatization on Pt/KL, Pt/Mg(Al)O, and Pt/SiO{sub 2} catalysts: Clean and sulfur-containing feeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, G.; Padro, C.L.; Resasco, D.E.

    The n-hexane aromatization has been studied on Pt/KL, Pt/Mg(Al)O, and Pt/SiO{sub 2} catalysts at 773 K using sulfur-free and 0.6 ppm sulfur containing feedstocks. Examination of the product distribution as a function of conversion suggests that the formation of benzene is preceded by the formation of hexenes. In contrast with previous reports, it has been found that the Pt/KL catalyst exhibits much higher aromatization activity than the Pt/Mg(Al)O catalyst. On Pt/KL the main product is benzene, with hexenes and lighter compounds as the principal by-products. By contrast, on the Pt/Mg(Al)O, the main products were hexenes. Since hexenes are primary productsmore » and benzene is a secondary product, the exceptional aromatization activity of Pt/KL is explained in terms of its ability to convert hexene into benzene. In the presence of sulfur, the Pt/KL exhibits a rapid loss in n-hexane conversion and benzene selectivity. Under these conditions, the sulfided Pt/KL catalyst presents a catalytic behavior typical of Pt/Mg(Al)O and Pt/SiO{sub 2}, generating larger amounts of hexenes. The observed results are consistent with the hypothesis that the most important role of the zeolite is to inhibit bimolecular interactions that lead to coke formation. The formation of coke has the net effect of selectively deactivating aromatization sites which require a large ensemble of atoms to constitute the active site but not affecting the dehydrogenation activity which is less ensemble-sensitive. Therefore, those particles that are not protected against coking inside the channels of the zeolite rapidly become unselective. In support of this hypothesis, the hydrogenolysis reaction which also requires a large ensemble of atoms, decreases in parallel with the aromatization reaction. The high sensitivity of Pt/KL to sulfur may be due to a combination of effects which may involve growth of metal particles outside the zeolite which would become unselective and partial poisoning of the particles inside the zeolite, causing a similar selective deactivation.« less

  15. Circadian clock component REV-ERBα controls homeostatic regulation of pulmonary inflammation.

    PubMed

    Pariollaud, Marie; Gibbs, Julie E; Hopwood, Thomas W; Brown, Sheila; Begley, Nicola; Vonslow, Ryan; Poolman, Toryn; Guo, Baoqiang; Saer, Ben; Jones, D Heulyn; Tellam, James P; Bresciani, Stefano; Tomkinson, Nicholas Co; Wojno-Picon, Justyna; Cooper, Anthony Wj; Daniels, Dion A; Trump, Ryan P; Grant, Daniel; Zuercher, William; Willson, Timothy M; MacDonald, Andrew S; Bolognese, Brian; Podolin, Patricia L; Sanchez, Yolanda; Loudon, Andrew Si; Ray, David W

    2018-06-01

    Recent studies reveal that airway epithelial cells are critical pulmonary circadian pacemaker cells, mediating rhythmic inflammatory responses. Using mouse models, we now identify the rhythmic circadian repressor REV-ERBα as essential to the mechanism coupling the pulmonary clock to innate immunity, involving both myeloid and bronchial epithelial cells in temporal gating and determining amplitude of response to inhaled endotoxin. Dual mutation of REV-ERBα and its paralog REV-ERBβ in bronchial epithelia further augmented inflammatory responses and chemokine activation, but also initiated a basal inflammatory state, revealing a critical homeostatic role for REV-ERB proteins in the suppression of the endogenous proinflammatory mechanism in unchallenged cells. However, REV-ERBα plays the dominant role, as deletion of REV-ERBβ alone had no impact on inflammatory responses. In turn, inflammatory challenges cause striking changes in stability and degradation of REV-ERBα protein, driven by SUMOylation and ubiquitination. We developed a novel selective oxazole-based inverse agonist of REV-ERB, which protects REV-ERBα protein from degradation, and used this to reveal how proinflammatory cytokines trigger rapid degradation of REV-ERBα in the elaboration of an inflammatory response. Thus, dynamic changes in stability of REV-ERBα protein couple the core clock to innate immunity.

  16. Microgravity experiments on a granular gas of elongated grains

    NASA Astrophysics Data System (ADS)

    Harth, K.; Trittel, T.; Kornek, U.; Höme, S.; Will, K.; Strachauer, U.; Stannarius, R.

    2013-06-01

    Granular gases represent well-suited systems to investigate statistical granular dynamics. The literature comprises numerous investigations of ensembles of spherical or irregularly shaped grains. Mainly computer models, analytical theories and experiments restricted to two dimensions were reported. In three-dimensions, the gaseous state can only be maintained by strong external excitation, e. g. vibrations or electro-magnetic fields, or in microgravity. A steady state, where the dynamics of a weakly disturbed granular gas are governed by particle-particle collisions, is hard to realize with spherical grains due to clustering. We present the first study of a granular gas of elongated cylinders in three dimensions. The mean free path is considerably reduced with respect to spheres at comparable filling fractions. The particles can be tracked in 3D over a sequence of frames. In a homogeneous steady state, we find non-Gaussian velocity distributions and a lack of equipartition of kinetic energy. We discuss the relations between energy input and vibrating plate accelerations. At the request of the authors and the Proceedings Editors, the PDF file of this article has been updated to amend some references present in the PDF file submitted to AIP Publishing. The references affected are listed here:[1] (c) K. Nichol and K. E. Daniels, Phys. Rev. Lett. 108, 018001 (2012); [11] (e) P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Clarendon Press, Oxford (1993); [17] (b) K. Harth, et al., Phys. Rev. Lett. 110, 144102 (2013).A LaTeX processing error resulted in changes to the authors reference formatting, which was not detected prior to publication. Due apologies are given to the authors for this oversight. The updated article PDF was published on 12 August 2013.

  17. Marginal stability in jammed packings: Quasicontacts and weak contacts

    NASA Astrophysics Data System (ADS)

    Kallus, Yoav; Torquato, Salvatore

    2014-08-01

    Maximally random jammed (MRJ) sphere packing is a prototypical example of a system naturally poised at the margin between underconstraint and overconstraint. This marginal stability has traditionally been understood in terms of isostaticity, the equality of the number of mechanical contacts and the number of degrees of freedom. Quasicontacts, pairs of spheres on the verge of coming in contact, are irrelevant for static stability, but they come into play when considering dynamic stability, as does the distribution of contact forces. We show that the effects of marginal dynamic stability, as manifested in the distributions of quasicontacts and weak contacts, are consequential and nontrivial. We study these ideas first in the context of MRJ packing of d-dimensional spheres, where we show that the abundance of quasicontacts grows at a faster rate than that of contacts. We reexamine a calculation of Jin et al. [Phys. Rev. E 82, 051126 (2010), 10.1103/PhysRevE.82.051126], where quasicontacts were originally neglected, and we explore the effect of their inclusion in the calculation. This analysis yields an estimate of the asymptotic behavior of the packing density in high dimensions. We argue that this estimate should be reinterpreted as a lower bound. The latter part of the paper is devoted to Bravais lattice packings that possess the minimum number of contacts to maintain mechanical stability. We show that quasicontacts play an even more important role in these packings. We also show that jammed lattices are a useful setting for studying the Edwards ensemble, which weights each mechanically stable configuration equally and does not account for dynamics. This ansatz fails to predict the power-law distribution of near-zero contact forces, P(f )˜fθ.

  18. Exact mean-energy expansion of Ginibre's gas for coupling constants Γ =2 ×(oddinteger)

    NASA Astrophysics Data System (ADS)

    Salazar, R.; Téllez, G.

    2017-12-01

    Using the approach of a Vandermonde determinant to the power Γ =Q2/kBT expansion on monomial functions, a way to find the excess energy Uexc of the two-dimensional one-component plasma (2DOCP) on hard and soft disks (or a Dyson gas) for odd values of Γ /2 is provided. At Γ =2 , the present study not only corroborates the result for the particle-particle energy contribution of the Dyson gas found by Shakirov [Shakirov, Phys. Lett. A 375, 984 (2011), 10.1016/j.physleta.2011.01.004] by using an alternative approach, but also provides the exact N -finite expansion of the excess energy of the 2DOCP on the hard disk. The excess energy is fitted to the ansatz of the form Uexc=K1N +K2√{N }+K3+K4/N +O (1 /N2) to study the finite-size correction, with Ki coefficients and N the number of particles. In particular, the bulk term of the excess energy is in agreement with the well known result of Jancovici for the hard disk in the thermodynamic limit [Jancovici, Phys. Rev. Lett. 46, 386 (1981), 10.1103/PhysRevLett.46.386]. Finally, an expression is found for the pair correlation function which still keeps a link with the random matrix theory via the kernel in the Ginibre ensemble [Ginibre, J. Math. Phys. 6, 440 (1965), 10.1063/1.1704292] for odd values of Γ /2 . A comparison between the analytical two-body density function and histograms obtained with Monte Carlo simulations for small systems and Γ =2 ,6 ,10 ,... shows that the approach described in this paper may be used to study analytically the crossover behavior from systems in the fluid phase to small crystals.

  19. Dipole-dipole resonance line shapes in a cold Rydberg gas

    NASA Astrophysics Data System (ADS)

    Richards, B. G.; Jones, R. R.

    2016-04-01

    We have explored the dipole-dipole mediated, resonant energy transfer reaction, 32 p3 /2+32 p3 /2→32 s +33 s , in an ensemble of cold 85Rb Rydberg atoms. Stark tuning is employed to measure the population transfer probability as a function of the total electronic energy difference between the initial and final atom-pair states over a range of Rydberg densities, 2 ×108≤ρ ≤3 ×109 cm-3. The observed line shapes provide information on the role of beyond nearest-neighbor interactions, the range of Rydberg atom separations, and the electric field inhomogeneity in the sample. The widths of the resonance line shapes increase approximately linearly with the Rydberg density and are only a factor of 2 larger than expected for two-body, nearest-neighbor interactions alone. These results are in agreement with the prediction [B. Sun and F. Robicheaux, Phys. Rev. A 78, 040701(R) (2008), 10.1103/PhysRevA.78.040701] that beyond nearest-neighbor exchange interactions should not influence the population transfer process to the degree once thought. At low densities, Gaussian rather than Lorentzian line shapes are observed due to electric field inhomogeneities, allowing us to set an upper limit for the field variation across the Rydberg sample. At higher densities, non-Lorentzian, cusplike line shapes characterized by sharp central peaks and broad wings reflect the random distribution of interatomic distances within the magneto-optical trap (MOT). These line shapes are well reproduced by an analytic expression derived from a nearest-neighbor interaction model and may serve as a useful fingerprint for characterizing the position correlation function for atoms within the MOT.

  20. Comprehensive Aeroelastic Analysis of Helicopter Rotor with Trailing-Edge Flap for Primary Control and Vibration Control

    DTIC Science & Technology

    2003-01-01

    183 3.34 5/rev fixed system hub normal force with 4/rev open loop trailing-edge flap input...184 3.35 5/rev fixed system hub normal force with 5/rev open loop trailing-edge flap input...185 3.36 5/rev fixed system hub normal force with 6/rev open loop trailing-edge flap

  1. Wintertime atmospheric response to decadal SST anomalies in the North Pacific frontal zone and its relationship to dominant atmospheric internal variability

    NASA Astrophysics Data System (ADS)

    Okajima, S.; Nakamura, H.; Nishii, K.; Miyasaka, T.; Kuwano-Yoshida, A.; Taguchi, B.

    2016-02-01

    A decadal-scale warm SST anomaly observed in the North Pacific subarctic frontal zone (SAFZ) tends to accompany a basin-scale anticyclonic anomaly in the troposphere that peaks in January. A set of sensitivity experiments conducted with an AGCM simulates an anticyclonic ensemble response over the North Pacific in January. As observed, the simulated anticyclonic response is in equivalent barotropic structure and maintained mainly through energy conversion from the ensemble mean circulation realized under the climatological SST, suggesting that the anomaly may have a characteristic of a dynamical mode. Conversion of both available potential energy (APE) and kinetic energy (KE) from the mean flow is important for the observed anomaly, while only the former is important for the model response. This is because the model response is located to the north of the jet core region whereas the observed anomaly is straddling the jet exit region, which appears to be in correspondence to the northwestward displacement of the center of the dominant atmospheric internal variability in our model relative to the observed center. Transient eddy feedback forcing also acts to maintain the observed anomaly rather efficiently, while its efficiency is much lower for the simulated response, which seems to be consistent with the poleward displacement of the anticyclonic response from the jet and stormtrack axes. A multi-decadal integration of our coupled GCM also suggests that atmospheric internal variability may be important for determining atmospheric response to the decadal SST variability of the SAFZ.

  2. A HIV-1 Tat mutant protein disrupts HIV-1 Rev function by targeting the DEAD-box RNA helicase DDX1.

    PubMed

    Lin, Min-Hsuan; Sivakumaran, Haran; Jones, Alun; Li, Dongsheng; Harper, Callista; Wei, Ting; Jin, Hongping; Rustanti, Lina; Meunier, Frederic A; Spann, Kirsten; Harrich, David

    2014-12-14

    Previously we described a transdominant negative mutant of the HIV-1 Tat protein, termed Nullbasic, that downregulated the steady state levels of unspliced and singly spliced viral mRNA, an activity caused by inhibition of HIV-1 Rev activity. Nullbasic also altered the subcellular localizations of Rev and other cellular proteins, including CRM1, B23 and C23 in a Rev-dependent manner, suggesting that Nullbasic may disrupt Rev function and trafficking by intervening with an unidentified component of the Rev nucleocytoplasmic transport complex. To seek a possible mechanism that could explain how Nullbasic inhibits Rev activity, we used a proteomics approach to identify host cellular proteins that interact with Nullbasic. Forty-six Nullbasic-binding proteins were identified by mass spectrometry including the DEAD-box RNA helicase, DDX1. To determine the effect of DDX1 on Nullbasic-mediated Rev activity, we performed cell-based immunoprecipitation assays, Rev reporter assays and bio-layer interferometry (BLI) assays. Interaction between DDX1 and Nullbasic was observed by co-immunoprecipitation of Nullbasic with endogenous DDX1 from cell lysates. BLI assays showed a direct interaction between Nullbasic and DDX1. Nullbasic affected DDX1 subcellular distribution in a Rev-independent manner. Interestingly overexpression of DDX1 in cells not only restored Rev-dependent mRNA export and gene expression in a Rev reporter assay but also partly reversed Nullbasic-induced Rev subcellular mislocalization. Moreover, HIV-1 wild type Tat co-immunoprecipitated with DDX1 and overexpression of Tat could rescue the unspliced viral mRNA levels inhibited by Nullbasic in HIV-1 expressing cells. Nullbasic was used to further define the complex mechanisms involved in the Rev-dependent nuclear export of the 9 kb and 4 kb viral RNAs. All together, these data indicate that DDX1 can be sequestered by Nullbasic leading to destabilization of the Rev nucleocytoplasmic transport complex and decreased levels of Rev-dependent viral transcripts. The outcomes support a role for DDX1 in maintenance of a Rev nuclear complex that transports viral RRE-containing mRNA to the cytoplasm. To our knowledge Nullbasic is the first anti-HIV protein that specifically targets the cellular protein DDX1 to block Rev's activity. Furthermore, our research raises the possibility that wild type Tat may play a previously unrecognized but very important role in Rev function.

  3. Interaction between the Rev1 C-terminal Domain and the PolD3 Subunit of Polζ Suggests a Mechanism of Polymerase Exchange upon Rev1/Polζ-Dependent Translesion Synthesis

    PubMed Central

    Pustovalova, Yulia; Magalhães, Mariana T. Q.; D’Souza, Sanjay; Rizzo, Alessandro A.; Korza, George; Walker, Graham C.; Korzhnev, Dmitry M.

    2016-01-01

    Translesion synthesis (TLS) is a mutagenic branch of cellular DNA damage tolerance that enables bypass replication over DNA lesions carried out by specialized low-fidelity DNA polymerases. The replicative bypass of most types of DNA damage is performed in a two-step process of Rev1/Polζ-dependent TLS. In the first step, a Y-family TLS enzyme, typically Polη, Polι or Polκ, inserts a nucleotide across DNA lesion. In the second step, a four-subunit B-family DNA polymerase Polζ (Rev3/Rev7/PolD2/PolD3 complex) extends the distorted DNA primer-template. The coordinated action of error-prone TLS enzymes is regulated through their interactions with the two scaffold proteins, the sliding clamp PCNA and the TLS polymerase Rev1. Rev1 interactions with all other TLS enzymes are mediated by its C-terminal domain (Rev1-CT), which can simultaneously bind the Rev7 subunit of Polζ and Rev1-interacting regions (RIRs) from Polη, Polι or Polκ. In this work, we identified a previously unknown RIR motif in the C-terminal part of PolD3 subunit of Polζ whose interaction with the Rev1-CT is among the tightest mediated by RIR motifs. Three-dimensional structure of the Rev1-CT/PolD3-RIR complex determined by NMR spectroscopy revealed a structural basis for the relatively high affinity of this interaction. The unexpected discovery of PolD3-RIR motif suggests a mechanism of 'inserter' to 'extender' DNA polymerase switch upon Rev1/Polζ-dependent TLS, in which the PolD3-RIR binding to the Rev1-CT (i) helps displace the 'inserter' Polη, Polι or Polκ from its complex with Rev1, and (ii) facilitates assembly of the four-subunit 'extender' Polζ through simultaneous interaction of Rev1-CT with Rev7 and PolD3 subunits. PMID:26982350

  4. Experimental detection of steerability in Bell local states with two measurement settings

    NASA Astrophysics Data System (ADS)

    Orieux, Adeline; Kaplan, Marc; Venuti, Vivien; Pramanik, Tanumoy; Zaquine, Isabelle; Diamanti, Eleni

    2018-04-01

    Steering, a quantum property stronger than entanglement but weaker than non-locality in the quantum correlation hierarchy, is a key resource for one-sided device-independent quantum key distribution applications, in which only one of the communicating parties is trusted. A fine-grained steering inequality was introduced in (2014 Phys. Rev. A 90 050305), enabling for the first time the detection of steering in all steerable two-qubit Werner states using only two measurement settings. Here, we numerically and experimentally investigate this inequality for generalized Werner states and successfully detect steerability in a wide range of two-photon polarization-entangled Bell local states generated by a parametric down-conversion source.

  5. Series of (2+1)-dimensional stable self-dual interacting conformal field theories

    NASA Astrophysics Data System (ADS)

    Cheng, Meng; Xu, Cenke

    2016-12-01

    Using the duality between seemingly different (2+1)-dimensional [(2 +1 )d ] conformal field theories (CFT) proposed recently [D. T. Son, Phys. Rev. X 5, 031027 (2015), 10.1103/PhysRevX.5.031027; M. A. Metlitski and A. Vishwanath, Phys. Rev. B 93, 245151 (2016), 10.1103/PhysRevB.93.245151; C. Wang and T. Senthil, Phys. Rev. X 6, 011034 (2015), 10.1103/PhysRevX.6.011034; C. Wang and T. Senthil, Phys. Rev. X 5, 041031 (2015), 10.1103/PhysRevX.5.041031; C. Wang and T. Senthil, Phys. Rev. B 93, 085110 (2016), 10.1103/PhysRevB.93.085110; C. Xu and Y.-Z. You, Phys. Rev. B 92, 220416 (2015), 10.1103/PhysRevB.92.220416; D. F. Mross et al., Phys. Rev. Lett. 117, 016802 (2016), 10.1103/PhysRevLett.117.016802; A. Karch and D. Tong, arXiv:1606.01893; N. Seiberg et al., arXiv:1606.01989; P.-S. Hsin and N. Seiberg, arXiv:1607.07457], we study a series of (2 +1 )d stable self-dual interacting CFTs. These CFTs can be realized (for instance) on the boundary of the 3 d bosonic topological insulator protected by U(1) and time-reversal symmetry (T ), and they remain stable as long as these symmetries are preserved. When realized as a boundary system, these CFTs can be driven into anomalous fractional quantum Hall states once T is broken. We demonstrate that the newly proposed dualities allow us to study these CFTs quantitatively through a controlled calculation, without relying on a large flavor number of matter fields. We also propose a numerical test for our results, which would provide strong evidence for the originally proposed duality between Dirac fermion and QED.

  6. Copper nanoparticle ensembles for selective electroreduction of CO 2 to C 2-C 3 products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dohyung; Kley, Christopher S.; Li, Yifan

    Direct conversion of carbon dioxide to multicarbon products remains as a grand challenge in electrochemical CO 2 reduction. Various forms of oxidized copper have been demonstrated as electrocatalysts that still require large overpotentials. Here in this paper, we show that an ensemble of Cu nanoparticles (NPs) enables selective formation of C 2–C 3 products at low overpotentials. Densely packed Cu NP ensembles underwent structural transformation during electrolysis into electrocatalytically active cube-like particles intermixed with smaller nanoparticles. Ethylene, ethanol, and n-propanol are the major C 2–C 3 products with onset potential at -0.53 V (vs. reversible hydrogen electrode, RHE) and Cmore » 2–C 3 faradaic efficiency (FE) reaching 50% at only -0.75 V. Thus, the catalyst exhibits selective generation of C 2–C 3 hydrocarbons and oxygenates at considerably lowered overpotentials in neutral pH aqueous media. In addition, this approach suggests new opportunities in realizing multicarbon product formation from CO 2, where the majority of efforts has been to use oxidized copper-based materials. Robust catalytic performance is demonstrated by 10 h of stable operation with C 2–C 3 current density 10 mA/cm 2 (at -0.75 V), rendering it attractive for solar-to-fuel applications. Lastly, Tafel analysis suggests reductive CO coupling as a rate determining step for C 2 products, while n-propanol (C 3) production seems to have a discrete pathway.« less

  7. Copper nanoparticle ensembles for selective electroreduction of CO 2 to C 2-C 3 products

    DOE PAGES

    Kim, Dohyung; Kley, Christopher S.; Li, Yifan; ...

    2017-09-18

    Direct conversion of carbon dioxide to multicarbon products remains as a grand challenge in electrochemical CO 2 reduction. Various forms of oxidized copper have been demonstrated as electrocatalysts that still require large overpotentials. Here in this paper, we show that an ensemble of Cu nanoparticles (NPs) enables selective formation of C 2–C 3 products at low overpotentials. Densely packed Cu NP ensembles underwent structural transformation during electrolysis into electrocatalytically active cube-like particles intermixed with smaller nanoparticles. Ethylene, ethanol, and n-propanol are the major C 2–C 3 products with onset potential at -0.53 V (vs. reversible hydrogen electrode, RHE) and Cmore » 2–C 3 faradaic efficiency (FE) reaching 50% at only -0.75 V. Thus, the catalyst exhibits selective generation of C 2–C 3 hydrocarbons and oxygenates at considerably lowered overpotentials in neutral pH aqueous media. In addition, this approach suggests new opportunities in realizing multicarbon product formation from CO 2, where the majority of efforts has been to use oxidized copper-based materials. Robust catalytic performance is demonstrated by 10 h of stable operation with C 2–C 3 current density 10 mA/cm 2 (at -0.75 V), rendering it attractive for solar-to-fuel applications. Lastly, Tafel analysis suggests reductive CO coupling as a rate determining step for C 2 products, while n-propanol (C 3) production seems to have a discrete pathway.« less

  8. Interactions of Ultracold Impurity Particles with Bose-Einstein Condensates

    DTIC Science & Technology

    2015-06-23

    Lukin et al ., Phys. Rev. Lett. 87, 037901 (2001). [2] D. Jaksch et al ., Phys. Rev. Lett. 85, 2208 (2000). [3] L. Isenhower et al ., Phys. Rev. Lett...104, 010503 (2010). [4] T. Wilk et al ., Phys. Rev. Lett. 104, 010502 (2010). [5] I. Mourachko et al ., Phys. Rev. Lett. 80, 253 (1998). [6] W. R...Phys. 12, 103044 (2010). [12] R. M. W. van Bijnen et al ., J. Phys. B 44, 184008 (2011). [13] I. Lesanovsky, Phys. Rev. Lett. 106, 025301 (2011). [14] E

  9. Suppression of atherosclerosis by synthetic REV-ERB agonist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitaula, Sadichha; Billon, Cyrielle; Kamenecka, Theodore M.

    2015-05-08

    The nuclear receptors for heme, REV-ERBα and REV-ERBβ, play important roles in the regulation of metabolism and inflammation. Recently it was demonstrated that reduced REV-ERBα expression in hematopoetic cells in LDL receptor null mice led to increased atherosclerosis. We sought to determine if synthetic REV-ERB agonists that we have developed might have the ability to suppress atherosclerosis in this model. A previously characterized synthetic REV-ERB agonist, SR9009, was used to determine if activation of REV-ERB activity would affect atherosclerosis in LDL receptor deficient mice. Atherosclerotic plaque size was significantly reduced (p < 0.05) in mice administered SR9009 (100 mg/kg) for seven weeks comparedmore » to control mice (n = 10 per group). SR9009 treatment of bone marrow-derived mouse macrophages (BMDM) reduced the polarization of BMDMs to proinflammatory M1 macrophage while increasing the polarization of BMDMs to anti-inflammatory M2 macrophages. Our results suggest that pharmacological targeting of REV-ERBs may be a viable therapeutic option for treatment of atherosclerosis. - Highlights: • Synthetic REV-ERB agonist treatment reduced atherosclerosis in a mouse model. • Pharmacological activation of REV-ERB decreased M1 macrophage polarization. • Pharmacological activation of REV-ERB increased M2 macrophage polarization.« less

  10. Rev1 Recruits Ung to Switch Regions and Enhances dU Glycosylation for Immunoglobulin Class Switch DNA Recombination

    PubMed Central

    Zan, Hong; White, Clayton A.; Thomas, Lisa M.; Mai, Thach; Li, Guideng; Xu, Zhenming; Zhang, Jinsong; Casali, Paolo

    2012-01-01

    SUMMARY By diversifying the biological effector functions of antibodies, class switch DNA recombination (CSR) plays a critical role in the maturation of the immune response. It is initiated by AID-mediated dC deamination, yielding dUs, and dU glycosylation by Ung in antibody switch (S) region DNA. Here we showed that the translesion DNA synthesis polymerase Rev1 directly interacted with Ung and targeted in an AID-dependent and Ung-independent fashion the S regions undergoing CSR. Rev1–/– Ung+/+ B cells reduced Ung recruitment to S regions, DNA-dU glycosylation and CSR. This together with an S region spectrum of mutations similar to that of Rev1+/+ Ung–/– B cells suggested that Rev1 operated in the same pathway as Ung, as emphasized by further decreased CSR in Rev1–/– Msh2–/– B cells. Rescue of CSR in Rev1–/– B cells by a catalytically inactive Rev1 mutant showed that the important role of Rev1 in CSR is mediated by Rev1 scaffold, not enzymatic function. PMID:23140944

  11. [Construction of autocatalytic caspase-3 driven by amplified human telomerase reverse transcriptase promoter and its enhanced efficacy of inducing apoptosis in human ovarian carcinoma].

    PubMed

    Song, Yue; Shen, Keng; He, Chun-Xia

    2007-09-01

    To construct recombinant adenoviral vector expressing autocatalysis caspase-3 driven by human telomerase reverse transcriptase promoter amplified by two-step transcription amplification (hTERTp-TSTA), and investigate its antitumor effect in ovarian cancer in vitro and in vivo. Recombinant adenoviruses expressing autocatalytic caspase-3 (rev-caspase-3) driven by hTERTp-TSTA were prepared, which were named as AdHTVP2G5-rev-casp3. AdHT-rev-casp3, Ad-rev-casp3 and AdHTVP2G5-EGEP, which express rev-caspase-3 driven by hTERTp, cytomegalovirus promoter (CMVp) and enhanced green fluorescent protein (EGFP), respectively, were used as controls. Western blot, cell counting kit (CCK-8), flow cytometry (FCM) and TdT-mediated dUTP-biotin nick end labeling (TUNEL) were used to detect the expression of p17, active subunit of caspase-3, and p85, and to measure cell survival rates, apoptotic rates and cell cycle distribution in ovarian cell line AO and normal human umbilical vein endothelial cell line HUVEC, following treatments of AdHTVP2G5-rev-casp3. subcutaneous tumor models and abdominally spread tumor models of human ovarian carcinoma using AO cells in BALB/c nude mice were established. Following treatments of AdHTVP2G5-rev-casp3, western blot was used to detect the expression of active caspase-3 in abdominally spread tumors and liver tissues, respectively, and the mouse survival rates and the volume of tumor nodules were measured, and the serum level of alanine transaminase (ALT) and aspartate transaminase (AST) were analyzed to monitor liver damages and HE staining was used to detect the histopathological changes of various organs. The levels of p17 expression in AdHTVP2G5-rev-casp3-treated AO cells were significantly higher than that in Ad-rev-casp3 or AdHT-rev-casp3 treated AO cells, while no expression was observed in AdHTVP2G5-rev-casp3-treated HUVEC. There was strong cell killing of AdHTVP2G5-rev-casp3 of hTERT positive AO cells, but not of the hTERT-negative HUVEC cells. Cell survival rate and apoptotic rate of AO cells treated with AdHTVP2G5-rev-casp3 were 17.8% and 40.2%, respectively, significantly different from that treated with AdHT-rev-casp3 (75.2% and 16.1%) at the multiplicity of infection (MOI) of 70 (P < 0.01). There was no significant difference in HUVEC cell survival rate and apoptotic rate between AdHTVP2G5-rev-casp3 treatment (97.7% and 2.1%, respectively) and AdHT-rev-casp3 treatment (98.5% and 1.7%, respectively) at the same MOI (P > 0.05). Significant expressions of active caspase-3 were shown in AdHTVP2G5-rev-casp3-treated tumors, whereas no expression was shown in liver. In contrast, both tumors and liver tissues showed active caspase-3 expression following treatments of Ad-rev-casp3. AdHTVP2G5-rev-casp3 and Ad-rev-casp3 prolonged mouse survival [mean survival time of (259 +/- 14) d and (213 +/- 16) d], when compared with treatment with AdHT-rev-casp3 [(177 +/- 12) d] and AdHTVP2G5-EGFP [(109 +/- 7) d; P < 0.01]. The mean volume of AdHTVP2G5-rev-casp3-treated tumor was 406 mm(3), significantly less than those of AdHT-rev-casp3 treatment (990 mm(3)), Ad-rev-casp3 treatment (645 mm(3)) and AdHTVP2G5-EGFP treatment (1728 mm(3); P < 0.01). The serum ALT and AST levels were not significantly elevated in AdHTVP2G5-rev-casp3-treated mice, whereas significantly elevated in Ad-rev-casp3-treated mice. No obvious lesions were found in any organ in AdHTVP2G5-rev-casp-treated group. Recombinant adenovirus AdHTVP2G5-rev-casp3 expressing rev-caspase-3 driven by hTERTp-TSTA can result in marked cell apoptosis with significant tumor targeting, suppressing tumor growth and prolonging the mouse survival, meanwhile, it can prevent against the liver toxicity induced by rev-caspase-3.

  12. Three-electron spin qubits

    NASA Astrophysics Data System (ADS)

    Russ, Maximilian; Burkard, Guido

    2017-10-01

    The goal of this article is to review the progress of three-electron spin qubits from their inception to the state of the art. We direct the main focus towards the exchange-only qubit (Bacon et al 2000 Phys. Rev. Lett. 85 1758-61, DiVincenzo et al 2000 Nature 408 339) and its derived versions, e.g. the resonant exchange (RX) qubit, but we also discuss other qubit implementations using three electron spins. For each three-spin qubit we describe the qubit model, the envisioned physical realization, the implementations of single-qubit operations, as well as the read-out and initialization schemes. Two-qubit gates and decoherence properties are discussed for the RX qubit and the exchange-only qubit, thereby completing the list of requirements for quantum computation for a viable candidate qubit implementation. We start by describing the full system of three electrons in a triple quantum dot, then discuss the charge-stability diagram, restricting ourselves to the relevant subsystem, introduce the qubit states, and discuss important transitions to other charge states (Russ et al 2016 Phys. Rev. B 94 165411). Introducing the various qubit implementations, we begin with the exchange-only qubit (DiVincenzo et al 2000 Nature 408 339, Laird et al 2010 Phys. Rev. B 82 075403), followed by the RX qubit (Medford et al 2013 Phys. Rev. Lett. 111 050501, Taylor et al 2013 Phys. Rev. Lett. 111 050502), the spin-charge qubit (Kyriakidis and Burkard 2007 Phys. Rev. B 75 115324), and the hybrid qubit (Shi et al 2012 Phys. Rev. Lett. 108 140503, Koh et al 2012 Phys. Rev. Lett. 109 250503, Cao et al 2016 Phys. Rev. Lett. 116 086801, Thorgrimsson et al 2016 arXiv:1611.04945). The main focus will be on the exchange-only qubit and its modification, the RX qubit, whose single-qubit operations are realized by driving the qubit at its resonant frequency in the microwave range similar to electron spin resonance. Two different types of two-qubit operations are presented for the exchange-only qubits which can be divided into short-ranged and long-ranged interactions. Both of these interaction types are expected to be necessary in a large-scale quantum computer. The short-ranged interactions use the exchange coupling by placing qubits next to each other and applying exchange-pulses (DiVincenzo et al 2000 Nature 408 339, Fong and Wandzura 2011 Quantum Inf. Comput. 11 1003, Setiawan et al 2014 Phys. Rev. B 89 085314, Zeuch et al 2014 Phys. Rev. B 90 045306, Doherty and Wardrop 2013 Phys. Rev. Lett. 111 050503, Shim and Tahan 2016 Phys. Rev. B 93 121410), while the long-ranged interactions use the photons of a superconducting microwave cavity as a mediator in order to couple two qubits over long distances (Russ and Burkard 2015 Phys. Rev. B 92 205412, Srinivasa et al 2016 Phys. Rev. B 94 205421). The nature of the three-electron qubit states each having the same total spin and total spin in z-direction (same Zeeman energy) provides a natural protection against several sources of noise (DiVincenzo et al 2000 Nature 408 339, Taylor et al 2013 Phys. Rev. Lett. 111 050502, Kempe et al 2001 Phys. Rev. A 63 042307, Russ and Burkard 2015 Phys. Rev. B 91 235411). The price to pay for this advantage is an increase in gate complexity. We also take into account the decoherence of the qubit through the influence of magnetic noise (Ladd 2012 Phys. Rev. B 86 125408, Mehl and DiVincenzo 2013 Phys. Rev. B 87 195309, Hung et al 2014 Phys. Rev. B 90 045308), in particular dephasing due to the presence of nuclear spins, as well as dephasing due to charge noise (Medford et al 2013 Phys. Rev. Lett. 111 050501, Taylor et al 2013 Phys. Rev. Lett. 111 050502, Shim and Tahan 2016 Phys. Rev. B 93 121410, Russ and Burkard 2015 Phys. Rev. B 91 235411, Fei et al 2015 Phys. Rev. B 91 205434), fluctuations of the energy levels on each dot due to noisy gate voltages or the environment. Several techniques are discussed which partly decouple the qubit from magnetic noise (Setiawan et al 2014 Phys. Rev. B 89 085314, West and Fong 2012 New J. Phys. 14 083002, Rohling and Burkard 2016 Phys. Rev. B 93 205434) while for charge noise it is shown that it is favorable to operate the qubit on the so-called ‘(double) sweet spots’ (Taylor et al 2013 Phys. Rev. Lett. 111 050502, Shim and Tahan 2016 Phys. Rev. B 93 121410, Russ and Burkard 2015 Phys. Rev. B 91 235411, Fei et al 2015 Phys. Rev. B 91 205434, Malinowski et al 2017 arXiv: 1704.01298), which are least susceptible to noise, thus providing a longer lifetime of the qubit.

  13. The Nuclear Receptor Rev-erbα Controls Circadian Thermogenic Plasticity

    PubMed Central

    Gerhart-Hines, Zachary; Everett, Logan J.; Loro, Emanuele; Briggs, Erika R.; Bugge, Anne; Hou, Catherine; Ferrara, Christine; Seale, Patrick; Pryma, Daniel A.; Khurana, Tejvir S.; Lazar, Mitchell A.

    2013-01-01

    Circadian oscillation of body temperature is a basic, evolutionary-conserved feature of mammalian biology1. Additionally, homeostatic pathways allow organisms to protect their core temperatures in response to cold exposure2. However, the mechanism responsible for coordinating daily body temperature rhythm and adaptability to environmental challenges is unknown. Here we show that the nuclear receptor Rev-erbα, a powerful transcriptional repressor, links circadian and thermogenic networks through the regulation of brown adipose tissue (BAT) function. Mice exposed to cold fare dramatically better at 5 AM (Zeitgeber time 22) when Rev-erbα is barely expressed than at 5 PM (ZT10) when Rev-erbα is abundant. Deletion of Rev-erbα markedly improves cold tolerance at 5 PM, indicating that overcoming Rev-erbα-dependent repression is a fundamental feature of the thermogenic response to cold. Physiological induction of uncoupling protein 1 (UCP1) by cold temperatures is preceded by rapid down-regulation of Rev-erbα in BAT. Rev-erbα represses UCP1 in a brown adipose cell-autonomous manner and BAT UCP1 levels are high in Rev-erbα-null mice even at thermoneutrality. Genetic loss of Rev-erbα also abolishes normal rhythms of body temperature and BAT activity. Thus, Rev-erbα acts as a thermogenic focal point required for establishing and maintaining body temperature rhythm in a manner that is adaptable to environmental demands. PMID:24162845

  14. [The efficacy of autocatalytic casapse-3 driven by human telomerase reverse transcriptase promoter on human ovarian carcinoma].

    PubMed

    Song, Yue; Shen, Keng; Yu, Jing-rong

    2007-11-06

    To construct recombinant adenoviral vector expressing autocatalysis caspase-3 driven by human telomerase reverse transcriptase promoter (hTERTp), and investigate its antitumor effect on ovarian cancer in vitro and in vivo. Recombinant adenovirus expressing autocatalytic caspase-3 (rev-csapase-3) driven by hTERTp, AdHT-rev-casp3, was constructed. Ad-rev-casp3 expressing rev-caspase-3 driven by cytomegalovirus promoter (CMVp) was used as a positive control. hTERT positive human ovarian cancer cells of the line AO and hTERT-negative human umbilical venous endothelial cells (HUVECs) were cultured and transfected with AdHT-rev-casp3, Ad-rev-casp3, or Ad-EGFG expressing enhanced green fluorescent protein as control group. Western blotting, Cell Counting Kit (CCK-8), flow cytometry, and TUNEL were used to detect the expression of p17, active subunit of caspase-3, and p85, a poly ADP-ribose polymerase (PARP) cleavage fragment, and they were also used to measure the cell survival rate and apoptotic rate. Western blotting was used to detect the expression of active caspase-3 and its substrate PARP in the AO cells and HUVECs. Twenty nude BALB/c mice were inoculated subcutaneously with AO cells to establish subcutaneous tumor models, when the tumor grew to the volume of 150 mm3 the rats were divided into 4 equal groups to undergo intra-tumor injection of AdHT-rev-casp3, Ad-rev-casp3, Ad-EGFG, and phosphate-buffered saline (PBS) respectively, the survival rate tumor inhibition rate was observed, 72 days later the mice were killed with their livers and tumors taken out, and Western blotting was used to detect the expression of active caspase-3. Another 40 mice underwent intraperitoneal injection of AO cells to establish intraperitoneal transplanted tumor models, 21 days later the rats were divided into 4 equal groups to be injected intraperitoneally with AdHT-rev-casp3, Ad-rev-casp3, Ad-EGFG, or PBS, the survival rate was observed, and the blood levels of alanine transaminase (ALT) and aspartate transaminase (AST) were detected. Following the administration of AdHT-rev-casp3, active caspase-3 protein was significantly expressed, and the levels of p17 and p85 expressions were significantly elevated in AO cells, while no expressions of p17 and p85 was observed in HUVEC. In contrast, both AO and HUVEC expressed high levels of p17 and p85 protein after administrations of Ad-rev-casp3. AdHT-rev-casp3 dose-dependently killed the hTERT positive AO cells, however, showed no killing effect on the hTERT-negative HUVEC cells; whereas Ad-rev-casp3 was cytotoxic independent of the hTERT status of the cells. The killing effect of Ad-rev-casp3 was stronger than that of AdHT-rev-casp3. Treated with AdHT-rev-cap3 the expression levels of the caspase-3 fragment p17 and PARP cleavage fragment p85 of the AO cells were significantly higher than those before the treatment, however, the expression levels of p17 and p85 were both weaker than those of the AO cells treated with Ad-rev-casp-3. Though treated with AdHT-rev-casp-3, there was still no remarkable expression of p17 and p85 in the HUVECs, however, rather high protein expression levels of p17 and p85 was shown. After treatment with AdHT-rev-casp3 remarkable expression of active caspase-3 was seen in the tumor collected from the mouse body, but not in the liver; however, high caspase-3 expression level was shown in both the liver and tumor after the treatment of Ad-rev-casp-3. 53 days after treatment the tumor suppression rate of the AdHT-rev-casp3 and ad-rev-casp-3 groups were 60% and 70% respectively, both significantly higher than that of the control group. The survival rates of the mice treated with AdHT-rev-casp3 and Ad-rev-casp-3 were both significantly longer than that of the PBS group; however the survival rate of the Ad-rev-casp-3 group was longer than that of the AdHT-rev-casp3 group. The serum ALT and AST levels were not significantly elevated in the AdHT-rev-casp3-treated mice, whereas 7-9-times that before treatment in the Ad-rev-casp3-treated mice. Recombinant adenovirus AdHT-rev-casp3 expressing rev-caspase-3 driven by hTERTp effectively causes cell apoptosis targeting tumor, significantly suppresses tumor growth and prolongs the mouse survival duration, with mild liver toxicity.

  15. Appraisal of geodynamic inversion results: a data mining approach

    NASA Astrophysics Data System (ADS)

    Baumann, T. S.

    2016-11-01

    Bayesian sampling based inversions require many thousands or even millions of forward models, depending on how nonlinear or non-unique the inverse problem is, and how many unknowns are involved. The result of such a probabilistic inversion is not a single `best-fit' model, but rather a probability distribution that is represented by the entire model ensemble. Often, a geophysical inverse problem is non-unique, and the corresponding posterior distribution is multimodal, meaning that the distribution consists of clusters with similar models that represent the observations equally well. In these cases, we would like to visualize the characteristic model properties within each of these clusters of models. However, even for a moderate number of inversion parameters, a manual appraisal for a large number of models is not feasible. This poses the question whether it is possible to extract end-member models that represent each of the best-fit regions including their uncertainties. Here, I show how a machine learning tool can be used to characterize end-member models, including their uncertainties, from a complete model ensemble that represents a posterior probability distribution. The model ensemble used here results from a nonlinear geodynamic inverse problem, where rheological properties of the lithosphere are constrained from multiple geophysical observations. It is demonstrated that by taking vertical cross-sections through the effective viscosity structure of each of the models, the entire model ensemble can be classified into four end-member model categories that have a similar effective viscosity structure. These classification results are helpful to explore the non-uniqueness of the inverse problem and can be used to compute representative data fits for each of the end-member models. Conversely, these insights also reveal how new observational constraints could reduce the non-uniqueness. The method is not limited to geodynamic applications and a generalized MATLAB code is provided to perform the appraisal analysis.

  16. RNA helicase MOV10 functions as a co-factor of HIV-1 Rev to facilitate Rev/RRE-dependent nuclear export of viral mRNAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Feng; Zhang, Junsong; Zhang, Yijun

    Human immunodeficiency virus type 1 (HIV-1) exploits multiple host factors during its replication. The REV/RRE-dependent nuclear export of unspliced/partially spliced viral transcripts needs the assistance of host proteins. Recent studies have shown that MOV10 overexpression inhibited HIV-1 replication at various steps. However, the endogenous MOV10 was required in certain step(s) of HIV-1 replication. In this report, we found that MOV10 potently enhances the nuclear export of viral mRNAs and subsequently increases the expression of Gag protein and other late products through affecting the Rev/RRE axis. The co-immunoprecipitation analysis indicated that MOV10 interacts with Rev in an RNA-independent manner. The DEAG-boxmore » of MOV10 was required for the enhancement of Rev/RRE-dependent nuclear export and the DEAG-box mutant showed a dominant-negative activity. Our data propose that HIV-1 utilizes the anti-viral factor MOV10 to function as a co-factor of Rev and demonstrate the complicated effects of MOV10 on HIV-1 life cycle. - Highlights: • MOV10 can function as a co-factor of HIV-1 Rev. • MOV10 facilitates Rev/RRE-dependent transport of viral mRNAs. • MOV10 interacts with Rev in an RNA-independent manner. • The DEAG-box of MOV10 is required for the enhancement of Rev/RRE-dependent export.« less

  17. David Adler Lectureship Award in the Field of Materials Physics Talk: Surfaces of Quasicrystals

    NASA Astrophysics Data System (ADS)

    Thiel, Patricia

    2010-03-01

    Quasiperiodic order is recognized (in a utilitarian, rather than a mathematical sense) by the absence of periodicity, concurrent with a classically-forbidden rotational symmetry. It is quite beautiful, having captured the attention of scientists and artists alike. Following the discovery of quasiperiodic order in a real system,footnotetextD. Shechtman, I. Blech, D. Gratias, and J.W. Cahn, Phys. Rev. Lett. 53, 1951 (1984). many metallic alloys and intermetallics were found to exhibit this type of order on the atomic scale. More recently ``soft'' quasicrystals were discovered,footnotetextL. Bindi, P.J. Steinhardt, N. Yao, and P.J. Lu, Science 324, 1306 (2009). and nanocrystalline arrays were found to spontaneously adopt quasiperiodic order.footnotetextD.V. Talapin, E.V. Shevchenko, M.I. Bodnarchuk, X. Ye, J. Chen, and C.B. Murray, Nature 461 , 964 (2009). From a scientific perspective, quasicrystals are alluring because they allow us to test the relationship between atomic structure and physical properties. This talk deals with the ways in which our understanding of solid surfaces has been both enriched and challenged by these complex materials.footnotetextP. Thiel, Annu. Rev. Phys. Chem. (2008).^,footnotetextV. Fourn'ee, J. Ledieu, and P. Thiel, J. Phys: Condens. Matter. 20, 3310301 (2008). properties of the metallic quasicrystals originally generated interest because they were unusual.footnotetextJ.M. Dubois, Useful Quasicrystals(World Scientific, Singapore, 2005). For instance, among Al-rich alloys, the Al-based quasicrystalline phases exhibit puzzling resistance to surface oxidation. Also, Al-rich quasicrystals have surprisingly good and promising catalytic properties (e.g. for steam reforming of methanol).footnotetextA.P. Tsai and M. Yoshimura, Appl. Cat. A: General 214 , 237 (2001). Perhaps most famously, they exhibit low friction.^7 Comparisons with crystalline materials have established that these features are deeply related to the quasiperiodic atomic structure. talk focuses, first, on the ways that surfaces of quasicrystals are unusual templates for adsorption and solid film growth.footnotetextV. Fourn'ee and P.A. Thiel, J. Phys. D: Appl. Phys. 38, R83 (2005). They can enforce quasicrystalline structure in films,footnotetextK.J. Franke, H.R. Sharma, W. Theis, P. Gille, P. Ebert, and K.H. Rieder, Phys. Rev. Lett. 89, 156104 (2002). opening the door to exploration of the properties of materials in such an ``unnatural'' state. The electronic structure at quasicrystal surfaces can affect film morphology through a quantum size effect.footnotetextV. Fourn'ee, H.R. Sharma, M. Shimoda, A.P. Tsai, B. Unal, A.R. Ross, T.A. Lograsso, and P.A. Thiel, Phys. Rev. Lett. 95, 155504 (2005).^,footnotetextB. "Unal, V. Fourn'ee, P.A. Thiel, and J.W. Evans, Phys. Rev. Lett. 102, 196103 (2009). Quasicrystal surfaces have broad ensembles of adsorption sites,footnotetextB. "Unal, C.J. Jenks, and P.A. Thiel, J. Phys: Condens. Matter. 21, 055009 (2009). including trap sites that may lead to quasi-periodic arrays of islands.footnotetextT. Cai, J. Ledieu, R. McGrath, V. Fourn'ee, T.A. Lograsso, A.R. Ross, and P.A. Thiel, Surface Sci. 526, 115 (2003).^,footnotetextB. Unal, V. Fourn'ee, K.J. Schnitzenbaumer, C. Ghosh, C.J. Jenks, A.R. Ross, T.A. Lograsso, J.W. Evans, and P.A. Thiel, Phys. Rev. B 75, 064205 (2007). This talk also focuses on their low friction, when measured with techniques that probe macroscopic scales (conventional pin-on-disk tribometers) to nanoscopic scales (atomic force microscopy).footnotetext5. J.Y. Park, D.F. Ogletree, M. Salmeron, R.A. Ribeiro, P.C. Canfield, C.J. Jenks, and P.A. Thiel, Science , 1354 (2005).

  18. Identification of Small Molecule Translesion Synthesis Inhibitors That Target the Rev1-CT/RIR Protein-Protein Interaction.

    PubMed

    Sail, Vibhavari; Rizzo, Alessandro A; Chatterjee, Nimrat; Dash, Radha C; Ozen, Zuleyha; Walker, Graham C; Korzhnev, Dmitry M; Hadden, M Kyle

    2017-07-21

    Translesion synthesis (TLS) is an important mechanism through which proliferating cells tolerate DNA damage during replication. The mutagenic Rev1/Polζ-dependent branch of TLS helps cancer cells survive first-line genotoxic chemotherapy and introduces mutations that can contribute to the acquired resistance so often observed with standard anticancer regimens. As such, inhibition of Rev1/Polζ-dependent TLS has recently emerged as a strategy to enhance the efficacy of first-line chemotherapy and reduce the acquisition of chemoresistance by decreasing tumor mutation rate. The TLS DNA polymerase Rev1 serves as an integral scaffolding protein that mediates the assembly of the active multiprotein TLS complexes. Protein-protein interactions (PPIs) between the C-terminal domain of Rev1 (Rev1-CT) and the Rev1-interacting region (RIR) of other TLS DNA polymerases play an essential role in regulating TLS activity. To probe whether disrupting the Rev1-CT/RIR PPI is a valid approach for developing a new class of targeted anticancer agents, we designed a fluorescence polarization-based assay that was utilized in a pilot screen for small molecule inhibitors of this PPI. Two small molecule scaffolds that disrupt this interaction were identified, and secondary validation assays confirmed that compound 5 binds to Rev1-CT at the RIR interface. Finally, survival and mutagenesis assays in mouse embryonic fibroblasts and human fibrosarcoma HT1080 cells treated with cisplatin and ultraviolet light indicate that these compounds inhibit mutagenic Rev1/Polζ-dependent TLS in cells, validating the Rev1-CT/RIR PPI for future anticancer drug discovery and identifying the first small molecule inhibitors of TLS that target Rev1-CT.

  19. Multi-azimuthal-angle effects in self-induced supernova neutrino flavor conversions without axial symmetry

    NASA Astrophysics Data System (ADS)

    Mirizzi, Alessandro

    2013-10-01

    The flavor evolution of neutrinos emitted by a supernova (SN) core is strongly affected by the refractive effects associated with the neutrino-neutrino interactions in the deepest stellar regions. Till now, all numerical studies have assumed the axial symmetry for the “multi-angle effects” associated with the neutrino-neutrino interactions. Recently, it has been pointed out in Raffelt, Sarikas, and Seixas [Phys. Rev. Lett. 111, 091101 (2013)] that if this assumption is removed, a new multi-azimuthal-angle (MAA) instability emerges in the flavor evolution of the dense SN neutrino gas, in addition to the one caused by multi-zenith-angle effects. Inspired by this result, for the first time we numerically solve the nonlinear neutrino propagation equations in SN, introducing the azimuthal angle as an angular variable in addition to the usual zenith angle. We consider simple energy spectra with an excess of νe over ν¯e. We find that even starting with a complete axial symmetric neutrino emission, the MAA effects would lead to significant flavor conversions in normal mass hierarchy, in cases otherwise stable under the only multi-zenith-angle effects. The final outcome of the flavor conversions, triggered by the MAA instability, depends on the initial asymmetry between νe and ν¯e spectra. If it is sufficiently large, final spectra would show an ordered behavior with spectral swaps and splits. Conversely, for small flavor asymmetries flavor decoherence among angular modes develops, also affecting the flavor evolution in the inverted mass hierarchy.

  20. NMR Structure and Dynamics of the C-terminal Domain from Human Rev1 and its Complex with Rev1 Interacting Region of DNA Polymerase η

    PubMed Central

    Pozhidaeva, Alexandra; Pustovalova, Yulia; D'Souza, Sanjay; Bezsonova, Irina; Walker, Graham C.; Korzhnev, Dmitry M.

