Sample records for revealed morphological differences

  1. Morphological, molecular and biological evidence reveal two cryptic species in Mecinus janthinus Germar (Coleoptera, Curculionidae), a successful biological control agent of Dalmatian toadflax, Linaria dalmatica (Lamiales, Plantaginaceae)

    Treesearch

    Ivo Tosevski; Roberto Caldara; Jelena Jovic; Gerardo Hernandez-Vera; Cosimo Baviera; Andre Gassmann; Brent C. Emerson

    2011-01-01

    A combined morphological, molecular and biological study shows that the weevil species presently named Mecinus janthinus is actually composed of two different cryptic species: M. janthinus Germar, 1821 and M. janthiniformis Tosevski & Caldara sp.n. These species are morphologically distinguishable from each other by a few very subtle morphological characters. On...

  2. 'Ogura'-based 'CMS' lines with different nuclear backgrounds of cabbage revealed substantial diversity at morphological and molecular levels.

    PubMed

    Parkash, Chander; Kumar, Sandeep; Singh, Rajender; Kumar, Ajay; Kumar, Satish; Dey, Shyam Sundar; Bhatia, Reeta; Kumar, Raj

    2018-01-01

    A comprehensive study on characterization and genetic diversity analysis was carried out in 16 'Ogura'-based 'CMS' lines of cabbage using 14 agro-morphological traits and 29 SSR markers. Agro-morphological characterization depicted considerable variations for different horticultural traits studied. The genotype, ZHA-2, performed better for most of the economically important quantitative traits. Further, gross head weight (0.76), head length (0.60) and head width (0.83) revealed significant positive correlation with net head weight. Dendrogram based on 10 quantitative traits exhibited considerable diversity among different CMS lines and principle component analysis (PCA) indicated that net and gross head weight, and head length and width are the main components of divergence between 16 CMS lines of cabbage. In molecular study, a total of 58 alleles were amplified by 29 SSR primers, averaging to 2.0 alleles in each locus. High mean values of Shannon's Information index (0.62), expected (0.45) and observed (0.32) heterozygosity and polymorphic information content (0.35) depicted substantial polymorphism. Dendrogram based on Jaccard's similarity coefficient constructed two major groups and eight sub-groups, which revealed substantial diversity among different CMS lines. In overall, based on agro-morphological and molecular studies genotype RRMA, ZHA-2 and RCA were found most divergent. Hence, they have immense potential in future breeding programs for the high-yielding hybrid development in cabbage.

  3. Natural Genetic Variation and Candidate Genes for Morphological Traits in Drosophila melanogaster

    PubMed Central

    Carreira, Valeria Paula; Mensch, Julián; Hasson, Esteban; Fanara, Juan José

    2016-01-01

    Body size is a complex character associated to several fitness related traits that vary within and between species as a consequence of environmental and genetic factors. Latitudinal and altitudinal clines for different morphological traits have been described in several species of Drosophila and previous work identified genomic regions associated with such variation in D. melanogaster. However, the genetic factors that orchestrate morphological variation have been barely studied. Here, our main objective was to investigate genetic variation for different morphological traits associated to the second chromosome in natural populations of D. melanogaster along latitudinal and altitudinal gradients in Argentina. Our results revealed weak clinal signals and a strong population effect on morphological variation. Moreover, most pairwise comparisons between populations were significant. Our study also showed important within-population genetic variation, which must be associated to the second chromosome, as the lines are otherwise genetically identical. Next, we examined the contribution of different candidate genes to natural variation for these traits. We performed quantitative complementation tests using a battery of lines bearing mutated alleles at candidate genes located in the second chromosome and six second chromosome substitution lines derived from natural populations which exhibited divergent phenotypes. Results of complementation tests revealed that natural variation at all candidate genes studied, invected, Fasciclin 3, toucan, Reticulon-like1, jing and CG14478, affects the studied characters, suggesting that they are Quantitative Trait Genes for morphological traits. Finally, the phenotypic patterns observed suggest that different alleles of each gene might contribute to natural variation for morphological traits. However, non-additive effects cannot be ruled out, as wild-derived strains differ at myriads of second chromosome loci that may interact epistatically with mutant alleles. PMID:27459710

  4. Different evolutionary pathways underlie the morphology of wrist bones in hominoids

    PubMed Central

    2013-01-01

    Background The hominoid wrist has been a focus of numerous morphological analyses that aim to better understand long-standing questions about the evolution of human and hominoid hand use. However, these same analyses also suggest various scenarios of complex and mosaic patterns of morphological evolution within the wrist and potentially multiple instances of homoplasy that would benefit from require formal analysis within a phylogenetic context. We identify morphological features that principally characterize primate – and, in particular, hominoid (apes, including humans) - wrist evolution and reveal the rate, process and evolutionary timing of patterns of morphological change on individual branches of the primate tree of life. Linear morphological variables of five wrist bones – the scaphoid, lunate, triquetrum, capitate and hamate – are analyzed in a diverse sample of extant hominoids (12 species, 332 specimens), Old World (8 species, 43 specimens) and New World (4 species, 26 specimens) monkeys, fossil Miocene apes (8 species, 20 specimens) and Plio-Pleistocene hominins (8 species, 18 specimens). Result Results reveal a combination of parallel and synapomorphic morphology within haplorrhines, and especially within hominoids, across individual wrist bones. Similar morphology of some wrist bones reflects locomotor behaviour shared between clades (scaphoid, triquetrum and capitate) while others (lunate and hamate) indicate clade-specific synapomorphic morphology. Overall, hominoids show increased variation in wrist bone morphology compared with other primate clades, supporting previous analyses, and demonstrate several occurrences of parallel evolution, particularly between orangutans and hylobatids, and among hominines (extant African apes, humans and fossil hominins). Conclusions Our analyses indicate that different evolutionary processes can underlie the evolution of a single anatomical unit (the wrist) to produce diversity in functional and morphological adaptations across individual wrist bones. These results exemplify a degree of evolutionary and functional independence across different wrist bones, the potential evolvability of skeletal morphology, and help to contextualize the postcranial mosaicism observed in the hominin fossil record. PMID:24148262

  5. Mechanical, thermal, morphological, and rheological characteristics of high performance 3D-printing lignin-based composites for additive manufacturing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ngoc A.; Bowland, Christopher C.; Naskar, Amit K.

    Here, the article presents different mechanical, thermal and rheological data corresponding to the morphological formation within various renewable lignin-based composites containing acrylonitrile butadiene styrene (ABS), acrylonitrile butadiene rubber (NBR41, 41 mol% nitrile content), and carbon fibers (CFs). The data of 3D-printing properties and morphology of 3D-printed layers of selected lignin-based composites are revealed.

  6. Mechanical, thermal, morphological, and rheological characteristics of high performance 3D-printing lignin-based composites for additive manufacturing applications

    DOE PAGES

    Nguyen, Ngoc A.; Bowland, Christopher C.; Naskar, Amit K.

    2018-05-29

    Here, the article presents different mechanical, thermal and rheological data corresponding to the morphological formation within various renewable lignin-based composites containing acrylonitrile butadiene styrene (ABS), acrylonitrile butadiene rubber (NBR41, 41 mol% nitrile content), and carbon fibers (CFs). The data of 3D-printing properties and morphology of 3D-printed layers of selected lignin-based composites are revealed.

  7. The Morphological Diversity of DIG in Halos of Edge-on Spirals as Revealed by HST/ACS

    NASA Astrophysics Data System (ADS)

    Rossa, J.; Dahlem, M.; Dettmar, R.-J.; van der Marel, R. P.

    2012-09-01

    We present new results on extraplanar DIG (eDIG), based on high spatial resolution narrowband imaging observations of four late-type, actively star-forming edge-on spirals, obtained with ACS on-board HST. Our Hα observations reveal a multitude of structures on both small and large scales. Whereas all four galaxies have been studied with ground-based telescopes before, here the small scale structure of the extended emission line gas is presented for the very first time at a spatial resolution of 0.05'', corresponding to 5 pc at the mean distance to our galaxies. The eDIG morphology is very different for all four targets, as a result of their different star formation activity and galaxy mass. There is a very smooth DIG morphology observed in two of the galaxies (NGC 4634 and NGC 5775), whereas the other two (NGC 4700 and NGC 7090) show a much more complex morphology with intricate filaments, and bubbles and supershells. We find that the morphology of the eDIG, in particular the break-up of diffuse emission into filaments in galaxy halos, shows a strong dependence on the level of star formation activity per unit area, and eDIG can be arranged into a morphological sequence.

  8. Growth of ultrananocrystalline diamond film by DC Arcjet plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Chen, G. C.; Li, B.; Yan, Z. Q.; Liu, J.; Lu, F. X.; Ye, H.

    2012-06-01

    Self-standing diamond films were grown by DC Arcjet plasma enhanced chemical vapor deposition (CVD). The feed gasses were Ar/H2/CH4, in which the flow ratio of CH4 to H2 (F/F) was varied from 5% to 20%. Two distinct morphologies were observed by scanning electron microscope (SEM), i.e. the "pineapple-like" morphology and the "cauliflower-like" morphology. It was found that the morphologies of the as-grown films are strongly dependent on the flow ratio of CH4 to H2 in the feed gasses. High resolution transmission electron microscope (HRTEM) survey results revealed that there were nanocrystalline grains within the "pineapple-like" films whilst there were ultrananocrystalline grains within "cauliflower-like" films. X-ray diffraction (XRD) results suggested that (110) crystalline plane was the dominant surface in the "cauliflower-like" films whilst (100) crystalline plane was the dominant surface in the "pineapple-like" films. Raman spectroscopy revealed that nanostructured carbon features could be observed in both types of films. Plasma diagnosis was carried out in order to understand the morphology dependent growth mechanism. It could be concluded that the film morphology was strongly influenced by the density of gas phases. The gradient of C2 radical was found to be different along the growth direction under the different growth conditions.

  9. Genotyping-by-sequencing reveals the origin of the Tunisian relatives of cultivated carrot

    USDA-ARS?s Scientific Manuscript database

    Knowledge of the morphological diversity of a germplasm collection is fundamental for genebank managers and plant breeders. The main objective of this work was to characterize 33 landraces of carrot from 13 different regions of Tunisia, based on 34 agro-morphological characters related to leaves and...

  10. Aureobasidium pullulans morphology: two adapted polysaccharide stains.

    PubMed

    Oller, Anna R

    2005-12-01

    Morphological stages of Aureobasidium pullulans were investigated utilizing different media ingredients and were visualized by bright-field microscopy. A polysaccharide stain was developed to stain chlamydospores, cell walls, hyphae, and conidia, since current staining techniques do not reveal subcellular details to identify fungi, especially those that exhibit polysaccharide secretions.

  11. Investigating Methodological Differences in the Assessment of Dendritic Morphology of Basolateral Amygdala Principal Neurons-A Comparison of Golgi-Cox and Neurobiotin Electroporation Techniques.

    PubMed

    Klenowski, Paul M; Wright, Sophie E; Mu, Erica W H; Noakes, Peter G; Lavidis, Nickolas A; Bartlett, Selena E; Bellingham, Mark C; Fogarty, Matthew J

    2017-12-19

    Quantitative assessments of neuronal subtypes in numerous brain regions show large variations in dendritic arbor size. A critical experimental factor is the method used to visualize neurons. We chose to investigate quantitative differences in basolateral amygdala (BLA) principal neuron morphology using two of the most common visualization methods: Golgi-Cox staining and neurobiotin (NB) filling. We show in 8-week-old Wistar rats that NB-filling reveals significantly larger dendritic arbors and different spine densities, compared to Golgi-Cox-stained BLA neurons. Our results demonstrate important differences and provide methodological insights into quantitative disparities of BLA principal neuron morphology reported in the literature.

  12. Picosecond to nanosecond reorganization of water in AOT/lecithin mixed reverse micelles of different morphology

    NASA Astrophysics Data System (ADS)

    Narayanan, S. Shankara; Sinha, Sudarson Sekhar; Sarkar, Rupa; Pal, Samir Kumar

    2008-02-01

    We report the effect of different geometrical restrictions on the dynamical properties of water using dynamic light scattering (DLS), Fourier transform infrared (FTIR) and picosecond-resolved fluorescence studies. By preparing AOT/lecithin mixed reverse micelles (RMs) of different morphologies (spherical and ellipsoidal), we have investigated the effect of the degree of confinement on the mobility of water in the mixed RMs of similar degree of hydration. The FTIR studies along with solvation dynamics of two fluorescent probes, ANS and coumarin 500 in the RMs reveal structural and dynamical information about the micellar water, which varies with the morphology of the mixed RMs.

  13. Southern high latitude squat lobsters II: description of Uroptychus macquariae sp. nov. from Macquarie Ridge.

    PubMed

    Schnabel, Kareen E; Burghardt, Ingo; Ahyong, Shane T

    2017-11-23

    Squat lobsters have only recently been recorded from the Macquarie Ridge, which extends south between New Zealand and Antarctica. Among these, Uroptychus insignis (Henderson, 1885) was recorded for the first time outside the western Indian Ocean, exhibiting only subtle morphological differences. Reexamination of the Macquarie Ridge and Indian Ocean specimens attributed to U. insignis using morphological and molecular data revealed the Macquarie Ridge form to represent a separate species. Subtle but consistent morphological differences are evident and partial CO1 sequence data indicates that the specimens collected on Macquarie Ridge differ from those collected in the Indian Ocean by more than 7%. The Macquarie Ridge species is described herein as Uroptychus macquariae n.sp. Subtle morphological differences between the new species and U. insignis are discussed.

  14. Determinants and taxonomic consequences of extreme egg shell variability in Ramazzottius subanomalus (Biserov, 1985) (Tardigrada).

    PubMed

    Stec, Daniel; Morek, Witold; Gąsiorek, Piotr; Kaczmarek, Łukasz; Michalczyk, Łukasz

    2016-12-15

    Nearly a half of known eutardigrade species lay ornamented eggs. The ornamentation is thought to provide attachment of the egg to the substrate and protection for the developing embryo, but from the taxonomic point of view chorion morphology may also provide key characters for species differentiation and identification, especially between closely related taxa. Nonetheless, despite the evolutionary and taxonomic importance of the egg shell, the determinants of its morphology are very poorly, if at all, understood. Here, we combine morphological, molecular and experimental approaches in an attempt to separate the genetic and environmental factors that shape egg chorion morphology in Ramazzottius subanomalus (Biserov, 1985). Our integrative study, based on a population of R. subanomalus isolated from a single moss sample, revealed (1) remarkable variation in egg shell morphology, but (2) relatively little variation in animal morphometric traits, and (3) genetic differentiation, expressed as two ITS-2 haplotypes, but no parallel polymorphism in COI. Although animals did not differ morphometrically between the haplotypes, eggs laid by haplotype 1 and 2 females exhibited highly statistically significant differences in all measured traits. The study demonstrates, for the first time, a correlation between phenotypic and genetic variability within a tardigrade species. The revealed congruence between genetic and morphological traits might be viewed as an example of incipient speciation that illustrates early evolutionary steps leading to species complexes that differ primarily in terms of egg shell morphology. Moreover, our data confirm the value of the ITS-2 fragment in distinguishing very closely related tardigrade lineages.

  15. Debris avalanches and slumps on the margins of volcanic domes on Venus: Characteristics of deposits

    NASA Technical Reports Server (NTRS)

    Bulmer, M. H.; Guest, J. E.; Beretan, K.; Michaels, Gregory A.; Saunders, R. Stephen

    1992-01-01

    Modified volcanic domes, referred to as collapsed margin domes, have diameters greater than those of terrestrial domes and were therefore thought to have no suitable terrestrial analogue. Comparison of the collapsed debris using the Magellan SAR images with volcanic debris avalanches on Earth has revealed morphological similarities. Some volcanic features identified on the seafloor from sonar images have diameters similar to those on Venus and also display scalloped margins, indicating modification by collapse. Examination of the SAR images of collapsed dome features reveals a number of distinct morphologies to the collapsed masses. Ten examples of collapsed margin domes displaying a range of differing morphologies and collapsed masses have been selected and examined.

  16. Blending Gelators to Tune Gel Structure and Probe Anion-Induced Disassembly

    PubMed Central

    Foster, Jonathan A; Edkins, Robert M; Cameron, Gary J; Colgin, Neil; Fucke, Katharina; Ridgeway, Sam; Crawford, Andrew G; Marder, Todd B; Beeby, Andrew; Cobb, Steven L; Steed, Jonathan W

    2014-01-01

    Blending different low molecular weight gelators (LMWGs) provides a convenient route to tune the properties of a gel and incorporate functionalities such as fluorescence. Blending a series of gelators having a common bis-urea motif, and functionalised with different amino acid-derived end-groups and differing length alkylene spacers is reported. Fluorescent gelators incorporating 1-and 2-pyrenyl moieties provide a probe of the mixed systems alongside structural and morphological data from powder diffraction and electron microscopy. Characterisation of the individual gelators reveals that although the expected α-urea tape motif is preserved, there is considerable variation in the gelation properties, molecular packing, fibre morphology and rheological behaviour. Mixing of the gelators revealed examples in which: 1) the gels formed separate, orthogonal networks maintaining their own packing and morphology, 2) the gels blended together into a single network, either adopting the packing and morphology of one gelator, or 3) a new structure not seen for either of the gelators individually was created. The strong binding of the urea functionalities to anions was exploited as a means of breaking down the gel structure, and the use of fluorescent gel blends provides new insights into anion-mediated gel dissolution. PMID:24302604

  17. Niche segregation among sympatric Amazonian teiid lizards.

    PubMed

    Vitt, L J; Sartorius, S S; Avila-Pires, T C S; Espósito, M C; Miles, D B

    2000-02-01

    We examined standard niche axes (time, place, and food) for three sympatric teiid lizards in the Amazon rain forest. Activity times during the day were similar among species. Ameiva ameiva were in more open microhabitats and had higher body temperatures compared with the two species of Kentropyx. Microhabitat overlaps were low and not significantly different from simulations based on Monte Carlo analysis. Grasshoppers, crickets, and spiders were important in the diets of all three species and many relatively abundant prey were infrequently eaten (e.g., ants). Dietary overlaps were most similar between the two species of Kentropyx even though microhabitat overlaps were relatively low. A Monte Carlo analysis on prey types revealed that dietary overlaps were higher at all ranks than simulated overlaps indicating that use of prey is not random. Although prey size was correlated with lizard body size, there were no species differences in adjusted prey size. A. ameiva ate more prey items at a given body size than either species of Kentropyx. Body size varies among species, with A. ameiva being the largest and K. altamazonica the smallest. The two species of Kentropyx are most distant morphologically, with A. ameiva intermediate. The most distant species morphologically are the most similar in terms of prey types. A morphological analysis including 15 species from four genera revealed patterns of covariation that reflected phylogenetic affinities (i.e., taxonomic patterns are evident). A cluster analysis revealed that A. ameiva, K. pelviceps, and K. altamazonica were in the same morphological group and that within that group, A. ameiva differed from the rest of the species. In addition, K. pelviceps and K. altamazonica were distinguishable from other species of Kentropyx based on morphology.

  18. The Limits on Trypanosomatid Morphological Diversity

    PubMed Central

    Wheeler, Richard John; Gluenz, Eva; Gull, Keith

    2013-01-01

    Cell shape is one, often overlooked, way in which protozoan parasites have adapted to a variety of host and vector environments and directional transmissions between these environments. Consequently, different parasite life cycle stages have characteristic morphologies. Trypanosomatid parasites are an excellent example of this in which large morphological variations between species and life cycle stage occur, despite sharing well-conserved cytoskeletal and membranous structures. Here, using previously published reports in the literature of the morphology of 248 isolates of trypanosomatid species from different hosts, we perform a meta-analysis of the occurrence and limits on morphological diversity of different classes of trypanosomatid morphology (trypomastigote, promastigote, etc.) in the vertebrate bloodstream and invertebrate gut environments. We identified several limits on cell body length, cell body width and flagellum length diversity which can be interpreted as biomechanical limits on the capacity of the cell to attain particular dimensions. These limits differed for morphologies with and without a laterally attached flagellum which we suggest represent two morphological superclasses, the ‘juxtaform’ and ‘liberform’ superclasses. Further limits were identified consistent with a selective pressure from the mechanical properties of the vertebrate bloodstream environment; trypanosomatid size showed limits relative to host erythrocyte dimensions. This is the first comprehensive analysis of the limits of morphological diversity in any protozoan parasite, revealing the morphogenetic constraints and extrinsic selection pressures associated with the full diversity of trypanosomatid morphology. PMID:24260255

  19. Microglia Morphological Categorization in a Rat Model of Neuroinflammation by Hierarchical Cluster and Principal Components Analysis.

    PubMed

    Fernández-Arjona, María Del Mar; Grondona, Jesús M; Granados-Durán, Pablo; Fernández-Llebrez, Pedro; López-Ávalos, María D

    2017-01-01

    It is known that microglia morphology and function are closely related, but only few studies have objectively described different morphological subtypes. To address this issue, morphological parameters of microglial cells were analyzed in a rat model of aseptic neuroinflammation. After the injection of a single dose of the enzyme neuraminidase (NA) within the lateral ventricle (LV) an acute inflammatory process occurs. Sections from NA-injected animals and sham controls were immunolabeled with the microglial marker IBA1, which highlights ramifications and features of the cell shape. Using images obtained by section scanning, individual microglial cells were sampled from various regions (septofimbrial nucleus, hippocampus and hypothalamus) at different times post-injection (2, 4 and 12 h). Each cell yielded a set of 15 morphological parameters by means of image analysis software. Five initial parameters (including fractal measures) were statistically different in cells from NA-injected rats (most of them IL-1β positive, i.e., M1-state) compared to those from control animals (none of them IL-1β positive, i.e., surveillant state). However, additional multimodal parameters were revealed more suitable for hierarchical cluster analysis (HCA). This method pointed out the classification of microglia population in four clusters. Furthermore, a linear discriminant analysis (LDA) suggested three specific parameters to objectively classify any microglia by a decision tree. In addition, a principal components analysis (PCA) revealed two extra valuable variables that allowed to further classifying microglia in a total of eight sub-clusters or types. The spatio-temporal distribution of these different morphotypes in our rat inflammation model allowed to relate specific morphotypes with microglial activation status and brain location. An objective method for microglia classification based on morphological parameters is proposed. Main points Microglia undergo a quantifiable morphological change upon neuraminidase induced inflammation.Hierarchical cluster and principal components analysis allow morphological classification of microglia.Brain location of microglia is a relevant factor.

  20. Microglia Morphological Categorization in a Rat Model of Neuroinflammation by Hierarchical Cluster and Principal Components Analysis

    PubMed Central

    Fernández-Arjona, María del Mar; Grondona, Jesús M.; Granados-Durán, Pablo; Fernández-Llebrez, Pedro; López-Ávalos, María D.

    2017-01-01

    It is known that microglia morphology and function are closely related, but only few studies have objectively described different morphological subtypes. To address this issue, morphological parameters of microglial cells were analyzed in a rat model of aseptic neuroinflammation. After the injection of a single dose of the enzyme neuraminidase (NA) within the lateral ventricle (LV) an acute inflammatory process occurs. Sections from NA-injected animals and sham controls were immunolabeled with the microglial marker IBA1, which highlights ramifications and features of the cell shape. Using images obtained by section scanning, individual microglial cells were sampled from various regions (septofimbrial nucleus, hippocampus and hypothalamus) at different times post-injection (2, 4 and 12 h). Each cell yielded a set of 15 morphological parameters by means of image analysis software. Five initial parameters (including fractal measures) were statistically different in cells from NA-injected rats (most of them IL-1β positive, i.e., M1-state) compared to those from control animals (none of them IL-1β positive, i.e., surveillant state). However, additional multimodal parameters were revealed more suitable for hierarchical cluster analysis (HCA). This method pointed out the classification of microglia population in four clusters. Furthermore, a linear discriminant analysis (LDA) suggested three specific parameters to objectively classify any microglia by a decision tree. In addition, a principal components analysis (PCA) revealed two extra valuable variables that allowed to further classifying microglia in a total of eight sub-clusters or types. The spatio-temporal distribution of these different morphotypes in our rat inflammation model allowed to relate specific morphotypes with microglial activation status and brain location. An objective method for microglia classification based on morphological parameters is proposed. Main points Microglia undergo a quantifiable morphological change upon neuraminidase induced inflammation.Hierarchical cluster and principal components analysis allow morphological classification of microglia.Brain location of microglia is a relevant factor. PMID:28848398

  1. ZnO nanostructures with different morphology for enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Peter, I. John; Praveen, E.; Vignesh, G.; Nithiananthi, P.

    2017-12-01

    ZnO nanomaterials of different morphologies have been synthesized and the effect of morphology on Photocatalytic activity on natural dye has been investigated. Crystalline size and lattice strain of the synthesized particles are determined by XRD analysis and Williamson-Hall (W-H) method respectively. All other important physical parameters such as strain, stress and energy density values are also calculated using W-H analysis using different models such as uniform deformation model, uniform deformation stress model and uniform deformation energy density model. A shift in the peak of FTIR spectrum of ZnO is observed due to morphology effects. The SEM analysis reveals that the synthesized ZnO nanoparticles appear as flake, rod and dot. ZnO quantum dot exhibits higher photocatalytic activity comparing to the other morphologies. Larger surface area, high adsorption rate, large charge separation and the slow recombination of electrons/holes in ZnO dots establish dots as favorable morphology for good photocatalysis. Among the three, ZnO quantum dot shows three-times enhancement in the kinetic rate constants of photocatalysis. The results confirm that availability of specific (active) surface area, photocatalytic potential and quantum confinement of photo-induced carriers differ with morphology.

  2. Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers.

    PubMed

    Lanjakornsiripan, Darin; Pior, Baek-Jun; Kawaguchi, Daichi; Furutachi, Shohei; Tahara, Tomoaki; Katsuyama, Yu; Suzuki, Yutaka; Fukazawa, Yugo; Gotoh, Yukiko

    2018-04-24

    Non-pial neocortical astrocytes have historically been thought to comprise largely a nondiverse population of protoplasmic astrocytes. Here we show that astrocytes of the mouse somatosensory cortex manifest layer-specific morphological and molecular differences. Two- and three-dimensional observations revealed that astrocytes in the different layers possess distinct morphologies as reflected by differences in cell orientation, territorial volume, and arborization. The extent of ensheathment of synaptic clefts by astrocytes in layer II/III was greater than that by those in layer VI. Moreover, differences in gene expression were observed between upper-layer and deep-layer astrocytes. Importantly, layer-specific differences in astrocyte properties were abrogated in reeler and Dab1 conditional knockout mice, in which neuronal layers are disturbed, suggesting that neuronal layers are a prerequisite for the observed morphological and molecular differences of neocortical astrocytes. This study thus demonstrates the existence of layer-specific interactions between neurons and astrocytes, which may underlie their layer-specific functions.

  3. As(V) removal capacity of FeCu bimetallic nanoparticles in aqueous solutions: The influence of Cu content and morphologic changes in bimetallic nanoparticles.

    PubMed

    Sepúlveda, Pamela; Rubio, María A; Baltazar, Samuel E; Rojas-Nunez, J; Sánchez Llamazares, J L; Garcia, Alejandra García; Arancibia-Miranda, Nicolás

    2018-08-15

    In this study, bimetallic nanoparticles (BMNPs) with different mass ratios of Cu and Fe were evaluated. The influence of the morphology on the removal of pollutants was explored through theoretical and experimental studies, which revealed the best structure for removing arsenate (As(V)) in aqueous systems. To evidence the surface characteristics and differences among BMNPs with different mass proportions of Fe and Cu, several characterization techniques were used. Microscopy techniques and molecular dynamics simulations were applied to determine the differences in morphology and structure. In addition, X-ray diffraction (XRD) was used to determine the presence of various oxides. Finally, the magnetization response was evaluated, revealing differences among the materials. Our cumulative data show that BMNPs with low amounts of Cu (Fe 0.9 Cu 0.1 ) had a non-uniform core-shell structure with agglomerate-type chains of magnetite, whereas a Janus-like structure was observed in BMNPs with high amounts of Cu (Fe 0.5 Cu 0.5 ). However, a non-uniform core-shell structure (Fe 0.9 Cu 0.1 ) facilitated electron transfer among Fe, Cu and As, which increased the adsorption rate (k), capacity (q e ) and intensity (n). The mechanism of As removal was also explored in a comparative study of the phase and morphology of BMNPs pre- and post-sorption. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Morphological and physicochemical characterization of porous starches obtained from different botanical sources and amylolytic enzymes.

    PubMed

    Benavent-Gil, Yaiza; Rosell, Cristina M

    2017-10-01

    Porous starches might offer an attractive alternative as bio-adsorbents of a variety of compounds. However, morphology and physicochemical properties of starches must be understood before exploring their applications. Objective was to study the action of different amylolytic enzymes for producing porous starches. Wheat, rice, potato and cassava starches were treated with Amyloglucosidase (AMG), α-amylase (AM) and cyclodextrin-glycosyltransferase (CGTase). Morphological characteristics, chemical composition, adsorptive capacity and pasting/thermal properties were assessed. Scanning Electron Microscopy (SEM) showed porous structures with diverse pore size distribution, which was dependent on the enzyme type and starch source, but no differences were observed in the total granule surface occupied by pores. The adsorptive capacity analysis revealed that modified starches had high water absorptive capacity and showed different oil adsorptive capacity depending on the enzyme type. Amylose content analysis revealed different hydrolysis pattern of the amylases, suggesting that AMG mainly affected crystalline region meanwhile AM and CGTase attacked amorphous area. A heatmap illustrated the diverse pasting properties of the different porous starches, which also showed significant different thermal properties, with different behavior between cereal and tuber starches. Therefore, it is possible to modulate the properties of starches through the use of different enzymes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies

    PubMed Central

    Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming

    2015-01-01

    Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins was related to the morphology and surface nature. Electronmicroscopy revealed that the monodisperse Pd nanoparticles were uniformly deposited onto the surface of kaolins, ranging in diameter from 0.5 nm to 5.5 nm. The functional groups could not only improve the dispersion of kaolins with different morphologies in solution, but also enhance the interaction between Pd precursors and kaolins, thus preventing small Pd nanoparticles from agglomerating and leading to high activity for the catalytic hydrogenation of styrene. Pd-FK@APTES was more active compared to other samples. Selecting the kaolin morphology with a different surface nature allows the selective surface modification of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms could substantially improve catalytic activity. PMID:26333629

  6. Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming

    2015-09-01

    Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins was related to the morphology and surface nature. Electronmicroscopy revealed that the monodisperse Pd nanoparticles were uniformly deposited onto the surface of kaolins, ranging in diameter from 0.5 nm to 5.5 nm. The functional groups could not only improve the dispersion of kaolins with different morphologies in solution, but also enhance the interaction between Pd precursors and kaolins, thus preventing small Pd nanoparticles from agglomerating and leading to high activity for the catalytic hydrogenation of styrene. Pd-FK@APTES was more active compared to other samples. Selecting the kaolin morphology with a different surface nature allows the selective surface modification of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms could substantially improve catalytic activity.

  7. Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies.

    PubMed

    Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming

    2015-09-03

    Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins was related to the morphology and surface nature. Electronmicroscopy revealed that the monodisperse Pd nanoparticles were uniformly deposited onto the surface of kaolins, ranging in diameter from 0.5 nm to 5.5 nm. The functional groups could not only improve the dispersion of kaolins with different morphologies in solution, but also enhance the interaction between Pd precursors and kaolins, thus preventing small Pd nanoparticles from agglomerating and leading to high activity for the catalytic hydrogenation of styrene. Pd-FK@APTES was more active compared to other samples. Selecting the kaolin morphology with a different surface nature allows the selective surface modification of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms could substantially improve catalytic activity.

  8. Three-dimensional morphology of GaP-GaAs nanowires revealed by transmission electron microscopy tomography.

    PubMed

    Verheijen, Marcel A; Algra, Rienk E; Borgström, Magnus T; Immink, George; Sourty, Erwan; Enckevort, Willem J P van; Vlieg, Elias; Bakkers, Erik P A M

    2007-10-01

    We have investigated the morphology of heterostructured GaP-GaAs nanowires grown by metal-organic vapor-phase epitaxy as a function of growth temperature and V/III precursor ratio. The study of heterostructured nanowires with transmission electron microscopy tomography allowed the three-dimensional morphology to be resolved, and discrimination between the effect of axial (core) and radial (shell) growth on the morphology. A temperature- and precursor-dependent structure diagram for the GaP nanowire core morphology and the evolution of the different types of side facets during GaAs and GaP shell growth were constituted.

  9. Evaluation of biogeneric design techniques with CEREC CAD/CAM system

    PubMed Central

    2015-01-01

    PURPOSE The aim of this study was to evaluate occlusal contacts generated by 3 different biogeneric design modes (individual (BI), copy (BC), reference (BR)) of CEREC software and to assess the designs subjectively. MATERIALS AND METHODS Ten pairs of maxillary and mandibular casts were obtained from full dentate individuals. Gypsum cast contacts were quantified with articulating paper and digital impressions were taken. Then, all ceramic crown preparation was performed on the left first molar teeth and digital impressions of prepared teeth were made. BI, BC, and BR crowns were designed. Occlusal images of designs including occlusal contacts were superimposed on the gypsum cast images and corresponding contacts were determined. Three designs were evaluated by the students. RESULTS The results of the study revealed that there was significant difference among the number of contacts of gypsum cast and digital models (P<.05). The comparison of the percentage of virtual contacts of three crown designs which were identical to the contacts of original gypsum cast revealed that BI and BR designs showed significantly higher percentages of identical contacts compared with BC design (P<.05). Subjective assessment revealed that students generally found BI designs and BR designs natural regarding naturalness of fissure morphology and cusp shape and cusp tip position. For general occlusal morphology, student groups generally found BI design "too strong" or "perfect", BC design "too weak", and BR design "perfect". CONCLUSION On a prepared tooth, three different biogeneric design modes of a CAD/CAM software reveals different crown designs regarding occlusal contacts and morphology. PMID:26816572

  10. In Vitro Morphological Characteristics of Pyrenophora tritici-repentis Isolates from Several Algerian Agro-Ecological Zones

    PubMed Central

    Benslimane, Hamida; Aouali, Souhila; Khalfi, Assia; Ali, Shaukat; Bouznad, Zouaoui

    2017-01-01

    Tan spot caused by the fungus Pyrenophora triticirepentis is a serious disease of wheat, which is on increase in recent years in Mediterranean region. In the field this fungus produces a diamond-shaped necrotic lesions with a yellow halo on wheat foliage. The objective of this study was to characterize and compare several monospore isolates of P. tritici-repentis collected from different infected wheat fields in various locations of Algeria, and find the morphological differences between them, if any. The results revealed wide morphologically variation among the isolates based on colony colors and texture, mycelial radial growth and conidial size. PMID:28381957

  11. Morphology of the European species of the aphid genus Eulachnus (Hemiptera: Aphididae: Lachninae) - A SEM comparative and integrative study.

    PubMed

    Kanturski, Mariusz; Karcz, Jagna; Wieczorek, Karina

    2015-09-01

    Scanning electron microscopy (SEM) methods were used for the first time to elucidate the external morphology of the European species of the genus Eulachnus (Hemiptera: Aphididae: Lachninae), a representative genus of the conifer-feeding aphids tribe Eulachnini. We examined and compared the external morphology of apterous and alate viviparous females from the parthenogenetic generation as well as oviparous females and alate males belonging to the sexual generation. FE-SEM images based on HMDS and cryo-SEM preparation techniques revealed better image quality than the CPD technique in regard to surface tension and morphological signs of cell deteriorations (i.e., existence of depressions, drying artifacts and membrane blebs). Three morphologically different species groups "agilis", "brevipilosus" and "cembrae" were proposed due to the differences in head, antennae, legs and dorsal chaetotaxy as well as dorsal sclerotization. The most characteristic features and differences of representatives of these groups are presented and discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. High efficient perovskite solar cell material CH3NH3PbI3: Synthesis of films and their characterization

    NASA Astrophysics Data System (ADS)

    Bera, Amrita Mandal; Wargulski, Dan Ralf; Unold, Thomas

    2018-04-01

    Hybrid organometal perovskites have been emerged as promising solar cell material and have exhibited solar cell efficiency more than 20%. Thin films of Methylammonium lead iodide CH3NH3PbI3 perovskite materials have been synthesized by two different (one step and two steps) methods and their morphological properties have been studied by scanning electron microscopy and optical microscope imaging. The morphology of the perovskite layer is one of the most important parameters which affect solar cell efficiency. The morphology of the films revealed that two steps method provides better surface coverage than the one step method. However, the grain sizes were smaller in case of two steps method. The films prepared by two steps methods on different substrates revealed that the grain size also depend on the substrate where an increase of the grain size was found from glass substrate to FTO with TiO2 blocking layer to FTO without any change in the surface coverage area. Present study reveals that an improved quality of films can be obtained by two steps method by an optimization of synthesis processes.

  13. Surface morphology of chitin highly related with the isolated body part of butterfly (Argynnis pandora).

    PubMed

    Kaya, Murat; Bitim, Betül; Mujtaba, Muhammad; Koyuncu, Turgay

    2015-11-01

    This study was conducted to understand the differences in the physicochemical properties of chitin samples isolated from the wings and the other body parts except the wings (OBP) of a butterfly species (Argynnis pandora). The same isolation method was used for obtaining chitin specimens from both types of body parts. The chitin content of the wings (22%) was recorded as being much higher than the OBP (8%). The extracted chitin samples were characterized via FT-IR, TGA, XRD, SEM, and elemental analysis techniques. Results of these characterizations revealed that the chitins from both structures (wings and OBP) were very similar, except for their surface morphologies. SEM results demonstrated one type of surface morphology for the wings and four different surface morphologies for the OBP. Therefore, it can be hypothesized that the surface morphology of the chitin is highly related with the body part. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Why are the seed cones of conifers so diverse at pollination?

    PubMed

    Losada, Juan M; Leslie, Andrew B

    2018-06-08

    Form and function relationships in plant reproductive structures have long fascinated biologists. Although the intricate associations between specific pollinators and reproductive morphology have been widely explored among animal-pollinated plants, the evolutionary processes underlying the diverse morphologies of wind-pollinated plants remain less well understood. Here we study how this diversity may have arisen by focusing on two conifer species in the pine family that have divergent reproductive cone morphologies at pollination. Standard histology methods, artificial wind pollination assays and phylogenetic analyses were used in this study. A detailed study of cone ontogeny in these species reveals that variation in the rate at which their cone scales mature means that pollination occurs at different stages in their development, and thus in association with different specific morphologies. Pollination experiments nevertheless indicate that both species effectively capture pollen. In wind-pollinated plants, morphological diversity may result from simple variation in development among lineages rather than selective pressures for any major differences in function or performance. This work also illustrates the broader importance of developmental context in understanding plant form and function relationships; because plant reproductive structures perform many different functions over their lifetime, subtle differences in development may dramatically alter the specific morphologies that they use to meet these demands.

  15. Morphology of a Wetland Stream

    PubMed

    Jurmu; Andrle

    1997-11-01

    / Little attention has been paid to wetland stream morphology in the geomorphological and environmental literature, and in the recently expanding wetland reconstruction field, stream design has been based primarily on stream morphologies typical of nonwetland alluvial environments. Field investigation of a wetland reach of Roaring Brook, Stafford, Connecticut, USA, revealed several significant differences between the morphology of this stream and the typical morphology of nonwetland alluvial streams. Six morphological features of the study reach were examined: bankfull flow, meanders, pools and riffles, thalweg location, straight reaches, and cross-sectional shape. It was found that bankfull flow definitions originating from streams in nonwetland environments did not apply. Unusual features observed in the wetland reach include tight bends and a large axial wavelength to width ratio. A lengthy straight reach exists that exceeds what is typically found in nonwetland alluvial streams. The lack of convex bank point bars in the bends, a greater channel width at riffle locations, an unusual thalweg location, and small form ratios (a deep and narrow channel) were also differences identified. Further study is needed on wetland streams of various regions to determine if differences in morphology between alluvial and wetland environments can be applied in order to improve future designs of wetland channels.KEY WORDS: Stream morphology; Wetland restoration; Wetland creation; Bankfull; Pools and riffles; Meanders; Thalweg

  16. Convergent, Parallel and Correlated Evolution of Trophic Morphologies in the Subfamily Schizothoracinae from the Qinghai-Tibetan Plateau

    PubMed Central

    Qi, Delin; Chao, Yan; Guo, Songchang; Zhao, Lanying; Li, Taiping; Wei, Fulei; Zhao, Xinquan

    2012-01-01

    Schizothoracine fishes distributed in the water system of the Qinghai-Tibetan plateau (QTP) and adjacent areas are characterized by being highly adaptive to the cold and hypoxic environment of the plateau, as well as by a high degree of diversity in trophic morphology due to resource polymorphisms. Although convergent and parallel evolution are prevalent in the organisms of the QTP, it remains unknown whether similar evolutionary patterns have occurred in the schizothoracine fishes. Here, we constructed for the first time a tentative molecular phylogeny of the schizothoracine fishes based on the complete sequences of the cytochrome b gene. We employed this molecular phylogenetic framework to examine the evolution of trophic morphologies. We used Pagel's maximum likelihood method to estimate the evolutionary associations of trophic morphologies and food resource use. Our results showed that the molecular and published morphological phylogenies of Schizothoracinae are partially incongruent with respect to some intergeneric relationships. The phylogenetic results revealed that four character states of five trophic morphologies and of food resource use evolved at least twice during the diversification of the subfamily. State transitions are the result of evolutionary patterns including either convergence or parallelism or both. Furthermore, our analyses indicate that some characters of trophic morphologies in the Schizothoracinae have undergone correlated evolution, which are somewhat correlated with different food resource uses. Collectively, our results reveal new examples of convergent and parallel evolution in the organisms of the QTP. The adaptation to different trophic niches through the modification of trophic morphologies and feeding behaviour as found in the schizothoracine fishes may account for the formation and maintenance of the high degree of diversity and radiations in fish communities endemic to QTP. PMID:22470515

  17. Race- and Sex-Related Differences in Retinal Thickness and Foveal Pit Morphology

    PubMed Central

    Wagner-Schuman, Melissa; Dubis, Adam M.; Nordgren, Rick N.; Lei, Yuming; Odell, Daniel; Chiao, Hellen; Weh, Eric; Fischer, William; Sulai, Yusufu; Dubra, Alfredo

    2011-01-01

    Purpose. To examine sex- and race-associated differences in macular thickness and foveal pit morphology by using spectral-domain optical coherence tomography (SD-OCT). Methods. One hundred eighty eyes of 90 healthy patients (43 women, 47 men) underwent retinal imaging with spectral-domain OCT. The lateral scale of each macular volume scan was corrected for individual differences in axial length by ocular biometry. From these corrected volumes, Early Treatment Diabetic Retinopathy Study (ETDRS) grids of retinal thickness were generated and compared between the groups. Foveal morphology was measured with previously described algorithms. Results. Compared with the Caucasians, the Africans and African Americans had reduced central subfield thickness. Central subfield thickness was also reduced in the women compared with the men, although the women also showed significant thinning in parafoveal regions. There was no difference between the sexes in foveal pit morphology; however, the Africans/African Americans had significantly deeper and broader foveal pits than the Caucasians. Conclusions. Previous studies have reported race- and sex-associated differences in macular thickness, and the inference has been that these differences represent similar anatomic features. However, the data on pit morphology collected in the present study reveal an important and significant variation. Between the sexes, the differences are due to global variability in retinal thickness, whereas the variation in thickness observed between the races appears to be driven by differences in foveal pit morphology. These differences have important implications for the use of SD-OCT in detecting and diagnosing retinal disease. PMID:20861480

  18. The diversity and structure of marine protists in the coastal waters of China revealed by morphological observation and 454 pyrosequencing

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Song, Shuqun; Chen, Tiantian; Li, Caiwen

    2017-04-01

    Pyrosequencing of the 18S rRNA gene has been widely adopted to study the eukaryotic diversity in various types of environments, and has an advantage over traditional morphology methods in exploring unknown microbial communities. To comprehensively assess the diversity and community composition of marine protists in the coastal waters of China, we applied both morphological observations and high-throughput sequencing of the V2 and V3 regions of 18S rDNA simultaneously to analyze samples collected from the surface layer of the Yellow and East China Seas. Dinoflagellates, diatoms and ciliates were the three dominant protistan groups as revealed by the two methods. Diatoms were the first dominant protistan group in the microscopic observations, with Skeletonema mainly distributed in the nearshore eutrophic waters and Chaetoceros in higher temperature and higher pH waters. The mixotrophic dinoflagellates, Gymnodinium and Gyrodinium, were more competitive in the oligotrophic waters. The pyrosequencing method revealed an extensive diversity of dinoflagellates. Chaetoceros was the only dominant diatom group in the pyrosequencing dataset. Gyrodinium represented the most abundant reads and dominated the offshore oligotrophic protistan community as they were in the microscopic observations. The dominance of parasitic dinoflagellates in the pyrosequencing dataset, which were overlooked in the morphological observations, indicates more attention should be paid to explore the potential role of this group. Both methods provide coherent clustering of samples. Nutrient levels, salinity and pH were the main factors influencing the distribution of protists. This study demonstrates that different primer pairs used in the pyrosequencing will indicate different protistan community structures. A suitable marker may reveal more comprehensive composition of protists and provide valuable information on environmental drivers.

  19. Blood platelet counts, morphology and morphometry in lions, Panthera leo.

    PubMed

    Du Plessis, L

    2009-09-01

    Due to logistical problems in obtaining sufficient blood samples from apparently healthy animals in the wild in order to establish normal haematological reference values, only limited information regarding the blood platelet count and morphology of free-living lions (Panthera leo) is available. This study provides information on platelet counts and describes their morphology with particular reference to size in two normal, healthy and free-ranging lion populations. Blood samples were collected from a total of 16 lions. Platelet counts, determined manually, ranged between 218 and 358 x 10(9)/l. Light microscopy showed mostly activated platelets of various sizes with prominent granules. At the ultrastructural level the platelets revealed typical mammalian platelet morphology. However, morphometric analysis revealed a significant difference (P < 0.001) in platelet size between the two groups of animals. Basic haematological information obtained in this study may be helpful in future comparative studies between animals of the same species as well as in other felids.

  20. Comparative proteomic analysis reveals alterations in development and photosynthesis-related proteins in diploid and triploid rice.

    PubMed

    Wang, Shuzhen; Chen, Wenyue; Yang, Changdeng; Yao, Jian; Xiao, Wenfei; Xin, Ya; Qiu, Jieren; Hu, Weimin; Yao, Haigen; Ying, Wu; Fu, Yaping; Tong, Jianxin; Chen, Zhongzhong; Ruan, Songlin; Ma, Huasheng

    2016-09-13

    Polyploidy has pivotal influences on rice (Oryza sativa L.) morphology and physiology, and is very important for understanding rice domestication and improving agricultural traits. Diploid (DP) and triploid (TP) rice shows differences in morphological parameters, such as plant height, leaf length, leaf width and the physiological index of chlorophyll content. However, the underlying mechanisms determining these morphological differences are remain to be defined. To better understand the proteomic changes between DP and TP, tandem mass tags (TMT) mass spectrometry (MS)/MS was used to detect the significant changes to protein expression between DP and TP. Results indicated that both photosynthesis and metabolic pathways were highly significantly associated with proteomic alteration between DP and TP based on biological process and pathway enrichment analysis, and 13 higher abundance chloroplast proteins involving in these two pathways were identified in TP. Quantitative real-time PCR analysis demonstrated that 5 of the 13 chloroplast proteins ATPF, PSAA, PSAB, PSBB and RBL in TP were higher abundance compared with those in DP. This study integrates morphology, physiology and proteomic profiling alteration of DP and TP to address their underlying different molecular mechanisms. Our finding revealed that ATPF, PSAA, PSAB, PSBB and RBL can induce considerable expression changes in TP and may affect the development and growth of rice through photosynthesis and metabolic pathways.

  1. [The morphological features of skin wounds inflicted by joinery hand saws designed for different types of sawing].

    PubMed

    Sarkisian, B A; Azarov, P A

    2014-01-01

    The objective of the present work was to study the morphological features of skin wounds inflicted by joinery hand saws designed for longitudinal, transverse, and mixed sawing. A total of 60 injuries to the thigh skin inflicted by the recurring and reciprocating saw movements were simulated. The hand saws had 5 mm high "sharp" and "blunt"-tipped teeth. The analysis of the morphological features of the wounds revealed differences in their length and depth, shape of edge cuts and defects, and the relief of the walls depending on the sawtooth sharpness and the mode of sawing. It is concluded that morphological features of the wounds may be used to determine the type of the saw, the sharpness of its teeth, the direction and frequency of its movements.

  2. Run for your life, but bite for your rights? How interactions between natural and sexual selection shape functional morphology across habitats

    NASA Astrophysics Data System (ADS)

    Gomes, Verónica; Carretero, Miguel A.; Kaliontzopoulou, Antigoni

    2018-02-01

    A central issue in evolutionary biology is how morphology, performance, and habitat use coevolve. If morphological variation is tightly associated with habitat use, then differences in morphology should affect fitness through their effect on performance within specific habitats. In this study, we investigate how evolutionary forces mold morphological traits and performance differently given the surrounding environment, at the intraspecific level. For this purpose, we selected populations of the lizard Podarcis bocagei from two different habitat types, agricultural walls and dunes, which we expected to reflect saxicolous vs ground-dwelling habits. In the laboratory, we recorded morphological traits as well as performance traits by measuring sprint speed, climbing capacity, maneuverability, and bite force. Our results revealed fast-evolving ecomorphological variation among populations of P. bocagei, where a direct association existed between head morphology and bite performance. However, we could not establish links between limb morphology and locomotor performance at the individual level. Lizards from walls were better climbers than those from dunes, suggesting a very fast evolutionary response. Interestingly, a significant interaction between habitat and sex was detected in climbing performance. In addition, lizards from dunes bit harder than those from walls, although sexual differentiation was definitely the main factor driving variation in head functional morphology. Taking into account all the results, we found a complex interaction between natural and sexual selection on whole-organism performance, which are, in some cases, reflected in morphological variation.

  3. Run for your life, but bite for your rights? How interactions between natural and sexual selection shape functional morphology across habitats.

    PubMed

    Gomes, Verónica; Carretero, Miguel A; Kaliontzopoulou, Antigoni

    2018-01-02

    A central issue in evolutionary biology is how morphology, performance, and habitat use coevolve. If morphological variation is tightly associated with habitat use, then differences in morphology should affect fitness through their effect on performance within specific habitats. In this study, we investigate how evolutionary forces mold morphological traits and performance differently given the surrounding environment, at the intraspecific level. For this purpose, we selected populations of the lizard Podarcis bocagei from two different habitat types, agricultural walls and dunes, which we expected to reflect saxicolous vs ground-dwelling habits. In the laboratory, we recorded morphological traits as well as performance traits by measuring sprint speed, climbing capacity, maneuverability, and bite force. Our results revealed fast-evolving ecomorphological variation among populations of P. bocagei, where a direct association existed between head morphology and bite performance. However, we could not establish links between limb morphology and locomotor performance at the individual level. Lizards from walls were better climbers than those from dunes, suggesting a very fast evolutionary response. Interestingly, a significant interaction between habitat and sex was detected in climbing performance. In addition, lizards from dunes bit harder than those from walls, although sexual differentiation was definitely the main factor driving variation in head functional morphology. Taking into account all the results, we found a complex interaction between natural and sexual selection on whole-organism performance, which are, in some cases, reflected in morphological variation.

  4. Voxel-Wise Comparisons of the Morphology of Diffusion Tensors Across Groups of Experimental Subjects

    PubMed Central

    Bansal, Ravi; Staib, Lawrence H.; Plessen, Kerstin J.; Xu, Dongrong; Royal, Jason; Peterson, Bradley S.

    2007-01-01

    Water molecules in the brain diffuse preferentially along the fiber tracts within white matter, which form the anatomical connections across spatially distant brain regions. A diffusion tensor (DT) is a probabilistic ellipsoid composed of 3 orthogonal vectors, each having a direction and an associated scalar magnitude, that represent the probability of water molecules diffusing in each of those directions. The 3D morphologies of DTs can be compared across groups of subjects to reveal disruptions in structural organization and neuroanatomical connectivity of the brains of persons with various neuropsychiatric illnesses. Comparisons of tensor morphology across groups have typically been performed on scalar measures of diffusivity, such as Fractional Anisotropy (FA), rather than directly on the complex 3D morphologies of DTs. Scalar measures, however, are related in nonlinear ways to the eigenvalues and eigenvectors that create the 3D morphologies of DTs. We present a mathematical framework that permits the direct comparison across groups of mean eigenvalues and eigenvectors of individual DTs. We show that group-mean eigenvalues and eigenvectors are multivariate Gaussian distributed, and we use the Delta method to compute their approximate covariance matrices. Our results show that the theoretically computed Mean Tensor (MT) eigenvectors and eigenvalues match well with their respective true values. Furthermore, a comparison of synthetically generated groups of DTs highlights the limitations of using FA to detect group differences. Finally, analyses of in vivo DT data using our method reveal significant between-group differences in diffusivity along fiber tracts within white matter, whereas analyses based on FA values failed to detect some of these differences. PMID:18006284

  5. Behavior of osteoblast-like cells on calcium-deficient hydroxyapatite ceramics composed of particles with different shapes and sizes.

    PubMed

    Kamitakahara, Masanobu; Uno, Yuika; Ioku, Koji

    2014-01-01

    In designing the biomaterials, it is important to control their surface morphologies, because they affect the interactions between the materials and cells. We previously reported that porous calcium-deficient hydroxyapatite (HA) ceramics composed of rod-like particles had advantages over sintered porous HA ceramics; however, the effects of the surface morphology of calcium-deficient HA ceramics on cell behavior have remained unclear. Using a hydrothermal process, we successfully prepared porous calcium-deficient HA ceramics with different surface morphologies, composed of plate-like particles of 200-300, 500-800 nm, or 2-3 μm in width and rod-like particles of 1 or 3-5 μm in width, respectively. The effects of these surface morphologies on the behavior of osteoblast-like cells were examined. Although the numbers of cells adhered to the ceramic specimens did not differ significantly among the specimens, the proliferation rates of cells on the ceramics decreased with decreasing particle size. Our results reveal that controlling the surface morphology that is governed by particle shape and size is important for designing porous calcium-deficient HA ceramics.

  6. Predicting age from cortical structure across the lifespan.

    PubMed

    Madan, Christopher R; Kensinger, Elizabeth A

    2018-03-01

    Despite interindividual differences in cortical structure, cross-sectional and longitudinal studies have demonstrated a large degree of population-level consistency in age-related differences in brain morphology. This study assessed how accurately an individual's age could be predicted by estimates of cortical morphology, comparing a variety of structural measures, including thickness, gyrification and fractal dimensionality. Structural measures were calculated across up to seven different parcellation approaches, ranging from one region to 1000 regions. The age prediction framework was trained using morphological measures obtained from T1-weighted MRI volumes collected from multiple sites, yielding a training dataset of 1056 healthy adults, aged 18-97. Age predictions were calculated using a machine-learning approach that incorporated nonlinear differences over the lifespan. In two independent, held-out test samples, age predictions had a median error of 6-7 years. Age predictions were best when using a combination of cortical metrics, both thickness and fractal dimensionality. Overall, the results reveal that age-related differences in brain structure are systematic enough to enable reliable age prediction based on metrics of cortical morphology. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Length scale hierarchy and spatiotemporal change of alluvial morphologies over the Selenga River delta, Russia

    NASA Astrophysics Data System (ADS)

    Dong, T. Y.; Nittrouer, J.; McElroy, B. J.; Ma, H.; Czapiga, M. J.; Il'icheva, E.; Pavlov, M.; Parker, G.

    2017-12-01

    The movement of water and sediment in natural channels creates various types of alluvial morphologies that span length scales from dunes to deltas. The behavior of these morphologies is controlled microscopically by hydrodynamic conditions and bed material size, and macroscopically by hydrologic and geological settings. Alluvial morphologies can be modeled as either diffusive or kinematic waves, in accordance with their respective boundary conditions. Recently, it has been shown that the difference between these two dynamic behaviors of alluvial morphologies can be characterized by the backwater number, which is a dimensionless value normalizing the length scale of a morphological feature to its local hydrodynamic condition. Application of the backwater number has proven useful for evaluating the size of morphologies, including deltas (e.g., by assessing the preferential avulsion location of a lobe), and for comparing bedform types across different fluvial systems. Yet two critical questions emerge when applying the backwater number: First, how do different types of alluvial morphologies compare within a single deltaic system, where there is a hydrodynamic transition from uniform to non-uniform flow? Second, how do different types of morphologies evolve temporally within a system as a function of changing water discharge? This study addresses these questions by compiling and analyzing field data from the Selenga River delta, Russia, which include measurements of flow velocity, channel geometry, bed material grain size, and channel slope, as well as length scales of various morphologies, including dunes, island bars, meanders, bifurcations, and delta lobes. Data analyses reveal that the length scale of morphologies decrease and the backwater number increases as flow transitions from uniform to non-uniform conditions progressing downstream. It is shown that the evaluated length scale hierarchy and planform distribution of different morphologies can be used to estimate slope, shear velocity and sediment flux within this depositional system. The findings from this research can be applied to evaluate spatially and temporally varying morphodynamic conditions, based on structures measured from both modern systems and ancient sedimentary records.

