Science.gov

Sample records for reveal flexible domains

  1. Structure of a mutant [beta] toxin from Staphylococcus aureus reveals domain swapping and conformational flexibility

    SciTech Connect

    Kruse, Andrew C.; Huseby, Medora J.; Shi, Ke; Digre, Jeff; Ohlendorf, Douglas H.; Earhart, Cathleen A.

    2011-09-16

    The 3.35 {angstrom} resolution crystal structure of a mutant form of the staphylococcal sphingomyelinase {beta} toxin in which a conserved hydrophobic {beta}-hairpin has been deleted is reported. It is shown that this mutation induces domain swapping of a C-terminal {beta}-strand, leading to the formation of dimers linked by a conformationally flexible hinge region. Eight dimers are seen in the asymmetric unit, exhibiting a broad spectrum of conformations trapped in place by intermolecular contacts within the crystal lattice. Furthermore, the 16 monomers within each asymmetric unit exhibit a remarkable heterogeneity in thermal factors, which can be accounted for by the varying degrees to which each monomer interacts with other molecules in the crystal. This structure provides a unique example of the challenges associated with crystallographic study of flexible proteins.

  2. Non-Linear and Flexible Regions of the Human Notch1 Extracellular Domain Revealed by High-Resolution Structural Studies

    PubMed Central

    Weisshuhn, Philip C.; Sheppard, Devon; Taylor, Paul; Whiteman, Pat; Lea, Susan M.; Handford, Penny A.; Redfield, Christina

    2016-01-01

    Summary The Notch receptor is a key component of a core metazoan signaling pathway activated by Delta/Serrate/Lag-2 ligands expressed on an adjacent cell. This results in a short-range signal with profound effects on cell-fate determination, cell proliferation, and cell death. Key to understanding receptor function is structural knowledge of the large extracellular portion of Notch which contains multiple repeats of epidermal growth factor (EGF)-like domains. Here we investigate the EGF4-13 region of human Notch1 (hN1) using a multidisciplinary approach. Ca2+-binding measurements, X-ray crystallography, {1H}-15N heteronuclear nuclear Overhauser effects, and residual dipolar couplings support a non-linear organization for the EGF4-13 region with a rigid, bent conformation for EGF4-7 and a single flexible linkage between EGF9 and EGF10. These data allow us to construct an informed model for EGF10-13 which, in conjunction with comparative binding studies, demonstrates that EGF10 has an important role in determining Notch receptor sensitivity to Dll-4. PMID:26996961

  3. A Crystal Structure of the Dengue Virus NS5 Protein Reveals a Novel Inter-domain Interface Essential for Protein Flexibility and Virus Replication

    PubMed Central

    Zhao, Yongqian; Soh, Tingjin Sherryl; Zheng, Jie; Chan, Kitti Wing Ki; Phoo, Wint Wint; Lee, Chin Chin; Tay, Moon Y. F.; Swaminathan, Kunchithapadam; Cornvik, Tobias C.; Lim, Siew Pheng; Shi, Pei-Yong; Lescar, Julien; Vasudevan, Subhash G.; Luo, Dahai

    2015-01-01

    Flavivirus RNA replication occurs within a replication complex (RC) that assembles on ER membranes and comprises both non-structural (NS) viral proteins and host cofactors. As the largest protein component within the flavivirus RC, NS5 plays key enzymatic roles through its N-terminal methyltransferase (MTase) and C-terminal RNA-dependent-RNA polymerase (RdRp) domains, and constitutes a major target for antivirals. We determined a crystal structure of the full-length NS5 protein from Dengue virus serotype 3 (DENV3) at a resolution of 2.3 Å in the presence of bound SAH and GTP. Although the overall molecular shape of NS5 from DENV3 resembles that of NS5 from Japanese Encephalitis Virus (JEV), the relative orientation between the MTase and RdRp domains differs between the two structures, providing direct evidence for the existence of a set of discrete stable molecular conformations that may be required for its function. While the inter-domain region is mostly disordered in NS5 from JEV, the NS5 structure from DENV3 reveals a well-ordered linker region comprising a short 310 helix that may act as a swivel. Solution Hydrogen/Deuterium Exchange Mass Spectrometry (HDX-MS) analysis reveals an increased mobility of the thumb subdomain of RdRp in the context of the full length NS5 protein which correlates well with the analysis of the crystallographic temperature factors. Site-directed mutagenesis targeting the mostly polar interface between the MTase and RdRp domains identified several evolutionarily conserved residues that are important for viral replication, suggesting that inter-domain cross-talk in NS5 regulates virus replication. Collectively, a picture for the molecular origin of NS5 flexibility is emerging with profound implications for flavivirus replication and for the development of therapeutics targeting NS5. PMID:25775415

  4. Flexible time domain averaging technique

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Lin, Jing; Lei, Yaguo; Wang, Xiufeng

    2013-09-01

    Time domain averaging(TDA) is essentially a comb filter, it cannot extract the specified harmonics which may be caused by some faults, such as gear eccentric. Meanwhile, TDA always suffers from period cutting error(PCE) to different extent. Several improved TDA methods have been proposed, however they cannot completely eliminate the waveform reconstruction error caused by PCE. In order to overcome the shortcomings of conventional methods, a flexible time domain averaging(FTDA) technique is established, which adapts to the analyzed signal through adjusting each harmonic of the comb filter. In this technique, the explicit form of FTDA is first constructed by frequency domain sampling. Subsequently, chirp Z-transform(CZT) is employed in the algorithm of FTDA, which can improve the calculating efficiency significantly. Since the signal is reconstructed in the continuous time domain, there is no PCE in the FTDA. To validate the effectiveness of FTDA in the signal de-noising, interpolation and harmonic reconstruction, a simulated multi-components periodic signal that corrupted by noise is processed by FTDA. The simulation results show that the FTDA is capable of recovering the periodic components from the background noise effectively. Moreover, it can improve the signal-to-noise ratio by 7.9 dB compared with conventional ones. Experiments are also carried out on gearbox test rigs with chipped tooth and eccentricity gear, respectively. It is shown that the FTDA can identify the direction and severity of the eccentricity gear, and further enhances the amplitudes of impulses by 35%. The proposed technique not only solves the problem of PCE, but also provides a useful tool for the fault symptom extraction of rotating machinery.

  5. Unprecedented conformational flexibility revealed in the ligand-binding domains of the Bovicola ovis ecdysone receptor (EcR) and ultraspiracle (USP) subunits.

    PubMed

    Ren, Bin; Peat, Thomas S; Streltsov, Victor A; Pollard, Matthew; Fernley, Ross; Grusovin, Julian; Seabrook, Shane; Pilling, Pat; Phan, Tram; Lu, Louis; Lovrecz, George O; Graham, Lloyd D; Hill, Ronald J

    2014-07-01

    The heterodimeric ligand-binding region of the Bovicola ovis ecdysone receptor has been crystallized either in the presence of an ecdysteroid or a synthetic methylene lactam insecticide. Two X-ray crystallographic structures, determined at 2.7 Å resolution, show that the ligand-binding domains of both subunits of this receptor, like those of other nuclear receptors, can display significant conformational flexibility. Thermal melt experiments show that while ponasterone A stabilizes the higher order structure of the heterodimer in solution, the methylene lactam destabilizes it. The conformations of the EcR and USP subunits observed in the structure crystallized in the presence of the methylene lactam have not been seen previously in any ecdysone receptor structure and represent a new level of conformational flexibility for these important receptors. Interestingly, the new USP conformation presents an open, unoccupied ligand-binding pocket.

  6. Myosin flexibility: structural domains and collective vibrations.

    PubMed

    Navizet, Isabelle; Lavery, Richard; Jernigan, Robert L

    2004-02-15

    The movement of the myosin motor along an actin filament involves a directed conformational change within the cross-bridge formed between the protein and the filament. Despite the structural data that has been obtained on this system, little is known of the mechanics of this conformational change. We have used existing crystallographic structures of three conformations of the myosin head, containing the motor domain and the lever arm, for structural comparisons and mechanical studies with a coarse-grained elastic network model. The results enable us to define structurally conserved domains within the protein and to better understand myosin flexibility. Notably they point to the role of the light chains in rigidifying the lever arm and to changes in flexibility as a consequence of nucleotide binding.

  7. Pressure effects reveal that changes in the redox states of the heme iron complexes in the sensor domains of two heme-based oxygen sensor proteins, EcDOS and YddV, have profound effects on their flexibility.

    PubMed

    Anzenbacher, Pavel; Marchal, Stéphane; Palacký, Jan; Anzenbacherová, Eva; Domaschke, Thomas; Lange, Reinhard; Shimizu, Toru; Kitanishi, Kenichi; Stranava, Martin; Stiborová, Marie; Martinkova, Marketa

    2014-12-01

    The catalytic activity of a heme-based oxygen sensor phosphodiesterase from Escherichia coli (EcDOS) towards cyclic diGMP is regulated by the redox state of the heme iron complex in the enzyme's sensing domain and the association of external ligands with the iron center. Specifically, the Fe(II) complex is more active towards cyclic diGMP than the Fe(III) complex, and its activity is further enhanced by O2 or CO binding. In order to determine how the redox state and coordination of the heme iron atom regulate the catalytic activity of EcDOS, we investigated the flexibility of its isolated N-terminal heme-binding domain (EcDOS-heme) by monitoring its spectral properties at various hydrostatic pressures. The most active form of the heme-containing domain, i.e. the Fe(II)-CO complex, was found to be the least flexible. Conversely, the oxidized Fe(III) forms of EcDOS-heme and its mutants had relatively high flexibilities, which appeared to be linked to the low catalytic activity of the corresponding intact enzymes. These findings corroborate the suggestion, made on the basis of crystallographic data, that there is an inverse relationship between the flexibility of the heme-containing domain of EcDOS and its catalytic activity. The Fe(II)-CO form of the heme domain of a second heme-based oxygen sensor, diguanylate cyclase (YddV), was also found to be quite rigid. Interestingly, the incorporation of a water molecule into the heme complex of YddV caused by mutation of the Leu65 residue reduced the flexibility of this heme domain. Conversely, mutation of the Tyr43 residue increased its flexibility.

  8. Domain decomposition approach to flexible multibody dynamics simulation

    NASA Astrophysics Data System (ADS)

    Kwak, JunYoung; Chun, TaeYoung; Shin, SangJoon; Bauchau, Olivier A.

    2014-01-01

    Finite element based formulations for flexible multibody systems are becoming increasingly popular and as the complexity of the configurations to be treated increases, so does the computational cost. It seems natural to investigate the applicability of parallel processing to this type of problems; domain decomposition techniques have been used extensively for this purpose. In this approach, the computational domain is divided into non-overlapping sub-domains, and the continuity of the displacement field across sub-domain boundaries is enforced via the Lagrange multiplier technique. In the finite element literature, this approach is presented as a mathematical algorithm that enables parallel processing. In this paper, the divided system is viewed as a flexible multibody system, and the sub-domains are connected by kinematic constraints. Consequently, all the techniques applicable to the enforcement of constraints in multibody systems become applicable to the present problem. In particular, it is shown that a combination of the localized Lagrange multiplier technique with the augmented Lagrange formulation leads to interesting solution strategies. The proposed algorithm is compared with the well-known FETI approach with regards to convergence and efficiency characteristics. The present algorithm is relatively simple and leads to improved convergence and efficiency characteristics. Finally, implementation on a parallel computer was conducted for the proposed approach.

  9. Fast Simulation on Flexible Multibody Dynamics Using Domain Decomposition Technique

    NASA Astrophysics Data System (ADS)

    Imanishi, Etsujiro; Nanjo, Takao; Hirooka, Eiko; Sugano, Naoki

    Recently, HILS (Hardware in the Loop Simulation) has been investigated in the field of the multibody dynamics (MBD). The fast calculation is necessary for the HILS system in order to require the real time simulation. This paper presents a fast simulation technique using the domain decomposition method. The domain decomposition method is widely used in the dynamic simulation for the mechanical system involving the hydraulic control system. This method is, however, not absolutely stable as the numerical integration. Fujikawa proposed a numerical stable solution scheme by introducing the iteration calculation. This paper applies the method to actual simulations of flexible multibody system in which the flexible linkage system and the hydraulic drive system are coupled with each other, and examines the speedup by parallel computing with the common memory in the calculation time. It is shown that using the present method in a multi-degrees-of freedom model can shorten the computing time. The present method is effective for the speedup in the calculation time by applying the dynamic simulation of the actual digging works on the hydraulic excavator.

  10. Frequency domain identification experiment on a large flexible structure

    NASA Technical Reports Server (NTRS)

    Bayard, D. S.; Hadaegh, F. Y.; Yam, Y.; Scheid, R. E.; Mettler, E.; Milman, M. H.

    1989-01-01

    Recent experiences in the field of flexible structure control in space have indicated a need for on-orbit system identification to support robust control redesign to avoid in-flight instabilities and maintain high spacecraft performance. The authors highlight an automated frequency domain system identification methodology recently developed to fill this need. The methodology supports (1) the estimation of system quantities useful for robust control analysis and design, (2) experiment design tailored to performing system identification in a typically constrained on-orbit environment, and (3) the automation of operations to reduce human-in-the-loop requirements. A basic overview of the methodology is presented first, followed by an experimental verification of the approach performed on the JPL/AFAL testbed facility.

  11. Fluorescence Anisotropy Reveals Order and Disorder of Protein Domains in the Nuclear Pore Complex

    PubMed Central

    Mattheyses, Alexa L.; Kampmann, Martin; Atkinson, Claire E.; Simon, Sanford M.

    2010-01-01

    We present a new approach for studying individual protein domains within the nuclear pore complex (NPC) using fluorescence polarization microscopy. The NPC is a large macromolecular complex, the size and complexity of which presents experimental challenges. Using fluorescence anisotropy and exploiting the symmetry of the NPC and its organization in the nuclear envelope, we have resolved order and disorder of individual protein domains. Fluorescently tagging specific domains of individual nucleoporins revealed both rigid and flexible domains: the tips of the FG domains are disordered, whereas the NPC-anchored domains are ordered. Our technique allows the collection of structural information in vivo, providing the ability to probe the organization of protein domains within the NPC. This has particular relevance for the FG domain nucleoporins, which are crucial for nucleocytoplasmic transport. PMID:20858414

  12. Ion Mobility Mass Spectrometry of a Rotary ATPase Reveals ATP-induced Reduction in Conformational Flexibility

    PubMed Central

    Davies, Roberta; Liko, Idlir; Wu, Kuan-Jung; Stewart, Alastair G.; Stock, Daniela; Robinson, Carol V.

    2014-01-01

    Rotary ATPases play fundamental roles in energy conversion, their catalytic rotation being associated with inter-domain fluctuations and heterogeneity of conformational states. Using ion mobility mass spectrometry (IM-MS) we compare the conformational dynamics of the intact ATPase from Thermus thermophilus (TtATPase) with its membrane and soluble subcomplexes. Our results define regions with enhanced flexibility assigned to distinct subunits within the overall assembly. To provide a structural context for our experimental data we performed molecular dynamics (MD) simulations and observed conformational changes of the peripheral stalks reflecting their intrinsic flexibility. By isolating complexes at different phases of cell growth and manipulating nucleotides, metal ions and pH during isolation, we reveal differences that can be related to conformational changes in the Vo complex, triggered by ATP binding. Together these results implicate nucleotides in modulating flexibility of the stator components and uncover mechanistic detail underlying operation and regulation in the context of the holo-enzyme. PMID:24557135

  13. Flexible DNA binding of the BTB/POZ-domain protein FBI-1.

    PubMed

    Pessler, Frank; Hernandez, Nouria

    2003-08-01

    POZ-domain transcription factors are characterized by the presence of a protein-protein interaction domain called the POZ or BTB domain at their N terminus and zinc fingers at their C terminus. Despite the large number of POZ-domain transcription factors that have been identified to date and the significant insights that have been gained into their cellular functions, relatively little is known about their DNA binding properties. FBI-1 is a BTB/POZ-domain protein that has been shown to modulate HIV-1 Tat trans-activation and to repress transcription of some cellular genes. We have used various viral and cellular FBI-1 binding sites to characterize the interaction of a POZ-domain protein with DNA in detail. We find that FBI-1 binds to inverted sequence repeats downstream of the HIV-1 transcription start site. Remarkably, it binds efficiently to probes carrying these repeats in various orientations and spacings with no particular rotational alignment, indicating that its interaction with DNA is highly flexible. Indeed, FBI-1 binding sites in the adenovirus 2 major late promoter, the c-fos gene, and the c-myc P1 and P2 promoters reveal variously spaced direct, inverted, and everted sequence repeats with the consensus sequence G(A/G)GGG(T/C)(C/T)(T/C)(C/T) for each repeat.

  14. Distinct cytoskeletal domains revealed in sperm cells

    PubMed Central

    1984-01-01

    Antibodies against different cytoskeletal proteins were used to study the cytoskeletal organization of human spermatozoa. A positive staining with actin antibodies was seen in both the acrosomal cap region and the principal piece region of the tail. However, no staining was obtained with nitrobenzoxadiazol-phallacidin, suggesting that most of the actin was in the nonpolymerized form. Most of the myosin immunoreactivity was confirmed to a narrow band in the neck region of spermatozoa. Tubulin was located to the entire tail, whereas vimentin was only seen in a discrete band-like structure encircling the sperm head, apparently coinciding with the equatorial segment region. Surface staining of the spermatozoa with fluorochrome-coupled Helix pomatia agglutinin revealed a similar band-like structure that co-distributed with the vimentin- specific staining. Instead, other lectin conjugates used labeled either the acrosomal cap region (peanut and soybean agglutinins), both the acrosomal cap and the postacrosomal region of the head (concanavalin A), or the whole sperm cell surface membrane (wheat germ and lens culinaris agglutinins and ricinus communis agglutinin l). In lectin blotting experiments, the Helix pomatia agglutinin-binding was assigned to a 80,000-mol-wt polypeptide which, together with vimentin, also resisted treatment with Triton X-100. Only the acrosomal cap and the principal piece of the tail were decorated with rabbit and hydridoma antibodies against an immunoanalogue of erythrocyte alpha-spectrin (p230). p230 appeared to be the major calmodulin-binding polypeptide in spermatozoa, as shown by a direct overlay assay of electrophoretic blots of spermatozoa with 125I-calmodulin. The results indicate that spermatozoa have a highly specialized cytoskeletal organization and that the distribution of actin, spectrin, and vimentin can be correlated with distinct surface specializations of the sperm cells. This suggest that cytoskeleton may regulate the maintenance

  15. Structure reveals function of the dual variable domain immunoglobulin (DVD-Ig™) molecule

    PubMed Central

    Jakob, Clarissa G.; Edalji, Rohinton; Judge, Russell A.; DiGiammarino, Enrico; Li, Yingchun; Gu, Jijie; Ghayur, Tariq

    2013-01-01

    Several bispecific antibody-based formats have been developed over the past 25 years in an effort to produce a new generation of immunotherapeutics that target two or more disease mechanisms simultaneously. One such format, the dual-variable domain immunoglobulin (DVD-Ig™), combines the target binding domains of two monoclonal antibodies via flexible naturally occurring linkers, which yields a tetravalent IgG - like molecule. We report the structure of an interleukin (IL)12-IL18 DVD-Ig™ Fab (DFab) fragment with IL18 bound to the inner variable domain (VD) that reveals the remarkable flexibility of the DVD-Ig™ molecule and how the DVD-Ig™ format can function to bind four antigens simultaneously. An understanding of how the inner variable domain retains function is of critical importance for designing DVD-Ig™ molecules, and for better understanding of the flexibility of immunoglobulin variable domains and linkers, which may aid in the design of improved bi- and multi-specific biologics in general. PMID:23549062

  16. Structure and Mutagenesis of Neural Cell Adhesion Molecule Domains Evidence for Flexibility in the Placement of Polysialic Acid Attachment Sites

    SciTech Connect

    Foley, Deirdre A.; Swartzentruber, Kristin G.; Lavie, Arnon; Colley, Karen J.

    2010-11-09

    The addition of {alpha}2,8-polysialic acid to the N-glycans of the neural cell adhesion molecule, NCAM, is critical for brain development and plays roles in synaptic plasticity, learning and memory, neuronal regeneration, and the growth and invasiveness of cancer cells. Our previous work indicates that the polysialylation of two N-glycans located on the fifth immunoglobulin domain (Ig5) of NCAM requires the presence of specific sequences in the adjacent fibronectin type III repeat (FN1). To understand the relationship of these two domains, we have solved the crystal structure of the NCAM Ig5-FN1 tandem. Unexpectedly, the structure reveals that the sites of Ig5 polysialylation are on the opposite face from the FN1 residues previously found to be critical for N-glycan polysialylation, suggesting that the Ig5-FN1 domain relationship may be flexible and/or that there is flexibility in the placement of Ig5 glycosylation sites for polysialylation. To test the latter possibility, new Ig5 glycosylation sites were engineered and their polysialylation tested. We observed some flexibility in glycosylation site location for polysialylation and demonstrate that the lack of polysialylation of a glycan attached to Asn-423 may be in part related to a lack of terminal processing. The data also suggest that, although the polysialyltransferases do not require the Ig5 domain for NCAM recognition, their ability to engage with this domain is necessary for polysialylation to occur on Ig5 N-glycans.

  17. Structures of mesophilic and extremophilic citrate synthases reveal rigidity and flexibility for function.

    PubMed

    Wells, Stephen A; Crennell, Susan J; Danson, Michael J

    2014-10-01

    Citrate synthase (CS) catalyses the entry of carbon into the citric acid cycle and is highly-conserved structurally across the tree of life. Crystal structures of dimeric CSs are known in both "open" and "closed" forms, which differ by a substantial domain motion that closes the substrate-binding clefts. We explore both the static rigidity and the dynamic flexibility of CS structures from mesophilic and extremophilic organisms from all three evolutionary domains. The computational expense of this wide-ranging exploration is kept to a minimum by the use of rigidity analysis and rapid all-atom simulations of flexible motion, combining geometric simulation and elastic network modeling. CS structures from thermophiles display increased structural rigidity compared with the mesophilic enzyme. A CS structure from a psychrophile, stabilized by strong ionic interactions, appears to display likewise increased rigidity in conventional rigidity analysis; however, a novel modified analysis, taking into account the weakening of the hydrophobic effect at low temperatures, shows a more appropriate decreased rigidity. These rigidity variations do not, however, affect the character of the flexible dynamics, which are well conserved across all the structures studied. Simulation trajectories not only duplicate the crystallographically observed symmetric open-to-closed transitions, but also identify motions describing a previously unidentified antisymmetric functional motion. This antisymmetric motion would not be directly observed in crystallography but is revealed as an intrinsic property of the CS structure by modeling of flexible motion. This suggests that the functional motion closing the binding clefts in CS may be independent rather than symmetric and cooperative.

  18. Conformation switching of AIM2 PYD domain revealed by NMR relaxation and MD simulation.

    PubMed

    Wang, Haobo; Yang, Lijiang; Niu, Xiaogang

    2016-04-29

    Protein absent in melanoma 2 (AIM2) is a double-strand DNA (ds DNA) sensor mainly located in cytoplasm of cell. It includes one N terminal PYD domain and one C terminal HIN domain. When the ds DNA such as DNA viruses and bacteria entered cytoplasm, the HIN domain of AIM2 will recognize and bind to DNA, and the PYD domain will bind to ASC protein which will result in the formation of AIM2 inflammasome. Three AIM2 PYD domain structures have been solved, but every structure yields a unique conformation around the α3 helix region. To understand why different AIM2 PYD structures show different conformations in this region, we use NMR relaxation techniques to study the backbone dynamics of mouse AIM2 PYD domain and perform molecular dynamics (MD) simulations on both mouse and human AIM2 PYD structures. Our results indicate that this region is highly flexible in both mouse and human AIM2 PYD domains, and the PYD domain may exist as a conformation ensemble in solution. Different environment makes the population vary among pre-existing conformational substrates of the ensemble, which may be the reason why different AIM2 PYD structures were observed under different conditions. Further docking analysis reveals that the conformation switching may be important for the autoinhibition of the AIM2 protein.

  19. Modal domain fiber optic sensor for closed loop vibration control of a flexible beam

    NASA Technical Reports Server (NTRS)

    Cox, D.; Thomas, D.; Reichard, K.; Lindner, D.; Claus, R. O.

    1990-01-01

    The use of a modal domain sensor in a vibration control experiment is described. An optical fiber is bonded along the length of a flexible beam. A control signal derived from the output of the modal domain sensor is used to suppress vibrations induced in the beam. A distributed effect model for the modal domain sensor is developed and combined with models of the beam and actuator dynamics to produce a system suitable for control design.

  20. Flexibility of the Thrombin-activatable Fibrinolysis Inhibitor Pro-domain Enables Productive Binding of Protein Substrates*

    PubMed Central

    Valnickova, Zuzana; Sanglas, Laura; Arolas, Joan L.; Petersen, Steen V.; Schar, Christine; Otzen, Daniel; Aviles, Francesc X.; Gomis-Rüth, F. Xavier; Enghild, Jan J.

    2010-01-01

    We have previously reported that thrombin-activatable fibrinolysis inhibitor (TAFI) exhibits intrinsic proteolytic activity toward large peptides. The structural basis for this observation was clarified by the crystal structures of human and bovine TAFI. These structures evinced a significant rotation of the pro-domain away from the catalytic moiety when compared with other pro-carboxypeptidases, thus enabling access of large peptide substrates to the active site cleft. Here, we further investigated the flexible nature of the pro-domain and demonstrated that TAFI forms productive complexes with protein carboxypeptidase inhibitors from potato, leech, and tick (PCI, LCI, and TCI, respectively). We determined the crystal structure of the bovine TAFI-TCI complex, revealing that the pro-domain was completely displaced from the position observed in the TAFI structure. It protruded into the bulk solvent and was disordered, whereas TCI occupied the position previously held by the pro-domain. The authentic nature of the presently studied TAFI-inhibitor complexes was supported by the trimming of the C-terminal residues from the three inhibitors upon complex formation. This finding suggests that the inhibitors interact with the active site of TAFI in a substrate-like manner. Taken together, these data show for the first time that TAFI is able to form a bona fide complex with protein carboxypeptidase inhibitors. This underlines the unusually flexible nature of the pro-domain and implies a possible mechanism for regulation of TAFI intrinsic proteolytic activity in vivo. PMID:20880845

  1. Structural flexibility of the Gαs α-helical domain in the β2-adrenoceptor Gs complex

    PubMed Central

    Westfield, Gerwin H.; Rasmussen, Søren G. F.; Su, Min; Dutta, Somnath; DeVree, Brian T.; Chung, Ka Young; Calinski, Diane; Velez-Ruiz, Gisselle; Oleskie, Austin N.; Pardon, Els; Chae, Pil Seok; Liu, Tong; Li, Sheng; Woods, Virgil L.; Steyaert, Jan; Kobilka, Brian K.; Sunahara, Roger K.; Skiniotis, Georgios

    2011-01-01

    The active-state complex between an agonist-bound receptor and a guanine nucleotide-free G protein represents the fundamental signaling assembly for the majority of hormone and neurotransmitter signaling. We applied single-particle electron microscopy (EM) analysis to examine the architecture of agonist-occupied β2-adrenoceptor (β2AR) in complex with the heterotrimeric G protein Gs (Gαsβγ). EM 2D averages and 3D reconstructions of the detergent-solubilized complex reveal an overall architecture that is in very good agreement with the crystal structure of the active-state ternary complex. Strikingly however, the α-helical domain of Gαs appears highly flexible in the absence of nucleotide. In contrast, the presence of the pyrophosphate mimic foscarnet (phosphonoformate), and also the presence of GDP, favor the stabilization of the α-helical domain on the Ras-like domain of Gαs. Molecular modeling of the α-helical domain in the 3D EM maps suggests that in its stabilized form it assumes a conformation reminiscent to the one observed in the crystal structure of Gαs-GTPγS. These data argue that the α-helical domain undergoes a nucleotide-dependent transition from a flexible to a conformationally stabilized state. PMID:21914848

  2. Crystal Structure of Human Soluble Adenylate Cyclase Reveals a Distinct, Highly Flexible Allosteric Bicarbonate Binding Pocket

    PubMed Central

    Saalau-Bethell, Susanne M; Berdini, Valerio; Cleasby, Anne; Congreve, Miles; Coyle, Joseph E; Lock, Victoria; Murray, Christopher W; O'Brien, M Alistair; Rich, Sharna J; Sambrook, Tracey; Vinkovic, Mladen; Yon, Jeff R; Jhoti, Harren

    2014-01-01

    Soluble adenylate cyclases catalyse the synthesis of the second messenger cAMP through the cyclisation of ATP and are the only known enzymes to be directly activated by bicarbonate. Here, we report the first crystal structure of the human enzyme that reveals a pseudosymmetrical arrangement of two catalytic domains to produce a single competent active site and a novel discrete bicarbonate binding pocket. Crystal structures of the apo protein, the protein in complex with α,β-methylene adenosine 5′-triphosphate (AMPCPP) and calcium, with the allosteric activator bicarbonate, and also with a number of inhibitors identified using fragment screening, all show a flexible active site that undergoes significant conformational changes on binding of ligands. The resulting nanomolar-potent inhibitors that were developed bind at both the substrate binding pocket and the allosteric site, and can be used as chemical probes to further elucidate the function of this protein. PMID:24616449

  3. Knowledge-Guided Docking of WW Domain Proteins and Flexible Ligands

    NASA Astrophysics Data System (ADS)

    Lu, Haiyun; Li, Hao; Banu Bte Sm Rashid, Shamima; Leow, Wee Kheng; Liou, Yih-Cherng

    Studies of interactions between protein domains and ligands are important in many aspects such as cellular signaling. We present a knowledge-guided approach for docking protein domains and flexible ligands. The approach is applied to the WW domain, a small protein module mediating signaling complexes which have been implicated in diseases such as muscular dystrophy and Liddle’s syndrome. The first stage of the approach employs a substring search for two binding grooves of WW domains and possible binding motifs of peptide ligands based on known features. The second stage aligns the ligand’s peptide backbone to the two binding grooves using a quasi-Newton constrained optimization algorithm. The backbone-aligned ligands produced serve as good starting points to the third stage which uses any flexible docking algorithm to perform the docking. The experimental results demonstrate that the backbone alignment method in the second stage performs better than conventional rigid superposition given two binding constraints. It is also shown that using the backbone-aligned ligands as initial configurations improves the flexible docking in the third stage. The presented approach can also be applied to other protein domains that involve binding of flexible ligand to two or more binding sites.

  4. Eye Movements Reveal Components of Flexible Reading Strategies.

    ERIC Educational Resources Information Center

    Shebilske, Wayne L.; Fisher, Dennis F.

    The eye movements of two college graduates were monitored in a study of flexible reading, which is defined as the ability to adjust one's rate and approach to reading according to the purpose of reading, the difficulty of the material, and one's knowledge of the subject matter. The subjects were told to read an excerpt from a tenth grade biology…

  5. Vibration sensing in flexible structures using a distributed-effect modal domain optical fiber sensor

    NASA Technical Reports Server (NTRS)

    Reichard, Karl M.; Lindner, Douglas K.; Claus, Richard O.

    1991-01-01

    Modal domain optical fiber sensors have recently been employed in the implementation of system identification algorithms and the closed-loop control of vibrations in flexible structures. The mathematical model of the modal domain optical fiber sensor used in these applications, however, only accounted for the effects of strain in the direction of the fiber's longitudinal axis. In this paper, we extend this model to include the effects of arbitrary stress. Using this sensor model, we characterize the sensor's sensitivity and dynamic range.

  6. Controller design for flexible, distributed parameter mechanical arms via combined state space and frequency domain techniques

    NASA Technical Reports Server (NTRS)

    Book, W. J.; Majett, M.

    1982-01-01

    The potential benefits of the ability to control more flexible mechanical arms are discussed. A justification is made in terms of speed of movement. A new controller design procedure is then developed to provide this capability. It uses both a frequency domain representation and a state variable representation of the arm model. The frequency domain model is used to update the modal state variable model to insure decoupled states. The technique is applied to a simple example with encouraging results.

  7. Tethered domains and flexible regions in tRNase Z(L), the long form of tRNase Z.

    PubMed

    Wilson, Christopher; Ramai, Daryl; Serjanov, Dmitri; Lama, Neema; Levinger, Louis; Chang, Emmanuel J

    2013-01-01

    tRNase Z, a member of the metallo-β-lactamase family, endonucleolytically removes the pre-tRNA 3' trailer in a step central to tRNA maturation. The short form (tRNase Z(S)) is the only one found in bacteria and archaebacteria and is also present in some eukaryotes. The homologous long form (tRNase Z(L)), exclusively found in eukaryotes, consists of related amino- and carboxy-domains, suggesting that tRNase Z(L) arose from a tandem duplication of tRNase Z(S) followed by interdependent divergence of the domains. X-ray crystallographic structures of tRNase Z(S) reveal a flexible arm (FA) extruded from the body of tRNase Z remote from the active site that binds tRNA far from the scissile bond. No tRNase Z(L) structures have been solved; alternative biophysical studies are therefore needed to illuminate its functional characteristics. Structural analyses of tRNase Z(L) performed by limited proteolysis, two dimensional gel electrophoresis and mass spectrometry establish stability of the amino and carboxy domains and flexibility of the FA and inter-domain tether, with implications for tRNase Z(L) function.

  8. The evolutionary analysis reveals domain fusion of proteins with Frizzled-like CRD domain.

    PubMed

    Yan, Jun; Jia, Haibo; Ma, Zhaowu; Ye, Huashan; Zhou, Mi; Su, Li; Liu, Jianfeng; Guo, An-Yuan

    2014-01-01

    Frizzleds (FZDs) are transmembrane receptors in the Wnt signaling pathway and they play pivotal roles in developments. The Frizzled-like extracellular Cysteine-rich domain (Fz-CRD) has been identified in FZDs and other proteins. The origin and evolution of these proteins with Fz-CRD is the main interest of this study. We found that the Fz-CRD exists in FZD, SFRP, RTK, MFRP, CPZ, CORIN, COL18A1 and other proteins. Our systematic analysis revealed that the Fz-CRD domain might have originated in protists and then fused with the Frizzled-like seven-transmembrane domain (7TM) to form the FZD receptors, which duplicated and diversified into about 11 members in Vertebrates. The SFRPs and RTKs with the Fz-CRD were found in sponge and expanded in Vertebrates. Other proteins with Fz-CRD may have emerged during Vertebrate evolution through domain fusion. Moreover, we found a glycosylation site and several conserved motifs in FZDs, which may be related to Wnt interaction. Based on these results, we proposed a model showing that the domain fusion and expansion of Fz-CRD genes occurred in Metazoa and Vertebrates. Our study may help to pave the way for further research on the conservation and diversification of Wnt signaling functions during evolution.

  9. Observed bromodomain flexibility reveals histone peptide- and small molecule ligand-compatible forms of ATAD2.

    PubMed

    Poncet-Montange, Guillaume; Zhan, Yanai; Bardenhagen, Jennifer P; Petrocchi, Alessia; Leo, Elisabetta; Shi, Xi; Lee, Gilbert R; Leonard, Paul G; Geck Do, Mary K; Cardozo, Mario G; Andersen, Jannik N; Palmer, Wylie S; Jones, Philip; Ladbury, John E

    2015-03-01

    Preventing histone recognition by bromodomains emerges as an attractive therapeutic approach in cancer. Overexpression of ATAD2 (ATPase family AAA domain-containing 2 isoform A) in cancer cells is associated with poor prognosis making the bromodomain of ATAD2 a promising epigenetic therapeutic target. In the development of an in vitro assay and identification of small molecule ligands, we conducted structure-guided studies which revealed a conformationally flexible ATAD2 bromodomain. Structural studies on apo-, peptide-and small molecule-ATAD2 complexes (by co-crystallization) revealed that the bromodomain adopts a 'closed', histone-compatible conformation and a more 'open' ligand-compatible conformation of the binding site respectively. An unexpected conformational change of the conserved asparagine residue plays an important role in driving the peptide-binding conformation remodelling. We also identified dimethylisoxazole-containing ligands as ATAD2 binders which aided in the validation of the in vitro screen and in the analysis of these conformational studies.

  10. Role of the vaccinia virus O3 protein in cell entry can be fulfilled by its Sequence flexible transmembrane domain

    SciTech Connect

    Satheshkumar, P.S.; Chavre, James; Moss, Bernard

    2013-09-15

    The vaccinia virus O3 protein, a component of the entry–fusion complex, is encoded by all chordopoxviruses. We constructed truncation mutants and demonstrated that the transmembrane domain, which comprises two-thirds of this 35 amino acid protein, is necessary and sufficient for interaction with the entry–fusion complex and function in cell entry. Nevertheless, neither single amino acid substitutions nor alanine scanning mutagenesis revealed essential amino acids within the transmembrane domain. Moreover, replication-competent mutant viruses were generated by randomization of 10 amino acids of the transmembrane domain. Of eight unique viruses, two contained only two amino acids in common with wild type and the remainder contained one or none within the randomized sequence. Although these mutant viruses formed normal size plaques, the entry–fusion complex did not co-purify with the mutant O3 proteins suggesting a less stable interaction. Thus, despite low specific sequence requirements, the transmembrane domain is sufficient for function in entry. - Highlights: • The 35 amino acid O3 protein is required for efficient vaccinia virus entry. • The transmembrane domain of O3 is necessary and sufficient for entry. • Mutagenesis demonstrated extreme sequence flexibility compatible with function.

  11. Polyglutamine domain flexibility mediates the proximity between flanking sequences in huntingtin

    PubMed Central

    Caron, Nicholas Stephane; Desmond, Carly Robyn; Xia, Jianrun; Truant, Ray

    2013-01-01

    Huntington disease (HD) is a neurodegenerative disorder caused by a CAG expansion within the huntingtin gene that encodes a polymorphic glutamine tract at the amino terminus of the huntingtin protein. HD is one of nine polyglutamine expansion diseases. The clinical threshold of polyglutamine expansion for HD is near 37 repeats, but the mechanism of this pathogenic length is poorly understood. Using Förster resonance energy transfer, we describe an intramolecular proximity between the N17 domain and the downstream polyproline region that flanks the polyglutamine tract of huntingtin. Our data support the hypothesis that the polyglutamine tract can act as a flexible domain, allowing the flanking domains to come into close spatial proximity. This flexibility is impaired with expanded polyglutamine tracts, and we can detect changes in huntingtin conformation at the pathogenic threshold for HD. Altering the structure of N17, either via phosphomimicry or with small molecules, also affects the proximity between the flanking domains. The structural capacity of N17 to fold back toward distal regions within huntingtin requires an interacting protein, protein kinase C and casein kinase 2 substrate in neurons 1 (PACSIN1). This protein has the ability to bind both N17 and the polyproline region, stabilizing the interaction between these two domains. We also developed an antibody-based FRET assay that can detect conformational changes within endogenous huntingtin in wild-type versus HD fibroblasts. Therefore, we hypothesize that wild-type length polyglutamine tracts within huntingtin can form a flexible domain that is essential for proper functional intramolecular proximity, conformations, and dynamics. PMID:23898200

  12. Flexible connectivity in the aging brain revealed by task modulations.

    PubMed

    Geerligs, Linda; Saliasi, Emi; Renken, Remco J; Maurits, Natasha M; Lorist, Monicque M

    2014-08-01

    Recent studies have shown that aging has a large impact on connectivity within and between functional networks. An open question is whether elderly still have the flexibility to adapt functional network connectivity (FNC) to the demands of the task at hand. To study this, we collected fMRI data in younger and older participants during resting state, a selective attention (SA) task and an n-back working memory task with varying levels of difficulty. Spatial independent component (IC) analysis was used to identify functional networks over all participants and all conditions. Dual regression was used to obtain participant and task specific time-courses per IC. Subsequently, functional connectivity was computed between all ICs in each of the tasks. Based on these functional connectivity matrices, a scaled version of the eigenvector centrality (SEC) was used to measure the total influence of each IC in the complete graph of ICs. The results demonstrated that elderly remain able to adapt FNC to task demands. However, there was an age-related shift in the impetus for FNC change. Older participants showed the maximal change in SEC patterns between resting state and the SA task. Young participants, showed the largest shift in SEC patterns between the less demanding SA task and the more demanding 2-back task. Our results suggest that increased FNC changes from resting state to low demanding tasks in elderly reflect recruitment of additional resources, compared with young adults. The lack of change between the low and high demanding tasks suggests that elderly reach a resource ceiling. PMID:24382835

  13. Flexible connectivity in the aging brain revealed by task modulations.

    PubMed

    Geerligs, Linda; Saliasi, Emi; Renken, Remco J; Maurits, Natasha M; Lorist, Monicque M

    2014-08-01

    Recent studies have shown that aging has a large impact on connectivity within and between functional networks. An open question is whether elderly still have the flexibility to adapt functional network connectivity (FNC) to the demands of the task at hand. To study this, we collected fMRI data in younger and older participants during resting state, a selective attention (SA) task and an n-back working memory task with varying levels of difficulty. Spatial independent component (IC) analysis was used to identify functional networks over all participants and all conditions. Dual regression was used to obtain participant and task specific time-courses per IC. Subsequently, functional connectivity was computed between all ICs in each of the tasks. Based on these functional connectivity matrices, a scaled version of the eigenvector centrality (SEC) was used to measure the total influence of each IC in the complete graph of ICs. The results demonstrated that elderly remain able to adapt FNC to task demands. However, there was an age-related shift in the impetus for FNC change. Older participants showed the maximal change in SEC patterns between resting state and the SA task. Young participants, showed the largest shift in SEC patterns between the less demanding SA task and the more demanding 2-back task. Our results suggest that increased FNC changes from resting state to low demanding tasks in elderly reflect recruitment of additional resources, compared with young adults. The lack of change between the low and high demanding tasks suggests that elderly reach a resource ceiling.

  14. Active control for vibration suppression in a flexible beam using a modal domain optical fiber sensor

    NASA Technical Reports Server (NTRS)

    Cox, D. E.; Lindner, D. K.

    1991-01-01

    An account is given of the use of a modal-domain (MD) fiber-optic sensor as an active control system component for vibration suppression, whose output is proportional to the integral of the axial strain along the optical fiber. When an MD sensor is attached to, or embedded in, a flexible structure, it senses the strain in the structure along its gage length. On the basis of the present integration of the sensor model into a flexible-structure model, it becomes possible to design a control system with a dynamic compensator which adds damping to the low-order modes of the flexible structure. This modeling procedure has been experimentally validated.

  15. Flexibility.

    ERIC Educational Resources Information Center

    Humphrey, L. Dennis

    1981-01-01

    Flexibility is an important aspect of all sports and recreational activities. Flexibility can be developed and maintained by stretching exercises. Exercises designed to develop flexibility in ankle joints, knees, hips, and the lower back are presented. (JN)

  16. Structural characterization of intramolecular Hg2+ transfer between flexibly-linked domains of mercuric ion reductase

    SciTech Connect

    Johs, Alexander; Harwood, Ian M; Parks, Jerry M; Nauss, Rachel; Smith, Jeremy C; Liang, Liyuan; Miller, Susan M

    2011-01-01

    The enzyme mercuric ion reductase, MerA, is the central component of bacterial mercury resistance encoded by the mer operon. Many MerA proteins possess a metallochaperone-like N-terminal domain, NmerA, that can transfer Hg2+ to the catalytic core (Core) for reduction to Hg0. These domains are tethered to the homodimeric Core by ~30-residue linkers that are subject to proteolysis, which has limited structural and functional characterization of the interactions of these domains. Here, we report purification of homogeneous full-length MerA using a fusion protein construct and combine small-angle X-ray and neutron scattering with molecular dynamics simulation to characterize the structure of constructs that mimic the system before and during handoff of Hg2+ from NmerA to the Core. The radii of gyration, distance distribution functions and Kratky plots derived from the small-angle X-ray scattering data are consistent with full-length MerA adopting elongated conformations resulting from flexibility in the linkers to the NmerA domains. The scattering profiles are best reproduced using an ensemble of linker conformations. This flexible attachment of NmerA may facilitate fast and efficient removal of Hg2+ from diverse protein substrates. Using a specific mutant of MerA allowed determination of the position and relative orientation of NmerA to the Core during Hg2+ handoff. The small buried surface area at the site of interaction suggests molecular recognition may be of less importance for the integrity of metal ion transfers between tethered domains than for transfers between separate proteins in metal trafficking pathways.

  17. Structural characterization of intramolecular Hg(2+) transfer between flexibly linked domains of mercuric ion reductase.

    PubMed

    Johs, Alexander; Harwood, Ian M; Parks, Jerry M; Nauss, Rachel E; Smith, Jeremy C; Liang, Liyuan; Miller, Susan M

    2011-10-28

    The enzyme mercuric ion reductase MerA is the central component of bacterial mercury resistance encoded by the mer operon. Many MerA proteins possess metallochaperone-like N-terminal domains (NmerA) that can transfer Hg(2+) to the catalytic core domain (Core) for reduction to Hg(0). These domains are tethered to the homodimeric Core by ~30-residue linkers that are susceptible to proteolysis, the latter of which has prevented characterization of the interactions of NmerA and the Core in the full-length protein. Here, we report purification of homogeneous full-length MerA from the Tn21 mer operon using a fusion protein construct and combine small-angle X-ray scattering and small-angle neutron scattering with molecular dynamics simulation to characterize the structures of full-length wild-type and mutant MerA proteins that mimic the system before and during handoff of Hg(2+) from NmerA to the Core. The radii of gyration, distance distribution functions, and Kratky plots derived from the small-angle X-ray scattering data are consistent with full-length MerA adopting elongated conformations as a result of flexibility in the linkers to the NmerA domains. The scattering profiles are best reproduced using an ensemble of linker conformations. This flexible attachment of NmerA may facilitate fast and efficient removal of Hg(2+) from diverse protein substrates. Using a specific mutant of MerA allowed the formation of a metal-mediated interaction between NmerA and the Core and the determination of the position and relative orientation of NmerA to the Core during Hg(2+) handoff.

  18. Calcium binding by the PKD1 domain regulates interdomain flexibility in Vibrio cholerae metalloprotease PrtV☆

    PubMed Central

    Edwin, Aaron; Rompikuntal, Pramod; Björn, Erik; Stier, Gunter; Wai, Sun N.; Sauer-Eriksson, A. Elisabeth

    2013-01-01

    Vibrio cholerae, the causative agent of cholera, releases several virulence factors including secreted proteases when it infects its host. These factors attack host cell proteins and break down tissue barriers and cellular matrix components such as collagen, laminin, fibronectin, keratin, elastin, and they induce necrotic tissue damage. The secreted protease PrtV constitutes one virulence factors of V. cholerae. It is a metalloprotease belonging to the M6 peptidase family. The protein is expressed as an inactive, multidomain, 102 kDa pre-pro-protein that undergoes several N- and C-terminal modifications after which it is secreted as an intermediate variant of 81 kDa. After secretion from the bacteria, additional proteolytic steps occur to produce the 55 kDa active M6 metalloprotease. The domain arrangement of PrtV is likely to play an important role in these maturation steps, which are known to be regulated by calcium. However, the molecular mechanism by which calcium controls proteolysis is unknown. In this study, we report the atomic resolution crystal structure of the PKD1 domain from V. cholera PrtV (residues 755–838) determined at 1.1 Å. The structure reveals a previously uncharacterized Ca2+-binding site located near linker regions between domains. Conformational changes in the Ca2+-free and Ca2+-bound forms suggest that Ca2+-binding at the PKD1 domain controls domain linker flexibility, and plays an important structural role, providing stability to the PrtV protein. PMID:23905008

  19. Development and initial evaluation of an enhanced measure of boundary flexibility for the work and family domains.

    PubMed

    Matthews, Russell A; Barnes-Farrell, Janet L

    2010-07-01

    This manuscript reports the development of a measure of work and family domain boundary flexibility. Building on previous research, we propose an expanded definition of boundary flexibility that includes two components-flexibility-ability and flexibility-willingness-and we develop a measure designed to capture this more comprehensive definition of boundary flexibility. Flexibility-ability is conceptualized as an individual's perception of personal and situational constraints that affect boundary management, and flexibility-willingness is conceptualized as an individual difference variable that captures the motivation to engage in boundary flexing. An additional feature of domain boundaries, permeability, is also examined. Data are presented from two studies. Study 1 (N = 244) describes the development of a multiscale measure that extends current conceptual definitions of boundary flexibility. Study 2 (N = 225) describes the refinement and evaluation of this measure. Confirmatory factor analysis, reliability evidence, interscale correlations, and correlations with important work-family constructs (e.g., domain centrality, work-family conflict) provide initial construct validity evidence for the measure. PMID:20604638

  20. Defining the Intrinsically Disordered C-Terminal Domain of SSB Reveals DNA-Mediated Compaction.

    PubMed

    Green, Matthew; Hatter, Louise; Brookes, Emre; Soultanas, Panos; Scott, David J

    2016-01-29

    The bacterial single-stranded DNA (ssDNA) binding protein SSB is a strictly conserved and essential protein involved in diverse functions of DNA metabolism, including replication and repair. SSB comprises a well-characterized tetrameric core of N-terminal oligonucleotide binding OB folds that bind ssDNA and four intrinsically disordered C-terminal domains of unknown structure that interact with partner proteins. The generally accepted, albeit speculative, mechanistic model in the field postulates that binding of ssDNA to the OB core induces the flexible, undefined C-terminal arms to expand outwards encouraging functional interactions with partner proteins. In this structural study, we show that the opposite is true. Combined small-angle scattering with X-rays and neutrons coupled to coarse-grained modeling reveal that the intrinsically disordered C-terminal arms are relatively collapsed around the tetrameric OB core and collapse further upon ssDNA binding. This implies a mechanism of action, in which the disordered C-terminal domain collapse traps the ssDNA and pulls functional partners onto the ssDNA. PMID:26707201

  1. Impact of intracellular domain flexibility upon properties of activated human 5-HT3 receptors*

    PubMed Central

    Kozuska, J L; Paulsen, I M; Belfield, W J; Martin, I L; Cole, D J; Holt, A; Dunn, S M J

    2014-01-01

    Background and Purpose It has been proposed that arginine residues lining the intracellular portals of the homomeric 5-HT3A receptor cause electrostatic repulsion of cation flow, accounting for a single-channel conductance substantially lower than that of the 5-HT3AB heteromer. However, comparison of receptor homology models for wild-type pentamers suggests that salt bridges in the intracellular domain of the homomer may impart structural rigidity, and we hypothesized that this rigidity could account for the low conductance. Experimental Approach Mutations were introduced into the portal region of the human 5-HT3A homopentamer, such that putative salt bridges were broken by neutralizing anionic partners. Single-channel and whole cell currents were measured in transfected tsA201 cells and in Xenopus oocytes respectively. Computational simulations of protein flexibility facilitated comparison of wild-type and mutant receptors. Key Results Single-channel conductance was increased substantially, often to wild-type heteromeric receptor values, in most 5-HT3A mutants. Conversely, introduction of arginine residues to the portal region of the heteromer, conjecturally creating salt bridges, decreased conductance. Gating kinetics varied significantly between different mutant receptors. EC50 values for whole-cell responses to 5-HT remained largely unchanged, but Hill coefficients for responses to 5-HT were usually significantly smaller in mutants. Computational simulations suggested increased flexibility throughout the protein structure as a consequence of mutations in the intracellular domain. Conclusions and Implications These data support a role for intracellular salt bridges in maintaining the quaternary structure of the 5-HT3 receptor and suggest a role for the intracellular domain in allosteric modulation of cooperativity and agonist efficacy. Linked Article This article is commented on by Vardy and Kenakin, pp. 1614–1616 of volume 171 issue 7. To view this commentary

  2. Localized force application reveals mechanically sensitive domains of Piezo1

    PubMed Central

    Wu, Jason; Goyal, Raman; Grandl, Jörg

    2016-01-01

    Piezos are mechanically activated ion channels that function as sensors of touch and pressure in various cell types. However, the precise mechanism and structures mediating mechanical activation and subsequent inactivation have not yet been identified. Here we use magnetic nanoparticles as localized transducers of mechanical force in combination with pressure-clamp electrophysiology to identify mechanically sensitive domains important for activation and inactivation. PMID:27694883

  3. WW Domain Folding Complexity Revealed by Infrared Spectroscopy

    PubMed Central

    2015-01-01

    Although the intrinsic tryptophan fluorescence of proteins offers a convenient probe of protein folding, interpretation of the fluorescence spectrum is often difficult because it is sensitive to both global and local changes. Infrared (IR) spectroscopy offers a complementary measure of structural changes involved in protein folding, because it probes changes in the secondary structure of the protein backbone. Here we demonstrate the advantages of using multiple probes, infrared and fluorescence spectroscopy, to study the folding of the FBP28 WW domain. Laser-induced temperature jumps coupled with fluorescence or infrared spectroscopy have been used to probe changes in the peptide backbone on the submillisecond time scale. The relaxation dynamics of the β-sheets and β-turn were measured independently by probing the corresponding IR bands assigned in the amide I region. Using these wavelength-dependent measurements, we observe three kinetics phases, with the fastest process corresponding to the relaxation kinetics of the turns. In contrast, fluorescence measurements of the wild-type WW domain and tryptophan mutants exhibit single-exponential kinetics with a lifetime that corresponds to the slowest phase observed by infrared spectroscopy. Mutant sequences provide evidence of an intermediate dry molten globule state. The slowest step in the folding of this WW domain is the tight packing of the side chains in the transition from the dry molten globule intermediate to the native structure. This study demonstrates that using multiple complementary probes enhances the interpretation of protein folding dynamics. PMID:25121968

  4. WW domain folding complexity revealed by infrared spectroscopy.

    PubMed

    Davis, Caitlin M; Dyer, R Brian

    2014-09-01

    Although the intrinsic tryptophan fluorescence of proteins offers a convenient probe of protein folding, interpretation of the fluorescence spectrum is often difficult because it is sensitive to both global and local changes. Infrared (IR) spectroscopy offers a complementary measure of structural changes involved in protein folding, because it probes changes in the secondary structure of the protein backbone. Here we demonstrate the advantages of using multiple probes, infrared and fluorescence spectroscopy, to study the folding of the FBP28 WW domain. Laser-induced temperature jumps coupled with fluorescence or infrared spectroscopy have been used to probe changes in the peptide backbone on the submillisecond time scale. The relaxation dynamics of the β-sheets and β-turn were measured independently by probing the corresponding IR bands assigned in the amide I region. Using these wavelength-dependent measurements, we observe three kinetics phases, with the fastest process corresponding to the relaxation kinetics of the turns. In contrast, fluorescence measurements of the wild-type WW domain and tryptophan mutants exhibit single-exponential kinetics with a lifetime that corresponds to the slowest phase observed by infrared spectroscopy. Mutant sequences provide evidence of an intermediate dry molten globule state. The slowest step in the folding of this WW domain is the tight packing of the side chains in the transition from the dry molten globule intermediate to the native structure. This study demonstrates that using multiple complementary probes enhances the interpretation of protein folding dynamics. PMID:25121968

  5. Binding of flexible and constrained ligands to the Grb2 SH2 domain: structural effects of ligand preorganization

    SciTech Connect

    Clements, John H.; DeLorbe, John E.; Benfield, Aaron P.; Martin, Stephen F.

    2010-10-01

    Structures of the Grb2 SH2 domain complexed with a series of flexible and constrained replacements of the phosphotyrosine residue in tripeptides derived from Ac-pYXN (where X = V, I, E and Q) were compared to determine what, if any, structural differences arise as a result of ligand preorganization. Structures of the Grb2 SH2 domain complexed with a series of pseudopeptides containing flexible (benzyl succinate) and constrained (aryl cyclopropanedicarboxylate) replacements of the phosphotyrosine (pY) residue in tripeptides derived from Ac-pYXN-NH{sub 2} (where X = V, I, E and Q) were elucidated by X-ray crystallography. Complexes of flexible/constrained pairs having the same pY + 1 amino acid were analyzed in order to ascertain what structural differences might be attributed to constraining the phosphotyrosine replacement. In this context, a given structural dissimilarity between complexes was considered to be significant if it was greater than the corresponding difference in complexes coexisting within the same asymmetric unit. The backbone atoms of the domain generally adopt a similar conformation and orientation relative to the ligands in the complexes of each flexible/constrained pair, although there are some significant differences in the relative orientations of several loop regions, most notably in the BC loop that forms part of the binding pocket for the phosphate group in the tyrosine replacements. These variations are greater in the set of complexes of constrained ligands than in the set of complexes of flexible ligands. The constrained ligands make more direct polar contacts to the domain than their flexible counterparts, whereas the more flexible ligand of each pair makes more single-water-mediated contacts to the domain; there was no correlation between the total number of protein–ligand contacts and whether the phosphotyrosine replacement of the ligand was preorganized. The observed differences in hydrophobic interactions between the complexes of

  6. Evolutionary versatility of eukaryotic protein domains revealed by their bigram networks

    PubMed Central

    2011-01-01

    Background Protein domains are globular structures of independently folded polypeptides that exert catalytic or binding activities. Their sequences are recognized as evolutionary units that, through genome recombination, constitute protein repertoires of linkage patterns. Via mutations, domains acquire modified functions that contribute to the fitness of cells and organisms. Recent studies have addressed the evolutionary selection that may have shaped the functions of individual domains and the emergence of particular domain combinations, which led to new cellular functions in multi-cellular animals. This study focuses on modeling domain linkage globally and investigates evolutionary implications that may be revealed by novel computational analysis. Results A survey of 77 completely sequenced eukaryotic genomes implies a potential hierarchical and modular organization of biological functions in most living organisms. Domains in a genome or multiple genomes are modeled as a network of hetero-duplex covalent linkages, termed bigrams. A novel computational technique is introduced to decompose such networks, whereby the notion of domain "networking versatility" is derived and measured. The most and least "versatile" domains (termed "core domains" and "peripheral domains" respectively) are examined both computationally via sequence conservation measures and experimentally using selected domains. Our study suggests that such a versatility measure extracted from the bigram networks correlates with the adaptivity of domains during evolution, where the network core domains are highly adaptive, significantly contrasting the network peripheral domains. Conclusions Domain recombination has played a major part in the evolution of eukaryotes attributing to genome complexity. From a system point of view, as the results of selection and constant refinement, networks of domain linkage are structured in a hierarchical modular fashion. Domains with high degree of networking

  7. Binding of flexible and constrained ligands to the Grb2 SH2 domain: structural effects of ligand preorganization

    PubMed Central

    Clements, John H.; DeLorbe, John E.; Benfield, Aaron P.; Martin, Stephen F.

    2010-01-01

    Structures of the Grb2 SH2 domain complexed with a series of pseudopeptides containing flexible (benzyl succinate) and constrained (aryl cyclopropanedicarboxylate) replacements of the phosphotyrosine (pY) residue in tripeptides derived from Ac-pYXN-NH2 (where X = V, I, E and Q) were elucidated by X-ray crystallography. Complexes of flexible/constrained pairs having the same pY + 1 amino acid were analyzed in order to ascertain what structural differences might be attributed to constraining the phosphotyrosine replacement. In this context, a given structural dissimilarity between complexes was considered to be significant if it was greater than the corresponding difference in complexes coexisting within the same asymmetric unit. The backbone atoms of the domain generally adopt a similar conformation and orientation relative to the ligands in the complexes of each flexible/constrained pair, although there are some significant differences in the relative orientations of several loop regions, most notably in the BC loop that forms part of the binding pocket for the phosphate group in the tyrosine replacements. These variations are greater in the set of complexes of constrained ligands than in the set of complexes of flexible ligands. The constrained ligands make more direct polar contacts to the domain than their flexible counterparts, whereas the more flexible ligand of each pair makes more single-water-mediated contacts to the domain; there was no correlation between the total number of protein–ligand contacts and whether the phosphotyrosine replacement of the ligand was preorganized. The observed differences in hydrophobic interactions between the complexes of each flexible/constrained ligand pair were generally similar to those observed upon comparing such contacts in coexisting complexes. The average adjusted B factors of the backbone atoms of the domain and loop regions are significantly greater in the complexes of constrained ligands than in the complexes of

  8. Crystal structure of two CD46 domains reveals an extended measles virus-binding surface.

    PubMed Central

    Casasnovas, J M; Larvie, M; Stehle, T

    1999-01-01

    Measles virus is a paramyxovirus which, like other members of the family such as respiratory syncytial virus, is a major cause of morbidity and mortality worldwide. The cell surface receptor for measles virus in humans is CD46, a complement cofactor. We report here the crystal structure at 3.1 A resolution of the measles virus-binding fragment of CD46. The structure reveals the architecture and spatial arrangement of two glycosylated short consensus repeats with a pronounced interdomain bend and some flexibility at the domain interface. Amino acids involved in measles virus binding define a large, glycan-free surface that extends from the top of the first to the bottom of the second repeat. The extended virus-binding surface of CD46 differs strikingly from those reported for the human virus receptor proteins CD4 and intercellular cell adhesion molecule-1 (ICAM-1), suggesting that the CD46 structure utilizes a novel mode of virus recognition. A highly hydrophobic and protruding loop at the base of the first repeat bears a critical virus-binding residue, thereby defining an important recognition epitope. Molecules that mimic the conformation of this loop potentially could be effective anti-viral agents by preventing binding of measles virus to CD46. PMID:10357804

  9. Cohesin's role as an active chromatin domain anchorage revealed.

    PubMed

    Feig, Christine; Odom, Duncan T

    2013-12-11

    Cohesin is a conserved protein complex indispensible for proper cell division, because it secures sister-chromatid cohesion following DNA replication until segregation is required at the onset of anaphase. Recent studies have revealed functions beyond this, showing that cohesin binds to interphase chromatin regulating gene expression at select loci via long-range chromosomal interactions. In this issue of The EMBO Journal, Sofueva et al (2013) use a combination of chromatin conformation capture methods, classical FISH imaging, and loss-of-function studies to elegantly demonstrate how cohesin controls the 3D architectural organization of the genome.

  10. A flexible docking scheme to explore the binding selectivity of PDZ domains

    PubMed Central

    Gerek, Z Nevin; Ozkan, S Banu

    2010-01-01

    Modeling of protein binding site flexibility in molecular docking is still a challenging problem due to the large conformational space that needs sampling. Here, we propose a flexible receptor docking scheme: A dihedral restrained replica exchange molecular dynamics (REMD), where we incorporate the normal modes obtained by the Elastic Network Model (ENM) as dihedral restraints to speed up the search towards correct binding site conformations. To our knowledge, this is the first approach that uses ENM modes to bias REMD simulations towards binding induced fluctuations in docking studies. In our docking scheme, we first obtain the deformed structures of the unbound protein as initial conformations by moving along the binding fluctuation mode, and perform REMD using the ENM modes as dihedral restraints. Then, we generate an ensemble of multiple receptor conformations (MRCs) by clustering the lowest replica trajectory. Using RosettaLigand, we dock ligands to the clustered conformations to predict the binding pose and affinity. We apply this method to postsynaptic density-95/Dlg/ZO-1 (PDZ) domains; whose dynamics govern their binding specificity. Our approach produces the lowest energy bound complexes with an average ligand root mean square deviation of 0.36 Å. We further test our method on (i) homologs and (ii) mutant structures of PDZ where mutations alter the binding selectivity. In both cases, our approach succeeds to predict the correct pose and the affinity of binding peptides. Overall, with this approach, we generate an ensemble of MRCs that leads to predict the binding poses and specificities of a protein complex accurately. PMID:20196074

  11. Flexibility of the Cytoplasmic Domain of the Phototaxis Transducer II from Natronomonas pharaonis

    PubMed Central

    Budyak, Ivan L.; Mironova, Olga S.; Yanamala, Naveena; Manoharan, Vijayalaxmi; Büldt, Georg; Schlesinger, Ramona; Klein-Seetharaman, Judith

    2008-01-01

    Chemo- and phototaxis systems in bacteria and archaea serve as models for more complex signal transduction mechanisms in higher eukaryotes. Previous studies of the cytoplasmic fragment of the phototaxis transducer (pHtrII-cyt) from the halophilic archaeon Natronomonas pharaonis showed that it takes the shape of a monomeric or dimeric rod under low or high salt conditions, respectively. CD spectra revealed only approximately 24% helical structure, even in 4 M KCl, leaving it an open question how the rod-like shape is achieved. Here, we conducted CD, FTIR, and NMR spectroscopic studies under different conditions to address this question. We provide evidence that pHtrII-cyt is highly dynamic with strong helical propensity, which allows it to change from monomeric to dimeric helical coiled-coil states without undergoing dramatic shape changes. A statistical analysis of predicted disorder for homologous sequences suggests that structural flexibility is evolutionarily conserved within the methyl-accepting chemotaxis protein family. PMID:20107574

  12. Snapshots of pre-rRNA structural flexibility reveal eukaryotic 40S assembly dynamics at nucleotide resolution

    PubMed Central

    Hector, Ralph D.; Burlacu, Elena; Aitken, Stuart; Bihan, Thierry Le; Tuijtel, Maarten; Zaplatina, Alina; Cook, Atlanta G.; Granneman, Sander

    2014-01-01

    Ribosome assembly in eukaryotes involves the activity of hundreds of assembly factors that direct the hierarchical assembly of ribosomal proteins and numerous ribosomal RNA folding steps. However, detailed insights into the function of assembly factors and ribosomal RNA folding events are lacking. To address this, we have developed ChemModSeq, a method that combines structure probing, high-throughput sequencing and statistical modeling, to quantitatively measure RNA structural rearrangements during the assembly of macromolecular complexes. By applying ChemModSeq to purified 40S assembly intermediates we obtained nucleotide-resolution maps of ribosomal RNA flexibility revealing structurally distinct assembly intermediates and mechanistic insights into assembly dynamics not readily observed in cryo-electron microscopy reconstructions. We show that RNA restructuring events coincide with the release of assembly factors and predict that completion of the head domain is required before the Rio1 kinase enters the assembly pathway. Collectively, our results suggest that 40S assembly factors regulate the timely incorporation of ribosomal proteins by delaying specific folding steps in the 3′ major domain of the 20S pre-ribosomal RNA. PMID:25200078

  13. Flexible coprocessor architectures for ambient intelligent applications in the mobile communication and automotive domain

    NASA Astrophysics Data System (ADS)

    Gehrke, Winfried; Jachalsky, Joern; Wahle, Martin; Kruijtzer, Wido; Alba, Carlos; Sethuraman, Ramanathan

    2003-04-01

    Ambient Intelligent is expected to become one of the driving key factors of the semiconductors industry in this decade. One of the most promising areas in this respect is the advent of embedded smart imaging applications in a variety of consumer applications, like mobile communication devices and the automotive domain. The efficient VLSI implementation of these applications requires architectural concepts that enable the extraction of objects and associated information out of video sequences in real-time. The main architectural challenge is to find an appropriate trade-off between architectural flexibility and scalability in order to cope with moderate variations of the applied smart imaging algorithms on one hand and cost efficiency of the implementation on the other hand. This paper describes the algorithmic and architectural requirements for the implementation of smart imaging applications in the mentioned fields. The target system, based on an embedded RISC processor, embedded memory, and cores for accelerating essential functions, like morphological operations, connected component labeling, motion extraction etc., is presented. The functional system partitioning applied is based on HW acceleration of core functions that enable the extraction of low-level information out of the images of a video sequence. This information is provided to the embedded RISC processor for further abstraction of the image content information and interpretation of the image content by SW means. One of the focal points of this paper is the derivation of efficient architectural concepts for smart imaging coprocessors, acting as a system toolbox for accelerating the required smart imaging core functions.

  14. How Conformational Flexibility Stabilizes the Hyperthermophilic Elongation Factor G-domain

    PubMed Central

    Kalimeri, Maria; Rahaman, Obaidur; Melchionna, Simone; Sterpone, Fabio

    2014-01-01

    Proteins from thermophilic organisms are stable and functional well above ambient temperature. Understanding the molecular mechanism underlying such a resistance is of crucial interest for many technological applications. For some time, thermal stability has been assumed to correlate with high mechanical rigidity of the protein matrix. In this work we address this common belief by carefully studying a pair of homologous G-domain proteins, with their melting temperatures differing by 40 K. To probe the thermal-stability content of the two proteins we use extensive simulations covering the microsecond time range and employ several different indicators to assess the salient features of the conformational landscape and the role of internal fluctuations at ambient condition. At the atomistic level, while the magnitude of fluctuations is comparable, the distribution of flexible and rigid stretches of amino-acids is more regular in the thermophilic protein causing a cage-like correlation of amplitudes along the sequence. This caging effect is suggested to favor stability at high T by confining the mechanical excitations. Moreover, it is found that the thermophilic protein, when folded, visits a higher number of conformational substates than the mesophilic homologue. The entropy associated with the occupation of the different substates, along with the thermal resilience of the protein intrinsic compressibility, provide a qualitative insight on the thermal stability of the thermophilic protein as compared to its mesophilic homologue. Our findings potentially open the route to new strategies in the design of thermostable proteins. PMID:24087838

  15. Transcriptomic Signature of the SHATTERPROOF2 Expression Domain Reveals the Meristematic Nature of Arabidopsis Gynoecial Medial Domain1[OPEN

    PubMed Central

    Villarino, Gonzalo H.; Hu, Qiwen; Flores-Vergara, Miguel; Sehra, Bhupinder; Brumos, Javier; Stepanova, Anna N.; Sundberg, Eva; Heber, Steffen

    2016-01-01

    Plant meristems, like animal stem cell niches, maintain a pool of multipotent, undifferentiated cells that divide and differentiate to give rise to organs. In Arabidopsis (Arabidopsis thaliana), the carpel margin meristem is a vital meristematic structure that generates ovules from the medial domain of the gynoecium, the female floral reproductive structure. The molecular mechanisms that specify this meristematic region and regulate its organogenic potential are poorly understood. Here, we present a novel approach to analyze the transcriptional signature of the medial domain of the Arabidopsis gynoecium, highlighting the developmental stages that immediately proceed ovule initiation, the earliest stages of seed development. Using a floral synchronization system and a SHATTERPROOF2 (SHP2) domain-specific reporter, paired with FACS and RNA sequencing, we assayed the transcriptome of the gynoecial medial domain with temporal and spatial precision. This analysis reveals a set of genes that are differentially expressed within the SHP2 expression domain, including genes that have been shown previously to function during the development of medial domain-derived structures, including the ovules, thus validating our approach. Global analyses of the transcriptomic data set indicate a similarity of the pSHP2-expressing cell population to previously characterized meristematic domains, further supporting the meristematic nature of this gynoecial tissue. Our method identifies additional genes including novel isoforms, cis-natural antisense transcripts, and a previously unrecognized member of the REPRODUCTIVE MERISTEM family of transcriptional regulators that are potential novel regulators of medial domain development. This data set provides genome-wide transcriptional insight into the development of the carpel margin meristem in Arabidopsis. PMID:26983993

  16. Crystal structures of ryanodine receptor SPRY1 and tandem-repeat domains reveal a critical FKBP12 binding determinant

    PubMed Central

    Yuchi, Zhiguang; Yuen, Siobhan M. Wong King; Lau, Kelvin; Underhill, Ainsley Q.; Cornea, Razvan L.; Fessenden, James D.; Van Petegem, Filip

    2015-01-01

    Ryanodine receptors (RyRs) form calcium release channels located in the membranes of the sarcoplasmic and endoplasmic reticulum. RyRs play a major role in excitation-contraction coupling and other Ca2+-dependent signalling events, and consist of several globular domains that together form a large assembly. Here we describe the crystal structures of the SPRY1 and tandem-repeat domains at 1.2–1.5 Å resolution, which reveal several structural elements not detected in recent cryo-EM reconstructions of RyRs. The cryo-EM studies disagree on the position of SPRY domains, which had been proposed based on homology modelling. Computational docking of the crystal structures, combined with FRET studies, show that the SPRY1 domain is located next to FK506-binding protein (FKBP). Molecular dynamics flexible fitting and mutagenesis experiments suggest a hydrophobic cluster within SPRY1 that is crucial for FKBP binding. A RyR1 disease mutation, N760D, appears to directly impact FKBP binding through interfering with SPRY1 folding. PMID:26245150

  17. The Crystal Structures of EAP Domains from Staphylococcus aureus Reveal an Unexpected Homology to Bacterial Superantigens

    SciTech Connect

    Geisbrecht, B V; Hamaoka, B Y; Perman, B; Zemla, A; Leahy, D J

    2005-10-14

    The Eap (extracellular adherence protein) of Staphylococcus aureus functions as a secreted virulence factor by mediating interactions between the bacterial cell surface and several extracellular host proteins. Eap proteins from different Staphylococcal strains consist of four to six tandem repeats of a structurally uncharacterized domain (EAP domain). We have determined the three-dimensional structures of three different EAP domains to 1.8, 2.2, and 1.35 {angstrom} resolution, respectively. These structures reveal a core fold that is comprised of an {alpha}-helix lying diagonally across a five-stranded, mixed {beta}-sheet. Comparison of EAP domains with known structures reveals an unexpected homology with the C-terminal domain of bacterial superantigens. Examination of the structure of the superantigen SEC2 bound to the {beta}-chain of a T-cell receptor suggests a possible ligand-binding site within the EAP domain (Fields, B. A., Malchiodi, E. L., Li, H., Ysern, X., Stauffacher, C. V., Schlievert, P. M., Karjalainen, K., and Mariuzza, R. (1996) Nature 384, 188-192). These results provide the first structural characterization of EAP domains, relate EAP domains to a large class of bacterial toxins, and will guide the design of future experiments to analyze EAP domain structure/function relationships.

  18. Ion mobility-mass spectrometry reveals conformational flexibility in the deubiquitinating enzyme USP5.

    PubMed

    Scott, Daniel; Layfield, Robert; Oldham, Neil J

    2015-08-01

    Many proteins exhibit conformation flexibility as part of their biological function, whether through the presence of a series of well-defined states or by the existence of intrinsic disorder. Ion mobility spectrometry, in combination with MS (IM-MS), offers a rapid and sensitive means of probing ensembles of protein structures through measurement of gas-phase collisional cross sections. We have applied IM-MS analysis to the multidomain deubiquitinating enzyme ubiquitin specific protease 5 (USP5), which is believed to exhibit significant conformational flexibility. Native ESI-MS measurement of the 94-kDa USP5 revealed two distinct charge-state distributions: [M + 17H](+) to [M + 21H](+) and [M + 24H](+) to [M + 29H](+). The collisional cross sections of these ions revealed clear groupings of 52 ± 4 nm(2) for the lower charges and 66 ± 6 nm(2) for the higher charges. Molecular dynamics simulation of a compact form of USP5, based on a crystal structure, produced structures of 53-54 nm(2) following 2 ns in the gas phase, while simulation of an extended form (based on small-angle X-ray scattering data) led to structures of 64 nm(2). These data demonstrate that IM-MS is a valuable tool in studying proteins with different discrete conformational states.

  19. Structure of Human Acid Sphingomyelinase Reveals the Role of the Saposin Domain in Activating Substrate Hydrolysis.

    PubMed

    Xiong, Zi-Jian; Huang, Jingjing; Poda, Gennady; Pomès, Régis; Privé, Gilbert G

    2016-07-31

    Acid sphingomyelinase (ASM) is a lysosomal phosphodiesterase that catalyzes the hydrolysis of sphingomyelin to produce ceramide and phosphocholine. While other lysosomal sphingolipid hydrolases require a saposin activator protein for full activity, the ASM polypeptide incorporates a built-in N-terminal saposin domain and does not require an external activator protein. Here, we report the crystal structure of human ASM and describe the organization of the three main regions of the enzyme: the N-terminal saposin domain, the proline-rich connector, and the catalytic domain. The saposin domain is tightly associated along an edge of the large, bowl-shaped catalytic domain and adopts an open form that exposes a hydrophobic concave surface approximately 30Å from the catalytic center. The calculated electrostatic potential of the enzyme is electropositive at the acidic pH of the lysosome, consistent with the strict requirement for the presence of acidic lipids in target membranes. Docking studies indicate that sphingomyelin binds with the ceramide-phosphate group positioned at the binuclear zinc center and molecular dynamic simulations indicate that the intrinsic flexibility of the saposin domain is important for monomer-dimer exchange and for membrane interactions. Overall, ASM uses a combination of electrostatic and hydrophobic interactions to cause local disruptions of target bilayers in order to bring the lipid headgroup to the catalytic center in a membrane-bound reaction. PMID:27349982

  20. Structure of Human Acid Sphingomyelinase Reveals the Role of the Saposin Domain in Activating Substrate Hydrolysis.

    PubMed

    Xiong, Zi-Jian; Huang, Jingjing; Poda, Gennady; Pomès, Régis; Privé, Gilbert G

    2016-07-31

    Acid sphingomyelinase (ASM) is a lysosomal phosphodiesterase that catalyzes the hydrolysis of sphingomyelin to produce ceramide and phosphocholine. While other lysosomal sphingolipid hydrolases require a saposin activator protein for full activity, the ASM polypeptide incorporates a built-in N-terminal saposin domain and does not require an external activator protein. Here, we report the crystal structure of human ASM and describe the organization of the three main regions of the enzyme: the N-terminal saposin domain, the proline-rich connector, and the catalytic domain. The saposin domain is tightly associated along an edge of the large, bowl-shaped catalytic domain and adopts an open form that exposes a hydrophobic concave surface approximately 30Å from the catalytic center. The calculated electrostatic potential of the enzyme is electropositive at the acidic pH of the lysosome, consistent with the strict requirement for the presence of acidic lipids in target membranes. Docking studies indicate that sphingomyelin binds with the ceramide-phosphate group positioned at the binuclear zinc center and molecular dynamic simulations indicate that the intrinsic flexibility of the saposin domain is important for monomer-dimer exchange and for membrane interactions. Overall, ASM uses a combination of electrostatic and hydrophobic interactions to cause local disruptions of target bilayers in order to bring the lipid headgroup to the catalytic center in a membrane-bound reaction.

  1. IQGAP Proteins Reveal an Atypical Phosphoinositide (aPI) Binding Domain with a Pseudo C2 Domain Fold

    SciTech Connect

    Dixon, Miles J.; Gray, Alexander; Schenning, Martijn; Agacan, Mark; Tempel, Wolfram; Tong, Yufeng; Nedyalkova, Lyudmila; Park, Hee-Won; Leslie, Nicholas R.; van Aalten, Daan M.F.; Downes, C. Peter; Batty, Ian H.

    2012-10-16

    Class I phosphoinositide (PI) 3-kinases act through effector proteins whose 3-PI selectivity is mediated by a limited repertoire of structurally defined, lipid recognition domains. We describe here the lipid preferences and crystal structure of a new class of PI binding modules exemplified by select IQGAPs (IQ motif containing GTPase-activating proteins) known to coordinate cellular signaling events and cytoskeletal dynamics. This module is defined by a C-terminal 105-107 amino acid region of which IQGAP1 and -2, but not IQGAP3, binds preferentially to phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3). The binding affinity for PtdInsP3, together with other, secondary target-recognition characteristics, are comparable with those of the pleckstrin homology domain of cytohesin-3 (general receptor for phosphoinositides 1), an established PtdInsP3 effector protein. Importantly, the IQGAP1 C-terminal domain and the cytohesin-3 pleckstrin homology domain, each tagged with enhanced green fluorescent protein, were both re-localized from the cytosol to the cell periphery following the activation of PI 3-kinase in Swiss 3T3 fibroblasts, consistent with their common, selective recognition of endogenous 3-PI(s). The crystal structure of the C-terminal IQGAP2 PI binding module reveals unexpected topological similarity to an integral fold of C2 domains, including a putative basic binding pocket. We propose that this module integrates select IQGAP proteins with PI 3-kinase signaling and constitutes a novel, atypical phosphoinositide binding domain that may represent the first of a larger group, each perhaps structurally unique but collectively dissimilar from the known PI recognition modules.

  2. Inversion Domain Boundaries in GaN Wires Revealed by Coherent Bragg Imaging.

    PubMed

    Labat, Stéphane; Richard, Marie-Ingrid; Dupraz, Maxime; Gailhanou, Marc; Beutier, Guillaume; Verdier, Marc; Mastropietro, Francesca; Cornelius, Thomas W; Schülli, Tobias U; Eymery, Joël; Thomas, Olivier

    2015-09-22

    Interfaces between polarity domains in nitride semiconductors, the so-called Inversion Domain Boundaries (IDB), have been widely described, both theoretically and experimentally, as perfect interfaces (without dislocations and vacancies). Although ideal planar IDBs are well documented, the understanding of their configurations and interactions inside crystals relies on perfect-interface assumptions. Here, we report on the microscopic configuration of IDBs inside n-doped gallium nitride wires revealed by coherent X-ray Bragg imaging. Complex IDB configurations are evidenced with 6 nm resolution and the absolute polarity of each domain is unambiguously identified. Picoscale displacements along and across the wire are directly extracted from several Bragg reflections using phase retrieval algorithms, revealing rigid relative displacements of the domains and the absence of microscopic strain away from the IDBs. More generally, this method offers an accurate inner view of the displacements and strain of interacting defects inside small crystals that may alter optoelectronic properties of semiconductor devices.

  3. Inversion Domain Boundaries in GaN Wires Revealed by Coherent Bragg Imaging.

    PubMed

    Labat, Stéphane; Richard, Marie-Ingrid; Dupraz, Maxime; Gailhanou, Marc; Beutier, Guillaume; Verdier, Marc; Mastropietro, Francesca; Cornelius, Thomas W; Schülli, Tobias U; Eymery, Joël; Thomas, Olivier

    2015-09-22

    Interfaces between polarity domains in nitride semiconductors, the so-called Inversion Domain Boundaries (IDB), have been widely described, both theoretically and experimentally, as perfect interfaces (without dislocations and vacancies). Although ideal planar IDBs are well documented, the understanding of their configurations and interactions inside crystals relies on perfect-interface assumptions. Here, we report on the microscopic configuration of IDBs inside n-doped gallium nitride wires revealed by coherent X-ray Bragg imaging. Complex IDB configurations are evidenced with 6 nm resolution and the absolute polarity of each domain is unambiguously identified. Picoscale displacements along and across the wire are directly extracted from several Bragg reflections using phase retrieval algorithms, revealing rigid relative displacements of the domains and the absence of microscopic strain away from the IDBs. More generally, this method offers an accurate inner view of the displacements and strain of interacting defects inside small crystals that may alter optoelectronic properties of semiconductor devices. PMID:26322655

  4. Flexibility unleashed in acyclic monoterpenes: conformational space of citronellal revealed by broadband rotational spectroscopy.