    2013-01-01

    Rev1 is a translesion synthesis (TLS) DNA polymerase essential for DNA damage tolerance in eukaryotes. In the process of TLS stalled high-fidelity replicative DNA polymerases are temporarily replaced by specialized TLS enzymes that can bypass sites of DNA damage (lesions), thus allowing replication to continue or postreplicational gaps to be filled. Despite its limited catalytic activity, human Rev1 plays a key role in TLS by serving as a scaffold that provides an access of Y-family TLS polymerases polη, ι, and κ to their cognate DNA lesions and facilitates their subsequent exchange to polζ that extends the distorted DNA primer-template. Rev1 interaction with the other major human TLS polymerases, polη, ι, κ and the regulatory subunit Rev7 of polζ, is mediated by Rev1 C-terminal domain (Rev1-CT). We used NMR spectroscopy to determine the spatial structure of the Rev1-CT domain (residues 1157-1251) and its complex with Rev1 interacting region (RIR) from polη (residues 524-539). The domain forms a four-helix bundle with a well-structured N-terminal β-hairpin docking against helices 1 and 2, creating a binding pocket for the two conserved Phe residues of the RIR motif that upon binding folds into an α-helix. NMR spin-relaxation and NMR relaxation dispersion measurements suggest that free Rev1-CT and Rev1-CT/polη-RIR complex exhibit μs-ms conformational dynamics encompassing the RIR binding site, which might facilitate selection of the molecular configuration optimal for binding. These results offer new insights into the control of TLS in human cells by providing a structural basis for understanding the recognition of the Rev1-CT by Y-family DNA polymerases. PMID:22691049

  1. REV-ERBs agonism suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss partially via FABP4 upregulation.

    PubMed

    Song, Chao; Tan, Peng; Zhang, Zheng; Wu, Wei; Dong, Yonghui; Zhao, Liming; Liu, Huiyong; Guan, Hanfeng; Li, Feng

    2018-01-22

    REV-ERBs (REV-ERBα and REV-ERBβ) are transcription repressors and circadian regulators. Previous investigations have shown that REV-ERBs repress the expression of target genes, including MMP9 and CX3CR1, in macrophages. Because MMP9 and CX3CR1 reportedly participate in receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis, we inferred that REV-ERBs might play a role in osteoclastogenesis. In the present study, we found that the REV-ERBα level decreased significantly during RANKL-induced osteoclast differentiation from primary bone marrow-derived macrophages (BMMs). REV-ERBα knockdown by small interfering RNA in BMMs resulted in the enhanced formation of osteoclasts, whereas REV-ERBβ knockdown showed no effect on osteoclast differentiation. Moreover, the REV-ERB agonist SR9009 inhibited osteoclast differentiation and bone resorption. Intraperitoneal SR9009 administration prevented ovariectomy-induced bone loss; this effect was accompanied by decreased serum RANKL and C-terminal telopeptide of type I collagen levels and increased osteoprotegerin levels. Further investigation revealed that NF-κB and MAPK activation and nuclear factor of activated T cells, cytoplasmic 1, and c-fos expression were suppressed by SR9009. The level of reactive oxygen species was also decreased by SR9009, with NADPH oxidase subunits also being down-regulated. In addition, an expression microarray showed that FABP4, an intracellular lipid-binding protein, was up-regulated by REV-ERB agonism. BMS309403, an inhibitor of FABP4, partially prevented the suppression of osteoclastogenesis by SR9009 through stabilizing phosphorylation of p65. To summarize, our results proved that the REV-ERB agonism inhibited osteoclastogenesis partially via FABP4 up-regulation.-Song, C., Tan, P., Zhang, Z., Wu, W., Dong, Y., Zhao, L., Liu, H., Guan, H., Li, F. REV-ERBs agonism suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss partially via FABP4 upregulation.

  2. Suppression of atherosclerosis by synthetic REV-ERB agonist

    PubMed Central

    Sitaula, Sadichha; Billon, Cyrielle; Kamenecka, Theodore M.; Solt, Laura A.; Burris, Thomas P.

    2015-01-01

    The nuclear receptors for heme, REV-ERBα and REV-ERBβ, play important roles in the regulation of metabolism and inflammation. Recently it was demonstrated that reduced REV-ERBα expression in hematopoetic cells in LDL receptor null mice led to increased atherosclerosis. We sought to determine if synthetic REV-ERB agonists that we have developed might have the ability to suppress atherosclerosis in this model. A previously characterized synthetic REV-ERB agonist, SR9009, was used to determine if activation of REV-ERB activity would affect atherosclerosis in LDL receptor deficient mice. Atherosclerotic plaque size was significantly reduced (p < 0.05) in mice administered SR9009 (100 mg/kg) for seven weeks compared to control mice (n = 10 per group). SR9009 treatment of bone marrow-derived mouse macrophages (BMDM) reduced the polarization of BMDMs to proinflammatory M1 macrophage while increasing the polarization of BMDMs to anti-inflammatory M2 macrophages. Our results suggest that pharmacological targeting of REV-ERBs may be a viable therapeutic option for treatment of atherosclerosis. PMID:25800870

  3. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures

    PubMed Central

    Schröder, Tim; Trusheim, Matthew E.; Walsh, Michael; Li, Luozhou; Zheng, Jiabao; Schukraft, Marco; Sipahigil, Alp; Evans, Ruffin E.; Sukachev, Denis D.; Nguyen, Christian T.; Pacheco, Jose L.; Camacho, Ryan M.; Bielejec, Edward S.; Lukin, Mikhail D.; Englund, Dirk

    2017-01-01

    The controlled creation of defect centre—nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ∼32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ∼2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ∼51 GHz and close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ∼1.4 times the natural linewidth. This method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors. PMID:28548097

  4. Arkas: Rapid reproducible RNAseq analysis

    PubMed Central

    Colombo, Anthony R.; J. Triche Jr, Timothy; Ramsingh, Giridharan

    2017-01-01

    The recently introduced Kallisto pseudoaligner has radically simplified the quantification of transcripts in RNA-sequencing experiments.  We offer cloud-scale RNAseq pipelines Arkas-Quantification, and Arkas-Analysis available within Illumina’s BaseSpace cloud application platform which expedites Kallisto preparatory routines, reliably calculates differential expression, and performs gene-set enrichment of REACTOME pathways .  Due to inherit inefficiencies of scale, Illumina's BaseSpace computing platform offers a massively parallel distributive environment improving data management services and data importing.   Arkas-Quantification deploys Kallisto for parallel cloud computations and is conveniently integrated downstream from the BaseSpace Sequence Read Archive (SRA) import/conversion application titled SRA Import.  Arkas-Analysis annotates the Kallisto results by extracting structured information directly from source FASTA files with per-contig metadata, calculates the differential expression and gene-set enrichment analysis on both coding genes and transcripts. The Arkas cloud pipeline supports ENSEMBL transcriptomes and can be used downstream from the SRA Import facilitating raw sequencing importing, SRA FASTQ conversion, RNA quantification and analysis steps. PMID:28868134

  5. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures

    DOE PAGES

    Schroder, Tim; Trusheim, Matthew E.; Walsh, Michael; ...

    2017-05-26

    The controlled creation of defect centre—nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ~32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ~2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ~51 GHz andmore » close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ~1.4 times the natural linewidth. Furthermore, this method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors.« less

  6. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroder, Tim; Trusheim, Matthew E.; Walsh, Michael

    The controlled creation of defect centre—nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ~32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ~2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ~51 GHz andmore » close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ~1.4 times the natural linewidth. Furthermore, this method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors.« less

  7. Optical charge state control of spin defects in 4H-SiC

    DOE PAGES

    Wolfowicz, Gary; Anderson, Christopher P.; Yeats, Andrew L.; ...

    2017-11-30

    Defects in silicon carbide (SiC) have emerged as a favorable platform for optically active spin-based quantum technologies. Spin qubits exist in specific charge states of these defects, where the ability to control these states can provide enhanced spin-dependent readout and long-term charge stability. We investigate this charge state control for two major spin qubits in 4H-SiC, the divacancy and silicon vacancy, obtaining bidirectional optical charge conversion between the bright and dark states of these defects. We measure increased photoluminescence from divacancy ensembles by up to three orders of magnitude using near-ultraviolet excitation, depending on the substrate, and without degrading themore » electron spin coherence time. This charge conversion remains stable for hours at cryogenic temperatures, allowing spatial and persistent patterning of the charge state populations. As a result, we develop a comprehensive model of the defects and optical processes involved, offering a strong basis to improve material design and to develop quantum applications in SiC.« less

  8. Matching in an undisturbed natural human environment.

    PubMed

    McDowell, J J; Caron, Marcia L

    2010-05-01

    Data from the Oregon Youth Study, consisting of the verbal behavior of 210 adolescent boys determined to be at risk for delinquency (targets) and 210 of their friends (peers), were analyzed for their conformance to the complete family of matching theory equations in light of recent findings from the basic science, and using recently developed analytic techniques. Equations of the classic and modern theories of matching were fitted as ensembles to rates and time allocations of the boys' rule-break and normative talk obtained from conversations between pairs of boys. The verbal behavior of each boy in a conversation was presumed to be reinforced by positive social responses from the other boy. Consistent with recent findings from the basic science, the boys' verbal behavior was accurately described by the modern but not the classic theory of matching. These findings also add support to the assertion that basic principles and processes that are known to govern behavior in laboratory experiments also govern human social behavior in undisturbed natural environments.

  9. Optical charge state control of spin defects in 4H-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfowicz, Gary; Anderson, Christopher P.; Yeats, Andrew L.

    Defects in silicon carbide (SiC) have emerged as a favorable platform for optically active spin-based quantum technologies. Spin qubits exist in specific charge states of these defects, where the ability to control these states can provide enhanced spin-dependent readout and long-term charge stability. We investigate this charge state control for two major spin qubits in 4H-SiC, the divacancy and silicon vacancy, obtaining bidirectional optical charge conversion between the bright and dark states of these defects. We measure increased photoluminescence from divacancy ensembles by up to three orders of magnitude using near-ultraviolet excitation, depending on the substrate, and without degrading themore » electron spin coherence time. This charge conversion remains stable for hours at cryogenic temperatures, allowing spatial and persistent patterning of the charge state populations. As a result, we develop a comprehensive model of the defects and optical processes involved, offering a strong basis to improve material design and to develop quantum applications in SiC.« less

  10. Thermodynamics of quantum spacetime histories

    NASA Astrophysics Data System (ADS)

    Smolin, Lee

    2017-11-01

    We show that the simplicity constraints, which define the dynamics of spin foam models, imply, and are implied by, the first law of thermodynamics, when the latter is applied to causal diamonds in the quantum spacetime. This result reveals an intimate connection between the holographic nature of gravity, as reflected by the Bekenstein entropy, and the fact that general relativity and other gravitational theories can be understood as constrained topological field theories. To state and derive this correspondence we describe causal diamonds in the causal structure of spin foam histories and generalize arguments given for the near horizon region of black holes by Frodden, Gosh and Perez [Phys. Rev. D 87, 121503 (2013); , 10.1103/PhysRevD.87.121503Phys. Rev. D 89, 084069 (2014); , 10.1103/PhysRevD.89.084069Phys. Rev. Lett. 107, 241301 (2011); , 10.1103/PhysRevLett.107.241301Phys. Rev. Lett.108, 169901(E) (2012)., 10.1103/PhysRevLett.108.169901] and Bianchi [arXiv:1204.5122.]. This allows us to apply a recent argument of Jacobson [Phys. Rev. Lett. 116, 201101 (2016).10.1103/PhysRevLett.116.201101] to show that if a spin foam history has a semiclassical limit described in terms of a smooth metric geometry, that geometry satisfies the Einstein equations. These results suggest also a proposal for a quantum equivalence principle.

  11. Roles of Rev1, Pol ζ, Pol32 and Pol η in the bypass of chromosomal abasic sites in Saccharomyces cerevisiae

    PubMed Central

    Auerbach, Paul A.; Demple, Bruce

    2010-01-01

    Translesion synthesis (TLS) on DNA is a process by which potentially cytotoxic replication-blocking lesions are bypassed, but at the risk of increased mutagenesis. The exact in vivo role of the individual TLS enzymes in Saccharomyces cerevisiae has been difficult to determine from previous studies due to differing results from the variety of systems used. We have generated a series of S.cerevisiae strains in which each of the TLS-related genes REV1, REV3, REV7, RAD30 and POL32 was deleted, and in which chromosomal apyrimidinic sites were generated during normal cell growth by the activity of altered forms of human uracil-DNA glycosylase that remove undamaged cytosines or thymines. Deletion of REV1, REV3 or REV7 resulted in slower growth dependent on (rev3Δ and rev7Δ) or enhanced by (rev1Δ) expression of the mutator glycosylases and a nearly complete abolition of glycosylase-induced mutagenesis. Deletion of POL32 resulted in cell death when the mutator glycosylases were expressed and, in their absence, diminished spontaneous mutagenesis. RAD30 appeared to be unnecessary for mutagenesis in response to abasic sites, as deleting this gene caused no significant change in either the mutation rates or the mutational spectra due to glycosylase expression. PMID:19901007

  12. Cooperativity among Rev-Associated Nuclear Export Signals Regulates HIV-1 Gene Expression and Is a Determinant of Virus Species Tropism

    PubMed Central

    Aligeti, Mounavya; Behrens, Ryan T.; Pocock, Ginger M.; Schindelin, Johannes; Dietz, Christian; Eliceiri, Kevin W.; Swanson, Chad M.; Malim, Michael H.; Ahlquist, Paul

    2014-01-01

    ABSTRACT Murine cells exhibit a profound block to HIV-1 virion production that was recently mapped to a species-specific structural attribute of the murine version of the chromosomal region maintenance 1 (mCRM1) nuclear export receptor and rescued by the expression of human CRM1 (hCRM1). In human cells, the HIV-1 Rev protein recruits hCRM1 to intron-containing viral mRNAs encoding the Rev response element (RRE), thereby facilitating viral late gene expression. Here we exploited murine 3T3 fibroblasts as a gain-of-function system to study hCRM1's species-specific role in regulating Rev's effector functions. We show that Rev is rapidly exported from the nucleus by mCRM1 despite only weak contributions to HIV-1's posttranscriptional stages. Indeed, Rev preferentially accumulates in the cytoplasm of murine 3T3 cells with or without hCRM1 expression, in contrast to human HeLa cells, where Rev exhibits striking en masse transitions between the nuclear and cytoplasmic compartments. Efforts to bias Rev's trafficking either into or out of the nucleus revealed that Rev encoding a second CRM1 binding domain (Rev-2xNES) or Rev-dependent viral gag-pol mRNAs bearing tandem RREs (GP-2xRRE), rescue virus particle production in murine cells even in the absence of hCRM1. Combined, these results suggest a model wherein Rev-associated nuclear export signals cooperate to regulate the number or quality of CRM1's interactions with viral Rev/RRE ribonucleoprotein complexes in the nucleus. This mechanism regulates CRM1-dependent viral gene expression and is a determinant of HIV-1's capacity to produce virions in nonhuman cell types. IMPORTANCE Cells derived from mice and other nonhuman species exhibit profound blocks to HIV-1 replication. Here we elucidate a block to HIV-1 gene expression attributable to the murine version of the CRM1 (mCRM1) nuclear export receptor. In human cells, hCRM1 regulates the nuclear export of viral intron-containing mRNAs through the activity of the viral Rev adapter protein that forms a multimeric complex on these mRNAs prior to recruiting hCRM1. We demonstrate that Rev-dependent gene expression is poor in murine cells despite the finding that, surprisingly, the bulk of Rev interacts efficiently with mCRM1 and is rapidly exported from the nucleus. Instead, we map the mCRM1 defect to the apparent inability of this factor to engage Rev multimers in the context of large viral Rev/RNA ribonucleoprotein complexes. These findings shed new light on HIV-1 gene regulation and could inform the development of novel antiviral strategies that target viral gene expression. PMID:25275125

  13. The orphan receptor Rev-erbα gene is a target of the circadian clock pacemaker

    PubMed Central

    Triqueneaux, Gérard; Thenot, Sandrine; Kakizawa, Tomoko; Antoch, Marina P; Safi, Rachid; Takahashi, Joseph S; Delaunay, Franck; Laudet, Vincent

    2013-01-01

    Rev-erbα is a ubiquitously expressed orphan nuclear receptor which functions as a constitutive transcriptional repressor and is expressed in vertebrates according to a robust circadian rhythm. We report here that two Rev-erbα mRNA isoforms, namely Rev-erbα1 and Rev-erbα2, are generated through alternative promoter usage and that both show a circadian expression pattern in an in vitro system using serum-shocked fibroblasts. Both promoter regions P1 (Rev-erbα1) and P2 (Rev-erbα2) contain several E-box DNA sequences, which function as response elements for the core circadian-clock components: CLOCK and BMAL1. The CLOCK–BMAL1 heterodimer stimulates the activity of both P1 and P2 promoters in transient transfection assay by 3–6-fold. This activation was inhibited by the overexpression of CRY1, a component of the negative limb of the circadian transcriptional loop. Critical E-box elements were mapped within both promoters. This regulation is conserved in vertebrates since we found that the CLOCK–BMAL1 heterodimer also regulates the zebrafish Rev-erbα gene. In line with these data Rev-erbα circadian expression was strongly impaired in the livers of Clock mutant mice and in the pineal glands of zebrafish embryos treated with Clock and Bmal1 antisense oligonucleotides. Together these data demonstrate that CLOCK is a critical regulator of Rev-erbα circadian gene expression in evolutionarily distant vertebrates and suggest a role for Rev-erbα in the circadian clock output. PMID:15591021

  14. Ensemble-based diagnosis of the large-scale processes associated with multiple high-impact weather events over North America during late October 2007

    NASA Astrophysics Data System (ADS)

    Moore, B. J.; Bosart, L. F.; Keyser, D.

    2013-12-01

    During late October 2007, the interaction between a deep polar trough and Tropical Cyclone (TC) Kajiki off the eastern Asian coast perturbed the North Pacific jet stream and resulted in the development of a high-amplitude Rossby wave train extending into North America, contributing to three concurrent high-impact weather events in North America: wildfires in southern California associated with strong Santa Ana winds, a cold surge into eastern Mexico, and widespread heavy rainfall (~150 mm) in the south-central United States. Observational analysis indicates that these high-impact weather events were all dynamically linked with the development of a major high-latitude ridge over the eastern North Pacific and western North America and a deep trough over central North America. In this study, global operational ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) obtained from The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) archive are used to characterize the medium-range predictability of the large-scale flow pattern associated with the three events and to diagnose the large-scale atmospheric processes favorable, or unfavorable, for the occurrence of the three events. Examination of the ECMWF forecasts leading up to the time period of the three high-impact weather events (~23-25 October 2007) indicates that ensemble spread (i.e., uncertainty) in the 500-hPa geopotential height field develops in connection with downstream baroclinic development (DBD) across the North Pacific, associated with the interaction between TC Kajiki and the polar trough along the eastern Asian coast, and subsequently moves downstream into North America, yielding considerable uncertainty with respect to the structure, amplitude, and position of the ridge-trough pattern over North America. Ensemble sensitivity analysis conducted for key sensible weather parameters corresponding to the three high-impact weather events, including relative humidity, temperature, and precipitation, demonstrates quantitatively that all three high-impact weather events are closely linked with the development of the ridge-trough pattern over North America. Moreover, results of this analysis indicate that the development of the ridge-trough pattern is modulated by DBD and cyclogenesis upstream over the central and eastern North Pacific. Specifically, ensemble members exhibiting less intense cyclogenesis and a more poleward cyclone track over the central and eastern North Pacific feature the development of a poleward-displaced ridge over the eastern North Pacific and western North America and a cut-off low over the Intermountain West, an unfavorable scenario for the occurrence the three high-impact weather events. Conversely, ensemble members exhibiting more intense cyclogenesis and a less poleward cyclone track feature persistent ridging along the western coast of North America and trough development over central North America, establishing a favorable flow pattern for the three high-impact weather events. Results demonstrate that relatively small initial differences in the large-scale flow pattern over the North Pacific among ensemble members can result in large uncertainty in the forecast downstream flow response over North America.

  15. Theoretical basis for operational ensemble forecasting of coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Pizzo, V. J.; de Koning, C.; Cash, M.; Millward, G.; Biesecker, D. A.; Puga, L.; Codrescu, M.; Odstrcil, D.

    2015-10-01

    We lay out the theoretical underpinnings for the application of the Wang-Sheeley-Arge-Enlil modeling system to ensemble forecasting of coronal mass ejections (CMEs) in an operational environment. In such models, there is no magnetic cloud component, so our results pertain only to CME front properties, such as transit time to Earth. Within this framework, we find no evidence that the propagation is chaotic, and therefore, CME forecasting calls for different tactics than employed for terrestrial weather or hurricane forecasting. We explore a broad range of CME cone inputs and ambient states to flesh out differing CME evolutionary behavior in the various dynamical domains (e.g., large, fast CMEs launched into a slow ambient, and the converse; plus numerous permutations in between). CME propagation in both uniform and highly structured ambient flows is considered to assess how much the solar wind background affects the CME front properties at 1 AU. Graphical and analytic tools pertinent to an ensemble approach are developed to enable uncertainties in forecasting CME impact at Earth to be realistically estimated. We discuss how uncertainties in CME pointing relative to the Sun-Earth line affects the reliability of a forecast and how glancing blows become an issue for CME off-points greater than about the half width of the estimated input CME. While the basic results appear consistent with established impressions of CME behavior, the next step is to use existing records of well-observed CMEs at both Sun and Earth to verify that real events appear to follow the systematic tendencies presented in this study.

  16. Two-mode thermal-noise squeezing in an electromechanical resonator.

    PubMed

    Mahboob, I; Okamoto, H; Onomitsu, K; Yamaguchi, H

    2014-10-17

    An electromechanical resonator is developed in which mechanical nonlinearities can be dynamically engineered to emulate the nondegenerate parametric down-conversion interaction. In this configuration, phonons are simultaneously generated in pairs in two macroscopic vibration modes, resulting in the amplification of their motion. In parallel, two-mode thermal squeezed states are also created, which exhibit fluctuations below the thermal motion of their constituent modes as well as harboring correlations between the modes that become almost perfect as their amplification is increased. The existence of correlations between two massive phonon ensembles paves the way towards an entangled macroscopic mechanical system at the single phonon level.

  17. Deep-Blue Fluorescent Particles via Microwave Heating of Polyacrylonitrile Dispersions.

    PubMed

    Go, Dennis; Jurásková, Alena; Hoffmann, Andreas; Kapiti, Gent; Kuehne, Alexander J C

    2017-03-01

    This study presents a new method to produce fluorescent particles. Established methods are based on the incorporation of conjugated dye molecules into dielectric polymer matrices or preparation of colloids, which are composed of fluorescent conjugated polymer. By contrast, this study presents a method where dielectric polyacrylonitrile is exposed to microwave radiation leading to an intramolecular cyclization reaction producing π-conjugated segments, which fluoresce blue. During this conversion, the particles shrink in diameter but as an ensemble they retain their monodispersity. This work investigates the optimal reaction conditions and characterizes the optical properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Atom chips with free-standing two-dimensional electron gases: advantages and challenges

    NASA Astrophysics Data System (ADS)

    Sinuco-León, G. A.; Krüger, P.; Fromhold, T. M.

    2018-03-01

    In this work, we consider the advantages and challenges of using free-standing two-dimensional electron gases (2DEG) as active components in atom chips for manipulating ultracold ensembles of alkali atoms. We calculate trapping parameters achievable with typical high-mobility 2DEGs in an atom chip configuration and identify advantages of this system for trapping atoms at sub-micron distances from the atom chip. We show how the sensitivity of atomic gases to magnetic field inhomogeneity can be exploited for controlling the atoms with quantum electronic devices and, conversely, using the atoms to probe the structural and transport properties of semiconductor devices.

  19. The Progression of Cell Death Affects the Rejection of Allogeneic Tumors in Immune-Competent Mice – Implications for Cancer Therapy

    PubMed Central

    Chaurio, Ricardo A.; Muñoz, Luis E.; Maueröder, Christian; Janko, Christina; Harrer, Thomas; Fürnrohr, Barbara G.; Niederweis, Michael; Bilyy, Rostyslav; Schett, Georg; Herrmann, Martin; Berens, Christian

    2014-01-01

    Large amounts of dead and dying cells are produced during cancer therapy and allograft rejection. Depending on the death pathway and stimuli involved, dying cells exhibit diverse features, resulting in defined physiological consequences for the host. It is not fully understood how dying and dead cells modulate the immune response of the host. To address this problem, different death stimuli were studied in B16F10 melanoma cells by regulated inducible transgene expression of the pro-apoptotic active forms of caspase-3 (revCasp-3), Bid (tBid), and the Mycobacterium tuberculosis-necrosis inducing toxin (CpnTCTD). The immune outcome elicited for each death stimulus was assessed by evaluating the allograft rejection of melanoma tumors implanted subcutaneously in BALB/c mice immunized with dying cells. Expression of all proteins efficiently killed cells in vitro (>90%) and displayed distinctive morphological and physiological features as assessed by multiparametric flow cytometry analysis. BALB/c mice immunized with allogeneic dying melanoma cells expressing revCasp-3 or CpnTCTD showed strong rejection of the allogeneic challenge. In contrast, mice immunized with cells dying either after expression of tBid or irradiation with UVB did not, suggesting an immunologically silent cell death. Surprisingly, immunogenic cell death induced by expression of revCasp-3 or CpnTCTD correlated with elevated intracellular reactive oxygen species (ROS) levels at the time point of immunization. Conversely, early mitochondrial dysfunction induced by tBid expression or UVB irradiation accounted for the absence of intracellular ROS accumulation at the time point of immunization. Although ROS inhibition in vitro was not sufficient to abrogate the immunogenicity in our allo-immunization model, we suggest that the point of ROS generation and its intracellular accumulation may be an important factor for its role as damage associated molecular pattern in the development of allogeneic responses. PMID:25426116

  20. Structural Basis for the Interaction of Mutasome Assembly Factor REV1 with Ubiquitin.

    PubMed

    Cui, Gaofeng; Botuyan, Maria Victoria; Mer, Georges

    2018-05-18

    REV1 is an evolutionarily conserved translesion synthesis (TLS) DNA polymerase and an assembly factor key for the recruitment of other TLS polymerases to DNA damage sites. REV1-mediated recognition of ubiquitin in the proliferative cell nuclear antigen is thought to be the trigger for TLS activation. Here we report the solution NMR structure of a 108-residue fragment of human REV1 encompassing the two putative ubiquitin-binding motifs UBM1 and UBM2 in complex with ubiquitin. While in mammals UBM1 and UBM2 are both required for optimal association of REV1 with replication factories after DNA damage, we show that only REV1 UBM2 binds ubiquitin. Structure-guided mutagenesis in Saccharomyces cerevisiae further highlights the importance of UBM2 for REV1-mediated mutagenesis and DNA damage tolerance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Defects, Tunneling, and EPR Spectra of Single-Molecule Magnets

    DTIC Science & Technology

    2003-01-01

    Caranin, Phys. Rev. Lett. 87, 187203 (2001); Phys. Rev. B 65, 094423 (2002). 19. A. Cornia, R. Sessoli, L. Sorace, D. Gatteschi , A. L. Barra, and C...Phys. Rev. B 64, 184426 (2001). 25. A. Mukhin, B. Gorshunov, M. Dressel, C. Sangregorio. and D. Gatteschi , Phys. Rev. B 63, 214411 (2001). 26. W

  2. RevManHAL: towards automatic text generation in systematic reviews.

    PubMed

    Torres Torres, Mercedes; Adams, Clive E

    2017-02-09

    Systematic reviews are a key part of healthcare evaluation. They involve important painstaking but repetitive work. A major producer of systematic reviews, the Cochrane Collaboration, employs Review Manager (RevMan) programme-a software which assists reviewers and produces XML-structured files. This paper describes an add-on programme (RevManHAL) which helps auto-generate the abstract, results and discussion sections of RevMan-generated reviews in multiple languages. The paper also describes future developments for RevManHAL. RevManHAL was created in Java using NetBeans by a programmer working full time for 2 months. The resulting open-source programme uses editable phrase banks to envelop text/numbers from within the prepared RevMan file in formatted readable text of a chosen language. In this way, considerable parts of the review's 'abstract', 'results' and 'discussion' sections are created and a phrase added to 'acknowledgements'. RevManHAL's output needs to be checked by reviewers, but already, from our experience within the Cochrane Schizophrenia Group (200 maintained reviews, 900 reviewers), RevManHAL has saved much time which is better employed thinking about the meaning of the data rather than restating them. Many more functions will become possible as review writing becomes increasingly automated.

  3. Molecular interaction between K-Ras and H-REV107 in the Ras signaling pathway.

    PubMed

    Han, Chang Woo; Jeong, Mi Suk; Jang, Se Bok

    2017-09-16

    Ras proteins are small GTPases that serve as master moderators of a large number of signaling pathways involved in various cellular processes. Activating mutations in Ras are found in about one-third of cancers. H-REV107, a K-Ras binding protein, plays an important role in determining K-Ras function. H-REV107 is a member of the HREV107 family of class II tumor suppressor genes and a growth inhibitory Ras target gene that suppresses cellular growth, differentiation, and apoptosis. Expression of H-REV107 was strongly reduced in about 50% of human carcinoma cell lines. However, the specific molecular mechanism by which H-REV107 inhibits Ras is still unknown. In the present study, we suggest that H-REV107 forms a strong complex with activating oncogenic mutation Q61H K-Ras from various biochemical binding assays and modeled structures. In addition, the interaction sites between K-Ras and H-REV107 were predicted based on homology modeling. Here, we found that some structure-based mutants of the K-Ras disrupted the complex formation with H-REV107. Finally, a novel molecular mechanism describing K-Ras and H-REV107 binding is suggested and insights into new K-Ras effector target drugs are provided. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The translesion polymerase Rev3L in the tolerance of alkylating anticancer drugs.

    PubMed

    Roos, Wynand Paul; Tsaalbi-Shtylik, Anastasia; Tsaryk, Roman; Güvercin, Fatma; de Wind, Niels; Kaina, Bernd

    2009-10-01

    Temozolomide and fotemustine, representing methylating and chloroethylating agents, respectively, are used in the treatment of glioma and malignant melanoma. Because chemoresistance of these tumors is a common phenomenon, identification of the underlying mechanisms is needed. Here we show that Rev3L, the catalytic subunit of the translesion DNA polymerase zeta, mediates resistance to both temozolomide and fotemustine. Rev3L knockout cells are hypersensitive to both agents. It is remarkable that cells heterozygous for Rev3L showed an intermediate sensitivity. Rev3L is not involved in the tolerance of the toxic O6-methylguanine lesion. However, a possible role of Rev3L in the tolerance of O6-chloroethylguanine or the subsequently formed N1-guanine-N3-cytosine interstrand cross-link is shown. Rev3L had no influence on base excision repair (BER) of the N-alkylation lesions but is very likely to be involved in the tolerance of N-alkylations or apurinic/apyrimidinic sites originating from them. We also show that Rev3L exerts its protective effect in replicating cells and that loss of Rev3L leads to a significant increase in DNA double-strand breaks after temozolomide and fotemustine treatment. These data show that Rev3L contributes to temozolomide and fotemustine resistance, thus acting in concert with O6-methylguanine-DNA methyltransferase, BER, mismatch repair, and double-strand break repair in defense against simple alkylating anticancer drugs.

  5. Identification of Brucella melitensis Rev.1 vaccine-strain genetic markers: Towards understanding the molecular mechanism behind virulence attenuation.

    PubMed

    Issa, Mohammad Nouh; Ashhab, Yaqoub

    2016-09-22

    Brucella melitensis Rev.1 is an avirulent strain that is widely used as a live vaccine to control brucellosis in small ruminants. Although an assembled draft version of Rev.1 genome has been available since 2009, this genome has not been investigated to characterize this important vaccine. In the present work, we used the draft genome of Rev.1 to perform a thorough genomic comparison and sequence analysis to identify and characterize the panel of its unique genetic markers. The draft genome of Rev.1 was compared with genome sequences of 36 different Brucella melitensis strains from the Brucella project of the Broad Institute of MIT and Harvard. The comparative analyses revealed 32 genetic alterations (30 SNPs, 1 single-bp insertion and 1 single-bp deletion) that are exclusively present in the Rev.1 genome. In silico analyses showed that 9 out of the 17 non-synonymous mutations are deleterious. Three ABC transporters are among the disrupted genes that can be linked to virulence attenuation. Out of the 32 mutations, 11 Rev.1 specific markers were selected to test their potential to discriminate Rev.1 using a bi-directional allele-specific PCR assay. Six markers were able to distinguish between Rev.1 and a set of control strains. We succeeded in identifying a panel of 32 genome-specific markers of the B. melitensis Rev.1 vaccine strain. Extensive in silico analysis showed that a considerable number of these mutations could severely affect the function of the associated genes. In addition, some of the discovered markers were able to discriminate Rev.1 strain from a group of control strains using practical PCR tests that can be applied in resource-limited settings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. RevBayes: Bayesian Phylogenetic Inference Using Graphical Models and an Interactive Model-Specification Language

    PubMed Central

    Höhna, Sebastian; Landis, Michael J.

    2016-01-01

    Programs for Bayesian inference of phylogeny currently implement a unique and fixed suite of models. Consequently, users of these software packages are simultaneously forced to use a number of programs for a given study, while also lacking the freedom to explore models that have not been implemented by the developers of those programs. We developed a new open-source software package, RevBayes, to address these problems. RevBayes is entirely based on probabilistic graphical models, a powerful generic framework for specifying and analyzing statistical models. Phylogenetic-graphical models can be specified interactively in RevBayes, piece by piece, using a new succinct and intuitive language called Rev. Rev is similar to the R language and the BUGS model-specification language, and should be easy to learn for most users. The strength of RevBayes is the simplicity with which one can design, specify, and implement new and complex models. Fortunately, this tremendous flexibility does not come at the cost of slower computation; as we demonstrate, RevBayes outperforms competing software for several standard analyses. Compared with other programs, RevBayes has fewer black-box elements. Users need to explicitly specify each part of the model and analysis. Although this explicitness may initially be unfamiliar, we are convinced that this transparency will improve understanding of phylogenetic models in our field. Moreover, it will motivate the search for improvements to existing methods by brazenly exposing the model choices that we make to critical scrutiny. RevBayes is freely available at http://www.RevBayes.com. [Bayesian inference; Graphical models; MCMC; statistical phylogenetics.] PMID:27235697

  7. RevBayes: Bayesian Phylogenetic Inference Using Graphical Models and an Interactive Model-Specification Language.

    PubMed

    Höhna, Sebastian; Landis, Michael J; Heath, Tracy A; Boussau, Bastien; Lartillot, Nicolas; Moore, Brian R; Huelsenbeck, John P; Ronquist, Fredrik

    2016-07-01

    Programs for Bayesian inference of phylogeny currently implement a unique and fixed suite of models. Consequently, users of these software packages are simultaneously forced to use a number of programs for a given study, while also lacking the freedom to explore models that have not been implemented by the developers of those programs. We developed a new open-source software package, RevBayes, to address these problems. RevBayes is entirely based on probabilistic graphical models, a powerful generic framework for specifying and analyzing statistical models. Phylogenetic-graphical models can be specified interactively in RevBayes, piece by piece, using a new succinct and intuitive language called Rev. Rev is similar to the R language and the BUGS model-specification language, and should be easy to learn for most users. The strength of RevBayes is the simplicity with which one can design, specify, and implement new and complex models. Fortunately, this tremendous flexibility does not come at the cost of slower computation; as we demonstrate, RevBayes outperforms competing software for several standard analyses. Compared with other programs, RevBayes has fewer black-box elements. Users need to explicitly specify each part of the model and analysis. Although this explicitness may initially be unfamiliar, we are convinced that this transparency will improve understanding of phylogenetic models in our field. Moreover, it will motivate the search for improvements to existing methods by brazenly exposing the model choices that we make to critical scrutiny. RevBayes is freely available at http://www.RevBayes.com [Bayesian inference; Graphical models; MCMC; statistical phylogenetics.]. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  8. Treatment with the fusion inhibitor enfuvirtide influences the appearance of mutations in the human immunodeficiency virus type 1 regulatory protein rev.

    PubMed

    Svicher, Valentina; Alteri, Claudia; D'Arrigo, Roberta; Laganà, Alessandro; Trignetti, Maria; Lo Caputo, Sergio; Callegaro, Anna Paola; Maggiolo, Franco; Mazzotta, Francesco; Ferro, Alfredo; Dimonte, Salvatore; Aquaro, Stefano; di Perri, Giovanni; Bonora, Stefano; Tommasi, Chiara; Trotta, Maria Paola; Narciso, Pasquale; Antinori, Andrea; Perno, Carlo Federico; Ceccherini-Silberstein, Francesca

    2009-07-01

    The gp41-encoding sequence of the env gene contains in two separate regions the Rev-responsive elements (RRE) and the alternative open reading frame of the second exon of the regulatory protein Rev. The binding of Rev to the RRE allows the transport of unspliced/singly spliced viral mRNAs out of the nucleus, an essential step in the life cycle of human immunodeficiency virus type 1 (HIV-1). In this study, we have investigated whether the fusion-inhibitor enfuvirtide (ENF) can induce mutations in Rev and if these mutations correlate with the classical ENF resistance gp41 mutations and with viremia and CD4 cell count. Specific Rev mutations were positively associated with ENF treatment and significantly correlated with classical ENF resistance gp41 mutations. In particular, a cluster was observed for the Rev mutations E57A (E57A(rev)) and N86S(rev) with the ENF resistance gp41 mutations Q40H (Q40H(gp41)) and L45M(gp41). In addition, the presence at week 48 of the E57A(rev) correlates with a significant viremia increase from baseline to week 48 and with a CD4 cell count loss from baseline to week 48. By modeling the RRE structure, we found that the Q40(gp41) and L45(gp41) codons form complementary base pairs in a region of the RRE involved in Rev binding. The conformation of this Rev-binding site is disrupted when Q40H(gp41) and L45M(gp41) occur alone while it is restored when both mutations are present. In conclusion, our study shows that ENF pressure may also affect both Rev and RRE structures and can provide an excellent example of compensatory evolution. This highlights the multiple roles of ENF (and perhaps other entry inhibitors) in modulating the correct interplay between the different HIV-1 genes and proteins during the HIV-1 life cycle.

  9. Numerical investigation of stability of breather-type solutions of the nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Calini, A.; Schober, C. M.

    2013-09-01

    In this article we present the results of a broad numerical investigation on the stability of breather-type solutions of the nonlinear Schrödinger (NLS) equation, specifically the one- and two-mode breathers for an unstable plane wave, which are frequently used to model rogue waves. The numerical experiments involve large ensembles of perturbed initial data for six typical random perturbations. Ensemble estimates of the "closeness", A(t), of the perturbed solution to an element of the respective unperturbed family indicate that the only neutrally stable breathers are the ones of maximal dimension, that is: given an unstable background with N unstable modes, the only neutrally stable breathers are the N-dimensional ones (obtained as a superimposition of N simple breathers via iterated Backlund transformations). Conversely, breathers which are not fully saturated are sensitive to noisy environments and are unstable. Interestingly, A(t) is smallest for the coalesced two-mode breather indicating the coalesced case may be the most robust two-mode breather in a laboratory setting. The numerical simulations confirm and provide a realistic realization of the stability behavior established analytically by the authors.

  10. 78 FR 27971 - Determination That REV-EYES (Dapiprazole Hydrochloride Ophthalmic Solution), 0.5%, Was Not...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ...] Determination That REV-EYES (Dapiprazole Hydrochloride Ophthalmic Solution), 0.5%, Was Not Withdrawn From Sale.... SUMMARY: The Food and Drug Administration (FDA) has determined that REV-EYES (dapiprazole hydrochloride... CFR 314.161)). FDA may not approve an ANDA that does not refer to a listed drug. REV-EYES (dapiprazole...

  11. Alternative Fuels Data Center: New Hampshire Fleet Revs up With Natural Gas

    Science.gov Websites

    New Hampshire Fleet Revs up With Natural Gas to someone by E-mail Share Alternative Fuels Data Center: New Hampshire Fleet Revs up With Natural Gas on Facebook Tweet about Alternative Fuels Data Center: New Hampshire Fleet Revs up With Natural Gas on Twitter Bookmark Alternative Fuels Data Center

  12. 75 FR 27840 - NUREG-0654/FEMA-REP-1, Rev. 1, Supplement 3, Guidance for Protective Action Recommendations for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0080] NUREG-0654/FEMA-REP-1, Rev. 1, Supplement 3...: ``NUREG-0654/FEMA-REP-1, Rev. 1, Supplement 3, Guidance for Protective Action Recommendations for General... the existing guidance contained in Supplement 3 to NUREG- 0654/FEMA-REP-1, Rev. 1, ``Criteria for...

  13. Discrete Functions of Nuclear Receptor Rev-erbα Couple Metabolism to the Clock

    PubMed Central

    Zhang, Yuxiang; Fang, Bin; Emmett, Matthew J.; Damle, Manashree; Sun, Zheng; Feng, Dan; Armour, Sean M.; Remsberg, Jarrett R.; Jager, Jennifer; Soccio, Raymond E.; Steger, David J.; Lazar, Mitchell A.

    2015-01-01

    SUMMARY Circadian and metabolic physiology are intricately intertwined, as illustrated by Rev-erbα, a transcription factor (TF) that functions both as a core repressive component of the cell autonomous clock and as a regulator of metabolic genes. Here we show that Rev-erbα modulates the clock and metabolism by different genomic mechanisms. Clock control requires Rev-erbα to bind directly to the genome at its cognate sites, where it competes with activating ROR TFs. By contrast, Rev-erbα regulates metabolic genes primarily by recruiting the HDAC3 corepressor to sites to which it is tethered by cell type-specific transcription factors. Thus, direct competition between Rev-erbα and ROR TFs provides a universal mechanism for self-sustained control of molecular clock across all tissues, whereas Rev-erbα utilizes lineage-determining factors to convey a tissue-specific epigenomic rhythm that regulates metabolism tailored to the specific need of that tissue. PMID:26044300

  14. GENE REGULATION. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock.

    PubMed

    Zhang, Yuxiang; Fang, Bin; Emmett, Matthew J; Damle, Manashree; Sun, Zheng; Feng, Dan; Armour, Sean M; Remsberg, Jarrett R; Jager, Jennifer; Soccio, Raymond E; Steger, David J; Lazar, Mitchell A

    2015-06-26

    Circadian and metabolic physiology are intricately intertwined, as illustrated by Rev-erbα, a transcription factor (TF) that functions both as a core repressive component of the cell-autonomous clock and as a regulator of metabolic genes. Here, we show that Rev-erbα modulates the clock and metabolism by different genomic mechanisms. Clock control requires Rev-erbα to bind directly to the genome at its cognate sites, where it competes with activating ROR TFs. By contrast, Rev-erbα regulates metabolic genes primarily by recruiting the HDAC3 co-repressor to sites to which it is tethered by cell type-specific transcription factors. Thus, direct competition between Rev-erbα and ROR TFs provides a universal mechanism for self-sustained control of the molecular clock across all tissues, whereas Rev-erbα uses lineage-determining factors to convey a tissue-specific epigenomic rhythm that regulates metabolism tailored to the specific need of that tissue. Copyright © 2015, American Association for the Advancement of Science.

  15. Ergodicity in natural earthquake fault networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiampo, K. F.; Rundle, J. B.; Holliday, J.

    2007-06-15

    Numerical simulations have shown that certain driven nonlinear systems can be characterized by mean-field statistical properties often associated with ergodic dynamics [C. D. Ferguson, W. Klein, and J. B. Rundle, Phys. Rev. E 60, 1359 (1999); D. Egolf, Science 287, 101 (2000)]. These driven mean-field threshold systems feature long-range interactions and can be treated as equilibriumlike systems with statistically stationary dynamics over long time intervals. Recently the equilibrium property of ergodicity was identified in an earthquake fault system, a natural driven threshold system, by means of the Thirumalai-Mountain (TM) fluctuation metric developed in the study of diffusive systems [K. F.more » Tiampo, J. B. Rundle, W. Klein, J. S. Sa Martins, and C. D. Ferguson, Phys. Rev. Lett. 91, 238501 (2003)]. We analyze the seismicity of three naturally occurring earthquake fault networks from a variety of tectonic settings in an attempt to investigate the range of applicability of effective ergodicity, using the TM metric and other related statistics. Results suggest that, once variations in the catalog data resulting from technical and network issues are accounted for, all of these natural earthquake systems display stationary periods of metastable equilibrium and effective ergodicity that are disrupted by large events. We conclude that a constant rate of events is an important prerequisite for these periods of punctuated ergodicity and that, while the level of temporal variability in the spatial statistics is the controlling factor in the ergodic behavior of seismic networks, no single statistic is sufficient to ensure quantification of ergodicity. Ergodicity in this application not only requires that the system be stationary for these networks at the applicable spatial and temporal scales, but also implies that they are in a state of metastable equilibrium, one in which the ensemble averages can be substituted for temporal averages in studying their spatiotemporal evolution.« less

  16. Vanishing Hall conductance in the phase-glass Bose metal at zero temperature

    NASA Astrophysics Data System (ADS)

    May-Mann, Julian; Phillips, Philip W.

    2018-01-01

    Motivated in part by numerical simulations [H. G. Katzgraber and A. P. Young, Phys. Rev. B 66, 224507 (2002), 10.1103/PhysRevB.66.224507; J. M. Kosterlitz and N. Akino, Phys. Rev. Lett. 81, 4672 (1998), 10.1103/PhysRevLett.81.4672; Phys. Rev. Lett. 81, 4672 (1998), 10.1103/PhysRevLett.81.4672] that reveal that the energy to create a defect in a gauge or phase glass scales as Lθ with θ <0 for two dimensions, thereby implying a vanishing stiffness, we reexamine the relevance of these kinds of models to the Bose metal in light of the new experiments [N. P. Breznay and Kapitulnik (unpublished); Y. Wang, I. Tamir, D. Shahar, and N. P. Armitage, arXiv:1708.01908 [cond-mat.supr-con

  17. Experimental Raman adiabatic transfer of optical states in rubidium

    NASA Astrophysics Data System (ADS)

    Appel, Jürgen; Figueroa, Eden; Vewinger, Frank; Marzlin, Karl-Peter; Lvovsky, Alexander

    2007-06-01

    An essential element of a quantum optical communication network is a tool for transferring and/or distributing quantum information between optical modes (possibly of different frequencies) in a loss- and decoherence-free fashion. We present a theory [1] and an experimental demonstration [2] of a protocol for routing and frequency conversion of optical quantum information via electromagnetically-induced transparency in an atomic system with multiple excited levels. Transfer of optical states between different signal modes is implemented by adiabatically changing the control fields. The proof-of-principle experiment is performed using the hyperfine levels of the rubidium D1 line. [1] F. Vewinger, J. Appel, E. Figueroa, A. I. Lvovsky, quant-ph/0611181 [2] J. Appel, K.-P. Marzlin, A. I. Lvovsky, Phys. Rev. A 73, 013804 (2006)

  18. Chaotic and Bifurcating Nonlinear Systems Driven by Noise with Applications to Laser Dynamics

    DTIC Science & Technology

    1988-12-30

    W. o. leich and M. 0. Scully, Phys. Rev. A . 37, 3010 (1988) and ibid, 1261 (1988), and references therein. 14. A . K. Dhara and S. V . G. Menon, J...Fronzoni, F. Moss, R. Mannella and P. V . E. McClintock. Phys. Rev. A 36. 834 (1987) 35. L. Fronzoni, F. Moss and P. V . E. McClintock, Phys. Rev. A . 36...1492 (1987). 36. V . Altares and G. Nicolis, Phys. Rev. A 37. 3630 (1988) 37. R. Lefever and JI Win. Turner. Phys. Rev. Lett. 56, 1631 (1986) 38. K

  19. Impact of source-production revision on the dose-rate constant of {sup 131}Cs interstitial brachytherapy sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Zhe; Bongiorni, Paul; Nath, Ravinder

    2010-07-15

    Purpose: Since its introduction in 2004, the model CS-1 Rev.1 {sup 131}Cs source has been used in many radiation therapy clinics for prostate brachytherapy. In 2006, this source model underwent a Rev.2 production revision. The aim of this work was to investigate the dosimetric influences of the Rev.2 production revision using high-resolution photon spectrometry. Methods: Three CS-1 Rev.1 and three CS-1 Rev.2 {sup 131}Cs sources were used in this study. The relative photon energy spectrum emitted by each source in the transverse bisector of the source was measured using a high-resolution germanium detector designed for low-energy photon spectrometry. Based onmore » the measured photon energy spectrum and the radioactivity distribution in the source, the dose-rate constant ({Lambda}) of each source was determined. The effects of the Rev.2 production revision were quantified by comparing the emitted photon energy spectra and the {Lambda} values determined for the sources manufactured before and after the production revision. Results: The relative photon energy spectrum originating from the principal emissions of {sup 131}Cs was found to be nearly identical before and after the Rev.2 revision. However, the portion of the spectrum originating from the production of fluorescent x rays in niobium, a trace element present in the source construction materials, was found to differ significantly between the Rev.1 and Rev.2 sources. The peak intensity of the Nb K{sub {alpha}} and Nb K{sub {beta}} fluorescent x rays from the Rev.2 source was approximately 35% of that from the Rev.1 source. Consequently, the nominal {Lambda} value of the Rev.2 source was found to be greater than that determined for the Rev.1 source by approximately 0.7%{+-}0.5%. Conclusions: A significant reduction (65%) in relative niobium fluorescent x-ray yield was observed in the Rev.2 {sup 131}Cs sources. The impact of this reduction on the dose-rate constant was found to be small, with a relative difference of less than 1%. This study demonstrates that photon spectrometry can be used as a sensitive and convenient tool for monitoring and for quantifying the dosimetric effects of brachytherapy source-production revisions. Because production revision can change both the geometry and the atomic composition of brachytherapy sources, its dosimetric impact should be carefully monitored and evaluated for each production revision.« less

  20. Stimulation of nuclear receptor REV-ERBs regulates tumor necrosis factor-induced expression of proinflammatory molecules in C6 astroglial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morioka, Norimitsu, E-mail: mnori@hiroshima-u.ac.jp; Tomori, Mizuki; Zhang, Fang Fang

    Under physiological conditions, astrocytes maintain homeostasis in the CNS. Following inflammation and injury to the CNS, however, activated astrocytes produce neurotoxic molecules such as cytokines and chemokines, amplifying the initial molecular-cellular events evoked by inflammation and injury. Nuclear receptors REV-ERBα and REV-ERBβ (REV-ERBs) are crucial in the regulation of inflammation- and metabolism-related gene transcription. The current study sought to elucidate a role of REV-ERBs in rat C6 astroglial cells on the expression of inflammatory molecules following stimulation with the neuroinflammatory cytokine tumor necrosis factor (TNF). Stimulation of C6 cells with TNF (10 ng/ml) significantly increased the mRNA expression of CCL2, interleukin-6more » (IL-6), inducible nitric oxide synthase (iNOS), and matrix metalloprotease (MMP)-9, but not fibroblast growth factor-2 (FGF-2), cyclooxygenase-2 (COX-2) and MMP-2. Treatment with either REV-ERB agonists GSK4112 or SR9009 significantly blocked TNF-induced upregulation of CCL2 mRNA and MMP-9 mRNA, but not IL-6 mRNA and iNOS mRNA expression. Furthermore, treatment with RGFP966, a selective histone deacetylase 3 (HDAC3) inhibitor, potently reversed the inhibitory effects of GSK4112 on TNF-induced expression of MMP-9 mRNA, but not CCL2 mRNA. Expression of Rev-erbs mRNA in C6 astroglial cells, primary cultured rat cortical and spinal astrocytes was confirmed by reverse transcription polymerase chain reaction. Together, the findings demonstrate an anti-inflammatory effect, downregulating of MMP-9 and CCL2 transcription, of astroglial REV-ERBs activation through HDAC3-dependent and HDAC3-independent mechanisms. - Highlights: • Rev-erbα mRNA and Rev-erbβ mRNA are expressed in C6 astroglial cells. • TNF increases the expression of CCL2, IL-6, MMP-9 and iNOS mRNA. • REV-ERB activation inhibits CCL2 mRNA and MMP-9 mRNA expression. • HDAC3 activity is involved in the inhibitory effect of REV-ERB on MMP-9 induction.« less

  1. Human Pol ζ purified with accessory subunits is active in translesion DNA synthesis and complements Pol η in cisplatin bypass

    PubMed Central

    Lee, Young-Sam; Gregory, Mark T.; Yang, Wei

    2014-01-01

    DNA polymerase ζ (Pol ζ) is a eukaryotic B-family DNA polymerase that specializes in translesion synthesis and is essential for normal embryogenesis. At a minimum, Pol ζ consists of a catalytic subunit Rev3 and an accessory subunit Rev7. Mammalian Rev3 contains >3,000 residues and is twice as large as the yeast homolog. To date, no vertebrate Pol ζ has been purified for biochemical characterization. Here we report purification of a series of human Rev3 deletion constructs expressed in HEK293 cells and identification of a minimally catalytically active human Pol ζ variant. With a tagged form of an active Pol ζ variant, we isolated two additional accessory subunits of human Pol ζ, PolD2 and PolD3. The purified four-subunit Pol ζ4 (Rev3–Rev7–PolD2–PolD3) is much more efficient and more processive at bypassing a 1,2-intrastrand d(GpG)-cisplatin cross-link than the two-subunit Pol ζ2 (Rev3–Rev7). We show that complete bypass of cisplatin lesions requires Pol η to insert dCTP opposite the 3′ guanine and Pol ζ4 to extend the primers. PMID:24449906

  2. Human Pol ζ purified with accessory subunits is active in translesion DNA synthesis and complements Pol η in cisplatin bypass.