  8. The mitochondrial genomes of Campodea fragilis and C. lubbocki(Hexapoda: Diplura): high genetic divergence in a morphologically uniformtaxon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podsiadlowski, L.; Carapelli, A.; Nardi, F.

    2005-12-01

    Mitochondrial genomes from two dipluran hexapods of the genus Campodea have been sequenced. Gene order is the same as in most other hexapods and crustaceans. Secondary structures of tRNAs reveal specific structural changes in tRNA-C, tRNA-R, tRNA-S1 and tRNA-S2. Comparative analyses of nucleotide and amino acid composition, as well as structural features of both ribosomal RNA subunits, reveal substantial differences among the analyzed taxa. Although the two Campodea species are morphologically highly uniform, genetic divergence is larger than expected, suggesting a long evolutionary history under stable ecological conditions.

  9. Hemodynamic and morphological characteristics of unruptured posterior communicating artery aneurysms with oculomotor nerve palsy.

    PubMed

    Lv, Nan; Yu, Ying; Xu, Jinyu; Karmonik, Christof; Liu, Jianmin; Huang, Qinghai

    2016-08-01

    OBJECT Unruptured posterior communicating artery (PCoA) aneurysms with oculomotor nerve palsy (ONP) have a very high risk of rupture. This study investigated the hemodynamic and morphological characteristics of intracranial aneurysms with high rupture risk by analyzing PCoA aneurysms with ONP. METHODS Fourteen unruptured PCoA aneurysms with ONP, 33 ruptured PCoA aneurysms, and 21 asymptomatic unruptured PCoA aneurysms were included in this study. The clinical, morphological, and hemodynamic characteristics were compared among the different groups. RESULTS The clinical characteristics did not differ among the 3 groups (p > 0.05), whereas the morphological and hemodynamic analyses showed that size, aspect ratio, size ratio, undulation index, nonsphericity index, ellipticity index, normalized wall shear stress (WSS), and percentage of low WSS area differed significantly (p < 0.05) among the 3 groups. Furthermore, multiple comparisons revealed that these parameters differed significantly between the ONP group and the asymptomatic unruptured group and between the ruptured group and the asymptomatic unruptured group, except for size, which differed significantly only between the ONP group and the asymptomatic unruptured group (p = 0.0005). No morphological or hemodynamic parameters differed between the ONP group and the ruptured group. CONCLUSIONS Unruptured PCoA aneurysms with ONP demonstrated a distinctive morphological-hemodynamic pattern that was significantly different compared with asymptomatic unruptured PCoA aneurysms and was similar to ruptured PCoA aneurysms. The larger size, more irregular shape, and lower WSS might be related to the high rupture risk of PCoA aneurysms.

  10. A comprehensive study of catalytic, morphological and electronic properties of ligand-protected gold nanoclusters using XPS, STM, XAFS, and TPD techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qiyuan; Cen, Jiajie; Zhao, Yue

    Ultra-small gold nanoclusters were synthesized via a ligand exchange method and deposited onto different TiO2 supports to study their properties. STM imaging revealed that the as-synthesized gold nanoclusters had 2-D morphology consisting of monolayers of gold atoms. In conclusion, subsequent XPS, XAFS, and CO oxidation TPD results indicated that heat treatments of gold clusters at different temperatures significantly altered their electronic and catalytic properties due to ligand deprotection and cluster agglomeration.

  11. Electron beam irradiated polymer electrolyte film: Morphology, dielectric and AC conductivity studies

    NASA Astrophysics Data System (ADS)

    Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Vijeth, H.; Ganesh, S.; Devendrappa, H.

    2018-05-01

    The polymer (PVdF-co-HFP: LiClO4=90:10, PHL10) electrolyte films prepared by solution casting method and studied morphology, dielectric properties and ac conductivity before and after electron beam (EB) irradiation. The polarized optical micrographs reveals size of spherulite reduced with increasing EB dose represents increase in amorphousity. The dielectric measurements were studied at different temperatures and observed increase with frequency at different temperatures upon EB irradiation. The ac conductivity increases with frequency due to effect of EB dose.

  12. A comprehensive study of catalytic, morphological and electronic properties of ligand-protected gold nanoclusters using XPS, STM, XAFS, and TPD techniques

    DOE PAGES

    Wu, Qiyuan; Cen, Jiajie; Zhao, Yue; ...

    2017-12-08

    Ultra-small gold nanoclusters were synthesized via a ligand exchange method and deposited onto different TiO2 supports to study their properties. STM imaging revealed that the as-synthesized gold nanoclusters had 2-D morphology consisting of monolayers of gold atoms. In conclusion, subsequent XPS, XAFS, and CO oxidation TPD results indicated that heat treatments of gold clusters at different temperatures significantly altered their electronic and catalytic properties due to ligand deprotection and cluster agglomeration.

  13. Evolution of the structure and function of the vertebrate tongue

    PubMed Central

    Iwasaki, Shin-ichi

    2002-01-01

    Abstract Studies of the comparative morphology of the tongues of living vertebrates have revealed how variations in the morphology and function of the organ might be related to evolutional events. The tongue, which plays a very important role in food intake by vertebrates, exhibits significant morphological variations that appear to represent adaptation to the current environmental conditions of each respective habitat. This review examines the fundamental importance of morphology in the evolution of the vertebrate tongue, focusing on the origin of the tongue and on the relationship between morphology and environmental conditions. Tongues of various extant vertebrates, including those of amphibians, reptiles, birds and mammals, were analysed in terms of gross anatomy and microanatomy by light microscopy and by scanning and transmission electron microscopy. Comparisons of tongue morphology revealed a relationship between changes in the appearance of the tongue and changes in habitat, from a freshwater environment to a terrestrial environment, as well as a relationship between the extent of keratinization of the lingual epithelium and the transition from a moist or wet environment to a dry environment. The lingual epithelium of amphibians is devoid of keratinization while that of reptilians is keratinized to different extents. Reptiles live in a variety of habitats, from seawater to regions of high temperature and very high or very low humidity. Keratinization of the lingual epithelium is considered to have been acquired concomitantly with the evolution of amniotes. The variations in the extent of keratinization of the lingual epithelium, which is observed between various amniotes, appear to be secondary, reflecting the environmental conditions of different species. PMID:12171472

  14. Evolution of the structure and function of the vertebrate tongue.

    PubMed

    Iwasaki, Shin-ichi

    2002-07-01

    Studies of the comparative morphology of the tongues of living vertebrates have revealed how variations in the morphology and function of the organ might be related to evolutional events. The tongue, which plays a very important role in food intake by vertebrates, exhibits significant morphological variations that appear to represent adaptation to the current environmental conditions of each respective habitat. This review examines the fundamental importance of morphology in the evolution of the vertebrate tongue, focusing on the origin of the tongue and on the relationship between morphology and environmental conditions. Tongues of various extant vertebrates, including those of amphibians, reptiles, birds and mammals, were analysed in terms of gross anatomy and microanatomy by light microscopy and by scanning and transmission electron microscopy. Comparisons of tongue morphology revealed a relationship between changes in the appearance of the tongue and changes in habitat, from a freshwater environment to a terrestrial environment, as well as a relationship between the extent of keratinization of the lingual epithelium and the transition from a moist or wet environment to a dry environment. The lingual epithelium of amphibians is devoid of keratinization while that of reptilians is keratinized to different extents. Reptiles live in a variety of habitats, from seawater to regions of high temperature and very high or very low humidity. Keratinization of the lingual epithelium is considered to have been acquired concomitantly with the evolution of amniotes. The variations in the extent of keratinization of the lingual epithelium, which is observed between various amniotes, appear to be secondary, reflecting the environmental conditions of different species.

  15. PMMA/PS coaxial electrospinning: core-shell fiber morphology as a function of material parameters

    NASA Astrophysics Data System (ADS)

    Rahmani, Shahrzad; Arefazar, Ahmad; Latifi, Masoud

    2017-03-01

    Core-shell fibers of polymethyl methacrylate (PMMA) and polystyrene (PS) have been successfully electrospun by coaxial electrospinning. To evaluate the influence of the solvent on the final fiber morphology, four types of organic solvents were used in the shell solution while the core solvent was preserved. Morphological observations with scanning electron microscopy, transmission electron microscopy and optical microscopy revealed that both core and shell solvent properties were involved in the final fiber morphology. To explain this involvement, alongside a discussion of the Bagley solubility graph of PS and PMMA, a novel criterion based on solvent physical properties was introduced. A theoretical model based on the momentum conservation principle was developed and applied for describing the dependence of the core and shell diameters to their solvent combinations. Different concentrations of core and shell were also investigated in the coaxial electrospinning of PMMA/PS. The core-shell fiber morphologies with different core and shell concentrations were compared with their single electrospun fibers.

  16. Morphological and morphometric analysis of scutella of six species and two subspecies of Triatoma (Hemiptera: Reduviidae) in Mexico.

    PubMed

    Rivas, Nancy; Sánchez-Cordero, Víctor; Camacho, Alejandro D; Córdoba-Aguilar, Alejandro; Alejandre-Aguilar, Ricardo

    2017-12-01

    Morphological characters can be used to distinguish the vast majority of triatomine species, but the existence of high levels of phenotypic plasticity and recently diverged species can lead to erroneous determinations. To approach this problem, we analyzed the male and female morphologies of the scutella of Triatoma barberi, T. dimidiata, T. lecticularia, T. mexicana, T. recurva, T. rubida, and two sub-species, T. protracta protracta and T. protracta nahuatlae. Scutellum samples were observed by scanning electron microscopy and subjected to morphological analysis and morphometric investigation using a canonical discriminant analysis. The results revealed differences primarily in central depression shape, posterior process, and vestiture. We observed clear dimension-based differences in scutellum morphometry in all the taxa under study, providing sound evidence for species and subspecies differentiation. On the other hand, there is no difference between sexes in T. lecticularia, T. protracta protracta, and T. protracta nahuatlae. Our methodology can be implemented to differentiate species of the genus Triatoma. © 2017 The Society for Vector Ecology.

  17. Growth of different phases and morphological features of MnS thin films by chemical bath deposition: Effect of deposition parameters and annealing

    NASA Astrophysics Data System (ADS)

    Hannachi, Amira; Maghraoui-Meherzi, Hager

    2017-03-01

    Manganese sulfide thin films have been deposited on glass slides by chemical bath deposition (CBD) method. The effects of preparative parameters such as deposition time, bath temperature, concentration of precursors, multi-layer deposition, different source of manganese, different complexing agent and thermal annealing on structural and morphological film properties have been investigated. The prepared thin films have been characterized using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It exhibit the metastable forms of MnS, the hexagonal γ-MnS wurtzite phase with preferential orientation in the (002) plane or the cubic β-MnS zinc blende with preferential orientation in the (200) plane. Microstructural studies revealed the formation of MnS crystals with different morphologies, such as hexagons, spheres, cubes or flowers like.

  18. Effect of bath temperature on structure, morphology and thermoelectric properties of CoSb{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Suchitra, E-mail: suchitrayadav87@gmail.com; Pandya, Dinesh K.; Chaudhary, Sujeet

    2016-05-23

    CoSb{sub 3} thin films are deposited on conducting glass substrates (FTO) by electrodeposition at different bath temperatures (60°C, 70°C and 80°C) and the resulting influence of the bath temperature on the structure, morphology and electrical properties of films is investigated. X-ray diffraction confirms the formation of CoSb{sub 3} phase in the films. Scanning electron microscopy reveals that different morphologies ranging from branched nano-flakes to nano-needles evolve as bath temperature increases. It is concluded that a growth temperature of 80°C is suitable for producing CoSb{sub 3} films with such properties that show potential feasibility for thermoelectric applications.

  19. 404th Brookhaven Lecture

    ScienceCinema

    Stanislaus Wong

    2017-12-09

    "Nanovision: Nanotubes, Nanowires and Nanoparticles." Wong's "nanovision," as he explains, emerges from how the study of carbon and non-carbon forms of materials at the nanoscale reveals different morphological structures: some are tiny tubes, others are like wires, and others are in particle form. These minute nanostructures yield different properties as they are treated in different ways.

  20. Spiny trapdoor spiders (Euoplos) of eastern Australia: Broadly sympatric clades are differentiated by burrow architecture and male morphology.

    PubMed

    Wilson, Jeremy D; Hughes, Jane M; Raven, Robert J; Rix, Michael G; Schmidt, Daniel J

    2018-05-01

    Spiders of the infraorder Mygalomorphae are fast becoming model organisms for the study of biogeography and speciation. However, these spiders can be difficult to study in the absence of fundamental life history information. In particular, their cryptic nature hinders comprehensive sampling, and linking males with conspecific females can be challenging. Recently discovered differences in burrow entrance architecture and male morphology indicated that these challenges may have impeded our understanding of the trapdoor spider genus Euoplos in Australia's eastern mesic zone. We investigated the evolutionary significance of these discoveries using a multi-locus phylogenetic approach. Our results revealed the existence of a second, previously undocumented, lineage of Euoplos in the eastern mesic zone. This new lineage occurs in sympatry with a lineage previously known from the region, and the two are consistently divergent in their burrow entrance architecture and male morphology, revealing the suitability of these characters for use in phylogenetic studies. Divergent burrow entrance architecture and observed differences in microhabitat preferences are suggested to facilitate sympatry and syntopy between the lineages. Finally, by investigating male morphology and plotting it onto the phylogeny, we revealed that the majority of Euoplos species remain undescribed, and that males of an unnamed species from the newly discovered lineage had historically been linked, erroneously, to a described species from the opposite lineage. This paper clarifies the evolutionary relationships underlying life history diversity in the Euoplos of eastern Australia, and provides a foundation for urgently needed taxonomic revision of this genus. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Discovery of two new species of Crotalaria (Leguminosae, Crotalarieae) from Western Ghats, India

    PubMed Central

    2018-01-01

    Two new species of Fabaceae-Papilionoideae are described and illustrated. Crotalaria suffruticosa from Karul Ghat region of Maharashtra is morphologically close to C. albida and C. epunctata. C. multibracteata from Panhala region of Maharashtra resembles C. vestita. C. suffruticosa differs from C. albida and C. epunctata in its habit, leaf, inflorescence, callosity, keel type, stigma, style morphology and number of seeds/pod. To test if the new species differ from their morphologically most similar species, we measured various traits and performed a Principal Component Analysis (PCA). This analysis shows that the new species differs from similar species in gross morphology for several diagnostic traits and showed correlations between the variables or distance among groups and estimated the contribution of each character. Phylogenetic analyses were also conducted based on nuclear (ITS) and plastid (matK) markers. The analyses revealed nucleotide differences between the new species and their close allies attributing to their distinctiveness. A map and key including all species of Crotalaria from Maharashtra state are provided. Conservation status of the two new species have also been assessed. PMID:29447200

  2. Discovery of two new species of Crotalaria (Leguminosae, Crotalarieae) from Western Ghats, India.

    PubMed

    Rather, Shabir A; Subramaniam, Shweta; Danda, Shagun; Pandey, Arun K

    2018-01-01

    Two new species of Fabaceae-Papilionoideae are described and illustrated. Crotalaria suffruticosa from Karul Ghat region of Maharashtra is morphologically close to C. albida and C. epunctata. C. multibracteata from Panhala region of Maharashtra resembles C. vestita. C. suffruticosa differs from C. albida and C. epunctata in its habit, leaf, inflorescence, callosity, keel type, stigma, style morphology and number of seeds/pod. To test if the new species differ from their morphologically most similar species, we measured various traits and performed a Principal Component Analysis (PCA). This analysis shows that the new species differs from similar species in gross morphology for several diagnostic traits and showed correlations between the variables or distance among groups and estimated the contribution of each character. Phylogenetic analyses were also conducted based on nuclear (ITS) and plastid (matK) markers. The analyses revealed nucleotide differences between the new species and their close allies attributing to their distinctiveness. A map and key including all species of Crotalaria from Maharashtra state are provided. Conservation status of the two new species have also been assessed.

  3. Non-invasive genetics outperforms morphological methods in faecal dietary analysis, revealing wild boar as a considerable conservation concern for ground-nesting birds.

    PubMed

    Oja, Ragne; Soe, Egle; Valdmann, Harri; Saarma, Urmas

    2017-01-01

    Capercaillie (Tetrao urogallus) and other grouse species represent conservation concerns across Europe due to their negative abundance trends. In addition to habitat deterioration, predation is considered a major factor contributing to population declines. While the role of generalist predators on grouse predation is relatively well known, the impact of the omnivorous wild boar has remained elusive. We hypothesize that wild boar is an important predator of ground-nesting birds, but has been neglected as a bird predator because traditional morphological methods underestimate the proportion of birds in wild boar diet. To distinguish between different mammalian predator species, as well as different grouse prey species, we developed a molecular method based on the analysis of mitochondrial DNA that allows accurate species identification. We collected 109 wild boar faeces at protected capercaillie leks and surrounding areas and analysed bird consumption using genetic methods and classical morphological examination. Genetic analysis revealed that the proportion of birds in wild boar faeces was significantly higher (17.3%; 4.5×) than indicated by morphological examination (3.8%). Moreover, the genetic method allowed considerably more precise taxonomic identification of consumed birds compared to morphological analysis. Our results demonstrate: (i) the value of using genetic approaches in faecal dietary analysis due to their higher sensitivity, and (ii) that wild boar is an important predator of ground-nesting birds, deserving serious consideration in conservation planning for capercaillie and other grouse.

  4. Manganese- and 1-methyl-4-phenylpyridinium-induced neurotoxicity display differences in morphological, electrophysiological and genome-wide alterations: implications for idiopathic Parkinson's disease.

    PubMed

    Mythri, Rajeswara Babu; Raghunath, Narayana Reddy; Narwade, Santosh Chandrakant; Pandareesh, Mirazkar Dasharatha Rao; Sabitha, Kollarkandi Rajesh; Aiyaz, Mohamad; Chand, Bipin; Sule, Manas; Ghosh, Krittika; Kumar, Senthil; Shankarappa, Bhagyalakshmi; Soundararajan, Soundarya; Alladi, Phalguni Anand; Purushottam, Meera; Gayathri, Narayanappa; Deobagkar, Deepti Dileep; Laxmi, Thenkanidiyoor Rao; Srinivas Bharath, Muchukunte Mukunda

    2017-11-01

    Idiopathic Parkinson's disease and manganese-induced atypical parkinsonism are characterized by movement disorder and nigrostriatal pathology. Although clinical features, brain region involved and responsiveness to levodopa distinguish both, differences at the neuronal level are largely unknown. We studied the morphological, neurophysiological and molecular differences in dopaminergic neurons exposed to the Parkinson's disease toxin 1-methyl-4-phenylpyridinium ion (MPP + ) and manganese (Mn), followed by validation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and Mn mouse models. Morphological analysis highlighted loss of neuronal processes in the MPP + and not the Mn model. Cellular network dynamics of dopaminergic neurons characterized by spike frequency and inter-spike intervals indicated major neuronal population (~ 93%) with slow discharge rates (0-5 Hz). While MPP + exposure suppressed the firing of these neurons, Mn neither suppressed nor elevated the neuronal activity. High-throughput transcriptomic analysis revealed up-regulation of 694 and 603 genes and down-regulation of 428 and 255 genes in the MPP + and Mn models respectively. Many differentially expressed genes were unique to either models and contributed to neuroinflammation, metabolic/mitochondrial function, apoptosis and nuclear function, synaptic plasticity, neurotransmission and cytoskeleton. Analysis of the Janus kinase-signal transducer and activator of transcription pathway with implications for neuritogenesis and neuronal proliferation revealed contrasting profile in both models. Genome-wide DNA methylomics revealed differences between both models and substantiated the epigenetic basis of the difference in the Janus kinase-signal transducer and activator of transcription pathway. We conclude that idiopathic Parkinson's disease and atypical parkinsonism have divergent neurotoxicological manifestation at the dopaminergic neuronal level with implications for pathobiology and evolution of novel therapeutics. Cover Image for this issue: doi. 10.1111/jnc.13821. © 2017 International Society for Neurochemistry.

  5. Mechanical, thermal, morphological, and rheological characteristics of high performance 3D-printing lignin-based composites for additive manufacturing applications.

    PubMed

    Nguyen, Ngoc A; Bowland, Christopher C; Naskar, Amit K

    2018-08-01

    The article presents different mechanical, thermal and rheological data corresponding to the morphological formation within various renewable lignin-based composites containing acrylonitrile butadiene styrene (ABS), acrylonitrile butadiene rubber (NBR41, 41 mol% nitrile content), and carbon fibers (CFs). The data of 3D-printing properties and morphology of 3D-printed layers of selected lignin-based composites are revealed. This data is related to our recent research article entitled "A general method to improve 3D-printability and inter-layer adhesion in lignin-based composites" (Nguyen et al., 2018 [1]).

  6. Genetic variation and relationships of four species of medically important echinostomes (Trematoda: Echinostomatidae) in South-East Asia.

    PubMed

    Saijuntha, Weerachai; Sithithaworn, Paiboon; Duenngai, Kunyarat; Kiatsopit, Nadda; Andrews, Ross H; Petney, Trevor N

    2011-03-01

    Multilocus enzyme electrophoresis (MEE) and DNA sequencing of the mitochondrial cytochrome c oxidase subunit 1 (CO1) gene were used to genetically compare four species of echinostomes of human health importance. Fixed genetic differences among adults of Echinostoma revolutum, Echinostoma malayanum, Echinoparyphium recurvatum and Hypoderaeum conoideum were detected at 51-75% of the enzyme loci examined, while interspecific differences in CO1 sequence were detected at 16-32 (8-16%) of the 205 alignment positions. The results of the MEE analyses also revealed fixed genetic differences between E. revolutum from Thailand and Lao PDR at five (19%) of 27 loci, which could either represent genetic variation between geographically separated populations of a single species, or the existence of a cryptic (i.e. genetically distinct but morphologically similar) species. However, there was no support for the existence of cryptic species within E. revolutum based on the CO1 sequence between the two geographical areas sampled. Genetic variation in CO1 sequence was also detected among E. malayanum from three different species of snail intermediate host. Separate phylogenetic analyses of the MEE and DNA sequence data revealed that the two species of Echinostoma (E. revolutum and E. malayanum) did not form a monophyletic clade. These results, together with the large number of morphologically similar species with inadequate descriptions, poor specific diagnoses and extensive synonymy, suggest that the morphological characters used for species taxonomy of echinostomes in South-East Asia should be reconsidered according to the concordance of biology, morphology and molecular classification. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. ACCELERATED EVOLUTION OF LAND SNAILS MANDARINA IN THE OCEANIC BONIN ISLANDS: EVIDENCE FROM MITOCHONDRIAL DNA SEQUENCES.

    PubMed

    Chiba, Satoshi

    1999-04-01

    An endemic land snail genus Mandarina of the oceanic Bonin (Ogasawara) Islands shows exceptionally rapid evolution not only of morphological and ecological traits, but of DNA sequence. A phylogenetic relationship based on mitochondrial DNA (mtDNA) sequences suggests that morphological differences equivalent to the differences between families were produced between Mandarina and its ancestor during the Pleistocene. The inferred phylogeny shows that species with similar morphologies and life habitats appeared repeatedly and independently in different lineages and islands at different times. Sequential adaptive radiations occurred in different islands of the Bonin Islands and species occupying arboreal, semiarboreal, and terrestrial habitat arose independently in each island. Because of a close relationship between shell morphology and life habitat, independent evolution of the same life habitat in different islands created species possesing the same shell morphology in different islands and lineages. This rapid evolution produced some incongruences between phylogenetic relationship and species taxonomy. Levels of sequence divergence of mtDNA among the species of Mandarina is extremely high. The maximum level of sequence divergence at 16S and 12S ribosomal RNA sequence within Mandarina are 18.7% and 17.7%, respectively, and this suggests that evolution of mtDNA of Mandarina is extremely rapid, more than 20 times faster than the standard rate in other animals. The present examination reveals that evolution of morphological and ecological traits occurs at extremely high rates in the time of adaptive radiation, especially in fragmented environments. © 1999 The Society for the Study of Evolution.

  8. Insights into Penicillium roqueforti Morphological and Genetic Diversity

    PubMed Central

    Gillot, Guillaume; Jany, Jean-Luc; Coton, Monika; Le Floch, Gaétan; Debaets, Stella; Ropars, Jeanne; López-Villavicencio, Manuela; Dupont, Joëlle; Branca, Antoine; Giraud, Tatiana; Coton, Emmanuel

    2015-01-01

    Fungi exhibit substantial morphological and genetic diversity, often associated with cryptic species differing in ecological niches. Penicillium roqueforti is used as a starter culture for blue-veined cheeses, being responsible for their flavor and color, but is also a common spoilage organism in various foods. Different types of blue-veined cheeses are manufactured and consumed worldwide, displaying specific organoleptic properties. These features may be due to the different manufacturing methods and/or to the specific P. roqueforti strains used. Substantial morphological diversity exists within P. roqueforti and, although not taxonomically valid, several technological names have been used for strains on different cheeses (e.g., P. gorgonzolae, P. stilton). A worldwide P. roqueforti collection from 120 individual blue-veined cheeses and 21 other substrates was analyzed here to determine (i) whether P. roqueforti is a complex of cryptic species, by applying the Genealogical Concordance Phylogenetic Species Recognition criterion (GC-PSR), (ii) whether the population structure assessed using microsatellite markers correspond to blue cheese types, and (iii) whether the genetic clusters display different morphologies. GC-PSR multi-locus sequence analyses showed no evidence of cryptic species. The population structure analysis using microsatellites revealed the existence of highly differentiated populations, corresponding to blue cheese types and with contrasted morphologies. This suggests that the population structure has been shaped by different cheese-making processes or that different populations were recruited for different cheese types. Cheese-making fungi thus constitute good models for studying fungal diversification under recent selection. PMID:26091176

  9. Reverse genetics studies on the filamentous morphology of influenza A virus.

    PubMed

    Bourmakina, Svetlana V; García-Sastre, Adolfo

    2003-03-01

    We have investigated the genetic determinants responsible for the filamentous morphology of influenza A viruses, a property characteristic of primary virus isolates. A plasmid-based reverse genetics system was used to transfer the M segment of influenza A/Udorn/72 (H3N2) virus into influenza A/WSN/33 (H1N1) virus. While WSN virions display spherical morphology, recombinant WSN-Mud virus acquired the ability of the parental Udorn strain to form filamentous virus particles. This was determined by immunofluorescence studies in infected MDCK cells and by electron microscopy of purified virus particles. To determine the gene product within the M segment responsible for filamentous virus morphology, we generated four recombinant viruses carrying different sets of M1 and M2 genes from WSN or Udorn strains in a WSN background. These studies revealed that the M1 gene of Udorn, independently of the origin of the M2 gene, conferred filamentous budding properties and filamentous virus morphology to the recombinant viruses. We also constructed two WSN viruses encoding chimeric M1 proteins containing the amino-terminal 1-162 amino acids or the carboxy-terminal 163-252 amino acids of the Udorn M1 protein. Neither of these two viruses acquired filamentous phenotypes, indicating that both amino- and carboxy-terminal domains of the M1 protein contribute to filamentous virus morphology. We next rescued seven mutant WSN-M1ud viruses containing Udorn M1 proteins carrying single amino acid substitutions corresponding to the seven amino acid differences with the M1 protein of WSN virus. Characterization of these recombinant viruses revealed that amino acid residues 95 and 204 are critical in determining filamentous virus particle formation.

  10. A new species of lithistid sponge hiding within the Isabella mirabilis species complex (Porifera: Demospongiae: Tetractinellida) from seamounts of the Norfolk Ridge.

    PubMed

    Ekins, Merrick; Erpenbeck, Dirk; Wörheide, Gert; Hooper, John N A

    2016-07-07

    A population level study of the lithistid ('rock') sponge, Isabella mirabilis, revealed a new species, Isabella tanoa sp. nov., living on five seamounts on the Norfolk Ridge, SW Pacific, and representing the third species to be discovered since the genus was first described in 2005. Comparisons between the three species showed significant differences in morphological characters that corresponded to differences in their respective CO1 barcoding sequences. Conversely, three of the four genotypes of Isabella mirabilis remain unresolved using morphological markers.

  11. Morphological characterization and molecular fingerprinting of Nostoc strains by multiplex RAPD.

    PubMed

    Hillol, Chakdar; Pabbi, Sunil

    2012-01-01

    Morphological parameters studied for the twenty selected Nostoc strains were mostly found to be consistent with the earlier reports. But the shape of akinetes observed in this study was a little deviation from the existing descriptions and heterocyst frequency was also found to be different in different strains in spite of growing in the same nitrogen free media. Multiplex RAPD produced reproducible and completely polymorphic amplification profiles for all the strains including some strain specific unique bands which are intended to be useful for identification of those strains. At least one to a maximum of two unique bands was produced by different dual primer combinations. For ten strains out of twenty, strain specific bands were found to be generated. Cluster analysis revealed a vast heterogeneity among these Nostoc strains and no specific clustering based on geographical origin was found except a few strains. It was also observed that morphological data may not necessarily correspond to the genetic data in most of the cases. CCC92 (Nostoc muscorum) and CCC48 (Nostoc punctiforme) showed a high degree of similarity which was well supported by high bootstrap value. The level of similarity of the strains ranged from 0.15 to 0.94. Cluster analysis based on multiplex RAPD showed a good fit revealing the discriminatory power of this technique.

  12. Morphomechanics of bacterial biofilms undergoing anisotropic differential growth

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Li, Bo; Huang, Xiao; Ni, Yong; Feng, Xi-Qiao

    2016-10-01

    Growing bacterial biofilms exhibit a number of surface morphologies, e.g., concentric wrinkles, radial ridges, and labyrinthine networks, depending on their physiological status and nutrient access. We explore the mechanisms underlying the emergence of these greatly different morphologies. Ginzburg-Landau kinetic method and Fourier spectral method are integrated to simulate the morphological evolution of bacterial biofilms. It is shown that the morphological instability of biofilms is triggered by the stresses induced by anisotropic and heterogeneous bacterial expansion, and involves the competition between membrane energy and bending energy. Local interfacial delamination further enriches the morphologies of biofilms. Phase diagrams are established to reveal how the anisotropy and spatial heterogeneity of growth modulate the surface patterns. The mechanics of three-dimensional microbial morphogenesis may also underpin self-organization in other development systems and provide a potential strategy for engineering microscopic structures from bacterial aggregates.

  13. Morphology-Controlled Synthesis of Organometal Halide Perovskite Inverse Opals.

    PubMed

    Chen, Kun; Tüysüz, Harun

    2015-11-09

    The booming development of organometal halide perovskites in recent years has prompted the exploration of morphology-control strategies to improve their performance in photovoltaic, photonic, and optoelectronic applications. However, the preparation of organometal halide perovskites with high hierarchical architecture is still highly challenging and a general morphology-control method for various organometal halide perovskites has not been achieved. A mild and scalable method to prepare organometal halide perovskites in inverse opal morphology is presented that uses a polystyrene-based artificial opal as hard template. Our method is flexible and compatible with different halides and organic ammonium compositions. Thus, the perovskite inverse opal maintains the advantage of straightforward structure and band gap engineering. Furthermore, optoelectronic investigations reveal that morphology exerted influence on the conducting nature of organometal halide perovskites. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Distinct roles of cell wall biogenesis in yeast morphogenesis as revealed by multivariate analysis of high-dimensional morphometric data

    PubMed Central

    Okada, Hiroki; Ohnuki, Shinsuke; Roncero, Cesar; Konopka, James B.; Ohya, Yoshikazu

    2014-01-01

    The cell wall of budding yeast is a rigid structure composed of multiple components. To thoroughly understand its involvement in morphogenesis, we used the image analysis software CalMorph to quantitatively analyze cell morphology after treatment with drugs that inhibit different processes during cell wall synthesis. Cells treated with cell wall–affecting drugs exhibited broader necks and increased morphological variation. Tunicamycin, which inhibits the initial step of N-glycosylation of cell wall mannoproteins, induced morphologies similar to those of strains defective in α-mannosylation. The chitin synthase inhibitor nikkomycin Z induced morphological changes similar to those of mutants defective in chitin transglycosylase, possibly due to the critical role of chitin in anchoring the β-glucan network. To define the mode of action of echinocandin B, a 1,3-β-glucan synthase inhibitor, we compared the morphology it induced with mutants of Fks1 that contains the catalytic domain for 1,3-β-glucan synthesis. Echinocandin B exerted morphological effects similar to those observed in some fks1 mutants, with defects in cell polarity and reduced glucan synthesis activity, suggesting that echinocandin B affects not only 1,3-β-glucan synthesis, but also another functional domain. Thus our multivariate analyses reveal discrete functions of cell wall components and increase our understanding of the pharmacology of antifungal drugs. PMID:24258022

  15. Deficits on irregular verbal morphology in Italian-speaking Alzheimer's disease patients

    PubMed Central

    Walenski, Matthew; Sosta, Katiuscia; Cappa, Stefano; Ullman, Michael T.

    2010-01-01

    Studies of English have shown that temporal-lobe patients, including those with Alzheimer's disease, are spared at processing real and novel regular inflected forms (e.g., blick → blicked; walk → walked), but impaired at real and novel irregular forms (e.g., spling → splang; dig → dug). Here we extend the investigation cross-linguistically to the more complex system of Italian verbal morphology, allowing us to probe the generality of the previous findings in English, as well as to test different explanatory accounts of inflectional morphology. We examined the production of real and novel regular and irregular past-participle and present-tense forms by native Italian-speaking healthy control subjects and patients with probable Alzheimer's disease. Compared to the controls, the patients were impaired at inflecting real irregular verbs but not real regular verbs both for past-participle and present-tense forms, but were not impaired at real regular verbs either for past-participle or present-tense forms. For novel past participles, the patients exhibited this same pattern of impaired production of class II (irregular) forms but spared class I (regular) production. In the present tense, patients were impaired at the production of class II forms (which are regular in the present tense), but spared at production of class I (regular) forms. Contrary to the pattern observed in English, the errors made by the patients on irregulars did not reveal a predominance of regularization errors (e.g., dig → digged). The findings thus partly replicate prior findings from English, but also reveal new patterns from a language with a more complex morphological system that includes verb classes (which are not possible to test in English). The demonstration of an irregular deficit following temporal-lobe damage in a language other than English reveals the cross-linguistic generality of the basic effect, while also elucidating important language-specific differences in the neuro-cognitive basis of regular and irregular morphological forms. PMID:19428387

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guener, M.; Gueler, E.; Aktas, H.

    Kinetic, morphological and some thermal properties of thermally induced and deformation-induced martensite were studied in a Fe-32%Ni-0.4%Cr alloy. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and compression deformation test techniques were used for these studies. SEM observations revealed the occurrence of both athermal and isothermal martensitic transformation kinetics for producing a lenticular martensite morphology for different homogenization conditions of the prior austenite phase. The DSC measurement results showed a fair agreement with those of previous studies on ferrous alloys.

  17. Comparing morphologies of drainage basins on Mars and Earth using integral-geometry and neural maps

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Coradetti, S.

    2004-01-01

    We compare morphologies of drainage basins on Mars and Earth in order to confine the formation process of Martian valley networks. Basins on both planets are computationally extracted from digital topography. Integral-geometry methods are used to represent each basin by a circularity function that encapsulates its internal structure. The shape of such a function is an indicator of the style of fluvial erosion. We use the self-organizing map technique to construct a similarity graph for all basins. The graph reveals systematic differences between morphologies of basins on the two planets. This dichotomy indicates that terrestrial and Martian surfaces were eroded differently. We argue that morphologies of Martian basins are incompatible with runoff from sustained, homogeneous rainfall. Fluvial environments compatible with observed morphologies are discussed. We also construct a similarity graph based on the comparison of basins hypsometric curves to demonstrate that hypsometry is incapable of discriminating between terrestrial and Martian basins. INDEX TERMS: 1824 Hydrology: Geomorphology (1625); 1886 Hydrology: Weathering (1625); 5415 Planetology: Solid Surface Planets: Erosion and weathering; 6225 Planetology: Solar System Objects Mars. Citation: Stepinski, T. F., and S. Coradetti (2004), Comparing morphologies of drainage basins on Mars and Earth using integral-ge

  18. Early development and replacement of the stickleback dentition

    PubMed Central

    Ellis, Nicholas A.; Donde, Nikunj N.; Miller, Craig T.

    2017-01-01

    Teeth have long served as a model system to study basic questions about vertebrate organogenesis, morphogenesis, and evolution. In non-mammalian vertebrates, teeth typically regenerate throughout adult life. Fish have evolved a tremendous diversity in dental patterning in both their oral and pharyngeal dentitions, offering numerous opportunities to study how morphology develops, regenerates, and evolves in different lineages. Threespine stickleback fish (Gasterosteus aculeatus) have emerged as a new system to study how morphology evolves, and provide a particularly powerful system to study the development and evolution of dental morphology. Here we describe the oral and pharyngeal dentitions of stickleback fish, providing additional morphological, histological, and molecular evidence for homology of oral and pharyngeal teeth. Focusing on the ventral pharyngeal dentition in a dense developmental time course of lab-reared fish, we describe the temporal and spatial consensus sequence of early tooth formation. Early in development, this sequence is highly stereotypical and consists of seventeen primary teeth forming the early tooth field, followed by the first tooth replacement event. Comparing this detailed morphological and ontogenetic sequence to that described in other fish reveals that major changes to how dental morphology arises and regenerates have evolved across different fish lineages. PMID:27145214

  19. Nanoscale Morphology, Dimensional Control and Electrical Properties of Oligoanilines

    PubMed Central

    Wang, Yue; Tran, Henry D.; Liao, Lei; Duan, Xiangfeng; Kaner, Richard B.

    2010-01-01

    While nanostructures of organic conductors have generated great interest in recent years, their nanoscale size and shape control remains a significant challenge. Here we report a general method for producing a variety of oligoaniline nanostructures with well-defined morphologies and dimensionalities. 1-D nanowires, 2-D nanoribbons, and 3-D rectangular nanoplates and nanoflowers of tetraaniline are produced by a solvent exchange process in which the dopant acid can be used to tune the oligomer morphology. The process appears to be a general route for producing nanostructures for a variety of other aniline oligomers such as the phenyl-capped tetramer. X-ray diffraction of the tetraniline nanostructures reveals that they possess different packing arrangements, which results in different nanoscale morphologies with different electrical properties for the structures. The conductivity of a single tetraaniline nanostructure is up to two orders of magnitude higher than the highest previously reported value and rivals that of pressed pellets of conventional polyaniline doped with acid. Furthermore, these oligomer nanostructures can be easily processed by a number of methods in order to create thin films composed of aligned nanostructures over a macroscopic area. PMID:20662516

  20. Anomalous charge transport in conjugated polymers reveals underlying mechanisms of trapping and percolation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mollinger, Sonya A.; Salleo, Alberto; Spakowitz, Andrew J.

    While transport in conjugated polymers has many similarities to that in crystalline inorganic materials, several key differences reveal the unique relationship between the morphology of polymer films and the charge mobility. We develop a model that directly incorporates the molecular properties of the polymer film and correctly predicts these unique transport features. At low degree of polymerization, the increase of the mobility with the polymer chain length reveals trapping at chain ends, and saturation of the mobility at high degree of polymerization results from conformational traps within the chains. Similarly, the inverse field dependence of the mobility reveals that transportmore » on single polymer chains is characterized by the ability of the charge to navigate around kinks and loops in the chain. Lastly, these insights emphasize the connection between the polymer conformations and the transport and thereby offer a route to designing improved device morphologies through molecular design and materials processing.« less

  1. Anomalous charge transport in conjugated polymers reveals underlying mechanisms of trapping and percolation

    DOE PAGES

    Mollinger, Sonya A.; Salleo, Alberto; Spakowitz, Andrew J.

    2016-11-10

    While transport in conjugated polymers has many similarities to that in crystalline inorganic materials, several key differences reveal the unique relationship between the morphology of polymer films and the charge mobility. We develop a model that directly incorporates the molecular properties of the polymer film and correctly predicts these unique transport features. At low degree of polymerization, the increase of the mobility with the polymer chain length reveals trapping at chain ends, and saturation of the mobility at high degree of polymerization results from conformational traps within the chains. Similarly, the inverse field dependence of the mobility reveals that transportmore » on single polymer chains is characterized by the ability of the charge to navigate around kinks and loops in the chain. Lastly, these insights emphasize the connection between the polymer conformations and the transport and thereby offer a route to designing improved device morphologies through molecular design and materials processing.« less

  2. Integration of Brain and Skull in Prenatal Mouse Models of Apert and Crouzon Syndromes

    PubMed Central

    Motch Perrine, Susan M.; Stecko, Tim; Neuberger, Thomas; Jabs, Ethylin W.; Ryan, Timothy M.; Richtsmeier, Joan T.

    2017-01-01

    The brain and skull represent a complex arrangement of integrated anatomical structures composed of various cell and tissue types that maintain structural and functional association throughout development. Morphological integration, a concept developed in vertebrate morphology and evolutionary biology, describes the coordinated variation of functionally and developmentally related traits of organisms. Syndromic craniosynostosis is characterized by distinctive changes in skull morphology and perceptible, though less well studied, changes in brain structure and morphology. Using mouse models for craniosynostosis conditions, our group has precisely defined how unique craniosynostosis causing mutations in fibroblast growth factor receptors affect brain and skull morphology and dysgenesis involving coordinated tissue-specific effects of these mutations. Here we examine integration of brain and skull in two mouse models for craniosynostosis: one carrying the FGFR2c C342Y mutation associated with Pfeiffer and Crouzon syndromes and a mouse model carrying the FGFR2 S252W mutation, one of two mutations responsible for two-thirds of Apert syndrome cases. Using linear distances estimated from three-dimensional coordinates of landmarks acquired from dual modality imaging of skull (high resolution micro-computed tomography and magnetic resonance microscopy) of mice at embryonic day 17.5, we confirm variation in brain and skull morphology in Fgfr2cC342Y/+ mice, Fgfr2+/S252W mice, and their unaffected littermates. Mutation-specific variation in neural and cranial tissue notwithstanding, patterns of integration of brain and skull differed only subtly between mice carrying either the FGFR2c C342Y or the FGFR2 S252W mutation and their unaffected littermates. However, statistically significant and substantial differences in morphological integration of brain and skull were revealed between the two mutant mouse models, each maintained on a different strain. Relative to the effects of disease-associated mutations, our results reveal a stronger influence of the background genome on patterns of brain-skull integration and suggest robust genetic, developmental, and evolutionary relationships between neural and skeletal tissues of the head. PMID:28790902

  3. Chemical degradation and morphological instabilities during focused ion beam prototyping of polymers.

    PubMed

    Orthacker, A; Schmied, R; Chernev, B; Fröch, J E; Winkler, R; Hobisch, J; Trimmel, G; Plank, H

    2014-01-28

    Focused ion beam processing of low melting materials, such as polymers or biological samples, often leads to chemical and morphological instabilities which prevent the straight-forward application of this versatile direct-write structuring method. In this study the behaviour of different polymer classes under ion beam exposure is investigated using different patterning parameters and strategies with the aim of (i) correlating local temperatures with the polymers' chemistry and its morphological consequences; and (ii) finding a way of processing sensitive polymers with lowest chemical degradation while maintaining structuring times. It is found that during processing of polymers three temperature regimes can be observed: (1) at low temperatures all polymers investigated show stable chemical and morphological behaviour; (2) very high temperatures lead to strong chemical degradation which entails unpredictable morphologies; and (3) in the intermediate temperature regime the behaviour is found to be strongly material dependent. A detailed look reveals that polymers which rather cross-link in the proximity of the beam show stable morphologies in this intermediate regime, while polymers that rather undergo chain scission show tendencies to develop a creeping phase, where material follows the ion beam movement leading to instable and unpredictable morphologies. Finally a simple, alternative patterning strategy is suggested, which allows stable processing conditions with lowest chemical damage even for challenging polymers undergoing chain scission.

  4. Adsorption of modified dextrins on molybdenite: AFM imaging, contact angle, and flotation studies.

    PubMed

    Beaussart, Audrey; Parkinson, Luke; Mierczynska-Vasilev, Agnieszka; Beattie, David A

    2012-02-15

    The adsorption of three dextrins (a regular wheat dextrin, Dextrin TY, carboxymethyl (CM) Dextrin, and hydroxypropyl (HP) Dextrin) on molybdenite has been investigated using adsorption isotherms, tapping mode atomic force microscopy (TMAFM), contact angle measurements, and dynamic bubble-surface collisions. In addition, the effect of the polymers on the flotation recovery of molybdenite has been determined. The isotherms revealed the importance of molecular weight in determining the adsorbed amounts of the polymers on molybdenite at plateau coverage. TMAFM revealed the morphology of the three polymers, which consisted of randomly dispersed domains with a higher area fraction of surface coverage for the substituted dextrins. The contact angle of polymer-treated molybdenite indicated that polymer layer coverage and hydration influenced the mineral surface hydrophobicity. Bubble-surface collisions indicated that the polymers affected thin film rupture and dewetting rate differently, correlating with differences in the adsorbed layer morphology. Direct correlations were found between the surface coverage of the adsorbed layers, their impact on thin film rupture time, and their impact on flotation recovery, highlighting the paramount role of the polymer morphology in the bubble/particle attachment process and subsequent flotation. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Virtual taphonomy using synchrotron tomographic microscopy reveals cryptic features and internal structure of modern and fossil plants

    PubMed Central

    Smith, Selena Y.; Collinson, Margaret E.; Rudall, Paula J.; Simpson, David A.; Marone, Federica; Stampanoni, Marco

    2009-01-01

    While more commonly applied in zoology, synchrotron radiation X-ray tomographic microscopy (SRXTM) is well-suited to nondestructive study of the morphology and anatomy of both fossil and modern plants. SRXTM uses hard X-rays and a monochromatic light source to provide high-resolution data with little beam-hardening, resulting in slice data with clear boundaries between materials. Anatomy is readily visualized, including various planes of section from a single specimen, as clear as in traditional histological sectioning at low magnifications. Thus, digital sectioning of rare or difficult material is possible. Differential X-ray attenuation allows visualization of different layers or chemistries to enable virtual 3-dimensional (3D) dissections of material. Virtual potential fossils can be visualized and digital tissue removal reveals cryptic underlying morphology. This is essential for fossil identification and for comparisons between assemblages where fossils are preserved by different means. SRXTM is a powerful approach for botanical studies using morphology and anatomy. The ability to gain search images in both 2D and 3D for potential fossils gives paleobotanists a tool—virtual taphonomy—to improve our understanding of plant evolution and paleobiogeography. PMID:19574457

  6. Hydroxyapatite Reinforced Coatings with Incorporated Detonationally Generated Nanodiamonds

    NASA Astrophysics Data System (ADS)

    Pramatarova, L.; Pecheva, E.; Dimitrova, R.; Spassov, T.; Krasteva, N.; Hikov, T.; Fingarova, D.; Mitev, D.

    2010-01-01

    We studied the effect of the substrate chemistry on the morphology of hydroxyapatite-detonational nanodiamond composite coatings grown by a biomimetic approach (immersion in a supersaturated simulated body fluid). When detonational nanodiamond particles were added to the solution, the morphology of the grown for 2 h composite particles was porous but more compact then that of pure hydroxyapatite particles. The nanodiamond particles stimulated the hydroxyapatite growth with different morphology on the various substrates (Ti, Ti alloys, glasses, Si, opal). Biocompatibility assay with MG63 osteoblast cells revealed that the detonational nanodiamond water suspension with low and average concentration of the detonational nanodiamond powder is not toxic to living cells.

  7. Surfactant-assisted hydrothermal crystallization of nanostructured lithium metasilicate (Li{sub 2}SiO{sub 3}) hollow spheres: (I) Synthesis, structural and microstructural characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Landeros, J.; Departamento de Ingenieria Metalurgica, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, IPN, UPALM, Av. Instituto Politecnico Nacional s/n, CP 07738, Mexico DF; Contreras-Garcia, M.E.

    Lithium metasilicate (Li{sub 2}SiO{sub 3}) was successfully synthesized using a hydrothermal process in the presence of different surfactants with cationic, non-ionic and anionic characters. The samples obtained were compared to a sample prepared by the conventional solid-state reaction method. The structural and microstructural characterizations of different Li{sub 2}SiO{sub 3} powders were performed using various techniques. Diffraction analyses revealed the successful crystallization of pure Li{sub 2}SiO{sub 3} single phase by hydrothermal technique, even without further heat-treatments and independent of the surfactant used. Electron microscopy analyses revealed that Li{sub 2}SiO{sub 3} powders were composed of uniform micrometric particles with a hollow spheremore » morphology and nanostructured walls. Finally, different thermal analyses showed that Li{sub 2}SiO{sub 3} samples preserved their structure and microstructure after further thermal treatments. Specific aspects regarding the formation mechanism of the spherical aggregates under hydrothermal conditions are discussed, and there is a special emphasis on the effect of the synthesis pathway on the morphological characteristics. -- Graphical abstract: Li{sub 2}SiO{sub 3} was synthesized using a hydrothermal process in the presence of different surfactants. Li{sub 2}SiO{sub 3} powders were composed of uniform micrometric particles with a hollow sphere morphology and nanostructured walls. Display Omitted Highlights: {yields} Pure Li{sub 2}SiO{sub 3} was synthesized by the hydrothermal method. {yields} Surfactant addition produced microstructural and morphological variations. {yields} TEM reveled the generation of nanostructured hollow spheres.« less

  8. Fast Census of Moth Diversity in the Neotropics: A Comparison of Field-Assigned Morphospecies and DNA Barcoding in Tiger Moths

    PubMed Central

    Zenker, Mauricio M.; Rougerie, Rodolphe; Teston, José A.; Laguerre, Michel; Pie, Marcio R.; Freitas, André V. L.

    2016-01-01

    The morphological species delimitations (i.e. morphospecies) have long been the best way to avoid the taxonomic impediment and compare insect taxa biodiversity in highly diverse tropical and subtropical regions. The development of DNA barcoding, however, has shown great potential to replace (or at least complement) the morphospecies approach, with the advantage of relying on automated methods implemented in computer programs or even online rather than in often subjective morphological features. We sampled moths extensively for two years using light traps in a patch of the highly endangered Atlantic Forest of Brazil to produce a nearly complete census of arctiines (Noctuoidea: Erebidae), whose species richness was compared using different morphological and molecular approaches (DNA barcoding). A total of 1,075 barcode sequences of 286 morphospecies were analyzed. Based on the clustering method Barcode Index Number (BIN) we found a taxonomic bias of approximately 30% in our initial morphological assessment. However, a morphological reassessment revealed that the correspondence between morphospecies and molecular operational taxonomic units (MOTUs) can be up to 94% if differences in genitalia morphology are evaluated in individuals of different MOTUs originated from the same morphospecies (putative cases of cryptic species), and by recording if individuals of different genders in different morphospecies merge together in the same MOTU (putative cases of sexual dimorphism). The results of two other clustering methods (i.e. Automatic Barcode Gap Discovery and 2% threshold) were very similar to those of the BIN approach. Using empirical data we have shown that DNA barcoding performed substantially better than the morphospecies approach, based on superficial morphology, to delimit species of a highly diverse moth taxon, and thus should be used in species inventories. PMID:26859488

  9. Fast Census of Moth Diversity in the Neotropics: A Comparison of Field-Assigned Morphospecies and DNA Barcoding in Tiger Moths.

    PubMed

    Zenker, Mauricio M; Rougerie, Rodolphe; Teston, José A; Laguerre, Michel; Pie, Marcio R; Freitas, André V L

    2016-01-01

    The morphological species delimitations (i.e. morphospecies) have long been the best way to avoid the taxonomic impediment and compare insect taxa biodiversity in highly diverse tropical and subtropical regions. The development of DNA barcoding, however, has shown great potential to replace (or at least complement) the morphospecies approach, with the advantage of relying on automated methods implemented in computer programs or even online rather than in often subjective morphological features. We sampled moths extensively for two years using light traps in a patch of the highly endangered Atlantic Forest of Brazil to produce a nearly complete census of arctiines (Noctuoidea: Erebidae), whose species richness was compared using different morphological and molecular approaches (DNA barcoding). A total of 1,075 barcode sequences of 286 morphospecies were analyzed. Based on the clustering method Barcode Index Number (BIN) we found a taxonomic bias of approximately 30% in our initial morphological assessment. However, a morphological reassessment revealed that the correspondence between morphospecies and molecular operational taxonomic units (MOTUs) can be up to 94% if differences in genitalia morphology are evaluated in individuals of different MOTUs originated from the same morphospecies (putative cases of cryptic species), and by recording if individuals of different genders in different morphospecies merge together in the same MOTU (putative cases of sexual dimorphism). The results of two other clustering methods (i.e. Automatic Barcode Gap Discovery and 2% threshold) were very similar to those of the BIN approach. Using empirical data we have shown that DNA barcoding performed substantially better than the morphospecies approach, based on superficial morphology, to delimit species of a highly diverse moth taxon, and thus should be used in species inventories.

  10. Morphology and formation mechanism in precipitation of calcite induced by Curvibacter lanceolatus strain HJ-1

    NASA Astrophysics Data System (ADS)

    Zhang, Chonghong; Li, Fuchun; Lv, Jiejie

    2017-11-01

    Precipitation of calcium carbobate induced by microbial activities is common occurrence in controlled solution, but the formation mechanism and morphology in precipitation of calcite in solution systems is unclear, and the role of microbes is disputed. Here, culture experiment was performed for 50 days using the Curvibacter lanceolatus strain HJ-1 in a M2 culture medium, and the phase composition and morphology of the precipitates were characterized by the X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM) techniques. We show that the precipitation processes in our experiment lead to unusual morphologies of crystals corresponding to different growth stages, and the morphologies of the precipitated crystal aggregates ranging from the main rod-, cross-, star-, cauliflower-like morphologies to spherulitic structure. The complex and unusual morphologies of the precipitated calcite by strain HJ-1 may provide a reference point for better understanding the biomineralization mechanism of calcite, moreover, morphological transition of minerals revealed that the multi-ply crystals-aggregation mechanism for calcite growth in crystallisation media.

  11. The role of habitat shift in the evolution of lizard morphology: evidence from tropical Tropidurus

    PubMed Central

    Vitt, Laurie J.; Caldwell, Janalee P.; Zani, Peter A.; Titus, Tom A.

    1997-01-01

    We compared morphology of two geographically close populations of the tropical lizard Tropidurus hispidus to test the hypothesis that habitat structure influences the evolution of morphology and ecology at the population level. T. hispidus isolated on a rock outcrop surrounded by tropical forest use rock crevices for refuge and appear dorsoventrally compressed compared with those in open savanna. A principal components analysis revealed that the populations were differentially distributed along an axis representing primarily three components of shape: body width, body height, and hind-leg length. Morphological divergence was supported by a principal components analysis of size-free morphological variables. Mitochondrial DNA sequences of ATPase 6 indicate that these populations are closely related relative to other T. hispidus, the rock outcrop morphology and ecology are derived within T. hispidus, and morphological and ecological divergence has occurred more rapidly than genetic divergence. This suggests that natural selection can rapidly adjust morphology and ecology in response to a recent history of exposure to habitats differing in structure, a result heretofore implied from comparative studies among lizard species. PMID:9108063

  12. The role of habitat shift in the evolution of lizard morphology: evidence from tropical Tropidurus.

    PubMed

    Vitt, L J; Caldwell, J P; Zani, P A; Titus, T A

    1997-04-15

    We compared morphology of two geographically close populations of the tropical lizard Tropidurus hispidus to test the hypothesis that habitat structure influences the evolution of morphology and ecology at the population level. T. hispidus isolated on a rock outcrop surrounded by tropical forest use rock crevices for refuge and appear dorsoventrally compressed compared with those in open savanna. A principal components analysis revealed that the populations were differentially distributed along an axis representing primarily three components of shape: body width, body height, and hind-leg length. Morphological divergence was supported by a principal components analysis of size-free morphological variables. Mitochondrial DNA sequences of ATPase 6 indicate that these populations are closely related relative to other T. hispidus, the rock outcrop morphology and ecology are derived within T. hispidus, and morphological and ecological divergence has occurred more rapidly than genetic divergence. This suggests that natural selection can rapidly adjust morphology and ecology in response to a recent history of exposure to habitats differing in structure, a result heretofore implied from comparative studies among lizard species.