    PubMed

    Domingos, Sérgio R; Pérez, Cristóbal; Medcraft, Chris; Pinacho, Pablo; Schnell, Melanie

    2016-06-22

    Conformational flexibility is intrinsically related to the functionality of biomolecules. Elucidation of the potential energy surface is thus a necessary step towards understanding the mechanisms for molecular recognition such as docking of small organic molecules to larger macromolecular systems. In this work, we use broadband rotational spectroscopy in a molecular jet experiment to unravel the complex conformational space of citronellal. We observe fifteen conformations in the experimental conditions of the molecular jet, the highest number of conformers reported to date for a chiral molecule of this size using microwave spectroscopy. Studies of relative stability using different carrier gases in the supersonic expansion reveal conformational relaxation pathways that strongly favour ground-state structures with globular conformations. This study provides a blueprint of the complex conformational space of an important biosynthetic precursor and gives insights on the relation between its structure and biological functionality.

  5. Structures of the NLRP14 pyrin domain reveal a conformational switch mechanism regulating its molecular interactions

    SciTech Connect

    Eibl, Clarissa; Hessenberger, Manuel; Wenger, Julia; Brandstetter, Hans

    2014-07-01

    Pyrin domains (PYDs) recruit downstream effector molecules in NLR signalling. A specific charge-relay system suggests a the formation of a signalling complex involving a PYD dimer. The cytosolic tripartite NLR receptors serve as important signalling platforms in innate immunity. While the C-terminal domains act as sensor and activation modules, the N-terminal death-like domain, e.g. the CARD or pyrin domain, is thought to recruit downstream effector molecules by homotypic interactions. Such homotypic complexes have been determined for all members of the death-domain superfamily except for pyrin domains. Here, crystal structures of human NLRP14 pyrin-domain variants are reported. The wild-type protein as well as the clinical D86V mutant reveal an unexpected rearrangement of the C-terminal helix α6, resulting in an extended α5/6 stem-helix. This reordering mediates a novel symmetric pyrin-domain dimerization mode. The conformational switching is controlled by a charge-relay system with a drastic impact on protein stability. How the identified charge relay allows classification of NLRP receptors with respect to distinct recruitment mechanisms is discussed.

  6. Single-molecule kinetics reveal microscopic mechanism by which High-Mobility Group B proteins alter DNA flexibility

    PubMed Central

    McCauley, Micah J.; Rueter, Emily M.; Rouzina, Ioulia; Maher, L. James; Williams, Mark C.

    2013-01-01

    Eukaryotic High-Mobility Group B (HMGB) proteins alter DNA elasticity while facilitating transcription, replication and DNA repair. We developed a new single-molecule method to probe non-specific DNA interactions for two HMGB homologs: the human HMGB2 box A domain and yeast Nhp6Ap, along with chimeric mutants replacing neutral N-terminal residues of the HMGB2 protein with cationic sequences from Nhp6Ap. Surprisingly, HMGB proteins constrain DNA winding, and this torsional constraint is released over short timescales. These measurements reveal the microscopic dissociation rates of HMGB from DNA. Separate microscopic and macroscopic (or local and non-local) unbinding rates have been previously proposed, but never independently observed. Microscopic dissociation rates for the chimeric mutants (∼10 s−1) are higher than those observed for wild-type proteins (∼0.1–1.0 s−1), reflecting their reduced ability to bend DNA through short-range interactions, despite their increased DNA-binding affinity. Therefore, transient local HMGB–DNA contacts dominate the DNA-bending mechanism used by these important architectural proteins to increase DNA flexibility. PMID:23143110

  7. The wing of the enhancer-binding domain of Mu phage transposase is flexible and is essential for efficient transposition.

    PubMed

    Clubb, R T; Mizuuchi, M; Huth, J R; Omichinski, J G; Savilahti, H; Mizuuchi, K; Clore, G M; Gronenborn, A M

    1996-02-01

    A tetramer of the Mu transposase (MuA) pairs the recombination sites, cleaves the donor DNA, and joins these ends to a target DNA by strand transfer. Juxtaposition of the recombination sites is accomplished by the assembly of a stable synaptic complex of MuA protein and Mu DNA. This initial critical step is facilitated by the transient binding of the N-terminal domain of MuA to an enhancer DNA element within the Mu genome (called the internal activation sequence, IAS). Recently we solved the three-dimensional solution structure of the enhancer-binding domain of Mu phage transposase (residues 1-76, MuA76) and proposed a model for its interaction with the IAS element. Site-directed mutagenesis coupled with an in vitro transposition assay has been used to assess the validity of the model. We have identified five residues on the surface of MuA that are crucial for stable synaptic complex formation but dispensable for subsequent events in transposition. These mutations are located in the loop (wing) structure and recognition helix of the MuA76 domain of the transposase and do not seriously perturb the structure of the domain. Furthermore, in order to understand the dynamic behavior of the MuA76 domain prior to stable synaptic complex formation, we have measured heteronuclear 15N relaxation rates for the unbound MuA76 domain. In the DNA free state the backbone atoms of the helix-turn-helix motif are generally immobilized whereas the residues in the wing are highly flexible on the pico- to nanosecond time scale. Together these studies define the surface of MuA required for enhancement of transposition in vitro and suggest that a flexible loop in the MuA protein required for DNA recognition may become structurally ordered only upon DNA binding. PMID:8577730

  8. Rbg1-Tma46 dimer structure reveals new functional domains and their role in polysome recruitment.

    PubMed

    Francis, Sandrea M; Gas, María-Eugenia; Daugeron, Marie-Claire; Bravo, Jeronimo; Séraphin, Bertrand

    2012-11-01

    Developmentally Regulated GTP-binding (DRG) proteins are highly conserved GTPases that associate with DRG Family Regulatory Proteins (DFRP). The resulting complexes have recently been shown to participate in eukaryotic translation. The structure of the Rbg1 GTPase, a yeast DRG protein, in complex with the C-terminal region of its DFRP partner, Tma46, was solved by X-ray diffraction. These data reveal that DRG proteins are multimodular factors with three additional domains, helix-turn-helix (HTH), S5D2L and TGS, packing against the GTPase platform. Surprisingly, the S5D2L domain is inserted in the middle of the GTPase sequence. In contrast, the region of Tma46 interacting with Rbg1 adopts an extended conformation typical of intrinsically unstructured proteins and contacts the GTPase and TGS domains. Functional analyses demonstrate that the various domains of Rbg1, as well as Tma46, modulate the GTPase activity of Rbg1 and contribute to the function of these proteins in vivo. Dissecting the role of the different domains revealed that the Rbg1 TGS domain is essential for the recruitment of this factor in polysomes, supporting further the implication of these conserved factors in translation.

  9. Deletion of a Cys-His motif from the Alpharetrovirus nucleocapsid domain reveals late domain mutant-like budding defects

    SciTech Connect

    Lee, Eun-Gyung; Linial, Maxine L. . E-mail: mlinial@fhcrc.org

    2006-03-30

    The Rous sarcoma virus (RSV) Gag polyprotein is the only protein required for virus assembly and release. We previously found that deletion of either one of the two Cys-His (CH) motifs in the RSV nucleocapsid (NC) protein did not abrogate Gag-Gag interactions, RNA binding, or packaging but greatly reduced virus production (E-G. Lee, A. Alidina et al., J. Virol. 77: 2010-2020, 2003). In this report, we have further investigated the effects of mutations in the CH motifs on virus assembly and release. Precise deletion of either CH motif, without affecting surrounding basic residues, reduced virus production by approximately 10-fold, similar to levels seen for late (L) domain mutants. Strikingly, transmission electron microscopy revealed that virions of both {delta}CH1 and {delta}CH2 mutants were assembled normally at the plasma membrane but were arrested in budding. Virus particles remained tethered to the membrane or to each other, reminiscent of L domain mutants, although the release defect appears to be independent of the L domain functions. Therefore, two CH motifs are likely to be required for budding independent of a requirement for either Gag-Gag interactions or RNA packaging.

  10. The prokaryotic Cys2His2 zinc-finger adopts a novel fold as revealed by the NMR structure of Agrobacterium tumefaciens Ros DNA-binding domain

    PubMed Central

    Malgieri, Gaetano; Russo, Luigi; Esposito, Sabrina; Baglivo, Ilaria; Zaccaro, Laura; Pedone, Emilia M.; Di Blasio, Benedetto; Isernia, Carla; Pedone, Paolo V.; Fattorusso, Roberto

    2007-01-01

    The first putative prokaryotic Cys2His2 zinc-finger domain has been identified in the transcriptional regulator Ros from Agrobacterium tumefaciens, indicating that the Cys2His2 zinc-finger domain, originally thought to be confined to the eukaryotic kingdom, could be widespread throughout the living kingdom from eukaryotic, both animal and plant, to prokaryotic. In this article we report the NMR solution structure of Ros DNA-binding domain (Ros87), providing 79 structural characterization of a prokaryotic Cys2His2 zinc-finger domain. The NMR structure of Ros87 shows that the putative prokaryotic Cys2His2 zinc-finger sequence is indeed part of a significantly larger zinc-binding globular domain that possesses a novel protein fold very different from the classical fold reported for the eukaryotic classical zinc-finger. The Ros87 globular domain consists of 58 aa (residues 9–66), is arranged in a βββαα topology, and is stabilized by an extensive 15-residue hydrophobic core. A backbone dynamics study of Ros87, based on 15N R1, 15N R2, and heteronuclear 15N-{1H}-NOE measurements, has further confirmed that the globular domain is uniformly rigid and flanked by two flexible tails. Mapping of the amino acids necessary for the DNA binding onto Ros87 structure reveals the protein surface involved in the DNA recognition mechanism of this new zinc-binding protein domain. PMID:17956987

  11. Structural genomics reveals EVE as a new ASCH/PUA-related domain.

    PubMed

    Bertonati, Claudia; Punta, Marco; Fischer, Markus; Yachdav, Guy; Forouhar, Farhad; Zhou, Weihong; Kuzin, Alexander P; Seetharaman, Jayaraman; Abashidze, Mariam; Ramelot, Theresa A; Kennedy, Michael A; Cort, John R; Belachew, Adam; Hunt, John F; Tong, Liang; Montelione, Gaetano T; Rost, Burkhard

    2009-05-15

    We report on several proteins recently solved by structural genomics consortia, in particular by the Northeast Structural Genomics consortium (NESG). The proteins considered in this study differ substantially in their sequences but they share a similar structural core, characterized by a pseudobarrel five-stranded beta sheet. This core corresponds to the PUA domain-like architecture in the SCOP database. By connecting sequence information with structural knowledge, we characterize a new subgroup of these proteins that we propose to be distinctly different from previously described PUA domain-like domains such as PUA proper or ASCH. We refer to these newly defined domains as EVE. Although EVE may have retained the ability of PUA domains to bind RNA, the available experimental and computational data suggests that both the details of its molecular function and its cellular function differ from those of other PUA domain-like domains. This study of EVE and its relatives illustrates how the combination of structure and genomics creates new insights by connecting a cornucopia of structures that map to the same evolutionary potential. Primary sequence information alone would have not been sufficient to reveal these evolutionary links.

  12. Domain folding and flexibility of Escherichia coli FtsZ determined by tryptophan site-directed mutagenesis

    PubMed Central

    Díaz-Espinoza, Rodrigo; Garcés, Andrea P.; Arbildua, José J.; Montecinos, Felipe; Brunet, Juan E.; Lagos, Rosalba; Monasterio, Octavio

    2007-01-01

    FtsZ has two domains, the amino GTPase domain with a Rossmann fold, and the carboxyl domain that resembles the chorismate mutase fold. Bioinformatics analyses suggest that the interdomain interaction is stronger than the interaction of the protofilament longitudinal interfaces. Crystal B factor analysis of FtsZ and detected conformational changes suggest a connection between these domains. The unfolding/folding characteristics of each domain of FtsZ were tested by introducing tryptophans into the flexible region of the amino (F135W) and the carboxyl (F275W and I294W) domains. As a control, the mutation F40W was introduced in a more rigid part of the amino domain. These mutants showed a native-like structure with denaturation and renaturation curves similar to wild type. However, the I294W mutant showed a strong loss of functionality, both in vivo and in vitro when compared to the other mutants. The functionality was recovered with the double mutant I294W/F275A, which showed full in vivo complementation with a slight increment of in vitro GTPase activity with respect to the single mutant. The formation of a stabilizing aromatic interaction involving a stacking between the tryptophan introduced at position 294 and phenylalanine 275 could account for these results. Folding/unfolding of these mutants induced by guanidinium chloride was compatible with a mechanism in which both domains within the protein show the same stability during FtsZ denaturation and renaturation, probably because of strong interface interactions. PMID:17656575

  13. Conformational Flexibility in the Flap Domains of Ligand-Free HIV Protease

    SciTech Connect

    Heaslet, H.; Rosenfeld, R.; Giffin, M.; Lin, Y.-C.; Tam, K.; Torbett, B.E.; Elder, J.H.; Stout, C.D.

    2009-06-01

    The crystal structures of wild-type HIV protease (HIV PR) in the absence of substrate or inhibitor in two related crystal forms at 1.4 and 2.15 {angstrom} resolution are reported. In one crystal form HIV PR adopts an 'open' conformation with a 7.7 {angstrom} separation between the tips of the flaps in the homodimer. In the other crystal form the tips of the flaps are 'curled' towards the 80s loop, forming contacts across the local twofold axis. The 2.3 {angstrom} resolution crystal structure of a sixfold mutant of HIV PR in the absence of substrate or inhibitor is also reported. The mutant HIV PR, which evolved in response to treatment with the potent inhibitor TL-3, contains six point mutations relative to the wild-type enzyme (L24I, M46I, F53L, L63P, V77I, V82A). In this structure the flaps also adopt a 'curled' conformation, but are separated and not in contact. Comparison of the apo structures to those with TL-3 bound demonstrates the extent of conformational change induced by inhibitor binding, which includes reorganization of the packing between twofold-related flaps. Further comparison with six other apo HIV PR structures reveals that the 'open' and 'curled' conformations define two distinct families in HIV PR. These conformational states include hinge motion of residues at either end of the flaps, opening and closing the entire {beta}-loop, and translational motion of the flap normal to the dimer twofold axis and relative to the 80s loop. The alternate conformations also entail changes in the {beta}-turn at the tip of the flap. These observations provide insight into the plasticity of the flap domains, the nature of their motions and their critical role in binding substrates and inhibitors.

  14. The structure of the catalytic domain of Tannerella forsythia karilysin reveals it is a bacterial xenolog of animal matrix metalloproteinases

    PubMed Central

    Cerdà-Costa, Núria; Guevara, Tibisay; Karim, Abdulkarim Y.; Ksiazek, Miroslaw; Nguyen, Ky-Anh; Arolas, Joan L.; Potempa, Jan; Gomis-Rüth, F. Xavier

    2010-01-01

    Metallopeptidases (MPs) are among virulence factors secreted by pathogenic bacteria at the site of infection. One such pathogen is Tannerella forsythia, a member of the microbial consortium that causes peridontitis, arguably the most prevalent infective chronic inflammatory disease known to mankind. The only reported MP secreted by T. forsythia is karilysin, a 52-kDa multidomain protein comprising a central 18-kDa catalytic domain (CD), termed Kly18, flanked by domains unrelated to any known protein. We analyzed the 3D structure of Kly18 in the absence and presence of Mg2+ or Ca2+, which are required for function and stability, and found that it evidences most of the structural features characteristic of the CDs of mammalian matrix metalloproteinases (MMPs). Unexpectedly, a peptide was bound to the active-site cleft of Kly18 mimicking a left-behind cleavage product, which revealed that the specificity pocket accommodates bulky hydrophobic side chains of substrates as in mammalian MMPs. In addition, Kly18 displayed a unique Mg2+ or Ca2+ binding site and two flexible segments that could play a role in substrate binding. Phylogenetic and sequence similarity studies revealed that Kly18 is evolutionarily much closer to winged-insect and mammalian MMPs than to potential bacterial counterparts found by genomic sequencing projects. Therefore, we conclude that this first structurally-characterized non-mammalian MMP is a xenolog co-opted through horizontal gene transfer during the intimate coexistence between T. forsythia and humans or other animals, in a very rare case of gene shuffling from eukaryotes to prokaryotes. Subsequently, this protein would have evolved in a bacterial environment to give rise to full-length karilysin that is furnished with unique flanking domains that do not conform to the general multidomain architecture of animal MMPs. PMID:21166898

  15. Revealing and understanding the behavior of structural domain walls from first principles

    NASA Astrophysics Data System (ADS)

    Iniguez, Jorge

    2015-03-01

    Ferroelectric and ferroelastic domain walls (DWs) are becoming the focus of renewed excitement. Modern experimental techniques permit an unprecedented control on domain structures, and it is now possible to produce materials with a large volume fraction occupied by the DWs themselves. Also, recent experiments show that DWs can display distinct properties not present in the domains, which suggests the possibility of using the walls themselves as the functional material in nano-devices. In this talk I will review recent projects in which we have used theory and first-principles simulation to reveal and explain a variety of DW-related effects. The presentation will include the formation of novel two-dimensional crystals at the DWs of a ferroelastic material, the occurrence of ferroic orders (ferroelectric, ferromagnetic) confined at the DWs of various compounds, and cases in which peculiar (and useful) response and switching properties relie on existence of a multi-domain state. I will also summarize experimental evidence for most of these incredible findings, which clearly ratify domain and domain-wall engineering as a powerful strategy to obtain novel functional nano-materials. // Work done in collaboration with many researchers, the main ones being: J.C. Wojdeł (ICMAB-CSIC), C. Magén (INA at U. Zaragoza), M. Mostovoy (U. Groningen), P. Zubko (U. College London), as well as the groups of Beatriz Noheda (U. Groningen), R. Ramesh (UC Berkeley) and J.-M. Triscone (U. Geneva). Supported by MINECO-Spain.

  16. The exomer cargo adaptor structure reveals a novel GTPase-binding domain

    PubMed Central

    Paczkowski, Jon E; Richardson, Brian C; Strassner, Amanda M; Fromme, J Christopher

    2012-01-01

    Cargo adaptors control intracellular trafficking of transmembrane proteins by sorting them into membrane transport carriers. The COPI, COPII, and clathrin cargo adaptors are structurally well characterized, but other cargo adaptors remain poorly understood. Exomer is a specialized cargo adaptor that sorts specific proteins into trans-Golgi network (TGN)-derived vesicles in response to cellular signals. Exomer is recruited to the TGN by the Arf1 GTPase, a universally conserved trafficking regulator. Here, we report the crystal structure of a tetrameric exomer complex composed of two copies each of the Chs5 and Chs6 subunits. The structure reveals the FN3 and BRCT domains of Chs5, which together we refer to as the FBE domain (FN3–BRCT of exomer), project from the exomer core complex. The overall architecture of the FBE domain is reminiscent of the appendage domains of other cargo adaptors, although it exhibits a distinct topology. In contrast to appendage domains, which bind accessory factors, we show that the primary role of the FBE domain is to bind Arf1 for recruitment of exomer to membranes. PMID:23000721

  17. Biomimetic and Live Medusae Reveal the Mechanistic Advantages of a Flexible Bell Margin

    PubMed Central

    Colin, Sean P.; Costello, John H.; Dabiri, John O.; Villanueva, Alex; Blottman, John B.; Gemmell, Brad J.; Priya, Shashank

    2012-01-01

    Flexible bell margins are characteristic components of rowing medusan morphologies and are expected to contribute towards their high propulsive efficiency. However, the mechanistic basis of thrust augmentation by flexible propulsors remained unresolved, so the impact of bell margin flexibility on medusan swimming has also remained unresolved. We used biomimetic robotic jellyfish vehicles to elucidate that propulsive thrust enhancement by flexible medusan bell margins relies upon fluid dynamic interactions between entrained flows at the inflexion point of the exumbrella and flows expelled from under the bell. Coalescence of flows from these two regions resulted in enhanced fluid circulation and, therefore, thrust augmentation for flexible margins of both medusan vehicles and living medusae. Using particle image velocimetry (PIV) data we estimated pressure fields to demonstrate a mechanistic basis of enhanced flows associated with the flexible bell margin. Performance of vehicles with flexible margins was further enhanced by vortex interactions that occur during bell expansion. Hydrodynamic and performance similarities between robotic vehicles and live animals demonstrated that the propulsive advantages of flexible margins found in nature can be emulated by human-engineered propulsors. Although medusae are simple animal models for description of this process, these results may contribute towards understanding the performance of flexible margins among other animal lineages. PMID:23145016

  18. Developing Prospective Elementary Teachers' Flexibility in the Domain of Proportional Reasoning

    ERIC Educational Resources Information Center

    Berk, Dawn; Taber, Susan B.; Gorowara, Christine Carrino; Poetzl, Christina

    2009-01-01

    Flexibility in the use of mathematics procedures consists of the ability to employ multiple solution methods across a set of problems, solve the same problem using multiple methods, and choose strategically from among methods so as to reduce computational demands. The purpose of this study was to characterize prospective elementary teachers' (n =…

  19. Replicate altitudinal clines reveal that evolutionary flexibility underlies adaptation to drought stress in annual Mimulus guttatus.

    PubMed

    Kooyers, Nicholas J; Greenlee, Anna B; Colicchio, Jack M; Oh, Morgan; Blackman, Benjamin K

    2015-04-01

    Examining how morphology, life history and physiology vary along environmental clines can reveal functional insight into adaptations to climate and thus inform predictions about evolutionary responses to global change. Widespread species occurring over latitudinal and altitudinal gradients in seasonal water availability are excellent systems for investigating multivariate adaptation to drought stress. Under common garden conditions, we characterized variation in 27 traits for 52 annual populations of Mimulus guttatus sampled from 10 altitudinal transects. We also assessed variation in the critical photoperiod for flowering and surveyed neutral genetic markers to control for demography when analyzing clinal patterns. Many drought escape (e.g. flowering time) and drought avoidance (e.g. specific leaf area, succulence) traits exhibited geographic or climatic clines, which often remained significant after accounting for population structure. Critical photoperiod and flowering time in glasshouse conditions followed distinct clinal patterns, indicating different aspects of seasonal phenology confer adaptation to unique agents of selection. Although escape and avoidance traits were negatively correlated range-wide, populations from sites with short growing seasons produced both early flowering and dehydration avoidance phenotypes. Our results highlight how abundant genetic variation in the component traits that build multivariate adaptations to drought stress provides flexibility for intraspecific adaptation to diverse climates. PMID:25407964

  20. Social inequalities in the impact of flexible employment on different domains of psychosocial health

    PubMed Central

    Artazcoz, L.; Benach, J.; Borrell, C.; Cortes, I.

    2005-01-01

    Study objectives: (1) To analyse the impact of flexible employment on mental health and job dissatisfaction; and (2) to examine the constraints imposed by flexible employment on men's and women's partnership formation and people's decision to become parents. For the two objectives the potentially different patterns by sex and social class are explored. Design: Cross sectional health survey. Multiple logistic regression models separated for sex and social class (manual and non-manual workers) and controlling for age were fitted. Four types of contractual arrangements have been considered: permanent, fixed term temporary contract, non-fixed term temporary contract, and no contract. Setting: Catalonia (a region in the north east of Spain). Participants: Salaried workers interviewed in the 2002 Catalonian health survey with no longstanding limiting illness, aged 16–64 (1474 men and 998 women). Main results: Fixed term temporary contracts were not associated with poor mental health status. The impact of other forms of flexible employment on mental health depended on the type of contractual arrangement, sex, and social class and it was restricted to less privileged workers, women, and manual male workers. The impact of flexible employment on living arrangements was higher in men. Among both manual and non-manual male workers, those with fixed term temporary contracts were less likely to have children when married or cohabiting and, additionally, among non-manual male workers they also were more likely to remain single (aOR = 2.35; 95%CI = 1.13 to 4.90). Conclusion: Some forms of temporary contracts are related to adverse health and psychosocial outcomes with different patterns depending on the outcome analysed and on sex and social class. Future research should incorporate variables to capture situations of precariousness associated with flexible employment. PMID:16100314

  1. Mechanism of intermediate filament recognition by plakin repeat domains revealed by envoplakin targeting of vimentin

    PubMed Central

    Fogl, Claudia; Mohammed, Fiyaz; Al-Jassar, Caezar; Jeeves, Mark; Knowles, Timothy J.; Rodriguez-Zamora, Penelope; White, Scott A.; Odintsova, Elena; Overduin, Michael; Chidgey, Martyn

    2016-01-01

    Plakin proteins form critical connections between cell junctions and the cytoskeleton; their disruption within epithelial and cardiac muscle cells cause skin-blistering diseases and cardiomyopathies. Envoplakin has a single plakin repeat domain (PRD) which recognizes intermediate filaments through an unresolved mechanism. Herein we report the crystal structure of envoplakin's complete PRD fold, revealing binding determinants within its electropositive binding groove. Four of its five internal repeats recognize negatively charged patches within vimentin via five basic determinants that are identified by nuclear magnetic resonance spectroscopy. Mutations of the Lys1901 or Arg1914 binding determinants delocalize heterodimeric envoplakin from intracellular vimentin and keratin filaments in cultured cells. Recognition of vimentin is abolished when its residues Asp112 or Asp119 are mutated. The latter slot intermediate filament rods into basic PRD domain grooves through electrosteric complementarity in a widely applicable mechanism. Together this reveals how plakin family members form dynamic linkages with cytoskeletal frameworks. PMID:26935805

  2. Mechanism of intermediate filament recognition by plakin repeat domains revealed by envoplakin targeting of vimentin.

    PubMed

    Fogl, Claudia; Mohammed, Fiyaz; Al-Jassar, Caezar; Jeeves, Mark; Knowles, Timothy J; Rodriguez-Zamora, Penelope; White, Scott A; Odintsova, Elena; Overduin, Michael; Chidgey, Martyn

    2016-01-01

    Plakin proteins form critical connections between cell junctions and the cytoskeleton; their disruption within epithelial and cardiac muscle cells cause skin-blistering diseases and cardiomyopathies. Envoplakin has a single plakin repeat domain (PRD) which recognizes intermediate filaments through an unresolved mechanism. Herein we report the crystal structure of envoplakin's complete PRD fold, revealing binding determinants within its electropositive binding groove. Four of its five internal repeats recognize negatively charged patches within vimentin via five basic determinants that are identified by nuclear magnetic resonance spectroscopy. Mutations of the Lys1901 or Arg1914 binding determinants delocalize heterodimeric envoplakin from intracellular vimentin and keratin filaments in cultured cells. Recognition of vimentin is abolished when its residues Asp112 or Asp119 are mutated. The latter slot intermediate filament rods into basic PRD domain grooves through electrosteric complementarity in a widely applicable mechanism. Together this reveals how plakin family members form dynamic linkages with cytoskeletal frameworks. PMID:26935805

  3. Mechanism of intermediate filament recognition by plakin repeat domains revealed by envoplakin targeting of vimentin

    NASA Astrophysics Data System (ADS)

    Fogl, Claudia; Mohammed, Fiyaz; Al-Jassar, Caezar; Jeeves, Mark; Knowles, Timothy J.; Rodriguez-Zamora, Penelope; White, Scott A.; Odintsova, Elena; Overduin, Michael; Chidgey, Martyn

    2016-03-01

    Plakin proteins form critical connections between cell junctions and the cytoskeleton; their disruption within epithelial and cardiac muscle cells cause skin-blistering diseases and cardiomyopathies. Envoplakin has a single plakin repeat domain (PRD) which recognizes intermediate filaments through an unresolved mechanism. Herein we report the crystal structure of envoplakin's complete PRD fold, revealing binding determinants within its electropositive binding groove. Four of its five internal repeats recognize negatively charged patches within vimentin via five basic determinants that are identified by nuclear magnetic resonance spectroscopy. Mutations of the Lys1901 or Arg1914 binding determinants delocalize heterodimeric envoplakin from intracellular vimentin and keratin filaments in cultured cells. Recognition of vimentin is abolished when its residues Asp112 or Asp119 are mutated. The latter slot intermediate filament rods into basic PRD domain grooves through electrosteric complementarity in a widely applicable mechanism. Together this reveals how plakin family members form dynamic linkages with cytoskeletal frameworks.

  4. Mechanism of intermediate filament recognition by plakin repeat domains revealed by envoplakin targeting of vimentin.

    PubMed

    Fogl, Claudia; Mohammed, Fiyaz; Al-Jassar, Caezar; Jeeves, Mark; Knowles, Timothy J; Rodriguez-Zamora, Penelope; White, Scott A; Odintsova, Elena; Overduin, Michael; Chidgey, Martyn

    2016-01-01

    Plakin proteins form critical connections between cell junctions and the cytoskeleton; their disruption within epithelial and cardiac muscle cells cause skin-blistering diseases and cardiomyopathies. Envoplakin has a single plakin repeat domain (PRD) which recognizes intermediate filaments through an unresolved mechanism. Herein we report the crystal structure of envoplakin's complete PRD fold, revealing binding determinants within its electropositive binding groove. Four of its five internal repeats recognize negatively charged patches within vimentin via five basic determinants that are identified by nuclear magnetic resonance spectroscopy. Mutations of the Lys1901 or Arg1914 binding determinants delocalize heterodimeric envoplakin from intracellular vimentin and keratin filaments in cultured cells. Recognition of vimentin is abolished when its residues Asp112 or Asp119 are mutated. The latter slot intermediate filament rods into basic PRD domain grooves through electrosteric complementarity in a widely applicable mechanism. Together this reveals how plakin family members form dynamic linkages with cytoskeletal frameworks.

  5. Revealing a new activity of the human Dicer DUF283 domain in vitro.

    PubMed

    Kurzynska-Kokorniak, Anna; Pokornowska, Maria; Koralewska, Natalia; Hoffmann, Weronika; Bienkowska-Szewczyk, Krystyna; Figlerowicz, Marek

    2016-01-01

    The ribonuclease Dicer is a multidomain enzyme that plays a fundamental role in the biogenesis of small regulatory RNAs (srRNAs), which control gene expression by targeting complementary transcripts and inducing their cleavage or repressing their translation. Recent studies of Dicer's domains have permitted to propose their roles in srRNA biogenesis. For all of Dicer's domains except one, called DUF283 (domain of unknown function), their involvement in RNA substrate recognition, binding or cleavage has been postulated. For DUF283, the interaction with Dicer's protein partners has been the only function suggested thus far. In this report, we demonstrate that the isolated DUF283 domain from human Dicer is capable of binding single-stranded nucleic acids in vitro. We also show that DUF283 can act as a nucleic acid annealer that accelerates base-pairing between complementary RNA/DNA molecules in vitro. We further demonstrate an annealing activity of full length human Dicer. The overall results suggest that Dicer, presumably through its DUF283 domain, might facilitate hybridization between short RNAs and their targets. The presented findings reveal the complex nature of Dicer, whose functions may extend beyond the biogenesis of srRNAs. PMID:27045313

  6. Single-cell Sequencing of Thiomargarita Reveals Genomic Flexibility for Adaptation to Dynamic Redox Conditions.

    PubMed

    Winkel, Matthias; Salman-Carvalho, Verena; Woyke, Tanja; Richter, Michael; Schulz-Vogt, Heide N; Flood, Beverly E; Bailey, Jake V; Mußmann, Marc

    2016-01-01

    Large, colorless sulfur-oxidizing bacteria (LSB) of the family Beggiatoaceae form thick mats at sulfidic sediment surfaces, where they efficiently detoxify sulfide before it enters the water column. The genus Thiomargarita harbors the largest known free-living bacteria with cell sizes of up to 750 μm in diameter. In addition to their ability to oxidize reduced sulfur compounds, some Thiomargarita spp. are known to store large amounts of nitrate, phosphate and elemental sulfur internally. To date little is known about their energy yielding metabolic pathways, and how these pathways compare to other Beggiatoaceae. Here, we present a draft single-cell genome of a chain-forming "Candidatus Thiomargarita nelsonii Thio36", and conduct a comparative analysis to five draft and one full genome of other members of the Beggiatoaceae. "Ca. T. nelsonii Thio36" is able to respire nitrate to both ammonium and dinitrogen, which allows them to flexibly respond to environmental changes. Genes for sulfur oxidation and inorganic carbon fixation confirmed that "Ca. T. nelsonii Thio36" can function as a chemolithoautotroph. Carbon can be fixed via the Calvin-Benson-Bassham cycle, which is common among the Beggiatoaceae. In addition we found key genes of the reductive tricarboxylic acid cycle that point toward an alternative CO2 fixation pathway. Surprisingly, "Ca. T. nelsonii Thio36" also encodes key genes of the C2-cycle that convert 2-phosphoglycolate to 3-phosphoglycerate during photorespiration in higher plants and cyanobacteria. Moreover, we identified a novel trait of a flavin-based energy bifurcation pathway coupled to a Na(+)-translocating membrane complex (Rnf). The coupling of these pathways may be key to surviving long periods of anoxia. As other Beggiatoaceae "Ca. T. nelsonii Thio36" encodes many genes similar to those of (filamentous) cyanobacteria. In summary, the genome of "Ca. T. nelsonii Thio36" provides additional insight into the ecology of giant sulfur

  7. Temporally chimeric mice reveal flexibility of circadian period-setting in the suprachiasmatic nucleus

    PubMed Central

    Smyllie, Nicola J.; Chesham, Johanna E.; Hamnett, Ryan; Maywood, Elizabeth S.; Hastings, Michael H.

    2016-01-01

    The suprachiasmatic nucleus (SCN) is the master circadian clock controlling daily behavior in mammals. It consists of a heterogeneous network of neurons, in which cell-autonomous molecular feedback loops determine the period and amplitude of circadian oscillations of individual cells. In contrast, circuit-level properties of coherence, synchrony, and ensemble period are determined by intercellular signals and are embodied in a circadian wave of gene expression that progresses daily across the SCN. How cell-autonomous and circuit-level mechanisms interact in timekeeping is poorly understood. To explore this interaction, we used intersectional genetics to create temporally chimeric mice with SCN containing dopamine 1a receptor (Drd1a) cells with an intrinsic period of 24 h alongside non-Drd1a cells with 20-h clocks. Recording of circadian behavior in vivo alongside cellular molecular pacemaking in SCN slices in vitro demonstrated that such chimeric circuits form robust and resilient circadian clocks. It also showed that the computation of ensemble period is nonlinear. Moreover, the chimeric circuit sustained a wave of gene expression comparable to that of nonchimeric SCN, demonstrating that this circuit-level property is independent of differences in cell-intrinsic periods. The relative dominance of 24-h Drd1a and 20-h non-Drd1a neurons in setting ensemble period could be switched by exposure to resonant or nonresonant 24-h or 20-h lighting cycles. The chimeric circuit therefore reveals unanticipated principles of circuit-level operation underlying the emergent plasticity, resilience, and robustness of the SCN clock. The spontaneous and light-driven flexibility of period observed in chimeric mice provides a new perspective on the concept of SCN pacemaker cells. PMID:26966234

  8. Temporally chimeric mice reveal flexibility of circadian period-setting in the suprachiasmatic nucleus.

    PubMed

    Smyllie, Nicola J; Chesham, Johanna E; Hamnett, Ryan; Maywood, Elizabeth S; Hastings, Michael H

    2016-03-29

    The suprachiasmatic nucleus (SCN) is the master circadian clock controlling daily behavior in mammals. It consists of a heterogeneous network of neurons, in which cell-autonomous molecular feedback loops determine the period and amplitude of circadian oscillations of individual cells. In contrast, circuit-level properties of coherence, synchrony, and ensemble period are determined by intercellular signals and are embodied in a circadian wave of gene expression that progresses daily across the SCN. How cell-autonomous and circuit-level mechanisms interact in timekeeping is poorly understood. To explore this interaction, we used intersectional genetics to create temporally chimeric mice with SCN containing dopamine 1a receptor (Drd1a) cells with an intrinsic period of 24 h alongside non-Drd1a cells with 20-h clocks. Recording of circadian behavior in vivo alongside cellular molecular pacemaking in SCN slices in vitro demonstrated that such chimeric circuits form robust and resilient circadian clocks. It also showed that the computation of ensemble period is nonlinear. Moreover, the chimeric circuit sustained a wave of gene expression comparable to that of nonchimeric SCN, demonstrating that this circuit-level property is independent of differences in cell-intrinsic periods. The relative dominance of 24-h Drd1a and 20-h non-Drd1a neurons in setting ensemble period could be switched by exposure to resonant or nonresonant 24-h or 20-h lighting cycles. The chimeric circuit therefore reveals unanticipated principles of circuit-level operation underlying the emergent plasticity, resilience, and robustness of the SCN clock. The spontaneous and light-driven flexibility of period observed in chimeric mice provides a new perspective on the concept of SCN pacemaker cells. PMID:26966234

  9. Structural characterization of a flexible two-domain protein in solution using Small Angle X-ray Scattering and NMR spectroscopy

    PubMed Central

    Lemak, Alexander; Wu, Bin; Yee, Adelinda; Houliston, Scott; Lee, Hsiau-Wei; Gutmanas, Aleksandras; Fang, Xianyang; Garcia, Maite; Semesi, Anthony; Wang, Yun-Xing; Prestegard, James H.; Arrowsmith, Cheryl H.

    2016-01-01

    SUMMARY Multidomain proteins in which individual domains are connected by linkers often possess inherent inter-domain flexibility that significantly complicates their structural characterization in solution using either NMR spectroscopy or small-angle X-ray scatting (SAXS) alone. Here we report a novel protocol for joint refinement of flexible multidomain protein structures against NMR distance and angular restraints, residual dipolar couplings and SAXS data. The protocol is based on the EOM principle (Bernardo et al., 2007) and is compared with different refinement strategies for the structural characterization of the flexible two-domain protein sf3636 from Shigella flexneri 2a. The results of our refinement suggest the existence of a dominant population of configurational states in solution possessing an overall elongated shape and restricted relative twisting of the two domains. PMID:25456817

  10. Efficiency and Flexibility of Indirect Addition in the Domain of Multi-Digit Subtraction

    ERIC Educational Resources Information Center

    Torbeyns, Joke; Ghesquiere, Pol; Verschaffel, Lieven

    2009-01-01

    This article discusses the characteristics of the indirect addition strategy (IA) in the domain of multi-digit subtraction. In two studies, adults' use of IA on three-digit subtractions with a small, medium, or large difference between the integers was analysed using the choice/no-choice method. Results from both studies indicate that adults…

  11. The 15 SCR flexible extracellular domains of human complement receptor type 2 can mediate multiple ligand and antigen interactions.

    PubMed

    Gilbert, Hannah E; Asokan, Rengasamy; Holers, V Michael; Perkins, Stephen J

    2006-10-01

    Complement receptor type 2 (CR2, CD21) is a cell surface protein that links the innate and adaptive immune response during the activation of B cells. The extracellular portion of CR2 comprises 15 or 16 short complement regulator (SCR) domains, for which the overall arrangement in solution is unknown. This was determined by constrained scattering and ultracentrifugation modelling. The radius of gyration of CR2 SCR 1-15 was determined to be 11.5 nm by both X-ray and neutron scattering, and that of its cross-section was 1.8 nm. The distance distribution function P(r) showed that the overall length of CR2 SCR 1-15 was 38 nm. Sedimentation equilibrium curve fits gave a mean molecular weight of 135,000 (+/- 13,000) Da, in agreement with a fully glycosylated structure. Velocity experiments using the g*(s) derivative method gave a sedimentation coefficient of 4.2 (+/- 0.1) S. In order to construct a model of CR2 SCR 1-15 for constrained fitting, homology models for the 15 SCR domains were combined with randomised linker peptides generated by molecular dynamics simulations. Using an automated procedure, the analysis of 15,000 possible CR2 SCR 1-15 models showed that only those models in which the 15 SCR domains were flexible but partially folded back accounted for the scattering and sedimentation data. The best-fit CR2 models provided a visual explanation for the versatile interaction of CR2 with four ligands C3d, CD23, gp350 and IFN-alpha. The flexible location of CR2 SCR 1-2 is likely to facilitate interactions of C3d-antigen complexes with the B cell receptor.

  12. Structure of the Response Regulator PhoP from Mycobacterium tuberculosis Reveals a Dimer Through the Receiver Domain

    SciTech Connect

    S Menon; S Wang

    2011-12-31

    The PhoP protein from Mycobacterium tuberculosis is a response regulator of the OmpR/PhoB subfamily, whose structure consists of an N-terminal receiver domain and a C-terminal DNA-binding domain. How the DNA-binding activities are regulated by phosphorylation of the receiver domain remains unclear due to a lack of structural information on the full-length proteins. Here we report the crystal structure of the full-length PhoP of M. tuberculosis. Unlike other known structures of full-length proteins of the same subfamily, PhoP forms a dimer through its receiver domain with the dimer interface involving {alpha}4-{beta}5-{alpha}5, a common interface for activated receiver domain dimers. However, the switch residues, Thr99 and Tyr118, are in a conformation resembling those of nonactivated receiver domains. The Tyr118 side chain is involved in the dimer interface interactions. The receiver domain is tethered to the DNA-binding domain through a flexible linker and does not impose structural constraints on the DNA-binding domain. This structure suggests that phosphorylation likely facilitates/stabilizes receiver domain dimerization, bringing the DNA-binding domains to close proximity, thereby increasing their binding affinity for direct repeat DNA sequences.

  13. Three new structures of left-handed RADA helical filaments: structural flexibility of N-terminal domain is critical for recombinase activity.

    PubMed

    Chang, Yu-Wei; Ko, Tzu-Ping; Lee, Chien-Der; Chang, Yuan-Chih; Lin, Kuei-Ann; Chang, Chia-Seng; Wang, Andrew H-J; Wang, Ting-Fang

    2009-01-01

    RecA family proteins, including bacterial RecA, archaeal RadA, and eukaryotic Dmc1 and Rad51, mediate homologous recombination, a reaction essential for maintaining genome integrity. In the presence of ATP, these proteins bind a single-strand DNA to form a right-handed nucleoprotein filament, which catalyzes pairing and strand exchange with a homologous double-stranded DNA (dsDNA), by as-yet unknown mechanisms. We recently reported a structure of RadA left-handed helical filament, and here present three new structures of RadA left-handed helical filaments. Comparative structural analysis between different RadA/Rad51 helical filaments reveals that the N-terminal domain (NTD) of RadA/Rad51, implicated in dsDNA binding, is highly flexible. We identify a hinge region between NTD and polymerization motif as responsible for rigid body movement of NTD. Mutant analysis further confirms that structural flexibility of NTD is essential for RadA's recombinase activity. These results support our previous hypothesis that ATP-dependent axial rotation of RadA nucleoprotein helical filament promotes homologous recombination.

  14. Ion mobility-mass spectrometry of a rotary ATPase reveals ATP-induced reduction in conformational flexibility

    NASA Astrophysics Data System (ADS)

    Zhou, Min; Politis, Argyris; Davies, Roberta B.; Liko, Idlir; Wu, Kuan-Jung; Stewart, Alastair G.; Stock, Daniela; Robinson, Carol V.

    2014-03-01

    Rotary ATPases play fundamental roles in energy conversion as their catalytic rotation is associated with interdomain fluctuations and heterogeneity of conformational states. Using ion mobility mass spectrometry we compared the conformational dynamics of the intact ATPase from Thermus thermophilus with those of its membrane and soluble subcomplexes. Our results define regions with enhanced flexibility assigned to distinct subunits within the overall assembly. To provide a structural context for our experimental data we performed molecular dynamics simulations and observed conformational changes of the peripheral stalks that reflect their intrinsic flexibility. By isolating complexes at different phases of cell growth and manipulating nucleotides, metal ions and pH during isolation, we reveal differences that can be related to conformational changes in the Vo complex triggered by ATP binding. Together these results implicate nucleotides in modulating flexibility of the stator components and uncover mechanistic detail that underlies operation and regulation in the context of the holoenzyme.

  15. Ion mobility-mass spectrometry of a rotary ATPase reveals ATP-induced reduction in conformational flexibility.

    PubMed

    Zhou, Min; Politis, Argyris; Davies, Roberta B; Liko, Idlir; Wu, Kuan-Jung; Stewart, Alastair G; Stock, Daniela; Robinson, Carol V

    2014-03-01

    Rotary ATPases play fundamental roles in energy conversion as their catalytic rotation is associated with interdomain fluctuations and heterogeneity of conformational states. Using ion mobility mass spectrometry we compared the conformational dynamics of the intact ATPase from Thermus thermophilus with those of its membrane and soluble subcomplexes. Our results define regions with enhanced flexibility assigned to distinct subunits within the overall assembly. To provide a structural context for our experimental data we performed molecular dynamics simulations and observed conformational changes of the peripheral stalks that reflect their intrinsic flexibility. By isolating complexes at different phases of cell growth and manipulating nucleotides, metal ions and pH during isolation, we reveal differences that can be related to conformational changes in the Vo complex triggered by ATP binding. Together these results implicate nucleotides in modulating flexibility of the stator components and uncover mechanistic detail that underlies operation and regulation in the context of the holoenzyme.

  16. Deuterium NMR of Raft Model Membranes Reveals Domain-Specific Order Profiles and Compositional Distribution

    PubMed Central

    Yasuda, Tomokazu; Tsuchikawa, Hiroshi; Murata, Michio; Matsumori, Nobuaki

    2015-01-01

    In this report, we applied site-specifically deuterated N-stearoylsphingomyelins (SSMs) to raft-exhibiting ternary mixtures containing SSM, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol (Chol) and successfully acquired deuterium quadrupole coupling profiles of SSM from liquid-ordered (Lo) and liquid-disordered (Ld) domains. To our knowledge, this is the first report that shows detailed lipid chain dynamics separately and simultaneously obtained from coexisting Lo and Ld domains. We also found that the quadrupole profile of the Lo phase in the ternary system was almost identical to that in the SSM-Chol binary mixture, suggesting that the order profile of the binary system is essentially applicable to more complicated membrane systems in terms of the acyl chain order. We also demonstrated that 2H NMR spectroscopy, in combination with organic synthesis of deuterated components, could be used to reveal the accurate mole fractions of each component distributed in the Lo and Ld domains. As compared with the reported tie-line analysis of phase diagrams, the merit of our 2H NMR analysis is that the domain-specific compositional fractions are directly attainable without experimental complexity and ambiguity. The accurate compositional distributions as well as lipid order profiles in ternary mixtures are relevant to understanding the molecular mechanism of lipid raft formation. PMID:25992728

  17. Single-cell Sequencing of Thiomargarita Reveals Genomic Flexibility for Adaptation to Dynamic Redox Conditions.

    PubMed

    Winkel, Matthias; Salman-Carvalho, Verena; Woyke, Tanja; Richter, Michael; Schulz-Vogt, Heide N; Flood, Beverly E; Bailey, Jake V; Mußmann, Marc

    2016-01-01

    Large, colorless sulfur-oxidizing bacteria (LSB) of the family Beggiatoaceae form thick mats at sulfidic sediment surfaces, where they efficiently detoxify sulfide before it enters the water column. The genus Thiomargarita harbors the largest known free-living bacteria with cell sizes of up to 750 μm in diameter. In addition to their ability to oxidize reduced sulfur compounds, some Thiomargarita spp. are known to store large amounts of nitrate, phosphate and elemental sulfur internally. To date little is known about their energy yielding metabolic pathways, and how these pathways compare to other Beggiatoaceae. Here, we present a draft single-cell genome of a chain-forming "Candidatus Thiomargarita nelsonii Thio36", and conduct a comparative analysis to five draft and one full genome of other members of the Beggiatoaceae. "Ca. T. nelsonii Thio36" is able to respire nitrate to both ammonium and dinitrogen, which allows them to flexibly respond to environmental changes. Genes for sulfur oxidation and inorganic carbon fixation confirmed that "Ca. T. nelsonii Thio36" can function as a chemolithoautotroph. Carbon can be fixed via the Calvin-Benson-Bassham cycle, which is common among the Beggiatoaceae. In addition we found key genes of the reductive tricarboxylic acid cycle that point toward an alternative CO2 fixation pathway. Surprisingly, "Ca. T. nelsonii Thio36" also encodes key genes of the C2-cycle that convert 2-phosphoglycolate to 3-phosphoglycerate during photorespiration in higher plants and cyanobacteria. Moreover, we identified a novel trait of a flavin-based energy bifurcation pathway coupled to a Na(+)-translocating membrane complex (Rnf). The coupling of these pathways may be key to surviving long periods of anoxia. As other Beggiatoaceae "Ca. T. nelsonii Thio36" encodes many genes similar to those of (filamentous) cyanobacteria. In summary, the genome of "Ca. T. nelsonii Thio36" provides additional insight into the ecology of giant sulfur

  18. Single-cell sequencing of Thiomargarita reveals genomic flexibility for adaptation to dynamic redox conditions

    DOE PAGES

    Winkel, Matthias; Salman-Carvalho, Verena; Woyke, Tanja; Richter, Michael; Schulz-Vogt, Heide N.; Flood, Beverly E.; Bailey, Jake V.; Mußmann, Marc

    2016-06-21

    Large, colorless sulfur-oxidizing bacteria (LSB) of the family Beggiatoaceae form thick mats at sulfidic sediment surfaces, where they efficiently detoxify sulfide before it enters the water column. The genus Thiomargarita harbors the largest known free-living bacteria with cell sizes of up to 750 μm in diameter. In addition to their ability to oxidize reduced sulfur compounds, some Thiornargarita spp. are known to store large amounts of nitrate, phosphate and elemental sulfur internally. To date little is known about their energy yielding metabolic pathways, and how these pathways compare to other Beggiatoaceae. Here, we present a draft single-cell genome of amore » chain-forming "Candidatus Thiomargarita nelsonii Thio36", and conduct a comparative analysis to five draft and one full genome of other members of the Beggiatoaceae. "Ca. T. nelsonii Thio36" is able to respire nitrate to both ammonium and dinitrogen, which allows them to flexibly respond to environmental changes. Genes for sulfur oxidation and inorganic carbon fixation confirmed that "Ca. T. nelsonii Thio36" can function as a chemolithoautotroph. Carbon can be fixed via the Calvin-Benson-Bassham cycle, which is common among the Beggiatoaceae. In addition we found key genes of the reductive tricarboxylic acid cycle that point toward an alternative CO2 fixation pathway. Surprisingly, "Ca. T. nelsonii Thio36" also encodes key genes of the C2-cycle that convert 2-phosphoglycolate to 3-phosphoglycerate during photorespiration in higher plants and cyanobacteria. Moreover, we identified a novel trait of a flavin-based energy bifurcation pathway coupled to a Na+-translocating membrane complex (Rnf). The coupling of these pathways may be key to surviving long periods of anoxia. As other Beggiatoaceae "Ca. T. nelsonii Thio36" encodes many genes similar to those of (filamentous) cyanobacteria. In conclusion, the genome of "Ca. T. nelsonii Thio36" provides additional insight into the ecology of giant sulfur

  19. Single-cell Sequencing of Thiomargarita Reveals Genomic Flexibility for Adaptation to Dynamic Redox Conditions

    PubMed Central

    Winkel, Matthias; Salman-Carvalho, Verena; Woyke, Tanja; Richter, Michael; Schulz-Vogt, Heide N.; Flood, Beverly E.; Bailey, Jake V.; Mußmann, Marc

    2016-01-01

    Large, colorless sulfur-oxidizing bacteria (LSB) of the family Beggiatoaceae form thick mats at sulfidic sediment surfaces, where they efficiently detoxify sulfide before it enters the water column. The genus Thiomargarita harbors the largest known free-living bacteria with cell sizes of up to 750 μm in diameter. In addition to their ability to oxidize reduced sulfur compounds, some Thiomargarita spp. are known to store large amounts of nitrate, phosphate and elemental sulfur internally. To date little is known about their energy yielding metabolic pathways, and how these pathways compare to other Beggiatoaceae. Here, we present a draft single-cell genome of a chain-forming “Candidatus Thiomargarita nelsonii Thio36”, and conduct a comparative analysis to five draft and one full genome of other members of the Beggiatoaceae. “Ca. T. nelsonii Thio36” is able to respire nitrate to both ammonium and dinitrogen, which allows them to flexibly respond to environmental changes. Genes for sulfur oxidation and inorganic carbon fixation confirmed that “Ca. T. nelsonii Thio36” can function as a chemolithoautotroph. Carbon can be fixed via the Calvin–Benson–Bassham cycle, which is common among the Beggiatoaceae. In addition we found key genes of the reductive tricarboxylic acid cycle that point toward an alternative CO2 fixation pathway. Surprisingly, “Ca. T. nelsonii Thio36” also encodes key genes of the C2-cycle that convert 2-phosphoglycolate to 3-phosphoglycerate during photorespiration in higher plants and cyanobacteria. Moreover, we identified a novel trait of a flavin-based energy bifurcation pathway coupled to a Na+-translocating membrane complex (Rnf). The coupling of these pathways may be key to surviving long periods of anoxia. As other Beggiatoaceae “Ca. T. nelsonii Thio36” encodes many genes similar to those of (filamentous) cyanobacteria. In summary, the genome of “Ca. T. nelsonii Thio36” provides additional insight into the ecology of

  20. Time-domain system identification of low-order models for flexible spacecraft

    NASA Astrophysics Data System (ADS)

    Bauer, Robert John

    1998-12-01

    System Identification (SI) is the process of developing or improving a mathematical representation of a physical system using experimental data. Accurate SI is often a precursor to sophisticated control algorithms which assume that the 'plant' to be controlled is known. To achieve accurate models, many of the best current SI methods require that the size of the identified state space model be significantly larger than the expected system size, a process called overspecification. Large models are impractical for model-based controller design and create numerical difficulties during the SI process. Low order and high accuracy are two conflicting requirements for SI. Appropriate SI methods for on-orbit modeling of lightly-damped flexible spacecraft are established, including methods such as OKID with ERA, Q-Markov CovER, ORSE and Subspace. Tests on Daisy, a flexible spacecraft emulator, demonstrate that these methods exhibit the overspecification problem. To investigate SI of low-order models, model reduction techniques are employed. Balanced model reduction offers promising results for stable models. Since model stability is not guaranteed by many SI methods, three new approaches to balanced model reduction are derived and tested when identified models are unstable. A new identification approach using OKID and cubic smoothing splines is presented, allowing low-order highly-accurate models to be directly identified. Avoiding impractically large models reduces computational requirements and potential for numerical problems. Augmented SI is an approach that allows existing linear system identification techniques to better model non-idealities such as nonlinear friction. Augmented and standard SI experiments demonstrate that the linear system assumption made throughout this thesis is appropriate for Daisy.

  1. Nonlinear effects of a modal domain optical fiber sensor in a vibration suppression control loop for a flexible structure

    SciTech Connect

    Lindner, D.K.; Zvonar, G.A.; Baumann, W.T.; Delos, P.L. . Bradley Dept. of Electrical Engineering)

    1993-01-01

    Recently, a modal domain optical fiber sensor has been demonstrated as a sensor in a control system for vibration suppression of a flexible cantilevered beam. This sensor responds to strain through a mechanical attachment to the structure. Because this sensor is of the interferometric type, the output of the sensor has a sinusoidal nonlinearity. For small levels of strain, the sensor can be operated in its linear region. For large levels of strain, the detection electronics can be configured to count fringes. In both of these configurations, the sensor nonlinearity imposes some restrictions on the performance of the control system. In this paper the authors investigate the effects of these sensor nonlinearities on the control system, and identify the region of linear operation in terms of the optical fiber sensor parameters.

  2. Nonlinear effects of a modal domain optical fiber sensor in a vibration suppression control loop for a flexible structure

    NASA Technical Reports Server (NTRS)

    Lindner, D. K.; Zvonar, G. A.; Baumann, W. T.; Delos, P. L.

    1993-01-01

    Recently, a modal domain optical fiber sensor has been demonstrated as a sensor in a control system for vibration suppression of a flexible cantilevered beam. This sensor responds to strain through a mechanical attachment to the structure. Because this sensor is of the interferometric type, the output of the sensor has a sinusoidal nonlinearity. For small levels of strain, the sensor can be operated in its linear region. For large levels of strain, the detection electronics can be configured to count fringes. In both of these configurations, the sensor nonlinearity imposes some restrictions on the performance of the control system. In this paper we investigate the effects of these sensor nonlinearities on the control system, and identify the region of linear operation in terms of the optical fiber sensor parameters.

  3. The Structure of the Poxvirus A33 Protein Reveals a Dimer of Unique C-Type Lectin-Like Domains

    SciTech Connect

    Su, Hua-Poo; Singh, Kavita; Gittis, Apostolos G.; Garboczi, David N.

    2010-11-03

    The current vaccine against smallpox is an infectious form of vaccinia virus that has significant side effects. Alternative vaccine approaches using recombinant viral proteins are being developed. A target of subunit vaccine strategies is the poxvirus protein A33, a conserved protein in the Chordopoxvirinae subfamily of Poxviridae that is expressed on the outer viral envelope. Here we have determined the structure of the A33 ectodomain of vaccinia virus. The structure revealed C-type lectin-like domains (CTLDs) that occur as dimers in A33 crystals with five different crystal lattices. Comparison of the A33 dimer models shows that the A33 monomers have a degree of flexibility in position within the dimer. Structural comparisons show that the A33 monomer is a close match to the Link module class of CTLDs but that the A33 dimer is most similar to the natural killer (NK)-cell receptor class of CTLDs. Structural data on Link modules and NK-cell receptor-ligand complexes suggest a surface of A33 that could interact with viral or host ligands. The dimer interface is well conserved in all known A33 sequences, indicating an important role for the A33 dimer. The structure indicates how previously described A33 mutations disrupt protein folding and locates the positions of N-linked glycosylations and the epitope of a protective antibody.

  4. Multi-task connectivity reveals flexible hubs for adaptive task control

    PubMed Central

    Cole, Michael W.; Reynolds, Jeremy R.; Power, Jonathan D.; Repovs, Grega; Anticevic, Alan; Braver, Todd S.

    2013-01-01

    Extensive evidence suggests the human ability to adaptively implement a wide variety of tasks is preferentially due to the operation of a fronto-parietal brain network. We hypothesized that this network’s adaptability is made possible by ‘flexible hubs’ – brain regions that rapidly update their pattern of global functional connectivity according to task demands. We utilized recent advances in characterizing brain network organization and dynamics to identify mechanisms consistent with the flexible hub theory. We found that the fronto-parietal network’s brain-wide functional connectivity pattern shifted more than other networks’ across a variety of task states, and that these connectivity patterns could be used to identify the current task. Further, these patterns were consistent across practiced and novel tasks, suggesting reuse of flexible hub connectivity patterns facilitates adaptive (novel) task performance. Together, these findings support a central role for fronto-parietal flexible hubs in cognitive control and adaptive implementation of task demands generally. PMID:23892552

  5. Crystal structure of the N-terminal domain of human SIRT7 reveals a three-helical domain architecture.

    PubMed

    Priyanka, Anu; Solanki, Vipul; Parkesh, Raman; Thakur, Krishan Gopal

    2016-10-01

    Human SIRT7 is an NAD(+) dependent deacetylase, which belongs to sirtuin family of proteins. SIRT7, like other sirtuins has conserved catalytic domain and is flanked by N- and C-terminal domains reported to play vital functional roles. Here, we report the crystal structure of the N-terminal domain of human SIRT7 (SIRT7(NTD) ) at 2.3 Å resolution as MBP-SIRT7(NTD) fusion protein. SIRT7(NTD) adopts three-helical domain architecture and comparative structural analyses suggest similarities to some DNA binding motifs and transcription regulators. We also report here the importance of N- and C-terminal domains in soluble expression of SIRT7. Proteins 2016; 84:1558-1563. © 2016 Wiley Periodicals, Inc.

  6. Crystal structure of the N-terminal domain of human SIRT7 reveals a three-helical domain architecture.

    PubMed

    Priyanka, Anu; Solanki, Vipul; Parkesh, Raman; Thakur, Krishan Gopal

    2016-10-01

    Human SIRT7 is an NAD(+) dependent deacetylase, which belongs to sirtuin family of proteins. SIRT7, like other sirtuins has conserved catalytic domain and is flanked by N- and C-terminal domains reported to play vital functional roles. Here, we report the crystal structure of the N-terminal domain of human SIRT7 (SIRT7(NTD) ) at 2.3 Å resolution as MBP-SIRT7(NTD) fusion protein. SIRT7(NTD) adopts three-helical domain architecture and comparative structural analyses suggest similarities to some DNA binding motifs and transcription regulators. We also report here the importance of N- and C-terminal domains in soluble expression of SIRT7. Proteins 2016; 84:1558-1563. © 2016 Wiley Periodicals, Inc. PMID:27287224

  7. STRUCTURE OF THE DNA REPAIR HELICASE HEL308 REVEALS DNA BINDING AND AUTOINHIBITORY DOMAINS

    PubMed Central

    Richards, Jodi; Johnson, Ken; Liu, Huanting; Oke, Stephen McMahon. Muse; Carter, Lester; Naismith, James H; White, Malcolm F

    2012-01-01

    Hel308 is a superfamily 2 helicase conserved in eukaryotes and archaea. It is thought to function in the early stages of recombination following replication fork arrest, and has a specificity for removal of the lagging strand in model replication forks. A homologous helicase constitutes the N-terminal domain of human DNA polymerase Q. The Drosophila homologue mus301 is implicated in double strand break repair and meiotic recombination. We have solved the high-resolution crystal structure of Hel308 from the crenarchaeon Sulfolobus solfataricus, revealing a five-domain structure with a central pore lined with essential DNA binding residues. The fifth domain is shown to act as a molecular brake, clamping the ssDNA extruded through the central pore of the helicase structure to limit the enzyme’s helicase activity. This provides an elegant mechanism to tune the enzyme’s processivity to its functional role. Hel308 can displace streptavidin from a biotinylated DNA molecule, suggesting that one function of the enzyme may be in the removal of bound proteins at stalled replication forks and recombination intermediates. PMID:18056710

  8. Structure of the Spt16 Middle Domain Reveals Functional Features of the Histone Chaperone FACT*

    PubMed Central

    Kemble, David J.; Whitby, Frank G.; Robinson, Howard; McCullough, Laura L.; Formosa, Tim; Hill, Christopher P.

    2013-01-01

    The histone chaperone FACT is an essential and abundant heterodimer found in all eukaryotes. Here we report a crystal structure of the middle domain of the large subunit of FACT (Spt16-M) to reveal a double pleckstrin homology architecture. This structure was found previously in the Pob3-M domain of the small subunit of FACT and in the related histone chaperone Rtt106, although Spt16-M is distinguished from these structures by the presence of an extended α-helix and a C-terminal addition. Consistent with our finding that the double pleckstrin homology structure is common to these three histone chaperones and reports that Pob3 and Rtt106 double pleckstrin homology domains bind histones H3-H4, we also find that Spt16-M binds H3-H4 with low micromolar affinity. Our structure provides a framework for interpreting a large body of genetic data regarding the physiological functions of FACT, including the identification of potential interaction surfaces for binding histones or other proteins. PMID:23417676

  9. On the robust, flexible and consistent implementation of time domain impedance boundary conditions for compressible flow simulations

    NASA Astrophysics Data System (ADS)

    Jaensch, S.; Sovardi, C.; Polifke, W.

    2016-06-01

    The accurate simulation of compressible flows requires the appropriate modeling of the reflection of acoustic waves at the boundaries. In the present study we discuss time domain impedance boundary conditions (TDIBC). The formulation proposed allows to impose a desired reflection coefficient at the inflow and outflow boundaries. Our formulation is an extension of the well known Navier-Stokes characteristic boundary conditions. The frequency dependent reflections at the boundaries are implemented with a state-space model in the time domain. We provide a comprehensive discussion on how such state-space models can be constructed and interpreted. This discussion shows that the state-space description allows a robust and flexible implementation. It allows to consider complex reflection coefficients and account for non-constant CFD time steps in a straight forward manner. Furthermore, we prove analytically and demonstrate numerically that the formulation proposed is consistent, i.e. the formulation ensures that the flow simulation exhibits the reflection coefficient imposed accurately, as long as the waves impinging on the boundary are plane, and it prohibits drift of the mean flow variables. Finally, the boundary conditions are tested successfully for laminar and turbulent flows.

  10. Protein domain analysis of genomic sequence data reveals regulation of LRR related domains in plant transpiration in Ficus.

    PubMed

    Lang, Tiange; Yin, Kangquan; Liu, Jinyu; Cao, Kunfang; Cannon, Charles H; Du, Fang K

    2014-01-01

    Predicting protein domains is essential for understanding a protein's function at the molecular level. However, up till now, there has been no direct and straightforward method for predicting protein domains in species without a reference genome sequence. In this study, we developed a functionality with a set of programs that can predict protein domains directly from genomic sequence data without a reference genome. Using whole genome sequence data, the programming functionality mainly comprised DNA assembly in combination with next-generation sequencing (NGS) assembly methods and traditional methods, peptide prediction and protein domain prediction. The proposed new functionality avoids problems associated with de novo assembly due to micro reads and small single repeats. Furthermore, we applied our functionality for the prediction of leucine rich repeat (LRR) domains in four species of Ficus with no reference genome, based on NGS genomic data. We found that the LRRNT_2 and LRR_8 domains are related to plant transpiration efficiency, as indicated by the stomata index, in the four species of Ficus. The programming functionality established in this study provides new insights for protein domain prediction, which is particularly timely in the current age of NGS data expansion.

  11. Origins of Structural Flexibility in Protein-Based Supramolecular Polymers Revealed by DEER Spectroscopy

    PubMed Central

    2015-01-01

    Modular assembly of bio-inspired supramolecular polymers is a powerful technique to develop new soft nanomaterials, and protein folding is a versatile basis for preparing such materials. Previous work demonstrated a significant difference in the physical properties of closely related supramolecular polymers composed of building blocks in which identical coiled-coil-forming peptides are cross-linked by one of two subtly different organic linkers (one flexible and the other rigid). Herein, we investigate the molecular basis for this observation by isolating a single subunit of the supramolecular polymer chain and probing its structure and conformational flexibility by double electron–electron resonance (DEER) spectroscopy. Experimental spin–spin distance distributions for two different labeling sites coupled with molecular dynamics simulations provide insights into how the linker structure impacts chain dynamics in the coiled-coil supramolecular polymer. PMID:25060334

  12. Origins of structural flexibility in protein-based supramolecular polymers revealed by DEER spectroscopy.

    PubMed

    Tavenor, Nathan A; Silva, K Ishara; Saxena, Sunil; Horne, W Seth

    2014-08-21

    Modular assembly of bio-inspired supramolecular polymers is a powerful technique to develop new soft nanomaterials, and protein folding is a versatile basis for preparing such materials. Previous work demonstrated a significant difference in the physical properties of closely related supramolecular polymers composed of building blocks in which identical coiled-coil-forming peptides are cross-linked by one of two subtly different organic linkers (one flexible and the other rigid). Herein, we investigate the molecular basis for this observation by isolating a single subunit of the supramolecular polymer chain and probing its structure and conformational flexibility by double electron-electron resonance (DEER) spectroscopy. Experimental spin-spin distance distributions for two different labeling sites coupled with molecular dynamics simulations provide insights into how the linker structure impacts chain dynamics in the coiled-coil supramolecular polymer. PMID:25060334

  13. A systematic, family-wide investigation reveals that ~30% of mammalian PDZ domains engage in PDZ-PDZ interactions

    PubMed Central

    Chang, Bryan H.; Gujral, Taranjit S.; Karp, Ethan S.; BuKhalid, Raghida; Grantcharova, Viara P.; MacBeath, Gavin

    2012-01-01

    Summary PDZ domains are independently folded modules that typically mediate protein-protein interactions by binding to the C-termini of their target proteins. In a few instances, however, PDZ domains have been reported to dimerize with other PDZ domains. To investigate this noncanonical binding mode further, we used protein microarrays comprising virtually every mouse PDZ domain to systematically query all possible PDZ-PDZ pairs. We then used fluorescence polarization to retest and quantify novel interactions and co-affinity purification to test biophysically validated interactions in the context of their full-length proteins. Overall, we discovered 37 PDZ-PDZ interactions involving 46 PDZ domains (~30% of all PDZ domains tested), revealing that dimerization is a more frequently used binding mode than was previously appreciated. This suggests that many PDZ domains evolved to form multiprotein complexes by simultaneously interacting with more than one ligand. PMID:21944753

  14. Mapping the intrinsically disordered properties of the flexible loop domain of Bcl-2: a molecular dynamics simulation study.

    PubMed

    Ilizaliturri-Flores, Ian; Correa-Basurto, José; Bello, Martiniano; Rosas-Trigueros, Jorge L; Zamora-López, Beatriz; Benítez-Cardoza, Claudia G; Zamorano-Carrillo, Absalom

    2016-04-01

    Most of the B-cell lymphoma-2 (Bcl-2) protein structure has been elucidated; however, the conformation of its flexible loop domain (FLD) has not yet been experimentally predicted. Its high flexibility under physiological conditions is the reason. FLD behaves as an intrinsically disordered region (IDR) and can adopt regular structures in particular conditions associated with the control of Bcl-2's anti-apoptotic functions. In a previous contribution, we analyzed an engineered Bcl-2 construct (Bcl-2-Δ22Σ3) submitted to 25-ns MD and reported a disordered-to-helix transitions in a region of FLD (rFLD, residues 60-77). However, the conformational preferences in solution of rFLD in the nanosecond to microsecond scale were not analyzed. Herein, an average model was obtained for the native Bcl-2 protein by homology modeling and MD simulation techniques. From this, only the atomic coordinates corresponding to the rFLD were simulated for 1 μs by MD at 310 K. In concordance with previous studies, a disordered-to-helix transitions were exhibited, implying that this "interconversion of folding" in the rFLD suggest a possible set of conformations encoded in its sequence. Principal component analysis (PCA) showed that most of the conformational fluctuation of Bcl-2 is provided by rFLD. Dihedral PCA (dPCA) offered information about all the conformations of rFLD in the μs of the simulation, characterizing a dPCA-based free energy landscape of rFLD, and a conformational ensemble of fast interconverting conformations as other IDRs. Furthermore, despite the conformational heterogeneity of rFLD, the analysis of the dihedral angles (Φ, Ψ) showed that this region does not randomly explore the conformational space in solution.

  15. Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders.

    PubMed

    Gómez-Marín, Carlos; Tena, Juan J; Acemel, Rafael D; López-Mayorga, Macarena; Naranjo, Silvia; de la Calle-Mustienes, Elisa; Maeso, Ignacio; Beccari, Leonardo; Aneas, Ivy; Vielmas, Erika; Bovolenta, Paola; Nobrega, Marcelo A; Carvajal, Jaime; Gómez-Skarmeta, José Luis

    2015-06-16

    Increasing evidence in the last years indicates that the vast amount of regulatory information contained in mammalian genomes is organized in precise 3D chromatin structures. However, the impact of this spatial chromatin organization on gene expression and its degree of evolutionary conservation is still poorly understood. The Six homeobox genes are essential developmental regulators organized in gene clusters conserved during evolution. Here, we reveal that the Six clusters share a deeply evolutionarily conserved 3D chromatin organization that predates the Cambrian explosion. This chromatin architecture generates two largely independent regulatory landscapes (RLs) contained in two adjacent topological associating domains (TADs). By disrupting the conserved TAD border in one of the zebrafish Six clusters, we demonstrate that this border is critical for preventing competition between promoters and enhancers located in separated RLs, thereby generating different expression patterns in genes located in close genomic proximity. Moreover, evolutionary comparison of Six-associated TAD borders reveals the presence of CCCTC-binding factor (CTCF) sites with diverging orientations in all studied deuterostomes. Genome-wide examination of mammalian HiC data reveals that this conserved CTCF configuration is a general signature of TAD borders, underscoring that common organizational principles underlie TAD compartmentalization in deuterostome evolution. PMID:26034287

  16. Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders

    PubMed Central

    Gómez-Marín, Carlos; Tena, Juan J.; Acemel, Rafael D.; López-Mayorga, Macarena; Naranjo, Silvia; de la Calle-Mustienes, Elisa; Maeso, Ignacio; Beccari, Leonardo; Aneas, Ivy; Vielmas, Erika; Bovolenta, Paola; Nobrega, Marcelo A.; Carvajal, Jaime; Gómez-Skarmeta, José Luis

    2015-01-01

    Increasing evidence in the last years indicates that the vast amount of regulatory information contained in mammalian genomes is organized in precise 3D chromatin structures. However, the impact of this spatial chromatin organization on gene expression and its degree of evolutionary conservation is still poorly understood. The Six homeobox genes are essential developmental regulators organized in gene clusters conserved during evolution. Here, we reveal that the Six clusters share a deeply evolutionarily conserved 3D chromatin organization that predates the Cambrian explosion. This chromatin architecture generates two largely independent regulatory landscapes (RLs) contained in two adjacent topological associating domains (TADs). By disrupting the conserved TAD border in one of the zebrafish Six clusters, we demonstrate that this border is critical for preventing competition between promoters and enhancers located in separated RLs, thereby generating different expression patterns in genes located in close genomic proximity. Moreover, evolutionary comparison of Six-associated TAD borders reveals the presence of CCCTC-binding factor (CTCF) sites with diverging orientations in all studied deuterostomes. Genome-wide examination of mammalian HiC data reveals that this conserved CTCF configuration is a general signature of TAD borders, underscoring that common organizational principles underlie TAD compartmentalization in deuterostome evolution. PMID:26034287

  17. Crystal Structures of Cyclohexanone Monooxygenase Reveal Complex Domain Movements and a Sliding Cofactor

    SciTech Connect

    Mirza, I.; Yachnin, B; Wang, S; Grosse, S; Bergeron, H; Imura, A; Iwaki, H; Hasegawa, Y; Lau, P; Berghuis, A

    2009-01-01

    Cyclohexanone monooxygenase (CHMO) is a flavoprotein that carries out the archetypical Baeyer-Villiger oxidation of a variety of cyclic ketones into lactones. Using NADPH and O{sub 2} as cosubstrates, the enzyme inserts one atom of oxygen into the substrate in a complex catalytic mechanism that involves the formation of a flavin-peroxide and Criegee intermediate. We present here the atomic structures of CHMO from an environmental Rhodococcus strain bound with FAD and NADP+ in two distinct states, to resolutions of 2.3 and 2.2 {angstrom}. The two conformations reveal domain shifts around multiple linkers and loop movements, involving conserved arginine 329 and tryptophan 492, which effect a translation of the nicotinamide resulting in a sliding cofactor. Consequently, the cofactor is ideally situated and subsequently repositioned during the catalytic cycle to first reduce the flavin and later stabilize formation of the Criegee intermediate. Concurrent movements of a loop adjacent to the active site demonstrate how this protein can effect large changes in the size and shape of the substrate binding pocket to accommodate a diverse range of substrates. Finally, the previously identified BVMO signature sequence is highlighted for its role in coordinating domain movements. Taken together, these structures provide mechanistic insights into CHMO-catalyzed Baeyer-Villiger oxidation.

  18. Mutations at the Subunit Interface of Yeast Proliferating Cell Nuclear Antigen Reveal a Versatile Regulatory Domain

    PubMed Central

    Halmai, Miklos; Frittmann, Orsolya; Szabo, Zoltan; Daraba, Andreea; Gali, Vamsi K.; Balint, Eva; Unk, Ildiko

    2016-01-01

    Proliferating cell nuclear antigen (PCNA) plays a key role in many cellular processes and due to that it interacts with a plethora of proteins. The main interacting surfaces of Saccharomyces cerevisiae PCNA have been mapped to the interdomain connecting loop and to the carboxy-terminal domain. Here we report that the subunit interface of yeast PCNA also has regulatory roles in the function of several DNA damage response pathways. Using site-directed mutagenesis we engineered mutations at both sides of the interface and investigated the effect of these alleles on DNA damage response. Genetic experiments with strains bearing the mutant alleles revealed that mutagenic translesion synthesis, nucleotide excision repair, and homologous recombination are all regulated through residues at the subunit interface. Moreover, genetic characterization of one of our mutants identifies a new sub-branch of nucleotide excision repair. Based on these results we conclude that residues at the subunit boundary of PCNA are not only important for the formation of the trimer structure of PCNA, but they constitute a regulatory protein domain that mediates different DNA damage response pathways, as well. PMID:27537501

  19. Impaired neurodevelopment by the low complexity domain of CPEB4 reveals a convergent pathway with neurodegeneration

    PubMed Central

    Shin, Jihae; Salameh, Johnny S.; Richter, Joel D.

    2016-01-01

    CPEB4 is an RNA binding protein expressed in neuronal tissues including brain and spinal cord. CPEB4 has two domains: one that is structured for RNA binding and one that is unstructured and low complexity that has no known function. Unstructured low complexity domains (LCDs) in proteins are often found in RNA-binding proteins and have been implicated in motor neuron degenerative diseases such as amyotrophic lateral sclerosis, indicating that these regions mediate normal RNA processing as well as pathological events. While CPEB4 null knockout mice are normal, animals expressing only the CPEB4 LCD are neonatal lethal with impaired mobility that display defects in neuronal development such as reduced motor axon branching and abnormal neuromuscular junction formation. Although full-length CPEB4 is nearly exclusively cytoplasmic, the CPEB4 LCD forms nucleolar aggregates and CPEB4 LCD-expressing animals have altered ribosomal RNA biogenesis, ribosomal protein gene expression, and elevated levels of stress response genes such as the actin-bundling protein DRR1, which impedes neurite outgrowth. Some of these features share similarities with other LCD-related neurodegenerative disease. Most strikingly, DRR1 appears to be a common focus of several neurodevelopmental and neurodegenerative disorders. Our study reveals a possible molecular convergence between a neurodevelopmental defect and neurodegeneration mediated by LCDs. PMID:27381259

  20. Structures of the CDK12/CycK complex with AMP-PNP reveal a flexible C-terminal kinase extension important for ATP binding

    PubMed Central

    Dixon-Clarke, Sarah E.; Elkins, Jonathan M.; Cheng, S.-W. Grace; Morin, Gregg B.; Bullock, Alex N.

    2015-01-01

    Cyclin-dependent kinase 12 (CDK12) promotes transcriptional elongation by phosphorylation of the RNA polymerase II C-terminal domain (CTD). Structure-function studies show that this activity is dependent on a C-terminal kinase extension, as well as the binding of cyclin K (CycK). To better define these interactions we determined the crystal structure of the human CDK12/CycK complex with and without the kinase extension in the presence of AMP-PNP. The structures revealed novel features for a CDK, including a large β4-β5 loop insertion that contributes to the N-lobe interaction with the cyclin. We also observed two different conformations of the C-terminal kinase extension that effectively open and close the ATP pocket. Most notably, bound AMP-PNP was only observed when trapped in the closed state. Truncation of this C-terminal structure also diminished AMP-PNP binding, as well as the catalytic activity of the CDK12/CycK complex. Further kinetic measurements showed that the full length CDK12/CycK complex was significantly more active than the two crystallised constructs suggesting a critical role for additional domains. Overall, these results demonstrate the intrinsic flexibility of the C-terminal extension in CDK12 and highlight its importance for both ATP binding and kinase activity. PMID:26597175

  1. Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization.

    PubMed

    Mennella, V; Keszthelyi, B; McDonald, K L; Chhun, B; Kan, F; Rogers, G C; Huang, B; Agard, D A

    2012-11-01

    As the main microtubule-organizing centre in animal cells, the centrosome has a fundamental role in cell function. Surrounding the centrioles, the pericentriolar material (PCM) provides a dynamic platform for nucleating microtubules. Although the importance of the PCM is established, its amorphous electron-dense nature has made it refractory to structural investigation. By using SIM and STORM subdiffraction-resolution microscopies to visualize proteins critical for centrosome maturation, we demonstrate that the PCM is organized into two main structural domains: a layer juxtaposed to the centriole wall, and proteins extending farther away from the centriole organized in a matrix. Analysis of Pericentrin-like protein (PLP) reveals that its carboxy terminus is positioned at the centriole wall, it radiates outwards into the matrix and is organized in clusters having quasi-nine-fold symmetry. By RNA-mediated interference (RNAi), we show that PLP fibrils are required for interphase recruitment and proper mitotic assembly of the PCM matrix. PMID:23086239

  2. Domain analysis of the Nematostella vectensis SNAIL ortholog reveals unique nucleolar localization that depends on the zinc-finger domains.

    PubMed

    Dattoli, Ada A; Hink, Mark A; DuBuc, Timothy Q; Teunisse, Bram J; Goedhart, Joachim; Röttinger, Eric; Postma, Marten

    2015-01-01

    SNAIL transcriptional factors are key regulators during development and disease. They arose early during evolution, and in cnidarians such as Nematostella vectensis, NvSNAILA/B are detected in invaginating tissues during gastrulation. The function of SNAIL proteins is well established in bilaterians but their roles in cnidarians remain unknown. The structure of NvSNAILA and B is similar to the human SNAIL1 and 2, including SNAG and zinc-finger domains. Here, we performed a molecular analysis on localization and mobility of NvSNAILA/B using mammalian cells and Nematostella embryos. NvSNAILA/B display nuclear localization and mobility similar to HsSNAIL1/2. Strikingly, NvSNAILA is highly enriched in the nucleoli and shuttles between the nucleoli and the nucleoplasm. Truncation of the N-terminal SNAG domain, reported to contain Nuclear Localization Signals, markedly reduces nucleolar levels, without effecting nuclear localization or mobility. Truncation of the C-terminal zinc-fingers, involved in DNA binding in higher organisms, significantly affects subcellular localization and mobility. Specifically, the zinc-finger domains are required for nucleolar enrichment of NvSNAILA. Differently from SNAIL transcriptional factors described before, NvSNAILA is specifically enriched in the nucleoli co-localizing with nucleolar markers even after nucleolar disruption. Our findings implicate additional roles for SNAG and zinc-finger domains, suggesting a role for NvSNAILA in the nucleolus. PMID:26190255

  3. Domain analysis of the Nematostella vectensis SNAIL ortholog reveals unique nucleolar localization that depends on the zinc-finger domains.