    PubMed

    Lee, Young-Sam; Gregory, Mark T; Yang, Wei

    2014-02-25

    DNA polymerase ζ (Pol ζ) is a eukaryotic B-family DNA polymerase that specializes in translesion synthesis and is essential for normal embryogenesis. At a minimum, Pol ζ consists of a catalytic subunit Rev3 and an accessory subunit Rev7. Mammalian Rev3 contains >3,000 residues and is twice as large as the yeast homolog. To date, no vertebrate Pol ζ has been purified for biochemical characterization. Here we report purification of a series of human Rev3 deletion constructs expressed in HEK293 cells and identification of a minimally catalytically active human Pol ζ variant. With a tagged form of an active Pol ζ variant, we isolated two additional accessory subunits of human Pol ζ, PolD2 and PolD3. The purified four-subunit Pol ζ4 (Rev3-Rev7-PolD2-PolD3) is much more efficient and more processive at bypassing a 1,2-intrastrand d(GpG)-cisplatin cross-link than the two-subunit Pol ζ2 (Rev3-Rev7). We show that complete bypass of cisplatin lesions requires Pol η to insert dCTP opposite the 3' guanine and Pol ζ4 to extend the primers.

  3. Biallelic inactivation of REV7 is associated with Fanconi anemia.

    PubMed

    Bluteau, Dominique; Masliah-Planchon, Julien; Clairmont, Connor; Rousseau, Alix; Ceccaldi, Raphael; Dubois d'Enghien, Catherine; Bluteau, Olivier; Cuccuini, Wendy; Gachet, Stéphanie; Peffault de Latour, Régis; Leblanc, Thierry; Socié, Gérard; Baruchel, André; Stoppa-Lyonnet, Dominique; D'Andrea, Alan D; Soulier, Jean

    2016-09-01

    Fanconi anemia (FA) is a recessive genetic disease characterized by congenital abnormalities, chromosome instability, progressive bone marrow failure (BMF), and a strong predisposition to cancer. Twenty FA genes have been identified, and the FANC proteins they encode cooperate in a common pathway that regulates DNA crosslink repair and replication fork stability. We identified a child with severe BMF who harbored biallelic inactivating mutations of the translesion DNA synthesis (TLS) gene REV7 (also known as MAD2L2), which encodes the mutant REV7 protein REV7-V85E. Patient-derived cells demonstrated an extended FA phenotype, which included increased chromosome breaks and G2/M accumulation upon exposure to DNA crosslinking agents, γH2AX and 53BP1 foci accumulation, and enhanced p53/p21 activation relative to cells derived from healthy patients. Expression of WT REV7 restored normal cellular and functional phenotypes in the patient's cells, and CRISPR/Cas9 inactivation of REV7 in a non-FA human cell line produced an FA phenotype. Finally, silencing Rev7 in primary hematopoietic cells impaired progenitor function, suggesting that the DNA repair defect underlies the development of BMF in FA. Taken together, our genetic and functional analyses identified REV7 as a previously undescribed FA gene, which we term FANCV.

  4. Biallelic inactivation of REV7 is associated with Fanconi anemia

    PubMed Central

    Masliah-Planchon, Julien; Clairmont, Connor; Rousseau, Alix; Ceccaldi, Raphael; Dubois d’Enghien, Catherine; Bluteau, Olivier; Cuccuini, Wendy; Gachet, Stéphanie; Peffault de Latour, Régis; Leblanc, Thierry; Socié, Gérard; Baruchel, André; Stoppa-Lyonnet, Dominique; D’Andrea, Alan D.

    2016-01-01

    Fanconi anemia (FA) is a recessive genetic disease characterized by congenital abnormalities, chromosome instability, progressive bone marrow failure (BMF), and a strong predisposition to cancer. Twenty FA genes have been identified, and the FANC proteins they encode cooperate in a common pathway that regulates DNA crosslink repair and replication fork stability. We identified a child with severe BMF who harbored biallelic inactivating mutations of the translesion DNA synthesis (TLS) gene REV7 (also known as MAD2L2), which encodes the mutant REV7 protein REV7-V85E. Patient-derived cells demonstrated an extended FA phenotype, which included increased chromosome breaks and G2/M accumulation upon exposure to DNA crosslinking agents, γH2AX and 53BP1 foci accumulation, and enhanced p53/p21 activation relative to cells derived from healthy patients. Expression of WT REV7 restored normal cellular and functional phenotypes in the patient’s cells, and CRISPR/Cas9 inactivation of REV7 in a non-FA human cell line produced an FA phenotype. Finally, silencing Rev7 in primary hematopoietic cells impaired progenitor function, suggesting that the DNA repair defect underlies the development of BMF in FA. Taken together, our genetic and functional analyses identified REV7 as a previously undescribed FA gene, which we term FANCV. PMID:27500492

  5. Computing Critical Properties with Yang-Yang Anomalies

    NASA Astrophysics Data System (ADS)

    Orkoulas, Gerassimos; Cerdeirina, Claudio; Fisher, Michael

    2017-01-01

    Computation of the thermodynamics of fluids in the critical region is a challenging task owing to divergence of the correlation length and lack of particle-hole symmetries found in Ising or lattice-gas models. In addition, analysis of experiments and simulations reveals a Yang-Yang (YY) anomaly which entails sharing of the specific heat singularity between the pressure and the chemical potential. The size of the YY anomaly is measured by the YY ratio Rμ =C μ /CV of the amplitudes of C μ = - T d2 μ /dT2 and of the total specific heat CV. A ``complete scaling'' theory, in which the pressure mixes into the scaling fields, accounts for the YY anomaly. In Phys. Rev. Lett. 116, 040601 (2016), compressible cell gas (CCG) models which exhibit YY and singular diameter anomalies, have been advanced for near-critical fluids. In such models, the individual cell volumes are allowed to fluctuate. The thermodynamics of CCGs can be computed through mapping onto the Ising model via the seldom-used great grand canonical ensemble. The computations indicate that local free volume fluctuations are the origins of the YY effects. Furthermore, local energy-volume coupling (to model water) is another crucial factor underlying the phenomena.

  6. Expansion of effective wet bulb globe temperature for vapor impermeable protective clothing.

    PubMed

    Sakoi, Tomonori; Mochida, Tohru; Kurazumi, Yoshihito; Sawada, Shin-Ichi; Horiba, Yosuke; Kuwabara, Kohei

    2018-01-01

    The wet bulb globe temperature (WBGT) is an effective measure for risk screening to prevent heat dISOrders. However, a heat risk evaluation by WBGT requires adjustments depending on the clothing. In this study, we proposed a new effective WBGT (WBGT eff * ) for general vapor permeable clothing ensembles and vapor impermeable protective clothing that is applicable to occupants engaged in moderate intensity work with a metabolic heat production value of around 174W/m 2 . WBGT eff * enables the conversion of heat stress into the scale experienced by the occupant dressed in the basic clothing ensemble (work clothes) based on the heat balances for a human body. We confirmed that WBGT eff * was effective for expressing the critical thermal environments for the prescriptive zones for occupants wearing vapor impermeable protective clothing. Based on WBGT eff * , we succeeded in clarifying how the weights for natural wet bulb, globe, and air temperatures and the intercept changed depending on clothing properties and the surrounding environmental factors when heat stress is expressed by the weighted sum of natural wet bulb, globe, and air temperatures and the intercept. The weight of environmental temperatures (globe and air temperatures) for WBGT eff * for vapor impermeable protective clothing increased compared with that for general vapor permeable clothing, whereas that of the natural wet bulb temperature decreased. For WBGT eff * in outdoor conditions with a solar load, the weighting ratio of globe temperature increased and that of air temperature decreased with air velocity. Approximation equations of WBGT eff * were proposed for both general vapor permeable clothing ensembles and for vapor impermeable protective clothing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Historeceptomic Fingerprints for Drug-Like Compounds.

    PubMed

    Shmelkov, Evgeny; Grigoryan, Arsen; Swetnam, James; Xin, Junyang; Tivon, Doreen; Shmelkov, Sergey V; Cardozo, Timothy

    2015-01-01

    Most drugs exert their beneficial and adverse effects through their combined action on several different molecular targets (polypharmacology). The true molecular fingerprint of the direct action of a drug has two components: the ensemble of all the receptors upon which a drug acts and their level of expression in organs/tissues. Conversely, the fingerprint of the adverse effects of a drug may derive from its action in bystander tissues. The ensemble of targets is almost always only partially known. Here we describe an approach improving upon and integrating both components: in silico identification of a more comprehensive ensemble of targets for any drug weighted by the expression of those receptors in relevant tissues. Our system combines more than 300,000 experimentally determined bioactivity values from the ChEMBL database and 4.2 billion molecular docking scores. We integrated these scores with gene expression data for human receptors across a panel of human tissues to produce drug-specific tissue-receptor (historeceptomics) scores. A statistical model was designed to identify significant scores, which define an improved fingerprint representing the unique activity of any drug. These multi-dimensional historeceptomic fingerprints describe, in a novel, intuitive, and easy to interpret style, the holistic, in vivo picture of the mechanism of any drug's action. Valuable applications in drug discovery and personalized medicine, including the identification of molecular signatures for drugs with polypharmacologic modes of action, detection of tissue-specific adverse effects of drugs, matching molecular signatures of a disease to drugs, target identification for bioactive compounds with unknown receptors, and hypothesis generation for drug/compound phenotypes may be enabled by this approach. The system has been deployed at drugable.org for access through a user-friendly web site.

  8. Quantum-Critical Dynamics of the Skyrmion Lattice.

    NASA Astrophysics Data System (ADS)

    Green, Andrew G.

    2002-03-01

    Slightly away from exact filling of the lowest Landau level, the quantum Hall ferromagnet contains a finite density of magnetic vortices or Skyrmions[1,2]. These Skyrmions are expected to form a square lattice[3], the low energy excitations of which (translation/phonon modes and rotation/breathing modes) lead to dramatically enhanced nuclear relaxation[4,5]. Upon changing the filling fraction, the rotational modes undergo a quantum phase transition where zero-point fluctuations destroy the orientational order of the Skyrmions[4,6]. I will discuss the effect of this quantum critical point upon nuclear spin relaxation[7]. [1]S. L. Sondhi et al., Phys. Rev. B47, 16419 (1993). [2]S. E. Barrett et al., Phys. Rev. Lett. 74, 5112 (1995), A. Schmeller et al., Phys. Rev. Lett. 75, 4290 (1995). [3]L. Brey et al, Phys. Rev. Lett. 75, 2562 (1995). [4]R. Côté et al., Phys. Rev. Lett. 78, 4825 (1997). [5]R. Tycko et al., Science 268, 1460 (1995). [6]Yu V. Nazarov and A. V. Khaetskii, Phys. Rev. Lett. 80, 576 (1998). [7]A. G. Green, Phys. Rev. B61, R16 299 (2000).

  9. A comparison of breeding and ensemble transform vectors for global ensemble generation

    NASA Astrophysics Data System (ADS)

    Deng, Guo; Tian, Hua; Li, Xiaoli; Chen, Jing; Gong, Jiandong; Jiao, Meiyan

    2012-02-01

    To compare the initial perturbation techniques using breeding vectors and ensemble transform vectors, three ensemble prediction systems using both initial perturbation methods but with different ensemble member sizes based on the spectral model T213/L31 are constructed at the National Meteorological Center, China Meteorological Administration (NMC/CMA). A series of ensemble verification scores such as forecast skill of the ensemble mean, ensemble resolution, and ensemble reliability are introduced to identify the most important attributes of ensemble forecast systems. The results indicate that the ensemble transform technique is superior to the breeding vector method in light of the evaluation of anomaly correlation coefficient (ACC), which is a deterministic character of the ensemble mean, the root-mean-square error (RMSE) and spread, which are of probabilistic attributes, and the continuous ranked probability score (CRPS) and its decomposition. The advantage of the ensemble transform approach is attributed to its orthogonality among ensemble perturbations as well as its consistence with the data assimilation system. Therefore, this study may serve as a reference for configuration of the best ensemble prediction system to be used in operation.

  10. Reply to "Comment on `Particle path through a nested Mach-Zehnder interferometer' "

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert B.

    2018-02-01

    While much of the technical analysis in the preceding Comment is correct, in the end it confirms the conclusion reached in my previous work [Phys. Rev. A 94, 032115 (2016), 10.1103/PhysRevA.94.032115]: A consistent histories analysis provides no support for the claim of counterfactual quantum communication put forward by Salih et al. [Phys. Rev. Lett. 110, 170502 (2013), 10.1103/PhysRevLett.110.170502].

  11. α-decay systematics for superheavy elements

    NASA Astrophysics Data System (ADS)

    Duarte, S. B.; Teruya, N.

    2012-01-01

    In this Brief Report we extend the α-decay half-life calculation to the superheavy emitter region to verify whether these nuclei satisfy the recently observed systematics [D. N. Poenaru , Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.83.014601 83, 014601 (2011);C. Qi , Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.80.044326 80, 044326 (2009)]. To establish the systematics, we have used the α-cluster potential description, which was originally developed to study α decay in connection with nuclear energy level structure [B. Buck , Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.51.559 51, 559 (1995)]. The quantum-mechanical tunneling calculation has been employed to obtain the half-lives, showing that with this treatment the systematics are well reproduced in the region of heavy nuclei. Finally, the half-life calculation has been extended to the superheavy emitters to verify whether the systematics can still be observed.

  12. The Proliferating Cell Nuclear Antigen (PCNA)-interacting Protein (PIP) Motif of DNA Polymerase η Mediates Its Interaction with the C-terminal Domain of Rev1*

    PubMed Central

    Boehm, Elizabeth M.; Powers, Kyle T.; Kondratick, Christine M.; Spies, Maria; Houtman, Jon C. D.; Washington, M. Todd

    2016-01-01

    Y-family DNA polymerases, such as polymerase η, polymerase ι, and polymerase κ, catalyze the bypass of DNA damage during translesion synthesis. These enzymes are recruited to sites of DNA damage by interacting with the essential replication accessory protein proliferating cell nuclear antigen (PCNA) and the scaffold protein Rev1. In most Y-family polymerases, these interactions are mediated by one or more conserved PCNA-interacting protein (PIP) motifs that bind in a hydrophobic pocket on the front side of PCNA as well as by conserved Rev1-interacting region (RIR) motifs that bind in a hydrophobic pocket on the C-terminal domain of Rev1. Yeast polymerase η, a prototypical translesion synthesis polymerase, binds both PCNA and Rev1. It possesses a single PIP motif but not an RIR motif. Here we show that the PIP motif of yeast polymerase η mediates its interactions both with PCNA and with Rev1. Moreover, the PIP motif of polymerase η binds in the hydrophobic pocket on the Rev1 C-terminal domain. We also show that the RIR motif of human polymerase κ and the PIP motif of yeast Msh6 bind both PCNA and Rev1. Overall, these findings demonstrate that PIP motifs and RIR motifs have overlapping specificities and can interact with both PCNA and Rev1 in structurally similar ways. These findings also suggest that PIP motifs are a more versatile protein interaction motif than previously believed. PMID:26903512

  13. Selective suppression of autocatalytic caspase-3 driven by two-step transcriptional amplified human telomerase reverse transcriptase promoter on ovarian carcinoma growth in vitro and in mice.

    PubMed

    Song, Yue; Xin, Xing; Xia, Zhijun; Zhai, Xingyue; Shen, Keng

    2014-07-01

    The objective of our study was to construct recombinant adenovirus (rAd) AdHTVP2G5-rev-casp3, which expresses autocatalytic caspase-3 driven by human telomerase reverse transcriptase promoter (hTERTp) with a two-step transcription amplification (TSTA) system and investigate its antitumor effects on ovarian cancer in vitro and in vivo. Fluorescent detection was used to detect EGFP expression in various cells. Cell viabilities were determined using the Cell Counting Kit-8 and flow cytometry. RT-PCR and immunoblotting assays were used to detect cellular apoptotic activities. Tumor growth and survival of tumor-bearing mice were studied. The hTERTp-TSTA system showed the strongest activity in hTERT-positive cancer cells when compared with hTERTp and cytomeglovirus promoter (CMVp). In contrast, it showed no activity in hTERT‑negative HUVECs. AdHTVP2G5‑rev-casp3 markedly suppressed the survival of AO cells in a dose-dependent modality with a viability rate of 17.8 ± 3.5% at an MOI of 70, which was significantly lower than that by AdHT-rev-casp3 and Ad-rev-casp3 (rAds which express rev-caspase-3 driven by hTERTp and CMVp, respectively). In contrast, AdHTVP2G5‑rev-casp3 induced little HUVEC death with a viability rate of 92.7 ± 5.2% at the same MOI. Additionally, AdHTVP2G5-rev-casp3 (MOI=70) caused significant apoptosis in AO cells with an apoptotic rate of 42%. The tumor growth suppression rate of AdHTVP2G5-rev-casp3 was 81.52%, significantly higher than that of AdHT-rev-casp3 (54.94%) or Ad-rev-casp3 (21.35%). AdHTVP2G5-rev-casp3 significantly improved the survival of tumor-bearing mice with little liver damage, with a mean survival of 258 ± 28 days. These results showed that AdHTVP2G5-rev-casp3 caused effective apoptosis with significant tumor selectivity, strongly suppressed tumor growth and improved mouse survival with little liver toxicity. It can be a potent therapeutic agent for tumor targeted treatment of ovarian cancer.

  14. The Ensembl REST API: Ensembl Data for Any Language.

    PubMed

    Yates, Andrew; Beal, Kathryn; Keenan, Stephen; McLaren, William; Pignatelli, Miguel; Ritchie, Graham R S; Ruffier, Magali; Taylor, Kieron; Vullo, Alessandro; Flicek, Paul

    2015-01-01

    We present a Web service to access Ensembl data using Representational State Transfer (REST). The Ensembl REST server enables the easy retrieval of a wide range of Ensembl data by most programming languages, using standard formats such as JSON and FASTA while minimizing client work. We also introduce bindings to the popular Ensembl Variant Effect Predictor tool permitting large-scale programmatic variant analysis independent of any specific programming language. The Ensembl REST API can be accessed at http://rest.ensembl.org and source code is freely available under an Apache 2.0 license from http://github.com/Ensembl/ensembl-rest. © The Author 2014. Published by Oxford University Press.

  15. Ensembl BioMarts: a hub for data retrieval across taxonomic space.

    PubMed

    Kinsella, Rhoda J; Kähäri, Andreas; Haider, Syed; Zamora, Jorge; Proctor, Glenn; Spudich, Giulietta; Almeida-King, Jeff; Staines, Daniel; Derwent, Paul; Kerhornou, Arnaud; Kersey, Paul; Flicek, Paul

    2011-01-01

    For a number of years the BioMart data warehousing system has proven to be a valuable resource for scientists seeking a fast and versatile means of accessing the growing volume of genomic data provided by the Ensembl project. The launch of the Ensembl Genomes project in 2009 complemented the Ensembl project by utilizing the same visualization, interactive and programming tools to provide users with a means for accessing genome data from a further five domains: protists, bacteria, metazoa, plants and fungi. The Ensembl and Ensembl Genomes BioMarts provide a point of access to the high-quality gene annotation, variation data, functional and regulatory annotation and evolutionary relationships from genomes spanning the taxonomic space. This article aims to give a comprehensive overview of the Ensembl and Ensembl Genomes BioMarts as well as some useful examples and a description of current data content and future objectives. Database URLs: http://www.ensembl.org/biomart/martview/; http://metazoa.ensembl.org/biomart/martview/; http://plants.ensembl.org/biomart/martview/; http://protists.ensembl.org/biomart/martview/; http://fungi.ensembl.org/biomart/martview/; http://bacteria.ensembl.org/biomart/martview/.

  16. Reply to "Comment on `Protecting bipartite entanglement by quantum interferences' "

    NASA Astrophysics Data System (ADS)

    Das, Sumanta; Agarwal, G. S.

    2018-03-01

    In a recent Comment Nair and Arun, Phys. Rev. A 97, 036301 (2018), 10.1103/PhysRevA.97.036301, it was concluded that the two-qubit entanglement protection reported in our work [Das and Agarwal, Phys. Rev. A 81, 052341 (2010), 10.1103/PhysRevA.81.052341] is erroneous. While we acknowledge the error in analytical results on concurrence when dipole matrix elements were unequal, the essential conclusions on entanglement protection are not affected.

  17. Bibliography of Leishmania and Leishmanial Diseases. Volume 1

    DTIC Science & Technology

    1980-06-01

    Sea 7 Rev. Med.- Yucatan Paulo, REVISTA MEDICA DE YUCATAN . Merida. Rev, Paliclin, Caracas Rev. Menn. Med. , Brazil REVISTA DE LA POLICLINICA, CARACAc...Parasit., 41(2):126-136. 799 pp. CHAKG, P. Y.; TENG, L. T.; SUNG, Y. (1957A) Interactions T. & LIU, Y. C. (1958A) Kala-azar between nutrition and...of nutrition in experimental Infectivan. Bact. Rev. , 13:99-134. CLINTON, B. A.; STAUBER, L. A.& CLRT .(1959A) Comparative PALCZUK, N. C. (1969A

  18. Ensemble Density Functional Approach to the Quantum Hall Effect

    NASA Astrophysics Data System (ADS)

    Heinonen, O.

    1997-03-01

    The fractional quantum Hall effect (FQHE) occurs in a two-dimensional electron gas of density n when a strong magnetic field perpendicular to the plane of the electron gas takes on certain strengths B(n). At these magnetic field strengths the system is incompressible, i.e., there is a finite cost in energy for creating charge density fluctuations in the bulk. Even so the boundary of the electron gas supports gapless modes of density waves. The bulk energy gap arises because of the strong electron-electron interactions. There are very good models for infinite homogeneous systems and for the gapless excitations of the boundary of the electron gas. But in order to explain experiments on quantum Hall systems, including Hall bars and quantum dots, new approaches are needed which can accurately describe inhomogeneous systems, including Landau level mixing and the spin degree of freedom. One possibility is an ensemble density functional theory approach that we have developed.(O. Heinonen, M.I. Lubin, and M.D. Johnson, Phys. Rev. Lett. 75), 4110 (1995)(O. Heinonen, M.I. Lubin, and M.D. Johnson, Int. J. Quant. Chem, December 1996) We have applied this to study edge reconstructions of spin-polarized quantum dots. The results for a six-electron test case are in excellent agreement with numerical diagonalizations. For larger systems, compressible and incompressible strips appear as the magnetic field is increased from the region in which a dot forms a compact so-called maximum density droplet. We have recently included spin degree of freedom to study the stability of a maximum density droplet, and charge-spin textures in inhomogeneous systems. As an example, when the Zeeman coupling is decreased, we find that the maximum density droplet develops a spin-structured edge instability. This implies that the spin degree of freedom may play a significant role in the study of edge modes at low or moderate magnetic fields.

  19. Avoidance of APOBEC3B-induced mutation by error-free lesion bypass

    PubMed Central

    Hoopes, James I.; Hughes, Amber L.; Hobson, Lauren A.; Cortez, Luis M.; Brown, Alexander J.

    2017-01-01

    Abstract APOBEC cytidine deaminases mutate cancer genomes by converting cytidines into uridines within ssDNA during replication. Although uracil DNA glycosylases limit APOBEC-induced mutation, it is unknown if subsequent base excision repair (BER) steps function on replication-associated ssDNA. Hence, we measured APOBEC3B-induced CAN1 mutation frequencies in yeast deficient in BER endonucleases or DNA damage tolerance proteins. Strains lacking Apn1, Apn2, Ntg1, Ntg2 or Rev3 displayed wild-type frequencies of APOBEC3B-induced canavanine resistance (CanR). However, strains without error-free lesion bypass proteins Ubc13, Mms2 and Mph1 displayed respective 4.9-, 2.8- and 7.8-fold higher frequency of APOBEC3B-induced CanR. These results indicate that mutations resulting from APOBEC activity are avoided by deoxyuridine conversion to abasic sites ahead of nascent lagging strand DNA synthesis and subsequent bypass by error-free template switching. We found this mechanism also functions during telomere re-synthesis, but with a diminished requirement for Ubc13. Interestingly, reduction of G to C substitutions in Ubc13-deficient strains uncovered a previously unknown role of Ubc13 in controlling the activity of the translesion synthesis polymerase, Rev1. Our results highlight a novel mechanism for error-free bypass of deoxyuridines generated within ssDNA and suggest that the APOBEC mutation signature observed in cancer genomes may under-represent the genomic damage these enzymes induce. PMID:28334887

  20. Altered Sleep Homeostasis in Rev-erbα Knockout Mice

    PubMed Central

    Mang, Géraldine M.; La Spada, Francesco; Emmenegger, Yann; Chappuis, Sylvie; Ripperger, Jürgen A.; Albrecht, Urs; Franken, Paul

    2016-01-01

    Study Objectives: The nuclear receptor REV-ERBα is a potent, constitutive transcriptional repressor critical for the regulation of key circadian and metabolic genes. Recently, REV-ERBα's involvement in learning, neurogenesis, mood, and dopamine turnover was demonstrated suggesting a specific role in central nervous system functioning. We have previously shown that the brain expression of several core clock genes, including Rev-erbα, is modulated by sleep loss. We here test the consequences of a loss of REV-ERBα on the homeostatic regulation of sleep. Methods: EEG/EMG signals were recorded in Rev-erbα knockout (KO) mice and their wild type (WT) littermates during baseline, sleep deprivation, and recovery. Cortical gene expression measurements after sleep deprivation were contrasted to baseline. Results: Although baseline sleep/wake duration was remarkably similar, KO mice showed an advance of the sleep/wake distribution relative to the light-dark cycle. After sleep onset in baseline and after sleep deprivation, both EEG delta power (1–4 Hz) and sleep consolidation were reduced in KO mice indicating a slower increase of homeostatic sleep need during wakefulness. This slower increase might relate to the smaller increase in theta and gamma power observed in the waking EEG prior to sleep onset under both conditions. Indeed, the increased theta activity during wakefulness predicted delta power in subsequent NREM sleep. Lack of Rev-erbα increased Bmal1, Npas2, Clock, and Fabp7 expression, confirming the direct regulation of these genes by REV-ERBα also in the brain. Conclusions: Our results add further proof to the notion that clock genes are involved in sleep homeostasis. Because accumulating evidence directly links REV-ERBα to dopamine signaling the altered homeostatic regulation of sleep reported here are discussed in that context. Citation: Mang GM, La Spada F, Emmenegger Y, Chappuis S, Ripperger JA, Albrecht U, Franken P. Altered sleep homeostasis in Rev-erbα knockout mice. SLEEP 2016;39(3):589–601. PMID:26564124

  1. HIV-1 Rev protein specifies the viral RNA export pathway by suppressing TAP/NXF1 recruitment

    PubMed Central

    Taniguchi, Ichiro; Mabuchi, Naoto; Ohno, Mutsuhito

    2014-01-01

    Nuclear RNA export pathways in eukaryotes are often linked to the fate of a given RNA. Therefore, the choice of export pathway should be well-controlled to avoid an unfavorable effect on gene expression. Although some RNAs could be exported by more than one pathway, little is known about how the choice is regulated. This issue is highlighted when the human immunodeficiency virus type 1 (HIV-1) Rev protein induces the export of singly spliced and unspliced HIV-1 transcripts. How these RNAs are exported is not well understood because such transcripts should have the possibility of utilizing CRM1-dependent export via Rev or cellular TAP/NXF1-dependent export via the transcription/export (TREX) complex, or both. Here we found that Rev suppressed TAP/NXF1-dependent export of model RNA substrates that recapitulated viral transcripts. In this effect, Rev interacted with the cap-binding complex and inhibited the recruitment of the TREX complex. Thus, Rev controls the identity of the factor occupying the cap-proximal region that determines the RNA export pathway. This ribonucleoprotein remodeling activity of Rev may favor viral gene expression. PMID:24753416

  2. Magnetic and structural X-ray dichroïsms of metallic multilayers

    NASA Astrophysics Data System (ADS)

    Pizzini, Stefania; Fontaine, A.; Baudelet, F.; Minr, S.; Giorgetti, C.; Dartyge, E.; Bobo, J. F.; Piecuch, M.

    1995-05-01

    Fe/Cu and Co/Cu multilayers are intensively studied because of their exceptional magnetic properties, i.e., their giant magnetoresistance and the oscillations of the magnetic coupling between magnetic layers as a function of the thickness of the copper spacer [S.S. Parkin et al., Phys. Rev. Lett. 66 (1991) 2152; F. Petroff et al., Phys. Rev. B 44 (1991) 5355]. Spectroscopic approaches to the understanding of the coupling of ferromagnetic layers through a noble metal layer have been recently introduced, in particular spin-resolved photoemission [N.B. Brookes et al., Phys. Rev. Lett. 67 (1991) 354; C. Carbone et al., PRL 71 (1993) 2805] inverse photoemission [J.E. Ortega et al., Phys. Rev. Lett. 69 (1992) 844; Phys. Rev. B 47 (1993) 1540] and magnetic circular dichroism [S. Pizzini et al., MRS Symp. Proc., vol. 313 (1993); M.G. Samant et al. Phys. Rev. Lett. 72 (1994) 2152; S. Pizzini et al., Phys. Rev. Lett. 74 (1995) 1470]. X-ray absorption spectroscopy appears to be effective both for determination of the local structure, specific to the bidimensionality of the system but also for the electron symmetry-dependent evaluation of the spin polarisation of the noble metal as well as the magnetic element.

  3. RNA helicase MOV10 functions as a co-factor of HIV-1 Rev to facilitate Rev/RRE-dependent nuclear export of viral mRNAs.

    PubMed

    Huang, Feng; Zhang, Junsong; Zhang, Yijun; Geng, Guannan; Liang, Juanran; Li, Yingniang; Chen, Jingliang; Liu, Chao; Zhang, Hui

    2015-12-01

    Human immunodeficiency virus type 1 (HIV-1) exploits multiple host factors during its replication. The REV/RRE-dependent nuclear export of unspliced/partially spliced viral transcripts needs the assistance of host proteins. Recent studies have shown that MOV10 overexpression inhibited HIV-1 replication at various steps. However, the endogenous MOV10 was required in certain step(s) of HIV-1 replication. In this report, we found that MOV10 potently enhances the nuclear export of viral mRNAs and subsequently increases the expression of Gag protein and other late products through affecting the Rev/RRE axis. The co-immunoprecipitation analysis indicated that MOV10 interacts with Rev in an RNA-independent manner. The DEAG-box of MOV10 was required for the enhancement of Rev/RRE-dependent nuclear export and the DEAG-box mutant showed a dominant-negative activity. Our data propose that HIV-1 utilizes the anti-viral factor MOV10 to function as a co-factor of Rev and demonstrate the complicated effects of MOV10 on HIV-1 life cycle. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Biological responses of beef steers to steroidal implants and zilpaterol hydrochloride.

    PubMed

    Parr, S L; Brown, T R; Ribeiro, F R B; Chung, K Y; Hutcheson, J P; Blackwell, B R; Smith, P N; Johnson, B J

    2014-08-01

    British × Continental steers (n = 168; 7 pens/treatment; initial BW = 362 kg) were used to evaluate the effect of dose/payout pattern of trenbolone acetate (TBA) and estradiol-17β (E2) and feeding of zilpaterol hydrochloride (ZH) on serum urea-N (SUN), NEFA, IGF-I, and E2 concentrations and LM mRNA expression of the estrogen (ER), androgen (ANR), IGF-I (IGF-IR), β1-adrenergic (β1-AR), and β2-adrenergic (β2-AR) receptors and IGF-I. A randomized complete block design was used with a 3 × 2 factorial arrangement of treatments. Main effects were implant (no implant [NI], Revalor-S [REV-S; 120 mg TBA + 24 mg E2], and Revalor-XS [REV-X; 200 mg TBA + 40 mg E2]) and ZH (0 or 8.3 mg/kg of DM for 20 d with a 3-d withdrawal). Steers were fed for 153 or 174 d. Blood was collected (2 steers/pen) at d -1, 2, 6, 13, 27, 55, 83, 111, and 131 relative to implanting; LM biopsies (1 steer/pen) were collected at d -1, 27, 55, and 111. Blood and LM samples were collected at d -1, 11, and 19 relative to ZH feeding. A greater dose of TBA + E2 in combination with ZH increased ADG and HCW in an additive manner, suggesting a different mechanism of action for ZH and steroidal implants. Implanting decreased (P < 0.05) SUN from d 2 through 131. Feeding ZH decreased (P < 0.05) SUN. Serum NEFA concentrations were not affected by implants (P = 0.44). There was a day × ZH interaction (P = 0.06) for NEFA; ZH steers had increased (P < 0.01) NEFA concentrations at d 11 of ZH feeding. Serum E2 was greater (P < 0.05) for implanted steers by d 27. Serum trenbolone-17β was greater (P < 0.05) for implanted steers by d 2 followed by a typical biphasic release rate, with a secondary peak at d 111 for REV-X (P < 0.05) implanted steers. Implanting did not affect mRNA expression of the ANR or ER, but the IGF-IR and the β1-AR and β2-AR were less (P < 0.05) for REV-S than NI at d 55 and β2-AR mRNA was less (P < 0.05) for REV-S than for REV-X. Expression of the IGF-IR and the β1-AR at d 111 was greater (P< 0.05) for REV-X than for REV-S and NI at d 111, and the β2-AR was less (P< 0.05) for REV-S than for REV-X. Feeding ZH did not affect mRNA expression of the β1-AR and β2-AR. Both implanting and feeding ZH decreased SUN, but a greater dose of TBA + E2 did not result in further decreases. In addition, feeding ZH increased serum NEFA concentrations. Metabolic changes resulting from implanting and feeding ZH may aid in explaining steer performance and carcass responses to these growth promotants.

  5. User Instructions for the Systems Assessment Capability, Rev. 1, Computer Codes Volume 3: Utility Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslinger, Paul W.; Aaberg, Rosanne L.; Lopresti, Charles A.

    2004-09-14

    This document contains detailed user instructions for a suite of utility codes developed for Rev. 1 of the Systems Assessment Capability. The suite of computer codes for Rev. 1 of Systems Assessment Capability performs many functions.

  6. Low Temperature Power Coating (LTPC) Phase 2 Laboratory Test Plan and Procedures for PACAF (Rev D)

    DTIC Science & Technology

    2018-03-20

    Δa*, LTPC Phase II Laboratory Test Plan and Procedures Rev D (CDRL A004) BATTELLE | 20 March 2018 | 6 Δb* and ΔE will be calculated post ...BATTELLE | CONTRACT NUMBER: FA8532-17-C-0008 (CDRL A004) LTPC Phase II Laboratory Test Plan and Procedures (Rev D) Prepared by... Test Plan and Procedures Rev D (CDRL A004) BATTELLE | 20 March 2018 | i List of Acronyms AGE Aircraft Ground Equipment ASTM American

  7. Multiplicity-dependent and nonbinomial efficiency corrections for particle number cumulants

    NASA Astrophysics Data System (ADS)

    Bzdak, Adam; Holzmann, Romain; Koch, Volker

    2016-12-01

    In this article we extend previous work on efficiency corrections for cumulant measurements [Bzdak and Koch, Phys. Rev. C 86, 044904 (2012), 10.1103/PhysRevC.86.044904; Phys. Rev. C 91, 027901 (2015), 10.1103/PhysRevC.91.027901]. We will discuss the limitations of the methods presented in these papers. Specifically we will consider multiplicity dependent efficiencies as well as nonbinomial efficiency distributions. We will discuss the most simple and straightforward methods to implement those corrections.

  8. Aging and Rejuvenation with Fractional Derivatives

    DTIC Science & Technology

    2004-09-10

    Chechkin , J. Klafter, V . Yu . Gonchar , R. Metzler, and L. V . Tanatarov, Phys. Rev. E 67, 010102(R) (2003). [12] I. M. Sokolov and R. Metzler, Phys. Rev. E 67...051106 (2001). [7] A . V . Chechkin , R. Gorenflo, and I. M. Sokolov, Phys. Rev. E 66, 046129 (2002). [8] J. Bisquert, Phys. Rev. Lett. 91, 010602 (2003...9] R. Metzler and J. Klafter, J. Phys. Chem. B 104 3851 (2000). [10] E. Barkai and R. J. Silbey, J. Phys. Chem. B 104 3866 (2000).

  9. Reply to "Comment on `Troublesome aspects of the Renyi-MaxEnt treatment' "

    NASA Astrophysics Data System (ADS)

    Plastino, A.; Rocca, M. C.; Pennini, F.

    2017-11-01

    This Reply is intended as a refutation of the preceding Comment [Oikonomou and Bagci, Phys. Rev. E 96, 056101 (2017), 10.1103/PhysRevE.96.056101] on our paper [Plastino et al., Phys. Rev. E 94, 012145 (2016)., 10.1103/PhysRevE.94.012145]. We show that the Tsallis probability distribution of our paper does not coincide with the Tsallis distribution studied by Oikonomou and Bagci. Consequently, their findings do not apply to our paper.

  10. Reply to "Comment on 'Troublesome aspects of the Renyi-MaxEnt treatment' ".

    PubMed

    Plastino, A; Rocca, M C; Pennini, F

    2017-11-01

    This Reply is intended as a refutation of the preceding Comment [Oikonomou and Bagci, Phys. Rev. E 96, 056101 (2017)10.1103/PhysRevE.96.056101] on our paper [Plastino et al., Phys. Rev. E 94, 012145 (2016).1539-375510.1103/PhysRevE.94.012145]. We show that the Tsallis probability distribution of our paper does not coincide with the Tsallis distribution studied by Oikonomou and Bagci. Consequently, their findings do not apply to our paper.

  11. Optimized Chemical Probes for REV-ERBα

    PubMed Central

    Trump, Ryan P.; Bresciani, Stefano; Cooper, Anthony W. J.; Tellam, James P.; Wojno, Justyna; Blaikley, John; Orband-Miller, Lisa A.; Kashatus, Jennifer A.; Dawson, Helen C.; Loudon, Andrew; Ray, David; Grant, Daniel; Farrow, Stuart N.; Willson, Timothy M.; Tomkinson, Nicholas C. O.

    2015-01-01

    REV-ERBα has emerged as an important target for regulation of circadian rhythm and its associated physiology. Herein, we report on the optimization of a series of REV-ERBα agonists based on GSK4112 (1) for potency, selectivity, and bioavailability. Potent REV-ERBα agonists 4, 10, 16, and 23 are detailed for their ability to suppress BMAL and IL-6 expression from human cells while also demonstrating excellent selectivity over LXRα. Amine 4 demonstrated in vivo bioavailability after either IV or oral dosing. PMID:23656296

  12. Multiplicity-dependent and nonbinomial efficiency corrections for particle number cumulants

    DOE PAGES

    Bzdak, Adam; Holzmann, Romain; Koch, Volker

    2016-12-19

    Here, we extend previous work on efficiency corrections for cumulant measurements [Bzdak and Koch, Phys. Rev. C 86, 044904 (2012)PRVCAN0556-281310.1103/PhysRevC.86.044904; Phys. Rev. C 91, 027901 (2015)PRVCAN0556-281310.1103/PhysRevC.91.027901]. We will then discuss the limitations of the methods presented in these papers. Specifically we will consider multiplicity dependent efficiencies as well as nonbinomial efficiency distributions. We will discuss the most simple and straightforward methods to implement those corrections.

  13. Stabilizing IkappaBalpha by "consensus" design.

    PubMed

    Ferreiro, Diego U; Cervantes, Carla F; Truhlar, Stephanie M E; Cho, Samuel S; Wolynes, Peter G; Komives, Elizabeth A

    2007-01-26

    IkappaBalpha is the major regulator of transcription factor NF-kappaB function. The ankyrin repeat region of IkappaBalpha mediates specific interactions with NF-kappaB dimers, but ankyrin repeats 1, 5 and 6 display a highly dynamic character when not in complex with NF-kappaB. Using chemical denaturation, we show here that IkappaBalpha displays two folding transitions: a non-cooperative conversion under weak perturbation, and a major cooperative folding phase upon stronger insult. Taking advantage of a native Trp residue in ankyrin repeat (AR) 6 and engineered Trp residues in AR2, AR4 and AR5, we show that the cooperative transition involves AR2 and AR3, while the non-cooperative transition involves AR5 and AR6. The major structural transition can be affected by single amino acid substitutions converging to the "consensus" ankyrin repeat sequence, increasing the native state stability significantly. We further characterized the structural and dynamic properties of the native state ensemble of IkappaBalpha and the stabilized mutants by H/(2)H exchange mass spectrometry and NMR. The solution experiments were complemented with molecular dynamics simulations to elucidate the microscopic origins of the stabilizing effect of the consensus substitutions, which can be traced to the fast conformational dynamics of the folded ensemble.

  14. Should future wind speed changes be taken into account in wind farm development?

    NASA Astrophysics Data System (ADS)

    Devis, Annemarie; Van Lipzig, Nicole P. M.; Demuzere, Matthias

    2018-06-01

    Accurate wind resource assessments are crucial in the development of wind farm projects. However, it is common practice to estimate the wind yield over the next 20 years from short-term measurements and reanalysis data of the past 20 years, even though wind climatology is expected to change under the future climate. The present work examines future changes in wind power output over Europe using an ensemble of ESMs. The power output is calculated using the entire wind speed PDF and a non-constant power conversion coefficient. Based on this method, the ESM ensemble projects changes in near-future power outputs with a spatially varying magnitude between ‑12% and 8%. The most extreme changes occur over the Mediterranean region. For the first time, the sensitivity of these future change in power output to the type of wind turbine is also investigated. The analysis reveals that the projected wind power changes may vary in up to half of their magnitude, depending on the type of turbine and region of interest. As such, we recommend that wind industries fully account for projected near-future changes in wind power output by taking them into account as a well-defined loss/gain and uncertainty when estimating the yield of a future wind farm.

  15. Seasonal hydroclimatic impacts of Brazilian sugar cane expansion

    NASA Astrophysics Data System (ADS)

    Georgescu, M.; Lobell, D. B.; Field, C. B.; Mahalov, A.

    2012-12-01

    Brazil is the leading producer of sugar cane in the world with roughly half used for ethanol production. Because of suitable climatic growing conditions, the majority of biofuel production is derived from sugar plantations in southeastern states. Anticipated increases in global demand for biofuels are expected to lead to future sugar cane expansion extending into Brazilian pasturelands and native cerrado. Prior to undergoing large-scale expansion an evaluation of impacts on the region's hydroclimate is warranted. Using a suite of multi-year ensemble-based simulations with the WRF modeling system, we quantify hydroclimatic consequences of sugar cane expansion across portions of south-central Brazil. Conversion from current land use to sugar cane causes opposing seasonal impacts on near-surface temperature. Proggresively greater cooling is simulated during the course of the growing season, followed by an abrupt warming shift post-harvest. Although seasonal impacts on near-surface temperature are significant, with cooling of 1C occurring during the peak of the growing season followed by warming of similar magnitude, impacts are small when annually averaged. Ensemble mean differences between the imposed sugar cane expansion and non-expansion scenario are suggestive of a drying precipitation trend, yet large uncertainty among individual members precludes definitive statements about impacts on the region's rainfall.

  16. Unveiling Inherent Degeneracies in Determining Population-weighted Ensembles of Inter-domain Orientational Distributions Using NMR Residual Dipolar Couplings: Application to RNA Helix Junction Helix Motifs

    PubMed Central

    Yang, Shan; Al-Hashimi, Hashim M.

    2016-01-01

    A growing number of studies employ time-averaged experimental data to determine dynamic ensembles of biomolecules. While it is well known that different ensembles can satisfy experimental data to within error, the extent and nature of these degeneracies, and their impact on the accuracy of the ensemble determination remains poorly understood. Here, we use simulations and a recently introduced metric for assessing ensemble similarity to explore degeneracies in determining ensembles using NMR residual dipolar couplings (RDCs) with specific application to A-form helices in RNA. Various target ensembles were constructed representing different domain-domain orientational distributions that are confined to a topologically restricted (<10%) conformational space. Five independent sets of ensemble averaged RDCs were then computed for each target ensemble and a ‘sample and select’ scheme used to identify degenerate ensembles that satisfy RDCs to within experimental uncertainty. We find that ensembles with different ensemble sizes and that can differ significantly from the target ensemble (by as much as ΣΩ ~ 0.4 where ΣΩ varies between 0 and 1 for maximum and minimum ensemble similarity, respectively) can satisfy the ensemble averaged RDCs. These deviations increase with the number of unique conformers and breadth of the target distribution, and result in significant uncertainty in determining conformational entropy (as large as 5 kcal/mol at T = 298 K). Nevertheless, the RDC-degenerate ensembles are biased towards populated regions of the target ensemble, and capture other essential features of the distribution, including the shape. Our results identify ensemble size as a major source of uncertainty in determining ensembles and suggest that NMR interactions such as RDCs and spin relaxation, on their own, do not carry the necessary information needed to determine conformational entropy at a useful level of precision. The framework introduced here provides a general approach for exploring degeneracies in ensemble determination for different types of experimental data. PMID:26131693

  17. Involvement of the Clock Gene Rev-erb alpha in the Regulation of Glucagon Secretion in Pancreatic Alpha-Cells

    PubMed Central

    Vieira, Elaine; Marroquí, Laura; Figueroa, Ana Lucia C.; Merino, Beatriz; Fernandez-Ruiz, Rebeca; Nadal, Angel; Burris, Thomas P.; Gomis, Ramon; Quesada, Ivan

    2013-01-01

    Disruption of pancreatic clock genes impairs pancreatic beta-cell function, leading to the onset of diabetes. Despite the importance of pancreatic alpha-cells in the regulation of glucose homeostasis and in diabetes pathophysiology, nothing is known about the role of clock genes in these cells. Here, we identify the clock gene Rev-erb alpha as a new intracellular regulator of glucagon secretion. Rev-erb alpha down-regulation by siRNA (60–70% inhibition) in alphaTC1-9 cells inhibited low-glucose induced glucagon secretion (p<0.05) and led to a decrease in key genes of the exocytotic machinery. The Rev-erb alpha agonist GSK4112 increased glucagon secretion (1.6 fold) and intracellular calcium signals in alphaTC1-9 cells and mouse primary alpha-cells, whereas the Rev-erb alpha antagonist SR8278 produced the opposite effect. At 0.5 mM glucose, alphaTC1-9 cells exhibited intrinsic circadian Rev-erb alpha expression oscillations that were inhibited by 11 mM glucose. In mouse primary alpha-cells, glucose induced similar effects (p<0.001). High glucose inhibited key genes controlled by AMPK such as Nampt, Sirt1 and PGC-1 alpha in alphaTC1-9 cells (p<0.05). AMPK activation by metformin completely reversed the inhibitory effect of glucose on Nampt-Sirt1-PGC-1 alpha and Rev-erb alpha. Nampt inhibition decreased Sirt1, PGC-1 alpha and Rev-erb alpha mRNA expression (p<0.01) and glucagon release (p<0.05). These findings identify Rev-erb alpha as a new intracellular regulator of glucagon secretion via AMPK/Nampt/Sirt1 pathway. PMID:23936124

  18. Altered Sleep Homeostasis in Rev-erbα Knockout Mice.

    PubMed

    Mang, Géraldine M; La Spada, Francesco; Emmenegger, Yann; Chappuis, Sylvie; Ripperger, Jürgen A; Albrecht, Urs; Franken, Paul

    2016-03-01

    The nuclear receptor REV-ERBα is a potent, constitutive transcriptional repressor critical for the regulation of key circadian and metabolic genes. Recently, REV-ERBα's involvement in learning, neurogenesis, mood, and dopamine turnover was demonstrated suggesting a specific role in central nervous system functioning. We have previously shown that the brain expression of several core clock genes, including Rev-erbα, is modulated by sleep loss. We here test the consequences of a loss of REV-ERBα on the homeostatic regulation of sleep. EEG/EMG signals were recorded in Rev-erbα knockout (KO) mice and their wild type (WT) littermates during baseline, sleep deprivation, and recovery. Cortical gene expression measurements after sleep deprivation were contrasted to baseline. Although baseline sleep/wake duration was remarkably similar, KO mice showed an advance of the sleep/wake distribution relative to the light-dark cycle. After sleep onset in baseline and after sleep deprivation, both EEG delta power (1-4 Hz) and sleep consolidation were reduced in KO mice indicating a slower increase of homeostatic sleep need during wakefulness. This slower increase might relate to the smaller increase in theta and gamma power observed in the waking EEG prior to sleep onset under both conditions. Indeed, the increased theta activity during wakefulness predicted delta power in subsequent NREM sleep. Lack of Rev-erbα increased Bmal1, Npas2, Clock, and Fabp7 expression, confirming the direct regulation of these genes by REV-ERBα also in the brain. Our results add further proof to the notion that clock genes are involved in sleep homeostasis. Because accumulating evidence directly links REV-ERBα to dopamine signaling the altered homeostatic regulation of sleep reported here are discussed in that context. © 2016 Associated Professional Sleep Societies, LLC.

  19. Background field removal technique using regularization enabled sophisticated harmonic artifact reduction for phase data with varying kernel sizes.

    PubMed

    Kan, Hirohito; Kasai, Harumasa; Arai, Nobuyuki; Kunitomo, Hiroshi; Hirose, Yasujiro; Shibamoto, Yuta

    2016-09-01

    An effective background field removal technique is desired for more accurate quantitative susceptibility mapping (QSM) prior to dipole inversion. The aim of this study was to evaluate the accuracy of regularization enabled sophisticated harmonic artifact reduction for phase data with varying spherical kernel sizes (REV-SHARP) method using a three-dimensional head phantom and human brain data. The proposed REV-SHARP method used the spherical mean value operation and Tikhonov regularization in the deconvolution process, with varying 2-14mm kernel sizes. The kernel sizes were gradually reduced, similar to the SHARP with varying spherical kernel (VSHARP) method. We determined the relative errors and relationships between the true local field and estimated local field in REV-SHARP, VSHARP, projection onto dipole fields (PDF), and regularization enabled SHARP (RESHARP). Human experiment was also conducted using REV-SHARP, VSHARP, PDF, and RESHARP. The relative errors in the numerical phantom study were 0.386, 0.448, 0.838, and 0.452 for REV-SHARP, VSHARP, PDF, and RESHARP. REV-SHARP result exhibited the highest correlation between the true local field and estimated local field. The linear regression slopes were 1.005, 1.124, 0.988, and 0.536 for REV-SHARP, VSHARP, PDF, and RESHARP in regions of interest on the three-dimensional head phantom. In human experiments, no obvious errors due to artifacts were present in REV-SHARP. The proposed REV-SHARP is a new method combined with variable spherical kernel size and Tikhonov regularization. This technique might make it possible to be more accurate backgroud field removal and help to achive better accuracy of QSM. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Pharmacological Targeting the REV-ERBs in Sleep/Wake Regulation

    PubMed Central

    Amador, Ariadna; Huitron-Resendiz, Salvador; Roberts, Amanda J.; Kamenecka, Theodore M.; Solt, Laura A.; Burris, Thomas P.

    2016-01-01

    The circadian clock maintains appropriate timing for a wide range of behaviors and physiological processes. Circadian behaviors such as sleep and wakefulness are intrinsically dependent on the precise oscillation of the endogenous molecular machinery that regulates the circadian clock. The identical core clock machinery regulates myriad endocrine and metabolic functions providing a link between sleep and metabolic health. The REV-ERBs (REV-ERBα and REV-ERBβ) are nuclear receptors that are key regulators of the molecular clock and have been successfully targeted using small molecule ligands. Recent studies in mice suggest that REV-ERB-specific synthetic agonists modulate metabolic activity as well as alter sleep architecture, inducing wakefulness during the light period. Therefore, these small molecules represent unique tools to extensively study REV-ERB regulation of sleep and wakefulness. In these studies, our aim was to further investigate the therapeutic potential of targeting the REV-ERBs for regulation of sleep by characterizing efficacy, and optimal dosing time of the REV-ERB agonist SR9009 using electroencephalographic (EEG) recordings. Applying different experimental paradigms in mice, our studies establish that SR9009 does not lose efficacy when administered more than once a day, nor does tolerance develop when administered once a day over a three-day dosing regimen. Moreover, through use of a time response paradigm, we determined that although there is an optimal time for administration of SR9009 in terms of maximal efficacy, there is a 12-hour window in which SR9009 elicited a response. Our studies indicate that the REV-ERBs are potential therapeutic targets for treating sleep problems as those encountered as a consequence of shift work or jet lag. PMID:27603791

  1. Potent Inhibition of Human Immunodeficiency Virus Type 1 Replication by an Intracellular Anti-Rev Single-Chain Antibody

    NASA Astrophysics Data System (ADS)

    Duan, Lingxun; Bagasra, Omar; Laughlin, Mark A.; Oakes, Joseph W.; Pomerantz, Roger J.

    1994-05-01

    Human immunodeficiency virus type 1 (HIV-1) has a complex life cycle, which has made it a difficult target for conventional therapeutic modalities. A single-chain antibody moiety, directed against the HIV-1 regulatory protein Rev, which rescues unspliced viral RNA from the nucleus of infected cells, has now been developed. This anti-Rev single-chain construct (SFv) consists of both light and heavy chain variable regions of an anti-Rev monoclonal antibody, which, when expressed intracellularly within human cells, potently inhibits HIV-1 replication. This intracellular SFv molecule is demonstrated to specifically antagonize Rev function. Thus, intracellular SFv expression, against a retroviral regulatory protein, may be useful as a gene therapeutic approach to combat HIV-1 infections.