  13. Microscopic evolution of dielectric nanoparticles at different calcination temperatures synthesized via sol-gel auto-combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adil, Muhammad, E-mail: muhammadadil86@hotmail.com; Zaid, Hasnah Mohd, E-mail: hasnamz@petronas.com.my; Chuan, Lee Kean, E-mail: lee.kc@petronas.com.my

    2015-07-22

    Dielectric nano powder synthesis is carried by a simple and fast sol-gel auto-combustion method. The transformation of crystalline phases of as-synthesized nano powders is investigated through the detailed transmission electron microscopy (TEM), revealed the crystallographic alterations and morphological information even at lattice scale. From specific area electron diffraction (SAED) pattern, has specified the d-spacing and corresponding planes supported by the observed lattice fringes. The morphological characterization of nanoparticles is performed through field-emission scanning electron microscopy (FESEM), exhibiting the increment in particle size due to agglomeration with the increase in annealing temperature. Furthermore, EDX pattern has been used to verify themore » formation of nanoparticles by revealing the presence of required elements.« less

  14. Ovipositor setation in oldest insects (Insecta: Archaeognatha) revealed by SEM and He-ion microscopy.

    PubMed

    Matushkina, Nataliia A

    2017-10-01

    Archaeognatha represent the oldest living lineage of true insects (=Ectognatha), which are remarkable, among others, for plesiomorphic genital morphology and complicated mating behaviour. I used scanning electron microscopy and He-ion microscopy to examine the ovipositor morphology of seven species, in order to describe the cuticle microsculpture. The species studied are characterised by different types of the ovipositor setation pattern, which are considered an important taxonomic feature for Archaeognatha. The common and well discernible elements of ovipositor setation in Archaeognatha are: (1) non-articulated terminal seta, (2) grooved type I basiconic sensillum with apical pore, (3) multiporous type II basiconic sensillum, (4) articulated setae of different length. Coeloconica-like sensilla and campaniform sensilla demonstrate a variety of transient morphology. Results of this study provide morphological evidence of presence of olfactory receptors on the ovipositor in Archaeognatha. The possible functions of the ovipositor setation in Archaeognatha are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Morphological and Molecular Identification of Anagrus ‘atomus’ Group (Hymenoptera: Mymaridae) Individuals from Different Geographic Areas and Plant Hosts in Europe

    PubMed Central

    Zanolli, P.; Martini, M.; Mazzon, L.; Pavan, F.

    2016-01-01

    Morphological identification and molecular study on the COI gene were simultaneously conducted on Anagrus Haliday ‘atomus’ group individuals collected in the field in Italy or supplied from a UK biofactory. Females were morphologically identified as A. atomus L. and A. parvus Soyka sensu Viggiani (=A. ustulatus sensu Chiappini). Alignment of COI gene sequences from this study permitted recognition of a total of 34 haplotypes. Phylogenetic and network analyses of molecular data not only confirmed that A. atomus is a species distinct from A. parvus, but also suggested that two species may be included within morphologically identified A. parvus. Different geographical distribution and frequency of haplotypes were also evidenced. For males considered in this study, morphometric analyses revealed a character that could be useful to discriminate A. atomus from A. parvus. Both species were found in vineyards and surrounding vegetation, confirming the potential role of spontaneous vegetation as a source of parasitoids for leafhopper control in vineyards. PMID:27126961

  16. Investigation of Synthesis and Magnetic Properties of Rod-Shaped CoFe2O4 via Precipitation-Topotactic Reaction Employing α-FeOOH and γ-FeOOH As Templates

    NASA Astrophysics Data System (ADS)

    Cao, Xiaohui; Dong, Hongfei; Tan, Yuzhuo; Meng, Jinhong

    2018-03-01

    Rod-shaped CoFe2O4 was prepared by chemical precipitation-topotactic reaction method, and in this preparation needle-like γ-FeOOH and α-FeOOH were synthesized to use as template materials. The evolution of phase and morphology in the process of calcination exhibits that α-FeOOH and γ-FeOOH experienced different routes to form the α-Fe2O3 middle phase with different crystallinity and morphology. The synthesis process of CoFe2O4 revealed that the crystallinity, purity and morphology of CoFe2O4 depend on the α-Fe2O3 middle phase. The magnetic measurement showed that the CoFe2O4 prepared from α-FeOOH has higher saturation magnetization and coercivity, and the crystallinity and morphology may play important roles in achieving a better magnetic performance.

  17. Quantitative and Qualitative Differences in Morphological Traits Revealed between Diploid Fragaria Species

    PubMed Central

    SARGENT, DANIEL J.; GEIBEL, M.; HAWKINS, J. A.; WILKINSON, M. J.; BATTEY, N. H.; SIMPSON, D. W.

    2004-01-01

    • Background and Aims The aims of this investigation were to highlight the qualitative and quantitative diversity apparent between nine diploid Fragaria species and produce interspecific populations segregating for a large number of morphological characters suitable for quantitative trait loci analysis. • Methods A qualitative comparison of eight described diploid Fragaria species was performed and measurements were taken of 23 morphological traits from 19 accessions including eight described species and one previously undescribed species. A principal components analysis was performed on 14 mathematically unrelated traits from these accessions, which partitioned the species accessions into distinct morphological groups. Interspecific crosses were performed with accessions of species that displayed significant quantitative divergence and, from these, populations that should segregate for a range of quantitative traits were raised. • Key Results Significant differences between species were observed for all 23 morphological traits quantified and three distinct groups of species accessions were observed after the principal components analysis. Interspecific crosses were performed between these groups, and F2 and backcross populations were raised that should segregate for a range of morphological characters. In addition, the study highlighted a number of distinctive morphological characters in many of the species studied. • Conclusions Diploid Fragaria species are morphologically diverse, yet remain highly interfertile, making the group an ideal model for the study of the genetic basis of phenotypic differences between species through map-based investigation using quantitative trait loci. The segregating interspecific populations raised will be ideal for such investigations and could also provide insights into the nature and extent of genome evolution within this group. PMID:15469944

  18. Inheritance of Occlusal Topography: A Twin Study

    PubMed Central

    Su, C-Y.; Corby, P.M.; Elliot, M.A.; Studen-Pavlovich, D.A.; Ranalli, D.N.; Rosa, B.; Wessel, J.; Schork, N.J.; Hart, T.C.; Bretz, W.A.

    2011-01-01

    Aim This was to determine the relative contribution of genetic factors on the morphology of occlusal surfaces of mandibular primary first molars by employing the twin study model. Methods The occlusal morphology of mandibular primary first molar teeth from dental casts of 9 monozygotic (MZ) twin pairs and 12 dizygotic (DZ) twin pairs 4 to 7 years old, were digitized by contact-type three-dimensional (3D) scanner. To compare the similarity of occlusal morphology between twin sets, each twin pair of occlusal surfaces was superimposed to establish the best fit by using computerized least squared techniques. Heritability was computed using a variance component model, adjusted for age and gender. Results DZ pairs demonstrated a greater degree of occlusal morphology variance. The total amount of difference in surface overlap was 0.0508 mm (0.0018 (inches) for the MZ (n=18) sample and 0.095 mm (0.0034 inches) for the DZ (n=24) sample and were not statistically significant (p=0.2203). The transformed mean differences were not statistically significantly different (p=0.2203). Heritability estimates of occlusal surface areas for right and left mandibular primary first molars were 97.5% and 98.2% (p<0.0001), respectively. Conclusions Occlusal morphology of DZ twin pairs was more variable than that of MZ twin pairs. Heritability estimates revealed that genetic factors strongly influence occlusal morphology of mandibular primary first molars. PMID:18328234

  19. De novo comparative transcriptome analysis of genes involved in fruit morphology of pumpkin cultivars with extreme size difference and development of EST-SSR markers.

    PubMed

    Xanthopoulou, Aliki; Ganopoulos, Ioannis; Psomopoulos, Fotis; Manioudaki, Maria; Moysiadis, Theodoros; Kapazoglou, Aliki; Osathanunkul, Maslin; Michailidou, Sofia; Kalivas, Apostolos; Tsaftaris, Athanasios; Nianiou-Obeidat, Irini; Madesis, Panagiotis

    2017-07-30

    The genetic basis of fruit size and shape was investigated for the first time in Cucurbita species and genetic loci associated with fruit morphology have been identified. Although extensive genomic resources are available at present for tomato (Solanum lycopersicum), cucumber (Cucumis sativus), melon (Cucumis melo) and watermelon (Citrullus lanatus), genomic databases for Cucurbita species are limited. Recently, our group reported the generation of pumpkin (Cucurbita pepo) transcriptome databases from two contrasting cultivars with extreme fruit sizes. In the current study we used these databases to perform comparative transcriptome analysis in order to identify genes with potential roles in fruit morphology and fruit size. Differential Gene Expression (DGE) analysis between cv. 'Munchkin' (small-fruit) and cv. 'Big Moose' (large-fruit) revealed a variety of candidate genes associated with fruit morphology with significant differences in gene expression between the two cultivars. In addition, we have set the framework for generating EST-SSR markers, which discriminate different C. pepo cultivars and show transferability to related Cucurbitaceae species. The results of the present study will contribute to both further understanding the molecular mechanisms regulating fruit morphology and furthermore identifying the factors that determine fruit size. Moreover, they may lead to the development of molecular marker tools for selecting genotypes with desired morphological traits. Copyright © 2017. Published by Elsevier B.V.

  20. Molecular and morphological evidence for Penstemon luculentus (Plantaginaceae): a replacement name for Penstemon fremontii var. glabrescens

    PubMed Central

    Johnson, Robert L.; Stevens, Mikel R.; Johnson, Leigh A.; Robbins, Matthew D.; Anderson, Chris D.; Ricks, Nathan J.; Farley, Kevin M.

    2016-01-01

    Abstract Penstemon luculentus R.L.Johnson & M.R.Stevens, nom. nov. replaces Penstemon fremontii var. glabrescens Dorn & Lichvar. The varietal name glabrescens was not elevated because it was already occupied by Penstemon glabrescens Pennell, a different species. This new arrangement is supported by molecular and morphological evidence. An analysis of genetic diversity in populations of both varieties of Penstemon fremontii Torr. & A. Gray (glabrescens and fremontii) from the Piceance Basin, Colorado, using SSR (simple sequences repeats) or microsatellites markers, revealed significant genetic differentiation between the two. Penstemon fremontii var. glabrescens was also genetically different from Penstemon gibbensii Dorn and Penstemon scariosus var. garrettii (Pennell) N.H. Holmgren. The combination of hirtellous stems, glabrous leaves, non-glandular inflorescence, and long anther hairs distinguish Penstemon luculentus from other morphologically similar species. PMID:27489478

  1. Associations Between Egg Capsule Morphology and Predation Among Populations of the Marine Gastropod, Nucella emarginata.

    PubMed

    Rawlings, T A

    1990-12-01

    Intraspecific variation in the morphology of egg capsules is ideal for assessing the costs and benefits of encapsulation, yet little is known about the extent of such variation among populations of a single species. In the present study, I compared capsule morphology among three populations of the intertidal gastropod, Nucella emarginata. Significant differences were found both in capsule wall thickness and capsule strength. Mean capsule wall thickness varied as much as 25% among populations, with the dry weight of capsular cases differing accordingly. Capsule strength, measured as resistance to puncturing and squeezing forces, also varied among populations, but did not directly reflect differences in capsule wall thickness. Despite extensive variation in capsule morphology within this species, the number and size of eggs contained within capsules of equal volume did not differ significantly among populations. I also compared the type of capsule-eating predators that were present at each site. Shore crabs, Hemigrapsus spp., were abundant at all three sites; however, the predatory isopods Idotea wosnesenskii were only present at sites containing relatively thick-walled capsules. Although Hemigrapsus and Idotea were able to chew through both thick- and thin-walled capsules, laboratory experiments revealed that Idotea preferentially opened thin-walled capsules. These results suggest that variation in capsule morphology among populations of N. emarginata may, at least in part, reflect selection for the protection of embryos against predation.

  2. Genetic and morphological variation in Echinorhynchus gadi Zoega in Müller, 1776 (Acanthocephala: Echinorhynchidae) from Atlantic cod Gadus morhua L.

    PubMed

    Sobecka, E; Szostakowska, B; MacKenzie, K; Hemmingsen, W; Prajsnar, S; Eydal, M

    2012-03-01

    Previous studies have shown considerable variability in morphological features and the existence of genetically distinct sibling species in the acanthocephalan Echinorhynchus gadi Zoega in Müller, 1776. The aim of the present study was to follow up and extend those earlier studies by using a combination of DNA analysis and morphometrics to investigate differences between samples of E. gadi from Atlantic cod Gadus morhua L. caught at five fishing grounds in the Baltic Sea and three in different parts of the North Atlantic. Twelve morphological features were measured in 431 specimens of E. gadi, 99 individuals were studied by polymerase chain reaction-restriction fragment length polymorphosm (PCR-RFLP), and selected PCR products were sequenced. The molecular analyses showed the nucleotide sequences of E. gadi rDNA from cod caught at all the sampling sites to be identical. The comparative morphological study, in contrast, revealed significant differences between samples of E. gadi from different sampling sites and showed the separation of E. gadi into two groups corresponding approximately to the systematic classification of cod into the two subspecies, Atlantic G. morhua morhua and Baltic G. morhua callarias. The E. gadi infrapopulation size had a significant effect on some of the morphological features. The results are discussed in relation to cod population biology, the hydrography of the study area and the history of the Baltic Sea formation.

  3. Tissue-Specific Analysis of Secondary Metabolites Creates a Reliable Morphological Criterion for Quality Grading of Polygoni Multiflori Radix.

    PubMed

    Liang, Li; Xu, Jun; Liang, Zhi-Tao; Dong, Xiao-Ping; Chen, Hu-Biao; Zhao, Zhong-Zhen

    2018-05-08

    In commercial herbal markets, Polygoni Multiflori Radix (PMR, the tuberous roots of Polygonum multiflorum Thunb.), a commonly-used Chinese medicinal material, is divided into different grades based on morphological features of size and weight. While more weight and larger size command a higher price, there is no scientific data confirming that the more expensive roots are in fact of better quality. To assess the inherent quality of various grades and of various tissues in PMR and to find reliable morphological indicators of quality, a method combining laser microdissection (LMD) and ultra-performance liquid chromatography triple-quadrupole mass spectrometry (UPLC-QqQ-MS/MS) was applied. Twelve major chemical components were quantitatively determined in both whole material and different tissues of PMR. Determination of the whole material revealed that traditional commercial grades based on size and weight of PRM did not correspond to any significant differences in chemical content. Instead, tissue-specific analysis indicated that the morphological features could be linked with quality in a new way. That is, PMR with broader cork and phloem, as seen in a transverse section, were typically of better quality as these parts are where the bioactive components accumulate. The tissue-specific analysis of secondary metabolites creates a reliable morphological criterion for quality grading of PMR.

  4. Morphology informed by phylogeny reveals unexpected patterns of species differentiation in the aquatic moss Rhynchostegium riparioides s.l.

    PubMed

    Hutsemékers, Virginie; Vieira, Cristiana C; Ros, Rosa María; Huttunen, Sanna; Vanderpoorten, Alain

    2012-02-01

    Bryophyte floras typically exhibit extremely low levels of endemism. The interpretation, that this might reflect taxonomic shortcomings, is tested here for the Macaronesian flora, using the moss species complex of Rhynchostegium riparioides as a model. The deep polyphyly of R. riparioides across its distribution range reveals active differentiation that better corresponds to geographic than morphological differences. Morphometric analyses are, in fact, blurred by a size gradient that accounts for 80% of the variation observed among gametophytic traits. The lack of endemic diversification observed in R. riparioides in Macaronesia weakens the idea that the low rates of endemism observed in the Macaronesian bryophyte flora might solely be explained by taxonomic shortcomings. To the reverse, the striking polyphyly of North American and European lineages of R. riparioides suggests that the similarity between the floras of these continents has been over-emphasized. Discriminant analyses point to the existence of morphological discontinuities among the lineages resolved by the molecular phylogeny. The global rate of error associated to species identification based on morphology (0.23) indicates, however, that intergradation of shape and size characters among species in the group challenges their identification. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Intra-Trackway Morphological Variations Due to Substrate Consistency: The El Frontal Dinosaur Tracksite (Lower Cretaceous, Spain)

    PubMed Central

    Razzolini, Novella L.; Vila, Bernat; Castanera, Diego; Falkingham, Peter L.; Barco, José Luis; Canudo, José Ignacio; Manning, Phillip L.; Galobart, Àngel

    2014-01-01

    An ichnological and sedimentological study of the El Frontal dinosaur tracksite (Early Cretaceous, Cameros basin, Soria, Spain) highlights the pronounced intra-trackway variation found in track morphologies of four theropod trackways. Photogrammetric 3D digital models revealed various and distinct intra-trackway morphotypes, which reflect changes in footprint parameters such as the pace length, the track length, depth, and height of displacement rims. Sedimentological analyses suggest that the original substrate was non-homogenous due to lateral changes in adjoining microfacies. Multidata analyses indicate that morphological differences in these deep and shallow tracks represent a part of a continuum of track morphologies and geometries produced by a gradient of substrate consistencies across the site. This implies that the large range of track morphologies at this site resulted from similar trackmakers crossing variable facies. The trackways at the El Frontal site present an exemplary case of how track morphology, and consequently potential ichnotaxa, can vary, even when produced by a single trackmaker. PMID:24699696

  6. Morphological and functional diversity in therizinosaur claws and the implications for theropod claw evolution.

    PubMed

    Lautenschlager, Stephan

    2014-06-22

    Therizinosaurs are a group of herbivorous theropod dinosaurs from the Cretaceous of North America and Asia, best known for their iconically large and elongate manual claws. However, among Therizinosauria, ungual morphology is highly variable, reflecting a general trend found in derived theropod dinosaurs (Maniraptoriformes). A combined approach of shape analysis to characterize changes in manual ungual morphology across theropods and finite-element analysis to assess the biomechanical properties of different ungual shapes in therizinosaurs reveals a functional diversity related to ungual morphology. While some therizinosaur taxa used their claws in a generalist fashion, other taxa were functionally adapted to use the claws as grasping hooks during foraging. Results further indicate that maniraptoriform dinosaurs deviated from the plesiomorphic theropod ungual morphology resulting in increased functional diversity. This trend parallels modifications of the cranial skeleton in derived theropods in response to dietary adaptation, suggesting that dietary diversification was a major driver for morphological and functional disparity in theropod evolution.

  7. Sexual differences in prevalence of a new species of trypanosome infecting túngara frogs

    PubMed Central

    Bernal, Ximena E.; Pinto, C. Miguel

    2016-01-01

    Trypanosomes are a diverse group of protozoan parasites of vertebrates transmitted by a variety of hematophagous invertebrate vectors. Anuran trypanosomes and their vectors have received relatively little attention even though these parasites have been reported from frog and toad species worldwide. Blood samples collected from túngara frogs (Engystomops pustulosus), a Neotropical anuran species heavily preyed upon by eavesdropping frog-biting midges (Corethrella spp.), were examined for trypanosomes. Our results revealed sexual differences in trypanosome prevalence with female frogs being rarely infected (<1%). This finding suggests this protozoan parasite may be transmitted by frog-biting midges that find their host using the mating calls produced by male frogs. Following previous anuran trypanosome studies, we examined 18S ribosomal RNA gene to characterize and establish the phylogenetic relationship of the trypanosome species found in túngara frogs. A new species of giant trypanosome, Trypanosoma tungarae n. sp., is described in this study. Overall the morphometric data revealed that the trypomastigotes of T. tungarae n. sp. are similar to other giant trypanosomes such as Trypanosoma rotatorium and Trypanosoma ranarum. Despite its slender and long cell shape, however, 18S rRNA gene sequences revealed that T. tungarae n. sp. is sister to the rounded-bodied giant trypanosome, Trypanosoma chattoni. Therefore, morphological convergence explains similar morphology among members of two non-closely related groups of trypanosomes infecting frogs. The results from this study underscore the value of coupling morphological identification with molecular characterization of anuran trypanosomes. PMID:26977404

  8. Sexual differences in prevalence of a new species of trypanosome infecting túngara frogs.

    PubMed

    Bernal, Ximena E; Pinto, C Miguel

    2016-04-01

    Trypanosomes are a diverse group of protozoan parasites of vertebrates transmitted by a variety of hematophagous invertebrate vectors. Anuran trypanosomes and their vectors have received relatively little attention even though these parasites have been reported from frog and toad species worldwide. Blood samples collected from túngara frogs (Engystomops pustulosus), a Neotropical anuran species heavily preyed upon by eavesdropping frog-biting midges (Corethrella spp.), were examined for trypanosomes. Our results revealed sexual differences in trypanosome prevalence with female frogs being rarely infected (<1%). This finding suggests this protozoan parasite may be transmitted by frog-biting midges that find their host using the mating calls produced by male frogs. Following previous anuran trypanosome studies, we examined 18S ribosomal RNA gene to characterize and establish the phylogenetic relationship of the trypanosome species found in túngara frogs. A new species of giant trypanosome, Trypanosoma tungarae n. sp., is described in this study. Overall the morphometric data revealed that the trypomastigotes of T. tungarae n. sp. are similar to other giant trypanosomes such as Trypanosoma rotatorium and Trypanosoma ranarum. Despite its slender and long cell shape, however, 18S rRNA gene sequences revealed that T. tungarae n. sp. is sister to the rounded-bodied giant trypanosome, Trypanosoma chattoni. Therefore, morphological convergence explains similar morphology among members of two non-closely related groups of trypanosomes infecting frogs. The results from this study underscore the value of coupling morphological identification with molecular characterization of anuran trypanosomes.

  9. CdS thin films prepared by continuous wave Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Wang, H.; Tenpas, Eric W.; Vuong, Khanh D.; Williams, James A.; Schuesselbauer, E.; Bernstein, R.; Fagan, J. G.; Wang, Xing W.

    1995-08-01

    We report new results on continuous wave Nd:YAG laser deposition of cadmium sulfide thin films. Substrates were soda-lime silicate glass, silica glass, silicon, and copper coated formvar sheets. As deposited films were mixtures of cubic and hexagonal phases, with two different grain sizes. As revealed by SEM micrographs, films had smooth surface morphology. As revealed by TEM analysis, grain sizes were extremely small.

  10. Erratum to: Morphometric analysis of Passiflora leaves: the relationship between landmarks of the vasculature and elliptical Fourier descriptors of the blade.

    PubMed

    Chitwood, Daniel H; Otoni, Wagner C

    2017-10-01

    Leaf shape among Passiflora species is spectacularly diverse. Underlying this diversity in leaf shape are profound changes in the patterning of the primary vasculature and laminar outgrowth. Each of these aspects of leaf morphology-vasculature and blade-provides different insights into leaf patterning. Here, we morphometrically analyze >3300 leaves from 40 different Passiflora species collected sequentially across the vine. Each leaf is measured in two different ways: using 1) 15 homologous Procrustes-adjusted landmarks of the vasculature, sinuses, and lobes; and 2) Elliptical Fourier Descriptors (EFDs), which quantify the outline of the leaf. The ability of landmarks, EFDs, and both datasets together are compared to determine their relative ability to predict species and node position within the vine. Pairwise correlation of x and y landmark coordinates and EFD harmonic coefficients reveals close associations between traits and insights into the relationship between vasculature and blade patterning. Landmarks, more reflective of the vasculature, and EFDs, more reflective of the blade contour, describe both similar and distinct features of leaf morphology. Landmarks and EFDs vary in ability to predict species identity and node position in the vine and exhibit a correlational structure (both within landmark or EFD traits and between the two data types) revealing constraints between vascular and blade patterning underlying natural variation in leaf morphology among Passiflora species. © The Authors 2017. Published by Oxford University Press.

  11. Morphometric analysis of Passiflora leaves: the relationship between landmarks of the vasculature and elliptical Fourier descriptors of the blade.

    PubMed

    Chitwood, Daniel H; Otoni, Wagner C

    2017-01-01

    Leaf shape among Passiflora species is spectacularly diverse. Underlying this diversity in leaf shape are profound changes in the patterning of the primary vasculature and laminar outgrowth. Each of these aspects of leaf morphology-vasculature and blade-provides different insights into leaf patterning. Here, we morphometrically analyze >3300 leaves from 40 different Passiflora species collected sequentially across the vine. Each leaf is measured in two different ways: using 1) 15 homologous Procrustes-adjusted landmarks of the vasculature, sinuses, and lobes; and 2) Elliptical Fourier Descriptors (EFDs), which quantify the outline of the leaf. The ability of landmarks, EFDs, and both datasets together are compared to determine their relative ability to predict species and node position within the vine. Pairwise correlation of x and y landmark coordinates and EFD harmonic coefficients reveals close associations between traits and insights into the relationship between vasculature and blade patterning. Landmarks, more reflective of the vasculature, and EFDs, more reflective of the blade contour, describe both similar and distinct features of leaf morphology. Landmarks and EFDs vary in ability to predict species identity and node position in the vine and exhibit a correlational structure (both within landmark or EFD traits and between the two data types) revealing constraints between vascular and blade patterning underlying natural variation in leaf morphology among Passiflora species. © The Author 2017. Published by Oxford University Press.

  12. Differences in the Processing of Prefixes and Suffixes Revealed by a Letter-Search Task

    ERIC Educational Resources Information Center

    Beyersmann, Elisabeth; Ziegler, Johannes C.; Grainger, Jonathan

    2015-01-01

    A letter-search task was used to test the hypothesis that affixes are chunked during morphological processing and that such chunking might operate differently for prefixes and suffixes. Participants had to detect a letter target that was embedded either in a prefix or suffix (e.g., "R" in "propoint" or "filmure") or…

  13. Host-associated differences in morphometric traits of parasitic larvae Hirsutiella zachvatkini (Actinotrichida: Trombiculidae).

    PubMed

    Moniuszko, Hanna; Zaleśny, Grzegorz; Mąkol, Joanna

    2015-09-01

    Examination of host-associated variation in the chigger mite Hirsutiella zachvatkini (Schluger) revealed morphological differences among larvae infesting sympatric hosts: Apodemus agrarius, Apodemus flavicollis and Myodes glareolus. The analysis included 61 variables of larvae obtained from their gnathosoma, idiosoma and legs (measurements and counts). Statistically significant differences were observed for metric characters of the legs as opposed to the scutum. In view of the conspecificity of the mites, supported by comparison of COI gene products obtained from larvae and laboratory-reared deutonymphs, the observed variation is attributed to phenotypic plasticity. The knowledge of larval morphology, including intraspecific variation of metric characters, supported by molecular and host range data, places H. zachvatkini among the most comprehensively defined members of Trombiculidae.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ruixue; Chen, Kezheng, E-mail: dxb@sdu.edu.cn; Liao, Zhongmiao

    Highlights: ► Hydroxyapatite hierarchical microstructures have been synthesized by a facile method. ► The morphology and size of the building units of 3D structures can be controlled. ► The hydroxyapatite with 3D structure is morphologically and structurally stable up to 800 °C. - Abstract: Hydroxyapatite (HAp) hierarchical microstructures with novel 3D morphology were prepared through a template- and surfactant-free hydrothermal homogeneous precipitation method. Field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD) were used to characterize the morphology and composition of the synthesized products. Interestingly, the obtained HAp with 3D structure is composed ofmore » one-dimensional (1D) nanorods or two-dimensional (2D) nanoribbons, and the length and morphology of these building blocks can be controlled through controlling the pH of the reaction. The building blocks are single crystalline and have different preferential orientation growth under different pH conditions. At low pH values, octacalcium phosphate (OCP) phase formed first and then transformed into HAp phase due to the increased pH value caused by the decomposition of urea. The investigation on the thermal stability reveals that the prepared HAp hierarchical microstructures are morphologically and structurally stable up to 800 °C.« less

  15. Psorodonotus venosus group (Orthoptera, Tettigoniidae; Tettigoniinae): geometric morphometry revealed two new species in the group.

    PubMed

    Kaya, Sarp; Korkmaz, E Mahir; Ciplak, Battal

    2013-12-17

    Psorodonotus (Orthoptera, Tettigoniidae) includes 11 species distributed in Caucasus, Anatolia and Balkans. Although its present taxonomy is problematic, mainly three species groups can be distinguished; (i) The Specularis Group, (ii) The Caucasicus Group and (iii) The Venosus Group. Our recent studies on the genus have revealed presence of two new species in the last species group. Morphology of the species group studied both qualitatively and quantitatively using linear metric data of pronotum, tegmina and hind femur, and geometric data of male cerci and ovipositor. Morphological data were accompanied by data obtained from male calling song. Morphological and song data were produced from six different populations from North and Eastern part of Turkey: (1) Hakkari, (2) Tendürek, (3) Giresun, (4) Artvin, (5) Kars and (6) Ağrı. Qualitative and quantitative morphology, either linear-metric or geometric, suggest last three population as members of the same unit, but each of other three as different units. Song data are also largely in support of the morphological results. Necessary illustrations were provided to document results visually. Following conclusions were made: (1) the Artvin, Kars and Ağrı populations represent typical P. venosus and the Giresun population P. rugulosus, (2) each of the Hakkari and Tendürek populations represents a new species and P. hakkari sp. n. and P. tendurek sp. n. described by comparing with other members of P. venosus group, (3) P. rugulosus, P. hakkari sp. n. and P. tendurek sp. n. differ from P. venosus mainly by the longer cerci (extend to or beyond end of abdomen) and indistinct tubercles on surface of pronotal disc in female. P. rugulosus and P. tendurek sp. n. are also similar by sharing presence of two loud elements in a syllable (one in P. venosus, song of P. hakkari sp. n. is not available). But, similarities in phenotype are in conflict with relationships suggested by genetic data. 

  16. Local versus Generalized Phenotypes in Two Sympatric Aurelia Species: Understanding Jellyfish Ecology Using Genetics and Morphometrics

    PubMed Central

    Chiaverano, Luciano M.; Bayha, Keith W.; Graham, William M.

    2016-01-01

    For individuals living in environmentally heterogeneous environments, a key component for adaptation and persistence is the extent of phenotypic differentiation in response to local environmental conditions. In order to determine the extent of environmentally induced morphological variation in a natural population distributed along environmental gradients, it is necessary to account for potential genetic differences contributing to morphological differentiation. In this study, we set out to quantify geographic morphological variation in the moon jellyfish Aurelia exposed at the extremes of a latitudinal environmental gradient in the Gulf of Mexico (GoM). We used morphological data based on 28 characters, and genetic data taken from mitochondrial cytochrome oxidase I (COI) and nuclear internal transcribed spacer 1 (ITS-1). Molecular analyses revealed the presence of two genetically distinct species of Aurelia co-occurring in the GoM: Aurelia sp. 9 and Aurelia c.f. sp. 2, named for its divergence from (for COI) and similarity to (for ITS-1) Aurelia sp. 2 (Brazil). Neither species exhibited significant population genetic structure between the Northern and the Southeastern Gulf of Mexico; however, they differed greatly in the degree of geographic morphological variation. The morphology of Aurelia sp. 9 exhibited ecophenotypic plasticity and varied significantly between locations, while morphology of Aurelia c.f. sp. 2 was geographically invariant (i.e., canalized). The plastic, generalist medusae of Aurelia sp. 9 are likely able to produce environmentally-induced, “optimal” phenotypes that confer high relative fitness in different environments. In contrast, the non-plastic generalist individuals of Aurelia c.f. sp. 2 likely produce environmentally-independent phenotypes that provide the highest fitness across environments. These findings suggest the two Aurelia lineages co-occurring in the GoM were likely exposed to different past environmental conditions (i.e., different selective pressures) and evolved different strategies to cope with environmental variation. This study highlights the importance of using genetics and morphometric data to understand jellyfish ecology, evolution and systematics. PMID:27332545

  17. Local versus Generalized Phenotypes in Two Sympatric Aurelia Species: Understanding Jellyfish Ecology Using Genetics and Morphometrics.

    PubMed

    Chiaverano, Luciano M; Bayha, Keith W; Graham, William M

    2016-01-01

    For individuals living in environmentally heterogeneous environments, a key component for adaptation and persistence is the extent of phenotypic differentiation in response to local environmental conditions. In order to determine the extent of environmentally induced morphological variation in a natural population distributed along environmental gradients, it is necessary to account for potential genetic differences contributing to morphological differentiation. In this study, we set out to quantify geographic morphological variation in the moon jellyfish Aurelia exposed at the extremes of a latitudinal environmental gradient in the Gulf of Mexico (GoM). We used morphological data based on 28 characters, and genetic data taken from mitochondrial cytochrome oxidase I (COI) and nuclear internal transcribed spacer 1 (ITS-1). Molecular analyses revealed the presence of two genetically distinct species of Aurelia co-occurring in the GoM: Aurelia sp. 9 and Aurelia c.f. sp. 2, named for its divergence from (for COI) and similarity to (for ITS-1) Aurelia sp. 2 (Brazil). Neither species exhibited significant population genetic structure between the Northern and the Southeastern Gulf of Mexico; however, they differed greatly in the degree of geographic morphological variation. The morphology of Aurelia sp. 9 exhibited ecophenotypic plasticity and varied significantly between locations, while morphology of Aurelia c.f. sp. 2 was geographically invariant (i.e., canalized). The plastic, generalist medusae of Aurelia sp. 9 are likely able to produce environmentally-induced, "optimal" phenotypes that confer high relative fitness in different environments. In contrast, the non-plastic generalist individuals of Aurelia c.f. sp. 2 likely produce environmentally-independent phenotypes that provide the highest fitness across environments. These findings suggest the two Aurelia lineages co-occurring in the GoM were likely exposed to different past environmental conditions (i.e., different selective pressures) and evolved different strategies to cope with environmental variation. This study highlights the importance of using genetics and morphometric data to understand jellyfish ecology, evolution and systematics.

  18. Impact of oleylamine: Oleic acid ratio on the morphology of yttria nanomaterials

    DOE PAGES

    Treadwell, LaRico J.; Boyle, Timothy J.; Bell, Nelson S.; ...

    2017-03-31

    In this paper, the impact on the final morphology of yttria (Y 2O 3) nanoparticles from different ratios (100/0, 90/10, 65/35, and 50/50) of oleylamine (ON) and oleic acid (OA) via a solution precipitation route has been determined. In all instances, powder X-ray diffraction indicated that the cubic Y 2O 3 phase (PDF #00-025-1200) with the space group I-3a (206) had been formed. Analysis of the collected FTIR data revealed the presence of stretches and bends consistent with ON and OA, for all ratios investigated, except the 100/0. Transmission electron microscopy images revealed regular and elongated hexagons were produced formore » the ON (100/0) sample. As OA was added, the nanoparticle morphology changed to lamellar pillars (90/10), then irregular particles (65/35), and finally plates (50/50). The formation of the hexagonal-shaped nanoparticles was determined to be due to the preferential adsorption of ON onto the {101} planes. As OA was added to the reaction mixture, it was found that the {111} planes were preferentially coated, replacing ON from the surface, resulting in the various morphologies noted. The roles of the ratio of ON/OA in the synthesis of the nanocrystals were elucidated in the formation of the various Y 2O 3 morphologies, as well as a possible growth mechanism based on the experimental data.« less

  19. Impact of oleylamine: Oleic acid ratio on the morphology of yttria nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treadwell, LaRico J.; Boyle, Timothy J.; Bell, Nelson S.

    In this paper, the impact on the final morphology of yttria (Y 2O 3) nanoparticles from different ratios (100/0, 90/10, 65/35, and 50/50) of oleylamine (ON) and oleic acid (OA) via a solution precipitation route has been determined. In all instances, powder X-ray diffraction indicated that the cubic Y 2O 3 phase (PDF #00-025-1200) with the space group I-3a (206) had been formed. Analysis of the collected FTIR data revealed the presence of stretches and bends consistent with ON and OA, for all ratios investigated, except the 100/0. Transmission electron microscopy images revealed regular and elongated hexagons were produced formore » the ON (100/0) sample. As OA was added, the nanoparticle morphology changed to lamellar pillars (90/10), then irregular particles (65/35), and finally plates (50/50). The formation of the hexagonal-shaped nanoparticles was determined to be due to the preferential adsorption of ON onto the {101} planes. As OA was added to the reaction mixture, it was found that the {111} planes were preferentially coated, replacing ON from the surface, resulting in the various morphologies noted. The roles of the ratio of ON/OA in the synthesis of the nanocrystals were elucidated in the formation of the various Y 2O 3 morphologies, as well as a possible growth mechanism based on the experimental data.« less

  20. Size and diet in the evolution of African ape craniodental form.

    PubMed

    Shea, B T

    1983-01-01

    Interspecific differences in craniodental morphology among Pan paniscus, Pan troglodytes, and Gorilla gorilla are analyzed. These apes differ in both diet and body size, and thus present an excellent example in which to apply an allometric criterion of subtraction in order to determine morphological differences which might be related to divergent dietary specialization. The use of ontogenetic allometry in particular as a criterion of subtraction is discussed. Bivariate and multivariate results indicate that most of the variation in skull form among the species relates to the extension of a common growth trend to different sizes. Comparative analysis of growth trajectories reveals a number of differences, but none that appear to relate to a reorganization of skull proportions which might correspond to a dietary shift towards increased folivory. The dentition clearly exhibits non-allometric shape changes corresponding to the dietary differences, however. The meaning of these differences between cranial and dental patterns is discussed.

  1. Morphology and Pattern Control of Diphenylalanine Self-Assembly via Evaporative Dewetting.

    PubMed

    Chen, Jiarui; Qin, Shuyu; Wu, Xinglong; Chu, And Paul K

    2016-01-26

    Self-assembled peptide nanostructures have unique physical and biological properties and promising applications in electrical devices and functional molecular recognition. Although solution-based peptide molecules can self-assemble into different morphologies, it is challenging to control the self-assembly process. Herein, controllable self-assembly of diphenylalanine (FF) in an evaporative dewetting solution is reported. The fluid mechanical dimensionless numbers, namely Rayleigh, Marangoni, and capillary numbers, are introduced to control the interaction between the solution and FF molecules in the self-assembly process. The difference in the film thickness reflects the effects of Rayleigh and Marangoni convection, and the water vapor flow rate reveals the role of viscous fingering in the emergence of aligned FF flakes. By employing dewetting, various FF self-assembled patterns, like concentric and spokelike, and morphologies, like strips and hexagonal tubes/rods, can be produced, and there are no significant lattice structural changes in the FF nanostructures.

  2. The effects of deposition parameters on surface morphology and crystallographic orientation of electroless Ni-B coatings

    NASA Astrophysics Data System (ADS)

    Bulbul, Ferhat

    2011-02-01

    Electroless Ni-B coatings were deposited on AISI 304 stainless steels by electroless deposition method, which was performed for nine different test conditions at various levels of temperature, concentration of NaBH4, concentration of NiCl2, and time, using the Taguchi L9(34) experimental method. The effects of deposition parameters on the crystallographic orientation of electroless Ni-B coatings were investigated using SEM and XRD equipment. SEM analysis revealed that the Ni-B coatings developed six types (pea-like, maize-like, primary nodular, blackberry-like or grapes-like, broccoli-like, and cauliflower-like) of morphological structures depending on the deposition parameters. XRD results also showed that these structures exhibited different levels of amorphous character. The concentration of NaBH4 had the most dominant effect on the morphological and crystallographic development of electroless Ni-B coatings.

  3. Phenotypic Diagnosis of Lineage and Differentiation During Sake Yeast Breeding

    PubMed Central

    Ohnuki, Shinsuke; Okada, Hiroki; Friedrich, Anne; Kanno, Yoichiro; Goshima, Tetsuya; Hasuda, Hirokazu; Inahashi, Masaaki; Okazaki, Naoto; Tamura, Hiroyasu; Nakamura, Ryo; Hirata, Dai; Fukuda, Hisashi; Shimoi, Hitoshi; Kitamoto, Katsuhiko; Watanabe, Daisuke; Schacherer, Joseph; Akao, Takeshi; Ohya, Yoshikazu

    2017-01-01

    Sake yeast was developed exclusively in Japan. Its diversification during breeding remains largely uncharacterized. To evaluate the breeding processes of the sake lineage, we thoroughly investigated the phenotypes and differentiation of 27 sake yeast strains using high-dimensional, single-cell, morphological phenotyping. Although the genetic diversity of the sake yeast lineage is relatively low, its morphological diversity has expanded substantially compared to that of the Saccharomyces cerevisiae species as a whole. Evaluation of the different types of breeding processes showed that the generation of hybrids (crossbreeding) has more profound effects on cell morphology than the isolation of mutants (mutation breeding). Analysis of phenotypic robustness revealed that some sake yeast strains are more morphologically heterogeneous, possibly due to impairment of cellular network hubs. This study provides a new perspective for studying yeast breeding genetics and micro-organism breeding strategies. PMID:28642365

  4. Crystallography and Morphology of Niobium Carbide in As-Cast HP-Niobium Reformer Tubes

    NASA Astrophysics Data System (ADS)

    Buchanan, Karl G.; Kral, Milo V.

    2012-06-01

    The microstructures of two as-cast heats of niobium-modified HP stainless steels were characterized. Particular attention was paid to the interdendritic niobium-rich carbides formed during solidification of these alloys. At low magnifications, these precipitates are grouped in colonies of similar lamellae. Higher magnifications revealed that the lamellae actually obtain two distinct morphologies. The type I morphology exhibits broad planar interfaces with a smooth platelike shape. Type II lamellae have undulating interfaces and an overall reticulated shape. To provide further insight into the origin of these two different morphologies, the microstructure and crystallography of each have been studied in detail using high resolution scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (electron backscatter diffraction (EBSD), selected area diffraction (SAD), and convergent beam electron diffraction (CBED)), and energy dispersive X-ray spectroscopy.

  5. Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma evokes distinct changes in morphology and integrity of spores.

    PubMed

    van Bokhorst-van de Veen, Hermien; Xie, Houyu; Esveld, Erik; Abee, Tjakko; Mastwijk, Hennie; Nierop Groot, Masja

    2015-02-01

    Bacterial spores are resistant to severe conditions and form a challenge to eradicate from food or food packaging material. Cold atmospheric plasma (CAP) treatment is receiving more attention as potential sterilization method at relatively mild conditions but the exact mechanism of inactivation is still not fully understood. In this study, the biocidal effect by nitrogen CAP was determined for chemical (hypochlorite and hydrogen peroxide), physical (UV) and heat-resistant spores. The three different sporeformers used are Bacillus cereus a food-borne pathogen, and Bacillus atrophaeus and Geobacillus stearothermophilus that are used as biological indicators for validation of chemical sterilization and thermal processes, respectively. The different spores showed variation in their degree of inactivation by applied heat, hypochlorite, hydrogen peroxide, and UV treatments, whereas similar inactivation results were obtained with the different spores treated with nitrogen CAP. G. stearothermophilus spores displayed high resistance to heat, hypochlorite, hydrogen peroxide, while for UV treatment B. atrophaeus spores are most tolerant. Scanning electron microscopy analysis revealed distinct morphological changes for nitrogen CAP-treated B. cereus spores including etching effects and the appearance of rough spore surfaces, whereas morphology of spores treated with heat or disinfectants showed no such changes. Moreover, microscopy analysis revealed CAP-exposed B. cereus spores to turn phase grey conceivably because of water influx indicating damage of the spores, a phenomenon that was not observed for non-treated spores. In addition, data are supplied that exclude UV radiation as determinant of antimicrobial activity of nitrogen CAP. Overall, this study shows that nitrogen CAP treatment has a biocidal effect on selected Bacillus and Geobacillus spores associated with alterations in spore surface morphology and loss of spore integrity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Parallel RNAi screens across different cell lines identify generic and cell type-specific regulators of actin organization and cell morphology.

    PubMed

    Liu, Tao; Sims, David; Baum, Buzz

    2009-01-01

    In recent years RNAi screening has proven a powerful tool for dissecting gene functions in animal cells in culture. However, to date, most RNAi screens have been performed in a single cell line, and results then extrapolated across cell types and systems. Here, to dissect generic and cell type-specific mechanisms underlying cell morphology, we have performed identical kinome RNAi screens in six different Drosophila cell lines, derived from two distinct tissues of origin. This analysis identified a core set of kinases required for normal cell morphology in all lines tested, together with a number of kinases with cell type-specific functions. Most significantly, the screen identified a role for minibrain (mnb/DYRK1A), a kinase associated with Down's syndrome, in the regulation of actin-based protrusions in CNS-derived cell lines. This cell type-specific requirement was not due to the peculiarities in the morphology of CNS-derived cells and could not be attributed to differences in mnb expression. Instead, it likely reflects differences in gene expression that constitute the cell type-specific functional context in which mnb/DYRK1A acts. Using parallel RNAi screens and gene expression analyses across cell types we have identified generic and cell type-specific regulators of cell morphology, which include mnb/DYRK1A in the regulation of protrusion morphology in CNS-derived cell lines. This analysis reveals the importance of using different cell types to gain a thorough understanding of gene function across the genome and, in the case of kinases, the difficulties of using the differential gene expression to predict function.

  7. Patterns of diversity in leaves from canopies of Ginkgo biloba are revealed using Specific Leaf Area as a morphological character.

    PubMed

    Christianson, Michael L; Niklas, Karl J

    2011-07-01

    The difference reported in the literature for the Specific Leaf Area (SLA, cm(2)/g) of leaves on short- and long-shoots of Acer rubrum could mean that SLA can serve as a quantitative morphological trait. Our survey of SLA in canopies of Ginkgo biloba sampled a different clade of seed plants to investigate this morphological phenomenon. Such a survey in this dioecious taxon, and one in which a single canopy may have juvenile and reproductive portions, as well as one where canopies bear leaves of several shapes, examine these additional morphological factors as well as any long-shoot short-shoot differences. We measured SLA for a set of 642 dried leaves, a sampling across all morphological levels in canopies of large landscape specimens. The tabulated values were analyzed as distributions. Populations of leaves of G. biloba, sorted by morphological features of canopy structure, differ between long- and short-shoots (175%), on the two genders of tree (131%), in the juvenile and reproductive portions of a canopy (183%), and with the presence or absence of seed on short-shoots in the reproductive portion of megasporangiate canopies (114%). Basipetal leaves of long-shoots and leaves of short-shoots have similar values of SLA. With the exception of the acropetal decrease in SLA along long-shoots, the differences among the several classes of leaf seem to reflect local sink strength, even though the sink itself develops after leaves mature. The large overall range in the values of SLA in Ginkgo underscores the relevance of the details of canopy structure to parsing ecological phenomena.

  8. A First Survey on the Abundance of Plastics Fragments and Particles on Two Sandy Beaches in Kuching, Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Noik, V. James; Mohd Tuah, P.

    2015-04-01

    Plastic fragments and particles as an emerging environmental contaminant and pollutant are gaining scientific attention in the recent decades due to the potential threats on biota. This study aims to elucidate the presence, abundance and temporal change of plastic fragments and particles from two selected beaches, namely Santubong and Trombol in Kuching on two sampling times. Morphological and polymer identification assessment on the recovered plastics was also conducted. Overall comparison statistical analysis revealed that the abundance of plastic fragments/debris on both of sampling stations were insignificantly different (p>0.05). Likewise, statistical analysis on the temporal changes on the abundance yielded no significant difference for most of the sampling sites on each respective station, except STB-S2. Morphological studies revealed physical features of plastic fragments and debris were diverse in shapes, sizes, colors and surface fatigues. FTIR fingerprinting analysis shows that polypropylene and polyethylene were the dominant plastic polymers debris on both beaches.

  9. A geometric morphometric analysis of hominin upper premolars. Shape variation and morphological integration.

    PubMed

    Gómez-Robles, Aida; Martinón-Torres, María; Bermúdez de Castro, José María; Prado-Simón, Leyre; Arsuaga, Juan Luis

    2011-12-01

    This paper continues the series of articles initiated in 2006 that analyse hominin dental crown morphology by means of geometric morphometric techniques. The detailed study of both upper premolar occlusal morphologies in a comprehensive sample of hominin fossils, including those coming from the Gran Dolina-TD6 and Sima de los Huesos sites from Atapuerca, Spain, complement previous works on lower first and second premolars and upper first molars. A morphological gradient consisting of the change from asymmetric to symmetric upper premolars and a marked reduction of the lingual cusp in recent Homo species has been observed in both premolars. Although percentages of correct classification based on upper premolar morphologies are not very high, significant morphological differences between Neanderthals (and European middle Pleistocene fossils) and modern humans have been identified, especially in upper second premolars. The study of morphological integration between premolar morphologies reveals significant correlations that are weaker between upper premolars than between lower ones and significant correlations between antagonists. These results have important implications for understanding the genetic and functional factors underlying dental phenotypic variation and covariation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Sporotrichosis caused by Sporothrix globosa in Rio De Janeiro, brazil: case report.

    PubMed

    de Oliveira, Manoel Marques Evangelista; de Almeida-Paes, Rodrigo; de Medeiros Muniz, Mauro; de Lima Barros, Monica Bastos; Galhardo, Maria Clara Gutierrez; Zancope-Oliveira, Rosely Maria

    2010-05-01

    This report describes the first isolation of Sporothrix globosa from a Brazilian patient. A 77-year-old woman was examined for sporotrichosis infection. Histopathological examination of skin biopsy revealed chronic granulomatous infiltrate with microabcess. Furthermore, S. schenckii-like yeasts were evident as demonstrated by PAS and Grocott stains. The fungus was identified based on colony morphology on Sabouraud Dextrose Agar slants, Potato Dextrose Agar, and Corn Meal Agar, microscopic morphology on slides cultures, and assimilation of different carbon sources. The species confirmation was made by molecular methodology.

  11. Impact of air pollution on floral morphology of Cassia siamea Lamk.

    PubMed

    Chauhan, S V S; Chaurasia, Bharati; Rana, Anita

    2004-07-01

    Cassia siamea plants growing at two different sites (polluted and non-polluted) on two important roads of Agra city exhibited significant differences in their flowering phenology and floral morphology. The flowering in plants growing at polluted site is delayed and there was a marked reduction in flowering density, flowering period, size of floral parts, pollen fertility, fruit and seed-set. SEM observations revealed the presence of well developed glandular structures and reduction in the number and size of large stomata on the anther surface at polluted site. These changes were found to be closely associated with the extent of air pollution caused mainly by significant in the number of automobiles.

  12. Morphological response contributes to patient selection for rescue liver resection in chemotherapy patients with initially un-resectable colorectal liver metastasis.

    PubMed

    Suzuki, Koichi; Muto, Yuta; Ichida, Kosuke; Fukui, Taro; Takayama, Yuji; Kakizawa, Nao; Kato, Takaharu; Hasegawa, Fumi; Watanabe, Fumiaki; Kaneda, Yuji; Kikukawa, Rina; Saito, Masaaki; Tsujinaka, Shingo; Futsuhara, Kazushige; Takata, Osamu; Noda, Hiroshi; Miyakura, Yasuyuki; Kiyozaki, Hirokazu; Konishi, Fumio; Rikiyama, Toshiki

    2017-08-01

    Morphological response is considered an improved surrogate to the Response Evaluation Criteria in Solid Tumors (RECIST) model with regard to predicting the prognosis for patients with colorectal liver metastases. However, its use as a decision-making tool for surgical intervention has not been examined. The present study assessed the morphological response in 50 patients who underwent chemotherapy with or without bevacizumab for initially un-resectable colorectal liver metastases. Changes in tumor morphology between heterogeneous with uncertain borders and homogeneous with clear borders were defined as an optimal response (OR). Patients were also assessed as having an incomplete response (IR), and an absence of marked changes was assessed as no response (NR). No significant difference was observed in progression-free survival (PFS) between complete response/partial response (CR/PR) and stable disease/progressive disease (SD/PD), according to RECIST. By contrast, PFS for OR/IR patients was significantly improved compared with that for NR patients (13.2 vs. 8.7 months; P=0.0426). Exclusion of PD enhanced the difference in PFS between OR/IR and NR patients (15.1 vs. 9.3 months; P<0.0001), whereas no difference was observed between CR/PR and SD. The rate of OR and IR in patients treated with bevacizumab was 47.4% (9/19), but only 19.4% (6/31) for patients that were not administered bevacizumab. Comparison of the survival curves between OR/IR and NR patients revealed similar survival rates at 6 months after chemotherapy, but the groups exhibited different survival rates subsequent to this period of time. Patients showing OR/IR within 6 months appeared to be oncologically stable and could be considered as candidates for surgical intervention, including rescue liver resection. Comparing the pathological and morphological features of the tumor with representative optimal response, living tumor cells were revealed to be distributed within the area of vascular reconstruction induced by bevacizumab, resulting in a predictive value for prognosis in the patients treated with bevacizumab. The present findings provided the evidence for physicians to consider patients with previously un-resectable metastatic colorectal cancer as candidates for surgical treatment. Morphological response is a useful decision-making tool for evaluating these patients for rescue liver resection following chemotherapy.

  13. Effects of organic solvents on drug incorporation into polymeric carriers and morphological analyses of drug-incorporated polymeric micelles.

    PubMed

    Harada, Yoshiko; Yamamoto, Tatsuhiro; Sakai, Masaru; Saiki, Toshiharu; Kawano, Kumi; Maitani, Yoshie; Yokoyama, Masayuki

    2011-02-14

    We incorporated an anticancer agent, camptothecin (CPT), into polymeric micelle carriers by using two different solvents (TFE and chloroform) in the solvent-evaporation drug incorporation process. We observed significant differences in the drug-incorporation behaviors, in the morphologies of the incorporated drug and the polymeric micelles, and in the pharmacokinetic behaviors between the two solvents' cases. In particular, the CPT-incorporated polymeric micelles prepared with TFE as the incorporation solvent exhibited more stable circulation in blood than those prepared with chloroform. This contrast indicates a novel technological perspective regarding the drug incorporation into polymeric micelle carriers. Morphological analyses of the inner core have revealed the presence of the directed alignment of the CPT molecules and CPT crystals in the micelle inner core. This is the first report of the morphologies of the drug incorporated into the polymeric micelle inner cores. We believe these analyses are very important for further pharmaceutical developments of polymeric micelle drug-carrier systems. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes

    PubMed Central

    Bray, Mark-Anthony; Singh, Shantanu; Han, Han; Davis, Chadwick T.; Borgeson, Blake; Hartland, Cathy; Kost-Alimova, Maria; Gustafsdottir, Sigrun M.; Gibson, Christopher C.; Carpenter, Anne E.

    2016-01-01

    In morphological profiling, quantitative data are extracted from microscopy images of cells to identify biologically relevant similarities and differences among samples based on these profiles. This protocol describes the design and execution of experiments using Cell Painting, a morphological profiling assay multiplexing six fluorescent dyes imaged in five channels, to reveal eight broadly relevant cellular components or organelles. Cells are plated in multi-well plates, perturbed with the treatments to be tested, stained, fixed, and imaged on a high-throughput microscope. Then, automated image analysis software identifies individual cells and measures ~1,500 morphological features (various measures of size, shape, texture, intensity, etc.) to produce a rich profile suitable for detecting subtle phenotypes. Profiles of cell populations treated with different experimental perturbations can be compared to suit many goals, such as identifying the phenotypic impact of chemical or genetic perturbations, grouping compounds and/or genes into functional pathways, and identifying signatures of disease. Cell culture and image acquisition takes two weeks; feature extraction and data analysis take an additional 1-2 weeks. PMID:27560178

  15. Galaxy Zoo: Comparing the visual morphology of synthetic galaxies from the Illustris simulation with those in the real Universe.

    NASA Astrophysics Data System (ADS)

    Dickinson, Hugh; Lintott, Chris; Scarlata, Claudia; Fortson, Lucy; Bamford, Steven; Cardamone, Carolin; Keel, William C.; Kruk, Sandor; Masters, Karen; Simmons, Brooke D.; Vogelsberger, Mark; Torrey, Paul; Snyder, Gregory; Galaxy Zoo Science Team

    2018-01-01

    We present a comparision between the Illustris simulations and classifications from Galaxy Zoo, aiming to test the ability of modern large-scale cosmological simulations to accurately reproduce the local galaxy population. This comparison is enabled by the increasingly high spatial and temporal resolution obtained by such surveys.Using classifications that were accumulated via the Galaxy Zoo citizen science interface, we compare the visual morphologies for simulated images of Illustris galaxies with a compatible sample of images drawn from the Sloan Digital Sky Survey (SDSS) Legacy Survey.For simulated galaxies with stellar masses less than 1011 M⊙, significant differences are identified, which are most likely due to the limited resolution of the simulation, but could be revealing real differences in the dynamical evolution of populations of galaxies in the real and model universes. Above 1011 M⊙, Illustris galaxy morphologies correspond better with those of their SDSS counterparts, although even in this mass range the simulation appears to underproduce obviously disk-like galaxies. Morphologies of Illustris galaxies less massive than 1011 M⊙ should be treated with care.

  16. Three-Dimensional Morphological and Chemical Evolution of Nanoporous Stainless Steel by Liquid Metal Dealloying [3D Morphological and Chemical Evolution of Nanoporous Stainless Steel by Liquid Metal Dealloying

    DOE PAGES

    Zhao, Chonghang; Wada, Takeshi; De Andrade, Vincent; ...