    PubMed

    Dattoli, Ada A; Hink, Mark A; DuBuc, Timothy Q; Teunisse, Bram J; Goedhart, Joachim; Röttinger, Eric; Postma, Marten

    2015-07-20

    SNAIL transcriptional factors are key regulators during development and disease. They arose early during evolution, and in cnidarians such as Nematostella vectensis, NvSNAILA/B are detected in invaginating tissues during gastrulation. The function of SNAIL proteins is well established in bilaterians but their roles in cnidarians remain unknown. The structure of NvSNAILA and B is similar to the human SNAIL1 and 2, including SNAG and zinc-finger domains. Here, we performed a molecular analysis on localization and mobility of NvSNAILA/B using mammalian cells and Nematostella embryos. NvSNAILA/B display nuclear localization and mobility similar to HsSNAIL1/2. Strikingly, NvSNAILA is highly enriched in the nucleoli and shuttles between the nucleoli and the nucleoplasm. Truncation of the N-terminal SNAG domain, reported to contain Nuclear Localization Signals, markedly reduces nucleolar levels, without effecting nuclear localization or mobility. Truncation of the C-terminal zinc-fingers, involved in DNA binding in higher organisms, significantly affects subcellular localization and mobility. Specifically, the zinc-finger domains are required for nucleolar enrichment of NvSNAILA. Differently from SNAIL transcriptional factors described before, NvSNAILA is specifically enriched in the nucleoli co-localizing with nucleolar markers even after nucleolar disruption. Our findings implicate additional roles for SNAG and zinc-finger domains, suggesting a role for NvSNAILA in the nucleolus.

  4. Localized domain wall nucleation dynamics in asymmetric ferromagnetic rings revealed by direct time-resolved magnetic imaging

    NASA Astrophysics Data System (ADS)

    Richter, Kornel; Krone, Andrea; Mawass, Mohamad-Assaad; Krüger, Benjamin; Weigand, Markus; Stoll, Hermann; Schütz, Gisela; Kläui, Mathias

    2016-07-01

    We report time-resolved observations of field-induced domain wall nucleation in asymmetric ferromagnetic rings using single direction field pulses and rotating fields. We show that the asymmetric geometry of a ring allows for controlling the position of nucleation events, when a domain wall is nucleated by a rotating magnetic field. Direct observation by scanning transmission x-ray microscopy (STXM) reveals that the nucleation of domain walls occurs through the creation of transient ripplelike structures. This magnetization state is found to exhibit a surprisingly high reproducibility even at room temperature and we determine the combinations of field strengths and field directions that allow for reliable nucleation of domain walls and directly quantify the stability of the magnetic states. Our analysis of the processes occurring during field induced domain wall nucleation shows how the effective fields determine the nucleation location reproducibly, which is a key prerequisite toward using domain walls for spintronic devices.

  5. Density functional calculations reveal a flexible version of the copper paddlewheel unit: implications for metal organic frameworks.

    PubMed

    Alzahrani, K A H; Deeth, R J

    2016-07-26

    Density functional theory calculations on [Cu2(O2CR)4L2] systems reveal a change in ground state with increasing Cu-L bond strength. For L = N-heterocyclic carbene (NHC), the Jahn-Teller axis switches from parallel to orthogonal to the Cu-Cu vector and the copper coordination geometry becomes highly flexible. While the calculated dimer/monomer equilibrium for isolated complexes slightly favours monomers, the preformed paddlewheel units embedded in many metal organic frameworks are potential targets for developing novel materials. PMID:27406978

  6. Endpoint force fluctuations reveal flexible rather than synergistic patterns of muscle cooperation.

    PubMed

    Kutch, Jason J; Kuo, Arthur D; Bloch, Anthony M; Rymer, William Z

    2008-11-01

    We developed a new approach to investigate how the nervous system activates multiple redundant muscles by studying the endpoint force fluctuations during isometric force generation at a multi-degree-of-freedom joint. We hypothesized that, due to signal-dependent muscle force noise, endpoint force fluctuations would depend on the target direction of index finger force and that this dependence could be used to distinguish flexible from synergistic activation of the musculature. We made high-gain measurements of isometric forces generated to different target magnitudes and directions, in the plane of index finger metacarpophalangeal joint abduction-adduction/flexion-extension. Force fluctuations from each target were used to calculate a covariance ellipse, the shape of which varied as a function of target direction. Directions with narrow ellipses were approximately aligned with the estimated mechanical actions of key muscles. For example, targets directed along the mechanical action of the first dorsal interosseous (FDI) yielded narrow ellipses, with 88% of the variance directed along those target directions. It follows the FDI is likely a prime mover in this target direction and that, at most, 12% of the force variance could be explained by synergistic coupling with other muscles. In contrast, other target directions exhibited broader covariance ellipses with as little as 30% of force variance directed along those target directions. This is the result of cooperation among multiple muscles, based on independent electromyographic recordings. However, the pattern of cooperation across target directions indicates that muscles are recruited flexibly in accordance with their mechanical action, rather than in fixed groupings.

  7. Flexible and scalable methods for quantifying stochastic variability in the era of massive time-domain astronomical data sets

    SciTech Connect

    Kelly, Brandon C.; Becker, Andrew C.; Sobolewska, Malgosia; Siemiginowska, Aneta; Uttley, Phil

    2014-06-10

    We present the use of continuous-time autoregressive moving average (CARMA) models as a method for estimating the variability features of a light curve, and in particular its power spectral density (PSD). CARMA models fully account for irregular sampling and measurement errors, making them valuable for quantifying variability, forecasting and interpolating light curves, and variability-based classification. We show that the PSD of a CARMA model can be expressed as a sum of Lorentzian functions, which makes them extremely flexible and able to model a broad range of PSDs. We present the likelihood function for light curves sampled from CARMA processes, placing them on a statistically rigorous foundation, and we present a Bayesian method to infer the probability distribution of the PSD given the measured light curve. Because calculation of the likelihood function scales linearly with the number of data points, CARMA modeling scales to current and future massive time-domain data sets. We conclude by applying our CARMA modeling approach to light curves for an X-ray binary, two active galactic nuclei, a long-period variable star, and an RR Lyrae star in order to illustrate their use, applicability, and interpretation.

  8. Joint annotation of chromatin state and chromatin conformation reveals relationships among domain types and identifies domains of cell-type-specific expression.

    PubMed

    Libbrecht, Maxwell W; Ay, Ferhat; Hoffman, Michael M; Gilbert, David M; Bilmes, Jeffrey A; Noble, William Stafford

    2015-04-01

    The genomic neighborhood of a gene influences its activity, a behavior that is attributable in part to domain-scale regulation. Previous genomic studies have identified many types of regulatory domains. However, due to the difficulty of integrating genomics data sets, the relationships among these domain types are poorly understood. Semi-automated genome annotation (SAGA) algorithms facilitate human interpretation of heterogeneous collections of genomics data by simultaneously partitioning the human genome and assigning labels to the resulting genomic segments. However, existing SAGA methods cannot integrate inherently pairwise chromatin conformation data. We developed a new computational method, called graph-based regularization (GBR), for expressing a pairwise prior that encourages certain pairs of genomic loci to receive the same label in a genome annotation. We used GBR to exploit chromatin conformation information during genome annotation by encouraging positions that are close in 3D to occupy the same type of domain. Using this approach, we produced a model of chromatin domains in eight human cell types, thereby revealing the relationships among known domain types. Through this model, we identified clusters of tightly regulated genes expressed in only a small number of cell types, which we term "specific expression domains." We found that domain boundaries marked by promoters and CTCF motifs are consistent between cell types even when domain activity changes. Finally, we showed that GBR can be used to transfer information from well-studied cell types to less well-characterized cell types during genome annotation, making it possible to produce high-quality annotations of the hundreds of cell types with limited available data.

  9. Repeat Tracking of Individual Songbirds Reveals Consistent Migration Timing but Flexibility in Route

    PubMed Central

    Fraser, Kevin C.; McKinnon, Emily A.; Stutchbury, Bridget J. M.

    2012-01-01

    Tracking repeat migratory journeys of individual animals is required to assess phenotypic plasticity of individual migration behaviour in space and time. We used light-level geolocators to track the long-distance journeys of migratory songbirds (wood thrush, Hylocichla mustelina), and, for the first time, repeat journeys of individuals. We compare between- and within-individual variation in migration to examine flexibility of timing and route in spring and autumn. Date of departure from wintering sites in Central America, along with sex and age factors, explained most of the variation (71%) in arrival date at North American breeding sites. Spring migration showed high within-individual repeatability in timing, but not in route. In particular, spring departure dates of individuals were highly repeatable, with a mean difference between years of just 3 days. Autumn migration timing and routes were not repeatable. Our results provide novel evidence of low phenotypic plasticity in timing of spring migration, which may limit the ability of individuals to adjust migration schedules in response to climate change. PMID:22848395

  10. Repeat tracking of individual songbirds reveals consistent migration timing but flexibility in route.

    PubMed

    Stanley, Calandra Q; MacPherson, Maggie; Fraser, Kevin C; McKinnon, Emily A; Stutchbury, Bridget J M

    2012-01-01

    Tracking repeat migratory journeys of individual animals is required to assess phenotypic plasticity of individual migration behaviour in space and time. We used light-level geolocators to track the long-distance journeys of migratory songbirds (wood thrush, Hylocichla mustelina), and, for the first time, repeat journeys of individuals. We compare between- and within-individual variation in migration to examine flexibility of timing and route in spring and autumn. Date of departure from wintering sites in Central America, along with sex and age factors, explained most of the variation (71%) in arrival date at North American breeding sites. Spring migration showed high within-individual repeatability in timing, but not in route. In particular, spring departure dates of individuals were highly repeatable, with a mean difference between years of just 3 days. Autumn migration timing and routes were not repeatable. Our results provide novel evidence of low phenotypic plasticity in timing of spring migration, which may limit the ability of individuals to adjust migration schedules in response to climate change.

  11. The Crystal Structure of Cancer Osaka Thyroid Kinase Reveals an Unexpected Kinase Domain Fold*

    PubMed Central

    Gutmann, Sascha; Hinniger, Alexandra; Fendrich, Gabriele; Drückes, Peter; Antz, Sylvie; Mattes, Henri; Möbitz, Henrik; Ofner, Silvio; Schmiedeberg, Niko; Stojanovic, Aleksandar; Rieffel, Sebastien; Strauss, André; Troxler, Thomas; Glatthar, Ralf; Sparrer, Helmut

    2015-01-01

    Macrophages are important cellular effectors in innate immune responses and play a major role in autoimmune diseases such as rheumatoid arthritis. Cancer Osaka thyroid (COT) kinase, also known as mitogen-activated protein kinase kinase kinase 8 (MAP3K8) and tumor progression locus 2 (Tpl-2), is a serine-threonine (ST) kinase and is a key regulator in the production of pro-inflammatory cytokines in macrophages. Due to its pivotal role in immune biology, COT kinase has been identified as an attractive target for pharmaceutical research that is directed at the discovery of orally available, selective, and potent inhibitors for the treatment of autoimmune disorders and cancer. The production of monomeric, recombinant COT kinase has proven to be very difficult, and issues with solubility and stability of the enzyme have hampered the discovery and optimization of potent and selective inhibitors. We developed a protocol for the production of recombinant human COT kinase that yields pure and highly active enzyme in sufficient yields for biochemical and structural studies. The quality of the enzyme allowed us to establish a robust in vitro phosphorylation assay for the efficient biochemical characterization of COT kinase inhibitors and to determine the x-ray co-crystal structures of the COT kinase domain in complex with two ATP-binding site inhibitors. The structures presented in this study reveal two distinct ligand binding modes and a unique kinase domain architecture that has not been observed previously. The structurally versatile active site significantly impacts the design of potent, low molecular weight COT kinase inhibitors. PMID:25918157

  12. The Crystal Structure of Cancer Osaka Thyroid Kinase Reveals an Unexpected Kinase Domain Fold.

    PubMed

    Gutmann, Sascha; Hinniger, Alexandra; Fendrich, Gabriele; Drückes, Peter; Antz, Sylvie; Mattes, Henri; Möbitz, Henrik; Ofner, Silvio; Schmiedeberg, Niko; Stojanovic, Aleksandar; Rieffel, Sebastien; Strauss, André; Troxler, Thomas; Glatthar, Ralf; Sparrer, Helmut

    2015-06-12

    Macrophages are important cellular effectors in innate immune responses and play a major role in autoimmune diseases such as rheumatoid arthritis. Cancer Osaka thyroid (COT) kinase, also known as mitogen-activated protein kinase kinase kinase 8 (MAP3K8) and tumor progression locus 2 (Tpl-2), is a serine-threonine (ST) kinase and is a key regulator in the production of pro-inflammatory cytokines in macrophages. Due to its pivotal role in immune biology, COT kinase has been identified as an attractive target for pharmaceutical research that is directed at the discovery of orally available, selective, and potent inhibitors for the treatment of autoimmune disorders and cancer. The production of monomeric, recombinant COT kinase has proven to be very difficult, and issues with solubility and stability of the enzyme have hampered the discovery and optimization of potent and selective inhibitors. We developed a protocol for the production of recombinant human COT kinase that yields pure and highly active enzyme in sufficient yields for biochemical and structural studies. The quality of the enzyme allowed us to establish a robust in vitro phosphorylation assay for the efficient biochemical characterization of COT kinase inhibitors and to determine the x-ray co-crystal structures of the COT kinase domain in complex with two ATP-binding site inhibitors. The structures presented in this study reveal two distinct ligand binding modes and a unique kinase domain architecture that has not been observed previously. The structurally versatile active site significantly impacts the design of potent, low molecular weight COT kinase inhibitors.

  13. Flexibility in Anaerobic Metabolism as Revealed in a Mutant of Chlamydomonas reinhardtii Lacking Hydrogenase Activity

    SciTech Connect

    Dubini, A.; Mus, F.; Seibert, M.; Grossman, A. R.; Posewitz, M. C.

    2009-03-13

    The green alga Chlamydomonas reinhardtii has a network of fermentation pathways that become active when cells acclimate to anoxia. Hydrogenase activity is an important component of this metabolism, and we have compared metabolic and regulatory responses that accompany anaerobiosis in wild-type C. reinhardtii cells and a null mutant strain for the HYDEF gene (hydEF-1 mutant), which encodes an [FeFe] hydrogenase maturation protein. This mutant has no hydrogenase activity and exhibits elevated accumulation of succinate and diminished production of CO2 relative to the parental strain during dark, anaerobic metabolism. In the absence of hydrogenase activity, increased succinate accumulation suggests that the cells activate alternative pathways for pyruvate metabolism, which contribute to NAD(P)H reoxidation, and continued glycolysis and fermentation in the absence of O2. Fermentative succinate production potentially proceeds via the formation of malate, and increases in the abundance of mRNAs encoding two malateforming enzymes, pyruvate carboxylase and malic enzyme, are observed in the mutant relative to the parental strain following transfer of cells from oxic to anoxic conditions. Although C. reinhardtii has a single gene encoding pyruvate carboxylase, it has six genes encoding putative malic enzymes. Only one of the malic enzyme genes, MME4, shows a dramatic increase in expression (mRNA abundance) in the hydEF-1 mutant during anaerobiosis. Furthermore, there are marked increases in transcripts encoding fumarase and fumarate reductase, enzymes putatively required to convert malate to succinate. These results illustrate the marked metabolic flexibility of C. reinhardtii and contribute to the development of an informed model of anaerobic metabolism in this and potentially other algae.

  14. Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes

    PubMed Central

    Ohashi, Yohei; Zhang, Lufei; Pardon, Els; Burke, John E.; Masson, Glenn R.; Johnson, Chris; Steyaert, Jan; Ktistakis, Nicholas T.; Williams, Roger L.

    2015-01-01

    Phosphatidylinositol 3-kinase Vps34 complexes regulate intracellular membrane trafficking in endocytic sorting, cytokinesis and autophagy. We present the 4.4 Å crystal structure of the 385 kDa endosomal complex II (PIK3C3-CII), consisting of Vps34, Vps15 (p150), Vps30/Atg6 (Beclin 1) and Vps38 (UVRAG). The subunits form a Y-shaped complex, centered on the Vps34 C2 domain. Vps34 and Vps15 intertwine in one arm where the Vps15 kinase domain engages the Vps34 activation loop to regulate its activity. Vps30 and Vps38 form the other arm that brackets the Vps15/Vps34 heterodimer, suggesting a path for complex assembly. Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS) revealed conformational changes accompanying membrane binding and identified a Vps30 loop that is critical for the ability of complex II to phosphorylate giant liposomes on which complex I is inactive. PMID:26450213

  15. Structure of inorganic pyrophosphatase from Staphylococcus aureus reveals conformational flexibility of the active site.

    PubMed

    Gajadeera, Chathurada S; Zhang, Xinyi; Wei, Yinan; Tsodikov, Oleg V

    2015-02-01

    Cytoplasmic inorganic pyrophosphatase (PPiase) is an enzyme essential for survival of organisms, from bacteria to human. PPiases are divided into two structurally distinct families: family I PPiases are Mg(2+)-dependent and present in most archaea, eukaryotes and prokaryotes, whereas the relatively less understood family II PPiases are Mn(2+)-dependent and present only in some archaea, bacteria and primitive eukaryotes. Staphylococcus aureus (SA), a dangerous pathogen and a frequent cause of hospital infections, contains a family II PPiase (PpaC), which is an attractive potential target for development of novel antibacterial agents. We determined a crystal structure of SA PpaC in complex with catalytic Mn(2+) at 2.1Å resolution. The active site contains two catalytic Mn(2+) binding sites, each half-occupied, reconciling the previously observed 1:1 Mn(2+):enzyme stoichiometry with the presence of two divalent metal ion sites in the apo-enzyme. Unexpectedly, despite the absence of the substrate or products in the active site, the two domains of SA PpaC form a closed active site, a conformation observed in structures of other family II PPiases only in complex with substrate or product mimics. A region spanning residues 295-298, which contains a conserved substrate binding RKK motif, is flipped out of the active site, an unprecedented conformation for a PPiase. Because the mutant of Arg295 to an alanine is devoid of activity, this loop likely undergoes an induced-fit conformational change upon substrate binding and product dissociation. This closed conformation of SA PPiase may serve as an attractive target for rational design of inhibitors of this enzyme. PMID:25576794

  16. Systematic analyses reveal uniqueness and origin of the CFEM domain in fungi.

    PubMed

    Zhang, Zhen-Na; Wu, Qin-Yi; Zhang, Gui-Zhi; Zhu, Yue-Yan; Murphy, Robert W; Liu, Zhen; Zou, Cheng-Gang

    2015-08-10

    CFEM domain commonly occurs in fungal extracellular membrane proteins. To provide insights for understanding putative functions of CFEM, we investigate the evolutionary dynamics of CFEM domains by systematic comparative genomic analyses among diverse animals, plants, and more than 100 fungal species, which are representative across the entire group of fungi. We here show that CFEM domain is unique to fungi. Experiments using tissue culture demonstrate that the CFEM-containing ESTs in some plants originate from endophytic fungi. We also find that CFEM domain does not occur in all fungi. Its single origin dates to the most recent common ancestors of Ascomycota and Basidiomycota, instead of multiple origins. Although the length and architecture of CFEM domains are relatively conserved, the domain-number varies significantly among different fungal species. In general, pathogenic fungi have a larger number of domains compared to other species. Domain-expansion across fungal genomes appears to be driven by domain duplication and gene duplication via recombination. These findings generate a clear evolutionary trajectory of CFEM domains and provide novel insights into the functional exchange of CFEM-containing proteins from cell-surface components to mediators in host-pathogen interactions.

  17. Structural-Functional Analysis Reveals a Specific Domain Organization in Family GH20 Hexosaminidases

    PubMed Central

    Val-Cid, Cristina; Biarnés, Xevi; Faijes, Magda; Planas, Antoni

    2015-01-01

    Hexosaminidases are involved in important biological processes catalyzing the hydrolysis of N-acetyl-hexosaminyl residues in glycosaminoglycans and glycoconjugates. The GH20 enzymes present diverse domain organizations for which we propose two minimal model architectures: Model A containing at least a non-catalytic GH20b domain and the catalytic one (GH20) always accompanied with an extra α-helix (GH20b-GH20-α), and Model B with only the catalytic GH20 domain. The large Bifidobacterium bifidum lacto-N-biosidase was used as a model protein to evaluate the minimal functional unit due to its interest and structural complexity. By expressing different truncated forms of this enzyme, we show that Model A architectures cannot be reduced to Model B. In particular, there are two structural requirements general to GH20 enzymes with Model A architecture. First, the non-catalytic domain GH20b at the N-terminus of the catalytic GH20 domain is required for expression and seems to stabilize it. Second, the substrate-binding cavity at the GH20 domain always involves a remote element provided by a long loop from the catalytic domain itself or, when this loop is short, by an element from another domain of the multidomain structure or from the dimeric partner. Particularly, the lacto-N-biosidase requires GH20b and the lectin-like domain at the N- and C-termini of the catalytic GH20 domain to be fully soluble and functional. The lectin domain provides this remote element to the active site. We demonstrate restoration of activity of the inactive GH20b-GH20-α construct (model A architecture) by a complementation assay with the lectin-like domain. The engineering of minimal functional units of multidomain GH20 enzymes must consider these structural requirements. PMID:26024355

  18. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution

    PubMed Central

    Hertz, Uri; Amedi, Amir

    2015-01-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. PMID:24518756

  19. Simulations reveal the role of composition into the atomic-level flexibility of bioactive glass cements.

    PubMed

    Tian, Kun Viviana; Chass, Gregory A; Di Tommaso, Devis

    2016-01-14

    Bioactive glass ionomer cements (GICs), the reaction product of a fluoro-alumino-silicate glass and polyacrylic acid, have been in effective use in dentistry for over 40 years and more recently in orthopaedics and medical implantation. Their desirable properties have affirmed GIC's place in the medical materials community, yet are limited to non-load bearing applications due to the brittle nature of the hardened composite cement, thought to arise from the glass component and the interfaces it forms. Towards helping resolve the fundamental bases of the mechanical shortcomings of GICs, we report the 1st ever computational models of a GIC-relevant component. Ab initio molecular dynamics simulations were employed to generate and characterise three fluoro-alumino-silicate glasses of differing compositions with focus on resolving the atomic scale structural and dynamic contributions of aluminium, phosphorous and fluorine. Analyses of the glasses revealed rising F-content leading to the expansion of the glass network, compression of Al-F bonding, angular constraint at Al-pivots, localisation of alumino-phosphates and increased fluorine diffusion. Together, these changes to the structure, speciation and dynamics with raised fluorine content impart an overall rigidifying effect on the glass network, and suggest a predisposition to atomic-level inflexibility, which could manifest in the ionomer cements they form.

  20. Simulations reveal the role of composition into the atomic-level flexibility of bioactive glass cements.

    PubMed

    Tian, Kun Viviana; Chass, Gregory A; Di Tommaso, Devis

    2016-01-14

    Bioactive glass ionomer cements (GICs), the reaction product of a fluoro-alumino-silicate glass and polyacrylic acid, have been in effective use in dentistry for over 40 years and more recently in orthopaedics and medical implantation. Their desirable properties have affirmed GIC's place in the medical materials community, yet are limited to non-load bearing applications due to the brittle nature of the hardened composite cement, thought to arise from the glass component and the interfaces it forms. Towards helping resolve the fundamental bases of the mechanical shortcomings of GICs, we report the 1st ever computational models of a GIC-relevant component. Ab initio molecular dynamics simulations were employed to generate and characterise three fluoro-alumino-silicate glasses of differing compositions with focus on resolving the atomic scale structural and dynamic contributions of aluminium, phosphorous and fluorine. Analyses of the glasses revealed rising F-content leading to the expansion of the glass network, compression of Al-F bonding, angular constraint at Al-pivots, localisation of alumino-phosphates and increased fluorine diffusion. Together, these changes to the structure, speciation and dynamics with raised fluorine content impart an overall rigidifying effect on the glass network, and suggest a predisposition to atomic-level inflexibility, which could manifest in the ionomer cements they form. PMID:26646505

  1. Binding site and ligand flexibility revealed by high resolution crystal structures of GluK1 competitive antagonists

    PubMed Central

    Alushin, Gregory M.; Jane, David; Mayer, Mark L.

    2010-01-01

    The availability of crystal structures for the ligand binding domains of ionotropic glutamate receptors, combined with their key role in synaptic function in the normal and diseased brain, offers a unique selection of targets for pharmaceutical research compared to other drug targets for which the atomic structure of the ligand binding sites is not known. Currently only a few antagonist structures have been solved, and these reveal ligand specific conformational changes that hinder rational drug design. Here we report high resolution crystal structures for three kainate receptor GluK1 antagonist complexes which reveal new and unexpected modes of binding, highlighting the continued need for experimentally determined receptor-ligand complexes. PMID:20558186

  2. Structural analysis of the KRIT1 ankyrin repeat and FERM domains reveals a conformationally stable ARD-FERM interface

    SciTech Connect

    Zhang, Rong; Li, Xiaofeng; Boggon, Titus J.

    2015-10-14

    Cerebral cavernous malformations (CCM) are vascular dysplasias that usually occur in the brain and are associated with mutations in the KRIT1/CCM1, CCM2/MGC4607/OSM/Malcavernin, and PDCD10/CCM3/ TFAR15 genes. Here we report the 2.9 Å crystal structure of the ankyrin repeat domain (ARD) and FERM domain of the protein product of KRIT1 (KRIT1; Krev interaction trapped 1). The crystal structure reveals that the KRIT1 ARD contains 4 ankyrin repeats. There is also an unusual conformation in the ANK4 repeat that is stabilized by Trp-404, and the structure reveals a solvent exposed ankyrin groove. Domain orientations of the three copies within the asymmetric unit suggest a stable interaction between KRIT1 ARD and FERM domains, indicating a globular ARD–FERM module. It resembles the additional F0 domain found N-terminal to the FERM domain of talin. Structural analysis of KRIT1 ARD–FERM highlights surface regions of high evolutionary conservation, and suggests potential sites that could mediate interaction with binding partners. The structure therefore provides a better understanding of KRIT1 at the molecular level.

  3. Polyketide Intermediate Mimics as Probes for Revealing Cryptic Stereochemistry of Ketoreductase Domains

    PubMed Central

    2015-01-01

    Among natural product families, polyketides have shown the most promise for combinatorial biosynthesis of natural product-like libraries. Though recent research in the area has provided many mechanistic revelations, a basic-level understanding of kinetic and substrate tolerability is still needed before the full potential of combinatorial biosynthesis can be realized. We have developed a novel set of chemical probes for the study of ketoreductase domains of polyketide synthases. This chemical tool-based approach was validated using the ketoreductase of pikromycin module 2 (PikKR2) as a model system. Triketide substrate mimics 12 and 13 were designed to increase stability (incorporating a nonhydrolyzable thioether linkage) and minimize nonessential functionality (truncating the phosphopantetheinyl arm). PikKR2 reduction product identities as well as steady-state kinetic parameters were determined by a combination of LC-MS/MS analysis of synthetic standards and a NADPH consumption assay. The d-hydroxyl product is consistent with bioinformatic analysis and results from a complementary biochemical and molecular biological approach. When compared to widely employed substrates in previous studies, diketide 63 and trans-decalone 64, substrates 12 and 13 showed 2–10 fold lower KM values (2.4 ± 0.8 and 7.8 ± 2.7 mM, respectively), indicating molecular recognition of intermediate-like substrates. Due to an abundance of the nonreducable enol-tautomer, the kcat values were attenuated by as much as 15–336 fold relative to known substrates. This study reveals the high stereoselectivity of PikKR2 in the face of gross substrate permutation, highlighting the utility of a chemical probe-based approach in the study of polyketide ketoreductases. PMID:25299319

  4. Polyketide intermediate mimics as probes for revealing cryptic stereochemistry of ketoreductase domains.

    PubMed

    Li, Yang; Fiers, William D; Bernard, Steffen M; Smith, Janet L; Aldrich, Courtney C; Fecik, Robert A

    2014-12-19

    Among natural product families, polyketides have shown the most promise for combinatorial biosynthesis of natural product-like libraries. Though recent research in the area has provided many mechanistic revelations, a basic-level understanding of kinetic and substrate tolerability is still needed before the full potential of combinatorial biosynthesis can be realized. We have developed a novel set of chemical probes for the study of ketoreductase domains of polyketide synthases. This chemical tool-based approach was validated using the ketoreductase of pikromycin module 2 (PikKR2) as a model system. Triketide substrate mimics 12 and 13 were designed to increase stability (incorporating a nonhydrolyzable thioether linkage) and minimize nonessential functionality (truncating the phosphopantetheinyl arm). PikKR2 reduction product identities as well as steady-state kinetic parameters were determined by a combination of LC-MS/MS analysis of synthetic standards and a NADPH consumption assay. The d-hydroxyl product is consistent with bioinformatic analysis and results from a complementary biochemical and molecular biological approach. When compared to widely employed substrates in previous studies, diketide 63 and trans-decalone 64, substrates 12 and 13 showed 2-10 fold lower K(M) values (2.4 ± 0.8 and 7.8 ± 2.7 mM, respectively), indicating molecular recognition of intermediate-like substrates. Due to an abundance of the nonreducable enol-tautomer, the k(cat) values were attenuated by as much as 15-336 fold relative to known substrates. This study reveals the high stereoselectivity of PikKR2 in the face of gross substrate permutation, highlighting the utility of a chemical probe-based approach in the study of polyketide ketoreductases. PMID:25299319

  5. Novel binding motif and new flexibility revealed by structural analyses of a pyruvate dehydrogenase-dihydrolipoyl acetyltransferase subcomplex from the Escherichia coli pyruvate dehydrogenase multienzyme complex.

    PubMed

    Arjunan, Palaniappa; Wang, Junjie; Nemeria, Natalia S; Reynolds, Shelley; Brown, Ian; Chandrasekhar, Krishnamoorthy; Calero, Guillermo; Jordan, Frank; Furey, William

    2014-10-24

    The Escherichia coli pyruvate dehydrogenase multienzyme complex contains multiple copies of three enzymatic components, E1p, E2p, and E3, that sequentially carry out distinct steps in the overall reaction converting pyruvate to acetyl-CoA. Efficient functioning requires the enzymatic components to assemble into a large complex, the integrity of which is maintained by tethering of the displaced, peripheral E1p and E3 components to the E2p core through non-covalent binding. We here report the crystal structure of a subcomplex between E1p and an E2p didomain containing a hybrid lipoyl domain along with the peripheral subunit-binding domain responsible for tethering to the core. In the structure, a region at the N terminus of each subunit in the E1p homodimer previously unseen due to crystallographic disorder was observed, revealing a new folding motif involved in E1p-E2p didomain interactions, and an additional, unexpected, flexibility was discovered in the E1p-E2p didomain subcomplex, both of which probably have consequences in the overall multienzyme complex assembly. This represents the first structure of an E1p-E2p didomain subcomplex involving a homodimeric E1p, and the results may be applicable to a large range of complexes with homodimeric E1 components. Results of HD exchange mass spectrometric experiments using the intact, wild type 3-lipoyl E2p and E1p are consistent with the crystallographic data obtained from the E1p-E2p didomain subcomplex as well as with other biochemical and NMR data reported from our groups, confirming that our findings are applicable to the entire E1p-E2p assembly. PMID:25210042

  6. Ternary complex structure of human HGPRTase, PRPP, Mg2+, and the inhibitor HPP reveals the involvement of the flexible loop in substrate binding.

    PubMed Central

    Balendiran, G. K.; Molina, J. A.; Xu, Y.; Torres-Martinez, J.; Stevens, R.; Focia, P. J.; Eakin, A. E.; Sacchettini, J. C.; Craig, S. P.

    1999-01-01

    Site-directed mutagenesis was used to replace Lys68 of the human hypoxanthine phosphoribosyltransferase (HGPRTase) with alanine to exploit this less reactive form of the enzyme to gain additional insights into the structure activity relationship of HGPRTase. Although this substitution resulted in only a minimal (one- to threefold) increase in the Km values for binding pyrophosphate or phosphoribosylpyrophosphate, the catalytic efficiencies (k(cat)/Km) of the forward and reverse reactions were more severely reduced (6- to 30-fold), and the mutant enzyme showed positive cooperativity in binding of alpha-D-5-phosphoribosyl-1-pyrophosphate (PRPP) and nucleotide. The K68A form of the human HGPRTase was cocrystallized with 7-hydroxy [4,3-d] pyrazolo pyrimidine (HPP) and Mg PRPP, and the refined structure reported. The PRPP molecule built into the [(Fo - Fc)phi(calc)] electron density shows atomic interactions between the Mg PRPP and enzyme residues in the pyrophosphate binding domain as well as in a long flexible loop (residues Leu101 to Gly111) that closes over the active site. Loop closure reveals the functional roles for the conserved SY dipeptide of the loop as well as the molecular basis for one form of gouty arthritis (S103R). In addition, the closed loop conformation provides structural information relevant to the mechanism of catalysis in human HGPRTase. PMID:10338013

  7. Effects of Clinically Relevant MPL Mutations in the Transmembrane Domain Revealed at the Atomic Level through Computational Modeling

    PubMed Central

    Lee, Tai-Sung; Kantarjian, Hagop; Ma, Wanlong; Yeh, Chen-Hsiung; Giles, Francis; Albitar, Maher

    2011-01-01

    Background Mutations in the thrombopoietin receptor (MPL) may activate relevant pathways and lead to chronic myeloproliferative neoplasms (MPNs). The mechanisms of MPL activation remain elusive because of a lack of experimental structures. Modern computational biology techniques were utilized to explore the mechanisms of MPL protein activation due to various mutations. Results Transmembrane (TM) domain predictions, homology modeling, ab initio protein structure prediction, and molecular dynamics (MD) simulations were used to build structural dynamic models of wild-type and four clinically observed mutants of MPL. The simulation results suggest that S505 and W515 are important in keeping the TM domain in its correct position within the membrane. Mutations at either of these two positions cause movement of the TM domain, altering the conformation of the nearby intracellular domain in unexpected ways, and may cause the unwanted constitutive activation of MPL's kinase partner, JAK2. Conclusions Our findings represent the first full-scale molecular dynamics simulations of the wild-type and clinically observed mutants of the MPL protein, a critical element of the MPL-JAK2-STAT signaling pathway. In contrast to usual explanations for the activation mechanism that are based on the relative translational movement between rigid domains of MPL, our results suggest that mutations within the TM region could result in conformational changes including tilt and rotation (azimuthal) angles along the membrane axis. Such changes may significantly alter the conformation of the adjacent and intrinsically flexible intracellular domain. Hence, caution should be exercised when interpreting experimental evidence based on rigid models of cytokine receptors or similar systems. PMID:21858098

  8. Metagenome-based screening reveals worldwide distribution of LOV-domain proteins.

    PubMed

    Pathak, Gopal P; Losi, Aba; Gärtner, Wolfgang

    2012-01-01

    Metagenomes from various environments were screened for sequences homologous to light, oxygen, voltage (LOV)-domain proteins. LOV domains are flavin binding, blue-light (BL)-sensitive photoreceptors present in 10-15% of deposited prokaryotic genomes. The LOV domain has been selected, since BL is an ever present and sometimes harmful environmental factor for microbial communities. The majority of the metagenome material originated from the Sargasso Sea Project and from open-ocean sampling. In total, more than 40 million open reading frames were investigated for LOV-domain sequences. Most sequences were identified from aquatic material, but they were also found in metagenomes from soil and extreme environments, e.g. hypersaline ponds, acidic mine drainage or wastewater treatment facilities. A total of 578 LOV domains was assigned by three criteria: (1) the highly conserved core region, (2) the presence of minimally 14 essential amino acids and (3) a minimal length of 80 amino acids. More than three quarters of these identified genes showed a sequence divergence of more than 20% from database-deposited LOV domains from known organisms, indicating the large variation of this photoreceptor motif. The broad occurrence of LOV domains in metagenomes emphasizes their important physiological role for light-induced signal transduction, stress adaptation and survival mechanisms. PMID:22044076

  9. An intelligent inter-domain routing scheme under the consideration of diffserv QoS and energy saving in multi-domain software-defined flexible optical networks

    NASA Astrophysics Data System (ADS)

    Zhao, Jijun; Li, Fengyun; Ren, Danping; Hu, Jinhua; Yao, Qiuyan; Li, Wei

    2016-05-01

    Large scale multi-domain software-defined optical networks (SDON) provisioning has become a key area with increased scalable bandwidth services across wider network regions. Although distributed schemes could achieve lightpath routing by the ergodic process of domain boundary nodes, it increases the complexity of the signaling procedure and deployment of the interface. Moreover, the physical impairments are always the main factor of the infrastructure layer in SDON, which affect the transmission quality of the signal. Meanwhile, with increasing energy consumption of the Internet, it is imperative to design energy-efficient networks. To address the above issues, in this paper, an intelligent inter-domain routing scheme, which is supported by hierarchical control plane architecture, is presented based on sub-topology graph under the consideration of diffserv quality-of-service (QoS) and energy saving. The proposed scheme could achieve multi-domain quality of transmission (QoT), energy aware routing and spectrum assignment (RSA). We explore the scenarios where the multi-domain SDON achieve energy efficiency on the basis of meeting the QoT requirement. The blocking, energy consumption and average set up delay performances of the proposed schemes are estimated. The results indicate that the introduction of sub-topology in multi-domain RSA scheme has the better performance comparing with the distributed scheme.

  10. Dissection of the adenoviral VA RNAI central domain structure reveals minimum requirements for RNA-mediated inhibition of PKR.

    PubMed

    Wilson, Jo L; Vachon, Virginia K; Sunita, S; Schwartz, Samantha L; Conn, Graeme L

    2014-08-15

    Virus-associated RNA I (VA RNAI) is a short (∼160-nucleotide) non-coding RNA transcript employed by adenoviruses to subvert the innate immune system protein double-stranded RNA-activated protein kinase (PKR). The central domain of VA RNAI is proposed to contain a complex tertiary structure that contributes to its optimal inhibitory activity against PKR. Here we use a combination of VA RNAI mutagenesis, structural analyses, as well as PKR activity and binding assays to dissect this tertiary structure and assess its functional role. Our results support the existence of a pH- and Mg(2+)-dependent tertiary structure involving pseudoknot formation within the central domain. Unexpectedly, this structure appears to play no direct role in PKR inhibition. Deletion of central domain sequences within a minimal but fully active construct lacking the tertiary structure reveals a crucial role in PKR binding and inhibition for nucleotides in the 5' half of the central domain. Deletion of the central domain 3' half also significantly impacts activity but appears to arise indirectly by reducing its capacity to assist in optimally presenting the 5' half sequence. Collectively, our results identify regions of VA RNAI critical for PKR inhibition and reveal that the requirements for an effective RNA inhibitor of PKR are simpler than appreciated previously.

  11. fMRI reveals reciprocal inhibition between social and physical cognitive domains.

    PubMed

    Jack, Anthony I; Dawson, Abigail J; Begany, Katelyn L; Leckie, Regina L; Barry, Kevin P; Ciccia, Angela H; Snyder, Abraham Z

    2013-02-01

    Two lines of evidence indicate that there exists a reciprocal inhibitory relationship between opposed brain networks. First, most attention-demanding cognitive tasks activate a stereotypical set of brain areas, known as the task-positive network and simultaneously deactivate a different set of brain regions, commonly referred to as the task negative or default mode network. Second, functional connectivity analyses show that these same opposed networks are anti-correlated in the resting state. We hypothesize that these reciprocally inhibitory effects reflect two incompatible cognitive modes, each of which may be directed towards understanding the external world. Thus, engaging one mode activates one set of regions and suppresses activity in the other. We test this hypothesis by identifying two types of problem-solving task which, on the basis of prior work, have been consistently associated with the task positive and task negative regions: tasks requiring social cognition, i.e., reasoning about the mental states of other persons, and tasks requiring physical cognition, i.e., reasoning about the causal/mechanical properties of inanimate objects. Social and mechanical reasoning tasks were presented to neurologically normal participants during fMRI. Each task type was presented using both text and video clips. Regardless of presentation modality, we observed clear evidence of reciprocal suppression: social tasks deactivated regions associated with mechanical reasoning and mechanical tasks deactivated regions associated with social reasoning. These findings are not explained by self-referential processes, task engagement, mental simulation, mental time travel or external vs. internal attention, all factors previously hypothesized to explain default mode network activity. Analyses of resting state data revealed a close match between the regions our tasks identified as reciprocally inhibitory and regions of maximal anti-correlation in the resting state. These results

  12. fMRI reveals reciprocal inhibition between social and physical cognitive domains

    PubMed Central

    Jack, Anthony I.; Dawson, Abigail; Begany, Katelyn; Leckie, Regina L.; Barry, Kevin; Ciccia, Angela; Snyder, Abraham

    2012-01-01

    Two lines of evidence indicate that there exists a reciprocal inhibitory relationship between opposed brain networks. First, most attention-demanding cognitive tasks activate a stereotypical set of brain areas, known as the task-positive network and simultaneously deactivate a different set of brain regions, commonly referred to as the task negative or default mode network. Second, functional connectivity analyses show that these same opposed networks are anti-correlated in the resting state. We hypothesize that these reciprocally inhibitory effects reflect two incompatible cognitive modes, each of which is directed towards understanding the external world. Thus, engaging one mode activates one set of regions and suppresses activity in the other. We test this hypothesis by identifying two types of problem-solving task which, on the basis of prior work, have been consistently associated with the task positive and task negative regions: tasks requiring social cognition, i.e., reasoning about the mental states of other persons, and tasks requiring physical cognition, i.e., reasoning about the causal/mechanical properties of inanimate objects. Social and mechanical reasoning tasks were presented to neurologically normal participants during fMRI. Each task type was presented using both text and video clips. Regardless of presentation modality, we observed clear evidence of reciprocal suppression: social tasks deactivated regions associated with mechanical reasoning and mechanical tasks deactivated regions associated with social reasoning. These findings are not explained by self-referential processes, task engagement, mental simulation, mental time travel or external vs. internal attention, all factors previously hypothesized to explain default mode network activity. Analyses of resting state data revealed a close match between the regions our tasks identified as reciprocally inhibitory and regions of maximal anti-correlation in the resting state. These results indicate

  13. Magnetic domain structure and crystallographic orientation of electrical steels revealed by a forescatter detector and electron backscatter diffraction.

    PubMed

    Gallaugher, Matthew; Brodusch, Nicolas; Gauvin, Raynald; Chromik, Richard R

    2014-07-01

    The magnetic properties of non-oriented electrical steels (NOES) are an important factor in determining the efficiency of electric vehicle drivetrains. Due to the highly variable texture of NOES, the relationships between crystal orientation, the magnetic domain structure, and the final magnetic properties are complicated and not fully understood. In this study, a NOES sample was characterized with a method capable of imaging surface magnetic domains using scanning electron microscopy (SEM) with an electron backscatter diffraction (EBSD) system equipped with a forescatter detector. This method used type II magnetic contrast without a specialized SEM setup, and imaged with a resolution limit of approximately 250-300nm. The domain structure of the NOES sample was successfully related to β, which was defined as the angle between the closest magnetic easy axis and the surface of the sample (the RD-TD plane). However, it was shown that if the easy axes were aligned between neighbouring grains with respect to the grain boundary normal, the domain structure could align with an easy axis that was not the closest to the surface, and complex domain structures could be become wider. This structure and width change of complex domain structures has not been previously observed from single crystal or large-grained material studies. The successful application of this method to reveal the influence of surrounding grains can be used to better understand the magnetic properties of NOES.

  14. Communication Between RNA Folding Domains Revealed by Folding of Circularly Permuted Ribozymes

    SciTech Connect

    Lease,R.; Adilakshmi, T.; Heilman-Miller, S.; Woodson, S.

    2007-01-01

    To study the role of sequence and topology in RNA folding, we determined the kinetic folding pathways of two circularly permuted variants of the Tetrahymena group I ribozyme, using time-resolved hydroxyl radical footprinting. Circular permutation changes the distance between interacting residues in the primary sequence, without changing the native structure of the RNA. In the natural ribozyme, tertiary interactions in the P4-P6 domain form in 1 s, while interactions in the P3-P9 form in 1-3 min at 42 C. Permutation of the 5' end to G111 in the P4 helix allowed the stable P4-P6 domain to fold in 200 ms at 30 C, five times faster than in the wild-type RNA, while the other domains folded five times more slowly (5-8 min). By contrast, circular permutation of the 5' end to G303 in J8/7 decreased the folding rate of the P4-P6 domain. In this permuted RNA, regions joining P2, P3 and P4 were protected in 500 ms, while the P3-P9 domain was 60-80% folded within 30 s. RNase T1 digestion and FMN photocleavage showed that circular permutation of the RNA sequence alters the initial ensemble of secondary structures, thereby changing the tertiary folding pathways. Our results show that the natural 5'-to-3' order of the structural domains in group I ribozymes optimizes structural communication between tertiary domains and promotes self-assembly of the catalytic center.

  15. Fractal Nature of Metallic and Insulating Domain Configurations in a VO2 Thin Film Revealed by Kelvin Probe Force Microscopy

    PubMed Central

    Sohn, Ahrum; Kanki, Teruo; Sakai, Kotaro; Tanaka, Hidekazu; Kim, Dong-Wook

    2015-01-01

    We investigated the surface work function (WS) and its spatial distribution for epitaxial VO2/TiO2 thin films using Kelvin probe force microscopy (KPFM). Nearly grain-boundary-free samples allowed observation of metallic and insulating domains with distinct WS values, throughout the metal–insulator transition. The metallic fraction, estimated from WS maps, describes the evolution of the resistance based on a two-dimensional percolation model. The KPFM measurements also revealed the fractal nature of the domain configuration. PMID:25982229

  16. High-resolution 2-D Bragg diffraction reveal heterogeneous domain transformation behavior in a bulk relaxor ferroelectric

    DOE PAGES

    Pramanick, Abhijit; Stoica, Alexandru D.; An, Ke

    2016-09-02

    In-situ measurement of fine-structure of neutron Bragg diffraction peaks from a relaxor single-crystal using a time-of-flight instrument reveals highly heterogeneous mesoscale domain transformation behavior under applied electric fields. We observed that only 25% of domains undergo reorienta- tion or phase transition contributing to large average strains, while at least 40% remain invariant and exhibit microstrains. Such insights could be central for designing new relaxor materials with better performance and longevity. The current experimental technique can also be applied to resolve com- plex mesoscale phenomena in other functional materials.

  17. Comparative Hi-C Reveals that CTCF Underlies Evolution of Chromosomal Domain Architecture

    PubMed Central

    Vietri Rudan, Matteo; Barrington, Christopher; Henderson, Stephen; Ernst, Christina; Odom, Duncan T.; Tanay, Amos; Hadjur, Suzana

    2015-01-01

    Summary Topological domains are key architectural building blocks of chromosomes, but their functional importance and evolutionary dynamics are not well defined. We performed comparative high-throughput chromosome conformation capture (Hi-C) in four mammals and characterized the conservation and divergence of chromosomal contact insulation and the resulting domain architectures within distantly related genomes. We show that the modular organization of chromosomes is robustly conserved in syntenic regions and that this is compatible with conservation of the binding landscape of the insulator protein CTCF. Specifically, conserved CTCF sites are co-localized with cohesin, are enriched at strong topological domain borders, and bind to DNA motifs with orientations that define the directionality of CTCF’s long-range interactions. Conversely, divergent CTCF binding between species is correlated with divergence of internal domain structure, likely driven by local CTCF binding sequence changes, demonstrating how genome evolution can be linked to a continuous flux of local conformation changes. We also show that large-scale domains are reorganized during genome evolution as intact modules. PMID:25732821

  18. Structure of the CIAP2 Ring Domain Reveal Conformational Changes Associated With E2 Recruitment

    SciTech Connect

    Mace, P.D.; Linke, K.; Feltham, R.; Schumacher, F.-R.; Smith, C.A.; Vaux, D.L.; Silke, J.; Day, C.L.

    2009-05-19

    Inhibitor of apoptosis (IAP) proteins are key negative regulators of cell death that are highly expressed in many cancers. Cell death caused by antagonists that bind to IAP proteins is associated with their ubiquitylation and degradation. The RING domain at the C terminus of IAP proteins is pivotal. Here we report the crystal structures of the cIAP2 RING domain homodimer alone, and bound to the ubiquitin-conjugating (E2) enzyme UbcH5b. These structures show that small changes in the RING domain accompany E2 binding. By mutating residues at the E2-binding surface, we show that autoubiquitylation is required for regulation of IAP abundance. Dimer formation is also critical, and mutation of a single C-terminal residue abrogated dimer formation and E3 ligase activity was diminished. We further demonstrate that disruption of E2 binding, or dimerization, stabilizes IAP proteins against IAP antagonists in vivo.

  19. The structure of a conserved piezo channel domain reveals a topologically distinct β sandwich fold.

    PubMed

    Kamajaya, Aron; Kaiser, Jens T; Lee, Jonas; Reid, Michelle; Rees, Douglas C

    2014-10-01

    Piezo has recently been identified as a family of eukaryotic mechanosensitive channels composed of subunits containing over 2,000 amino acids, without recognizable sequence similarity to other channels. Here, we present the crystal structure of a large, conserved extramembrane domain located just before the last predicted transmembrane helix of C. elegans PIEZO, which adopts a topologically distinct β sandwich fold. The structure was also determined of a point mutation located on a conserved surface at the position equivalent to the human PIEZO1 mutation found in dehydrated hereditary stomatocytosis patients (M2225R). While the point mutation does not change the overall domain structure, it does alter the surface electrostatic potential that may perturb interactions with a yet-to-be-identified ligand or protein. The lack of structural similarity between this domain and any previously characterized fold, including those of eukaryotic and bacterial channels, highlights the distinctive nature of the Piezo family of eukaryotic mechanosensitive channels.

  20. The Laminin 511/521 Binding Site on the Lutheran Blood Group Glycoprotein is Located at theFlexible Junction of Ig Domains 2 and 3

    SciTech Connect

    Mankelow, Tosti J.; Burton, Nicholas; Stedansdottir, Fanney O.; Spring, Frances A.; Parsons, Stephen F.; Pesersen, Jan S.; Oliveira, Cristiano L.P.; Lammie, Donna; Wess, Timothy; Mohandas, Narla; Chasis, Joel A.; Brady, R. Leo; Anstee, David J.

    2007-07-01

    The Lutheran blood group glycoprotein, first discovered on erythrocytes, is widely expressed in human tissues. It is a ligand for the {alpha}5 subunit of Laminin 511/521, an extracellular matrix protein. This interaction may contribute to vasocclusive events that are an important cause of morbidity in sickle cell disease. Using X-ray crystallography, small angle X-ray scattering and site directed mutagenesis we show that the extracellular region of Lutheran forms an extended structure with a distinctive bend between the second and third immunoglobulin-like domains. The linker between domains 2 and 3 appears to be flexible and is a critical determinant in maintaining an overall conformation for Lutheran that is capable of binding to Laminin. Mutagenesis studies indicate that Asp312 of Lutheran and the surrounding cluster of negatively charged residues in this linker region form the Laminin binding site. Unusually, receptor binding is therefore not a function of the domains expected to be furthermost from the plasma membrane. These studies imply that structural flexibility of Lutheran may be essential for its interaction with Laminin and present a novel opportunity for the development of therapeutics for sickle cell disease.

  1. The Laminin 511/521–binding site on the Lutheran blood group glycoprotein is located at the flexible junction of Ig domains 2 and 3

    PubMed Central

    Burton, Nicholas; Stefansdottir, Fanney O.; Spring, Frances A.; Parsons, Stephen F.; Pedersen, Jan S.; Oliveira, Cristiano L. P.; Lammie, Donna; Wess, Timothy; Mohandas, Narla; Chasis, Joel Anne; Anstee, David J.

    2007-01-01

    The Lutheran blood group glycoprotein, first discovered on erythrocytes, is widely expressed in human tissues. It is a ligand for the α5 subunit of Laminin 511/521, an extracellular matrix protein. This interaction may contribute to vaso-occlusive events that are an important cause of morbidity in sickle cell disease. Using x-ray crystallography, small-angle x-ray scattering, and site-directed mutagenesis, we show that the extracellular region of Lutheran forms an extended structure with a distinctive bend between the second and third immunoglobulin-like domains. The linker between domains 2 and 3 appears to be flexible and is a critical determinant in maintaining an overall conformation for Lutheran that is capable of binding to Laminin. Mutagenesis studies indicate that Asp312 of Lutheran and the surrounding cluster of negatively charged residues in this linker region form the Laminin-binding site. Unusually, receptor binding is therefore not a function of the domains expected to be furthermost from the plasma membrane. These studies imply that structural flexibility of Lutheran may be essential for its interaction with Laminin and present a novel opportunity for the development of therapeutics for sickle cell disease. PMID:17638854

  2. Probing the structural flexibility of the human copper metallochaperone Atox1 dimer and its interaction with the CTR1 c-terminal domain.

    PubMed

    Levy, Ariel R; Yarmiayev, Valeria; Moskovitz, Yoni; Ruthstein, Sharon

    2014-06-01

    Both the essentiality and the toxicity of copper in human, yeast, and bacteria cells require precise mechanisms for acquisition, intimately linked to controlled distribution, which have yet to be fully understood. This work explores one aspect in the copper cycle, by probing the interaction between the human copper chaperone Atox1 and the c-terminal domain of the copper transporter, CTR1, using electron paramagnetic resonance (EPR) spectroscopy and circular dichroism (CD). The data collected here shows that the Atox1 keeps its dimer nature also in the presence of the CTR1 c-terminal domain; however, two geometrical states are assumed by the Atox1. One is similar to the geometrical state reported by the crystal structure, while the latter has not yet been constructed. In the presence of the CTR1 c-terminal domain, both states are assumed; however, the structure of Atox1 is more restricted in the presence of the CTR1 c-terminal domain. This study also shows that the last three amino acids of the CTR1 c-terminal domain, HCH, are important for maintaining the crystal structure of the Atox1, allowing less structural flexibility and improved thermal stability of Atox1.

  3. Structure of the Membrane-tethering GRASP Domain Reveals a Unique PDZ Ligand Interaction That Mediates Golgi Biogenesis

    SciTech Connect

    Truschel, S.T.; Heroux, A.; Sengupta, D.; Foote, A.; Macbeth, M. R.; Linstedt, A. D.

    2011-06-10

    Biogenesis of the ribbon-like membrane network of the mammalian Golgi requires membrane tethering by the conserved GRASP domain in GRASP65 and GRASP55, yet the tethering mechanism is not fully understood. Here, we report the crystal structure of the GRASP55 GRASP domain, which revealed an unusual arrangement of two tandem PDZ folds that more closely resemble prokaryotic PDZ domains. Biochemical and functional data indicated that the interaction between the ligand-binding pocket of PDZ1 and an internal ligand on PDZ2 mediates the GRASP self-interaction, and structural analyses suggest that this occurs via a unique mode of internal PDZ ligand recognition. Our data uncover the structural basis for ligand specificity and provide insight into the mechanism of GRASP-dependent membrane tethering of analogous Golgi cisternae.

  4. Structure of the Membrane-tethering GRASP Domain Reveals a Unique PDZ Ligand Interaction That Mediates Golgi Biogenesis

    SciTech Connect

    S Truschel; D Sengupta; A Foote; A Heroux; M Macbeth; A Linstedt

    2011-12-31

    Biogenesis of the ribbon-like membrane network of the mammalian Golgi requires membrane tethering by the conserved GRASP domain in GRASP65 and GRASP55, yet the tethering mechanism is not fully understood. Here, we report the crystal structure of the GRASP55 GRASP domain, which revealed an unusual arrangement of two tandem PDZ folds that more closely resemble prokaryotic PDZ domains. Biochemical and functional data indicated that the interaction between the ligand-binding pocket of PDZ1 and an internal ligand on PDZ2 mediates the GRASP self-interaction, and structural analyses suggest that this occurs via a unique mode of internal PDZ ligand recognition. Our data uncover the structural basis for ligand specificity and provide insight into the mechanism of GRASP-dependent membrane tethering of analogous Golgi cisternae.

  5. Generic Language Use Reveals Domain Differences in Young Children's Expectations about Animal and Artifact Categories

    ERIC Educational Resources Information Center

    Brandone, Amanda C.; Gelman, Susan A.

    2013-01-01

    The goal of the present study was to explore domain differences in young children's expectations about the structure of animal and artifact categories. We examined 5-year-olds' and adults' use of category-referring generic noun phrases (e.g., "Birds fly") about novel animals and artifacts. The same stimuli served as both animals and artifacts;…

  6. Crystal structure of a beta-finger domain of Prp8 reveals analogy to ribosomal proteins

    SciTech Connect

    Yang, K.; Heroux, A.; Zhang, L.; Zhao, R.

    2008-09-16

    Prp8 stands out among hundreds of splicing factors as a key regulator of spliceosome activation and a potential cofactor of the splicing reaction. We present here the crystal structure of a 274-residue domain (residues 1,822-2,095) near the C terminus of Saccharomyces cerevisiae Prp8. The most striking feature of this domain is a {beta}-hairpin finger protruding out of the protein (hence, this domain will be referred to as the {beta}-finger domain), resembling many globular ribosomal proteins with protruding extensions. Mutations throughout the {beta}-finger change the conformational equilibrium between the first and the second catalytic step. Mutations at the base of the {beta}-finger affect U4/U6 unwinding-mediated spliceosome activation. Prp8 may insert its {beta}-finger into the first-step complex (U2/U5/U6/pre-mRNA) or U4/U6.U5 tri-snRNP and stabilize these complexes. Mutations on the {beta}-finger likely alter these interactions, leading to the observed mutant phenotypes. Our results suggest a possible mechanism of how Prp8 regulates spliceosome activation. These results also demonstrate an analogy between a spliceosomal protein and ribosomal proteins that insert extensions into folded rRNAs and stabilize the ribosome.

  7. Anomalous Dielectric Loss at Ferroelectric Domain Walls Revealed by Microwave Impedance Microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyu; Ren, Yuan; Hu, Rongwei; Cheong, Sang-Wook; Lai, Keji

    2015-03-01

    Domain walls (DWs) in multiferroic materials, within which the ferroic order parameter changes its orientation, may possess emergent properties that are absent in the bulk domains. Combining the standard piezo-force microscopy (PFM), conductive atomic-force microscopy (C-AFM), and a novel microwave impedance microscopy (MIM) technique, we observed strong dielectric loss at the domain walls and vortex cores on the (001) charge neutral surface of hexagonal manganite YMnO3. The DW contrast was detected for a broad frequency range between 100MHz and 3GHz. The equivalent DW conductivity inferred from the MIM signals is estimated to be five orders of magnitude higher than that of the bulk YMnO3, which cannot be explained within the existing theoretical framework. By applying a DC bias on the MIM probe, we have also observed the transition from DW contrast to domain contrast in the impedance images. The MIM technique provides a unique opportunity to probe the nanoscale electronic anomalies in various topological defects, which will be crucial for future device applications of multiferroics.

  8. Annotation of Protein Domains Reveals Remarkable Conservation in the Functional Make up of Proteomes Across Superkingdoms

    PubMed Central

    Nasir, Arshan; Naeem, Aisha; Khan, Muhammad Jawad; Lopez-Nicora, Horacio D.; Caetano-Anollés, Gustavo

    2011-01-01

    The functional repertoire of a cell is largely embodied in its proteome, the collection of proteins encoded in the genome of an organism. The molecular functions of proteins are the direct consequence of their structure and structure can be inferred from sequence using hidden Markov models of structural recognition. Here we analyze the functional annotation of protein domain structures in almost a thousand sequenced genomes, exploring the functional and structural diversity of proteomes. We find there is a remarkable conservation in the distribution of domains with respect to the molecular functions they perform in the three superkingdoms of life. In general, most of the protein repertoire is spent in functions related to metabolic processes but there are significant differences in the usage of domains for regulatory and extra-cellular processes both within and between superkingdoms. Our results support the hypotheses that the proteomes of superkingdom Eukarya evolved via genome expansion mechanisms that were directed towards innovating new domain architectures for regulatory and extra/intracellular process functions needed for example to maintain the integrity of multicellular structure or to interact with environmental biotic and abiotic factors (e.g., cell signaling and adhesion, immune responses, and toxin production). Proteomes of microbial superkingdoms Archaea and Bacteria retained fewer numbers of domains and maintained simple and smaller protein repertoires. Viruses appear to play an important role in the evolution of superkingdoms. We finally identify few genomic outliers that deviate significantly from the conserved functional design. These include Nanoarchaeum equitans, proteobacterial symbionts of insects with extremely reduced genomes, Tenericutes and Guillardia theta. These organisms spend most of their domains on information functions, including translation and transcription, rather than on metabolism and harbor a domain repertoire characteristic of

  9. Identification of unique interactions between the flexible linker and the RecA-like domains of DEAD-box helicase Mss116

    NASA Astrophysics Data System (ADS)

    Zhang, Yuan; Palla, Mirkó; Sun, Andrew; Liao, Jung-Chi

    2013-09-01

    DEAD-box RNA helicases are ATP-dependent proteins implicated in nearly all aspects of RNA metabolism. The yeast DEAD-box helicase Mss116 is unique in its functions of splicing group I and group II introns and activating mRNA translation, but the structural understanding of why it performs these unique functions remains unclear. Here we used sequence analysis and molecular dynamics simulation to identify residues in the flexible linker specific for yeast Mss116, potentially associated with its unique functions. We first identified residues that are 100% conserved in Mss116 of different species of the Saccharomycetaceae family. The amino acids of these conserved residues were then compared with the amino acids of the corresponding residue positions of other RNA helicases to identify residues that have distinct amino acids from other DEAD-box proteins. Four residues in the flexible linker, i.e. N334, E335, P336 and H339, are conserved and Mss116-specific. Molecular dynamics simulation was conducted for the wild-type Mss116 structure and mutant models to examine mutational effects of the linker on the conformational equilibrium. Relatively short MD simulation runs (within 20 ns) were enough for us to observe mutational effects, suggesting serious structural perturbations by these mutations. The mutation of E335 depletes the interactions between E335 and K95 in domain 1. The interactions between N334/P336 and N496/I497 of domain 2 are also abolished by mutation. Our results suggest that tight interactions between the Mss116-specific flexible linker and the two RecA-like domains may be mechanically required to crimp RNA for the unique RNA processes of yeast Mss116.

  10. A unique PDZ domain and arrestin-like fold interaction reveals mechanistic details of endocytic recycling by SNX27-retromer

    PubMed Central

    Gallon, Matthew; Clairfeuille, Thomas; Steinberg, Florian; Mas, Caroline; Ghai, Rajesh; Sessions, Richard B.; Teasdale, Rohan D.; Collins, Brett M.; Cullen, Peter J.

    2014-01-01

    The sorting nexin 27 (SNX27)-retromer complex is a major regulator of endosome-to-plasma membrane recycling of transmembrane cargos that contain a PSD95, Dlg1, zo-1 (PDZ)-binding motif. Here we describe the core interaction in SNX27-retromer assembly and its functional relevance for cargo sorting. Crystal structures and NMR experiments reveal that an exposed β-hairpin in the SNX27 PDZ domain engages a groove in the arrestin-like structure of the vacuolar protein sorting 26A (VPS26A) retromer subunit. The structure establishes how the SNX27 PDZ domain simultaneously binds PDZ-binding motifs and retromer-associated VPS26. Importantly, VPS26A binding increases the affinity of the SNX27 PDZ domain for PDZ- binding motifs by an order of magnitude, revealing cooperativity in cargo selection. With disruption of SNX27 and retromer function linked to synaptic dysfunction and neurodegenerative disease, our work provides the first step, to our knowledge, in the molecular description of this important sorting complex, and more broadly describes a unique interaction between a PDZ domain and an arrestin-like fold. PMID:25136126

  11. Structure of Human J-type Co-chaperone HscB Reveals a Tetracysteine Metal-binding Domain

    SciTech Connect

    Bitto, Eduard; Bingman, Craig A.; Bittova, Lenka; Kondrashov, Dmitry A.; Bannen, Ryan M.; Fox, Brian G.; Markley, John L.; Phillips, Jr., George N.

    2008-11-24

    Iron-sulfur proteins play indispensable roles in a broad range of biochemical processes. The biogenesis of iron-sulfur proteins is a complex process that has become a subject of extensive research. The final step of iron-sulfur protein assembly involves transfer of an iron-sulfur cluster from a cluster-donor to a cluster-acceptor protein. This process is facilitated by a specialized chaperone system, which consists of a molecular chaperone from the Hsc70 family and a co-chaperone of the J-domain family. The 3.0 A crystal structure of a human mitochondrial J-type co-chaperone HscB revealed an L-shaped protein that resembles Escherichia coli HscB. The important difference between the two homologs is the presence of an auxiliary metal-binding domain at the N terminus of human HscB that coordinates a metal via the tetracysteine consensus motif CWXCX(9-13)FCXXCXXXQ. The domain is found in HscB homologs from animals and plants as well as in magnetotactic bacteria. The metal-binding site of the domain is structurally similar to that of rubredoxin and several zinc finger proteins containing rubredoxin-like knuckles. The normal mode analysis of HscB revealed that this L-shaped protein preferentially undergoes a scissors-like motion that correlates well with the conformational changes of human HscB observed in the crystals.

  12. A green fluorescent protein solubility screen in E. coli reveals domain boundaries of the GTP-binding domain in the P element transposase

    PubMed Central

    Sabogal, Alex; Rio, Donald C

    2010-01-01

    Guanosine triphosphate (GTP) binding and hydrolysis events often act as molecular switches in proteins, modulating conformational changes between active and inactive states in many signaling molecules and transport systems. The P element transposase of Drosophila melanogaster requires GTP binding to proceed along its reaction pathway, following initial site-specific DNA binding. GTP binding is unique to P elements and may represent a novel form of transpositional regulation, allowing the bound transposase to find a second site, looping the transposon DNA for strand cleavage and excision. The GTP-binding activity has been previously mapped to the central portion of the transposase protein; however, the P element transposase contains little sequence identity with known GTP-binding folds. To identify soluble, active transposase domains, a GFP solubility screen was used testing the solubility of random P element gene fragments in E. coli. The screen produced a single clone spanning known GTP-binding residues in the central portion of the transposase coding region. This clone, amino acids 275–409 in the P element transposase, was soluble, highly expressed in E.coli and active for GTP-binding activity, therefore is a candidate for future biochemical and structural studies. In addition, the chimeric screen revealed a minimal N-terminal THAP DNA-binding domain attached to an extended leucine zipper coiled-coil dimerization domain in the P element transposase, precisely delineating the DNA-binding and dimerization activities on the primary sequence. This study highlights the use of a GFP-based solubility screen on a large multidomain protein to identify highly expressed, soluble truncated domain subregions. PMID:20842711

  13. ATTENUATION OF THE GANGLION CELL LAYER IN A PREMATURE INFANT REVEALED WITH HANDHELD SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY

    PubMed Central

    Goldberg, Mara R.; Zakka, Fouad R.; Carroll, Joseph J.

    2016-01-01

    Purpose: To report on subclinical retinal abnormalities shown through handheld spectral domain optical coherence tomography on a premature infant. Methods: Case report. Results: The initial and follow-up exams on a premature infant revealed severely attenuated ganglion cell and nerve fiber layers. There was cystoid macular edema in both eyes at the initial visits, which resolved by the 1-year follow-up. Discussion: Optical coherence tomography can reveal significant retinal abnormalities in premature infants which are not detectable through funduscopic exam. Documenting such findings may be useful for the comprehensive management of vision problems in children with a history of premature birth. PMID:26529438

  14. NMR Study Reveals the Receiver Domain of Arabidopsis ETHYLENE RESPONSE1 Ethylene Receptor as an Atypical Type Response Regulator

    PubMed Central

    Lee, Yi-Zong; Wen, Chi-Kuang; Sue, Shih-Che

    2016-01-01

    The gaseous plant hormone ethylene, recognized by plant ethylene receptors, plays a pivotal role in various aspects of plant growth and development. ETHYLENE RESPONSE1 (ETR1) is an ethylene receptor isolated from Arabidopsis and has a structure characteristic of prokaryotic two-component histidine kinase (HK) and receiver domain (RD), where the RD structurally resembles bacteria response regulators (RRs). The ETR1 HK domain has autophosphorylation activity, and little is known if the HK can transfer the phosphoryl group to the RD for receptor signaling. Unveiling the correlation of the receptor structure and phosphorylation status would advance the studies towards the underlying mechanisms of ETR1 receptor signaling. In this study, using the nuclear magnetic resonance technique, our data suggested that the ETR1-RD is monomeric in solution and the rigid structure of the RD prevents the conserved aspartate residue phosphorylation. Comparing the backbone dynamics with other RRs, we propose that backbone flexibility is critical to the RR phosphorylation. Besides the limited flexibility, ETR1-RD has a unique γ loop conformation of opposite orientation, which makes ETR1-RD unfavorable for phosphorylation. These two features explain why ETR1-RD cannot be phosphorylated and is classified as an atypical type RR. As a control, phosphorylation of the ETR1-RD was also impaired when the sequence was swapped to the fragment of the bacterial typical type RR, CheY. Here, we suggest a molecule insight that the ETR1-RD already exists as an active formation and executes its function through binding with the downstream factors without phosphorylation. PMID:27486797

  15. NMR Study Reveals the Receiver Domain of Arabidopsis ETHYLENE RESPONSE1 Ethylene Receptor as an Atypical Type Response Regulator.

    PubMed

    Hung, Yi-Lin; Jiang, Ingjye; Lee, Yi-Zong; Wen, Chi-Kuang; Sue, Shih-Che

    2016-01-01

    The gaseous plant hormone ethylene, recognized by plant ethylene receptors, plays a pivotal role in various aspects of plant growth and development. ETHYLENE RESPONSE1 (ETR1) is an ethylene receptor isolated from Arabidopsis and has a structure characteristic of prokaryotic two-component histidine kinase (HK) and receiver domain (RD), where the RD structurally resembles bacteria response regulators (RRs). The ETR1 HK domain has autophosphorylation activity, and little is known if the HK can transfer the phosphoryl group to the RD for receptor signaling. Unveiling the correlation of the receptor structure and phosphorylation status would advance the studies towards the underlying mechanisms of ETR1 receptor signaling. In this study, using the nuclear magnetic resonance technique, our data suggested that the ETR1-RD is monomeric in solution and the rigid structure of the RD prevents the conserved aspartate residue phosphorylation. Comparing the backbone dynamics with other RRs, we propose that backbone flexibility is critical to the RR phosphorylation. Besides the limited flexibility, ETR1-RD has a unique γ loop conformation of opposite orientation, which makes ETR1-RD unfavorable for phosphorylation. These two features explain why ETR1-RD cannot be phosphorylated and is classified as an atypical type RR. As a control, phosphorylation of the ETR1-RD was also impaired when the sequence was swapped to the fragment of the bacterial typical type RR, CheY. Here, we suggest a molecule insight that the ETR1-RD already exists as an active formation and executes its function through binding with the downstream factors without phosphorylation. PMID:27486797

  16. Crystal structure of group II intron domain 1 reveals a template for RNA assembly.

    PubMed

    Zhao, Chen; Rajashankar, Kanagalaghatta R; Marcia, Marco; Pyle, Anna Marie

    2015-12-01

    Although the importance of large noncoding RNAs is increasingly appreciated, our understanding of their structures and architectural dynamics remains limited. In particular, we know little about RNA folding intermediates and how they facilitate the productive assembly of RNA tertiary structures. Here, we report the crystal structure of an obligate intermediate that is required during the earliest stages of group II intron folding. Composed of domain 1 from the Oceanobacillus iheyensis group II intron (266 nucleotides), this intermediate retains native-like features but adopts a compact conformation in which the active site cleft is closed. Transition between this closed and the open (native) conformation is achieved through discrete rotations of hinge motifs in two regions of the molecule. The open state is then stabilized by sequential docking of downstream intron domains, suggesting a 'first come, first folded' strategy that may represent a generalizable pathway for assembly of large RNA and ribonucleoprotein structures. PMID:26502156

  17. Crystal structures reveal transient PERK luminal domain tetramerization in endoplasmic reticulum stress signaling

    PubMed Central

    Carrara, Marta; Prischi, Filippo; Nowak, Piotr R; Ali, Maruf MU

    2015-01-01

    Stress caused by accumulation of misfolded proteins within the endoplasmic reticulum (ER) elicits a cellular unfolded protein response (UPR) aimed at maintaining protein-folding capacity. PERK, a key upstream component, recognizes ER stress via its luminal sensor/transducer domain, but the molecular events that lead to UPR activation remain unclear. Here, we describe the crystal structures of mammalian PERK luminal domains captured in dimeric state as well as in a novel tetrameric state. Small angle X-ray scattering analysis (SAXS) supports the existence of both crystal structures also in solution. The salient feature of the tetramer interface, a helix swapped between dimers, implies transient association. Moreover, interface mutations that disrupt tetramer formation in vitro reduce phosphorylation of PERK and its target eIF2α in cells. These results suggest that transient conversion from dimeric to tetrameric state may be a key regulatory step in UPR activation. PMID:25925385

  18. Amino acid coevolution reveals three-dimensional structure and functional domains of insect odorant receptors

    PubMed Central

    Hopf, Thomas A.; Morinaga, Satoshi; Ihara, Sayoko; Touhara, Kazushige; Marks, Debora S.; Benton, Richard

    2015-01-01

    Insect Odorant Receptors (ORs) comprise an enormous protein family that translates environmental chemical signals into neuronal electrical activity. These heptahelical receptors are proposed to function as ligand-gated ion channels and/or to act metabotropically as G protein-coupled receptors (GPCRs). Resolving their signalling mechanism has been hampered by the lack of tertiary structural information and primary sequence similarity to other proteins. We use amino acid evolutionary covariation across these ORs to define restraints on structural proximity of residue pairs, which permit de novo generation of three-dimensional models. The validity of our analysis is supported by the location of functionally important residues in highly constrained regions of the protein. Importantly, insect OR models exhibit a distinct transmembrane domain packing arrangement to that of canonical GPCRs, establishing the structural unrelatedness of these receptor families. The evolutionary couplings and models predict odour binding and ion conduction domains, and provide a template for rationale structure-activity dissection. PMID:25584517

  19. Functioning of the dimeric GABA(B) receptor extracellular domain revealed by glycan wedge scanning.

    PubMed

    Rondard, Philippe; Huang, Siluo; Monnier, Carine; Tu, Haijun; Blanchard, Bertrand; Oueslati, Nadia; Malhaire, Fanny; Li, Ying; Trinquet, Eric; Labesse, Gilles; Pin, Jean-Philippe; Liu, Jianfeng

    2008-05-01

    The G-protein-coupled receptor (GPCR) activated by the neurotransmitter GABA is made up of two subunits, GABA(B1) and GABA(B2). GABA(B1) binds agonists, whereas GABA(B2) is required for trafficking GABA(B1) to the cell surface, increasing agonist affinity to GABA(B1), and activating associated G proteins. These subunits each comprise two domains, a Venus flytrap domain (VFT) and a heptahelical transmembrane domain (7TM). How agonist binding to the GABA(B1) VFT leads to GABA(B2) 7TM activation remains unknown. Here, we used a glycan wedge scanning approach to investigate how the GABA(B) VFT dimer controls receptor activity. We first identified the dimerization interface using a bioinformatics approach and then showed that introducing an N-glycan at this interface prevents the association of the two subunits and abolishes all activities of GABA(B2), including agonist activation of the G protein. We also identified a second region in the VFT where insertion of an N-glycan does not prevent dimerization, but blocks agonist activation of the receptor. These data provide new insight into the function of this prototypical GPCR and demonstrate that a change in the dimerization interface is required for receptor activation.

  20. Internal Domains of Natural Porous Media Revealed: Critical Locations for Transport, Storage, and Chemical Reaction.

    PubMed

    Zachara, John; Brantley, Sue; Chorover, Jon; Ewing, Robert; Kerisit, Sebastien; Liu, Chongxuan; Perfect, Edmund; Rother, Gernot; Stack, Andrew G

    2016-03-15

    Internal pore domains exist within rocks, lithic fragments, subsurface sediments, and soil aggregates. These domains, termed internal domains in porous media (IDPM), represent a subset of a material's porosity, contain a significant fraction of their porosity as nanopores, dominate the reactive surface area of diverse media types, and are important locations for chemical reactivity and fluid storage. IDPM are key features controlling hydrocarbon release from shales in hydraulic fracture systems, organic matter decomposition in soil, weathering and soil formation, and contaminant behavior in the vadose zone and groundwater. Traditionally difficult to interrogate, advances in instrumentation and imaging methods are providing new insights on the physical structures and chemical attributes of IDPM, and their contributions to system behaviors. Here we discuss analytical methods to characterize IDPM, evaluate information on their size distributions, connectivity, and extended structures; determine whether they exhibit unique chemical reactivity; and assess the potential for their inclusion in reactive transport models. Ongoing developments in measurement technologies and sensitivity, and computer-assisted interpretation will improve understanding of these critical features in the future. Impactful research opportunities exist to advance understanding of IDPM, and to incorporate their effects in reactive transport models for improved environmental simulation and prediction.

  1. The Structure of the Scaffold Nucleoporin Nup120 Reveals a New and Unexpected Domain Architecture

    SciTech Connect

    Leksa, Nina C.; Brohawn, Stephen G.; Schwartz, Thomas U.; MIT

    2009-09-25

    Nucleocytoplasmic transport is mediated by nuclear pore complexes (NPCs), enormous protein assemblies residing in circular openings in the nuclear envelope. The NPC is modular, with transient and stable components. The stable core is essentially built from two multiprotein complexes, the Y-shaped heptameric Nup84 complex and the Nic96 complex, arranged around an eightfold axis. We present the crystal structure of Nup120{sup 1-757}, one of the two short arms of the Y-shaped Nup84 complex. The protein adopts a compact oval shape built around a novel bipartite {alpha}-helical domain intimately integrated with a {beta}-propeller domain. The domain arrangement is substantially different from the Nup85 {center_dot} Seh1 complex, which forms the other short arm of the Y. With the data presented here, we establish that all three branches of the Y-shaped Nup84 complex are tightly connected by helical interactions and that the {beta}-propellers likely form interaction site(s) to neighboring complexes.

  2. Internal Domains of Natural Porous Media Revealed: Critical Locations for Transport, Storage, and Chemical Reaction

    DOE PAGES

    Zachara, John; Brantley, Sue; Chorover, Jon; Ewing, Robert; Kerisit, Sebastien; Liu, Chongxuan; Perfect, Edmund; Rother, Gernot; Stack, Andrew G.

    2016-02-05

    Internal pore domains exist within rocks, lithic fragments, subsurface sediments, and soil aggregates. These domains, termed internal domains in porous media (IDPM), represent a subset of a material’s porosity, contain a significant fraction of their porosity as nanopores, dominate the reactive surface area of diverse media types, and are important locations for chemical reactivity and fluid storage. IDPM are key features controlling hydrocarbon release from shales in hydraulic fracture systems, organic matter decomposition in soil, weathering and soil formation, and contaminant behavior in the vadose zone and groundwater. It is traditionally difficult to interrogate, advances in instrumentation and imaging methodsmore » are providing new insights on the physical structures and chemical attributes of IDPM, and their contributions to system behaviors. We discuss analytical methods to characterize IDPM, evaluate information on their size distributions, connectivity, and extended structures; determine whether they exhibit unique chemical reactivity; and assess the potential for their inclusion in reactive transport models. Moreover, ongoing developments in measurement technologies and sensitivity, and computer-assisted interpretation will improve understanding of these critical features in the future. Finally, impactful research opportunities exist to advance understanding of IDPM, and to incorporate their effects in reactive transport models for improved environmental simulation and prediction.« less

  3. X-ray structure of tRNA pseudouridine synthase TruD reveals an inserted domain with a novel fold.

    PubMed

    Ericsson, Ulrika B; Nordlund, Pär; Hallberg, B Martin

    2004-05-01

    Pseudouridine synthases catalyse the isomerisation of uridine to pseudouridine in structural RNA. The pseudouridine synthase TruD, that modifies U13 in tRNA, belongs to a recently identified and large family of pseudouridine synthases present in all kingdoms of life. We report here the crystal structure of Escherichia coli TruD at 2.0 A resolution. The structure reveals an overall V-shaped molecule with an RNA-binding cleft formed between two domains: a catalytic domain and an insertion domain. The catalytic domain has a fold similar to that of the catalytic domains of previously characterised pseudouridine synthases, whereas the insertion domain displays a novel fold.