  2. REV-ERB and ROR nuclear receptors as drug targets

    PubMed Central

    Kojetin, Douglas J.; Burris, Thomas P.

    2016-01-01

    The nuclear receptors REV-ERB (consisting of REV-ERBα and REV-ERBβ) and retinoic acid receptor-related orphan receptors (RORs; consisting of RORα, RORβ and RORγ) are involved in many physiological processes, including regulation of metabolism, development and immunity as well as the circadian rhythm. The recent characterization of endogenous ligands for these former orphan nuclear receptors has stimulated the development of synthetic ligands and opened up the possibility of targeting these receptors to treat several diseases, including diabetes, atherosclerosis, autoimmunity and cancer. This Review focuses on the latest developments in ROR and REV-ERB pharmacology indicating that these nuclear receptors are druggable targets and that ligands targeting these receptors may be useful in the treatment of several disorders. PMID:24577401

  3. Residue-level global and local ensemble-ensemble comparisons of protein domains.

    PubMed

    Clark, Sarah A; Tronrud, Dale E; Karplus, P Andrew

    2015-09-01

    Many methods of protein structure generation such as NMR-based solution structure determination and template-based modeling do not produce a single model, but an ensemble of models consistent with the available information. Current strategies for comparing ensembles lose information because they use only a single representative structure. Here, we describe the ENSEMBLATOR and its novel strategy to directly compare two ensembles containing the same atoms to identify significant global and local backbone differences between them on per-atom and per-residue levels, respectively. The ENSEMBLATOR has four components: eePREP (ee for ensemble-ensemble), which selects atoms common to all models; eeCORE, which identifies atoms belonging to a cutoff-distance dependent common core; eeGLOBAL, which globally superimposes all models using the defined core atoms and calculates for each atom the two intraensemble variations, the interensemble variation, and the closest approach of members of the two ensembles; and eeLOCAL, which performs a local overlay of each dipeptide and, using a novel measure of local backbone similarity, reports the same four variations as eeGLOBAL. The combination of eeGLOBAL and eeLOCAL analyses identifies the most significant differences between ensembles. We illustrate the ENSEMBLATOR's capabilities by showing how using it to analyze NMR ensembles and to compare NMR ensembles with crystal structures provides novel insights compared to published studies. One of these studies leads us to suggest that a "consistency check" of NMR-derived ensembles may be a useful analysis step for NMR-based structure determinations in general. The ENSEMBLATOR 1.0 is available as a first generation tool to carry out ensemble-ensemble comparisons. © 2015 The Protein Society.

  4. Residue-level global and local ensemble-ensemble comparisons of protein domains

    PubMed Central

    Clark, Sarah A; Tronrud, Dale E; Andrew Karplus, P

    2015-01-01

    Many methods of protein structure generation such as NMR-based solution structure determination and template-based modeling do not produce a single model, but an ensemble of models consistent with the available information. Current strategies for comparing ensembles lose information because they use only a single representative structure. Here, we describe the ENSEMBLATOR and its novel strategy to directly compare two ensembles containing the same atoms to identify significant global and local backbone differences between them on per-atom and per-residue levels, respectively. The ENSEMBLATOR has four components: eePREP (ee for ensemble-ensemble), which selects atoms common to all models; eeCORE, which identifies atoms belonging to a cutoff-distance dependent common core; eeGLOBAL, which globally superimposes all models using the defined core atoms and calculates for each atom the two intraensemble variations, the interensemble variation, and the closest approach of members of the two ensembles; and eeLOCAL, which performs a local overlay of each dipeptide and, using a novel measure of local backbone similarity, reports the same four variations as eeGLOBAL. The combination of eeGLOBAL and eeLOCAL analyses identifies the most significant differences between ensembles. We illustrate the ENSEMBLATOR's capabilities by showing how using it to analyze NMR ensembles and to compare NMR ensembles with crystal structures provides novel insights compared to published studies. One of these studies leads us to suggest that a “consistency check” of NMR-derived ensembles may be a useful analysis step for NMR-based structure determinations in general. The ENSEMBLATOR 1.0 is available as a first generation tool to carry out ensemble-ensemble comparisons. PMID:26032515

  5. The Ensembl REST API: Ensembl Data for Any Language

    PubMed Central

    Yates, Andrew; Beal, Kathryn; Keenan, Stephen; McLaren, William; Pignatelli, Miguel; Ritchie, Graham R. S.; Ruffier, Magali; Taylor, Kieron; Vullo, Alessandro; Flicek, Paul

    2015-01-01

    Motivation: We present a Web service to access Ensembl data using Representational State Transfer (REST). The Ensembl REST server enables the easy retrieval of a wide range of Ensembl data by most programming languages, using standard formats such as JSON and FASTA while minimizing client work. We also introduce bindings to the popular Ensembl Variant Effect Predictor tool permitting large-scale programmatic variant analysis independent of any specific programming language. Availability and implementation: The Ensembl REST API can be accessed at http://rest.ensembl.org and source code is freely available under an Apache 2.0 license from http://github.com/Ensembl/ensembl-rest. Contact: ayates@ebi.ac.uk or flicek@ebi.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25236461

  6. Complete set of essential parameters of an effective theory

    NASA Astrophysics Data System (ADS)

    Ioffe, M. V.; Vereshagin, V. V.

    2018-04-01

    The present paper continues the series [V. V. Vereshagin, True self-energy function and reducibility in effective scalar theories, Phys. Rev. D 89, 125022 (2014); , 10.1103/PhysRevD.89.125022A. Vereshagin and V. Vereshagin, Resultant parameters of effective theory, Phys. Rev. D 69, 025002 (2004); , 10.1103/PhysRevD.69.025002K. Semenov-Tian-Shansky, A. Vereshagin, and V. Vereshagin, S-matrix renormalization in effective theories, Phys. Rev. D 73, 025020 (2006), 10.1103/PhysRevD.73.025020] devoted to the systematic study of effective scattering theories. We consider matrix elements of the effective Lagrangian monomials (in the interaction picture) of arbitrary high dimension D and show that the full set of corresponding coupling constants contains parameters of both kinds: essential and redundant. Since it would be pointless to formulate renormalization prescriptions for redundant parameters, it is necessary to select the full set of the essential ones. This is done in the present paper for the case of the single scalar field.

  7. Reversible polymorphism-aware phylogenetic models and their application to tree inference.

    PubMed

    Schrempf, Dominik; Minh, Bui Quang; De Maio, Nicola; von Haeseler, Arndt; Kosiol, Carolin

    2016-10-21

    We present a reversible Polymorphism-Aware Phylogenetic Model (revPoMo) for species tree estimation from genome-wide data. revPoMo enables the reconstruction of large scale species trees for many within-species samples. It expands the alphabet of DNA substitution models to include polymorphic states, thereby, naturally accounting for incomplete lineage sorting. We implemented revPoMo in the maximum likelihood software IQ-TREE. A simulation study and an application to great apes data show that the runtimes of our approach and standard substitution models are comparable but that revPoMo has much better accuracy in estimating trees, divergence times and mutation rates. The advantage of revPoMo is that an increase of sample size per species improves estimations but does not increase runtime. Therefore, revPoMo is a valuable tool with several applications, from speciation dating to species tree reconstruction. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Binding and thermodynamics of REV peptide-ctDNA interaction.

    PubMed

    Upadhyay, Santosh Kumar

    2017-03-01

    The thermodynamics of DNA-ligand binding is important as it provides useful information to understand the details of binding processes. HIV-1 REV response element (RRE) located in the env coding region of the viral genome is reported to be well conserved across different HIV-1 isolates. In this study, the binding characteristics of Calf thymus DNA (ctDNA) and REV peptide from HIV-1 were investigated using spectroscopic (UV-visible, fluorescence, and circular dichroism (CD)) and isothermal titration calorimetric (ITC) techniques. Thermal stability and ligand binding properties of the ctDNA revealed that native ctDNA had a T m of 75.5 °C, whereas the ctDNA-REV peptide complex exhibited an incremental shift in the T m by 8 °C, indicating thermal stability of the complex. CD data indicated increased ellipticity due to large conformational changes in ctDNA molecule upon binding with REV peptide and two binding stoichiometric modes are apparent. The ctDNA experienced condensation due to large conformational changes in the presence of REV peptide and positive B→Ψ transition was observed at higher molar charge ratios. Fluorescence studies performed at several ligand concentrations revealed a gradual decrease in the fluorescence intensity of EtBr-bound ctDNA in response to increasing ligand concentrations. The fluorescence data further confirmed two stoichiometric modes of binding for ctDNA-REV peptide complex as previously observed with CD studies. The binding enthalpies were determined using ITC in the temperature range of 293 K-308 K. The ITC binding isotherm was exothermic at all temperatures examined, with low ΔH values indicating that the ctDNA-REV peptide interaction is driven largely by entropy. The heat capacity change (ΔC p ) was insignificant, an unusual finding in the area of DNA-peptide interaction studies. The variation in the values obtained for ΔH, ΔS, and ΔG with temperature further suggests that ctDNA-REV peptide interaction is entropically driven. ITC based analysis of salt dependence of binding constant gave a charge value (Z) = +4.01, as determined for the δlnK/δln[Na + ] parameter, suggesting the participation of only 3-4 Arg out of 11 Arg charge from REV peptide. The stoichiometry observed for the complex was three molar charge of REV peptide binding per molar charge of ctDNA. ITC based analysis further confirmed that the binding between ctDNA and REV peptide is governed by electrostatic interaction. Molecular interactions including H-bonding, van der Waals forces, and solvent molecules rearrangement, underlie the binding of REV peptide to ctDNA. © 2016 Wiley Periodicals, Inc.

  9. HLPI-Ensemble: Prediction of human lncRNA-protein interactions based on ensemble strategy.

    PubMed

    Hu, Huan; Zhang, Li; Ai, Haixin; Zhang, Hui; Fan, Yetian; Zhao, Qi; Liu, Hongsheng

    2018-03-27

    LncRNA plays an important role in many biological and disease progression by binding to related proteins. However, the experimental methods for studying lncRNA-protein interactions are time-consuming and expensive. Although there are a few models designed to predict the interactions of ncRNA-protein, they all have some common drawbacks that limit their predictive performance. In this study, we present a model called HLPI-Ensemble designed specifically for human lncRNA-protein interactions. HLPI-Ensemble adopts the ensemble strategy based on three mainstream machine learning algorithms of Support Vector Machines (SVM), Random Forests (RF) and Extreme Gradient Boosting (XGB) to generate HLPI-SVM Ensemble, HLPI-RF Ensemble and HLPI-XGB Ensemble, respectively. The results of 10-fold cross-validation show that HLPI-SVM Ensemble, HLPI-RF Ensemble and HLPI-XGB Ensemble achieved AUCs of 0.95, 0.96 and 0.96, respectively, in the test dataset. Furthermore, we compared the performance of the HLPI-Ensemble models with the previous models through external validation dataset. The results show that the false positives (FPs) of HLPI-Ensemble models are much lower than that of the previous models, and other evaluation indicators of HLPI-Ensemble models are also higher than those of the previous models. It is further showed that HLPI-Ensemble models are superior in predicting human lncRNA-protein interaction compared with previous models. The HLPI-Ensemble is publicly available at: http://ccsipb.lnu.edu.cn/hlpiensemble/ .

  10. Tamavidin 2-REV: an engineered tamavidin with reversible biotin-binding capability.

    PubMed

    Takakura, Yoshimitsu; Sofuku, Kozue; Tsunashima, Masako

    2013-03-10

    A biotin-binding protein with reversible biotin-binding capability is of great technical value in the affinity purification of biotinylated biomolecules. Although several proteins, chemically or genetically modified from avidin or streptavidin, with reversible biotin-binding have been reported, they have been problematic in one way or another. Tamavidin 2 is a fungal protein similar to avidin and streptavidin in biotin-binding. Here, a mutein, tamavidin 2-REV, was engineered from tamavidin 2 by replacing the serine at position 36 (S36) with alanine. S36 is thought to form a hydrogen bond with biotin in tamavidin 2/biotin complexes and two hydrogen bonds with V38 within the protein. Tamavidin 2-REV bound to biotin-agarose and was eluted with excess free biotin at a neutral pH. In addition, the model substrate biotinylated bovine serum albumin was efficiently purified from a crude extract from Escherichia coli by means of single-step affinity chromatography with tamavidin 2-REV-immobilized resin. Tamavidin 2-REV thus demonstrated reversible biotin-binding capability. The Kd value of tamavidin 2-REV to biotin was 2.8-4.4×10(-7)M.Tamavidin 2-REV retained other convenient characteristics of tamavidin 2, such as high-level expression in E. coli, resistance to proteases, and a neutral isoelectric point, demonstrating that tamavidin 2-REV is a powerful tool for the purification of biotinylated biomolecules. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Comment on "Many-body localization in Ising models with random long-range interactions"

    NASA Astrophysics Data System (ADS)

    Maksymov, Andrii O.; Rahman, Noah; Kapit, Eliot; Burin, Alexander L.

    2017-11-01

    This Comment is dedicated to the investigation of many-body localization in a quantum Ising model with long-range power-law interactions r-α, relevant for a variety of systems ranging from electrons in Anderson insulators to spin excitations in chains of cold atoms. It has earlier been argued [arXiv:cond-mat/0611387 (2005); Phys. Rev. B 91, 094202 (2015), 10.1103/PhysRevB.91.094202] that this model obeys the dimensional constraint suggesting the delocalization of all finite-temperature states in the thermodynamic limit for α ≤2 d in a d -dimensional system. This expectation conflicts with the recent numerical studies of the specific interacting spin model of Li et al. [Phys. Rev. A 94, 063625 (2016), 10.1103/PhysRevA.94.063625]. To resolve this controversy we reexamine the model of Li et al. [Phys. Rev. A 94, 063625 (2016), 10.1103/PhysRevA.94.063625] and demonstrate that the infinite-temperature states there obey the dimensional constraint. The earlier developed scaling theory for the critical system size required for delocalization is extended to small exponents 0 ≤α ≤d . The disagreements between the two works are explained by the nonstandard selection of investigated states in the ordered phase in the work of Li et al. [Phys. Rev. A 94, 063625 (2016)10.1103/PhysRevA.94.063625].

  12. HIV-1 Rev expressed in recombinant Escherichia coli: purification, polymerization, and conformational properties.

    PubMed

    Wingfield, P T; Stahl, S J; Payton, M A; Venkatesan, S; Misra, M; Steven, A C

    1991-07-30

    The high-level expression of HIV-1 Rev in Escherichia coli is described. Protein in crude bacterial extracts was dissociated from bound nucleic acid with urea. A simple purification and renaturation protocol, monitored by circular dichroism, is described which results in high yields of pure protein. The purified protein binds with high affinity to the Rev-responsive element mRNA and has nativelike spectroscopic properties. The protein exhibits concentration-dependent self-association as judged by analytical ultracentrifugation and gel filtration measurements. Purified Rev showed reversible heat-induced aggregation over the temperature range 0-30 degrees C. This hydrophobic-driven and nonspecific protein association was inhibited by low concentrations of sulfate ions. Rev solutions at greater than 80 micrograms/mL, incubated at 0-4 degrees C, slowly polymerized to form long hollow fibers of 20-nm diameter. Filament formation occurs at a lower protein concentration and more rapidly in the presence of Rev-responsive mRNA. The nucleic acid containing filaments are about 8 nm in diameter and up to 0.4 micron in length. On the basis of physical properties of the purified protein, we have suggested that in the nucleus of infected cells, Rev binding to the Rev-responsive region of env mRNA may be followed by helical polymerization of the protein which results in coating of the nucleic acid. Coated nucleic acid could be protected from splicing in the nucleus and exported to the cytoplasm.

  13. Autocatalytic caspase-3 driven by human telomerase reverse transcriptase promoter suppresses human ovarian carcinoma growth in vitro and in mice.

    PubMed

    Song, Yue; Xia, Zhijun; Shen, Keng; Zhai, Xingyue

    2013-05-01

    To construct recombinant adenoviruses AdHT-rev-casp3 and Ad-rev-casp3, which express autocatalysis caspase-3 driven by human telomerase reverse transcriptase promoter and cytomegalovirus promoter, respectively; and to investigate their antitumor effects on ovarian cancer in vitro and in vivo. Cell viabilities were determined using the cell counting kit 8 and flow cytometry. Reverse transcriptase polymerase chain reaction and immunoblotting assays were used to detect cellular apoptotic activities after treatments. Tumor growth and survival of mice bearing AO cells were studied. AdHT-rev-casp3 significantly suppressed the survival of AO cells in a dose-dependent modality with a viability rate of 60.45% ± 7.8% at an multiplicity of infection (MOI) of 70 and 42.18 ± 5.3% at an MOI of 100, which was somewhat lower than that of the AO cells treated with Ad-rev-casp3 (32.28% ± 5.3% and 21.84% ± 3.4%, respectively). In contrast, AdHT-rev-casp3 induced little human umbilical vein epithelial cell (HUVEC) death with a viability rate of 98.52% ± 6.9% at an MOI of 70, whereas Ad-rev-casp3 induced significant cell death in HUVEC with a viability rate of 27.14% ± 5.4%. Additionally, AdHT-rev-casp3 (MOI = 70) caused significant apoptosis in AO cells with an apoptotic rate of 25.97%, whereas it caused undetectable apoptosis in HUVECs with the rate of only 1.75%. Ad-rev-casp3 (MOI = 70) caused strong apoptosis in both AO and HUVECs, with the rate of 35.82% and 38.12%, respectively. AdHT-rev-casp3 caused markedly higher levels of active caspase-3, causing no detectable active caspase-3 expression in HUVECs. The tumor growth suppression rate of AdHT-rev-casp3 was 54.94%, significantly higher than that of phosphate-buffered saline at the end point of the study. AdHT-rev-casp3 significantly improved the survival of mice receiving intraperitoneal inoculation of AO cells with little liver damage, with the mean survival of 177 ± 12 days. AdHT-rev-casp3 causes effective apoptosis with significant tumor selectivity, suppresses tumor growth, and improves the mouse survival with little liver toxicity. It can be a potent therapeutic agent for the tumor-targeting treatment of ovarian cancer.

  14. Relativistically induced transparency acceleration of light ions by an ultrashort laser pulse interacting with a heavy-ion-plasma density gradient

    NASA Astrophysics Data System (ADS)

    Sahai, Aakash A.; Tsung, Frank S.; Tableman, Adam R.; Mori, Warren B.; Katsouleas, Thomas C.

    2013-10-01

    The relativistically induced transparency acceleration (RITA) scheme of proton and ion acceleration using laser-plasma interactions is introduced, modeled, and compared to the existing schemes. Protons are accelerated with femtosecond relativistic pulses to produce quasimonoenergetic bunches with controllable peak energy. The RITA scheme works by a relativistic laser inducing transparency [Akhiezer and Polovin, Zh. Eksp. Teor. Fiz 30, 915 (1956); Kaw and Dawson, Phys. FluidsPFLDAS0031-917110.1063/1.1692942 13, 472 (1970); Max and Perkins, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.27.1342 27, 1342 (1971)] to densities higher than the cold-electron critical density, while the background heavy ions are stationary. The rising laser pulse creates a traveling acceleration structure at the relativistic critical density by ponderomotively [Lindl and Kaw, Phys. FluidsPFLDAS0031-917110.1063/1.1693437 14, 371 (1971); Silva , Phys. Rev. E1063-651X10.1103/PhysRevE.59.2273 59, 2273 (1999)] driving a local electron density inflation, creating an electron snowplow and a co-propagating electrostatic potential. The snowplow advances with a velocity determined by the rate of the rise of the laser's intensity envelope and the heavy-ion-plasma density gradient scale length. The rising laser is incrementally rendered transparent to higher densities such that the relativistic-electron plasma frequency is resonant with the laser frequency. In the snowplow frame, trace density protons reflect off the electrostatic potential and get snowplowed, while the heavier background ions are relatively unperturbed. Quasimonoenergetic bunches of velocity equal to twice the snowplow velocity can be obtained and tuned by controlling the snowplow velocity using laser-plasma parameters. An analytical model for the proton energy as a function of laser intensity, rise time, and plasma density gradient is developed and compared to 1D and 2D PIC OSIRIS [Fonseca , Lect. Note Comput. Sci.9783-540410.1007/3-540-47789-6_36 2331, 342 (2002)] simulations. We model the acceleration of protons to GeV energies with tens-of-femtoseconds laser pulses of a few petawatts. The scaling of proton energy with laser power compares favorably to other mechanisms for ultrashort pulses [Schreiber , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.97.045005 97, 045005 (2006); Esirkepov , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.92.175003 92, 175003 (2004); Silva , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.92.015002 92, 015002 (2004); Fiuza , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.215001 109, 215001 (2012)].

  15. Quicklook overview of model changes in Melcor 2.2: Rev 6342 to Rev 9496

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphries, Larry L.

    2017-05-01

    MELCOR 2.2 is a significant official release of the MELCOR code with many new models and model improvements. This report provides the code user with a quick review and characterization of new models added, changes to existing models, the effect of code changes during this code development cycle (rev 6342 to rev 9496), a preview of validation results with this code version. More detailed information is found in the code Subversion logs as well as the User Guide and Reference Manuals.

  16. Upper bound on three-tangles of reduced states of four-qubit pure states

    NASA Astrophysics Data System (ADS)

    Sharma, S. Shelly; Sharma, N. K.

    2017-06-01

    Closed formulas for upper bounds on three-tangles of three-qubit reduced states in terms of three-qubit-invariant polynomials of pure four-qubit states are obtained. Our results offer tighter constraints on total three-way entanglement of a given qubit with the rest of the system than those used by Regula et al. [Phys. Rev. Lett. 113, 110501 (2014), 10.1103/PhysRevLett.113.110501 and Phys. Rev. Lett. 116, 049902(E) (2016)], 10.1103/PhysRevLett.116.049902 to verify monogamy of four-qubit quantum entanglement.

  17. Adaptive clustering procedure for continuous gravitational wave searches

    NASA Astrophysics Data System (ADS)

    Singh, Avneet; Papa, Maria Alessandra; Eggenstein, Heinz-Bernd; Walsh, Sinéad

    2017-10-01

    In hierarchical searches for continuous gravitational waves, clustering of candidates is an important post-processing step because it reduces the number of noise candidates that are followed up at successive stages [J. Aasi et al., Phys. Rev. Lett. 88, 102002 (2013), 10.1103/PhysRevD.88.102002; B. Behnke, M. A. Papa, and R. Prix, Phys. Rev. D 91, 064007 (2015), 10.1103/PhysRevD.91.064007; M. A. Papa et al., Phys. Rev. D 94, 122006 (2016), 10.1103/PhysRevD.94.122006]. Previous clustering procedures bundled together nearby candidates ascribing them to the same root cause (be it a signal or a disturbance), based on a predefined cluster volume. In this paper, we present a procedure that adapts the cluster volume to the data itself and checks for consistency of such volume with what is expected from a signal. This significantly improves the noise rejection capabilities at fixed detection threshold, and at fixed computing resources for the follow-up stages, this results in an overall more sensitive search. This new procedure was employed in the first Einstein@Home search on data from the first science run of the advanced LIGO detectors (O1) [LIGO Scientific Collaboration and Virgo Collaboration, arXiv:1707.02669 [Phys. Rev. D (to be published)

  18. Ultra-powerful compact amplifiers for short laser pulses

    NASA Astrophysics Data System (ADS)

    Malkin, Vladimir

    1999-11-01

    Laser compressors-amplifiers more powerful and compact than ones based on the currently most advanced chirped pulse amplification technique must handle ultrahigh laser intensities. The medium capable of bearing those is plasma. An interesting kinetic regime of short laser pulse amplification by Compton backscattering of counterpropagating laser pump in plasma, akin to superradiant amplification in free-electron lasers, has been proposed recently (Shvets G., Fisch N. J., Pukhov A., and Meyer-ter-Vehn J., Phys. Rev. Lett., v.81, 4879 (1998)). However, the conversion efficiency of pump energy into a short pulse appears to be higher in a transient Raman backscattering regime (Malkin V. M., Shvets G. and Fisch N. J., Phys. Rev. Lett., v.82, 4448 (1999)), where the integrity of the three-wave interaction is maintained. In this regime the pump is completely depleted through the full nonlinear stage of the interaction, so that unwanted Raman and modulational instabilities limit just the amplification time, while the efficiency is kept about 100%. For instance, a 2*10^14 W/cm^2, 1 μm-wavelength laser pump can be compressed within 5 mm length, which is less than the length for filamentation instabilities to develop, to a 30--40 fsec pulse with fluence 6 kJ/cm^2. Such an output pulse is a thousand times shorter and a million time more intensive than outputs of conventional Raman amplifiers operating in a stationary regime. Yet larger amplification distances and output energies can be achieved by suppressing filamentation instabilities. It appears (Malkin V. M., Shvets G. and Fisch N. J., Submitted to Phys. Rev. Lett.) that appropriate detuning of the resonance (by plasma density gradient or/and chirping the pump laser) suppresses the Raman near-forward scattering instability of the pumped pulse, as well as the pump Raman backscattering instability to noise, while the high efficiency of the amplification still persists. The respective new class of transient amplification regimes, generalizing the classical pi-pulse regime of exactly resonant amplification, is described quantitatively. These regimes are of broad interest, being applicable also to other processes such as Brillouin scattering.

  19. Exploring the calibration of a wind forecast ensemble for energy applications

    NASA Astrophysics Data System (ADS)

    Heppelmann, Tobias; Ben Bouallegue, Zied; Theis, Susanne

    2015-04-01

    In the German research project EWeLiNE, Deutscher Wetterdienst (DWD) and Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) are collaborating with three German Transmission System Operators (TSO) in order to provide the TSOs with improved probabilistic power forecasts. Probabilistic power forecasts are derived from probabilistic weather forecasts, themselves derived from ensemble prediction systems (EPS). Since the considered raw ensemble wind forecasts suffer from underdispersiveness and bias, calibration methods are developed for the correction of the model bias and the ensemble spread bias. The overall aim is to improve the ensemble forecasts such that the uncertainty of the possible weather deployment is depicted by the ensemble spread from the first forecast hours. Additionally, the ensemble members after calibration should remain physically consistent scenarios. We focus on probabilistic hourly wind forecasts with horizon of 21 h delivered by the convection permitting high-resolution ensemble system COSMO-DE-EPS which has become operational in 2012 at DWD. The ensemble consists of 20 ensemble members driven by four different global models. The model area includes whole Germany and parts of Central Europe with a horizontal resolution of 2.8 km and a vertical resolution of 50 model levels. For verification we use wind mast measurements around 100 m height that corresponds to the hub height of wind energy plants that belong to wind farms within the model area. Calibration of the ensemble forecasts can be performed by different statistical methods applied to the raw ensemble output. Here, we explore local bivariate Ensemble Model Output Statistics at individual sites and quantile regression with different predictors. Applying different methods, we already show an improvement of ensemble wind forecasts from COSMO-DE-EPS for energy applications. In addition, an ensemble copula coupling approach transfers the time-dependencies of the raw ensemble to the calibrated ensemble. The calibrated wind forecasts are evaluated first with univariate probabilistic scores and additionally with diagnostics of wind ramps in order to assess the time-consistency of the calibrated ensemble members.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Anirban; Dighe, Amol; Sen, Manibrata, E-mail: anirbandas@theory.tifr.res.in, E-mail: amol@theory.tifr.res.in, E-mail: manibrata@theory.tifr.res.in

    Neutrino self-interactions are known to lead to non-linear collective flavor oscillations in a core-collapse supernova. We point out new possible effects of non-standard self-interactions (NSSI) of neutrinos on flavor conversions in a two-flavor framework. We show that, for a single-energy neutrino-antineutrino ensemble, a flavor instability is generated even in normal hierarchy for large enough NSSI. Using a toy model for the neutrino spectra, we show that flavor-preserving NSSI lead to pinching of spectral swaps, while flavor-violating NSSI cause swaps to develop away from a spectral crossing or even in the absence of a spectral crossing. Consequently, NSSI could give risemore » to collective oscillations and spectral splits even during neutronization burst, for both hierarchies.« less

  1. Human protein Staufen-2 promotes HIV-1 proliferation by positively regulating RNA export activity of viral protein Rev.

    PubMed

    Banerjee, Atoshi; Benjamin, Ronald; Balakrishnan, Kannan; Ghosh, Payel; Banerjee, Sharmistha

    2014-02-13

    The export of intron containing viral RNAs from the nucleus to the cytoplasm is an essential step in the life cycle of Human Immunodeficiency Virus-1 (HIV-1). As the eukaryotic system does not permit the transport of intron containing RNA out of the nucleus, HIV-1 makes a regulatory protein, Rev, that mediates the transportation of unspliced and partially spliced viral mRNA from the nucleus to the cytoplasm, thereby playing a decisive role in the generation of new infectious virus particles. Therefore, the host factors modulating the RNA export activity of Rev can be major determinants of virus production in an infected cell. In this study, human Staufen-2 (hStau-2) was identified as a host factor interacting with HIV-1 Rev through affinity chromatography followed by MALDI analyses. Our experiments involving transient expressions, siRNA mediated knockdowns and infection assays conclusively established that hStau-2 is a positive regulator of HIV-1 pathogenesis. We demonstrated that Rev-hStau-2 interactions positively regulated the RNA export activity of Rev and promoted progeny virus synthesis. The Rev-hStau-2 interaction was independent of RNA despite both being RNA binding proteins. hStau-2 mutant, with mutations at Q314R-A318F-K319E, deficient of binding Rev, failed to promote hStau-2 dependent Rev activity and viral production, validating the essentiality of this protein-protein interaction. The expression of this positive regulator was elevated upon HIV-1 infection in both human T-lymphocyte and astrocyte cell lines. With this study, we establish that human Staufen-2, a host factor which is up-regulated upon HIV-1 infection, interacts with HIV-1 Rev, thereby promoting its RNA export activity and progeny virus formation. Altogether, our study provides new insights into the emerging role of the Staufen family of mRNA transporters in host-pathogen interaction and supports the notion that obliterating interactions between viral and host proteins that positively regulate HIV-1 proliferation can significantly contribute to anti-retroviral treatments.

  2. Proflavine acts as a Rev inhibitor by targeting the high-affinity Rev binding site of the Rev responsive element of HIV-1.

    PubMed

    DeJong, Eric S; Chang, Chia-en; Gilson, Michael K; Marino, John P

    2003-07-08

    Rev is an essential regulatory HIV-1 protein that binds the Rev responsive element (RRE) within the env gene of the HIV-1 RNA genome, activating the switch between viral latency and active viral replication. Previously, we have shown that selective incorporation of the fluorescent probe 2-aminopurine (2-AP) into a truncated form of the RRE sequence (RRE-IIB) allowed the binding of an arginine-rich peptide derived from Rev and aminoglycosides to be characterized directly by fluorescence methods. Using these fluorescence and nuclear magnetic resonance (NMR) methods, proflavine has been identified, through a limited screen of selected small heterocyclic compounds, as a specific and high-affinity RRE-IIB binder which inhibits the interaction of the Rev peptide with RRE-IIB. Direct and competitive 2-AP fluorescence binding assays reveal that there are at least two classes of proflavine binding sites on RRE-IIB: a high-affinity site that competes with the Rev peptide for binding to RRE-IIB (K(D) approximately 0.1 +/- 0.05 microM) and a weaker binding site(s) (K(D) approximately 1.1 +/- 0.05 microM). Titrations of RRE-IIB with proflavine, monitored using (1)H NMR, demonstrate that the high-affinity proflavine binding interaction occurs with a 2:1 (proflavine:RRE-IIB) stoichiometry, and NOEs observed in the NOESY spectrum of the 2:1 proflavine.RRE-IIB complex indicate that the two proflavine molecules bind specifically and close to each other within a single binding site. NOESY data further indicate that formation of the 2:1 proflavine.RRE-IIB complex stabilizes base pairing and stacking within the internal purine-rich bulge of RRE-IIB in a manner analogous to what has been observed in the Rev peptide.RRE-IIB complex. The observation that proflavine competes with Rev for binding to RRE-IIB by binding as a dimer to a single high-affinity site opens the possibility for rational drug design based on linking and modifying it and related compounds.

  3. Contributions of individual domains to function of the HIV-1 Rev response element.

    PubMed

    O'Carroll, Ina P; Thappeta, Yashna; Fan, Lixin; Ramirez-Valdez, Edric A; Smith, Sean; Wang, Yun-Xing; Rein, Alan

    2017-08-16

    The HIV-1 Rev response element (RRE) is a 351-base element in unspliced and partially spliced viral RNA; binding of the RRE by the viral Rev protein induces nuclear export of RRE-containing RNAs, as required for virus replication. It contains one long, imperfect double helix (domain I), one branched domain (domain II) containing a high-affinity Rev-binding site, and two or three additional domains. We previously reported that the RRE assumes an "A" shape in solution and suggested that the location of the Rev binding sites in domains I and II, opposite each other on the two legs of the A, is optimal for Rev binding and explains Rev's specificity for RRE-containing RNAs. Using SAXS and a quantitative functional assay, we have now analyzed a panel of RRE mutants. All the results support the essential role of the A shape for RRE function. Moreover, they suggest that the distal portion of domain I and the three crowning domains all contribute to the maintenance of the A shape. Domains I and II are necessary and sufficient for substantial RRE function, provided they are joined by a flexible linker that allows the two domains to face each other. IMPORTANCE Retroviral replication requires that some of the viral RNAs transcribed in the cell nucleus be exported to the cytoplasm without being spliced. To achieve this, HIV-1 encodes a protein, Rev, which binds to a complex, highly structured element within viral RNA, the Rev Response Element (RRE), and escorts RRE-containing RNAs from the nucleus. We previously reported that the RRE is "A"-shaped and suggested that this architecture, with the 2 legs opposite one another, can explain the specificity of Rev for the RRE. We have analyzed the functional contributions of individual RRE domains, and now report that several domains contribute, with some redundancy, to maintenance of the overall RRE shape. The data strongly support the hypothesis that the opposed placement of the 2 legs is essential for RRE function. Copyright © 2017 American Society for Microbiology.

  4. Contributions of Individual Domains to Function of the HIV-1 Rev Response Element

    PubMed Central

    O'Carroll, Ina P.; Thappeta, Yashna; Fan, Lixin; Ramirez-Valdez, Edric A.; Smith, Sean; Wang, Yun-Xing

    2017-01-01

    ABSTRACT The HIV-1 Rev response element (RRE) is a 351-base element in unspliced and partially spliced viral RNA; binding of the RRE by the viral Rev protein induces nuclear export of RRE-containing RNAs, as required for virus replication. It contains one long, imperfect double helix (domain I), one branched domain (domain II) containing a high-affinity Rev-binding site, and two or three additional domains. We previously reported that the RRE assumes an “A” shape in solution and suggested that the location of the Rev binding sites in domains I and II, opposite each other on the two legs of the A, is optimal for Rev binding and explains Rev's specificity for RRE-containing RNAs. Using small-angle X-ray scattering (SAXS) and a quantitative functional assay, we have now analyzed a panel of RRE mutants. All the results support the essential role of the A shape for RRE function. Moreover, they suggest that the distal portion of domain I and the three crowning domains all contribute to the maintenance of the A shape. Domains I and II are necessary and sufficient for substantial RRE function, provided they are joined by a flexible linker that allows the two domains to face each other. IMPORTANCE Retroviral replication requires that some of the viral RNAs transcribed in the cell nucleus be exported to the cytoplasm without being spliced. To achieve this, HIV-1 encodes a protein, Rev, which binds to a complex, highly structured element within viral RNA, the Rev response element (RRE), and escorts RRE-containing RNAs from the nucleus. We previously reported that the RRE is “A” shaped and suggested that this architecture, with the 2 legs opposite one another, can explain the specificity of Rev for the RRE. We have analyzed the functional contributions of individual RRE domains and now report that several domains contribute, with some redundancy, to maintenance of the overall RRE shape. The data strongly support the hypothesis that the opposed placement of the 2 legs is essential for RRE function. PMID:28814520

  5. Spin-symmetry conversion and internal rotation in high J molecular systems

    NASA Astrophysics Data System (ADS)

    Mitchell, Justin; Harter, William

    2006-05-01

    Dynamics and spectra of molecules with internal rotation or rovibrational coupling is approximately modeled by rigid or semi-rigid rotors with attached gyroscopes. Using Rotational Energy (RE)^1 surfaces, high resolution molecular spectra for high angular momentum show two distinct but related phenomena; spin-symmetry conversion and internal rotation. For both cases the high total angular momentum allows for transitions that would otherwise be forbidden. Molecular body-frame J-localization effects associated with tight energy level-clusters dominate the rovibronic spectra of high symmetry molecules, particularly spherical tops at J>10. ^2 The effects include large and widespread spin-symmetry mixing contrary to conventional wisdom^3 about weak nuclear moments. Such effects are discussed showing how RE surface plots may predict them even at low J. Classical dynamics of axially constrained rotors are approximated by intersecting rotational-energy-surfaces (RES) that have (J-S).B.(J-S) forms in the limit of constraints that do no work. Semi-classical eigensolutions are compared to those found by direct diagonalization. ^1 W.G Hater, in Handbook of Atomic, Molecular and Optical Physics, edited by G.W.F Drake (Springer, Germany 2006) ^2 W. G. Harter, Phys. Rev. A24,192-262(1981). ^3 G. Herzberg, Infrared and Raman Spectra (VanNostrand 1945) pp. 458,463.

  6. Computational investigation of the HIV-1 Rev multimerization using molecular dynamics simulations and binding free energy calculations.

    PubMed

    Venken, Tom; Daelemans, Dirk; De Maeyer, Marc; Voet, Arnout

    2012-06-01

    The HIV Rev protein mediates the nuclear export of viral mRNA, and is thereby essential for the production of late viral proteins in the replication cycle. Rev forms a large organized multimeric protein-protein complex for proper functioning. Recently, the three-dimensional structures of a Rev dimer and tetramer have been resolved and provide the basis for a thorough structural analysis of the binding interaction. Here, molecular dynamics (MD) and binding free energy calculations were performed to elucidate the forces thriving dimerization and higher order multimerization of the Rev protein. It is found that despite the structural differences between each crystal structure, both display a similar behavior according to our calculations. Our analysis based on a molecular mechanics-generalized Born surface area (MM/GBSA) and a configurational entropy approach demonstrates that the higher order multimerization site is much weaker than the dimerization site. In addition, a quantitative hot spot analysis combined with a mutational analysis reveals the most contributing amino acid residues for protein interactions in agreement with experimental results. Additional residues were found in each interface, which are important for the protein interaction. The investigation of the thermodynamics of the Rev multimerization interactions performed here could be a further step in the development of novel antiretrovirals using structure based drug design. Moreover, the variability of the angle between each Rev monomer as measured during the MD simulations suggests a role of the Rev protein in allowing flexibility of the arginine rich domain (ARM) to accommodate RNA binding. Copyright © 2012 Wiley Periodicals, Inc.

  7. REV-ERB-ALPHA circadian gene variant associates with obesity in two independent populations: Mediterranean and North American.

    PubMed

    Garaulet, Marta; Smith, Caren E; Gomez-Abellán, Purificación; Ordovás-Montañés, María; Lee, Yu-Chi; Parnell, Laurence D; Arnett, Donna K; Ordovás, José M

    2014-04-01

    Despite the solid connection between REV-ERB and obesity, the information about whether genetic variations at this locus may be associated with obesity traits is scarce. Therefore our objective was to study the association between REV-ERB-ALPHA1 rs2314339 and obesity in two independent populations. Participants were 2214 subjects from Spanish Mediterranean (n = 1404) and North American (n = 810) populations. Anthropometric, biochemical, dietary, and genotype analyses were performed. We found novel associations between the REV-ERB-ALPHA1 rs2314339 genotype and obesity in two independent populations: in Spanish Mediterranean and North American groups, the frequency of the minor-allele-carriers (AA+ AG) was significantly lower in the "abdominally obese" group than in those of the "nonabdominally obese" group (p < 0.05). Minor allele carriers had lower probability of abdominal obesity than noncarriers, and the effect was of similar magnitude for both populations (OR ≈ 1.50). There were consistent associations between REV-ERB-ALPHA1 genotype and obesity-related traits (p < 0.05). Energy intake was not significantly associated with REV-ERB-ALPHA1 rs2314339. However, physical activity significantly differed by genotype. A significant interaction between the REV-ERB-ALPHA1 variant and monounsaturated-fatty-acids (MUFA) intake for obesity was also detected in the Mediterranean population. This new discovery highlights the importance of REV-ERB-ALPHA1 in obesity and provides evidence for the connection between our biological clock and obesity-related traits. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Generic revision of the ant subfamily Dorylinae (Hymenoptera, Formicidae)

    PubMed Central

    Borowiec, Marek L.

    2016-01-01

    Abstract The generic classification of the ant subfamily Dorylinae is revised, with the aim of facilitating identification of easily-diagnosable monophyletic genera. The new classification is based on recent molecular phylogenetic evidence and a critical reappraisal of doryline morphology. New keys and diagnoses based on workers and males are provided, along with reviews of natural history and phylogenetic relationships, distribution maps, and a list of valid species for each lineage. Twenty-eight genera (27 extant and 1 extinct) are recognized within the subfamily, an increase from 20 in the previous classification scheme. Species classified in the polyphyletic Cerapachys and Sphinctomyrmex prior to this publication are here distributed among 9 and 3 different genera, respectively. Amyrmex and Asphinctanilloides are synonymized under Leptanilloides and the currently recognized subgenera are synonymized for Dorylus. No tribal classification is proposed for the subfamily, but several apparently monophyletic genus-groups are discussed. Valid generic names recognized here include: Acanthostichus (= Ctenopyga), Aenictogiton, Aenictus (= Paraenictus, Typhlatta), Cerapachys (= Ceratopachys), Cheliomyrmex, Chrysapace gen. rev., Cylindromyrmex (= Holcoponera, Hypocylindromyrmex, Metacylindromyrmex), Dorylus (= Alaopone syn. n., Anomma syn. n., Cosmaecetes, Dichthadia syn. n., Rhogmus syn. n., Shuckardia, Sphecomyrmex, Sphegomyrmex, Typhlopone syn. n.), Eburopone gen. n., Eciton (= Camptognatha, Holopone, Mayromyrmex), Eusphinctus gen. rev., Labidus (= Nycteresia, Pseudodichthadia), Leptanilloides (= Amyrmex syn. n., Asphinctanilloides syn. n.), Lioponera gen. rev. (= Neophyracaces syn. n., Phyracaces syn. n.), Lividopone, Neivamyrmex (= Acamatus, Woitkowskia), Neocerapachys gen. n., Nomamyrmex, Ooceraea gen. rev. (= Cysias syn. n.), Parasyscia gen. rev., †Procerapachys, Simopone, Sphinctomyrmex, Syscia gen. rev., Tanipone, Vicinopone, Yunodorylus gen. rev., Zasphinctus gen. rev. (= Aethiopopone syn. n., Nothosphinctus syn. n.). PMID:27559303

  9. Estimation of representative elementary volume for DNAPL saturation and DNAPL-water interfacial areas in 2D heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Wu, Ming; Cheng, Zhou; Wu, Jianfeng; Wu, Jichun

    2017-06-01

    Representative elementary volume (REV) is important to determine properties of porous media and those involved in migration of contaminants especially dense nonaqueous phase liquids (DNAPLs) in subsurface environment. In this study, an experiment of long-term migration of the commonly used DNAPL, perchloroethylene (PCE), is performed in a two dimensional (2D) sandbox where several system variables including porosity, PCE saturation (Soil) and PCE-water interfacial area (AOW) are accurately quantified by light transmission techniques over the entire PCE migration process. Moreover, the REVs for these system variables are estimated by a criterion of relative gradient error (εgi) and results indicate that the frequency of minimum porosity-REV size closely follows a Gaussian distribution in the range of 2.0 mm and 8.0 mm. As experiment proceeds in PCE infiltration process, the frequency and cumulative frequency of both minimum Soil-REV and minimum AOW-REV sizes change their shapes from the irregular and random to the regular and smooth. When experiment comes into redistribution process, the cumulative frequency of minimum Soil-REV size reveals a linear positive correlation, while frequency of minimum AOW-REV size tends to a Gaussian distribution in the range of 2.0 mm-7.0 mm and appears a peak value in 13.0 mm-14.0 mm. Undoubtedly, this study will facilitate the quantification of REVs for materials and fluid properties in a rapid, handy and economical manner, which helps enhance our understanding of porous media and DNAPL properties at micro scale, as well as the accuracy of DNAPL contamination modeling at field-scale.

  10. Asymptotics of the monomer-dimer model on two-dimensional semi-infinite lattices

    NASA Astrophysics Data System (ADS)

    Kong, Yong

    2007-05-01

    By using the asymptotic theory of Pemantle and Wilson [R. Pemantle and M. C. Wilson, J. Comb. Theory, Ser. AJCBTA70097-316510.1006/jcta.2001.3201 97, 129 (2002)], asymptotic expansions of the free energy of the monomer-dimer model on two-dimensional semi-infinite ∞×n lattices in terms of dimer density are obtained for small values of n , at both high- and low-dimer-density limits. In the high-dimer-density limit, the theoretical results confirm the dependence of the free energy on the parity of n , a result obtained previously by computational methods by Y. Kong [Y. Kong, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.74.061102 74, 061102 (2006); Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.73.016106 73, 016106 (2006);Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.74.011102 74, 011102 (2006)]. In the low-dimer-density limit, the free energy on a cylinder ∞×n lattice strip has exactly the same first n terms in the series expansion as that of an infinite ∞×∞ lattice.

  11. B23/nucleophosmin interacts with bovine immunodeficiency virus Rev protein and facilitates viral replication.

    PubMed

    Passos-Castilho, Ana Maria; Marchand, Claude; Archambault, Denis

    2018-02-01

    The bovine immunodeficiency virus (BIV) Rev shuttling protein contains nuclear/nucleolar localization signals and nuclear import/export mechanisms that are novel among lentivirus Rev proteins. Several viral proteins localize to the nucleolus, which may play a role in processes that are essential to the outcome of viral replication. Although BIV Rev localizes to the nucleoli of transfected/infected cells and colocalizes with one of its major proteins, nucleophosmin (NPM1, also known as B23), the role of the nucleolus and B23 in BIV replication remains to be determined. Here, we demonstrate for the first time that BIV Rev interacts with nucleolar phosphoprotein B23 in cells. Using small interfering RNA (siRNA) technology, we show that depletion of B23 expression inhibits virus production by BIV-infected cells, indicating that B23 plays an important role in BIV replication. The interaction between Rev and B23 may represent a potential new target for the development of antiviral drugs against lentiviruses. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Reynolds number effects on the single-mode Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Walchli, B.; Thornber, B.

    2017-01-01

    The Reynolds number effects on the nonlinear growth rates of the Richtmyer-Meshkov instability are investigated using two-dimensional numerical simulations. A decrease in Reynolds number gives an increased time to reach nonlinear saturation, with Reynolds number effects only significant in the range Re<256 . Within this range there is a sharp change in instability properties. The bubble and spike amplitudes move towards equal size at lower Reynolds numbers and the bubble velocities decay faster than predicted by Sohn's model [S.-I. Sohn, Phys. Rev. E 80, 055302 (2009), 10.1103/PhysRevE.80.055302]. Predicted amplitudes show reasonable agreement with the existing theory of Carles and Popinet [P. Carles and S. Popinet, Phys. Fluids Lett. 13, 1833 (2001), 10.1063/1.1377863; Eur. J. Mech. B 21, 511 (2002), 10.1016/S0997-7546(02)01199-8] and Mikaelian [K. O. Mikaelian, Phys. Rev. E 47, 375 (1993), 10.1103/PhysRevE.47.375; K. O. Mikaelian, Phys. Rev. E 87, 031003 (2013), 10.1103/PhysRevE.87.031003], with the former being the closest match to the current computations.

  13. Ionic Dependence of Reversal Voltage of the Light Response in Limulus Ventral Photoreceptors

    PubMed Central

    Brown, J. E.; Mote, M. I.

    1974-01-01

    The light-induced current as measured using a voltage clamp (holding voltage at resting potential) is attenuated when sodium ions in the bathing solution, Nao, are replaced by Tris, choline, or Li or when NaCl is replaced by sucrose. After replacement of NaCl by sucrose, the reversal voltage, V rev, for the light response becomes more negative. In this case, the slope of the V rev vs. log Nao near Nao = 425 mM is approximately 55 mV/decade increase of Nao (mean for 13 cells). The slope decreases at lower values of Nao. Choline is not impermeant and partially substitutes for Na; the slope of V rev vs. log Nao is 20 mV/decade (mean for three cells). V rev does not change when Na is replaced by Li. Decreases in the bath concentrations of Ca, Mg, Cl, or K do not affect V rev. When Nao = 212 mM, V rev becomes more positive when Ko is increased. Thus, light induces a change in membrane permeability to Na and probably also to K. PMID:4817353

  14. Reply to "Comment on `Conductance scaling in Kondo-correlated quantum dots: Role of level asymmetry and charging energy'"

    NASA Astrophysics Data System (ADS)

    Merker, L.; Kirchner, S.; Muñoz, E.; Costi, T. A.

    2014-08-01

    The Comment of A. A. Aligia claims that the superperturbation theory (SPT) approach [E. Muñoz, C. J. Bolech, and S. Kirchner, Phys. Rev. Lett. 110, 016601 (2013), 10.1103/PhysRevLett.110.016601] formulated using dual fermions [A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. B 77, 033101 (2008), 10.1103/PhysRevB.77.033101] and used by us to compare with numerical renormalization group (NRG) results for the conductance [L. Merker, S. Kirchner, E. Muñoz, and T. A. Costi, Phys. Rev. B 87, 165132 (2013), 10.1103/PhysRevB.87.165132], fails to correctly extend the results of the symmetric Anderson impurity model (SIAM) for general values of the local level Ed in the Kondo regime. We answer this criticism. We also compare new NRG results for cB, with cB calculated directly from the low-field conductance, with new higher-order SPT calculations for this quantity, finding excellent agreement for all Ed and for U /πΔ extending into the strong coupling regime.

  15. Lessons learned from the recovered heatshield of the USERS REV capsule

    NASA Astrophysics Data System (ADS)

    Yamada, Tetsuya; Matsuda, Seiji; Okuyama, Keiichi; Ishii, Nobuaki

    2008-01-01

    The USERS Reentry Vehicle (REV) capsule carried out reentry flight from the low earth orbit and was successfully recovered on the sea in May, 2003. This paper presents the post-flight analysis of the recovered heatshield of REV capsule and summarizes the lessons learned. REV capsule, totally about 670 kg, has the combined shape of the nose hemisphere and the rear cone part, and its size is about 1.5 m in diameter and 1.9 m in length. REV is thermally protected against the aerodynamic heating by the carbon phenolic ablator heatshield. The recovered REV heatshield was scrutinized based on the outside aspect and the cross-sections. In general, the temperature profiles of the heatshield have been compared between the flight data and the prediction. The origin of the surface shallow cracks and slight delamination observed in the heatshield have been investigated based on the flight data and taking account of the ablator internal pyrolysis gas pressure, the thermal stress, and the allowable stress. The heatshield has proven to satisfy thermal protection requirements, and the validity of the designing has been confirmed.

  16. Analysis of mutagenic DNA repair in a thermoconditional mutant of Saccharomyces cerevisiae. IV. Influence of DNA replication and excision repair on REV2 dependent UV-mutagenesis and repair.

    PubMed

    Siede, W; Eckardt, F

    1986-01-01

    A double mutant being thermoconditionally defective in mutation induction as well as in repair of pre-lethal UV-induced DNA damage (rev2ts) and deficient in excision repair (rad3-2) was studied in temperature-shift experiments. The influence of inhibitors of DNA replication (hydroxyurea, aphidicolin) was determined. Additionally, an analysis of the dose-response pattern of mutation induction ("mutation kinetics") at several ochre alleles was carried out. It was concluded that the UV-inducible REV2 dependent mutagenic repair process is not induced in excision-deficient cells. In excision-deficient cells, REV2 dependent mutation fixation is slow and mostly post-replicative though not dependent on DNA replication. The REV2 mediated mutagenic process could be separated from the repair function.

  17. MSEBAG: a dynamic classifier ensemble generation based on `minimum-sufficient ensemble' and bagging

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Kamel, Mohamed S.

    2016-01-01

    In this paper, we propose a dynamic classifier system, MSEBAG, which is characterised by searching for the 'minimum-sufficient ensemble' and bagging at the ensemble level. It adopts an 'over-generation and selection' strategy and aims to achieve a good bias-variance trade-off. In the training phase, MSEBAG first searches for the 'minimum-sufficient ensemble', which maximises the in-sample fitness with the minimal number of base classifiers. Then, starting from the 'minimum-sufficient ensemble', a backward stepwise algorithm is employed to generate a collection of ensembles. The objective is to create a collection of ensembles with a descending fitness on the data, as well as a descending complexity in the structure. MSEBAG dynamically selects the ensembles from the collection for the decision aggregation. The extended adaptive aggregation (EAA) approach, a bagging-style algorithm performed at the ensemble level, is employed for this task. EAA searches for the competent ensembles using a score function, which takes into consideration both the in-sample fitness and the confidence of the statistical inference, and averages the decisions of the selected ensembles to label the test pattern. The experimental results show that the proposed MSEBAG outperforms the benchmarks on average.