    2017-09-04

    Nanoporous materials, especially those fabricated by liquid metal dealloying processes, possess great potential in a wide range of applications due to their high surface area, bicontinuous structure with both open pores for transport and solid phase for conductivity or support, and low material cost. Here, we used X-ray nanotomography and X-ray fluorescence microscopy to reveal the three-dimensional (3D) morphology and elemental distribution within materials. Focusing on nanoporous stainless steel, we evaluated the 3D morphology of the dealloying front and established a quantitative processing-structure-property relationship at a later stage of dealloying. The morphological differences of samples created by liquid metal dealloyingmore » and aqueous dealloying methods were also discussed. Here, we concluded that it is particularly important to consider the dealloying, coarsening, and densification mechanisms in influencing the performance-determining, critical 3D parameters, such as tortuosity, pore size, porosity, curvature, and interfacial shape.« less

  17. Three-Dimensional Morphological and Chemical Evolution of Nanoporous Stainless Steel by Liquid Metal Dealloying [3D Morphological and Chemical Evolution of Nanoporous Stainless Steel by Liquid Metal Dealloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Chonghang; Wada, Takeshi; De Andrade, Vincent

    Nanoporous materials, especially those fabricated by liquid metal dealloying processes, possess great potential in a wide range of applications due to their high surface area, bicontinuous structure with both open pores for transport and solid phase for conductivity or support, and low material cost. Here, we used X-ray nanotomography and X-ray fluorescence microscopy to reveal the three-dimensional (3D) morphology and elemental distribution within materials. Focusing on nanoporous stainless steel, we evaluated the 3D morphology of the dealloying front and established a quantitative processing-structure-property relationship at a later stage of dealloying. The morphological differences of samples created by liquid metal dealloyingmore » and aqueous dealloying methods were also discussed. Here, we concluded that it is particularly important to consider the dealloying, coarsening, and densification mechanisms in influencing the performance-determining, critical 3D parameters, such as tortuosity, pore size, porosity, curvature, and interfacial shape.« less

  18. Effects of surface morphology on the optical and electrical properties of Schottky diodes of CBD deposited ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Mwankemwa, Benard S.; Akinkuade, Shadrach; Maabong, Kelebogile; Nel, Jackie M.; Diale, Mmantsae

    2018-04-01

    We report on effect of surface morphology on the optical and electrical properties of chemical bath deposited Zinc oxide (ZnO) nanostructures. ZnO nanostructures were deposited on the seeded conducting indium doped tin oxide substrate positioned in three different directions in the growth solution. Field emission scanning electron microscopy was used to evaluate the morphological properties of the synthesized nanostructures and revealed that the positioning of the substrate in the growth solution affects the surface morphology of the nanostructures. The optical absorbance, photoluminescence and Raman spectroscopy of the resulting nanostructures are discussed. The electrical characterization of the Schottky diode such as barrier height, ideality factor, rectification ratios, reverse saturation current and series resistance were found to depend on the nanostructures morphology. In addition, current transport mechanism in the higher forward bias of the Schottky diode was studied and space charge limited current was found to be the dominant transport mechanism in all samples.

  19. The variation in surface morphology and hardness of human deciduous teeth samples after laser irradiation

    NASA Astrophysics Data System (ADS)

    Khalid, Arooj; Bashir, Shazia; Akram, Mahreen; Salman Ahmed, Qazi

    2017-11-01

    The variation in surface morphology and hardness of human deciduous teeth samples has been investigated after laser irradiation at different wavelengths and energies. Nd:YAG was employed as a source of irradiation for IR (1064 nm) and visible (532 nm) radiation, whereas an excimer laser was used as the source of UV (248 nm) radiation. Scanning electron microscope (SEM) analysis was carried out to reveal the surface morphological evolution of teeth samples. Vickers microhardness tester was employed to investigate the modifications in the hardness of the laser-treated samples. It is observed from SEM analysis that IR wavelength is responsible for ablation of collagen matrix and intertubular dentine. For visible radiation, the ablation of collagen along with hydroxypatite is observed. With UV radiation, the ablation of peritubular dentine is dominant and is responsible for the sealing of tubules. The decrease in hardness at lower energy for both wavelengths is due to the evaporation of carbon content. With increasing energy, evaporation of water along with carbon content, and resolidification and re-organization of inorganic content causes the increase in hardness of the treated dentine. SEM as well as microhardness analyses reveal that laser wavelengths and energy of laser radiation significantly influence the surface morphology and hardness of samples.

  20. Morphological and functional evaluation of chronic pancreatitis with magnetic resonance imaging

    PubMed Central

    Hansen, Tine Maria; Nilsson, Matias; Gram, Mikkel; Frøkjær, Jens Brøndum

    2013-01-01

    Magnetic resonance imaging (MRI) techniques for assessment of morphology and function of the pancreas have been improved dramatically the recent years and MRI is very often used in diagnosing and follow-up of chronic pancreatitis (CP) patients. Standard MRI including fat-suppressed T1-weighted and T2-weighted imaging techniques reveal decreased signal and glandular atrophy of the pancreas in CP. In contrast-enhanced MRI of the pancreas in CP the pancreatic signal is usually reduced and delayed due to decreased perfusion as a result of chronic inflammation and fibrosis. Thus, morphological changes of the ductal system can be assessed by magnetic resonance cholangiopancreatography (MRCP). Furthermore, secretin-stimulated MRCP is a valuable technique to evaluate side branch pathology and the exocrine function of the pancreas and diffusion weighted imaging can be used to quantify both parenchymal fibrotic changes and the exocrine function of the pancreas. These standard and advanced MRI techniques are supplementary techniques to reveal morphological and functional changes of the pancreas in CP. Recently, spectroscopy has been used for assessment of metabolite concentrations in-vivo in different tissues and may have the potential to offer better tissue characterization of the pancreas. Hence, the purpose of the present review is to provide an update on standard and advanced MRI techniques of the pancreas in CP. PMID:24259954

  1. Phylogenetic positions of four hypotrichous ciliates (Protista, Ciliophora) based on SSU rRNA gene, with notes on their morphological characters.

    PubMed

    Yang, Caiting; Liu, An; Xu, Yusen; Xu, Yuan; Fan, Xinpeng; Al-Farraj, Saleh A; Ni, Bing; Gu, Fukang

    2015-08-18

     The morphology and infraciliature of the four hypotrichous ciliates; Rigidohymena inquieta (Stokes, 1887) Berger, 2011, Pattersoniella vitiphila Foissner, 1987, Notohymena australis Foissner & O' Donoghue, 1990, and Cyrtohymena (Cyrtohymenides) australis (Foissner, 1995) Foissner, 2004, collected from east China, were investigated by using live observation and protargol impregnation method. An improved diagnosis for R. inquieta was supplied based on descriptions of present and previous populations. New morphology and morphogenesis information based on Chinese populations of another three hypotrichids were also supplemented. The Small-subunit rRNA (SSU rRNA) gene sequences of the four species were characterized and their phylogenetic positions were revealed by means of Bayesian inference and Maximum-likelihood analysis. The analyses shows that R. inquieta clusters with other members of the subfamily Stylonychinae, which confirms the monophyly of the subfamily and verified R. inquieta as a separated species from R. candens though it differs from others mainly by body size. C. (C.) australis occupying the basal position of the clade which contains cyrtohymenids and some other groups, declines the idea of separating Cyrtohymena into two subgenus. Notohymena australis and China population of Pattersoniella vitiphila respectively clustering with their congeners correspond well with the systematics revealed by morphological similarities.

  2. Sodium chloride stress induced morphological and ultrastructural changes in Aspergillus repens.

    PubMed

    Kelavkar, U; Rao, K S; Ghhatpar, H S

    1993-06-01

    Halotolerant fungus, A. repens, showed a considerable difference in its growth rate, morphology, ultrastructural and molecular composition under NaCl stress as compared to control i.e. non-stressed condition. Light microscopic observations revealed significant differences in their mycelial thickness, their branching and septa. Transmission electron microscopic observations of both the conditions depicted significant differences in the qualitative and quantitative changes in mitochondria. Frequent pinocytotic vesiculation (vacuoles) of plasma membrane was observed in fungus under stress but no such vesiculation in control. The multivesiculate structures observed under stress with their origin from the cell membranes and subsequent release into vacuoles have not been reported in fungi under normal physiological conditions. The observations on pinocytosis are discussed in relation to ion compartmentation and salt tolerance in A. repens.

  3. Morphological and functional aspects of progenitors perturbed in cortical malformations

    PubMed Central

    Bizzotto, Sara; Francis, Fiona

    2015-01-01

    In this review, we discuss molecular and cellular mechanisms important for the function of neuronal progenitors during development, revealed by their perturbation in different cortical malformations. We focus on a class of neuronal progenitors, radial glial cells (RGCs), which are renowned for their unique morphological and behavioral characteristics, constituting a key element during the development of the mammalian cerebral cortex. We describe how the particular morphology of these cells is related to their roles in the orchestration of cortical development and their influence on other progenitor types and post-mitotic neurons. Important for disease mechanisms, we overview what is currently known about RGC cellular components, cytoskeletal mechanisms, signaling pathways and cell cycle characteristics, focusing on how defects lead to abnormal development and cortical malformation phenotypes. The multiple recent entry points from human genetics and animal models are contributing to our understanding of this important cell type. Combining data from phenotypes in the mouse reveals molecules which potentially act in common pathways. Going beyond this, we discuss future directions that may provide new data in this expanding area. PMID:25729350

  4. Distinct frontal lobe morphology in girls and boys with ADHD.

    PubMed

    Dirlikov, Benjamin; Shiels Rosch, Keri; Crocetti, Deana; Denckla, Martha B; Mahone, E Mark; Mostofsky, Stewart H

    2015-01-01

    This study investigated whether frontal lobe cortical morphology differs for boys and girls with ADHD (ages 8-12 years) in comparison to typically developing (TD) peers. Participants included 226 children between the ages of 8-12 including 93 children with ADHD (29 girls) and 133 TD children (42 girls) for which 3T MPRAGE MRI scans were obtained. A fully automated frontal lobe atlas was used to generate functionally distinct frontal subdivisions, with surface area (SA) and cortical thickness (CT) assessed in each region. Analyses focused on overall diagnostic differences as well as examinations of the effect of diagnosis within boys and girls. Girls, but not boys, with ADHD showed overall reductions in total prefrontal cortex (PFC) SA. Localization revealed that girls showed widely distributed reductions in the bilateral dorsolateral PFC, left inferior lateral PFC, right medial PFC, right orbitofrontal cortex, and left anterior cingulate; and boys showed reduced SA only in the right anterior cingulate and left medial PFC. In contrast, boys, but not girls, with ADHD showed overall reductions in total premotor cortex (PMC) SA. Further localization revealed that in boys, premotor reductions were observed in bilateral lateral PMC regions; and in girls reductions were observed in bilateral supplementary motor complex. In line with diagnostic group differences, PMC and PFC SAs were inversely correlated with symptom severity in both girls and boys with ADHD. These results elucidate sex-based differences in cortical morphology of functional subdivisions of the frontal lobe and provide additional evidence of associations among SA and symptom severity in children with ADHD.

  5. Tuning carbon nanotube assembly for flexible, strong and conductive films.

    PubMed

    Wang, Yanjie; Li, Min; Gu, Yizhuo; Zhang, Xiaohua; Wang, Shaokai; Li, Qingwen; Zhang, Zuoguang

    2015-02-21

    Carbon nanotubes are ideal scaffolds for designing and architecting flexible graphite films with tunable mechanical, electrical and thermal properties. Herein, we demonstrate that the assembly of aligned carbon nanotubes with different aggregation density and morphology leads to different mechanical properties and anisotropic electrical conduction along the films. Using drying evaporation under tension treatment, the carbon nanotubes can be assembled into strong films with tensile strength and Young's modulus as high as 3.2 GPa and 124 GPa, respectively, leading to a remarkable toughness of 54.38 J g(-1), greatly outperforming conventional graphite films, spider webs and even Kevlar fiber films. Different types of solvents may result in the assembly of CNTs with different aggregation morphology and therefore different modulus. In addition, we reveal that the high density assembly of aligned CNTs correlates with better electric conduction along the axial direction, enabling these flexible graphite films to be both strong and conductive.

  6. Removal of heavy metal ions by biogenic hydroxyapatite: Morphology influence and mechanism study

    NASA Astrophysics Data System (ADS)

    Wang, Dandan; Guan, Xiaomei; Huang, Fangzhi; Li, Shikuo; Shen, Yuhua; Chen, Jun; Long, Haibo

    2016-08-01

    Based on the synthesis of hydroxyapatite (HA) with different morphologies, such as nanorod-like, flower-like and sphere-like assembled HA nanorods, a new strategy has been developed for the removal of heavy metal ions such as Pb2+, Cu2+, Mn2+, Zn2+. The dependence of removal efficiency on the morphology and the suspended concentration of trapping agent, the removal time and selectivity were evaluated and discussed. The experimental results proved that the removal capacity of flower-like assembled HA nanorods (NAFL-HA) was the best, and the maximum removal ratio for Pb2+ ion was 99.97%. The mechanism of Pb2+ removal was studied in detail, noting that some metal ions were completely incorporated into hydroxyapatitie to produce Pb-HA. It reveals that the metal ions capture by HA is mainly controlled by sample surface adsorption and co-precipitation, which are directly controlled by sample morphology.

  7. A kinetic model for the characteristic surface morphologies of thin films by directional vapor deposition

    NASA Astrophysics Data System (ADS)

    Li, Kun-Dar; Huang, Po-Yu

    2017-12-01

    In order to simulate a process of directional vapor deposition, in this study, a numerical approach was applied to model the growth and evolution of surface morphologies for the crystallographic structures of thin films. The critical factors affecting the surface morphologies in a deposition process, such as the crystallographic symmetry, anisotropic interfacial energy, shadowing effect, and deposition rate, were all enclosed in the theoretical model. By altering the parameters of crystallographic symmetry in the structures, the faceted nano-columns with rectangular and hexagonal shapes were established in the simulation results. Furthermore, for revealing the influences of the anisotropic strength and the deposition rate theoretically on the crystallographic structure formations, various parameters adjusted in the numerical calculations were also investigated. Not only the morphologies but also the surface roughnesses for different processing conditions were distinctly demonstrated with the quantitative analysis of the simulations.

  8. Ecological divergence and evolutionary transition of resprouting types in Banksia attenuata.

    PubMed

    He, Tianhua

    2014-08-01

    Resprouting is a key functional trait that allows plants to survive diverse disturbances. The fitness benefits associated with resprouting include a rapid return to adult growth, early flowering, and setting seed. The resprouting responses observed following fire are varied, as are the ecological outcomes. Understanding the ecological divergence and evolutionary pathways of different resprouting types and how the environment and genetics interact to drive such morphological evolution represents an important, but under-studied, topic. In the present study, microsatellite markers and microevolutionary approaches were used to better understand: (1) whether genetic differentiation is related to morphological divergence among resprouting types and if so, whether there are any specific genetic variations associated with morphological divergence and (2) the evolutionary pathway of the transitions between two resprouting types in Banksia attenuata (epicormic resprouting from aerial stems or branch; resprouting from a underground lignotuber). The results revealed an association between population genetic differentiation and the morphological divergence of postfire resprouting types in B. attenuata. A microsatellite allele has been shown to be associated with epicormic populations. Approximate Bayesian Computation analysis revealed a likely evolutionary transition from epicormic to lignotuberous resprouting in B. attenuata. It is concluded that the postfire resprouting type in B. attenuata is likely determined by the fire's characteristics. The differentiated expression of postfire resprouting types in different environments is likely a consequence of local genetic adaptation. The capacity to shift the postfire resprouting type to adapt to diverse fire regimes is most likely the key factor explaining why B. attenuata is the most widespread member of the Banksia genus.

  9. Starvation stress during larval development reveals predictive adaptive response in adult worker honey bees (Apis mellifera)

    USDA-ARS?s Scientific Manuscript database

    A variety of organisms exhibit developmental plasticity that results in differences in adult morphology, physiology or behavior. This variation in the phenotype, called “Predictive Adaptive Response (PAR),” gives a selective advantage in an adult's environment if the adult experiences environments s...

  10. Mandibular ramus shape variation and ontogeny in Homo sapiens and Homo neanderthalensis.

    PubMed

    Terhune, Claire E; Ritzman, Terrence B; Robinson, Chris A

    2018-04-27

    As the interface between the mandible and cranium, the mandibular ramus is functionally significant and its morphology has been suggested to be informative for taxonomic and phylogenetic analyses. In primates, and particularly in great apes and humans, ramus morphology is highly variable, especially in the shape of the coronoid process and the relationship of the ramus to the alveolar margin. Here we compare ramus shape variation through ontogeny in Homo neanderthalensis to that of modern and fossil Homo sapiens using geometric morphometric analyses of two-dimensional semilandmarks and univariate measurements of ramus angulation and relative coronoid and condyle height. Results suggest that ramus, especially coronoid, morphology varies within and among subadult and adult modern human populations, with the Alaskan Inuit being particularly distinct. We also identify significant differences in overall anterosuperior ramus and coronoid shapes between H. sapiens and H. neanderthalensis, both in adults and throughout ontogeny. These shape differences are subtle, however, and we therefore suggest caution when using ramus morphology to diagnose group membership for individual specimens of these taxa. Furthermore, we argue that these morphologies are unlikely to be representative of differences in masticatory biomechanics and/or paramasticatory behaviors between Neanderthals and modern humans, as has been suggested by previous authors. Assessments of ontogenetic patterns of shape change reveal that the typical Neanderthal ramus morphology is established early in ontogeny, and there is little evidence for divergent postnatal ontogenetic allometric trajectories between Neanderthals and modern humans as a whole. This analysis informs our understanding of intraspecific patterns of mandibular shape variation and ontogeny in H. sapiens and can shed further light on overall developmental and life history differences between H. sapiens and H. neanderthalensis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Morphology and Molecular Phylogeny of Raillietina spp. (Cestoda: Cyclophyllidea: Davaineidae) from Domestic Chickens in Thailand.

    PubMed

    Butboonchoo, Preeyaporn; Wongsawad, Chalobol; Rojanapaibul, Amnat; Chai, Jong-Yil

    2016-12-01

    Raillietina species are prevalent in domestic chickens ( Gallus gallus domesticus ) in Phayao province, northern Thailand. Their infection may cause disease and death, which affects the public health and economic situation in chicken farms. The identification of Raillietina has been based on morphology and molecular analysis. In this study, morphological observations using light (LM) and scanning electron microscopies (SEM) coupled with molecular analysis of the internal transcribed spacer 2 (ITS2) region and the nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) gene were employed for precise identification and phylogenetic relationship studies of Raillietina spp. Four Raillietina species, including R. echinobothrida, R. tetragona, R. cesticillus , and Raillietina sp., were recovered in domestic chickens from 4 districts in Phayao province, Thailand. LM and SEM observations revealed differences in the morphology of the scolex, position of the genital pore, number of eggs per egg capsule, and rostellar opening surface structures in all 4 species. Phylogenetic relationships were found among the phylogenetic trees obtained by the maximum likelihood and distance-based neighbor-joining methods. ITS2 and ND1 sequence data recorded from Raillietina sp. appeared to be monophyletic. The query sequences of R. echinobothrida, R. tetragona, R. cesticillus , and Raillietina sp. were separated according to the different morphological characters. This study confirmed that morphological studies combined with molecular analyses can differentiate related species within the genus Raillietina in Thailand.

  12. Morphology and Molecular Phylogeny of Raillietina spp. (Cestoda: Cyclophyllidea: Davaineidae) from Domestic Chickens in Thailand

    PubMed Central

    Butboonchoo, Preeyaporn; Wongsawad, Chalobol; Rojanapaibul, Amnat; Chai, Jong-Yil

    2016-01-01

    Raillietina species are prevalent in domestic chickens (Gallus gallus domesticus) in Phayao province, northern Thailand. Their infection may cause disease and death, which affects the public health and economic situation in chicken farms. The identification of Raillietina has been based on morphology and molecular analysis. In this study, morphological observations using light (LM) and scanning electron microscopies (SEM) coupled with molecular analysis of the internal transcribed spacer 2 (ITS2) region and the nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) gene were employed for precise identification and phylogenetic relationship studies of Raillietina spp. Four Raillietina species, including R. echinobothrida, R. tetragona, R. cesticillus, and Raillietina sp., were recovered in domestic chickens from 4 districts in Phayao province, Thailand. LM and SEM observations revealed differences in the morphology of the scolex, position of the genital pore, number of eggs per egg capsule, and rostellar opening surface structures in all 4 species. Phylogenetic relationships were found among the phylogenetic trees obtained by the maximum likelihood and distance-based neighbor-joining methods. ITS2 and ND1 sequence data recorded from Raillietina sp. appeared to be monophyletic. The query sequences of R. echinobothrida, R. tetragona, R. cesticillus, and Raillietina sp. were separated according to the different morphological characters. This study confirmed that morphological studies combined with molecular analyses can differentiate related species within the genus Raillietina in Thailand. PMID:28095663

  13. Spine micromorphology of normal and hyperhydric Mammillaria gracilis Pfeiff. (Cactaceae) shoots.

    PubMed

    Peharec, P; Posilović, H; Balen, B; Krsnik-Rasol, M

    2010-07-01

    Artificial conditions of tissue culture affect growth and physiology of crassulacean acid metabolism plants which often results in formation of hyperhydric shoots. In in vitro conditions Mammillaria gracilis Pfeiff. (Cactaceae) growth switches from organized to unorganized way, producing a habituated organogenic callus which simultaneously regenerates morphologically normal as well as altered hyperhydric shoots. In this study, influence of tissue culture conditions on morphology of cactus spines of normal and hyperhydric shoots was investigated. Spines of pot-grown Mammillaria plants and of in vitro regenerated shoots were examined with stereo microscope and scanning electron microscope. The pot-grown plants had 16-17 spines per areole. In vitro grown normal shoots, even though they kept typical shoot morphology, had lower number of spines (11-12) and altered spine morphology. This difference was even more pronounced in spine number (six to seven) and morphology of the hyperhydric shoots. Scanning electron microscopy analysis revealed remarkable differences in micromorphology of spine surface between pot-grown and in vitro grown shoots. Spines of in vitro grown normal shoots showed numerous long trichomes, which were more elongated on spines of the hyperhydric shoots; the corresponding structures on spine surface of pot-grown plants were noticed only as small protrusions. Scanning electron microscopy morphometric studies showed that the spines of pot-grown plants were significantly longer compared to the spines of shoots grown in tissue culture. Moreover, transverse section shape varies from elliptical in pot-grown plants to circular in normal and hyperhydric shoots grown in vitro. Cluster and correspondence analyses performed on the scanning electron microscope obtained results suggest great variability among spines of pot-grown plants. Spines of in vitro grown normal and hyperhydric shoots showed low level of morphological variation among themselves despite the significant difference in shoot morphology.

  14. Galaxy Zoo: Morphological Classification of Galaxy Images from the Illustris  Simulation

    NASA Astrophysics Data System (ADS)

    Dickinson, Hugh; Fortson, Lucy; Lintott, Chris; Scarlata, Claudia; Willett, Kyle; Bamford, Steven; Beck, Melanie; Cardamone, Carolin; Galloway, Melanie; Simmons, Brooke; Keel, William; Kruk, Sandor; Masters, Karen; Vogelsberger, Mark; Torrey, Paul; Snyder, Gregory F.

    2018-02-01

    Modern large-scale cosmological simulations model the universe with increasing sophistication and at higher spatial and temporal resolutions. These ongoing enhancements permit increasingly detailed comparisons between the simulation outputs and real observational data. Recent projects such as Illustris are capable of producing simulated images that are designed to be comparable to those obtained from local surveys. This paper tests the degree to which Illustris achieves this goal across a diverse population of galaxies using visual morphologies derived from Galaxy Zoo citizen scientists. Morphological classifications provided by these volunteers for simulated galaxies are compared with similar data for a compatible sample of images drawn from the Sloan Digital Sky Survey (SDSS) Legacy Survey. This paper investigates how simple morphological characterization by human volunteers asked to distinguish smooth from featured systems differs between simulated and real galaxy images. Significant differences are identified, which are most likely due to the limited resolution of the simulation, but which could be revealing real differences in the dynamical evolution of populations of galaxies in the real and model universes. Specifically, for stellar masses {M}\\star ≲ {10}11 {M}ȯ , a substantially larger proportion of Illustris galaxies that exhibit disk-like morphology or visible substructure, relative to their SDSS counterparts. Toward higher masses, the visual morphologies for simulated and observed galaxies converge and exhibit similar distributions. The stellar mass threshold indicated by this divergent behavior confirms recent works using parametric measures of morphology from Illustris simulated images. When {M}\\star ≳ {10}11 {M}ȯ , the Illustris data set contains substantially fewer galaxies that classifiers regard as unambiguously featured. In combination, these results suggest that comparison between the detailed properties of observed and simulated galaxies, even when limited to reasonably massive systems, may be misleading.

  15. Gender and age related differences in foot morphology.

    PubMed

    Tomassoni, Daniele; Traini, Enea; Amenta, Francesco

    2014-12-01

    This study has assessed age-related changes of foot morphology for developing appropriate footwear with particular reference to the elderly. Anatomical parameters such as foot length, circumference and height and ankle length, circumference and height were assessed in a sample of males (n=577) and females (n=528) divided into three age groups. The groups included young-adult, aged between 20 and 25 years; adult, aged between 35 and 55 years; and old, aged between 65 and 70 years individuals. In terms of gender differences, in young-adult individuals the sex-related morphological differences observed, are just related to a significantly lower length of foot in females. In adult subjects morphological parameters investigated were significantly lower in females even after normalization for foot length. In old individuals, no differences of the parameters were found after normalization for foot length. Comparative analysis of morphometric data between young-adult and adult individuals revealed that the instep length was smaller in adults. The opposite was observed for the great toe and medial foot arch height. Length of ankle was higher in adult than in young-adult individuals, whereas ankle circumference and height were smaller. In old vs adult individuals foot circumference showed the most relevant age-related differences. Feet anatomy presents specific characteristics in different ages of life. The ideal footwear should take into account these characteristics. This is true primarily for the elderly for minimizing the risk of falls or of other problems related to inappropriate footwear. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Low Concentrations of Cationic PAMAM Dendrimers Affect Lymphocyte Respiration in In vitro Studies.

    PubMed

    Labieniec-Watala, Magdalena; Szwed, Marzena; Hertel, Joanna; Wisnik, Ewelina

    2017-01-01

    In this study, the effect of low concentrations of poly(amido)amine dendrimers (G2-G4) on human lymphocytes was studied. Some works revealed that PAMAMs can adversely affect the morphology of blood components and mitochondria functions. In this context, the present report aimed to investigate the in vitro cationic dendrimers' effect on mitochondrial respiration and cell morphology in lymphocytes isolated from human blood. To monitor the mitochondrial changes, the high-resolution respirometer was used, whereas the cell morphology was analyzed using a flow cytometer and fluorescence microscopy. The concentration-dependent dendrimers' influence on lymphocytes morphology was shown. Changes in mitochondrial respiration revealed the concentration- and generation-dependent differences between dendrimer activity. There were no alterations in the routine respiration and in the state of the inner mitochondrial membrane (L/E), but decreased ADP- and FCCP-stimulated respirations were detected after treatment with G3 and G4 dendrimers. The markers of mitochondrial membrane integrity (RCR) and OXPHOS efficiency (P/E) significantly decreased regardless of the dendrimer generation used. Based on these in vitro evaluations, we state that cationic PAMAM dendrimers can impair both the morphology and the bioenergetics of human lymphocytes, even when used at low concentrations and in a short time (up to 1 h). However, these results do not imply that similar findings could be possible for in vivo observations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Effect of amylose, particle size & morphology on the functionality of starches of traditional rice cultivars.

    PubMed

    Bhat, Farhan Mohiuddin; Riar, Charanjit Singh

    2016-11-01

    The research was carried out to investigate the effect of starch powder particle size, morphology, amylose content and varietal effect on physicochemical, X-ray diffraction pattern, thermal and pasting characteristics. The results indicated that starches isolated from seven traditional rice cultivars of temperate region of India have possessed higher yield (82.47-86.83%) with lower degree of granule damage and higher level of starch crystallinity (36.55-39.15%). The water and oil binding capacities were observed to correlate positively with amylose content. The bulk density and color parameters of starches were found to have linked with starch powder particle size coupled with arrangement and morphology of the starch granules. The rice cultivars having smaller starch powder particle size indicated lowest degree of crystallinity. Morphological studies revealed that the starches with tightly packed granules had greater mean granular width, while granules with openly spaced granular morphology depicted the higher values for mean granular length. The peak height index (PHI) among different starches ranged from 1.01 to 2.57 whereas the gelatinization range varied from 10.66 to 10.88. Concluding, the differences in distributional pattern of starch granule size and shape and powder particle size indicated a significant effect on the functional properties of starch. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The grass was greener: Repeated evolution of specialized morphologies and habitat shifts in ghost spiders following grassland expansion in South America.

    PubMed

    Ceccarelli, F Sara; Mongiardino Koch, Nicolás; Soto, Eduardo M; Barone, Mariana L; Arnedo, Miquel A; Ramírez, Martín J

    2018-04-14

    While grasslands, one of Earth's major biomes, are known for their close evolutionary ties with ungulate grazers, these habitats are also paramount to the origins and diversification of other animals. Within the primarily South American spider subfamily Amaurobioidinae (Anyphaenidae), several species are found living in the continent's grasslands, with some displaying putative morphological adaptations to dwelling unnoticed in the grass blades. Here, a dated molecular phylogeny provides the backbone for analyses revealing the ecological and morphological processes behind these spiders' grassland adaptations. The multiple switches from Patagonian forests to open habitats coincide with the expansion of South America's grasslands during the Miocene, while the specialized morphology of several grass-dwelling spiders originated at least three independent times and is best described as the result of different selective regimes operating on macroevolutionary timescales. Although grass-adapted lineages evolved towards different peaks in adaptive landscape, they all share one characteristic: an anterior narrowing of the prosoma allowing spiders to extend the first two pairs of legs, thus maintaining a slender resting posture in the grass blade. By combining phylogenetic, morphological, and biogeographic perspectives we disentangle multiple factors determining the evolution of a clade of terrestrial invertebrate predators alongside their biomes.

  19. Correlations between the Dielectric Properties and Exterior Morphology of Cells Revealed by Dielectrophoretic Field-Flow Fractionation

    PubMed Central

    Gascoyne, Peter R. C.; Shim, Sangjo; Noshari, Jamileh; Becker, Frederick F.; Stemke-Hale, Katherine

    2013-01-01

    Although dielectrophoresis (DEP) has great potential for addressing clinical cell isolation problems based on cell dielectric differences, a biological basis for predicting the DEP behavior of cells has been lacking. Here, the dielectric properties of the NCI-60 panel of tumor cell types have been measured by dielectrophoretic (DEP) field-flow fractionation, correlated with the exterior morphologies of the cells during growth, and compared with the dielectric and morphological characteristics of the subpopulations of peripheral blood. In agreement with earlier findings, cell total capacitance varied with both cell size and plasma membrane folding and the dielectric properties of the NCI-60 cell types in suspension reflected the plasma membrane area and volume of the cells at their growth sites. Therefore, the behavior of cells in DEP-based manipulations is largely determined by their exterior morphological characteristics prior to release into suspension. As a consequence, DEP is able to discriminate between cells of similar size having different morphological origins, offering a significant advantage over size-based filtering for isolating circulating tumor cells, for example. The findings provide a framework for anticipating cell dielectric behavior on the basis of structure-function relationships and suggest that DEP should be widely applicable as a surface marker-independent method for sorting cells. PMID:23172680

  20. Tuning carbon nanotube assembly for flexible, strong and conductive films

    NASA Astrophysics Data System (ADS)

    Wang, Yanjie; Li, Min; Gu, Yizhuo; Zhang, Xiaohua; Wang, Shaokai; Li, Qingwen; Zhang, Zuoguang

    2015-02-01

    Carbon nanotubes are ideal scaffolds for designing and architecting flexible graphite films with tunable mechanical, electrical and thermal properties. Herein, we demonstrate that the assembly of aligned carbon nanotubes with different aggregation density and morphology leads to different mechanical properties and anisotropic electrical conduction along the films. Using drying evaporation under tension treatment, the carbon nanotubes can be assembled into strong films with tensile strength and Young's modulus as high as 3.2 GPa and 124 GPa, respectively, leading to a remarkable toughness of 54.38 J g-1, greatly outperforming conventional graphite films, spider webs and even Kevlar fiber films. Different types of solvents may result in the assembly of CNTs with different aggregation morphology and therefore different modulus. In addition, we reveal that the high density assembly of aligned CNTs correlates with better electric conduction along the axial direction, enabling these flexible graphite films to be both strong and conductive.Carbon nanotubes are ideal scaffolds for designing and architecting flexible graphite films with tunable mechanical, electrical and thermal properties. Herein, we demonstrate that the assembly of aligned carbon nanotubes with different aggregation density and morphology leads to different mechanical properties and anisotropic electrical conduction along the films. Using drying evaporation under tension treatment, the carbon nanotubes can be assembled into strong films with tensile strength and Young's modulus as high as 3.2 GPa and 124 GPa, respectively, leading to a remarkable toughness of 54.38 J g-1, greatly outperforming conventional graphite films, spider webs and even Kevlar fiber films. Different types of solvents may result in the assembly of CNTs with different aggregation morphology and therefore different modulus. In addition, we reveal that the high density assembly of aligned CNTs correlates with better electric conduction along the axial direction, enabling these flexible graphite films to be both strong and conductive. Electronic supplementary information (ESI) available: The TEM image of array CNTs. The surface height curves of x-z cross-section of the films. A comparison of the mechanical properties of the pure CNT films described in this work with other CNT films/fibers spun from CNT array reported in the literature. The measured evaporation rates of ethanol and acetone. See DOI: 10.1039/c4nr06401a

  1. Nuclear markers reveal that inter-lake cichlids' similar morphologies do not reflect similar genealogy.

    PubMed

    Kassam, Daud; Seki, Shingo; Horic, Michio; Yamaoka, Kosaku

    2006-08-01

    The apparent inter-lake morphological similarity among East African Great Lakes' cichlid species/genera has left evolutionary biologists asking whether such similarity is due to sharing of common ancestor or mere convergent evolution. In order to answer such question, we first used Geometric Morphometrics, GM, to quantify morphological similarity and then subsequently used Amplified Fragment Length Polymorphism, AFLP, to determine if similar morphologies imply shared ancestry or convergent evolution. GM revealed that not all presumed morphological similar pairs were indeed similar, and the dendrogram generated from AFLP data indicated distinct clusters corresponding to each lake and not inter-lake morphological similar pairs. Such results imply that the morphological similarity is due to convergent evolution and not shared ancestry. The congruency of GM and AFLP generated dendrograms imply that GM is capable of picking up phylogenetic signal, and thus GM can be potential tool in phylogenetic systematics.

  2. Uniting Tricholoma sulphureum and T. bufonium.

    PubMed

    Comandini, Ornella; Haug, Ingeborg; Rinaldi, Andrea C; Kuyper, Thomas W

    2004-10-01

    The taxonomic status and relationship of Tricholoma sulphureum and the similar T. bufonium were investigated using different sets of characters. These included morphological data on fruit bodies, ecological and chorological data, and analysis of the sequence data obtained for the ITS of basidiomes of different ecological and geographic origin. Moreover, the ectomycorrhizas formed by T. bufonium on Abies alba and Quercus sp. were characterised, and anatomical features compared with those of T. sulphureum mycorrhizas on coniferous and broad-leaved host trees. Our results revealed extensive ITS variation in members of the T. sulphureum group, but this variation was not correlated with morphology, ecology, or geographical distribution. We conclude that T. bufonium cannot be maintained as an autonomous taxon and should be treated as an infraspecific variant of T. sulphureum.

  3. Energetic benefits and adaptations in mammalian limbs: Scale effects and selective pressures.

    PubMed

    Kilbourne, Brandon M; Hoffman, Louwrens C

    2015-06-01

    Differences in limb size and shape are fundamental to mammalian morphological diversity; however, their relevance to locomotor costs has long been subject to debate. In particular, it remains unknown if scale effects in whole limb morphology could partially underlie decreasing mass-specific locomotor costs with increasing limb length. Whole fore- and hindlimb inertial properties reflecting limb size and shape-moment of inertia (MOI), mass, mass distribution, and natural frequency-were regressed against limb length for 44 species of quadrupedal mammals. Limb mass, MOI, and center of mass position are negatively allometric, having a strong potential for lowering mass-specific locomotor costs in large terrestrial mammals. Negative allometry of limb MOI results in a 40% reduction in MOI relative to isometry's prediction for our largest sampled taxa. However, fitting regression residuals to adaptive diversification models reveals that codiversification of limb mass, limb length, and body mass likely results from selection for differing locomotor modes of running, climbing, digging, and swimming. The observed allometric scaling does not result from selection for energetically beneficial whole limb morphology with increasing size. Instead, our data suggest that it is a consequence of differing morphological adaptations and body size distributions among quadrupedal mammals, highlighting the role of differing limb functions in mammalian evolution. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  4. A comparative pharmacognostical and preliminary physico-chemical analysis of stem and leaf of Bacopa monnieri (L.) Pennel and Bacopa floribunda (R.BR.) Wettst.

    PubMed

    Gubbannavar, Jyoti S; Chandola, H M; Harisha, C R; Khanpara, Komal; Shukla, V J

    2013-01-01

    Brahmi is a well-known herbal drug having an effect on brain as a memory enhancer. Bacopa monnieri (L.) Pennel and Bacopa floribunda (R.Br.) Wettst are both marketed in the name of Brahmi. The present study differentiates Bacopa monnieri and Bacopa floribunda in morphology, transverse section (T.S.) of root and leaf, powder microscopy, and chemical constituents. Morphological characters show color difference in flower, stem and leaf and differences in microscopic study, organoleptic study, and powder characteristics. Morphologically, Bacopa monnieri leaf is fleshy and more succulent than Bacopa floribunda leaf. There is also a difference in the interval of the stem internodes of the two. Physico-chemical analysis revealed presence of 26% bacoside A in Bacopa floribunda leaf and 27% in Bacopa floribunda stem, which is higher than the bacoside A content in leaf (22%) and stem (18%) of Bacopa monnieri. However due to the hemolytic action of bacoside A, which is the toxic effect of the chemical constituent, it seems likely that Bacopa monnieri is more popular in regular use than Bacopa floribunda.

  5. Morphological Features of the Porcine Lacrimal Gland and Its Compatibility for Human Lacrimal Gland Xenografting

    PubMed Central

    Gaffling, Simone; Asano, Nagayoshi; Hampel, Ulrike; Garreis, Fabian; Hornegger, Joachim; Paulsen, Friedrich

    2013-01-01

    In this study, we present first data concerning the anatomical structure, blood supply and location of the lacrimal gland of the pig. Our data indicate that the porcine lacrimal gland may serve as a potential xenograft candidate in humans or as an animal model for engineering of a bioartificial lacrimal gland tissue construct for clinical application. For this purpose, we used different macroscopic preparation techniques and digital reconstruction of the histological gland morphology to gain new insights and important information concerning the feasibility of a lacrimal gland transplantation from pig to humans in general. Our results show that the lacrimal gland of the pig reveals a lot of morphological similarities to the analogous human lacrimal gland and thus might be regarded as a xenograft in the future. This is true for a similar anatomical location within the orbit as well as for the feeding artery supply to the organ. Functional differences concerning the composition of the tear fluid, due to a different secretory unit distribution within the gland tissue will, however, be a challenge in future investigations. PMID:24069265

  6. Morphological features of the porcine lacrimal gland and its compatibility for human lacrimal gland xenografting.

    PubMed

    Henker, Robert; Scholz, Michael; Gaffling, Simone; Asano, Nagayoshi; Hampel, Ulrike; Garreis, Fabian; Hornegger, Joachim; Paulsen, Friedrich

    2013-01-01

    In this study, we present first data concerning the anatomical structure, blood supply and location of the lacrimal gland of the pig. Our data indicate that the porcine lacrimal gland may serve as a potential xenograft candidate in humans or as an animal model for engineering of a bioartificial lacrimal gland tissue construct for clinical application. For this purpose, we used different macroscopic preparation techniques and digital reconstruction of the histological gland morphology to gain new insights and important information concerning the feasibility of a lacrimal gland transplantation from pig to humans in general. Our results show that the lacrimal gland of the pig reveals a lot of morphological similarities to the analogous human lacrimal gland and thus might be regarded as a xenograft in the future. This is true for a similar anatomical location within the orbit as well as for the feeding artery supply to the organ. Functional differences concerning the composition of the tear fluid, due to a different secretory unit distribution within the gland tissue will, however, be a challenge in future investigations.

  7. Morphological re-description and phylogenetic relationship of five myxosporean species of the family Myxobolidae infecting Nile tilapia.

    PubMed

    Abdel-Gaber, Rewaida; Abdel-Ghaffar, Fathy; Maher, Sherein; El-Mallah, Al-Mahy; Al Quraishy, Saleh; Mehlhorn, Heinz

    2017-05-11

    Freshwater fish have a major economic and nutritional importance worldwide. Myxosporeans are highly dangerous parasites that infect different fish species, causing severe damage to a large number of economically important species, especially in aquaculture. We conducted a survey of myxosporean parasites infecting Nile tilapia Oreochromis niloticus (Perciformes: Cichlidae) collected from different localities along the River Nile passing through Giza province, Egypt. Out of 100 fish specimens collected, 45 were found to be naturally infected with these parasites in the region of the trunk kidney. Light microscopic examination revealed the presence of 5 distinct myxosporean species belonging to 2 different genera, viz. Myxobolus and Triangula, belonging to the family Myxobolidae; all 5 species have been previously described. Morphological characteristics, host specificity and geographical distribution, tissue tropism, and molecular analysis of the partial sequence of small subunit ribosomal DNA gene revealed that the recovered myxosporean species described herein were genetically distinct from other myxozoan species but had 95% sequence similarity to M. cerebralis. Also, phylogenetic analysis placed the present myxosporean species in the freshwater Myxobolus clade, which is a sister group of freshwater Myxobolus/Henneguya species.

  8. Morphology and developmental rate of blowflies Chrysomya megacephala and Chrysomya rufifacies in Thailand: application in forensic entomology.

    PubMed

    Sukontason, Kom; Piangjai, Somsak; Siriwattanarungsee, Sirisuda; Sukontason, Kabkaew L

    2008-05-01

    The larval morphology and developmental rate of Chrysomya megacephala (F.) and Chrysomya rufifacies (Macquart), the two most forensically important blowfly species in Thailand, are presented. Morphological comparison of the third instar of both species revealed different characteristics (e.g., body appearance, cephalopharyngeal skeleton, dorsal cuticular spines between the prothorax and mesothorax, and feature of the posterior spiracle), thereby, allowing correct identification. A data analysis was conducted in Chiang Mai province, Northern Thailand during 2000-2001 on the developmental rate of both flies under natural ambient temperature and a natural light-dark photoperiod. The results indicated that larvae of C. megacephala developed more rapidly in April, pupariation initiated at 84 h at temperatures averaging 31.4 degrees C, and the larvae grew slower in the rainy season and winter. Similarly, rapid development of C. rufifacies larvae appeared in the summer, with a pupariation period as short as 96 h in June (average temperature 27.4 degrees C). Analysis of the median body length of C. megacephala and C. rufifacies larvae in different seasons of the years 2000-2001 in Thailand revealed that both species developed rapidly in the summer; pupariation of C. rufifacies initiated at 144 h, while C. megacephala initiated pupariation at 156 h. This information is potentially useful for estimating the postmortem interval of a corpse in forensic investigations, where the corpse becomes infesting with these fly species.

  9. Isolation and characterization of ethanol tolerant yeast strains

    PubMed Central

    Tikka, Chiranjeevi; Osuru, Hari Prasad; Atluri, Navya; Raghavulu, Praveen Chakravarthi Veera; yellapu, Nanda Kumar; Mannur, Ismail Shaik; Prasad, Uppu Venkateswara; Aluru, Sudheer; K, Narasimha Varma; Bhaskar, Matcha

    2013-01-01

    Yeast strains are commonly associated with sugar rich environments. Various fruit samples were selected as source for isolating yeast cells. The isolated cultures were identified at Genus level by colony morphology, biochemical characteristics and cell morphological characters. An attempt has been made to check the viability of yeast cells under different concentrations of ethanol. Ethanol tolerance of each strain was studied by allowing the yeast to grow in liquid YEPD (Yeast Extract Peptone Dextrose) medium having different concentrations of ethanol. A total of fifteen yeast strains isolated from different samples were used for the study. Seven strains of Saccharomyces cerevisiae obtained from different fruit sources were screened for ethanol tolerance. The results obtained in this study show a range of tolerance levels between 7%-12% in all the stains. Further, the cluster analysis based on 22 RAPD (Random Amplified polymorphic DNA) bands revealed polymorphisms in these seven Saccharomyces strains. PMID:23750092

  10. Human Platelet Lysate versus Fetal Calf Serum: These Supplements Do Not Select for Different Mesenchymal Stromal Cells.

    PubMed

    Fernandez-Rebollo, Eduardo; Mentrup, Birgit; Ebert, Regina; Franzen, Julia; Abagnale, Giulio; Sieben, Torsten; Ostrowska, Alina; Hoffmann, Per; Roux, Pierre-François; Rath, Björn; Goodhardt, Michele; Lemaitre, Jean-Marc; Bischof, Oliver; Jakob, Franz; Wagner, Wolfgang

    2017-07-11

    Culture medium of mesenchymal stromal cells (MSCs) is usually supplemented with either human platelet lysate (HPL) or fetal calf serum (FCS). Many studies have demonstrated that proliferation and cellular morphology are affected by these supplements - it is therefore important to determine if they favor outgrowth of different subpopulations and thereby impact on the heterogeneous composition of MSCs. We have isolated and expanded human bone marrow-derived MSCs in parallel with HPL or FCS and demonstrated that HPL significantly increases proliferation and leads to dramatic differences in cellular morphology. Remarkably, global DNA-methylation profiles did not reveal any significant differences. Even at the transcriptomic level, there were only moderate changes in pairwise comparison. Furthermore, the effects on proliferation, cytoskeletal organization, and focal adhesions were reversible by interchanging to opposite culture conditions. These results indicate that cultivation of MSCs with HPL or FCS has no systematic bias for specific cell types.

  11. Multi-Parametric Analysis and Modeling of Relationships between Mitochondrial Morphology and Apoptosis

    PubMed Central

    Reis, Yara; Wolf, Thomas; Brors, Benedikt; Hamacher-Brady, Anne; Eils, Roland; Brady, Nathan R.

    2012-01-01

    Mitochondria exist as a network of interconnected organelles undergoing constant fission and fusion. Current approaches to study mitochondrial morphology are limited by low data sampling coupled with manual identification and classification of complex morphological phenotypes. Here we propose an integrated mechanistic and data-driven modeling approach to analyze heterogeneous, quantified datasets and infer relations between mitochondrial morphology and apoptotic events. We initially performed high-content, multi-parametric measurements of mitochondrial morphological, apoptotic, and energetic states by high-resolution imaging of human breast carcinoma MCF-7 cells. Subsequently, decision tree-based analysis was used to automatically classify networked, fragmented, and swollen mitochondrial subpopulations, at the single-cell level and within cell populations. Our results revealed subtle but significant differences in morphology class distributions in response to various apoptotic stimuli. Furthermore, key mitochondrial functional parameters including mitochondrial membrane potential and Bax activation, were measured under matched conditions. Data-driven fuzzy logic modeling was used to explore the non-linear relationships between mitochondrial morphology and apoptotic signaling, combining morphological and functional data as a single model. Modeling results are in accordance with previous studies, where Bax regulates mitochondrial fragmentation, and mitochondrial morphology influences mitochondrial membrane potential. In summary, we established and validated a platform for mitochondrial morphological and functional analysis that can be readily extended with additional datasets. We further discuss the benefits of a flexible systematic approach for elucidating specific and general relationships between mitochondrial morphology and apoptosis. PMID:22272225

  12. Pervasive influence of idiosyncratic associative biases during facial emotion recognition.

    PubMed

    El Zein, Marwa; Wyart, Valentin; Grèzes, Julie

    2018-06-11

    Facial morphology has been shown to influence perceptual judgments of emotion in a way that is shared across human observers. Here we demonstrate that these shared associations between facial morphology and emotion coexist with strong variations unique to each human observer. Interestingly, a large part of these idiosyncratic associations does not vary on short time scales, emerging from stable inter-individual differences in the way facial morphological features influence emotion recognition. Computational modelling of decision-making and neural recordings of electrical brain activity revealed that both shared and idiosyncratic face-emotion associations operate through a common biasing mechanism rather than an increased sensitivity to face-associated emotions. Together, these findings emphasize the underestimated influence of idiosyncrasies on core social judgments and identify their neuro-computational signatures.

  13. Diagnostic value of plasma morphology in patients with coronary heart disease

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Sergeeva, Yuliya V.; Simonenko, Georgy V.; Tuchin, Valery V.; Denisova, Tatiana P.

    2006-08-01

    Blood plasma can be considered as a special water system with self-organization possibilities. Plasma slides as the results of wedge dehydration reflect its stereochemical interaction and their study can be used in diagnostic processes. 46 patients with coronary heart disease were studied. The main group was formed of men in age ranged from 54 to 72 years old with stable angina pectoris of II and III functional class (by Canadian classification) (n=25). The group of compare was of those who was hospitalized with diagnosis of acute coronary syndrome, men in age range 40-82. Clinical examination, basic biochemical tests and functional plasma morphology characteristics were studied. A number of qualitative and quantitative differences of blood plasma morphology of patients with chronic and acute coronary disease forms was revealed.

  14. Leaf morphological effects predict effective path length and enrichment of 18O in leaf water of different Eucalyptus species

    NASA Astrophysics Data System (ADS)

    Kahmen, A.; Merchant, A.; Callister, A.; Dawson, T. E.; Arndt, S. K.

    2006-12-01

    Stable isotopes have been a valuable tool to study water or carbon fluxes of plants and ecosystems. In particular oxygen isotopes (δ18O) in leaf water or plant organic material are now beginning to be established as a simple and integrative measure for plant - water relations. Current δ18O models, however, are still limited in their application to a broad range of different species and ecosystems. It remains for example unclear, if species-specific effects such as different leaf morphologies need to be included in the models for a precise understanding and prediction of δ18O signals. In a common garden experiment (Currency Creek Arboretum, South Australia), where over 900 different Eucalyptus species are cultivated in four replicates, we tested effects of leaf morphology and anatomy on δ18O signals in leaf water of 25 different species. In particular, we determined for all species enrichment in 18O of mean lamina leaf water above source water (Δ18O) as related to leaf physiology as well as leaf thickness, leaf area, specific leaf area and weight and selected anatomical properties. Our data revealed that diurnal Δ18O in leaf water at steady state was significantly different among the investigated species and with differences up to 10% at midday. Fitting factors (effective path length) of leaf water Δ18O models were also significantly different among the investigated species and were highly affected by species-specific morphological parameters. For example, leaf area explained a high percentage of the differences in effective path length observed among the investigated species. Our data suggest that leaf water δ18O can act as powerful tool to estimate plant - water relations in comparative studies but that additional leaf morphological parameters need to be considered in existing δ18O models for a better interpretation of the observed δ18O signals.

  15. Multilocus sequence data reveal dozens of putative cryptic species in a radiation of endemic Californian mygalomorph spiders (Araneae, Mygalomorphae, Nemesiidae).

    PubMed

    Leavitt, Dean H; Starrett, James; Westphal, Michael F; Hedin, Marshal

    2015-10-01

    We use mitochondrial and multi-locus nuclear DNA sequence data to infer both species boundaries and species relationships within California nemesiid spiders. Higher-level phylogenetic data show that the California radiation is monophyletic and distantly related to European members of the genus Brachythele. As such, we consider all California nemesiid taxa to belong to the genus Calisoga Chamberlin, 1937. Rather than find support for one or two taxa as previously hypothesized, genetic data reveal Calisoga to be a species-rich radiation of spiders, including perhaps dozens of species. This conclusion is supported by multiple mitochondrial barcoding analyses, and also independent analyses of nuclear data that reveal general genealogical congruence. We discovered three instances of sympatry, and genetic data indicate reproductive isolation when in sympatry. An examination of female reproductive morphology does not reveal species-specific characters, and observed male morphological differences for a subset of putative species are subtle. Our coalescent species tree analysis of putative species lays the groundwork for future research on the taxonomy and biogeographic history of this remarkable endemic radiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Change in Tongue Morphology in Response to Expiratory Resistance Loading Investigated by Magnetic Resonance Imaging

    PubMed Central

    Yanagisawa, Yukio; Matsuo, Yoshimi; Shuntoh, Hisato; Mitamura, Masaaki; Horiuchi, Noriaki

    2013-01-01

    [Purpose] The purpose of this study was to investigate the effect of expiratory resistance load on the tongue area encompassing the suprahyoid and genioglossus muscles. [Subjects] The subjects were 30 healthy individuals (15 males, 15 females, mean age: 28.9 years). [Methods] Magnetic resonance imaging was used to investigate morphological changes in response to resistive expiratory pressure loading in the area encompassing the suprahyoid and genioglossus muscles. Images were taken when water pressure was sustained at 0%, 10%, 30%, and 50% of maximum resistive expiratory pressure. We then measured tongue area using image analysis software, and the morphological changes were analyzed using repeated measures analysis of variance followed by post hoc comparisons. [Results] A significant change in the tongue area was detected in both sexes upon loading. Multiple comparison analysis revealed further significant differences in tongue area as well as changes in tongue area in response to the different expiratory pressures. [Conclusion] The findings demonstrate that higher expiratory pressure facilitates greater reduction in tongue area. PMID:24259824

  17. Controlled synthesis of nanostructured molybdenum oxide electrodes for high performance supercapacitor devices

    NASA Astrophysics Data System (ADS)

    Maheswari, Nallappan; Muralidharan, Gopalan

    2017-09-01

    Well defined crystallographic and one dimensional morphological structure of molybdenum oxide were successfully synthesized by adjusting the duration of hydrothermal treatment. The prepared molybdenum oxide was examined through XRD, SEM, FTIR, TEM, BET and electrochemical studies. The XRD patterns illustrate that MoOx prepared by variying the hydrothermal reaction time are in different crystallographic structure of MoyOx (Mo8O23 and MoO3). SEM studies reveal the different morphological structures ranging from flake like morphology to nanorods. TEM images confirm the excellent nanorod structure. The nanorod structure ensures good cyclic behaviour with maximum capacitance of 1080 F g-1 at a current density of 2 A g-1. This large capacity of the MoO3 nanostructures enabled fabrication of symmetric and asymmertic supercapacitor devices. The asymmertic device exhibits a maximum specific capacitance of 145 F g-1 at 2 mV s-1 with highest energy density of 38.6 W h kg-1 at 374.7 W kg-1 power density.

  18. Bat Species Comparisons Based on External Morphology: A Test of Traditional versus Geometric Morphometric Approaches

    PubMed Central

    Schmieder, Daniela A.; Benítez, Hugo A.; Borissov, Ivailo M.; Fruciano, Carmelo

    2015-01-01

    External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species – in this case European horseshoe bats (Rhinolophidae, Chiroptera) – based on morphology of the wing, body and tail. In addition to comparing morphometric methods, we used geometric morphometrics to detect interspecies differences as shape changes. Geometric morphometrics yielded improved species discrimination relative to traditional methods. The predicted shape for the variation along the between group principal components revealed that the largest differences between species lay in the extent to which the wing reaches in the direction of the head. This strong trend in interspecific shape variation is associated with size, which we interpret as an evolutionary allometry pattern. PMID:25965335

  19. Morphologies and optical and electrical properties of InGaN/GaN micro-square array light-emitting diode chips.

    PubMed

    Han, Dan; Ma, Shufang; Jia, Zhigang; Liu, Peizhi; Jia, Wei; Shang, Lin; Zhai, Guangmei; Xu, Bingshe

    2018-04-10

    InGaN/GaN micro-square array light-emitting diode (LED) chips (micro-chips) have been prepared via the focused ion beam (FIB) etching technique, which can not only reduce ohmic contact degradation but also control the aspect ratio precisely in three-dimensional (3D) structure LED (3D-LED) device fabrication. The effects of FIB beam current and micro-square array depth on morphologies and optical and electrical properties of the micro-chips have been studied. Our results show that sidewall surface morphology and optical and electrical properties of the micro-chips degrade with increased beam current. After potassium hydroxide etching with different times, an optimal current-voltage and luminescence performance can be obtained. Combining the results of cathodoluminescence mappings and light output-current characteristics, the light extraction efficiency of the micro-chips is reduced as FIB etch depth increases. The mechanisms of micro-square depth on light extraction have been revealed by 3D finite difference time domain.