  4. X-Ray Crystal Structure of the Full Length Human Chitotriosidase (CHIT1) Reveals Features of Its Chitin Binding Domain

    PubMed Central

    Fadel, Firas; Zhao, Yuguang; Cousido-Siah, Alexandra; Ruiz, Francesc X.; Mitschler, André; Podjarny, Alberto

    2016-01-01

    Chitinases are enzymes that catalyze the hydrolysis of chitin. Human chitotriosidase (CHIT1) is one of the two active human chitinases, involved in the innate immune response and highly expressed in a variety of diseases. CHIT1 is composed of a catalytic domain linked by a hinge to its chitin binding domain (ChBD). This latter domain belongs to the carbohydrate-binding module family 14 (CBM14 family) and facilitates binding to chitin. So far, the available crystal structures of the human chitinase CHIT1 and the Acidic Mammalian Chitinase (AMCase) comprise only their catalytic domain. Here, we report a crystallization strategy combining cross-seeding and micro-seeding cycles which allowed us to obtain the first crystal structure of the full length CHIT1 (CHIT1-FL) at 1.95 Å resolution. The CHIT1 chitin binding domain (ChBDCHIT1) structure shows a distorted β-sandwich 3D fold, typical of CBM14 family members. Accordingly, ChBDCHIT1 presents six conserved cysteine residues forming three disulfide bridges and several exposed aromatic residues that probably are involved in chitin binding, including the highly conserved Trp465 in a surface- exposed conformation. Furthermore, ChBDCHIT1 presents a positively charged surface which may be involved in electrostatic interactions. Our data highlight the strong structural conservation of CBM14 family members and uncover the structural similarity between the human ChBDCHIT1, tachycitin and house mite dust allergens. Overall, our new CHIT1-FL structure, determined with an adapted crystallization approach, is one of the few complete bi-modular chitinase structures available and reveals the structural features of a human CBM14 domain. PMID:27111557

  5. X-Ray Crystal Structure of the Full Length Human Chitotriosidase (CHIT1) Reveals Features of Its Chitin Binding Domain.

    PubMed

    Fadel, Firas; Zhao, Yuguang; Cousido-Siah, Alexandra; Ruiz, Francesc X; Mitschler, André; Podjarny, Alberto

    2016-01-01

    Chitinases are enzymes that catalyze the hydrolysis of chitin. Human chitotriosidase (CHIT1) is one of the two active human chitinases, involved in the innate immune response and highly expressed in a variety of diseases. CHIT1 is composed of a catalytic domain linked by a hinge to its chitin binding domain (ChBD). This latter domain belongs to the carbohydrate-binding module family 14 (CBM14 family) and facilitates binding to chitin. So far, the available crystal structures of the human chitinase CHIT1 and the Acidic Mammalian Chitinase (AMCase) comprise only their catalytic domain. Here, we report a crystallization strategy combining cross-seeding and micro-seeding cycles which allowed us to obtain the first crystal structure of the full length CHIT1 (CHIT1-FL) at 1.95 Å resolution. The CHIT1 chitin binding domain (ChBDCHIT1) structure shows a distorted β-sandwich 3D fold, typical of CBM14 family members. Accordingly, ChBDCHIT1 presents six conserved cysteine residues forming three disulfide bridges and several exposed aromatic residues that probably are involved in chitin binding, including the highly conserved Trp465 in a surface- exposed conformation. Furthermore, ChBDCHIT1 presents a positively charged surface which may be involved in electrostatic interactions. Our data highlight the strong structural conservation of CBM14 family members and uncover the structural similarity between the human ChBDCHIT1, tachycitin and house mite dust allergens. Overall, our new CHIT1-FL structure, determined with an adapted crystallization approach, is one of the few complete bi-modular chitinase structures available and reveals the structural features of a human CBM14 domain. PMID:27111557

  6. Fra Angelico's painting technique revealed by terahertz time-domain imaging (THz-TDI)

    NASA Astrophysics Data System (ADS)

    Koch Dandolo, Corinna Ludovica; Picollo, Marcello; Cucci, Costanza; Jepsen, Peter Uhd

    2016-10-01

    We have investigated with terahertz time-domain imaging (THz-TDI) the well-known Lamentation over the dead Christ panel painting (San Marco Museum, Florence) painted by Fra Giovanni Angelico within 1436 and 1441. The investigation provided a better understanding of the construction and gilding technique used by the eminent artist, as well as the plastering technique used during the nineteenth-century restoration intervention. The evidence obtained from THz-TDI scans was correlated with the available documentation on the preservation history of the art piece. Erosion and damages documented for the wooden support, especially in the lower margin, found confirmation in the THz-TD images.

  7. Cross-domain adaptation reveals that a common mechanism computes stereoscopic (cyclopean) and luminance plaid motion.

    PubMed

    Bowd, C; Donnelly, M; Shorter, S; Patterson, R

    2000-01-01

    Across three experiments, this study investigated the visual processing of moving stereoscopic plaid patterns (plaids created with cyclopean components defined by moving binocular disparity embedded in a dynamic random-dot stereogram). Results showed that adaptation to a moving stereoscopic plaid or its components affected the perceived coherence of a luminance test plaid, and vice versa. Cross-domain adaptation suggests that stereoscopic and luminance motion signals feed into a common pattern-motion mechanism, consistent with the idea that stereoscopic motion signals are computed early in the motion processing stream.

  8. Effect of Ca2+-Mg2+ exchange on the flexibility and/or conformation of the small domain in monomeric actin.

    PubMed

    Nyitrai, M; Hild, G; Lakos, Z; Somogyi, B

    1998-05-01

    A fluorescence resonance energy transfer (FRET) parameter, f' (defined as the average transfer efficiency, (E), normalized by the actual fluorescence intensity of the donor in the presence of acceptor, F(DA)), was previously shown to be capable of monitoring both changes in local flexibility of the protein matrix and major conformational transitions. The temperature profile of this parameter was used to detect the change of the protein flexibility in the small domain of the actin monomer (G-actin) upon the replacement of Ca2+ by Mg2+. The Cys-374 residue of the actin monomer was labeled with N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (IAEDANS) to introduce a fluorescence donor and the Lys-61 residue with fluorescein-5-isothiocyanate (FITC) to serve as an acceptor. The f' increases with increasing temperature over the whole temperature range for Mg-G-actin. This parameter increases similarly in the case of Ca-G-actin up to 26 degrees C, whereas an opposite tendency appears above this temperature. These data indicate that there is a conformational change in Ca-G-actin above 26 degrees C that was not detected in the case of Mg-G-actin. In the temperature range between 6 degrees C and 26 degrees C the slope of the temperature profile of f' is the same for Ca-G-actin and Mg-G-actin, suggesting that the flexibility of the protein matrix between the two labels is identical in the two forms of actin.

  9. Domain Motions and Functionally-Key Residues of l-Alanine Dehydrogenase Revealed by an Elastic Network Model

    PubMed Central

    Li, Xing-Yuan; Zhang, Jing-Chao; Zhu, Yan-Ying; Su, Ji-Guo

    2015-01-01

    Mycobacterium tuberculosis l-alanine dehydrogenase (l-MtAlaDH) plays an important role in catalyzing l-alanine to ammonia and pyruvate, which has been considered to be a potential target for tuberculosis treatment. In the present work, the functional domain motions encoded in the structure of l-MtAlaDH were investigated by using the Gaussian network model (GNM) and the anisotropy network model (ANM). The slowest modes for the open-apo and closed-holo structures of the enzyme show that the domain motions have a common hinge axis centered in residues Met133 and Met301. Accompanying the conformational transition, both the 1,4-dihydronicotinamide adenine dinucleotide (NAD)-binding domain (NBD) and the substrate-binding domain (SBD) move in a highly coupled way. The first three slowest modes of ANM exhibit the open-closed, rotation and twist motions of l-MtAlaDH, respectively. The calculation of the fast modes reveals the residues responsible for the stability of the protein, and some of them are involved in the interaction with the ligand. Then, the functionally-important residues relevant to the binding of the ligand were identified by using a thermodynamic method. Our computational results are consistent with the experimental data, which will help us to understand the physical mechanism for the function of l-MtAlaDH. PMID:26690143

  10. A novel imaging method revealed phosphatidylinositol 3,5-bisphosphate-rich domains in the endosome/lysosome membrane

    PubMed Central

    Takatori, Sho; Fujimoto, Toyoshi

    2016-01-01

    ABSTRACT We developed a new method to observe distribution of phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] using electron microscopy. In freeze-fracture replicas of quick-frozen samples, PtdIns(3,5)P2 was labeled specifically using recombinant ATG18 tagged with glutathione S-transferase and 4×FLAG, which was mixed with an excess of recombinant PX domain to suppress binding of ATG18 to phosphatidylinositol 3-phosphate. Using this method, PtdIns(3,5)P2 was found to be enriched in limited domains in the yeast vacuole and mammalian endosomes. In the yeast vacuole exposed to hyperosmolar stress, PtdIns(3,5)P2 was distributed at a significantly higher density in the intramembrane particle (IMP)-deficient liquid-ordered domains than in the surrounding IMP-rich domains. In mammalian cells, PtdIns(3,5)P2 was observed in endosomes of tubulo-vesicular morphology labeled for RAB5 or RAB7. Notably, distribution density of PtdIns(3,5)P2 in the endosome was significantly higher in the vesicular portion than in the tubular portion. The nano-scale distribution of PtdIns(3,5)P2 revealed in the present study is important to understand its functional roles in the vacuole and endosomes. PMID:27195064

  11. Domain swapping reveals that the C- and N-terminal domains of DnaG and DnaB, respectively, are functional homologues.

    PubMed

    Chintakayala, Kiran; Larson, Marilynn A; Grainger, William H; Scott, David J; Griep, Mark A; Hinrichs, Steven H; Soultanas, Panos

    2007-03-01

    The bacterial primase (DnaG)-helicase (DnaB) interaction is mediated by the C-terminal domain of DnaG (p16) and a linker that joins the N- and C-terminal domains (p17 and p33 respectively) of DnaB. The crystal and nuclear magnetic resonance structures of p16 from Escherichia coli and Bacillus stearothermophilus DnaG proteins revealed a unique structural homology with p17, despite the lack of amino acid sequence similarity. The functional significance of this is not clear. Here, we have employed a 'domain swapping' approach to replace p17 with its structural homologue p16 to create chimeras. p33 alone hydrolyses ATP but exhibits no helicase activity. Fusing p16 (p16-p33) or DnaG (G-p33) to the N-terminus of p33 produced chimeras with partially restored helicase activities. Neither chimera interacted with DnaG. The p16-p33 chimera formed hexamers while G-p33 assembled into tetramers. Furthermore, G-p33 and DnaB formed mixed oligomers with ATPase activity better than that of the DnaB/DnaG complex and helicase activity better than the sum of the individual DnaB and G-p33 activities but worse than that of the DnaB/DnaG complex. Our combined data provide direct evidence that p16 and p17 are not only structural but also functional homologues, albeit their amino acid composition differences are likely to influence their precise roles. PMID:17367384

  12. Full-length RNA structure prediction of the HIV-1 genome reveals a conserved core domain.

    PubMed

    Sükösd, Zsuzsanna; Andersen, Ebbe S; Seemann, Stefan E; Jensen, Mads Krogh; Hansen, Mathias; Gorodkin, Jan; Kjems, Jørgen

    2015-12-01

    A distance constrained secondary structural model of the ≈10 kb RNA genome of the HIV-1 has been predicted but higher-order structures, involving long distance interactions, are currently unknown. We present the first global RNA secondary structure model for the HIV-1 genome, which integrates both comparative structure analysis and information from experimental data in a full-length prediction without distance constraints. Besides recovering known structural elements, we predict several novel structural elements that are conserved in HIV-1 evolution. Our results also indicate that the structure of the HIV-1 genome is highly variable in most regions, with a limited number of stable and conserved RNA secondary structures. Most interesting, a set of long distance interactions form a core organizing structure (COS) that organize the genome into three major structural domains. Despite overlapping protein-coding regions the COS is supported by a particular high frequency of compensatory base changes, suggesting functional importance for this element. This new structural element potentially organizes the whole genome into three major domains protruding from a conserved core structure with potential roles in replication and evolution for the virus. PMID:26476446

  13. Site-directed mutants of human RECQ1 reveal functional importance of the zinc binding domain.

    PubMed

    Sami, Furqan; Gary, Ronald K; Fang, Yayin; Sharma, Sudha

    2016-08-01

    RecQ helicases are a highly conserved family of ATP-dependent DNA-unwinding enzymes with key roles in DNA replication and repair in all kingdoms of life. The RECQ1 gene encodes the most abundant RecQ homolog in humans. We engineered full-length RECQ1 harboring point mutations in the zinc-binding motif (amino acids 419-480) within the conserved RecQ-specific-C-terminal (RQC) domain known to be critical for diverse biochemical and cellular functions of RecQ helicases. Wild-type RECQ1 contains a zinc ion. Substitution of three of the four conserved cysteine residues that coordinate zinc severely impaired the ATPase and DNA unwinding activities but retained DNA binding and single strand DNA annealing activities. Furthermore, alteration of these residues attenuated zinc binding and significantly changed the overall conformation of full-length RECQ1 protein. In contrast, substitution of cysteine residue at position 471 resulted in a wild-type like RECQ1 protein. Differential contribution of the conserved cysteine residues to the structure and functions of the RECQ1 protein is also inferred by homology modeling. Overall, our results indicate that the zinc binding motif in the RQC domain of RECQ1 is a key structural element that is essential for the structure-functions of RECQ1. Given the recent association of RECQ1 mutations with breast cancer, these results will contribute to understanding the molecular basis of RECQ1 functions in cancer etiology. PMID:27248010

  14. Quantitative interaction mapping reveals an extended UBX domain in ASPL that disrupts functional p97 hexamers

    PubMed Central

    Arumughan, Anup; Roske, Yvette; Barth, Carolin; Forero, Laura Lleras; Bravo-Rodriguez, Kenny; Redel, Alexandra; Kostova, Simona; McShane, Erik; Opitz, Robert; Faelber, Katja; Rau, Kirstin; Mielke, Thorsten; Daumke, Oliver; Selbach, Matthias; Sanchez-Garcia, Elsa; Rocks, Oliver; Panáková, Daniela; Heinemann, Udo; Wanker, Erich E.

    2016-01-01

    Interaction mapping is a powerful strategy to elucidate the biological function of protein assemblies and their regulators. Here, we report the generation of a quantitative interaction network, directly linking 14 human proteins to the AAA+ ATPase p97, an essential hexameric protein with multiple cellular functions. We show that the high-affinity interacting protein ASPL efficiently promotes p97 hexamer disassembly, resulting in the formation of stable p97:ASPL heterotetramers. High-resolution structural and biochemical studies indicate that an extended UBX domain (eUBX) in ASPL is critical for p97 hexamer disassembly and facilitates the assembly of p97:ASPL heterotetramers. This spontaneous process is accompanied by a reorientation of the D2 ATPase domain in p97 and a loss of its activity. Finally, we demonstrate that overproduction of ASPL disrupts p97 hexamer function in ERAD and that engineered eUBX polypeptides can induce cell death, providing a rationale for developing anti-cancer polypeptide inhibitors that may target p97 activity. PMID:27762274

  15. Function of the ATR N-terminal domain revealed by an ATM/ATR chimera

    SciTech Connect

    Chen Xinping; Zhao Runxiang; Glick, Gloria G.; Cortez, David . E-mail: david.cortez@vanderbilt.edu

    2007-05-01

    The ATM and ATR kinases function at the apex of checkpoint signaling pathways. These kinases share significant sequence similarity, phosphorylate many of the same substrates, and have overlapping roles in initiating cell cycle checkpoints. However, they sense DNA damage through distinct mechanisms. ATR primarily senses single stranded DNA (ssDNA) through its interaction with ATRIP, and ATM senses double strand breaks through its interaction with Nbs1. We determined that the N-terminus of ATR contains a domain that binds ATRIP. Attaching this domain to ATM allowed the fusion protein (ATM*) to bind ATRIP and associate with RPA-coated ssDNA. ATM* also gained the ability to localize efficiently to stalled replication forks as well as double strand breaks. Despite having normal kinase activity when tested in vitro and being phosphorylated on S1981 in vivo, ATM* is defective in checkpoint signaling and does not complement cellular deficiencies in either ATM or ATR. These data indicate that the N-terminus of ATR is sufficient to bind ATRIP and to promote localization to sites of replication stress.

  16. The mechanism of patellamide macrocyclization revealed by the characterization of the PatG macrocyclase domain

    PubMed Central

    Koehnke, Jesko; Bent, Andrew; Houssen, Wael E; Zollman, David; Morawitz, Falk; Shirran, Sally; Vendome, Jeremie; Nneoyiegbe, Ada F; Trembleau, Laurent; Botting, Catherine H; Smith, Margaret C M; Jaspars, Marcel; Naismith, James H

    2012-01-01

    Peptide macrocycles are found in many biologically active natural products. Their versatility, resistance to proteolysis and ability to traverse membranes has made them desirable molecules. Although technologies exist to synthesize such compounds, the full extent of diversity found among natural macrocycles has yet to be achieved synthetically. Cyanobactins are ribosomal peptide macrocycles encompassing an extraordinarily diverse range of ring sizes, amino acids and chemical modifications. We report the structure, biochemical characterization and initial engineering of the PatG macrocyclase domain of Prochloron sp. from the patellamide pathway that catalyzes the macrocyclization of linear peptides. The enzyme contains insertions in the subtilisin fold to allow it to recognize a three-residue signature, bind substrate in a preorganized and unusual conformation, shield an acyl-enzyme intermediate from water and catalyze peptide bond formation. The ability to macrocyclize a broad range of nonactivated substrates has wide biotechnology applications. PMID:22796963

  17. Edge morphology evolution of graphene domains during chemical vapor deposition cooling revealed through hydrogen etching.

    PubMed

    Zhang, Haoran; Zhang, Yanhui; Zhang, Yaqian; Chen, Zhiying; Sui, Yanping; Ge, Xiaoming; Yu, Guanghui; Jin, Zhi; Liu, Xinyu

    2016-02-21

    During cooling, considerable changes such as wrinkle formation and edge passivation occur in graphene synthesized on the Cu substrate. Wrinkle formation is caused by the difference in the thermal expansion coefficients of graphene and its substrate. This work emphasizes the cooling-induced edge passivation. The graphene-edge passivation can limit the regrowth of graphene at the domain edge. Our work shows that silicon-containing particles tend to accumulate at the graphene edge, and the formation of these particles is related to cooling. Furthermore, a clear curvature can be observed at the graphene edge on the Cu substrate, indicating the sinking of the graphene edge into the Cu substrate. Both the sinking of the graphene edge and the accumulation of silicon-containing particles are responsible for edge passivation. In addition, two kinds of graphene edge morphologies are observed after etching, which were explained by different etching mechanisms that illustrate the changes of the graphene edge during cooling. PMID:26866950

  18. A numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains

    NASA Astrophysics Data System (ADS)

    Gilmanov, Anvar; Le, Trung Bao; Sotiropoulos, Fotis

    2015-11-01

    We present a new numerical methodology for simulating fluid-structure interaction (FSI) problems involving thin flexible bodies in an incompressible fluid. The FSI algorithm uses the Dirichlet-Neumann partitioning technique. The curvilinear immersed boundary method (CURVIB) is coupled with a rotation-free finite element (FE) model for thin shells enabling the efficient simulation of FSI problems with arbitrarily large deformation. Turbulent flow problems are handled using large-eddy simulation with the dynamic Smagorinsky model in conjunction with a wall model to reconstruct boundary conditions near immersed boundaries. The CURVIB and FE solvers are coupled together on the flexible solid-fluid interfaces where the structural nodal positions, displacements, velocities and loads are calculated and exchanged between the two solvers. Loose and strong coupling FSI schemes are employed enhanced by the Aitken acceleration technique to ensure robust coupling and fast convergence especially for low mass ratio problems. The coupled CURVIB-FE-FSI method is validated by applying it to simulate two FSI problems involving thin flexible structures: 1) vortex-induced vibrations of a cantilever mounted in the wake of a square cylinder at different mass ratios and at low Reynolds number; and 2) the more challenging high Reynolds number problem involving the oscillation of an inverted elastic flag. For both cases the computed results are in excellent agreement with previous numerical simulations and/or experiential measurements. Grid convergence tests/studies are carried out for both the cantilever and inverted flag problems, which show that the CURVIB-FE-FSI method provides their convergence. Finally, the capability of the new methodology in simulations of complex cardiovascular flows is demonstrated by applying it to simulate the FSI of a tri-leaflet, prosthetic heart valve in an anatomic aorta and under physiologic pulsatile conditions.

  19. Chromosome Model reveals Dynamic Redistribution of DNA Damage into Nuclear Sub-domains

    NASA Technical Reports Server (NTRS)

    Costes, Sylvain V.; Ponomarev, Artem; Chen, James L.; Cucinotta, Francis A.; Barcellos-Hoff, Helen

    2007-01-01

    Several proteins involved in the response to DNA double strand breaks (DSB) form microscopically visible nuclear domains, or foci, after exposure to ionizing radiation. Radiation-induced foci (RIF) are believed to be located where DNA damage is induced. To test this assumption, we analyzed the spatial distribution of 53BP1, phosphorylated ATM and gammaH2AX RIF in cells irradiated with high linear energy transfer (LET) radiation. Since energy is randomly deposited along high-LET particle paths, RIF along these paths should also be randomly distributed. The probability to induce DSB can be derived from DNA fragment data measured experimentally by pulsed-field gel electrophoresis. We used this probability in Monte Carlo simulations to predict DSB locations in synthetic nuclei geometrically described by a complete set of human chromosomes, taking into account microscope optics from real experiments. As expected, simulations produced DNA-weighted random (Poisson) distributions. In contrast, the distributions of RIF obtained as early as 5 min after exposure to high LET (1 GeV/amu Fe) were non-random. This deviation from the expected DNA-weighted random pattern can be further characterized by relative DNA image measurements. This novel imaging approach shows that RIF were located preferentially at the interface between high and low DNA density regions, and were more frequent in regions with lower density DNA than predicted. This deviation from random behavior was more pronounced within the first 5 min following irradiation for phosphorylated ATM RIF, while gammaH2AX and 53BP1 RIF showed very pronounced deviation up to 30 min after exposure. These data suggest the existence of repair centers in mammalian epithelial cells. These centers would be nuclear sub-domains where DNA lesions would be collected for more efficient repair.

  20. Image-Based Modeling Reveals Dynamic Redistribution of DNA Damageinto Nuclear Sub-Domains

    SciTech Connect

    Costes Sylvain V., Ponomarev Artem, Chen James L.; Nguyen, David; Cucinotta, Francis A.; Barcellos-Hoff, Mary Helen

    2007-08-03

    Several proteins involved in the response to DNA doublestrand breaks (DSB) f orm microscopically visible nuclear domains, orfoci, after exposure to ionizing radiation. Radiation-induced foci (RIF)are believed to be located where DNA damage occurs. To test thisassumption, we analyzed the spatial distribution of 53BP1, phosphorylatedATM, and gammaH2AX RIF in cells irradiated with high linear energytransfer (LET) radiation and low LET. Since energy is randomly depositedalong high-LET particle paths, RIF along these paths should also berandomly distributed. The probability to induce DSB can be derived fromDNA fragment data measured experimentally by pulsed-field gelelectrophoresis. We used this probability in Monte Carlo simulations topredict DSB locations in synthetic nuclei geometrically described by acomplete set of human chromosomes, taking into account microscope opticsfrom real experiments. As expected, simulations produced DNA-weightedrandom (Poisson) distributions. In contrast, the distributions of RIFobtained as early as 5 min after exposure to high LET (1 GeV/amu Fe) werenon-random. This deviation from the expected DNA-weighted random patterncan be further characterized by "relative DNA image measurements." Thisnovel imaging approach shows that RIF were located preferentially at theinterface between high and low DNA density regions, and were morefrequent than predicted in regions with lower DNA density. The samepreferential nuclear location was also measured for RIF induced by 1 Gyof low-LET radiation. This deviation from random behavior was evidentonly 5 min after irradiation for phosphorylated ATM RIF, while gammaH2AXand 53BP1 RIF showed pronounced deviations up to 30 min after exposure.These data suggest that DNA damage induced foci are restricted to certainregions of the nucleus of human epithelial cells. It is possible that DNAlesions are collected in these nuclear sub-domains for more efficientrepair.

  1. Spectral-domain OCT imaging using a spectrally flexible wavelength-swept fiber laser based on dispersion tuning

    NASA Astrophysics Data System (ADS)

    Takubo, Y.; Yamashita, S.

    2014-05-01

    The broadband source with the arbitrary spectrum based on dispersion tuning technique was demonstrated. While a dispersion-tuned wavelength-swept laser is capable of fast and widely wavelength sweep, it can also be used as a broadband spectrally-flexible source by controlling the sweep waveform. It is the first demonstration of spectrallytunable source to the best of our knowledge. We used the dispersion-tuned laser as a broadband source for SD-OCT system by synchronizing sweep rate of a laser and exposure time of a CCD camera in SD-OCT system. We successfully obtained the images of an adhesive tape and a human finger.

  2. Solution structure of the PsIAA4 oligomerization domain reveals interaction modes for transcription factors in early auxin response.

    PubMed

    Dinesh, Dhurvas Chandrasekaran; Kovermann, Michael; Gopalswamy, Mohanraj; Hellmuth, Antje; Calderón Villalobos, Luz Irina A; Lilie, Hauke; Balbach, Jochen; Abel, Steffen

    2015-05-12

    The plant hormone auxin activates primary response genes by facilitating proteolytic removal of auxin/indole-3-acetic acid (AUX/IAA)-inducible repressors, which directly bind to transcriptional auxin response factors (ARF). Most AUX/IAA and ARF proteins share highly conserved C-termini mediating homotypic and heterotypic interactions within and between both protein families. The high-resolution NMR structure of C-terminal domains III and IV of the AUX/IAA protein PsIAA4 from pea (Pisum sativum) revealed a globular ubiquitin-like β-grasp fold with homologies to the Phox and Bem1p (PB1) domain. The PB1 domain of wild-type PsIAA4 features two distinct surface patches of oppositely charged amino acid residues, mediating front-to-back multimerization via electrostatic interactions. Mutations of conserved basic or acidic residues on either face suppressed PsIAA4 PB1 homo-oligomerization in vitro and confirmed directional interaction of full-length PsIAA4 in vivo (yeast two-hybrid system). Mixing of oppositely mutated PsIAA4 PB1 monomers enabled NMR mapping of the negatively charged interface of the reconstituted PsIAA4 PB1 homodimer variant, whose stoichiometry (1:1) and equilibrium binding constant (KD ∼ 6.4 μM) were determined by isothermal titration calorimetry. In silico protein-protein docking studies based on NMR and yeast interaction data derived a model of the PsIAA4 PB1 homodimer, which is comparable with other PB1 domain dimers, but indicated considerable differences between the homodimeric interfaces of AUX/IAA and ARF PB1 domains. Our study provides an impetus for elucidating the molecular determinants that confer specificity to complex protein-protein interaction circuits between members of the two central families of transcription factors important to the regulation of auxin-responsive gene expression. PMID:25918389

  3. Solution structure of the PsIAA4 oligomerization domain reveals interaction modes for transcription factors in early auxin response.

    PubMed

    Dinesh, Dhurvas Chandrasekaran; Kovermann, Michael; Gopalswamy, Mohanraj; Hellmuth, Antje; Calderón Villalobos, Luz Irina A; Lilie, Hauke; Balbach, Jochen; Abel, Steffen

    2015-05-12

    The plant hormone auxin activates primary response genes by facilitating proteolytic removal of auxin/indole-3-acetic acid (AUX/IAA)-inducible repressors, which directly bind to transcriptional auxin response factors (ARF). Most AUX/IAA and ARF proteins share highly conserved C-termini mediating homotypic and heterotypic interactions within and between both protein families. The high-resolution NMR structure of C-terminal domains III and IV of the AUX/IAA protein PsIAA4 from pea (Pisum sativum) revealed a globular ubiquitin-like β-grasp fold with homologies to the Phox and Bem1p (PB1) domain. The PB1 domain of wild-type PsIAA4 features two distinct surface patches of oppositely charged amino acid residues, mediating front-to-back multimerization via electrostatic interactions. Mutations of conserved basic or acidic residues on either face suppressed PsIAA4 PB1 homo-oligomerization in vitro and confirmed directional interaction of full-length PsIAA4 in vivo (yeast two-hybrid system). Mixing of oppositely mutated PsIAA4 PB1 monomers enabled NMR mapping of the negatively charged interface of the reconstituted PsIAA4 PB1 homodimer variant, whose stoichiometry (1:1) and equilibrium binding constant (KD ∼ 6.4 μM) were determined by isothermal titration calorimetry. In silico protein-protein docking studies based on NMR and yeast interaction data derived a model of the PsIAA4 PB1 homodimer, which is comparable with other PB1 domain dimers, but indicated considerable differences between the homodimeric interfaces of AUX/IAA and ARF PB1 domains. Our study provides an impetus for elucidating the molecular determinants that confer specificity to complex protein-protein interaction circuits between members of the two central families of transcription factors important to the regulation of auxin-responsive gene expression.

  4. Structure of an Arrestin2-clathrin Complex Reveals a Novel Clathrin Binding Domain that Modulates Receptor Trafficking

    SciTech Connect

    Kang, D.; Kern, R; Puthenveedu, M; von Zastrow, M; Williams, J; Benovic, J

    2009-01-01

    Non-visual arrestins play a pivotal role as adaptor proteins in regulating the signaling and trafficking of multiple classes of receptors. Although arrestin interaction with clathrin, AP-2, and phosphoinositides contributes to receptor trafficking, little is known about the configuration and dynamics of these interactions. Here, we identify a novel interface between arrestin2 and clathrin through x-ray diffraction analysis. The intrinsically disordered clathrin binding box of arrestin2 interacts with a groove between blades 1 and 2 in the clathrin {beta}-propeller domain, whereas an 8-amino acid splice loop found solely in the long isoform of arrestin2 (arrestin2L) interacts with a binding pocket formed by blades 4 and 5 in clathrin. The apposition of the two binding sites in arrestin2L suggests that they are exclusive and may function in higher order macromolecular structures. Biochemical analysis demonstrates direct binding of clathrin to the splice loop in arrestin2L, whereas functional analysis reveals that both binding domains contribute to the receptor-dependent redistribution of arrestin2L to clathrin-coated pits. Mutagenesis studies reveal that the clathrin binding motif in the splice loop is (L/I){sub 2}GXL. Taken together, these data provide a framework for understanding the dynamic interactions between arrestin2 and clathrin and reveal an essential role for this interaction in arrestin-mediated endocytosis.

  5. Structure of the Trichomonas vaginalis Myb3 DNA-binding domain bound to a promoter sequence reveals a unique C-terminal β-hairpin conformation.

    PubMed

    Wei, Shu-Yi; Lou, Yuan-Chao; Tsai, Jia-Yin; Ho, Meng-Ru; Chou, Chun-Chi; Rajasekaran, M; Hsu, Hong-Ming; Tai, Jung-Hsiang; Hsiao, Chwan-Deng; Chen, Chinpan

    2012-01-01

    Trichomonas vaginalis Myb3 transcription factor (tvMyb3) recognizes the MRE-1 promoter sequence and regulates ap65-1 gene, which encodes a hydrogenosomal malic enzyme that may play a role in the cytoadherence of the parasite. Here, we identified tvMyb3(53-180) as the essential fragment for DNA recognition and report the crystal structure of tvMyb3(53-180) bound to MRE-1 DNA. The N-terminal fragment adopts the classical conformation of an Myb DNA-binding domain, with the third helices of R2 and R3 motifs intercalating in the major groove of DNA. The C-terminal extension forms a β-hairpin followed by a flexible tail, which is stabilized by several interactions with the R3 motif and is not observed in other Myb proteins. Interestingly, this unique C-terminal fragment does not stably connect with DNA in the complex structure but is involved in DNA binding, as demonstrated by NMR chemical shift perturbation, (1)H-(15)N heteronuclear-nuclear Overhauser effect and intermolecular paramagnetic relaxation enhancement. Site-directed mutagenesis also revealed that this C-terminal fragment is crucial for DNA binding, especially the residue Arg(153) and the fragment K(170)KRK(173). We provide a structural basis for MRE-1 DNA recognition and suggest a possible post-translational regulation of tvMyb3 protein. PMID:21908401

  6. Functional Interactions of the HHCC Domain of Moloney Murine Leukemia Virus Integrase Revealed by Nonoverlapping Complementation and Zinc-Dependent Dimerization

    PubMed Central

    Yang, Fan; Leon, Oscar; Greenfield, Norma J.; Roth, Monica J.

    1999-01-01

    The retroviral integrase (IN) is required for the integration of viral DNA into the host genome. The N terminus of IN contains an HHCC zinc finger-like motif, which is conserved among all retroviruses. To study the function of the HHCC domain of Moloney murine leukemia virus IN, the first N-terminal 105 residues were expressed independently. This HHCC domain protein is found to complement a completely nonoverlapping construct lacking the HHCC domain for strand transfer, 3′ processing and coordinated disintegration reactions, revealing trans interactions among IN domains. The HHCC domain protein binds zinc at a 1:1 ratio and changes its conformation upon binding to zinc. The presence of zinc within the HHCC domain stimulates selective integration processes. Zinc promotes the dimerization of the HHCC domain and protects it from N-ethylmaleimide modification. These studies dissect and define the requirement for the HHCC domain, the exact function of which remains unknown. PMID:9971758

  7. Image analysis reveals that Escherichia coli RecA protein consists of two domains.

    PubMed Central

    Yu, X; Egelman, E H

    1990-01-01

    The Escherichia coli RecA protein catalyzes homologous genetic recombination by forming helical polymers around DNA molecules. These polymers have an ATPase activity, which is essential for the movement of strands between two DNA molecules. One obstacle to structural studies of the RecA filament has been that the ATPase results in a dynamical polymer containing a mixture of states with respect to the bound ATP and its hydrolytic products. We have formed filaments which are trapped in the ADP-Pi state by substituting AIF4- for the Pi, and have used these stable filaments to generate a three-dimensional reconstruction from electron micrographs. The resolution of the reconstruction is sufficient to resolve the 38-k RecA subunit into two nearly equal domains. This reconstruction provides the most detailed view yet of the RecA protein, and serves as a framework within which existing biochemical data on RecA can be understood. Images FIGURE 1 FIGURE 8 FIGURE 12 PMID:2137715

  8. Solution structure of Atg8 reveals conformational polymorphism of the N-terminal domain

    SciTech Connect

    Schwarten, Melanie; Stoldt, Matthias; Mohrlueder, Jeannine; Willbold, Dieter

    2010-05-07

    During autophagy a crescent shaped like membrane is formed, which engulfs the material that is to be degraded. This membrane grows further until its edges fuse to form the double membrane covered autophagosome. Atg8 is a protein, which is required for this initial step of autophagy. Therefore, a multistage conjugation process of newly synthesized Atg8 to phosphatidylethanolamine is of critical importance. Here we present the high resolution structure of unprocessed Atg8 determined by nuclear magnetic resonance spectroscopy. Its C-terminal subdomain shows a well-defined ubiquitin-like fold with slightly elevated mobility in the pico- to nanosecond timescale as determined by heteronuclear NOE data. In comparison to unprocessed Atg8, cleaved Atg8{sup G116} shows a decreased mobility behaviour. The N-terminal domain adopts different conformations within the micro- to millisecond timescale. The possible biological relevance of the differences in dynamic behaviours between both subdomains as well as between the cleaved and uncleaved forms is discussed.

  9. Crystal structure of the APOBEC3G catalytic domain reveals potential oligomerization interfaces

    PubMed Central

    Shandilya, Shivender M. D.; Nalam, Madhavi N. L.; Nalivaika, Ellen A.; Gross, Phillip J.; Valesano, John C.; Shindo, Keisuke; Li, Ming; Munson, Mary; Harjes, Elena; Kouno, Takahide; Matsuo, Hiroshi; Harris, Reuben S.; Somasundaran, Mohan; Schiffer, Celia A.

    2010-01-01

    Summary APOBEC3G is a DNA cytidine deaminase that has anti-viral activity against HIV-1 and other pathogenic viruses. In this study the crystal structure of the catalytically active C-terminal domain was determined to 2.25 Å. This structure corroborates features previously observed in NMR studies, a bulge in the second β-strand and a lengthening of the second α-helix. Oligomerization is postulated to be critical for the function of APOBEC3G. In this structure, four extensive intermolecular interfaces are observed suggesting potential models for APOBEC3G oligomerization. The structural and functional significance of these interfaces was probed by solution NMR and disruptive variants were designed and tested for DNA deaminase and anti-HIV activities. The variant designed to disrupt the most extensive interface lost both activities. NMR solution data provides evidence that another interface, which coordinates a novel zinc site, also exists. Thus, the observed crystallographic interfaces of APOBEC3G may be important for both oligomerization and function. PMID:20152150

  10. Crystal Structure of the APOBEC3G Catalytic Domain Reveals Potential Oligomerization Interfaces

    SciTech Connect

    Shandilya, Shivender M.D.; Nalam, Madhavi N.L.; Nalivaika, Ellen A.; Gross, Phillip J.; Valesano, Johnathan C.; Shindo, Keisuke; Li, Ming; Munson, Mary; Royer, William E.; Harjes, Elena; Kono, Takahide; Matsuo, Hiroshi; Harris, Reuben S.; Somasundaran, Mohan; Schiffer, Celia A.

    2010-02-11

    APOBEC3G is a DNA cytidine deaminase that has antiviral activity against HIV-1 and other pathogenic viruses. In this study the crystal structure of the catalytically active C-terminal domain was determined to 2.25 {angstrom}. This structure corroborates features previously observed in nuclear magnetic resonance (NMR) studies, a bulge in the second {beta} strand and a lengthening of the second {alpha} helix. Oligomerization is postulated to be critical for the function of APOBEC3G. In this structure, four extensive intermolecular interfaces are observed, suggesting potential models for APOBEC3G oligomerization. The structural and functional significance of these interfaces was probed by solution NMR and disruptive variants were designed and tested for DNA deaminase and anti-HIV activities. The variant designed to disrupt the most extensive interface lost both activities. NMR solution data provides evidence that another interface, which coordinates a novel zinc site, also exists. Thus, the observed crystallographic interfaces of APOBEC3G may be important for both oligomerization and function.

  11. A synthetic prestin reveals protein domains and molecular operation of outer hair cell piezoelectricity

    PubMed Central

    Schaechinger, Thorsten J; Gorbunov, Dmitry; Halaszovich, Christian R; Moser, Tobias; Kügler, Sebastian; Fakler, Bernd; Oliver, Dominik

    2011-01-01

    Prestin, a transporter-like protein of the SLC26A family, acts as a piezoelectric transducer that mediates the fast electromotility of outer hair cells required for cochlear amplification and auditory acuity in mammals. Non-mammalian prestin orthologues are anion transporters without piezoelectric activity. Here, we generated synthetic prestin (SynPres), a chimera of mammalian and non-mammalian prestin exhibiting both, piezoelectric properties and anion transport. SynPres delineates two distinct domains in the protein's transmembrane core that are necessary and sufficient for generating electromotility and associated non-linear charge movement (NLC). Functional analysis of SynPres showed that the amplitude of NLC and hence electromotility are determined by the transport of monovalent anions. Thus, prestin-mediated electromotility is a dual-step process: transport of anions by an alternate access cycle, followed by an anion-dependent transition generating electromotility. The findings define structural and functional determinants of prestin's piezoelectric activity and indicate that the electromechanical process evolved from the ancestral transport mechanism. PMID:21701557

  12. The C Terminus of the Core β-Ladder Domain in Japanese Encephalitis Virus Nonstructural Protein 1 Is Flexible for Accommodation of Heterologous Epitope Fusion

    PubMed Central

    Yen, Li-Chen; Liao, Jia-Teh; Lee, Hwei-Jen; Chou, Wei-Yuan; Chen, Chun-Wei; Lin, Yi-Ling

    2015-01-01

    ABSTRACT NS1 is the only nonstructural protein that enters the lumen of the endoplasmic reticulum (ER), where NS1 is glycosylated, forms a dimer, and is subsequently secreted during flavivirus replication as dimers or hexamers, which appear to be highly immunogenic to the infected host, as protective immunity can be elicited against homologous flavivirus infections. Here, by using a trans-complementation assay, we identified the C-terminal end of NS1 derived from Japanese encephalitis virus (JEV), which was more flexible than other regions in terms of housing foreign epitopes without a significant impact on virus replication. This mapped flexible region is located in the conserved tip of the core β-ladder domain of the multimeric NS1 structure and is also known to contain certain linear epitopes, readily triggering specific antibody responses from the host. Despite becoming attenuated, recombinant JEV with insertion of a neutralizing epitope derived from enterovirus 71 (EV71) into the C-terminal end of NS1 not only could be normally released from infected cells, but also induced dual protective immunity for the host to counteract lethal challenge with either JEV or EV71 in neonatal mice. These results indicated that the secreted multimeric NS1 of flaviviruses may serve as a natural protein carrier to render epitopes of interest more immunogenic in the C terminus of the core β-ladder domain. IMPORTANCE The positive-sense RNA genomes of mosquito-borne flaviviruses appear to be flexible in terms of accommodating extra insertions of short heterologous antigens into their virus genes. Here, we illustrate that the newly identified C terminus of the core β-ladder domain in NS1 could be readily inserted into entities such as EV71 epitopes, and the resulting NS1-epitope fusion proteins appeared to maintain normal virus replication, secretion ability, and multimeric formation from infected cells. Nonetheless, such an insertion attenuated the recombinant JEV in mice

  13. Touchscreen-paradigm for mice reveals cross-species evidence for an antagonistic relationship of cognitive flexibility and stability

    PubMed Central

    Richter, S. Helene; Vogel, Anne S.; Ueltzhöffer, Kai; Muzzillo, Chiara; Vogt, Miriam A.; Lankisch, Katja; Armbruster-Genç, Diana J. N.; Riva, Marco A.; Fiebach, Christian J.; Gass, Peter; Vollmayr, Barbara

    2014-01-01

    The abilities to either flexibly adjust behavior according to changing demands (cognitive flexibility) or to maintain it in the face of potential distractors (cognitive stability) are critical for adaptive behavior in many situations. Recently, a novel human paradigm has found individual differences of cognitive flexibility and stability to be related to common prefrontal networks. The aims of the present study were, first, to translate this paradigm from humans to mice and, second, to test conceptual predictions of a computational model of prefrontal working memory mechanisms, the Dual State Theory, which assumes an antagonistic relation between cognitive flexibility and stability. Mice were trained in a touchscreen-paradigm to discriminate visual cues. The task involved “ongoing” and cued “switch” trials. In addition distractor cues were interspersed to test the ability to resist distraction, and an ambiguous condition assessed the spontaneous switching between two possible responses without explicit cues. While response times did not differ substantially between conditions, error rates (ER) increased from the “ongoing” baseline condition to the most complex condition, where subjects were required to switch between two responses in the presence of a distracting cue. Importantly, subjects switching more often spontaneously were found to be more distractible by task irrelevant cues, but also more flexible in situations, where switching was required. These results support a dichotomy of cognitive flexibility and stability as predicted by the Dual State Theory. Furthermore, they replicate critical aspects of the human paradigm, which indicates the translational potential of the testing procedure and supports the use of touchscreen procedures in preclinical animal research. PMID:24834036

  14. The C-terminal domain revealed in the structure of RNA polymerase II.

    PubMed

    Meredith, G D; Chang, W H; Li, Y; Bushnell, D A; Darst, S A; Kornberg, R D

    1996-05-10

    The location of the CTD in the structure of RNA polymerase II has been determined by electron crystallography at 16 A resolution. Difference maps between wild-type enzyme and that lacking the CTD, or with an antibody fragment bound in place of the CTD, disclose the site of attachment of the CTD to the polymerase. Appropriate display of the polymerase structure reveals the CTD as an element projecting from this site of attachment into solution. A low relative density and large volume of this element identify the CTD as a conformationally mobile region.

  15. X-Ray Crystal Structure of a TRPM Assembly Domain Reveals An Antiparallel Four-Stranded Coiled-Coil

    SciTech Connect

    Fujiwara, Y.; Minor, D.L.; Jr.

    2009-05-18

    Transient receptor potential (TRP) channels comprise a large family of tetrameric cation-selective ion channels that respond to diverse forms of sensory input. Earlier studies showed that members of the TRPM subclass possess a self-assembling tetrameric C-terminal cytoplasmic coiled-coil domain that underlies channel assembly and trafficking. Here, we present the high-resolution crystal structure of the coiled-coil domain of the channel enzyme TRPM7. The crystal structure, together with biochemical experiments, reveals an unexpected four-stranded antiparallel coiled-coil architecture that bears unique features relative to other antiparallel coiled-coils. Structural analysis indicates that a limited set of interactions encode assembly specificity determinants and uncovers a previously unnoticed segregation of TRPM assembly domains into two families that correspond with the phylogenetic divisions seen for the complete subunits. Together, the data provide a framework for understanding the mechanism of TRPM channel assembly and highlight the diversity of forms found in the coiled-coil fold.

  16. X-ray crystal structure of a TRPM assembly domain reveals an antiparallel four-stranded coiled-coil.

    PubMed

    Fujiwara, Yuichiro; Minor, Daniel L

    2008-11-21

    Transient receptor potential (TRP) channels comprise a large family of tetrameric cation-selective ion channels that respond to diverse forms of sensory input. Earlier studies showed that members of the TRPM subclass possess a self-assembling tetrameric C-terminal cytoplasmic coiled-coil domain that underlies channel assembly and trafficking. Here, we present the high-resolution crystal structure of the coiled-coil domain of the channel enzyme TRPM7. The crystal structure, together with biochemical experiments, reveals an unexpected four-stranded antiparallel coiled-coil architecture that bears unique features relative to other antiparallel coiled-coils. Structural analysis indicates that a limited set of interactions encode assembly specificity determinants and uncovers a previously unnoticed segregation of TRPM assembly domains into two families that correspond with the phylogenetic divisions seen for the complete subunits. Together, the data provide a framework for understanding the mechanism of TRPM channel assembly and highlight the diversity of forms found in the coiled-coil fold. PMID:18782578

  17. Structures of KIX domain of CBP in complex with two FOXO3a transactivation domains reveal promiscuity and plasticity in coactivator recruitment.

    PubMed

    Wang, Feng; Marshall, Christopher B; Yamamoto, Kazuo; Li, Guang-Yao; Gasmi-Seabrook, Geneviève M C; Okada, Hitoshi; Mak, Tak W; Ikura, Mitsuhiko

    2012-04-17

    Forkhead box class O 3a (FOXO3a) is a transcription factor and tumor suppressor linked to longevity that determines cell fate through activating transcription of cell differentiation, survival, and apoptotic genes. Recruitment of the coactivator CBP/p300 is a crucial step in transcription, and we revealed that in addition to conserved region 3 (CR3) of FOXO3a, the C-terminal segment of CR2 (CR2C) binds CBP/p300 and contributes to transcriptional activity. CR2C and CR3 of FOXO3a interact with the KIX domain of CBP/p300 at both "MLL" and "c-Myb" binding sites simultaneously. A FOXO3a CR2C-CR3 peptide in complex with KIX exists in equilibrium between two equally populated conformational states, one of which has CR2C bound to the MLL site and CR3 bound to the c-Myb site, whereas in the other, CR2C and CR3 bind the c-Myb and MLL sites, respectively. This promiscuous interaction between FOXO3a and CBP/p300 is further supported by additional binding sites on CBP/p300, namely, the TAZ1 and TAZ2 domains. In functional studies, our structure-guided mutagenesis showed that both CR2C and CR3 are involved in the activation of certain endogenous FOXO3a target genes. Further, phosphorylation of S626, a known AMP-dependent protein kinase target in CR3, increased affinity for CBP/p300 and the phosphomimetic mutation enhanced transactivation of luciferase. These findings underscore the significance of promiscuous multivalent interactions and posttranslational modification in the recruitment of transcriptional coactivators, which may allow transcription factors to adapt to various gene-specific genomic and chromatin structures and respond to cell signals. PMID:22474372

  18. Methyl-CpG-binding domain sequencing reveals a prognostic methylation signature in neuroblastoma

    PubMed Central

    Decock, Anneleen; Ongenaert, Maté; Cannoodt, Robrecht; Verniers, Kimberly; De Wilde, Bram; Laureys, Geneviève; Van Roy, Nadine; Berbegall, Ana P.; Bienertova-Vasku, Julie; Bown, Nick; Clément, Nathalie; Combaret, Valérie; Haber, Michelle; Hoyoux, Claire; Murray, Jayne; Noguera, Rosa; Pierron, Gaelle; Schleiermacher, Gudrun; Schulte, Johannes H.; Stallings, Ray L.; Tweddle, Deborah A.; De Preter, Katleen; Speleman, Frank; Vandesompele, Jo

    2016-01-01

    Accurate assessment of neuroblastoma outcome prediction remains challenging. Therefore, this study aims at establishing novel prognostic tumor DNA methylation biomarkers. In total, 396 low- and high-risk primary tumors were analyzed, of which 87 were profiled using methyl-CpG-binding domain (MBD) sequencing for differential methylation analysis between prognostic patient groups. Subsequently, methylation-specific PCR (MSP) assays were developed for 78 top-ranking differentially methylated regions and tested on two independent cohorts of 132 and 177 samples, respectively. Further, a new statistical framework was used to identify a robust set of MSP assays of which the methylation score (i.e. the percentage of methylated assays) allows accurate outcome prediction. Survival analyses were performed on the individual target level, as well as on the combined multimarker signature. As a result of the differential DNA methylation assessment by MBD sequencing, 58 of the 78 MSP assays were designed in regions previously unexplored in neuroblastoma, and 36 are located in non-promoter or non-coding regions. In total, 5 individual MSP assays (located in CCDC177, NXPH1, lnc-MRPL3-2, lnc-TREX1-1 and one on a region from chromosome 8 with no further annotation) predict event-free survival and 4 additional assays (located in SPRED3, TNFAIP2, NPM2 and CYYR1) also predict overall survival. Furthermore, a robust 58-marker methylation signature predicting overall and event-free survival was established. In conclusion, this study encompasses the largest DNA methylation biomarker study in neuroblastoma so far. We identified and independently validated several novel prognostic biomarkers, as well as a prognostic 58-marker methylation signature. PMID:26646589

  19. Phylogeography of Y-Chromosome Haplogroup I Reveals Distinct Domains of Prehistoric Gene Flow in Europe

    PubMed Central

    Rootsi, Siiri; Magri, Chiara; Kivisild, Toomas; Benuzzi, Giorgia; Help, Hela; Bermisheva, Marina; Kutuev, Ildus; Barać, Lovorka; Peričić, Marijana; Balanovsky, Oleg; Pshenichnov, Andrey; Dion, Daniel; Grobei, Monica; Zhivotovsky, Lev A.; Battaglia, Vincenza; Achilli, Alessandro; Al-Zahery, Nadia; Parik, Jüri; King, Roy; Cinnioğlu, Cengiz; Khusnutdinova, Elsa; Rudan, Pavao; Balanovska, Elena; Scheffrahn, Wolfgang; Simonescu, Maya; Brehm, Antonio; Goncalves, Rita; Rosa, Alexandra; Moisan, Jean-Paul; Chaventre, Andre; Ferak, Vladimir; Füredi, Sandor; Oefner, Peter J.; Shen, Peidong; Beckman, Lars; Mikerezi, Ilia; Terzić, Rifet; Primorac, Dragan; Cambon-Thomsen, Anne; Krumina, Astrida; Torroni, Antonio; Underhill, Peter A.; Santachiara-Benerecetti, A. Silvana; Villems, Richard; Semino, Ornella

    2004-01-01

    To investigate which aspects of contemporary human Y-chromosome variation in Europe are characteristic of primary colonization, late-glacial expansions from refuge areas, Neolithic dispersals, or more recent events of gene flow, we have analyzed, in detail, haplogroup I (Hg I), the only major clade of the Y phylogeny that is widespread over Europe but virtually absent elsewhere. The analysis of 1,104 Hg I Y chromosomes, which were identified in the survey of 7,574 males from 60 population samples, revealed several subclades with distinct geographic distributions. Subclade I1a accounts for most of Hg I in Scandinavia, with a rapidly decreasing frequency toward both the East European Plain and the Atlantic fringe, but microsatellite diversity reveals that France could be the source region of the early spread of both I1a and the less common I1c. Also, I1b*, which extends from the eastern Adriatic to eastern Europe and declines noticeably toward the southern Balkans and abruptly toward the periphery of northern Italy, probably diffused after the Last Glacial Maximum from a homeland in eastern Europe or the Balkans. In contrast, I1b2 most likely arose in southern France/Iberia. Similarly to the other subclades, it underwent a postglacial expansion and marked the human colonization of Sardinia ∼9,000 years ago. PMID:15162323

  20. Crystal structure of the Agrobacterium virulence complex VirE1-VirE2 reveals a flexible protein that can accommodate different partners.

    PubMed

    Dym, Orly; Albeck, Shira; Unger, Tamar; Jacobovitch, Jossef; Branzburg, Anna; Michael, Yigal; Frenkiel-Krispin, Daphna; Wolf, Sharon Grayer; Elbaum, Michael

    2008-08-12

    Agrobacterium tumefaciens infects its plant hosts by a mechanism of horizontal gene transfer. This capability has led to its widespread use in artificial genetic transformation. In addition to DNA, the bacterium delivers an abundant ssDNA binding protein, VirE2, whose roles in the host include protection from cytoplasmic nucleases and adaptation for nuclear import. In Agrobacterium, VirE2 is bound to its acidic chaperone VirE1. When expressed in vitro in the absence of VirE1, VirE2 is prone to oligomerization and forms disordered filamentous aggregates. These filaments adopt an ordered solenoidal form in the presence of ssDNA, which was characterized previously by electron microscopy and three-dimensional image processing. VirE2 coexpressed in vitro with VirE1 forms a soluble heterodimer. VirE1 thus prevents VirE2 oligomerization and competes with its binding to ssDNA. We present here a crystal structure of VirE2 in complex with VirE1, showing that VirE2 is composed of two independent domains presenting a novel fold, joined by a flexible linker. Electrostatic interactions with VirE1 cement the two domains of VirE2 into a locked form. Comparison with the electron microscopy structure indicates that the VirE2 domains adopt different relative orientations. We suggest that the flexible linker between the domains enables VirE2 to accommodate its different binding partners. PMID:18678909

  1. Crystal structure of the Agrobacterium virulence complex VirE1-VirE2 reveals a flexible protein that can accommodate different partners

    PubMed Central

    Dym, Orly; Albeck, Shira; Unger, Tamar; Jacobovitch, Jossef; Branzburg, Anna; Michael, Yigal; Frenkiel-Krispin, Daphna; Wolf, Sharon Grayer; Elbaum, Michael

    2008-01-01

    Agrobacterium tumefaciens infects its plant hosts by a mechanism of horizontal gene transfer. This capability has led to its widespread use in artificial genetic transformation. In addition to DNA, the bacterium delivers an abundant ssDNA binding protein, VirE2, whose roles in the host include protection from cytoplasmic nucleases and adaptation for nuclear import. In Agrobacterium, VirE2 is bound to its acidic chaperone VirE1. When expressed in vitro in the absence of VirE1, VirE2 is prone to oligomerization and forms disordered filamentous aggregates. These filaments adopt an ordered solenoidal form in the presence of ssDNA, which was characterized previously by electron microscopy and three-dimensional image processing. VirE2 coexpressed in vitro with VirE1 forms a soluble heterodimer. VirE1 thus prevents VirE2 oligomerization and competes with its binding to ssDNA. We present here a crystal structure of VirE2 in complex with VirE1, showing that VirE2 is composed of two independent domains presenting a novel fold, joined by a flexible linker. Electrostatic interactions with VirE1 cement the two domains of VirE2 into a locked form. Comparison with the electron microscopy structure indicates that the VirE2 domains adopt different relative orientations. We suggest that the flexible linker between the domains enables VirE2 to accommodate its different binding partners. PMID:18678909

  2. Analysis of the chromatin domain organisation around the plastocyanin gene reveals an MAR-specific sequence element in Arabidopsis thaliana.

    PubMed

    van Drunen, C M; Oosterling, R W; Keultjes, G M; Weisbeek, P J; van Driel, R; Smeekens, S C

    1997-10-01

    The Arabidopsis thaliana genome is currently being sequenced, eventually leading towards the unravelling of all potential genes. We wanted to gain more insight into the way this genome might be organized at the ultrastructural level. To this extent we identified matrix attachment regions demarking potential chromatin domains, in a 16 kb region around the plastocyanin gene. The region was cloned and sequenced revealing six genes in addition to the plastocyanin gene. Using an heterologous in vitro nuclear matrix binding assay, to search for evolutionary conserved matrix attachment regions (MARs), we identified three such MARs. These three MARs divide the region into two small chromatin domains of 5 kb, each containing two genes. Comparison of the sequence of the three MARs revealed a degenerated 21 bp sequence that is shared between these MARs and that is not found elsewhere in the region. A similar sequence element is also present in four other MARs of Arabidopsis.Therefore, this sequence may constitute a landmark for the position of MARs in the genome of this plant. In a genomic sequence database of Arabidopsis the 21 bp element is found approximately once every 10 kb. The compactness of the Arabidopsis genome could account for the high incidence of MARs and MRSs we observed.

  3. Calcification and measurements of net proton and oxygen flux reveal subcellular domains in Acetabularia acetabulum.

    PubMed

    Serikawa, K A; Porterfield, D M; Smith, P J; Mandoli, D F

    2000-09-01

    Vegetative adults of Acetabularia acetabulum (L.) Silva were studied as a model system for subcellular patterning in plants, and a description of several phenotypic and physiological characteristics that reveal patterns of subcellular differentiation in this unicellular macroalga was undertaken. Initially, calcification patterns were studied. Under favorable conditions, the rhizoid and most of the stalk calcified. Only the apical 10-20% of the stalk and a small region adjacent to the rhizoid remained uncalcified. Calcification in algae has been reported to result from a biologically mediated local increase in alkalinity. To test this model extracellular pH and extracellular hydrogen ion gradients were examined with ion-selective, self-referencing, electrodes. In the light, A. acetabulum displayed a general pattern of extracellular alkalinity around the entire alga, although in some individuals the region near the rhizoid and the rhizoid itself displayed extracellular acidity. Acetabularia acetabulum also displayed net hydrogen ion influx at the rhizoid and the apical half of the stalk, variable flux in the lower part of the stalk, and net hydrogen ion efflux at the base of the stalk next to the rhizoid. The lack of complete correlation between external pH patterns and calcification suggests that other factors contribute to the control of calcification in this alga. To examine whether net hydrogen ion flux patterns correlated with photosynthetic or respiration patterns, oxygen flux was measured along the stalk using self-referencing O2 electrodes. Photosynthetic oxygen evolution occurred at comparable levels throughout the stalk, with less evolution in the rhizoid. Respiration mainly occurred near and in the rhizoid, with less O2 consumption occurring more apically along the stalk. Our studies of calcification patterns, net hydrogen ion flux and O2 flux revealed several overlapping patterns of subcellular differentiation in A. acetabulum.

  4. Flexible lid to the p53-binding domain of human Mdm2: implications for p53 regulation.

    PubMed

    McCoy, Mark A; Gesell, Jennifer J; Senior, Mary M; Wyss, Daniel F

    2003-02-18

    The stabilization of p53 against Mdm2-mediated degradation is an important event in DNA damage response. Initial models of p53 stabilization focused on posttranslational modification of p53 that would disrupt the p53-Mdm2 interaction. The N-terminal regions of both p53 and Mdm2 are modified in vivo in response to cellular stress, suggesting that modifications to Mdm2 also may affect the p53-Mdm2 interaction. Our NMR studies of apo-Mdm2 have found that, in addition to Mdm2 residues 25-109 that form the well ordered p53-binding domain that was observed in the p52-Mdm2 complex, Mdm2 residues 16-24 form a lid that closes over the p53-binding site. The Mdm2 lid, which is strictly conserved in mammals, may help to stabilize apo-Mdm2. It also competes weakly with peptidic and nonpeptidic antagonists. Modifications to the Mdm2 lid may disrupt p53-Mdm2 binding leading to p53 stabilization. Mdm2 and Mdm4 possess nearly identical p53-binding domains but different lids suggesting that lid modifications may select for p53 binding.

  5. Arrangement of ribosomal genes in nucleolar domains revealed by detection of "Christmas tree" components.

    PubMed

    Mosgoeller, W; Schöfer, C; Steiner, M; Sylvester, J E; Hozák, P

    2001-12-01

    We investigated how the transcribing ribosomal genes ("Christmas trees") of HeLa cells are arranged in the nucleolus. Hypotonic conditions let the granular component disperse, while fibrillar centres and parts of the dense fibrillar component were resistant to low ionic strength conditions. Both remained within the former nucleolar territory. We used immunocytochemistry and in situ hybridisation at the light microscopic and ultrastructural level for the analysis of the internal nucleolar structures. The 5' ends of ribosomal RNA and ribosomal DNA sequences were found associated with the periphery of fibrillar centres. The hypotony-resistant parts of the dense fibrillar component did not contain the 5' end of the transcript or the gene. The downstream ribosomal DNA sequences were found in the nucleolar territory but not associated with any hypotony-resistant structures. The downstream ribosomal RNA revealed a similar distribution. We show that transcription initiation and transcript elongation occur in different molecular and structural environments. Transcription initiation is located at the periphery of fibrillar centres. Evidently the dense fibrillar component is non-homogeneous in molecular composition. Transcript elongation is continued in a part of the dense fibrillar component which is dissolved under intermediate hypotonic conditions. A structural model of nucleolar transcription is suggested.

  6. Characterization of DNA polymerase X from Thermus thermophilus HB8 reveals the POLXc and PHP domains are both required for 3'-5' exonuclease activity.

    PubMed

    Nakane, Shuhei; Nakagawa, Noriko; Kuramitsu, Seiki; Masui, Ryoji

    2009-04-01

    The X-family DNA polymerases (PolXs) comprise a highly conserved DNA polymerase family found in all kingdoms. Mammalian PolXs are known to be involved in several DNA-processing pathways including repair, but the cellular functions of bacterial PolXs are less known. Many bacterial PolXs have a polymerase and histidinol phosphatase (PHP) domain at their C-termini in addition to a PolX core (POLXc) domain, and possess 3'-5' exonuclease activity. Although both domains are highly conserved in bacteria, their molecular functions, especially for a PHP domain, are unknown. We found Thermus thermophilus HB8 PolX (ttPolX) has Mg(2+)/Mn(2+)-dependent DNA/RNA polymerase, Mn(2+)-dependent 3'-5' exonuclease and DNA-binding activities. We identified the domains of ttPolX by limited proteolysis and characterized their biochemical activities. The POLXc domain was responsible for the polymerase and DNA-binding activities but exonuclease activity was not detected for either domain. However, the POLXc and PHP domains interacted with each other and a mixture of the two domains had Mn(2+)-dependent 3'-5' exonuclease activity. Moreover, site-directed mutagenesis revealed catalytically important residues in the PHP domain for the 3'-5' exonuclease activity. Our findings provide a molecular insight into the functional domain organization of bacterial PolXs, especially the requirement of the PHP domain for 3'-5' exonuclease activity.

  7. Early doors (Edo) mutant mouse reveals the importance of period 2 (PER2) PAS domain structure for circadian pacemaking

    PubMed Central

    Militi, Stefania; Maywood, Elizabeth S.; Sandate, Colby R.; Chesham, Johanna E.; Parsons, Michael J.; Vibert, Jennifer L.; Joynson, Greg M.; Partch, Carrie L.; Hastings, Michael H.; Nolan, Patrick M.

    2016-01-01

    The suprachiasmatic nucleus (SCN) defines 24 h of time via a transcriptional/posttranslational feedback loop in which transactivation of Per (period) and Cry (cryptochrome) genes by BMAL1–CLOCK complexes is suppressed by PER–CRY complexes. The molecular/structural basis of how circadian protein complexes function is poorly understood. We describe a novel N-ethyl-N-nitrosourea (ENU)-induced mutation, early doors (Edo), in the PER-ARNT-SIM (PAS) domain dimerization region of period 2 (PER2) (I324N) that accelerates the circadian clock of Per2Edo/Edo mice by 1.5 h. Structural and biophysical analyses revealed that Edo alters the packing of the highly conserved interdomain linker of the PER2 PAS core such that, although PER2Edo complexes with clock proteins, its vulnerability to degradation mediated by casein kinase 1ε (CSNK1E) is increased. The functional relevance of this mutation is revealed by the ultrashort (<19 h) but robust circadian rhythms in Per2Edo/Edo; Csnk1eTau/Tau mice and the SCN. These periods are unprecedented in mice. Thus, Per2Edo reveals a direct causal link between the molecular structure of the PER2 PAS core and the pace of SCN circadian timekeeping. PMID:26903623

  8. A Conserved Hydrophobic Patch on Vβ Domains Revealed by TCRβ Chain Crystal Structures: Implications for Pre-TCR Dimerization

    PubMed Central

    Zhou, Bo; Chen, Qiang; Mallis, Robert J.; Zhang, Hongmin; Liu, Jin-huan; Reinherz, Ellis L.; Wang, Jia-huai

    2011-01-01

    The αβ T cell receptor (TCR) is a multimeric complex whose β chain plays a crucial role in thymocyte development as well as antigen recognition by mature T lymphocytes. We report here crystal structures of individual β subunits, termed N15β (Vβ5.2Dβ2Jβ2.6Cβ2) and N30β (Vβ13Dβ1Jβ1.1Cβ2), derived from two αβ TCRs specific for the immunodominant vesicular stomatitis virus octapeptide (VSV-8) bound to the murine H-2Kb MHC class I molecule. The crystal packing of the N15β structure reveals a homodimer formed through two Vβ domains. The Vβ/Vβ module is topologically very similar to the Vα/Vβ module in the N15αβ heterodimer. By contrast, in the N30β structure, the Vβ domain’s external hydrophobic CFG face is covered by the neighboring molecule’s Cβ domain. In conjunction with systematic investigation of previously published TCR single-subunit structures, we identified several conserved residues forming a concave hydrophobic patch at the center of the CFG outer face of the Vβ and other V-type Ig-like domains. This hydrophobic patch is shielded from solvent exposure in the crystal packing, implying that it is unlikely to be thermodynamically stable if exposed on the thymocyte surface. Accordingly, we propose a dimeric pre-TCR model distinct from those suggested previously by others and discuss its functional and structural implications. PMID:22566796

  9. Periplasmic domain of the sensor-kinase BvgS reveals a new paradigm for the Venus flytrap mechanism

    PubMed Central

    Herrou, Julien; Bompard, Coralie; Wintjens, René; Dupré, Elian; Willery, Eve; Villeret, Vincent; Locht, Camille; Antoine, Rudy; Jacob-Dubuisson, Françoise

    2010-01-01

    Two-component sensory transduction systems control important bacterial programs. In Bordetella pertussis, expression of the virulence regulon is controlled by the unorthodox BvgAS two-component system. BvgS is the prototype of a family of sensor-kinases that harbor periplasmic domains homologous to bacterial solute-binding proteins. Although BvgAS is active under laboratory conditions, no activating signal has been identified, only negative modulators. Here we show that the second periplasmic domain of BvgS interacts with modulators and adopts a Venus flytrap (VFT) fold. X-ray crystallography reveals that the two lobes of VFT2 delimitate a ligand-binding cavity enclosing fortuitous ligands. Most substitutions of putative ligand-binding residues in the VFT2 cavity keep BvgS active, and alteration of the cavity's electrostatic potential affects responsiveness to modulation. The crystal structure of this VFT2 variant conferring constitutive kinase activity to BvgS shows a closed cavity with another nonspecific ligand. Thus, VFT2 is closed and active without a specific agonist ligand, in contrast to typical VFTs. Modulators are antagonists of VFT2 that interrupt signaling. BvgAS is active for most of the B. pertussis infectious cycle, consistent with the proposed mechanism. PMID:20855615

  10. Single-molecule studies of the lysine riboswitch reveal effector-dependent conformational dynamics of the aptamer domain.

    PubMed

    Fiegland, Larry R; Garst, Andrew D; Batey, Robert T; Nesbitt, David J

    2012-11-13

    The lysine riboswitch is a cis-acting RNA genetic regulatory element found in the leader sequence of bacterial mRNAs coding for proteins related to biosynthesis or transport of lysine. Structural analysis of the lysine-binding aptamer domain of this RNA has revealed that it completely encapsulates the ligand and therefore must undergo a structural opening/closing upon interaction with lysine. In this work, single-molecule fluorescence resonance energy transfer (FRET) methods are used to monitor these ligand-induced structural transitions that are central to lysine riboswitch function. Specifically, a model FRET system has been developed for characterizing the lysine dissociation constant as well as the opening/closing rate constants for the Bacillus subtilis lysC aptamer domain. These techniques permit measurement of the dissociation constant (K(D)) for lysine binding of 1.7(5) mM and opening/closing rate constants of 1.4(3) s(-1) and 0.203(7) s(-1), respectively. These rates predict an apparent dissociation constant for lysine binding (K(D,apparent)) of 0.25(9) mM at near physiological ionic strength, which differs markedly from previous reports. PMID:23067368

  11. Single-Molecule Studies of the Lysine Riboswitch Reveal Effector Dependent Conformational Dynamics of the Aptamer Domain

    PubMed Central

    Fiegland, Larry R.; Garst, Andrew D.; Batey, Robert T.; Nesbitt, David J.

    2013-01-01

    The lysine riboswitch is a cis-acting RNA genetic regulatory element found in the leader sequence of bacterial mRNAs coding for proteins related to biosynthesis or transport of lysine. Structural analysis of the lysine-binding aptamer domain of this RNA has revealed that it completely encapsulates the ligand and therefore must undergo a structural opening/closing upon interaction with lysine. In this work, single-molecule fluorescence resonance energy transfer (FRET) methods are used to monitor these ligand-induced structural transitions that are central to lysine riboswitch function. Specifically, a model FRET system has been developed for characterizing the lysine dissociation constant, as well as the opening/closing rate constants for the Bacillus subtilis lysC aptamer domain. These techniques permit measurement of the dissociation constant (KD) for lysine binding of 1.7(5) mM, and opening/closing rate constants of 1.4(3) s−1 and 0.203(7) s−1, respectively. These rates predict an apparent dissociation constant for lysine binding (KD, apparent) of 0.25(9) mM at near physiological ionic strength, which differs markedly from previous reports. PMID:23067368

  12. High-Throughput Ligand Discovery Reveals a Sitewise Gradient of Diversity in Broadly Evolved Hydrophilic Fibronectin Domains

    PubMed Central

    Woldring, Daniel R.; Holec, Patrick V.; Zhou, Hong; Hackel, Benjamin J.

    2015-01-01

    Discovering new binding function via a combinatorial library in small protein scaffolds requires balance between appropriate mutations to introduce favorable intermolecular interactions while maintaining intramolecular integrity. Sitewise constraints exist in a non-spatial gradient from diverse to conserved in evolved antibody repertoires; yet non-antibody scaffolds generally do not implement this strategy in combinatorial libraries. Despite the fact that biased amino acid distributions, typically elevated in tyrosine, serine, and glycine, have gained wider use in synthetic scaffolds, these distributions are still predominantly applied uniformly to diversified sites. While select sites in fibronectin domains and DARPins have shown benefit from sitewise designs, they have not been deeply evaluated. Inspired by this disparity between diversity distributions in natural libraries and synthetic scaffold libraries, we hypothesized that binders resulting from discovery and evolution would exhibit a non-spatial, sitewise gradient of amino acid diversity. To identify sitewise diversities consistent with efficient evolution in the context of a hydrophilic fibronectin domain, >105 binders to six targets were evolved and sequenced. Evolutionarily favorable amino acid distributions at 25 sites reveal Shannon entropies (range: 0.3–3.9; median: 2.1; standard deviation: 1.1) supporting the diversity gradient hypothesis. Sitewise constraints in evolved sequences are consistent with complementarity, stability, and consensus biases. Implementation of sitewise constrained diversity enables direct selection of nanomolar affinity binders validating an efficient strategy to balance inter- and intra-molecular interaction demands at each site. PMID:26383268

  13. Tryptophan Scanning Reveals Dense Packing of Connexin Transmembrane Domains in Gap Junction Channels Composed of Connexin32.

    PubMed

    Brennan, Matthew J; Karcz, Jennifer; Vaughn, Nicholas R; Woolwine-Cunningham, Yvonne; DePriest, Adam D; Escalona, Yerko; Perez-Acle, Tomas; Skerrett, I Martha

    2015-07-10

    Tryptophan was substituted for residues in all four transmembrane domains of connexin32. Function was assayed using dual cell two-electrode voltage clamp after expression in Xenopus oocytes. Tryptophan substitution was poorly tolerated in all domains, with the greatest impact in TM1 and TM4. For instance, in TM1, 15 substitutions were made, six abolished coupling and five others significantly reduced function. Only TM2 and TM3 included a distinct helical face that lacked sensitivity to tryptophan substitution. Results were visualized on a comparative model of Cx32 hemichannel. In this model, a region midway through the membrane appears highly sensitive to tryptophan substitution and includes residues Arg-32, Ile-33, Met-34, and Val-35. In the modeled channel, pore-facing regions of TM1 and TM2 were highly sensitive to tryptophan substitution, whereas the lipid-facing regions of TM3 and TM4 were variably tolerant. Residues facing a putative intracellular water pocket (the IC pocket) were also highly sensitive to tryptophan substitution. Although future studies will be required to separate trafficking-defective mutants from those that alter channel function, a subset of interactions important for voltage gating was identified. Interactions important for voltage gating occurred mainly in the mid-region of the channel and focused on TM1. To determine whether results could be extrapolated to other connexins, TM1 of Cx43 was scanned revealing similar but not identical sensitivity to TM1 of Cx32.

  14. Sub-diffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization

    PubMed Central

    Mennella, V.; Keszthelyi, B.; McDonald, K.L.; Chhun, B.; Kan, F.; Rogers, G.C.; Huang, B; Agard, D.A.

    2013-01-01

    As the main microtubule-organizing center in animal cells, the centrosome has a fundamental role in cell function. Surrounding the centrioles, the Pericentriolar material (PCM) provides a dynamic platform for nucleating microtubules. While the PCM’s importance is established, its amorphous electron-dense nature has made it refractory to structural investigation. By using SIM and STORM sub-diffraction resolution microscopies to visualize proteins critical for centrosome maturation, we demonstrate that the PCM is organized into two major structural domains: a layer juxtaposed to the centriole wall, and proteins extending further away from the centriole organized in a matrix. Analysis of Pericentrin-like protein (Plp) reveals that its C-terminus is positioned at the centriole wall, it radiates outward into the matrix and is organized in clusters having quasi-nine-fold symmetry. By RNAi we show that Plp fibrils are required for interphase recruitment and proper mitotic assembly of the PCM matrix. PMID:23086239

  15. Investigation into the Relaxation Dynamics of Polymer-Protein Conjugates Reveals Surprising Role of Polymer Solvation on Inherent Protein Flexibility.

    PubMed

    Russo, Daniela; Plazanet, Marie; Teixeira, José; Moulin, Martine; Härtlein, Michael; Wurm, Frederik R; Steinbach, Tobias

    2016-01-11

    Fully biodegradable protein-polymer conjugates, namely, MBP-PMeEP (maltose binding protein-poly methyl-ethylene phosphonate), have been investigated in order to understand the role of polymer solvation on protein flexibility. Using elastic and quasi-elastic incoherent neutron scattering, in combination with partially deuterated conjugate systems, we are able to disentangle the polymer dynamics from the protein dynamics and meaningfully address the coupling between both components. We highlight that, in the dry state, the protein-polymer conjugates lack any dynamical transition in accordance with the generally observed behavior for dry proteins. In addition, we observe a larger flexibility of the conjugated protein, compared to the native protein, as well as a lack of polymer-glass transition. Only upon water hydration does the conjugate recover its dynamical transition, leading to the conclusion that exclusive polymer solvation is insufficient to unfreeze fluctuations on the picosecond-nanosecond time scale in biomolecules. Our results also confirm the established coupling between polymer and protein dynamics in the conjugate.

  16. Atomic structure of recombinant thaumatin II reveals flexible conformations in two residues critical for sweetness and three consecutive glycine residues.

    PubMed

    Masuda, Tetsuya; Mikami, Bunzo; Tani, Fumito

    2014-11-01

    Thaumatin, an intensely sweet-tasting protein used as a sweetener, elicits a sweet taste at 50 nM. Although two major variants designated thaumatin I and thaumatin II exist in plants, there have been few dedicated thaumatin II structural studies and, to date, data beyond atomic resolution had not been obtained. To identify the detailed structural properties explaining why thaumatin elicits a sweet taste, the structure of recombinant thaumatin II was determined at the resolution of 0.99 Å. Atomic resolution structural analysis with riding hydrogen atoms illustrated the differences in the direction of the side-chains more precisely and the electron density maps of the C-terminal regions were markedly improved. Though it had been suggested that the three consecutive glycine residues (G142-G143-G144) have highly flexible conformations, G143, the central glycine residue was successfully modelled in two conformations for the first time. Furthermore, the side chain r.m.s.d. values for two residues (R67 and R82) critical for sweetness exhibited substantially higher values, suggesting that these residues are highly disordered. These results demonstrated that the flexible conformations in two critical residues favoring their interaction with sweet taste receptors are prominent features of the intensely sweet taste of thaumatin. PMID:25066915

  17. Nanoscale Pulling of Type IV Pili Reveals Their Flexibility and Adhesion to Surfaces over Extended Lengths of the Pili.

    PubMed

    Lu, Shun; Giuliani, Maximiliano; Harvey, Hanjeong; Burrows, Lori L; Wickham, Robert A; Dutcher, John R

    2015-06-16

    Type IV pili (T4P) are very thin protein filaments that extend from and retract into bacterial cells, allowing them to interact with and colonize a broad array of chemically diverse surfaces. The physical aspects that allow T4P to mediate adherence to many different surfaces remain unclear. Atomic force microscopy (AFM) nanoscale pulling experiments were used to measure the mechanical properties of T4P of a mutant strain of Pseudomonas aeruginosa PAO1 unable to retract its T4P. After adhering bacteria to the end of an AFM cantilever and approaching surfaces of mica, gold, or polystyrene, we observed adhesion of the T4P to all of the surfaces. Pulling of single and multiple T4P on retraction of the cantilever from the surfaces could be described using the worm-like chain (WLC) model. Distinct peaks in the measured distributions of the best-fit values of the persistence length Lp on two different surfaces provide strong evidence for close-packed bundling of very flexible T4P. In addition, we observed force plateaus indicating that adhesion of the T4P to both hydrophilic and hydrophobic surfaces occurs along extended lengths of the T4P. These data shed new light, to our knowledge, on T4P flexibility and support a low-affinity, high-avidity adhesion mechanism that mediates bacteria-surface interactions. PMID:26083926

  18. Nanoscale Pulling of Type IV Pili Reveals Their Flexibility and Adhesion to Surfaces over Extended Lengths of the Pili

    PubMed Central

    Lu, Shun; Giuliani, Maximiliano; Harvey, Hanjeong; Burrows, Lori L.; Wickham, Robert A.; Dutcher, John R.

    2015-01-01

    Type IV pili (T4P) are very thin protein filaments that extend from and retract into bacterial cells, allowing them to interact with and colonize a broad array of chemically diverse surfaces. The physical aspects that allow T4P to mediate adherence to many different surfaces remain unclear. Atomic force microscopy (AFM) nanoscale pulling experiments were used to measure the mechanical properties of T4P of a mutant strain of Pseudomonas aeruginosa PAO1 unable to retract its T4P. After adhering bacteria to the end of an AFM cantilever and approaching surfaces of mica, gold, or polystyrene, we observed adhesion of the T4P to all of the surfaces. Pulling of single and multiple T4P on retraction of the cantilever from the surfaces could be described using the worm-like chain (WLC) model. Distinct peaks in the measured distributions of the best-fit values of the persistence length Lp on two different surfaces provide strong evidence for close-packed bundling of very flexible T4P. In addition, we observed force plateaus indicating that adhesion of the T4P to both hydrophilic and hydrophobic surfaces occurs along extended lengths of the T4P. These data shed new light, to our knowledge, on T4P flexibility and support a low-affinity, high-avidity adhesion mechanism that mediates bacteria-surface interactions. PMID:26083926

  19. Atomic structure of recombinant thaumatin II reveals flexible conformations in two residues critical for sweetness and three consecutive glycine residues.

    PubMed

    Masuda, Tetsuya; Mikami, Bunzo; Tani, Fumito

    2014-11-01

    Thaumatin, an intensely sweet-tasting protein used as a sweetener, elicits a sweet taste at 50 nM. Although two major variants designated thaumatin I and thaumatin II exist in plants, there have been few dedicated thaumatin II structural studies and, to date, data beyond atomic resolution had not been obtained. To identify the detailed structural properties explaining why thaumatin elicits a sweet taste, the structure of recombinant thaumatin II was determined at the resolution of 0.99 Å. Atomic resolution structural analysis with riding hydrogen atoms illustrated the differences in the direction of the side-chains more precisely and the electron density maps of the C-terminal regions were markedly improved. Though it had been suggested that the three consecutive glycine residues (G142-G143-G144) have highly flexible conformations, G143, the central glycine residue was successfully modelled in two conformations for the first time. Furthermore, the side chain r.m.s.d. values for two residues (R67 and R82) critical for sweetness exhibited substantially higher values, suggesting that these residues are highly disordered. These results demonstrated that the flexible conformations in two critical residues favoring their interaction with sweet taste receptors are prominent features of the intensely sweet taste of thaumatin.

  20. Quantitative Analysis of the Association Angle between T-cell Receptor Vα/Vβ Domains Reveals Important Features for Epitope Recognition.

    PubMed

    Hoffmann, Thomas; Krackhardt, Angela M; Antes, Iris

    2015-07-01

    T-cell receptors (TCR) play an important role in the adaptive immune system as they recognize pathogen- or cancer-based epitopes and thus initiate the cell-mediated immune response. Therefore there exists a growing interest in the optimization of TCRs for medical purposes like adoptive T-cell therapy. However, the molecular mechanisms behind T-cell signaling are still predominantly unknown. For small sets of TCRs it was observed that the angle between their Vα- and Vβ-domains, which bind the epitope, can vary and might be important for epitope recognition. Here we present a comprehensive, quantitative study of the variation in the Vα/Vβ interdomain-angle and its influence on epitope recognition, performing a systematic bioinformatics analysis based on a representative set of experimental TCR structures. For this purpose we developed a new, cuboid-based superpositioning method, which allows a unique, quantitative analysis of the Vα/Vβ-angles. Angle-based clustering led to six significantly different clusters. Analysis of these clusters revealed the unexpected result that the angle is predominantly influenced by the TCR-clonotype, whereas the bound epitope has only a minor influence. Furthermore we could identify a previously unknown center of rotation (CoR), which is shared by all TCRs. All TCR geometries can be obtained by rotation around this center, rendering it a new, common TCR feature with the potential of improving the accuracy of TCR structure prediction considerably. The importance of Vα/Vβ rotation for signaling was confirmed as we observed larger variances in the Vα/Vβ-angles in unbound TCRs compared to epitope-bound TCRs. Our results strongly support a two-step mechanism for TCR-epitope: First, preformation of a flexible TCR geometry in the unbound state and second, locking of the Vα/Vβ-angle in a TCR-type specific geometry upon epitope-MHC association, the latter being driven by rotation around the unique center of rotation.