  18. Simulation studies of the fidelity of biomolecular structure ensemble recreation

    NASA Astrophysics Data System (ADS)

    Lätzer, Joachim; Eastwood, Michael P.; Wolynes, Peter G.

    2006-12-01

    We examine the ability of Bayesian methods to recreate structural ensembles for partially folded molecules from averaged data. Specifically we test the ability of various algorithms to recreate different transition state ensembles for folding proteins using a multiple replica simulation algorithm using input from "gold standard" reference ensembles that were first generated with a Gō-like Hamiltonian having nonpairwise additive terms. A set of low resolution data, which function as the "experimental" ϕ values, were first constructed from this reference ensemble. The resulting ϕ values were then treated as one would treat laboratory experimental data and were used as input in the replica reconstruction algorithm. The resulting ensembles of structures obtained by the replica algorithm were compared to the gold standard reference ensemble, from which those "data" were, in fact, obtained. It is found that for a unimodal transition state ensemble with a low barrier, the multiple replica algorithm does recreate the reference ensemble fairly successfully when no experimental error is assumed. The Kolmogorov-Smirnov test as well as principal component analysis show that the overlap of the recovered and reference ensembles is significantly enhanced when multiple replicas are used. Reduction of the multiple replica ensembles by clustering successfully yields subensembles with close similarity to the reference ensembles. On the other hand, for a high barrier transition state with two distinct transition state ensembles, the single replica algorithm only samples a few structures of one of the reference ensemble basins. This is due to the fact that the ϕ values are intrinsically ensemble averaged quantities. The replica algorithm with multiple copies does sample both reference ensemble basins. In contrast to the single replica case, the multiple replicas are constrained to reproduce the average ϕ values, but allow fluctuations in ϕ for each individual copy. These fluctuations facilitate a more faithful sampling of the reference ensemble basins. Finally, we test how robustly the reconstruction algorithm can function by introducing errors in ϕ comparable in magnitude to those suggested by some authors. In this circumstance we observe that the chances of ensemble recovery with the replica algorithm are poor using a single replica, but are improved when multiple copies are used. A multimodal transition state ensemble, however, turns out to be more sensitive to large errors in ϕ (if appropriately gauged) and attempts at successful recreation of the reference ensemble with simple replica algorithms can fall short.

  19. Revised PROPELLER for T2-weighted imaging of the prostate at 3 Tesla: impact on lesion detection and PI-RADS classification.

    PubMed

    Meier-Schroers, Michael; Marx, Christian; Schmeel, Frederic Carsten; Wolter, Karsten; Gieseke, Jürgen; Block, Wolfgang; Sprinkart, Alois Martin; Traeber, Frank; Willinek, Winfried; Schild, Hans Heinz; Kukuk, Guido Matthias

    2018-01-01

    To evaluate revised PROPELLER (RevPROP) for T2-weighted imaging (T2WI) of the prostate as a substitute for turbo spin echo (TSE). Three-Tesla MR images of 50 patients with 55 cancer-suspicious lesions were prospectively evaluated. Findings were correlated with histopathology after MRI-guided biopsy. T2 RevPROP, T2 TSE, diffusion-weighted imaging, dynamic contrast enhancement, and MR-spectroscopy were acquired. RevPROP was compared to TSE concerning PI-RADS scores, lesion size, lesion signal-intensity, lesion contrast, artefacts, and image quality. There were 41 carcinomas in 55 cancer-suspicious lesions. RevPROP detected 41 of 41 carcinomas (100%) and 54 of 55 lesions (98.2%). TSE detected 39 of 41 carcinomas (95.1%) and 51 of 55 lesions (92.7%). RevPROP showed fewer artefacts and higher image quality (each p < 0.001). No differences were observed between single and overall PI-RADS scores based on RevPROP or TSE (p = 0.106 and p = 0.107). Lesion size was not different (p = 0.105). T2-signal intensity of lesions was higher and T2-contrast of lesions was lower on RevPROP (each p < 0.001). For prostate cancer detection RevPROP is superior to TSE with respect to motion robustness, image quality and detection rates of lesions. Therefore, RevPROP might be used as a substitute for T2WI. • Revised PROPELLER can be used as a substitute for T2-weighted prostate imaging. • Revised PROPELLER detected more carcinomas and more suspicious lesions than TSE. • Revised PROPELLER showed fewer artefacts and better image quality compared to TSE. • There were no significant differences in PI-RADS scores between revised PROPELLER and TSE. • The lower T2-contrast of revised PROPELLER did not impair its diagnostic quality.

  20. Impact of production strategies and animal performance on economic values of dairy sheep traits.

    PubMed

    Krupová, Z; Wolfová, M; Krupa, E; Oravcová, M; Daňo, J; Huba, J; Polák, P

    2012-03-01

    The objective of this study was to carry out a sensitivity analysis on the impact of various production strategies and performance levels on the relative economic values (REVs) of traits in dairy sheep. A bio-economic model implemented in the program package ECOWEIGHT was used to simulate the profit function for a semi-extensive production system with the Slovak multi-purpose breed Improved Valachian and to calculate the REV of 14 production and functional traits. The following production strategies were analysed: differing proportions of milk processed to cheese, customary weaning and early weaning of lambs with immediate sale or sale after artificial rearing, seasonal lambing in winter and aseasonal lambing in autumn. Results of the sensitivity analysis are presented in detail for the four economically most important traits: 150 days milk yield, conception rate of ewes, litter size and ewe productive lifetime. Impacts of the differences in the mean value of each of these four traits on REVs of all other traits were also examined. Simulated changes in the production circumstances had a higher impact on the REV for milk yield than on REVs of the other traits investigated. The proportion of milk processed to cheese, weaning management strategy for lambs and level of milk yield were the main factors influencing the REV of milk yield. The REVs for conception rate of ewes were highly sensitive to the current mean level of the trait. The REV of ewe productive lifetime was most sensitive to variation in ewe conception rate, and the REV of litter size was most affected by weaning strategy for lambs. On the basis of the results of sensitivity analyses, it is recommended that economic values of traits for the overall breeding objective for dairy sheep be calculated as the weighted average of the economic values obtained for the most common production strategies of Slovak dairy sheep farms and that economic values be adjusted after substantial changes in performance levels of the traits.

  1. Monthly ENSO Forecast Skill and Lagged Ensemble Size

    PubMed Central

    DelSole, T.; Tippett, M.K.; Pegion, K.

    2018-01-01

    Abstract The mean square error (MSE) of a lagged ensemble of monthly forecasts of the Niño 3.4 index from the Climate Forecast System (CFSv2) is examined with respect to ensemble size and configuration. Although the real‐time forecast is initialized 4 times per day, it is possible to infer the MSE for arbitrary initialization frequency and for burst ensembles by fitting error covariances to a parametric model and then extrapolating to arbitrary ensemble size and initialization frequency. Applying this method to real‐time forecasts, we find that the MSE consistently reaches a minimum for a lagged ensemble size between one and eight days, when four initializations per day are included. This ensemble size is consistent with the 8–10 day lagged ensemble configuration used operationally. Interestingly, the skill of both ensemble configurations is close to the estimated skill of the infinite ensemble. The skill of the weighted, lagged, and burst ensembles are found to be comparable. Certain unphysical features of the estimated error growth were tracked down to problems with the climatology and data discontinuities. PMID:29937973

  2. Monthly ENSO Forecast Skill and Lagged Ensemble Size

    NASA Astrophysics Data System (ADS)

    Trenary, L.; DelSole, T.; Tippett, M. K.; Pegion, K.

    2018-04-01

    The mean square error (MSE) of a lagged ensemble of monthly forecasts of the Niño 3.4 index from the Climate Forecast System (CFSv2) is examined with respect to ensemble size and configuration. Although the real-time forecast is initialized 4 times per day, it is possible to infer the MSE for arbitrary initialization frequency and for burst ensembles by fitting error covariances to a parametric model and then extrapolating to arbitrary ensemble size and initialization frequency. Applying this method to real-time forecasts, we find that the MSE consistently reaches a minimum for a lagged ensemble size between one and eight days, when four initializations per day are included. This ensemble size is consistent with the 8-10 day lagged ensemble configuration used operationally. Interestingly, the skill of both ensemble configurations is close to the estimated skill of the infinite ensemble. The skill of the weighted, lagged, and burst ensembles are found to be comparable. Certain unphysical features of the estimated error growth were tracked down to problems with the climatology and data discontinuities.

  3. Generalized canonical ensembles and ensemble equivalence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costeniuc, M.; Ellis, R.S.; Turkington, B.

    2006-02-15

    This paper is a companion piece to our previous work [J. Stat. Phys. 119, 1283 (2005)], which introduced a generalized canonical ensemble obtained by multiplying the usual Boltzmann weight factor e{sup -{beta}}{sup H} of the canonical ensemble with an exponential factor involving a continuous function g of the Hamiltonian H. We provide here a simplified introduction to our previous work, focusing now on a number of physical rather than mathematical aspects of the generalized canonical ensemble. The main result discussed is that, for suitable choices of g, the generalized canonical ensemble reproduces, in the thermodynamic limit, all the microcanonical equilibriummore » properties of the many-body system represented by H even if this system has a nonconcave microcanonical entropy function. This is something that in general the standard (g=0) canonical ensemble cannot achieve. Thus a virtue of the generalized canonical ensemble is that it can often be made equivalent to the microcanonical ensemble in cases in which the canonical ensemble cannot. The case of quadratic g functions is discussed in detail; it leads to the so-called Gaussian ensemble.« less

  4. Elastic fields, dipole tensors, and interaction between self-interstitial atom defects in bcc transition metals

    NASA Astrophysics Data System (ADS)

    Dudarev, S. L.; Ma, Pui-Wai

    2018-03-01

    Density functional theory (DFT) calculations show that self-interstitial atom (SIA) defects in nonmagnetic body-centered-cubic (bcc) metals adopt strongly anisotropic configurations, elongated in the <111 > direction [S. Han et al., Phys. Rev. B 66, 220101 (2002), 10.1103/PhysRevB.66.220101; D. Nguyen-Manh et al., Phys. Rev. B 73, 020101 (2006), 10.1103/PhysRevB.73.020101; P. M. Derlet et al., Phys. Rev. B 76, 054107 (2007), 10.1103/PhysRevB.76.054107; S. L. Dudarev, Annu. Rev. Mater. Res. 43, 35 (2013), 10.1146/annurev-matsci-071312-121626]. Elastic distortions, associated with such anisotropic atomic structures, appear similar to distortions around small prismatic dislocation loops, although the extent of this similarity has never been quantified. We derive analytical formulas for the dipole tensors of SIA defects, which show that, in addition to the prismatic dislocation looplike character, the elastic field of a SIA defect also has a significant isotropic dilatation component. Using empirical potentials and DFT calculations, we parametrize dipole tensors of <111 > defects for all the nonmagnetic bcc transition metals. This enables a quantitative evaluation of the energy of elastic interaction between the defects, which also shows that in a periodic three-dimensional simple cubic arrangement of crowdions, long-range elastic interactions between a defect and all its images favor a <111 > orientation of the defect.

  5. RevEcoR: an R package for the reverse ecology analysis of microbiomes.

    PubMed

    Cao, Yang; Wang, Yuanyuan; Zheng, Xiaofei; Li, Fei; Bo, Xiaochen

    2016-07-29

    All species live in complex ecosystems. The structure and complexity of a microbial community reflects not only diversity and function, but also the environment in which it occurs. However, traditional ecological methods can only be applied on a small scale and for relatively well-understood biological systems. Recently, a graph-theory-based algorithm called the reverse ecology approach has been developed that can analyze the metabolic networks of all the species in a microbial community, and predict the metabolic interface between species and their environment. Here, we present RevEcoR, an R package and a Shiny Web application that implements the reverse ecology algorithm for determining microbe-microbe interactions in microbial communities. This software allows users to obtain large-scale ecological insights into species' ecology directly from high-throughput metagenomic data. The software has great potential for facilitating the study of microbiomes. RevEcoR is open source software for the study of microbial community ecology. The RevEcoR R package is freely available under the GNU General Public License v. 2.0 at http://cran.r-project.org/web/packages/RevEcoR/ with the vignette and typical usage examples, and the interactive Shiny web application is available at http://yiluheihei.shinyapps.io/shiny-RevEcoR , or can be installed locally with the source code accessed from https://github.com/yiluheihei/shiny-RevEcoR .

  6. Detection of reticuloendotheliosis virus as a contaminant of fowl pox vaccines.

    PubMed

    Awad, A M; Abd El-Hamid, H S; Abou Rawash, A A; Ibrahim, H H

    2010-11-01

    This study was designed to detect reticuloendotheliosis virus (REV) as a contaminant in fowl pox vaccines. A total of 30 fowl pox vaccine samples were examined for the presence of REV using both in vitro and in vivo methods. In in vitro testing, the fowl pox vaccine samples were inoculated into chicken embryo fibroblast cultures prepared from specific-pathogen-free embryonated chicken eggs, and the cultures were examined using PCR to detect REV. In in vivo testing, each fowl pox vaccine sample was inoculated into 5-d-old specific-pathogen-free chicks, which were kept under observation for up to 12 wk postinoculation; serum samples were collected at 15, 30, and 45 d postinoculation for the detection of REV-specific antibodies using ELISA. Tissue samples were collected at 8 and 12 wk postinoculation for histopathological examination. Of the tested vaccines, only one imported vaccine sample tested positive for REV using PCR. Serum samples collected from chicks infected with the PCR-positive vaccine batch also tested positive for REV-specific antibodies using ELISA. Histopathological examination of the liver, spleen, and bursa of Fabricius demonstrated the presence of tumor cells in these organs, confirming the results obtained using PCR and ELISA, and indicating that the sample was contaminated with REV. These data clearly indicate that the screening of all commercial poultry vaccines for viruses is an important factor in assuring the biosafety of animal vaccines.

  7. Post-processing ECMWF precipitation and temperature ensemble reforecasts for operational hydrologic forecasting at various spatial scales

    NASA Astrophysics Data System (ADS)

    Verkade, J. S.; Brown, J. D.; Reggiani, P.; Weerts, A. H.

    2013-09-01

    The ECMWF temperature and precipitation ensemble reforecasts are evaluated for biases in the mean, spread and forecast probabilities, and how these biases propagate to streamflow ensemble forecasts. The forcing ensembles are subsequently post-processed to reduce bias and increase skill, and to investigate whether this leads to improved streamflow ensemble forecasts. Multiple post-processing techniques are used: quantile-to-quantile transform, linear regression with an assumption of bivariate normality and logistic regression. Both the raw and post-processed ensembles are run through a hydrologic model of the river Rhine to create streamflow ensembles. The results are compared using multiple verification metrics and skill scores: relative mean error, Brier skill score and its decompositions, mean continuous ranked probability skill score and its decomposition, and the ROC score. Verification of the streamflow ensembles is performed at multiple spatial scales: relatively small headwater basins, large tributaries and the Rhine outlet at Lobith. The streamflow ensembles are verified against simulated streamflow, in order to isolate the effects of biases in the forcing ensembles and any improvements therein. The results indicate that the forcing ensembles contain significant biases, and that these cascade to the streamflow ensembles. Some of the bias in the forcing ensembles is unconditional in nature; this was resolved by a simple quantile-to-quantile transform. Improvements in conditional bias and skill of the forcing ensembles vary with forecast lead time, amount, and spatial scale, but are generally moderate. The translation to streamflow forecast skill is further muted, and several explanations are considered, including limitations in the modelling of the space-time covariability of the forcing ensembles and the presence of storages.

  8. REV-ERB-ALPHA circadian gene variant associates with obesity in two independent populations: Mediterranean and North American

    USDA-ARS?s Scientific Manuscript database

    Despite the solid connection between REV-ERB and obesity, the information about whether genetic variations at this locus may be associated with obesity traits is scarce. Therefore our objective was to study the association between REV-ERB-ALPHA1 rs2314339 and obesity in two independent populations. ...

  9. NREL Fuels and Engines R&D Revs Up Vehicle Efficiency, Performance (Text

    Science.gov Websites

    Version) | News | NREL Fuels and Engines R&D Revs Up Vehicle Efficiency, Performance (Text Version) NREL Fuels and Engines R&D Revs Up Vehicle Efficiency, Performance (Text Version) NREL's combustion to the evolution of how fuels interact with engine and vehicle design. This is a text version of

  10. Equilibrium Structure and Vibrational Spectra of Sila-Adamantane

    DTIC Science & Technology

    2006-10-27

    42, 3276 (1990); M. R. Pederson, K. A. Jackson, Phys. Rev. B. 43, 7312 ( 1991 ); M. R. Pederson, D. V. Porezag, J. Kortus, and D. C. Patton, Phys... Pankratov , Phys. Rev. B 68, 085310 (2003); P. H. Han, W. G. Schmidt, and F. Becstedt, Phys. Rev. B 72, 245425 (2005). [13] T. Yamada, T. Inoue, K. Yamada, N

  11. Biological Characterization of CVRM2-BAC, A Recombinant CV1988 Virus Containing an REV LTR Insertion

    USDA-ARS?s Scientific Manuscript database

    It has been previously reported that avian retroviruses, i.e. avian leukosis virus (ALV) and reticoloendotheliosis virus (REV), integrate in the Marek’s disease virus genome affecting MDV pathogenicity. RM-2 is an attenuated serotype 1 MDV virus generated by insertion of the REV LTR in the genome of...

  12. 46 CFR 160.047-1 - Incorporation by reference.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., Models AK-1, and AF-1. Sheet 2, Rev. 2—Cutting Pattern and General Arrangement, Models CKM-1 and CFM-1. Sheet 3, Rev. 2—Cutting Pattern and General Arrangement, Models CKS-1 and CFS-1. Sheet 4, Rev. 1—Pad... Business Service Center, General Services Administration, Washington, DC 20407; (3) The military...

  13. A Theoretical Analysis of Why Hybrid Ensembles Work.

    PubMed

    Hsu, Kuo-Wei

    2017-01-01

    Inspired by the group decision making process, ensembles or combinations of classifiers have been found favorable in a wide variety of application domains. Some researchers propose to use the mixture of two different types of classification algorithms to create a hybrid ensemble. Why does such an ensemble work? The question remains. Following the concept of diversity, which is one of the fundamental elements of the success of ensembles, we conduct a theoretical analysis of why hybrid ensembles work, connecting using different algorithms to accuracy gain. We also conduct experiments on classification performance of hybrid ensembles of classifiers created by decision tree and naïve Bayes classification algorithms, each of which is a top data mining algorithm and often used to create non-hybrid ensembles. Therefore, through this paper, we provide a complement to the theoretical foundation of creating and using hybrid ensembles.

  14. Individual differences in ensemble perception reveal multiple, independent levels of ensemble representation.

    PubMed

    Haberman, Jason; Brady, Timothy F; Alvarez, George A

    2015-04-01

    Ensemble perception, including the ability to "see the average" from a group of items, operates in numerous feature domains (size, orientation, speed, facial expression, etc.). Although the ubiquity of ensemble representations is well established, the large-scale cognitive architecture of this process remains poorly defined. We address this using an individual differences approach. In a series of experiments, observers saw groups of objects and reported either a single item from the group or the average of the entire group. High-level ensemble representations (e.g., average facial expression) showed complete independence from low-level ensemble representations (e.g., average orientation). In contrast, low-level ensemble representations (e.g., orientation and color) were correlated with each other, but not with high-level ensemble representations (e.g., facial expression and person identity). These results suggest that there is not a single domain-general ensemble mechanism, and that the relationship among various ensemble representations depends on how proximal they are in representational space. (c) 2015 APA, all rights reserved).

  15. National Centers for Environmental Prediction

    Science.gov Websites

    Ensemble Users Meetings 7th NCEP/NWS Ensemble User Workshop 13-15 June 2016 6th NCEP/NWS Ensemble User Workshop 25 - 27 March 2014 5th NCEP/NWS Ensemble User Workshop 10 - 12 May, 2011 4th NCEP/NWS Ensemble User Workshop 13 - 15 May, 2008 3rd NCEP/NWS Ensemble User Workshop 31 Oct - 2 Nov, 2006 2nd NCEP/NWS

  16. On the generation of climate model ensembles

    NASA Astrophysics Data System (ADS)

    Haughton, Ned; Abramowitz, Gab; Pitman, Andy; Phipps, Steven J.

    2014-10-01

    Climate model ensembles are used to estimate uncertainty in future projections, typically by interpreting the ensemble distribution for a particular variable probabilistically. There are, however, different ways to produce climate model ensembles that yield different results, and therefore different probabilities for a future change in a variable. Perhaps equally importantly, there are different approaches to interpreting the ensemble distribution that lead to different conclusions. Here we use a reduced-resolution climate system model to compare three common ways to generate ensembles: initial conditions perturbation, physical parameter perturbation, and structural changes. Despite these three approaches conceptually representing very different categories of uncertainty within a modelling system, when comparing simulations to observations of surface air temperature they can be very difficult to separate. Using the twentieth century CMIP5 ensemble for comparison, we show that initial conditions ensembles, in theory representing internal variability, significantly underestimate observed variance. Structural ensembles, perhaps less surprisingly, exhibit over-dispersion in simulated variance. We argue that future climate model ensembles may need to include parameter or structural perturbation members in addition to perturbed initial conditions members to ensure that they sample uncertainty due to internal variability more completely. We note that where ensembles are over- or under-dispersive, such as for the CMIP5 ensemble, estimates of uncertainty need to be treated with care.

  17. Identification of nonclassical properties of light with multiplexing layouts

    PubMed Central

    Sperling, J.; Eckstein, A.; Clements, W. R.; Moore, M.; Renema, J. J.; Kolthammer, W. S.; Nam, S. W.; Lita, A.; Gerrits, T.; Walmsley, I. A.; Agarwal, G. S.; Vogel, W.

    2018-01-01

    In Sperling et al. [Phys. Rev. Lett. 118, 163602 (2017)], we introduced and applied a detector-independent method to uncover nonclassicality. Here, we extend those techniques and give more details on the performed analysis. We derive a general theory of the positive-operator-valued measure that describes multiplexing layouts with arbitrary detectors. From the resulting quantum version of a multinomial statistics, we infer nonclassicality probes based on a matrix of normally ordered moments. We discuss these criteria and apply the theory to our data which are measured with superconducting transition-edge sensors. Our experiment produces heralded multiphoton states from a parametric down-conversion light source. We show that the known notions of sub-Poisson and sub-binomial light can be deduced from our general approach, and we establish the concept of sub-multinomial light, which is shown to outperform the former two concepts of nonclassicality for our data. PMID:29670949

  18. Analysis of mutagenic DNA repair in a thermoconditional mutant of Saccharomyces cerevisiae. III. Dose-response pattern of mutation induction in UV-irradiated rev2ts cells.

    PubMed

    Siede, W; Eckardt, F

    1986-01-01

    Recent studies regarding the influence of cycloheximide on the temperature-dependent increase in survival and mutation frequencies of a thermoconditional rev2 mutant lead to the suggestion that the REV2-coded mutagenic repair function is UV-inducible. In the present study we show that stationary-phase rev2ts cells are characterized by a biphasic linear-quadratic dose-dependence of mutation induction ("mutation kinetics") of ochre alleles at 23 degrees C (permissive temperature) but linear kinetics at the restrictive temperature of 36 degrees C. Mathematical analysis using a model based on Poisson statistics and a further mathematical procedure, the calculation of "apparent survival", support the assumption that the quadratic component of the reverse mutation kinetics investigated can be attributed to a UV-inducible component of mutagenic DNA repair controlled by the REV2 gene.

  19. OHD/HL - XEFS

    Science.gov Websites

    Assimilator Ensemble Post-processor (EnsPost) Hydrologic Model Output Statistics (HMOS) Ensemble Verification capabilities (see diagram below): the Ensemble Pre-processor, the Ensemble Post-processor, the Hydrologic Model (OpenDA, http://www.openda.org/joomla/index.php) to be used within the CHPS environment. Ensemble Post

  20. Heat-bath algorithmic cooling with correlated qubit-environment interactions

    NASA Astrophysics Data System (ADS)

    Rodríguez-Briones, Nayeli A.; Li, Jun; Peng, Xinhua; Mor, Tal; Weinstein, Yossi; Laflamme, Raymond

    2017-11-01

    Cooling techniques are essential to understand fundamental thermodynamic questions of the low-energy states of physical systems, furthermore they are at the core of practical applications of quantum information science. In quantum computing, this controlled preparation of highly pure quantum states is required from the state initialization of most quantum algorithms to a reliable supply of ancilla qubits that satisfy the fault-tolerance threshold for quantum error correction. Heat-bath algorithmic cooling has been shown to purify qubits by controlled redistribution of entropy and multiple contact with a bath, not only for ensemble implementations but also for technologies with strong but imperfect measurements. In this paper, we show that correlated relaxation processes between the system and environment during rethermalization when we reset hot ancilla qubits, can be exploited to enhance purification. We show that a long standing upper bound on the limits of algorithmic cooling Schulman et al (2005 Phys. Rev. Lett. 94, 120501) can be broken by exploiting these correlations. We introduce a new tool for cooling algorithms, which we call ‘state-reset’, obtained when the coupling to the environment is generalized from individual-qubits relaxation to correlated-qubit relaxation. Furthermore, we present explicit improved cooling algorithms which lead to an increase of purity beyond all the previous work, and relate our results to the Nuclear Overhauser Effect.

  1. Discriminating strength: a bona fide measure of non-classical correlations

    NASA Astrophysics Data System (ADS)

    Farace, A.; De Pasquale, A.; Rigovacca, L.; Giovannetti, V.

    2014-07-01

    A new measure of non-classical correlations is introduced and characterized. It tests the ability of using a state ρ of a composite system AB as a probe for a quantum illumination task (e.g. see Lloyd 2008 Science 321 1463), in which one is asked to remotely discriminate between the two following scenarios: (i) either nothing happens to the probe, or (ii) the subsystem A is transformed via a local unitary {{R}_{A}} whose properties are partially unspecified when producing ρ. This new measure can be seen as the discrete version of the recently introduced interferometric power measure (Girolami et al 2013 e-print arXiv:1309.1472) and, at least for the case in which A is a qubit, it is shown to coincide (up to an irrelevant scaling factor) with the local quantum uncertainty measure of Girolami, Tufarelli and Adesso (2013 Phys. Rev. Lett. 110 240402). Analytical expressions are derived which allow us to formally prove that, within the set of separable configurations, the maximum value of our non-classicality measure is achieved over the set of quantum-classical states (i.e. states ρ which admit a statistical unravelling where each element of the associated ensemble is distinguishable via local measures on B).

  2. On the Dominant Factor Controlling Seasonal Hydrological Forecast Skill in China

    DOE PAGES

    Zhang, Xuejun; Tang, Qiuhong; Leng, Guoyong; ...

    2017-11-20

    Initial conditions (ICs) and climate forecasts (CFs) are the two primary sources of seasonal hydrological forecast skill. However, their relative contribution to predictive skill remains unclear in China. In this study, we investigate the relative roles of ICs and CFs in cumulative runoff (CR) and soil moisture (SM) forecasts using 31-year (1980–2010) ensemble streamflow prediction (ESP) and reverse-ESP (revESP) simulations with the Variable Capacity Infiltration (VIC) hydrologic model. The results show that the relative importance of ICs and CFs largely depends on climate regimes. The influence of ICs is stronger in a dry or wet-to-dry climate regime that covers themore » northern and western interior regions during the late fall to early summer. In particular, ICs may dominate the forecast skill for up to three months or even six months during late fall and winter months, probably due to the low precipitation value and variability in the dry period. In contrast, CFs become more important for most of southern China or during summer months. The impact of ICs on SM forecasts tends to cover larger domains than on CR forecasts. These findings will greatly benefit future work that will target efforts towards improving current forecast levels for the particular regions and forecast periods.« less

  3. On the Dominant Factor Controlling Seasonal Hydrological Forecast Skill in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xuejun; Tang, Qiuhong; Leng, Guoyong

    Initial conditions (ICs) and climate forecasts (CFs) are the two primary sources of seasonal hydrological forecast skill. However, their relative contribution to predictive skill remains unclear in China. In this study, we investigate the relative roles of ICs and CFs in cumulative runoff (CR) and soil moisture (SM) forecasts using 31-year (1980–2010) ensemble streamflow prediction (ESP) and reverse-ESP (revESP) simulations with the Variable Capacity Infiltration (VIC) hydrologic model. The results show that the relative importance of ICs and CFs largely depends on climate regimes. The influence of ICs is stronger in a dry or wet-to-dry climate regime that covers themore » northern and western interior regions during the late fall to early summer. In particular, ICs may dominate the forecast skill for up to three months or even six months during late fall and winter months, probably due to the low precipitation value and variability in the dry period. In contrast, CFs become more important for most of southern China or during summer months. The impact of ICs on SM forecasts tends to cover larger domains than on CR forecasts. These findings will greatly benefit future work that will target efforts towards improving current forecast levels for the particular regions and forecast periods.« less

  4. A simple analytical model for dynamics of time-varying target leverage ratios

    NASA Astrophysics Data System (ADS)

    Lo, C. F.; Hui, C. H.

    2012-03-01

    In this paper we have formulated a simple theoretical model for the dynamics of the time-varying target leverage ratio of a firm under some assumptions based upon empirical observations. In our theoretical model the time evolution of the target leverage ratio of a firm can be derived self-consistently from a set of coupled Ito's stochastic differential equations governing the leverage ratios of an ensemble of firms by the nonlinear Fokker-Planck equation approach. The theoretically derived time paths of the target leverage ratio bear great resemblance to those used in the time-dependent stationary-leverage (TDSL) model [Hui et al., Int. Rev. Financ. Analy. 15, 220 (2006)]. Thus, our simple model is able to provide a theoretical foundation for the selected time paths of the target leverage ratio in the TDSL model. We also examine how the pace of the adjustment of a firm's target ratio, the volatility of the leverage ratio and the current leverage ratio affect the dynamics of the time-varying target leverage ratio. Hence, with the proposed dynamics of the time-dependent target leverage ratio, the TDSL model can be readily applied to generate the default probabilities of individual firms and to assess the default risk of the firms.

  5. Project fires. Volume 2: Protective ensemble performance standards, phase 1B

    NASA Astrophysics Data System (ADS)

    Abeles, F. J.

    1980-05-01

    The design of the prototype protective ensemble was finalized. Prototype ensembles were fabricated and then subjected to a series of qualification tests which were based upon the protective ensemble performance standards PEPS requirements. Engineering drawings and purchase specifications were prepared for the new protective ensemble.

  6. Ensemble training to improve recognition using 2D ear

    NASA Astrophysics Data System (ADS)

    Middendorff, Christopher; Bowyer, Kevin W.

    2009-05-01

    The ear has gained popularity as a biometric feature due to the robustness of the shape over time and across emotional expression. Popular methods of ear biometrics analyze the ear as a whole, leaving these methods vulnerable to error due to occlusion. Many researchers explore ear recognition using an ensemble, but none present a method for designing the individual parts that comprise the ensemble. In this work, we introduce a method of modifying the ensemble shapes to improve performance. We determine how different properties of an ensemble training system can affect overall performance. We show that ensembles built from small parts will outperform ensembles built with larger parts, and that incorporating a large number of parts improves the performance of the ensemble.

  7. A Theoretical Analysis of Why Hybrid Ensembles Work

    PubMed Central

    2017-01-01

    Inspired by the group decision making process, ensembles or combinations of classifiers have been found favorable in a wide variety of application domains. Some researchers propose to use the mixture of two different types of classification algorithms to create a hybrid ensemble. Why does such an ensemble work? The question remains. Following the concept of diversity, which is one of the fundamental elements of the success of ensembles, we conduct a theoretical analysis of why hybrid ensembles work, connecting using different algorithms to accuracy gain. We also conduct experiments on classification performance of hybrid ensembles of classifiers created by decision tree and naïve Bayes classification algorithms, each of which is a top data mining algorithm and often used to create non-hybrid ensembles. Therefore, through this paper, we provide a complement to the theoretical foundation of creating and using hybrid ensembles. PMID:28255296

  8. On the predictability of outliers in ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Siegert, S.; Bröcker, J.; Kantz, H.

    2012-03-01

    In numerical weather prediction, ensembles are used to retrieve probabilistic forecasts of future weather conditions. We consider events where the verification is smaller than the smallest, or larger than the largest ensemble member of a scalar ensemble forecast. These events are called outliers. In a statistically consistent K-member ensemble, outliers should occur with a base rate of 2/(K+1). In operational ensembles this base rate tends to be higher. We study the predictability of outlier events in terms of the Brier Skill Score and find that forecast probabilities can be calculated which are more skillful than the unconditional base rate. This is shown analytically for statistically consistent ensembles. Using logistic regression, forecast probabilities for outlier events in an operational ensemble are calculated. These probabilities exhibit positive skill which is quantitatively similar to the analytical results. Possible causes of these results as well as their consequences for ensemble interpretation are discussed.

  9. The Contribution of Object Shape and Surface Properties to Object Ensemble Representation in Anterior-medial Ventral Visual Cortex.

    PubMed

    Cant, Jonathan S; Xu, Yaoda

    2017-02-01

    Our visual system can extract summary statistics from large collections of objects without forming detailed representations of the individual objects in the ensemble. In a region in ventral visual cortex encompassing the collateral sulcus and the parahippocampal gyrus and overlapping extensively with the scene-selective parahippocampal place area (PPA), we have previously reported fMRI adaptation to object ensembles when ensemble statistics repeated, even when local image features differed across images (e.g., two different images of the same strawberry pile). We additionally showed that this ensemble representation is similar to (but still distinct from) how visual texture patterns are processed in this region and is not explained by appealing to differences in the color of the elements that make up the ensemble. To further explore the nature of ensemble representation in this brain region, here we used PPA as our ROI and investigated in detail how the shape and surface properties (i.e., both texture and color) of the individual objects constituting an ensemble affect the ensemble representation in anterior-medial ventral visual cortex. We photographed object ensembles of stone beads that varied in shape and surface properties. A given ensemble always contained beads of the same shape and surface properties (e.g., an ensemble of star-shaped rose quartz beads). A change to the shape and/or surface properties of all the beads in an ensemble resulted in a significant release from adaptation in PPA compared with conditions in which no ensemble feature changed. In contrast, in the object-sensitive lateral occipital area (LO), we only observed a significant release from adaptation when the shape of the ensemble elements varied, and found no significant results in additional scene-sensitive regions, namely, the retrosplenial complex and occipital place area. Together, these results demonstrate that the shape and surface properties of the individual objects comprising an ensemble both contribute significantly to object ensemble representation in anterior-medial ventral visual cortex and further demonstrate a functional dissociation between object- (LO) and scene-selective (PPA) visual cortical regions and within the broader scene-processing network itself.

  10. Far Infrared, Magnetic and Electronic Studies of High Tc Superconducting Materials

    DTIC Science & Technology

    1992-09-30

    Phys. Rev. Left. 63, 2421(1989). 8. K. H. Fischer and T. Nattermann, Phys. Rev. .43, 10372(1991). 9. R. E. Walstedt, R. F. Bell, and D. B. Mitzi , Phys...Duran, J. Yazyi, F. dela Cruz, D. J. Bishop, D. B. Mitzi , and A. Kapitulnik, Phys. Rev. B 44, 17737(1991). 14. Y. Yeshurun and A. P. Malozemoff, Phys

  11. Experimental Test of Nonlocal Realism Using a Fiber-Based Source of Polarization-Entangled Photon Paris

    DTIC Science & Technology

    2008-03-25

    J. F. Clauser and M. A. Horne, Phys. Rev. D 10, 526 1974. 6 A. Zeilinger , Rev. Mod. Phys. 71, S288 1999; A. Aspect, Nature London 398, 189...Jennewein, M. Zukowski, M. Aspelmeyer, and A. Zeilinger , Phys. Rev. Lett. 99, 210406 2007; C. Branciard, A. Ling, N. Gisin, C. Kurt- siefer, A. Lamas

  12. 75 FR 69741 - Proposed Collection; Comment Request for Rev. Proc. 2007-99 (RP-127367-07), 9100 Relief Under...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    .... Proc. 2007-99 (RP- 127367-07), 9100 Relief Under Sections 897 and 1445 AGENCY: Internal Revenue Service...)). Currently, the IRS is soliciting comments concerning Rev. Proc. 2007-99 (RP-127367-07), 9100 Relief Under...: Rev. Proc. 2007-99 (RP-127367-07), 9100 Relief Under Sections 897 and 1445. OMB Number: 1545-2098...

  13. Weak measurement combined with quantum delayed-choice experiment and implementation in optomechanical system

    NASA Astrophysics Data System (ADS)

    Li, Gang; Wang, Tao; Ye, Ming-Yong; Song, He-Shan

    2015-12-01

    Weak measurement [Y. Aharonov, D.Z. Albert, L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988); C. Simon, E.S. Polzik, Phys. Rev. A 83, 040101(R) (2011)] combined with quantum delayed-choice experiment that use Controlled Hadamard gate instead of Hadamard gate in quantum networks give rise to a surprising amplification effect, i.e., counterintuitive negative amplification effect. We show that this effect is caused by the wave and particle behaviours of the system, and it can't be explained by a semiclassical wave theory [D. Suter, Phys. Rev. A 51, 45 (1995); J.C. Howell, D.J. Starling, P.B. Dixon, P.K. Vudyasetu, A.N. Jordan, Phys. Rev. A 81, 033813 (2010); N. Brunner, A. Acín, D. Collins, N. Gisin, V. Scarani, Phys. Rev. Lett. 91, 180402 (2003)] and by the statistical feature of preselection and postselection with disturbance [C. Ferrie, J. Combes, Phys. Rev. Lett. 113, 120404 (2014)], due to the entanglement of the system and the ancilla in Controlled Hadamard gate. The generation mechanism with wave-particle duality in quantum mechanics lead us to a scheme for implementation of weak measurement in optomechanical system.

  14. Isolation and characterization of a virus-specific ribonucleoprotein complex from reticuloendotheliosis virus-transformed chicken bone marrow cells.

    PubMed Central

    Wong, T C; Kang, C Y

    1978-01-01

    Chicken bone marrow cells transformed by reticuloendotheliosis virus (REV) produce in the cytoplasm a ribonucleoprotein (RNP) complex which has a sedimentation value of approximately 80 to 100S and a density of 1.23 g/cm3. This RNP complex is not derived from the mature virion. An endogenous RNA-directed DNA polymerase activity is associated with the RNP complex. The enzyme activity was completely neutralized by anti-REV DNA polymerase antibody but not by anti-avian myeloblastosis virus DNA polymerase antibody. The DNA product from the endogenous RNA-directed DNA polymerase reaction of the RNP complex hybridized to REV RNA but not to avian leukosis virus RNA. The RNA extracted from the RNP hybridized only to REV-specific complementary DNA synthesized from an endogenous DNA polymerase reaction of purified REV. The size of the RNA in the RNP is 30 to 35S, which represents the subunit size of the genomic RNA. No 60S mature genomic RNA was found within the RNP complex. The significance of finding the endogenous DNA polymerase activity in the viral RNP in infected cells and the maturation process of 60S virion RNA of REV are discussed. PMID:81319

  15. Reynolds number effects on the single-mode Richtmyer-Meshkov instability.

    PubMed

    Walchli, B; Thornber, B

    2017-01-01

    The Reynolds number effects on the nonlinear growth rates of the Richtmyer-Meshkov instability are investigated using two-dimensional numerical simulations. A decrease in Reynolds number gives an increased time to reach nonlinear saturation, with Reynolds number effects only significant in the range Re<256. Within this range there is a sharp change in instability properties. The bubble and spike amplitudes move towards equal size at lower Reynolds numbers and the bubble velocities decay faster than predicted by Sohn's model [S.-I. Sohn, Phys. Rev. E 80, 055302 (2009)PLEEE81539-375510.1103/PhysRevE.80.055302]. Predicted amplitudes show reasonable agreement with the existing theory of Carles and Popinet [P. Carles and S. Popinet, Phys. Fluids Lett. 13, 1833 (2001)10.1063/1.1377863; Eur. J. Mech. B 21, 511 (2002)EJBFEV0997-754610.1016/S0997-7546(02)01199-8] and Mikaelian [K. O. Mikaelian, Phys. Rev. E 47, 375 (1993)1063-651X10.1103/PhysRevE.47.375; K. O. Mikaelian, Phys. Rev. E 87, 031003 (2013)PLEEE81539-375510.1103/PhysRevE.87.031003], with the former being the closest match to the current computations.

  16. Kinetic Basis of Nucleotide Selection Employed by a Protein Template-Dependent DNA Polymerase†

    PubMed Central

    Brown, Jessica A.; Fowler, Jason D.; Suo, Zucai

    2010-01-01

    Rev1, a Y-family DNA polymerase, contributes to spontaneous and DNA damage-induced mutagenic events. In this paper, we have employed pre-steady state kinetic methodology to establish a kinetic basis for nucleotide selection by human Rev1, a unique nucleotidyl transferase that uses a protein template-directed mechanism to preferentially instruct dCTP incorporation. This work demonstrated that the high incorporation efficiency of dCTP is dependent on both substrates: an incoming dCTP and a templating base dG. The extremely low base substitution fidelity of human Rev1 (100 to 10-5) was due to the preferred misincorporation of dCTP with templating bases dA, dT, and dC over correct dNTPs. Using non-natural nucleotide analogs, we showed that hydrogen bonding interactions between residue R357 of human Rev1 and an incoming dNTP are not essential for DNA synthesis. Lastly, human Rev1 discriminates between ribonucleotides and deoxyribonucleotides mainly by reducing the rate of incorporation, and the sugar selectivity of human Rev1 is sensitive to both the size and orientation of the 2′-substituent of a ribonucleotide. PMID:20518555

  17. The HIV-1 Rev/RRE system is required for HIV-1 5' UTR cis elements to augment encapsidation of heterologous RNA into HIV-1 viral particles

    PubMed Central

    2011-01-01

    Background The process of HIV-1 genomic RNA (gRNA) encapsidation is governed by a number of viral encoded components, most notably the Gag protein and gRNA cis elements in the canonical packaging signal (ψ). Also implicated in encapsidation are cis determinants in the R, U5, and PBS (primer binding site) from the 5' untranslated region (UTR). Although conventionally associated with nuclear export of HIV-1 RNA, there is a burgeoning role for the Rev/RRE in the encapsidation process. Pleiotropic effects exhibited by these cis and trans viral components may confound the ability to examine their independent, and combined, impact on encapsidation of RNA into HIV-1 viral particles in their innate viral context. We systematically reconstructed the HIV-1 packaging system in the context of a heterologous murine leukemia virus (MLV) vector RNA to elucidate a mechanism in which the Rev/RRE system is central to achieving efficient and specific encapsidation into HIV-1 viral particles. Results We show for the first time that the Rev/RRE system can augment RNA encapsidation independent of all cis elements from the 5' UTR (R, U5, PBS, and ψ). Incorporation of all the 5' UTR cis elements did not enhance RNA encapsidation in the absence of the Rev/RRE system. In fact, we demonstrate that the Rev/RRE system is required for specific and efficient encapsidation commonly associated with the canonical packaging signal. The mechanism of Rev/RRE-mediated encapsidation is not a general phenomenon, since the combination of the Rev/RRE system and 5' UTR cis elements did not enhance encapsidation into MLV-derived viral particles. Lastly, we show that heterologous MLV RNAs conform to transduction properties commonly associated with HIV-1 viral particles, including in vivo transduction of non-dividing cells (i.e. mouse neurons); however, the cDNA forms are episomes predominantly in the 1-LTR circle form. Conclusions Premised on encapsidation of a heterologous RNA into HIV-1 viral particles, our findings define a functional HIV-1 packaging system as comprising the 5' UTR cis elements, Gag, and the Rev/RRE system, in which the Rev/RRE system is required to make the RNA amenable to the ensuing interaction between Gag and the canonical packaging signal for subsequent encapsidation. PMID:21702950

  18. Dirac Magnons in Honeycomb Ferromagnets

    NASA Astrophysics Data System (ADS)

    Pershoguba, Sergey S.; Banerjee, Saikat; Lashley, J. C.; Park, Jihwey; Ågren, Hans; Aeppli, Gabriel; Balatsky, Alexander V.

    2018-01-01

    The discovery of the Dirac electron dispersion in graphene [A. H. Castro Neto, et al., The Electronic Properties of Graphene, Rev. Mod. Phys. 81, 109 (2009), 10.1103/RevModPhys.81.109] led to the question of the Dirac cone stability with respect to interactions. Coulomb interactions between electrons were shown to induce a logarithmic renormalization of the Dirac dispersion. With a rapid expansion of the list of compounds and quasiparticle bands with linear band touching [T. O. Wehling, et al., Dirac Materials, Adv. Phys. 63, 1 (2014), 10.1080/00018732.2014.927109], the concept of bosonic Dirac materials has emerged. We consider a specific case of ferromagnets consisting of van der Waals-bonded stacks of honeycomb layers, e.g., chromium trihalides CrX3 (X =F , Cl, Br and I), that display two spin wave modes with energy dispersion similar to that for the electrons in graphene. At the single-particle level, these materials resemble their fermionic counterparts. However, how different particle statistics and interactions affect the stability of Dirac cones has yet to be determined. To address the role of interacting Dirac magnons, we expand the theory of ferromagnets beyond the standard Dyson theory [F. J. Dyson, General Theory of Spin-Wave Interactions, Phys. Rev. 102, 1217 (1956), 10.1103/PhysRev.102.1217, F. J. Dyson, Thermodynamic Behavior of an Ideal Ferromagnet, Phys. Rev. 102, 1230 (1956), 10.1103/PhysRev.102.1230] to the case of non-Bravais honeycomb layers. We demonstrate that magnon-magnon interactions lead to a significant momentum-dependent renormalization of the bare band structure in addition to strongly momentum-dependent magnon lifetimes. We show that our theory qualitatively accounts for hitherto unexplained anomalies in nearly half-century-old magnetic neutron-scattering data for CrBr3 [W. B. Yelon and R. Silberglitt, Renormalization of Large-Wave-Vector Magnons in Ferromagnetic CrBr3 Studied by Inelastic Neutron Scattering: Spin-Wave Correlation Effects, Phys. Rev. B 4, 2280 (1971), 10.1103/PhysRevB.4.2280, E. J. Samuelsen, et al., Spin Waves in Ferromagnetic CrBr3 Studied by Inelastic Neutron Scattering, Phys. Rev. B 3, 157 (1971), 10.1103/PhysRevB.3.157]. We also show that honeycomb ferromagnets display dispersive surface and edge states, unlike their electronic analogs.

  19. Simulated hydroclimatic impacts of projected Brazilian sugarcane expansion

    NASA Astrophysics Data System (ADS)

    Georgescu, M.; Lobell, D. B.; Field, C. B.; Mahalov, A.

    2013-03-01

    Sugarcane area is currently expanding in Brazil, largely in response to domestic and international demand for sugar-based ethanol. To investigate the potential hydroclimatic impacts of future expansion, a regional climate model is used to simulate 5 years of a scenario in which cerrado and cropland areas (~1.1E6 km2) within south-central Brazil are converted to sugarcane. Results indicate a cooling of up to ~1.0°C during the peak of the growing season, mainly as a result of increased albedo of sugarcane relative to the previous landscape. After harvest, warming of similar magnitude occurs from a significant decline in evapotranspiration and a repartitioning toward greater sensible heating. Overall, annual temperature changes from large-scale conversion are expected to be small because of offsetting reductions in net radiation absorption and evapotranspiration. The decline in net water flux from land to the atmosphere implies a reduction in regional precipitation, which is consistent with progressively decreasing simulated average rainfall for the study period, upon conversion to sugarcane. However, rainfall changes were not robust across three ensemble members. The results suggest that sugarcane expansion will not drastically alter the regional energy or water balance, but could result in important local and seasonal effects.

  20. Time of arrival in quantum and Bohmian mechanics

    NASA Astrophysics Data System (ADS)

    Leavens, C. R.

    1998-08-01

    In a recent paper Grot, Rovelli, and Tate (GRT) [Phys. Rev. A 54, 4676 (1996)] derived an expression for the probability distribution π(TX) of intrinsic arrival times T(X) at position x=X for a quantum particle with initial wave function ψ(x,t=0) freely evolving in one dimension. This was done by quantizing the classical expression for the time of arrival of a free particle at X, assuming a particular choice of operator ordering, and then regulating the resulting time of arrival operator. For the special case of a minimum-uncertainty-product wave packet at t=0 with average wave number and variance Δk they showed that their analytical expression for π(TX) agreed with the probability current density J(x=X,t=T) only to terms of order Δk/. They dismissed the probability current density as a viable candidate for the exact arrival time distribution on the grounds that it can sometimes be negative. This fact is not a problem within Bohmian mechanics where the arrival time distribution for a particle, either free or in the presence of a potential, is rigorously given by \\|J(X,T)\\| (suitably normalized) [W. R. McKinnon and C. R. Leavens, Phys. Rev. A 51, 2748 (1995); C. R. Leavens, Phys. Lett. A 178, 27 (1993); M. Daumer et al., in On Three Levels: The Mathematical Physics of Micro-, Meso-, and Macro-Approaches to Physics, edited by M. Fannes et al. (Plenum, New York, 1994); M. Daumer, in Bohmian Mechanics and Quantum Theory: An Appraisal, edited by J. T. Cushing et al. (Kluwer Academic, Dordrecht, 1996)]. The two theories are compared in this paper and a case presented for which the results could not differ more: According to GRT's theory, every particle in the ensemble reaches a point x=X, where ψ(x,t) and J(x,t) are both zero for all t, while no particle ever reaches X according to the theory based on Bohmian mechanics. Some possible implications are discussed.

  1. Multi-scale dynamical behavior of spatially distributed systems: a deterministic point of view

    NASA Astrophysics Data System (ADS)

    Mangiarotti, S.; Le Jean, F.; Drapeau, L.; Huc, M.

    2015-12-01

    Physical and biophysical systems are spatially distributed systems. Their behavior can be observed or modelled spatially at various resolutions. In this work, a deterministic point of view is adopted to analyze multi-scale behavior taking a set of ordinary differential equation (ODE) as elementary part of the system.To perform analyses, scenes of study are thus generated based on ensembles of identical elementary ODE systems. Without any loss of generality, their dynamics is chosen chaotic in order to ensure sensitivity to initial conditions, that is, one fundamental property of atmosphere under instable conditions [1]. The Rössler system [2] is used for this purpose for both its topological and algebraic simplicity [3,4].Two cases are thus considered: the chaotic oscillators composing the scene of study are taken either independent, or in phase synchronization. Scale behaviors are analyzed considering the scene of study as aggregations (basically obtained by spatially averaging the signal) or as associations (obtained by concatenating the time series). The global modeling technique is used to perform the numerical analyses [5].One important result of this work is that, under phase synchronization, a scene of aggregated dynamics can be approximated by the elementary system composing the scene, but modifying its parameterization [6]. This is shown based on numerical analyses. It is then demonstrated analytically and generalized to a larger class of ODE systems. Preliminary applications to cereal crops observed from satellite are also presented.[1] Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130-141 (1963).[2] Rössler, An equation for continuous chaos, Phys. Lett. A, 57, 397-398 (1976).[3] Gouesbet & Letellier, Global vector-field reconstruction by using a multivariate polynomial L2 approximation on nets, Phys. Rev. E 49, 4955-4972 (1994).[4] Letellier, Roulin & Rössler, Inequivalent topologies of chaos in simple equations, Chaos, Solitons & Fractals, 28, 337-360 (2006).[5] Mangiarotti, Coudret, Drapeau, & Jarlan, Polynomial search and global modeling, Phys. Rev. E 86(4), 046205 (2012).[6] Mangiarotti, Modélisation globale et Caractérisation Topologique de dynamiques environnementales. Habilitation à Diriger des Recherches, Univ. Toulouse 3 (2014).