  20. Nanoporous Ag prepared from the melt-spun Cu-Ag alloys

    NASA Astrophysics Data System (ADS)

    Li, Guijing; Song, Xiaoping; Sun, Zhanbo; Yang, Shengchun; Ding, Bingjun; Yang, Sen; Yang, Zhimao; Wang, Fei

    2011-07-01

    Nanoporous Ag ribbons with different morphology and porosity were achieved by the electrochemical corrosion of the melt-spun Cu-Ag alloys. The Cu-rich phase in the alloys was removed, resulting in the formation of the nanopores distributed across the whole ribbon. It is found that the structures, morphology and porosity of the nanoporous Ag ribbons were dependent on the microstructures of the parent alloys. The most of ligaments presented a rod-like shape due to the formation of pseudoeutectic microstructure in the melt-spun Cu 55Ag 45 and Cu 70Ag 30 alloys. For nanoporous Ag prepared from Cu 85Ag 15 alloys, the ligaments were camber-like because of the appearance of the divorced microstructures. Especially, a novel bamboo-grove-like structure could be observed at the cross-section of the nanoporous Ag ribbons. The experiment reveals that nanoporous Ag ribbons exhibited excellent enhancement of surface-enhanced Raman scattering (SERS) effect, but a slight difference existed due to the discrepancy of their morphology.

  1. How discordant morphological and molecular evolution among microorganisms can revise our notions of biodiversity on earth

    PubMed Central

    Lahr, Daniel J. G.; Laughinghouse, H. Dail; Oliverio, Angela; Gao, Feng; Katz, Laura A.

    2014-01-01

    Microscopy has revealed a tremendous diversity of bacterial and eukaryotic forms. More recent molecular analyses show discordance in estimates of biodiversity based on morphological analyses. Moreover, phylogenetic analyses of the diversity of microbial forms have revealed evidence of convergence at scales as large as interdomain – i.e. convergent forms shared between bacteria and eukaryotes. Here, we highlight examples of such discordance, focusing on exemplary lineages such as testate amoebae, ciliates and cyanobacteria, which have long histories of morphological study. We discuss examples in two categories: 1) morphologically identical (or highly similar) individuals that are genetically distinct and 2) morphologically distinct individuals that are genetically distinct. We argue that hypotheses about discordance can be tested using the concept of neutral morphologies, or more broadly neutral phenotypes, as a null hypothesis. PMID:25156897

  2. Structure of first- and second-stage mineralized elements in teeth of the sea urchin Lytechinus variegatus.

    PubMed

    Robach, J S; Stock, S R; Veis, A

    2009-12-01

    Microstructure of the teeth of the sea urchin Lytechinus variegatus was investigated using optical microscopy, SEM (scanning electron microscopy) and SIMS (secondary ion mass spectroscopy). The study focused on the internal structure of the first-stage mineral structures of high Mg calcite (primary, secondary and carinar process plates, prisms) and on morphology of the columns of second-stage mineral (very high Mg calcite) that cement the first-stage material together. Optical micrographs under polarized light revealed contrast in the centers (midlines) of carinar process plates and in prisms in polished sections; staining of primary and carinar process plates revealed significant dye uptake at the plate centers. Demineralization with and without fixation revealed that the midlines of primary and carinar process plates (but not secondary plates) and the centers of prisms differed from the rest of the plate or prism, and SIMS showed proteins concentrated in these plate centers. SEM was used to study the morphology of columns, the fracture surfaces of mature teeth and the 3D morphology of prisms. These observations of internal structures in plates and prisms offer new insight into the mineralization process and suggest an important role for protein inclusions within the first-stage mineral. Some of the 3D structures not reported previously, such as twisted prisms and stacks of carinar process plates with nested wrinkles, may represent structural strengthening strategies.

  3. Evolution of nectarivory in phyllostomid bats (Phyllostomidae Gray, 1825, Chiroptera: Mammalia).

    PubMed

    Datzmann, Thomas; von Helversen, Otto; Mayer, Frieder

    2010-06-04

    Bats of the family Phyllostomidae show a unique diversity in feeding specializations. This taxon includes species that are highly specialized on insects, blood, small vertebrates, fruits or nectar, and pollen. Feeding specialization is accompanied by morphological, physiological and behavioural adaptations. Several attempts were made to resolve the phylogenetic relationships within this family in order to reconstruct the evolutionary transitions accompanied by nutritional specialization. Nevertheless, the evolution of nectarivory remained equivocal. Phylogenetic reconstructions, based on a concatenated nuclear-and mitochondrial data set, revealed a paraphyletic relationship of nectarivorous phyllostomid bats. Our phylogenetic reconstructions indicate that the nectarivorous genera Lonchophylla and Lionycteris are closer related to mainly frugivorous phyllostomids of the subfamilies Rhinophyllinae, Stenodermatinae, Carolliinae, and the insectivorous Glyphonycterinae rather than to nectarivorous bats of the Glossophaginae. This suggests an independent origin of morphological adaptations to a nectarivorous lifestyle within Lonchophyllinae and Glossophaginae. Molecular clock analysis revealed a relatively short time frame of about ten million years for the divergence of subfamilies. Our study provides strong support for diphyly of nectarivorous phyllostomids. This is remarkable, since their morphological adaptations to nutrition, like elongated rostrums and tongues, reduced teeth and the ability to use hovering flight while ingestion, closely resemble each other. However, more precise examinations of their tongues (e.g. type and structure of papillae and muscular innervation) revealed levels of difference in line with an independent evolution of nectarivory in these bats.

  4. Systematic analysis of Ca2+ homeostasis in Saccharomyces cerevisiae based on chemical-genetic interaction profiles

    PubMed Central

    Ghanegolmohammadi, Farzan; Yoshida, Mitsunori; Ohnuki, Shinsuke; Sukegawa, Yuko; Okada, Hiroki; Obara, Keisuke; Kihara, Akio; Suzuki, Kuninori; Kojima, Tetsuya; Yachie, Nozomu; Hirata, Dai; Ohya, Yoshikazu

    2017-01-01

    We investigated the global landscape of Ca2+ homeostasis in budding yeast based on high-dimensional chemical-genetic interaction profiles. The morphological responses of 62 Ca2+-sensitive (cls) mutants were quantitatively analyzed with the image processing program CalMorph after exposure to a high concentration of Ca2+. After a generalized linear model was applied, an analysis of covariance model was used to detect significant Ca2+–cls interactions. We found that high-dimensional, morphological Ca2+–cls interactions were mixed with positive (86%) and negative (14%) chemical-genetic interactions, whereas one-dimensional fitness Ca2+–cls interactions were all negative in principle. Clustering analysis with the interaction profiles revealed nine distinct gene groups, six of which were functionally associated. In addition, characterization of Ca2+–cls interactions revealed that morphology-based negative interactions are unique signatures of sensitized cellular processes and pathways. Principal component analysis was used to discriminate between suppression and enhancement of the Ca2+-sensitive phenotypes triggered by inactivation of calcineurin, a Ca2+-dependent phosphatase. Finally, similarity of the interaction profiles was used to reveal a connected network among the Ca2+ homeostasis units acting in different cellular compartments. Our analyses of high-dimensional chemical-genetic interaction profiles provide novel insights into the intracellular network of yeast Ca2+ homeostasis. PMID:28566553

  5. Structure of first- and second-stage mineralized elements in teeth of the sea urchin Lytechinus variegatus

    PubMed Central

    Robach, J. S.; Stock, S. R.; Veis, A.

    2009-01-01

    Microstructure of the teeth of the sea urchin Lytechinus variegatus was investigated using optical microscopy, SEM (scanning electron microscopy) and SIMS (secondary ion mass spectroscopy). The study focused on the internal structure of the first-stage mineral structures of high Mg calcite (primary, secondary and carinar process plates; prisms) and on morphology of the columns of second-stage mineral (very high Mg calcite) that cement the first-stage material together. Optical micrographs under polarized light revealed contrast in the centers (midlines) of carinar process plates and in prisms in polished sections; staining of primary and carinar process plates revealed significant dye uptake at the plate centers. Demineralization with and without fixation revealed that the midlines of primary and carinar process plates (but not secondary plates) and the centers of prisms differed from the rest of the plate or prism, and SIMS showed proteins concentrated in these plate centers. SEM was used to study the morphology of columns, the fracture surfaces of mature teeth and the 3D morphology of prisms. These observations of internal structures in plates and prisms offer new insight into the mineralization process and suggest an important role for protein inclusions within the first-stage mineral. Some of the 3D structures not reported previously, such as twisted prisms and stacks of carinar process plates with nested wrinkles, may represent structural strengthening strategies. PMID:19616101

  6. Clear differences in metabolic and morphological adaptations of akinetes of two Nostocales living in different habitats.

    PubMed

    Perez, Rebeca; Forchhammer, Karl; Salerno, Graciela; Maldener, Iris

    2016-02-01

    Akinetes are resting spore-like cells formed by some heterocyst-forming filamentous cyanobacteria for surviving long periods of unfavourable conditions. We studied the development of akinetes in two model strains of cyanobacterial cell differentiation, the planktonic freshwater Anabaena variabilis ATCC 29413 and the terrestrial or symbiotic Nostoc punctiforme ATCC 29133, in response to low light and phosphate starvation. The best trigger of akinete differentiation of Anabaena variabilis was low light; that of N. punctiforme was phosphate starvation. Light and electron microscopy revealed that akinetes of both species differed from vegetative cells by their larger size, different cell morphology and large number of intracellular granules. Anabaena variabilis akinetes had a multilayer envelope; those of N. punctiforme had a simpler envelope. During akinete development of Anabaena variabilis, the amount of the storage compounds cyanophycin and glycogen increased transiently, whereas in N. punctiforme, cyanophycin and lipid droplets increased transiently. Photosynthesis and respiration decreased during akinete differentiation in both species, and remained at a low level in mature akinetes. The clear differences in the metabolic and morphological adaptations of akinetes of the two species could be related to their different lifestyles. The results pave the way for genetic and functional studies of akinete differentiation in these species.

  7. Differences in Velopharyngeal Structure during Speech among Asians Revealed by 3-Tesla Magnetic Resonance Imaging Movie Mode.

    PubMed

    Nunthayanon, Kulthida; Honda, Ei-ichi; Shimazaki, Kazuo; Ohmori, Hiroko; Inoue-Arai, Maristela Sayuri; Kurabayashi, Tohru; Ono, Takashi

    2015-01-01

    Different bony structures can affect the function of the velopharyngeal muscles. Asian populations differ morphologically, including the morphologies of their bony structures. The purpose of this study was to compare the velopharyngeal structures during speech in two Asian populations: Japanese and Thai. Ten healthy Japanese and Thai females (five each) were evaluated with a 3-Tesla (3 T) magnetic resonance imaging (MRI) scanner while they produced vowel-consonant-vowel syllable (/asa/). A gradient-echo sequence, fast low-angle shot with segmented cine and parallel imaging technique was used to obtain sagittal images of the velopharyngeal structures. MRI was carried out in real time during speech production, allowing investigations of the time-to-time changes in the velopharyngeal structures. Thai subjects had a significantly longer hard palate and produced shorter consonant than Japanese subjects. The velum of the Thai participants showed significant thickening during consonant production and their retroglossal space was significantly wider at rest, whereas the dimensional change during task performance was similar in the two populations. The 3 T MRI movie method can be used to investigate velopharyngeal function and diagnose velopharyngeal insufficiency. The racial differences may include differences in skeletal patterns and soft-tissue morphology that result in functional differences for the affected structures.

  8. The ploidy races of Atriplex confertifolia (chenopodiaceae)

    Treesearch

    Stewart C. Sanderson

    2011-01-01

    Previous accounts of polyploidy in the North American salt desert shrub Atriplex confertifolia (shadscale) have dealt with the distribution of polyploidy and the morphological and secondary chemical differences between races. The present study amplifies these studies and reveals additional ploidy-flavonoid races, with ploidy levels known to extend from 2x to 12x, and...

  9. The effects of morphological irregularity on the mechanical behavior of interdigitated biological sutures under tension.

    PubMed

    Liu, Lei; Jiang, Yunyao; Boyce, Mary; Ortiz, Christine; Baur, Jeffery; Song, Juha; Li, Yaning

    2017-06-14

    Irregular interdigitated morphology is prevalent in biological sutures in nature. Suture complexity index has long been recognized as the most important morphological parameter to govern the mechanical properties of biological sutures. However, the suture complexity index alone does not reflect all aspects of suture morphology. The goal of this investigation was to determine that besides suture complexity index, whether the degree of morphological irregularity of biological sutures has influences on the mechanical properties, and if there is any, how to quantify these influences. To explore these issues, theoretical and finite element (FE) suture models with the same suture complexity index but different levels of morphological irregularity were developed. The quasi-static stiffness, strength for damage initiation and post-failure process of irregular sutures were studied. It was shown that for the same suture complexity index, when the level of morphological irregularity increases, the overall strain to failure will increase while tensile stiffness is retained; also, the total energy to fracture increases with a sacrifice in strength to damage initiation. These results reveal that morphological irregularity is another important independent parameter to govern and balance the mechanical properties of biological sutures. Therefore, from the mechanics point of view, the prevalence of irregular suture morphology in nature is a merit, not a defect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Peculiarity of two thermodynamically-stable morphologies and their impact on the efficiency of small molecule bulk heterojunction solar cells

    DOE PAGES

    Herath, Nuradhika; Das, Sanjib; Keum, Jong K.; ...

    2015-08-28

    Structural characteristics of the active layers in organic photovoltaic (OPV) devices play a critical role in charge generation, separation and transport. Here we report on morphology and structural control of p-DTS(FBTTh 2) 2:PC 71BM films by means of thermal annealing and 1,8-diiodooctane (DIO) solvent additive processing, and correlate it to the device performance. By combining surface imaging with nanoscale depth-sensitive neutron reflectometry (NR) and X-ray diffraction, three-dimensional morphologies of the films are reconstituted with information extending length scales from nanometers to microns. DIO promotes the formation of a well-mixed donor-acceptor vertical phase morphology with a large population of small p-DTS(FBTTh2)2more » nanocrystals arranged in an elongated domain network of the film, thereby enhancing the device performance. In contrast, films without DIO exhibit three-sublayer vertical phase morphology with phase separation in agglomerated domains. Our findings are supported by thermodynamic description based on the Flory-Huggins theory with quantitative evaluation of pairwise interaction parameters that explain the morphological changes resulting from thermal and solvent treatments. Our study reveals that vertical phase morphology of small-molecule based OPVs is significantly different from polymer-based systems. Lastly, the significant enhancement of morphology and information obtained from theoretical modeling may aid in developing an optimized morphology to enhance device performance for OPVs.« less

  11. MORPHOLOGICAL AND CYTOLOGICAL CHANGES IN CENTURY PATNA 231 AND BLUEBONNET 50 RICE RESULTING FROM X-RAY AND THERMAL NEUTRON IRRADIATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, H.M.; Beachell, H.M.; Atkins, I.M.

    1961-03-01

    Morphological and cytological studies of one X/sub 2/ (maintained vegetatively) and 20 X/sub 5/ lines of Bluebonnet 50 and Century Patna 231 rice varieties obtained from seeds exposed to different dosages of x rays and thermal neutrons revealed a number of interesting and valuable mutant types. These included mutations of leaf size and color, growth habit, plant height and straw strength, particles, spikelets, flowering habit, and fertility. Some of the short-stature and other plants may have considerable economic value in breeding lodging resistant varieties. Cytological studies revealed that one plant was a tetraploid. Most plants studied were diploid but oftenmore » had abnormal chromosome numbers or association. Univalents, trivalents, and quadrivalents were common but fragments. asynapsis, knot formations, irregular division, bridge formations, and differences in pollen grain size were observed. There was a positive correIation hetween quadrivalents in P.M.C. and pollen sterility and between pollen and spikelet sterility, although there were some unusual exceptions to this. (auth)« less

  12. Xrt And Shinx Joint Flare Study: Ar 11024

    NASA Astrophysics Data System (ADS)

    Engell, Alexander; Sylwester, J.; Siarkowski, M.

    2010-05-01

    From 12:00 UT on July 3 through July 7, 2009 SphinX (Solar Photometer IN X-rays) observes 130 flares with active region (AR) 11024 being the only AR on disk. XRT (X-Ray Telescope) is able to observe 64 of these flare events. The combination of both instruments results in a flare study revealing (1) a relationship between flux emergence and flare rate, (2) that the presence of active region loops typically results in different flare morphologies (single and multiple loop flares) then when there is a lack of an active region loop environment where more cusp and point-like flares are observed, (3) cusp and point-like flares often originate from the same location, and (4) a distribution of flare temperatures corresponding to the different flare morphologies. The differences between the observed flare morphologies may occur as the result of the heated plasma through the flaring process being confined by the proximity of loop structures as for the single and multiple loop flares, while for cusp and point-like flares they occur in an early-phase environment that lack loop presence. The continuing flux emergence of AR 11024 likely provides different magnetic interactions and may be the source responsible for all of the flares.

  13. PyramidalExplorer: A New Interactive Tool to Explore Morpho-Functional Relations of Human Pyramidal Neurons.

    PubMed

    Toharia, Pablo; Robles, Oscar D; Fernaud-Espinosa, Isabel; Makarova, Julia; Galindo, Sergio E; Rodriguez, Angel; Pastor, Luis; Herreras, Oscar; DeFelipe, Javier; Benavides-Piccione, Ruth

    2015-01-01

    This work presents PyramidalExplorer, a new tool to interactively explore and reveal the detailed organization of the microanatomy of pyramidal neurons with functionally related models. It consists of a set of functionalities that allow possible regional differences in the pyramidal cell architecture to be interactively discovered by combining quantitative morphological information about the structure of the cell with implemented functional models. The key contribution of this tool is the morpho-functional oriented design that allows the user to navigate within the 3D dataset, filter and perform Content-Based Retrieval operations. As a case study, we present a human pyramidal neuron with over 9000 dendritic spines in its apical and basal dendritic trees. Using PyramidalExplorer, we were able to find unexpected differential morphological attributes of dendritic spines in particular compartments of the neuron, revealing new aspects of the morpho-functional organization of the pyramidal neuron.

  14. PyramidalExplorer: A New Interactive Tool to Explore Morpho-Functional Relations of Human Pyramidal Neurons

    PubMed Central

    Toharia, Pablo; Robles, Oscar D.; Fernaud-Espinosa, Isabel; Makarova, Julia; Galindo, Sergio E.; Rodriguez, Angel; Pastor, Luis; Herreras, Oscar; DeFelipe, Javier; Benavides-Piccione, Ruth

    2016-01-01

    This work presents PyramidalExplorer, a new tool to interactively explore and reveal the detailed organization of the microanatomy of pyramidal neurons with functionally related models. It consists of a set of functionalities that allow possible regional differences in the pyramidal cell architecture to be interactively discovered by combining quantitative morphological information about the structure of the cell with implemented functional models. The key contribution of this tool is the morpho-functional oriented design that allows the user to navigate within the 3D dataset, filter and perform Content-Based Retrieval operations. As a case study, we present a human pyramidal neuron with over 9000 dendritic spines in its apical and basal dendritic trees. Using PyramidalExplorer, we were able to find unexpected differential morphological attributes of dendritic spines in particular compartments of the neuron, revealing new aspects of the morpho-functional organization of the pyramidal neuron. PMID:26778972

  15. Plutella australiana (Lepidoptera, Plutellidae), an overlooked diamondback moth revealed by DNA barcodes

    PubMed Central

    Landry, Jean-François; Hebert, Paul DN

    2013-01-01

    Abstract The genus Plutella was thought to be represented in Australia by a single introduced species, Plutella xylostella (Linnaeus), the diamondback moth. Its status as a major pest of cruciferous crops, and the difficulty in developing control strategies has motivated broad-ranging studies on its biology. Prior genetic work has generally supported the conclusion that populations of this migratory species are connected by substantial gene flow. However, the present study reveals the presence of two genetically divergent lineages of this taxonin Australia. One shows close genetic and morphological similarity with the nearly cosmopolitan Plutella xylostella. The second lineage possesses a similar external morphology, but marked sequence divergence in the barcode region of the cytochrome c oxidase I gene, coupled with clear differences in genitalia. As a consequence, members of this lineage are described as a new species, Plutella australiana Landry & Hebert, which is broadly distributed in the eastern half of Australia. PMID:24167421

  16. Plutella australiana (Lepidoptera, Plutellidae), an overlooked diamondback moth revealed by DNA barcodes.

    PubMed

    Landry, Jean-François; Hebert, Paul Dn

    2013-01-01

    The genus Plutella was thought to be represented in Australia by a single introduced species, Plutella xylostella (Linnaeus), the diamondback moth. Its status as a major pest of cruciferous crops, and the difficulty in developing control strategies has motivated broad-ranging studies on its biology. Prior genetic work has generally supported the conclusion that populations of this migratory species are connected by substantial gene flow. However, the present study reveals the presence of two genetically divergent lineages of this taxonin Australia. One shows close genetic and morphological similarity with the nearly cosmopolitan Plutella xylostella. The second lineage possesses a similar external morphology, but marked sequence divergence in the barcode region of the cytochrome c oxidase I gene, coupled with clear differences in genitalia. As a consequence, members of this lineage are described as a new species, Plutella australiana Landry & Hebert, which is broadly distributed in the eastern half of Australia.

  17. Barb geometry of asymmetrical feathers reveals a transitional morphology in the evolution of avian flight

    PubMed Central

    Feo, Teresa J.; Field, Daniel J.; Prum, Richard O.

    2015-01-01

    The geometry of feather barbs (barb length and barb angle) determines feather vane asymmetry and vane rigidity, which are both critical to a feather's aerodynamic performance. Here, we describe the relationship between barb geometry and aerodynamic function across the evolutionary history of asymmetrical flight feathers, from Mesozoic taxa outside of modern avian diversity (Microraptor, Archaeopteryx, Sapeornis, Confuciusornis and the enantiornithine Eopengornis) to an extensive sample of modern birds. Contrary to previous assumptions, we find that barb angle is not related to vane-width asymmetry; instead barb angle varies with vane function, whereas barb length variation determines vane asymmetry. We demonstrate that barb geometry significantly differs among functionally distinct portions of flight feather vanes, and that cutting-edge leading vanes occupy a distinct region of morphospace characterized by small barb angles. This cutting-edge vane morphology is ubiquitous across a phylogenetically and functionally diverse sample of modern birds and Mesozoic stem birds, revealing a fundamental aerodynamic adaptation that has persisted from the Late Jurassic. However, in Mesozoic taxa stemward of Ornithurae and Enantiornithes, trailing vane barb geometry is distinctly different from that of modern birds. In both modern birds and enantiornithines, trailing vanes have larger barb angles than in comparatively stemward taxa like Archaeopteryx, which exhibit small trailing vane barb angles. This discovery reveals a previously unrecognized evolutionary transition in flight feather morphology, which has important implications for the flight capacity of early feathered theropods such as Archaeopteryx and Microraptor. Our findings suggest that the fully modern avian flight feather, and possibly a modern capacity for powered flight, evolved crownward of Confuciusornis, long after the origin of asymmetrical flight feathers, and much later than previously recognized. PMID:25673687

  18. Cellulose effects on morphology and elasticity of Vibrio fischeri biofilms.

    PubMed

    Ziemba, Christopher; Shabtai, Yael; Piatkovsky, Maria; Herzberg, Moshe

    2016-01-01

    Cellulose effects on Vibrio fischeri biofilm morphology were tested for the wild-type and two of its isogenic mutants that either exhibit increased cellulose production or do not produce cellulose at all. Confocal laser scanning microscopy imaging of each biofilm revealed that total sessile volume increases with cellulose expression, but the size of colonies formed with cellulose was smaller, creating a more diffuse biofilm. These morphological differences were not attributed to variations in bacterial deposition, extracellular polymeric substances affinity to the surface or bacterial growth. A positive correlation was found between cellulose expression, Young's (elastic) modulus of the biofilm analyzed with atomic force microscope and shear modulus of the related extracellular polymeric substances layers analyzed with quartz crystal microbalance with dissipation monitoring. Cellulose production also correlated positively with concentrations of extracellular DNA. A significant negative correlation was observed between cellulose expression and rates of diffusion through the extracellular polymeric substances. The difference observed in biofilm morphology is suggested as a combined result of cellulose and likely extracellular DNA (i) increasing biofilm Young's modulus, making shear removal more difficult, and (ii) decreased diffusion rate of nutrients and wastes into and out of the biofilm, which effectively limits colony size.

  19. Geographical variation in the skeletal morphology of red jungle fowl.

    PubMed

    Endo, H; Tsunekawa, N; Sonoe, M; Sasaki, Tї; Ogawa, H; Amano, T; Nguyen, T S; Phimphachanhvongsod, V; Kudo, K; Yonezawa, T; Akishinonomiya, F

    2017-08-01

    1. The skulls and postcranial skeletons of the red jungle fowl (Gallus gallus) were compared osteometrically between the populations from North and South Vietnam, North and Central Laos and Southeast Bangladesh. The populations include the three subspecies of G. g. spadiceus, G. g. gallus and G. g. murghi and were sampled to reveal the geographical morphological variations among populations in G. gallus. 2. The morphometric characteristics of subspecies murghi could be clearly distinguished from those of the other subspecies using a canonical discriminant analysis. However, the size and shape of the skull of the gallus population from South Vietnam were not statistically different from that of the subspecies spadiceus from North Laos. The canonical discriminant scores also clearly indicated that there were morphological similarities in the skulls of the populations from North Laos and South Vietnam. 3. From the results, therefore, it is concluded that red jungle fowls do not exhibit high levels of osteometric variation between geographical localities at least within the Indochinese Peninsula. 4. This contrasts with previous studies which have described these subspecies as having various external morphological differences and have argued that zoogeographical barriers exist between the north and south areas of the Indochinese Peninsula.

  20. Bayesian Morphological Clock Methods Resurrect Placoderm Monophyly and Reveal Rapid Early Evolution in Jawed Vertebrates.

    PubMed

    King, Benedict; Qiao, Tuo; Lee, Michael S Y; Zhu, Min; Long, John A

    2017-07-01

    The phylogeny of early gnathostomes provides an important framework for understanding one of the most significant evolutionary events, the origin and diversification of jawed vertebrates. A series of recent cladistic analyses have suggested that the placoderms, an extinct group of armoured fish, form a paraphyletic group basal to all other jawed vertebrates. We revised and expanded this morphological data set, most notably by sampling autapomorphies in a similar way to parsimony-informative traits, thus ensuring this data (unlike most existing morphological data sets) satisfied an important assumption of Bayesian tip-dated morphological clock approaches. We also found problems with characters supporting placoderm paraphyly, including character correlation and incorrect codings. Analysis of this data set reveals that paraphyly and monophyly of core placoderms (excluding maxillate forms) are essentially equally parsimonious. The two alternative topologies have different root positions for the jawed vertebrates but are otherwise similar. However, analysis using tip-dated clock methods reveals strong support for placoderm monophyly, due to this analysis favoring trees with more balanced rates of evolution. Furthermore, enforcing placoderm paraphyly results in higher levels and unusual patterns of rate heterogeneity among branches, similar to that generated from simulated trees reconstructed with incorrect root positions. These simulations also show that Bayesian tip-dated clock methods outperform parsimony when the outgroup is largely uninformative (e.g., due to inapplicable characters), as might be the case here. The analysis also reveals that gnathostomes underwent a rapid burst of evolution during the Silurian period which declined during the Early Devonian. This rapid evolution during a period with few articulated fossils might partly explain the difficulty in ascertaining the root position of jawed vertebrates. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Efficacy of cold light bleaching using different bleaching times and their effects on human enamel.

    PubMed

    Wang, Wei; Zhu, Yuhe; Li, Jiajia; Liao, Susan; Ai, Hongjun

    2013-01-01

    This study investigated the efficacy of cold light bleaching using different bleaching times and the effects thereof on tooth enamel. Before and after bleaching, stained tooth specimens were subjected to visual and instrumental colorimetric assessments using Vita Shade Guide and spectrophotometric shade matching. Enamel surface alterations were examined using scanning electron microscopy (SEM) to analyze surface morphology, surface microhardness (SMH) measurement to determine changes in mechanical properties, and X-ray diffraction (XRD) to characterize post-bleaching enamel composition. Cold light bleaching successfully improved tooth color, with optimal efficacy when bleaching time was beyond 10 min. Significant differences in surface morphology were observed among the different bleaching times, but no significant differences were observed for enamel composition and surface microhardness among the different bleaching times. Results of this study revealed an association between the bleaching time of cold light bleaching and its whitening efficacy. Together with the results on enamel surface changes, this study provided positive evidence to support cold light bleaching as an in-office bleaching treatment.

  2. Morphological driven photocatalytic activity of ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Abbas, Khaldoon N.; Bidin, Noriah

    2017-02-01

    Using a simple combination of pulse laser ablation in liquid and hydrothermal (PLAL-H) approaches, we control the morphology of ZnO nanostructures (ZNSs) to determine the feasibility of their photocatalytic efficacy. These ZNSs are deposited on Si (100) substrates and two different morphologies are achieved. In this synergistic approach, PLAL synthesized NSs are used as a nutrient solution with different pH for further hydrothermal treatment at 110 °C under varying growth time (5, 30 and 60 min). Surface morphology, structure, composition, and optical characteristics of the prepared ZNSs are determined using FESEM, XRD, FTIR and Photoluminescence (PL) and UV-vis absorption measurements. The morphology revealed remarkable transformation from nanorods (NRs)/nanoflowers (NFs) (at pH 7.6) to nanoparticles (NPs)-like (at pH 10.5) structure. XRD patterns showed better polycrystallinity for NPs with enlarged band gap than NR/NF-like structures. Both PL and UV-vis spectral analysis of ZNPs exhibited higher surface area and deep level defects density dependent morphology, where the nutrient pH and growth time variation are found to play a significant role towards structural evolution. Furthermore, the photocatalytic activities of, such ZNSs are evaluated via sunlight driven photo-degradation of methylene blue (MB) dye. The photocatalytic efficiency of ZNPs is demonstrated to be much superior (97.4%) than ZNRs/ZNFs-like morphology (86%). Such enhanced photocatalytic activities of as-synthesized ZNPs is attributed to the synergism of the improved surface area and defects density, which is useful for promoting the adsorption of the MB dye and suppressed surface recombination of photo-generated charge carriers.

  3. The neocortex of cetartiodactyls. II. Neuronal morphology of the visual and motor cortices in the giraffe (Giraffa camelopardalis).

    PubMed

    Jacobs, Bob; Harland, Tessa; Kennedy, Deborah; Schall, Matthew; Wicinski, Bridget; Butti, Camilla; Hof, Patrick R; Sherwood, Chet C; Manger, Paul R

    2015-09-01

    The present quantitative study extends our investigation of cetartiodactyls by exploring the neuronal morphology in the giraffe (Giraffa camelopardalis) neocortex. Here, we investigate giraffe primary visual and motor cortices from perfusion-fixed brains of three subadults stained with a modified rapid Golgi technique. Neurons (n = 244) were quantified on a computer-assisted microscopy system. Qualitatively, the giraffe neocortex contained an array of complex spiny neurons that included both "typical" pyramidal neuron morphology and "atypical" spiny neurons in terms of morphology and/or orientation. In general, the neocortex exhibited a vertical columnar organization of apical dendrites. Although there was no significant quantitative difference in dendritic complexity for pyramidal neurons between primary visual (n = 78) and motor cortices (n = 65), there was a significant difference in dendritic spine density (motor cortex > visual cortex). The morphology of aspiny neurons in giraffes appeared to be similar to that of other eutherian mammals. For cross-species comparison of neuron morphology, giraffe pyramidal neurons were compared to those quantified with the same methodology in African elephants and some cetaceans (e.g., bottlenose dolphin, minke whale, humpback whale). Across species, the giraffe (and cetaceans) exhibited less widely bifurcating apical dendrites compared to elephants. Quantitative dendritic measures revealed that the elephant and humpback whale had more extensive dendrites than giraffes, whereas the minke whale and bottlenose dolphin had less extensive dendritic arbors. Spine measures were highest in the giraffe, perhaps due to the high quality, perfusion fixation. The neuronal morphology in giraffe neocortex is thus generally consistent with what is known about other cetartiodactyls.

  4. Cerebral morphology and dopamine D2/D3receptor distribution in humans: A combined [18F]fallypride and voxel-based morphometry study

    PubMed Central

    Woodward, Neil D.; Zald, David H.; Ding, Zhaohua; Riccardi, Patrizia; Ansari, M. Sib; Baldwin, Ronald M.; Cowan, Ronald L.; Li, Rui; Kessler, Robert M.

    2009-01-01

    The relationship between cerebral morphology and the expression of dopamine receptors has not been extensively studied in humans. Elucidation of such relationships may have important methodological implications for clinical studies of dopamine receptor ligand binding differences between control and patient groups. The association between cerebral morphology and dopamine receptor distribution was examined in 45 healthy subjects who completed T1-weighted structural MRI and PET scanning with the D2/D3 ligand [18F]fallypride. Optimized voxel-based morphometry was used to create grey matter volume and density images. Grey matter volume and density images were correlated with binding potential (BPND) images on a voxel-by-voxel basis using the Biological Parametric Mapping toolbox. Associations between cerebral morphology and BPND were also examined for selected regions-of-interest (ROIs) after spatial normalization. Voxel-wise analyses indicated that grey matter volume and density positively correlated with BPND throughout the midbrain, including the substantia nigra. Positive correlations were observed in medial cortical areas, including anterior cingulate and medial prefrontal cortex, and circumscribed regions of the temporal, frontal, and parietal lobes. ROI analyses revealed significant positive correlations between BPND and cerebral morphology in the caudate, thalamus, and amygdala. Few negative correlations between morphology and BPND were observed. Overall, grey matter density appeared more strongly correlated with BPND than grey matter volume. Cerebral morphology, particularly grey matter density, correlates with [18F]fallypride BPND in a regionally specific manner. Clinical studies comparing dopamine receptor availability between clinical and control groups may benefit by accounting for potential differences in cerebral morphology that exist even after spatial normalization. PMID:19457373

  5. Cerebral morphology and dopamine D2/D3 receptor distribution in humans: a combined [18F]fallypride and voxel-based morphometry study.

    PubMed

    Woodward, Neil D; Zald, David H; Ding, Zhaohua; Riccardi, Patrizia; Ansari, M Sib; Baldwin, Ronald M; Cowan, Ronald L; Li, Rui; Kessler, Robert M

    2009-05-15

    The relationship between cerebral morphology and the expression of dopamine receptors has not been extensively studied in humans. Elucidation of such relationships may have important methodological implications for clinical studies of dopamine receptor ligand binding differences between control and patient groups. The association between cerebral morphology and dopamine receptor distribution was examined in 45 healthy subjects who completed T1-weighted structural MRI and PET scanning with the D(2)/D(3) ligand [(18)F]fallypride. Optimized voxel-based morphometry was used to create grey matter volume and density images. Grey matter volume and density images were correlated with binding potential (BP(ND)) images on a voxel-by-voxel basis using the Biological Parametric Mapping toolbox. Associations between cerebral morphology and BP(ND) were also examined for selected regions-of-interest (ROIs) after spatial normalization. Voxel-wise analyses indicated that grey matter volume and density positively correlated with BP(ND) throughout the midbrain, including the substantia nigra. Positive correlations were observed in medial cortical areas, including anterior cingulate and medial prefrontal cortex, and circumscribed regions of the temporal, frontal, and parietal lobes. ROI analyses revealed significant positive correlations between BP(ND) and cerebral morphology in the caudate, thalamus, and amygdala. Few negative correlations between morphology and BP(ND) were observed. Overall, grey matter density appeared more strongly correlated with BP(ND) than grey matter volume. Cerebral morphology, particularly grey matter density, correlates with [(18)F]fallypride BP(ND) in a regionally specific manner. Clinical studies comparing dopamine receptor availability between clinical and control groups may benefit by accounting for potential differences in cerebral morphology that exist even after spatial normalization.

  6. Is Supramolecular Filament Chirality the Underlying Cause of Major Morphology Differences in Amyloid Fibrils?

    PubMed Central

    2015-01-01

    The unique enhanced sensitivity of vibrational circular dichroism (VCD) to the formation and development of amyloid fibrils in solution is extended to four additional fibril-forming proteins or peptides where it is shown that the sign of the fibril VCD pattern correlates with the sense of supramolecular filament chirality and, without exception, to the dominant fibril morphology as observed in AFM or SEM images. Previously for insulin, it has been demonstrated that the sign of the VCD band pattern from filament chirality can be controlled by adjusting the pH of the incubating solution, above pH 2 for “normal” left-hand-helical filaments and below pH 2 for “reversed” right-hand-helical filaments. From AFM or SEM images, left-helical filaments form multifilament braids of left-twisted fibrils while the right-helical filaments form parallel filament rows of fibrils with a flat tape-like morphology, the two major classes of fibril morphology that from deep UV resonance Raman scattering exhibit the same cross-β-core secondary structure. Here we investigate whether fibril supramolecular chirality is the underlying cause of the major morphology differences in all amyloid fibrils by showing that the morphology (twisted versus flat) of fibrils of lysozyme, apo-α-lactalbumin, HET-s (218–289) prion, and a short polypeptide fragment of transthyretin, TTR (105–115), directly correlates to their supramolecular chirality as revealed by VCD. The result is strong evidence that the chiral supramolecular organization of filaments is the principal underlying cause of the morphological heterogeneity of amyloid fibrils. Because fibril morphology is linked to cell toxicity, the chirality of amyloid aggregates should be explored in the widely used in vitro models of amyloid-associated diseases. PMID:24484302

  7. Is supramolecular filament chirality the underlying cause of major morphology differences in amyloid fibrils?

    PubMed

    Kurouski, Dmitry; Lu, Xuefang; Popova, Ludmila; Wan, William; Shanmugasundaram, Maruda; Stubbs, Gerald; Dukor, Rina K; Lednev, Igor K; Nafie, Laurence A

    2014-02-12

    The unique enhanced sensitivity of vibrational circular dichroism (VCD) to the formation and development of amyloid fibrils in solution is extended to four additional fibril-forming proteins or peptides where it is shown that the sign of the fibril VCD pattern correlates with the sense of supramolecular filament chirality and, without exception, to the dominant fibril morphology as observed in AFM or SEM images. Previously for insulin, it has been demonstrated that the sign of the VCD band pattern from filament chirality can be controlled by adjusting the pH of the incubating solution, above pH 2 for "normal" left-hand-helical filaments and below pH 2 for "reversed" right-hand-helical filaments. From AFM or SEM images, left-helical filaments form multifilament braids of left-twisted fibrils while the right-helical filaments form parallel filament rows of fibrils with a flat tape-like morphology, the two major classes of fibril morphology that from deep UV resonance Raman scattering exhibit the same cross-β-core secondary structure. Here we investigate whether fibril supramolecular chirality is the underlying cause of the major morphology differences in all amyloid fibrils by showing that the morphology (twisted versus flat) of fibrils of lysozyme, apo-α-lactalbumin, HET-s (218-289) prion, and a short polypeptide fragment of transthyretin, TTR (105-115), directly correlates to their supramolecular chirality as revealed by VCD. The result is strong evidence that the chiral supramolecular organization of filaments is the principal underlying cause of the morphological heterogeneity of amyloid fibrils. Because fibril morphology is linked to cell toxicity, the chirality of amyloid aggregates should be explored in the widely used in vitro models of amyloid-associated diseases.

  8. Molecular and Morphological Characterizations of Echinococcus granulosus from Human and Animal Isolates in Kashan, Markazi Province, Iran

    PubMed Central

    ARBABI, Mohsen; PIRESTANI, Majid; DELAVARI, Mahdi; HOOSHYAR, Hossein; ABDOLI, Amir; SARVI, Shahab

    2017-01-01

    Background: One of the most important zoonotic helminths in the world is known as Echinococcus granulosus. Different strains of the E. granulosus have been described based on morphological and molecular characterizations, however, there is limited information regarding the characteristics of the phenotypes and genotypes of E. granulosus in Iran. Methods: The present study was prepared to evaluate the phenotypic and genotypic diversity of E. granulosus isolates collected from human, goat, sheep, and cattle based on 19 standard morphometric parameters and mitochondrial and nuclear genes (CO1, ND1, and ITS1) in Kashan, Markazi Province, Iran during 2013–2014. Results: The biometric analysis for the 19 characters revealed that the 19 morphometric values of cattle isolates were exceptionally higher than human, goat, and sheep isolates (P<0.05). Molecular analysis confirms the morphological findings. Phylogenic analysis of the CO1, NAD1 and ITS1 genes for all isolates, independent of the host, revealed that the common sheep strain (G1) is traveling among livestock in Kashan and the strains are highly adapted to goats, cattle, sheep, and humans. Conclusion: Both morphological and molecular results of this study indicated that the only genotype G1 of E. granulosus travels between humans and other intermediate hosts of this parasite in the area study. PMID:28761477

  9. Novel Curvularia species from clinical specimens.

    PubMed

    Madrid, H; da Cunha, K C; Gené, J; Dijksterhuis, J; Cano, J; Sutton, D A; Guarro, J; Crous, P W

    2014-12-01

    The fungal genus Curvularia includes numerous plant pathogens and some emerging opportunistic pathogens of humans. In a previous study we used morphology and sequences of the nuclear ribosomal internal transcribed spacer region (ITS) and the glyceraldehyde-3-phosphate dehydrogenase (gpd) gene to identify species within a set of 99 clinical Curvularia isolates from the USA. Seventy-two isolates could be identified while the remaining 27 isolates belonged in three unclassified clades that were tentatively labelled Curvularia sp. I, II and III. In the present study, we further assess the taxonomic placement of these isolates using sequences of ITS, gpd, the large subunit rDNA, and the second largest subunit of RNA polymerase II. DNA sequence comparisons with a set of 87 isolates representing 33 Curvularia spp. and members of the closely-related genera Bipolaris and Exserohilum revealed that Curvularia sp. I, II and III represent novel lineages in Curvularia. These lineages are morphologically different from the currently accepted species. In the phylogenetic tree, Curvularia sp. I and sp. III were each split into two distinct lineages. Morphology and phylogeny supported the proposal of five new species, to be named C. americana, C. chlamydospora, C. hominis, C. muehlenbeckiae and C. pseudolunata. The concatenated 4-locus phylogeny revealed the existence of six clades in Curvularia, which are associated with particular morphological features. They were named after representative species, namely americana, eragrostidis, hominis, lunata, spicifera and trifolii.

  10. Three-dimensional confocal morphometry – a new approach for studying dynamic changes in cell morphology in brain slices

    PubMed Central

    Chvátal, Alexandr; Anděrová, Miroslava; Kirchhoff, Frank

    2007-01-01

    Pathological states in the central nervous system lead to dramatic changes in the activity of neuroactive substances in the extracellular space, to changes in ionic homeostasis and often to cell swelling. To quantify changes in cell morphology over a certain period of time, we employed a new technique, three-dimensional confocal morphometry. In our experiments, performed on enhanced green fluorescent protein/glial fibrillary acidic protein astrocytes in brain slices in situ and thus preserving the extracellular microenvironment, confocal morphometry revealed that the application of hypotonic solution evoked two types of volume change. In one population of astrocytes, hypotonic stress evoked small cell volume changes followed by a regulatory volume decrease, while in the second population volume changes were significantly larger without subsequent volume regulation. Three-dimensional cell reconstruction revealed that even though the total astrocyte volume increased during hypotonic stress, the morphological changes in various cell compartments and processes were more complex than have been previously shown, including swelling, shrinking and structural rearrangement. Our data show that astrocytes in brain slices in situ during hypotonic stress display complex behaviour. One population of astrocytes is highly capable of cell volume regulation, while the second population is characterized by prominent cell swelling, accompanied by plastic changes in morphology. It is possible to speculate that these two astrocyte populations play different roles during physiological and pathological states. PMID:17488344

  11. Clarifying the taxonomic status of the alien species Branchiomma bairdi and Branchiomma boholense (Annelida: Sabellidae) using molecular and morphological evidence

    PubMed Central

    Schulze, Anja; Tovar-Hernández, María Ana; Keppel, Erica; Lezzi, Marco; Gambi, Maria Cristina; Giangrande, Adriana

    2018-01-01

    This study was performed to analyse the genetic and morphological diversity of the sabellid annelid genus Branchiomma, with special emphasis on a taxon so far identified as Branchiomma bairdi. This species, originally described from Bermuda, has frequently been reported as an invader in the Mediterranean, the Atlantic and the Eastern Pacific, but recent observations have raised some taxonomic questions. Samples of this taxon were collected from five sites in the Mediterranean Sea, two sites in the original distribution area of B. bairdi in the Gulf of Mexico and four localities in the east Pacific and Atlantic Oceans where B. bairdi has been reported as invasive. The molecular results revealed a conspicuous genetic divergence (18.5% K2P) between the sampled Mediterranean populations and all the other ones that led to a re-evaluation of their morphological characters. The latter showed that the Mediterranean and extra-Mediterranean populations also differ in some discrete morphological and reproductive features. Consequently, the Mediterranean samples were re-designated as B. boholense, another non-indigenous species originally described from Philippines. Branchiomma bairdi and B. boholense differ in body size, development and shape of micro and macrostylodes, size of radiolar eyes and body pigmentation. Genetic diversity was high in B. boholense from the Mediterranean as well as in B. bairdi from the Gulf of Mexico, but low in B. bairdi populations outside their native range. The phylogenetic analysis revealed the presence of connections between the Mediterranean localities as well as between native and introduced B. bairdi populations that focus the attention on the Panama Canal as important passage for the introduction of the species from the Gulf of Mexico to the north-east Pacific Ocean. PMID:29746553

  12. Modeling the characteristic etch morphologies along specific crystallographic orientations by anisotropic chemical etching

    NASA Astrophysics Data System (ADS)

    Li, Kun-Dar; Miao, Jin-Ru

    2018-02-01

    To improve the advanced manufacturing technology for functional materials, a sophisticated control of chemical etching process is highly demanded, especially in the fields of environment and energy related applications. In this study, a phase-field-based model is utilized to investigate the etch morphologies influenced by the crystallographic characters during anisotropic chemical etching. Three types of etching modes are inspected theoretically, including the isotropic, <100> and <111> preferred oriented etchings. Owing to the specific etching behavior along the crystallographic directions, different characteristic surface structures are presented in the simulations, such as the pimple-like, pyramidal hillock and ridge-like morphologies. In addition, the processing parameters affecting the surface morphological formation and evolution are also examined systematically. According to the numerical results, the growth mechanism of surface morphology in a chemical etching is revealed distinctly. While the etching dynamics plays a dominant role on the surface formation, the characteristic surface morphologies corresponding to the preferred etching direction become more apparent. As the atomic diffusion turned into a determinative factor, a smoothened surface would appear, even under the anisotropic etching conditions. These simulation results provide fundamental information to enhance the development and application of anisotropic chemical etching techniques.

  13. High sensitivity of Franz-Keldysh oscillations in photoreflectance spectra for probing morphology in Al{x}Ga{1-{x}}N/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Takeuchi, H.; Yamamoto, Y.; Kamo, Y.; Kunii, T.; Oku, T.; Wakaiki, S.; Nakayama, M.

    2007-02-01

    We demonstrate that Franz-Keldysh oscillations (FKOs) observed by photoreflectance (PR) spectroscopy are highly sensitive to the surface morphology of Al{x}Ga{1-x}N layers in Al{x}Ga{1-x}N heterostructures. Three Al{0.2}Ga{0.8}N/GaN heterostructures with different surface-morphology profiles, which are confirmed with atomic force microscopy, have been investigated. The X-ray-diffraction patterns are hardly affected by the Al{0.2}Ga{0.8}N/GaN-layer morphology. In contrast, it is revealed that cracks and pits dominating the morphology remarkably reduce the amplitude of the FKOs from the Al{0.2}Ga{0.8}N/GaN layer, which is attributed to the following two mechanisms related to the cracks and pits. One is lifetime broadening due to carrier scattering, and the other is the suppression of the modulation magnitude for the built-in electric field, which is caused by the trapping and recombination of photogenerated carriers at the surface.

  14. The Effect of Oscillating Traverse Welding on Performance of Cr-Fe-C Hardfacing Alloys

    NASA Astrophysics Data System (ADS)

    Lai, Hsuan-Han; Hsieh, Chih-Chun; Wang, Jia-Siang; Lin, Chi-Ming; Wu, Weite

    2015-11-01

    In this study, a series of experiments involving Cr-Fe-C hardfacing alloys is conducted to evaluate the effect of oscillating traverse welding on microstructure and performance of clad alloys. The alloys are designed to exhibit hypoeutectic, eutectic, and hypereutectic morphology. The morphology of the heat-affected zone (HAZ) of the unmelted metal, the solidified remelted metal, and the fusion boundary exhibited distinct characteristics. In the hypoeutectic and the eutectic alloys, the same lamellar eutectic structure can be observed as the solidified structure, and they also showed the same evolution in the HAZ. In the hypereutectic alloy, the incomplete weld pool blending results in a eutectic morphology instead of a fully hypereutectic morphology. The hardness result reveals that, for the hypereutectic alloy, the eutectic region, instead of the HAZ, is the weak point. The wear test shows that the hypoeutectic alloy exhibits the same wear behaviors in both the remelted metal and the HAZ, and so is the hypereutectic alloy; the eutectic alloy remelted metal and the HAZ have different wear morphologies.

  15. Morphological cladistic analysis of eight popular Olive (Olea europaea L.) cultivars grown in Saudi Arabia using Numerical Taxonomic System for personal computer to detect phyletic relationship and their proximate fruit composition

    PubMed Central

    Al-Ruqaie, I.; Al-Khalifah, N.S.; Shanavaskhan, A.E.

    2015-01-01

    Varietal identification of olives is an intrinsic and empirical exercise owing to the large number of synonyms and homonyms, intensive exchange of genotypes, presence of varietal clones and lack of proper certification in nurseries. A comparative study of morphological characters of eight olive cultivars grown in Saudi Arabia was carried out and analyzed using NTSYSpc (Numerical Taxonomy System for personal computer) system segregated smaller fruits in one clade and the rest in two clades. Koroneiki, a Greek cultivar with a small sized fruit shared arm with Spanish variety Arbosana. Morphologic analysis using NTSYSpc revealed that biometrics of leaves, fruits and seeds are reliable morphologic characters to distinguish between varieties, except for a few morphologically very similar olive cultivars. The proximate analysis showed significant variations in the protein, fiber, crude fat, ash and moisture content of different cultivars. The study also showed that neither the size of fruit nor the fruit pulp thickness is a limiting factor determining crude fat content of olives. PMID:26858547

  16. Quantifying Morphological Features of α-U3O8 with Image Analysis for Nuclear Forensics.

    PubMed

    Olsen, Adam M; Richards, Bryony; Schwerdt, Ian; Heffernan, Sean; Lusk, Robert; Smith, Braxton; Jurrus, Elizabeth; Ruggiero, Christy; McDonald, Luther W

    2017-03-07

    Morphological changes in U 3 O 8 based on calcination temperature have been quantified enabling a morphological feature to serve as a signature of processing history in nuclear forensics. Five separate calcination temperatures were used to synthesize α-U 3 O 8 , and each sample was characterized using powder X-ray diffraction (p-XRD) and scanning electron microscopy (SEM). The p-XRD spectra were used to evaluate the purity of the synthesized U-oxide; the morphological analysis for materials (MAMA) software was utilized to quantitatively characterize the particle shape and size as indicated by the SEM images. Analysis comparing the particle attributes, such as particle area at each of the temperatures, was completed using the Kolmogorov-Smirnov two sample test (K-S test). These results illustrate a distinct statistical difference between each calcination temperature. To provide a framework for forensic analysis of an unknown sample, the sample distributions at each temperature were compared to randomly selected distributions (100, 250, 500, and 750 particles) from each synthesized temperature to determine if they were statistically different. It was found that 750 particles were required to differentiate between all of the synthesized temperatures with a confidence interval of 99.0%. Results from this study provide the first quantitative morphological study of U-oxides, and reveals the potential strength of morphological particle analysis in nuclear forensics by providing a framework for a more rapid characterization of interdicted uranium oxide samples.

  17. Molecular insights into species phylogeny, biogeography, and morphological stasis in the ancient spider genus Hypochilus (Araneae: Hypochilidae).

    PubMed

    Hedin, M C

    2001-02-01

    The spider genus Hypochilus is currently restricted to cool, moist microhabitats in three widely separated montane regions of North America, providing an opportunity to study both deep (i.e., continental level) and shallow (within montane region) biogeographic history. Members of the genus also retain many plesiomorphic morphological characteristics, inviting the study of comparative rates of morphological evolution. In this paper, Hypochilus phylogeny and associated evolutionary problems are addressed using both new molecular (28S nDNA and CO1 mtDNA) and previously published (K. M. Catley, 1994, Am. Mus. Nov. 3088, 1-27) morphological data. Although the molecular data provide limited resolution of root placement within Hypochilus, most analyses are at least consistent with morphology-supported montane relationships of (Rockies (California, Appalachian)). The monophyly of Hypochilus species distributed in the California mountains is ambiguous, with several analyses indicating that this fauna may be paraphyletic with respect to a monophyletic Appalachian lineage. The montane regions differ in consistent ways in depths of both mitochondrial and nuclear phylogenetic divergence. Molecular clock analyses, in combination with arthropod-based mtDNA rate calibrations, suggest that the regional faunas are of different ages and that speciation in all faunas likely occurred prior to the Pleistocene. Limited intraspecific sampling reveals extraordinarily high levels of mtDNA cytochrome oxidase sequence divergence. These extreme divergences are most consistent with morphological stasis at the species level, despite preliminary evidence that Hypochilus taxa are characterized by fragmented population structures. Copyright 2001 Academic Press.

  18. [Morphologic and AFLP analysis of relationships between tulip species Tulipa biebersteiniana (Liliaceae)].

    PubMed

    Kutlunina, N A; Polezhaeva, M A; Permiakova, M V

    2013-04-01

    In populations of four species of tulips, (Tulipa biebersteiniana, T. patens, T. scytica and T. riparia) from the Volgograd, Kurgansk, Orenburg, and Chelyabinsk regions and the Republic of Bashkortostan, genetic diversity was studied by means of morphological and AFLP analysis. A morphological analysis of seven quantitative and two qualitative criteria was carried out. Three selective EcoRI/MseI primer pairs allowed one to genotype 81 individuals from 13 tulip populations with 87 loci. The low level of variability by AFLP loci were revealed in all species, including T. biebersteiniana (P = 20.41%, UH(e) = 0.075), T. patens (26.97%, 0.082), T. scytica (27.53%, 0.086), and T. riparia (27.72%, 0.096). According to the AMOVA results, the variability proportion that characterizes the differences between the four Tulip species was lower (F(CT) = 0.235) than between populations within species (F(ST) = 0.439). Tulipa patens is well differentiated by means of Nei's distances, coordination, and analysis in the STRUCTURE program. An analysis in the STRUCTURE revealed four genetic groups of tulips that are not completely in accordance with the analyzed species. This acknowledges the presence of complicated genetic process in the tulip population.

  19. Dermoscopic nevus patterns in skin of colour: a prospective, cross-sectional, morphological study in individuals with skin type V and VI.

    PubMed

    Lallas, A; Reggiani, C; Argenziano, G; Kyrgidis, A; Bakos, R; Masiero, N C M S; Scheibe, A B; Cabo, H; Ozdemir, F; Sortino-Rachou, A M; Turk, B Gerceker; Moscarella, E; Longo, C; Zalaudek, I

    2014-11-01

    Most of the knowledge on the prevailing dermoscopic patterns of acquired melanocytic nevi (AMV) is based on studies in Caucasians, while little research focuses on the dermoscopic variability in nevi in skin of colour. To analyse the prevalent dermoscopic nevus patterns in subjects with a skin type (ST) V and VI. Prospective, cross-sectional, morphological study was conducted in six clinics with enrolment of consecutive individuals with a ST V or VI. Digital dermoscopic images of selected representative AMN were assessed for dermoscopic colours, morphological patterns and pigment distribution. Analysis of 300 nevi from subjects with ST V and VI revealed significant differences in the nevus pattern between these two groups. The majority of nevi in ST V revealed a reticular pattern, whereas persons with ST VI more frequently exhibited a structureless pattern. Black, blue and grey were more frequent in ST VI, whereas the vast majority of nevi in ST V individuals showed dark brown colour. Our study provides new insights into the nevus pattern in individuals with a dark pigmentary trait, which may aid the diagnosis and management of nevi in this patients group. © 2013 European Academy of Dermatology and Venereology.

  20. Swift heavy ion track formation in Gd2Zr2-xTixO7 pyrochlore: Effect of electronic energy loss

    NASA Astrophysics Data System (ADS)

    Lang, Maik; Toulemonde, Marcel; Zhang, Jiaming; Zhang, Fuxiang; Tracy, Cameron L.; Lian, Jie; Wang, Zhongwu; Weber, William J.; Severin, Daniel; Bender, Markus; Trautmann, Christina; Ewing, Rodney C.