  1. The functional integrity of the serpin domain of C1-inhibitor depends on the unique N-terminal domain, as revealed by a pathological mutant.

    PubMed

    Bos, Ineke G A; Lubbers, Yvonne T P; Roem, Dorina; Abrahams, Jan Pieter; Hack, C Erik; Eldering, Eric

    2003-08-01

    C1-inhibitor (C1-Inh) is a serine protease inhibitor (serpin) with a unique, non-conserved N-terminal domain of unknown function. Genetic deficiency of C1-Inh causes hereditary angioedema. A novel type of mutation (Delta 3) in exon 3 of the C1-Inh gene, resulting in deletion of Asp62-Thr116 in this unique domain, was encountered in a hereditary angioedema pedigree. Because the domain is supposedly not essential for inhibitory activity, the unexpected loss-of-function of this deletion mutant was further investigated. The Delta 3 mutant and three additional mutants starting at Pro76, Gly98, and Ser115, lacking increasing parts of the N-terminal domain, were produced recombinantly. C1-Inh76 and C1-Inh98 retained normal conformation and interaction kinetics with target proteases. In contrast, C1-Inh115 and Delta 3, which both lack the connection between the serpin and the non-serpin domain via two disulfide bridges, were completely non-functional because of a complex-like and multimeric conformation, as demonstrated by several criteria. The Delta 3 mutant also circulated in multimeric form in plasma from affected family members. The C1-Inh mutant reported here is unique in that deletion of an entire amino acid stretch from a domain not shared by other serpins leads to a loss-of-function. The deletion in the unique N-terminal domain results in a "multimerization phenotype" of C1-Inh, because of diminished stability of the central beta-sheet. This phenotype, as well as the location of the disulfide bridges between the serpin and the non-serpin domain of C1-Inh, suggests that the function of the N-terminal region may be similar to one of the effects of heparin in antithrombin III, maintenance of the metastable serpin conformation.

  2. Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features

    PubMed Central

    Cayrou, Christelle; Coulombe, Philippe; Vigneron, Alice; Stanojcic, Slavica; Ganier, Olivier; Peiffer, Isabelle; Rivals, Eric; Puy, Aurore; Laurent-Chabalier, Sabine; Desprat, Romain; Méchali, Marcel

    2011-01-01

    In metazoans, thousands of DNA replication origins (Oris) are activated at each cell cycle. Their genomic organization and their genetic nature remain elusive. Here, we characterized Oris by nascent strand (NS) purification and a genome-wide analysis in Drosophila and mouse cells. We show that in both species most CpG islands (CGI) contain Oris, although methylation is nearly absent in Drosophila, indicating that this epigenetic mark is not crucial for defining the activated origin. Initiation of DNA synthesis starts at the borders of CGI, resulting in a striking bimodal distribution of NS, suggestive of a dual initiation event. Oris contain a unique nucleotide skew around NS peaks, characterized by G/T and C/A overrepresentation at the 5′ and 3′ of Ori sites, respectively. Repeated GC-rich elements were detected, which are good predictors of Oris, suggesting that common sequence features are part of metazoan Oris. In the heterochromatic chromosome 4 of Drosophila, Oris correlated with HP1 binding sites. At the chromosome level, regions rich in Oris are early replicating, whereas Ori-poor regions are late replicating. The genome-wide analysis was coupled with a DNA combing analysis to unravel the organization of Oris. The results indicate that Oris are in a large excess, but their activation does not occur at random. They are organized in groups of site-specific but flexible origins that define replicons, where a single origin is activated in each replicon. This organization provides both site specificity and Ori firing flexibility in each replicon, allowing possible adaptation to environmental cues and cell fates. PMID:21750104

  3. Peptide–polymer ligands for a tandem WW-domain, an adaptive multivalent protein–protein interaction: lessons on the thermodynamic fitness of flexible ligands

    PubMed Central

    Koschek, Katharina; Durmaz, Vedat; Krylova, Oxana; Wieczorek, Marek; Gupta, Shilpi; Richter, Martin; Bujotzek, Alexander; Fischer, Christina; Haag, Rainer; Freund, Christian; Weber, Marcus

    2015-01-01

    Summary Three polymers, poly(N-(2-hydroxypropyl)methacrylamide) (pHPMA), hyperbranched polyglycerol (hPG), and dextran were investigated as carriers for multivalent ligands targeting the adaptive tandem WW-domain of formin-binding protein (FBP21). Polymer carriers were conjugated with 3–9 copies of the proline-rich decapeptide GPPPRGPPPR-NH2 (P1). Binding of the obtained peptide–polymer conjugates to the tandem WW-domain was investigated employing isothermal titration calorimetry (ITC) to determine the binding affinity, the enthalpic and entropic contributions to free binding energy, and the stoichiometry of binding for all peptide–polymer conjugates. Binding affinities of all multivalent ligands were in the µM range, strongly amplified compared to the monovalent ligand P1 with a K D > 1 mM. In addition, concise differences were observed, pHPMA and hPG carriers showed moderate affinity and bound 2.3–2.8 peptides per protein binding site resulting in the formation of aggregates. Dextran-based conjugates displayed affinities down to 1.2 µM, forming complexes with low stoichiometry, and no precipitation. Experimental results were compared with parameters obtained from molecular dynamics simulations in order to understand the observed differences between the three carrier materials. In summary, the more rigid and condensed peptide–polymer conjugates based on the dextran scaffold seem to be superior to induce multivalent binding and to increase affinity, while the more flexible and dendritic polymers, pHPMA and hPG are suitable to induce crosslinking upon binding. PMID:26124884

  4. Relationship between structural flexibility and function in the C-terminal region of the heparin-binding domain of VEGF165.

    PubMed

    Jeong, Ki-Woong; Jeong, Min-Cheol; Jin, Bonghwan; Kim, Yangmee

    2013-12-10

    Vascular endothelial growth factor (VEGF) is an angiogenic protein with neurotrophic and neuroprotective effects. Previously, we reported that triamterene (Trm) inhibits VEGF-amyloid β (Aβ) interactions without affecting other biological activities of VEGF or Aβ [Jeong, K.-W., et al. (2011) Biochemistry 50, 4843-4854]. We further showed that molecular motions in the N-terminal disordered loop region of the heparin-binding domain (HBD) are important for interaction with Trm. To investigate the importance of motion at the C-terminal domain of HBD, we constructed a binding model of HBD with heparin octasaccharide (HOS) based on measurements of chemical shift changes and docking studies. Furthermore, the dynamic properties of the HBD-HOS and HBD-Trm-HOS complexes were assessed by measuring spin relaxation rates. The results showed that the HOS-binding site is composed of two basic clusters consisting of side chains of residues R13, R14, and K15 and residues K30, R35, and R49. When HOS binds, values for the heteronuclear nuclear Overhauser effect near HOS-binding sites increased dramatically. CPMG (Carr-Purcell-Meiboom-Gill sequence) experiments as well as an R2 relaxation experiment were undertaken to understand millisecond time-scale motions in HBD. There is large relaxation dispersion of residues at Trm- and HOS-binding sites in free HBD. C-Terminal residues such as S34, C48, and D51 near the HOS-binding sites continued to exhibit slow conformational motions in the HBD-Trm complex, while those slow motions disappeared in the bound conformation of HBD with HOS. Collectively, our results demonstrate that the inherent structural flexibilities of the C-terminal region of the HBD are important in the heparin binding process and that Trm does not inhibit VEGF-heparin interactions necessary for the biological activities of VEGF.

  5. NMR solution structure of a dsRNA binding domain from Drosophila staufen protein reveals homology to the N-terminal domain of ribosomal protein S5.

    PubMed Central

    Bycroft, M; Grünert, S; Murzin, A G; Proctor, M; St Johnston, D

    1995-01-01

    The double-stranded RNA binding domain (dsRBD) is an approximately 65 amino acid motif that is found in a variety of proteins that interact with double-stranded (ds) RNA, such as Escherichia coli RNase III and the dsRNA-dependent kinase, PKR. Drosophila staufen protein contains five copies of this motif, and the third of these binds dsRNA in vitro. Using multinuclear/multidimensional NMR methods, we have determined that staufen dsRBD3 forms a compact protein domain with an alpha-beta-beta-beta-alpha structure in which the two alpha-helices lie on one face of a three-stranded anti-parallel beta-sheet. This structure is very similar to that of the N-terminal domain of a prokaryotic ribosomal protein S5. Furthermore, the consensus derived from all known S5p family sequences shares several conserved residues with the dsRBD consensus sequence, indicating that the two domains share a common evolutionary origin. Using in vitro mutagenesis, we have identified several surface residues which are important for the RNA binding of the dsRBD, and these all lie on the same side of the domain. Two residues that are essential for RNA binding, F32 and K50, are also conserved in the S5 protein family, suggesting that the two domains interact with RNA in a similar way. Images PMID:7628456

  6. Time-domain parameter identification of aeroelastic loads by forced-vibration method for response of flexible structures subject to transient wind

    NASA Astrophysics Data System (ADS)

    Cao, Bochao

    Slender structures representing civil, mechanical and aerospace systems such as long-span bridges, high-rise buildings, stay cables, power-line cables, high light mast poles, crane-booms and aircraft wings could experience vortex-induced and buffeting excitations below their design wind speeds and divergent self-excited oscillations (flutter) beyond a critical wind speed because these are flexible. Traditional linear aerodynamic theories that are routinely applied for their response prediction are not valid in the galloping, or near-flutter regime, where large-amplitude vibrations could occur and during non-stationary and transient wind excitations that occur, for example, during hurricanes, thunderstorms and gust fronts. The linear aerodynamic load formulation for lift, drag and moment are expressed in terms of aerodynamic functions in frequency domain that are valid for straight-line winds which are stationary or weakly-stationary. Application of the frequency domain formulation is restricted from use in the nonlinear and transient domain because these are valid for linear models and stationary wind. The time-domain aerodynamic force formulations are suitable for finite element modeling, feedback-dependent structural control mechanism, fatigue-life prediction, and above all modeling of transient structural behavior during non-stationary wind phenomena. This has motivated the developing of time-domain models of aerodynamic loads that are in parallel to the existing frequency-dependent models. Parameters defining these time-domain models can be now extracted from wind tunnel tests, for example, the Rational Function Coefficients defining the self-excited wind loads can be extracted using section model tests using the free vibration technique. However, the free vibration method has some limitations because it is difficult to apply at high wind speeds, in turbulent wind environment, or on unstable cross sections with negative aerodynamic damping. In the current

  7. Structural studies of the yeast DNA damage-inducible protein Ddi1 reveal domain architecture of this eukaryotic protein family.

    PubMed

    Trempe, Jean-François; Šašková, Klára Grantz; Sivá, Monika; Ratcliffe, Colin D H; Veverka, Václav; Hoegl, Annabelle; Ménade, Marie; Feng, Xin; Shenker, Solomon; Svoboda, Michal; Kožíšek, Milan; Konvalinka, Jan; Gehring, Kalle

    2016-01-01

    The eukaryotic Ddi1 family is defined by a conserved retroviral aspartyl protease-like (RVP) domain found in association with a ubiquitin-like (UBL) domain. Ddi1 from Saccharomyces cerevisiae additionally contains a ubiquitin-associated (UBA) domain. The substrate specificity and role of the protease domain in the biological functions of the Ddi family remain unclear. Yeast Ddi1 has been implicated in the regulation of cell cycle progression, DNA-damage repair, and exocytosis. Here, we investigated the multi-domain structure of yeast Ddi1 using X-ray crystallography, nuclear magnetic resonance, and small-angle X-ray scattering. The crystal structure of the RVP domain sheds light on a putative substrate recognition site involving a conserved loop. Isothermal titration calorimetry confirms that both UBL and UBA domains bind ubiquitin, and that Ddi1 binds K48-linked diubiquitin with enhanced affinity. The solution NMR structure of a helical domain that precedes the protease displays tertiary structure similarity to DNA-binding domains from transcription regulators. Our structural studies suggest that the helical domain could serve as a landing platform for substrates in conjunction with attached ubiquitin chains binding to the UBL and UBA domains. PMID:27646017

  8. Structural studies of the yeast DNA damage-inducible protein Ddi1 reveal domain architecture of this eukaryotic protein family

    PubMed Central

    Trempe, Jean-François; Šašková, Klára Grantz; Sivá, Monika; Ratcliffe, Colin D. H.; Veverka, Václav; Hoegl, Annabelle; Ménade, Marie; Feng, Xin; Shenker, Solomon; Svoboda, Michal; Kožíšek, Milan; Konvalinka, Jan; Gehring, Kalle

    2016-01-01

    The eukaryotic Ddi1 family is defined by a conserved retroviral aspartyl protease-like (RVP) domain found in association with a ubiquitin-like (UBL) domain. Ddi1 from Saccharomyces cerevisiae additionally contains a ubiquitin-associated (UBA) domain. The substrate specificity and role of the protease domain in the biological functions of the Ddi family remain unclear. Yeast Ddi1 has been implicated in the regulation of cell cycle progression, DNA-damage repair, and exocytosis. Here, we investigated the multi-domain structure of yeast Ddi1 using X-ray crystallography, nuclear magnetic resonance, and small-angle X-ray scattering. The crystal structure of the RVP domain sheds light on a putative substrate recognition site involving a conserved loop. Isothermal titration calorimetry confirms that both UBL and UBA domains bind ubiquitin, and that Ddi1 binds K48-linked diubiquitin with enhanced affinity. The solution NMR structure of a helical domain that precedes the protease displays tertiary structure similarity to DNA-binding domains from transcription regulators. Our structural studies suggest that the helical domain could serve as a landing platform for substrates in conjunction with attached ubiquitin chains binding to the UBL and UBA domains. PMID:27646017

  9. Genome-Wide Analysis of Transposon and Retroviral Insertions Reveals Preferential Integrations in Regions of DNA Flexibility

    PubMed Central

    Vrljicak, Pavle; Tao, Shijie; Varshney, Gaurav K.; Quach, Helen Ngoc Bao; Joshi, Adita; LaFave, Matthew C.; Burgess, Shawn M.; Sampath, Karuna

    2016-01-01

    DNA transposons and retroviruses are important transgenic tools for genome engineering. An important consideration affecting the choice of transgenic vector is their insertion site preferences. Previous large-scale analyses of Ds transposon integration sites in plants were done on the basis of reporter gene expression or germ-line transmission, making it difficult to discern vertebrate integration preferences. Here, we compare over 1300 Ds transposon integration sites in zebrafish with Tol2 transposon and retroviral integration sites. Genome-wide analysis shows that Ds integration sites in the presence or absence of marker selection are remarkably similar and distributed throughout the genome. No strict motif was found, but a preference for structural features in the target DNA associated with DNA flexibility (Twist, Tilt, Rise, Roll, Shift, and Slide) was observed. Remarkably, this feature is also found in transposon and retroviral integrations in maize and mouse cells. Our findings show that structural features influence the integration of heterologous DNA in genomes, and have implications for targeted genome engineering. PMID:26818075

  10. Structure of the unique SEFIR domain from human interleukin 17 receptor A reveals a composite ligand-binding site containing a conserved α-helix for Act1 binding and IL-17 signaling

    SciTech Connect

    Zhang, Bing; Liu, Caini; Qian, Wen; Han, Yue; Li, Xiaoxia; Deng, Junpeng

    2014-05-01

    Crystal structure of the SEFIR domain from human IL-17 receptor A provides new insights into IL-17 signaling. Interleukin 17 (IL-17) cytokines play a crucial role in mediating inflammatory and autoimmune diseases. A unique intracellular signaling domain termed SEFIR is found within all IL-17 receptors (IL-17Rs) as well as the key adaptor protein Act1. SEFIR-mediated protein–protein interaction is a crucial step in IL-17 cytokine signaling. Here, the 2.3 Å resolution crystal structure of the SEFIR domain of IL-17RA, the most commonly shared receptor for IL-17 cytokine signaling, is reported. The structure includes the complete SEFIR domain and an additional α-helical C-terminal extension, which pack tightly together to form a compact unit. Structural comparison between the SEFIR domains of IL-17RA and IL-17RB reveals substantial differences in protein topology and folding. The uniquely long insertion between strand βC and helix αC in IL-17RA SEFIR is mostly well ordered, displaying a helix (αCC′{sub ins}) and a flexible loop (CC′). The DD′ loop in the IL-17RA SEFIR structure is much shorter; it rotates nearly 90° with respect to the counterpart in the IL-17RB SEFIR structure and shifts about 12 Å to accommodate the αCC′{sub ins} helix without forming any knots. Helix αC was identified as critical for its interaction with Act1 and IL-17-stimulated gene expression. The data suggest that the heterotypic SEFIR–SEFIR association via helix αC is a conserved and signature mechanism specific for IL-17 signaling. The structure also suggests that the downstream motif of IL-17RA SEFIR together with helix αC could provide a composite ligand-binding surface for recruiting Act1 during IL-17 signaling.

  11. Structure of trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action

    SciTech Connect

    Baram, David; Pyetan, Erez; Sittner, Assa; Auerbach-Nevo, Tamar; Bashan, Anat; Yonath, Ada

    2010-07-13

    Trigger factor (TF), the first chaperone in eubacteria to encounter the emerging nascent chain, binds to the large ribosomal subunit in the vicinity of the protein exit tunnel opening and forms a sheltered folding space. Here, we present the 3.5-{angstrom} crystal structure of the physiological complex of the large ribosomal subunit from the eubacterium Deinococcus radiodurans with the N-terminal domain of TF (TFa) from the same organism. For anchoring, TFa exploits a small ribosomal surface area in the vicinity of proteins L23 and L29, by using its 'signature motif' as well as additional structural elements. The molecular details of TFa interactions reveal that L23 is essential for the association of TF with the ribosome and may serve as a channel of communication with the nascent chain progressing in the tunnel. L29 appears to induce a conformational change in TFa, which results in the exposure of TFa hydrophobic patches to the opening of the ribosomal exit tunnel, thus increasing its affinity for hydrophobic segments of the emerging nascent polypeptide. This observation implies that, in addition to creating a protected folding space for the emerging nascent chain, TF association with the ribosome prevents aggregation by providing a competing hydrophobic environment and may be critical for attaining the functional conformation necessary for chaperone activity.

  12. Biochemical and biophysical characterization of four EphB kinase domains reveals contrasting thermodynamic, kinetic and inhibition profiles

    PubMed Central

    Overman, Ross C.; Debreczeni, Judit E.; Truman, Caroline M.; McAlister, Mark S.; Attwood, Teresa K.

    2013-01-01

    The Eph (erythropoietin-producing hepatocellular carcinoma) B receptors are important in a variety of cellular processes through their roles in cell-to-cell contact and signalling; their up-regulation and down-regulation has been shown to have implications in a variety of cancers. A greater understanding of the similarities and differences within this small, highly conserved family of tyrosine kinases will be essential to the identification of effective therapeutic opportunities for disease intervention. In this study, we have developed a route to production of multi-milligram quantities of highly purified, homogeneous, recombinant protein for the kinase domain of these human receptors in Escherichia coli. Analyses of these isolated catalytic fragments have revealed stark contrasts in their amenability to recombinant expression and their physical properties: e.g., a >16°C variance in thermal stability, a 3-fold difference in catalytic activity and disparities in their inhibitor binding profiles. We find EphB3 to be an outlier in terms of both its intrinsic stability, and more importantly its ligand-binding properties. Our findings have led us to speculate about both their biological significance and potential routes for generating EphB isozyme-selective small-molecule inhibitors. Our comprehensive methodologies provide a template for similar in-depth studies of other kinase superfamily members. PMID:23627399

  13. Photoluminescence Decay Dynamics in Blue and Green InGaN LED Structures Revealed by the Frequency-Domain Technique

    NASA Astrophysics Data System (ADS)

    Reklaitis, I.; Kudžma, R.; Miasojedovas, S.; Vitta, P.; Žukauskas, A.; Tomašiūnas, R.; Pietzonka, I.; Strassburg, M.

    2016-07-01

    An extended study of charge-carrier localization and delocalization in blue and green InGaN light-emitting diode (LED) test structures has been performed. Using the frequency-domain lifetime measurement (FDLM) technique based on direct harmonic modulation of photoluminescence excitation in the frequency range from 1 Hz to 100 MHz, carrier lifetimes were estimated at scales spanning from milliseconds to nanoseconds. The time resolution was determined using fast Fourier transform analysis. A system comprising a radiative and several nonradiative recombination channels was used to describe the complex photoluminescence decay. Due to the broad timescale, even stretched exponential decays from 2 ns to 4 ns up to 1.5 μs (stretching parameter 0.5 to 0.6) were revealed. A higher degree of carrier delocalization was observed for the blue compared with the green light-emitting structure, providing qualitative insight into disorder, which is tentatively assigned to spatial fluctuations of the indium concentration in the quantum wells. A nanosecond nonradiative recombination channel for the green light-emitting structure was found to be unsaturated throughout the entire photoexcitation power density range and was interpreted as being related to the higher defect density and lower internal quantum efficiency of the sample. To expand the study of lifetimes to much higher photoexcitation power density, time-resolved photoluminescence kinetics were measured.

  14. Structural Studies of the Alzheimer's Amyloid Precursor Protein Copper-Binding Domain Reveal How It Binds Copper Ions

    SciTech Connect

    Kong, G.K.-W.; Adams, J.J.; Harris, H.H.; Boas, J.F.; Curtain, C.C.; Galatis, D.; Master, C.L.; Barnham, K.J.; McKinstry, W.J.; Cappai, R.; Parker, M.W.; /Sydney U. /Monash U. /Melbourne U.

    2007-07-09

    Alzheimer's disease (AD) is the major cause of dementia. Amyloid {beta} peptide (A {beta}), generated by proteolytic cleavage of the amyloid precursor protein (APP), is central to AD pathogenesis. APP can function as a metalloprotein and modulate copper (Cu) transport, presumably via its extracellular Cu-binding domain (CuBD). Cu binding to the CuBD reduces A{beta} levels, suggesting that a Cu mimetic may have therapeutic potential. We describe here the atomic structures of apo CuBD from three crystal forms and found they have identical Cu-binding sites despite the different crystal lattices. The structure of Cu[2+]-bound CuBD reveals that the metal ligands are His147, His151, Tyrl68 and two water molecules, which are arranged in a square pyramidal geometry. The site resembles a Type 2 non-blue Cu center and is supported by electron paramagnetic resonance and extended X-ray absorption fine structure studies. A previous study suggested that Met170 might be a ligand but we suggest that this residue plays a critical role as an electron donor in CuBDs ability to reduce Cu ions. The structure of Cu[+]-bound CuBD is almost identical to the Cu[2+]-bound structure except for the loss of one of the water ligands. The geometry of the site is unfavorable for Cu[+], thus providing a mechanism by which CuBD could readily transfer Cu ions to other proteins.

  15. Biochemical and biophysical characterization of four EphB kinase domains reveals contrasting thermodynamic, kinetic and inhibition profiles.

    PubMed

    Overman, Ross C; Debreczeni, Judit E; Truman, Caroline M; McAlister, Mark S; Attwood, Teresa K

    2013-01-01

    The Eph (erythropoietin-producing hepatocellular carcinoma) B receptors are important in a variety of cellular processes through their roles in cell-to-cell contact and signalling; their up-regulation and down-regulation has been shown to have implications in a variety of cancers. A greater understanding of the similarities and differences within this small, highly conserved family of tyrosine kinases will be essential to the identification of effective therapeutic opportunities for disease intervention. In this study, we have developed a route to production of multi-milligram quantities of highly purified, homogeneous, recombinant protein for the kinase domain of these human receptors in Escherichia coli. Analyses of these isolated catalytic fragments have revealed stark contrasts in their amenability to recombinant expression and their physical properties: e.g., a >16°C variance in thermal stability, a 3-fold difference in catalytic activity and disparities in their inhibitor binding profiles. We find EphB3 to be an outlier in terms of both its intrinsic stability, and more importantly its ligand-binding properties. Our findings have led us to speculate about both their biological significance and potential routes for generating EphB isozyme-selective small-molecule inhibitors. Our comprehensive methodologies provide a template for similar in-depth studies of other kinase superfamily members. PMID:23627399

  16. Retinal Structure of Birds of Prey Revealed by Ultra-High Resolution Spectral-Domain Optical Coherence Tomography

    PubMed Central

    Ruggeri, Marco; Major, James C.; McKeown, Craig; Knighton, Robert W.; Puliafito, Carmen A.

    2010-01-01

    Purpose. To reveal three-dimensional (3-D) information about the retinal structures of birds of prey in vivo. Methods. An ultra-high resolution spectral-domain optical coherence tomography (SD-OCT) system was built for in vivo imaging of retinas of birds of prey. The calibrated imaging depth and axial resolution of the system were 3.1 mm and 2.8 μm (in tissue), respectively. 3-D segmentation was performed for calculation of the retinal nerve fiber layer (RNFL) map. Results. High-resolution OCT images were obtained of the retinas of four species of birds of prey: two diurnal hawks (Buteo platypterus and Buteo brachyurus) and two nocturnal owls (Bubo virginianus and Strix varia). These images showed the detailed retinal anatomy, including the retinal layers and the structure of the deep and shallow foveae. The calculated thickness map showed the RNFL distribution. Traumatic injury to one bird's retina was also successfully imaged. Conclusions. Ultra-high resolution SD-OCT provides unprecedented high-quality 2-D and 3-D in vivo visualization of the retinal structures of birds of prey. SD-OCT is a powerful imaging tool for vision research in birds of prey. PMID:20554605

  17. Origin and Evolution of Glutamyl-prolyl tRNA Synthetase WHEP Domains Reveal Evolutionary Relationships within Holozoa

    PubMed Central

    Ray, Partho Sarothi; Fox, Paul L.

    2014-01-01

    Repeated domains in proteins that have undergone duplication or loss, and sequence divergence, are especially informative about phylogenetic relationships. We have exploited divergent repeats of the highly structured, 50-amino acid WHEP domains that join the catalytic subunits of bifunctional glutamyl-prolyl tRNA synthetase (EPRS) as a sequence-informed repeat (SIR) to trace the origin and evolution of EPRS in holozoa. EPRS is the only fused tRNA synthetase, with two distinct aminoacylation activities, and a non-canonical translation regulatory function mediated by the WHEP domains in the linker. Investigating the duplications, deletions and divergence of WHEP domains, we traced the bifunctional EPRS to choanozoans and identified the fusion event leading to its origin at the divergence of ichthyosporea and emergence of filozoa nearly a billion years ago. Distribution of WHEP domains from a single species in two or more distinct clades suggested common descent, allowing the identification of linking organisms. The discrete assortment of choanoflagellate WHEP domains with choanozoan domains as well as with those in metazoans supported the phylogenetic position of choanoflagellates as the closest sister group to metazoans. Analysis of clustering and assortment of WHEP domains provided unexpected insights into phylogenetic relationships amongst holozoan taxa. Furthermore, observed gaps in the transition between WHEP domain groupings in distant taxa allowed the prediction of undiscovered or extinct evolutionary intermediates. Analysis based on SIR domains can provide a phylogenetic counterpart to palaentological approaches of discovering “missing links” in the tree of life. PMID:24968216

  18. Antibody Binding Studies Reveal Conformational Flexibility of the Bacillus cereus Non-Hemolytic Enterotoxin (Nhe) A-Component

    PubMed Central

    Märtlbauer, E.

    2016-01-01

    The non-hemolytic enterotoxin complex (Nhe) is supposed to be the main virulence factor of B. cereus causing a diarrheal outcome of food poisoning. This tripartite toxin consists of the single components NheA, -B and -C all of them being necessary for maximum toxicity. In the past, research activities aiming to elucidate the mode-of-action of Nhe were mostly focused on the B- and C-component. In this study the generation of novel monoclonal antibodies (mAb) and their thorough characterization enabled the determination of key features for NheA. By the means of immunoaffinity chromatography it could be shown that NheA does not interact with -B and -C in solution. Additionally, the establishment of a highly sensitive sandwich-EIA now enables the detection of NheA in B. cereus supernatants down to 20 pg ml-1.Peptide-based epitope mapping in combination with partially deleted recombinant NheA fragments allowed the allocation of the binding regions for the three mAbs under study. Furthermore, by different EIA set-ups the conformational flexibility of NheA could be shown. For two of the antibodies under study different mechanisms of NheA neutralization were proven. Due to prevention of complete pore formation by one of the antibodies, NheA could be detected in an intermediate stage of the tripartite complex on the cell surface. Taken together, the results obtained in the present study allow a refinement of the mode-of-action for the Nhe toxin-complex. PMID:27768742

  19. Task Effects Reveal Cognitive Flexibility Responding to Frequency and Predictability: Evidence from Eye Movements in Reading and Proofreading

    PubMed Central

    Schotter, Elizabeth R.; Bicknell, Klinton; Howard, Ian; Levy, Roger; Rayner, Keith

    2014-01-01

    It is well-known that word frequency and predictability affect processing time. These effects change magnitude across tasks, but studies testing this use tasks with different response types (e.g., lexical decision, naming, and fixation time during reading; Schilling, Rayner & Chumbley, 1998), preventing direct comparison. Recently, Kaakinen and Hyönä (2010) overcame this problem, comparing fixation times in reading for comprehension and proofreading, showing that the frequency effect was larger in proofreading than in reading. This result could be explained by readers exhibiting substantial cognitive flexibility, and qualitatively changing how they process words in the proofreading task in a way that magnifies effects of word frequency. Alternatively, readers may not change word processing so dramatically, and instead may perform more careful identification generally, increasing the magnitude of many word processing effects (e.g., both frequency and predictability). We tested these possibilities with two experiments: subjects read for comprehension and then proofread for spelling errors (letter transpositions) that produce nonwords (e.g., trcak for track as in Kaakinen & Hyönä) or that produce real but unintended words (e.g., trial for trail) to compare how the task changes these effects. Replicating Kaakinen and Hyönä, frequency effects increased during proofreading. However, predictability effects only increased when integration with the sentence context was necessary to detect errors (i.e., when spelling errors produced words that were inappropriate in the sentence; trial for trail). The results suggest that readers adopt sophisticated word processing strategies to accommodate task demands. PMID:24434024

  20. Task effects reveal cognitive flexibility responding to frequency and predictability: evidence from eye movements in reading and proofreading.

    PubMed

    Schotter, Elizabeth R; Bicknell, Klinton; Howard, Ian; Levy, Roger; Rayner, Keith

    2014-04-01

    It is well-known that word frequency and predictability affect processing time. These effects change magnitude across tasks, but studies testing this use tasks with different response types (e.g., lexical decision, naming, and fixation time during reading; Schilling, Rayner, & Chumbley, 1998), preventing direct comparison. Recently, Kaakinen and Hyönä (2010) overcame this problem, comparing fixation times in reading for comprehension and proofreading, showing that the frequency effect was larger in proofreading than in reading. This result could be explained by readers exhibiting substantial cognitive flexibility, and qualitatively changing how they process words in the proofreading task in a way that magnifies effects of word frequency. Alternatively, readers may not change word processing so dramatically, and instead may perform more careful identification generally, increasing the magnitude of many word processing effects (e.g., both frequency and predictability). We tested these possibilities with two experiments: subjects read for comprehension and then proofread for spelling errors (letter transpositions) that produce nonwords (e.g., trcak for track as in Kaakinen & Hyönä) or that produce real but unintended words (e.g., trial for trail) to compare how the task changes these effects. Replicating Kaakinen and Hyönä, frequency effects increased during proofreading. However, predictability effects only increased when integration with the sentence context was necessary to detect errors (i.e., when spelling errors produced words that were inappropriate in the sentence; trial for trail). The results suggest that readers adopt sophisticated word processing strategies to accommodate task demands.

  1. The crystal structure of the cell division amidase AmiC reveals the fold of the AMIN domain, a new peptidoglycan binding domain.

    PubMed

    Rocaboy, Mathieu; Herman, Raphael; Sauvage, Eric; Remaut, Han; Moonens, Kristof; Terrak, Mohammed; Charlier, Paulette; Kerff, Frederic

    2013-10-01

    Binary fission is the ultimate step of the prokaryotic cell cycle. In Gram-negative bacteria like Escherichia coli, this step implies the invagination of three biological layers (cytoplasmic membrane, peptidoglycan and outer membrane), biosynthesis of the new poles and eventually, daughter cells separation. The latter requires the coordinated action of the N-acetylmuramyl-L-alanine amidases AmiA/B/C and their LytM activators EnvC and NlpD to cleave the septal peptidoglycan. We present here the 2.5 Å crystal structure of AmiC which includes the first report of an AMIN domain structure, a β-sandwich of two symmetrical four-stranded β-sheets exposing highly conserved motifs on the two outer faces. We show that this N-terminal domain, involved in the localization of AmiC at the division site, is a new peptidoglycan-binding domain. The C-terminal catalytic domain shows an auto-inhibitory alpha helix obstructing the active site. AmiC lacking this helix exhibits by itself an activity comparable to that of the wild type AmiC activated by NlpD. We also demonstrate the interaction between AmiC and NlpD by microscale thermophoresis and confirm the importance of the active site blocking alpha helix in the regulation of the amidase activity.

  2. The crystal structure of the cell division amidase AmiC reveals the fold of the AMIN domain, a new peptidoglycan binding domain.

    PubMed

    Rocaboy, Mathieu; Herman, Raphael; Sauvage, Eric; Remaut, Han; Moonens, Kristof; Terrak, Mohammed; Charlier, Paulette; Kerff, Frederic

    2013-10-01

    Binary fission is the ultimate step of the prokaryotic cell cycle. In Gram-negative bacteria like Escherichia coli, this step implies the invagination of three biological layers (cytoplasmic membrane, peptidoglycan and outer membrane), biosynthesis of the new poles and eventually, daughter cells separation. The latter requires the coordinated action of the N-acetylmuramyl-L-alanine amidases AmiA/B/C and their LytM activators EnvC and NlpD to cleave the septal peptidoglycan. We present here the 2.5 Å crystal structure of AmiC which includes the first report of an AMIN domain structure, a β-sandwich of two symmetrical four-stranded β-sheets exposing highly conserved motifs on the two outer faces. We show that this N-terminal domain, involved in the localization of AmiC at the division site, is a new peptidoglycan-binding domain. The C-terminal catalytic domain shows an auto-inhibitory alpha helix obstructing the active site. AmiC lacking this helix exhibits by itself an activity comparable to that of the wild type AmiC activated by NlpD. We also demonstrate the interaction between AmiC and NlpD by microscale thermophoresis and confirm the importance of the active site blocking alpha helix in the regulation of the amidase activity. PMID:23927005

  3. Structure of a conserved hypothetical protein SA1388 from S. aureus reveals a capped hexameric toroid with two PII domain lids and a dinuclear metal center

    SciTech Connect

    Saikatendu, Kumar Singh; Zhang, Xuejun; Kinch, Lisa; Leybourne, Matthew; Grishin, Nick V.; Zhang, Hong

    2009-01-26

    The protein encoded by the SA1388 gene from Staphylococcus aureus was chosen for structure determination to elucidate its domain organization and confirm our earlier remote homology based prediction that it housed a nitrogen regulatory PII protein-like domain. SA1388 was predicted to contain a central PII-like domain and two flanking regions, which together belong to the NIF3-like protein family. Proteins like SA1388 remain a poorly studied group and their structural characterization could guide future investigations aimed at understanding their function. The structure of SA1388 has been solved to 2.0{angstrom} resolution by single wavelength anomalous dispersion phasing method using selenium anomalous signals. It reveals a canonical NIF3-like fold containing two domains with a PII-like domain inserted in the middle of the polypeptide. The N and C terminal halves of the NIF3-like domains are involved in dimerization, while the PII domain forms trimeric contacts with symmetry related monomers. Overall, the NIF3-like domains of SA1388 are organized as a hexameric toroid similar to its homologs, E. coli ybgI and the hypothetical protein SP1609 from Streptococcus pneumoniae. The openings on either side of the toroid are partially covered by trimeric 'lids' formed by the PII domains. The junction of the two NIF3 domains has two zinc ions bound at what appears to be a histidine rich active site. A well-defined electron density corresponding to an endogenously bound ligand of unknown identity is observed in close proximity to the metal site. SA1388 is the third member of the NIF3-like family of proteins to be structurally characterized, the other two also being hypothetical proteins of unknown function. The structure of SA1388 confirms our earlier prediction that the inserted domain that separates the two NIF3 domains adopts a PII-like fold and reveals an overall capped toroidal arrangement for the protein hexamer. The six PII-like domains form two trimeric 'lids' that

  4. Crystal complexes of a predicted S-adenosylmethionine-dependent methyltransferase reveal a typical AdoMet binding domain and a substrate recognition domain

    SciTech Connect

    Miller, D.J.; Ouellette, N.; Evodokimova, E.; Savchenko, A.; Edwards, A.; Anderson, W.F.

    2010-03-08

    S-adenosyl-L-methionine-dependent methyltransferases (MTs) are abundant, and highly conserved across phylogeny. These enzymes use the cofactor AdoMet to methylate a wide variety of molecular targets, thereby modulating important cellular and metabolic activities. Thermotoga maritima protein 0872 (TM0872) belongs to a large sequence family of predicted MTs, ranging phylogenetically from relatively simple bacteria to humans. The genes for many of the bacterial homologs are located within operons involved in cell wall synthesis and cell division. Despite preliminary biochemical studies in E. coli and B. subtilis, the substrate specificity of this group of more than 150 proteins is unknown. As part of the Midwest Center for Structural Genomics initiative (www.mcsg.anl.gov), we have determined the structure of TM0872 in complexes with AdoMet and with S-adenosyl-L-homocysteine (AdoHcy). As predicted, TM0872 has a typical MT domain, and binds endogenous AdoMet, or co-crystallized AdoHcy, in a manner consistent with other known MT structures. In addition, TM0872 has a second domain that is novel among MTs in both its location in the sequence and its structure. The second domain likely acts in substrate recognition and binding, and there is a potential substrate-binding cleft spanning the two domains. This long and narrow cleft is lined with positively charged residues which are located opposite the S{sup +}-CH{sub 3} bond, suggesting that a negatively charged molecule might be targeted for catalysis. However, AdoMet and AdoHcy are both buried, and access to the methyl group would presumably require structural rearrangement. These TM0872 crystal structures offer the first structural glimpses at this phylogenetically conserved sequence family.

  5. Three-dimensional reconstructions of the bacteriophage CUS-3 virion reveal a conserved coat protein I-domain but a distinct tailspike receptor-binding domain

    SciTech Connect

    Parent, Kristin N.; Tang, Jinghua; Cardone, Giovanni; Gilcrease, Eddie B.; Janssen, Mandy E.; Olson, Norman H.; Casjens, Sherwood R.; Baker, Timothy S.

    2014-09-15

    CUS-3 is a short-tailed, dsDNA bacteriophage that infects serotype K1 Escherichia coli. We report icosahedrally averaged and asymmetric, three-dimensional, cryo-electron microscopic reconstructions of the CUS-3 virion. Its coat protein structure adopts the “HK97-fold” shared by other tailed phages and is quite similar to that in phages P22 and Sf6 despite only weak amino acid sequence similarity. In addition, these coat proteins share a unique extra external domain (“I-domain”), suggesting that the group of P22-like phages has evolved over a very long time period without acquiring a new coat protein gene from another phage group. On the other hand, the morphology of the CUS-3 tailspike differs significantly from that of P22 or Sf6, but is similar to the tailspike of phage K1F, a member of the extremely distantly related T7 group of phages. We conclude that CUS-3 obtained its tailspike gene from a distantly related phage quite recently. - Highlights: • Asymmetric and symmetric three-dimensional reconstructions of phage CUS-3 are presented. • CUS-3 major capsid protein has a conserved I-domain, which is found in all three categories of “P22-like phage”. • CUS-3 has very different tailspike receptor binding domain from those of P22 and Sf6. • The CUS-3 tailspike likely was acquired by horizontal gene transfer.

  6. The Structures of Coiled-Coil Domains from Type III Secretion System Translocators Reveal Homology to Pore-Forming Toxins

    SciTech Connect

    Barta, Michael L.; Dickenson, Nicholas E.; Patil, Mrinalini; Keightley, Andrew; Wyckoff, Gerald J.; Picking, William D.; Picking, Wendy L.; Geisbrecht, Brian V.

    2012-03-26

    Many pathogenic Gram-negative bacteria utilize type III secretion systems (T3SSs) to alter the normal functions of target cells. Shigella flexneri uses its T3SS to invade human intestinal cells to cause bacillary dysentery (shigellosis) that is responsible for over one million deaths per year. The Shigella type III secretion apparatus is composed of a basal body spanning both bacterial membranes and an exposed oligomeric needle. Host altering effectors are secreted through this energized unidirectional conduit to promote bacterial invasion. The active needle tip complex of S. flexneri is composed of a tip protein, IpaD, and two pore-forming translocators, IpaB and IpaC. While the atomic structure of IpaD has been elucidated and studied, structural data on the hydrophobic translocators from the T3SS family remain elusive. We present here the crystal structures of a protease-stable fragment identified within the N-terminal regions of IpaB from S. flexneri and SipB from Salmonella enterica serovar Typhimurium determined at 2.1 {angstrom} and 2.8 {angstrom} limiting resolution, respectively. These newly identified domains are composed of extended-length (114 {angstrom} in IpaB and 71 {angstrom} in SipB) coiled-coil motifs that display a high degree of structural homology to one another despite the fact that they share only 21% sequence identity. Further structural comparisons also reveal substantial similarity to the coiled-coil regions of pore-forming proteins from other Gram-negative pathogens, notably, colicin Ia. This suggests that these mechanistically separate and functionally distinct membrane-targeting proteins may have diverged from a common ancestor during the course of pathogen-specific evolutionary events.

  7. THE STRUCTURES OF COILED-COIL DOMAINS FROM TYPE THREE SECRETION SYSTEM TRANSLOCATORS REVEAL HOMOLOGY TO PORE-FORMING TOXINS

    PubMed Central

    Barta, Michael L.; Dickenson, Nicholas E.; Patil, Mrinalini; Keightley, Andrew; Wyckoff, Gerald J.; Picking, William D.; Picking, Wendy L.; Geisbrecht, Brian V.

    2012-01-01

    Many pathogenic Gram-negative bacteria utilize type III secretion systems (T3SS) to alter the normal functions of target cells. Shigella flexneri uses its T3SS to invade human intestinal cells to cause bacillary dysentery (shigellosis) which is responsible for over one million deaths per year. The Shigella type III secretion apparatus (T3SA) is comprised of a basal body spanning both bacterial membranes and an exposed oligomeric needle. Host altering effectors are secreted through this energized unidirectional conduit to promote bacterial invasion. The active needle tip complex of S. flexneri is composed of a tip protein, IpaD, and two pore-forming translocators, IpaB and IpaC. While the atomic structure of IpaD has been elucidated and studied, structural data on the hydrophobic translocators from the T3SS family remain elusive. We present here the crystal structures of a protease-stable fragment identified within the N-terminal regions of IpaB from S. flexneri and SipB from Salmonella enterica serovar Typhimurium determined at 2.1 Å and 2.8 Å limiting resolution, respectively. These newly identified domains are comprised of extended length (114 Å in IpaB and 71 Å in SipB) coiled-coil motifs that display a high degree of structural homology to one another despite the fact that they share only 21% sequence identity. Further structural comparisons also reveal substantial similarity to the coiled-coil regions of pore-forming proteins from other Gram-negative pathogens, notably colicin Ia. This suggests that these mechanistically-separate and functionally-distinct membrane-targeting proteins may have diverged from a common ancestor during the course of pathogen-specific evolutionary events. PMID:22321794

  8. Quantitative Analysis of the Association Angle between T-cell Receptor Vα/Vβ Domains Reveals Important Features for Epitope Recognition.

    PubMed

    Hoffmann, Thomas; Krackhardt, Angela M; Antes, Iris

    2015-07-01

    T-cell receptors (TCR) play an important role in the adaptive immune system as they recognize pathogen- or cancer-based epitopes and thus initiate the cell-mediated immune response. Therefore there exists a growing interest in the optimization of TCRs for medical purposes like adoptive T-cell therapy. However, the molecular mechanisms behind T-cell signaling are still predominantly unknown. For small sets of TCRs it was observed that the angle between their Vα- and Vβ-domains, which bind the epitope, can vary and might be important for epitope recognition. Here we present a comprehensive, quantitative study of the variation in the Vα/Vβ interdomain-angle and its influence on epitope recognition, performing a systematic bioinformatics analysis based on a representative set of experimental TCR structures. For this purpose we developed a new, cuboid-based superpositioning method, which allows a unique, quantitative analysis of the Vα/Vβ-angles. Angle-based clustering led to six significantly different clusters. Analysis of these clusters revealed the unexpected result that the angle is predominantly influenced by the TCR-clonotype, whereas the bound epitope has only a minor influence. Furthermore we could identify a previously unknown center of rotation (CoR), which is shared by all TCRs. All TCR geometries can be obtained by rotation around this center, rendering it a new, common TCR feature with the potential of improving the accuracy of TCR structure prediction considerably. The importance of Vα/Vβ rotation for signaling was confirmed as we observed larger variances in the Vα/Vβ-angles in unbound TCRs compared to epitope-bound TCRs. Our results strongly support a two-step mechanism for TCR-epitope: First, preformation of a flexible TCR geometry in the unbound state and second, locking of the Vα/Vβ-angle in a TCR-type specific geometry upon epitope-MHC association, the latter being driven by rotation around the unique center of rotation. PMID:26185983

  9. Comprehensive phylogenetic analysis of bacterial group II intron-encoded ORFs lacking the DNA endonuclease domain reveals new varieties.

    PubMed

    Toro, Nicolás; Martínez-Abarca, Francisco

    2013-01-01

    Group II introns are self-splicing RNAs that act as mobile retroelements in the organelles of plants, fungi and protists. They are also widely distributed in bacteria, and are generally assumed to be the ancestors of nuclear spliceosomal introns. Most bacterial group II introns have a multifunctional intron-encoded protein (IEP) ORF within the ribozyme domain IV (DIV). This ORF encodes an N-terminal reverse transcriptase (RT) domain, followed by a putative RNA-binding domain with RNA splicing or maturase activity and, in some cases, a C-terminal DNA-binding (D) region followed by a DNA endonuclease (En) domain. In this study, we focused on bacterial group II intron ORF phylogenetic classes containing only reverse transcriptase/maturase open reading frames, with no recognizable D/En region (classes A, C, D, E, F and unclassified introns). On the basis of phylogenetic analyses of the maturase domain and its C-terminal extension, which appears to be a signature characteristic of ORF phylogenetic class, with support from the phylogeny inferred from the RT domain, we have revised the proposed new class F, defining new intron ORF varieties. Our results increase knowledge of the lineage of group II introns encoding proteins lacking the En-domain.

  10. Structures of replication initiation proteins from staphylococcal antibiotic resistance plasmids reveal protein asymmetry and flexibility are necessary for replication

    PubMed Central

    Carr, Stephen B.; Phillips, Simon E.V.; Thomas, Christopher D.

    2016-01-01

    Antibiotic resistance in pathogenic bacteria is a continual threat to human health, often residing in extrachromosomal plasmid DNA. Plasmids of the pT181 family are widespread and confer various antibiotic resistances to Staphylococcus aureus. They replicate via a rolling circle mechanism that requires a multi-functional, plasmid-encoded replication protein to initiate replication, recruit a helicase to the site of initiation and terminate replication after DNA synthesis is complete. We present the first atomic resolution structures of three such replication proteins that reveal distinct, functionally relevant conformations. The proteins possess a unique active site and have been shown to contain a catalytically essential metal ion that is bound in a manner distinct from that of any other rolling circle replication proteins. These structures are the first examples of the Rep_trans Pfam family providing insights into the replication of numerous antibiotic resistance plasmids from Gram-positive bacteria, Gram-negative phage and the mobilisation of DNA by conjugative transposons. PMID:26792891

  11. Significance of a two-domain structure in subunits of phycobiliproteins revealed by the normal mode analysis.

    PubMed

    Kikuchi, H; Wako, H; Yura, K; Go, M; Mimuro, M

    2000-09-01

    Phycobiliproteins are basic building blocks of phycobilisomes, a supra-molecular assembly for the light-capturing function of photosynthesis in cyanobacteria and red algae. One functional form of phycobiliproteins is a trimeric form consisting of three identical units having C(3) symmetry, with each unit composed of two kinds of subunits, the alpha-subunit and beta-subunit. These subunits have similar chain folds and can be divided into either globin-like or X-Y helices domains. We studied the significance of this two-domain structure for their assembled structures and biological function (light-absorption) using a normal mode analysis to investigate dynamic aspects of their three-dimensional structures. We used C-phycocyanin (C-PC) as an example, and focused on the interactions between the two domains. The normal mode analysis was carried out for the following two cases: 1) the whole subunit, including the two domains; and 2) the globin-like domain alone. By comparing the dynamic properties, such as correlative movements between residues and the fluctuations of individual residues, we found that the X-Y helices domain plays an important role not only in the C(3) symmetry assemblies of the subunits in phycobiliproteins, but also in stabilizing the light absorption property by suppressing the fluctuation of the specific Asp residues near the chromophore. Interestingly, the conformation of the X-Y helices domain corresponds to that of a module in pyruvate phosphate dikinase (PPDK). The module in PPDK is involved in the interactions of two domains, just as the X-Y helices domain is involved in the interactions of two subunits. Finally, we discuss the mechanical construction of the C-PC subunits based on the normal mode analysis.

  12. Solution NMR and X-ray Crystal Structures of Membrane-associated Lipoprotein-17 Domain Reveal a Novel Fold

    SciTech Connect

    R Mani; S Vorobiev; G Swapna; H Neely; H Janjua; C Ciccosanti; D Xiao; J Hunt; G Montelione; et al.

    2011-12-31

    The conserved Lipoprotein-17 domain of membrane-associated protein Q9PRA0{_}UREPA from Ureaplasma parvum was selected for structure determination by the Northeast Structural Genomics Consortium, as part of the Protein Structure Initiative's program on structure-function analysis of protein domains from large domain sequence families lacking structural representatives. The 100-residue Lipoprotein-17 domain is a 'domain of unknown function' (DUF) that is a member of Pfam protein family PF04200, a large domain family for which no members have characterized biochemical functions. The three-dimensional structure of the Lipoprotein-17 domain of protein Q9PRA0{_}UREPA was determined by both solution NMR and by X-ray crystallography at 2.5 {angstrom}. The two structures are in good agreement with each other. The domain structure features three {alpha}-helices, {alpha}1 through {alpha}3, and five {beta}-strands. Strands {beta}1/{beta}2, {beta}3/{beta}4, {beta}4/{beta}5 are anti-parallel to each other. Strands {beta}1 and {beta}2 are orthogonal to strands {beta}3, {beta}4, {beta}5, while helix {alpha}3 is formed between the strands {beta}3 and {beta}4. One-turn helix {alpha}2 is formed between the strands {beta}1 and {beta}2, while helix {alpha}1 occurs in the N-terminal polypeptide segment. Searches of the Protein Data Bank do not identify any other protein with significant structural similarity to Lipoprotein-17 domain of Q9PRA0{_}UREPA, indicating that it is a novel protein fold.

  13. Conformational flexibility in the apolipoprotein E amino-terminal domain structure determined from three new crystal forms: implications for lipid binding.

    PubMed Central

    Segelke, B. W.; Forstner, M.; Knapp, M.; Trakhanov, S. D.; Parkin, S.; Newhouse, Y. M.; Bellamy, H. D.; Weisgraber, K. H.; Rupp, B.

    2000-01-01

    An amino-terminal fragment of human apolipoprotein E3 (residues 1-165) has been expressed and crystallized in three different crystal forms under similar crystallization conditions. One crystal form has nearly identical cell dimensions to the previously reported orthorhombic (P2(1)2(1)2(1)) crystal form of the amino-terminal 22 kDa fragment of apolipoprotein E (residues 1-191). A second orthorhombic crystal form (P2(1)2(1)2(1) with cell dimensions differing from the first form) and a trigonal (P3(1)21) crystal form were also characterized. The structures of the first orthorhombic and the trigonal form were determined by seleno-methionine multiwavelength anomalous dispersion, and the structure of the second orthorhombic form was determined by molecular replacement using the structure from the trigonal form as a search model. A combination of modern experimental and computational techniques provided high-quality electron-density maps, which revealed new features of the apolipoprotein E structure, including an unambiguously traced loop connecting helices 2 and 3 in the four-helix bundle and a number of multiconformation side chains. The three crystal forms contain a common intermolecular, antiparallel packing arrangement. The electrostatic complimentarity observed in this antiparallel packing resembles the interaction of apolipoprotein E with the monoclonal antibody 2E8 and the low density lipoprotein receptor. Superposition of the model structures from all three crystal forms reveals flexibility and pronounced kinks in helices near one end of the four-helix bundle. This mobility at one end of the molecule provides new insights into the structural changes in apolipoprotein E that occur with lipid association. PMID:10850798

  14. Genome wide expression analysis of CBS domain containing proteins in Arabidopsis thaliana (L.) Heynh and Oryza sativa L. reveals their developmental and stress regulation

    PubMed Central

    Kushwaha, Hemant R; Singh, Anil K; Sopory, Sudhir K; Singla-Pareek, Sneh L; Pareek, Ashwani

    2009-01-01

    Background In Arabidopsis thaliana (L.) Heynh and Oryza sativa L., a large number of genes encode proteins of unknown functions, whose characterization still remains one of the major challenges. With an aim to characterize these unknown proteins having defined features (PDFs) in plants, we have chosen to work on proteins having a cystathionine β-synthase (CBS) domain. CBS domain as such has no defined function(s) but plays a regulatory role for many enzymes and thus helps in maintaining the intracellular redox balance. Its function as sensor of cellular energy has also been widely suggested. Results Our analysis has identified 34 CBS domain containing proteins (CDCPs) in Arabidopsis and 59 in Oryza. In most of these proteins, CBS domain coexists with other functional domain(s), which may indicate towards their probable functions. In order to investigate the role(s) of these CDCPs, we have carried out their detailed analysis in whole genomes of Arabidopsis and Oryza, including their classification, nomenclature, sequence analysis, domain analysis, chromosomal locations, phylogenetic relationships and their expression patterns using public databases (MPSS database and microarray data). We have found that the transcript levels of some members of this family are altered in response to various stresses such as salinity, drought, cold, high temperature, UV, wounding and genotoxic stress, in both root and shoot tissues. This data would be helpful in exploring the so far obscure functions of CBS domain and CBS domain-containing proteins in plant stress responses. Conclusion We have identified, classified and suggested the nomenclature of CDCPs in Arabidopsis and Oryza. A comprehensive analysis of expression patterns for CDCPs using the already existing transcriptome profiles and MPSS database reveals that a few CDCPs may have an important role in stress response/tolerance and development in plants, which needs to be validated further through functional genomics. PMID

  15. Reconstitution of multivalent PDZ domain binding to the scaffold protein PSD-95 reveals ternary-complex specificity of combinatorial inhibition

    PubMed Central

    McCann, James J.; Choi, Ucheor B.; Bowen, Mark E.

    2014-01-01

    Summary Multi-domain scaffold proteins serve as hubs in the signal transduction network. By physically colocalizing sequential steps in a transduction pathway, scaffolds catalyze and direct incoming signals. Much is known about binary interactions with individual domains but it is unknown whether “scaffolding activity” is predictable from pairwise affinities. Here, we characterized multivalent binding to PSD-95, a scaffold protein containing three PDZ domains connected in series by disordered linkers. We used single molecule fluorescence to watch soluble PSD-95 recruit diffusing proteins to a surface-attached receptor cytoplasmic domain. Different ternary complexes showed unique concentration dependence for scaffolding despite similar pairwise affinity. The concentration dependence of scaffolding activity was not predictable based on binary interactions. PSD-95 did not stabilize specific complexes, but rather increased the frequency of transient binding events. Our results suggest that PSD-95 maintains a loosely-connected pleomorphic ensemble rather than forming a stereospecific complex containing all components. PMID:25220472

  16. Independent flexible motion of submolecular domains of the Ca2+,Mg2+-ATPase of sarcoplasmic reticulum measured by time-resolved fluorescence depolarization of site-specifically attached probes.

    PubMed

    Suzuki, S; Kawato, S; Kouyama, T; Kinosita, K; Ikegami, A; Kawakita, M

    1989-09-19

    The Ca2+-transporting ATPase of rabbit skeletal muscle sarcoplasmic reticulum was site-specifically labeled with either N-(1-anilinonaphth-4-yl)maleimide (ANM) or 5-[[(iodoacetamido)-ethyl]amino]naphthalene-1-sulfonate (IAEDANS), and the segmental motion of submolecular domains of the ATPase molecule was examined by means of time-resolved and steady-state fluorescence anisotropy measurements. The ANM-binding domain showed wobbling with a rotational relaxation time phi = 69 ns in the absence of free Ca2+ without any independent wobbling of the ANM moiety. The IAEDANS-binding domain showed a significantly slower wobbling with phi = 190 ns in the absence of Ca2+. The present results demonstrated for the first time that the ATPase molecule is composed of distinct domains whose mobilities are considerably different from each other. The binding of Ca2+ to the transport site increased the segmental motion of ANM-labeled domain, leading to a phi value of 65 ns. Solubilization of the ANM-labeled SR membranes by deoxycholate led to a further increase in the segmental flexibility (phi = 48 ns in the absence of free Ca2+), indicating that the mobility of the ANM-binding domain was considerably restricted through interaction with the membrane. The mobility of the ANM-binding domain of solubilized ATPase was also increased to some extent upon binding of Ca2+.

  17. Phylogeny of the CDC25 homology domain reveals rapid differentiation of Ras pathways between early animals and fungi.

    PubMed

    van Dam, Teunis J P; Rehmann, Holger; Bos, Johannes L; Snel, Berend

    2009-11-01

    The members of the Ras-like superfamily of small GTP-binding proteins are molecular switches that are in general regulated in time and space by guanine nucleotide exchange factors and GTPase activating proteins. The Ras-like G-proteins Ras, Rap and Ral are regulated by a variety of guanine nucleotide exchange factors that are characterized by a CDC25 homology domain. Here we study the evolution of the Ras pathway by determining the evolutionary history of CDC25 homology domain coding sequences. We identified CDC25 homology domain coding sequences in animals, fungi and a wide range of protists, but not in plants. This suggests that the CDC25 homology domain originated in or before the last eukaryotic ancestor but was subsequently lost in plant. We provide evidence that at least seven different ancestral Ras guanine nucleotide exchange factors were present in the ancestor of fungi and animals. Differences between present day fungi and animals are the result of loss of ancestral Ras guanine nucleotide exchange factors early in fungal and animal evolution combined with lineage specific duplications and domain acquisitions. In addition, we identify Ral guanine exchange factors and Ral in early diverged fungi, dating the origin of Ral signaling back to before the divergence of animals and fungi. We conclude that the Ras signaling pathway evolved by gradual change as well as through differential sampling of the ancestral CDC25 homology domain repertoire by both fungi and animals. Finally, a comparison of the domain composition of the Ras guanine nucleotide exchange factors shows that domain addition and diversification occurred both prior to and after the fungal-animal split.

  18. Cross‐species chimeras reveal BamA POTRA and β‐barrel domains must be fine‐tuned for efficient OMP insertion

    PubMed Central

    Bavro, Vassiliy N.; Mason, Jessica L.; Sevastsyanovich, Yanina R.; Rossiter, Amanda E.; Jeeves, Mark; Wells, Timothy J.; Knowles, Timothy J.; Cunningham, Adam F.; Donald, James W.; Palmer, Tracy; Overduin, Michael

    2015-01-01

    Summary BAM is a conserved molecular machine, the central component of which is BamA. Orthologues of BamA are found in all Gram‐negative bacteria, chloroplasts and mitochondria where it is required for the folding and insertion of β‐barrel containing integral outer membrane proteins (OMPs) into the outer membrane. BamA binds unfolded β‐barrel precursors via the five polypeptide transport‐associated (POTRA) domains at its N‐terminus. The C‐terminus of BamA folds into a β‐barrel domain, which tethers BamA to the outer membrane and is involved in OMP insertion. BamA orthologues are found in all Gram‐negative bacteria and appear to function in a species‐specific manner. Here we investigate the nature of this species‐specificity by examining whether chimeric E scherichia coli  BamA fusion proteins, carrying either the β‐barrel or POTRA domains from various BamA orthologues, can functionally replace E . coli  BamA. We demonstrate that the β‐barrel domains of many BamA orthologues are functionally interchangeable. We show that defects in the orthologous POTRA domains can be rescued by compensatory mutations within the β‐barrel. These data reveal that the POTRA and barrel domains must be precisely aligned to ensure efficient OMP insertion. PMID:25943387

  19. The crystal structure of NS5A domain 1 from genotype 1a reveals new clues to the mechanism of action for dimeric HCV inhibitors

    PubMed Central

    Lambert, Sebastian M; Langley, David R; Garnett, James A; Angell, Richard; Hedgethorne, Katy; Meanwell, Nicholas A; Matthews, Steve J

    2014-01-01

    New direct acting antivirals (DAAs) such as daclatasvir (DCV; BMS-790052), which target NS5A function with picomolar potency, are showing promise in clinical trials. The exact nature of how these compounds have an inhibitory effect on HCV is unknown; however, major resistance mutations appear in the N-terminal region of NS5A that include the amphipathic helix and domain 1. The dimeric symmetry of these compounds suggests that they act on a dimer of NS5A, which is also consistent with the presence of dimers in crystals of NS5A domain 1 from genotype 1b. Genotype 1a HCV is less potently affected by these compounds and resistance mutations have a greater effect than in the 1b genotypes. We have obtained crystals of domain 1 of the important 1a NS5A homologue and intriguingly, our X-ray crystal structure reveals two new dimeric forms of this domain. Furthermore, the high solvent content (75%) makes it ideal for ligand-soaking. Daclatasvir (DCV) shows twofold symmetry suggesting NS5A dimers may be of physiological importance and serve as potential binding sites for DCV. These dimers also allow for new conformations of a NS5A expansive network which could explain its operation on the membranous web. Additionally, sulfates bound in the crystal structure may provide evidence for the previously proposed RNA binding groove, or explain regulation of NS5A domain 2 and 3 function and phosphorylation, by domain 1. PMID:24639329

  20. Loss of Llgl1 in retinal neuroepithelia reveals links between apical domain size, Notch activity and neurogenesis

    PubMed Central

    Clark, Brian S.; Cui, Shuang; Miesfeld, Joel B.; Klezovitch, Olga; Vasioukhin, Valeri; Link, Brian A.

    2012-01-01

    To gain insights into the cellular mechanisms of neurogenesis, we analyzed retinal neuroepithelia deficient for Llgl1, a protein implicated in apicobasal cell polarity, asymmetric cell division, cell shape and cell cycle exit. We found that vertebrate retinal neuroepithelia deficient for Llgl1 retained overt apicobasal polarity, but had expanded apical domains. Llgl1 retinal progenitors also had increased Notch activity and reduced rates of neurogenesis. Blocking Notch function by depleting Rbpj restored normal neurogenesis. Experimental expansion of the apical domain, through inhibition of Shroom3, also increased Notch activity and reduced neurogenesis. Significantly, in wild-type retina, neurogenic retinal progenitors had smaller apical domains compared with proliferative neuroepithelia. As nuclear position during interkinetic nuclear migration (IKNM) has been previously linked with cell cycle exit, we analyzed this phenomenon in cells depleted of Llgl1. We found that although IKNM was normal, the relationship between nuclear position and neurogenesis was shifted away from the apical surface, consistent with increased pro-proliferative and/or anti-neurogenic signals associated with the apical domain. These data, in conjunction with other findings, suggest that, in retinal neuroepithelia, the size of the apical domain modulates the strength of polarized signals that influence neurogenesis. PMID:22492354

  1. Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: The case of domain motions

    NASA Astrophysics Data System (ADS)

    Naritomi, Yusuke; Fuchigami, Sotaro

    2011-02-01

    Protein dynamics on a long time scale was investigated using all-atom molecular dynamics (MD) simulation and time-structure based independent component analysis (tICA). We selected the lysine-, arginine-, ornithine-binding protein (LAO) as a target protein and focused on its domain motions in the open state. A MD simulation of the LAO in explicit water was performed for 600 ns, in which slow and large-amplitude domain motions of the LAO were observed. After extracting domain motions by rigid-body domain analysis, the tICA was applied to the obtained rigid-body trajectory, yielding slow modes of the LAO's domain motions in order of decreasing time scale. The slowest mode detected by the tICA represented not a closure motion described by a largest-amplitude mode determined by the principal component analysis but a twist motion with a time scale of tens of nanoseconds. The slow dynamics of the LAO were well described by only the slowest mode and were characterized by transitions between two basins. The results show that tICA is promising for describing and analyzing slow dynamics of proteins.

  2. Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: the case of domain motions.

    PubMed

    Naritomi, Yusuke; Fuchigami, Sotaro

    2011-02-14

    Protein dynamics on a long time scale was investigated using all-atom molecular dynamics (MD) simulation and time-structure based independent component analysis (tICA). We selected the lysine-, arginine-, ornithine-binding protein (LAO) as a target protein and focused on its domain motions in the open state. A MD simulation of the LAO in explicit water was performed for 600 ns, in which slow and large-amplitude domain motions of the LAO were observed. After extracting domain motions by rigid-body domain analysis, the tICA was applied to the obtained rigid-body trajectory, yielding slow modes of the LAO's domain motions in order of decreasing time scale. The slowest mode detected by the tICA represented not a closure motion described by a largest-amplitude mode determined by the principal component analysis but a twist motion with a time scale of tens of nanoseconds. The slow dynamics of the LAO were well described by only the slowest mode and were characterized by transitions between two basins. The results show that tICA is promising for describing and analyzing slow dynamics of proteins.

  3. Conformational rearrangements in the transmembrane domain of CNGA1 channels revealed by single-molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Maity, Sourav; Mazzolini, Monica; Arcangeletti, Manuel; Valbuena, Alejandro; Fabris, Paolo; Lazzarino, Marco; Torre, Vincent

    2015-05-01

    Cyclic nucleotide-gated (CNG) channels are activated by binding of cyclic nucleotides. Although structural studies have identified the channel pore and selectivity filter, conformation changes associated with gating remain poorly understood. Here we combine single-molecule force spectroscopy (SMFS) with mutagenesis, bioinformatics and electrophysiology to study conformational changes associated with gating. By expressing functional channels with SMFS fingerprints in Xenopus laevis oocytes, we were able to investigate gating of CNGA1 in a physiological-like membrane. Force spectra determined that the S4 transmembrane domain is mechanically coupled to S5 in the closed state, but S3 in the open state. We also show there are multiple pathways for the unfolding of the transmembrane domains, probably caused by a different degree of α-helix folding. This approach demonstrates that CNG transmembrane domains have dynamic structure and establishes SMFS as a tool for probing conformational change in ion channels.

  4. Light-induced switching of HAMP domain conformation and dynamics revealed by time-resolved EPR spectroscopy.

    PubMed

    Klose, Daniel; Voskoboynikova, Natalia; Orban-Glass, Ioan; Rickert, Christian; Engelhard, Martin; Klare, Johann P; Steinhoff, Heinz-Jürgen

    2014-11-01

    HAMP domains are widely abundant signaling modules. The putative mechanism of their function comprises switching between two distinct states. To unravel these conformational transitions, we apply site-directed spin labeling and time-resolved EPR spectroscopy to the phototactic receptor/transducer complex NpSRII/NpHtrII. We characterize the kinetic coupling of NpHtrII to NpSRII along with the activation period of the transducer and follow the transient conformational signal. The observed transient shift towards a more compact state of the HAMP domain upon light-activation agrees with structure-based calculations. It thereby validates the two modeled signaling states and integrates the domain's dynamics into the current model.

  5. Conformational rearrangements in the transmembrane domain of CNGA1 channels revealed by single-molecule force spectroscopy

    PubMed Central

    Maity, Sourav; Mazzolini, Monica; Arcangeletti, Manuel; Valbuena, Alejandro; Fabris, Paolo; Lazzarino, Marco; Torre, Vincent

    2015-01-01

    Cyclic nucleotide-gated (CNG) channels are activated by binding of cyclic nucleotides. Although structural studies have identified the channel pore and selectivity filter, conformation changes associated with gating remain poorly understood. Here we combine single-molecule force spectroscopy (SMFS) with mutagenesis, bioinformatics and electrophysiology to study conformational changes associated with gating. By expressing functional channels with SMFS fingerprints in Xenopus laevis oocytes, we were able to investigate gating of CNGA1 in a physiological-like membrane. Force spectra determined that the S4 transmembrane domain is mechanically coupled to S5 in the closed state, but S3 in the open state. We also show there are multiple pathways for the unfolding of the transmembrane domains, probably caused by a different degree of α-helix folding. This approach demonstrates that CNG transmembrane domains have dynamic structure and establishes SMFS as a tool for probing conformational change in ion channels. PMID:25963832

  6. Organization of Subunits in the Membrane Domain of the Bovine F-ATPase Revealed by Covalent Cross-linking*

    PubMed Central

    Lee, Jennifer; Ding, ShuJing; Walpole, Thomas B.; Holding, Andrew N.; Montgomery, Martin G.; Fearnley, Ian M.; Walker, John E.

    2015-01-01

    The F-ATPase in bovine mitochondria is a membrane-bound complex of about 30 subunits of 18 different kinds. Currently, ∼85% of its structure is known. The enzyme has a membrane extrinsic catalytic domain, and a membrane intrinsic domain where the turning of the enzyme's rotor is generated from the transmembrane proton-motive force. The domains are linked by central and peripheral stalks. The central stalk and a hydrophobic ring of c-subunits in the membrane domain constitute the enzyme's rotor. The external surface of the catalytic domain and membrane subunit a are linked by the peripheral stalk, holding them static relative to the rotor. The membrane domain contains six additional subunits named ATP8, e, f, g, DAPIT (diabetes-associated protein in insulin-sensitive tissues), and 6.8PL (6.8-kDa proteolipid), each with a single predicted transmembrane α-helix, but their orientation and topography are unknown. Mutations in ATP8 uncouple the enzyme and interfere with its assembly, but its roles and the roles of the other five subunits are largely unknown. We have reacted accessible amino groups in the enzyme with bifunctional cross-linking agents and identified the linked residues. Cross-links involving the supernumerary subunits, where the structures are not known, show that the C terminus of ATP8 extends ∼70 Å from the membrane into the peripheral stalk and that the N termini of the other supernumerary subunits are on the same side of the membrane, probably in the mitochondrial matrix. These experiments contribute significantly toward building up a complete structural picture of the F-ATPase. PMID:25851905

  7. Meta-Stable Magnetic Domain States That Prevent Reliable Absolute Palaeointensity Experiments Revealed By Magnetic Force Microscopy

    NASA Astrophysics Data System (ADS)

    de Groot, L. V.; Fabian, K.; Bakelaar, I. A.; Dekkers, M. J.

    2014-12-01

    Obtaining reliable estimates of the absolute palaeointensity of the Earth's magnetic field is notoriously difficult. Many methods to obtain paleointensities from suitable records such as lavas and archeological artifacts involve heating the samples. These heating steps are believed to induce 'magnetic alteration' - a process that is still poorly understood but prevents obtaining correct paleointensity estimates. To observe this magnetic alteration directly we imaged the magnetic domain state of titanomagnetite particles - a common carrier of the magnetic remanence in samples used for paleointensity studies. We selected samples from the 1971-flow of Mt. Etna from a site that systematically yields underestimates of the known intensity of the paleofield - in spite of rigorous testing by various groups. Magnetic Force Microscope images were taken before and after a heating step typically used in absolute palaeointensity experiments. Before heating, the samples feature distinct, blocky domains that sometimes seem to resemble a classical magnetite domain structure. After imparting a partial thermo-remanent magnetization at a temperature often critical to paleointensity experiments (250 °C) the domain state of the same titanomagnetite grains changes into curvier, wavy domains. Furthermore, these structures appeared to be unstable over time: after one-year storage in a magnetic field-free environment the domain states evolved into a viscous remanent magnetization state. Our observations may qualitatively explain reported underestimates from technically successful paleointensity experiments for this site and other sites reported previously. Furthermore the occurrence of intriguing observations such as 'the drawer storage effect' by Shaar et al (EPSL, 2011), and viscous magnetizations observed by Muxworthy and Williams (JGR, 2006) may be (partially) explained by our observations. The major implications of our study for all palaeointensity methods involving heating may be

  8. Three-dimensional reconstructions of the bacteriophage CUS-3 virion reveal a conserved coat protein I-domain but a distinct tailspike receptor-binding domain

    PubMed Central

    Parent, Kristin N.; Tang, Jinghua; Cardone, Giovanni; Gilcrease, Eddie B.; Janssen, Mandy E.; Olson, Norman H.; Casjens, Sherwood R.; Baker, Timothy S.

    2014-01-01

    CUS-3 is a short-tailed, dsDNA bacteriophage that infects serotype K1 E. coli. We report icosahedrally averaged and asymmetric, three-dimensional, cryo-electron microscopic reconstructions of the CUS-3 virion. Its coat protein structure adopts the “HK97-fold” shared by other tailed phages and is quite similar to that in phages P22 and Sf6 despite only weak amino acid sequence similarity. In addition, these coat proteins share a unique extra external domain (“I-domain”), suggesting that the group of P22-like phages has evolved over a very long time period without acquiring a new coat protein gene from another phage group. On the other hand, the morphology of the CUS-3 tailspike differs significantly from that of P22 or Sf6, but is similar to the tailspike of phage K1F, a member of the extremely distantly related T7 group of phages. We conclude that CUS-3 obtained its tailspike gene from a distantly related phage quite recently. PMID:25043589

  9. A novel form of Total Internal Reflection Fluorescence Microscopy (LG-TIRFM) reveals different and independent lipid raft domains in living cells.

    PubMed

    Asanov, Alexander; Zepeda, Angélica; Vaca, Luis

    2010-02-01

    In the present study we have applied a novel form of Total Internal Reflection Fluorescence Microscopy (LG-TIRFM) in combination with fluorescently labeled cholera toxin to the study of lipid rafts dynamics in living cells. We demonstrate the usefulness of such approach by showing the dynamic formation/disaggregation of islands of cholera toxin on the surface of cells. Using multicolor LG-TIRFM with co-localization studies we show for the first time that two receptors previously identified as constituents of lipid rafts are found on different and independent "raft domains" on the cell plasma membrane. Furthermore, LG-TIRFM studies revealed limited association and dissociation of both domains overtime on different areas of the plasma membrane. The implications of different "raft domains" on cell physiology are discussed.

  10. Structure of the C-Terminal Half of UvrC Reveals an RNase H Endonuclease Domain with an Argonaute-like Catalytic Triad

    SciTech Connect

    Karakas,E.; Truglio, J.; Croteau, D.; Rhau, B.; Wang, L.; Van Houten, B.; Kisker, C.

    2007-01-01

    Removal and repair of DNA damage by the nucleotide excision repair pathway requires two sequential incision reactions, which are achieved by the endonuclease UvrC in eubacteria. Here, we describe the crystal structure of the C-terminal half of UvrC, which contains the catalytic domain responsible for 5' incision and a helix-hairpin-helix-domain that is implicated in DNA binding. Surprisingly, the 5' catalytic domain shares structural homology with RNase H despite the lack of sequence homology and contains an uncommon DDH triad. The structure also reveals two highly conserved patches on the surface of the protein, which are not related to the active site. Mutations of residues in one of these patches led to the inability of the enzyme to bind DNA and severely compromised both incision reactions. Based on our results, we suggest a model of how UvrC forms a productive protein-DNA complex to excise the damage from DNA.

  11. Metagenomic Analysis of Upwelling-Affected Brazilian Coastal Seawater Reveals Sequence Domains of Type I PKS and Modular NRPS

    PubMed Central

    Cuadrat, Rafael R. C.; Cury, Juliano C.; Dávila, Alberto M. R.

    2015-01-01

    Marine environments harbor a wide range of microorganisms from the three domains of life. These microorganisms have great potential to enable discovery of new enzymes and bioactive compounds for industrial use. However, only ~1% of microorganisms from the environment can currently be identified through cultured isolates, limiting the discovery of new compounds. To overcome this limitation, a metagenomics approach has been widely adopted for biodiversity studies on samples from marine environments. In this study, we screened metagenomes in order to estimate the potential for new natural compound synthesis mediated by diversity in the Polyketide Synthase (PKS) and Nonribosomal Peptide Synthetase (NRPS) genes. The samples were collected from the Praia dos Anjos (Angel’s Beach) surface water—Arraial do Cabo (Rio de Janeiro state, Brazil), an environment affected by upwelling. In order to evaluate the potential for screening natural products in Arraial do Cabo samples, we used KS (keto-synthase) and C (condensation) domains (from PKS and NRPS, respectively) to build Hidden Markov Models (HMM) models. From both samples, a total of 84 KS and 46 C novel domain sequences were obtained, showing the potential of this environment for the discovery of new genes of biotechnological interest. These domains were classified by phylogenetic analysis and this was the first study conducted to screen PKS and NRPS genes in an upwelling affected sample PMID:26633360

  12. Metagenomic Analysis of Upwelling-Affected Brazilian Coastal Seawater Reveals Sequence Domains of Type I PKS and Modular NRPS.

    PubMed

    Cuadrat, Rafael R C; Cury, Juliano C; Dávila, Alberto M R

    2015-01-01

    Marine environments harbor a wide range of microorganisms from the three domains of life. These microorganisms have great potential to enable discovery of new enzymes and bioactive compounds for industrial use. However, only ~1% of microorganisms from the environment can currently be identified through cultured isolates, limiting the discovery of new compounds. To overcome this limitation, a metagenomics approach has been widely adopted for biodiversity studies on samples from marine environments. In this study, we screened metagenomes in order to estimate the potential for new natural compound synthesis mediated by diversity in the Polyketide Synthase (PKS) and Nonribosomal Peptide Synthetase (NRPS) genes. The samples were collected from the Praia dos Anjos (Angel's Beach) surface water-Arraial do Cabo (Rio de Janeiro state, Brazil), an environment affected by upwelling. In order to evaluate the potential for screening natural products in Arraial do Cabo samples, we used KS (keto-synthase) and C (condensation) domains (from PKS and NRPS, respectively) to build Hidden Markov Models (HMM) models. From both samples, a total of 84 KS and 46 C novel domain sequences were obtained, showing the potential of this environment for the discovery of new genes of biotechnological interest. These domains were classified by phylogenetic analysis and this was the first study conducted to screen PKS and NRPS genes in an upwelling affected sample. PMID:26633360

  13. Characterization of Bacterial, Archaeal and Eukaryote Symbionts from Antarctic Sponges Reveals a High Diversity at a Three-Domain Level and a Particular Signature for This Ecosystem

    PubMed Central

    Rodríguez-Marconi, Susana; De la Iglesia, Rodrigo; Díez, Beatriz; Fonseca, Cássio A.; Hajdu, Eduardo; Trefault, Nicole

    2015-01-01

    Sponge-associated microbial communities include members from the three domains of life. In the case of bacteria, they are diverse, host specific and different from the surrounding seawater. However, little is known about the diversity and specificity of Eukarya and Archaea living in association with marine sponges. This knowledge gap is even greater regarding sponges from regions other than temperate and tropical environments. In Antarctica, marine sponges are abundant and important members of the benthos, structuring the Antarctic marine ecosystem. In this study, we used high throughput ribosomal gene sequencing to investigate the three-domain diversity and community composition from eight different Antarctic sponges. Taxonomic identification reveals that they belong to families Acarnidae, Chalinidae, Hymedesmiidae, Hymeniacidonidae, Leucettidae, Microcionidae, and Myxillidae. Our study indicates that there are different diversity and similarity patterns between bacterial/archaeal and eukaryote microbial symbionts from these Antarctic marine sponges, indicating inherent differences in how organisms from different domains establish symbiotic relationships. In general, when considering diversity indices and number of phyla detected, sponge-associated communities are more diverse than the planktonic communities. We conclude that three-domain microbial communities from Antarctic sponges are different from surrounding planktonic communities, expanding previous observations for Bacteria and including the Antarctic environment. Furthermore, we reveal differences in the composition of the sponge associated bacterial assemblages between Antarctic and tropical-temperate environments and the presence of a highly complex microbial eukaryote community, suggesting a particular signature for Antarctic sponges, different to that reported from other ecosystems. PMID:26421612

  14. Characterization of Bacterial, Archaeal and Eukaryote Symbionts from Antarctic Sponges Reveals a High Diversity at a Three-Domain Level and a Particular Signature for This Ecosystem.