  2. Rethinking the Default Construction of Multimodel Climate Ensembles

    DOE PAGES

    Rauser, Florian; Gleckler, Peter; Marotzke, Jochem

    2015-07-21

    Here, we discuss the current code of practice in the climate sciences to routinely create climate model ensembles as ensembles of opportunity from the newest phase of the Coupled Model Intercomparison Project (CMIP). We give a two-step argument to rethink this process. First, the differences between generations of ensembles corresponding to different CMIP phases in key climate quantities are not large enough to warrant an automatic separation into generational ensembles for CMIP3 and CMIP5. Second, we suggest that climate model ensembles cannot continue to be mere ensembles of opportunity but should always be based on a transparent scientific decision process.more » If ensembles can be constrained by observation, then they should be constructed as target ensembles that are specifically tailored to a physical question. If model ensembles cannot be constrained by observation, then they should be constructed as cross-generational ensembles, including all available model data to enhance structural model diversity and to better sample the underlying uncertainties. To facilitate this, CMIP should guide the necessarily ongoing process of updating experimental protocols for the evaluation and documentation of coupled models. Finally, with an emphasis on easy access to model data and facilitating the filtering of climate model data across all CMIP generations and experiments, our community could return to the underlying idea of using model data ensembles to improve uncertainty quantification, evaluation, and cross-institutional exchange.« less

  3. Simulation of DNAPL migration in heterogeneous translucent porous media based on estimation of representative elementary volume

    NASA Astrophysics Data System (ADS)

    Wu, Ming; Wu, Jianfeng; Wu, Jichun

    2017-10-01

    When the dense nonaqueous phase liquid (DNAPL) comes into the subsurface environment, its migration behavior is crucially affected by the permeability and entry pressure of subsurface porous media. A prerequisite for accurately simulating DNAPL migration in aquifers is then the determination of the permeability, entry pressure and corresponding representative elementary volumes (REV) of porous media. However, the permeability, entry pressure and corresponding representative elementary volumes (REV) are hard to determine clearly. This study utilizes the light transmission micro-tomography (LTM) method to determine the permeability and entry pressure of two dimensional (2D) translucent porous media and integrates the LTM with a criterion of relative gradient error to quantify the corresponding REV of porous media. As a result, the DNAPL migration in porous media might be accurately simulated by discretizing the model at the REV dimension. To validate the quantification methods, an experiment of perchloroethylene (PCE) migration is conducted in a two-dimensional heterogeneous bench-scale aquifer cell. Based on the quantifications of permeability, entry pressure and REV scales of 2D porous media determined by the LTM and relative gradient error, different models with different sizes of discretization grid are used to simulate the PCE migration. It is shown that the model based on REV size agrees well with the experimental results over the entire migration period including calibration, verification and validation processes. This helps to better understand the microstructures of porous media and achieve accurately simulating DNAPL migration in aquifers based on the REV estimation.

  4. Trans-Lesion DNA Polymerases May Be Involved in Yeast Meiosis

    PubMed Central

    Arbel-Eden, Ayelet; Joseph-Strauss, Daphna; Masika, Hagit; Printzental, Oxana; Rachi, Eléanor; Simchen, Giora

    2013-01-01

    Trans-lesion DNA polymerases (TLSPs) enable bypass of DNA lesions during replication and are also induced under stress conditions. Being only weakly dependent on their template during replication, TLSPs introduce mutations into DNA. The low processivity of these enzymes ensures that they fall off their template after a few bases are synthesized and are then replaced by the more accurate replicative polymerase. We find that the three TLSPs of budding yeast Saccharomyces cerevisiae Rev1, PolZeta (Rev3 and Rev7), and Rad30 are induced during meiosis at a time when DNA double-strand breaks (DSBs) are formed and homologous chromosomes recombine. Strains deleted for one or any combination of the three TLSPs undergo normal meiosis. However, in the triple-deletion mutant, there is a reduction in both allelic and ectopic recombination. We suggest that trans-lesion polymerases are involved in the processing of meiotic double-strand breaks that lead to mutations. In support of this notion, we report significant yeast two-hybrid (Y2H) associations in meiosis-arrested cells between the TLSPs and DSB proteins Rev1-Spo11, Rev1-Mei4, and Rev7-Rec114, as well as between Rev1 and Rad30. We suggest that the involvement of TLSPs in processing of meiotic DSBs could be responsible for the considerably higher frequency of mutations reported during meiosis compared with that found in mitotically dividing cells, and therefore may contribute to faster evolutionary divergence than previously assumed. PMID:23550131

  5. Estimation of the REV Size and Equivalent Permeability Coefficient of Fractured Rock Masses with an Emphasis on Comparing the Radial and Unidirectional Flow Configurations

    NASA Astrophysics Data System (ADS)

    Wang, Zhechao; Li, Wei; Bi, Liping; Qiao, Liping; Liu, Richeng; Liu, Jie

    2018-05-01

    A method to estimate the representative elementary volume (REV) size for the permeability and equivalent permeability coefficient of rock mass with a radial flow configuration was developed. The estimations of the REV size and equivalent permeability for the rock mass around an underground oil storage facility using a radial flow configuration were compared with those using a unidirectional flow configuration. The REV sizes estimated using the unidirectional flow configuration are much higher than those estimated using the radial flow configuration. The equivalent permeability coefficient estimated using the radial flow configuration is unique, while those estimated using the unidirectional flow configuration depend on the boundary conditions and flow directions. The influences of the fracture trace length, spacing and gap on the REV size and equivalent permeability coefficient were investigated. The REV size for the permeability of fractured rock mass increases with increasing the mean trace length and fracture spacing. The influence of the fracture gap length on the REV size is insignificant. The equivalent permeability coefficient decreases with the fracture spacing, while the influences of the fracture trace length and gap length are not determinate. The applicability of the proposed method to the prediction of groundwater inflow into rock caverns was verified using the measured groundwater inflow into the facility. The permeability coefficient estimated using the radial flow configuration is more similar to the representative equivalent permeability coefficient than those estimated with different boundary conditions using the unidirectional flow configuration.

  6. The sensitivity of predicted financial and genetic gains in Holsteins to changes in the economic value of traits.

    PubMed

    Cottle, D J; Coffey, M P

    2013-02-01

    The objective of this study was to assess the impact of using different relative economic values (REVs) in selection indices on predicted financial and trait gains from selection of sires of cows and on the choice of leading Holstein bulls available in the UK dairy industry. Breeding objective traits were milk yield, fat yield, protein yield, lifespan, mastitis, non-return rate, calving interval and lameness. Relative importance of a trait, as estimated by a.h(2), was only moderately related to the rate of financial loss or total economic merit (ΔTEM) per percentage under- or overestimation of REV (r = 0.38 and 0.29, respectively) as a result of the variance-covariance structure of traits. The effects on TEM of under- or overestimating trait REVs were non-symmetrical. TEM was most sensitive to incorrect REVs for protein, fat, milk and lifespan and least sensitive to incorrect calving interval, lameness, non-return and mastitis REVs. A guide to deciding which dairy traits require the most rigorous analysis in the calculation of their REVs is given. Varying the REVs within a fairly wide range resulted in different bulls being selected by index and their differing predicted transmitting abilities would result in the herds moving in different directions in the long term (20 years). It is suggested that customized indices, where the farmer creates rankings of bulls tailored to their specific farm circumstances, can be worthwhile. © 2012 Blackwell Verlag GmbH.

  7. Ligand-dependent exciton dynamics and photovoltaic properties of PbS quantum dot heterojunction solar cells.

    PubMed

    Chang, Jin; Ogomi, Yuhei; Ding, Chao; Zhang, Yao Hong; Toyoda, Taro; Hayase, Shuzi; Katayama, Kenji; Shen, Qing

    2017-03-01

    The surface chemistry of colloidal quantum dots (QDs) plays an important role in determining the photoelectric properties of QD films and the corresponding quantum dot heterojunction solar cells (QDHSCs). To investigate the effects of the ligand structure on the photovoltaic performance and exciton dynamics of QDHSCs, PbS QDHSCs were fabricated by the solid state ligand exchange method with mercaptoalkanoic acid as the cross-linking ligand. Temperature-dependent photoluminescence and ultrafast transient absorption spectra show that the electronic coupling and charge transfer rate within QD ensembles were monotonically enhanced as the ligand length decreased. However, in practical QDHSCs, the second shortest ligand 3-mercaptopropionic acid (MPA) showed higher power conversion efficiency than the shortest ligand thioglycolic acid (TGA). This could be attributed to the difference in their surface trap states, supported by thermally stimulated current measurements. Moreover, compared with the non-conjugated ligand MPA, the conjugated ligand 4-mercaptobenzoic acid (MBA) introduces less trap states and has a similar charge transfer rate in QD ensembles, but has poor photovoltaic properties. This unexpected result could be contributed by the QD-ligand orbital mixing, leading to the charge transfer from QDs to ligands instead of charge transfer between adjacent QDs. This work highlights the significant effects of ligand structures on the photovoltaic properties and exciton dynamics of QDHSCs, which would shed light on the further development of QD-based photoelectric devices.

  8. Project FIRES [Firefighters' Integrated Response Equipment System]. Volume 2: Protective Ensemble Performance Standards, Phase 1B

    NASA Technical Reports Server (NTRS)

    Abeles, F. J.

    1980-01-01

    The design of the prototype protective ensemble was finalized. Prototype ensembles were fabricated and then subjected to a series of qualification tests which were based upon the protective ensemble performance standards PEPS requirements. Engineering drawings and purchase specifications were prepared for the new protective ensemble.

  9. Verifying and Postprocesing the Ensemble Spread-Error Relationship

    NASA Astrophysics Data System (ADS)

    Hopson, Tom; Knievel, Jason; Liu, Yubao; Roux, Gregory; Wu, Wanli

    2013-04-01

    With the increased utilization of ensemble forecasts in weather and hydrologic applications, there is a need to verify their benefit over less expensive deterministic forecasts. One such potential benefit of ensemble systems is their capacity to forecast their own forecast error through the ensemble spread-error relationship. The paper begins by revisiting the limitations of the Pearson correlation alone in assessing this relationship. Next, we introduce two new metrics to consider in assessing the utility an ensemble's varying dispersion. We argue there are two aspects of an ensemble's dispersion that should be assessed. First, and perhaps more fundamentally: is there enough variability in the ensembles dispersion to justify the maintenance of an expensive ensemble prediction system (EPS), irrespective of whether the EPS is well-calibrated or not? To diagnose this, the factor that controls the theoretical upper limit of the spread-error correlation can be useful. Secondly, does the variable dispersion of an ensemble relate to variable expectation of forecast error? Representing the spread-error correlation in relation to its theoretical limit can provide a simple diagnostic of this attribute. A context for these concepts is provided by assessing two operational ensembles: 30-member Western US temperature forecasts for the U.S. Army Test and Evaluation Command and 51-member Brahmaputra River flow forecasts of the Climate Forecast and Applications Project for Bangladesh. Both of these systems utilize a postprocessing technique based on quantile regression (QR) under a step-wise forward selection framework leading to ensemble forecasts with both good reliability and sharpness. In addition, the methodology utilizes the ensemble's ability to self-diagnose forecast instability to produce calibrated forecasts with informative skill-spread relationships. We will describe both ensemble systems briefly, review the steps used to calibrate the ensemble forecast, and present verification statistics using error-spread metrics, along with figures from operational ensemble forecasts before and after calibration.

  10. Imprinting and recalling cortical ensembles.

    PubMed

    Carrillo-Reid, Luis; Yang, Weijian; Bando, Yuki; Peterka, Darcy S; Yuste, Rafael

    2016-08-12

    Neuronal ensembles are coactive groups of neurons that may represent building blocks of cortical circuits. These ensembles could be formed by Hebbian plasticity, whereby synapses between coactive neurons are strengthened. Here we report that repetitive activation with two-photon optogenetics of neuronal populations from ensembles in the visual cortex of awake mice builds neuronal ensembles that recur spontaneously after being imprinted and do not disrupt preexisting ones. Moreover, imprinted ensembles can be recalled by single- cell stimulation and remain coactive on consecutive days. Our results demonstrate the persistent reconfiguration of cortical circuits by two-photon optogenetics into neuronal ensembles that can perform pattern completion. Copyright © 2016, American Association for the Advancement of Science.

  11. Anomaly transform methods based on total energy and ocean heat content norms for generating ocean dynamic disturbances for ensemble climate forecasts

    NASA Astrophysics Data System (ADS)

    Romanova, Vanya; Hense, Andreas

    2017-08-01

    In our study we use the anomaly transform, a special case of ensemble transform method, in which a selected set of initial oceanic anomalies in space, time and variables are defined and orthogonalized. The resulting orthogonal perturbation patterns are designed such that they pick up typical balanced anomaly structures in space and time and between variables. The metric used to set up the eigen problem is taken either as the weighted total energy with its zonal, meridional kinetic and available potential energy terms having equal contributions, or the weighted ocean heat content in which a disturbance is applied only to the initial temperature fields. The choices of a reference state for defining the initial anomalies are such that either perturbations on seasonal timescales and or on interannual timescales are constructed. These project a-priori only the slow modes of the ocean physical processes, such that the disturbances grow mainly in the Western Boundary Currents, in the Antarctic Circumpolar Current and the El Nino Southern Oscillation regions. An additional set of initial conditions is designed to fit in a least square sense data from global ocean reanalysis. Applying the AT produced sets of disturbances to oceanic initial conditions initialized by observations of the MPIOM-ESM coupled model on T63L47/GR15 resolution, four ensemble and one hind-cast experiments were performed. The weighted total energy norm is used to monitor the amplitudes and rates of the fastest growing error modes. The results showed minor dependence of the instabilities or error growth on the selected metric but considerable change due to the magnitude of the scaling amplitudes of the perturbation patterns. In contrast to similar atmospheric applications, we find an energy conversion from kinetic to available potential energy, which suggests a different source of uncertainty generation in the ocean than in the atmosphere mainly associated with changes in the density field.

  12. Naval Sea Systems Command > Home > Warfare Centers > NSWC Corona

    Science.gov Websites

    Modernization Inactive Ships International Fleet Support Surface Ship Readiness and Sustainment SURFMEPP Surface ; Schemas MIL-DTL-24784C IM/IP DTD Suite IWS6 Common Schema NAVSEA Class 2 ETM DTD Changes from the ETM Class 2 Revision E History Early Revisions Early Revisions Rev E Changes Rev D Changes Rev C 1.2 Changes

  13. Annual Gaseous Electronics Conference (44TH) Held in Albuquerque, New Mexico on 22-25 October 1991

    DTIC Science & Technology

    1992-05-01

    Phys. Rev. A 38, 2471 (1988); J. E. Lawler et al., Phys. Rev. A 43, 4427 1991). T. J. Sommerer et al., Phys. Rev. A39, 6356 (1989). EA-2 Diagnostics and...Charged Ions with a Metal Surface.* F.W. MEYER, S.H. OVERBURY, CC. HAVENER, PA. ZEULMANS VAN EMMICHOVEN, and D.M. ZEHNER, ORNL -- Projectile K-Auger

  14. Treatment with the Fusion Inhibitor Enfuvirtide Influences the Appearance of Mutations in the Human Immunodeficiency Virus Type 1 Regulatory Protein Rev▿

    PubMed Central

    Svicher, Valentina; Alteri, Claudia; D'Arrigo, Roberta; Laganà, Alessandro; Trignetti, Maria; Lo Caputo, Sergio; Callegaro, Anna Paola; Maggiolo, Franco; Mazzotta, Francesco; Ferro, Alfredo; Dimonte, Salvatore; Aquaro, Stefano; di Perri, Giovanni; Bonora, Stefano; Tommasi, Chiara; Trotta, Maria Paola; Narciso, Pasquale; Antinori, Andrea; Perno, Carlo Federico; Ceccherini-Silberstein, Francesca

    2009-01-01

    The gp41-encoding sequence of the env gene contains in two separate regions the Rev-responsive elements (RRE) and the alternative open reading frame of the second exon of the regulatory protein Rev. The binding of Rev to the RRE allows the transport of unspliced/singly spliced viral mRNAs out of the nucleus, an essential step in the life cycle of human immunodeficiency virus type 1 (HIV-1). In this study, we have investigated whether the fusion-inhibitor enfuvirtide (ENF) can induce mutations in Rev and if these mutations correlate with the classical ENF resistance gp41 mutations and with viremia and CD4 cell count. Specific Rev mutations were positively associated with ENF treatment and significantly correlated with classical ENF resistance gp41 mutations. In particular, a cluster was observed for the Rev mutations E57A (E57Arev) and N86Srev with the ENF resistance gp41 mutations Q40H (Q40Hgp41) and L45Mgp41. In addition, the presence at week 48 of the E57Arev correlates with a significant viremia increase from baseline to week 48 and with a CD4 cell count loss from baseline to week 48. By modeling the RRE structure, we found that the Q40gp41 and L45gp41 codons form complementary base pairs in a region of the RRE involved in Rev binding. The conformation of this Rev-binding site is disrupted when Q40Hgp41 and L45Mgp41 occur alone while it is restored when both mutations are present. In conclusion, our study shows that ENF pressure may also affect both Rev and RRE structures and can provide an excellent example of compensatory evolution. This highlights the multiple roles of ENF (and perhaps other entry inhibitors) in modulating the correct interplay between the different HIV-1 genes and proteins during the HIV-1 life cycle. PMID:19124665

  15. Conservation of Mass and Preservation of Positivity with Ensemble-Type Kalman Filter Algorithms

    NASA Technical Reports Server (NTRS)

    Janjic, Tijana; Mclaughlin, Dennis; Cohn, Stephen E.; Verlaan, Martin

    2014-01-01

    This paper considers the incorporation of constraints to enforce physically based conservation laws in the ensemble Kalman filter. In particular, constraints are used to ensure that the ensemble members and the ensemble mean conserve mass and remain nonnegative through measurement updates. In certain situations filtering algorithms such as the ensemble Kalman filter (EnKF) and ensemble transform Kalman filter (ETKF) yield updated ensembles that conserve mass but are negative, even though the actual states must be nonnegative. In such situations if negative values are set to zero, or a log transform is introduced, the total mass will not be conserved. In this study, mass and positivity are both preserved by formulating the filter update as a set of quadratic programming problems that incorporate non-negativity constraints. Simple numerical experiments indicate that this approach can have a significant positive impact on the posterior ensemble distribution, giving results that are more physically plausible both for individual ensemble members and for the ensemble mean. In two examples, an update that includes a non-negativity constraint is able to properly describe the transport of a sharp feature (e.g., a triangle or cone). A number of implementation questions still need to be addressed, particularly the need to develop a computationally efficient quadratic programming update for large ensemble.

  16. EEMD-based wind turbine bearing failure detection using the generator stator current homopolar component

    NASA Astrophysics Data System (ADS)

    Amirat, Yassine; Choqueuse, Vincent; Benbouzid, Mohamed

    2013-12-01

    Failure detection has always been a demanding task in the electrical machines community; it has become more challenging in wind energy conversion systems because sustainability and viability of wind farms are highly dependent on the reduction of the operational and maintenance costs. Indeed the most efficient way of reducing these costs would be to continuously monitor the condition of these systems. This allows for early detection of the generator health degeneration, facilitating a proactive response, minimizing downtime, and maximizing productivity. This paper provides then an assessment of a failure detection techniques based on the homopolar component of the generator stator current and attempts to highlight the use of the ensemble empirical mode decomposition as a tool for failure detection in wind turbine generators for stationary and non-stationary cases.

  17. Circular-polarization-sensitive metamaterial based on triple-quantum-dot molecules.

    PubMed

    Kotetes, Panagiotis; Jin, Pei-Qing; Marthaler, Michael; Schön, Gerd

    2014-12-05

    We propose a new type of chiral metamaterial based on an ensemble of artificial molecules formed by three identical quantum dots in a triangular arrangement. A static magnetic field oriented perpendicular to the plane breaks mirror symmetry, rendering the molecules sensitive to the circular polarization of light. By varying the orientation and magnitude of the magnetic field one can control the polarization and frequency of the emission spectrum. We identify a threshold frequency Ω, above which we find strong birefringence. In addition, Kerr rotation and circular-polarized lasing action can be implemented. We investigate the single-molecule lasing properties for different energy-level arrangements and demonstrate the possibility of circular-polarization conversion. Finally, we analyze the effect of weak stray electric fields or deviations from the equilateral triangular geometry.

  18. Ocean Predictability and Uncertainty Forecasts Using Local Ensemble Transfer Kalman Filter (LETKF)

    NASA Astrophysics Data System (ADS)

    Wei, M.; Hogan, P. J.; Rowley, C. D.; Smedstad, O. M.; Wallcraft, A. J.; Penny, S. G.

    2017-12-01

    Ocean predictability and uncertainty are studied with an ensemble system that has been developed based on the US Navy's operational HYCOM using the Local Ensemble Transfer Kalman Filter (LETKF) technology. One of the advantages of this method is that the best possible initial analysis states for the HYCOM forecasts are provided by the LETKF which assimilates operational observations using ensemble method. The background covariance during this assimilation process is implicitly supplied with the ensemble avoiding the difficult task of developing tangent linear and adjoint models out of HYCOM with the complicated hybrid isopycnal vertical coordinate for 4D-VAR. The flow-dependent background covariance from the ensemble will be an indispensable part in the next generation hybrid 4D-Var/ensemble data assimilation system. The predictability and uncertainty for the ocean forecasts are studied initially for the Gulf of Mexico. The results are compared with another ensemble system using Ensemble Transfer (ET) method which has been used in the Navy's operational center. The advantages and disadvantages are discussed.

  19. Comment on "Generalization of the Kohn-Sham system that can represent arbitrary one-electron density matrices"

    NASA Astrophysics Data System (ADS)

    Piris, Mario; Pernal, Katarzyna

    2017-10-01

    van Dam [Phys. Rev. A 93, 052512 (2016), 10.1103/PhysRevA.93.052512] claims that the one-particle reduced density matrix (1RDM) of an interacting system can be represented by means of a single-determinant wave function of fictitious noninteracting particles. van Dam [Phys. Rev. A 93, 052512 (2016), 10.1103/PhysRevA.93.052512] introduced orbitals within a mean-field framework that produce energy levels similar to Hartree-Fock orbital energies, therefore he also claims that conventional analyses based on Koopmans' theorem are possible in 1RDM functional theory. In this Comment, we demonstrate that both claims are unfounded.

  20. Devil's staircases and continued fractions in Josephson junctions

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.; Medvedeva, S. Yu.; Botha, A. E.; Kolahchi, M. R.; Irie, A.

    2013-12-01

    Detailed numerical simulations of the IV characteristics of a Josephson junction under external electromagnetic radiation show the devil's staircase within different bias current intervals. We have found that the observed steps form very precisely continued fractions. Increase of the amplitude of the radiation shifts the devil's staircase to higher Shapiro steps. An algorithm for the appearance and detection of subharmonics with increasing radiation amplitude is proposed. We demonstrate that the subharmonic steps registered in the well-known experiments by Dayem and Wiegand [Phys. Rev. 155, 419 (1967), 10.1103/PhysRev.155.419] and Clarke [Phys. Rev. B 4, 2963 (1971), 10.1103/PhysRevB.4.2963] also form continued fractions.

  1. Classical capacity of Gaussian thermal memory channels

    NASA Astrophysics Data System (ADS)

    De Palma, G.; Mari, A.; Giovannetti, V.

    2014-10-01

    The classical capacity of phase-invariant Gaussian channels has been recently determined under the assumption that such channels are memoryless. In this work we generalize this result by deriving the classical capacity of a model of quantum memory channel, in which the output states depend on the previous input states. In particular we extend the analysis of Lupo et al. [Phys. Rev. Lett. 104, 030501 (2010), 10.1103/PhysRevLett.104.030501 and Phys. Rev. A 82, 032312 (2010), 10.1103/PhysRevA.82.032312] from quantum limited channels to thermal attenuators and thermal amplifiers. Our result applies in many situations in which the physical communication channel is affected by nonzero memory and by thermal noise.

  2. Comment on "Modified quantum-speed-limit bounds for open quantum dynamics in quantum channels"

    NASA Astrophysics Data System (ADS)

    Mirkin, Nicolás; Toscano, Fabricio; Wisniacki, Diego A.

    2018-04-01

    In a recent paper [Phys. Rev. A 95, 052118 (2017), 10.1103/PhysRevA.95.052118], the authors claim that our criticism, in Phys. Rev. A 94, 052125 (2016), 10.1103/PhysRevA.94.052125, to some quantum speed limit bounds for open quantum dynamics that appeared recently in literature are invalid. According to the authors, the problem with our analysis would be generated by an artifact of the finite-precision numerical calculations. We analytically show here that it is not possible to have any inconsistency associated with the numerical precision of calculations. Therefore, our criticism of the quantum speed limit bounds continues to be valid.

  3. Joys of Community Ensemble Playing: The Case of the Happy Roll Elastic Ensemble in Taiwan

    ERIC Educational Resources Information Center

    Hsieh, Yuan-Mei; Kao, Kai-Chi

    2012-01-01

    The Happy Roll Elastic Ensemble (HREE) is a community music ensemble supported by Tainan Culture Centre in Taiwan. With enjoyment and friendship as its primary goals, it aims to facilitate the joys of ensemble playing and the spirit of social networking. This article highlights the key aspects of HREE's development in its first two years…

  4. Ensemble coding of face identity is not independent of the coding of individual identity.

    PubMed

    Neumann, Markus F; Ng, Ryan; Rhodes, Gillian; Palermo, Romina

    2018-06-01

    Information about a group of similar objects can be summarized into a compressed code, known as ensemble coding. Ensemble coding of simple stimuli (e.g., groups of circles) can occur in the absence of detailed exemplar coding, suggesting dissociable processes. Here, we investigate whether a dissociation would still be apparent when coding facial identity, where individual exemplar information is much more important. We examined whether ensemble coding can occur when exemplar coding is difficult, as a result of large sets or short viewing times, or whether the two types of coding are positively associated. We found a positive association, whereby both ensemble and exemplar coding were reduced for larger groups and shorter viewing times. There was no evidence for ensemble coding in the absence of exemplar coding. At longer presentation times, there was an unexpected dissociation, where exemplar coding increased yet ensemble coding decreased, suggesting that robust information about face identity might suppress ensemble coding. Thus, for face identity, we did not find the classic dissociation-of access to ensemble information in the absence of detailed exemplar information-that has been used to support claims of distinct mechanisms for ensemble and exemplar coding.

  5. Ocean state and uncertainty forecasts using HYCOM with Local Ensemble Transfer Kalman Filter (LETKF)

    NASA Astrophysics Data System (ADS)

    Wei, Mozheng; Hogan, Pat; Rowley, Clark; Smedstad, Ole-Martin; Wallcraft, Alan; Penny, Steve

    2017-04-01

    An ensemble forecast system based on the US Navy's operational HYCOM using Local Ensemble Transfer Kalman Filter (LETKF) technology has been developed for ocean state and uncertainty forecasts. One of the advantages is that the best possible initial analysis states for the HYCOM forecasts are provided by the LETKF which assimilates the operational observations using ensemble method. The background covariance during this assimilation process is supplied with the ensemble, thus it avoids the difficulty of developing tangent linear and adjoint models for 4D-VAR from the complicated hybrid isopycnal vertical coordinate in HYCOM. Another advantage is that the ensemble system provides the valuable uncertainty estimate corresponding to every state forecast from HYCOM. Uncertainty forecasts have been proven to be critical for the downstream users and managers to make more scientifically sound decisions in numerical prediction community. In addition, ensemble mean is generally more accurate and skilful than the single traditional deterministic forecast with the same resolution. We will introduce the ensemble system design and setup, present some results from 30-member ensemble experiment, and discuss scientific, technical and computational issues and challenges, such as covariance localization, inflation, model related uncertainties and sensitivity to the ensemble size.

  6. The export receptor Crm1 forms a dimer to promote nuclear export of HIV RNA.

    PubMed

    Booth, David S; Cheng, Yifan; Frankel, Alan D

    2014-12-08

    The HIV Rev protein routes viral RNAs containing the Rev Response Element (RRE) through the Crm1 nuclear export pathway to the cytoplasm where viral proteins are expressed and genomic RNA is delivered to assembling virions. The RRE assembles a Rev oligomer that displays nuclear export sequences (NESs) for recognition by the Crm1-Ran(GTP) nuclear receptor complex. Here we provide the first view of an assembled HIV-host nuclear export complex using single-particle electron microscopy. Unexpectedly, Crm1 forms a dimer with an extensive interface that enhances association with Rev-RRE and poises NES binding sites to interact with a Rev oligomer. The interface between Crm1 monomers explains differences between Crm1 orthologs that alter nuclear export and determine cellular tropism for viral replication. The arrangement of the export complex identifies a novel binding surface to possibly target an HIV inhibitor and may point to a broader role for Crm1 dimerization in regulating host gene expression.

  7. Circadian Amplitude Regulation via FBXW7-Targeted REV-ERBα Degradation.

    PubMed

    Zhao, Xuan; Hirota, Tsuyoshi; Han, Xuemei; Cho, Han; Chong, Ling-Wa; Lamia, Katja; Liu, Sihao; Atkins, Annette R; Banayo, Ester; Liddle, Christopher; Yu, Ruth T; Yates, John R; Kay, Steve A; Downes, Michael; Evans, Ronald M

    2016-06-16

    Defects in circadian rhythm influence physiology and behavior with implications for the treatment of sleep disorders, metabolic disease, and cancer. Although core regulatory components of clock rhythmicity have been defined, insight into the mechanisms underpinning amplitude is limited. Here, we show that REV-ERBα, a core inhibitory component of clock transcription, is targeted for ubiquitination and subsequent degradation by the F-box protein FBXW7. By relieving REV-ERBα-dependent repression, FBXW7 provides an unrecognized mechanism for enhancing the amplitude of clock gene transcription. Cyclin-dependent kinase 1 (CDK1)-mediated phosphorylation of REV-ERBα is necessary for FBXW7 recognition. Moreover, targeted hepatic disruption of FBXW7 alters circadian expression of core clock genes and perturbs whole-body lipid and glucose levels. This CDK1-FBXW7 pathway controlling REV-ERBα repression defines an unexpected molecular mechanism for re-engaging the positive transcriptional arm of the clock, as well as a potential route to manipulate clock amplitude via small molecule CDK1 inhibition. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Tissue damage drives co-localization of NF-κB, Smad3, and Nrf2 to direct Rev-erb sensitive wound repair in mouse macrophages

    PubMed Central

    Eichenfield, Dawn Z; Troutman, Ty Dale; Link, Verena M; Lam, Michael T; Cho, Han; Gosselin, David; Spann, Nathanael J; Lesch, Hanna P; Tao, Jenhan; Muto, Jun; Gallo, Richard L; Evans, Ronald M; Glass, Christopher K

    2016-01-01

    Although macrophages can be polarized to distinct phenotypes in vitro with individual ligands, in vivo they encounter multiple signals that control their varied functions in homeostasis, immunity, and disease. Here, we identify roles of Rev-erb nuclear receptors in regulating responses of mouse macrophages to complex tissue damage signals and wound repair. Rather than reinforcing a specific program of macrophage polarization, Rev-erbs repress subsets of genes that are activated by TLR ligands, IL4, TGFβ, and damage-associated molecular patterns (DAMPS). Unexpectedly, a complex damage signal promotes co-localization of NF-κB, Smad3, and Nrf2 at Rev-erb-sensitive enhancers and drives expression of genes characteristic of multiple polarization states in the same cells. Rev-erb-sensitive enhancers thereby integrate multiple damage-activated signaling pathways to promote a wound repair phenotype. DOI: http://dx.doi.org/10.7554/eLife.13024.001 PMID:27462873

  9. Exploring diversity in ensemble classification: Applications in large area land cover mapping

    NASA Astrophysics Data System (ADS)

    Mellor, Andrew; Boukir, Samia

    2017-07-01

    Ensemble classifiers, such as random forests, are now commonly applied in the field of remote sensing, and have been shown to perform better than single classifier systems, resulting in reduced generalisation error. Diversity across the members of ensemble classifiers is known to have a strong influence on classification performance - whereby classifier errors are uncorrelated and more uniformly distributed across ensemble members. The relationship between ensemble diversity and classification performance has not yet been fully explored in the fields of information science and machine learning and has never been examined in the field of remote sensing. This study is a novel exploration of ensemble diversity and its link to classification performance, applied to a multi-class canopy cover classification problem using random forests and multisource remote sensing and ancillary GIS data, across seven million hectares of diverse dry-sclerophyll dominated public forests in Victoria Australia. A particular emphasis is placed on analysing the relationship between ensemble diversity and ensemble margin - two key concepts in ensemble learning. The main novelty of our work is on boosting diversity by emphasizing the contribution of lower margin instances used in the learning process. Exploring the influence of tree pruning on diversity is also a new empirical analysis that contributes to a better understanding of ensemble performance. Results reveal insights into the trade-off between ensemble classification accuracy and diversity, and through the ensemble margin, demonstrate how inducing diversity by targeting lower margin training samples is a means of achieving better classifier performance for more difficult or rarer classes and reducing information redundancy in classification problems. Our findings inform strategies for collecting training data and designing and parameterising ensemble classifiers, such as random forests. This is particularly important in large area remote sensing applications, for which training data is costly and resource intensive to collect.

  10. Pauci ex tanto numero: reducing redundancy in multi-model ensembles

    NASA Astrophysics Data System (ADS)

    Solazzo, E.; Riccio, A.; Kioutsioukis, I.; Galmarini, S.

    2013-02-01

    We explicitly address the fundamental issue of member diversity in multi-model ensembles. To date no attempts in this direction are documented within the air quality (AQ) community, although the extensive use of ensembles in this field. Common biases and redundancy are the two issues directly deriving from lack of independence, undermining the significance of a multi-model ensemble, and are the subject of this study. Shared biases among models will determine a biased ensemble, making therefore essential the errors of the ensemble members to be independent so that bias can cancel out. Redundancy derives from having too large a portion of common variance among the members of the ensemble, producing overconfidence in the predictions and underestimation of the uncertainty. The two issues of common biases and redundancy are analysed in detail using the AQMEII ensemble of AQ model results for four air pollutants in two European regions. We show that models share large portions of bias and variance, extending well beyond those induced by common inputs. We make use of several techniques to further show that subsets of models can explain the same amount of variance as the full ensemble with the advantage of being poorly correlated. Selecting the members for generating skilful, non-redundant ensembles from such subsets proved, however, non-trivial. We propose and discuss various methods of member selection and rate the ensemble performance they produce. In most cases, the full ensemble is outscored by the reduced ones. We conclude that, although independence of outputs may not always guarantee enhancement of scores (but this depends upon the skill being investigated) we discourage selecting the members of the ensemble simply on the basis of scores, that is, independence and skills need to be considered disjointly.

  11. Public Data Set: Erratum: "Multi-point, high-speed passive ion velocity distribution diagnostic on the Pegasus Toroidal Experiment" [Rev. Sci. Instrum. 83, 10D516 (2012)

    DOE Data Explorer

    Burke, Marcus G. [University of Wisconsin-Madison] (ORCID:0000000176193724); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Schlossberg, David J. [University of Wisconsin-Madison] (ORCID:0000000287139448); Winz, Gregory R. [University of Wisconsin-Madison] (ORCID:0000000177627184)

    2016-07-18

    This data set contains openly-documented, machine readable digital research data corresponding to figures published in M.G. Burke et al., 'Erratum: "Multi-point, high-speed passive ion velocity distribution diagnostic on the Pegasus Toroidal Experiment" [Rev. Sci. Instrum. 83, 10D516 (2012)],' Rev. Sci. Instrum. 87, 079902 (2016).

  12. The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer

    DTIC Science & Technology

    2006-07-01

    S. C. & Xiao, G. (2003) Cancer Metastasis Rev. 22, 405–422. 10. Karin, M. & Greten , F. R. (2005) Nat. Rev. Immunol. 5, 749–759. 11. Karin, M., Cao, Y... Greten , F. R. & Li, Z. W. (2002) Nat. Rev. Cancer 2, 301–310. 12. Fan, C. M. & Maniatis, T. (1991) Nature 354, 395–398. 13. Betts, J. C. & Nabel, G

  13. B80 and B101-103 clusters: Remarkable stability of the core-shell structures established by validated density functionalsa)

    NASA Astrophysics Data System (ADS)

    Li, Fengyu; Jin, Peng; Jiang, De-en; Wang, Lu; Zhang, Shengbai B.; Zhao, Jijun; Chen, Zhongfang

    2012-02-01

    Prompted by the very recent claim that the volleyball-shaped B80 fullerene [X. Wang, Phys. Rev. B 82, 153409 (2010), 10.1103/PhysRevB.82.153409] is lower in energy than the B80 buckyball [N. G. Szwacki, A. Sadrzadeh, and B. I. Yakobson, Phys. Rev. Lett. 98, 166804 (2007), 10.1103/PhysRevLett.98.166804] and core-shell structure [J. Zhao, L. Wang, F. Li, and Z. Chen, J. Phys. Chem. A 114, 9969 (2010), 10.1021/jp1018873], and inspired by the most recent finding of another core-shell isomer as the lowest energy B80 isomer [S. De, A. Willand, M. Amsler, P. Pochet, L. Genovese, and S. Goedecher, Phys. Rev. Lett. 106, 225502 (2011), 10.1103/PhysRevLett.106.225502], we carefully evaluated the performance of the density functional methods in the energetics of boron clusters and confirmed that the core-shell construction (stuffed fullerene) is thermodynamically the most favorable structural pattern for B80. Our global minimum search showed that both B101 and B103 also prefer a core-shell structure and that B103 can reach the complete core-shell configuration. We called for great attention to the theoretical community when using density functionals to investigate boron-related nanomaterials.

  14. Analytical results for a conditional phase shift between single-photon pulses in a nonlocal nonlinear medium

    NASA Astrophysics Data System (ADS)

    Viswanathan, Balakrishnan; Gea-Banacloche, Julio

    2018-03-01

    It has been suggested that second-order nonlinearities could be used for quantum logic at the single-photon level. Specifically, successive two-photon processes in principle could accomplish the phase shift (conditioned on the presence of two photons in the low-frequency modes) |011 〉→i |100 〉→-|011 〉 . We have analyzed a recent scheme proposed by Xia et al. [Phys. Rev. Lett. 116, 023601 (2016)], 10.1103/PhysRevLett.116.023601 to induce such a conditional phase shift between two single-photon pulses propagating at different speeds through a nonlinear medium with a nonlocal response. We present here an analytical solution for the most general case, i.e., for an arbitrary response function, initial state, and pulse velocity, which supports their numerical observation that a π phase shift with unit fidelity is possible, in principle, in an appropriate limit. We also discuss why this is possible in this system, despite the theoretical objections to the possibility of conditional phase shifts on single photons that were raised some time ago by Shapiro [Phys. Rev. A 73, 062305 (2006)], 10.1103/PhysRevA.73.062305 and by Gea-Banacloche [Phys. Rev. A 81, 043823 (2010)], 10.1103/PhysRevA.81.043823 one of us.

  15. The physiological and biomechanical effects of forwards and reverse sports wheelchair propulsion.

    PubMed

    Mason, Barry S; Lenton, John P; Goosey-Tolfrey, Victoria L

    2015-07-01

    To explore the physiological and biomechanical differences between forwards (FOR) and reverse (REV) sports wheelchair propulsion. Fourteen able-bodied males with previous wheelchair propulsion experience pushed a sports wheelchair on a single-roller ergometer in a FOR and REV direction at three sub-maximal speeds (4, 6, and 8 km/hour). Each trial lasted 3 minutes, and during the final minute physiological and biomechanical measures was collected. The physiological results revealed that oxygen uptake (1.51 ± 0.29 vs. 1.38 ± 0.26 L/minute, P = 0.005) and heart rate (121 ± 19 vs. 109 ± 14 beats/minute, P < 0.0005) were significantly greater during REV than FOR only during the 8 km/hour trials. From a biomechanical perspective, push frequencies were similar between FOR and REV across all speeds (P > 0.05). However, greater mean resultant forces were applied during FOR (P < 0.0005) at 4 km/hour (66.7 ± 19.5 vs. 49.2 ± 10.3 N), 6 km/hour (90.7 ± 21.9 vs. 65.3 ± 18.6 N), and 8 km/hour (102.5 ± 17.6 vs. 68.7 ± 13.5 N) compared to REV. Alternatively, push times and push angles were significantly lower (P ≤ 0.001) during FOR at each speed. The current study demonstrated that at higher speeds physiological demand becomes elevated during REV. This was likely to be associated with an inability to apply sufficient force to the wheels, thus requiring kinematic adaptations in order to maintain constant speeds in REV.

  16. Impacts of calibration strategies and ensemble methods on ensemble flood forecasting over Lanjiang basin, Southeast China

    NASA Astrophysics Data System (ADS)

    Liu, Li; Xu, Yue-Ping

    2017-04-01

    Ensemble flood forecasting driven by numerical weather prediction products is becoming more commonly used in operational flood forecasting applications.In this study, a hydrological ensemble flood forecasting system based on Variable Infiltration Capacity (VIC) model and quantitative precipitation forecasts from TIGGE dataset is constructed for Lanjiang Basin, Southeast China. The impacts of calibration strategies and ensemble methods on the performance of the system are then evaluated.The hydrological model is optimized by parallel programmed ɛ-NSGAII multi-objective algorithm and two respectively parameterized models are determined to simulate daily flows and peak flows coupled with a modular approach.The results indicatethat the ɛ-NSGAII algorithm permits more efficient optimization and rational determination on parameter setting.It is demonstrated that the multimodel ensemble streamflow mean have better skills than the best singlemodel ensemble mean (ECMWF) and the multimodel ensembles weighted on members and skill scores outperform other multimodel ensembles. For typical flood event, it is proved that the flood can be predicted 3-4 days in advance, but the flows in rising limb can be captured with only 1-2 days ahead due to the flash feature. With respect to peak flows selected by Peaks Over Threshold approach, the ensemble means from either singlemodel or multimodels are generally underestimated as the extreme values are smoothed out by ensemble process.

  17. Lessons from Climate Modeling on the Design and Use of Ensembles for Crop Modeling

    NASA Technical Reports Server (NTRS)

    Wallach, Daniel; Mearns, Linda O.; Ruane, Alexander C.; Roetter, Reimund P.; Asseng, Senthold

    2016-01-01

    Working with ensembles of crop models is a recent but important development in crop modeling which promises to lead to better uncertainty estimates for model projections and predictions, better predictions using the ensemble mean or median, and closer collaboration within the modeling community. There are numerous open questions about the best way to create and analyze such ensembles. Much can be learned from the field of climate modeling, given its much longer experience with ensembles. We draw on that experience to identify questions and make propositions that should help make ensemble modeling with crop models more rigorous and informative. The propositions include defining criteria for acceptance of models in a crop MME, exploring criteria for evaluating the degree of relatedness of models in a MME, studying the effect of number of models in the ensemble, development of a statistical model of model sampling, creation of a repository for MME results, studies of possible differential weighting of models in an ensemble, creation of single model ensembles based on sampling from the uncertainty distribution of parameter values or inputs specifically oriented toward uncertainty estimation, the creation of super ensembles that sample more than one source of uncertainty, the analysis of super ensemble results to obtain information on total uncertainty and the separate contributions of different sources of uncertainty and finally further investigation of the use of the multi-model mean or median as a predictor.

  18. Decadal climate prediction in the large ensemble limit

    NASA Astrophysics Data System (ADS)

    Yeager, S. G.; Rosenbloom, N. A.; Strand, G.; Lindsay, K. T.; Danabasoglu, G.; Karspeck, A. R.; Bates, S. C.; Meehl, G. A.

    2017-12-01

    In order to quantify the benefits of initialization for climate prediction on decadal timescales, two parallel sets of historical simulations are required: one "initialized" ensemble that incorporates observations of past climate states and one "uninitialized" ensemble whose internal climate variations evolve freely and without synchronicity. In the large ensemble limit, ensemble averaging isolates potentially predictable forced and internal variance components in the "initialized" set, but only the forced variance remains after averaging the "uninitialized" set. The ensemble size needed to achieve this variance decomposition, and to robustly distinguish initialized from uninitialized decadal predictions, remains poorly constrained. We examine a large ensemble (LE) of initialized decadal prediction (DP) experiments carried out using the Community Earth System Model (CESM). This 40-member CESM-DP-LE set of experiments represents the "initialized" complement to the CESM large ensemble of 20th century runs (CESM-LE) documented in Kay et al. (2015). Both simulation sets share the same model configuration, historical radiative forcings, and large ensemble sizes. The twin experiments afford an unprecedented opportunity to explore the sensitivity of DP skill assessment, and in particular the skill enhancement associated with initialization, to ensemble size. This talk will highlight the benefits of a large ensemble size for initialized predictions of seasonal climate over land in the Atlantic sector as well as predictions of shifts in the likelihood of climate extremes that have large societal impact.

  19. Summary statistics in the attentional blink.

    PubMed

    McNair, Nicolas A; Goodbourn, Patrick T; Shone, Lauren T; Harris, Irina M

    2017-01-01

    We used the attentional blink (AB) paradigm to investigate the processing stage at which extraction of summary statistics from visual stimuli ("ensemble coding") occurs. Experiment 1 examined whether ensemble coding requires attentional engagement with the items in the ensemble. Participants performed two sequential tasks on each trial: gender discrimination of a single face (T1) and estimating the average emotional expression of an ensemble of four faces (or of a single face, as a control condition) as T2. Ensemble coding was affected by the AB when the tasks were separated by a short temporal lag. In Experiment 2, the order of the tasks was reversed to test whether ensemble coding requires more working-memory resources, and therefore induces a larger AB, than estimating the expression of a single face. Each condition produced a similar magnitude AB in the subsequent gender-discrimination T2 task. Experiment 3 additionally investigated whether the previous results were due to participants adopting a subsampling strategy during the ensemble-coding task. Contrary to this explanation, we found different patterns of performance in the ensemble-coding condition and a condition in which participants were instructed to focus on only a single face within an ensemble. Taken together, these findings suggest that ensemble coding emerges automatically as a result of the deployment of attentional resources across the ensemble of stimuli, prior to information being consolidated in working memory.

  20. --No Title--

    Science.gov Websites

    2008073000 2008072900 2008072800 Background information bias reduction = ( | domain-averaged ensemble mean bias | - | domain-averaged bias-corrected ensemble mean bias | / | domain-averaged bias-corrected ensemble mean bias | NAEFS Products | NAEFS | EMC Ensemble Products EMC | NCEP | National Weather Service

  1. How accurate are the parametrized correlation energies of the uniform electron gas?

    NASA Astrophysics Data System (ADS)

    Bhattarai, Puskar; Patra, Abhirup; Shahi, Chandra; Perdew, John P.

    2018-05-01

    Density functional approximations to the exchange-correlation energy are designed to be exact for an electron gas of uniform density parameter rs and relative spin polarization ζ , requiring a parametrization of the correlation energy per electron ɛc(rs,ζ ) . We consider three widely used parametrizations [J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981), 10.1103/PhysRevB.23.5048 or PZ81, S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980), 10.1139/p80-159 or VWN80, and J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992), 10.1103/PhysRevB.45.13244 or PW92] that interpolate the quantum Monte Carlo (QMC) correlation energies of Ceperley-Alder [Phys. Rev. Lett. 45, 566 (1980), 10.1103/PhysRevLett.45.566], while extrapolating them to known high-(rs→0 ) and low- (rs→∞ ) density limits. For the physically important range 0.5 ≤rs≤20 , they agree closely with one another, with differences of 0.01 eV (0.5%) or less between the latter two. The density parameter interpolation (DPI), designed to predict these energies by interpolation between the known high- and low-density limits, with almost no other input (and none for ζ =0 ), is also reasonably close, both in its original version and with corrections for ζ ≠0 . Moreover, the DPI and PW92 at rs=0.5 are very close to the high-density expansion. The larger discrepancies with the QMC of Spink et al. [Phys. Rev. B 88, 085121 (2013), 10.1103/PhysRevB.88.085121], of order 0.1 eV (5%) at rs=0.5 , are thus surprising, suggesting that the constraint-based PW92 and VWN80 parametrizations are more accurate than the QMC for rs<2 . For rs>2 , however, the QMC of Spink et al. confirms the dependence upon relative spin polarization predicted by the parametrizations.

  2. DNA Polymerase ζ is essential for hexavalent chromium-induced mutagenesis

    PubMed Central

    O'Brien, Travis J.; Witcher, Preston; Brooks, Bradford; Patierno, Steven R.

    2009-01-01

    Translesion synthesis (TLS) is a unique DNA damage tolerance mechanism involved in the replicative bypass of genetic lesions in favor of uninterrupted DNA replication. TLS is critical for the generation of mutations by many different chemical and physical agents, however, there is no information available regarding the role of TLS in carcinogenic metal-induced mutagenesis. Hexavalent chromium (Cr(VI))-containing compounds are highly complex genotoxins possessing both mutagenic and clastogenic activities. The focus of this work was to determine the impact that TLS has on Cr(VI)-induced mutagenesis in S. cerevisiae. Wild-type yeast and strains deficient in TLS polymerases (i.e. Polζ (rev3), Polη (rad30)) were exposed to Cr(VI) and monitored for cell survival and forward mutagenesis at the CAN1 locus. In general, TLS deficiency had little impact on Cr(VI)-induced clonogenic lethality or cell growth. rad30 yeast exhibited higher levels of basal and induced mutagenesis compared to Wt and rev3 yeast. In contrast, rev3 yeast displayed attenuated Cr(VI)-induced mutagenesis. Moreover, deletion of REV3 in rad30 yeast (rad30 rev3) resulted in a significant decrease in basal and Cr(VI) mutagenesis relative to Wt and rad30 single mutants indicating that mutagenesis primarily depended upon Polζ. Interestingly, rev3 yeast were similar to Wt yeast in susceptibility to Cr(VI)-induced frameshift mutations. Mutational analysis of the CAN1 gene revealed that Cr(VI)-induced base substitution mutations accounted for 83.9% and 100.0% of the total mutations in Wt and rev3 yeast, respectively. Insertions and deletions comprised 16.1% of the total mutations in Cr(VI) treated Wt yeast but were not observed rev3 yeast. This work provides novel information regarding the molecular mechanisms of Cr(VI)-induced mutagenesis and is the first report demonstrating a role for TLS in the fixation of mutations induced by a carcinogenic metal. PMID:19428373

  3. Specificity of RSG-1.2 Peptide Binding to RRE-IIB RNA Element of HIV-1 over Rev Peptide Is Mainly Enthalpic in Origin

    PubMed Central

    Kumar, Santosh; Bose, Debojit; Suryawanshi, Hemant; Sabharwal, Harshana; Mapa, Koyeli; Maiti, Souvik

    2011-01-01

    Rev is an essential HIV-1 regulatory protein which binds to the Rev responsive element (RRE) present within the env gene of HIV-1 RNA genome. This binding facilitates the transport of the RNA to the cytoplasm, which in turn triggers the switch between viral latency and active viral replication. Essential components of this complex have been localized to a minimal arginine rich Rev peptide and stem IIB region of RRE. A synthetic peptide known as RSG-1.2 binds with high binding affinity and specificity to the RRE-IIB than the Rev peptide, however the thermodynamic basis of this specificity has not yet been addressed. The present study aims to probe the thermodynamic origin of this specificity of RSG-1.2 over Rev Peptide for RRE-IIB. The temperature dependent melting studies show that RSG-1.2 binding stabilizes the RRE structure significantly (ΔT m = 4.3°C), in contrast to Rev binding. Interestingly the thermodynamic signatures of the binding have also been found to be different for both the peptides. At pH 7.5, RSG-1.2 binds RRE-IIB with a Ka = 16.2±0.6×107 M−1 where enthalpic change ΔH = −13.9±0.1 kcal/mol is the main driving force with limited unfavorable contribution from entropic change TΔS = −2.8±0.1 kcal/mol. A large part of ΔH may be due to specific stacking between U72 and Arg15. In contrast binding of Rev (Ka = 3.1±0.4×107 M−1) is driven mainly by entropy (ΔH = 0 kcal/mol and TΔS = 10.2±0.2 kcal/mol) which arises from major conformational changes in the RNA upon binding. PMID:21853108

  4. Specificity of RSG-1.2 peptide binding to RRE-IIB RNA element of HIV-1 over Rev peptide is mainly enthalpic in origin.

    PubMed

    Kumar, Santosh; Bose, Debojit; Suryawanshi, Hemant; Sabharwal, Harshana; Mapa, Koyeli; Maiti, Souvik

    2011-01-01

    Rev is an essential HIV-1 regulatory protein which binds to the Rev responsive element (RRE) present within the env gene of HIV-1 RNA genome. This binding facilitates the transport of the RNA to the cytoplasm, which in turn triggers the switch between viral latency and active viral replication. Essential components of this complex have been localized to a minimal arginine rich Rev peptide and stem IIB region of RRE. A synthetic peptide known as RSG-1.2 binds with high binding affinity and specificity to the RRE-IIB than the Rev peptide, however the thermodynamic basis of this specificity has not yet been addressed. The present study aims to probe the thermodynamic origin of this specificity of RSG-1.2 over Rev Peptide for RRE-IIB. The temperature dependent melting studies show that RSG-1.2 binding stabilizes the RRE structure significantly (ΔT(m) = 4.3°C), in contrast to Rev binding. Interestingly the thermodynamic signatures of the binding have also been found to be different for both the peptides. At pH 7.5, RSG-1.2 binds RRE-IIB with a K(a) = 16.2±0.6×10(7) M(-1) where enthalpic change ΔH = -13.9±0.1 kcal/mol is the main driving force with limited unfavorable contribution from entropic change TΔS = -2.8±0.1 kcal/mol. A large part of ΔH may be due to specific stacking between U72 and Arg15. In contrast binding of Rev (K(a) = 3.1±0.4×10(7) M(-1)) is driven mainly by entropy (ΔH = 0 kcal/mol and TΔS = 10.2±0.2 kcal/mol) which arises from major conformational changes in the RNA upon binding.