    2014-10-01

    The morphology of swift heavy ion tracks in the Gd2Zr2-xTixO7 pyrochlore system has been investigated as a function of the variation in chemical composition and electronic energy loss, dE/dx, over a range of energetic ions: 58Ni, 101Ru, 129Xe, 181Ta, 197Au, 208Pb, and 238U of 11.1 MeV/u specific energy. Bright-field transmission electron microscopy, synchrotron X-ray diffraction, and Raman spectroscopy reveal an increasing degree of amorphization with increasing Ti-content and dE/dx. The size and morphology of individual ion tracks in Gd2Ti2O7 were characterized by high-resolution transmission electron microscopy revealing a core-shell structure with an outer defect-fluorite dominated shell at low dE/dx to predominantly amorphous tracks at high dE/dx. Inelastic thermal-spike calculations have been used together with atomic-scale characterization of ion tracks in Gd2Ti2O7 by high resolution transmission electron microscopy to deduce critical energy densities for the complex core-shell morphologies induced by ions of different dE/dx.

  1. Platelets to rings: Influence of sodium dodecyl sulfate on Zn-Al layered double hydroxide morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yilmaz, Ceren; Unal, Ugur; Koc University, Chemistry Department, Rumelifeneri yolu, Sariyer 34450, Istanbul

    2012-03-15

    In the current study, influence of sodium dodecyl sulfate (SDS) on the crystallization of Zn-Al layered double hydroxide (LDH) was investigated. Depending on the SDS concentration coral-like and for the first time ring-like morphologies were obtained in a urea-hydrolysis method. It was revealed that the surfactant level in the starting solution plays an important role in the morphology. Concentration of surfactant equal to or above the anion exchange capacity of the LDH is influential in creating different morphologies. Another important parameter was the critical micelle concentration (CMC) of the surfactant. Surfactant concentrations well above CMC value resulted in ring-like structures.more » The crystallization mechanism was discussed. - Graphical abstract: Dependence of ZnAl LDH Morphology on SDS concentration. Highlights: Black-Right-Pointing-Pointer In-situ intercalation of SDS in ZnAl LDH was achieved via urea hydrolysis method. Black-Right-Pointing-Pointer Morphology of ZnAl LDH intercalated with SDS depended on the SDS concentration. Black-Right-Pointing-Pointer Ring like morphology for SDS intercalated ZnAl LDH was obtained for the first time. Black-Right-Pointing-Pointer Growth mechanism was discussed. Black-Right-Pointing-Pointer Template assisted growth of ZnAl LDH was proposed.« less

  2. Improved performance by morphology control via fullerenes in PBDT-TBT-alkoBT based organic solar cells

    DOE PAGES

    Khatiwada, Devendra; Venkatesan, Swaminathan; Chen, QIliang; ...

    2015-07-03

    In this work, we report improved performance by controlling morphology using different fullerene derivatives in poly{2-octyldodecyloxy-benzo[1,2-b;3,4-b]dithiophene-alt-5,6-bis(dodecyloxy)-4,7- di(thieno[3,2-b]thiophen-2-yl)-benzo[c][1,2,5]thiadiazole} (PBDT-TBT-alkoBT) based organic solar cells. PC60BM and PC70BM fullerenes were used to investigate the characteristic change in morphology and device performance. Fullerene affects device efficiency by changing active layer morphology. PC70BM with broader absorption than PC 60BM resulted in reduced device performance which was elucidated by the intermixed granular morphology separating each larger grain in the PC70BM/polymer composite layer which created higher density of traps. However after adding additive 1,8-diiodooctane (DIO), the fibrous morphology was observed due to reduced solubility of polymer andmore » increased solubility of PC 70BM in chloroform. The fibrous morphology improved charge transport leading to increase in overall device performance. Atomic force microscopies (AFM), photo induced charge extraction by linearly increasing voltage (photo-CELIV), and Kelvin prove force microscope (KPFM) were used to investigate nanoscale morphology of active layer with different fullerene derivatives. For PC 60BM based active layer, AFM images revealed dense fibrous morphology and more distinct fibrous morphology was observed by adding DIO. The PC 70BM based active layer only exhibited intermixed granular morphology instead of fibrous morphology observed in PC60BM based active layer. However, addition of DIO in PC 70BM based active layer led to fibrous morphology. When additive DIO was not used, a wider distribution of surface potential was observed for PC 70BM than PC 60BM based active layer by KPFM measurements, indicating 2 polymer and fullerene domains are separated. When DIO was used, narrower distribution of surface potential for both PC 70BM and PC 60BM based active layers was observed. Photo-CELIV experiment showed larger extracted charge carrier density and mobility in PC 70BM/DIO film.« less

  3. Improved performance by morphology control via fullerenes in PBDT-TBT-alkoBT based organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khatiwada, Devendra; Venkatesan, Swaminathan; Chen, QIliang

    In this work, we report improved performance by controlling morphology using different fullerene derivatives in poly{2-octyldodecyloxy-benzo[1,2-b;3,4-b]dithiophene-alt-5,6-bis(dodecyloxy)-4,7- di(thieno[3,2-b]thiophen-2-yl)-benzo[c][1,2,5]thiadiazole} (PBDT-TBT-alkoBT) based organic solar cells. PC60BM and PC70BM fullerenes were used to investigate the characteristic change in morphology and device performance. Fullerene affects device efficiency by changing active layer morphology. PC70BM with broader absorption than PC 60BM resulted in reduced device performance which was elucidated by the intermixed granular morphology separating each larger grain in the PC70BM/polymer composite layer which created higher density of traps. However after adding additive 1,8-diiodooctane (DIO), the fibrous morphology was observed due to reduced solubility of polymer andmore » increased solubility of PC 70BM in chloroform. The fibrous morphology improved charge transport leading to increase in overall device performance. Atomic force microscopies (AFM), photo induced charge extraction by linearly increasing voltage (photo-CELIV), and Kelvin prove force microscope (KPFM) were used to investigate nanoscale morphology of active layer with different fullerene derivatives. For PC 60BM based active layer, AFM images revealed dense fibrous morphology and more distinct fibrous morphology was observed by adding DIO. The PC 70BM based active layer only exhibited intermixed granular morphology instead of fibrous morphology observed in PC60BM based active layer. However, addition of DIO in PC 70BM based active layer led to fibrous morphology. When additive DIO was not used, a wider distribution of surface potential was observed for PC 70BM than PC 60BM based active layer by KPFM measurements, indicating 2 polymer and fullerene domains are separated. When DIO was used, narrower distribution of surface potential for both PC 70BM and PC 60BM based active layers was observed. Photo-CELIV experiment showed larger extracted charge carrier density and mobility in PC 70BM/DIO film.« less

  4. Polarization Control of Morphological Pattern Orientation During Light-Mediated Synthesis of Nanostructured Se–Te Films

    DOE PAGES

    Carim, Azhar I.; Batara, Nicolas A.; Premkumar, Anjali; ...

    2015-11-23

    The template-free growth of well ordered, highly anisotropic lamellar structures has been demonstrated during the photoelectrodeposition of Se–Te films, wherein the orientation of the pattern can be directed by orienting the linear polarization of the incident light. This control mechanism was investigated further herein by examining the morphologies of films grown photoelectrochemically using light from two simultaneous sources that had mutually different linear polarizations. Photoelectrochemical growth with light from two nonorthogonally polarized same-wavelength sources generated lamellar morphologies in which the long axes of the lamellae were oriented parallel to the intensity-weighted average polarization orientation. Simulations of light scattering at themore » solution–film interface were consistent with this observation. Computer modeling of these growths using combined full-wave electromagnetic and Monte Carlo growth simulations successfully reproduced the experimental morphologies and quantitatively agreed with the pattern orientations observed experimentally by considering only the fundamental light-material interactions during growth. Deposition with light from two orthogonally polarized same-wavelength as well as different-wavelength sources produced structures that consisted of two intersecting sets of orthogonally oriented lamellae in which the relative heights of the two sets could be varied by adjusting the relative source intensities. Simulations of light absorption were performed in analogous, idealized intersecting lamellar structures and revealed that the lamellae preferentially absorbed light polarized with the electric field vector along their long axes. In conclusion, these data sets cumulatively indicate that anisotropic light scattering and light absorption generated by the light polarization produces the anisotropic morphology and that the resultant morphology is a function of all illumination inputs despite differing polarizations.« less

  5. Voxel-based morphometry of auditory and speech-related cortex in stutterers.

    PubMed

    Beal, Deryk S; Gracco, Vincent L; Lafaille, Sophie J; De Nil, Luc F

    2007-08-06

    Stutterers demonstrate unique functional neural activation patterns during speech production, including reduced auditory activation, relative to nonstutterers. The extent to which these functional differences are accompanied by abnormal morphology of the brain in stutterers is unclear. This study examined the neuroanatomical differences in speech-related cortex between stutterers and nonstutterers using voxel-based morphometry. Results revealed significant differences in localized grey matter and white matter densities of left and right hemisphere regions involved in auditory processing and speech production.

  6. Penicillium daejeonium sp. nov., a new species isolated from a grape and schisandra fruit in Korea.

    PubMed

    Sang, Hyunkyu; An, Tae-Jin; Kim, Chang Sun; Choi, Young Phil; Deng, Jian-Xin; Paul, Narayan Chandra; Sung, Gi-Ho; Yu, Seung Hun

    2013-08-01

    Two isolates of monoverticillate Penicillium species were collected from a grape and schisandra fruit in Korea. Multigene phylogenetic analyses with the nuclear ribosomal internal transcribed spacer (ITS) region and genes encoding β-tubulin (benA) and calmodulin (cmd), as well as morphological analyses revealed that the two isolates are members of the P. sclerotiorum complex in Penicillium subgenus Aspergilloides, but different from species of the P. sclerotiorum complex. The isolates are closely related to P. cainii, P. jacksonii, and P. viticola in terms of their multigene phylogeny, but their colony and conidiophore morphologies differ from those of closely related species. The name P. daejeonium is proposed for this unclassified new species belonging to the P. sclerotiorum complex in subgenus Aspergilloides.

  7. Dielectric inspection of erythrocyte morphology.

    PubMed

    Hayashi, Yoshihito; Oshige, Ikuya; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio; Asami, Koji

    2008-05-21

    We performed a systematic study of the sensitivity of dielectric spectroscopy to erythrocyte morphology. Namely, rabbit erythrocytes of four different shapes were prepared by precisely controlling the pH of the suspending medium, and their complex permittivities over the frequency range from 0.1 to 110 MHz were measured and analyzed. Their quantitative analysis shows that the characteristic frequency and the broadening parameter of the dielectric relaxation of interfacial polarization are highly specific to the erythrocyte shape, while they are insensitive to the cell volume fraction. Therefore, these two dielectric parameters can be used to differentiate erythrocytes of different shapes, if dielectric spectroscopy is applied to flow-cytometric inspection of single blood cells. In addition, we revealed the applicability and limitations of the analytical theory of interfacial polarization to explain the experimental permittivities of non-spherical erythrocytes.

  8. In Vitro UV-Visible Spectroscopy Study of Yellow Laser Irradiation on Human Blood

    NASA Astrophysics Data System (ADS)

    Fuad, Siti Sakinah Mohd; Suardi, N.; Mustafa, I. S.

    2018-04-01

    This experimental study was performed to investigate the effect of low level yellow laser of 589nm wavelength with various laser irradiation time. Human blood samples with random diseases are irradiated with yellow laser of power density of 450mW/cm2 from 10 minutes to 60 minutes at 10 minutes intervals. The morphology of the red blood cell were also observed for different irradiation time. The result shows that there is a significant different in the absorption of light with varying laser irradiation time (p<0.01). The maximum absorption recorded at 40 minutes of irradiation at 340nm peak. Blood smear of the samples reveals that there are observable changes in the morphology of the red blood cell at 40 minutes and 60 minutes of irradiation.

  9. Comparative Molecular and Morphological Variation Analysis of Siderastrea (Anthozoa, Scleractinia) Reveals the Presence of Siderastrea stellata in the Gulf of Mexico.

    PubMed

    García, Norberto A Colín; Campos, Jorge E; Musi, José L Tello; Forsman, Zac H; Muñoz, Jorge L Montero; Reyes, Alejandro Monsalvo; González, Jesús E Arias

    2017-02-01

    The genus Siderastrea exhibits high levels of morphological variability. Some of its species share similar morphological characteristics with congeners, making their identification difficult. Siderastrea stellata has been reported as an intermediary of S. siderea and S. radians in the Brazilian reef ecosystem. In an earlier study conducted in Mexico, we detected Siderastrea colonies with morphological features that were not consistent with some siderastreid species previously reported in the Gulf of Mexico. Thus, we performed a combined morphological and molecular analysis to identify Siderastrea species boundaries from the Gulf of Mexico. Some colonies presented high morphologic variability, with characteristics that corresponded to Siderastrea stellata. Molecular analysis, using the nuclear ITS and ITS2 region, corroborated the morphological results, revealing low genetic variability between S. radians and S. stellata. Since the ITS sequences did not distinguish between Siderastrea species, we used the ITS2 region to differentiate S. stellata from S. radians. This is the first report of Siderastrea stellata and its variability in the Gulf of Mexico that is supported by morphological and molecular analyses.

  10. Two Algorithms for High-throughput and Multi-parametric Quantification of Drosophila Neuromuscular Junction Morphology.

    PubMed

    Castells-Nobau, Anna; Nijhof, Bonnie; Eidhof, Ilse; Wolf, Louis; Scheffer-de Gooyert, Jolanda M; Monedero, Ignacio; Torroja, Laura; van der Laak, Jeroen A W M; Schenck, Annette

    2017-05-03

    Synaptic morphology is tightly related to synaptic efficacy, and in many cases morphological synapse defects ultimately lead to synaptic malfunction. The Drosophila larval neuromuscular junction (NMJ), a well-established model for glutamatergic synapses, has been extensively studied for decades. Identification of mutations causing NMJ morphological defects revealed a repertoire of genes that regulate synapse development and function. Many of these were identified in large-scale studies that focused on qualitative approaches to detect morphological abnormalities of the Drosophila NMJ. A drawback of qualitative analyses is that many subtle players contributing to NMJ morphology likely remain unnoticed. Whereas quantitative analyses are required to detect the subtler morphological differences, such analyses are not yet commonly performed because they are laborious. This protocol describes in detail two image analysis algorithms "Drosophila NMJ Morphometrics" and "Drosophila NMJ Bouton Morphometrics", available as Fiji-compatible macros, for quantitative, accurate and objective morphometric analysis of the Drosophila NMJ. This methodology is developed to analyze NMJ terminals immunolabeled with the commonly used markers Dlg-1 and Brp. Additionally, its wider application to other markers such as Hrp, Csp and Syt is presented in this protocol. The macros are able to assess nine morphological NMJ features: NMJ area, NMJ perimeter, number of boutons, NMJ length, NMJ longest branch length, number of islands, number of branches, number of branching points and number of active zones in the NMJ terminal.

  11. Morphologic observation and classification criteria of atretic follicles in guinea pigs.

    PubMed

    Wang, Wei; Liu, Hong-Lin; Tian, Wei; Zhang, Fen-Fen; Gong, Yan; Chen, Jin-Wei; Mao, Da-Gan; Shi, Fang-Xiong

    2010-05-01

    There is a lack of appropriate classification criteria for the determination of atretic follicles in guinea pigs. In the present study, new criteria were established based on the latest morphologic criteria for cell death proposed by the Nomenclature Committee on Cell Death (NCCD) in 2009. Ovaries of guinea pigs were sampled on different stages of estrous cycle, and the morphologic observations of atretic follicles were investigated in serial sections. The results showed that the process of follicular atresia could be classified into four continuous stages: (1) the granulosa layer became loose, and some apoptotic bodies began to appear; (2) the granulosa cells were massively eliminated; (3) the theca interna cells differentiated; and (4) the residual follicular cells degenerated. In addition, the examination revealed that these morphologic criteria were accurate and feasible. In conclusion, this study provides new criteria for the classification of atretic follicles in guinea pigs, and this knowledge can inform future research in the area.

  12. Morphometric Analysis of Chemoreception Organ in Male and Female Ticks (Acari: Ixodidae).

    PubMed

    Josek, Tanya; Allan, Brian F; Alleyne, Marianne

    2018-05-04

    The Haller's organ plays a crucial role in a tick's ability to detect hosts. Even though this sensory organ is vital to tick survival, the morphology of this organ is not well understood. The objective of this study was to characterize variation in the morphological components of the Haller's organ of three medically important tick species using quantitative methods. The Haller's organs of Ixodes scapularis Say (Ixodida: Ixodidae) (black-legged tick), Amblyomma americanum (L.) (Ixodida: Ixodidae) (lone star tick), and Dermacentor variabilis (Say) (Ixodida: Ixodidae) (American dog tick) were morphologically analyzed using environmental scanning electron microscopy and geometric morphometrics, and the results were statistically interpreted using canonical variate analysis. Our data reveal significant, quantitative differences in the morphology of the Haller's organ among all three tick species and that in D. variabilis the sensory structure is sexually dimorphic. Studies like this can serve as a quantitative basis for further studies on sensor physiology, behavior, and tick species life history, potentially leading to novel methods for the prevention of tick-borne disease.

  13. Developmental changes in the skull morphology of common minke whales Balaenoptera acutorostrata.

    PubMed

    Nakamura, Gen; Kato, Hidehiro

    2014-10-01

    We investigated growth-related and sex-related morphological changes in the skulls of 144 North Pacific common minke whales Balaenoptera acutorostrata. Measurement was conducted at 39 points on the skull and mandible to extract individual allometric equations relating the length and zygomatic width of the skull. The results revealed no significant differences in skull morphology by sex except for width of occipital bone. The size relative to the skull of the anatomical parts involved in feeding, such as the rostrum and mandible, increased after birth. In contrast, the sensory organs and the anatomical regions involved in neurological function, such as the orbit, tympanic bullae, and foramen magnum, were fully developed at birth, and their relative size reduced over the course of development. This is the first study to investigate developmental changes in the skull morphology using more than 100 baleen whale specimens, and we believe the results of this study will contribute greatly to multiple areas of baleen whale research, including taxonomy and paleontology. © 2014 Wiley Periodicals, Inc.

  14. Does variation in cranial morphology of Myotis occultus (Chiroptera: Vespertilionidae) reflect a greater reliance on certain prey types?

    USGS Publications Warehouse

    Valdez, Ernest W.; Bogan, Michael A.

    2009-01-01

    Few studies have investigated the relationship between morphological variation and local feeding habits of bats in the United States. We used discriminant function analysis (DFA) to compare cranial morphology of Myotis occultus from southern Colorado, and central, and southern New Mexico. We analyzed guano collected from maternity colonies in southern Colorado and central New Mexico to compare food habits. Bats from southern Colorado had the smallest values on the first canonical variate (CV1) that also reflected the smallest measurements of key cranial and dental variables, including height of coronoid process, width of molar, and dentary thickness. Bats from central and southern New Mexico had intermediate and large CV1 values, respectively. Overall, CV1 discriminated individuals occurring in southern Colorado and central New Mexico from those in southern New Mexico. CV2 served best at discriminating bats of southern Colorado from those of central New Mexico. Comparison of food habits revealed that individuals from southern Colorado ate more soft-bodied prey items (e.g., flies) whereas bats from central New Mexico ate more hard-bodied prey items (e.g., beetles). As shown in earlier studies that investigated relationships between morphology and diet of insectivorous bats, we found differences in skull morphology of M. occultusthat were correlated with differences in food habits.

  15. Selection of reference genes for quantitative real-time RT-PCR assays in different morphological forms of dimorphic zygomycetous fungus Benjaminiella poitrasii.

    PubMed

    Pathan, Ejaj K; Ghormade, Vandana; Deshpande, Mukund V

    2017-01-01

    Benjaminiella poitrasii, a dimorphic non-pathogenic zygomycetous fungus, exhibits a morphological yeast (Y) to hypha (H) reversible transition in the vegetative phase, sporangiospores (S) in the asexual phase and zygospores (Z) in the sexual phase. To study the gene expression across these diverse morphological forms, suitable reference genes are required. In the present study, 13 genes viz. ACT, 18S rRNA, eEF1α, eEF-Tu,eIF-1A, Tub-α, Tub-b, Ubc, GAPDH, Try, WS-21, NADGDH and NADPGDH were evaluated for their potential as a reference, particularly for studying gene expression during the Y-H reversible transition and also for other asexual and sexual life stages of B. poitrasii. Analysis of RT-qPCR data using geNorm, normFinder and BestKeeper software revealed that genes such as Ubc, 18S rRNA and WS-21 were expressed at constant levels in each given subset of RNA samples from all the morphological phases of B. poitrasii. Therefore, these reference genes can be used to elucidate the role of morpho-genes in B. poitrasii. Further, use of the two most stably expressed genes (Ubc and WS-21) to normalize the expression of the ornithine decarboxylase gene (Bpodc) in different morphological forms of B. poitrasii, generated more reliable results, indicating that our selection of reference genes was appropriate.

  16. Influence of Zr doping on structure and morphology of TiO2 nanorods prepared using hydrothermal method

    NASA Astrophysics Data System (ADS)

    Muslimin, Masliana; Jumali, Mohammad Hafizuddin; Tee, Tan Sin; Beng, Lee Hock; Hui, Tan Chun; Chin, Yap Chi

    2018-04-01

    The aim of this work is to investigate the effect of Zr doping on TiO2 nanostructure. TiO2 nanorods thin films with different Zr-doping concentrations (6 × 10-3 M, 13 × 10-3 M and 25 × 10-3 M) were successfully prepared using a simple hydrothermal method. The structural and morphological properties of the samples were evaluated using XRD and FESEM respectively. The XRD results revealed that the TiO2 in all samples stabilized as rutile phase. The FESEM micrographs confirmed that TiO2 exist as square like nanorods with blunt tips. Although the crystallographic nature remains unchanged, the introduction of Zr has altered the surface density, structure and morphology of TiO2 which subsequently will have significant effect on its properties.

  17. The tooth, the whole tooth and nothing but the tooth: tooth shape and ontogenetic shift dynamics in the white shark Carcharodon carcharias.

    PubMed

    French, G C A; Stürup, M; Rizzuto, S; van Wyk, J H; Edwards, D; Dolan, R W; Wintner, S P; Towner, A V; Hughes, W O H

    2017-10-01

    Results from this study of the white shark Carcharodon carcharias include measurements obtained using a novel photographic method that reveal significant differences between the sexes in the relationship between tooth cuspidity and shark total length, and a novel ontogenetic change in male tooth shape. Males exhibit broader upper first teeth and increased distal inclination of upper third teeth with increasing length, while females do not present a consistent morphological change. Substantial individual variation, with implications for pace of life syndrome, was present in males and tooth polymorphism was suggested in females. Sexual differences and individual variation may play major roles in ontogenetic changes in tooth morphology in C. carcharias, with potential implications for their foraging biology. Such individual and sexual differences should be included in studies of ontogenetic shift dynamics in other species and systems. © 2017 The Fisheries Society of the British Isles.

  18. Monitoring the Attack Incidences and Damage Caused by the Almond Bark Beetle, Scolytus amygdali, in Almond Orchards

    PubMed Central

    Cuthbertson, Andrew G. S.; Braham, Mohamed

    2018-01-01

    The almond bark beetle, Scolytus amygdali Geurin-Meneville, is responsible for significant loss of fruit production in almond orchards throughout the world. Here, we studied the damage and the incidences of S. amygdali attack on two different scales: (1) at the level of a single tree; and (2) in an entire orchard. Our results revealed no differences in attack level among four orientations (east, west, south and north sides) for the whole tree. However, the bark that was facing west side in the direction of the prevailing wind was found to be the most suitable for females to initiate attack in Stratum S2. Attack distribution remains the same among different strata (strata is vertical divisions of the tree from the ground to the uppermost twigs with ~40 cm intervals). More than 50% of attack was observed in the trunk of the tree and upper strata. However, multiplication rate (number of emerged adults/maternal gallery) varies significantly between strata. In addition, we studied attack intensity (holes produced by beetle per tree) comparing it to tree morphology (flowers, leaves and circumferences) and gum deposit. Our results revealed a positive correlation between attack intensity and gum deposits, and a negative correlation between attack intensity and tree morphology. This revealed that gum on the tree was an indicator for attack intensity. A positive correlation between attack intensity and the circumference of the tree revealed that older trees were more susceptible to S. amygdali attack. These results, while preliminary, aim to help in the monitoring of S. amygdali populations before deciding to apply any control measures. PMID:29301271

  19. Resurrection of Bronchocela burmana Blanford, 1878 for the Green Crested Lizard (Squamata, Agamidae) of southern Myanmar

    PubMed Central

    Zug, George R.; Mulcahy, Daniel G.; Vindum, Jens V.

    2017-01-01

    Abstract Recent fieldwork in southern Tanintharyi revealed the presence of a small Green Crested Lizard in the wet evergreen forest. We generated mtDNA sequence data (ND2) that demonstrates that this population’s nearest relative is Bronchocela rayaensis Grismer et al., 2015 of Pulau Langkawi, northwestern Peninsular Malaysia and Phuket Island. Morphologically the Burmese Bronchocela shares many features with Bronchocela rayaensis, which potentially would make this recently described Thai-Malay species a synonym of Bronchocela burmana Blanford, 1878; however, we interpret the genetic and morphological differences to reflect evolutionary divergence and recommend the recognition of both species. PMID:28331413

  20. Resurrection of Bronchocela burmana Blanford, 1878 for the Green Crested Lizard (Squamata, Agamidae) of southern Myanmar.

    PubMed

    Zug, George R; Mulcahy, Daniel G; Vindum, Jens V

    2017-01-01

    Recent fieldwork in southern Tanintharyi revealed the presence of a small Green Crested Lizard in the wet evergreen forest. We generated mtDNA sequence data (ND2) that demonstrates that this population's nearest relative is Bronchocela rayaensis Grismer et al., 2015 of Pulau Langkawi, northwestern Peninsular Malaysia and Phuket Island. Morphologically the Burmese Bronchocela shares many features with Bronchocela rayaensis , which potentially would make this recently described Thai-Malay species a synonym of Bronchocela burmana Blanford, 1878; however, we interpret the genetic and morphological differences to reflect evolutionary divergence and recommend the recognition of both species.

  1. Genetic and morphological differences among populations of the Bonin Islands White-eye in Japan.

    PubMed

    Kawakami, Kazuto; Harada, Sachiko; Suzuki, Tadashi; Higuchi, Hiroyoshi

    2008-09-01

    The Bonin Islands White-eye, Apalopteron familiare , is the sole endemic avian species surviving on the Bonin Islands. The current distribution of this species is limited to only three islands of the Hahajima Island group: Hahajima, Imotojima, and Mukohjima. Imotojima and Mukohjima, which are small satellite islands of Hahajima, are about 3.6 km and 5.5 km, respectively, from the larger island. To investigate genetic and morphological differences among A. familiare populations on these islands, we assayed 634 bp of mitochondrial control region sequence for 132 birds from five locations among the three islands. We detected five haplotypes: two endemic haplotypes each on Hahajima and Imotojima and one on Mukohjima. Principal component analysis based on eight morphological characters of 162 birds from the three island populations revealed that birds from the small satellite islands had significantly different beak morphological characters. Our findings indicate that over-sea dispersal is rare in A. familiare , even when islands are separated by only a few kilometers, and suggest that little movement occurs on Hahajima. Thus, each population on each island should be conserved as an evolutionarily significant unit. The low dispersal ability of this species suggests that it is vulnerable to habitat fragmentation. Although the populations are currently stable and do not require rapid countermeasures, they should be monitored, especially those on the smaller islands.

  2. Morphology of the Epidermis of the Neotropical Catfish Pimelodella lateristriga (Lichtenstein, 1823) with Emphasis in Club Cells

    PubMed Central

    Damasceno, Eduardo Medeiros; Monteiro, Juliana Castro; Duboc, Luiz Fernando; Dolder, Heidi; Mancini, Karina

    2012-01-01

    The epidermis of Ostariophysi fish is composed of 4 main cell types: epidermal cells (or filament containing cells), mucous cells, granular cells and club cells. The morphological analysis of the epidermis of the catfish Pimelodella lateristriga revealed the presence of only two types of cells: epidermal and club cells. The latter were evident in the middle layer of the epidermis, being the largest cells within the epithelium. Few organelles were located in the perinuclear region, while the rest of the cytoplasm was filled with a non-vesicular fibrillar substance. Club cells contained two irregular nuclei with evident nucleoli and high compacted peripheral chromatin. Histochemical analysis detected prevalence of protein within the cytoplasm other than carbohydrates, which were absent. These characteristics are similar to those described to most Ostariophysi studied so far. On the other hand, the epidermal cells differ from what is found in the literature. The present study described three distinct types, as follows: superficial, abundant and dense cells. Differences among them were restricted to their cytoplasm and nucleus morphology. Mucous cells were found in all Ostariophysi studied so far, although they were absent in P. lateristriga, along with granular cells, also typical of other catfish epidermis. The preset study corroborates the observations on club cells' morphology in Siluriformes specimens, and shows important differences in epidermis composition and cell structure of P. lateristriga regarding the literature data. PMID:23226253

  3. Sinuosity of Martian rampart ejecta deposits

    NASA Technical Reports Server (NTRS)

    Barlow, Nadine G.

    1994-01-01

    The sinuosities of 2213 Martian rampart ejecta craters are quantified through measurement of the ejecta flow front perimeter and ejecta area. This quantity, called lobateness, was computed for each complete lobe of the 1582 single lobe (SL), 251 double lobe (DL), and 380 multiple lobe (ML) craters included in this study. A lobateness value of 1 indicates a circular ejecta blanket, whereas more sinuous ejecta perimeters have lobateness values greater than 1. Although resolution does have an effect on the absolute values of lobateness, the general relationships between lobateness and morphology exist regardless of resolution. Evaluation of the lobateness values reveals that the outer lobes of DL and ML craters have higher median lobateness values (i.e., are more sinuous) than the inner lobes. The outermost lobe of ML craters displays higher lobateness values than the outer lobe of DL craters or the single lobe of SL craters. Previous reports of lobateness-diameter, lobateness-latitude, and lobateness-terrain relationships for rampart craters are not supported by this study. Many of the differences between the results of this study and the previous lobateness analyses can be attributed to the inclusion of resolution effects and the distinction between different ejecta morphologies in this study. The results of this study taken together with a previous analysis of the distribution and diameter dependence of different ejecta morphologies are most consistent with the theory that Martian lobate ejecta morphologies form from impact into subsurface volatiles.

  4. Phlebotomus (Paraphlebotomus) chabaudi and Phlebotomus riouxi: closely related species or synonyms?

    PubMed Central

    Lehrter, Véronique; Bañuls, Anne-Laure; Léger, Nicole; Rioux, Jean-Antoine; Depaquit, Jérôme

    2017-01-01

    Phlebotomus riouxi Depaquit, Killick-Kendrick & Léger 1998 was described as a species closely related to Phlebotomus chabaudi Croset, Abonnenc & Rioux 1970, differing mainly by the size and number of setae of the coxite basal lobe. Molecular studies carried out on several populations from Algeria and Tunisia and based on mitochondrial genes cytochrome b (Cytb) and cytochrome oxidase I (COI) supported the typological validity of these two species. Recently, specimens from a single population in southern Tunisia were morphologically identified as Ph. riouxi, Ph. chabaudi and intermediates, but were clustered in the same clade according to their Cytb and nuclear gene elongation factor-1 α (EF-1α) sequences. These species were thus synonymized. To further explore this synonymy, we carried out a molecular study on specimens from Algeria and Tunisia using the same molecular markers and a part of 28S rDNA. We did not find any morphologically intermediate specimens in our sampling. We highlighted differences between the genetic divergence rates within and between the two species for the three markers and we identified new haplotypes. The sequence analysis did not reveal any signature of introgression in allopatric nor in sympatric populations such as in the Ghomrassen population. Phylogenetic analyses based on our specimens revealed that the two main clades are Ph. chabaudi and Ph. riouxi, in agreement with the morphological identification. These results support the validity of Ph. riouxi and Ph. chabaudi as typological species. PMID:29194032

  5. Phlebotomus (Paraphlebotomus) chabaudi and Phlebotomus riouxi: closely related species or synonyms?

    PubMed

    Lehrter, Véronique; Bañuls, Anne-Laure; Léger, Nicole; Rioux, Jean-Antoine; Depaquit, Jérôme

    2017-01-01

    Phlebotomus riouxi Depaquit, Killick-Kendrick & Léger 1998 was described as a species closely related to Phlebotomus chabaudi Croset, Abonnenc & Rioux 1970, differing mainly by the size and number of setae of the coxite basal lobe. Molecular studies carried out on several populations from Algeria and Tunisia and based on mitochondrial genes cytochrome b (Cytb) and cytochrome oxidase I (COI) supported the typological validity of these two species. Recently, specimens from a single population in southern Tunisia were morphologically identified as Ph. riouxi, Ph. chabaudi and intermediates, but were clustered in the same clade according to their Cytb and nuclear gene elongation factor-1 α (EF-1α) sequences. These species were thus synonymized. To further explore this synonymy, we carried out a molecular study on specimens from Algeria and Tunisia using the same molecular markers and a part of 28S rDNA. We did not find any morphologically intermediate specimens in our sampling. We highlighted differences between the genetic divergence rates within and between the two species for the three markers and we identified new haplotypes. The sequence analysis did not reveal any signature of introgression in allopatric nor in sympatric populations such as in the Ghomrassen population. Phylogenetic analyses based on our specimens revealed that the two main clades are Ph. chabaudi and Ph. riouxi, in agreement with the morphological identification. These results support the validity of Ph. riouxi and Ph. chabaudi as typological species. © V. Lehrter et al., published by EDP Sciences, 2017.

  6. Physiological and morphological characterization of local interneurons in the Drosophila antennal lobe.

    PubMed

    Seki, Yoichi; Rybak, Jürgen; Wicher, Dieter; Sachse, Silke; Hansson, Bill S

    2010-08-01

    The Drosophila antennal lobe (AL) has become an excellent model for studying early olfactory processing mechanisms. Local interneurons (LNs) connect a large number of glomeruli and are ideally positioned to increase computational capabilities of odor information processing in the AL. Although the neural circuit of the Drosophila AL has been intensively studied at both the input and the output level, the internal circuit is not yet well understood. An unambiguous characterization of LNs is essential to remedy this lack of knowledge. We used whole cell patch-clamp recordings and characterized four classes of LNs in detail using electrophysiological and morphological properties at the single neuron level. Each class of LN displayed unique characteristics in intrinsic electrophysiological properties, showing differences in firing patterns, degree of spike adaptation, and amplitude of spike afterhyperpolarization. Notably, one class of LNs had characteristic burst firing properties, whereas the others were tonically active. Morphologically, neurons from three classes innervated almost all glomeruli, while LNs from one class innervated a specific subpopulation of glomeruli. Three-dimensional reconstruction analyses revealed general characteristics of LN morphology and further differences in dendritic density and distribution within specific glomeruli between the different classes of LNs. Additionally, we found that LNs labeled by a specific enhancer trap line (GAL4-Krasavietz), which had previously been reported as cholinergic LNs, were mostly GABAergic. The current study provides a systematic characterization of olfactory LNs in Drosophila and demonstrates that a variety of inhibitory LNs, characterized by class-specific electrophysiological and morphological properties, construct the neural circuit of the AL.

  7. Three-dimensional analysis of the uniqueness of the anterior dentition in orthodontically treated patients and twins.

    PubMed

    Franco, A; Willems, G; Souza, P H C; Tanaka, O M; Coucke, W; Thevissen, P

    2017-04-01

    Dental uniqueness can be proven if no perfect match in pair-wise morphological comparisons of human dentitions is detected. Establishing these comparisons in a worldwide random population is practically unfeasible due to the need for a large and representative sample size. Sample stratification is an option to reduce sample size. The present study investigated the uniqueness of the human dentition in randomly selected subjects (Group 1), orthodontically treated patients (Group 2), twins (Group 3), and orthodontically treated twins (Group 4) in comparison with a threshold control sample of identical dentitions (Group 5). The samples consisted of digital cast files (DCF) obtained through extraoral 3D scanning. A total of 2.013 pair-wise morphological comparisons were performed (Group 1 n=110, Group 2 n=1.711, Group 3 n=172, Group 4 n=10, Group 5 n=10) with Geomagic Studio ® (3D Systems ® , Rock Hill, SC, USA) software package. Comparisons within groups were performed quantifying the morphological differences between DCF in Euclidean distances. Comparisons between groups were established applying One-way ANOVA. To ensure fair comparisons a post-hoc Power Analysis was performed. ROC analysis was applied to distinguish unique from non-unique dentures. Identical DCF were not detected within the experimental groups (from 1 to 4). The most similar DCF had Euclidian distance of 5.19mm in Group 1, 2.06mm in Group 2, 2.03mm in Group 3, and 1.88mm in Group 4. Groups 2 and 3 were statistically different from Group 5 (p<0.05). Statistically significant difference between Group 4 and 5 revealed to be possible including more pair-wise comparisons in both groups. The ROC analysis revealed sensitivity rate of 80% and specificity between 66.7% and 81.6%. Evidence to sustain the uniqueness of the human dentition in random and stratified populations was observed in the present study. Further studies testing the influence of the quantity of tooth material on morphological difference between dentitions and its impact on uniqueness remain necessary. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Fractal branching organizations of Ediacaran rangeomorph fronds reveal a lost Proterozoic body plan.

    PubMed

    Hoyal Cuthill, Jennifer F; Conway Morris, Simon

    2014-09-09

    The branching morphology of Ediacaran rangeomorph fronds has no exact counterpart in other complex macroorganisms. As such, these fossils pose major questions as to growth patterns, functional morphology, modes of feeding, and adaptive optimality. Here, using parametric Lindenmayer systems, a formal model of rangeomorph morphologies reveals a fractal body plan characterized by self-similar, axial, apical, alternate branching. Consequent morphological reconstruction for 11 taxa demonstrates an adaptive radiation based on 3D space-filling strategies. The fractal body plan of rangeomorphs is shown to maximize surface area, consistent with diffusive nutrient uptake from the water column (osmotrophy). The enigmas of rangeomorph morphology, evolution, and extinction are resolved by the realization that they were adaptively optimized for unique ecological and geochemical conditions in the late Proterozoic. Changes in ocean conditions associated with the Cambrian explosion sealed their fate.

  9. A comparative pharmacognostical and preliminary physico-chemical analysis of stem and leaf of Bacopa monnieri (L.) Pennel and Bacopa floribunda (R.BR.) Wettst

    PubMed Central

    Gubbannavar, Jyoti S.; Chandola, H. M.; Harisha, C. R.; Khanpara, Komal; Shukla, V. J.

    2013-01-01

    Brahmi is a well-known herbal drug having an effect on brain as a memory enhancer. Bacopa monnieri (L.) Pennel and Bacopa floribunda (R.Br.) Wettst are both marketed in the name of Brahmi. The present study differentiates Bacopa monnieri and Bacopa floribunda in morphology, transverse section (T.S.) of root and leaf, powder microscopy, and chemical constituents. Morphological characters show color difference in flower, stem and leaf and differences in microscopic study, organoleptic study, and powder characteristics. Morphologically, Bacopa monnieri leaf is fleshy and more succulent than Bacopa floribunda leaf. There is also a difference in the interval of the stem internodes of the two. Physico-chemical analysis revealed presence of 26% bacoside A in Bacopa floribunda leaf and 27% in Bacopa floribunda stem, which is higher than the bacoside A content in leaf (22%) and stem (18%) of Bacopa monnieri. However due to the hemolytic action of bacoside A, which is the toxic effect of the chemical constituent, it seems likely that Bacopa monnieri is more popular in regular use than Bacopa floribunda. PMID:24049413

  10. Cytogenetics of two species of Paratelmatobius (Anura: Leptodactylidae), with phylogenetic comments.

    PubMed

    Lourenço, L B; Garcia, P C; Recco-Pimentel, S M

    2000-01-01

    In this paper we provide a cytogenetic analysis of Paratelmatobius cardosoi and Paratelmatobius poecilogaster. The karyotypes of both species showed a diploid number of 24 chromosomes and shared some similarity in the morphology of some pairs. On the other hand, pairs 4 and 6 widely differed between these complements. These karyotypes also differed in their NOR number and location. Size heteromorphism was seen in all NOR-bearing chromosomes of the two karyotypes. In addition, both karyotypes showed small centromeric C-bands and a conspicuous heterochromatic band in the short arm of chromosome 1, although with a different size in each species. The P. cardosoi complement also showed other strongly stained non-centromeric C-bands, with no counterparts in the P. cardosoi karyotype. Chromosome staining with fluorochromes revealed heterogeneity in the base composition of two of the non-centromeric C-bands of P. cardosoi. Comparison of the chromosomal morphology of these Paratelmatobius karyotypes with that of P. lutzii showed that the P. poecilogaster karyotype is more similar to that of P. lutzii than P. cardosoi. These cytogenetic results agree with the proposed species arrangements in the P. cardosoi and P. lutzii groups based on morphological and ecological data.

  11. Classification of Pelteobagrus fish in Poyang Lake based on mitochondrial COI gene sequence.

    PubMed

    Zhong, Bin; Chen, Ting-Ting; Gong, Rui-Yue; Zhao, Zhe-Xia; Wang, Binhua; Fang, Chunlin; Mao, Hui-Ling

    2016-11-01

    We use DNA molecular marker technology to correct the deficiency of traditional morphological taxonomy. Totality 770 Pelteobagrus fish from Poyang Lake were collected. After preliminary morphological classification, random selected eight samples in each species for DNA extraction. Mitochondrial COI gene sequence was cloned with universal primers and sequenced. The results showed that there are four species of Pelteobagrus living in Poyang Lake. The average of intraspecific genetic distance value was 0.003, while the average interspecific genetic distance was 0.128. The interspecific genetic distance is far more than intraspecific genetic distance. Besides, phylogenetic tree analysis revealed that molecular systematics was in accord with morphological classification. It indicated that COI gene is an effective DNA molecular marker in Pelteobagrus classification. Surprisingly, the intraspecific difference of some individuals (P. e6, P. n6, P. e5, and P. v4) from their original named exceeded species threshold (2%), which should be renewedly classified into Pelteobagrus fulvidraco. However, another individual P. v3 was very different, because its genetic distance was over 8.4% difference from original named Pelteobagrus vachelli. Its taxonomic status remained to be further studied.

  12. Formation of different micro-morphologies from VO2 and ZnO crystallization using macro-porous silicon substrates

    NASA Astrophysics Data System (ADS)

    Salazar-Kuri, U.; Antúnez, E. E.; Estevez, J. O.; Olive-Méndez, Sion F.; Silva-González, N. R.; Agarwal, V.

    2017-05-01

    Square-shaped macropores produced by electrochemical anodization of n- and p-type Si wafers have been used as centers of nucleation to crystallize VO2 and ZnO. Substrate roughness dependent formation of different morphologies is revealed in the form of squared particles, spheres, bars and ribbons in the case of VO2 and hexagonal piles and spheres in the case of ZnO, have been observed.The presence of nano-/micro-metric crystals was studied through field emission scanning electron microscopy and energy dispersive X-ray spectroscopy mapping. Crystal structure of metal oxides was confirmed by micro-Raman spectroscopy. The growth of the different morphologies has been explained in terms of the surface free energy of a bare Si/SiO2 substrate and its modification originated from the roughness of the surface and of the walls of the porous substrates. This energy plays a crucial role on the minimization of the required energy to induce heterogeneous nucleation and crystal growth. Present work strengthens and provides an experimental evidence of roughness dependent metal oxide crystal growth with well-defined habits from pore corners and rough sides of the pore walls, similar to already reported protein crystals.

  13. Jack-of-all-trades master of all? Snake vertebrae have a generalist inner organization

    NASA Astrophysics Data System (ADS)

    Houssaye, Alexandra; Boistel, Renaud; Böhme, Wolfgang; Herrel, Anthony

    2013-11-01

    Snakes are a very speciose group of squamates that adapted to various habitats and ecological niches. Their ecological diversity is of particular interest and functional demands associated with their various styles of locomotion are expected to result in anatomical specializations. In order to explore the potential adaptation of snakes to their environment we here analyze variation in vertebral structure at the microanatomical level in species with different locomotor adaptations. Vertebrae, being a major element of the snake body, are expected to display adaptations to the physical constraints associated with the different locomotor modes and environments. Our results revealed a rather homogenous vertebral microanatomy in contrast to what has been observed for other squamates and amniotes more generally. We here suggest that the near-absence of microanatomical specializations in snake vertebrae might be correlated to their rather homogeneous overall morphology and reduced range of morphological diversity, as compared to lizards. Thus, snakes appear to retain a generalist inner morphology that allows them to move efficiently in different environments. Only a few ecologically highly specialized taxa appear to display some microanatomical specializations that remain to be studied in greater detail.

  14. Current status of the genetics and molecular taxonomy of Echinococcus species.

    PubMed

    McManus, D P

    2013-11-01

    The taxonomy of Echinococcus has long been controversial. Based mainly on differences in morphology and host-parasite specificity characteristics, 16 species and 13 subspecies were originally described. Subsequently, most of these taxa were regarded as synonyms for Echinococcus granulosus and only 4 valid species were recognised: E. granulosus; E. multilocularis; E. oligarthrus and E. vogeli. But, over the past 50 years, laboratory and field observations have revealed considerable phenotypic variability between isolates of Echinococcus, particularly those of E. granulosus, which include differences in: morphology in both larval and adult stages, development in vitro and in vivo, host infectivity and specificity, chemical composition, metabolism, proteins and enzymes, pathogenicity and antigenicity. The application of molecular tools has revealed differences in nucleic acid sequences that reflect this phenotypic variation and the genetic and phenotypic characteristics complement the previous observations made by the descriptive parasitologists many years ago. The fact that some of these variants or strains are poorly or not infective to humans has resulted in a reappraisal of the public health significance of Echinococcus in areas where such variants occur. A revised taxonomy for species in the Echinococcus genus has been proposed that is generally accepted, and is based on the new molecular data and the biological and epidemiological characteristics of host-adapted species and strains.

  15. Reassessment of Morphological Diagnostic Characters and Species Boundaries Requires Taxonomical Changes for the Genus Orthopyxis L. Agassiz, 1862 (Campanulariidae, Hydrozoa) and Some Related Campanulariids

    PubMed Central

    Cunha, Amanda F.; Genzano, Gabriel N.; Marques, Antonio C.

    2015-01-01

    The genus Orthopyxis is widely known for its morphological variability, making species identification particularly difficult. A number of nominal species have been recorded in the southwestern Atlantic, although most of these records are doubtful. The goal of this study was to infer species boundaries in the genus Orthopyxis from the southwestern Atlantic using an integrative approach. Intergeneric limits were also tested using comparisons with specimens of the genus Campanularia. We performed DNA analyses using the mitochondrial genes 16S and COI and the nuclear ITS1 and ITS2 regions. Orthopyxis was monophyletic in maximum likelihood analyses using the combined dataset and in analyses with 16S alone. Four lineages of Orthopyxis were retrieved for all analyses, corresponding morphologically to the species Orthopyxis sargassicola (previously known in the area), Orthopyxis crenata (first recorded for the southwestern Atlantic), Orthopyxis caliculata (= Orthopyxis minuta Vannucci, 1949 and considered a synonym of O. integra by some authors), and Orthopyxis mianzani sp. nov. A re-evaluation of the traditional morphological diagnostic characters, guided by our molecular analyses, revealed that O. integra does not occur in the study area, and O. caliculata is the correct identification of one of the lineages occurring in this region, corroborating the validity of that species. Orthopyxis mianzani sp. nov. resembles O. caliculata with respect to gonothecae morphology and a smooth hydrothecae rim, although it shows significant differences for other characters, such as perisarc thickness, which has traditionally been thought to have wide intraspecific variation. The species O. sargassicola is morphologically similar to O. crenata, although they differ in gonothecae morphology, and these species can only be reliably identified when this structure is present. PMID:25723572

  16. Macroalgal Composition Determines the Structure of Benthic Assemblages Colonizing Fragmented Habitats.

    PubMed

    Matias, Miguel G; Arenas, Francisco; Rubal, Marcos; Pinto, Isabel S

    2015-01-01

    Understanding the consequences of fragmentation of coastal habitats is an important topic of discussion in marine ecology. Research on the effects of fragmentation has revealed complex and context-dependent biotic responses, which prevent generalizations across different habitats or study organisms. The effects of fragmentation in marine environments have been rarely investigated across heterogeneous habitats, since most studies have focused on a single type of habitat or patch. In this study, we assessed the effects of different levels of fragmentation (i.e. decreasing size of patches without overall habitat loss). We measured these effects using assemblages of macro-invertebrates colonizing representative morphological groups of intertidal macroalgae (e.g. encrusting, turf and canopy-forming algae). For this purpose, we constructed artificial assemblages with different combinations of morphological groups and increasing levels of fragmentation by manipulating the amount of bare rock or the spatial arrangement of different species in mixed assemblages. In general, our results showed that 1) fragmentation did not significantly affect the assemblages of macroinvertebrates; 2) at greater levels of fragmentation, there were greater numbers of species in mixed algal assemblages, suggesting that higher habitat complexity promotes species colonization. Our results suggest that predicting the consequences of fragmentation in heterogeneous habitats is dependent on the type and diversity of morphological groups making up those habitats.

  17. Macroalgal Composition Determines the Structure of Benthic Assemblages Colonizing Fragmented Habitats

    PubMed Central

    Matias, Miguel G.; Arenas, Francisco; Rubal, Marcos; Pinto, Isabel S.

    2015-01-01

    Understanding the consequences of fragmentation of coastal habitats is an important topic of discussion in marine ecology. Research on the effects of fragmentation has revealed complex and context-dependent biotic responses, which prevent generalizations across different habitats or study organisms. The effects of fragmentation in marine environments have been rarely investigated across heterogeneous habitats, since most studies have focused on a single type of habitat or patch. In this study, we assessed the effects of different levels of fragmentation (i.e. decreasing size of patches without overall habitat loss). We measured these effects using assemblages of macro-invertebrates colonizing representative morphological groups of intertidal macroalgae (e.g. encrusting, turf and canopy-forming algae). For this purpose, we constructed artificial assemblages with different combinations of morphological groups and increasing levels of fragmentation by manipulating the amount of bare rock or the spatial arrangement of different species in mixed assemblages. In general, our results showed that 1) fragmentation did not significantly affect the assemblages of macroinvertebrates; 2) at greater levels of fragmentation, there were greater numbers of species in mixed algal assemblages, suggesting that higher habitat complexity promotes species colonization. Our results suggest that predicting the consequences of fragmentation in heterogeneous habitats is dependent on the type and diversity of morphological groups making up those habitats. PMID:26554924

  18. Construction of Zinc Oxide into Different Morphological Structures to Be Utilized as Antimicrobial Agent against Multidrug Resistant Bacteria

    PubMed Central

    Elkady, M. F.; Shokry Hassan, H.; Hafez, Elsayed E.; Fouad, Ahmed

    2015-01-01

    Nano-ZnO has been successfully implemented in particles, rods, and tubes nanostructures via sol-gel and hydrothermal techniques. The variation of the different preparation parameters such as reaction temperature, time, and stabilizer agents was optimized to attain different morphological structures. The influence of the microwave annealing process on ZnO crystallinity, surface area, and morphological structure was monitored using XRD, BET, and SEM techniques, respectively. The antimicrobial activity of zinc oxide produced in nanotubes structure was examined against four different multidrug resistant bacteria: Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) strains. The activity of produced nano-ZnO was determined by disc diffusion technique and the results revealed that ZnO nanotubes recorded high activity against the studied strains due to their high surface area equivalent to 17.8 m2/g. The minimum inhibitory concentration (MIC) of ZnO nanotubes showed that the low concentrations of ZnO nanotubes could be a substitution for the commercial antibiotics when approached in suitable formula. Although the annealing process of ZnO improves the degree of material crystallinity, however, it declines its surface area and consequently its antimicrobial activity. PMID:26451136

  19. Characterization of Different Types of Excitability in Large Somatosensory Neurons and Its Plastic Changes in Pathological Pain States

    PubMed Central

    Xie, Rou-Gang; Chu, Wen-Guang; Hu, San-Jue; Luo, Ceng

    2018-01-01

    Sensory neuron types have been distinguished by distinct morphological and transcriptional characteristics. Excitability is the most fundamental functional feature of neurons. Mathematical models described by Hodgkin have revealed three types of neuronal excitability based on the relationship between firing frequency and applied current intensity. However, whether natural sensory neurons display different functional characteristics in terms of excitability and whether this excitability type undergoes plastic changes under pathological pain states have remained elusive. Here, by utilizing whole-cell patch clamp recordings, behavioral and pharmacological assays, we demonstrated that large dorsal root ganglion (DRG) neurons can be classified into three classes and four subclasses based on their excitability patterns, which is similar to mathematical models raised by Hodgkin. Analysis of hyperpolarization-activated cation current (Ih) revealed different magnitude of Ih in different excitability types of large DRG neurons, with higher Ih in Class 2-1 than that in Class 1, 2-2 and 3. This indicates a crucial role of Ih in the determination of excitability type of large DRG neurons. More importantly, this pattern of excitability displays plastic changes and transition under pathological pain states caused by peripheral nerve injury. This study sheds new light on the functional characteristics of large DRG neurons and extends functional classification of large DRG neurons by integration of transcriptomic and morphological characteristics. PMID:29303989

  20. Morphology and Efficiency of a Specialized Foraging Behavior, Sediment Sifting, in Neotropical Cichlid Fishes

    PubMed Central

    Willis, Stuart; Watkins, Crystal; Honeycutt, Rodney L.; Winemiller, Kirk O.

    2014-01-01

    Understanding of relationships between morphology and ecological performance can help to reveal how natural selection drives biological diversification. We investigate relationships between feeding behavior, foraging performance and morphology within a diverse group of teleost fishes, and examine the extent to which associations can be explained by evolutionary relatedness. Morphological adaptation associated with sediment sifting was examined using a phylogenetic linear discriminant analysis on a set of ecomorphological traits from 27 species of Neotropical cichlids. For most sifting taxa, feeding behavior could be effectively predicted by a linear discriminant function of ecomorphology across multiple clades of sediment sifters, and this pattern could not be explained by shared evolutionary history alone. Additionally, we tested foraging efficiency in seven Neotropical cichlid species, five of which are specialized benthic feeders with differing head morphology. Efficiency was evaluated based on the degree to which invertebrate prey could be retrieved at different depths of sediment. Feeding performance was compared both with respect to feeding mode and species using a phylogenetic ANCOVA, with substrate depth as a covariate. Benthic foraging performance was constant across sediment depths in non-sifters but declined with depth in sifters. The non-sifting Hypsophrys used sweeping motions of the body and fins to excavate large pits to uncover prey; this tactic was more efficient for consuming deeply buried invertebrates than observed among sediment sifters. Findings indicate that similar feeding performance among sediment-sifting cichlids extracting invertebrate prey from shallow sediment layers reflects constraints associated with functional morphology and, to a lesser extent, phylogeny. PMID:24603485

  1. Language deficits in Pre-Symptomatic Huntington's Disease: Evidence from Hungarian

    PubMed Central

    Németh, Dezso; Dye, Cristina D.; Sefcsik, Tamás; Janacsek, Karolina; Turi, Zsolt; Londe, Zsuzsa; Klivenyi, Péter; Kincses, Tamás Zs.; Nikoletta, Szabó; Vecsei, László; Ullman, Michael T.

    2012-01-01

    A limited number of studies have investigated language in Huntington's disease (HD). These have generally reported abnormalities in rule-governed (grammatical) aspects of language, in both syntax and morphology. Several studies of verbal inflectional morphology in English and French have reported evidence of over-active rule processing, such as over-suffixation errors (e.g., walkeded) and over-regularizations (e.g., digged). Here we extend the investigation to noun inflection in Hungarian, a Finno-Ugric agglutinative language with complex morphology, and to genetically proven pre-symptomatic Huntington's disease (pre-HD). Although individuals with pre-HD have no clinical, motor or cognitive symptoms, the underlying pathology may already have begun, and thus sensitive behavioral measures might reveal already-present impairments. Indeed, in a Hungarian morphology production task, pre-HD patients made both over-suffixation and over-regularization errors. The findings suggest the generality of over-active rule processing in both HD and pre-HD, across languages from different families with different morphological systems, and for both verbal and noun inflection. Because the neuropathology in pre-HD appears to be largely restricted to the caudate nucleus and related structures, the findings further implicate these structures in language, and in rule-processing in particular. Finally, the need for effective treatments in HD, which will likely depend in part on the ability to sensitively measure early changes in the disease, suggests the possibility that inflectional morphology, and perhaps other language measures, may provide useful diagnostic, tracking, and therapeutic tools for assessing and treating early degeneration in pre-HD and HD. PMID:22538085

  2. Morphology and efficiency of a specialized foraging behavior, sediment sifting, in neotropical cichlid fishes.

    PubMed

    López-Fernández, Hernán; Arbour, Jessica; Willis, Stuart; Watkins, Crystal; Honeycutt, Rodney L; Winemiller, Kirk O

    2014-01-01

    Understanding of relationships between morphology and ecological performance can help to reveal how natural selection drives biological diversification. We investigate relationships between feeding behavior, foraging performance and morphology within a diverse group of teleost fishes, and examine the extent to which associations can be explained by evolutionary relatedness. Morphological adaptation associated with sediment sifting was examined using a phylogenetic linear discriminant analysis on a set of ecomorphological traits from 27 species of Neotropical cichlids. For most sifting taxa, feeding behavior could be effectively predicted by a linear discriminant function of ecomorphology across multiple clades of sediment sifters, and this pattern could not be explained by shared evolutionary history alone. Additionally, we tested foraging efficiency in seven Neotropical cichlid species, five of which are specialized benthic feeders with differing head morphology. Efficiency was evaluated based on the degree to which invertebrate prey could be retrieved at different depths of sediment. Feeding performance was compared both with respect to feeding mode and species using a phylogenetic ANCOVA, with substrate depth as a covariate. Benthic foraging performance was constant across sediment depths in non-sifters but declined with depth in sifters. The non-sifting Hypsophrys used sweeping motions of the body and fins to excavate large pits to uncover prey; this tactic was more efficient for consuming deeply buried invertebrates than observed among sediment sifters. Findings indicate that similar feeding performance among sediment-sifting cichlids extracting invertebrate prey from shallow sediment layers reflects constraints associated with functional morphology and, to a lesser extent, phylogeny.