    PubMed

    Rodríguez-Marconi, Susana; De la Iglesia, Rodrigo; Díez, Beatriz; Fonseca, Cássio A; Hajdu, Eduardo; Trefault, Nicole

    2015-01-01

    Sponge-associated microbial communities include members from the three domains of life. In the case of bacteria, they are diverse, host specific and different from the surrounding seawater. However, little is known about the diversity and specificity of Eukarya and Archaea living in association with marine sponges. This knowledge gap is even greater regarding sponges from regions other than temperate and tropical environments. In Antarctica, marine sponges are abundant and important members of the benthos, structuring the Antarctic marine ecosystem. In this study, we used high throughput ribosomal gene sequencing to investigate the three-domain diversity and community composition from eight different Antarctic sponges. Taxonomic identification reveals that they belong to families Acarnidae, Chalinidae, Hymedesmiidae, Hymeniacidonidae, Leucettidae, Microcionidae, and Myxillidae. Our study indicates that there are different diversity and similarity patterns between bacterial/archaeal and eukaryote microbial symbionts from these Antarctic marine sponges, indicating inherent differences in how organisms from different domains establish symbiotic relationships. In general, when considering diversity indices and number of phyla detected, sponge-associated communities are more diverse than the planktonic communities. We conclude that three-domain microbial communities from Antarctic sponges are different from surrounding planktonic communities, expanding previous observations for Bacteria and including the Antarctic environment. Furthermore, we reveal differences in the composition of the sponge associated bacterial assemblages between Antarctic and tropical-temperate environments and the presence of a highly complex microbial eukaryote community, suggesting a particular signature for Antarctic sponges, different to that reported from other ecosystems.

  15. Characterization of Bacterial, Archaeal and Eukaryote Symbionts from Antarctic Sponges Reveals a High Diversity at a Three-Domain Level and a Particular Signature for This Ecosystem.

    PubMed

    Rodríguez-Marconi, Susana; De la Iglesia, Rodrigo; Díez, Beatriz; Fonseca, Cássio A; Hajdu, Eduardo; Trefault, Nicole

    2015-01-01

    Sponge-associated microbial communities include members from the three domains of life. In the case of bacteria, they are diverse, host specific and different from the surrounding seawater. However, little is known about the diversity and specificity of Eukarya and Archaea living in association with marine sponges. This knowledge gap is even greater regarding sponges from regions other than temperate and tropical environments. In Antarctica, marine sponges are abundant and important members of the benthos, structuring the Antarctic marine ecosystem. In this study, we used high throughput ribosomal gene sequencing to investigate the three-domain diversity and community composition from eight different Antarctic sponges. Taxonomic identification reveals that they belong to families Acarnidae, Chalinidae, Hymedesmiidae, Hymeniacidonidae, Leucettidae, Microcionidae, and Myxillidae. Our study indicates that there are different diversity and similarity patterns between bacterial/archaeal and eukaryote microbial symbionts from these Antarctic marine sponges, indicating inherent differences in how organisms from different domains establish symbiotic relationships. In general, when considering diversity indices and number of phyla detected, sponge-associated communities are more diverse than the planktonic communities. We conclude that three-domain microbial communities from Antarctic sponges are different from surrounding planktonic communities, expanding previous observations for Bacteria and including the Antarctic environment. Furthermore, we reveal differences in the composition of the sponge associated bacterial assemblages between Antarctic and tropical-temperate environments and the presence of a highly complex microbial eukaryote community, suggesting a particular signature for Antarctic sponges, different to that reported from other ecosystems. PMID:26421612

  16. Structure of Human J-type Co-chaperone HscB Reveals a Tetracysteine Metal-binding Domain*S⃞

    PubMed Central

    Bitto, Eduard; Bingman, Craig A.; Bittova, Lenka; Kondrashov, Dmitry A.; Bannen, Ryan M.; Fox, Brian G.; Markley, John L.; Phillips, George N.

    2008-01-01

    Iron-sulfur proteins play indispensable roles in a broad range of biochemical processes. The biogenesis of iron-sulfur proteins is a complex process that has become a subject of extensive research. The final step of iron-sulfur protein assembly involves transfer of an iron-sulfur cluster from a cluster-donor to a cluster-acceptor protein. This process is facilitated by a specialized chaperone system, which consists of a molecular chaperone from the Hsc70 family and a co-chaperone of the J-domain family. The 3.0Å crystal structure of a human mitochondrial J-type co-chaperone HscB revealed an L-shaped protein that resembles Escherichia coli HscB. The important difference between the two homologs is the presence of an auxiliary metal-binding domain at the N terminus of human HscB that coordinates a metal via the tetracysteine consensus motif CWXCX9–13FCXXCXXXQ. The domain is found in HscB homologs from animals and plants as well as in magnetotactic bacteria. The metal-binding site of the domain is structurally similar to that of rubredoxin and several zinc finger proteins containing rubredoxin-like knuckles. The normal mode analysis of HscB revealed that this L-shaped protein preferentially undergoes a scissors-like motion that correlates well with the conformational changes of human HscB observed in the crystals. PMID:18713742

  17. The PE-PPE Domain in Mycobacterium Reveals a Serine α/β Hydrolase Fold and Function: An In-Silico Analysis

    PubMed Central

    Sultana, Rafiya; Tanneeru, Karunakar; Guruprasad, Lalitha

    2011-01-01

    The PE and PPE proteins first reported in the genome sequence of Mycobacterium tuberculosis strain H37Rv are now identified in all mycobacterial species. The PE-PPE domain (Pfam ID: PF08237) is a 225 amino acid residue conserved region located towards the C-terminus of some PE and PPE proteins and hypothetical proteins. Our in-silico sequence analysis revealed that this domain is present in all Mycobacteria, some Rhodococcus and Nocardia farcinica genomes. This domain comprises a pentapeptide sequence motif GxSxG/S at the N-terminus and conserved amino acid residues Ser, Asp and His that constitute a catalytic triad characteristic of lipase, esterase and cutinase activity. The fold prediction and comparative modeling of the 3-D structure of the PE-PPE domain revealed a “serine α/β hydrolase” structure with a central β-sheet flanked by α-helices on either side. The structure comprises a lid insertion with a closed structure conformation and has a solvent inaccessible active site. The oxyanion hole that stabilizes the negative charge on the tetrahedral intermediate has been identified. Our findings add to the growing list of serine hydrolases in mycobacterium, which are essential for the maintenance of their impermeable cell wall and virulence. These results provide the directions for the design of experiments to establish the function of PE and PPE proteins. PMID:21347309

  18. Membrane Docking of the Synaptotagmin 7 C2A Domain: Computation Reveals Interplay between Electrostatic and Hydrophobic Contributions.

    PubMed

    Chon, Nara Lee; Osterberg, J Ryan; Henderson, Jack; Khan, Hanif M; Reuter, Nathalie; Knight, Jefferson D; Lin, Hai

    2015-09-22

    The C2A domain of synaptotagmin 7 (Syt7) is a Ca(2+) and membrane binding module that docks and inserts into cellular membranes in response to elevated intracellular Ca(2+) concentrations. Like other C2 domains, Syt7 C2A binds Ca(2+) and membranes primarily through three loop regions; however, it docks at Ca(2+) concentrations much lower than those required for other Syt C2A domains. To probe structural components of its unusually strong membrane docking, we conducted atomistic molecular dynamics simulations of Syt7 C2A under three conditions: in aqueous solution, in the proximity of a lipid bilayer membrane, and embedded in the membrane. The simulations of membrane-free protein indicate that Syt7 C2A likely binds three Ca(2+) ions in aqueous solution, consistent with prior experimental reports. Upon membrane docking, the outermost Ca(2+) ion interacts directly with lipid headgroups, while the other two Ca(2+) ions remain chelated by the protein. The membrane-bound domain was observed to exhibit large-amplitude swinging motions relative to the membrane surface, varying by up to 70° between a more parallel and a more perpendicular orientation, both during and after insertion of the Ca(2+) binding loops into the membrane. The computed orientation of the membrane-bound protein correlates well with experimental electron paramagnetic resonance measurements presented in the preceding paper ( DOI: 10.1021/acs.biochem.5b00421 ). In particular, the strictly conserved residue Phe229 inserted stably ∼4 Å below the average depth of lipid phosphate groups, providing critical hydrophobic interactions anchoring the domain in the membrane. Overall, the position and orientation of Syt7 C2A with respect to the membrane are consistent with experiments.

  19. Three deaf mice: mouse models for TECTA-based human hereditary deafness reveal domain-specific structural phenotypes in the tectorial membrane

    PubMed Central

    Legan, P. Kevin; Goodyear, Richard J.; Morín, Matías; Mencia, Angeles; Pollard, Hilary; Olavarrieta, Leticia; Korchagina, Julia; Modamio-Hoybjor, Silvia; Mayo, Fernando; Moreno, Felipe; Moreno-Pelayo, Miguel-Angel; Richardson, Guy P.

    2014-01-01

    Tecta is a modular, non-collagenous protein of the tectorial membrane (TM), an extracellular matrix of the cochlea essential for normal hearing. Missense mutations in Tecta cause dominant forms of non-syndromic deafness and a genotype–phenotype correlation has been reported in humans, with mutations in different Tecta domains causing mid- or high-frequency hearing impairments that are either stable or progressive. Three mutant mice were created as models for human Tecta mutations; the TectaL1820F,G1824D/+ mouse for zona pellucida (ZP) domain mutations causing stable mid-frequency hearing loss in a Belgian family, the TectaC1837G/+ mouse for a ZP-domain mutation underlying progressive mid-frequency hearing loss in a Spanish family and the TectaC1619S/+ mouse for a zonadhesin-like (ZA) domain mutation responsible for progressive, high-frequency hearing loss in a French family. Mutations in the ZP and ZA domains generate distinctly different changes in the structure of the TM. Auditory brainstem response thresholds in the 8–40 kHz range are elevated by 30–40 dB in the ZP-domain mutants, whilst those in the ZA-domain mutant are elevated by 20–30 dB. The phenotypes are stable and no evidence has been found for a progressive deterioration in TM structure or auditory function. Despite elevated auditory thresholds, the Tecta mutant mice all exhibit an enhanced tendency to have audiogenic seizures in response to white noise stimuli at low sound pressure levels (≤84 dB SPL), revealing a previously unrecognised consequence of Tecta mutations. These results, together with those from previous studies, establish an allelic series for Tecta unequivocally demonstrating an association between genotype and phenotype. PMID:24363064

  20. Structural context of disease-associated mutations and putative mechanism of autoinhibition revealed by X-ray crystallographic analysis of the EZH2-SET domain.

    PubMed

    Antonysamy, Stephen; Condon, Bradley; Druzina, Zhanna; Bonanno, Jeffrey B; Gheyi, Tarun; Zhang, Feiyu; MacEwan, Iain; Zhang, Aiping; Ashok, Sheela; Rodgers, Logan; Russell, Marijane; Gately Luz, John

    2013-01-01

    The enhancer-of-zeste homolog 2 (EZH2) gene product is an 87 kDa polycomb group (PcG) protein containing a C-terminal methyltransferase SET domain. EZH2, along with binding partners, i.e., EED and SUZ12, upon which it is dependent for activity forms the core of the polycomb repressive complex 2 (PRC2). PRC2 regulates gene silencing by catalyzing the methylation of histone H3 at lysine 27. Both overexpression and mutation of EZH2 are associated with the incidence and aggressiveness of various cancers. The novel crystal structure of the SET domain was determined in order to understand disease-associated EZH2 mutations and derive an explanation for its inactivity independent of complex formation. The 2.00 Å crystal structure reveals that, in its uncomplexed form, the EZH2 C-terminus folds back into the active site blocking engagement with substrate. Furthermore, the S-adenosyl-L-methionine (SAM) binding pocket observed in the crystal structure of homologous SET domains is notably absent. This suggests that a conformational change in the EZH2 SET domain, dependent upon complex formation, must take place for cofactor and substrate binding activities to be recapitulated. In addition, the data provide a structural context for clinically significant mutations found in the EZH2 SET domain. PMID:24367637

  1. Structure of the iSH2 domain of Human phosphatidylinositol 3-kinase p85 beta Subunit Reveals Conformational Plasticity in the Interhelical Turn Region

    SciTech Connect

    C Schauder; L Ma; R Krug; G Montelione; R Guan

    2011-12-31

    Phosphatidylinositol 3-kinase (PI3K) proteins actively trigger signaling pathways leading to cell growth, proliferation and survival. These proteins have multiple isoforms and consist of a catalytic p110 subunit and a regulatory p85 subunit. The iSH2 domain of the p85 {beta} isoform has been implicated in the binding of nonstructural protein 1 (NS1) of influenza A viruses. Here, the crystal structure of human p85 {beta} iSH2 determined to 3.3 {angstrom} resolution is reported. The structure reveals that this domain mainly consists of a coiled-coil motif. Comparison with the published structure of the bovine p85 {beta} iSH2 domain bound to the influenza A virus nonstructural protein 1 indicates that little or no structural change occurs upon complex formation. By comparing this human p85 {beta} iSH2 structure with the bovine p85 {beta} iSH2 domain, which shares 99% sequence identity, and by comparing the multiple conformations observed within the asymmetric unit of the bovine iSH2 structure, it was found that this coiled-coil domain exhibits a certain degree of conformational variability or 'plasticity' in the interhelical turn region. It is speculated that this plasticity of p85 {beta} iSH2 may play a role in regulating its functional and molecular-recognition properties.

  2. Crystal Structure of Inhibitor of Growth 4 (ING4) Dimerization Domain Reveals Functional Organization of ING Family of Chromatin-binding Proteins*

    PubMed Central

    Culurgioni, Simone; Muñoz, Inés G.; Moreno, Alberto; Palacios, Alicia; Villate, Maider; Palmero, Ignacio; Montoya, Guillermo; Blanco, Francisco J.

    2012-01-01

    The protein ING4 binds to histone H3 trimethylated at Lys-4 (H3K4me3) through its C-terminal plant homeodomain, thus recruiting the HBO1 histone acetyltransferase complex to target promoters. The structure of the plant homeodomain finger bound to an H3K4me3 peptide has been described, as well as the disorder and flexibility in the ING4 central region. We report the crystal structure of the ING4 N-terminal domain, which shows an antiparallel coiled-coil homodimer with each protomer folded into a helix-loop-helix structure. This arrangement suggests that ING4 can bind simultaneously two histone tails on the same or different nucleosomes. Dimerization has a direct impact on ING4 tumor suppressor activity because monomeric mutants lose the ability to induce apoptosis after genotoxic stress. Homology modeling based on the ING4 structure suggests that other ING dimers may also exist. PMID:22334692

  3. Structure of the mouse galectin-4 N-terminal carbohydrate-recognition domain reveals the mechanism of oligosaccharide recognition

    SciTech Connect

    Krejciríková, Veronika; Pachl, Petr; Fábry, Milan; Malý, Petr; Rezácová, Pavlína; Brynda, Jirí

    2011-11-18

    Galectin-4, a member of the tandem-repeat subfamily of galectins, participates in cell-membrane interactions and plays an important role in cell adhesion and modulation of immunity and malignity. The oligosaccharide specificity of the mouse galectin-4 carbohydrate-recognition domains (CRDs) has been reported previously. In this work, the structure and binding properties of the N-terminal domain CRD1 were further investigated and the crystal structure of CRD1 in complex with lactose was determined at 2.1 {angstrom} resolution. The lactose-binding affinity was characterized by fluorescence measurements and two lactose-binding sites were identified: a high-affinity site with a K{sub d} value in the micromolar range (K{sub d1} = 600 {+-} 70 {mu}M) and a low-affinity site with K{sub d2} = 28 {+-} 10 mM.

  4. The host-binding domain of the P2 phage tail spike reveals a trimeric iron-binding structure

    PubMed Central

    Yamashita, Eiki; Nakagawa, Atsushi; Takahashi, Junichi; Tsunoda, Kin-ichi; Yamada, Seiko; Takeda, Shigeki

    2011-01-01

    The adsorption and infection of bacteriophage P2 is mediated by tail fibres and tail spikes. The tail spikes on the tail baseplate are used to irreversibly adsorb to the host cells. Recently, a P2 phage tail-spike protein, gpV, was purified and it was shown that a C-terminal domain, Ser87–Leu211, is sufficient for the binding of gpV to host Escherichia coli membranes [Kageyama et al. (2009 ▶), Biochemistry, 48, 10129–10135]. In this paper, the crystal structure of the C-terminal domain of P2 gpV is reported. The structure is a triangular pyramid and looks like a spearhead composed of an intertwined β-­sheet, a triple β-helix and a metal-binding region containing iron, calcium and chloride ions. PMID:21821878

  5. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking.

    PubMed

    Wu, Hsiao-Mei; Lin, Ying-Hsiu; Yen, Tzu-Chi; Hsieh, Chia-Lung

    2016-01-01

    Lipid rafts are membrane nanodomains that facilitate important cell functions. Despite recent advances in identifying the biological significance of rafts, nature and regulation mechanism of rafts are largely unknown due to the difficulty of resolving dynamic molecular interaction of rafts at the nanoscale. Here, we investigate organization and single-molecule dynamics of rafts by monitoring lateral diffusion of single molecules in raft-containing reconstituted membranes supported on mica substrates. Using high-speed interferometric scattering (iSCAT) optical microscopy and small gold nanoparticles as labels, motion of single lipids is recorded via single-particle tracking (SPT) with nanometer spatial precision and microsecond temporal resolution. Processes of single molecules partitioning into and escaping from the raft-mimetic liquid-ordered (Lo) domains are directly visualized in a continuous manner with unprecedented clarity. Importantly, we observe subdiffusion of saturated lipids in the Lo domain in microsecond timescale, indicating the nanoscopic heterogeneous molecular arrangement of the Lo domain. Further analysis of the diffusion trajectory shows the presence of nano-subdomains of the Lo phase, as small as 10 nm, which transiently trap the lipids. Our results provide the first experimental evidence of non-uniform molecular organization of the Lo phase, giving a new view of how rafts recruit and confine molecules in cell membranes.

  6. Idiosyncratically tuned switching behavior of riboswitch aptamer domains revealed by comparative small-angle X-ray scattering analysis

    SciTech Connect

    Baird, Nathan J.; Ferré-D'Amaré, Adrian R.

    2010-05-25

    Riboswitches are structured mRNA elements that regulate gene expression upon binding specific cellular metabolites. It is thought that the highly conserved metabolite-binding domains of riboswitches undergo conformational change upon binding their cognate ligands. To investigate the generality of such a mechanism, we employed small-angle X-ray scattering (SAXS). We probed the nature of the global metabolite-induced response of the metabolite-binding domains of four different riboswitches that bind, respectively, thiamine pyrophosphate (TPP), flavin mononucleotide (FMN), lysine, and S-adenosyl methionine (SAM). We find that each RNA is unique in its global structural response to metabolite. Whereas some RNAs exhibit distinct free and bound conformations, others are globally insensitive to the presence of metabolite. Thus, a global conformational change of the metabolite-binding domain is not a requirement for riboswitch function. It is possible that the range of behaviors observed by SAXS, rather than being a biophysical idiosyncrasy, reflects adaptation of riboswitches to the regulatory requirements of their individual genomic context.

  7. In silico molecular docking analysis of the human Argonaute 2 PAZ domain reveals insights into RNA interference.

    PubMed

    Kandeel, Mahmoud; Kitade, Yukio

    2013-07-01

    RNA interference (RNAi) is a critical cellular pathway activated by double stranded RNA and regulates the gene expression of target mRNA. During RNAi, the 3' end of siRNA binds with the PAZ domain, followed by release and rebinding in a cyclic manner, which deemed essential for proper gene silencing. Recently, we provided the forces underlying the recognition of small interfering RNA by PAZ in a computational study based on the structure of Drosophila Argonaute 2 (Ago2) PAZ domain. We have now reanalyzed these data within the view of the new available structures from human Argonauts. While the parameters of weak binding are correlated with higher (RNAi) in the Drosophila model, a different profile is predicted with the human Ago2 PAZ domain. On the basis of the human Ago2 PAZ models, the indicators of stronger binding as the total binding energy and the free energy were associated with better RNAi efficacy. This discrepancy might be attributable to differences in the binding site topology and the difference in the conformation of the bound nucleotides.

  8. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking

    PubMed Central

    Wu, Hsiao-Mei; Lin, Ying-Hsiu; Yen, Tzu-Chi; Hsieh, Chia-Lung

    2016-01-01

    Lipid rafts are membrane nanodomains that facilitate important cell functions. Despite recent advances in identifying the biological significance of rafts, nature and regulation mechanism of rafts are largely unknown due to the difficulty of resolving dynamic molecular interaction of rafts at the nanoscale. Here, we investigate organization and single-molecule dynamics of rafts by monitoring lateral diffusion of single molecules in raft-containing reconstituted membranes supported on mica substrates. Using high-speed interferometric scattering (iSCAT) optical microscopy and small gold nanoparticles as labels, motion of single lipids is recorded via single-particle tracking (SPT) with nanometer spatial precision and microsecond temporal resolution. Processes of single molecules partitioning into and escaping from the raft-mimetic liquid-ordered (Lo) domains are directly visualized in a continuous manner with unprecedented clarity. Importantly, we observe subdiffusion of saturated lipids in the Lo domain in microsecond timescale, indicating the nanoscopic heterogeneous molecular arrangement of the Lo domain. Further analysis of the diffusion trajectory shows the presence of nano-subdomains of the Lo phase, as small as 10 nm, which transiently trap the lipids. Our results provide the first experimental evidence of non-uniform molecular organization of the Lo phase, giving a new view of how rafts recruit and confine molecules in cell membranes. PMID:26861908

  9. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking

    NASA Astrophysics Data System (ADS)

    Wu, Hsiao-Mei; Lin, Ying-Hsiu; Yen, Tzu-Chi; Hsieh, Chia-Lung

    2016-02-01

    Lipid rafts are membrane nanodomains that facilitate important cell functions. Despite recent advances in identifying the biological significance of rafts, nature and regulation mechanism of rafts are largely unknown due to the difficulty of resolving dynamic molecular interaction of rafts at the nanoscale. Here, we investigate organization and single-molecule dynamics of rafts by monitoring lateral diffusion of single molecules in raft-containing reconstituted membranes supported on mica substrates. Using high-speed interferometric scattering (iSCAT) optical microscopy and small gold nanoparticles as labels, motion of single lipids is recorded via single-particle tracking (SPT) with nanometer spatial precision and microsecond temporal resolution. Processes of single molecules partitioning into and escaping from the raft-mimetic liquid-ordered (Lo) domains are directly visualized in a continuous manner with unprecedented clarity. Importantly, we observe subdiffusion of saturated lipids in the Lo domain in microsecond timescale, indicating the nanoscopic heterogeneous molecular arrangement of the Lo domain. Further analysis of the diffusion trajectory shows the presence of nano-subdomains of the Lo phase, as small as 10 nm, which transiently trap the lipids. Our results provide the first experimental evidence of non-uniform molecular organization of the Lo phase, giving a new view of how rafts recruit and confine molecules in cell membranes.

  10. Electron microscopic imaging revealed the flexible filamentous structure of the cell attachment protein P2 of Rice dwarf virus located around the icosahedral 5-fold axes.

    PubMed

    Miyazaki, Naoyuki; Higashiura, Akifumi; Higashiura, Tomoko; Akita, Fusamichi; Hibino, Hiroyuki; Omura, Toshihiro; Nakagawa, Atsushi; Iwasaki, Kenji

    2016-02-01

    The minor outer capsid protein P2 of Rice dwarf virus (RDV), a member of the genus Phytoreovirus in the family Reoviridae, is essential for viral cell entry. Here, we clarified the structure of P2 and the interactions to host insect cells. Negative stain electron microscopy (EM) showed that P2 proteins are monomeric and flexible L-shaped filamentous structures of ∼20 nm in length. Cryo-EM structure revealed the spatial arrangement of P2 in the capsid, which was prescribed by the characteristic virion structure. The P2 proteins were visualized as partial rod-shaped structures of ∼10 nm in length in the cryo-EM map and accommodated in crevasses on the viral surface around icosahedral 5-fold axes with hydrophobic interactions. The remaining disordered region of P2 assumed to be extended to the radial direction towards exterior. Electron tomography clearly showed that RDV particles were away from the cellular membrane at a uniform distance and several spike-like densities, probably corresponding to P2, connecting a viral particle to the host cellular membrane during cell entry. By combining the in vitro and in vivo structural information, we could gain new insights into the detailed mechanism of the cell entry of RDV.

  11. Study of the Individual Cytochrome b[subscript 5] and Cytochrome b[subscript 5] Reductase Domains of Ncb5or Reveals a Unique Heme Pocket and a Possible Role of the CS Domain

    SciTech Connect

    Deng, Bin; Parthasarathy, Sudharsan; Wang, WenFang; Gibney, Brian R.; Battaile, Kevin P.; Lovell, Scott; Benson, David R.; Zhu, Hao

    2010-09-22

    NADH cytochrome b{sub 5} oxidoreductase (Ncb5or) is found in animals and contains three domains similar to cytochrome b{sub 5} (b{sub 5}), CHORD-SGT1 (CS), and cytochrome b{sub 5} reductase (b{sub 5}R). Ncb5or has an important function, as suggested by the diabetes and lipoatrophy phenotypes in Ncb5or null mice. To elucidate the structural and functional properties of human Ncb5or, we generated its individual b{sub 5} and b{sub 5}R domains (Ncb5or-b{sub 5} and Ncb5or-b{sub 5}R, respectively) and compared them with human microsomal b{sub 5} (Cyb5A) and b{sub 5}R (Cyb5R3). A 1.25 {angstrom} x-ray crystal structure of Ncb5or-b{sub 5} reveals nearly orthogonal planes of the imidazolyl rings of heme-ligating residues His{sup 89} and His{sup 112}, consistent with a highly anisotropic low spin EPR spectrum. Ncb5or is the first member of the cytochrome b{sub 5} family shown to have such a heme environment. Like other b{sub 5} family members, Ncb5or-b{sub 5} has two helix-loop-helix motifs surrounding heme. However, Ncb5or-b{sub 5} differs from Cyb5A with respect to location of the second heme ligand (His{sup 112}) and of polypeptide conformation in its vicinity. Electron transfer from Ncb5or-b{sub 5}R to Ncb5or-b{sub 5} is much less efficient than from Cyb5R3 to Cyb5A, possibly as a consequence of weaker electrostatic interactions. The CS linkage probably obviates the need for strong interactions between b{sub 5} and b{sub 5}R domains in Ncb5or. Studies with a construct combining the Ncb5or CS and b{sub 5}R domains suggest that the CS domain facilitates docking of the b{sub 5} and b{sub 5}R domains. Trp{sup 114} is an invariant surface residue in all known Ncb5or orthologs but appears not to contribute to electron transfer from the b{sub 5}R domain to the b{sub 5} domain.

  12. Study of the Individual Cytochrome b5 and Cytochrome b5 Reductase Domains of Ncb5or Reveals a Unique Heme Pocket and a Possible Role of the CS Domain*

    PubMed Central

    Deng, Bin; Parthasarathy, Sudharsan; Wang, WenFang; Gibney, Brian R.; Battaile, Kevin P.; Lovell, Scott; Benson, David R.; Zhu, Hao

    2010-01-01

    NADH cytochrome b5 oxidoreductase (Ncb5or) is found in animals and contains three domains similar to cytochrome b5 (b5), CHORD-SGT1 (CS), and cytochrome b5 reductase (b5R). Ncb5or has an important function, as suggested by the diabetes and lipoatrophy phenotypes in Ncb5or null mice. To elucidate the structural and functional properties of human Ncb5or, we generated its individual b5 and b5R domains (Ncb5or-b5 and Ncb5or-b5R, respectively) and compared them with human microsomal b5 (Cyb5A) and b5R (Cyb5R3). A 1.25 Å x-ray crystal structure of Ncb5or-b5 reveals nearly orthogonal planes of the imidazolyl rings of heme-ligating residues His89 and His112, consistent with a highly anisotropic low spin EPR spectrum. Ncb5or is the first member of the cytochrome b5 family shown to have such a heme environment. Like other b5 family members, Ncb5or-b5 has two helix-loop-helix motifs surrounding heme. However, Ncb5or-b5 differs from Cyb5A with respect to location of the second heme ligand (His112) and of polypeptide conformation in its vicinity. Electron transfer from Ncb5or-b5R to Ncb5or-b5 is much less efficient than from Cyb5R3 to Cyb5A, possibly as a consequence of weaker electrostatic interactions. The CS linkage probably obviates the need for strong interactions between b5 and b5R domains in Ncb5or. Studies with a construct combining the Ncb5or CS and b5R domains suggest that the CS domain facilitates docking of the b5 and b5R domains. Trp114 is an invariant surface residue in all known Ncb5or orthologs but appears not to contribute to electron transfer from the b5R domain to the b5 domain. PMID:20630863

  13. Study of the individual cytochrome b5 and cytochrome b5 reductase domains of Ncb5or reveals a unique heme pocket and a possible role of the CS domain.

    PubMed

    Deng, Bin; Parthasarathy, Sudharsan; Wang, WenFang; Gibney, Brian R; Battaile, Kevin P; Lovell, Scott; Benson, David R; Zhu, Hao

    2010-09-24

    NADH cytochrome b(5) oxidoreductase (Ncb5or) is found in animals and contains three domains similar to cytochrome b(5) (b(5)), CHORD-SGT1 (CS), and cytochrome b(5) reductase (b(5)R). Ncb5or has an important function, as suggested by the diabetes and lipoatrophy phenotypes in Ncb5or null mice. To elucidate the structural and functional properties of human Ncb5or, we generated its individual b(5) and b(5)R domains (Ncb5or-b(5) and Ncb5or-b(5)R, respectively) and compared them with human microsomal b(5) (Cyb5A) and b(5)R (Cyb5R3). A 1.25 Å x-ray crystal structure of Ncb5or-b(5) reveals nearly orthogonal planes of the imidazolyl rings of heme-ligating residues His(89) and His(112), consistent with a highly anisotropic low spin EPR spectrum. Ncb5or is the first member of the cytochrome b(5) family shown to have such a heme environment. Like other b(5) family members, Ncb5or-b(5) has two helix-loop-helix motifs surrounding heme. However, Ncb5or-b(5) differs from Cyb5A with respect to location of the second heme ligand (His(112)) and of polypeptide conformation in its vicinity. Electron transfer from Ncb5or-b(5)R to Ncb5or-b(5) is much less efficient than from Cyb5R3 to Cyb5A, possibly as a consequence of weaker electrostatic interactions. The CS linkage probably obviates the need for strong interactions between b(5) and b(5)R domains in Ncb5or. Studies with a construct combining the Ncb5or CS and b(5)R domains suggest that the CS domain facilitates docking of the b(5) and b(5)R domains. Trp(114) is an invariant surface residue in all known Ncb5or orthologs but appears not to contribute to electron transfer from the b(5)R domain to the b(5) domain. PMID:20630863

  14. Identification of a novel cell death-inducing domain reveals that fungal amyloid-controlled programmed cell death is related to necroptosis

    PubMed Central

    Daskalov, Asen; Habenstein, Birgit; Sabaté, Raimon; Berbon, Mélanie; Martinez, Denis; Chaignepain, Stéphane; Coulary-Salin, Bénédicte; Hofmann, Kay; Loquet, Antoine; Saupe, Sven J.

    2016-01-01

    Recent findings have revealed the role of prion-like mechanisms in the control of host defense and programmed cell death cascades. In fungi, HET-S, a cell death-inducing protein containing a HeLo pore-forming domain, is activated through amyloid templating by a Nod-like receptor (NLR). Here we characterize the HELLP protein behaving analogously to HET-S and bearing a new type of N-terminal cell death-inducing domain termed HeLo-like (HELL) and a C-terminal regulatory amyloid motif known as PP. The gene encoding HELLP is part of a three-gene cluster also encoding a lipase (SBP) and a Nod-like receptor, both of which display the PP motif. The PP motif is similar to the RHIM amyloid motif directing formation of the RIP1/RIP3 necrosome in humans. The C-terminal region of HELLP, HELLP(215-278), encompassing the motif, allows prion propagation and assembles into amyloid fibrils, as demonstrated by X-ray diffraction and FTIR analyses. Solid-state NMR studies reveal a well-ordered local structure of the amyloid core residues and a primary sequence that is almost entirely arranged in a rigid conformation, and confirm a β-sheet structure in an assigned stretch of three amino acids. HELLP is activated by amyloid templating and displays membrane-targeting and cell death-inducing activity. HELLP targets the SBP lipase to the membrane, suggesting a synergy between HELLP and SBP in membrane dismantling. Remarkably, the HeLo-like domain of HELLP is homologous to the pore-forming domain of MLKL, the cell death-execution protein in necroptosis, revealing a transkingdom evolutionary relationship between amyloid-controlled fungal programmed cell death and mammalian necroptosis. PMID:26903619

  15. Identification of a novel cell death-inducing domain reveals that fungal amyloid-controlled programmed cell death is related to necroptosis.

    PubMed

    Daskalov, Asen; Habenstein, Birgit; Sabaté, Raimon; Berbon, Mélanie; Martinez, Denis; Chaignepain, Stéphane; Coulary-Salin, Bénédicte; Hofmann, Kay; Loquet, Antoine; Saupe, Sven J

    2016-03-01

    Recent findings have revealed the role of prion-like mechanisms in the control of host defense and programmed cell death cascades. In fungi, HET-S, a cell death-inducing protein containing a HeLo pore-forming domain, is activated through amyloid templating by a Nod-like receptor (NLR). Here we characterize the HELLP protein behaving analogously to HET-S and bearing a new type of N-terminal cell death-inducing domain termed HeLo-like (HELL) and a C-terminal regulatory amyloid motif known as PP. The gene encoding HELLP is part of a three-gene cluster also encoding a lipase (SBP) and a Nod-like receptor, both of which display the PP motif. The PP motif is similar to the RHIM amyloid motif directing formation of the RIP1/RIP3 necrosome in humans. The C-terminal region of HELLP, HELLP(215-278), encompassing the motif, allows prion propagation and assembles into amyloid fibrils, as demonstrated by X-ray diffraction and FTIR analyses. Solid-state NMR studies reveal a well-ordered local structure of the amyloid core residues and a primary sequence that is almost entirely arranged in a rigid conformation, and confirm a β-sheet structure in an assigned stretch of three amino acids. HELLP is activated by amyloid templating and displays membrane-targeting and cell death-inducing activity. HELLP targets the SBP lipase to the membrane, suggesting a synergy between HELLP and SBP in membrane dismantling. Remarkably, the HeLo-like domain of HELLP is homologous to the pore-forming domain of MLKL, the cell death-execution protein in necroptosis, revealing a transkingdom evolutionary relationship between amyloid-controlled fungal programmed cell death and mammalian necroptosis. PMID:26903619

  16. KINETIC INTERMEDIATE REVEALS STAGGERED PH-DEPENDENT TRANSITIONS ALONG THE MEMBRANE INSERTION PATHWAY OF DIPHTHERIA TOXIN T-DOMAIN

    PubMed Central

    Kyrychenko, Alexander; Posokhov, Yevgen O.; Rodnin, Mykola V.; Ladokhin, Alexey S.

    2009-01-01

    The pH-triggered membrane insertion pathway of the T-domain of diphtheria toxin was studied using site-selective fluorescence labeling with subsequent application of several spectroscopic techniques (e.g., fluorescence correlation spectroscopy, FRET, lifetime quenching and kinetic fluorescence). FCS measurements indicate that pH-dependent formation of the membrane-competent form depends only slightly on the amount of anionic lipids in the membrane. The subsequent transbilayer insertion, however, is strongly favored by anionic lipids. Kinetic FRET measurements between donor-labeled T-domain and acceptor-labeled lipid vesicles demonstrate rapid membrane association at all pH values for which binding occurs. In contrast, the transmembrane insertion kinetics is significantly slower, and is also both pH- and lipid-dependent. Analysis of kinetic behavior of binding and insertion indicates the presence of several interfacial intermediates on the insertion pathway of the T-domain, from soluble W-state to transmembrane T-state. Intermediate interfacial I-state can be trapped in membranes with low content of anionic lipids (10%). In membranes of greater anionic lipid content, another pH-dependent transition results in the formation of the insertion-competent state and subsequent transmembrane insertion. Comparison of the results of various kinetic and equilibrium experiments suggests that the pH-dependences determining membrane association and transbilayer insertion transitions are different, but staggered. Anionic lipids not only assist in formation of the insertion competent form, but also lower the kinetic barrier for the final insertion. PMID:19588969

  17. Predicted secondary structure of the foraminiferal SSU 3' major domain reveals a molecular synapomorphy for granuloreticulosean protists.

    PubMed

    Habura, Andrea; Rosen, Daniel R; Bowser, Samuel S

    2004-01-01

    The small subunit ribosomal RNA genes of foraminiferal protists are the largest and most divergent of any eukaryote. We demonstrate that this foraminiferal sequence alteration represents a substantial modification to the small subunit ribosomal RNA structure, including a large (up to 350 nt) novel helix in a very well-conserved portion of the head domain. This modification dates from the beginning of the foraminiferal radiation and, within modern orders, is partially conserved at the sequence level, suggesting that it is a functional part of the ribosome. The pattern of conservation makes it particularly useful for determining lower-taxon relationships in morphologically ambiguous allogromiid foraminifera.

  18. Human-Mouse Chimeras with Normal Expression and Function Reveal That Major Domain Swapping Is Tolerated by P-Glycoprotein (ABCB1).

    PubMed

    Pluchino, Kristen M; Hall, Matthew D; Moen, Janna K; Chufan, Eduardo E; Fetsch, Patricia A; Shukla, Suneet; Gill, Deborah R; Hyde, Stephen C; Xia, Di; Ambudkar, Suresh V; Gottesman, Michael M

    2016-02-23

    The efflux transporter P-glycoprotein (P-gp) plays a vital role in the transport of molecules across cell membranes and has been shown to interact with a panoply of functionally and structurally unrelated compounds. How human P-gp interacts with this large number of drugs has not been well understood, although structural flexibility has been implicated. To gain insight into this transporter's broad substrate specificity and to assess its ability to accommodate a variety of molecular and structural changes, we generated human-mouse P-gp chimeras by the exchange of homologous transmembrane and nucleotide-binding domains. High-level expression of these chimeras by BacMam- and baculovirus-mediated transduction in mammalian (HeLa) and insect cells, respectively, was achieved. There were no detectable differences between wild-type and chimeric P-gp in terms of cell surface expression, ability to efflux the P-gp substrates rhodamine 123, calcein-AM, and JC-1, or to be inhibited by the substrate cyclosporine A and the inhibitors tariquidar and elacridar. Additionally, expression of chimeric P-gp was able to confer a paclitaxel-resistant phenotype to HeLa cells characteristic of P-gp-mediated drug resistance. P-gp ATPase assays and photo-cross-linking with [(125)I]iodoarylazidoprazosin confirmed that transport and biochemical properties of P-gp chimeras were similar to those of wild-type P-gp, although differences in drug binding were detected when human and mouse transmembrane domains were combined. Overall, chimeras with one or two mouse P-gp domains were deemed functionally equivalent to human wild-type P-gp, demonstrating the ability of human P-gp to tolerate major structural changes.

  19. Human-Mouse Chimeras with Normal Expression and Function Reveal That Major Domain Swapping Is Tolerated by P-Glycoprotein (ABCB1).

    PubMed

    Pluchino, Kristen M; Hall, Matthew D; Moen, Janna K; Chufan, Eduardo E; Fetsch, Patricia A; Shukla, Suneet; Gill, Deborah R; Hyde, Stephen C; Xia, Di; Ambudkar, Suresh V; Gottesman, Michael M

    2016-02-23

    The efflux transporter P-glycoprotein (P-gp) plays a vital role in the transport of molecules across cell membranes and has been shown to interact with a panoply of functionally and structurally unrelated compounds. How human P-gp interacts with this large number of drugs has not been well understood, although structural flexibility has been implicated. To gain insight into this transporter's broad substrate specificity and to assess its ability to accommodate a variety of molecular and structural changes, we generated human-mouse P-gp chimeras by the exchange of homologous transmembrane and nucleotide-binding domains. High-level expression of these chimeras by BacMam- and baculovirus-mediated transduction in mammalian (HeLa) and insect cells, respectively, was achieved. There were no detectable differences between wild-type and chimeric P-gp in terms of cell surface expression, ability to efflux the P-gp substrates rhodamine 123, calcein-AM, and JC-1, or to be inhibited by the substrate cyclosporine A and the inhibitors tariquidar and elacridar. Additionally, expression of chimeric P-gp was able to confer a paclitaxel-resistant phenotype to HeLa cells characteristic of P-gp-mediated drug resistance. P-gp ATPase assays and photo-cross-linking with [(125)I]iodoarylazidoprazosin confirmed that transport and biochemical properties of P-gp chimeras were similar to those of wild-type P-gp, although differences in drug binding were detected when human and mouse transmembrane domains were combined. Overall, chimeras with one or two mouse P-gp domains were deemed functionally equivalent to human wild-type P-gp, demonstrating the ability of human P-gp to tolerate major structural changes. PMID:26820614

  20. Structure of the N-terminal oligomerization domain of DnaD reveals a unique tetramerization motif and provides insights into scaffold formation.

    PubMed

    Schneider, S; Zhang, W; Soultanas, P; Paoli, M

    2008-03-01

    DnaD is a primosomal protein that remodels supercoiled plasmids. It binds to supercoiled forms and converts them to open forms without nicking. During this remodeling process, all the writhe is converted to twist and the plasmids are held around the periphery of large scaffolds made up of DnaD molecules. This DNA-remodeling function is the sum of a scaffold-forming activity on the N-terminal domain and a DNA-dependent oligomerization activity on the C-terminal domain. We have determined the crystal structure of the scaffold-forming N-terminal domain, which reveals a winged-helix architecture, with additional structural elements extending from both N- and C-termini. Four monomers form dimers that join into a tetramer. The N-terminal extension mediates dimerization and tetramerization, with extensive interactions and distinct interfaces. The wings and helices of the winged-helix domains remain exposed on the surface of the tetramer. Structure-guided mutagenesis and atomic force microscopy imaging indicate that these elements, together with the C-terminal extension, are involved in scaffold formation. Based upon our data, we propose a model for the DnaD-mediated scaffold formation. PMID:18206906

  1. Structure of the Brd4 ET domain bound to a C-terminal motif from γ-retroviral integrases reveals a conserved mechanism of interaction

    PubMed Central

    Crowe, Brandon L.; Larue, Ross C.; Yuan, Chunhua; Hess, Sonja; Kvaratskhelia, Mamuka; Foster, Mark P.

    2016-01-01

    The bromodomain and extraterminal domain (BET) protein family are promising therapeutic targets for a range of diseases linked to transcriptional activation, cancer, viral latency, and viral integration. Tandem bromodomains selectively tether BET proteins to chromatin by engaging cognate acetylated histone marks, and the extraterminal (ET) domain is the focal point for recruiting a range of cellular and viral proteins. BET proteins guide γ-retroviral integration to transcription start sites and enhancers through bimodal interaction with chromatin and the γ-retroviral integrase (IN). We report the NMR-derived solution structure of the Brd4 ET domain bound to a conserved peptide sequence from the C terminus of murine leukemia virus (MLV) IN. The complex reveals a protein–protein interaction governed by the binding-coupled folding of disordered regions in both interacting partners to form a well-structured intermolecular three-stranded β sheet. In addition, we show that a peptide comprising the ET binding motif (EBM) of MLV IN can disrupt the cognate interaction of Brd4 with NSD3, and that substitutions of Brd4 ET residues essential for binding MLV IN also impair interaction of Brd4 with a number of cellular partners involved in transcriptional regulation and chromatin remodeling. This suggests that γ-retroviruses have evolved the EBM to mimic a cognate interaction motif to achieve effective integration in host chromatin. Collectively, our findings identify key structural features of the ET domain of Brd4 that allow for interactions with both cellular and viral proteins. PMID:26858406

  2. Structure of the Staphylococcus aureus AgrA LytTR Domain Bound to DNA Reveals a Beta Fold with an Unusual Mode of Binding

    SciTech Connect

    Sidote,D.; Barbieri, C.; Wu, T.; Stock, A.

    2008-01-01

    The LytTR domain is a DNA-binding motif found within the AlgR/AgrA/LytR family of transcription factors that regulate virulence factor and toxin gene expression in pathogenic bacteria. This previously uncharacterized domain lacks sequence similarity with proteins of known structure. The crystal structure of the DNA-binding domain of Staphylococcus aureus AgrA complexed with a DNA pentadecamer duplex has been determined at 1.6 Angstroms resolution. The structure establishes a 10-stranded {beta} fold for the LytTR domain and reveals its mode of interaction with DNA. Residues within loop regions of AgrA contact two successive major grooves and the intervening minor groove on one face of the oligonucleotide duplex, inducing a substantial bend in the DNA. Loss of DNA binding upon substitution of key interacting residues in AgrA supports the observed binding mode. This mode of protein-DNA interaction provides a potential target for future antimicrobial drug design.

  3. Structural Analysis of Pseudomonas syringae AvrPtoB Bound to Host BAK1 Reveals Two Similar Kinase-Interacting Domains in a Type III Effector

    PubMed Central

    Cheng, Wei; Munkvold, Kathy R.; Gao, Haishan; Mathieu, Johannes; Schwizer, Simon; Wang, Sha; Yan, Yong-bin; Wang, Jinjing; Martin, Gregory B.; Chai, Jijie

    2013-01-01

    SUMMARY To infect plants, Pseudomonas syringae pv. tomato delivers ~30 type III effector proteins into host cells, many of which interfere with PAMP-triggered immunity (PTI). One effector, AvrPtoB, suppresses PTI using a central domain to bind host BAK1, a kinase that acts with several pattern recognition receptors to activate defense signaling. A second AvrPtoB domain binds and suppresses the PTI-associated kinase Bti9 but is conversely recognized by the protein kinase Pto to activate effector-triggered immunity. We report the crystal structure of the AvrPtoB-BAK1 complex, which revealed structural similarity between these two AvrPtoB domains, suggesting that they arose by intragenic duplication. The BAK1 kinase domain is structurally similar to Pto, and a conserved region within both BAK1 and Pto interacts with AvrPtoB. BAK1 kinase activity is inhibited by AvrPtoB, and mutations at the interaction interface disrupt AvrPtoB virulence activity. These results shed light on a structural mechanism underlying host-pathogen coevolution. PMID:22169508

  4. Structural investigations of the p53/p73 homologs from the tunicate species Ciona intestinalis reveal the sequence requirements for the formation of a tetramerization domain.

    PubMed

    Heering, Jan; Jonker, Hendrik R A; Löhr, Frank; Schwalbe, Harald; Dötsch, Volker

    2016-02-01

    Most members of the p53 family of transcription factors form tetramers. Responsible for determining the oligomeric state is a short oligomerization domain consisting of one β-strand and one α-helix. With the exception of human p53 all other family members investigated so far contain a second α-helix as part of their tetramerization domain. Here we have used nuclear magnetic resonance spectroscopy to characterize the oligomerization domains of the two p53-like proteins from the tunicate Ciona intestinalis, representing the closest living relative of vertebrates. Structure determination reveals for one of the two proteins a new type of packing of this second α-helix on the core domain that was not predicted based on the sequence, while the other protein does not form a second helix despite the presence of crucial residues that are conserved in all other family members that form a second helix. By mutational analysis, we identify a proline as well as large hydrophobic residues in the hinge region between both helices as the crucial determinant for the formation of a second helix. PMID:26473758

  5. Structure of the Brd4 ET domain bound to a C-terminal motif from γ-retroviral integrases reveals a conserved mechanism of interaction.

    PubMed

    Crowe, Brandon L; Larue, Ross C; Yuan, Chunhua; Hess, Sonja; Kvaratskhelia, Mamuka; Foster, Mark P

    2016-02-23

    The bromodomain and extraterminal domain (BET) protein family are promising therapeutic targets for a range of diseases linked to transcriptional activation, cancer, viral latency, and viral integration. Tandem bromodomains selectively tether BET proteins to chromatin by engaging cognate acetylated histone marks, and the extraterminal (ET) domain is the focal point for recruiting a range of cellular and viral proteins. BET proteins guide γ-retroviral integration to transcription start sites and enhancers through bimodal interaction with chromatin and the γ-retroviral integrase (IN). We report the NMR-derived solution structure of the Brd4 ET domain bound to a conserved peptide sequence from the C terminus of murine leukemia virus (MLV) IN. The complex reveals a protein-protein interaction governed by the binding-coupled folding of disordered regions in both interacting partners to form a well-structured intermolecular three-stranded β sheet. In addition, we show that a peptide comprising the ET binding motif (EBM) of MLV IN can disrupt the cognate interaction of Brd4 with NSD3, and that substitutions of Brd4 ET residues essential for binding MLV IN also impair interaction of Brd4 with a number of cellular partners involved in transcriptional regulation and chromatin remodeling. This suggests that γ-retroviruses have evolved the EBM to mimic a cognate interaction motif to achieve effective integration in host chromatin. Collectively, our findings identify key structural features of the ET domain of Brd4 that allow for interactions with both cellular and viral proteins.

  6. Topologically associated domains enriched for lineage-specific genes reveal expression-dependent nuclear topologies during myogenesis

    PubMed Central

    Neems, Daniel S.; Garza-Gongora, Arturo G.; Smith, Erica D.; Kosak, Steven T.

    2016-01-01

    The linear distribution of genes across chromosomes and the spatial localization of genes within the nucleus are related to their transcriptional regulation. The mechanistic consequences of linear gene order, and how it may relate to the functional output of genome organization, remain to be fully resolved, however. Here we tested the relationship between linear and 3D organization of gene regulation during myogenesis. Our analysis has identified a subset of topologically associated domains (TADs) that are significantly enriched for muscle-specific genes. These lineage-enriched TADs demonstrate an expression-dependent pattern of nuclear organization that influences the positioning of adjacent nonenriched TADs. Therefore, lineage-enriched TADs inform cell-specific genome organization during myogenesis. The reduction of allelic spatial distance of one of these domains, which contains Myogenin, correlates with reduced transcriptional variability, identifying a potential role for lineage-specific nuclear topology. Using a fusion-based strategy to decouple mitosis and myotube formation, we demonstrate that the cell-specific topology of syncytial nuclei is dependent on cell division. We propose that the effects of linear and spatial organization of gene loci on gene regulation are linked through TAD architecture, and that mitosis is critical for establishing nuclear topologies during cellular differentiation. PMID:26957603

  7. Next-Generation Sequencing of a Single Domain Antibody Repertoire Reveals Quality of Phage Display Selected Candidates.

    PubMed

    Turner, Kendrick B; Naciri, Jennifer; Liu, Jinny L; Anderson, George P; Goldman, Ellen R; Zabetakis, Dan

    2016-01-01

    Next-Generation Sequencing and bioinformatics are powerful tools for analyzing the large number of DNA sequences present in an immune library. In this work, we constructed a cDNA library of single domain antibodies from a llama immunized with staphylococcal enterotoxin B. The resulting library was sequenced, resulting in approximately 8.5 million sequences with 5.4 million representing intact, useful sequences. The sequenced library was interrogated using sequences of known SEB-binding single domain antibodies from the library obtained through phage display panning methods in a previous study. New antibodies were identified, produced, and characterized, and were shown to have affinities and melting temperatures comparable to those obtained by traditional panning methods. This demonstrates the utility of using NGS as a complementary tool to phage-displayed biopanning as a means for rapidly obtaining additional antibodies from an immune library. It also shows that phage display, using a library of high diversity, is able to select high quality antibodies even when they are low in frequency. PMID:26895405

  8. Topologically associated domains enriched for lineage-specific genes reveal expression-dependent nuclear topologies during myogenesis.

    PubMed

    Neems, Daniel S; Garza-Gongora, Arturo G; Smith, Erica D; Kosak, Steven T

    2016-03-22

    The linear distribution of genes across chromosomes and the spatial localization of genes within the nucleus are related to their transcriptional regulation. The mechanistic consequences of linear gene order, and how it may relate to the functional output of genome organization, remain to be fully resolved, however. Here we tested the relationship between linear and 3D organization of gene regulation during myogenesis. Our analysis has identified a subset of topologically associated domains (TADs) that are significantly enriched for muscle-specific genes. These lineage-enriched TADs demonstrate an expression-dependent pattern of nuclear organization that influences the positioning of adjacent nonenriched TADs. Therefore, lineage-enriched TADs inform cell-specific genome organization during myogenesis. The reduction of allelic spatial distance of one of these domains, which contains Myogenin, correlates with reduced transcriptional variability, identifying a potential role for lineage-specific nuclear topology. Using a fusion-based strategy to decouple mitosis and myotube formation, we demonstrate that the cell-specific topology of syncytial nuclei is dependent on cell division. We propose that the effects of linear and spatial organization of gene loci on gene regulation are linked through TAD architecture, and that mitosis is critical for establishing nuclear topologies during cellular differentiation. PMID:26957603

  9. Structural and Functional Dissection of the Abp1 ADFH Actin-binding Domain Reveals Versatile In Vivo Adapter Functions

    SciTech Connect

    Quintero-Monzon,O.; Rodal, A.; Strokopytov, B.; Almo, S.; Goode, B.

    2005-01-01

    Abp1 is a multidomain protein that regulates the Arp2/3 complex and links proteins involved in endocytosis to the actin cytoskeleton. All of the proposed cellular functions of Abp1 involve actin filament binding, yet the actin binding site(s) on Abp1 have not been identified, nor has the importance of actin binding for Abp1 localization and function in vivo been tested. Here, we report the crystal structure of the Saccharomyces cerevisiae Abp1 actin-binding actin depolymerizing factor homology (ADFH) domain and dissect its activities by mutagenesis. Abp1-ADFH domain and ADF/cofilin structures are similar, and they use conserved surfaces to bind actin; however, there are also key differences that help explain their differential effects on actin dynamics. Using point mutations, we demonstrate that actin binding is required for localization of Abp1 in vivo, the lethality caused by Abp1 overexpression, and the ability of Abp1 to activate Arp2/3 complex. Furthermore, we genetically uncouple ABP1 functions that overlap with SAC6, SLA1, and SLA2, showing they require distinct combinations of activities and interactions. Together, our data provide the first structural and functional view of the Abp1-actin interaction and show that Abp1 has distinct cellular roles as an adapter, linking different sets of ligands for each function.

  10. Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation

    SciTech Connect

    Kamada, R.; Anderson, C.; Nomura, T.; Sakaguchi, K.

    2011-01-07

    The tumor suppressor p53, a 393-amino acid transcription factor, induces cell cycle arrest and apoptosis in response to genotoxic stress. Its inactivation via the mutation of its gene is a key step in tumor progression, and tetramer formation is critical for p53 post-translational modification and its ability to activate or repress the transcription of target genes vital in inhibiting tumor growth. About 50% of human tumors have TP53 gene mutations; most are missense ones that presumably lower the tumor suppressor activity of p53. In this study, we explored the effects of known tumor-derived missense mutations on the stability and oligomeric structure of p53; our comprehensive, quantitative analyses encompassed the tetramerization domain peptides representing 49 such substitutions in humans. Their effects on tetrameric structure were broad, and the stability of the mutant peptides varied widely ({Delta}T{sub m} = 4.8 {approx} -46.8 C). Because formation of a tetrameric structure is critical for protein-protein interactions, DNA binding, and the post-translational modification of p53, a small destabilization of the tetrameric structure could result in dysfunction of tumor suppressor activity. We suggest that the threshold for loss of tumor suppressor activity in terms of the disruption of the tetrameric structure of p53 could be extremely low. However, other properties of the tetramerization domain, such as electrostatic surface potential and its ability to bind partner proteins, also may be important.

  11. Next-Generation Sequencing of a Single Domain Antibody Repertoire Reveals Quality of Phage Display Selected Candidates

    PubMed Central

    Turner, Kendrick B.; Naciri, Jennifer; Liu, Jinny L.; Anderson, George P.; Goldman, Ellen R.; Zabetakis, Dan

    2016-01-01

    Next-Generation Sequencing and bioinformatics are powerful tools for analyzing the large number of DNA sequences present in an immune library. In this work, we constructed a cDNA library of single domain antibodies from a llama immunized with staphylococcal enterotoxin B. The resulting library was sequenced, resulting in approximately 8.5 million sequences with 5.4 million representing intact, useful sequences. The sequenced library was interrogated using sequences of known SEB-binding single domain antibodies from the library obtained through phage display panning methods in a previous study. New antibodies were identified, produced, and characterized, and were shown to have affinities and melting temperatures comparable to those obtained by traditional panning methods. This demonstrates the utility of using NGS as a complementary tool to phage-displayed biopanning as a means for rapidly obtaining additional antibodies from an immune library. It also shows that phage display, using a library of high diversity, is able to select high quality antibodies even when they are low in frequency. PMID:26895405

  12. The Structure of the Dead ringer-DNA complex reveals how AT-rich interaction domains (ARIDs) recognize DNA

    SciTech Connect

    Iwahara, Junji; Iwahara, Mizuho; Daughdrill, Gary W.; Ford, Joe J.; Clubb, Robert T.

    2002-03-01

    The AT-rich interaction domain (ARID) is a DNA-binding module found in many eukaryotic transcription factors. Using NMR Spectroscopy, we have determined the first ever three-dimensional structure of an ARID-DNA complex (mol.wt 25.7 kDa) formed by Dead ringer from Drosophila melanogaster, ARIDs recognize DNA through a novel mechanism involving major groove immobilization of a large loop that connects the helices of a non-canonical helix-turn-helix motif, and through a concomitant structural rearrangement. that produces stabilizing contacts from a B-hairpin. Dead ringer's preference for a AT-rich DNA originates from three positions within the ARID fold that form energetically significant contacts to an adenine thymine base step.

  13. Local domains of motor cortical activity revealed by fiber-optic calcium recordings in behaving nonhuman primates.

    PubMed

    Adelsberger, Helmuth; Zainos, Antonio; Alvarez, Manuel; Romo, Ranulfo; Konnerth, Arthur

    2014-01-01

    Brain mapping experiments involving electrical microstimulation indicate that the primary motor cortex (M1) directly regulates muscle contraction and thereby controls specific movements. Possibly, M1 contains a small circuit "map" of the body that is formed by discrete local networks that code for specific movements. Alternatively, movements may be controlled by distributed, larger-scale overlapping circuits. Because of technical limitations, it remained unclear how movement-determining circuits are organized in M1. Here we introduce a method that allows the functional mapping of small local neuronal circuits in awake behaving nonhuman primates. For this purpose, we combined optic-fiber-based calcium recordings of neuronal activity and cortical microstimulation. The method requires targeted bulk loading of synthetic calcium indicators (e.g., OGB-1 AM) for the staining of neuronal microdomains. The tip of a thin (200 µm) optical fiber can detect the coherent activity of a small cluster of neurons, but is insensitive to the asynchronous activity of individual cells. By combining such optical recordings with microstimulation at two well-separated sites of M1, we demonstrate that local cortical activity was tightly associated with distinct and stereotypical simple movements. Increasing stimulation intensity increased both the amplitude of the movements and the level of neuronal activity. Importantly, the activity remained local, without invading the recording domain of the second optical fiber. Furthermore, there was clear response specificity at the two recording sites in a trained behavioral task. Thus, the results provide support for movement control in M1 by local neuronal clusters that are organized in discrete cortical domains. PMID:24344287

  14. Evolutionary analysis reveals collective properties and specificity in the C-type lectin and lectin-like domain superfamily.

    PubMed

    Ebner, Sharon; Sharon, Nathan; Ben-Tal, Nir

    2003-10-01

    Members of the C-type lectin/C-type lectin-like domain (CTL/CTLD) superfamily share a common fold and are involved in a variety of functions, such as generalized defense mechanisms against foreign agents, discrimination between healthy and pathogen-infected cells, and endocytosis and blood coagulation. In this work we used ConSurf, a computer program recently developed in our lab, to perform an evolutionary analysis of this superfamily in order to further identify characteristics of all or part of its members. Given a set of homologous proteins in the form of multiple sequence alignment (MSA) and an inferred phylogenetic tree, ConSurf calculates the conservation score in every alignment position, taking into account the relationships between the sequences and the physicochemical similarity between the amino acids. The scores are then color-coded onto the three-dimensional structure of one of the homologous proteins. We provide here and at http://ashtoret.tau.ac.il/ approximately sharon a detailed analysis of the conservation pattern obtained for the entire superfamily and for two subgroups of proteins: (a) 21 CTLs and (b) 11 heterodimeric CTLD toxins. We show that, in general, proteins of the superfamily have one face that is constructed mostly of conserved residues and another that is not, and we suggest that the former face is involved in binding to other proteins or domains. In the CTLs examined we detected a region of highly conserved residues, corresponding to the known calcium- and carbohydrate-binding site of the family, which is not conserved throughout the entire superfamily, and in the CTLD toxins we found a patch of highly conserved residues, corresponding to the known dimerization region of these proteins. Our analysis also detected patches of conserved residues with yet unknown function(s).

  15. Crystal structure of EML1 reveals the basis for Hsp90 dependence of oncogenic EML4-ALK by disruption of an atypical β-propeller domain

    PubMed Central

    Richards, Mark W.; Law, Edward W. P.; Rennalls, La’Verne P.; Busacca, Sara; O’Regan, Laura; Fry, Andrew M.; Fennell, Dean A.; Bayliss, Richard

    2014-01-01

    Proteins of the echinoderm microtubule-associated protein (EMAP)-like (EML) family contribute to formation of the mitotic spindle and interphase microtubule network. They contain a unique hydrophobic EML protein (HELP) motif and a variable number of WD40 repeats. Recurrent gene rearrangements in nonsmall cell lung cancer fuse EML4 to anaplastic lymphoma kinase (ALK), causing expression of several fusion oncoprotein variants. We have determined a 2.6-Å crystal structure of the representative ∼70-kDa core of EML1, revealing an intimately associated pair of β-propellers, which we term a TAPE (tandem atypical propeller in EMLs) domain. One propeller is highly atypical, having a discontinuous subdomain unrelated to a WD40 motif in place of one of its blades. This unexpected feature shows how a propeller structure can be assembled from subdomains with distinct folds. The HELP motif is not an independent domain but forms part of the hydrophobic core that joins the two β-propellers. The TAPE domain binds α/β-tubulin via its conserved, concave surface, including part of the atypical blade. Mapping the characteristic breakpoints of each EML4-ALK variant onto our structure indicates that the EML4 TAPE domain is truncated in many variants in a manner likely to make the fusion protein structurally unstable. We found that the heat shock protein 90 (Hsp90) inhibitor ganetespib induced degradation of these variants whereas others lacking a partial TAPE domain were resistant in both overexpression models and patient-derived cell lines. The Hsp90-sensitive EML4-ALK variants are exceptions to the rule that oncogenic fusion proteins involve breakpoints in disordered regions of both partners. PMID:24706829

  16. Structure of the Legionella Virulence Factor, SidC Reveals a Unique PI(4)P-Specific Binding Domain Essential for Its Targeting to the Bacterial Phagosome

    PubMed Central

    Luo, Xi; Wasilko, David J.; Liu, Yao; Sun, Jiayi; Wu, Xiaochun; Luo, Zhao-Qing; Mao, Yuxin

    2015-01-01

    The opportunistic intracellular pathogen Legionella pneumophila is the causative agent of Legionnaires’ disease. L. pneumophila delivers nearly 300 effector proteins into host cells for the establishment of a replication-permissive compartment known as the Legionella-containing vacuole (LCV). SidC and its paralog SdcA are two effectors that have been shown to anchor on the LCV via binding to phosphatidylinositol-4-phosphate [PI(4)P] to facilitate the recruitment of ER proteins to the LCV. We recently reported that the N-terminal SNL (SidC N-terminal E3 Ligase) domain of SidC is a ubiquitin E3 ligase, and its activity is required for the recruitment of ER proteins to the LCV. Here we report the crystal structure of SidC (1-871). The structure reveals that SidC contains four domains that are packed into an arch-like shape. The P4C domain (PI(4)P binding of SidC) comprises a four α-helix bundle and covers the ubiquitin ligase catalytic site of the SNL domain. Strikingly, a pocket with characteristic positive electrostatic potentials is formed at one end of this bundle. Liposome binding assays of the P4C domain further identified the determinants of phosphoinositide recognition and membrane interaction. Interestingly, we also found that binding with PI(4)P stimulates the E3 ligase activity, presumably due to a conformational switch induced by PI(4)P from a closed form to an open active form. Mutations of key residues involved in PI(4)P binding significantly reduced the association of SidC with the LCV and abolished its activity in the recruitment of ER proteins and ubiquitin signals, highlighting that PI(4)P-mediated targeting of SidC is critical to its function in the remodeling of the bacterial phagosome membrane. Finally, a GFP-fusion with the P4C domain was demonstrated to be specifically localized to PI(4)P-enriched compartments in mammalian cells. This domain shows the potential to be developed into a sensitive and accurate PI(4)P probe in living cells. PMID

  17. Apo- and Antagonist-Binding Structures of Vitamin D Receptor Ligand-Binding Domain Revealed by Hybrid Approach Combining Small-Angle X-ray Scattering and Molecular Dynamics.

    PubMed

    Anami, Yasuaki; Shimizu, Nobutaka; Ekimoto, Toru; Egawa, Daichi; Itoh, Toshimasa; Ikeguchi, Mitsunori; Yamamoto, Keiko

    2016-09-01

    Vitamin D receptor (VDR) controls the expression of numerous genes through the conformational change caused by binding 1α,25-dihydroxyvitamin D3. Helix 12 in the ligand-binding domain (LBD) is key to regulating VDR activation. The structures of apo VDR-LBD and the VDR-LBD/antagonist complex are unclear. Here, we reveal their unprecedented structures in solution using a hybrid method combining small-angle X-ray scattering and molecular dynamics simulations. In apo rat VDR-LBD, helix 12 is partially unraveled, and it is positioned around the canonical active position and fluctuates. Helix 11 greatly bends toward the outside at Q396, creating a kink. In the rat VDR-LBD/antagonist complex, helix 12 does not generate the activation function 2 surface, and loop 11-12 is remarkably flexible compared to that in the apo rat VDR-LBD. On the basis of these structural insights, we propose a "folding-door model" to describe the mechanism of agonism/antagonism of VDR-LBD. PMID:27535484

  18. Apo- and Antagonist-Binding Structures of Vitamin D Receptor Ligand-Binding Domain Revealed by Hybrid Approach Combining Small-Angle X-ray Scattering and Molecular Dynamics.

    PubMed

    Anami, Yasuaki; Shimizu, Nobutaka; Ekimoto, Toru; Egawa, Daichi; Itoh, Toshimasa; Ikeguchi, Mitsunori; Yamamoto, Keiko

    2016-09-01

    Vitamin D receptor (VDR) controls the expression of numerous genes through the conformational change caused by binding 1α,25-dihydroxyvitamin D3. Helix 12 in the ligand-binding domain (LBD) is key to regulating VDR activation. The structures of apo VDR-LBD and the VDR-LBD/antagonist complex are unclear. Here, we reveal their unprecedented structures in solution using a hybrid method combining small-angle X-ray scattering and molecular dynamics simulations. In apo rat VDR-LBD, helix 12 is partially unraveled, and it is positioned around the canonical active position and fluctuates. Helix 11 greatly bends toward the outside at Q396, creating a kink. In the rat VDR-LBD/antagonist complex, helix 12 does not generate the activation function 2 surface, and loop 11-12 is remarkably flexible compared to that in the apo rat VDR-LBD. On the basis of these structural insights, we propose a "folding-door model" to describe the mechanism of agonism/antagonism of VDR-LBD.

  19. Analyses of Compact Trichinella Kinomes Reveal a MOS-Like Protein Kinase with a Unique N-Terminal Domain.

    PubMed

    Stroehlein, Andreas J; Young, Neil D; Korhonen, Pasi K; Chang, Bill C H; Sternberg, Paul W; La Rosa, Giuseppe; Pozio, Edoardo; Gasser, Robin B

    2016-01-01

    Parasitic worms of the genus Trichinella (phylum Nematoda; class Enoplea) represent a complex of at least twelve taxa that infect a range of different host animals, including humans, around the world. They are foodborne, intracellular nematodes, and their life cycles differ substantially from those of other nematodes. The recent characterization of the genomes and transcriptomes of all twelve recognized taxa of Trichinella now allows, for the first time, detailed studies of their molecular biology. In the present study, we defined, curated, and compared the protein kinase complements (kinomes) of Trichinella spiralis and T. pseudospiralis using an integrated bioinformatic workflow employing transcriptomic and genomic data sets. We examined how variation in the kinome might link to unique aspects of Trichinella morphology, biology, and evolution. Furthermore, we utilized in silico structural modeling to discover and characterize a novel, MOS-like kinase with an unusual, previously undescribed N-terminal domain. Taken together, the present findings provide a basis for comparative investigations of nematode kinomes, and might facilitate the identification of Enoplea-specific intervention and diagnostic targets. Importantly, the in silico modeling approach assessed here provides an exciting prospect of being able to identify and classify currently unknown (orphan) kinases, as a foundation for their subsequent structural and functional investigation. PMID:27412987

  20. Fast Helix Formation in the B Domain of Protein A Revealed by Site-Specific Infrared Probes

    PubMed Central

    Davis, Caitlin M.; Cooper, A. Kat; Dyer, R. Brian

    2015-01-01

    Comparison of experimental and computational protein folding studies can be difficult because of differences in structural resolution. Isotope-edited infrared spectroscopy offers a direct measure of structural changes involved in protein folding at the single-residue level. Here we demonstrate the increased resolution of site-specific infrared probes to the peptide backbone in the B domain of staphylococcal protein A (BdpA). 13C=18O-labeled methionine was incorporated into each of the helices using recombinant protein expression. Laser-induced temperature jumps coupled with infrared spectroscopy were used to probe changes in the peptide backbone on the submillisecond time scale. The relaxation kinetics of the buried helices, solvated helices, and labeled positions were measured independently by probing the corresponding bands assigned in the amide I region. Using these wavelength-dependent measurements, we observe a fast nanosecond phase and slower microsecond phase at each position. We find at least partial formation of helices 1–3 in the fast intermediate state that precedes the transition state. These measurements provide direct, time-resolved experimental evidence of the early formation of partial helical structure in helices 1 and 3, supporting folding models proposed by computer simulations. PMID:25706439

  1. Structure of N-Terminal Domain of NPC1 Reveals Distinct Subdomains for Binding and Transfer of Cholesterol

    SciTech Connect

    Kwon, Hyock Joo; Abi-Mosleh, Lina; Wang, Michael L.; Deisenhofer, Johann; Goldstein, Joseph L.; Brown, Michael S.; Infante, Rodney E.

    2010-09-21

    LDL delivers cholesterol to lysosomes by receptor-mediated endocytosis. Exit of cholesterol from lysosomes requires two proteins, membrane-bound Niemann-Pick C1 (NPC1) and soluble NPC2. NPC2 binds cholesterol with its isooctyl side chain buried and its 3{beta}-hydroxyl exposed. Here, we describe high-resolution structures of the N-terminal domain (NTD) of NPC1 and complexes with cholesterol and 25-hydroxycholesterol. NPC1(NTD) binds cholesterol in an orientation opposite to NPC2: 3{beta}-hydroxyl buried and isooctyl side chain exposed. Cholesterol transfer from NPC2 to NPC1(NTD) requires reorientation of a helical subdomain in NPC1(NTD), enlarging the opening for cholesterol entry. NPC1 with point mutations in this subdomain (distinct from the binding subdomain) cannot accept cholesterol from NPC2 and cannot restore cholesterol exit from lysosomes in NPC1-deficient cells. We propose a working model wherein after lysosomal hydrolysis of LDL-cholesteryl esters, cholesterol binds NPC2, which transfers it to NPC1(NTD), reversing its orientation and allowing insertion of its isooctyl side chain into the outer lysosomal membranes.

  2. Analyses of Compact Trichinella Kinomes Reveal a MOS-Like Protein Kinase with a Unique N-Terminal Domain

    PubMed Central

    Stroehlein, Andreas J.; Young, Neil D.; Korhonen, Pasi K.; Chang, Bill C. H.; Sternberg, Paul W.; La Rosa, Giuseppe; Pozio, Edoardo; Gasser, Robin B.

    2016-01-01

    Parasitic worms of the genus Trichinella (phylum Nematoda; class Enoplea) represent a complex of at least twelve taxa that infect a range of different host animals, including humans, around the world. They are foodborne, intracellular nematodes, and their life cycles differ substantially from those of other nematodes. The recent characterization of the genomes and transcriptomes of all twelve recognized taxa of Trichinella now allows, for the first time, detailed studies of their molecular biology. In the present study, we defined, curated, and compared the protein kinase complements (kinomes) of Trichinella spiralis and T. pseudospiralis using an integrated bioinformatic workflow employing transcriptomic and genomic data sets. We examined how variation in the kinome might link to unique aspects of Trichinella morphology, biology, and evolution. Furthermore, we utilized in silico structural modeling to discover and characterize a novel, MOS-like kinase with an unusual, previously undescribed N-terminal domain. Taken together, the present findings provide a basis for comparative investigations of nematode kinomes, and might facilitate the identification of Enoplea-specific intervention and diagnostic targets. Importantly, the in silico modeling approach assessed here provides an exciting prospect of being able to identify and classify currently unknown (orphan) kinases, as a foundation for their subsequent structural and functional investigation. PMID:27412987

  3. Structure analysis of FAAP24 reveals single-stranded DNA-binding activity and domain functions in DNA damage response.

    PubMed

    Wang, Yucai; Han, Xiao; Wu, Fangming; Leung, Justin W; Lowery, Megan G; Do, Huong; Chen, Junjie; Shi, Chaowei; Tian, Changlin; Li, Lei; Gong, Weimin

    2013-10-01

    The FANCM/FAAP24 heterodimer has distinct functions in protecting cells from complex DNA lesions such as interstrand crosslinks. These functions rely on the biochemical activity of FANCM/FAAP24 to recognize and bind to damaged DNA or stalled replication forks. However, the DNA-binding activity of this complex was not clearly defined. We investigated how FAAP24 contributes to the DNA-interacting functions of the FANCM/FAAP24 complex by acquiring the N-terminal and C-terminal solution structures of human FAAP24. Modeling of the FAAP24 structure indicates that FAAP24 may possess a high affinity toward single-stranded DNA (ssDNA). Testing of various FAAP24 mutations in vitro and in vivo validated this prediction derived from structural analyses. We found that the DNA-binding and FANCM-interacting functions of FAAP24, although both require the C-terminal (HhH)2 domain, can be distinguished by segregation-of-function mutations. These results demonstrate dual roles of FAAP24 in DNA damage response against crosslinking lesions, one through the formation of FANCM/FAAP24 heterodimer and the other via its ssDNA-binding activity required in optimized checkpoint activation. PMID:23999858

  4. The RRM Domain of Human Fused in Sarcoma Protein Reveals a Non-Canonical Nucleic Acid Binding Site

    PubMed Central

    Liu, Xuehui; Niu, Chunyan; Ren, Jintao; Zhang, Jiayu; Xie, Xiaodong; Zhu, Haining; Feng, Wei; Gong, Weimin

    2012-01-01

    Fused in sarcoma (FUS) is involved in many processes of RNA metabolism. FUS and another RNA binding protein, TDP-43, are implicated in amyotrophic lateral sclerosis (ALS). It is significant to characterize the RNA recognition motif (RRM) of FUS as its nucleic acid binding properties are unclear. More importantly, abolishing the RNA binding ability of the RRM domain of TDP43 was reported to suppress the neurotoxicity of TDP-43 in Drosophila. The sequence of FUS-RRM varies significantly from canonical RRMs, but the solution structure of FUS-RRM determined by NMR showed a similar overall folding as other RRMs. We found that FUS-RRM directly bound to RNA and DNA and the binding affinity was in the micromolar range as measured by surface plasmon resonance and NMR titration. The nucleic acid binding pocket in FUS-RRM is significantly distorted since several critical aromatic residues are missing. An exceptionally positively charged loop in FUS-RRM, which is not found in other RRMs, is directly involved in the RNA/DNA binding. Substituting the lysine residues in the unique KK loop impaired the nucleic acid binding and altered FUS subcellular localization. The results provide insights into the nucleic acid binding properties of FUS-RRM and its potential relevance to ALS. PMID:23200923

  5. Orientation of a key glutamine residue in the BLUF domain from AppA revealed by mutagenesis, spectroscopy, and quantum chemical calculations.

    PubMed

    Unno, Masashi; Masuda, Shinji; Ono, Taka-aki; Yamauchi, Seigo

    2006-05-01

    The flavin-adenine-dinucleotide-binding BLUF domain constitutes a new class of blue-light receptors, and the N-terminal domain of AppA is a representative of this family. A crystal structure of the BLUF domain from AppA suggested that a conserved Gln63 forms a hydrogen bond with the flavin N5 atom. Upon light excitation, this residue is proposed to undergo a approximately 180 degrees rotation that leads to a rearrangement of a hydrogen bonding network. However, crystallographic studies on the other BLUF proteins claimed an opposite orientation for the glutamine residue. In this communication, we have revealed the presence of a Gln63-to-N5 hydrogen bond in the dark state of AppA by a combined approach of mutagenesis, spectroscopy, and quantum chemical calculations. The present finding supports the view that the reorientation of the Gln63 side chain is a key event in the signaling state formation of BLUF proteins.

  6. Crystal structure of the catalytic domain of UCHL5, a proteasome-associated human deubiquitinating enzyme, reveals an unproductive form of the enzyme

    SciTech Connect

    Maiti, Tushar K.; Permaul, Michelle; Boudreaux, David A.; Mahanic, Christina; Mauney, Sarah; Das, Chittaranjan

    2012-10-25

    Ubiquitin carboxy-terminal hydrolase L5 (UCHL5) is a proteasome-associated deubiquitinating enzyme, which, along with RPN11 and USP14, is known to carry out deubiquitination on proteasome. As a member of the ubiquitin carboxy-terminal hydrolase (UCH) family, UCHL5 is unusual because, unlike UCHL1 and UCHL3, it can process polyubiquitin chain. However, it does so only when it is bound to the proteasome; in its free form, it is capable of releasing only relatively small leaving groups from the C-terminus of ubiquitin. Such a behavior might suggest at least two catalytically distinct forms of the enzyme, an apo form incapable of chain processing activity, and a proteasome-induced activated form capable of cleaving polyubiquitin chain. Through the crystal structure analysis of two truncated constructs representing the catalytic domain (UCH domain) of this enzyme, we were able to visualize a state of this enzyme that we interpret as its inactive form, because the catalytic cysteine appears to be in an unproductive orientation. While this work was in progress, the structure of a different construct representing the UCH domain was reported; however, in that work the structure reported was that of an inactive mutant [catalytic Cys to Ala; Nishio K et al. (2009) Biochem Biophys Res Commun390, 855-860], which precluded the observation that we are reporting here. Additionally, our structures reveal conformationally dynamic parts of the enzyme that may play a role in the structural transition to the more active form.

  7. Occurrence of novel groups of the domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment.

    PubMed Central

    Liesack, W; Stackebrandt, E

    1992-01-01

    A molecular ecological study was performed on an Australian soil sample to unravel a substantial portion of the bacterial diversity. A large fragment of the 16S rRNA gene was amplified, using DNA isolated by lysing the microorganisms directly within the soil matrix, and a clone library was generated. Comparative sequence analysis of 30 clones and dot blot hybridization of 83 additional clones with defined oligonucleotide probes revealed the presence of three major groups of prokaryotes of the domain Bacteria. The first one comprises 57 clones that indicate relatives of nitrogen-fixing bacteria of the alpha-2 subclass of the class Proteobacteria; the second group of 7 clones originates from members of the order Planctomycetales that, however, reveal no close relationship to any of the described Planctomycetales species; 22 clones of the third group are indicative of members of a novel main line of descent, sharing a common ancestry with members of planctomycetes and chlamydiae. Images PMID:1629164

  8. Cysteine mutagenesis reveals alternate proximity between transmembrane domain 2 and hairpin loop 1 of the glutamate transporter EAAT1.

    PubMed

    Zhang, Yunlong; Zhang, Xiuping; Qu, Shaogang

    2014-07-01

    Excitatory amino acid transporter 1 (EAAT1) plays an important role in restricting the neurotoxicity of glutamate. Previous structure-function studies have provided evidence that reentrant helical hairpin loop (HP) 1 has predominant function during the transport cycle. The proposed internal gate HP1 is packed against transmembrane domain (TM) 2 and TM5 in its closed state, and two residues located in TM2 and HP2 of EAAT1 are in close proximity. However, the spatial relationship between TM2 and HP1 during the transport cycle remains unknown. In this study, we used chemical cross-linking of introduced cysteine pair (V96C and S366C) in a cysteine-less version of EAAT1 to assess the proximity of TM2 and HP1. Here, we show that inhibition of transport by copper(II)(1,10-phenanthroline)3 (CuPh) and cadmium ion (Cd(2+)) were observed in the V96C/S366C mutant. Glutamate or potassium significantly protected against the inhibition of transport activity of V96C/S366C by CuPh, while TBOA potentiated the inhibition of transport activity of V96C/S366C by CuPh. We also checked the kinetic parameters of V96C/S366C treated with or without CuPh in the presence of NaCl, NaCl + L-glutamate, NaCl + TBOA, and KCl, respectively. The sensitivity of V96C and S366C to membrane-impermeable sulfhydryl reagent MTSET [(2-trimethylammonium) methanethiosulfonate] was attenuated by glutamate or potassium. TBOA had no effect on the sensitivity of V96C and S366C to MTSET. These data suggest that the spatial relationship between Val-96 of TM2 and Ser-366 of HP1 is altered in the transport cycle.