  5. Families of quantum fingerprinting protocols

    NASA Astrophysics Data System (ADS)

    Lovitz, Benjamin; Lütkenhaus, Norbert

    2018-03-01

    We introduce several families of quantum fingerprinting protocols to evaluate the equality function on two n -bit strings in the simultaneous message passing model. The original quantum fingerprinting protocol uses a tensor product of a small number of O (logn ) -qubit high-dimensional signals [H. Buhrman et al., Phys. Rev. Lett. 87, 167902 (2001), 10.1103/PhysRevLett.87.167902], whereas a recently proposed optical protocol uses a tensor product of O (n ) single-qubit signals, while maintaining the O (logn ) information leakage of the original protocol [J. M. Arazola and N. Lütkenhaus, Phys. Rev. A 89, 062305 (2014), 10.1103/PhysRevA.89.062305]. We find a family of protocols which interpolate between the original and optical protocols while maintaining the O (logn ) information leakage, thus demonstrating a tradeoff between the number of signals sent and the dimension of each signal. There has been interest in experimental realization of the recently proposed optical protocol using coherent states [F. Xu et al., Nat. Commun. 6, 8735 (2015), 10.1038/ncomms9735; J.-Y. Guan et al., Phys. Rev. Lett. 116, 240502 (2016), 10.1103/PhysRevLett.116.240502], but as the required number of laser pulses grows linearly with the input size n , eventual challenges for the long-time stability of experimental setups arise. We find a coherent state protocol which reduces the number of signals by a factor 1/2 while also reducing the information leakage. Our reduction makes use of a simple modulation scheme in optical phase space, and we find that more complex modulation schemes are not advantageous. Using a similar technique, we improve a recently proposed coherent state protocol for evaluating the Euclidean distance between two real unit vectors [N. Kumar et al., Phys. Rev. A 95, 032337 (2017), 10.1103/PhysRevA.95.032337] by reducing the number of signals by a factor 1/2 and also reducing the information leakage.

  6. Statistical Ensemble of Large Eddy Simulations

    NASA Technical Reports Server (NTRS)

    Carati, Daniele; Rogers, Michael M.; Wray, Alan A.; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    A statistical ensemble of large eddy simulations (LES) is run simultaneously for the same flow. The information provided by the different large scale velocity fields is used to propose an ensemble averaged version of the dynamic model. This produces local model parameters that only depend on the statistical properties of the flow. An important property of the ensemble averaged dynamic procedure is that it does not require any spatial averaging and can thus be used in fully inhomogeneous flows. Also, the ensemble of LES's provides statistics of the large scale velocity that can be used for building new models for the subgrid-scale stress tensor. The ensemble averaged dynamic procedure has been implemented with various models for three flows: decaying isotropic turbulence, forced isotropic turbulence, and the time developing plane wake. It is found that the results are almost independent of the number of LES's in the statistical ensemble provided that the ensemble contains at least 16 realizations.

  7. Invariant measures in brain dynamics

    NASA Astrophysics Data System (ADS)

    Boyarsky, Abraham; Góra, Paweł

    2006-10-01

    This note concerns brain activity at the level of neural ensembles and uses ideas from ergodic dynamical systems to model and characterize chaotic patterns among these ensembles during conscious mental activity. Central to our model is the definition of a space of neural ensembles and the assumption of discrete time ensemble dynamics. We argue that continuous invariant measures draw the attention of deeper brain processes, engendering emergent properties such as consciousness. Invariant measures supported on a finite set of ensembles reflect periodic behavior, whereas the existence of continuous invariant measures reflect the dynamics of nonrepeating ensemble patterns that elicit the interest of deeper mental processes. We shall consider two different ways to achieve continuous invariant measures on the space of neural ensembles: (1) via quantum jitters, and (2) via sensory input accompanied by inner thought processes which engender a “folding” property on the space of ensembles.

  8. High energy neutrinos from astrophysical accelerators of cosmic ray nuclei

    NASA Astrophysics Data System (ADS)

    Anchordoqui, Luis A.; Hooper, Dan; Sarkar, Subir; Taylor, Andrew M.

    2008-02-01

    Ongoing experimental efforts to detect cosmic sources of high energy neutrinos are guided by the expectation that astrophysical accelerators of cosmic ray protons would also generate neutrinos through interactions with ambient matter and/or photons. However, there will be a reduction in the predicted neutrino flux if cosmic ray sources accelerate not only protons but also significant numbers of heavier nuclei, as is indicated by recent air shower data. We consider plausible extragalactic sources such as active galactic nuclei, gamma ray bursts and starburst galaxies and demand consistency with the observed cosmic ray composition and energy spectrum at Earth after allowing for propagation through intergalactic radiation fields. This allows us to calculate the expected neutrino fluxes from the sources, normalized to the observed cosmic ray spectrum. We find that the likely signals are still within reach of next generation neutrino telescopes such as IceCube.PACS95.85.Ry98.70.Rz98.54.Cm98.54.EpReferencesFor a review, see:F.HalzenD.HooperRep. Prog. Phys.6520021025A.AchterbergIceCube CollaborationPhys. Rev. Lett.972006221101A.AchterbergIceCube CollaborationAstropart. Phys.262006282arXiv:astro-ph/0611063arXiv:astro-ph/0702265V.NiessANTARES CollaborationAIP Conf. Proc.8672006217I.KravchenkoPhys. Rev. D732006082002S.W.BarwickANITA CollaborationPhys. Rev. Lett.962006171101V.Van ElewyckPierre Auger CollaborationAIP Conf. Proc.8092006187For a survey of possible sources and event rates in km3 detectors see e.g.,W.BednarekG.F.BurgioT.MontaruliNew Astron. Rev.4920051M.D.KistlerJ.F.BeacomPhys. Rev. D742006063007A. Kappes, J. Hinton, C. Stegmann, F.A. Aharonian, arXiv:astro-ph/0607286.A.LevinsonE.WaxmanPhys. Rev. Lett.872001171101C.DistefanoD.GuettaE.WaxmanA.LevinsonAstrophys. J.5752002378F.A.AharonianL.A.AnchordoquiD.KhangulyanT.MontaruliJ. Phys. Conf. Ser.392006408J.Alvarez-MunizF.HalzenAstrophys. J.5762002L33F.VissaniAstropart. Phys.262006310F.W.SteckerC.DoneM.H.SalamonP.SommersPhys. Rev. Lett.6619912697(Erratum-ibid. 69 (1992) 2738)F.W.SteckerPhys. Rev. D722005107301A.AtoyanC.D.DermerPhys. Rev. Lett.872001221102L.A.AnchordoquiH.GoldbergF.HalzenT.J.WeilerPhys. Lett. B6002004202E.WaxmanJ.N.BahcallPhys. Rev. Lett.7819972292C.D.DermerA.AtoyanPhys. Rev. Lett.912003071102D.GuettaD.HooperJ.Alvarez-MunizF.HalzenE.ReuveniAstropart. Phys.202004429J.Alvarez-MunizF.HalzenD.W.HooperPhys. Rev. D622000093015A.LoebE.WaxmanJCAP06052006003S. Inoue, G. Sigl, F. Miniati, E. Armengaud, arXiv:astro-ph/0701167.E.WaxmanJ.N.BahcallPhys. Rev. D591999023002Phys. Rev. D642001023002K.MannheimR.J.ProtheroeJ.P.RachenPhys. Rev. D632001023003arXiv:astro-ph/9908031M.AhlersL.A.AnchordoquiH.GoldbergF.HalzenA.RingwaldT.J.WeilerPhys. Rev. D722005023001E.WaxmanAstrophys. J.4521995L1Note that the neutrino spectral shape can deviate from that for protons if the Feynman plateau is not flat in pseudo-rapidity space;L.AnchordoquiH.GoldbergC.NunezPhys. Rev. D712005065014This is in fact suggested by Tevatron data;F.AbeCDF CollaborationPhys. Rev. D4119902330J.G.LearnedS.PakvasaAstropart. Phys.31995267F.HalzenD.SaltzbergPhys. Rev. Lett.8119984305J.F.BeacomN.F.BellD.HooperS.PakvasaT.J.WeilerPhys. Rev. D682003093005(Erratum-ibid. D 72 (2005) 019901)L.A.AnchordoquiH.GoldbergF.HalzenT.J.WeilerPhys. Lett. B593200442L.A.AnchordoquiH.GoldbergF.HalzenT.J.WeilerPhys. Lett. B621200518A.M.HillasAnn. Rev. Astron. Astrophys.221984425For a general discussion on the acceleration time-scale in these sources see, e.g.,D.F.TorresL.A.AnchordoquiRep. Prog. Phys.6720041663M.C.BegelmanB.RudakM.SikoraAstrophys. J.362199038M.J.ChodorowskiA.A.ZdziarskiM.SikoraAstrophys. J.4001992181S.MichalowskiD.AndrewsJ.EickmeyerT.GentileN.MistryR.TalmanK.UenoPhys. Rev. Lett.391977737J.L.PugetF.W.SteckerJ.H.BredekampAstrophys. J.2051976638D.HooperS.SarkarA.M.TaylorAstropart. Phys.272007199The non-thermal energy release in GRBs is much smaller than that output by AGN.P.L.BiermannP.A.StrittmatterAstrophys. J.3221987643R.J.ProtheroeA.P.SzaboPhys. Rev. Lett.6919922885J.P.RachenP.L.BiermannAstron. Astrophys.2721993161J.P.RachenT.StanevP.L.BiermannAstron. Astrophys.2731993377R.C.HartmanEGRET CollaborationAstrophys. J. Suppl.123199979See e.g.,M.PunchNature3581992477D.PetryHEGRA CollaborationAstron. Astrophys.3111996L13P.M.ChadwickAstrophys. J.5131999161C.D.DermerR.SchlickeiserA.MastichiadisAstron. Astrophys.2561992L27S.D.BloomA.P.MarscherAstrophys. J.4611996657K.MannheimAstron. Astrophys.269199367K.MannheimScience2791998684A.DarA.LaorAstrophys. J.4781997L5F.A.AharonianNew Astron.52000377M.BoettcherAstrophys. J.5151999L21C.D.DermerR.SchlickeiserAstrophys. J.4161993458F.W.SteckerPhys. Rev. Lett.2119681016G.J.FishmanC.A.MeeganAnn. Rev. Astron. Astrophys.331995415For a list of papers related to SWIFT, see: http://swift.gsfc.nasa.gov/docs/swift/results/publist/.B.LinkR.I.EpsteinAstrophys. J.4661996764C.A.MeeganNature3551992143M.R.MetzgerNature3871997878See e.g.,T.PiranPhys. Rep.3141999575T.PiranPhys. Rep.3332000529For a recent review of GRB phenomenology, see:P.MeszarosRep. Prog. Phys.6920062259E.WaxmanLect. Notes Phys.5762001122M.MilgromV.UsovAstrophys. J.4491995L37E.WaxmanPhys. Rev. Lett.751995386M.VietriPhys. Rev. Lett.7819974328D.BandAstrophys. J.4131993281F. Halzen, in: K. Oliver (Ed.), Proceedings of the TASI’98, Boulder, 1998, p. 524.J.W.ElbertP.SommersAstrophys. J.4411995151L.A.AnchordoquiG.E.RomeroJ.A.CombiPhys. Rev. D601999103001L.A. Anchordoqui, J.F. Beacom, H. Goldberg, S. Palomares-Ruiz, T.J. Weiler, arXiv:astro-ph/0611580; arXiv:astro-ph/0611581.The factor 9/(4R) results from calculating ∫dr∫dr|r-r|(4πR/3), where r is the position of a star and r is the position of an observer (the position of the reaction), in a region of radius R uniformly filled with sources.D.A.ForbesM.J.WardV.RotaciucM.BlietzR.GenzelS.DrapatzP.P.van der WerfA.KrabbeAstrophys. J.4061993L11P. Chanial, H. Flores, B. Guiderdoni, D. Elbaz, F. Hammer, L. Vigroux, arXiv:astro-ph/0610900.P.O.LagageC.J.CesarskyAstron. Astrophys.1181983223S.P.LaiJ.M.GirartR.CrutcherAstrophys. J.5982003392W.BednarekMon. Not. R. Astron. Soc.3452003847W.BednarekR.J.ProtheroeAstropart. Phys.162002397P.BlasiA.V.OlintoPhys. Rev. D591999023001F.W.SteckerAstropart. Phys.262007398F.W. Stecker, arXiv:astro-ph/0610208.A γ-ray signal from the nearby starburst galaxy NGC253 was reported by the CANGAROO-II Collaboration but their subsequent re-analysis of the data is consistent with the expectation from backgrounds:C.ItohCANGAROO-II CollaborationAstron. Astrophys.3962002L1(Erratum-ibid. 462 (2007) 67)T.A. Thompson, E. Quataert, E. Waxman, A. Loeb, arXiv:astro-ph/0608699.D.J.BirdFly’s Eye CollaborationPhys. Rev. Lett.7119933401D.R.BergmanHiRes CollaborationNucl. Phys. Proc. Suppl.136200440T.Abu-ZayyadHiRes-MIA CollaborationAstrophys. J.5572001686M.NaganoJ. Phys. G181992423V.BerezinskyA.Z.GazizovS.I.GrigorievaPhys. Rev. D742006043005R.U.AbbasiHiRes CollaborationPhys. Rev. Lett.922004151101V.BerezinskyA.Z.GazizovS.I.GrigorievaPhys. Lett. B6122005147V.S.BerezinskyS.I.GrigorievaB.I.HnatykAstropart. Phys.212004617See Fig. 21 in:L.AnchordoquiM.T.DovaA.MariazziT.McCauleyT.PaulS.ReucroftJ.SwainAnn. Phys.3142004145D.AllardE.ParizotE.KhanS.GorielyA.V.OlintoAstron. Astrophys.4432005L29D.AllardE.ParizotA.V.OlintoAstropart. Phys.27200761T.Abu-ZayyadHigh Resolution Fly’s Eye CollaborationAstropart. Phys.232005157P. Sommers, et al., Pierre Auger Collaboration, arXiv:astro-ph/0507150.R.U.AbbasiHiRes CollaborationAstrophys. J.6222005910B.N. Afanasiev, et al., Yakutsk Collaboration, in: M. Nagano (Ed.), Proceedings of the Tokyo Workshop on Techniques for the Study of the Extremely High Energy Cosmic Rays, 1993.J. Knapp, private communication.J.RanftPhys. Rev. D51199564R.S.FletcherT.K.GaisserP.LipariT.StanevPhys. Rev. D5019945710J.EngelT.K.GaisserT.StanevP.LipariPhys. Rev. D4619925013N.N.KalmykovS.S.OstapchenkoA.I.PavlovNucl. Phys. Proc. Suppl.52B19977It is important to stress that the Auger data are still at a preliminary stage and the reconstruction procedures are still to be finalised. However, even allowing for the systematic uncertainties still present, it does appear that at the highest energies fewer events are seen than expected from the AGASA analysis.V.S.BerezinskyG.T.ZatsepinPhys. Lett. B281969423F.W.SteckerAstrophys. J.2281979919R.EngelD.SeckelT.StanevPhys. Rev. D642001093010Z.FodorS.D.KatzA.RingwaldH.TuJCAP03112003015D.De MarcoT.StanevF.W.SteckerPhys. Rev. D732006043003D.HooperA.TaylorS.SarkarAstropart. Phys.23200511M.AveN.BuscaA.V.OlintoA.A.WatsonT.YamamotoAstropart. Phys.23200519A point worth noting at this juncture: If iron nuclei are accelerated to very high energies (much higher than the energy spectrum has been measured), then disintegration can lead to large numbers of protons above the spectrum cutoff. In this case, the resulting cosmogenic neutrino flux is not dramatically suppressed. On the other hand, if iron nuclei are only largely accelerated to around 10eV or less, then the liberated protons will only rarely interact with the CMB to produce pions, hence the cosmogenic neutrino flux will be significantly reduced.

  9. Distinct cognitive mechanisms involved in the processing of single objects and object ensembles

    PubMed Central

    Cant, Jonathan S.; Sun, Sol Z.; Xu, Yaoda

    2015-01-01

    Behavioral research has demonstrated that the shape and texture of single objects can be processed independently. Similarly, neuroimaging results have shown that an object's shape and texture are processed in distinct brain regions with shape in the lateral occipital area and texture in parahippocampal cortex. Meanwhile, objects are not always seen in isolation and are often grouped together as an ensemble. We recently showed that the processing of ensembles also involves parahippocampal cortex and that the shape and texture of ensemble elements are processed together within this region. These neural data suggest that the independence seen between shape and texture in single-object perception would not be observed in object-ensemble perception. Here we tested this prediction by examining whether observers could attend to the shape of ensemble elements while ignoring changes in an unattended texture feature and vice versa. Across six behavioral experiments, we replicated previous findings of independence between shape and texture in single-object perception. In contrast, we observed that changes in an unattended ensemble feature negatively impacted the processing of an attended ensemble feature only when ensemble features were attended globally. When they were attended locally, thereby making ensemble processing similar to single-object processing, interference was abolished. Overall, these findings confirm previous neuroimaging results and suggest that distinct cognitive mechanisms may be involved in single-object and object-ensemble perception. Additionally, they show that the scope of visual attention plays a critical role in determining which type of object processing (ensemble or single object) is engaged by the visual system. PMID:26360156

  10. Effects of ensemble and summary displays on interpretations of geospatial uncertainty data.

    PubMed

    Padilla, Lace M; Ruginski, Ian T; Creem-Regehr, Sarah H

    2017-01-01

    Ensemble and summary displays are two widely used methods to represent visual-spatial uncertainty; however, there is disagreement about which is the most effective technique to communicate uncertainty to the general public. Visualization scientists create ensemble displays by plotting multiple data points on the same Cartesian coordinate plane. Despite their use in scientific practice, it is more common in public presentations to use visualizations of summary displays, which scientists create by plotting statistical parameters of the ensemble members. While prior work has demonstrated that viewers make different decisions when viewing summary and ensemble displays, it is unclear what components of the displays lead to diverging judgments. This study aims to compare the salience of visual features - or visual elements that attract bottom-up attention - as one possible source of diverging judgments made with ensemble and summary displays in the context of hurricane track forecasts. We report that salient visual features of both ensemble and summary displays influence participant judgment. Specifically, we find that salient features of summary displays of geospatial uncertainty can be misunderstood as displaying size information. Further, salient features of ensemble displays evoke judgments that are indicative of accurate interpretations of the underlying probability distribution of the ensemble data. However, when participants use ensemble displays to make point-based judgments, they may overweight individual ensemble members in their decision-making process. We propose that ensemble displays are a promising alternative to summary displays in a geospatial context but that decisions about visualization methods should be informed by the viewer's task.

  11. Measuring social interaction in music ensembles

    PubMed Central

    D'Ausilio, Alessandro; Badino, Leonardo; Camurri, Antonio; Fadiga, Luciano

    2016-01-01

    Music ensembles are an ideal test-bed for quantitative analysis of social interaction. Music is an inherently social activity, and music ensembles offer a broad variety of scenarios which are particularly suitable for investigation. Small ensembles, such as string quartets, are deemed a significant example of self-managed teams, where all musicians contribute equally to a task. In bigger ensembles, such as orchestras, the relationship between a leader (the conductor) and a group of followers (the musicians) clearly emerges. This paper presents an overview of recent research on social interaction in music ensembles with a particular focus on (i) studies from cognitive neuroscience; and (ii) studies adopting a computational approach for carrying out automatic quantitative analysis of ensemble music performances. PMID:27069054

  12. Measuring social interaction in music ensembles.

    PubMed

    Volpe, Gualtiero; D'Ausilio, Alessandro; Badino, Leonardo; Camurri, Antonio; Fadiga, Luciano

    2016-05-05

    Music ensembles are an ideal test-bed for quantitative analysis of social interaction. Music is an inherently social activity, and music ensembles offer a broad variety of scenarios which are particularly suitable for investigation. Small ensembles, such as string quartets, are deemed a significant example of self-managed teams, where all musicians contribute equally to a task. In bigger ensembles, such as orchestras, the relationship between a leader (the conductor) and a group of followers (the musicians) clearly emerges. This paper presents an overview of recent research on social interaction in music ensembles with a particular focus on (i) studies from cognitive neuroscience; and (ii) studies adopting a computational approach for carrying out automatic quantitative analysis of ensemble music performances. © 2016 The Author(s).

  13. Method and apparatus for quantum information processing using entangled neutral-atom qubits

    DOEpatents

    Jau, Yuan Yu; Biedermann, Grant; Deutsch, Ivan

    2018-04-03

    A method for preparing an entangled quantum state of an atomic ensemble is provided. The method includes loading each atom of the atomic ensemble into a respective optical trap; placing each atom of the atomic ensemble into a same first atomic quantum state by impingement of pump radiation; approaching the atoms of the atomic ensemble to within a dipole-dipole interaction length of each other; Rydberg-dressing the atomic ensemble; during the Rydberg-dressing operation, exciting the atomic ensemble with a Raman pulse tuned to stimulate a ground-state hyperfine transition from the first atomic quantum state to a second atomic quantum state; and separating the atoms of the atomic ensemble by more than a dipole-dipole interaction length.

  14. Evaluation of protective ensemble thermal characteristics through sweating hot plate, sweating thermal manikin, and human tests.

    PubMed

    Kim, Jung-Hyun; Powell, Jeffery B; Roberge, Raymond J; Shepherd, Angie; Coca, Aitor

    2014-01-01

    The purpose of this study was to evaluate the predictive capability of fabric Total Heat Loss (THL) values on thermal stress that Personal Protective Equipment (PPE) ensemble wearers may encounter while performing work. A series of three tests, consisting of the Sweating Hot Plate (SHP) test on two sample fabrics and the Sweating Thermal Manikin (STM) and human performance tests on two single-layer encapsulating ensembles (fabric/ensemble A = low THL and B = high THL), was conducted to compare THL values between SHP and STM methods along with human thermophysiological responses to wearing the ensembles. In human testing, ten male subjects performed a treadmill exercise at 4.8 km and 3% incline for 60 min in two environmental conditions (mild = 22°C, 50% relative humidity (RH) and hot/humid = 35°C, 65% RH). The thermal and evaporative resistances were significantly higher on a fabric level as measured in the SHP test than on the ensemble level as measured in the STM test. Consequently the THL values were also significantly different for both fabric types (SHP vs. STM: 191.3 vs. 81.5 W/m(2) in fabric/ensemble A, and 909.3 vs. 149.9 W/m(2) in fabric/ensemble B (p < 0.001). Body temperature and heart rate response between ensembles A and B were consistently different in both environmental conditions (p < 0.001), which is attributed to significantly higher sweat evaporation in ensemble B than in A (p < 0.05), despite a greater sweat production in ensemble A (p < 0.001) in both environmental conditions. Further, elevation of microclimate temperature (p < 0.001) and humidity (p < 0.01) was significantly greater in ensemble A than in B. It was concluded that: (1) SHP test determined THL values are significantly different from the actual THL potential of the PPE ensemble tested on STM, (2) physiological benefits from wearing a more breathable PPE ensemble may not be feasible with incremental THL values (SHP test) less than approximately 150-200 W·m(2), and (3) the effects of thermal environments on a level of heat stress in PPE ensemble wearers are greater than ensemble thermal characteristics.

  15. Minimalist ensemble algorithms for genome-wide protein localization prediction.

    PubMed

    Lin, Jhih-Rong; Mondal, Ananda Mohan; Liu, Rong; Hu, Jianjun

    2012-07-03

    Computational prediction of protein subcellular localization can greatly help to elucidate its functions. Despite the existence of dozens of protein localization prediction algorithms, the prediction accuracy and coverage are still low. Several ensemble algorithms have been proposed to improve the prediction performance, which usually include as many as 10 or more individual localization algorithms. However, their performance is still limited by the running complexity and redundancy among individual prediction algorithms. This paper proposed a novel method for rational design of minimalist ensemble algorithms for practical genome-wide protein subcellular localization prediction. The algorithm is based on combining a feature selection based filter and a logistic regression classifier. Using a novel concept of contribution scores, we analyzed issues of algorithm redundancy, consensus mistakes, and algorithm complementarity in designing ensemble algorithms. We applied the proposed minimalist logistic regression (LR) ensemble algorithm to two genome-wide datasets of Yeast and Human and compared its performance with current ensemble algorithms. Experimental results showed that the minimalist ensemble algorithm can achieve high prediction accuracy with only 1/3 to 1/2 of individual predictors of current ensemble algorithms, which greatly reduces computational complexity and running time. It was found that the high performance ensemble algorithms are usually composed of the predictors that together cover most of available features. Compared to the best individual predictor, our ensemble algorithm improved the prediction accuracy from AUC score of 0.558 to 0.707 for the Yeast dataset and from 0.628 to 0.646 for the Human dataset. Compared with popular weighted voting based ensemble algorithms, our classifier-based ensemble algorithms achieved much better performance without suffering from inclusion of too many individual predictors. We proposed a method for rational design of minimalist ensemble algorithms using feature selection and classifiers. The proposed minimalist ensemble algorithm based on logistic regression can achieve equal or better prediction performance while using only half or one-third of individual predictors compared to other ensemble algorithms. The results also suggested that meta-predictors that take advantage of a variety of features by combining individual predictors tend to achieve the best performance. The LR ensemble server and related benchmark datasets are available at http://mleg.cse.sc.edu/LRensemble/cgi-bin/predict.cgi.

  16. Minimalist ensemble algorithms for genome-wide protein localization prediction

    PubMed Central

    2012-01-01

    Background Computational prediction of protein subcellular localization can greatly help to elucidate its functions. Despite the existence of dozens of protein localization prediction algorithms, the prediction accuracy and coverage are still low. Several ensemble algorithms have been proposed to improve the prediction performance, which usually include as many as 10 or more individual localization algorithms. However, their performance is still limited by the running complexity and redundancy among individual prediction algorithms. Results This paper proposed a novel method for rational design of minimalist ensemble algorithms for practical genome-wide protein subcellular localization prediction. The algorithm is based on combining a feature selection based filter and a logistic regression classifier. Using a novel concept of contribution scores, we analyzed issues of algorithm redundancy, consensus mistakes, and algorithm complementarity in designing ensemble algorithms. We applied the proposed minimalist logistic regression (LR) ensemble algorithm to two genome-wide datasets of Yeast and Human and compared its performance with current ensemble algorithms. Experimental results showed that the minimalist ensemble algorithm can achieve high prediction accuracy with only 1/3 to 1/2 of individual predictors of current ensemble algorithms, which greatly reduces computational complexity and running time. It was found that the high performance ensemble algorithms are usually composed of the predictors that together cover most of available features. Compared to the best individual predictor, our ensemble algorithm improved the prediction accuracy from AUC score of 0.558 to 0.707 for the Yeast dataset and from 0.628 to 0.646 for the Human dataset. Compared with popular weighted voting based ensemble algorithms, our classifier-based ensemble algorithms achieved much better performance without suffering from inclusion of too many individual predictors. Conclusions We proposed a method for rational design of minimalist ensemble algorithms using feature selection and classifiers. The proposed minimalist ensemble algorithm based on logistic regression can achieve equal or better prediction performance while using only half or one-third of individual predictors compared to other ensemble algorithms. The results also suggested that meta-predictors that take advantage of a variety of features by combining individual predictors tend to achieve the best performance. The LR ensemble server and related benchmark datasets are available at http://mleg.cse.sc.edu/LRensemble/cgi-bin/predict.cgi. PMID:22759391

  17. Optimization of oligomeric enzyme activity in ionic liquids using Rhodotorula glutinis yeast phenylalanine ammonia lyase.

    PubMed

    Barron, Christiaan C; Sponagle, Brandon J D; Arivalagan, Pugazhendhi; D'Cunha, Godwin B

    2017-01-01

    Phenylalanine ammonia lyase (E.C.4.3.1.24, PAL) activity of Rhodotorula glutinis yeast has been demonstrated in four commonly used ionic liquids. PAL forward reaction was carried out in 1-butyl-3-methylimidazolium methyl sulfate ([BMIM][MeSO 4 ]), 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF 4 ]), 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF 6 ]) and 1-butyl-3-methylimidazolium lactate ([BMIM][lactate]). Our experiments have revealed that PAL is catalytically active in ionic liquids and the enzyme activity in ([BMIM][PF 6 ]) is comparable to that obtained in aqueous buffer medium. Different conditions were optimized for maximal PAL forward activity including time of incubation (30.0min) L -phenylalanine substrate concentration (30.0mM), nature of buffer (50.0mM Tris-HCl), pH (9.0), temperature (37°C), and speed of agitation (100 rev min -1 ). Under these optimized conditions, about 83% conversion of substrate to product was obtained for the PAL forward reaction that was determined using UV spectroscopy at 290nm. PAL reverse reaction in ([BMIM][PF 6 ]) was determined spectrophotometrically at 520nm; and about 59% substrate conversion was obtained. This data provides further knowledge in enzyme biocatalysis in non-aqueous media, and may be of importance when studying the function of other oligomeric/multimeric proteins and enzymes in ionic liquids. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Quantum Phases of Matter in Optical Lattices

    DTIC Science & Technology

    2015-06-30

    doi: 10.1103/PhysRevA.89.013625 Hyungwon Kim, David A. Huse. Ballistic Spreading of Entanglement in a Diffusive Nonintegrable System, Physical...Review B, (07 2013): 0. doi: 10.1103/PhysRevB.88.014206 Lin Dong, Lei Jiang, Han Pu. Fulde–Ferrell pairing instability in spin–orbit coupled Fermi...PhysRevA.87.051603 Kuei Sun, C. J. Bolech. Pair tunneling, phase separation, and dimensional crossover in imbalanced fermionic superfluids in a coupled

  19. Proposed Experiment in Two-Qubit Linear Optical Photonic Gates for Maximal Success Rates

    DTIC Science & Technology

    2012-01-01

    Phys. Rev. A 72 032307 [10] Kwiat P G, Waks E White A G, Applebaum I and Eberhaard P E 1999 Phys. Rev. A 60 R773–6 [11] Barz S, Cronenberg G, Zeilinger ...17] Reck M, Zeilinger A, Bernstein H J and Bertani P 1994 Phys. Rev. Lett. 73 58 [18] Thompson M G, Politi A, Matthews J C F and O’Brien J L 2011 IET

  20. Comment on "Comparative study of ab initio nonradiative recombination rate calculations under different formalisms"

    NASA Astrophysics Data System (ADS)

    Wickramaratne, Darshana; Shen, Jimmy-Xuan; Alkauskas, Audrius; Van de Walle, Chris G.

    2018-02-01

    In a recent article [Phys. Rev. B 91, 205315 (2015), 10.1103/PhysRevB.91.205315] Shi, Xu, and Wang presented a comparison of several formalisms to calculate nonradiative recombination rates and concluded the "one-dimensional (1D) quantum formula" that was used by Alkauskas et al. [Phys. Rev. B 90, 075202 (2014), 10.1103/PhysRevB.90.075202] is insufficient to accurately describe nonradiative capture rates. Our analysis of the results of Shi, Xu, and Wang indicates that their conclusions about the 1D quantum formula are unfounded and stem from an error in their calculations. Our own calculations demonstrate that the 1D quantum formula approach yields reliable and accurate results for nonradiative recombination rates.

  1. Addendum: New approach to the resummation of logarithms in Higgs-boson decays to a vector quarkonium plus a photon [Phys. Rev. D 95, 054018 (2017)

    DOE PAGES

    Bodwin, Geoffrey T.; Chung, Hee Sok; Ee, June-Haak; ...

    2017-12-20

    In this addendum to Phys. Rev. D 95, 054018 (2017) we recompute the rates for the decays of the Higgs boson to a vector quarkonium plus a photon, where the vector quarkonium is J/psi, Upsilon(1S) Upsilon(2S). We correct an error in the Abel-Pad'e summation formula that was used to carry out the evolution of the quarkonium light-cone distribution amplitude in Phys. Rev. D 95, 054018 (2017). We also correct an error in the scale of quarkonium wave function at the origin in Phys. Rev. D 95, 054018 (2017) and introduce several additional refinements in the calculation.

  2. Addendum: New approach to the resummation of logarithms in Higgs-boson decays to a vector quarkonium plus a photon [Phys. Rev. D 95, 054018 (2017)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodwin, Geoffrey T.; Chung, Hee Sok; Ee, June-Haak

    In this addendum to Phys. Rev. D 95, 054018 (2017) we recompute the rates for the decays of the Higgs boson to a vector quarkonium plus a photon, where the vector quarkonium is J/psi, Upsilon(1S) Upsilon(2S). We correct an error in the Abel-Pad'e summation formula that was used to carry out the evolution of the quarkonium light-cone distribution amplitude in Phys. Rev. D 95, 054018 (2017). We also correct an error in the scale of quarkonium wave function at the origin in Phys. Rev. D 95, 054018 (2017) and introduce several additional refinements in the calculation.

  3. The Impact of ENSO on Extratropical Low Frequency Noise in Seasonal Forecasts

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried D.; Suarez, Max J.; Chang, Yehui; Branstator, Grant

    2000-01-01

    This study examines the uncertainty in forecasts of the January-February-March (JFM) mean extratropical circulation, and how that uncertainty is modulated by the El Nino/Southern Oscillation (ENSO). The analysis is based on ensembles of hindcasts made with an Atmospheric General Circulation Model (AGCM) forced with sea surface temperatures observed during; the 1983 El Nino and 1989 La Nina events. The AGCM produces pronounced interannual differences in the magnitude of the extratropical seasonal mean noise (intra-ensemble variability). The North Pacific, in particular, shows extensive regions where the 1989 seasonal mean noise kinetic energy (SKE), which is dominated by a "PNA-like" spatial structure, is more than twice that of the 1983 forecasts. The larger SKE in 1989 is associated with a larger than normal barotropic conversion of kinetic energy from the mean Pacific jet to the seasonal mean noise. The generation of SKE due to sub-monthly transients also shows substantial interannual differences, though these are much smaller than the differences in the mean flow conversions. An analysis of the Generation of monthly mean noise kinetic energy (NIKE) and its variability suggests that the seasonal mean noise is predominantly a statistical residue of variability resulting from dynamical processes operating on monthly and shorter times scales. A stochastically-forced barotropic model (linearized about the AGCM's 1983 and 1989 base states) is used to further assess the role of the basic state, submonthly transients, and tropical forcing, in modulating the uncertainties in the seasonal AGCM forecasts. When forced globally with spatially-white noise, the linear model generates much larger variance for the 1989 base state, consistent with the AGCM results. The extratropical variability for the 1989 base state is dominanted by a single eigenmode, and is strongly coupled with forcing over tropical western Pacific and the Indian Ocean, again consistent with the AGCM results. Linear calculations that include forcing from the AGCM variance of the tropical forcing and submonthly transients show a small impact on the variability over the Pacific/North American region compared with that of the base state differences.

  4. Bayesian ensemble refinement by replica simulations and reweighting.

    PubMed

    Hummer, Gerhard; Köfinger, Jürgen

    2015-12-28

    We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.

  5. Bayesian ensemble refinement by replica simulations and reweighting

    NASA Astrophysics Data System (ADS)

    Hummer, Gerhard; Köfinger, Jürgen

    2015-12-01

    We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.

  6. A Statistical Description of Neural Ensemble Dynamics

    PubMed Central

    Long, John D.; Carmena, Jose M.

    2011-01-01

    The growing use of multi-channel neural recording techniques in behaving animals has produced rich datasets that hold immense potential for advancing our understanding of how the brain mediates behavior. One limitation of these techniques is they do not provide important information about the underlying anatomical connections among the recorded neurons within an ensemble. Inferring these connections is often intractable because the set of possible interactions grows exponentially with ensemble size. This is a fundamental challenge one confronts when interpreting these data. Unfortunately, the combination of expert knowledge and ensemble data is often insufficient for selecting a unique model of these interactions. Our approach shifts away from modeling the network diagram of the ensemble toward analyzing changes in the dynamics of the ensemble as they relate to behavior. Our contribution consists of adapting techniques from signal processing and Bayesian statistics to track the dynamics of ensemble data on time-scales comparable with behavior. We employ a Bayesian estimator to weigh prior information against the available ensemble data, and use an adaptive quantization technique to aggregate poorly estimated regions of the ensemble data space. Importantly, our method is capable of detecting changes in both the magnitude and structure of correlations among neurons missed by firing rate metrics. We show that this method is scalable across a wide range of time-scales and ensemble sizes. Lastly, the performance of this method on both simulated and real ensemble data is used to demonstrate its utility. PMID:22319486

  7. Up-, down-, strange-, charm-, and bottom-quark masses from four-flavor lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazavov, A.; Bernard, C.; Brambilla, N.

    We calculate the up-, down-, strange-, charm-, and bottom-quark masses using the MILC highly improved staggered-quark ensembles with four flavors of dynamical quarks. We use ensembles at six lattice spacings ranging frommore » $$a\\approx0.15~$$fm to $0.03~$fm and with both physical and unphysical values of the two light and the strange sea-quark masses. We use a new method based on heavy-quark effective theory (HQET) to extract quark masses from heavy-light pseudoscalar meson masses. Combining our analysis with our separate determination of ratios of light-quark masses we present masses of the up, down, strange, charm, and bottom quarks. Our results for the $$\\overline{\\text{MS}}$$-renormalized masses are $$m_u(2~\\text{GeV}) = 2.118(38)~$$MeV, $$m_d(2~\\text{GeV}) = 4.690(54)~$$MeV, $$m_s(2~\\text{GeV}) = 92.52(69)~$$MeV, $$m_c(3~\\text{GeV}) = 984.3(5.6)~$$MeV, and $$m_c(m_c) = 1273(10)~$$MeV, with four active flavors; and $$m_b(m_b) = 4197(14)~$$MeV with five active flavors. We also obtain ratios of quark masses $$m_c/m_s = 11.784(22)$$, $$m_b/m_s = 53.93(12)$$, and $$m_b/m_c = 4.577(8)$$. The result for $$m_c$$ matches the precision of the most precise calculation to date, and the other masses and all quoted ratios are the most precise to date. Moreover, these results are the first with a perturbative accuracy of $$\\alpha_s^4$$. As byproducts of our method, we obtain the matrix elements of HQET operators with dimension 4 and 5: $$\\overline{\\Lambda}_\\text{MRS}=552(30)~$$MeV in the minimal renormalon-subtracted (MRS) scheme, $$\\mu_\\pi^2 = 0.06(22)~\\text{GeV}^2$$, and $$\\mu_G^2(m_b)=0.38(2)~\\text{GeV}^2$$. The MRS scheme [Phys. Rev. D97, 034503 (2018), arXiv:1712.04983 [hep-ph

  8. Assessing the hydrological impacts of Tropical Cyclones on the Carolinas: An observational and modeling based investigation

    NASA Astrophysics Data System (ADS)

    Leeper, R. D.; Prat, O. P.; Blanton, B. O.

    2012-12-01

    During the warm season, the Carolinas are particularly prone to tropical cyclone (TC) activity and can be impacted in many different ways depending on storm track. The coasts of the Carolinas are the most vulnerable areas, but particular situations (Frances and Ivan 2004) affected communities far from the coasts (Prat and Nelson 2012). Regardless of where landfall occurs, TCs are often associated with intense precipitation and strong winds triggering a variety of natural hazards (storm surge, flooding, landslides). The assessment of societal and environmental impacts of TCs requires a suite of observations. The scarcity of station coverage, sensor limitations, and rainfall retrieval uncertainties are issues limiting the ability to assess accurately the impact of extreme precipitation events. Therefore, numerical models, such as the Weather Research and Forecasting model (WRF), can be valuable tools to investigate those impacts at regional and local scales and bridge the gap between observations. The goal of this study is to investigate the impact of TCs across the Carolinas using both observational and modeling technologies, and explore the usefulness of numerical methods in data-scarce regions. To fully assess TC impacts on the Carolinas inhabitants, storms impacting both coastal and inner communities will be selected and high-resolution WRF ensemble simulations generated from a suite of physic schemes for each TC to investigate their impact at finer scales. The ensemble member performance will be evaluated with respect to ground-based and satellite observations. Furthermore, results from the high-resolution WRF simulations, including the average wind-speed and the sea level pressure, will be used with the ADCIRC storm-surge and wave-model (Westerink et al, 2008) to simulate storm surge and waves along the Carolinas coast for TCs travelling along the coast or making landfall. This work aims to provide an assessment of the various types of impacts TCs can have based on their track and other characteristics. Prat, O.P., and B.R. Nelson, 2012. J. Climate. Conditionally Accepted. Westerink, J., R. Luettich, J. Feyen, et al, 2008. Month. Weather Rev., 136, 833-864.

  9. Ensembl genomes 2016: more genomes, more complexity

    USDA-ARS?s Scientific Manuscript database

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent...

  10. New type of chimera and mutual synchronization of spatiotemporal structures in two coupled ensembles of nonlocally interacting chaotic maps

    NASA Astrophysics Data System (ADS)

    Bukh, Andrei; Rybalova, Elena; Semenova, Nadezhda; Strelkova, Galina; Anishchenko, Vadim

    2017-11-01

    We study numerically the dynamics of a network made of two coupled one-dimensional ensembles of discrete-time systems. The first ensemble is represented by a ring of nonlocally coupled Henon maps and the second one by a ring of nonlocally coupled Lozi maps. We find that the network of coupled ensembles can realize all the spatio-temporal structures which are observed both in the Henon map ensemble and in the Lozi map ensemble while uncoupled. Moreover, we reveal a new type of spatiotemporal structure, a solitary state chimera, in the considered network. We also establish and describe the effect of mutual synchronization of various complex spatiotemporal patterns in the system of two coupled ensembles of Henon and Lozi maps.

  11. An Improved Ensemble of Random Vector Functional Link Networks Based on Particle Swarm Optimization with Double Optimization Strategy

    PubMed Central

    Ling, Qing-Hua; Song, Yu-Qing; Han, Fei; Yang, Dan; Huang, De-Shuang

    2016-01-01

    For ensemble learning, how to select and combine the candidate classifiers are two key issues which influence the performance of the ensemble system dramatically. Random vector functional link networks (RVFL) without direct input-to-output links is one of suitable base-classifiers for ensemble systems because of its fast learning speed, simple structure and good generalization performance. In this paper, to obtain a more compact ensemble system with improved convergence performance, an improved ensemble of RVFL based on attractive and repulsive particle swarm optimization (ARPSO) with double optimization strategy is proposed. In the proposed method, ARPSO is applied to select and combine the candidate RVFL. As for using ARPSO to select the optimal base RVFL, ARPSO considers both the convergence accuracy on the validation data and the diversity of the candidate ensemble system to build the RVFL ensembles. In the process of combining RVFL, the ensemble weights corresponding to the base RVFL are initialized by the minimum norm least-square method and then further optimized by ARPSO. Finally, a few redundant RVFL is pruned, and thus the more compact ensemble of RVFL is obtained. Moreover, in this paper, theoretical analysis and justification on how to prune the base classifiers on classification problem is presented, and a simple and practically feasible strategy for pruning redundant base classifiers on both classification and regression problems is proposed. Since the double optimization is performed on the basis of the single optimization, the ensemble of RVFL built by the proposed method outperforms that built by some single optimization methods. Experiment results on function approximation and classification problems verify that the proposed method could improve its convergence accuracy as well as reduce the complexity of the ensemble system. PMID:27835638

  12. An Improved Ensemble of Random Vector Functional Link Networks Based on Particle Swarm Optimization with Double Optimization Strategy.

    PubMed

    Ling, Qing-Hua; Song, Yu-Qing; Han, Fei; Yang, Dan; Huang, De-Shuang

    2016-01-01

    For ensemble learning, how to select and combine the candidate classifiers are two key issues which influence the performance of the ensemble system dramatically. Random vector functional link networks (RVFL) without direct input-to-output links is one of suitable base-classifiers for ensemble systems because of its fast learning speed, simple structure and good generalization performance. In this paper, to obtain a more compact ensemble system with improved convergence performance, an improved ensemble of RVFL based on attractive and repulsive particle swarm optimization (ARPSO) with double optimization strategy is proposed. In the proposed method, ARPSO is applied to select and combine the candidate RVFL. As for using ARPSO to select the optimal base RVFL, ARPSO considers both the convergence accuracy on the validation data and the diversity of the candidate ensemble system to build the RVFL ensembles. In the process of combining RVFL, the ensemble weights corresponding to the base RVFL are initialized by the minimum norm least-square method and then further optimized by ARPSO. Finally, a few redundant RVFL is pruned, and thus the more compact ensemble of RVFL is obtained. Moreover, in this paper, theoretical analysis and justification on how to prune the base classifiers on classification problem is presented, and a simple and practically feasible strategy for pruning redundant base classifiers on both classification and regression problems is proposed. Since the double optimization is performed on the basis of the single optimization, the ensemble of RVFL built by the proposed method outperforms that built by some single optimization methods. Experiment results on function approximation and classification problems verify that the proposed method could improve its convergence accuracy as well as reduce the complexity of the ensemble system.

  13. A comparison between EDA-EnVar and ETKF-EnVar data assimilation techniques using radar observations at convective scales through a case study of Hurricane Ike (2008)

    NASA Astrophysics Data System (ADS)

    Shen, Feifei; Xu, Dongmei; Xue, Ming; Min, Jinzhong

    2017-07-01

    This study examines the impacts of assimilating radar radial velocity (Vr) data for the simulation of hurricane Ike (2008) with two different ensemble generation techniques in the framework of the hybrid ensemble-variational (EnVar) data assimilation system of Weather Research and Forecasting model. For the generation of ensemble perturbations we apply two techniques, the ensemble transform Kalman filter (ETKF) and the ensemble of data assimilation (EDA). For the ETKF-EnVar, the forecast ensemble perturbations are updated by the ETKF, while for the EDA-EnVar, the hybrid is employed to update each ensemble member with perturbed observations. The ensemble mean is analyzed by the hybrid method with flow-dependent ensemble covariance for both EnVar. The sensitivity of analyses and forecasts to the two applied ensemble generation techniques is investigated in our current study. It is found that the EnVar system is rather stable with different ensemble update techniques in terms of its skill on improving the analyses and forecasts. The EDA-EnVar-based ensemble perturbations are likely to include slightly less organized spatial structures than those in ETKF-EnVar, and the perturbations of the latter are constructed more dynamically. Detailed diagnostics reveal that both of the EnVar schemes not only produce positive temperature increments around the hurricane center but also systematically adjust the hurricane location with the hurricane-specific error covariance. On average, the analysis and forecast from the ETKF-EnVar have slightly smaller errors than that from the EDA-EnVar in terms of track, intensity, and precipitation forecast. Moreover, ETKF-EnVar yields better forecasts when verified against conventional observations.

  14. Pauci ex tanto numero: reduce redundancy in multi-model ensembles

    NASA Astrophysics Data System (ADS)

    Solazzo, E.; Riccio, A.; Kioutsioukis, I.; Galmarini, S.

    2013-08-01

    We explicitly address the fundamental issue of member diversity in multi-model ensembles. To date, no attempts in this direction have been documented within the air quality (AQ) community despite the extensive use of ensembles in this field. Common biases and redundancy are the two issues directly deriving from lack of independence, undermining the significance of a multi-model ensemble, and are the subject of this study. Shared, dependant biases among models do not cancel out but will instead determine a biased ensemble. Redundancy derives from having too large a portion of common variance among the members of the ensemble, producing overconfidence in the predictions and underestimation of the uncertainty. The two issues of common biases and redundancy are analysed in detail using the AQMEII ensemble of AQ model results for four air pollutants in two European regions. We show that models share large portions of bias and variance, extending well beyond those induced by common inputs. We make use of several techniques to further show that subsets of models can explain the same amount of variance as the full ensemble with the advantage of being poorly correlated. Selecting the members for generating skilful, non-redundant ensembles from such subsets proved, however, non-trivial. We propose and discuss various methods of member selection and rate the ensemble performance they produce. In most cases, the full ensemble is outscored by the reduced ones. We conclude that, although independence of outputs may not always guarantee enhancement of scores (but this depends upon the skill being investigated), we discourage selecting the members of the ensemble simply on the basis of scores; that is, independence and skills need to be considered disjointly.

  15. Ensemble Methods

    NASA Astrophysics Data System (ADS)

    Re, Matteo; Valentini, Giorgio

    2012-03-01

    Ensemble methods are statistical and computational learning procedures reminiscent of the human social learning behavior of seeking several opinions before making any crucial decision. The idea of combining the opinions of different "experts" to obtain an overall “ensemble” decision is rooted in our culture at least from the classical age of ancient Greece, and it has been formalized during the Enlightenment with the Condorcet Jury Theorem[45]), which proved that the judgment of a committee is superior to those of individuals, provided the individuals have reasonable competence. Ensembles are sets of learning machines that combine in some way their decisions, or their learning algorithms, or different views of data, or other specific characteristics to obtain more reliable and more accurate predictions in supervised and unsupervised learning problems [48,116]. A simple example is represented by the majority vote ensemble, by which the decisions of different learning machines are combined, and the class that receives the majority of “votes” (i.e., the class predicted by the majority of the learning machines) is the class predicted by the overall ensemble [158]. In the literature, a plethora of terms other than ensembles has been used, such as fusion, combination, aggregation, and committee, to indicate sets of learning machines that work together to solve a machine learning problem [19,40,56,66,99,108,123], but in this chapter we maintain the term ensemble in its widest meaning, in order to include the whole range of combination methods. Nowadays, ensemble methods represent one of the main current research lines in machine learning [48,116], and the interest of the research community on ensemble methods is witnessed by conferences and workshops specifically devoted to ensembles, first of all the multiple classifier systems (MCS) conference organized by Roli, Kittler, Windeatt, and other researchers of this area [14,62,85,149,173]. Several theories have been proposed to explain the characteristics and the successful application of ensembles to different application domains. For instance, Allwein, Schapire, and Singer interpreted the improved generalization capabilities of ensembles of learning machines in the framework of large margin classifiers [4,177], Kleinberg in the context of stochastic discrimination theory [112], and Breiman and Friedman in the light of the bias-variance analysis borrowed from classical statistics [21,70]. Empirical studies showed that both in classification and regression problems, ensembles improve on single learning machines, and moreover large experimental studies compared the effectiveness of different ensemble methods on benchmark data sets [10,11,49,188]. The interest in this research area is motivated also by the availability of very fast computers and networks of workstations at a relatively low cost that allow the implementation and the experimentation of complex ensemble methods using off-the-shelf computer platforms. However, as explained in Section 26.2 there are deeper reasons to use ensembles of learning machines, motivated by the intrinsic characteristics of the ensemble methods. The main aim of this chapter is to introduce ensemble methods and to provide an overview and a bibliography of the main areas of research, without pretending to be exhaustive or to explain the detailed characteristics of each ensemble method. The paper is organized as follows. In the next section, the main theoretical and practical reasons for combining multiple learners are introduced. Section 26.3 depicts the main taxonomies on ensemble methods proposed in the literature. In Section 26.4 and 26.5, we present an overview of the main supervised ensemble methods reported in the literature, adopting a simple taxonomy, originally proposed in Ref. [201]. Applications of ensemble methods are only marginally considered, but a specific section on some relevant applications of ensemble methods in astronomy and astrophysics has been added (Section 26.6). The conclusion (Section 26.7) ends this paper and lists some issues not covered in this work.

  16. Ensemble Generation and the Influence of Protein Flexibility on Geometric Tunnel Prediction in Cytochrome P450 Enzymes

    PubMed Central

    Kingsley, Laura J.; Lill, Markus A.

    2014-01-01

    Computational prediction of ligand entry and egress paths in proteins has become an emerging topic in computational biology and has proven useful in fields such as protein engineering and drug design. Geometric tunnel prediction programs, such as Caver3.0 and MolAxis, are computationally efficient methods to identify potential ligand entry and egress routes in proteins. Although many geometric tunnel programs are designed to accommodate a single input structure, the increasingly recognized importance of protein flexibility in tunnel formation and behavior has led to the more widespread use of protein ensembles in tunnel prediction. However, there has not yet been an attempt to directly investigate the influence of ensemble size and composition on geometric tunnel prediction. In this study, we compared tunnels found in a single crystal structure to ensembles of various sizes generated using different methods on both the apo and holo forms of cytochrome P450 enzymes CYP119, CYP2C9, and CYP3A4. Several protein structure clustering methods were tested in an attempt to generate smaller ensembles that were capable of reproducing the data from larger ensembles. Ultimately, we found that by including members from both the apo and holo data sets, we could produce ensembles containing less than 15 members that were comparable to apo or holo ensembles containing over 100 members. Furthermore, we found that, in the absence of either apo or holo crystal structure data, pseudo-apo or –holo ensembles (e.g. adding ligand to apo protein throughout MD simulations) could be used to resemble the structural ensembles of the corresponding apo and holo ensembles, respectively. Our findings not only further highlight the importance of including protein flexibility in geometric tunnel prediction, but also suggest that smaller ensembles can be as capable as larger ensembles at capturing many of the protein motions important for tunnel prediction at a lower computational cost. PMID:24956479

  17. The physiological and biomechanical effects of forwards and reverse sports wheelchair propulsion

    PubMed Central

    Mason, Barry S.; Lenton, John P.; Goosey-Tolfrey, Victoria L.