  3. Specific Reactions of Different Striatal Neuron Types in Morphology Induced by Quinolinic Acid in Rats

    PubMed Central

    Mu, Shuhua; Wu, Jiajia; Chen, Si; OuYang, Lisi; Lei, Wanlong

    2014-01-01

    Huntington's disease (HD) is a neurological degenerative disease and quinolinic acid (QA) has been used to establish HD model in animals through the mechanism of excitotoxicity. Yet the specific pathological changes and the underlying mechanisms are not fully elucidated. We aimed to reveal the specific morphological changes of different striatal neurons in the HD model. Sprague-Dawley (SD) rats were subjected to unilaterally intrastriatal injections of QA to mimic the HD model. Behavioral tests, histochemical and immunhistochemical stainings as well as Western blots were applied in the present study. The results showed that QA-treated rats had obvious motor and cognitive impairments when compared with the control group. Immunohistochemical detection showed a great loss of NeuN+ neurons and Darpp32+ projection neurons in the transition zone in the QA group when compared with the control group. The numbers of parvalbumin (Parv)+ and neuropeptide Y (NPY)+ interneurons were both significantly reduced while those of calretinin (Cr)+ and choline acetyltransferase (ChAT)+ were not changed notably in the transition zone in the QA group when compared to the controls. Parv+, NPY+ and ChAT+ interneurons were not significantly increased in fiber density while Cr+ neurons displayed an obvious increase in fiber density in the transition zone in QA-treated rats. The varicosity densities of Parv+, Cr+ and NPY+ interneurons were all raised in the transition zone after QA treatment. In conclusion, the present study revealed that QA induced obvious behavioral changes as well as a general loss of striatal projection neurons and specific morphological changes in different striatal interneurons, which may help further explain the underlying mechanisms and the specific functions of various striatal neurons in the pathological process of HD. PMID:24632560

  4. Cryptic species diversity reveals biogeographic support for the ‘mountain passes are higher in the tropics’ hypothesis

    PubMed Central

    Gill, B. A.; Kondratieff, B. C.; Casner, K. L.; Encalada, A. C.; Flecker, A. S.; Gannon, D. G.; Ghalambor, C. K.; Guayasamin, J. M.; Poff, N. L.; Simmons, M. P.; Thomas, S. A.; Zamudio, K. R.; Funk, W. C.

    2016-01-01

    The ‘mountain passes are higher in the tropics’ (MPHT) hypothesis posits that reduced climate variability at low latitudes should select for narrower thermal tolerances, lower dispersal and smaller elevational ranges compared with higher latitudes. These latitudinal differences could increase species richness at low latitudes, but that increase may be largely cryptic, because physiological and dispersal traits isolating populations might not correspond to morphological differences. Yet previous tests of the MPHT hypothesis have not addressed cryptic diversity. We use integrative taxonomy, combining morphology (6136 specimens) and DNA barcoding (1832 specimens) to compare the species richness, cryptic diversity and elevational ranges of mayflies (Ephemeroptera) in the Rocky Mountains (Colorado; approx. 40°N) and the Andes (Ecuador; approx. 0°). We find higher species richness and smaller elevational ranges in Ecuador than Colorado, but only after quantifying and accounting for cryptic diversity. The opposite pattern is found when comparing diversity based on morphology alone, underscoring the importance of uncovering cryptic species to understand global biodiversity patterns. PMID:27306051

  5. Studies on copper-yttria nanocomposites: high-energy ball milling versus chemical reduction method.

    PubMed

    Joshi, P B; Rehani, Bharati; Naik, Palak; Patel, Swati; Khanna, P K

    2012-03-01

    Oxide dispersion-strengthened copper-base composites are widely used for applications demanding high tensile strength, high hardness along with good electrical and thermal conductivity. Oxides of metals like aluminium, cerium, yttrium and zirconium are often used for this purpose as fine and uniformly distributed dispersoid particles in soft and ductile copper matrix. Such composites find applications as electrical contacts, resistance-welding tips, lead wires, continuous casting moulds, etc. In this investigation an attempt has been made to produce copper-yttria nanocomposites using two different morphologies of copper powder and two different processing routes namely, high-energy milling and in-situ chemical reduction. The synthesized powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) for their phase identification and morphological study. The nanocomposite powders in each case were subsequently processed to obtain bulk solids by classical powder metallurgy route of press-sinter-repress. The resultant bulk solid compacts were subjected to property evaluation. The study revealed that the properties of Cu-Y2O3 nanocomposites depend on the processing route used and in turn on the resultant powder morphology.

  6. [Clinical value of MRI united-sequences examination in diagnosis and differentiation of morphological sub-type of hilar and extrahepatic big bile duct cholangiocarcinoma].

    PubMed

    Yin, Long-Lin; Song, Bin; Guan, Ying; Li, Ying-Chun; Chen, Guang-Wen; Zhao, Li-Ming; Lai, Li

    2014-09-01

    To investigate MRI features and associated histological and pathological changes of hilar and extrahepatic big bile duct cholangiocarcinoma with different morphological sub-types, and its value in differentiating between nodular cholangiocarcinoma (NCC) and intraductal growing cholangiocarcinoma (IDCC). Imaging data of 152 patients with pathologically confirmed hilar and extrahepatic big bile duct cholangiocarcinoma were reviewed, which included 86 periductal infiltrating cholangiocarcinoma (PDCC), 55 NCC, and 11 IDCC. Imaging features of the three morphological sub-types were compared. Each of the subtypes demonstrated its unique imaging features. Significant differences (P < 0.05) were found between NCC and IDCC in tumor shape, dynamic enhanced pattern, enhancement degree during equilibrium phase, multiplicity or singleness of tumor, changes in wall and lumen of bile duct at the tumor-bearing segment, dilatation of tumor upstream or downstream bile duct, and invasion of adjacent organs. Imaging features reveal tumor growth patterns of hilar and extrahepatic big bile duct cholangiocarcinoma. MRI united-sequences examination can accurately describe those imaging features for differentiation diagnosis.

  7. Molecular identification of hard ticks (Ixodes sp.) infesting rodents in Selangor, Malaysia

    NASA Astrophysics Data System (ADS)

    Ishak, Siti Nabilah; Shiang, Lim Fang; Taib, Farah Shafawati Mohd; Jing, Khoo Jing; Nor, Shukor Md; Yusof, Muhammad Afif; Sah, Shahrul Anuar Mohd; Sitam, Frankie Thomas; Japning, Jeffrine Rovie Ryan

    2018-04-01

    This study aims to identify hard ticks (Ixodes sp.) infesting rodents in three different sites in Selangor, Malaysia using a molecular approach. A total of 11 individual ticks infesting four different host species (Rattus tiomanicus, Rattus ratus, Maxomys surifer and Sundamys muelleri) were examined based on its morphological features, followed by molecular identification using mitochondrial 16S rDNA gene. Confirmation of the species identity was accomplished by using BLAST program. Clustering analysis based on 16S rDNA sequences was carried out by constructing Neighbour-joining (NJ) and Maximum parsimony (MP) tree using MEGA 7 to clarify the genetic identity of Ixodes sp. Based on morphological features, all individual ticks were only able to be identified up to genus level as most of the samples were fully engorged, damaged and lacked morphological characters. However, molecular analysis of samples revealed 99% similarity with Ixodes granulatus from the GenBank database. Thus, the result of this study showed that all these ticks (Ixodes granulatus) were genetically affiliated to a monophyletic group with highly homogenous sequences.

  8. Effects of annealing on arrays of Ge nanocolumns formed by glancing angle deposition

    NASA Astrophysics Data System (ADS)

    Khare, C.; Gerlach, J. W.; Höche, T.; Fuhrmann, B.; Leipner, H. S.; Rauschenbach, B.

    2012-10-01

    Post-deposition thermal annealing of glancing angle deposited Ge nanocolumn arrays was carried out in a continuous Ar-flow at temperatures ranging from TA = 300 to 800 °C for different annealing durations. Morphological alterations and the recrystallization process induced by the thermal annealing treatment were investigated for the Ge nanocolumns deposited on planar and pre-patterned Si substrates. From X-ray diffraction (XRD) measurements, the films annealed at TA ≥ 500 °C were found to be polycrystalline. On planar Si substrates, at TA = 600 °C nanocolumns exhibited strong coarsening and merging, while a complete disintegration of the nanocolumns was detected at TA = 700 °C. The morphology of nanostructures deposited on pre-patterned substrates differs substantially, where the merging or column-disintegration effect was absent at elevated annealing temperatures. The two-arm-chevron nanostructures grown on pre-patterned substrates retained their complex shape and morphology, after extended annealing intervals. Investigations by transmission electron microscopy revealed nanocrystalline domains of the order of 5-30 nm (in diameter) present within the chevron structures after the annealing treatment.

  9. Controlled Synthesis and Photocatalytic Antifouling Properties of BiVO4 with Tunable Morphologies

    NASA Astrophysics Data System (ADS)

    Xiang, Zhenbo; Wang, Yi; Ju, Peng; Zhang, Dun

    2017-02-01

    Monoclinic BiVO4 with different nanostructures were prepared via a facile and rapid route by adding different surfactants. Ethylenediaminetetraacetic acid, polyvinylpyrrolidone, and sodium dodecyl sulfate surfactants were selected as morphology controlling agents. The crystal phase, morphology, and diffuse reflectance spectra of BiVO4 were characterized by x-ray diffraction, scanning electron microscopy, and UV-visible diffuse reflectance spectra techniques, respectively. The photocatalytic activities of BiVO4 were investigated by killing the typical marine fouling bacteria Pseudomonas aeruginosa ( P. aeruginosa) under visible light irradiation. BiVO4 with grape-like nanostructure exhibited the best photocatalytic bactericidal activity. The sterilization rate of P. aeruginosa could reach up to 99.9% in 120 min. The photocatalytic mechanism was studied by captive species trapping experiments. The result revealed that photogenerated hole (h+) is the main reactive specie for killing P. aeruginosa under visible light irradiation. In addition, after five recycles, BiVO4 does not exhibit significant loss of photocatalytic sterilization activity. The results confirm that the synthesized BiVO4 photocatalyst has long-time reusability and good photocatalytic stability.

  10. Cytotoxicity Effects of Different Surfactant Molecules Conjugated to Carbon Nanotubes on Human Astrocytoma Cells

    NASA Astrophysics Data System (ADS)

    Dong, Lifeng; Witkowski, Colette M.; Craig, Michael M.; Greenwade, Molly M.; Joseph, Katherine L.

    2009-12-01

    Phase contrast and epifluorescence microscopy were utilized to monitor morphological changes in human astrocytoma cells during a time-course exposure to single-walled carbon nanotube (SWCNT) conjugates with different surfactants and to investigate sub-cellular distribution of the nanotube conjugates, respectively. Experimental results demonstrate that cytotoxicity of the nanotube/surfactant conjugates is related to the toxicity of surfactant molecules attached on the nanotube surfaces. Both sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS) are toxic to cells. Exposure to CNT/SDS conjugates (0.5 mg/mL) for less than 5 min caused changes in cell morphology resulting in a distinctly spherical shape compared to untreated cells. In contrast, sodium cholate (SC) and CNT/SC did not affect cell morphology, proliferation, or growth. These data indicate that SC is an environmentally friendly surfactant for the purification and dispersion of SWCNTs. Epifluorescence microscopy analysis of CNT/DNA conjugates revealed distribution in the cytoplasm of cells and did not show adverse effects on cell morphology, proliferation, or viability during a 72-h incubation. These observations suggest that the SWCNTs could be used as non-viral vectors for diagnostic and therapeutic molecules across the blood-brain barrier to the brain and the central nervous system.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Xiaomei; Lv, Xin; Wang, Limin

    Graphical abstract: - Highlights: • Effect of CTAB on the morphology and crystallization of MnFe{sub 2}O{sub 4}. • The lowest coercivity of MnFe{sub 2}O{sub 4} polyhedron is 11.9 Oe. • MnFe{sub 2}O{sub 4} as anode for LIB shows good reversible capacity and cycle performances. - Abstract: The uniform different morphologies MnFe{sub 2}O{sub 4}, including cube, truncated cube, polyhedron and octahedron, were successfully synthesized via a solvothermal route using cetyltrimethylammonium bromide. The results of control experiments revealed that the concentration of cetyltrimethylammonium bromide was an important factor, which affected the morphology and crystallization of MnFe{sub 2}O{sub 4} submicro-crystals. All the preparedmore » samples exhibited soft-magnetic behavior at room temperature. Especially, the coercivity of MnFe{sub 2}O{sub 4} polyhedron with 200 nm diameter was 11.9 Oe, which was among the lowest values reported so far. Moreover, MnFe{sub 2}O{sub 4} submicro-crystals with special morphologies demonstrated higher reversible capacity (about 1000 mAh g{sup −1}) and different cycle performances. After 50 cycles, polyhedron structure remained 428 mAh/g. The MnFe{sub 2}O{sub 4} would have a potential application as anode material for lithium ion batteries.« less

  12. Is floral specialization an evolutionary dead-end? Pollination system transitions in Ruellia (Acanthaceae).

    PubMed

    Tripp, Erin A; Manos, Paul S

    2008-07-01

    Pollination systems frequently reflect adaptations to particular groups of pollinators. Such systems are indicative of evolutionary specialization and have been important in angiosperm diversification. We studied the evolution of pollination systems in the large genus Ruellia. Phylogenetic analyses, morphological ordinations, ancestral state reconstructions, and a character mapping simulation were conducted to reveal key patterns in the direction and lability of floral characters associated with pollination. We found significant floral morphological differences among species that were generally associated with different groups of floral visitors. Floral evolution has been highly labile and also directional. Some specialized systems such as hawkmoth or bat pollination are likely evolutionary dead-ends. In contrast, specialized pollination by hummingbirds is clearly not a dead-end. We found evidence for multiple reverse transitions from presumed ancestral hummingbird pollination to more derived bee or insect pollination. These repeated origins of insect pollination from hummingbird-pollinated ancestors have not evolved without historical baggage. Flowers of insect-pollinated species derived from hummingbird-pollinated ancestors are morphologically more similar to hummingbird flowers than they are to other more distantly related insect-pollinated flowers. Finally, some pollinator switches were concomitant with changes in floral morphology that are associated with those pollinators. These observations are consistent with the hypothesis that some transitions have been adaptive in the evolution of Ruellia.

  13. Raman spectrum reveals the cell cycle arrest of Triptolide-induced leukemic T-lymphocytes apoptosis

    NASA Astrophysics Data System (ADS)

    Zhang, Daosen; Feng, Yanyan; Zhang, Qinnan; Su, Xin; Lu, Xiaoxu; Liu, Shengde; Zhong, Liyun

    2015-04-01

    Triptolide (TPL), a traditional Chinese medicine extract, possesses anti-inflammatory and anti-tumor properties. Though some research results have implicated that Triptolide (TPL) can be utilized in the treatment of leukemia, it remains controversial about the mechanism of TPL-induced leukemic T-lymphocytes apoptosis. In this study, combining Raman spectroscopic data, principal component analysis (PCA) and atomic force microscopy (AFM) imaging, both the biochemical changes and morphological changes during TPL-induced cell apoptosis were presented. In contrast, the corresponding data during Daunorubicin (DNR)-induced cell apoptosis was also exhibited. The obtained results showed that Raman spectral changes during TPL-induced cell apoptosis were greatly different from DNR-induced cell apoptosis in the early stage of apoptosis but revealed the high similarity in the late stage of apoptosis. Moreover, above Raman spectral changes were respectively consistent with the morphological changes of different stages during TPL-induced apoptosis or DNR-induced apoptosis, including membrane shrinkage and blebbing, chromatin condensation and the formation of apoptotic bodies. Importantly, it was found that Raman spectral changes with TPL-induced apoptosis or DNR-induced apoptosis were respectively related with the cell cycle G1 phase arrest or G1 and S phase arrest.

  14. Convergence, recurrence and diversification of complex sperm traits in diving beetles (Dytiscidae)

    PubMed Central

    Higginson, Dawn M.; Miller, Kelly B.; Segraves, Kari A.; Pitnick, Scott

    2013-01-01

    Sperm display remarkable morphological diversity among even closely related species, a pattern that is widely attributed to postcopulatory sexual selection. Surprisingly few studies have used phylogenetic analyses to discern the details of evolutionary diversification in ornaments and armaments subject to sexual selection, and the origins of novel sperm traits and their subsequent modification are particularly poorly understood. Here we investigate sperm evolution in diving beetles (Dytiscidae), revealing dramatic diversification in flagellum length, head shape, presence of sperm heteromorphism, and the presence/type of sperm conjugation, an unusual trait where two or more sperm unite for motility or transport. Sperm conjugation was found to be the ancestral condition in diving beetles, with subsequent diversification into three forms, each exhibiting varying degrees of evolutionary loss, convergence and recurrence. Sperm head shape, but not length or heteromorphism, was found to evolve in a significantly correlated manner with conjugation, consistent with the different mechanisms of head alignment and binding required for the different forms of conjugation. Our study reveals that sperm morphological evolution is channeled along particular evolutionary pathways (i.e., conjugate form), yet subject to considerable diversification within those pathways through modification in sperm length, head shape and heteromorphism. PMID:22519797

  15. Evolution of Secondary Phases Formed upon Solidification of a Ni-Based Alloy

    NASA Astrophysics Data System (ADS)

    Zuo, Qiang; Liu, Feng; Wang, Lei; Chen, Changfeng

    2013-07-01

    The solidification of UNS N08028 alloy subjected to different cooling rates was studied, where primary austenite dendrites occur predominantly and different amounts of sigma phase form in the interdendritic regions. The solidification path and elemental segregation upon solidification were simulated using the CALPHAD method, where THERMO-CALC software packages and two classical segregation models were employed to predict the real process. It is thus revealed that the interdendritic sigma phase is formed via eutectic reaction at the last stage of solidification. On this basis, an analytical model was developed to predict the evolution of nonequilibrium eutectic phase, while the isolated morphology of sigma phase can be described using divorced eutectic theory. Size, fraction, and morphology of the sigma phase were quantitatively studied by a series of experiments; the results are in good agreement with the model prediction.

  16. Neuronal Correlates of Individual Differences in the Big Five Personality Traits: Evidences from Cortical Morphology and Functional Homogeneity.

    PubMed

    Li, Ting; Yan, Xu; Li, Yuan; Wang, Junjie; Li, Qiang; Li, Hong; Li, Junfeng

    2017-01-01

    There have been many neuroimaging studies of human personality traits, and it have already provided glimpse into the neurobiology of complex traits. And most of previous studies adopt voxel-based morphology (VBM) analysis to explore the brain-personality mechanism from two levels (vertex and regional based), the findings are mixed with great inconsistencies and the brain-personality relations are far from a full understanding. Here, we used a new method of surface-based morphology (SBM) analysis, which provides better alignment of cortical landmarks to generate about the associations between cortical morphology and the personality traits across 120 healthy individuals at both vertex and regional levels. While to further reveal local functional correlates of the morphology-personality relationships, we related surface-based functional homogeneity measures to the regions identified in the regional-based SBM correlation. Vertex-wise analysis revealed that people with high agreeableness exhibited larger areas in the left superior temporal gyrus. Based on regional parcellation we found that extroversion was negatively related with the volume of the left lateral occipito-temporal gyrus and agreeableness was negatively associated with the sulcus depth of the left superior parietal lobule. Moreover, increased regional homogeneity in the left lateral occipito-temporal gyrus is related to the scores of extroversion, and increased regional homogeneity in the left superior parietal lobule is related to the scores of agreeableness. These findings provide supporting evidence of a link between personality and brain structural mysteries with a method of SBM, and further suggest that local functional homogeneity of personality traits has neurobiological relevance that is likely based on anatomical substrates.

  17. Ecomorph or Endangered Coral? DNA and Microstructure Reveal Hawaiian Species Complexes: Montipora dilatata/flabellata/turgescens & M. patula/verrilli

    PubMed Central

    Forsman, Zac H.; Concepcion, Gregory T.; Haverkort, Roxanne D.; Shaw, Ross W.; Maragos, James E.; Toonen, Robert J.

    2010-01-01

    M. dilatata, M. flabellata, and M. patula and 80 other scleractinian corals were petitioned to be listed under the US Endangered Species Act (ESA), which would have major conservation implications. One of the difficulties with this evaluation is that reproductive boundaries between morphologically defined coral species are often permeable, and morphology can be wildly variable. We examined genetic and morphological variation in Hawaiian Montipora with a suite of molecular markers (mitochondrial: COI, CR, Cyt-B, 16S, ATP6; nuclear: ATPsβ, ITS) and microscopic skeletal measurements. Mitochondrial markers and the ITS region revealed four distinct clades: I) M. patula/M. verrilli, II) M. cf. incrassata, III) M. capitata, IV) M. dilatata/M. flabellata/M. cf. turgescens. These clades are likely to occur outside of Hawai'i according to mitochondrial control region haplotypes from previous studies. The ATPsβ intron data showed a pattern often interpreted as resulting from hybridization and introgression; however, incomplete lineage sorting may be more likely since the multicopy nuclear ITS region was consistent with the mitochondrial data. Furthermore, principal components analysis (PCA) of skeletal microstructure was concordant with the mitochondrial clades, while nominal taxa overlapped. The size and shape of verrucae or papillae contributed most to identifying groups, while colony-level morphology was highly variable. It is not yet clear if these species complexes represent population-level variation or incipient speciation (CA<1MYA), two alternatives that have very different conservation implications. This study highlights the difficulty in understanding the scale of genetic and morphological variation that corresponds to species as opposed to population-level variation, information that is essential for conservation and for understanding coral biodiversity. PMID:21151995

  18. A review of trabecular bone functional adaptation: what have we learned from trabecular analyses in extant hominoids and what can we apply to fossils?

    PubMed

    Kivell, Tracy L

    2016-04-01

    Many of the unresolved debates in palaeoanthropology regarding evolution of particular locomotor or manipulative behaviours are founded in differing opinions about the functional significance of the preserved external fossil morphology. However, the plasticity of internal bone morphology, and particularly trabecular bone, allowing it to respond to mechanical loading during life means that it can reveal greater insight into how a bone or joint was used during an individual's lifetime. Analyses of trabecular bone have been commonplace for several decades in a human clinical context. In contrast, the study of trabecular bone as a method for reconstructing joint position, joint loading and ultimately behaviour in extant and fossil non-human primates is comparatively new. Since the initial 2D studies in the late 1970s and 3D analyses in the 1990 s, the utility of trabecular bone to reconstruct behaviour in primates has grown to incorporate experimental studies, expanded taxonomic samples and skeletal elements, and improved methodologies. However, this work, in conjunction with research on humans and non-primate mammals, has also revealed the substantial complexity inherent in making functional inferences from variation in trabecular architecture. This review addresses the current understanding of trabecular bone functional adaptation, how it has been applied to hominoids, as well as other primates and, ultimately, how this can be used to better interpret fossil hominoid and hominin morphology. Because the fossil record constrains us to interpreting function largely from bony morphology alone, and typically from isolated bones, analyses of trabecular structure, ideally in conjunction with that of cortical structure and external morphology, can offer the best resource for reconstructing behaviour in the past. © 2016 Anatomical Society.

  19. Ecomorph or endangered coral? DNA and microstructure reveal hawaiian species complexes: Montipora dilatata/flabellata/turgescens & M. patula/verrilli.

    PubMed

    Forsman, Zac H; Concepcion, Gregory T; Haverkort, Roxanne D; Shaw, Ross W; Maragos, James E; Toonen, Robert J

    2010-12-02

    M. dilatata, M. flabellata, and M. patula and 80 other scleractinian corals were petitioned to be listed under the US Endangered Species Act (ESA), which would have major conservation implications. One of the difficulties with this evaluation is that reproductive boundaries between morphologically defined coral species are often permeable, and morphology can be wildly variable. We examined genetic and morphological variation in Hawaiian Montipora with a suite of molecular markers (mitochondrial: COI, CR, Cyt-B, 16S, ATP6; nuclear: ATPsβ, ITS) and microscopic skeletal measurements. Mitochondrial markers and the ITS region revealed four distinct clades: I) M. patula/M. verrilli, II) M. cf. incrassata, III) M. capitata, IV) M. dilatata/M. flabellata/M. cf. turgescens. These clades are likely to occur outside of Hawai'i according to mitochondrial control region haplotypes from previous studies. The ATPsβ intron data showed a pattern often interpreted as resulting from hybridization and introgression; however, incomplete lineage sorting may be more likely since the multicopy nuclear ITS region was consistent with the mitochondrial data. Furthermore, principal components analysis (PCA) of skeletal microstructure was concordant with the mitochondrial clades, while nominal taxa overlapped. The size and shape of verrucae or papillae contributed most to identifying groups, while colony-level morphology was highly variable. It is not yet clear if these species complexes represent population-level variation or incipient speciation (CA<1MYA), two alternatives that have very different conservation implications. This study highlights the difficulty in understanding the scale of genetic and morphological variation that corresponds to species as opposed to population-level variation, information that is essential for conservation and for understanding coral biodiversity.

  20. Assessing Species-specific Contributions To Craniofacial Development Using Quail-duck Chimeras

    PubMed Central

    Fish, Jennifer L.; Schneider, Richard A.

    2014-01-01

    The generation of chimeric embryos is a widespread and powerful approach to study cell fates, tissue interactions, and species-specific contributions to the histological and morphological development of vertebrate embryos. In particular, the use of chimeric embryos has established the importance of neural crest in directing the species-specific morphology of the craniofacial complex. The method described herein utilizes two avian species, duck and quail, with remarkably different craniofacial morphology. This method greatly facilitates the investigation of molecular and cellular regulation of species-specific pattern in the craniofacial complex. Experiments in quail and duck chimeric embryos have already revealed neural crest-mediated tissue interactions and cell-autonomous behaviors that regulate species-specific pattern in the craniofacial skeleton, musculature, and integument. The great diversity of neural crest derivatives suggests significant potential for future applications of the quail-duck chimeric system to understanding vertebrate development, disease, and evolution. PMID:24962088

  1. The proton dissociation constant of additive effect on self-assembly of poly(3-hexyl-thiophene) for organic solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Po-Hsun; Lee, Hsu-Feng; Huang, Yi-Chiang; Jung, Yi-Jiun; Gong, Fang-Lin; Huang, Wen-Yao

    2014-07-01

    In the decision on the pros and cons of the optical and electrical properties of organic solar cells, the morphology has proven to be very important. Easy to change the morphology via adding a small amount of additive, because proton dissociation constant is the main reason for their application. In this study, the use of poly(3-hexylthiophene) and [6,6]-phenyl C 61-butyric acid methyl ester as the donor and acceptor materials, and were subsequently doped with different quantity of 4,4'-sulfonyldiphenol, 4,4'-dihydroxybiphenyl, biphenyl-4,4'-dithiol. When the proton dissociation constant is higher and lower respectively, the morphology reveals earthworms-like and fiber-like. For the reason that when the additive is biphenyl-4,4'-dithiol, it can improve the power conversion efficiency of about 27% and the incident photon-to-current conversion efficiency of about 12%.

  2. Tuning the Perfluorosulfonic Acid Membrane Morphology for Vanadium Redox-Flow Batteries.

    PubMed

    Vijayakumar, M; Luo, Qingtao; Lloyd, Ralph; Nie, Zimin; Wei, Xiaoliang; Li, Bin; Sprenkle, Vincent; Londono, J-David; Unlu, Murat; Wang, Wei

    2016-12-21

    The microstructure of perfluorinated sulfonic acid proton-exchange membranes such as Nafion significantly affects their transport properties and performance in a vanadium redox-flow battery (VRB). In this work, Nafion membranes with various equivalent weights ranging from 1000 to 1500 are prepared and the morphology-property-performance relationship is investigated. NMR and small-angle X-ray scattering studies revealed their composition and morphology variances, which lead to major differences in key transport properties related to proton conduction and vanadium-ion permeation. Their performances are further characterized as VRB membranes. On the basis of this understanding, a new perfluorosulfonic acid membrane is designed with optimal pore geometry and thickness, leading to higher ion selectivity and lower cost compared with the widely used Nafion 115. Excellent VRB single-cell performance (89.3% energy efficiency at 50 mA·cm -2 ) was achieved along with a stable cyclical capacity over prolonged cycling.

  3. Impact of additional sulphur on structure, morphology and optical properties of SnS thin films by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Banotra, Arun; Padha, Naresh; Kumar, Shiv; Kapoor, Ashok K.

    2018-05-01

    Thin films of SnS have been obtained from Sn and S powders which were mixed up using ball mill technique with and without evaporating additional sulphur prior to annealing at 523K. The obtained samples were taken for structural, optical, chemical and morphological studies. The X-ray diffraction reveals the formation of SnS phase on annealing in vacuum having S/Sn ratio of 0.67 obtained from EDAX. This deficit in `S' is removed by supplementing additional `S' of 200nm prior to annealing which results in the S/Sn ratio of 1.01. The optical transmission recorded from spectrophotometer used to study different optical parameters. Morphological results corroborate well with the XRD, EDAX and optical study. The obtained stoichiometric films were also tested for Ag/p-SnS Schottky diodes on In coated glass substrates using current voltage measurements.

  4. Synthesis and microwave modification of CuO nanoparticles: crystallinity and morphological variations, catalysis, and gas sensing.

    PubMed

    Yang, Chao; Xiao, Feng; Wang, Jide; Su, Xintai

    2014-12-01

    CuO nanoparticles with different morphologies were synthesized by chemical precipitation and subsequently modified by microwave hydrothermal processing. The nanoparticles were precipitated by the introduction of a strong base to an aqueous solution of copper cations in the presence/absence of the polyethylene glycol and urea additives. The modification of the nanoparticles was subsequently carried out by a microwave hydrothermal treatment of suspensions of the precipitates, precipitated with and without the additives. X-ray powder diffraction analysis indicated that the crystallinity and crystallite size of the CuO nanoparticles increased after the microwave hydrothermal modification. Microscopy observations revealed the morphology changes induced by microwave hydrothermal processing. The thermal decomposition of ammonium perchlorate and the detection of volatile gases were performed to evaluate the catalytic and gas sensing properties of the synthesized CuO nanoparticles. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. The Next Breakthrough for Organic Photovoltaics?

    PubMed

    Jackson, Nicholas E; Savoie, Brett M; Marks, Tobin J; Chen, Lin X; Ratner, Mark A

    2015-01-02

    While the intense focus on energy level tuning in organic photovoltaic materials has afforded large gains in device performance, we argue here that strategies based on microstructural/morphological control are at least as promising in any rational design strategy. In this work, a meta-analysis of ∼150 bulk heterojunction devices fabricated with different materials combinations is performed and reveals strong correlations between power conversion efficiency and morphology-dominated properties (short-circuit current, fill factor) and surprisingly weak correlations between efficiency and energy level positioning (open-circuit voltage, enthalpic offset at the interface, optical gap). While energy level positioning should in principle provide the theoretical maximum efficiency, the optimization landscape that must be navigated to reach this maximum is unforgiving. Thus, research aimed at developing understanding-based strategies for more efficient optimization of an active layer microstructure and morphology are likely to be at least as fruitful.

  6. Multiple beam interference confocal microscopy: a tool for morphological investigation of living cells and tissues

    NASA Astrophysics Data System (ADS)

    Joshi, Narahari V.; Medina, Honorio

    2000-05-01

    Multiple beam interference system is used in conjunction with a conventional scanning confocal microscope to examine the morphology and construction of 3D images of Histolytic Ameba and parasite Candida Albicans. The present combination permits to adjoin advantages of both systems, namely the vertical high contrast and optical sectioning. The interference pattern obtained from a multiple internal reflection of a simple, sandwiched between the glass plate and the cover plate, was focussed on an objective of a scanning confocal microscope. According to optical path differences, morphological details were revealed. The combined features, namely improved resolution in z axis, originated from the interference pattern and the optical sectioning of the confocal scanning system, enhance the resolution and contrast dramatically. These features permitted to obtain unprecedented images of Histolytic Ameba and parasite Candida Albicans. Because of the improved contrast, several details like double wall structure of candida, internal structure of ameba are clearly visible.

  7. Processing verbal morphology in patients with congenital left-hemispheric brain lesions.

    PubMed

    Knecht, Marion; Lidzba, Karen

    2016-01-01

    The goal of this study was to test whether children, teenagers and adults with congenital left-hemispheric brain lesions master the regularities of German verbal inflectional morphology. Thirteen patients and 35 controls without brain damage participated in three experiments. A grammaticality judgment task, a participle inflection task and a nonce-verb inflection task revealed significant differences between patients and controls. In addition, a main effect of verb type could be observed as patients and controls made more mistakes with irregular than with regular verbs. The findings indicate that the congenitally damaged brain not only has difficulties with complex syntactic structures during language development, as reported by earlier studies, but also has persistent deficits on the morphological level. These observations suggest that the plasticity of the developing brain cannot fully compensate for congenital brain damage which affects regions associated with language functions. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Genetic and morphologic differentiation of Bolbophorus confusus and B. levantinus (Digenea: Diplostomatidae), based on rDNA SSU polymorphism and SEM.

    PubMed

    Dzikowski, R; Levy, M G; Poore, M F; Flowers, J R; Paperna, I

    2003-12-29

    Metacercariae of Bolbophorus species are serious pathogens of farmed fish. Molecular diagnostic tools, capable of identifying and differentiating these parasites, may assist in the development of rationale control strategies. The rDNA 18S (small sub-unit: SSU) genes of adult B. confusus and B. levantinus obtained from a pelican, Pelecanus onocrotalus, and a night heron, Nycticorax nycticorax, respectively, were amplified, sequenced, and aligned. Based on this alignment, we developed a genetic differentiation assay between B. confusus and B. levantinus. These 2 species were compared genetically with the North American species B. damnificus and Bolbophorus sp. ('Type 2'). The relationship between species is outlined and discussed. In addition to the molecular study, specimens of B. confusus and B. levantinus were compared morphologically, using scanning electron microscopy. Morphologic analysis revealed interspecific differences in details of the holdfast organ and the position of the acetabulum.

  9. Morphologic dating of fault scarps using airborne laser swath mapping (ALSM) data

    USGS Publications Warehouse

    Hilley, G.E.; Delong, S.; Prentice, C.; Blisniuk, K.; Arrowsmith, J.R.

    2010-01-01

    Models of fault scarp morphology have been previously used to infer the relative age of different fault scarps in a fault zone using labor-intensive ground surveying. We present a method for automatically extracting scarp morphologic ages within high-resolution digital topography. Scarp degradation is modeled as a diffusive mass transport process in the across-scarp direction. The second derivative of the modeled degraded fault scarp was normalized to yield the best-fitting (in a least-squared sense) scarp height at each point, and the signal-to-noise ratio identified those areas containing scarp-like topography. We applied this method to three areas along the San Andreas Fault and found correspondence between the mapped geometry of the fault and that extracted by our analysis. This suggests that the spatial distribution of scarp ages may be revealed by such an analysis, allowing the recent temporal development of a fault zone to be imaged along its length.

  10. Form and function of the human and chimpanzee forefoot: implications for early hominin bipedalism.

    PubMed

    Fernández, Peter J; Holowka, Nicholas B; Demes, Brigitte; Jungers, William L

    2016-07-28

    During bipedal walking, modern humans dorsiflex their forefoot at the metatarsophalangeal joints (MTPJs) prior to push off, which tightens the plantar soft tissues to convert the foot into a stiff propulsive lever. Particular features of metatarsal head morphology such as "dorsal doming" are thought to facilitate this stiffening mechanism. In contrast, chimpanzees are believed to possess MTPJ morphology that precludes high dorsiflexion excursions during terrestrial locomotion. The morphological affinity of the metatarsal heads has been used to reconstruct locomotor behavior in fossil hominins, but few studies have provided detailed empirical data to validate the assumed link between morphology and function at the MTPJs. Using three-dimensional kinematic and morphometric analyses, we show that humans push off with greater peak dorsiflexion angles at all MTPJs than do chimpanzees during bipedal and quadrupedal walking, with the greatest disparity occurring at MTPJ 1. Among MTPJs 2-5, both species exhibit decreasing peak angles from medial to lateral. This kinematic pattern is mirrored in the morphometric analyses of metatarsal head shape. Analyses of Australopithecus afarensis metatarsals reveal morphology intermediate between humans and chimpanzees, suggesting that this species used different bipedal push-off kinematics than modern humans, perhaps resulting in a less efficient form of bipedalism.

  11. The association between mid-facial morphology and climate in northeast Europe differs from that in north Asia: Implications for understanding the morphology of Late Pleistocene Homo sapiens.

    PubMed

    Evteev, Andrej A; Movsesian, Alla A; Grosheva, Alexandra N

    2017-06-01

    The climate of northeastern Europe is likely to resemble in many ways Late Pleistocene periglacial conditions in Europe, but there have been relatively few studies exploring the association between climate and morphology in the mid-face of modern northeastern European populations. To fill this gap, we sampled 540 male skulls from 22 European and Near Eastern groups, including 314 skulls from 11 populations from northeastern Europe, to test for possible climate-morphology association at the continental scale. Our results found a moderate and highly significant association (R = 0.48, p = 0.0013, Mantel test) between sets of 23 mid-facial measurements and eight climatic variables. A partial least squares analysis revealed this association to be mostly driven by differences between groups from northeastern Europe and populations from the Mediterranean and the Caucasus. Matrices of between-group genetic distances based on Y-chromosome and mtDNA markers, as well as cranial non-metric and geographic distance matrices, were used to control for the possible influence of shared population history. Irrespective of which measure of neutral between-population distances is taken into account, the association between cranial variables and climate remains significant. The pattern of association between climate and morphology of the mid-face in western Eurasia was then compared to that in east and north Asia. Although differences between the two were found, there were also similarities that support existing functional interpretations of morphology for the bony parts of the upper airways. Last, in a preliminary analysis using a reduced set of measurements, mid-facial morphology of several Upper Paleolithic European Homo sapiens specimens was found to be more similar to groups from northern and northeastern Europe than to southern European populations. Thus, the population of northeastern Europe rather than east and north Asian groups should be used as a model when studying climate-mediated mid-facial morphology of Upper Paleolithic European H. sapiens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Morphological Decomposition in Reading Hebrew Homographs

    ERIC Educational Resources Information Center

    Miller, Paul; Liran-Hazan, Batel; Vaknin, Vered

    2016-01-01

    The present work investigates whether and how morphological decomposition processes bias the reading of Hebrew heterophonic homographs, i.e., unique orthographic patterns that are associated with two separate phonological, semantic entities depicted by means of two morphological structures (linear and nonlinear). In order to reveal the nature of…

  13. Effect of catalyst on deposition of vanadium oxide in plasma ambient

    NASA Astrophysics Data System (ADS)

    Singh, Megha; Kumar, Prabhat; Saini, Sujit K.; Reddy, G. B.

    2018-05-01

    In this paper, we have studied effect of catalyst (buffer layer) on structure, morphology, crystallinity, uniformity of nanostructured thin films deposited in nitrogen plasma ambient keeping all other process parameters constant. The process used for deposition is novel known as Plasma Assisted Sublimation Process (PASP). Samples were then studied using SEM, TEM, HRTEM, Raman spectroscopy. By structural analysis it was found out that samples deposited on Ni layer composed chiefly of α-V2O5 but minor amount of other phases were present in the sample. Samples deposited on Al catalyst layer revealed different phase of V2O5, where sample deposited on Ag was composed chiefly of VO2±x phase. Further analysis revealed that morphology of samples is also affected by catalyst. While samples deposited in Al and Ag layer tend to have reasonably defined geometry, sample deposited on Ni layer were irregular in shape and size. All the results well corroborate with each other.

  14. The genome of Mesobuthus martensii reveals a unique adaptation model of arthropods

    PubMed Central

    Cao, Zhijian; Yu, Yao; Wu, Yingliang; Hao, Pei; Di, Zhiyong; He, Yawen; Chen, Zongyun; Yang, Weishan; Shen, Zhiyong; He, Xiaohua; Sheng, Jia; Xu, Xiaobo; Pan, Bohu; Feng, Jing; Yang, Xiaojuan; Hong, Wei; Zhao, Wenjuan; Li, Zhongjie; Huang, Kai; Li, Tian; Kong, Yimeng; Liu, Hui; Jiang, Dahe; Zhang, Binyan; Hu, Jun; Hu, Youtian; Wang, Bin; Dai, Jianliang; Yuan, Bifeng; Feng, Yuqi; Huang, Wei; Xing, Xiaojing; Zhao, Guoping; Li, Xuan; Li, Yixue; Li, Wenxin

    2013-01-01

    Representing a basal branch of arachnids, scorpions are known as ‘living fossils’ that maintain an ancient anatomy and are adapted to have survived extreme climate changes. Here we report the genome sequence of Mesobuthus martensii, containing 32,016 protein-coding genes, the most among sequenced arthropods. Although M. martensii appears to evolve conservatively, it has a greater gene family turnover than the insects that have undergone diverse morphological and physiological changes, suggesting the decoupling of the molecular and morphological evolution in scorpions. Underlying the long-term adaptation of scorpions is the expansion of the gene families enriched in basic metabolic pathways, signalling pathways, neurotoxins and cytochrome P450, and the different dynamics of expansion between the shared and the scorpion lineage-specific gene families. Genomic and transcriptomic analyses further illustrate the important genetic features associated with prey, nocturnal behaviour, feeding and detoxification. The M. martensii genome reveals a unique adaptation model of arthropods, offering new insights into the genetic bases of the living fossils. PMID:24129506

  15. Molecular and morphological evidence supports the species status of the Mahachai fighter Betta sp. Mahachai and reveals new species of Betta from Thailand.

    PubMed

    Sriwattanarothai, N; Steinke, D; Ruenwongsa, P; Hanner, R; Panijpan, B

    2010-08-01

    Two regions of mitochondrial (mt) DNA, cytochrome c oxidase subunit 1 (COI) and 16S rRNA, were sequenced in nine species of Betta from Thailand and Indonesia. Most species showed little intraspecific COI variation (adjusted mean = 0.48%) including the putative species Betta sp. Mahachai, but one species (Betta smaragdina) included three lineages showing much greater divergence (7.03-13.48%) that probably represent overlooked species. These findings were confirmed by maximum likelihood analysis and Bayesian inference, which revealed well-supported corresponding monophyletic clades. Based on these results and morphological differences, the putative species Betta sp. Mahachai from central Thailand is a species distinct from other members of the B. splendens group and represents a new and hitherto undescribed species. Furthermore, this study also demonstrated the probable existence of two overlooked Betta species found in the Khorat plateau basin, illustrating the utility of mitochondrial genetic markers in the revelation of overlooked diversity.

  16. The annealing investigation on morphology and photoluminescence properties of In2O3 1-D nanostructures in resistive evaporation mechanism

    NASA Astrophysics Data System (ADS)

    Shariati, Mohsen; Ghafouri, Vahid

    2014-02-01

    Synthesis of In2O3 nanostructures grown on Si substrate by the resistive evaporation of metallic indium granules followed by dry oxidation process has been articulated. To prepare nucleation growth sites, selected samples pre-annealed around indium melting point in free-oxygen atmosphere and then to fabricate 1-D nanostructures, they annealed in a horizontal thermal furnace in presence of argon and oxygen. For comparison, one sample, the same origin as initially pre-annealed samples, was excluded in pre-annealing process but presented in annealing step. Characterization of the products with FESEM revealed that the pre-annealed obtained nanostructures are mostly nanorod and nanowire with different morphologies. For the comparative sample, no 1-D structures achieved. X-ray diffraction (XRD) patterns for pre-annealed samples indicated that they are crystalline and the comparative one is polycrystalline. Photoluminescence (PL) measurements carried out at room temperature revealed that emission band shifted to shorter wavelength from pre-annealed samples to comparative one.

  17. Towards revealing the structure of bacterial inclusion bodies

    PubMed Central

    2009-01-01

    Protein aggregation is a widely observed phenomenon in human diseases, biopharmaceutical production, and biological research. Protein aggregates are generally classified as highly ordered, such as amyloid fibrils, or amorphous, such as bacterial inclusion bodies. Amyloid fibrils are elongated filaments with diameters of 6–12 nm, they are comprised of residue-specific cross-β structure, and display characteristic properties, such as binding with amyloid-specific dyes. Amyloid fibrils are associated with dozens of human pathological conditions, including Alzheimer disease and prion diseases. Distinguished from amyloid fibrils, bacterial inclusion bodies display apparent amorphous morphology. Inclusion bodies are formed during high-level recombinant protein production, and formation of inclusion bodies is a major concern in biotechnology. Despite of the distinctive morphological difference, bacterial inclusion bodies have been found to have some amyloid-like properties, suggesting that they might contain structures similar to amyloid-like fibrils. Recent structural data further support this hypothesis, and this review summarizes the latest progress towards revealing the structural details of bacterial inclusion bodies. PMID:19806034

  18. Towards revealing the structure of bacterial inclusion bodies.

    PubMed

    Wang, Lei

    2009-01-01

    Protein aggregation is a widely observed phenomenon in human diseases, biopharmaceutical production, and biological research. Protein aggregates are generally classified as highly ordered, such as amyloid fibrils, or amorphous, such as bacterial inclusion bodies. Amyloid fibrils are elongated filaments with diameters of 6-12 nm, they are comprised of residue-specific cross-beta structure, and display characteristic properties, such as binding with amyloid-specific dyes. Amyloid fibrils are associated with dozens of human pathological conditions, including Alzheimer disease and prion diseases. Distinguished from amyloid fibrils, bacterial inclusion bodies display apparent amorphous morphology. Inclusion bodies are formed during high-level recombinant protein production, and formation of inclusion bodies is a major concern in biotechnology. Despite of the distinctive morphological difference, bacterial inclusion bodies have been found to have some amyloid-like properties, suggesting that they might contain structures similar to amyloid-like fibrils. Recent structural data further support this hypothesis, and this review summarizes the latest progress towards revealing the structural details of bacterial inclusion bodies.

  19. Culture observation and molecular phylogenetic analysis on the blooming green alga Chaetomorpha valida (Cladophorales, Chlorophyta) from China

    NASA Astrophysics Data System (ADS)

    Deng, Yunyan; Tang, Xiaorong; Zhan, Zifeng; Teng, Linhong; Ding, Lanping; Huang, Bingxin

    2013-05-01

    The marine green alga Chaetomorpha valida fouls aquaculture ponds along the coastal cities of Dalian and Rongcheng, China. Unialgal cultures were observed under a microscope to determine the developmental morphological characters of C. valida. Results reveal that gametophytic filaments often produce lateral branches under laboratory culture conditions, suggesting an atypical heteromorphic life cycle of C. valida between unbranched sporophytes and branched gametophytes, which differs from typical isomorphic alternation of Chaetomorpha species. The shape of the basal attachment cell, an important taxonomic character within the genus, was found variable depending on environmental conditions. The 18S rDNA and 28S rDNA regions were used to explore the phylogenetic affinity of the taxa. Inferred trees from 18S rDNA sequences revealed a close relationship between C. valida and Chaetomorpha moniligera. These results would enrich information in general biology and morphological plasticity of C. valida and provided a basis for future identification of green tide forming algae.

  20. Effect of negative bias on the composition and structure of the tungsten oxide thin films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Meihan; Lei, Hao; Wen, Jiaxing; Long, Haibo; Sawada, Yutaka; Hoshi, Yoichi; Uchida, Takayuki; Hou, Zhaoxia

    2015-12-01

    Tungsten oxide thin films were deposited at room temperature under different negative bias voltages (Vb, 0 to -500 V) by DC reactive magnetron sputtering, and then the as-deposited films were annealed at 500 °C in air atmosphere. The crystal structure, surface morphology, chemical composition and transmittance of the tungsten oxide thin films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV-vis spectrophotometer. The XRD analysis reveals that the tungsten oxide films deposited at different negative bias voltages present a partly crystallized amorphous structure. All the films transfer from amorphous to crystalline (monoclinic + hexagonal) after annealing 3 h at 500 °C. Furthermore, the crystallized tungsten oxide films show different preferred orientation. The morphology of the tungsten oxide films deposited at different negative bias voltages is consisted of fine nanoscale grains. The grains grow up and conjunct with each other after annealing. The tungsten oxide films deposited at higher negative bias voltages after annealing show non-uniform special morphology. Substoichiometric tungsten oxide films were formed as evidenced by XPS spectra of W4f and O1s. As a result, semi-transparent films were obtained in the visible range for all films deposited at different negative bias voltages.

  1. Imaging Young Stellar Objects with VLTi/PIONIER

    NASA Astrophysics Data System (ADS)

    Kluska, J.; Malbet, F.; Berger, J.-P.; Benisty, M.; Lazareff, B.; Le Bouquin, J.-B.; Baron, F.; Dominik, C.; Isella, A.; Juhasz, A.; Kraus, S.; Lachaume, R.; Ménard, F.; Millan-Gabet, R.; Monnier, J.; Pinte, C.; Soulez, F.; Tallon, M.; Thi, W.-F.; Thiébaut, É.; Zins, G.

    2014-04-01

    Optical interferometry imaging is designed to help us to reveal complex astronomical sources without a prior model. Among these complex objects are the young stars and their environments, which have a typical morphology with a point-like source, surrounded by circumstellar material with unknown morphology. To image them, we have developed a numerical method that removes completely the stellar point source and reconstructs the rest of the image, using the differences in the spectral behavior between the star and its circumstellar material. We aim to reveal the first Astronomical Units of these objects where many physical phenomena could interplay: the dust sublimation causing a puffed-up inner rim, a dusty halo, a dusty wind or an inner gaseous component. To investigate more deeply these regions, we carried out the first Large Program survey of HAeBe stars with two main goals: statistics on the geometry of these objects at the first astronomical unit scale and imaging their very close environment. The images reveal the environment, which is not polluted by the star and allows us to derive the best fit for the flux ratio and the spectral slope. We present the first images from this survey and the application of the imaging method on other astronomical objects.

  2. Multipulse nanosecond laser irradiation of silicon for the investigation of surface morphology and photoelectric properties

    NASA Astrophysics Data System (ADS)

    Sardar, Maryam; Chen, Jun; Ullah, Zaka; Jelani, Mohsan; Tabassum, Aasma; Cheng, Ju; Sun, Yuxiang; Lu, Jian

    2017-12-01

    We irradiate the single crystal boron-doped silicon (Si) with different number of laser pulses at constant fluence (7.5 J cm-2) in ambient air using Nd:YAG laser and examine its surface morphology and photoelectric properties in details. The results obtained from optical micrographs reveal the increase in heat affected zone (HAZ) and melted area of laser irradiated Si with increasing number of laser pulses. The SEM micrographs evidence the formation of various surface morphologies like laser induced periodic surface structures, crater, microcracks, clusters, cavities, pores, trapped bubbles, nucleation sites, micro-bumps, redeposited material and micro- and nano-particles on the surface of irradiated Si. The surface profilometry analysis informs that the depth of crater is increased with increase in number of incident laser pulses. The spectroscopic ellipsometry reveals that the multipulse irradiation of Si changes its optical properties (refractive index and extinction coefficient). The current-voltage (I-V) characteristic curves of laser irradiated Si show that although the multipulse laser irradiation produces considerable number of surface defects and damages, the electrical properties of Si are well sustained after the multipulse irradiation. The current findings suggest that the multipulse irradiation can be an effective way to tune the optical properties of Si for the fabrication of wide range of optoelectronic devices.

  3. Low Genetic Diversity and High Invasion Success of Corbicula fluminea (Bivalvia, Corbiculidae) (Müller, 1774) in Portugal

    PubMed Central

    Gomes, Cidália; Sousa, Ronaldo; Mendes, Tito; Borges, Rui; Vilares, Pedro; Vasconcelos, Vitor; Guilhermino, Lúcia; Antunes, Agostinho

    2016-01-01

    The Asian clam, Corbicula fluminea, is an invasive alien species (IAS) originally from Asia that has spread worldwide causing major ecological and economic impacts in aquatic ecosystems. Here, we evaluated C. fluminea genetic (using COI mtDNA, CYTb mtDNA and 18S rDNA gene markers), morphometric and sperm morphology variation in Portuguese freshwater ecosystems. The COI marker revealed a single haplotype, which belongs to the Asian FW5 invasive lineage, suggesting a common origin for all the 13 Portuguese C. fluminea populations analysed. Morphometric analyses showed differences between the populations colonizing the North (with the exception of the Lima River) and the Centre/South ecosystems. The sperm morphology examination revealed the presence of biflagellate sperm, a distinctive character of the invasive androgenetic lineages. The low genetic variability of the Portuguese C. fluminea populations and the pattern of sperm morphology have been illuminating for understanding the demographic history of this invasive species. We hypothesize that these populations were derived from a unique introductory event of a Corbicula fluminea FW5 invasive androgenic lineage in the Tejo River, which subsequently dispersed to other Portuguese freshwater ecosystems. The C. fluminea asexual reproductive mode may have assisted these populations to become highly invasive despite the low genetic diversity. PMID:27391333

  4. First experimental observations on melting and chemical modification of volcanic ash during lightning interaction.

    PubMed

    Mueller, S P; Helo, C; Keller, F; Taddeucci, J; Castro, J M

    2018-01-23

    Electrification in volcanic ash plumes often leads to syn-eruptive lightning discharges. High temperatures in and around lightning plasma channels have the potential to chemically alter, re-melt, and possibly volatilize ash fragments in the eruption cloud. In this study, we experimentally simulate temperature conditions of volcanic lightning in the laboratory, and systematically investigate the effects of rapid melting on the morphology and chemical composition of ash. Samples of different size and composition are ejected towards an artificially generated electrical arc. Post-experiment ash morphologies include fully melted spheres, partially melted particles, agglomerates, and vesiculated particles. High-speed imaging reveals various processes occurring during the short lightning-ash interactions, such as particle melting and rounding, foaming, and explosive particle fragmentation. Chemical analyses of the flash-melted particles reveal considerable bulk loss of Cl, S, P and Na through thermal vaporization. Element distribution patterns suggest convection as a key process of element transport from the interior of the melt droplet to rim where volatiles are lost. Modeling the degree of sodium loss delivers maximum melt temperatures between 3290 and 3490 K. Our results imply that natural lighting strikes may be an important agent of syn-eruptive morphological and chemical processing of volcanic ash.

  5. Morphological and molecular diversity and phylogenetic relationships among anuran trypanosomes from the Amazonia, Atlantic Forest and Pantanal biomes in Brazil.

    PubMed

    Ferreira, R C; Campaner, M; Viola, L B; Takata, C S A; Takeda, G F; Teixeira, M M G

    2007-10-01

    We examined for the presence of trypanosomes in blood samples from 259 anurans (47 species from 8 families), the majority of which were from the Brazilian Amazonia, Atlantic Forest and Pantanal biomes. Trypanosomes were detected by a combination of microhaematocrit and haemoculture methods in 45% of the anurans, and 87 cultures were obtained: 44 from Hylidae, 22 from Leptodactylidae, 15 from Bufonidae, 5 from Leiuperidae and 1 from an unidentified anuran. High morphological diversity (11 morphotypes) was observed among blood trypanosomes from anurans of different species and of the same species as well as among trypanosomes from the same individual. Conversely, morphologically similar trypanosomes were found in anurans from distinct species and biomes. ITS and SSU rDNA polymorphisms revealed high diversity among the 82 isolates examined. Twenty-nine genotypes could be distinguished, the majority distributed in 11 groups. Phylogenetic relationships based on rDNA sequences indicated that isolates from more phylogenetically related anurans are more closely related. Comparison of anuran trypanosomes from Brazil and other countries revealed several new species among the isolates examined in this study. Phylogenetic relationships suggest that host restriction, host switching and overall ecogeographical structure may have played a role in the evolution of the anuran trypanosomes.