  9. Partial Loss of Genomic Imprinting Reveals Important Roles for Kcnq1 and Peg10 Imprinted Domains in Placental Development

    PubMed Central

    Koppes, Erik; Himes, Katherine P.; Chaillet, J. Richard

    2015-01-01

    Mutations in imprinted genes or their imprint control regions (ICRs) produce changes in imprinted gene expression and distinct abnormalities in placental structure, indicating the importance of genomic imprinting to placental development. We have recently shown that a very broad spectrum of placental abnormalities associated with altered imprinted gene expression occurs in the absence of the oocyte–derived DNMT1o cytosine methyltransferase, which normally maintains parent-specific imprinted methylation during preimplantation. The absence of DNMT1o partially reduces inherited imprinted methylation while retaining the genetic integrity of imprinted genes and their ICRs. Using this novel system, we undertook a broad and inclusive approach to identifying key ICRs involved in placental development by correlating loss of imprinted DNA methylation with abnormal placental phenotypes in a mid-gestation window (E12.5-E15.5). To these ends we measured DNA CpG methylation at 15 imprinted gametic differentially methylated domains (gDMDs) that overlap known ICRs using EpiTYPER-mass array technology, and linked these epigenetic measurements to histomorphological defects. Methylation of some imprinted gDMDs, most notably Dlk1, was nearly normal in mid-gestation DNMT1o-deficient placentas, consistent with the notion that cells having lost methylation on these DMDs do not contribute significantly to placental development. Most imprinted gDMDs however showed a wide range of methylation loss among DNMT1o-deficient placentas. Two striking associations were observed. First, loss of DNA methylation at the Peg10 imprinted gDMD associated with decreased embryonic viability and decreased labyrinthine volume. Second, loss of methylation at the Kcnq1 imprinted gDMD was strongly associated with trophoblast giant cell (TGC) expansion. We conclude that the Peg10 and Kcnq1 ICRs are key regulators of mid-gestation placental function. PMID:26241757

  10. Structural and Kinetic Analysis of Schwanniomyces occidentalis Invertase Reveals a New Oligomerization Pattern and the Role of Its Supplementary Domain in Substrate Binding*

    PubMed Central

    Álvaro-Benito, Miguel; Polo, Aitana; González, Beatriz; Fernández-Lobato, María; Sanz-Aparicio, Julia

    2010-01-01

    Schwanniomyces occidentalis invertase is an extracellular enzyme that hydrolizes sucrose and releases β-fructose from various oligosaccharides and essential storage fructan polymers such as inulin. We report here the three-dimensional structure of Sw. occidentalis invertase at 2.9 Å resolution and its complex with fructose at 1.9 Å resolution. The monomer presents a bimodular arrangement common to other GH32 enzymes, with an N-terminal 5-fold β-propeller catalytic domain and a C-terminal β-sandwich domain for which the function has been unknown until now. However, the dimeric nature of Sw. occidentalis invertase reveals a unique active site cleft shaped by both subunits that may be representative of other yeast enzymes reported to be multimeric. Binding of the tetrasaccharide nystose and the polymer inulin was explored by docking analysis, which suggested that medium size and long substrates are recognized by residues from both subunits. The identified residues were mutated, and the enzymatic activity of the mutants against sucrose, nystose, and inulin were investigated by kinetic analysis. The replacements that showed the largest effect on catalytic efficiency were Q228V, a residue putatively involved in nystose and inulin binding, and S281I, involved in a polar link at the dimer interface. Moreover, a significant decrease in catalytic efficiency against inulin was observed in the mutants Q435A and Y462A, both located in the β-sandwich domain of the second monomer. This highlights the essential function that oligomerization plays in substrate specificity and assigns, for the first time, a direct catalytic role to the supplementary domain of a GH32 enzyme. PMID:20181943

  11. Limited Proteolysis Reveals That Amyloids from the 3D Domain-Swapping Cystatin B Have a Non-Native β-Sheet Topology.

    PubMed

    Davis, Peter J; Holmes, David; Waltho, Jonathan P; Staniforth, Rosemary A

    2015-07-31

    3D domain-swapping proteins form multimers by unfolding and then sharing of secondary structure elements, often with native-like interactions. Runaway domain swapping is proposed as a mechanism for folded proteins to form amyloid fibres, with examples including serpins and cystatins. Cystatin C amyloids cause a hereditary form of cerebral amyloid angiopathy whilst cystatin B aggregates are found in cases of Unverricht-Lundborg Syndrome, a progressive form of myoclonic epilepsy. Under conditions that favour fibrillisation, cystatins populate stable 3D domain-swapped dimers both in vitro and in vivo that represent intermediates on route to the formation of fibrils. Previous work on cystatin B amyloid fibrils revealed that the α-helical region of the protein becomes disordered and identified the conservation of a continuous 20-residue elongated β-strand (residues 39-58), the latter being a salient feature of the dimeric 3D domain-swapped structure. Here we apply limited proteolysis to cystatin B amyloid fibrils and show that not only the α-helical N-terminal of the protein (residues 1-35) but also the C-terminal of the protein (residues 80-98) can be removed without disturbing the underlying fibril structure. This observation is incompatible with previous models of cystatin amyloid fibrils where the β-sheet is assumed to retain its native antiparallel arrangement. We conclude that our data favour a more generic, at least partially parallel, arrangement for cystatin β-sheet structure in mature amyloids and propose a model that remains consistent with available data for amyloids from either cystatin B or cystatin C.

  12. Functional Analysis of the Leading Malaria Vaccine Candidate AMA-1 Reveals an Essential Role for the Cytoplasmic Domain in the Invasion Process

    PubMed Central

    Treeck, Moritz; Zacherl, Sonja; Herrmann, Susann; Cabrera, Ana; Kono, Maya; Struck, Nicole S.; Engelberg, Klemens; Haase, Silvia; Frischknecht, Friedrich; Miura, Kota; Spielmann, Tobias; Gilberger, Tim W.

    2009-01-01

    A key process in the lifecycle of the malaria parasite Plasmodium falciparum is the fast invasion of human erythrocytes. Entry into the host cell requires the apical membrane antigen 1 (AMA-1), a type I transmembrane protein located in the micronemes of the merozoite. Although AMA-1 is evolving into the leading blood-stage malaria vaccine candidate, its precise role in invasion is still unclear. We investigate AMA-1 function using live video microscopy in the absence and presence of an AMA-1 inhibitory peptide. This data reveals a crucial function of AMA-1 during the primary contact period upstream of the entry process at around the time of moving junction formation. We generate a Plasmodium falciparum cell line that expresses a functional GFP-tagged AMA-1. This allows the visualization of the dynamics of AMA-1 in live parasites. We functionally validate the ectopically expressed AMA-1 by establishing a complementation assay based on strain-specific inhibition. This method provides the basis for the functional analysis of essential genes that are refractory to any genetic manipulation. Using the complementation assay, we show that the cytoplasmic domain of AMA-1 is not required for correct trafficking and surface translocation but is essential for AMA-1 function. Although this function can be mimicked by the highly conserved cytoplasmic domains of P. vivax and P. berghei, the exchange with the heterologous domain of the microneme protein EBA-175 or the rhoptry protein Rh2b leads to a loss of function. We identify several residues in the cytoplasmic tail that are essential for AMA-1 function. We validate this data using additional transgenic parasite lines expressing AMA-1 mutants with TY1 epitopes. We show that the cytoplasmic domain of AMA-1 is phosphorylated. Mutational analysis suggests an important role for the phosphorylation in the invasion process, which might translate into novel therapeutic strategies. PMID:19283086

  13. Crystal Structure of Marburg Virus VP40 Reveals a Broad, Basic Patch for Matrix Assembly and a Requirement of the N-Terminal Domain for Immunosuppression

    PubMed Central

    Oda, Shun-ichiro; Noda, Takeshi; Wijesinghe, Kaveesha J.; Halfmann, Peter; Bornholdt, Zachary A.; Abelson, Dafna M.; Armbrust, Tammy; Stahelin, Robert V.; Kawaoka, Yoshihiro

    2015-01-01

    ABSTRACT Marburg virus (MARV), a member of the filovirus family, causes severe hemorrhagic fever with up to 90% lethality. MARV matrix protein VP40 is essential for assembly and release of newly copied viruses and also suppresses immune signaling in the infected cell. Here we report the crystal structure of MARV VP40. We found that MARV VP40 forms a dimer in solution, mediated by N-terminal domains, and that formation of this dimer is essential for budding of virus-like particles. We also found the N-terminal domain to be necessary and sufficient for immune antagonism. The C-terminal domains of MARV VP40 are dispensable for immunosuppression but are required for virus assembly. The C-terminal domains are only 16% identical to those of Ebola virus, differ in structure from those of Ebola virus, and form a distinct broad and flat cationic surface that likely interacts with the cell membrane during virus assembly. IMPORTANCE Marburg virus, a cousin of Ebola virus, causes severe hemorrhagic fever, with up to 90% lethality seen in recent outbreaks. Molecular structures and visual images of the proteins of Marburg virus are essential for the development of antiviral drugs. One key protein in the Marburg virus life cycle is VP40, which both assembles the virus and suppresses the immune system. Here we provide the molecular structure of Marburg virus VP40, illustrate differences from VP40 of Ebola virus, and reveal surfaces by which Marburg VP40 assembles progeny and suppresses immune function. PMID:26656687

  14. Interaction of a putative BH3 domain of clusterin with anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy

    SciTech Connect

    Lee, Dong-Hwa; Ha, Ji-Hyang; Kim, Yul; Bae, Kwang-Hee; Park, Jae-Yong; Choi, Wan Sung; Yoon, Ho Sup; Park, Sung Goo; Park, Byoung Chul; Yi, Gwan-Su; Chi, Seung-Wook

    2011-05-20

    Highlights: {yields} Identification of a conserved BH3 motif in C-terminal coiled coil region of nCLU. {yields} The nCLU BH3 domain binds to BH3 peptide-binding grooves in both Bcl-X{sub L} and Bcl-2. {yields} A conserved binding mechanism of nCLU BH3 and the other pro-apoptotic BH3 peptides with Bcl-X{sub L}. {yields} The absolutely conserved Leu323 and Asp328 of nCLU BH3 domain are critical for binding to Bcl-X{sub L.} {yields} Molecular understanding of the pro-apoptotic function of nCLU as a novel BH3-only protein. -- Abstract: Clusterin (CLU) is a multifunctional glycoprotein that is overexpressed in prostate and breast cancers. Although CLU is known to be involved in the regulation of apoptosis and cell survival, the precise molecular mechanism underlying the pro-apoptotic function of nuclear CLU (nCLU) remains unclear. In this study, we identified a conserved BH3 motif in C-terminal coiled coil (CC2) region of nCLU by sequence analysis and characterized the molecular interaction of the putative nCLU BH3 domain with anti-apoptotic Bcl-2 family proteins by nuclear magnetic resonance (NMR) spectroscopy. The chemical shift perturbation data demonstrated that the nCLU BH3 domain binds to pro-apoptotic BH3 peptide-binding grooves in both Bcl-X{sub L} and Bcl-2. A structural model of the Bcl-X{sub L}/nCLU BH3 peptide complex reveals that the binding mode is remarkably similar to those of other Bcl-X{sub L}/BH3 peptide complexes. In addition, mutational analysis confirmed that Leu323 and Asp328 of nCLU BH3 domain, absolutely conserved in the BH3 motifs of BH3-only protein family, are critical for binding to Bcl-X{sub L}. Taken altogether, our results suggest a molecular basis for the pro-apoptotic function of nCLU by elucidating the residue specific interactions of the BH3 motif in nCLU with anti-apoptotic Bcl-2 family proteins.

  15. Crystal structure of CobK reveals strand-swapping between Rossmann-fold domains and molecular basis of the reduced precorrin product trap

    PubMed Central

    Gu, Shuang; Sushko, Oleksandr; Deery, Evelyne; Warren, Martin J.; Pickersgill, Richard W.

    2015-01-01

    CobK catalyzes the essential reduction of the precorrin ring in the cobalamin biosynthetic pathway. The crystal structure of CobK reveals that the enzyme, despite not having the signature sequence, comprises two Rossmann fold domains which bind coenzyme and substrate respectively. The two parallel β-sheets have swapped their last β-strands giving a novel sheet topology which is an interesting variation on the Rossmann-fold. The trapped ternary complex with coenzyme and product reveals five conserved basic residues that bind the carboxylates of the tetrapyrrole tightly anchoring the product. A loop, disordered in both the apoenzyme and holoenzyme structures, closes around the product further tightening binding. The structure is consistent with a mechanism involving protonation of C18 and pro-R hydride transfer from NADPH to C19 of precorrin-6A and reveals the interactions responsible for the specificity of CobK. The almost complete burial of the reduced precorrin product suggests a remarkable form of metabolite channeling where the next enzyme in the biosynthetic pathway triggers product release. PMID:26616290

  16. Crystal structure of CobK reveals strand-swapping between Rossmann-fold domains and molecular basis of the reduced precorrin product trap

    NASA Astrophysics Data System (ADS)

    Gu, Shuang; Sushko, Oleksandr; Deery, Evelyne; Warren, Martin J.; Pickersgill, Richard W.

    2015-11-01

    CobK catalyzes the essential reduction of the precorrin ring in the cobalamin biosynthetic pathway. The crystal structure of CobK reveals that the enzyme, despite not having the signature sequence, comprises two Rossmann fold domains which bind coenzyme and substrate respectively. The two parallel β-sheets have swapped their last β-strands giving a novel sheet topology which is an interesting variation on the Rossmann-fold. The trapped ternary complex with coenzyme and product reveals five conserved basic residues that bind the carboxylates of the tetrapyrrole tightly anchoring the product. A loop, disordered in both the apoenzyme and holoenzyme structures, closes around the product further tightening binding. The structure is consistent with a mechanism involving protonation of C18 and pro-R hydride transfer from NADPH to C19 of precorrin-6A and reveals the interactions responsible for the specificity of CobK. The almost complete burial of the reduced precorrin product suggests a remarkable form of metabolite channeling where the next enzyme in the biosynthetic pathway triggers product release.

  17. Functional analysis of the TFIID-specific yeast TAF4 (yTAF(II)48) reveals an unexpected organization of its histone-fold domain.

    PubMed

    Thuault, Sylvie; Gangloff, Yann-Gaël; Kirchner, Jay; Sanders, Steven; Werten, Sebastiaan; Romier, Christophe; Weil, P Anthony; Davidson, Irwin

    2002-11-22

    Yeast TFIID comprises the TATA binding protein and 14 TBP-associated factors (TAF(II)s), nine of which contain histone-fold domains (HFDs). The C-terminal region of the TFIID-specific yTAF4 (yTAF(II)48) containing the HFD shares strong sequence similarity with Drosophila (d)TAF4 (dTAF(II)110) and human TAF4 (hTAF(II)135). A structure/function analysis of yTAF4 demonstrates that the HFD, a short conserved C-terminal domain (CCTD), and the region separating them are all required for yTAF4 function. Temperature-sensitive mutations in the yTAF4 HFD alpha2 helix or the CCTD can be suppressed upon overexpression of yTAF12 (yTAF(II)68). Moreover, coexpression in Escherichia coli indicates direct yTAF4-yTAF12 heterodimerization optimally requires both the yTAF4 HFD and CCTD. The x-ray crystal structure of the orthologous hTAF4-hTAF12 histone-like heterodimer indicates that the alpha3 region within the predicted TAF4 HFD is unstructured and does not correspond to the bona fide alpha3 helix. Our functional and biochemical analysis of yTAF4, rather provides strong evidence that the HFD alpha3 helix of the TAF4 family lies within the CCTD. These results reveal an unexpected and novel HFD organization in which the alpha3 helix is separated from the alpha2 helix by an extended loop containing a conserved functional domain. PMID:12237303

  18. Mapping the Interaction Sites between AMPA Receptors and TARPs Reveals a Role for the Receptor N-Terminal Domain in Channel Gating

    PubMed Central

    Cais, Ondrej; Herguedas, Beatriz; Krol, Karolina; Cull-Candy, Stuart G.; Farrant, Mark; Greger, Ingo H.

    2014-01-01

    Summary AMPA-type glutamate receptors (AMPARs) mediate fast neurotransmission at excitatory synapses. The extent and fidelity of postsynaptic depolarization triggered by AMPAR activation are shaped by AMPAR auxiliary subunits, including the transmembrane AMPAR regulatory proteins (TARPs). TARPs profoundly influence gating, an effect thought to be mediated by an interaction with the AMPAR ion channel and ligand binding domain (LBD). Here, we show that the distal N-terminal domain (NTD) contributes to TARP modulation. Alterations in the NTD-LBD linker result in TARP-dependent and TARP-selective changes in AMPAR gating. Using peptide arrays, we identify a TARP interaction region on the NTD and define the path of TARP contacts along the LBD surface. Moreover, we map key binding sites on the TARP itself and show that mutation of these residues mediates gating modulation. Our data reveal a TARP-dependent allosteric role for the AMPAR NTD and suggest that TARP binding triggers a drastic reorganization of the AMPAR complex. PMID:25373908

  19. (19)F NMR reveals multiple conformations at the dimer interface of the nonstructural protein 1 effector domain from influenza A virus.

    PubMed

    Aramini, James M; Hamilton, Keith; Ma, Li-Chung; Swapna, G V T; Leonard, Paul G; Ladbury, John E; Krug, Robert M; Montelione, Gaetano T

    2014-04-01

    Nonstructural protein 1 of influenza A virus (NS1A) is a conserved virulence factor comprised of an N-terminal double-stranded RNA (dsRNA)-binding domain and a multifunctional C-terminal effector domain (ED), each of which can independently form symmetric homodimers. Here we apply (19)F NMR to NS1A from influenza A/Udorn/307/1972 virus (H3N2) labeled with 5-fluorotryptophan, and we demonstrate that the (19)F signal of Trp187 is a sensitive, direct monitor of the ED helix:helix dimer interface. (19)F relaxation dispersion data reveal the presence of conformational dynamics within this functionally important protein:protein interface, whose rate is more than three orders of magnitude faster than the kinetics of ED dimerization. (19)F NMR also affords direct spectroscopic evidence that Trp187, which mediates intermolecular ED:ED interactions required for cooperative dsRNA binding, is solvent exposed in full-length NS1A at concentrations below aggregation. These results have important implications for the diverse roles of this NS1A epitope during influenza virus infection.

  20. Complexity of Lipid Domains and Rafts in Giant Unilamellar Vesicles Revealed by Combining Imaging and Microscopic and Macroscopic Time-Resolved Fluorescence

    PubMed Central

    de Almeida, Rodrigo F. M.; Borst, JanWillem; Fedorov, Alexander; Prieto, Manuel; Visser, Antonie J. W. G.

    2007-01-01

    The application of fluorescence lifetime imaging microscopy to study gel/fluid and raftlike lipid domains in giant unilamellar vesicles (GUVs) is demonstrated here. Different regions of the ternary dipalmitoylphosphatidylcholine/dioleoylphosphatidylcholine/cholesterol phase diagram were studied. The head-labeled phospholipid Rhodamine-dioleoylphosphatidylethanolamine (Rhod-DOPE) was used as a fluorescent probe. Gel/fluid and liquid-ordered (lo)/liquid-disordered (ld) phase separation were clearly visualized upon two-photon excitation. Fluorescence intensity decays in different regions of a GUV were also obtained with the microscope in fixed laser-beam configuration. The ensemble behavior of the system was studied by obtaining fluorescence intensity decays of Rhod-DOPE in nongiant vesicle suspensions. The fingerprints for gel/fluid coexistence and for the presence of lo raftlike phase, based on fluorescence lifetime imaging microscopy histograms and images, and on the fluorescence intensity decay parameters of Rhod-DOPE, are presented. The presence of three lipid phases in one single GUV is detected unequivocally. From the comparison of lifetime parameters, it can be concluded that the lo phase is formed in the binary dipalmitoylphosphatidylcholine/cholesterol but not in the dioleoylphosphatidylcholine/cholesterol mixture. The domains apparent in fluorescence intensity images have a more complex substructure revealed by analysis of the lifetime data. The potential applications of this combined imaging/microscopic/macroscopic methodology are discussed. PMID:17449668

  1. Identification of Nucleolus-Associated Chromatin Domains Reveals a Role for the Nucleolus in 3D Organization of the A. thaliana Genome.

    PubMed

    Pontvianne, Frédéric; Carpentier, Marie-Christine; Durut, Nathalie; Pavlištová, Veronika; Jaške, Karin; Schořová, Šárka; Parrinello, Hugues; Rohmer, Marine; Pikaard, Craig S; Fojtová, Miloslava; Fajkus, Jiří; Sáez-Vásquez, Julio

    2016-08-01

    The nucleolus is the site of rRNA gene transcription, rRNA processing, and ribosome biogenesis. However, the nucleolus also plays additional roles in the cell. We isolated nucleoli using fluorescence-activated cell sorting (FACS) and identified nucleolus-associated chromatin domains (NADs) by deep sequencing, comparing wild-type plants and null mutants for the nucleolar protein NUCLEOLIN 1 (NUC1). NADs are primarily genomic regions with heterochromatic signatures and include transposable elements (TEs), sub-telomeric regions, and mostly inactive protein-coding genes. However, NADs also include active rRNA genes and the entire short arm of chromosome 4 adjacent to them. In nuc1 null mutants, which alter rRNA gene expression and overall nucleolar structure, NADs are altered, telomere association with the nucleolus is decreased, and telomeres become shorter. Collectively, our studies reveal roles for NUC1 and the nucleolus in the spatial organization of chromosomes as well as telomere maintenance.

  2. Crystal structure of Rab6A'(Q72L) mutant reveals unexpected GDP/Mg²⁺ binding with opened GTP-binding domain.

    PubMed

    Shin, Young-Cheul; Yoon, Jong Hwan; Jang, Tae-Ho; Kim, Seo Yun; Heo, Won Do; So, Insuk; Jeon, Ju-Hong; Park, Hyun Ho

    2012-07-27

    The Ras small G protein-superfamily is a family of GTP hydrolases whose activity is regulated by GTP/GDP binding states. Rab6A, a member of the Ras superfamily, is involved in the regulation of vesicle trafficking, which is critical for endocytosis, biosynthesis, secretion, cell differentiation and cell growth. Rab6A exists in two isoforms, termed RabA and Rab6A'. Substitution of Gln72 to Leu72 (Q72L) at Rab6 family blocks GTP hydrolysis activity and this mutation usually causes the Rab6 protein to be constitutively in an active form. Here, we report the crystal structure of the human Rab6A'(Q72L) mutant form at 1.9Å resolution. Unexpectedly, we found that Rab6A'(Q72L) possesses GDP/Mg(2+) in the GTP binding pockets, which is formed by a flexible switch I and switch II. Large conformational changes were also detected in the switch I and switch II regions. Our structure revealed that the non-hydrolysable, constitutively active form of Rab6A' can accommodate GDP/Mg(2+) in the open conformation.

  3. Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement

    SciTech Connect

    Carmen Herranz, Ma; Mingarro, Ismael; Pallas, Vicente . E-mail: vpallas@ibmcp.upv.es

    2005-08-15

    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive charges prevented the cell-to-cell movement even though all mutants showed a similar accumulation level in protoplasts to those observed with the wild-type (wt) MP. Synthetic peptides representing the mutants and wild-type RBDs were used to study RNA-binding affinities by EMSA assays being approximately 20-fold lower in the mutants. Circular dichroism analyses revealed that the secondary structure of the peptides was not significantly affected by mutations. The involvement of the affinity changes between the viral RNA and the MP in the viral cell-to-cell movement is discussed.

  4. Protein interaction domain mapping of human kinetochore protein Blinkin reveals a consensus motif for binding of spindle assembly checkpoint proteins Bub1 and BubR1.

    PubMed

    Kiyomitsu, Tomomi; Murakami, Hiroaki; Yanagida, Mitsuhiro

    2011-03-01

    The kinetochore is a supramolecular structure essential for microtubule attachment and the mitotic checkpoint. Human blinkin/human Spc105 (hSpc105)/hKNL1 was identified originally as a mixed-lineage leukemia (MLL) fusion partner and later as a kinetochore component. Blinkin directly binds to several structural and regulatory proteins, but the precise binding sites have not been defined. Here, we report distinct and essential binding domains for Bub1 and BubR1 (here designated Bubs) at the N terminus of blinkin and for Zwint-1 and hMis14/hNsl1 at the C terminus. The minimal binding sites for Bub1 and BubR1 are separate but contain a consensus KI motif, KI(D/N)XXXF(L/I)XXLK. RNA interference (RNAi)-mediated replacement with mutant blinkin reveals that the Bubs-binding domain is functionally important for chromosome alignment and segregation. We also provide evidence that hMis14 mediates hNdc80 binding to blinkin at the kinetochore. The C-terminal fragment of blinkin locates at kinetochores in a dominant-negative fashion by displacing endogenous blinkin from kinetochores. This negative dominance is relieved by mutations of the hMis14 binding PPSS motif on the C terminus of blinkin or by fusion of the N sequence that binds to Bub1 and BubR1. Taken together, these results indicate that blinkin functions to connect Bub1 and BubR1 with the hMis12, Ndc80, and Zwint-1 complexes, and disruption of this connection may lead to tumorigenesis. PMID:21199919

  5. Mutations in Mtr4 Structural Domains Reveal Their Important Role in Regulating tRNAiMet Turnover in Saccharomyces cerevisiae and Mtr4p Enzymatic Activities In Vitro.

    PubMed

    Li, Yan; Burclaff, Joseph; Anderson, James T

    2016-01-01

    RNA processing and turnover play important roles in the maturation, metabolism and quality control of a large variety of RNAs thereby contributing to gene expression and cellular health. The TRAMP complex, composed of Air2p, Trf4p and Mtr4p, stimulates nuclear exosome-dependent RNA processing and degradation in Saccharomyces cerevisiae. The Mtr4 protein structure is composed of a helicase core and a novel so-called arch domain, which protrudes from the core. The helicase core contains highly conserved helicase domains RecA-1 and 2, and two structural domains of unclear functions, winged helix domain (WH) and ratchet domain. How the structural domains (arch, WH and ratchet domain) coordinate with the helicase domains and what roles they are playing in regulating Mtr4p helicase activity are unknown. We created a library of Mtr4p structural domain mutants for the first time and screened for those defective in the turnover of TRAMP and exosome substrate, hypomodified tRNAiMet. We found these domains regulate Mtr4p enzymatic activities differently through characterizing the arch domain mutants K700N and P731S, WH mutant K904N, and ratchet domain mutant R1030G. Arch domain mutants greatly reduced Mtr4p RNA binding, which surprisingly did not lead to significant defects on either in vivo tRNAiMet turnover, or in vitro unwinding activities. WH mutant K904N and Ratchet domain mutant R1030G showed decreased tRNAiMet turnover in vivo, as well as reduced RNA binding, ATPase and unwinding activities of Mtr4p in vitro. Particularly, K904 was found to be very important for steady protein levels in vivo. Overall, we conclude that arch domain plays a role in RNA binding but is largely dispensable for Mtr4p enzymatic activities, however the structural domains in the helicase core significantly contribute to Mtr4p ATPase and unwinding activities.

  6. Flexible Scheduling.

    ERIC Educational Resources Information Center

    Davis, Harold S.; Bechard, Joseph E.

    A flexible schedule allows teachers to change group size, group composition, and class length according to the purpose of the lesson. This pamphlet presents various "master" schedules for flexible scheduling: (1) Simple block schedules, (2) back-to-back schedules, (3) interdisciplinary schedules, (4) school-wide block schedules, (5) open-lab…

  7. Flexibility Program

    ERIC Educational Resources Information Center

    Connors, G. Patrick

    These brief guidelines for a muscular flexibility program state that the purpose of such a program is to increase the range of motion in order to avoid injuries and eliminate awkwardness in physical activities. A flexibility program is described as an extension of the warm-up period and should be an ongoing, permanent effort to lengthen muscles. A…

  8. Generalized flexibility-rigidity index

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc Duy; Xia, Kelin; Wei, Guo-Wei

    2016-06-01

    Flexibility-rigidity index (FRI) has been developed as a robust, accurate, and efficient method for macromolecular thermal fluctuation analysis and B-factor prediction. The performance of FRI depends on its formulations of rigidity index and flexibility index. In this work, we introduce alternative rigidity and flexibility formulations. The structure of the classic Gaussian surface is utilized to construct a new type of rigidity index, which leads to a new class of rigidity densities with the classic Gaussian surface as a special case. Additionally, we introduce a new type of flexibility index based on the domain indicator property of normalized rigidity density. These generalized FRI (gFRI) methods have been extensively validated by the B-factor predictions of 364 proteins. Significantly outperforming the classic Gaussian network model, gFRI is a new generation of methodologies for accurate, robust, and efficient analysis of protein flexibility and fluctuation. Finally, gFRI based molecular surface generation and flexibility visualization are demonstrated.

  9. Crystal Structures of GII.10 and GII.12 Norovirus Protruding Domains in Complex with Histo-Blood Group Antigens Reveal Details for a Potential Site of Vulnerability

    SciTech Connect

    Hansman, Grant S.; Biertümpfel, Christian; Georgiev, Ivelin; McLellan, Jason S.; Chen, Lei; Zhou, Tongqing; Katayama, Kazuhiko; Kwong, Peter D.

    2011-10-10

    Noroviruses are the dominant cause of outbreaks of gastroenteritis worldwide, and interactions with human histo-blood group antigens (HBGAs) are thought to play a critical role in their entry mechanism. Structures of noroviruses from genogroups GI and GII in complex with HBGAs, however, reveal different modes of interaction. To gain insight into norovirus recognition of HBGAs, we determined crystal structures of norovirus protruding domains from two rarely detected GII genotypes, GII.10 and GII.12, alone and in complex with a panel of HBGAs, and analyzed structure-function implications related to conservation of the HBGA binding pocket. The GII.10- and GII.12-apo structures as well as the previously solved GII.4-apo structure resembled each other more closely than the GI.1-derived structure, and all three GII structures showed similar modes of HBGA recognition. The primary GII norovirus-HBGA interaction involved six hydrogen bonds between a terminal {alpha}fucose1-2 of the HBGAs and a dimeric capsid interface, which was composed of elements from two protruding subdomains. Norovirus interactions with other saccharide units of the HBGAs were variable and involved fewer hydrogen bonds. Sequence analysis revealed a site of GII norovirus sequence conservation to reside under the critical {alpha}fucose1-2 and to be one of the few patches of conserved residues on the outer virion-capsid surface. The site was smaller than that involved in full HBGA recognition, a consequence of variable recognition of peripheral saccharides. Despite this evasion tactic, the HBGA site of viral vulnerability may provide a viable target for small molecule- and antibody-mediated neutralization of GII norovirus.

  10. Evolution of the dec-1 eggshell locus in Drosophila. III. Sequence comparisons of the simulans complex repeated domain reveal non-concerted evolution.

    PubMed

    Escher, S A; Lambertsson, A

    1996-01-01

    The X-linked female sterile locus dec-1 (defective chorion-1) was examined in the closely related species D. simulans, D. mauritiana, and D. sechellia (the simulans complex). This locus encodes important eggshell proteins produced in the follicle cells during stages 9 and 12 of oogenesis. In D. melanogaster four variant protein forms have been found, differing in 2-3 kDa each. The variation is due to deletions of 1, 2, or 3 units of a 5-times repeated sequence (78 bp long) of the central coding region. The same type of deletions were found in two variants of D. simulans; in this species, however, the maximum number of repeats observed so far is four. The island species D. mauritiana and D. sechellia both have the repeat sequence repeated three times. Sequence comparisons revealed that the repeats in the simulans complex have been less homogenised by the forces of concerted evolution than the repeats in D. melanogaster. Two domains of the repetitive region that evolve at different rates and are subject to different mechanisms of DNA turnover were also defined.

  11. The structures of the SNM1A and SNM1B/Apollo nuclease domains reveal a potential basis for their distinct DNA processing activities.

    PubMed

    Allerston, Charles K; Lee, Sook Y; Newman, Joseph A; Schofield, Christopher J; McHugh, Peter J; Gileadi, Opher

    2015-12-15

    The human SNM1A and SNM1B/Apollo proteins are members of an extended family of eukaryotic nuclease containing a motif related to the prokaryotic metallo-β-lactamase (MBL) fold. SNM1A is a key exonuclease during replication-dependent and transcription-coupled interstrand crosslink repair, while SNM1B/Apollo is required for maintaining telomeric overhangs. Here, we report the crystal structures of SNM1A and SNM1B at 2.16 Å. While both proteins contain a typical MBL-β-CASP domain, a region of positive charge surrounds the active site of SNM1A, which is absent in SNM1B and explains the greater apparent processivity of SNM1A. The structures of both proteins also reveal a putative, wide DNA-binding groove. Extensive mutagenesis of this groove, coupled with detailed biochemical analysis, identified residues that did not impact on SNM1A catalytic activity, but drastically reduced its processivity. Moreover, we identified a key role for this groove for efficient digestion past DNA interstrand crosslinks, facilitating the key DNA repair reaction catalysed by SNM1A. Together, the architecture and dimensions of this groove, coupled to the surrounding region of high positive charge, explain the remarkable ability of SNM1A to accommodate and efficiently digest highly distorted DNA substrates, such as those containing DNA lesions.

  12. Epitope Structure of the Carbohydrate Recognition Domain of Asialoglycoprotein Receptor to a Monoclonal Antibody Revealed by High-Resolution Proteolytic Excision Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Stefanescu, Raluca; Born, Rita; Moise, Adrian; Ernst, Beat; Przybylski, Michael

    2011-01-01

    Recent studies suggest that the H1 subunit of the carbohydrate recognition domain (H1CRD) of the asialoglycoprotein receptor is used as an entry site into hepatocytes by hepatitis A and B viruses and Marburg virus. Thus, molecules binding specifically to the CRD might exert inhibition towards these diseases by blocking the virus entry site. We report here the identification of the epitope structure of H1CRD to a monoclonal antibody by proteolytic epitope excision of the immune complex and high-resolution MALDI-FTICR mass spectrometry. As a prerequisite of the epitope determination, the primary structure of the H1CRD antigen was characterised by ESI-FTICR-MS of the intact protein and by LC-MS/MS of tryptic digest mixtures. Molecular mass determination and proteolytic fragments provided the identification of two intramolecular disulfide bridges (seven Cys residues), and a Cys-mercaptoethanol adduct formed by treatment with β-mercaptoethanol during protein extraction. The H1CRD antigen binds to the monoclonal antibody in both native and Cys-alkylated form. For identification of the epitope, the antibody was immobilized on N-hydroxysuccinimide (NHS)-activated Sepharose. Epitope excision and epitope extraction with trypsin and FTICR-MS of affinity-bound peptides provided the identification of two specific epitope peptides (5-16) and (17-23) that showed high affinity to the antibody. Affinity studies of the synthetic epitope peptides revealed independent binding of each peptide to the antibody.

  13. Analysis of p53 transactivation domain mutants reveals Acad11 as a metabolic target important for p53 pro-survival function

    PubMed Central

    Jiang, Dadi; LaGory, Edward L.; Brož, Daniela Kenzelmann; Bieging, Kathryn T.; Brady, Colleen A.; Link, Nichole; Abrams, John M.; Giaccia, Amato J.; Attardi, Laura D.

    2015-01-01

    SUMMARY The p53 tumor suppressor plays a key role in maintaining cellular integrity. In response to diverse stress signals, p53 can trigger apoptosis to eliminate damaged cells or cell-cycle arrest to enable cells to cope with stress and survive. However, the transcriptional networks underlying p53 pro-survival function are incompletely understood. Here, we show that in oncogenic-Ras-expressing cells, p53 promotes oxidative phosphorylation (OXPHOS) and cell survival upon glucose starvation. Analysis of p53 transcriptional activation domain mutants reveals that these responses depend on p53 transactivation function. Using gene expression profiling and ChIP-seq analysis, we identify several p53-inducible fatty acid metabolism-related genes. One such gene, Acad11, encoding a protein involved in fatty acid oxidation, is required for efficient OXPHOS and cell survival upon glucose starvation. This study provides new mechanistic insight into the pro-survival function of p53 and suggests that targeting this pathway may provide a strategy for therapeutic intervention based on metabolic perturbation. PMID:25704813

  14. VP22 core domain from Herpes simplex virus 1 reveals a surprising structural conservation in both the Alpha- and Gammaherpesvirinae subfamilies

    PubMed Central

    Hew, Kelly; Pan, Lucy Xin; Cornvik, Tobias; Nordlund, Pär

    2015-01-01

    The viral tegument is a layer of proteins between the herpesvirus capsid and its outer envelope. According to phylogenetic studies, only a third of these proteins are conserved amongst the three subfamilies (Alpha-, Beta- and Gammaherpesvirinae) of the family Herpesviridae. Although some of these tegument proteins have been studied in more detail, the structure and function of the majority of them are still poorly characterized. VP22 from Herpes simplex virus 1 (subfamily Alphaherpesvirinae) is a highly interacting tegument protein that has been associated with tegument assembly. We have determined the crystal structure of the conserved core domain of VP22, which reveals an elongated dimer with several potential protein–protein interaction regions and a peptide-binding site. The structure provides us with the structural basics to understand the numerous functional mutagenesis studies of VP22 found in the literature. It also establishes an unexpected structural homology to the tegument protein ORF52 from Murid herpesvirus 68 (subfamily Gammaherpesvirinae). Homologues for both VP22 and ORF52 have been identified in their respective subfamilies. Although there is no obvious sequence overlap in the two subfamilies, this structural conservation provides compelling structural evidence for shared ancestry and functional conservation. PMID:26068188

  15. Crystal Structure of the Nephila clavipes Major Ampullate Spidroin 1A N-terminal Domain Reveals Plasticity at the Dimer Interface.

    PubMed

    Atkison, James H; Parnham, Stuart; Marcotte, William R; Olsen, Shaun K

    2016-09-01

    Spider dragline silk is a natural polymer harboring unique physical and biochemical properties that make it an ideal biomaterial. Artificial silk production requires an understanding of the in vivo mechanisms spiders use to convert soluble proteins, called spidroins, into insoluble fibers. Controlled dimerization of the spidroin N-terminal domain (NTD) is crucial to this process. Here, we report the crystal structure of the Nephila clavipes major ampullate spidroin NTD dimer. Comparison of our N. clavipes NTD structure with previously determined Euprosthenops australis NTD structures reveals subtle conformational alterations that lead to differences in how the subunits are arranged at the dimer interface. We observe a subset of contacts that are specific to each ortholog, as well as a substantial increase in asymmetry in the interactions observed at the N. clavipes NTD dimer interface. These asymmetric interactions include novel intermolecular salt bridges that provide new insights into the mechanism of NTD dimerization. We also observe a unique intramolecular "handshake" interaction between two conserved acidic residues that our data suggest adds an additional layer of complexity to the pH-sensitive relay mechanism for NTD dimerization. The results of a panel of tryptophan fluorescence dimerization assays probing the importance of these interactions support our structural observations. Based on our findings, we propose that conformational selectivity and plasticity at the NTD dimer interface play a role in the pH-dependent transition of the NTD from monomer to stably associated dimer as the spidroin progresses through the silk extrusion duct. PMID:27445329

  16. Crystal structure of the functional region of Uro-adherence factor A from Staphylococcus saprophyticus reveals participation of the B domain in ligand binding.

    PubMed

    Matsuoka, Eriko; Tanaka, Yoshikazu; Kuroda, Makoto; Shouji, Yuko; Ohta, Toshiko; Tanaka, Isao; Yao, Min

    2011-02-01

    Staphylococci use cell wall-anchored proteins as adhesins to attach to host tissues. Staphylococcus saprophyticus, a uropathogenic species, has a unique cell wall-anchored protein, uro-adherence factor A (UafA), which shows erythrocyte binding activity. To investigate the mechanism of adhesion by UafA, we determined the crystal structure of the functional region of UafA at 1.5 Å resolution. The structure was composed of three domains, designated as the N2, N3, and B domains, arranged in a triangular relative configuration. Hemagglutination inhibition assay with domain-truncated mutants indicated that both N and B domains were necessary for erythrocyte binding. Based on these results, a novel manner of ligand binding in which the B domain acts as a functional domain was proposed as the adhesion mechanism of S. saprophyticus.

  17. Crystal structure of the functional region of Uro-adherence factor A from Staphylococcus saprophyticus reveals participation of the B domain in ligand binding

    PubMed Central

    Matsuoka, Eriko; Tanaka, Yoshikazu; Kuroda, Makoto; Shouji, Yuko; Ohta, Toshiko; Tanaka, Isao; Yao, Min

    2011-01-01

    Staphylococci use cell wall-anchored proteins as adhesins to attach to host tissues. Staphylococcus saprophyticus, a uropathogenic species, has a unique cell wall-anchored protein, uro-adherence factor A (UafA), which shows erythrocyte binding activity. To investigate the mechanism of adhesion by UafA, we determined the crystal structure of the functional region of UafA at 1.5 Å resolution. The structure was composed of three domains, designated as the N2, N3, and B domains, arranged in a triangular relative configuration. Hemagglutination inhibition assay with domain-truncated mutants indicated that both N and B domains were necessary for erythrocyte binding. Based on these results, a novel manner of ligand binding in which the B domain acts as a functional domain was proposed as the adhesion mechanism of S. saprophyticus. PMID:21280131

  18. High-resolution crystal structure reveals a HEPN domain at the C-terminal region of S. cerevisiae RNA endonuclease Swt1

    SciTech Connect

    Peng, Shuxia Zhou, Ke; Wang, Wenjia; Gao, Zengqiang; Dong, Yuhui; Liu, Quansheng

    2014-10-31

    Highlights: • Crystal structure of the C-terminal (CT) domain of Swt1 was determined at 2.3 Å. • Structure of the CT domain was identified as HEPN domain superfamily member. • Low-resolution envelope of Swt1 full-length in solution was analyzed by SAXS. • The middle and CT domains gave good fit to SAXS structural model. - Abstract: Swt1 is an RNA endonuclease that plays an important role in quality control of nuclear messenger ribonucleoprotein particles (mRNPs) in eukaryotes; however, its structural details remain to be elucidated. Here, we report the crystal structure of the C-terminal (CT) domain of Swt1 from Saccharomyces cerevisiae, which shares common characteristics of higher eukaryotes and prokaryotes nucleotide binding (HEPN) domain superfamily. To study in detail the full-length protein structure, we analyzed the low-resolution architecture of Swt1 in solution using small angle X-ray scattering (SAXS) method. Both the CT domain and middle domain exhibited a good fit upon superimposing onto the molecular envelope of Swt1. Our study provides the necessary structural information for detailed analysis of the functional role of Swt1, and its importance in the process of nuclear mRNP surveillance.

  19. SRC Homology 2 Domain Binding Sites in Insulin, IGF-1 and FGF receptor mediated signaling networks reveal an extensive potential interactome

    PubMed Central

    2012-01-01

    Specific peptide ligand recognition by modular interaction domains is essential for the fidelity of information flow through the signal transduction networks that control cell behavior in response to extrinsic and intrinsic stimuli. Src homology 2 (SH2) domains recognize distinct phosphotyrosine peptide motifs, but the specific sites that are phosphorylated and the complement of available SH2 domains varies considerably in individual cell types. Such differences are the basis for a wide range of available protein interaction microstates from which signaling can evolve in highly divergent ways. This underlying complexity suggests the need to broadly map the signaling potential of systems as a prerequisite for understanding signaling in specific cell types as well as various pathologies that involve signal transduction such as cancer, developmental defects and metabolic disorders. This report describes interactions between SH2 domains and potential binding partners that comprise initial signaling downstream of activated fibroblast growth factor (FGF), insulin (Ins), and insulin-like growth factor-1 (IGF-1) receptors. A panel of 50 SH2 domains screened against a set of 192 phosphotyrosine peptides defines an extensive potential interactome while demonstrating the selectivity of individual SH2 domains. The interactions described confirm virtually all previously reported associations while describing a large set of potential novel interactions that imply additional complexity in the signaling networks initiated from activated receptors. This study of pTyr ligand binding by SH2 domains provides valuable insight into the selectivity that underpins complex signaling networks that are assembled using modular protein interaction domains. PMID:22974441

  20. The crystal structure of the PB2 cap-binding domain of influenza B virus reveals a novel cap recognition mechanism.

    PubMed

    Liu, Yong; Yang, Yongfeng; Fan, Jialin; He, Ruina; Luo, Ming; Zheng, Xiaofeng

    2015-04-01

    The influenza RNA-dependent RNA polymerase is a core enzyme required for both transcription and replication of the virus RNA genome, making it a potential drug target for the influenza virus. To detect the feature of cap-dependent transcription of influenza B virus (FluB) polymerase, we determined the crystal structures of the wild-type FluB polymerase PB2 subunit cap-binding domain (PB2cap) with bound GDP and the mutant FluB Q325F PB2cap with bound m(7)GDP or GDP. These structures revealed that, distinct from influenza A virus (FluA) PB2cap, the guanine and ribose moieties of substrates invert in FluB PB2caps. Moreover, we characterized the substrate specificity and affinity of the PB2caps using isothermal titration calorimetry. FluB PB2cap has a weaker affinity for m(7)GDP than FluA PB2cap. Unlike FluA PB2cap that has a preference for m(7)GDP in comparison with GDP, FluB PB2cap shows an analogous affinity for both substrates. Replacement of FluB PB2 Glu(325) by Phe, the corresponding residue of FluA PB2, increased the binding affinity of FluB PB2cap for m(7)GDP to a level approximate to that of FluA PB2cap and caused a significant higher affinity to GDP. This study indicated that FluB PB2cap has a unique cap recognition mechanism compared with FluA PB2cap, providing molecular insight into inhibitor design targeting FluB PB2cap.

  1. Self-association and DNA binding of lambda cI repressor N-terminal domains reveal linkage between sequence-specific binding and the C-terminal cooperativity domain.

    PubMed

    Bain, D L; Ackers, G K

    1994-12-13

    The effects of temperature, protons, and KCl on self-assembly and site-specific binding of lambda cI N-terminal domains with operator sites OR were studied to assess the roles of these domains in DNA binding and cooperativity of the natural system. Domain self-assembly was studied using sedimentation equilibrium while domain-OR interactions were analyzed by quantitative DNase footprint titration. The self-assembly reactions were modeled best as a monomer-dimer-tetramer stoichiometry. Compared with intact cI, the monomer-dimer assembly is energetically weak and is largely independent of pH and KCl. The van't Hoff enthalpy of dimerization was found to be large and positive (+ 10.8 kcal/mol), in sharp contrast to that of intact cI (i.e., -16.1 kcal/mol; Koblan & Ackers, 1991a), indicating that different driving forces dominate the respective assembly processes. The interactions of OR with N-terminal domains were noncooperative under all conditions studied. Binding at each site is accompanied by a negative enthalpy (large at site 1, small at sites 2 and 3). Identical values for salt release and proton absorption were found for the three sites. Comparisons with the analogous thermodynamic parameters from our previous studies indicate that N-terminal domains exhibit different linkages to pH, KCl, and T from those of intact cI-OR interactions. This implies that the domains do not act independently within the intact repressor. Since the linkage differences are dependent upon which site the proteins are binding, the C-terminal domain must play a role in repressor discrimination between specific sites.

  2. High muscle mitochondrial volume and aerobic capacity in a small marsupial (Sminthopsis crassicaudata) reveals flexible links between energy-use levels in mammals.

    PubMed

    Dawson, Terence J; Webster, Koa N; Lee, Enhua; Buttemer, William A

    2013-04-01

    comparably sized placentals, with the reverse applying for larger marsupials. The flexibility of energy output in marsupials provides explanations for this pattern. Overall, our data refute widely held notions of mechanistically closely linked relationships between body mass, BMR, FMR and MMR in mammals generally.

  3. The solution structure of the C-terminal domain of NfeD reveals a novel membrane-anchored OB-fold.

    PubMed

    Kuwahara, Yohta; Ohno, Ayako; Morii, Taichi; Yokoyama, Hideshi; Matsui, Ikuo; Tochio, Hidehito; Shirakawa, Masahiro; Hiroaki, Hidekazu

    2008-11-01

    Nodulation formation efficiency D (NfeD) is a member of a class of membrane-anchored ClpP-class proteases. There is a second class of NfeD homologs that lack the ClpP domain. The genes of both NfeD classes usually are part of an operon that also contains a gene for a prokaryotic homolog of stomatin. (Stomatin is a major integral-membrane protein of mammalian erythrocytes.) Such NfeD/stomatin homolog gene pairs are present in more than 290 bacterial and archaeal genomes, and their protein products may be part of the machinery used for quality control of membrane proteins. Herein, we report the structure of the isolated C-terminal domain of PH0471, a Pyrococcus horikoshii NfeD homolog, which lacks the ClpP domain. This C-terminal domain (termed NfeDC) contains a five-strand beta-barrel, which is structurally very similar to the OB-fold (oligosaccharide/oligonucleotide-binding fold) domain. However, there is little sequence similarity between it and previously characterized OB-fold domains. The NfeDC domain lacks the conserved surface residues that are necessary for the binding of an OB-fold domain to DNA/RNA, an ion. Instead, its surface is composed of residues that are uniquely conserved in NfeD homologs and that form the structurally conserved surface turns and beta-bulges. There is also a conserved tryptophan present on the surface. We propose that, in general, NfeDC domains may interact with other spatially proximal membrane proteins and thereby regulate their activities. PMID:18687870

  4. Characterization of the Lipid Binding Properties of Otoferlin Reveals Specific Interactions between PI(4,5)P2 and the C2C and C2F Domains

    PubMed Central

    2015-01-01

    Otoferlin is a transmembrane protein consisting of six C2 domains, proposed to act as a calcium sensor for exocytosis. Although otoferlin is believed to bind calcium and lipids, the lipid specificity and identity of the calcium binding domains are controversial. Further, it is currently unclear whether the calcium binding affinity of otoferlin quantitatively matches the maximal intracellular presynaptic calcium concentrations of ∼30–50 μM known to elicit exocytosis. To characterize the calcium and lipid binding properties of otoferlin, we used isothermal titration calorimetry (ITC), liposome sedimentation assays, and fluorescence spectroscopy. Analysis of ITC data indicates that with the exception of the C2A domain, the C2 domains of otoferlin bind multiple calcium ions with moderate (Kd = 25–95 μM) and low affinities (Kd = 400–700 μM) in solution. However, in the presence of liposomes, the calcium sensitivity of the domains increased by up to 10-fold. It was also determined that calcium enhanced liposome binding for domains C2B–C2E, whereas the C2F domain bound liposomes in a calcium-independent manner. Mutations that abrogate calcium binding in C2F do not disrupt liposome binding, supporting the conclusion that the interaction of the C2F domain with phosphatidylserine is calcium-independent. Further, domains C2C and C2F, not domains C2A, C2B, C2D, and C2E, bound phosphatidylinositol 4,5-bisphosphate 1,2-dioleoyl-sn-glycero-3-phospho(1′-myoinositol-4′,5′-bisphosphate) [PI(4,5)P2], which preferentially steered them toward liposomes harboring PI(4,5)P2. Remarkably, lysine mutations L478A and L480A in C2C selectively weaken the PI(4,5)P2 interaction while leaving phosphatidylserine binding unaffected. Finally, shifts in the emission spectra of an environmentally sensitive fluorescent unnatural amino acid indicate that the calcium binding loops of the C2F domain directly interact with the lipid bilayer of negatively charged liposomes in a calcium

  5. Interdomain orientation of cardiac troponin C characterized by paramagnetic relaxation enhancement NMR reveals a compact state.

    PubMed

    Cordina, Nicole M; Liew, Chu Kong; Gell, David A; Fajer, Piotr G; Mackay, Joel P; Brown, Louise J

    2012-09-01

    Cardiac troponin C (cTnC) is the calcium binding subunit of the troponin complex that triggers the thin filament response to calcium influx into the sarcomere. cTnC consists of two globular EF-hand domains (termed the N- and C-domains) connected by a flexible linker. While the conformation of each domain of cTnC has been thoroughly characterized through NMR studies involving either the isolated N-domain (N-cTnC) or C-domain (C-cTnC), little attention has been paid to the range of interdomain orientations possible in full-length cTnC that arises as a consequence of the flexibility of the domain linker. Flexibility in the domain linker of cTnC is essential for effective regulatory function of troponin. We have therefore utilized paramagnetic relaxation enhancement (PRE) NMR to assess the interdomain orientation of cTnC. Ensemble fitting of our interdomain PRE measurements reveals that isolated cTnC has considerable interdomain flexibility and preferentially adopts a bent conformation in solution, with a defined range of relative domain orientations.

  6. Interdomain orientation of cardiac Troponin C characterized by paramagnetic relaxation enhancement NMR reveals a compact state

    PubMed Central

    Cordina, Nicole M; Liew, Chu Kong; Gell, David A; Fajer, Piotr G; Mackay, Joel P; Brown, Louise J

    2012-01-01

    Cardiac troponin C (cTnC) is the calcium binding subunit of the troponin complex that triggers the thin filament response to calcium influx into the sarcomere. cTnC consists of two globular EF-hand domains (termed the N- and C-domains) connected by a flexible linker. While the conformation of each domain of cTnC has been thoroughly characterized through NMR studies involving either the isolated N-domain (N-cTnC) or C-domain (C-cTnC), little attention has been paid to the range of interdomain orientations possible in full-length cTnC that arises as a consequence of the flexibility of the domain linker. Flexibility in the domain linker of cTnC is essential for effective regulatory function of troponin. We have therefore utilized paramagnetic relaxation enhancement (PRE) NMR to assess the interdomain orientation of cTnC. Ensemble fitting of our interdomain PRE measurements reveals that isolated cTnC has considerable interdomain flexibility and preferentially adopts a bent conformation in solution, with a defined range of relative domain orientations. PMID:22811351

  7. Solution Structure of the PAS Domain of a Thermophilic YybT Protein Homolog Reveals a Potential Ligand-binding Site*

    PubMed Central

    Tan, Edward; Rao, Feng; Pasunooti, Swathi; Pham, Thi Huong; Soehano, Ishin; Turner, Mark S.; Liew, Chong Wai; Lescar, Julien; Pervushin, Konstantin; Liang, Zhao-Xun

    2013-01-01

    The Bacillus subtilis protein YybT (or GdpP) and its homologs were recently established as stress signaling proteins that exert their biological effect by degrading the bacterial messenger cyclic di-AMP. YybT homologs contain a small Per-ARNT-Sim (PAS) domain (∼80 amino acids) that can bind b-type heme with 1:1 stoichiometry despite the small size of the domain and the lack of a conserved heme iron-coordinating residue. We determined the solution structure of the PAS domain of GtYybT from Geobacillus thermodenitrificans by NMR spectroscopy to further probe its function. The solution structure confirms that PASGtYybT adopts the characteristic PAS fold composed of a five-stranded antiparallel β sheet and a few short α-helices. One α-helix and three central β-strands of PASGtYybT are noticeably shorter than those of the typical PAS domains. Despite the small size of the protein domain, a hydrophobic pocket is formed by the side chains of nonpolar residues stemming from the β-strands and α-helices. A set of residues in the vicinity of the pocket and in the C-terminal region at the dimeric interface exhibits perturbed NMR parameters in the presence of heme or zinc protoporphyrin. Together, the results unveil a compact PAS domain with a potential ligand-binding pocket and reinforce the view that the PASYybT domains function as regulatory domains in the modulation of cellular cyclic di-AMP concentration. PMID:23504327

  8. Synergetic action of domain II and IV underlies persistent current generation in Nav1.3 as revealed by a tarantula toxin.

    PubMed

    Tang, Cheng; Zhou, Xi; Zhang, Yunxiao; Xiao, Zhaohua; Hu, Zhaotun; Zhang, Changxin; Huang, Ying; Chen, Bo; Liu, Zhonghua; Liang, Songping

    2015-01-01

    The persistent current (INaP) through voltage-gated sodium channels enhances neuronal excitability by causing prolonged depolarization of membranes. Nav1.3 intrinsically generates a small INaP, although the mechanism underlying its generation remains unclear. In this study, the involvement of the four domains of Nav1.3 in INaP generation was investigated using the tarantula toxin α-hexatoxin-MrVII (RTX-VII). RTX-VII activated Nav1.3 and induced a large INaP. A pre-activated state binding model was proposed to explain the kinetics of toxin-channel interaction. Of the four domains of Nav1.3, both domain II and IV might play important roles in the toxin-induced INaP. Domain IV constructed the binding site for RTX-VII, while domain II might not participate in interacting with RTX-VII but could determine the efficacy of RTX-VII. Our results based on the use of RTX-VII as a probe suggest that domain II and IV cooperatively contribute to the generation of INaP in Nav1.3. PMID:25784299

  9. Atypical Membrane-embedded Phosphatidylinositol 3,4-Bisphosphate (PI(3,4)P2)-binding Site on p47phox Phox Homology (PX) Domain Revealed by NMR*

    PubMed Central

    Stampoulis, Pavlos; Ueda, Takumi; Matsumoto, Masahiko; Terasawa, Hiroaki; Miyano, Kei; Sumimoto, Hideki; Shimada, Ichio

    2012-01-01

    The Phox homology (PX) domain is a functional module that targets membranes through specific interactions with phosphoinositides. The p47phox PX domain preferably binds phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) and plays a pivotal role in the assembly of phagocyte NADPH oxidase. We describe the PI(3,4)P2 binding mode of the p47phox PX domain as identified by a transferred cross-saturation experiment. The identified PI(3,4)P2-binding site, which includes the residues of helices α1 and α1′ and the following loop up to the distorted left-handed PPII helix, is located at a unique position, as compared with the phosphoinositide-binding sites of all other PX domains characterized thus far. Mutational analyses corroborated the results of the transferred cross-saturation experiments. Moreover, experiments with intact cells demonstrated the importance of this unique binding site for the function of the NADPH oxidase. The low affinity and selectivity of the atypical phosphoinositide-binding site on the p47phox PX domain suggest that different types of phosphoinositides sequentially bind to the p47phox PX domain, allowing the regulation of the multiple events that characterize the assembly and activation of phagocyte NADPH oxidase. PMID:22493288

  10. The structure of the human ERCC1/XPF interaction domains reveals a complementary role for the two proteins in nucleotide excision repair.

    PubMed

    Tripsianes, Konstantinos; Folkers, Gert; Ab, Eiso; Das, Devashish; Odijk, Hanny; Jaspers, Nicolaas G J; Hoeijmakers, Jan H J; Kaptein, Robert; Boelens, Rolf

    2005-12-01

    The human ERCC1/XPF complex is a structure-specific endonuclease with defined polarity that participates in multiple DNA repair pathways. We report the heterodimeric structure of the C-terminal domains of both proteins responsible for ERCC1/XPF complex formation. Both domains exhibit the double helix-hairpin-helix motif (HhH)2, and they are related by a pseudo-2-fold symmetry axis. In the XPF domain, the hairpin of the second motif is replaced by a short turn. The ERCC1 domain folds properly only in the presence of the XPF domain, which implies a role for XPF as a scaffold for the folding of ERCC1. The intersubunit interactions are largely hydrophobic in nature. NMR titration data show that only the ERCC1 domain of the ERCC1/XPF complex is involved in DNA binding. On the basis of these findings, we propose a model for the targeting of XPF nuclease via ERCC1-mediated interactions in the context of nucleotide excision repair. PMID:16338413

  11. Deletion of the sequence encoding the tail domain of the bone morphogenetic protein type 2 receptor reveals a bone morphogenetic protein 7-specific gain of function.

    PubMed

    Leyton, Patricio A; Beppu, Hideyuki; Pappas, Alexandra; Martyn, Trejeeve M; Derwall, Matthias; Baron, David M; Galdos, Rita; Bloch, Donald B; Bloch, Kenneth D

    2013-01-01

    The bone morphogenetic protein (BMP) type II receptor (BMPR2) has a long cytoplasmic tail domain whose function is incompletely elucidated. Mutations in the tail domain of BMPR2 are found in familial cases of pulmonary arterial hypertension. To investigate the role of the tail domain of BMPR2 in BMP signaling, we generated a mouse carrying a Bmpr2 allele encoding a non-sense mediated decay-resistant mutant receptor lacking the tail domain of Bmpr2. We found that homozygous mutant mice died during gastrulation, whereas heterozygous mice grew normally without developing pulmonary arterial hypertension. Using pulmonary artery smooth muscle cells (PaSMC) from heterozygous mice, we determined that the mutant receptor was expressed and retained its ability to transduce BMP signaling. Heterozygous PaSMCs exhibited a BMP7‑specific gain of function, which was transduced via the mutant receptor. Using siRNA knockdown and cells from conditional knockout mice to selectively deplete BMP receptors, we observed that the tail domain of Bmpr2 inhibits Alk2‑mediated BMP7 signaling. These findings suggest that the tail domain of Bmpr2 is essential for normal embryogenesis and inhibits Alk2‑mediated BMP7 signaling in PaSMCs.

  12. CW-EPR studies revealed different motional properties and oligomeric states of the integrin β1a transmembrane domain in detergent micelles or liposomes.

    PubMed

    Yu, Lu; Wang, Wei; Ling, Shenglong; Liu, Sanling; Xiao, Liang; Xin, Yanlong; Lai, Chaohua; Xiong, Ying; Zhang, Longhua; Tian, Changlin

    2015-01-01

    Integrins are heterodimeric membrane proteins that regulate essential processes: cell migration, cell growth, extracellular matrix assembly and tumor metastasis. Each integrin α or β subunit contains a large extracellular domain, a single transmembrane (TM) domain, and a short cytoplasmic tail. The integrin TM domains are important for heterodimeric association and dissociation during the conversion from inactive to active states. Moreover, integrin clustering occurs by homo-oligomeric interactions between the TM helices. Here, the transmembrane and cytoplasmic (TMC) domains of integrin β1a were overexpressed, and the protein was purified in detergent micelles and/or reconstituted in liposomes. To investigate the TM domain conformational properties of integrin β1a, 26 consecutive single cysteine mutants were generated for site-directed spin labeling and continuous-wave electron paramagnetic resonance (CW-EPR) mobility and accessibility analyses. The mobility analysis identified two integrin β1a-TM regions with different motional properties in micelles and a non-continuous integrin β1a-TM helix with high immobility in liposomes. The accessibility analysis verified the TM range (Val737-Lys752) of the integrin β1a-TMC in micelles. Further mobility and accessibility comparisons of the integrin β1a-TMC domains in micelles or liposomes identified distinctively different oligomeric states of integrin β1a-TM, namely a monomer embedded in detergent micelles and leucine-zipper-like homo-oligomeric clusters in liposomes. PMID:25597475

  13. Genetic Analysis of Mps3 SUN Domain Mutants in Saccharomyces cerevisiae Reveals an Interaction with the SUN-Like Protein Slp1

    PubMed Central

    Friederichs, Jennifer M.; Gardner, Jennifer M.; Smoyer, Christine J.; Whetstine, Christine R.; Gogol, Madelaine; Slaughter, Brian D.; Jaspersen, Sue L.

    2012-01-01

    In virtually all eukaryotic cells, protein bridges formed by the conserved inner nuclear membrane SUN (for Sad1-UNC-84) domain-containing proteins and their outer nuclear membrane binding partners span the nuclear envelope (NE) to connect the nucleoplasm and cytoplasm. These linkages are important for chromosome movements within the nucleus during meiotic prophase and are essential for nuclear migration and centrosome attachment to the NE. In Saccharomyces cerevisiae, MPS3 encodes the sole SUN protein. Deletion of MPS3 or the conserved SUN domain is lethal in three different genetic backgrounds. Mutations in the SUN domain result in defects in duplication of the spindle pole body, the yeast centrosome-equivalent organelle. A genome-wide screen for mutants that exhibited synthetic fitness defects in combination with mps3 SUN domain mutants yielded a large number of hits in components of the spindle apparatus and the spindle checkpoint. Mutants in lipid metabolic processes and membrane organization also exacerbated the growth defects of mps3 SUN domain mutants, pointing to a role for Mps3 in nuclear membrane organization. Deletion of SLP1 or YER140W/EMP65 (for ER membrane protein of 65 kDa) aggravated growth of mps3 SUN domain mutants. Slp1 and Emp65 form an ER-membrane associated protein complex that is not required directly for spindle pole body duplication or spindle assembly. Rather, Slp1 is involved in Mps3 localization to the NE. PMID:23275891

  14. CW-EPR studies revealed different motional properties and oligomeric states of the integrin β1a transmembrane domain in detergent micelles or liposomes

    PubMed Central

    Yu, Lu; Wang, Wei; Ling, Shenglong; Liu, Sanling; Xiao, Liang; Xin, Yanlong; Lai, Chaohua; Xiong, Ying; Zhang, Longhua; Tian, Changlin

    2015-01-01

    Integrins are heterodimeric membrane proteins that regulate essential processes: cell migration, cell growth, extracellular matrix assembly and tumor metastasis. Each integrin α or β subunit contains a large extracellular domain, a single transmembrane (TM) domain, and a short cytoplasmic tail. The integrin TM domains are important for heterodimeric association and dissociation during the conversion from inactive to active states. Moreover, integrin clustering occurs by homo-oligomeric interactions between the TM helices. Here, the transmembrane and cytoplasmic (TMC) domains of integrin β1a were overexpressed, and the protein was purified in detergent micelles and/or reconstituted in liposomes. To investigate the TM domain conformational properties of integrin β1a, 26 consecutive single cysteine mutants were generated for site-directed spin labeling and continuous-wave electron paramagnetic resonance (CW-EPR) mobility and accessibility analyses. The mobility analysis identified two integrin β1a-TM regions with different motional properties in micelles and a non-continuous integrin β1a-TM helix with high immobility in liposomes. The accessibility analysis verified the TM range (Val737-Lys752) of the integrin β1a-TMC in micelles. Further mobility and accessibility comparisons of the integrin β1a-TMC domains in micelles or liposomes identified distinctively different oligomeric states of integrin β1a-TM, namely a monomer embedded in detergent micelles and leucine-zipper-like homo-oligomeric clusters in liposomes. PMID:25597475

  15. Conformational flexibility in the catalytic triad revealed by the high-resolution crystal structure of Streptomyces erythraeus trypsin in an unliganded state

    SciTech Connect

    Blankenship, Elise; Vukoti, Krishna; Miyagi, Masaru; Lodowski, David T.

    2014-03-01

    This work reports the first sub-angstrom resolution structure of S. erythraeus trypsin. The detailed model of a prototypical serine protease at a catalytically relevant pH with an unoccupied active site is presented and is compared with other high-resolution serine protease structures. With more than 500 crystal structures determined, serine proteases make up greater than one-third of all proteases structurally examined to date, making them among the best biochemically and structurally characterized enzymes. Despite the numerous crystallographic and biochemical studies of trypsin and related serine proteases, there are still considerable shortcomings in the understanding of their catalytic mechanism. Streptomyces erythraeus trypsin (SET) does not exhibit autolysis and crystallizes readily at physiological pH; hence, it is well suited for structural studies aimed at extending the understanding of the catalytic mechanism of serine proteases. While X-ray crystallographic structures of this enzyme have been reported, no coordinates have ever been made available in the Protein Data Bank. Based on this, and observations on the extreme stability and unique properties of this particular trypsin, it was decided to crystallize it and determine its structure. Here, the first sub-angstrom resolution structure of an unmodified, unliganded trypsin crystallized at physiological pH is reported. Detailed structural analysis reveals the geometry and structural rigidity of the catalytic triad in the unoccupied active site and comparison to related serine proteases provides a context for interpretation of biochemical studies of catalytic mechanism and activity.

  16. Conformational flexibility in the catalytic triad revealed by the high-resolution crystal structure of Streptomyces erythraeus trypsin in an unliganded state

    PubMed Central

    Blankenship, Elise; Vukoti, Krishna; Miyagi, Masaru; Lodowski, David T.

    2014-01-01

    With more than 500 crystal structures determined, serine proteases make up greater than one-third of all proteases structurally examined to date, making them among the best biochemically and structurally characterized enzymes. Despite the numerous crystallographic and biochemical studies of trypsin and related serine proteases, there are still considerable shortcomings in the understanding of their catalytic mechanism. Streptomyces erythraeus trypsin (SET) does not exhibit autolysis and crystallizes readily at physiological pH; hence, it is well suited for structural studies aimed at extending the understanding of the catalytic mechanism of serine proteases. While X-ray crystallographic structures of this enzyme have been reported, no coordinates have ever been made available in the Protein Data Bank. Based on this, and observations on the extreme stability and unique properties of this particular trypsin, it was decided to crystallize it and determine its structure. Here, the first sub-angstrom resolution structure of an unmodified, unliganded trypsin crystallized at physiological pH is reported. Detailed structural analysis reveals the geometry and structural rigidity of the catalytic triad in the unoccupied active site and comparison to related serine proteases provides a context for interpretation of biochemical studies of catalytic mechanism and activity. PMID:24598752

  17. A new crystal form of human tear lipocalin reveals high flexibility in the loop region and induced fit in the ligand cavity

    PubMed Central

    Breustedt, Daniel A.; Chatwell, Lorenz; Skerra, Arne

    2009-01-01

    Tear lipocalin (TLC) with the bound artificial ligand 1,4-butanediol has been crystallized in space group P21 with four protein molecules in the asymmetric unit and its X-ray structure has been solved at 2.6 Å resolution. TLC is a member of the lipocalin family that binds ligands with diverse chemical structures, such as fatty acids, phospholipids and cholesterol as well as microbial siderophores and the antibiotic rifampin. Previous X-ray structural analysis of apo TLC crystallized in space group C2 revealed a rather large bifurcated ligand pocket and a partially disordered loop region at the entrace to the cavity. Analysis of the P21 crystal form uncovered major conformational changes (i) in β-strands B, C and D, (ii) in loops 1, 2 and 4 at the open end of the β-­barrel and (iii) in the extended C-terminal segment, which is attached to the β-­barrel via a disulfide bridge. The structural comparison indicates high conformational plasticity of the loop region as well as of deeper parts of the ligand pocket, thus allowing adaptation to ligands that differ vastly in size and shape. This illustrates a mechanism for promiscuity in ligand recognition which may also be relevant for some other physiologically important members of the lipocalin protein family. PMID:19770509

  18. Analysis of multi-domain hypothetical proteins containing iron-sulphur clusters and fad ligands reveal rieske dioxygenase activity suggesting their plausible roles in bioremediation

    PubMed Central

    Sathyanarayanan, Nitish; Nagendra, Holenarasipur Gundurao

    2012-01-01

    ‘Conserved hypothetical’ proteins pose a challenge not just for functional genomics, but also to biology in general. As long as there are hundreds of conserved proteins with unknown function in model organisms such as Escherichia coli, Bacillus subtilis or Saccharomyces cerevisiae, any discussion towards a ‘complete’ understanding of these biological systems will remain a wishful thinking. Insilico approaches exhibit great promise towards attempts that enable appreciating the plausible roles of these hypothetical proteins. Among the majority of genomic proteins, two-thirds in unicellular organisms and more than 80% in metazoa, are multi-domain proteins, created as a result of gene duplication events. Aromatic ring-hydroxylating dioxygenases, also called Rieske dioxygenases (RDOs), are class of multi-domain proteins that catalyze the initial step in microbial aerobic degradation of many aromatic compounds. Investigations here address the computational characterization of hypothetical proteins containing Ferredoxin and Flavodoxin signatures. Consensus sequence of each class of oxidoreductase was obtained by a phylogenetic analysis, involving clustering methods based on evolutionary relationship. A synthetic sequence was developed by combining the consensus, which was used as the basis to search for their homologs via BLAST. The exercise yielded 129 multidomain hypothetical proteins containing both 2Fe-2S (Ferredoxin) and FNR (Flavodoxin) domains. In the current study, 40 proteins with N-terminus 2Fe-2S domain and C-terminus FNR domain are characterized, through homology modelling and docking exercises which suggest dioxygenase activity indicating their plausible roles in degradation of aromatic moieties. PMID:23275712

  19. A novel RNA-binding mode of the YTH domain reveals the mechanism for recognition of determinant of selective removal by Mmi1

    PubMed Central

    Wang, Chongyuan; Zhu, Yuwei; Bao, Hongyu; Jiang, Yiyang; Xu, Chao; Wu, Jihui; Shi, Yunyu

    2016-01-01

    The YTH domain-containing protein Mmi1, together with other factors, constitutes the machinery used to selectively remove meiosis-specific mRNA during the vegetative growth of fission yeast. Mmi1 directs meiotic mRNAs to the nuclear exosome for degradation by recognizing their DSR (determinant of selective removal) motif. Here, we present the crystal structure of the Mmi1 YTH domain in the apo state and in complex with a DSR motif, demonstrating that the Mmi1 YTH domain selectively recognizes the DSR motif. Intriguingly, Mmi1 also contains a potential m6A (N6-methyladenine)-binding pocket, but its binding of the DSR motif is dependent on a long groove opposite the m6A pocket. The DSR-binding mode is distinct from the m6A RNA-binding mode utilized by other YTH domains. Furthermore, the m6A pocket cannot bind m6A RNA. Our structural and biochemical experiments uncover the mechanism of the YTH domain in binding the DSR motif and help to elucidate the function of Mmi1. PMID:26673708

  20. Local twin domains and tip-voltage-induced domain switching of monoclinic MC phase in Pb (M g1 /3N b2 /3) O3-0.34 PbTi O3 single crystal revealed by piezoresponse force microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Ruixue; Yang, Bin; Luo, Zhenlin; Sun, Enwei; Sun, Yuan; Xu, Han; Zhao, Jiangtao; Zheng, Limei; Zhou, Hua; Gao, Chen; Cao, Wenwu

    2016-08-01

    The monoclinic (M) phases in high-performance relaxor-based ferroelectric single crystals have been recognized to be a vital structural factor for the outstanding piezoelectric property. However, due to the complexity of the structure in M phases, the understanding about it is still limited. In this paper, the local twin domains and tip-voltage-induced domain switching of the MC phase in Pb (M g1 /3N b2 /3) O3-0.34 PbTi O3 (PMN-0.34PT) single crystal have been intensively investigated by piezoresponse force microscopy (PFM). By theoretically analyzing the experimental patterns of domain walls on the (001) C face, the specific MC twin domains in the initial annealed state of a selected area have been clarified, and the polarization orientation of the MC phase in this sample is determined to be at an angle of 29∘ to the <001> C directions. In addition, based on the evolution of domains and the motion of domain walls under the step-increased PFM tip dc voltage (Vdc), the switching process and features of different types of MC domain variants are visually revealed.

  1. Spatial and temporal variability of biomarkers and microbial diversity reveal metabolic and community flexibility in Streamer Biofilm Communities in the Lower Geyser Basin, Yellowstone National Park.

    PubMed

    Schubotz, F; Meyer-Dombard, D R; Bradley, A S; Fredricks, H F; Hinrichs, K-U; Shock, E L; Summons, R E

    2013-11-01

    Detailed analysis of 16S rRNA and intact polar lipids (IPLs) from streamer biofilm communities (SBCs), collected from geochemically similar hot springs in the Lower Geyser Basin, Yellowstone National Park, shows good agreement and affirm that IPLs can be used as reliable markers for the microbial constituents of SBCs. Uncultured Crenarchaea are prominent in SBS, and their IPLs contain both glycosidic and mixed glyco-phospho head groups with tetraether cores, having 0-4 rings. Archaeal IPL contributions increase with increasing temperature and comprise up to one-fourth of the total IPL inventory at >84 °C. At elevated temperatures, bacterial IPLs contain abundant glycosidic glycerol diether lipids. Diether and diacylglycerol (DAG) lipids with aminopentanetetrol and phosphatidylinositol head groups were identified as lipids diagnostic of Aquificales, while DAG glycolipids and glyco-phospholipids containing N-acetylgycosamine as head group were assigned to members of the Thermales. With decreasing temperature and concomitant changes in water chemistry, IPLs typical of phototrophic bacteria, such as mono-, diglycosyl, and sulfoquinovosyl DAG, which are specific for cyanobacteria, increase in abundance, consistent with genomic data from the same samples. Compound-specific stable carbon isotope analysis of IPL breakdown products reveals a large isotopic diversity among SBCs in different hot springs. At two of the hot springs, 'Bison Pool' and Flat Cone, lipids derived from Aquificales are enriched in (13) C relative to biomass and approach values close to dissolved inorganic carbon (DIC) (approximately 0‰), consistent with fractionation during autotrophic carbon fixation via the reversed tricarboxylic acid pathway. At a third site, Octopus Spring, the same Aquificales-diagnostic lipids are 10‰ depleted relative to biomass and resemble stable carbon isotope values of dissolved organic carbon (DOC), indicative of heterotrophy. Other bacterial and archaeal lipids show

  2. Spatial and temporal variability of biomarkers and microbial diversity reveal metabolic and community flexibility in Streamer Biofilm Communities in the Lower Geyser Basin, Yellowstone National Park.

    PubMed

    Schubotz, F; Meyer-Dombard, D R; Bradley, A S; Fredricks, H F; Hinrichs, K-U; Shock, E L; Summons, R E

    2013-11-01

    Detailed analysis of 16S rRNA and intact polar lipids (IPLs) from streamer biofilm communities (SBCs), collected from geochemically similar hot springs in the Lower Geyser Basin, Yellowstone National Park, shows good agreement and affirm that IPLs can be used as reliable markers for the microbial constituents of SBCs. Uncultured Crenarchaea are prominent in SBS, and their IPLs contain both glycosidic and mixed glyco-phospho head groups with tetraether cores, having 0-4 rings. Archaeal IPL contributions increase with increasing temperature and comprise up to one-fourth of the total IPL inventory at >84 °C. At elevated temperatures, bacterial IPLs contain abundant glycosidic glycerol diether lipids. Diether and diacylglycerol (DAG) lipids with aminopentanetetrol and phosphatidylinositol head groups were identified as lipids diagnostic of Aquificales, while DAG glycolipids and glyco-phospholipids containing N-acetylgycosamine as head group were assigned to members of the Thermales. With decreasing temperature and concomitant changes in water chemistry, IPLs typical of phototrophic bacteria, such as mono-, diglycosyl, and sulfoquinovosyl DAG, which are specific for cyanobacteria, increase in abundance, consistent with genomic data from the same samples. Compound-specific stable carbon isotope analysis of IPL breakdown products reveals a large isotopic diversity among SBCs in different hot springs. At two of the hot springs, 'Bison Pool' and Flat Cone, lipids derived from Aquificales are enriched in (13) C relative to biomass and approach values close to dissolved inorganic carbon (DIC) (approximately 0‰), consistent with fractionation during autotrophic carbon fixation via the reversed tricarboxylic acid pathway. At a third site, Octopus Spring, the same Aquificales-diagnostic lipids are 10‰ depleted relative to biomass and resemble stable carbon isotope values of dissolved organic carbon (DOC), indicative of heterotrophy. Other bacterial and archaeal lipids show

  3. Substitutional Analysis of the C-Terminal Domain of AbrB Revealed Its Essential Role in DNA-Binding Activity

    PubMed Central

    Neubauer, Svetlana; Dolgova, Olga; Präg, Gregory; Borriss, Rainer; Makarewicz, Oliwia

    2014-01-01

    The global transition state regulator AbrB controls more than 100 genes of the Bacillus relatives and is known to interact with varying DNA-sequences. The DNA-binding domain of the AbrB-like proteins was proposed to be located exclusively within the amino-terminal ends. However, the recognition of DNA, and specificity of the binding mechanism, remains elusive still in view of highly differing recognition sites. Here we present a substitutional analysis to examine the role of the carboxy-terminal domain of AbrB from Bacillus subtilis and Bacillus amyloliquefaciens. Our results demonstrate that the carboxy-terminal domains of AbrB affect the DNA-binding properties of the tetrameric AbrB. Most likely, the C-termini are responsible for the cooperative character observed for AbrB interaction with some DNA targets like tycA and phyC. PMID:24832089

  4. Structures of the HIN Domain:DNA Complexes Reveal Ligand Binding and Activation Mechanisms of the AIM2 Inflammasome and IFI16 Receptor

    SciTech Connect

    Jin, Tengchuan; Perry, Andrew; Jiang, Jiansheng; Smith, Patrick; Curry, James A.; Unterholzner, Leonie; Jiang, Zhaozhao; Horvath, Gabor; Rathinam, Vijay A.; Johnstone, Ricky W.; Hornung, Veit; Latz, Eicke; Bowie, Andrew G.; Fitzgerald, Katherine A.; Xiao, T. Sam

    2012-05-21

    Recognition of DNA by the innate immune system is central to antiviral and antibacterial defenses, as well as an important contributor to autoimmune diseases involving self DNA. AIM2 (absent in melanoma 2) and IFI16 (interferon-inducible protein 16) have been identified as DNA receptors that induce inflammasome formation and interferon production, respectively. Here we present the crystal structures of their HIN domains in complex with double-stranded (ds) DNA. Non-sequence-specific DNA recognition is accomplished through electrostatic attraction between the positively charged HIN domain residues and the dsDNA sugar-phosphate backbone. An intramolecular complex of the AIM2 Pyrin and HIN domains in an autoinhibited state is liberated by DNA binding, which may facilitate the assembly of inflammasomes along the DNA staircase. These findings provide mechanistic insights into dsDNA as the activation trigger and oligomerization platform for the assembly of large innate signaling complexes such as the inflammasomes.

  5. Structure of the TbBILBO1 Protein N-terminal Domain from Trypanosoma brucei Reveals an Essential Requirement for a Conserved Surface Patch*

    PubMed Central

    Vidilaseris, Keni; Morriswood, Brooke; Kontaxis, Georg; Dong, Gang

    2014-01-01

    TbBILBO1 is the only known component of the flagellar pocket collar, a cytoskeletal barrier element found in trypanosomes. The N-terminal domain (NTD) of TbBILBO1 was found to be dispensable for targeting of the protein in vivo. However, overexpression of constructs lacking the NTD caused complete growth inhibition, implying an essential requirement for this domain. A high resolution structure of the NTD of TbBILBO1 showed that it forms a ubiquitin-like fold with a conserved surface patch. Mutagenesis of this patch recapitulated the phenotypic effects of deleting the entire domain and was found to cause cell death. The surface patch on the NTD of TbBILBO1 is therefore a potential drug target. PMID:24362019

  6. Substituted cysteine accessibility reveals a novel transmembrane 2-3 reentrant loop and functional role for transmembrane domain 2 in the human proton-coupled folate transporter.