    2015-01-01

    Objective To explore the physiological and biomechanical differences between forwards (FOR) and reverse (REV) sports wheelchair propulsion. Design Fourteen able-bodied males with previous wheelchair propulsion experience pushed a sports wheelchair on a single-roller ergometer in a FOR and REV direction at three sub-maximal speeds (4, 6, and 8 km/hour). Each trial lasted 3 minutes, and during the final minute physiological and biomechanical measures was collected. Results The physiological results revealed that oxygen uptake (1.51 ± 0.29 vs. 1.38 ± 0.26 L/minute, P = 0.005) and heart rate (121 ± 19 vs. 109 ± 14 beats/minute, P < 0.0005) were significantly greater during REV than FOR only during the 8 km/hour trials. From a biomechanical perspective, push frequencies were similar between FOR and REV across all speeds (P > 0.05). However, greater mean resultant forces were applied during FOR (P < 0.0005) at 4 km/hour (66.7 ± 19.5 vs. 49.2 ± 10.3 N), 6 km/hour (90.7 ± 21.9 vs. 65.3 ± 18.6 N), and 8 km/hour (102.5 ± 17.6 vs. 68.7 ± 13.5 N) compared to REV. Alternatively, push times and push angles were significantly lower (P ≤ 0.001) during FOR at each speed. Conclusions The current study demonstrated that at higher speeds physiological demand becomes elevated during REV. This was likely to be associated with an inability to apply sufficient force to the wheels, thus requiring kinematic adaptations in order to maintain constant speeds in REV. PMID:24593797

  18. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM) III: Scenario analysis

    USGS Publications Warehouse

    Huisman, J.A.; Breuer, L.; Bormann, H.; Bronstert, A.; Croke, B.F.W.; Frede, H.-G.; Graff, T.; Hubrechts, L.; Jakeman, A.J.; Kite, G.; Lanini, J.; Leavesley, G.; Lettenmaier, D.P.; Lindstrom, G.; Seibert, J.; Sivapalan, M.; Viney, N.R.; Willems, P.

    2009-01-01

    An ensemble of 10 hydrological models was applied to the same set of land use change scenarios. There was general agreement about the direction of changes in the mean annual discharge and 90% discharge percentile predicted by the ensemble members, although a considerable range in the magnitude of predictions for the scenarios and catchments under consideration was obvious. Differences in the magnitude of the increase were attributed to the different mean annual actual evapotranspiration rates for each land use type. The ensemble of model runs was further analyzed with deterministic and probabilistic ensemble methods. The deterministic ensemble method based on a trimmed mean resulted in a single somewhat more reliable scenario prediction. The probabilistic reliability ensemble averaging (REA) method allowed a quantification of the model structure uncertainty in the scenario predictions. It was concluded that the use of a model ensemble has greatly increased our confidence in the reliability of the model predictions. ?? 2008 Elsevier Ltd.

  19. PSA-Based Screening Outcomes, Dietary Heterocyclic Amine Exposure, and Prostate Cancer Risk in African-Americans

    DTIC Science & Technology

    2006-01-01

    associated micronutrients , and risk of prostate cancer. Epidemiol. Rev. 2001a: 23: 82-86. Chan J., and Giovannucci E. Dairy products, calcium, and...118. Chan J., and Giovannucci E. Vegetables, fruits, associated micronutrients , and risk of prostate cancer. Epidemiol. Rev. 2001a: 23: 82-86...Chan J., and Giovannucci E. Dairy products, calcium, and vitamin D, and risk of prostate cancer. Epidemiol. Rev. 2001b: 23: 87-92. Cohen J.H., Kristal

  20. Orbital Debris: Technical and Legal Issues and Solutions

    DTIC Science & Technology

    2006-08-01

    States will seek to minimize the creation of space debris. NASA, the intelligence community, and DoD, in cooperation with the private sector, will...205 and accompanying text. 388 Raymond T. Swenson, “Pollution of the Extraterrestrial Environment” (1985) 25 A.F. L. Rev. 70 at 79. “Article IX is...Hastings Int’l & Comp. L. Rev. 125. Swenson, Raymond T. “Pollution of the Extraterrestrial Environment” (1985) 25 A.F. L. Rev. 70. Tan, David

  1. Spin squeezing a cold molecule

    NASA Astrophysics Data System (ADS)

    Bhattacharya, M.

    2015-12-01

    In this article we present a concrete proposal for spin squeezing the cold ground-state polar paramagnetic molecule OH, a system currently under fine control in the laboratory. In contrast to existing work, we consider a single, noninteracting molecule with angular momentum greater than 1 /2 . Starting from an experimentally relevant effective Hamiltonian, we identify an adiabatic regime where different combinations of static electric and magnetic fields can be used to realize the single-axis twisting Hamiltonian of Kitagawa and Ueda [M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993), 10.1103/PhysRevA.47.5138], the uniform field Hamiltonian proposed by Law et al. [C. K. Law, H. T. Ng, and P. T. Leung, Phys. Rev. A 63, 055601 (2001), 10.1103/PhysRevA.63.055601], and a model of field propagation in a Kerr medium considered by Agarwal and Puri [G. S. Agarwal and R. R. Puri, Phys. Rev. A 39, 2969 (1989), 10.1103/PhysRevA.39.2969]. We then consider the situation in which nonadiabatic effects are quite large and show that the effective Hamiltonian supports spin squeezing even in this case. We provide analytical expressions as well as numerical calculations, including optimization of field strengths and accounting for the effects of field misalignment. Our results have consequences for applications such as precision spectroscopy, techniques such as magnetometry, and stereochemical effects such as the orientation-to-alignment transition.

  2. Effect of the forcing term in the pseudopotential lattice Boltzmann modeling of thermal flows

    NASA Astrophysics Data System (ADS)

    Li, Qing; Luo, K. H.

    2014-05-01

    The pseudopotential lattice Boltzmann (LB) model is a popular model in the LB community for simulating multiphase flows. Recently, several thermal LB models, which are based on the pseudopotential LB model and constructed within the framework of the double-distribution-function LB method, were proposed to simulate thermal multiphase flows [G. Házi and A. Márkus, Phys. Rev. E 77, 026305 (2008), 10.1103/PhysRevE.77.026305; L. Biferale, P. Perlekar, M. Sbragaglia, and F. Toschi, Phys. Rev. Lett. 108, 104502 (2012), 10.1103/PhysRevLett.108.104502; S. Gong and P. Cheng, Int. J. Heat Mass Transfer 55, 4923 (2012), 10.1016/j.ijheatmasstransfer.2012.04.037; M. R. Kamali et al., Phys. Rev. E 88, 033302 (2013), 10.1103/PhysRevE.88.033302]. The objective of the present paper is to show that the effect of the forcing term on the temperature equation must be eliminated in the pseudopotential LB modeling of thermal flows. First, the effect of the forcing term on the temperature equation is shown via the Chapman-Enskog analysis. For comparison, alternative treatments that are free from the forcing-term effect are provided. Subsequently, numerical investigations are performed for two benchmark tests. The numerical results clearly show that the existence of the forcing-term effect will lead to significant numerical errors in the pseudopotential LB modeling of thermal flows.

  3. Reply to "Comment on 'Origin of tilted-phase generation in systems of ellipsoidal molecules with dipolar interactions' "

    NASA Astrophysics Data System (ADS)

    Bose, Tushar Kanti; Saha, Jayashree

    2014-04-01

    In a recent article [T. K. Bose and J. Saha, Phys. Rev. E 86, 050701 (2012), 10.1103/PhysRevE.86.050701], we have presented the results of a Monte Carlo simulation study of the systems of dipolar Gay-Berne ellipsoids where two terminal antiparallel dipoles are placed symmetrically on the long axis of each ellipsoid, and the results revealed the combined contribution of dipolar separation and transverse orientations in controlling the tilt angle in the tilted hexatic smectic phase. The tilt angle changed from zero to a significant value, in the case of transverse dipoles, with a change in the dipolar separation. In the related comment, Madhusudana [preceding Comment, Phys. Rev. E 89, 046501 (2014), 10.1103/PhysRevE.89.046501] has claimed that the physical origin of the molecular tilt in the significantly tilted phases found in the simulations is similar to that proposed by McMillan [Phys. Rev. A 8, 1921 (1973), 10.1103/PhysRevA.8.1921]. Here, we explain that the claim is not correct and make it clear that the two compared pictures are quite different. In the preceding Comment, Madhusudana has also suggested an alternative explanation for tilt generation in the simulations by criticizing the original one proposed by us. We argue here in support of the original explanation and clarify that his explanation does not follow the simulation results.

  4. Non-Abelian fermionization and fractional quantum Hall transitions

    NASA Astrophysics Data System (ADS)

    Hui, Aaron; Mulligan, Michael; Kim, Eun-Ah

    2018-02-01

    There has been a recent surge of interest in dualities relating theories of Chern-Simons gauge fields coupled to either bosons or fermions within the condensed matter community, particularly in the context of topological insulators and the half-filled Landau level. Here, we study the application of one such duality to the long-standing problem of quantum Hall interplateaux transitions. The key motivating experimental observations are the anomalously large value of the correlation length exponent ν ≈2.3 and that ν is observed to be superuniversal, i.e., the same in the vicinity of distinct critical points [Sondhi et al., Rev. Mod. Phys. 69, 315 (1997), 10.1103/RevModPhys.69.315]. Duality motivates effective descriptions for a fractional quantum Hall plateau transition involving a Chern-Simons field with U (Nc) gauge group coupled to Nf=1 fermion. We study one class of theories in a controlled limit where Nf≫Nc and calculate ν to leading nontrivial order in the absence of disorder. Although these theories do not yield an anomalously large exponent ν within the large Nf≫Nc expansion, they do offer a new parameter space of theories that is apparently different from prior works involving Abelian Chern-Simons gauge fields [Wen and Wu, Phys. Rev. Lett. 70, 1501 (1993), 10.1103/PhysRevLett.70.1501; Chen et al., Phys. Rev. B 48, 13749 (1993), 10.1103/PhysRevB.48.13749].

  5. Random matrix ensembles for many-body quantum systems

    NASA Astrophysics Data System (ADS)

    Vyas, Manan; Seligman, Thomas H.

    2018-04-01

    Classical random matrix ensembles were originally introduced in physics to approximate quantum many-particle nuclear interactions. However, there exists a plethora of quantum systems whose dynamics is explained in terms of few-particle (predom-inantly two-particle) interactions. The random matrix models incorporating the few-particle nature of interactions are known as embedded random matrix ensembles. In the present paper, we provide a brief overview of these two ensembles and illustrate how the embedded ensembles can be successfully used to study decoherence of a qubit interacting with an environment, both for fermionic and bosonic embedded ensembles. Numerical calculations show the dependence of decoherence on the nature of the environment.

  6. On the structure and phase transitions of power-law Poissonian ensembles

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo; Oshanin, Gleb

    2012-10-01

    Power-law Poissonian ensembles are Poisson processes that are defined on the positive half-line, and that are governed by power-law intensities. Power-law Poissonian ensembles are stochastic objects of fundamental significance; they uniquely display an array of fractal features and they uniquely generate a span of important applications. In this paper we apply three different methods—oligarchic analysis, Lorenzian analysis and heterogeneity analysis—to explore power-law Poissonian ensembles. The amalgamation of these analyses, combined with the topology of power-law Poissonian ensembles, establishes a detailed and multi-faceted picture of the statistical structure and the statistical phase transitions of these elemental ensembles.

  7. Molecular activity prediction by means of supervised subspace projection based ensembles of classifiers.

    PubMed

    Cerruela García, G; García-Pedrajas, N; Luque Ruiz, I; Gómez-Nieto, M Á

    2018-03-01

    This paper proposes a method for molecular activity prediction in QSAR studies using ensembles of classifiers constructed by means of two supervised subspace projection methods, namely nonparametric discriminant analysis (NDA) and hybrid discriminant analysis (HDA). We studied the performance of the proposed ensembles compared to classical ensemble methods using four molecular datasets and eight different models for the representation of the molecular structure. Using several measures and statistical tests for classifier comparison, we observe that our proposal improves the classification results with respect to classical ensemble methods. Therefore, we show that ensembles constructed using supervised subspace projections offer an effective way of creating classifiers in cheminformatics.

  8. Entropy of network ensembles

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra

    2009-03-01

    In this paper we generalize the concept of random networks to describe network ensembles with nontrivial features by a statistical mechanics approach. This framework is able to describe undirected and directed network ensembles as well as weighted network ensembles. These networks might have nontrivial community structure or, in the case of networks embedded in a given space, they might have a link probability with a nontrivial dependence on the distance between the nodes. These ensembles are characterized by their entropy, which evaluates the cardinality of networks in the ensemble. In particular, in this paper we define and evaluate the structural entropy, i.e., the entropy of the ensembles of undirected uncorrelated simple networks with given degree sequence. We stress the apparent paradox that scale-free degree distributions are characterized by having small structural entropy while they are so widely encountered in natural, social, and technological complex systems. We propose a solution to the paradox by proving that scale-free degree distributions are the most likely degree distribution with the corresponding value of the structural entropy. Finally, the general framework we present in this paper is able to describe microcanonical ensembles of networks as well as canonical or hidden-variable network ensembles with significant implications for the formulation of network-constructing algorithms.

  9. Constructing better classifier ensemble based on weighted accuracy and diversity measure.

    PubMed

    Zeng, Xiaodong; Wong, Derek F; Chao, Lidia S

    2014-01-01

    A weighted accuracy and diversity (WAD) method is presented, a novel measure used to evaluate the quality of the classifier ensemble, assisting in the ensemble selection task. The proposed measure is motivated by a commonly accepted hypothesis; that is, a robust classifier ensemble should not only be accurate but also different from every other member. In fact, accuracy and diversity are mutual restraint factors; that is, an ensemble with high accuracy may have low diversity, and an overly diverse ensemble may negatively affect accuracy. This study proposes a method to find the balance between accuracy and diversity that enhances the predictive ability of an ensemble for unknown data. The quality assessment for an ensemble is performed such that the final score is achieved by computing the harmonic mean of accuracy and diversity, where two weight parameters are used to balance them. The measure is compared to two representative measures, Kappa-Error and GenDiv, and two threshold measures that consider only accuracy or diversity, with two heuristic search algorithms, genetic algorithm, and forward hill-climbing algorithm, in ensemble selection tasks performed on 15 UCI benchmark datasets. The empirical results demonstrate that the WAD measure is superior to others in most cases.

  10. Improving Classification Performance through an Advanced Ensemble Based Heterogeneous Extreme Learning Machines.

    PubMed

    Abuassba, Adnan O M; Zhang, Dezheng; Luo, Xiong; Shaheryar, Ahmad; Ali, Hazrat

    2017-01-01

    Extreme Learning Machine (ELM) is a fast-learning algorithm for a single-hidden layer feedforward neural network (SLFN). It often has good generalization performance. However, there are chances that it might overfit the training data due to having more hidden nodes than needed. To address the generalization performance, we use a heterogeneous ensemble approach. We propose an Advanced ELM Ensemble (AELME) for classification, which includes Regularized-ELM, L 2 -norm-optimized ELM (ELML2), and Kernel-ELM. The ensemble is constructed by training a randomly chosen ELM classifier on a subset of training data selected through random resampling. The proposed AELM-Ensemble is evolved by employing an objective function of increasing diversity and accuracy among the final ensemble. Finally, the class label of unseen data is predicted using majority vote approach. Splitting the training data into subsets and incorporation of heterogeneous ELM classifiers result in higher prediction accuracy, better generalization, and a lower number of base classifiers, as compared to other models (Adaboost, Bagging, Dynamic ELM ensemble, data splitting ELM ensemble, and ELM ensemble). The validity of AELME is confirmed through classification on several real-world benchmark datasets.

  11. Improving Classification Performance through an Advanced Ensemble Based Heterogeneous Extreme Learning Machines

    PubMed Central

    Abuassba, Adnan O. M.; Ali, Hazrat

    2017-01-01

    Extreme Learning Machine (ELM) is a fast-learning algorithm for a single-hidden layer feedforward neural network (SLFN). It often has good generalization performance. However, there are chances that it might overfit the training data due to having more hidden nodes than needed. To address the generalization performance, we use a heterogeneous ensemble approach. We propose an Advanced ELM Ensemble (AELME) for classification, which includes Regularized-ELM, L2-norm-optimized ELM (ELML2), and Kernel-ELM. The ensemble is constructed by training a randomly chosen ELM classifier on a subset of training data selected through random resampling. The proposed AELM-Ensemble is evolved by employing an objective function of increasing diversity and accuracy among the final ensemble. Finally, the class label of unseen data is predicted using majority vote approach. Splitting the training data into subsets and incorporation of heterogeneous ELM classifiers result in higher prediction accuracy, better generalization, and a lower number of base classifiers, as compared to other models (Adaboost, Bagging, Dynamic ELM ensemble, data splitting ELM ensemble, and ELM ensemble). The validity of AELME is confirmed through classification on several real-world benchmark datasets. PMID:28546808

  12. The development of ensemble theory. A new glimpse at the history of statistical mechanics

    NASA Astrophysics Data System (ADS)

    Inaba, Hajime

    2015-12-01

    This paper investigates the history of statistical mechanics from the viewpoint of the development of the ensemble theory from 1871 to 1902. In 1871, Ludwig Boltzmann introduced a prototype model of an ensemble that represents a polyatomic gas. In 1879, James Clerk Maxwell defined an ensemble as copies of systems of the same energy. Inspired by H.W. Watson, he called his approach "statistical". Boltzmann and Maxwell regarded the ensemble theory as a much more general approach than the kinetic theory. In the 1880s, influenced by Hermann von Helmholtz, Boltzmann made use of ensembles to establish thermodynamic relations. In Elementary Principles in Statistical Mechanics of 1902, Josiah Willard Gibbs tried to get his ensemble theory to mirror thermodynamics, including thermodynamic operations in its scope. Thermodynamics played the role of a "blind guide". His theory of ensembles can be characterized as more mathematically oriented than Einstein's theory proposed in the same year. Mechanical, empirical, and statistical approaches to foundations of statistical mechanics are presented. Although it was formulated in classical terms, the ensemble theory provided an infrastructure still valuable in quantum statistics because of its generality.

  13. Constructing Better Classifier Ensemble Based on Weighted Accuracy and Diversity Measure

    PubMed Central

    Chao, Lidia S.

    2014-01-01

    A weighted accuracy and diversity (WAD) method is presented, a novel measure used to evaluate the quality of the classifier ensemble, assisting in the ensemble selection task. The proposed measure is motivated by a commonly accepted hypothesis; that is, a robust classifier ensemble should not only be accurate but also different from every other member. In fact, accuracy and diversity are mutual restraint factors; that is, an ensemble with high accuracy may have low diversity, and an overly diverse ensemble may negatively affect accuracy. This study proposes a method to find the balance between accuracy and diversity that enhances the predictive ability of an ensemble for unknown data. The quality assessment for an ensemble is performed such that the final score is achieved by computing the harmonic mean of accuracy and diversity, where two weight parameters are used to balance them. The measure is compared to two representative measures, Kappa-Error and GenDiv, and two threshold measures that consider only accuracy or diversity, with two heuristic search algorithms, genetic algorithm, and forward hill-climbing algorithm, in ensemble selection tasks performed on 15 UCI benchmark datasets. The empirical results demonstrate that the WAD measure is superior to others in most cases. PMID:24672402

  14. Improving land resource evaluation using fuzzy neural network ensembles

    USGS Publications Warehouse

    Xue, Yue-Ju; HU, Y.-M.; Liu, S.-G.; YANG, J.-F.; CHEN, Q.-C.; BAO, S.-T.

    2007-01-01

    Land evaluation factors often contain continuous-, discrete- and nominal-valued attributes. In traditional land evaluation, these different attributes are usually graded into categorical indexes by land resource experts, and the evaluation results rely heavily on experts' experiences. In order to overcome the shortcoming, we presented a fuzzy neural network ensemble method that did not require grading the evaluation factors into categorical indexes and could evaluate land resources by using the three kinds of attribute values directly. A fuzzy back propagation neural network (BPNN), a fuzzy radial basis function neural network (RBFNN), a fuzzy BPNN ensemble, and a fuzzy RBFNN ensemble were used to evaluate the land resources in Guangdong Province. The evaluation results by using the fuzzy BPNN ensemble and the fuzzy RBFNN ensemble were much better than those by using the single fuzzy BPNN and the single fuzzy RBFNN, and the error rate of the single fuzzy RBFNN or fuzzy RBFNN ensemble was lower than that of the single fuzzy BPNN or fuzzy BPNN ensemble, respectively. By using the fuzzy neural network ensembles, the validity of land resource evaluation was improved and reliance on land evaluators' experiences was considerably reduced. ?? 2007 Soil Science Society of China.

  15. Ensemble Eclipse: A Process for Prefab Development Environment for the Ensemble Project

    NASA Technical Reports Server (NTRS)

    Wallick, Michael N.; Mittman, David S.; Shams, Khawaja, S.; Bachmann, Andrew G.; Ludowise, Melissa

    2013-01-01

    This software simplifies the process of having to set up an Eclipse IDE programming environment for the members of the cross-NASA center project, Ensemble. It achieves this by assembling all the necessary add-ons and custom tools/preferences. This software is unique in that it allows developers in the Ensemble Project (approximately 20 to 40 at any time) across multiple NASA centers to set up a development environment almost instantly and work on Ensemble software. The software automatically has the source code repositories and other vital information and settings included. The Eclipse IDE is an open-source development framework. The NASA (Ensemble-specific) version of the software includes Ensemble-specific plug-ins as well as settings for the Ensemble project. This software saves developers the time and hassle of setting up a programming environment, making sure that everything is set up in the correct manner for Ensemble development. Existing software (i.e., standard Eclipse) requires an intensive setup process that is both time-consuming and error prone. This software is built once by a single user and tested, allowing other developers to simply download and use the software

  16. The converter mechanism of particle acceleration and the maximum energy of cosmic rays

    NASA Astrophysics Data System (ADS)

    Kocharovsky, Vl. V.; Aharonian, F. A.; Derishev, E. V.; Kocharovsky, V. V.

    We consider the fundamental limits on the energy of particles accelerated by electromagnetic forces in various astrophysical objects [1]. We show that accelerator's parameters are strongly limited not only by the particle confinement in large-scale magnetic field or by the difference in electric potentials (generalized Hillas criterion) but also by the curvature and other types of radiative losses of accelerated particles. Optimization of these requirements in terms of accelerator's size and the magnetic field strength results in the ultimate lower limit on the overall source energy budget, which scales as the fifth power of attainable particle energy. It is demonstrated that the curvature gamma-rays accompanying the acceleration gives further restrictions for potential acceleration sites. We compare different acceleration mechanisms and show, that the converter mechanism, which we suggested earlier [2], is the least sensitive to the geometry of the magnetic field in accelerators and allows to reach cosmic-ray energies close to the fundamental limit. The converter mechanism works most efficiently in relativistic shocks or shear flows. It utilizes multiple conversions of charged particles into neutral ones (protons to neutrons and electrons/positrons to photons) and back by means of photon-induced reactions or inelastic nucleon- nucleon collisions. We discuss the properties of gamma-ray radiation, which accompanies acceleration of cosmic rays via the converter mechanism and can provide an evidence for the latter. 1. F.A. Aharonian, A.A. Belyanin, E.V. Derishev, V.V. Kocharovsky, and Vl.V. Kocharovsky, Phys. Rev. D 66, 023005 (2002). 2. E.V. Derishev, F.A. Aharonian, V.V. Kocharovsky, and Vl.V. Kocharovsky, Phys. Rev. D 68, 043003 (2003).

  17. Flow harmonics from self-consistent particlization of a viscous fluid

    NASA Astrophysics Data System (ADS)

    Wolff, Zack; Molnar, Denes

    2017-10-01

    The quantitative extraction of quark-gluon plasma (QGP) properties from heavy-ion data, such as its specific shear viscosity η /s , typically requires comparison to viscous hydrodynamic or "hybrid" hydrodynamics + transport simulations. In either case, one has to convert the fluid to hadrons, yet without additional theory input the conversion is ambiguous for dissipative fluids. Here, shear viscous phase-space corrections calculated using linearized transport theory are applied in Cooper-Frye freeze-out to quantify the effects on anisotropic flow coefficients vn(pT) at the energies available at both the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider. Expanding upon our previous flow harmonics studies [D. Molnar and Z. Wolff, Phys. Rev. C 95, 024903 (2017), 10.1103/PhysRevC.95.024903; Z. Wolff and D. Molnar, J. Phys.: Conf. Ser. 535, 012020 (2014), 10.1088/1742-6596/535/1/012020], we calculate pion and proton v2(pT) , v4(pT) , and v6(pT) , but here we incorporate a hadron gas that is chemically frozen below a temperature of 175 MeV and use hypersurfaces from realistic viscous hydrodynamic simulations. For additive quark model cross sections and relative phase-space corrections with p3 /2 momentum dependence rather than the quadratic Grad form, we find at moderately high transverse momentum noticeably higher v4(pT) and v6(pT) for protons than for pions. In addition, the value of η /s deduced from elliptic flow data differs by nearly 50% from the value extracted using the naive "democratic Grad" form of freeze-out distributions. To facilitate the use of the self-consistent viscous corrections calculated here in hydrodynamic and hybrid calculations, we also present convenient parametrizations of the corrections for the various hadron species.

  18. The nodal count {0,1,2,3,…} implies the graph is a tree

    PubMed Central

    Band, Ram

    2014-01-01

    Sturm's oscillation theorem states that the nth eigenfunction of a Sturm–Liouville operator on the interval has n−1 zeros (nodes) (Sturm 1836 J. Math. Pures Appl. 1, 106–186; 373–444). This result was generalized for all metric tree graphs (Pokornyĭ et al. 1996 Mat. Zametki 60, 468–470 (doi:10.1007/BF02320380); Schapotschnikow 2006 Waves Random Complex Media 16, 167–178 (doi:10.1080/1745530600702535)) and an analogous theorem was proved for discrete tree graphs (Berkolaiko 2007 Commun. Math. Phys. 278, 803–819 (doi:10.1007/S00220-007-0391-3); Dhar & Ramaswamy 1985 Phys. Rev. Lett. 54, 1346–1349 (doi:10.1103/PhysRevLett.54.1346); Fiedler 1975 Czechoslovak Math. J. 25, 607–618). We prove the converse theorems for both discrete and metric graphs. Namely if for all n, the nth eigenfunction of the graph has n−1 zeros, then the graph is a tree. Our proofs use a recently obtained connection between the graph's nodal count and the magnetic stability of its eigenvalues (Berkolaiko 2013 Anal. PDE 6, 1213–1233 (doi:10.2140/apde.2013.6.1213); Berkolaiko & Weyand 2014 Phil. Trans. R. Soc. A 372, 20120522 (doi:10.1098/rsta.2012.0522); Colin de Verdière 2013 Anal. PDE 6, 1235–1242 (doi:10.2140/apde.2013.6.1235)). In the course of the proof, we show that it is not possible for all (or even almost all, in the metric case) the eigenvalues to exhibit a diamagnetic behaviour. In addition, we develop a notion of ‘discretized’ versions of a metric graph and prove that their nodal counts are related to those of the metric graph. PMID:24344337

  19. A quasi-lentiviral green fluorescent protein reporter exhibits nuclear export features of late human immunodeficiency virus type 1 transcripts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Marcus; Ludwig, Christine; Kehlenbeck, Sylvia

    2006-09-01

    We have previously shown that Rev-dependent expression of HIV-1 Gag from CMV immediate early promoter critically depends on the AU-rich codon bias of the gag gene. Here, we demonstrate that adaptation of the green fluorescent protein (GFP) reporter gene to HIV codon bias is sufficient to turn this hivGFP RNA into a quasi-lentiviral message following the rules of late lentiviral gene expression. Accordingly, GFP expression was significantly decreased in transfected cells strictly correlating with reduced RNA levels. In the presence of the HIV 5' major splice donor, the hivGFP RNAs were stabilized in the nucleus and efficiently exported to themore » cytoplasm following fusion of the 3' Rev-responsive element (RRE) and coexpression of HIV-1 Rev. This Rev-dependent translocation was specifically inhibited by leptomycin B suggesting export via the CRM1-dependent pathway used by late lentiviral transcripts. In conclusion, this quasi-lentiviral reporter system may provide a new platform for developing sensitive Rev screening assays.« less

  20. Did Rev-1 small ruminants vaccination helped improve cattle brucellosis prevalence status in Algeria?

    PubMed

    Kardjadj, Moustafa

    2017-12-01

    In 2006, the Algerian authorities started the Rev-1 vaccination of sheep and goats; consequently, there was a significant improvement of small ruminant brucellosis sanitary status. In this paper, we attempt to study the effect of Rev-1 small ruminants' vaccination on cattle brucellosis prevalence in Algeria. Our results showed an overall cattle herd seroprevalence of 12% (9 positive herds of 75). The risk factor analysis using a logistic regression model indicated that the presence of small ruminants along with cattle in the herd (mixed herds) decreased the odds for brucellosis seropositivity by 1.69 [95% CI 0.54-2.84; P = 0.042] compared to the cattle herds only. Likewise, the present study showed that the presence of Rev-1 vaccinated small ruminants in the herd decreased also the odds for brucellosis seropositivity by 4.10 [95% CI 3.20-5.00; P = 0.003] compared to other herds. This result lead to the assumption that the small ruminants Rev-1 vaccination diminish Brucella microbisme pressure in the mixed herds and help decrease the cattle brucellosis prevalence in these herds.

  1. Comparative Proteome Analysis of Brucella melitensis Vaccine Strain Rev 1 and a Virulent Strain, 16M

    PubMed Central

    Eschenbrenner, Michel; Wagner, Mary Ann; Horn, Troy A.; Kraycer, Jo Ann; Mujer, Cesar V.; Hagius, Sue; Elzer, Philip; DelVecchio, Vito G.

    2002-01-01

    The genus Brucella consists of bacterial pathogens that cause brucellosis, a major zoonotic disease characterized by undulant fever and neurological disorders in humans. Among the different Brucella species, Brucella melitensis is considered the most virulent. Despite successful use in animals, the vaccine strains remain infectious for humans. To understand the mechanism of virulence in B. melitensis, the proteome of vaccine strain Rev 1 was analyzed by two-dimensional gel electrophoresis and compared to that of virulent strain 16M. The two strains were grown under identical laboratory conditions. Computer-assisted analysis of the two B. melitensis proteomes revealed proteins expressed in either 16M or Rev 1, as well as up- or down-regulation of proteins specific for each of these strains. These proteins were identified by peptide mass fingerprinting. It was found that certain metabolic pathways may be deregulated in Rev 1. Expression of an immunogenic 31-kDa outer membrane protein, proteins utilized for iron acquisition, and those that play a role in sugar binding, lipid degradation, and amino acid binding was altered in Rev 1. PMID:12193611

  2. Comparative proteome analysis of Brucella melitensis vaccine strain Rev 1 and a virulent strain, 16M.

    PubMed

    Eschenbrenner, Michel; Wagner, Mary Ann; Horn, Troy A; Kraycer, Jo Ann; Mujer, Cesar V; Hagius, Sue; Elzer, Philip; DelVecchio, Vito G

    2002-09-01

    The genus Brucella consists of bacterial pathogens that cause brucellosis, a major zoonotic disease characterized by undulant fever and neurological disorders in humans. Among the different Brucella species, Brucella melitensis is considered the most virulent. Despite successful use in animals, the vaccine strains remain infectious for humans. To understand the mechanism of virulence in B. melitensis, the proteome of vaccine strain Rev 1 was analyzed by two-dimensional gel electrophoresis and compared to that of virulent strain 16M. The two strains were grown under identical laboratory conditions. Computer-assisted analysis of the two B. melitensis proteomes revealed proteins expressed in either 16M or Rev 1, as well as up- or down-regulation of proteins specific for each of these strains. These proteins were identified by peptide mass fingerprinting. It was found that certain metabolic pathways may be deregulated in Rev 1. Expression of an immunogenic 31-kDa outer membrane protein, proteins utilized for iron acquisition, and those that play a role in sugar binding, lipid degradation, and amino acid binding was altered in Rev 1.

  3. Tool feed influence on the machinability of CO(2) laser optics.

    PubMed

    Arnold, J B; Steger, P J; Saito, T T

    1975-08-01

    Influence of tool feed on reflectivity of diamond-machined surfaces was evaluated using materials (gold, silver, and copper) from which CO(2) laser optics are primarily produced. Fifteen specimens were machined by holding all machining parameters constant, except tool feed. Tool feed was allowed to vary by controlled amounts from one evaluation zone (or part) to another. Past experience has verified that the quality of a diamond-machined surface is not a function of the cutting velocity; therefore, this experiment was conducted on the basis that a variation in cutting velocity was not an influencing factor on the diamondturning process. Inspection results of the specimens indicated that tool feeds significantly higher than 5.1 micro/rev (200 microin./rev) produced detrimental effects on the machined surfaces. In some cases, at feeds as high as 13 microm/rev (500 microin./rev), visible scoring was evident. Those surfaces produced with tool feeds less than 5.1 microm/rev had little difference in reflectivity. Measurements indicat d that their reflectivity existed in a range from 96.7% to 99.3% at 10.6 microm.

  4. Ensemble data assimilation in the Red Sea: sensitivity to ensemble selection and atmospheric forcing

    NASA Astrophysics Data System (ADS)

    Toye, Habib; Zhan, Peng; Gopalakrishnan, Ganesh; Kartadikaria, Aditya R.; Huang, Huang; Knio, Omar; Hoteit, Ibrahim

    2017-07-01

    We present our efforts to build an ensemble data assimilation and forecasting system for the Red Sea. The system consists of the high-resolution Massachusetts Institute of Technology general circulation model (MITgcm) to simulate ocean circulation and of the Data Research Testbed (DART) for ensemble data assimilation. DART has been configured to integrate all members of an ensemble adjustment Kalman filter (EAKF) in parallel, based on which we adapted the ensemble operations in DART to use an invariant ensemble, i.e., an ensemble Optimal Interpolation (EnOI) algorithm. This approach requires only single forward model integration in the forecast step and therefore saves substantial computational cost. To deal with the strong seasonal variability of the Red Sea, the EnOI ensemble is then seasonally selected from a climatology of long-term model outputs. Observations of remote sensing sea surface height (SSH) and sea surface temperature (SST) are assimilated every 3 days. Real-time atmospheric fields from the National Center for Environmental Prediction (NCEP) and the European Center for Medium-Range Weather Forecasts (ECMWF) are used as forcing in different assimilation experiments. We investigate the behaviors of the EAKF and (seasonal-) EnOI and compare their performances for assimilating and forecasting the circulation of the Red Sea. We further assess the sensitivity of the assimilation system to various filtering parameters (ensemble size, inflation) and atmospheric forcing.

  5. Simulation's Ensemble is Better Than Ensemble Simulation

    NASA Astrophysics Data System (ADS)

    Yan, X.

    2017-12-01

    Simulation's ensemble is better than ensemble simulation Yan Xiaodong State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE) Beijing Normal University,19 Xinjiekouwai Street, Haidian District, Beijing 100875, China Email: yxd@bnu.edu.cnDynamical system is simulated from initial state. However initial state data is of great uncertainty, which leads to uncertainty of simulation. Therefore, multiple possible initial states based simulation has been used widely in atmospheric science, which has indeed been proved to be able to lower the uncertainty, that was named simulation's ensemble because multiple simulation results would be fused . In ecological field, individual based model simulation (forest gap models for example) can be regarded as simulation's ensemble compared with community based simulation (most ecosystem models). In this talk, we will address the advantage of individual based simulation and even their ensembles.

  6. Visualization and classification of physiological failure modes in ensemble hemorrhage simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Pruett, William Andrew; Hester, Robert

    2015-01-01

    In an emergency situation such as hemorrhage, doctors need to predict which patients need immediate treatment and care. This task is difficult because of the diverse response to hemorrhage in human population. Ensemble physiological simulations provide a means to sample a diverse range of subjects and may have a better chance of containing the correct solution. However, to reveal the patterns and trends from the ensemble simulation is a challenging task. We have developed a visualization framework for ensemble physiological simulations. The visualization helps users identify trends among ensemble members, classify ensemble member into subpopulations for analysis, and provide prediction to future events by matching a new patient's data to existing ensembles. We demonstrated the effectiveness of the visualization on simulated physiological data. The lessons learned here can be applied to clinically-collected physiological data in the future.

  7. Formation of molecules in an expanding Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Yurovsky, Vladimir; Ben-Reuven, Abraham

    2004-05-01

    A mean field theory [1] is extended to an inhomogeneous case of expanding hybrid atom-molecule Bose-Einstein condensates. This theory is applied to the recent MPI experiments [2] on ^87Rb demonstrating the formation of ultracold molecules due to Feshbach resonance. The subsequent dissociation of the molecules is treated using a non-mean-field parametric approximation [3]. The latter method is also used in determining optimal conditions for the formation of molecular BEC. [1] V. A. Yurovsky, A. Ben-Reuven, P. S. Julienne and C. J. Williams, Phys. Rev. A 60, R765 (1999); Phys. Rev. A 62, 043605 (2000). [2] S. Dürr, T. Volz, A. Marte, and G. Rempe, Phys. Rev. Lett. 92, 020406 (2004). [3] V. A. Yurovsky and A. Ben-Reuven, Phys. Rev. A 67, 043611 (2003).

  8. Inclusive breakup calculations in angular momentum basis: Application to 7Li+58Ni

    NASA Astrophysics Data System (ADS)

    Lei, Jin

    2018-03-01

    The angular momentum basis method is introduced to solve the inclusive breakup problem within the model proposed by Ichimura, Austern, and Vincent [Phys. Rev. C 32, 431 (1985), 10.1103/PhysRevC.32.431]. This method is based on the geometric transformation between different Jacobi coordinates, in which the particle spins can be included in a natural and efficient way. To test the validity of this partial wave expansion method, a benchmark calculation is done comparing with the one given by Lei and Moro [Phys. Rev. C 92, 044616 (2015), 10.1103/PhysRevC.92.044616]. In addition, using the distorted-wave Born approximation version of the IAV model, applications to 7Li+58Ni reactions at energies around Coulomb barrier are presented and compared with available data.

  9. Reply to "Comment on 'Defocusing complex short-pulse equation and its multi-dark-soliton solution' ".

    PubMed

    Feng, Bao-Feng; Ling, Liming; Zhu, Zuonong

    2017-08-01

    Our paper [Phys. Rev. E 93, 052227 (2016)PREHBM2470-004510.1103/PhysRevE.93.052227], proposing an integrable model for the propagation of ultrashort pulses, has recently received a Comment by Youssoufa et al. [Phys. Rev. E 96, 026201 (2017)10.1103/PhysRevE.96.026201] about a possible flaw in its derivation. We point out that their claim is incorrect since we have stated explicitly that a term is neglected to derive our model equation in our paper. Furthermore, the integrable model is validated by comparing with the normalized Maxwell equation and other known integrable models. Moreover, we show that a similar approximation has to be performed in deriving the same integrable equation as explained in the Comment.

  10. Constraining some Horndeski gravity theories

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sourav; Chakraborty, Sumanta

    2017-02-01

    We discuss two spherically symmetric solutions admitted by the Horndeski (or scalar-tensor) theory in the context of Solar System and astrophysical scenarios. One of these solutions is derived for Einstein-Gauss-Bonnet gravity, while the other originates from the coupling of the Gauss-Bonnet invariant with a scalar field. Specifically, we discuss the perihelion precession and the bending angle of light for these two different spherically symmetric spacetimes derived in Maeda and Dadhich [Phys. Rev. D 75, 044007 (2007), 10.1103/PhysRevD.75.044007] and Sotiriou and Zhou [Phys. Rev. D 90, 124063 (2014), 10.1103/PhysRevD.90.124063], respectively. The latter, in particular, applies only to black-hole spacetimes. We further delineate on the numerical bounds of relevant parameters of these theories from such computations.

  11. Calculating work in weakly driven quantum master equations: Backward and forward equations

    NASA Astrophysics Data System (ADS)

    Liu, Fei

    2016-01-01

    I present a technical report indicating that the two methods used for calculating characteristic functions for the work distribution in weakly driven quantum master equations are equivalent. One involves applying the notion of quantum jump trajectory [Phys. Rev. E 89, 042122 (2014), 10.1103/PhysRevE.89.042122], while the other is based on two energy measurements on the combined system and reservoir [Silaev et al., Phys. Rev. E 90, 022103 (2014), 10.1103/PhysRevE.90.022103]. These represent backward and forward methods, respectively, which adopt a very similar approach to that of the Kolmogorov backward and forward equations used in classical stochastic theory. The microscopic basis for the former method is also clarified. In addition, a previously unnoticed equality related to the heat is also revealed.

  12. A Simple Ensemble Simulation Technique for Assessment of Future Variations in Specific High-Impact Weather Events

    NASA Astrophysics Data System (ADS)

    Taniguchi, Kenji

    2018-04-01

    To investigate future variations in high-impact weather events, numerous samples are required. For the detailed assessment in a specific region, a high spatial resolution is also required. A simple ensemble simulation technique is proposed in this paper. In the proposed technique, new ensemble members were generated from one basic state vector and two perturbation vectors, which were obtained by lagged average forecasting simulations. Sensitivity experiments with different numbers of ensemble members, different simulation lengths, and different perturbation magnitudes were performed. Experimental application to a global warming study was also implemented for a typhoon event. Ensemble-mean results and ensemble spreads of total precipitation, atmospheric conditions showed similar characteristics across the sensitivity experiments. The frequencies of the maximum total and hourly precipitation also showed similar distributions. These results indicate the robustness of the proposed technique. On the other hand, considerable ensemble spread was found in each ensemble experiment. In addition, the results of the application to a global warming study showed possible variations in the future. These results indicate that the proposed technique is useful for investigating various meteorological phenomena and the impacts of global warming. The results of the ensemble simulations also enable the stochastic evaluation of differences in high-impact weather events. In addition, the impacts of a spectral nudging technique were also examined. The tracks of a typhoon were quite different between cases with and without spectral nudging; however, the ranges of the tracks among ensemble members were comparable. It indicates that spectral nudging does not necessarily suppress ensemble spread.

  13. Ensemble flood simulation for a small dam catchment in Japan using 10 and 2 km resolution nonhydrostatic model rainfalls

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kenichiro; Otsuka, Shigenori; Apip; Saito, Kazuo

    2016-08-01

    This paper presents a study on short-term ensemble flood forecasting specifically for small dam catchments in Japan. Numerical ensemble simulations of rainfall from the Japan Meteorological Agency nonhydrostatic model (JMA-NHM) are used as the input data to a rainfall-runoff model for predicting river discharge into a dam. The ensemble weather simulations use a conventional 10 km and a high-resolution 2 km spatial resolutions. A distributed rainfall-runoff model is constructed for the Kasahori dam catchment (approx. 70 km2) and applied with the ensemble rainfalls. The results show that the hourly maximum and cumulative catchment-average rainfalls of the 2 km resolution JMA-NHM ensemble simulation are more appropriate than the 10 km resolution rainfalls. All the simulated inflows based on the 2 and 10 km rainfalls become larger than the flood discharge of 140 m3 s-1, a threshold value for flood control. The inflows with the 10 km resolution ensemble rainfall are all considerably smaller than the observations, while at least one simulated discharge out of 11 ensemble members with the 2 km resolution rainfalls reproduces the first peak of the inflow at the Kasahori dam with similar amplitude to observations, although there are spatiotemporal lags between simulation and observation. To take positional lags into account of the ensemble discharge simulation, the rainfall distribution in each ensemble member is shifted so that the catchment-averaged cumulative rainfall of the Kasahori dam maximizes. The runoff simulation with the position-shifted rainfalls shows much better results than the original ensemble discharge simulations.

  14. On averaging aspect ratios and distortion parameters over ice crystal population ensembles for estimating effective scattering asymmetry parameters

    PubMed Central

    van Diedenhoven, Bastiaan; Ackerman, Andrew S.; Fridlind, Ann M.; Cairns, Brian

    2017-01-01

    The use of ensemble-average values of aspect ratio and distortion parameter of hexagonal ice prisms for the estimation of ensemble-average scattering asymmetry parameters is evaluated. Using crystal aspect ratios greater than unity generally leads to ensemble-average values of aspect ratio that are inconsistent with the ensemble-average asymmetry parameters. When a definition of aspect ratio is used that limits the aspect ratio to below unity (α≤1) for both hexagonal plates and columns, the effective asymmetry parameters calculated using ensemble-average aspect ratios are generally consistent with ensemble-average asymmetry parameters, especially if aspect ratios are geometrically averaged. Ensemble-average distortion parameters generally also yield effective asymmetry parameters that are largely consistent with ensemble-average asymmetry parameters. In the case of mixtures of plates and columns, it is recommended to geometrically average the α≤1 aspect ratios and to subsequently calculate the effective asymmetry parameter using a column or plate geometry when the contribution by columns to a given mixture’s total projected area is greater or lower than 50%, respectively. In addition, we show that ensemble-average aspect ratios, distortion parameters and asymmetry parameters can generally be retrieved accurately from simulated multi-directional polarization measurements based on mixtures of varying columns and plates. However, such retrievals tend to be somewhat biased toward yielding column-like aspect ratios. Furthermore, generally large retrieval errors can occur for mixtures with approximately equal contributions of columns and plates and for ensembles with strong contributions of thin plates. PMID:28983127

  15. Insight into the Selectivity of Isopropanol Conversion at Strontium Titanate (100) Surfaces: A Combination Kinetic and Spectroscopic Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Shuai; Grey, Matthew B.; Kidder, Michelle

    This work aims to better understand the role of interfacial molecular structure that governs selectivity and activity in heterogeneous catalytic reactions. To address this, a comprehensive study of isopropanol conversion over an archetypal perovskite material, strontium titanate (SrTiO 3 or STO), was performed with an array of techniques sensitive to orthogonal aspects of the ensuing chemistry. Cubic-shape STO nanoparticles with only the (100) facet exposed were synthesized and used to study the ensemble kinetic conversion of isopropanol over the surfaces, which showed a remarkable selectivity to form acetone, with minor propylene products appearing at elevated temperatures. These results in combinationmore » with inelastic neutron scattering measurements provide not only new insight into the selectivity and overall activity of the catalysts but also low frequency vibrational signatures of the adsorbed and reacted species. To compliment these measurements, pristine thin films of STO (100) were synthesized and used in combination with vibrational sum frequency generation spectroscopy to extract the absolute molecular orientation of the adsorbed molecules at the interface. It was found that the isopropanol assumes an orientation where the -CH group points towards the STO surface; this pre-reaction geometry offers an obvious pathway to produce acetone by abstracting the alpha-proton and, thus, provides a mechanistic explanation of selectivity at STO (100) surfaces. This new insight opens up pathways to explore and modify surfaces to tune the activity/selectivity though a molecular level understanding of the reactions at the surface.« less

  16. Insight into the Selectivity of Isopropanol Conversion at Strontium Titanate (100) Surfaces: A Combination Kinetic and Spectroscopic Study

    DOE PAGES

    Tan, Shuai; Grey, Matthew B.; Kidder, Michelle; ...

    2017-10-13

    This work aims to better understand the role of interfacial molecular structure that governs selectivity and activity in heterogeneous catalytic reactions. To address this, a comprehensive study of isopropanol conversion over an archetypal perovskite material, strontium titanate (SrTiO 3 or STO), was performed with an array of techniques sensitive to orthogonal aspects of the ensuing chemistry. Cubic-shape STO nanoparticles with only the (100) facet exposed were synthesized and used to study the ensemble kinetic conversion of isopropanol over the surfaces, which showed a remarkable selectivity to form acetone, with minor propylene products appearing at elevated temperatures. These results in combinationmore » with inelastic neutron scattering measurements provide not only new insight into the selectivity and overall activity of the catalysts but also low frequency vibrational signatures of the adsorbed and reacted species. To compliment these measurements, pristine thin films of STO (100) were synthesized and used in combination with vibrational sum frequency generation spectroscopy to extract the absolute molecular orientation of the adsorbed molecules at the interface. It was found that the isopropanol assumes an orientation where the -CH group points towards the STO surface; this pre-reaction geometry offers an obvious pathway to produce acetone by abstracting the alpha-proton and, thus, provides a mechanistic explanation of selectivity at STO (100) surfaces. This new insight opens up pathways to explore and modify surfaces to tune the activity/selectivity though a molecular level understanding of the reactions at the surface.« less

  17. Critical Listening in the Ensemble Rehearsal: A Community of Learners

    ERIC Educational Resources Information Center

    Bell, Cindy L.

    2018-01-01

    This article explores a strategy for engaging ensemble members in critical listening analysis of performances and presents opportunities for improving ensemble sound through rigorous dialogue, reflection, and attentive rehearsing. Critical listening asks ensemble members to draw on individual playing experience and knowledge to describe what they…

  18. World Music Ensemble: Kulintang

    ERIC Educational Resources Information Center

    Beegle, Amy C.

    2012-01-01

    As instrumental world music ensembles such as steel pan, mariachi, gamelan and West African drums are becoming more the norm than the exception in North American school music programs, there are other world music ensembles just starting to gain popularity in particular parts of the United States. The kulintang ensemble, a drum and gong ensemble…

  19. Analyzing the impact of changing size and composition of a crop model ensemble

    NASA Astrophysics Data System (ADS)

    Rodríguez, Alfredo

    2017-04-01

    The use of an ensemble of crop growth simulation models is a practice recently adopted in order to quantify aspects of uncertainties in model simulations. Yet, while the climate modelling community has extensively investigated the properties of model ensembles and their implications, this has hardly been investigated for crop model ensembles (Wallach et al., 2016). In their ensemble of 27 wheat models, Martre et al. (2015) found that the accuracy of the multi-model ensemble-average only increases up to an ensemble size of ca. 10, but does not improve when including more models in the analysis. However, even when this number of members is reached, questions about the impact of the addition or removal of a member to/from the ensemble arise. When selecting ensemble members, identifying members with poor performance or giving implausible results can make a large difference on the outcome. The objective of this study is to set up a methodology that defines indicators to show the effects of changing the ensemble composition and size on simulation results, when a selection procedure of ensemble members is applied. Ensemble mean or median, and variance are measures used to depict ensemble results among other indicators. We are utilizing simulations from an ensemble of wheat models that have been used to construct impact response surfaces (Pirttioja et al., 2015) (IRSs). These show the response of an impact variable (e.g., crop yield) to systematic changes in two explanatory variables (e.g., precipitation and temperature). Using these, we compare different sub-ensembles in terms of the mean, median and spread, and also by comparing IRSs. The methodology developed here allows comparing an ensemble before and after applying any procedure that changes the ensemble composition and size by measuring the impact of this decision on the ensemble central tendency measures. The methodology could also be further developed to compare the effect of changing ensemble composition and size on IRS features. References Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J.W., Rötter, R.P., Boote, K.J., Ruane, A.C., Thorburn, P.J., Cammarano, D., Hatfield, J.L., Rosenzweig, C., Aggarwal, P.K., Angulo, C., Basso, B., Bertuzzi, P., Biernath, C., Brisson, N., Challinor, A.J., Doltra, J., Gayler, S., Goldberg, R., Grant, R.F., Heng, L., Hooker, J., Hunt, L.A., Ingwersen, J., Izaurralde, R.C., Kersebaum, K.C., Muller, C., Kumar, S.N., Nendel, C., O'Leary, G., Olesen, J.E., Osborne, T.M., Palosuo, T., Priesack, E., Ripoche, D., Semenov, M.A., Shcherbak, I., Steduto, P., Stockle, C.O., Stratonovitch, P., Streck, T., Supit, I., Tao, F.L., Travasso, M., Waha, K., White, J.W., Wolf, J., 2015. Multimodel ensembles of wheat growth: many models are better than one. Glob. Change Biol. 21, 911-925. Pirttioja N., Carter T., Fronzek S., Bindi M., Hoffmann H., Palosuo T., Ruiz-Ramos, M., Tao F., Trnka M., Acutis M., Asseng S., Baranowski P., Basso B., Bodin P., Buis S., Cammarano D., Deligios P., Destain M.-F., Doro L., Dumont B., Ewert F., Ferrise R., Francois L., Gaiser T., Hlavinka P., Jacquemin I., Kersebaum K.-C., Kollas C., Krzyszczak J., Lorite I. J., Minet J., Minguez M. I., Montesion M., Moriondo M., Müller C., Nendel C., Öztürk I., Perego A., Rodriguez, A., Ruane A.C., Ruget F., Sanna M., Semenov M., Slawinski C., Stratonovitch P., Supit I., Waha K., Wang E., Wu L., Zhao Z., Rötter R.P, 2015. A crop model ensemble analysis of temperature and precipitation effects on wheat yield across a European transect using impact response surfaces. Clim. Res., 65:87-105, doi:10.3354/cr01322 Wallach, D., Mearns, L.O. Ruane, A.C., Rötter, R.P., Asseng, S. (2016). Lessons from climate modeling on the design and use of ensembles for crop modeling. Climate Change (in press) doi:10.1007/s10584-016-1803-1.

  20. Energy transduction and signal averaging of fluctuating electric fields by a single protein ion channel.

    PubMed

    Verdia-Baguena, C; Gomez, V; Cervera, J; Ramirez, P; Mafe, S

    2016-12-21

    We demonstrate the electrical rectification and signal averaging of fluctuating signals using a biological nanostructure in aqueous solution: a single protein ion channel inserted in the lipid bilayer characteristic of cell membranes. The conversion of oscillating, zero time-average potentials into directional currents permits charging of a load capacitor to significant steady-state voltages within a few minutes in the case of the outer membrane porin F (OmpF) protein, a bacterial channel of Escherichia coli. The experiments and simulations show signal averaging effects at a more fundamental level than the traditional cell and tissue scales, which are characterized by ensembles of many ion channels operating simultaneously. The results also suggest signal transduction schemes with bio-electronic interfaces and ionic circuits where soft matter nanodiodes can be coupled to conventional electronic elements.

Top