    PubMed

    Wilson, Mike R; Hou, Zhanjun; Matherly, Larry H

    2014-09-01

    The proton-coupled folate transporter (PCFT) is a folate-proton symporter highly expressed in solid tumors that can selectively target cytotoxic antifolates to tumors under acidic microenvironment conditions. Predicted topology models for PCFT suggest that the loop domain between transmembrane domains (TMDs) 2 and 3 resides in the cytosol. Mutations involving Asp-109 or Arg-113 in the TMD2-3 loop result in loss of activity. By structural homology to other solute carriers, TMD2 may form part of the PCFT substrate binding domain. In this study we mutated the seven cysteine (Cys) residues of human PCFT to serine, creating Cys-less PCFT. Thirty-three single-Cys mutants spanning TMD2 and the TMD2-3 loop in a Cys-less PCFT background were transfected into PCFT-null HeLa cells. All 33 mutants were detected by Western blotting, and 28 were active for [(3)H]methotrexate uptake at pH 5.5. For the active residues, we performed pulldown assays with membrane-impermeable 2-aminoethyl methanethiosulfonate-biotin and streptavidin beads to determine their aqueous-accessibilities. Multiple residues in TMD2 and the TMD2-3 loop domain reacted with 2-aminoethyl methanethiosulfonate-biotin, establishing aqueous accessibilities. Pemetrexed pretreatment inhibited biotinylation of TMD2 mutants G93C and F94C, and biotinylation of these residues inhibited methotrexate transport activity. Our results suggest that the TMD 2-3 loop domain is aqueous-accessible and forms a novel reentrant loop structure. Residues in TMD2 form an aqueous transmembrane pathway for folate substrates, and Gly-93 and Phe-94 may contribute to a substrate binding domain. Characterization of PCFT structure is essential to understanding the transport mechanism including the critical determinants of substrate binding.

  7. Molecular dissection of Phaseolus vulgaris polygalacturonase-inhibiting protein 2 reveals the presence of hold/release domains affecting protein trafficking toward the cell wall

    PubMed Central

    De Caroli, Monica; Lenucci, Marcello S.; Manualdi, Francesca; Dalessandro, Giuseppe; De Lorenzo, Giulia; Piro, Gabriella

    2015-01-01

    The plant endomembrane system is massively involved in the synthesis, transport and secretion of cell wall polysaccharides and proteins; however, the molecular mechanisms underlying trafficking toward the apoplast are largely unknown. Besides constitutive, the existence of a regulated secretory pathway has been proposed. A polygalacturonase inhibitor protein (PGIP2), known to move as soluble cargo and reach the cell wall through a mechanism distinguishable from default, was dissected in its main functional domains (A, B, C, D), and C sub-fragments (C1–10), to identify signals essential for its regulated targeting. The secretion patterns of the fluorescent chimeras obtained by fusing different PGIP2 domains to the green fluorescent protein (GFP) were analyzed. PGIP2 N-terminal and leucine-rich repeat domains (B and C, respectively) seem to operate as holding/releasing signals, respectively, during PGIP2 transit through the Golgi. The B domain slows down PGIP2 secretion by transiently interacting with Golgi membranes. Its depletion leads, in fact, to the secretion via default (Sp2-susceptible) of the ACD-GFP chimera faster than PGIP2. Depending on its length (at least the first 5 leucine-rich repeats are required), the C domain modulates B interaction with Golgi membranes allowing the release of chimeras and their extracellular secretion through a Sp2 independent pathway. The addition of the vacuolar sorting determinant Chi to PGIP2 diverts the path of the protein from cell wall to vacuole, suggesting that C domain is a releasing rather than a cell wall sorting signal. PMID:26379688

  8. Substituted Cysteine Accessibility Reveals a Novel Transmembrane 2–3 Reentrant Loop and Functional Role for Transmembrane Domain 2 in the Human Proton-coupled Folate Transporter*

    PubMed Central

    Wilson, Mike R.; Hou, Zhanjun; Matherly, Larry H.

    2014-01-01

    The proton-coupled folate transporter (PCFT) is a folate-proton symporter highly expressed in solid tumors that can selectively target cytotoxic antifolates to tumors under acidic microenvironment conditions. Predicted topology models for PCFT suggest that the loop domain between transmembrane domains (TMDs) 2 and 3 resides in the cytosol. Mutations involving Asp-109 or Arg-113 in the TMD2-3 loop result in loss of activity. By structural homology to other solute carriers, TMD2 may form part of the PCFT substrate binding domain. In this study we mutated the seven cysteine (Cys) residues of human PCFT to serine, creating Cys-less PCFT. Thirty-three single-Cys mutants spanning TMD2 and the TMD2-3 loop in a Cys-less PCFT background were transfected into PCFT-null HeLa cells. All 33 mutants were detected by Western blotting, and 28 were active for [3H]methotrexate uptake at pH 5.5. For the active residues, we performed pulldown assays with membrane-impermeable 2-aminoethyl methanethiosulfonate-biotin and streptavidin beads to determine their aqueous-accessibilities. Multiple residues in TMD2 and the TMD2-3 loop domain reacted with 2-aminoethyl methanethiosulfonate-biotin, establishing aqueous accessibilities. Pemetrexed pretreatment inhibited biotinylation of TMD2 mutants G93C and F94C, and biotinylation of these residues inhibited methotrexate transport activity. Our results suggest that the TMD 2–3 loop domain is aqueous-accessible and forms a novel reentrant loop structure. Residues in TMD2 form an aqueous transmembrane pathway for folate substrates, and Gly-93 and Phe-94 may contribute to a substrate binding domain. Characterization of PCFT structure is essential to understanding the transport mechanism including the critical determinants of substrate binding. PMID:25053408

  9. Molecular dissection of Phaseolus vulgaris polygalacturonase-inhibiting protein 2 reveals the presence of hold/release domains affecting protein trafficking toward the cell wall.

    PubMed

    De Caroli, Monica; Lenucci, Marcello S; Manualdi, Francesca; Dalessandro, Giuseppe; De Lorenzo, Giulia; Piro, Gabriella

    2015-01-01

    The plant endomembrane system is massively involved in the synthesis, transport and secretion of cell wall polysaccharides and proteins; however, the molecular mechanisms underlying trafficking toward the apoplast are largely unknown. Besides constitutive, the existence of a regulated secretory pathway has been proposed. A polygalacturonase inhibitor protein (PGIP2), known to move as soluble cargo and reach the cell wall through a mechanism distinguishable from default, was dissected in its main functional domains (A, B, C, D), and C sub-fragments (C1-10), to identify signals essential for its regulated targeting. The secretion patterns of the fluorescent chimeras obtained by fusing different PGIP2 domains to the green fluorescent protein (GFP) were analyzed. PGIP2 N-terminal and leucine-rich repeat domains (B and C, respectively) seem to operate as holding/releasing signals, respectively, during PGIP2 transit through the Golgi. The B domain slows down PGIP2 secretion by transiently interacting with Golgi membranes. Its depletion leads, in fact, to the secretion via default (Sp2-susceptible) of the ACD-GFP chimera faster than PGIP2. Depending on its length (at least the first 5 leucine-rich repeats are required), the C domain modulates B interaction with Golgi membranes allowing the release of chimeras and their extracellular secretion through a Sp2 independent pathway. The addition of the vacuolar sorting determinant Chi to PGIP2 diverts the path of the protein from cell wall to vacuole, suggesting that C domain is a releasing rather than a cell wall sorting signal.

  10. Crystal structure of the HIV-1 integrase core domain in complex with sucrose reveals details of an allosteric inhibitory binding site

    SciTech Connect

    Wielens, Jerome; Headey, Stephen J.; Jeevarajah, Dharshini; Rhodes, David I.; Deadman, John; Chalmers, David K.; Scanlon, Martin J.; Parker, Michael W.

    2010-04-19

    HIV integrase (IN) is an essential enzyme in HIV replication and an important target for drug design. IN has been shown to interact with a number of cellular and viral proteins during the integration process. Disruption of these important interactions could provide a mechanism for allosteric inhibition of IN. We present the highest resolution crystal structure of the IN core domain to date. We also present a crystal structure of the IN core domain in complex with sucrose which is bound at the dimer interface in a region that has previously been reported to bind integrase inhibitors.

  11. Structural and Functional Studies of gpX of Escherichia coli Phage P2 Reveal a Widespread Role for LysM Domains in the Baseplates of Contractile-Tailed Phages

    PubMed Central

    Fatehi Hassanabad, Mostafa; Chang, Tom; Pirani, Nawaz; Bona, Diane; Edwards, Aled M.

    2013-01-01

    A variety of bacterial pathogenicity determinants, including the type VI secretion system and the virulence cassettes from Photorhabdus and Serratia, share an evolutionary origin with contractile-tailed myophages. The well-characterized Escherichia coli phage P2 provides an excellent system for studies related to these systems, as its protein composition appears to represent the “minimal” myophage tail. In this study, we used nuclear magnetic resonance (NMR) spectroscopy to determine the solution structure of gpX, a 68-residue tail baseplate protein. Although the sequence and structure of gpX are similar to those of LysM domains, which are a large family associated with peptidoglycan binding, we did not detect a peptidoglycan-binding activity for gpX. However, bioinformatic analysis revealed that half of all myophages, including all that possess phage T4-like baseplates, encode a tail protein with a LysM-like domain, emphasizing a widespread role for this domain in baseplate function. While phage P2 gpX comprises only a single LysM domain, many myophages display LysM domain fusions with other tail proteins, such as the DNA circulation protein found in Mu-like phages and gp53 of T4-like phages. Electron microscopy of P2 phage particles with an incorporated gpX-maltose binding protein fusion revealed that gpX is located at the top of the baseplate, near the junction of the baseplate and tail tube. gpW, the orthologue of phage T4 gp25, was also found to localize to this region. A general colocalization of LysM-like domains and gpW homologues in diverse phages is supported by our bioinformatic analysis. PMID:24097944

  12. Crystal structures of the BsPif1 helicase reveal that a major movement of the 2B SH3 domain is required for DNA unwinding

    PubMed Central

    Chen, Wei-Fei; Dai, Yang-Xue; Duan, Xiao-Lei; Liu, Na-Nv; Shi, Wei; Li, Na; Li, Ming; Dou, Shou-Xing; Dong, Yu-Hui; Rety, Stephane; Xi, Xu-Guang

    2016-01-01

    Pif1 helicases are ubiquitous members of the SF1B family and are essential for maintaining genome stability. It was speculated that Pif1-specific motifs may fold in specific structures, conferring distinct activities upon it. Here, we report the crystal structures of the Pif1 helicase from Bacteroides spp with and without adenosine triphosphate (ATP) analog/ssDNA. BsPif1 shares structural similarities with RecD2 and Dda helicases but has specific features in the 1B and 2B domains. The highly conserved Pif1 family specific sequence motif interacts with and constraints a putative pin-loop in domain 1B in a precise conformation. More importantly, we found that the 2B domain which contains a specific extended hairpin undergoes a significant rotation and/or movement upon ATP and DNA binding, which is absolutely required for DNA unwinding. We therefore propose a mechanism for DNA unwinding in which the 2B domain plays a predominant role. The fact that the conformational change regulates Pif1 activity may provide insight into the puzzling observation that Pif1 becomes highly processive during break-induced replication in association with Polδ, while the isolated Pif1 has low processivity. PMID:26809678

  13. Genome-wide comparative analysis reveals possible common ancestors of nucleotide-binding sites domain containing genes in hybrid Citrus sinensis genome and original Citrus clementina genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We identified and re-annotated candidate disease resistance (R) genes with nucleotide-binding sites (NBS) domain from a Citrus clementina genome and two complete Citrus sinensis genome sequences (one from the USA and one from China). We found similar numbers of NBS genes from three citrus genomes, r...

  14. Crystal structures of the BsPif1 helicase reveal that a major movement of the 2B SH3 domain is required for DNA unwinding.

    PubMed

    Chen, Wei-Fei; Dai, Yang-Xue; Duan, Xiao-Lei; Liu, Na-Nv; Shi, Wei; Li, Na; Li, Ming; Dou, Shou-Xing; Dong, Yu-Hui; Rety, Stephane; Xi, Xu-Guang

    2016-04-01

    Pif1 helicases are ubiquitous members of the SF1B family and are essential for maintaining genome stability. It was speculated that Pif1-specific motifs may fold in specific structures, conferring distinct activities upon it. Here, we report the crystal structures of the Pif1 helicase from Bacteroides spp with and without adenosine triphosphate (ATP) analog/ssDNA. BsPif1 shares structural similarities with RecD2 and Dda helicases but has specific features in the 1B and 2B domains. The highly conserved Pif1 family specific sequence motif interacts with and constraints a putative pin-loop in domain 1B in a precise conformation. More importantly, we found that the 2B domain which contains a specific extended hairpin undergoes a significant rotation and/or movement upon ATP and DNA binding, which is absolutely required for DNA unwinding. We therefore propose a mechanism for DNA unwinding in which the 2B domain plays a predominant role. The fact that the conformational change regulates Pif1 activity may provide insight into the puzzling observation that Pif1 becomes highly processive during break-induced replication in association with Polδ, while the isolated Pif1 has low processivity. PMID:26809678

  15. Crystal structures of the BsPif1 helicase reveal that a major movement of the 2B SH3 domain is required for DNA unwinding.

    PubMed

    Chen, Wei-Fei; Dai, Yang-Xue; Duan, Xiao-Lei; Liu, Na-Nv; Shi, Wei; Li, Na; Li, Ming; Dou, Shou-Xing; Dong, Yu-Hui; Rety, Stephane; Xi, Xu-Guang

    2016-04-01

    Pif1 helicases are ubiquitous members of the SF1B family and are essential for maintaining genome stability. It was speculated that Pif1-specific motifs may fold in specific structures, conferring distinct activities upon it. Here, we report the crystal structures of the Pif1 helicase from Bacteroides spp with and without adenosine triphosphate (ATP) analog/ssDNA. BsPif1 shares structural similarities with RecD2 and Dda helicases but has specific features in the 1B and 2B domains. The highly conserved Pif1 family specific sequence motif interacts with and constraints a putative pin-loop in domain 1B in a precise conformation. More importantly, we found that the 2B domain which contains a specific extended hairpin undergoes a significant rotation and/or movement upon ATP and DNA binding, which is absolutely required for DNA unwinding. We therefore propose a mechanism for DNA unwinding in which the 2B domain plays a predominant role. The fact that the conformational change regulates Pif1 activity may provide insight into the puzzling observation that Pif1 becomes highly processive during break-induced replication in association with Polδ, while the isolated Pif1 has low processivity.

  16. Structure of the Helicase Domain of DNA Polymerase Theta Reveals a Possible Role in the Microhomology-Mediated End-Joining Pathway

    PubMed Central

    Newman, Joseph A.; Cooper, Christopher D.O.; Aitkenhead, Hazel; Gileadi, Opher

    2015-01-01

    Summary DNA polymerase theta (Polθ) has been identified as a crucial alternative non-homologous end-joining factor in mammalian cells. Polθ is upregulated in a range of cancer cell types defective in homologous recombination, and knockdown has been shown to inhibit cell survival in a subset of these, making it an attractive target for cancer treatment. We present crystal structures of the helicase domain of human Polθ in the presence and absence of bound nucleotides, and a characterization of its DNA-binding and DNA-stimulated ATPase activities. Comparisons with related helicases from the Hel308 family identify several unique features. Polθ exists as a tetramer both in the crystals and in solution. We propose a model for DNA binding to the Polθ helicase domain in the context of the Polθ tetramer, which suggests a role for the helicase domain in strand annealing of DNA templates for subsequent processing by the polymerase domain. PMID:26636256

  17. The structure of the folded domain from the signature multifunctional protein ICP27 from herpes simplex virus-1 reveals an intertwined dimer

    PubMed Central

    Tunnicliffe, Richard B.; Schacht, Mitchell; Levy, Colin; Jowitt, Thomas A.; Sandri-Goldin, Rozanne M.; Golovanov, Alexander P.

    2015-01-01

    Herpesviruses cause life-long infections by evading the host immune system and establishing latent infections. All mammalian herpesviruses express an essential multifunctional protein that is typified by ICP27 encoded by Herpes Simplex Virus 1. The only region that is conserved among the diverse members of the ICP27 family is a predicted globular domain that has been termed the ICP27 homology domain. Here we present the first crystal structure of the ICP27 homology domain, solved to 1.9 Å resolution. The protein is a homo-dimer, adopting a novel intertwined fold with one CHCC zinc-binding site per monomer. The dimerization, which was independently confirmed by SEC-MALS and AUC, is stabilized by an extensive network of intermolecular contacts, and a domain-swap involving the two N-terminal helices and C-terminal tails. Each monomer contains a lid motif that can clamp the C-terminal tail of its dimeric binding partner against its globular core, without forming any distinct secondary structure elements. The binding interface was probed with point mutations, none of which had a noticeable effect on dimer formation; however deletion of the C-terminal tail region prevented dimer formation in vivo. The structure provides a template for future biochemical studies and modelling of ICP27 homologs from other herpesviruses. PMID:26062451

  18. Structures of the PIN domains of SMG6 and SMG5 reveal a nuclease within the mRNA surveillance complex

    PubMed Central

    Glavan, Filip; Behm-Ansmant, Isabelle; Izaurralde, Elisa; Conti, Elena

    2006-01-01

    SMG6 and SMG5 are essential factors in nonsense-mediated mRNA decay, a conserved pathway that degrades mRNAs with premature translation termination codons. Both SMG5 and SMG6 have been predicted to contain a C-terminal PIN (PilT N-terminus) domain, present in proteins with ribonuclease activity. We have determined the structures of human SMG5 and SMG6 PIN domains. Although they share a similar overall fold related to ribonucleases of the RNase H family, they have local differences at the putative active site. SMG6 has the canonical triad of acidic residues that are crucial in RNase H for nuclease activity, while SMG5 lacks key catalytic residues. The structural differences are reflected at the functional level. Only the PIN domain of SMG6 has degradation activity on single-stranded RNA in vitro. This difference in catalytic activity is conserved in Drosophila, where an SMG6 with an inactive PIN domain inhibits NMD in a dominant-negative manner. Our findings suggest that the NMD machinery has intrinsic nuclease activity that is likely to contribute to the rapid decay of mRNAs that terminate translation prematurely. PMID:17053788

  19. The crystal structure of the mycobacterium tuberculosis Rv3019c-Rv3020c ESX complex reveals a domain-swapped heterotetramer

    SciTech Connect

    Arbing, Mark A.; Kaufmann, Markus; Phan, Tung; Chan, Sum; Cascio, Duilio; Eisenberg, David

    2010-11-15

    Mycobacterium tuberculosis encodes five gene clusters (ESX-1 to ESX-5) for Type VII protein secretion systems that are implicated in mycobacterial pathogenicity. Substrates for the secretion apparatus are encoded within the gene clusters and in additional loci that lack the components of the secretion apparatus. The best characterized substrates are the ESX complexes, 1:1 heterodimers of ESAT-6 and CFP-10, the prototypical member that has been shown to be essential for Mycobacterium tuberculosis pathogenesis. We have determined the structure of EsxRS, a homolog of EsxGH of the ESX-3 gene cluster, at 1.91 {angstrom} resolution. The EsxRS structure is composed of two four-helix bundles resulting from the 3D domain swapping of the C-terminal domain of EsxS, the CFP-10 homolog. The four-helix bundles at the extremities of the complex have a similar architecture to the structure of ESAT-6 {center_dot} CFP-10 (EsxAB) of ESX-1, but in EsxRS a hinge loop linking the {alpha}-helical domains of EsxS undergoes a loop-to-helix transition that creates the domain swapped EsxRS tetramer. Based on the atomic structure of EsxRS and existing biochemical data on ESX complexes, we propose that higher order ESX oligomers may increase avidity of ESX binding to host receptor molecules or, alternatively, the conformational change that creates the domain swapped structure may be the basis of ESX complex dissociation that would free ESAT-6 to exert a cytotoxic effect.

  20. Computer modelling in combination with in vitro studies reveals similar binding affinities of Drosophila Crumbs for the PDZ domains of Stardust and DmPar-6.

    PubMed

    Kempkens, Ozlem; Médina, Emmanuelle; Fernandez-Ballester, Gregorio; Ozüyaman, Susann; Le Bivic, André; Serrano, Luis; Knust, Elisabeth

    2006-08-01

    Formation of multiprotein complexes is a common theme to pattern a cell, thereby generating spatially and functionally distinct entities at specialised regions. Central components of these complexes are scaffold proteins, which contain several protein-protein interaction domains and provide a platform to recruit a variety of additional components. There is increasing evidence that protein complexes are dynamic structures and that their components can undergo various interactions depending on the cellular context. However, little is known so far about the factors regulating this behaviour. One evolutionarily conserved protein complex, which can be found both in Drosophila and mammalian epithelial cells, is composed of the transmembrane protein Crumbs/Crb3 and the scaffolding proteins Stardust/Pals1 and DPATJ/PATJ, respectively, and localises apically to the zonula adherens. Here we show by in vitro analysis that, similar as in vertebrates, the single PDZ domain of Drosophila DmPar-6 can bind to the four C-terminal amino acids (ERLI) of the transmembrane protein Crumbs. To further evaluate the binding capability of Crumbs to DmPar-6 and the MAGUK protein Stardust, analysis of the PDZ structural database and modelling of the interactions between the C-terminus of Crumbs and the PDZ domains of these two proteins were performed. The results suggest that both PDZ domains bind Crumbs with similar affinities. These data are supported by quantitative yeast two-hybrid interactions. In vivo analysis performed in cell cultures and in the Drosophila embryo show that the cytoplasmic domain of Crumbs can recruit DmPar-6 and DaPKC to the plasma membrane. The data presented here are discussed with respect to possible dynamic interactions between these proteins.

  1. The structure of the RNA m5C methyltransferase YebU from Escherichia coli reveals a C-terminal RNA-recruiting PUA domain.

    PubMed

    Hallberg, B Martin; Ericsson, Ulrika B; Johnson, Kenneth A; Andersen, Niels Møller; Douthwaite, Stephen; Nordlund, Pär; Beuscher, Albert E; Erlandsen, Heidi

    2006-07-21

    Nucleotide methylations are the most common type of rRNA modification in bacteria, and are introduced post-transcriptionally by a wide variety of site-specific enzymes. Three 5-methylcytidine (m(5)C) bases are found in the rRNAs of Escherichia coli and one of these, at nucleotide 1407 in 16 S rRNA, is the modification product of the methyltransferase (MTase) YebU (also called RsmF). YebU requires S-adenosyl-l-methionine (SAM) and methylates C1407 within assembled 30 S subunits, but not in naked 16 S rRNA or within tight-couple 70 S ribosomes. Here, we describe the three-dimensional structure of YebU determined by X-ray crystallography, and we present a molecular model for how YebU specifically recognizes, binds and methylates its ribosomal substrate. The YebU protein has an N-terminal SAM-binding catalytic domain with structural similarity to the equivalent domains in several other m(5)C RNA MTases including RsmB and PH1374. The C-terminal one-third of YebU contains a domain similar to that in pseudouridine synthases and archaeosine-specific transglycosylases (PUA-domain), which was not predicted by sequence alignments. Furthermore, YebU is predicted to contain extended regions of positive electrostatic potential that differ from other RNA-MTase structures, suggesting that YebU interacts with its RNA target in a different manner. Docking of YebU onto the 30 S subunit indicates that the PUA and MTase domains make several contacts with 16 S rRNA as well as with the ribosomal protein S12. The ribosomal protein interactions would explain why the assembled 30 S subunit, and not naked 16 S rRNA, is the preferred substrate for YebU.

  2. Functional domain organization of the potato α-glucan, water dikinase (GWD): evidence for separate site catalysis as revealed by limited proteolysis and deletion mutants

    PubMed Central

    2004-01-01

    The potato tuber (Solanum tuberosum) GWD (α-glucan, water dikinase) catalyses the phosphorylation of starch by a dikinase-type reaction mechanism in which the β-phosphate of ATP is transferred to the glucosyl residue of amylopectin. GWD shows sequence similarity to bacterial pyruvate, water dikinase and PPDK (pyruvate, phosphate dikinase). In the present study, we examine the structure–function relationship of GWD. Analysis of proteolytic fragments of GWD, in conjunction with peptide microsequencing and the generation of deletion mutants, indicates that GWD is comprised of five discrete domains of 37, 24, 21, 36 and 38 kDa. The catalytic histidine, which mediates the phosphoryl group transfer from ATP to starch, is located on the 36 kDa fragment, whereas the 38 kDa C-terminal fragment contains the ATP-binding site. Binding of the glucan molecule appears to be confined to regions containing the three N-terminal domains. Deletion mutants were generated to investigate the functional interdependency of the putative ATP- and glucan-binding domains. A truncated form of GWD expressing the 36 and 38 kDa C-terminal domains was found to catalyse the E+ATP→E-P+AMP+Pi (where Pi stands for orthophosphate) partial reaction, but not the E-P+glucan→E+glucan-P partial reaction. CD experiments provided evidence for large structural changes on autophosphorylation of GWD, indicating that GWD employs a swivelling-domain mechanism for enzymic phosphotransfer similar to that seen for PPDK. PMID:15361065

  3. Full-Length Gαq–Phospholipase C-β3 Structure Reveals Interfaces of the C-terminal Coiled-Coil Domain

    PubMed Central

    Lyon, Angeline M.; Dutta, Somnath; Boguth, Cassandra A.; Skiniotis, Georgios; Tesmer, John J. G.

    2013-01-01

    Phospholipase C-β (PLCβ) is directly activated by Gαq, but the molecular basis for how its distal C-terminal domain (CTD) contributes to maximal activity is poorly understood. Herein we present both the crystal structure and cryo-EM 3D reconstructions of human full-length PLCβ3 in complex with murine Gαq. The distal CTD forms an extended, monomeric helical bundle consisting of three anti-parallel segments with structural similarity to membrane-binding bin–amphiphysin–Rvs (BAR) domains. Sequence conservation of the distal CTD identifies putative membrane and protein interaction sites, the latter of which bind the N-terminal helix of Gαq in both the crystal structure and cryo-EM reconstructions. Functional analysis suggests the distal CTD plays roles in membrane targeting and in optimizing the orientation of the catalytic core at the membrane for maximal rates of lipid hydrolysis. PMID:23377541

  4. Full-length Gαq-phospholipase C-β3 structure reveals interfaces of the C-terminal coiled-coil domain

    SciTech Connect

    Lyon, Angeline M.; Dutta, Somnath; Boguth, Cassandra A.; Skiniotis, Georgios; Tesmer, John J.G.

    2014-08-21

    Phospholipase C-β (PLCβ) is directly activated by Gαq, but the molecular basis for how its distal C-terminal domain (CTD) contributes to maximal activity is poorly understood. Herein we present both the crystal structure and cryo-EM three-dimensional reconstructions of human full-length PLCβ3 in complex with mouse Gαq. The distal CTD forms an extended monomeric helical bundle consisting of three antiparallel segments with structural similarity to membrane-binding bin-amphiphysin-Rvs (BAR) domains. Sequence conservation of the distal CTD suggests putative membrane and protein interaction sites, the latter of which bind the N-terminal helix of Gαq in both the crystal structure and cryo-EM reconstructions. Functional analysis suggests that the distal CTD has roles in membrane targeting and in optimizing the orientation of the catalytic core at the membrane for maximal rates of lipid hydrolysis.

  5. A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA.

    PubMed Central

    Allen, M D; Yamasaki, K; Ohme-Takagi, M; Tateno, M; Suzuki, M

    1998-01-01

    The 3D solution structure of the GCC-box binding domain of a protein from Arabidopsis thaliana in complex with its target DNA fragment has been determined by heteronuclear multidimensional NMR in combination with simulated annealing and restrained molecular dynamic calculation. The domain consists of a three-stranded anti-parallel beta-sheet and an alpha-helix packed approximately parallel to the beta-sheet. Arginine and tryptophan residues in the beta-sheet are identified to contact eight of the nine consecutive base pairs in the major groove, and at the same time bind to the sugar phosphate backbones. The target DNA bends slightly at the central CG step, thereby allowing the DNA to follow the curvature of the beta-sheet. PMID:9736626

  6. Full-length Gα(q)-phospholipase C-β3 structure reveals interfaces of the C-terminal coiled-coil domain.

    PubMed

    Lyon, Angeline M; Dutta, Somnath; Boguth, Cassandra A; Skiniotis, Georgios; Tesmer, John J G

    2013-03-01

    Phospholipase C-β (PLCβ) is directly activated by Gαq, but the molecular basis for how its distal C-terminal domain (CTD) contributes to maximal activity is poorly understood. Herein we present both the crystal structure and cryo-EM three-dimensional reconstructions of human full-length PLCβ3 in complex with mouse Gαq. The distal CTD forms an extended monomeric helical bundle consisting of three antiparallel segments with structural similarity to membrane-binding bin-amphiphysin-Rvs (BAR) domains. Sequence conservation of the distal CTD suggests putative membrane and protein interaction sites, the latter of which bind the N-terminal helix of Gαq in both the crystal structure and cryo-EM reconstructions. Functional analysis suggests that the distal CTD has roles in membrane targeting and in optimizing the orientation of the catalytic core at the membrane for maximal rates of lipid hydrolysis. PMID:23377541

  7. Cell-to-cell movement of green fluorescent protein reveals post-phloem transport in the outer integument and identifies symplastic domains in Arabidopsis seeds and embryos.

    PubMed

    Stadler, Ruth; Lauterbach, Christian; Sauer, Norbert

    2005-10-01

    Developing Arabidopsis (Arabidopsis thaliana) seeds and embryos represent a complex set of cell layers and tissues that mediate the transport and partitioning of carbohydrates, amino acids, hormones, and signaling molecules from the terminal end of the funicular phloem to and between these seed tissues and eventually to the growing embryo. This article provides a detailed analysis of the symplastic domains and the cell-to-cell connectivity from the end of the funiculus to the embryo, and within the embryo during its maturation. The cell-to-cell movement of the green fluorescent protein or of mobile and nonmobile green fluorescent protein fusions was monitored in seeds and embryos of plants expressing the corresponding cDNAs under the control of various promoters (SUC2, SUC3, TT12, and GL2) shown to be active in defined seed or embryo cell layers (SUC3, TT12, and GL2) or only outside the developing Arabidopsis seed (AtSUC2). Cell-to-cell movement was also analyzed with the low-molecular-weight fluorescent dye 8-hydroxypyrene-1,3,6-trisulfonate. The analyses presented identify a phloem-unloading domain at the end of the funicular phloem, characterize the entire outer integument as a symplastic extension of the phloem, and describe the inner integument and the globular stage embryo plus the suspensor as symplastic domains. The results also show that, at the time of hypophysis specification, the symplastic connectivity between suspensor and embryo is reduced or interrupted and that the embryo develops from a single symplast (globular and heart stage) to a mature embryo with new symplastic domains.

  8. tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features.

    PubMed Central

    Marck, Christian; Grosjean, Henri

    2002-01-01

    From 50 genomes of the three domains of life (7 eukarya, 13 archaea, and 30 bacteria), we extracted, analyzed, and compared over 4,000 sequences corresponding to cytoplasmic, nonorganellar tRNAs. For each genome, the complete set of tRNAs required to read the 61 sense codons was identified, which permitted revelation of three major anticodon-sparing strategies. Other features and sequence peculiarities analyzed are the following: (1) fit to the standard cloverleaf structure, (2) characteristic consensus sequences for elongator and initiator tDNAs, (3) frequencies of bases at each sequence position, (4) type and frequencies of conserved 2D and 3D base pairs, (5) anticodon/tDNA usages and anticodon-sparing strategies, (6) identification of the tRNA-Ile with anticodon CAU reading AUA, (7) size of variable arm, (8) occurrence and location of introns, (9) occurrence of 3'-CCA and 5'-extra G encoded at the tDNA level, and (10) distribution of the tRNA genes in genomes and their mode of transcription. Among all tRNA isoacceptors, we found that initiator tDNA-iMet is the most conserved across the three domains, yet domain-specific signatures exist. Also, according to which tRNA feature is considered (5'-extra G encoded in tDNAs-His, AUA codon read by tRNA-Ile with anticodon CAU, presence of intron, absence of "two-out-of-three" reading mode and short V-arm in tDNA-Tyr) Archaea sequester either with Bacteria or Eukarya. No common features between Eukarya and Bacteria not shared with Archaea could be unveiled. Thus, from the tRNomic point of view, Archaea appears as an "intermediate domain" between Eukarya and Bacteria. PMID:12403461

  9. Deletion of MP/ARF5 domains III and IV reveals a requirement for Aux/IAA regulation in Arabidopsis leaf vascular patterning.

    PubMed

    Krogan, Naden T; Ckurshumova, Wenzislava; Marcos, Danielle; Caragea, Adriana E; Berleth, Thomas

    2012-04-01

    Combinatorial interactions of AUXIN RESPONSE FACTORs (ARFs) and auxin/indole acetic acid (Aux/IAA) proteins through their common domains III and IV regulate auxin responses, but insight into the functions of individual proteins is still limited. As a new tool to explore this regulatory network, we generated a gain-of-function ARF genotype by eliminating domains III and IV from the functionally well-characterized ARF MONOPTEROS(MP)/ARF5. This truncated version of MP, termed MPΔ, conferred complementing MP activity, but also displayed a number of semi-dominant traits affecting auxin signaling and organ patterning. In MPΔ, the expression levels of many auxin-inducible genes, as well as rooting properties and vascular tissue abundance, were enhanced. Lateral organs were narrow, pointed and filled with parallel veins. This effect was epistatic over the vascular hypotrophy imposed by certain Aux/IAA mutations. Further, in MPΔ leaves, failure to turn off the procambium-selecting gene PIN1 led to the early establishment of oversized central procambial domains and very limited subsequent lateral growth of the leaf lamina. We conclude that MPΔ can selectively uncouple a single ARF from regulation by Aux/IAA proteins and can be used as a genetic tool to probe auxin pathways and explore leaf development. PMID:22320407

  10. The Crystal Structure of Escherichia coli Group 4 Capsule Protein GfcC Reveals a Domain Organization Resembling That of Wza

    SciTech Connect

    Sathiyamoorthy, Karthik; Mills, Erez; Franzmann, Titus M.; Rosenshine, Ilan; Saper, Mark A.

    2012-03-15

    We report the 1.9 {angstrom} resolution crystal structure of enteropathogenic Escherichia coli GfcC, a periplasmic protein encoded by the gfc operon, which is essential for assembly of group 4 polysaccharide capsule (O-antigen capsule). Presumed gene orthologs of gfcC are present in capsule-encoding regions of at least 29 genera of Gram-negative bacteria. GfcC, a member of the DUF1017 family, is comprised of tandem {beta}-grasp (ubiquitin-like) domains (D2 and D3) and a carboxyl-terminal amphipathic helix, a domain arrangement reminiscent of that of Wza that forms an exit pore for group 1 capsule export. Unlike the membrane-spanning C-terminal helix from Wza, the GfcC C-terminal helix packs against D3. Previously unobserved in a {beta}-grasp domain structure is a 48-residue helical hairpin insert in D2 that binds to D3, constraining its position and sequestering the carboxyl-terminal amphipathic helix. A centrally located and invariant Arg115 not only is essential for proper localization but also forms one of two mostly conserved pockets. Finally, we draw analogies between a GfcC protein fused to an outer membrane {beta}-barrel pore in some species and fusion proteins necessary for secreting biofilm-forming exopolysaccharides.

  11. The crystal structure of Escherichia coli group 4 capsule protein GfcC reveals a domain organization resembling that of Wza.

    PubMed

    Sathiyamoorthy, Karthik; Mills, Erez; Franzmann, Titus M; Rosenshine, Ilan; Saper, Mark A

    2011-06-21

    We report the 1.9 Å resolution crystal structure of enteropathogenic Escherichia coli GfcC, a periplasmic protein encoded by the gfc operon, which is essential for assembly of group 4 polysaccharide capsule (O-antigen capsule). Presumed gene orthologs of gfcC are present in capsule-encoding regions of at least 29 genera of Gram-negative bacteria. GfcC, a member of the DUF1017 family, is comprised of tandem β-grasp (ubiquitin-like) domains (D2 and D3) and a carboxyl-terminal amphipathic helix, a domain arrangement reminiscent of that of Wza that forms an exit pore for group 1 capsule export. Unlike the membrane-spanning C-terminal helix from Wza, the GfcC C-terminal helix packs against D3. Previously unobserved in a β-grasp domain structure is a 48-residue helical hairpin insert in D2 that binds to D3, constraining its position and sequestering the carboxyl-terminal amphipathic helix. A centrally located and invariant Arg115 not only is essential for proper localization but also forms one of two mostly conserved pockets. Finally, we draw analogies between a GfcC protein fused to an outer membrane β-barrel pore in some species and fusion proteins necessary for secreting biofilm-forming exopolysaccharides. PMID:21449614

  12. A biophysical analysis of the tetratricopeptide repeat-rich mitochondrial import receptor, Tom70, reveals an elongated monomer that is inherently flexible, unstable, and unfolds via a multistate pathway.

    PubMed

    Beddoe, Travis; Bushell, Simon R; Perugini, Matthew A; Lithgow, Trevor; Mulhern, Terrence D; Bottomley, Stephen P; Rossjohn, Jamie

    2004-11-01

    Proteins destined for all submitochondrial compartments are translocated across the outer mitochondrial membrane by the TOM (translocase of the outer membrane) complex, which consists of a number of specialized receptor subunits that bind mitochondrial precursor proteins for delivery into the translocation channel. One receptor, Tom70, binds large, hydrophobic mitochondrial precursors. The current model of Tom70-mediated import involves multiple dimers of the receptor recognizing a single molecule of substrate. Here we show via a battery of biophysical and spectroscopic techniques that the cytosolic domain of Tom70 is an elongated monomer. Thermal and urea-induced denaturation revealed that the receptor, which unfolds via a multistate pathway, is a relatively unstable molecule undergoing major conformational change at physiological temperatures. The data suggest that the malleability of the monomeric Tom70 receptor is an important factor in mitochondrial import. PMID:15316022

  13. Distinct functions of the laminin β LN domain and collagen IV during cardiac extracellular matrix formation and stabilization of alary muscle attachments revealed by EMS mutagenesis in Drosophila

    PubMed Central

    2014-01-01

    Background The Drosophila heart (dorsal vessel) is a relatively simple tubular organ that serves as a model for several aspects of cardiogenesis. Cardiac morphogenesis, proper heart function and stability require structural components whose identity and ways of assembly are only partially understood. Structural components are also needed to connect the myocardial tube with neighboring cells such as pericardial cells and specialized muscle fibers, the so-called alary muscles. Results Using an EMS mutagenesis screen for cardiac and muscular abnormalities in Drosophila embryos we obtained multiple mutants for two genetically interacting complementation groups that showed similar alary muscle and pericardial cell detachment phenotypes. The molecular lesions underlying these defects were identified as domain-specific point mutations in LamininB1 and Cg25C, encoding the extracellular matrix (ECM) components laminin β and collagen IV α1, respectively. Of particular interest within the LamininB1 group are certain hypomorphic mutants that feature prominent defects in cardiac morphogenesis and cardiac ECM layer formation, but in contrast to amorphic mutants, only mild defects in other tissues. All of these alleles carry clustered missense mutations in the laminin LN domain. The identified Cg25C mutants display weaker and largely temperature-sensitive phenotypes that result from glycine substitutions in different Gly-X-Y repeats of the triple helix-forming domain. While initial basement membrane assembly is not abolished in Cg25C mutants, incorporation of perlecan is impaired and intracellular accumulation of perlecan as well as the collagen IV α2 chain is detected during late embryogenesis. Conclusions Assembly of the cardiac ECM depends primarily on laminin, whereas collagen IV is needed for stabilization. Our data underscore the importance of a correctly assembled ECM particularly for the development of cardiac tissues and their lateral connections. The mutational

  14. Interactions of an Arabidopsis RanBPM homologue with LisH-CTLH domain proteins revealed high conservation of CTLH complexes in eukaryotes

    PubMed Central

    2012-01-01

    Background RanBPM (Ran-binding protein in the microtubule-organizing centre) was originally reported as a centrosome-associated protein in human cells. However, RanBPM protein containing highly conserved SPRY, LisH, CTLH and CRA domains is currently considered as a scaffolding protein with multiple cellular functions. A plant homologue of RanBPM has not yet been characterized. Results Based on sequence similarity, we identified a homologue of the human RanBPM in Arabidopsis thaliana. AtRanBPM protein has highly conserved SPRY, LisH, CTLH and CRA domains. Cell fractionation showed that endogenous AtRanBPM or expressed GFP-AtRanBPM are mainly cytoplasmic proteins with only a minor portion detectable in microsomal fractions. AtRanBPM was identified predominantly in the form of soluble cytoplasmic complexes ~230 – 500 kDa in size. Immunopurification of AtRanBPM followed by mass spectrometric analysis identified proteins containing LisH and CRA domains; LisH, CRA, RING-U-box domains and a transducin/WD40 repeats in a complex with AtRanBPM. Homologues of identified proteins are known to be components of the C-terminal to the LisH motif (CTLH) complexes in humans and budding yeast. Microscopic analysis of GFP-AtRanBPM in vivo and immunofluorescence localization of endogenous AtRanBPM protein in cultured cells and seedlings of Arabidopsis showed mainly cytoplasmic and nuclear localization. Absence of colocalization with γ-tubulin was consistent with the biochemical data and suggests another than a centrosomal role of the AtRanBPM protein. Conclusion We showed that as yet uncharacterized Arabidopsis RanBPM protein physically interacts with LisH-CTLH domain-containing proteins. The newly identified high molecular weight cytoplasmic protein complexes of AtRanBPM showed homology with CTLH types of complexes described in mammals and budding yeast. Although the exact functions of the CTLH complexes in scaffolding of protein degradation, in protein interactions and in

  15. Structural insight and flexible features of NS5 proteins from all four serotypes of Dengue virus in solution.

    PubMed

    Saw, Wuan Geok; Tria, Giancarlo; Grüber, Ardina; Subramanian Manimekalai, Malathy Sony; Zhao, Yongqian; Chandramohan, Arun; Srinivasan Anand, Ganesh; Matsui, Tsutomu; Weiss, Thomas M; Vasudevan, Subhash G; Grüber, Gerhard

    2015-11-01

    Infection by the four serotypes of Dengue virus (DENV-1 to DENV-4) causes an important arthropod-borne viral disease in humans. The multifunctional DENV nonstructural protein 5 (NS5) is essential for capping and replication of the viral RNA and harbours a methyltransferase (MTase) domain and an RNA-dependent RNA polymerase (RdRp) domain. In this study, insights into the overall structure and flexibility of the entire NS5 of all four Dengue virus serotypes in solution are presented for the first time. The solution models derived revealed an arrangement of the full-length NS5 (NS5FL) proteins with the MTase domain positioned at the top of the RdRP domain. The DENV-1 to DENV-4 NS5 forms are elongated and flexible in solution, with DENV-4 NS5 being more compact relative to NS5 from DENV-1, DENV-2 and DENV-3. Solution studies of the individual MTase and RdRp domains show the compactness of the RdRp domain as well as the contribution of the MTase domain and the ten-residue linker region to the flexibility of the entire NS5. Swapping the ten-residue linker between DENV-4 NS5FL and DENV-3 NS5FL demonstrated its importance in MTase-RdRp communication and in concerted interaction with viral and host proteins, as probed by amide hydrogen/deuterium mass spectrometry. Conformational alterations owing to RNA binding are presented.

  16. Thermal unfolding simulations of NBD1 domain variants reveal structural motifs associated with the impaired folding of F508del-CFTR.

    PubMed

    Estácio, Sílvia G; Martiniano, Hugo F M C; Faísca, Patrícia F N

    2016-08-16

    We employed high-temperature classical molecular dynamics (MD) simulations to investigate the unfolding process of the wild-type (WT) and F508del-NBD1 domains of CFTR protein, with and without second-site mutations. To rationalize the in vitro behavior of F508del-NBD1, namely its lower folding yield and higher aggregation propensity, we focused our analysis of the MD data on the existence of intermediate states with aggregation potential and/or stabilized by a significant number of non-native interactions (i.e. misfolded states). We find that the deletion of phenylalanine 508 is able to forcefully reshape the conformational space of the NBD1 domain to the extent that it uniquely populates intermediate states whose structural traits provide important insights into the molecular events that underlie the impaired folding of F508del-NBD1. In particular, our simulations predict the formation of a misfolded intermediate whose population is highly enhanced by deletion of residue 508. The stabilization of this intermediate is a direct consequence of the enhanced non-native coupling between various key regions of the α-helical subdomain and ATP-binding subdomain; it is singularly characterized by a set of non-native interactions within the ATP-binding subdomain and between that domain and the α-helical subdomain region. The formation of this intermediate is not blocked by second-site suppressor mutations which indicates a limited role of the latter in correcting the rather complex folding process of the CFTR protein missing residue 508. PMID:27354240

  17. GMPLS inter-domain signaling and routing to control LSPs based on per-domain policy

    NASA Astrophysics Data System (ADS)

    Okamoto, S.; Guo, H.; Otani, T.

    2008-11-01

    GMPLS inter-domain network control was investigated by employing BGP-based inter-domain routing and flexible signaling with loose hop expansion. Per-domain based operational policy was successfully applied to the establishment of GMPLS inter-domain LSPs.

  18. FLEXIBLE COUPLING

    DOEpatents

    Babelay, E.F.

    1962-02-13

    A flexible shaft coupling for operation at speeds in excess of 14,000 rpm is designed which requires no lubrication. A driving sleeve member and a driven sleeve member are placed in concentric spaced relationship. A torque force is transmitted to the driven member from the driving member through a plurality of nylon balls symmetrically disposed between the spaced sleeves. The balls extend into races and recesses within the respective sleeve members. The sleeve members have a suitable clearance therebetween and the balls have a suitable radial clearance during operation of the coupling to provide a relatively loose coupling. These clearances accommodate for both parallel and/or angular misalignments and avoid metal-tometal contact between the sleeve members during operation. Thus, no lubrication is needed, and a minimum of vibrations is transmitted between the sleeve members. (AEC)

  19. Rett-causing mutations reveal two domains critical for MeCP2 function and for toxicity in MECP2 duplication syndrome mice.

    PubMed

    Heckman, Laura Dean; Chahrour, Maria H; Zoghbi, Huda Y

    2014-06-26

    Loss of function of the X-linked gene encoding methyl-CpG binding protein 2 (MeCP2) causes the progressive neurological disorder Rett syndrome (RTT). Conversely, duplication or triplication of Xq28 causes an equally wide-ranging progressive neurological disorder, MECP2 duplication syndrome, whose features overlap somewhat with RTT. To understand which MeCP2 functions cause toxicity in the duplication syndrome, we generated mouse models expressing endogenous Mecp2 along with a RTT-causing mutation in either the methyl-CpG binding domain (MBD) or the transcriptional repression domain (TRD). We determined that both the MBD and TRD must function for doubling MeCP2 to be toxic. Mutating the MBD reproduces the null phenotype and expressing the TRD mutant produces milder RTT phenotypes, yet both mutations are harmless when expressed with endogenous Mecp2. Surprisingly, mutating the TRD is more detrimental than deleting the entire C-terminus, indicating a dominant-negative effect on MeCP2 function, likely due to the disruption of a basic cluster.

  20. High-resolution crystal structures of alternate forms of the human CD44 hyaluronan-binding domain reveal a site for protein interaction

    PubMed Central

    Liu, Li-Kai; Finzel, Barry

    2014-01-01

    Two new crystal structures of the extracellular hyaluronan-binding domain of human CD44 are described at high resolution. A hexagonal crystal form at 1.60 Å resolution and a monoclinic form at 1.08 Å resolution both have two molecules in the asymmetric unit arranged about a similar noncrystallographic twofold axis of symmetry. These structures are compared with those previously reported at 2.20 Å resolution to show that the fold is quite resistant to structural deformation in different crystal environments. Unexpectedly, a short peptide is found in the monoclinic crystals at a site remote from the known hyaluronan-binding groove. The peptide with a valine at the carboxy-terminus must have co-purified from the bacterial expression host and binds on the opposite side of the domain from the known hyaluronan-binding groove. This opportunistic binding may identify a site of interaction used as CD44 assembles with other proteins to accomplish effective signaling regarding changes to the extracellular environment. PMID:25195884

  1. Nucleoside monophosphate complex structures of the endonuclease domain from the influenza virus polymerase PA subunit reveal the substrate binding site inside the catalytic center.

    PubMed

    Zhao, Cong; Lou, Zhiyong; Guo, Yu; Ma, Ming; Chen, Yutao; Liang, Shuaiyi; Zhang, Liang; Chen, Shoudeng; Li, Xuemei; Liu, Yingfang; Bartlam, Mark; Rao, Zihe

    2009-09-01

    Highly pathogenic influenza virus strains currently in circulation pose a significant risk of a global pandemic. Following the reported crystal structure of the endonuclease domain from the avian influenza virus polymerase PA subunit, here we report the results of a systematic X-ray crystallographic analysis of its complex with adenosine, uridine, and thymidine nucleoside monophosphates (NMPs). Electron density corresponding to the monophosphate moiety of each nucleotide was apparent in each NMP complex and bound to the catalytic metal. A hydrophobic site was found to contribute to nucleoside binding. The NMP complex structures should represent the conformation of the bound product after nuclease cleavage. Moreover, one solvent molecule was found to occupy an equivalent position to the second reported Mn(2+) ion, where it mediates the interaction between bound NMPs and the N-terminal PA domain in the presence of the Mg(2+) ion. The results presented here indicate a possible cleavage mechanism and identify a distinct nucleotide binding pocket. The identification of this binding pocket opens a new avenue for anti-influenza drug discovery, targeting the cap-dependent endonuclease, in response to the worldwide threat of influenza. PMID:19587036

  2. Structure of the Dictyostelium Myosin-II Heavy Chain Kinase A (MHCK-A) α-kinase domain apoenzyme reveals a novel autoinhibited conformation

    PubMed Central

    Ye, Qilu; Yang, Yidai; van Staalduinen, Laura; Crawley, Scott William; Liu, Linda; Brennan, Stephanie; Côté, Graham P.; Jia, Zongchao

    2016-01-01

    The α-kinases are a family of a typical protein kinases present in organisms ranging from protozoa to mammals. Here we report an autoinhibited conformation for the α-kinase domain of Dictyostelium myosin-II heavy chain kinase A (MHCK-A) in which nucleotide binding to the catalytic cleft, located at the interface between an N-terminal and C-terminal lobe, is sterically blocked by the side chain of a conserved arginine residue (Arg592). Previous α-kinase structures have shown that an invariant catalytic aspartic acid residue (Asp766) is phosphorylated. Unexpectedly, in the autoinhibited conformation the phosphoryl group is transferred to the adjacent Asp663, creating an interaction network that stabilizes the autoinhibited state. The results suggest that Asp766 phosphorylation may play both catalytic and regulatory roles. The autoinhibited structure also provides the first view of a phosphothreonine residue docked into the phospho-specific allosteric binding site (Pi-pocket) in the C-lobe of the α-kinase domain. PMID:27211275

  3. Structural Basis of Functional Diversification of the HD-GYP Domain Revealed by the Pseudomonas aeruginosa PA4781 Protein, Which Displays an Unselective Bimetallic Binding Site

    PubMed Central

    Rinaldo, Serena; Paiardini, Alessandro; Stelitano, Valentina; Brunotti, Paolo; Cervoni, Laura; Fernicola, Silvia; Protano, Carmela; Vitali, Matteo; Giardina, Giorgio

    2015-01-01

    ABSTRACT The intracellular level of the bacterial secondary messenger cyclic di-3′,5′-GMP (c-di-GMP) is determined by a balance between its biosynthesis and degradation, the latter achieved via dedicated phosphodiesterases (PDEs) bearing a characteristic EAL or HD-GYP domain. We here report the crystal structure of PA4781, one of the three Pseudomonas aeruginosa HD-GYP proteins, which we have previously characterized in vitro. The structure shows a bimetallic active site whose metal binding mode is different from those of both HD-GYP PDEs characterized so far. Purified PA4781 does not contain iron in the active site as for other HD-GYPs, and we show that it binds to a wide range of transition metals with similar affinities. Moreover, the structural features of PA4781 indicate that this is preferentially a pGpG binding protein, as we previously suggested. Our results point out that the structural features of HD-GYPs are more complex than predicted so far and identify the HD-GYP domain as a conserved scaffold which has evolved to preferentially interact with a partner GGDEF but which harbors different functions obtained through diversification of the active site. IMPORTANCE In bacteria, the capability to form biofilms, responsible for increased pathogenicity and antibiotic resistance, is almost universally stimulated by the second messenger cyclic di-GMP (c-di-GMP). To design successful strategies for targeting biofilm formation, a detailed characterization of the enzymes involved in c-di-GMP metabolism is crucial. We solved the structure of the HD-GYP domain of PA4781 from Pseudomonas aeruginosa, involved in c-di-GMP degradation. This is the third structure of this class of phosphodiesterases to be solved, and with respect to its homologues, it shows significant differences both in the nature and in the binding mode of the coordinated metals, indicating that HD-GYP proteins are able to fine-tune their function, thereby increasing the chances of the microorganism

  4. Mutational analysis of Kaposica reveals that bridging of MG2 and CUB domains of target protein is crucial for the cofactor activity of RCA proteins.

    PubMed

    Gautam, Avneesh Kumar; Panse, Yogesh; Ghosh, Payel; Reza, Malik Johid; Mullick, Jayati; Sahu, Arvind

    2015-10-13

    The complement system has evolved to annul pathogens, but its improper regulation is linked with diseases. Efficient regulation of the system is primarily provided by a family of proteins termed regulators of complement activation (RCA). The knowledge of precise structural determinants of RCA proteins critical for imparting the regulatory activities and the molecular events underlying the regulatory processes, nonetheless, is still limited. Here, we have dissected the structural requirements of RCA proteins that are crucial for one of their two regulatory activities, the cofactor activity (CFA), by using the Kaposi's sarcoma-associated herpesvirus RCA homolog Kaposica as a model protein. We have scanned the entire Kaposica molecule by sequential mutagenesis using swapping and site-directed mutagenesis, which identified residues critical for its interaction with C3b and factor I. Mapping of these residues onto the modeled structure of C3b-Kaposica-factor I complex supported the mutagenesis data. Furthermore, the model suggested that the C3b-interacting residues bridge the CUB (complement C1r-C1s, Uegf, Bmp1) and MG2 (macroglobulin-2) domains of C3b. Thus, it seems that stabilization of the CUB domain with respect to the core of the C3b molecule is central for its CFA. Identification of CFA-critical regions in Kaposica guided experiments in which the equivalent regions of membrane cofactor protein were swapped into decay-accelerating factor. This strategy allowed CFA to be introduced into decay-accelerating factor, suggesting that viral and human regulators use a common mechanism for CFA.

  5. Structure of FitAB from Neisseria gonorrhoeae bound to DNA reveals a tetramer of toxin-antitoxin heterodimers containing pin domains and ribbon-helix-helix motifs.

    PubMed

    Mattison, Kirsten; Wilbur, J Scott; So, Magdalene; Brennan, Richard G

    2006-12-01

    Neisseria gonorrhoeae is a sexually transmitted pathogen that initiates infections in humans by adhering to the mucosal epithelium of the urogenital tract. The bacterium then enters the apical region of the cell and traffics across the cell to exit into the subepithelial matrix. Mutations in the fast intracellular trafficking (fitAB) locus cause the bacteria to transit a polarized epithelial monolayer more quickly than the wild-type parent and to replicate within cells at an accelerated rate. Here, we describe the crystal structure of the toxin-antitoxin heterodimer, FitAB, bound to a high affinity 36-bp DNA fragment from the fitAB promoter. FitA, the antitoxin, binds DNA through its ribbon-helix-helix motif and is tethered to FitB, the toxin, to form a heterodimer by the insertion of a four turn alpha-helix into an extensive FitB hydrophobic pocket. FitB is composed of a PIN (PilT N terminus) domain, with a central, twisted, 5-stranded parallel beta-sheet that is open on one side and flanked by five alpha-helices. FitB in the context of the FitAB complex does not display nuclease activity against tested PIN substrates. The FitAB complex points to the mechanism by which antitoxins with RHH motifs can block the activity of toxins with PIN domains. Interactions between two FitB molecules result in the formation of a tetramer of FitAB heterodimers, which binds to the 36-bp DNA fragment and provides an explanation for how FitB enhances the DNA binding affinity of FitA. PMID:16982615

  6. Crystal Structure of USP7 Ubiquitin-like Domains with an ICP0 Peptide Reveals a Novel Mechanism Used by Viral and Cellular Proteins to Target USP7

    PubMed Central

    Capar, Adam; Zheng, Hong; Frappier, Lori; Saridakis, Vivian

    2015-01-01

    Herpes simplex virus-1 immediate-early protein ICP0 activates viral genes during early stages of infection, affects cellular levels of multiple host proteins and is crucial for effective lytic infection. Being a RING-type E3 ligase prone to auto-ubiquitination, ICP0 relies on human deubiquitinating enzyme USP7 for protection against 26S proteasomal mediated degradation. USP7 is involved in apoptosis, epigenetics, cell proliferation and is targeted by several herpesviruses. Several USP7 partners, including ICP0, GMPS, and UHRF1, interact through its C-terminal domain (CTD), which contains five ubiquitin-like (Ubl) structures. Despite the fact that USP7 has emerged as a drug target for cancer therapy, structural details of USP7 regulation and the molecular mechanism of interaction at its CTD have remained elusive. Here, we mapped the binding site between an ICP0 peptide and USP7 and determined the crystal structure of the first three Ubl domains bound to the ICP0 peptide, which showed that ICP0 binds to a loop on Ubl2. Sequences similar to the USP7-binding site in ICP0 were identified in GMPS and UHRF1 and shown to bind USP7-CTD through Ubl2. In addition, co-immunoprecipitation assays in human cells comparing binding to USP7 with and without a Ubl2 mutation, confirmed the importance of the Ubl2 binding pocket for binding ICP0, GMPS and UHRF1. Therefore we have identified a novel mechanism of USP7 recognition that is used by both viral and cellular proteins. Our structural information was used to generate a model of near full-length USP7, showing the relative position of the ICP0/GMPS/UHRF1 binding pocket and the structural basis by which it could regulate enzymatic activity. PMID:26046769

  7. The structure of truncated recombinant human bile salt-stimulated lipase reveals bile salt-independent conformational flexibility at the active-site loop and provides insights into heparin binding.

    PubMed

    Moore, S A; Kingston, R L; Loomes, K M; Hernell, O; Bläckberg, L; Baker, H M; Baker, E N

    2001-09-21

    Human bile salt-stimulated lipase (BSSL), which is secreted from the pancreas into the digestive tract and from the lactating mammary gland into human milk, is important for the effective absorption of dietary lipids. The dependence of BSSL on bile acids for activity with water-insoluble substrates differentiates it from other lipases. We have determined the crystal structure of a truncated variant of human BSSL (residues 1-5.8) and refined it at 2.60 A resolution, to an R-factor of 0.238 and R(free) of 0.275. This variant lacks the C-terminal alpha-helix and tandem C-terminal repeat region of native BSSL, but retains full catalytic activity. A short loop (residues 115-126) capable of occluding the active-site (the active site loop) is highly mobile and exists in two conformations, the most predominant of which leaves the active-site open for interactions with substrate. The bile salt analogue 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonic acid (CHAPS) was present in the crystallisation medium, but was not observed bound to the enzyme. However, the structure reveals a sulfonate group from the buffer piperizine ethane sulfonic acid (PIPES), making interactions with Arg63 and His115. His115 is part of the active-site loop, indicating that the loop could participate in the binding of a sulphate group from either the glycosaminoglycan heparin (known to bind BSSL) or a bile acid such as deoxycholate. Opening of the 115-126 active-site loop may be cooperatively linked to a sulphate anion binding at this site. The helix bundle domain of BSSL (residues 319-398) exhibits weak electron density and high temperature factors, indicating considerable structural mobility. This domain contains an unusual Asp:Glu pair buried in a hydrophobic pocket between helices alpha(H) and alpha(K) that may be functionally important. We have also solved the structure of full-length glycosylated human BSSL at 4.1 A resolution, using the refined coordinates of the truncated molecule as

  8. Crystal structure of the receptor binding domain of the botulinum C-D mosaic neurotoxin reveals potential roles of lysines 1118 and 1136 in membrane interactions

    SciTech Connect

    Zhang, Yanfeng; Buchko, Garry W.; Qin, Ling; Robinson, Howard; Varnum, Susan M.

    2011-01-07

    The botulinum neurotoxins (BoNTs) produced by different strains of the bacterium Clostridium botulinum are responsible for the disease botulism and include a group of immunologically distinct serotypes (A, B, E, and F) that are considered to be the most lethal natural proteins known for humans. Two BoNT serotypes, C and D, while rarely associated with human infection, are responsible for deadly botulism outbreaks afflicting animals. Also associated with animal infections is the BoNT C-D mosaic protein (BoNT/CD), a BoNT subtype that is essentially a hybrid of the BoNT/C (~two-thirds) and BoNT/D (~one-third) serotypes. While the amino acid sequence of the heavy chain receptor binding (HCR) domain of BoNT/CD (BoNT/CD-HCR) is very similar to the corresponding amino acid sequence of BoNT/D, BoNT/CD-HCR binds synaptosome membranes better than BoNT/D-HCR. To obtain structural insights for the different membrane binding properties, the crystal structure of BoNT/CD-HCR (S867-E1280) was determined at 1.56 Å resolution and compared to previously reported structures for BoNT/D-HCR. Overall, the BoNT/CD-HCR structure is similar to the two sub-domain organization observed for other BoNT HCRs: an N-terminal jellyroll barrel motif and a C-terminal β-trefoil fold. Comparison of the structure of BoNT/CD-HCR with BoNT/D-HCR indicates that K1118 has a similar structural role as the equivalent residue, E1114, in BoNT/D-HCR, while K1136 has a structurally different role than the equivalent residue, G1132, in BoNT/D-HCR. Lysine-1118 forms a salt bridge with E1247 and may enhance membrane interactions by stabilizing the putative membrane binding loop (K1240-N1248). Lysine-1136 is observed on the surface of the protein. A sulfate ion bound to K1136 may mimic a natural interaction with the negatively changed phospholipid membrane surface. Liposome-binding experiments demonstrate that BoNT/CD-HCR binds phosphatidylethanolamine liposomes more tightly than BoNT/D-HCR

  9. Crystal Structure of the Receptor Binding Domain of the botulinum C-D Mosiac Neurotoxin Reveals Potential Roles of Lysines 1118 and 1136 in Membrane Interactions

    SciTech Connect

    Y Zhang; G Buchko; L Qin; H Robinson; S Varnum

    2011-12-31

    The botulinum neurotoxins (BoNTs) produced by different strains of the bacterium Clostridium botulinum are responsible for the disease botulism and include a group of immunologically distinct serotypes (A, B, E, and F) that are considered to be the most lethal natural proteins known for humans. Two BoNT serotypes, C and D, while rarely associated with human infection, are responsible for deadly botulism outbreaks afflicting animals. Also associated with animal infections is the BoNT C-D mosaic protein (BoNT/CD), a BoNT subtype that is essentially a hybrid of the BoNT/C ({approx}two-third) and BoNT/D ({approx}one-third) serotypes. While the amino acid sequence of the heavy chain receptor binding (HCR) domain of BoNT/CD (BoNT/CD-HCR) is very similar to the corresponding amino acid sequence of BoNT/D, BoNT/CD-HCR binds synaptosome membranes better than BoNT/D-HCR. To obtain structural insights for the different membrane binding properties, the crystal structure of BoNT/CD-HCR (S867-E1280) was determined at 1.56 {angstrom} resolution and compared to previously reported structures for BoNT/D-HCR. Overall, the BoNT/CD-HCR structure is similar to the two sub-domain organization observed for other BoNT HCRs: an N-terminal jellyroll barrel motif and a C-terminal {beta}-trefoil fold. Comparison of the structure of BoNT/CD-HCR with BoNT/D-HCR indicates that K1118 has a similar structural role as the equivalent residue, E1114, in BoNT/D-HCR, while K1136 has a structurally different role than the equivalent residue, G1132, in BoNT/D-HCR. Lysine-1118 forms a salt bridge with E1247 and may enhance membrane interactions by stabilizing the putative membrane binding loop (K1240-N1248). Lysine-1136 is observed on the surface of the protein. A sulfate ion bound to K1136 may mimic a natural interaction with the negatively changed phospholipid membrane surface. Liposome-binding experiments demonstrate that BoNT/CD-HCR binds phosphatidylethanolamine liposomes more tightly than BoNT/D-HCR.

  10. Deciphering Dimerization Modes of PAS Domains: Computational and Experimental Analyses of the AhR:ARNT Complex Reveal New Insights Into the Mechanisms of AhR Transformation

    PubMed Central

    Corrada, Dario; Soshilov, Anatoly A.; Denison, Michael S.

    2016-01-01

    The Aryl hydrocarbon Receptor (AhR) is a transcription factor that mediates the biochemical response to xenobiotics and the toxic effects of a number of environmental contaminants, including dioxins. Recently, endogenous regulatory roles for the AhR in normal physiology and development have also been reported, thus extending the interest in understanding its molecular mechanisms of activation. Since dimerization with the AhR Nuclear Translocator (ARNT) protein, occurring through the Helix-Loop-Helix (HLH) and PER-ARNT-SIM (PAS) domains, is needed to convert the AhR into its transcriptionally active form, deciphering the AhR:ARNT dimerization mode would provide insights into the mechanisms of AhR transformation. Here we present homology models of the murine AhR:ARNT PAS domain dimer developed using recently available X-ray structures of other bHLH-PAS protein dimers. Due to the different reciprocal orientation and interaction surfaces in the different template dimers, two alternative models were developed for both the PAS-A and PAS-B dimers and they were characterized by combining a number of computational evaluations. Both well-established hot spot prediction methods and new approaches to analyze individual residue and residue-pairwise contributions to the MM-GBSA binding free energies were adopted to predict residues critical for dimer stabilization. On this basis, a mutagenesis strategy for both the murine AhR and ARNT proteins was designed and ligand-dependent DNA binding ability of the AhR:ARNT heterodimer mutants was evaluated. While functional analysis disfavored the HIF2α:ARNT heterodimer-based PAS-B model, most mutants derived from the CLOCK:BMAL1-based AhR:ARNT dimer models of both the PAS-A and the PAS-B dramatically decreased the levels of DNA binding, suggesting this latter model as the most suitable for describing AhR:ARNT dimerization. These novel results open new research directions focused at elucidating basic molecular mechanisms underlying the

  11. Systematic mutational analysis of the amino-terminal domain of the Listeria monocytogenes ActA protein reveals novel functions in actin-based motility.

    PubMed

    Lauer, P; Theriot, J A; Skoble, J; Welch, M D; Portnoy, D A

    2001-12-01

    The Listeria monocytogenes ActA protein acts as a scaffold to assemble and activate host cell actin cytoskeletal factors at the bacterial surface, resulting in directional actin polymerization and propulsion of the bacterium through the cytoplasm. We have constructed 20 clustered charged-to-alanine mutations in the NH2-terminal domain of ActA and replaced the endogenous actA gene with these molecular variants. These 20 clones were evaluated in several biological assays for phenotypes associated with particular amino acid changes. Additionally, each protein variant was purified and tested for stimulation of the Arp2/3 complex, and a subset was tested for actin monomer binding. These specific mutations refined the two regions involved in Arp2/3 activation and suggest that the actin-binding sequence of ActA spans 40 amino acids. We also identified a 'motility rate and cloud-to-tail transition' region in which nine contiguous mutations spanning amino acids 165-260 caused motility rate defects and changed the ratio of intracellular bacteria associated with actin clouds and comet tails without affecting Arp2/3 activation. Several unusual motility phenotypes were associated with amino acid changes in this region, including altered paths through the cytoplasm, discontinuous actin tails in host cells and the tendency to 'skid' or dramatically change direction while moving. These unusual phenotypes illustrate the complexity of ActA functions that control the actin-based motility of L. monocytogenes.

  12. Single quantum dot tracking reveals that an individual multivalent HIV-1 Tat protein transduction domain can activate machinery for lateral transport and endocytosis.

    PubMed

    Suzuki, Yasuhiro; Roy, Chandra Nath; Promjunyakul, Warunya; Hatakeyama, Hiroyasu; Gonda, Kohsuke; Imamura, Junji; Vasudevanpillai, Biju; Ohuchi, Noriaki; Kanzaki, Makoto; Higuchi, Hideo; Kaku, Mitsuo

    2013-08-01

    The mechanisms underlying the cellular entry of the HIV-1 Tat protein transduction domain (TatP) and the molecular information necessary to improve the transduction efficiency of TatP remain unclear due to the technical limitations for direct visualization of TatP's behavior in cells. Using confocal microscopy, total internal reflection fluorescence microscopy, and four-dimensional microscopy, we developed a single-molecule tracking assay for TatP labeled with quantum dots (QDs) to examine the kinetics of TatP initially and immediately before, at the beginning of, and immediately after entry into living cells. We report that even when the number of multivalent TatP (mTatP)-QDs bound to a cell was low, each single mTatP-QD first locally induced the cell's lateral transport machinery to move the mTatP-QD toward the center of the cell body upon cross-linking of heparan sulfate proteoglycans. The centripetal and lateral movements were linked to the integrity and flow of actomyosin and microtubules. Individual mTatP underwent lipid raft-mediated temporal confinement, followed by complete immobilization, which ultimately led to endocytotic internalization. However, bivalent TatP did not sufficiently promote either cell surface movement or internalization. Together, these findings provide clues regarding the mechanisms of TatP cell entry and indicate that increasing the valence of TatP on nanoparticles allows them to behave as cargo delivery nanomachines. PMID:23732912

  13. Single Quantum Dot Tracking Reveals that an Individual Multivalent HIV-1 Tat Protein Transduction Domain Can Activate Machinery for Lateral Transport and Endocytosis

    PubMed Central

    Roy, Chandra Nath; Promjunyakul, Warunya; Hatakeyama, Hiroyasu; Gonda, Kohsuke; Imamura, Junji; Vasudevanpillai, Biju; Ohuchi, Noriaki; Kanzaki, Makoto; Higuchi, Hideo; Kaku, Mitsuo

    2013-01-01

    The mechanisms underlying the cellular entry of the HIV-1 Tat protein transduction domain (TatP) and the molecular information necessary to improve the transduction efficiency of TatP remain unclear due to the technical limitations for direct visualization of TatP's behavior in cells. Using confocal microscopy, total internal reflection fluorescence microscopy, and four-dimensional microscopy, we developed a single-molecule tracking assay for TatP labeled with quantum dots (QDs) to examine the kinetics of TatP initially and immediately before, at the beginning of, and immediately after entry into living cells. We report that even when the number of multivalent TatP (mTatP)-QDs bound to a cell was low, each single mTatP-QD first locally induced the cell's lateral transport machinery to move the mTatP-QD toward the center of the cell body upon cross-linking of heparan sulfate proteoglycans. The centripetal and lateral movements were linked to the integrity and flow of actomyosin and microtubules. Individual mTatP underwent lipid raft-mediated temporal confinement, followed by complete immobilization, which ultimately led to endocytotic internalization. However, bivalent TatP did not sufficiently promote either cell surface movement or internalization. Together, these findings provide clues regarding the mechanisms of TatP cell entry and indicate that increasing the valence of TatP on nanoparticles allows them to behave as cargo delivery nanomachines. PMID:23732912

  14. The structure of α-haemoglobin in complex with a haemoglobin-binding domain from Staphylococcus aureus reveals the elusive α-haemoglobin dimerization interface.

    PubMed

    Kumar, Kaavya Krishna; Jacques, David A; Guss, J Mitchell; Gell, David A

    2014-08-01

    Adult haemoglobin (Hb) is made up of two α and two β subunits. Mutations that reduce expression of the α- or β-globin genes lead to the conditions α- or β-thalassaemia, respectively. Whilst both conditions are characterized by anaemia of variable severity, other details of their pathophysiology are different, in part owing to the greater stability of the β chains that is conferred through β self-association. In contrast, α subunits interact weakly, and in the absence of stabilizing quaternary interactions the α chain (α) is prone to haem loss and denaturation. The molecular contacts that confer weak self-association of α have not been determined previously. Here, the first structure of an α2 homodimer is reported in complex with one domain of the Hb receptor from Staphylococcus aureus. The α2 dimer interface has a highly unusual, approximately linear, arrangement of four His side chains within hydrogen-bonding distance of each other. Some interactions present in the α1β1 dimer interface of native Hb are preserved in the α2 dimer. However, a marked asymmetry is observed in the α2 interface, suggesting that steric factors limit the number of stabilizing interactions that can form simultaneously across the interface.

  15. The chimeric approach reveals that differences in the TRPV1 pore domain determine species-specific sensitivity to block of heat activation.

    PubMed

    Papakosta, Marianthi; Dalle, Carine; Haythornthwaite, Alison; Cao, Lishuang; Stevens, Edward B; Burgess, Gillian; Russell, Rachel; Cox, Peter J; Phillips, Stephen C; Grimm, Christian

    2011-11-11

    The capsaicin-, heat-, and proton-activated ion channel TRPV1, a member of the transient receptor potential cation channel family is a polymodal nociceptor. For almost a decade, TRPV1 has been explored by the pharmaceutical industry as a potential target for example for pain conditions. Antagonists which block TRPV1 activation by capsaicin, heat, and protons were developed by a number of pharmaceutical companies. The unexpected finding of hyperthermia as an on-target side effect in clinical studies using polymodal TRPV1 antagonists has prompted companies to search for ways to circumvent hyperthermia, for example by the development of modality-selective antagonists. The significant lack of consistency of the pharmacology of many TRPV1 antagonists across different species has been a further obstacle. JYL-1421 for example was shown to block capsaicin and heat responses in human and monkey TRPV1 while it was largely ineffective in blocking heat responses in rat TRPV1. These findings suggested structural dissimilarities between different TRPV1 species relevant for small compound antagonism for example of heat activation. Using a chimeric approach (human and rat TRPV1) in combination with a novel FLIPR-based heat activation assay and patch-clamp electrophysiology we have identified the pore region as being strongly linked to the observed species differences. We demonstrate that by exchanging the pore domains JYL-1421, which is modality-selective in rat can be made modality-selective in human TRPV1 and vice-versa.

  16. The structure of α-haemoglobin in complex with a haemoglobin-binding domain from Staphylococcus aureus reveals the elusive α-haemoglobin dimerization interface

    PubMed Central

    Krishna Kumar, Kaavya; Jacques, David A.; Guss, J. Mitchell; Gell, David A.

    2014-01-01

    Adult haemoglobin (Hb) is made up of two α and two β subunits. Mutations that reduce expression of the α- or β-globin genes lead to the conditions α- or β-thalassaemia, respectively. Whilst both conditions are characterized by anaemia of variable severity, other details of their pathophysiology are different, in part owing to the greater stability of the β chains that is conferred through β self-association. In contrast, α subunits interact weakly, and in the absence of stabilizing quaternary interactions the α chain (α) is prone to haem loss and denaturation. The molecular contacts that confer weak self-association of α have not been determined previously. Here, the first structure of an α2 homodimer is reported in complex with one domain of the Hb receptor from Staphylococcus aureus. The α2 dimer interface has a highly unusual, approximately linear, arrangement of four His side chains within hydrogen-bonding distance of each other. Some interactions present in the α1β1 dimer interface of native Hb are preserved in the α2 dimer. However, a marked asymmetry is observed in the α2 interface, suggesting that steric factors limit the number of stabilizing interactions that can form simultaneously across the interface. PMID:25084376

  17. Revealing sub-μm and μm-scale textures in H2O ice at megabar pressures by time-domain Brillouin scattering

    PubMed Central

    Nikitin, Sergey M.; Chigarev, Nikolay; Tournat, Vincent; Bulou, Alain; Gasteau, Damien; Castagnede, Bernard; Zerr, Andreas; Gusev, Vitalyi E.

    2015-01-01

    The time-domain Brillouin scattering technique, also known as picosecond ultrasonic interferometry, allows monitoring of the propagation of coherent acoustic pulses, having lengths ranging from nanometres to fractions of a micrometre, in samples with dimension of less than a micrometre to tens of micrometres. In this study, we applied this technique to depth-profiling of a polycrystalline aggregate of ice compressed in a diamond anvil cell to megabar pressures. The method allowed examination of the characteristic dimensions of ice texturing in the direction normal to the diamond anvil surfaces with sub-micrometre spatial resolution via time-resolved measurements of the propagation velocity of the acoustic pulses travelling in the compressed sample. The achieved imaging of ice in depth and in one of the lateral directions indicates the feasibility of three-dimensional imaging and quantitative characterisation of the acoustical, optical and acousto-optical properties of transparent polycrystalline aggregates in a diamond anvil cell with tens of nanometres in-depth resolution and a lateral spatial resolution controlled by pump laser pulses focusing, which could approach hundreds of nanometres. PMID:25790808

  18. Residual structures in the unfolded state of starch-binding domain of glucoamylase revealed by near-UV circular dichroism and protein engineering techniques.

    PubMed

    Ota, Chiaki; Ikeguchi, Masamichi; Tanaka, Akiyoshi; Hamada, Daizo

    2016-10-01

    Protein folding is a thermodynamic process driven by energy gaps between the native and unfolded states. Although a wealth of information is available on the structure of folded species, there is a paucity of data on unfolded species. Here, we analyzed the structural properties of the unfolded state of the starch-binding domain of glucoamylase from Aspergillus niger (SBD) formed in the presence of guanidinium hydrochloride (GuHCl). Although far-UV CD and intrinsic tryptophan fluorescence spectra as well as small angle X-ray scattering suggested that SBD assumes highly unfolded structures in the presence of GuHCl, near-UV circular dichroism of wild-type SBD suggested the presence of residual structures in the unfolded state. Analyses of the unfolded states of tryptophan mutants (W543L, W563A, W590A and W615L) using Similarity Parameter, a modified version of root mean square deviation as a measure of similarity between two spectra, suggested that W543 and W563 have preferences to form native-like residual structures in the GuHCl-unfolded state. In contrast, W615 was entirely unstructured, while W590 tended to form non-native ordered structures in the unfolded state. These data and the amino acid sequence of SBD suggest that local structural propensities in the unfolded state can be determined by the probability of the presence of hydrophobic or charged residues nearby tryptophan residues. PMID:27164491

  19. Systematic mutational analysis of the amino-terminal domain of the Listeria monocytogenes ActA protein reveals novel functions in actin-based motility.

    PubMed

    Lauer, P; Theriot, J A; Skoble, J; Welch, M D; Portnoy, D A

    2001-12-01

    The Listeria monocytogenes ActA protein acts as a scaffold to assemble and activate host cell actin cytoskeletal factors at the bacterial surface, resulting in directional actin polymerization and propulsion of the bacterium through the cytoplasm. We have constructed 20 clustered charged-to-alanine mutations in the NH2-terminal domain of ActA and replaced the endogenous actA gene with these molecular variants. These 20 clones were evaluated in several biological assays for phenotypes associated with particular amino acid changes. Additionally, each protein variant was purified and tested for stimulation of the Arp2/3 complex, and a subset was tested for actin monomer binding. These specific mutations refined the two regions involved in Arp2/3 activation and suggest that the actin-binding sequence of ActA spans 40 amino acids. We also identified a 'motility rate and cloud-to-tail transition' region in which nine contiguous mutations spanning amino acids 165-260 caused motility rate defects and changed the ratio of intracellular bacteria associated with actin clouds and comet tails without affecting Arp2/3 activation. Several unusual motility phenotypes were associated with amino acid changes in this region, including altered paths through the cytoplasm, discontinuous actin tails in host cells and the tendency to 'skid' or dramatically change direction while moving. These unusual phenotypes illustrate the complexity of ActA functions that control the actin-based motility of L. monocytogenes. PMID:11886549

  20. Artificial soil studies reveal domain-specific preferences of microorganisms for the colonisation of different soil minerals and particle size fractions.

    PubMed

    Hemkemeyer, Michael; Pronk, Geertje J; Heister, Katja; Kögel-Knabner, Ingrid; Martens, Rainer; Tebbe, Christoph C

    2014-12-01

    Artificial soils were used in this study to analyse the importance of different mineral compositions for the diversity of soil microorganisms. Variants containing montmorillonite (MT), illite (IL) and illite + ferrihydrite (IL+FH) were compared to each other. Bulk material and their particle size fractions, as obtained by ultracentrifugation and wet-sieving, were characterised for abundance and diversity of Bacteria, Archaea and Fungi. Samples were analysed 6 and 18 months after inoculation with sterilised manure and a soil-extracted microbial community. Generally, IL, and even more pronouncedly IL+FH, supported the growth of more Bacteria, Archaea and Fungi, than MT. This trend was most pronounced in the finest fraction (< 20 μm). The structural diversity of Fungi responded more strongly to the different mineral compositions than the Bacteria, for which particle size fractions were more important. Archaea established a specific community in the finest fraction and showed no response to the different mineral compositions. Overall, this study demonstrates that the mineral composition and the particle size fractions have specific and different selective effects on the three domains and, thus, suggests that these factors strongly contribute to niche separation and the high diversity of microbial communities in natural soils with complex mineral compositions.

  1. Stress-induced magnetic domain selection reveals a conical ground state for the multiferroic phase of Mn2GeO4

    NASA Astrophysics Data System (ADS)

    White, J. S.; Honda, T.; Sibille, R.; Gauthier, N.; Dmitriev, V.; Strässle, Th.; Niedermayer, Ch.; Kimura, T.; Kenzelmann, M.

    2016-07-01

    At ambient pressure P and below 5.5 K, olivine-type Mn2GeO4 hosts a multiferroic (MF) phase where a multicomponent, i.e., multi-k magnetic order generates spontaneous ferromagnetism and ferroelectricity (FE) along the c axis. Under high P the FE disappears above 6 GPa, yet the P evolution of the magnetic structure remained unclear based on available data. Here we report high-P single crystal neutron diffraction experiments in the MF phase at T =4.5 K. We observe clearly that the incommensurate spiral component of the magnetic order responsible for FE varies little with P up to 5.1 GPa. With support from high P synchrotron x-ray diffraction measurements at room temperature (T ), the P -driven suppression of FE is proposed to occur as a consequence of a crystal structure transition away from the olivine structure. In addition, in the low T neutron scattering experiment