  6. Ice as a Green-Structure-Directing Agent in the Synthesis of Macroporous MWCNTs and Chondroitin Sulphate Composites.

    PubMed

    Nardecchia, Stefania; Serrano, María Concepción; García-Argüelles, Sara; Maia Da Costa, Marcelo E H; Ferrer, María Luisa; Gutiérrez, María C

    2017-03-28

    The incorporation of multi-walled carbon nanotubes (MWCNTs) into chondroitin sulphate-based scaffolds and the effect on the structural, mechanical, conductive, and thermal properties of the resulting scaffolds is investigated. Three-dimensional hierarchical materials are prepared upon the application of the ice segregation-induced self-assembly (ISISA) process. The use of ice as structure-directing agents avoids chemicals typically used for this purpose (e.g., surfactants, block copolymers, etc.), hence, emphasising the green features of this soft-templating approach. We determine the critical parameters that control the morphology of the scaffolds formed upon ice-templating (i.e., MWCNTs type, freezing conditions, polymer and MWCNT concentration). MWCNTs are surface functionalized by acidic treatment. MWCNT functionalization is characterized by Raman, Fourier transfer infrared (FTIR) and X-ray Photoelectron (XPS) spectroscopies. Scanning electron microscopy (SEM) analysis and porosity studies reveal that MWCNT content modifies the morphology of the macroporous structure, which decreases by increasing MWCNT concentration. Differences in scaffold morphology should be translated into their conductivity and mechanical properties. As a general trend, the Young's modulus and the electrical conductivity of the scaffolds increase with the MWCNT content. Preliminary biocompatibility tests with human osteoblast-like cells also reveal the capability of these structures to support cell growth.

  7. Ice as a Green-Structure-Directing Agent in the Synthesis of Macroporous MWCNTs and Chondroitin Sulphate Composites

    PubMed Central

    Nardecchia, Stefania; Serrano, María Concepción; García-Argüelles, Sara; Maia Da Costa, Marcelo E. H.; Ferrer, María Luisa; Gutiérrez, María C.

    2017-01-01

    The incorporation of multi-walled carbon nanotubes (MWCNTs) into chondroitin sulphate-based scaffolds and the effect on the structural, mechanical, conductive, and thermal properties of the resulting scaffolds is investigated. Three-dimensional hierarchical materials are prepared upon the application of the ice segregation-induced self-assembly (ISISA) process. The use of ice as structure-directing agents avoids chemicals typically used for this purpose (e.g., surfactants, block copolymers, etc.), hence, emphasising the green features of this soft-templating approach. We determine the critical parameters that control the morphology of the scaffolds formed upon ice-templating (i.e., MWCNTs type, freezing conditions, polymer and MWCNT concentration). MWCNTs are surface functionalized by acidic treatment. MWCNT functionalization is characterized by Raman, Fourier transfer infrared (FTIR) and X-ray Photoelectron (XPS) spectroscopies. Scanning electron microscopy (SEM) analysis and porosity studies reveal that MWCNT content modifies the morphology of the macroporous structure, which decreases by increasing MWCNT concentration. Differences in scaffold morphology should be translated into their conductivity and mechanical properties. As a general trend, the Young’s modulus and the electrical conductivity of the scaffolds increase with the MWCNT content. Preliminary biocompatibility tests with human osteoblast-like cells also reveal the capability of these structures to support cell growth. PMID:28772715

  8. THE X-SHAPED BULGE OF THE MILKY WAY REVEALED BY WISE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ness, Melissa; Lang, Dustin, E-mail: ness@mpia-hd.mpg.de

    2016-07-01

    The Milky Way bulge has a boxy/peanut morphology and an X-shaped structure. This X-shape has been revealed by the “split in the red clump” from star counts along the line of sight toward the bulge, measured from photometric surveys. This boxy, X-shaped bulge morphology is not unique to the Milky Way and such bulges are observed in other barred spiral galaxies. N -body simulations show that boxy and X-shaped bulges are formed from the disk via dynamical instabilities. It has also been proposed that the Milky Way bulge is not X-shaped, but rather, the apparent split in the red clumpmore » stars is a consequence of different stellar populations, in an old classical spheroidal bulge. We present a Wide-Field Infrared Survey Explorer ( WISE ) image of the Milky Way bulge, produced by downsampling the publicly available “unWISE” coadds. The WISE image of the Milky Way bulge shows that the X-shaped nature of the Milky Way bulge is self-evident and irrefutable. The X-shape morphology of the bulge in itself and the fraction of bulge stars that comprise orbits within this structure has important implications for the formation history of the Milky Way, and, given the ubiquity of boxy X-shaped bulges, spiral galaxies in general.« less

  9. Systematics of marine brown alga Sargassum from Thailand: A preliminary study based on morphological data and nuclear ribosomal internal transcribed spacer 2 (ITS2) sequences

    NASA Astrophysics Data System (ADS)

    Kantachumpoo, Attachai; Uwai, Shinya; Noiraksar, Thidarat; Komatsu, Teruhisa

    2015-06-01

    The marine brown algal genus Sargassum has been investigated extensively based on genetic information. In this report, we performed the first comparative study of morphological and molecular data among common species of Sargassum found in Thailand and explored the phylogenetic diversity within the genus. Our results revealed an incongruent pattern for species classification in Thai Sargassum. Morphologically, our Sargassum specimens were distinguishable and represented 8 species, namely, S. aquifolium (Turner) C.Agardh, Sargassum baccularia (Mertens) C. Agardh, S. cinereum J. Agardh, S. ilicifolium (Turner) C.Agardh, S. oligocystum Montagne, S. plagiophyllum C. Agardh, S. polycystum C. Agardh and S. swartzii (Turuner) C. Agardh. In contrast, using three different methods, phylogenetic analysis of nuclear ribosomal internal transcribed spacer 2 (ITS2) revealed six distinct clades, including S. baccularia/ S. oligosyntum clade, S. aquifolium/ S. swartzii clade, S. cinereum clade, S. aquifolium/ S. ilicifolium clade, S. polycystum clade, and S. plagiophyllum clade, which was suggestive of a phenotypic plasticity species complex. Our molecular data also confirmed the paraphyletic relationship in the section Binderianae and suggested that this section requires reassessment. Overall, further studies are required to increase our understanding of the taxonomy, phylogenetic relationships and species boundaries among Sargassum species in Thailand.

  10. Facile morphology-controlled synthesis and luminescence properties of BaMoO4:Eu3+ microparticles and micro-rods obtained by a molten-salt reaction route.

    PubMed

    Xia, Zhiguo; Jin, Shuai; Sun, Jiayue; Du, Haiyan; Du, Peng; Liao, Libing

    2011-11-01

    This work focuses on the synthesis of morphology-controlled BaMoO4:Eu3+ micro-crystals such as microparticles and micro-rods using a facile molten salt method, and their morphology, structural characterization, and luminescent properties were comparatively investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and fluorescence spectra. The molten salt method synthesized products from a reaction of BaMoO4 precursor obtained by a co-precipitation method of BaCl2 and Na2MoO4 with an eutectic salt mixture of NaCl-KCl at 700 degrees C. Detailed studies revealed that the formation of the different morphologies of the micro-crystals was strongly dependent on the weight ratio of the salt (NaCl-KCl) to the BaMoO4 precursor, and the formation mechanism of the products in the present molten salt system was also investigated. Based on the investigations of the photoluminescence properties, the samples with different morphologies prepared by the molten salt method had the strongest red emission at 615 nm, corresponding to the Eu3+ 5D0-7F2 transition in the BaMoO4 host lattice, and the emission intensity of BaMoO4:Eu3+ microparticles was stronger than that of BaMoO4:Eu3+ micro-rods.

  11. Genetic, Ecological and Morphological Divergence between Populations of the Endangered Mexican Sheartail Hummingbird (Doricha eliza)

    PubMed Central

    Licona-Vera, Yuyini; Ornelas, Juan Francisco

    2014-01-01

    The Mexican Sheartail (Doricha eliza), an endangered hummingbird, is endemic to Mexico where two populations have a disjunct distribution. One population is distributed along the northern tip of the Yucatan Peninsula whereas the other is mostly restricted to central Veracruz. Despite their disjunct distribution, previous work has failed to detect morphological or behavioral differences between these populations. Here we use variation in morphology, mtDNA and nuDNA sequences to determine the degree of morphological and molecular divergence between populations, their divergence time, and historical demography. We use species distribution modeling and niche divergence tests to infer the relative roles of vicariance and dispersal in driving divergence in the genus. Our Bayesian and maximum likelihood phylogenetic analyses revealed that Doricha eliza populations form a monophyletic clade and support their sister relationship with D. enicura. We found marked genetic differentiation, with reciprocal monophyly of haplotypes and highly restricted gene flow, supporting a history of isolation over the last 120,000 years. Genetic divergence between populations is consistent with the lack of overlap in environmental space and slight morphological differences between males. Our findings indicate that the divergence of the Veracruz and Yucatan populations is best explained by a combination of a short period of isolation exacerbated by subsequent divergence in climate conditions, and that rather than vicariance, the two isolated ranges of D. eliza are the product of recent colonization and divergence in isolation. PMID:24992589

  12. A Combination of Ex vivo Diffusion MRI and Multiphoton to Study Microglia/Monocytes Alterations after Spinal Cord Injury

    PubMed Central

    Noristani, Harun N.; Boukhaddaoui, Hassan; Saint-Martin, Guillaume; Auzer, Pauline; Sidiboulenouar, Rahima; Lonjon, Nicolas; Alibert, Eric; Tricaud, Nicolas; Goze-Bac, Christophe; Coillot, Christophe; Perrin, Florence E.

    2017-01-01

    Central nervous system (CNS) injury has been observed to lead to microglia activation and monocytes infiltration at the lesion site. Ex vivo diffusion magnetic resonance imaging (diffusion MRI or DWI) allows detailed examination of CNS tissues, and recent advances in clearing procedures allow detailed imaging of fluorescent-labeled cells at high resolution. No study has yet combined ex vivo diffusion MRI and clearing procedures to establish a possible link between microglia/monocytes response and diffusion coefficient in the context of spinal cord injury (SCI). We carried out ex vivo MRI of the spinal cord at different time-points after spinal cord transection followed by tetrahydrofuran based clearing and examined the density and morphology of microglia/monocytes using two-photon microscopy. Quantitative analysis revealed an early marked increase in microglial/monocytes density that is associated with an increase in the extension of the lesion measured using diffusion MRI. Morphological examination of microglia/monocytes somata at the lesion site revealed a significant increase in their surface area and volume as early as 72 hours post-injury. Time-course analysis showed differential microglial/monocytes response rostral and caudal to the lesion site. Microglia/monocytes showed a decrease in reactivity over time caudal to the lesion site, but an increase was observed rostrally. Direct comparison of microglia/monocytes morphology, obtained through multiphoton, and the longitudinal apparent diffusion coefficient (ADC), measured with diffusion MRI, highlighted that axonal integrity does not correlate with the density of microglia/monocytes or their somata morphology. We emphasize that differential microglial/monocytes reactivity rostral and caudal to the lesion site may thus coincide, at least partially, with reported temporal differences in debris clearance. Our study demonstrates that the combination of ex vivo diffusion MRI and two-photon microscopy may be used to follow structural tissue alteration. Lesion extension coincides with microglia/monocytes density; however, a direct relationship between ADC and microglia/monocytes density and morphology was not observed. We highlighted a differential rostro-caudal microglia/monocytes reactivity that may correspond to a temporal difference in debris clearance and axonal integrity. Thus, potential therapeutic strategies targeting microglia/monocytes after SCI may need to be adjusted not only with the time after injury but also relative to the location to the lesion site. PMID:28769787

  13. Morphologic changes in the mesolimbic pathway in Parkinson's disease motor subtypes.

    PubMed

    Nyberg, Eric M; Tanabe, Jody; Honce, Justin M; Krmpotich, Theodore; Shelton, Erika; Hedeman, Jessica; Berman, Brian D

    2015-05-01

    Parkinson's disease (PD) is a common neurodegenerative disorder associated with gray matter atrophy. Cortical atrophy patterns may further help distinguish between PD motor subtypes. Comparable differences in subcortical volumes have not been found. Twenty-one cognitively intact and treated PD patients, including 12 tremor dominant (TD) subtype, Nine postural instability gait dominant (PIGD) subtype, and 20 matched healthy control subjects underwent 3.0 T high-resolution structural MRI scanning. Subcortical volumetric analysis was performed using FreeSurfer and shape analysis was performed with FIRST to assess for differences between PD patients and controls and between PD subtypes. No significant differences in subcortical volumes were found between motor PD subtypes, but comparing grouped PD patients with controls revealed a significant increase in hippocampal volume in PD patients (p = 0.03). A significant shape difference was detected in the right nucleus accumbens (NAcc) between PD and controls and between motor subtypes. Shape differences were driven by positive deviations in the TD subtype. Correlation analysis revealed a trend between hippocampal volume and decreasing MDS-UPDRS (p = 0.06). While no significant differences in subcortical volumes between PD motor subtypes were found, increased hippocampal volumes were observed in PD patients compared to controls. Right NAcc shape differences in PD patients were driven by changes in the TD subtype. These unexpected findings may be related to the effects of chronic dopaminergic replacement on the mesolimbic pathway. Further studies are needed to replicate and determine the clinical significance of such morphologic changes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Molecular and morphological data reveal three new cryptic species of Chiasmocleis (Mehely 1904) (Anura, Microhylidae) endemic to the Atlantic Forest, Brazil

    PubMed Central

    Forlani, Mauricio C.; Cruz, Carlos A.G.; Zaher, Hussam

    2017-01-01

    Three new cryptic species of Chiasmocleis from the Atlantic Forest of Brazil are described. Two of these species occur in the northeastern states of Sergipe and Bahia, whereas the third species is found in the southeastern state of São Paulo. The new species can be distinguished from other congeneric species by the molecular data, as evidenced in the phylogeny, and by a combination of morphological characters including: size, foot webbing, dermal spines, and coloration patterns. Chiasmocleis species differ in osteological traits, therefore we also provide an osteological description of each new species and comparsions with data reported for other species in the genus. PMID:28243531

  15. Cryopreservation of coconut (Cocos nucifera L.) zygotic embryos does not induce morphological, cytological or molecular changes in recovered seedlings.

    PubMed

    Sisunandar; Rival, Alain; Turquay, Patricia; Samosir, Yohannes; Adkins, Steve W

    2010-07-01

    The present study aimed at exploring the fidelity of coconut (Cocos nucifera L.) plants recovered from cryopreservation. Zygotic embryos from various different cultivars were cryopreserved following four successive steps, namely: rapid dehydration, rapid freezing, rapid thawing and in vitro recovery followed by acclimatization. At the end of the acclimatization period, the seedlings were compared to counterparts of the same age, which were produced from non-cryopreserved embryos. Both series were submitted to morphological, cytological and molecular comparisons. No significant differences in terms of growth rates could be measured. In addition, no morphological variation could be detected through the measurement of shoot elongation rates, production of opened leaves, and the number and total length of primary roots. Karyotype analysis revealed the same chromosome number (2n = 32) in all studied cultivars independently of cryopreservation. No significant differences could be observed between control and cryopreserved material concerning the type of chromosomes, the length of the long and short arms, the arm length ratio and the centromeric index. However, idiogram analysis did show a greater number of black banding on chromosomes isolated from cryopreserved material. Genetic and epigenetic fidelity was assessed through microsatellite (SSR) analysis and global DNA methylation rates; no significant differences would be observed between genomic DNAs isolated from seedlings originating from cryopreserved embryos and respective controls. In conclusion, our results suggest that the method of cryopreservation under study did not induce gross morphological, genetic or epigenetic changes, thus suggesting that it is an appropriate method to efficiently preserve coconut germplasm.

  16. Corallite skeletal morphological variation in Hawaiian Porites lobata

    NASA Astrophysics Data System (ADS)

    Tisthammer, Kaho H.; Richmond, Robert H.

    2018-06-01

    Due to their high morphological plasticity and complex evolutionary history, the species boundaries of many reef-building corals are poorly understood. The skeletal structures of corals have traditionally been used for species identification, but these structures can be highly variable, and currently we lack knowledge regarding the extent of morphological variation within species. Porites species are notorious for their taxonomic difficulties, both morphologically and genetically, and currently there are several unresolved species complexes in the Pacific. Despite its ubiquitous presence and broad use in coral research, Porites lobata belongs to one such unresolved species complex. To understand the degree of intraspecific variation in skeletal morphology, 120 corallites from the Hawaiian P. lobata were examined. A subset of samples from two genetically differentiated populations from contrasting high- and low-stress environments in Maunalua Bay, Hawaii, were then quantitatively analyzed using multivariate morphometrics. Our observations revealed high intraspecific variation in corallite morphology, as well as significant morphological differences between the two populations of P. lobata. Additionally, significant correlation was found between the morphological and genetic distances calculated from approximately 18,000 loci generated from restriction site-associated DNA sequencing. The unique morphological characters observed from the genetically differentiated population under environmental stress suggest that these characters may have adaptive values, but how such traits relate to fitness and how much plasticity they can exhibit remain to be determined by future studies. Relatively simple morphometric analyses used in our study can be useful in clarifying the existing ambiguity in skeletal architecture, thus contributing to resolving species issues in corals.

  17. The Relation of Morphological Awareness and Syntactic Awareness to Adults' Reading Comprehension: Is Vocabulary Knowledge a Mediating Variable?

    ERIC Educational Resources Information Center

    Guo, Ying; Roehrig, Alysia D.; Williams, Rihana S.

    2011-01-01

    The authors' goal was to examine the structural relationships among vocabulary knowledge, morphological awareness, syntactic awareness, and reading comprehension in English-speaking adults. Structural equation analysis of data collected from 151 participants revealed that morphological awareness affected reading comprehension directly. Syntactic…

  18. Seafloor morphology in the different domains of the Calabrian Arc subduction complex - Ionian Sea

    NASA Astrophysics Data System (ADS)

    Riminucci, F.; Polonia, A.; Torelli, L.; Mussoni, P.

    2010-05-01

    The Calabrian Arc (CA) is a subduction system that develops along the African-Eurasian plate boundary in the Ionian Sea and connects the E-W trending Sicilian Maghrebian belt with the NW-SE trending Southern Apennines. The first systematic geophysical investigation in the offshore region of the CA was conducted during the 70's by the Institute of Marine Geology (now ISMAR) with the R/V 'Bannock' [1]. In the last 30 years, further geophysical data (high penetration multichannel seismics, CHIRP and multibeam data) has been acquired in the offshore of the CA, down to the Ionian Abyssal Plain. The integrated interpretation of the existing geophysical data [2] has outlined the regional architecture of the subduction complex, the main tectonic features absorbing plate motion and variation of seafloor morphology in the different structural domains. Pre-stack depth migrated seismic profiles has revealed that the accretionary complex is constituted by two distinct wedges whose geometry, structural style and seafloor morphology widely vary. The outermost accretionary wedge has been emplaced in post-messinian times. It is a salt-bearing complex as pointed out by the internal structure of the wedge (acoustically transparent assemblage), very low taper angle and high seismic velocities. The seafloor shows a rough morphology, short wavelength folds and depressions superimposed on a rather constant gentle regional slope. Landward of the outer wedge, the evaporites are no longer present and the transition to the clastic rock assemblage is reflected in a different structural architecture, which shows steeper slopes and a succession of topographic scarps separated by sedimentary basins and mid slope terraces. The topographic scarps are controlled in depth by a series of high angle landward dipping reflectors, that we interpreted as out of sequence thrust faults absorbing shortening at the rear of the wedge. Landward of the inner wedge a mid slope terrace develops (inner plateau) between 1300 and 1600 m water depth. It is a relatively flat area of variable width ranging from 10 to 50 Km, represented by the forearc basin and the innermost accretionary wedge. Seafloor morphology is related to small undulation of the seafloor. A thick section of Plio-Quaternary and Messinian sediments is present below the flat terrace. Sediments appear to be folded and, in some regions highly disrupted along local sub-circular structures that affect the seafloor morphology as well. Geometry and seismic facies of these sub-circular swells rising from the surrounding suggest they are diapiric structures. Variation of seafloor morphology is strictly related to the progression of structural domains within the Calabrian Arc subduction complex. The integrated analysis of seafloor morphology and structural style through an integrated approach involving the interpretation of seismic data at different scales has been carried out in order to outline relationships between shallow tectonic processes and deep structures. Moreover, the analysis of morphobathymetric and seismic data, combined with well targeted sediment samples has the potential to reveal relationships between tectonics, sedimentation and fluid flow in the different portions of the accretionary wedge. References: 1 - Rossi S., Sartori R. 1981. A seismic reflection study of the External Calabrian Arc in the Northern Ionian Sea (Eastern Mediterranean). Marine Geoph. Res., 4, 403-426. 2 - Polonia A. et al., The Calabrian Arc subduction complex: plate convergence, active faults, and mud diapirism. New results from the CALAMARE-2008 cruise (N/R CNR Urania). Submitted to G3.

  19. Quantitative morphometrical characterization of human pronuclear zygotes.

    PubMed

    Beuchat, A; Thévenaz, P; Unser, M; Ebner, T; Senn, A; Urner, F; Germond, M; Sorzano, C O S

    2008-09-01

    Identification of embryos with high implantation potential remains a challenge in in vitro fertilization (IVF). Subjective pronuclear (PN) zygote scoring systems have been developed for that purpose. The aim of this work was to provide a software tool that enables objective measuring of morphological characteristics of the human PN zygote. A computer program was created to analyse zygote images semi-automatically, providing precise morphological measurements. The accuracy of this approach was first validated by comparing zygotes from two different IVF centres with computer-assisted measurements or subjective scoring. Computer-assisted measurement and subjective scoring were then compared for their ability to classify zygotes with high and low implantation probability by using a linear discriminant analysis. Zygote images coming from the two IVF centres were analysed with the software, resulting in a series of precise measurements of 24 variables. Using subjective scoring, the cytoplasmic halo was the only feature which was significantly different between the two IVF centres. Computer-assisted measurements revealed significant differences between centres in PN centring, PN proximity, cytoplasmic halo and features related to nucleolar precursor bodies distribution. The zygote classification error achieved with the computer-assisted measurements (0.363) was slightly inferior to that of the subjective ones (0.393). A precise and objective characterization of the morphology of human PN zygotes can be achieved by the use of an advanced image analysis tool. This computer-assisted analysis allows for a better morphological characterization of human zygotes and can be used for classification.

  20. Degradation of Methylammonium Lead Iodide Perovskite Structures through Light and Electron Beam Driven Ion Migration

    PubMed Central

    2016-01-01

    Organometal halide perovskites show promising features for cost-effective application in photovoltaics. The material instability remains a major obstacle to broad application because of the poorly understood degradation pathways. Here, we apply simultaneous luminescence and electron microscopy on perovskites for the first time, allowing us to monitor in situ morphology evolution and optical properties upon perovskite degradation. Interestingly, morphology, photoluminescence (PL), and cathodoluminescence of perovskite samples evolve differently upon degradation driven by electron beam (e-beam) or by light. A transversal electric current generated by a scanning electron beam leads to dramatic changes in PL and tunes the energy band gaps continuously alongside film thinning. In contrast, light-induced degradation results in material decomposition to scattered particles and shows little PL spectral shifts. The differences in degradation can be ascribed to different electric currents that drive ion migration. Moreover, solution-processed perovskite cuboids show heterogeneity in stability which is likely related to crystallinity and morphology. Our results reveal the essential role of ion migration in perovskite degradation and provide potential avenues to rationally enhance the stability of perovskite materials by reducing ion migration while improving morphology and crystallinity. It is worth noting that even moderate e-beam currents (86 pA) and acceleration voltages (10 kV) readily induce significant perovskite degradation and alter their optical properties. Therefore, attention has to be paid while characterizing such materials using scanning electron microscopy or transmission electron microscopy techniques. PMID:26804213

  1. The microgeographical patterns of morphological and molecular variation of a mixed ploidy population in the species complex Actinidia chinensis.

    PubMed

    Liu, Yifei; Li, Dawei; Yan, Ling; Huang, Hongwen

    2015-01-01

    Polyploidy and hybridization are thought to have significant impacts on both the evolution and diversification of the genus Actinidia, but the structure and patterns of morphology and molecular diversity relating to ploidy variation of wild Actinidia plants remain much less understood. Here, we examine the distribution of morphological variation and ploidy levels along geographic and environmental variables of a large mixed-ploidy population of the A. chinensis species complex. We then characterize the extent of both genetic and epigenetic diversity and differentiation exhibited between individuals of different ploidy levels. Our results showed that while there are three ploidy levels in this population, hexaploids were constituted the majority (70.3%). Individuals with different ploidy levels were microgeographically structured in relation to elevation and extent of niche disturbance. The morphological characters examined revealed clear difference between diploids and hexaploids, however tetraploids exhibited intermediate forms. Both genetic and epigenetic diversity were high but the differentiation among cytotypes was weak, suggesting extensive gene flow and/or shared ancestral variation occurred in this population even across ploidy levels. Epigenetic variation was clearly correlated with changes in altitudes, a trend of continuous genetic variation and gradual increase of epigenomic heterogeneities of individuals was also observed. Our results show that complex interactions between the locally microgeographical environment, ploidy and gene flow impact A. chinensis genetic and epigenetic variation. We posit that an increase in ploidy does not broaden the species habitat range, but rather permits A. chinensis adaptation to specific niches.

  2. Role of Intramolecular Aromatic π-π Interactions in the Self-Assembly of Di-l-Phenylalanine Dipeptide Driven by Intermolecular Interactions: Effect of Alanine Substitution.

    PubMed

    Reddy, Samala Murali Mohan; Shanmugam, Ganesh

    2016-09-19

    Although the role of intermolecular aromatic π-π interactions in the self-assembly of di-l-phenylalanine (l-Phe-l-Phe, FF), a peptide that is known for hierarchical structure, is well established, the influence of intramolecular π-π interactions on the morphology of the self-assembled structure of FF has not been studied. Herein, the role of intramolecular aromatic π-π interactions is investigated for FF and analogous alanine (Ala)-containing dipeptides, namely, l-Phe-l-Ala (FA) and l-Ala-l-Phe (AF). The results reveal that these dipeptides not only form self-assemblies, but also exhibit remarkable differences in structural morphology. The morphological differences between FF and the analogues indicate the importance of intramolecular π-π interactions, and the structural difference between FA and AF demonstrates the crucial role of the nature of intramolecular side-chain interactions (aromatic-aliphatic or aliphatic-aromatic), in addition to intermolecular interactions, in deciding the final morphology of the self-assembled structure. The current results emphasise that intramolecular aromatic π-π interaction may not be essential to induce self-assembly in smaller peptides, and π (aromatic)-alkyl or alkyl-π (aromatic) interactions may be sufficient. This work also illustrates the versatility of aromatic and a combination of aromatic and aliphatic residues in dipeptides in the formation of structurally diverse self-assembled structures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Morphological identification and COI barcodes of adult flies help determine species identities of chironomid larvae (Diptera, Chironomidae).

    PubMed

    Failla, A J; Vasquez, A A; Hudson, P; Fujimoto, M; Ram, J L

    2016-02-01

    Establishing reliable methods for the identification of benthic chironomid communities is important due to their significant contribution to biomass, ecology and the aquatic food web. Immature larval specimens are more difficult to identify to species level by traditional morphological methods than their fully developed adult counterparts, and few keys are available to identify the larval species. In order to develop molecular criteria to identify species of chironomid larvae, larval and adult chironomids from Western Lake Erie were subjected to both molecular and morphological taxonomic analysis. Mitochondrial cytochrome c oxidase I (COI) barcode sequences of 33 adults that were identified to species level by morphological methods were grouped with COI sequences of 189 larvae in a neighbor-joining taxon-ID tree. Most of these larvae could be identified only to genus level by morphological taxonomy (only 22 of the 189 sequenced larvae could be identified to species level). The taxon-ID tree of larval sequences had 45 operational taxonomic units (OTUs, defined as clusters with >97% identity or individual sequences differing from nearest neighbors by >3%; supported by analysis of all larval pairwise differences), of which seven could be identified to species or 'species group' level by larval morphology. Reference sequences from the GenBank and BOLD databases assigned six larval OTUs with presumptive species level identifications and confirmed one previously assigned species level identification. Sequences from morphologically identified adults in the present study grouped with and further classified the identity of 13 larval OTUs. The use of morphological identification and subsequent DNA barcoding of adult chironomids proved to be beneficial in revealing possible species level identifications of larval specimens. Sequence data from this study also contribute to currently inadequate public databases relevant to the Great Lakes region, while the neighbor-joining analysis reported here describes the application and confirmation of a useful tool that can accelerate identification and bioassessment of chironomid communities.

  4. Morphological identification and COI barcodes of adult flies help determine species identities of chironomid larvae (Diptera, Chironomidae)

    USGS Publications Warehouse

    Failla, Andrew Joseph; Vasquez, Adrian Amelio; Hudson, Patrick L.; Fujimoto, Masanori; Ram, Jeffrey L.

    2016-01-01

    Establishing reliable methods for the identification of benthic chironomid communities is important due to their significant contribution to biomass, ecology and the aquatic food web. Immature larval specimens are more difficult to identify to species level by traditional morphological methods than their fully developed adult counterparts, and few keys are available to identify the larval species. In order to develop molecular criteria to identify species of chironomid larvae, larval and adult chironomids from Western Lake Erie were subjected to both molecular and morphological taxonomic analysis. Mitochondrial cytochrome c oxidase I (COI) barcode sequences of 33 adults that were identified to species level by morphological methods were grouped with COI sequences of 189 larvae in a neighbor-joining taxon-ID tree. Most of these larvae could be identified only to genus level by morphological taxonomy (only 22 of the 189 sequenced larvae could be identified to species level). The taxon-ID tree of larval sequences had 45 operational taxonomic units (OTUs, defined as clusters with >97% identity or individual sequences differing from nearest neighbors by >3%; supported by analysis of all larval pairwise differences), of which seven could be identified to species or ‘species group’ level by larval morphology. Reference sequences from the GenBank and BOLD databases assigned six larval OTUs with presumptive species level identifications and confirmed one previously assigned species level identification. Sequences from morphologically identified adults in the present study grouped with and further classified the identity of 13 larval OTUs. The use of morphological identification and subsequent DNA barcoding of adult chironomids proved to be beneficial in revealing possible species level identifications of larval specimens. Sequence data from this study also contribute to currently inadequate public databases relevant to the Great Lakes region, while the neighbor-joining analysis reported here describes the application and confirmation of a useful tool that can accelerate identification and bioassesment of chironomid communities.

  5. Mandibular molar root morphology in Neanderthals and Late Pleistocene and recent Homo sapiens.

    PubMed

    Kupczik, Kornelius; Hublin, Jean-Jacques

    2010-11-01

    Neanderthals have a distinctive suite of dental features, including large anterior crown and root dimensions and molars with enlarged pulp cavities. Yet, there is little known about variation in molar root morphology in Neanderthals and other recent and fossil members of Homo. Here, we provide the first comprehensive metric analysis of permanent mandibular molar root morphology in Middle and Late Pleistocene Homo neanderthalensis, and Late Pleistocene (Aterian) and recent Homo sapiens. We specifically address the question of whether root form can be used to distinguish between these groups and assess whether any variation in root form can be related to differences in tooth function. We apply a microtomographic imaging approach to visualise and quantify the external and internal dental morphologies of both isolated molars and molars embedded in the mandible (n=127). Univariate and multivariate analyses reveal both similarities (root length and pulp volume) and differences (occurrence of pyramidal roots and dental tissue volume proportion) in molar root morphology among penecontemporaneous Neanderthals and Aterian H. sapiens. In contrast, the molars of recent H. sapiens are markedly smaller than both Pleistocene H. sapiens and Neanderthals, but share with the former the dentine volume reduction and a smaller root-to-crown volume compared with Neanderthals. Furthermore, we found the first molar to have the largest average root surface area in recent H. sapiens and Neanderthals, although in the latter the difference between M(1) and M(2) is small. In contrast, Aterian H. sapiens root surface areas peak at M(2). Since root surface area is linked to masticatory function, this suggests a distinct occlusal loading regime in Neanderthals compared with both recent and Pleistocene H. sapiens. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Lexicality, morphological structure, and semantic transparency in the processing of German ver-verbs: The complementarity of on-line and off-line evidence.

    PubMed

    Schirmeier, Matthias K; Derwing, Bruce L; Libben, Gary

    2004-01-01

    Two types of experiments investigate the visual on-line and off-line processing of German ver-verbs (e.g., verbittern 'to embitter'). In Experiments 1 and 2 (morphological priming), latency patterns revealed the existence of facilitation effects for the morphological conditions (BITTER-VERBITTERN and BITTERN-VERBITTERN) as compared to the neutral conditions (SAUBER-VERBITTERN and SAUBERN-VERBITTERN). In Experiments 3 and 4 (rating tasks) participants had to judge whether the target (VERBITTERN) "comes from," "contains a form of," or "contains the meaning of" the root (BITTER) or the root+en substring (BITTERN). Taken together, these studies revealed the combined influence of the three factors of lexicality (real word status), morphological structure, and semantic transparency.

  7. Rapid Production of Internally Structured Colloids by Flash Nanoprecipitation of Block Copolymer Blends.

    PubMed

    Grundy, Lorena S; Lee, Victoria E; Li, Nannan; Sosa, Chris; Mulhearn, William D; Liu, Rui; Register, Richard A; Nikoubashman, Arash; Prud'homme, Robert K; Panagiotopoulos, Athanassios Z; Priestley, Rodney D

    2018-05-08

    Colloids with internally structured geometries have shown great promise in applications ranging from biosensors to optics to drug delivery, where the internal particle structure is paramount to performance. The growing demand for such nanomaterials necessitates the development of a scalable processing platform for their production. Flash nanoprecipitation (FNP), a rapid and inherently scalable colloid precipitation technology, is used to prepare internally structured colloids from blends of block copolymers and homopolymers. As revealed by a combination of experiments and simulations, colloids prepared from different molecular weight diblock copolymers adopt either an ordered lamellar morphology consisting of concentric shells or a disordered lamellar morphology when chain dynamics are sufficiently slow to prevent defect annealing during solvent exchange. Blends of homopolymer and block copolymer in the feed stream generate more complex internally structured colloids, such as those with hierarchically structured Janus and patchy morphologies, due to additional phase separation and kinetic trapping effects. The ability of the FNP process to generate such a wide range of morphologies using a simple and scalable setup provides a pathway to manufacturing internally structured colloids on an industrial scale.

  8. Morphology and chemical composition of dentin in permanent first molars with the diagnose MIH.

    PubMed

    Heijs, Suzanne C B; Dietz, Wolfram; Norén, Jörgen G; Blanksma, Nynke G; Jälevik, Birgitta

    2007-01-01

    The purpose of this investigation was to study the morphology and distribution of some inorganic elements in dentin in first permanent molars from children with Molar-Incisor Hypomineralization (MIH). Sixty four tooth sections from thirty two children were examined in polarized light. Fifteen representative sections were selected for SEM/XRMA analysis; 5 were used for SEM analysis and 10 for XRMA analysis. No morphological changes in the dentin were revealed in polarized light microscopy (PLM). However, in all but two sections interglobular dentin was found. The SEM analyzes confirmed the findings of the PLM with no structural changes to be found in the dentin. The XRMA results showed a difference in the concentration of elements between dentin below normal and dentin below carious or hypomineralized enamel. Elements related to organic matter appeared with higher values in dentin below hypomineralized and carious enamel. The morphological and chemical findings in dentin below hypomineralized enamel imply that the odontoblasts are not affected in cases of MIH, but may be affected by hypocalcemia, reflected by the presence of interglobular dentin.

  9. Reversible electric-field manipulation of the adsorption morphology and magnetic anisotropy of small Fe and Co clusters on graphene

    NASA Astrophysics Data System (ADS)

    Tanveer, M.; Dorantes-Dávila, J.; Pastor, G. M.

    2017-12-01

    First-principles electronic calculations show how the adsorption morphology, orbital magnetism, and magnetic anisotropy energy (MAE) of small CoN and FeN clusters (N ≤3 ) on graphene (G) can be reversibly controlled under the action of an external electric field (EF). A variety of cluster-specific and EF-induced effects are revealed, including (i) perpendicular or canted adsorption configurations of the dimers and trimers, (ii) significant morphology-dependent permanent dipole moments and electric susceptibilities, (iii) EF-induced reversible transitions among the different metastable adsorption morphologies of Fe3 and Co3 on graphene, (iv) qualitative changes in the MAE landscape driven by structural changes, (v) colossal values of the magnetic anisotropy Δ E ≃45 meV per atom in Co2/G , (vi) EF-induced spin-reorientation transitions in Co3/G , and (vii) reversibly tunable coercive field and blocking temperatures, which in some cases allow a barrierless magnetization reversal of the cluster. These remarkable electric and magnetic fingerprints open new possibilities of characterizing and exploiting the size- and structural-dependent properties of magnetic nanostructures at surfaces.

  10. NEW EVIDENCE FOR MORPHOLOGICAL AND GENETIC VARIATION IN THE COSMOPOLITAN COCCOLITHOPHORE EMILIANIA HUXLEYI (PRYMNESIOPHYCEAE) FROM THE COX1b-ATP4 GENES(1).

    PubMed

    Hagino, Kyoko; Bendif, El Mahdi; Young, Jeremy R; Kogame, Kazuhiro; Probert, Ian; Takano, Yoshihito; Horiguchi, Takeo; de Vargas, Colomban; Okada, Hisatake

    2011-10-01

    Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler is a cosmopolitan coccolithophore occurring from tropical to subpolar waters and exhibiting variations in morphology of coccoliths possibly related to environmental conditions. We examined morphological characters of coccoliths and partial mitochondrial sequences of the cytochrome oxidase 1b (cox1b) through adenosine triphosphate synthase 4 (atp4) genes of 39 clonal E. huxleyi strains from the Atlantic and Pacific Oceans, Mediterranean Sea, and their adjacent seas. Based on the morphological study of culture strains by SEM, Type O, a new morphotype characterized by coccoliths with an open central area, was separated from existing morphotypes A, B, B/C, C, R, and var. corona, characterized by coccoliths with central area elements. Molecular phylogenetic studies revealed that E. huxleyi consists of at least two mitochondrial sequence groups with different temperature preferences/tolerances: a cool-water group occurring in subarctic North Atlantic and Pacific and a warm-water group occurring in the subtropical Atlantic and Pacific and in the Mediterranean Sea. © 2011 Phycological Society of America.

  11. Microbiota-Induced Changes in Drosophila melanogaster Host Gene Expression and Gut Morphology

    PubMed Central

    Buchon, Nicolas

    2014-01-01

    ABSTRACT To elucidate mechanisms underlying the complex relationships between a host and its microbiota, we used the genetically tractable model Drosophila melanogaster. Consistent with previous studies, the microbiota was simple in composition and diversity. However, analysis of single flies revealed high interfly variability that correlated with differences in feeding. To understand the effects of this simple and variable consortium, we compared the transcriptome of guts from conventionally reared flies to that for their axenically reared counterparts. Our analysis of two wild-type fly lines identified 121 up- and 31 downregulated genes. The majority of these genes were associated with immune responses, tissue homeostasis, gut physiology, and metabolism. By comparing the transcriptomes of young and old flies, we identified temporally responsive genes and showed that the overall impact of microbiota was greater in older flies. In addition, comparison of wild-type gene expression with that of an immune-deficient line revealed that 53% of upregulated genes exerted their effects through the immune deficiency (Imd) pathway. The genes included not only classic immune response genes but also those involved in signaling, gene expression, and metabolism, unveiling new and unexpected connections between immunity and other systems. Given these findings, we further characterized the effects of gut-associated microbes on gut morphology and epithelial architecture. The results showed that the microbiota affected gut morphology through their impacts on epithelial renewal rate, cellular spacing, and the composition of different cell types in the epithelium. Thus, while bacteria in the gut are highly variable, the influence of the microbiota at large has far-reaching effects on host physiology. PMID:24865556

  12. Unexplored Character Diversity in Onychophora (Velvet Worms): A Comparative Study of Three Peripatid Species

    PubMed Central

    Oliveira, Ivo de Sena; Franke, Franziska Anni; Hering, Lars; Schaffer, Stefan; Rowell, David M.; Weck-Heimann, Andreas; Monge-Nájera, Julián; Morera-Brenes, Bernal; Mayer, Georg

    2012-01-01

    Low character variation among onychophoran species has been an obstacle for taxonomic and phylogenetic studies in the past, however we have identified a number of new and informative characters using morphological, molecular, and chromosomal techniques. Our analyses involved a detailed examination of Epiperipatus biolleyi from Costa Rica, Eoperipatus sp. from Thailand, and a new onychophoran species and genus from Costa Rica, Principapillatus hitoyensis gen. et sp. nov.. Scanning electron microscopy on embryos and specimens of varying age revealed novel morphological characters and character states, including the distribution of different receptor types along the antennae, the arrangement and form of papillae on the head, body and legs, the presence and shape of interpedal structures and fields of modified scales on the ventral body surface, the arrangement of lips around the mouth, the number, position and structure of crural tubercles and anal gland openings, and the presence and shape of embryonic foot projections. Karyotypic analyses revealed differences in the number and size of chromosomes among the species studied. The results of our phylogenetic analyses using mitochondrial COI and 12S rRNA gene sequences are in line with morphological and karyotype data. However, our data show a large number of unexplored, albeit informative, characters in the Peripatidae. We suggest that analysing these characters in additional species would help unravel species diversity and phylogeny in the Onychophora, and that inconsistencies among most diagnostic features used for the peripatid genera in the literature could be addressed by identifying a suite of characters common to all peripatids. PMID:23284667

  13. Understanding Genetic Diversity and Population Structure of a Poa pratensis Worldwide Collection through Morphological, Nuclear and Chloroplast Diversity Analysis

    PubMed Central

    Russi, Luigi; Marconi, Gianpiero; Sharbel, Timothy F.; Veronesi, Fabio; Albertini, Emidio

    2015-01-01

    Poa pratensis L. is a forage and turf grass species well adapted to a wide range of mesic to moist habitats. Due to its genome complexity little is known regarding evolution, genome composition and intraspecific phylogenetic relationships of this species. In the present study we investigated the morphological and genetic diversity of 33 P. pratensis accessions from 23 different countries using both nuclear and chloroplast molecular markers as well as flow cytometry of somatic tissues. This with the aim of shedding light on the genetic diversity and phylogenetic relationships of the collection that includes both cultivated and wild materials. Morphological characterization showed that the most relevant traits able to distinguish cultivated from wild forms were spring growth habit and leaf colour. The genome size analysis revealed high variability both within and between accessions in both wild and cultivated materials. The sequence analysis of the trnL-F chloroplast region revealed a low polymorphism level that could be the result of the complex mode of reproduction of this species. In addition, a strong reduction of chloroplast SSR variability was detected in cultivated materials, where only two alleles were conserved out of the four present in wild accessions. Contrarily, at nuclear level, high variability exist in the collection where the analysis of 11 SSR loci allowed the detection of a total of 91 different alleles. A Bayesian analysis performed on nuclear SSR data revealed that studied materials belong to two main clusters. While wild materials are equally represented in both clusters, the domesticated forms are mostly belonging to cluster P2 which is characterized by lower genetic diversity compared to the cluster P1. In the Neighbour Joining tree no clear distinction was found between accessions with the exception of those from China and Mongolia that were clearly separated from all the others. PMID:25893249

  14. Anolis marsupialis Taylor 1956, a valid species from southern Pacific Costa Rica (Reptilia, Squamata, Dactyloidae).

    PubMed

    Köhler, Johannes J; Poe, Steven; Ryan, Mason J; Köhler, Gunther

    2015-02-02

    The examination of the holotype of Anolis marsupialis Taylor 1956 along with recently collected specimens reveals that A. marsupialis is a valid species. It differs from its closest congeners A. humilis Peters 1863 and A. quaggulus Cope 1885, in male dewlap coloration, scalation, body size, and hemipenial morphology. These findings are supported by preliminary molecular genetic analysis. 

  15. Phylogenetic Affiliation of Soil Bacteria That Degrade Aliphatic Polyesters Available Commercially as Biodegradable Plastics

    PubMed Central

    Suyama, Tetsushi; Tokiwa, Yutaka; Ouichanpagdee, Pornpimol; Kanagawa, Takahiro; Kamagata, Yoichi

    1998-01-01

    Thirty-nine morphologically different soil bacteria capable of degrading poly(β-hydroxyalkanoate), poly(ɛ-caprolactone), poly(hexamethylene carbonate), or poly(tetramethylene succinate) were isolated. Their phylogenetic positions were determined by 16S ribosomal DNA sequencing, and all of them fell into the classes Firmicutes and Proteobacteria. Determinations of substrate utilization revealed characteristic patterns of substrate specificities. PMID:9835597

  16. Do the feet of German and Australian children differ in structure? Implications for children's shoe design.

    PubMed

    Mauch, Marlene; Mickle, Karen J; Munro, Bridget J; Dowling, Annaliese M; Grau, Stefan; Steele, Julie R

    2008-04-01

    The purpose of this study was to determine whether there were any significant differences in the morphology of the feet of children living on two different continents. The shape and dimensions of the feet of 86 preschool and 419 primary school children from Australia, matched to the same number of German children for age, gender, height and BMI, were compared. The German children display significantly longer and flatter feet relative to their Australian counterparts, whereas the Australian children reveal a significantly smaller ball angle, implying that the forefoot of the Australian children is squarer in shape. These findings imply that footwear must be designed to cater to the unique foot dimensions of children in different continents to ensure that shoe shape matches foot shape. Most footwear companies do not vary the dimensions of their shoe lasts to accommodate intercontinental differences in foot morphology based on racial and/or environmental factors. The results of this study will have immediate implications for the design of comfortable footwear suitable for the developing feet of children.

  17. Three-dimensional reconstruction of Haversian systems in human cortical bone using synchrotron radiation-based micro-CT: morphology and quantification of branching and transverse connections across age.

    PubMed

    Maggiano, Isabel S; Maggiano, Corey M; Clement, John G; Thomas, C David L; Carter, Yasmin; Cooper, David M L

    2016-05-01

    This study uses synchrotron radiation-based micro-computed tomography (CT) scans to reconstruct three-dimensional networks of Haversian systems in human cortical bone in order to observe and analyse interconnectivity of Haversian systems and the development of total Haversian networks across different ages. A better knowledge of how Haversian systems interact with each other is essential to improve understanding of remodeling mechanisms and bone maintenance; however, previous methodological approaches (e.g. serial sections) did not reveal enough detail to follow the specific morphology of Haversian branching, for example. Accordingly, the aim of the present study was to identify the morphological diversity of branching patterns and transverse connections, and to understand how they change with age. Two types of branching morphologies were identified: lateral branching, resulting in small osteon branches bifurcating off of larger Haversian canals; and dichotomous branching, the formation of two new osteonal branches from one. The reconstructions in this study also suggest that Haversian systems frequently target previously existing systems as a path for their course, resulting in a cross-sectional morphology frequently referred to as 'type II osteons'. Transverse connections were diverse in their course from linear to oblique to curvy. Quantitative assessment of age-related trends indicates that while in younger human individuals transverse connections were most common, in older individuals more evidence of connections resulting from Haversian systems growing inside previously existing systems was found. Despite these changes in morphological characteristics, a relatively constant degree of overall interconnectivity is maintained throughout life. Altogether, the present study reveals important details about Haversian systems and their relation to each other that can be used towards a better understanding of cortical bone remodeling as well as a more accurate interpretation of morphological variants of osteons in cross-sectional microscopy. Permitting visibility of reversal lines, synchrotron radiation-based micro-CT is a valuable tool for the reconstruction of Haversian systems, and future analyses have the potential to further improve understanding of various important aspects of bone growth, maintenance and health. © 2016 Anatomical Society.

  18. Provenance effect on carbon assimilation, photochemistry and leaf morphology in Mediterranean Cistus species under chilling stress.

    PubMed

    Puglielli, G; Cuevas Román, F J; Catoni, R; Moreno Rojas, J M; Gratani, L; Varone, L

    2017-07-01

    The potential resilience of shrub species to environmental change deserves attention in those areas threatened by climate change, such as the Mediterranean Basin. We asked if leaves produced under different climate conditions through the winter season to spring can highlight the leaf traits involved in determining potential resilience of three Cistus spp. to changing environmental conditions and to what extent intraspecific differences affect such a response. We analysed carbon assimilation, maximum quantum efficiency of PSII photochemistry (F v /F m ) and leaf morphological control of the photosynthetic process in leaves formed through the winter season into spring in C. creticus subsp. eriocephalus (CE), C. salvifolius (CS) and C. monspeliensis (CM) grown from seed of different provenances under common garden conditions. Intraspecific differences were found in F v /F m for CE and CS. Carbon assimilation-related parameters were not affected by provenance. Moreover, our analysis highlighted that the functional relationships investigated can follow seasonal changes and revealed patterns originating from species-specific differences in LMA arising during the favourable period. Cistus spp. have great ability to modify the structure and function of their leaves in the mid-term in order to cope with changing environmental conditions. The F v /F m response to chilling reveals that susceptibility to photoinhibition is a trait under selection in Cistus species. Concerning carbon assimilation, differing ability to control stomatal opening was highlighted between species. Moreover, seasonal changes of the functional relationships investigated can have predictable consequences on species leaf turnover strategies. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  19. Morphological and histomorphometric evaluation of the ventral rectus sheath of the rectus abdominis muscle, fascia lata and pectoral fascia. The beginning of a morphological information bank of human fascias.

    PubMed

    Morales-Avalos, Rodolfo; Soto-Domínguez, Adolfo; García-Juárez, Jaime; Cardenas-Serna, Marcela; Esparza-Hernández, Claudia N; Carreño-Salcedo, Sofía Alejandra; Montes-de-Oca-Luna, Roberto; Loera-Arias, María de Jesús; Saucedo-Cárdenas, Odila; Elizondo-Omaña, Rodrigo E; Guzmán-López, Santos

    2017-03-01

    The aim of this study was to characterize and compare the morphological and histomorphometric characteristics of the pectoral fascia, fascia lata and ventral rectus sheath. Twenty cadaveric samples of these fascias were analyzed and stained with hematoxylin and eosin, orcein, Van Gieson, Masson's trichrome and Verhoeff¨s stain (1200 slides in total). Morphological evaluation, semiquantitative, morphometric and microdensitometric analysis of elastic fibers present in each of the tissues and a morphometrical analysis of tissue thickness were performed. The mean value of the pectoral fascia thickness was 612±68.13 μm; 84±246 μm for the fascia lata and 584±92 μm for the ventral rectus sheath. The area occupied by the elastic fibers in the pectoral fascia was 12.24±5.84%; 6,54±3.85% for the fascia lata and 11.11±5.26% for the ventral rectus sheath. There were no statistically significant differences when comparing the mean values between the pectoral fascia and the ventral rectus sheath (p=0.07). There were statistically significant differences when comparing the fascia lata to the pectoral fascia and the ventral rectus sheath (p≤0.001). This study reports other morphological characteristics not described in previous histological studies of the analyzed tissues. The results of the morphometric and densitometric analysis in this study reveal that the fascia lata has the fewest elastic fibers of all the tissues analyzed, and the pectoral fascia has the most. These results will be useful for the beginning of a morphological information bank of human fascias.

  20. Evidence for morphological composition in compound words using MEG.

    PubMed

    Brooks, Teon L; Cid de Garcia, Daniela

    2015-01-01

    Psycholinguistic and electrophysiological studies of lexical processing show convergent evidence for morpheme-based lexical access for morphologically complex words that involves early decomposition into their constituent morphemes followed by some combinatorial operation. Considering that both semantically transparent (e.g., sailboat) and semantically opaque (e.g., bootleg) compounds undergo morphological decomposition during the earlier stages of lexical processing, subsequent combinatorial operations should account for the difference in the contribution of the constituent morphemes to the meaning of these different word types. In this study we use magnetoencephalography (MEG) to pinpoint the neural bases of this combinatorial stage in English compound word recognition. MEG data were acquired while participants performed a word naming task in which three word types, transparent compounds (e.g., roadside), opaque compounds (e.g., butterfly), and morphologically simple words (e.g., brothel) were contrasted in a partial-repetition priming paradigm where the word of interest was primed by one of its constituent morphemes. Analysis of onset latency revealed shorter latencies to name compound words than simplex words when primed, further supporting a stage of morphological decomposition in lexical access. An analysis of the associated MEG activity uncovered a region of interest implicated in morphological composition, the Left Anterior Temporal Lobe (LATL). Only transparent compounds showed increased activity in this area from 250 to 470 ms. Previous studies using sentences and phrases have highlighted the role of LATL in performing computations for basic combinatorial operations. Results are in tune with decomposition models for morpheme accessibility early in processing and suggest that semantics play a role in combining the meanings of morphemes when their composition is transparent to the overall word meaning.

  1. Morphology-controlled synthesis of grass-like GO-CdSe nanocomposites with excellent optical properties and field emission properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Pei, E-mail: peipeixie@163.com; Xue, Shaolin, E-mail: slxue@dhu.edu.cn; Wei, Jia, E-mail: Jojo.1125@hotmail.com

    2016-02-15

    Four different morphologies of the CdSe semiconductor nanograss have been successfully grown on graphene oxide (GO) sheets via hydrothermal method at 220 °C for 12 h. The morphologies, structures, chemical compositions and optical properties of the as-obtained GO-CdSe nanocomposites were characterized by XRD, SEM, TEM, EDS, XPS and Raman spectra. It was found that the EDTA/Cd{sup 2+} molar ratio is important for the formation of morphology of GO-CdSe nanocomposites. The results of XRD revealed that all the as-obtained GO-CdSe nanocomposites have zinc blend structure. Room temperature photoluminescence (PL) showed that the sample emits red light under different excitation wavelengths. Themore » results of Raman spectra, EDS and XPS showed that the CdSe nanograss is grown on GO sheets. The results showed that GO-CdSe nanocomposites composed of nanorods have best field emission (FE) properties with a low turn-on electric field of 4.14 V μm{sup −1} and a high field enhancement factor of 3315 among all the samples. - Graphical abstract: SEM images of as-synthesized CdSe nanograss grown on GO sheets. Room temperature PL emission spectra of the as-synthesized CdSe nanograss grown on GO sheets. Field emission J–E curve of the as-synthesized CdSe nanograss grown on GO sheets. - Highlights: • Novel CdSe nanograsses are grown on graphene oxide sheets by hydrothermal method. • The morphology of CdSe nanograsses is controlled by adjusting EDTA/Cd{sup 2+} molar ratio. • The FE performance of sample is investigated. • Optimum morphology for FE performance is CdSe nanograsses composed of nanorods on GO.« less

  2. Morphological and molecular characteristics of Sarcocystis bertrami from horses and donkeys in China

    USDA-ARS?s Scientific Manuscript database

    Sarcocystis cysts collected from donkeys and horses were studied by morphological and molecular methods. Morphological studies performed by light microscopy (LM) revealed that each of two types of cysts were present in samples from both donkey and horse. These two types of cysts, type I (larger) and...

  3. Quantitative Proteomic Analysis Reveals Populus cathayana Females Are More Sensitive and Respond More Sophisticatedly to Iron Deficiency than Males.

    PubMed

    Zhang, Sheng; Zhang, Yunxiang; Cao, Yanchun; Lei, Yanbao; Jiang, Hao

    2016-03-04

    Previous studies have shown that there are significant sexual differences in the morphological and physiological responses of Populus cathayana Rehder to nitrogen and phosphorus deficiencies, but little is known about the sex-specific differences in responses to iron deficiency. In this study, the effects of iron deficiency on the morphology, physiology, and proteome of P. cathayana males and females were investigated. The results showed that iron deficiency (25 days) significantly decreased height growth, photosynthetic rate, chlorophyll content, and tissue iron concentration in both sexes. A comparison between the sexes indicated that iron-deficient males had less height inhibition and photosynthesis system II or chloroplast ultrastructural damage than iron-deficient females. iTRAQ-based quantitative proteomic analysis revealed that 144 and 68 proteins were decreased in abundance (e.g., proteins involved in photosynthesis, carbohydrate and energy metabolism, and gene expression regulation) and 78 and 39 proteins were increased in abundance (e.g., proteins involved in amino acid metabolism and stress response) according to the criterion of ratio ≥1.5 in females and males, respectively. A comparison between the sexes indicated that iron-deficient females exhibited a greater change in the proteins involved in photosynthesis, carbon and energy metabolism, the redox system, and stress responsive proteins. This study reveals females are more sensitive and have a more sophisticated response to iron deficiency compared with males and provides new insights into differential sexual responses to nutrient deficiency.

  4. Study on fabrication of the superhydrophobic sol-gel films based on copper wafer and its anti-corrosive properties

    NASA Astrophysics Data System (ADS)

    Fan, Youhua; Li, Changzhu; Chen, Zejun; Chen, Hong

    2012-06-01

    In the present study, superhydrophobic copper wafer was prepared by a sol-gel deposition method. Different molar ratios of vinyltrimethoxysilane (VTES), ethanol (EtOH), water (H2O) and ammonia water (NH3·OH) were involved in this research. The morphologies, chemical compositions and hydrophobicity of the films were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray detector (EDX), Fourier transfer infrared spectrometer (FTIR) and water contact angle measurement (CA). It was shown by the surface morphological study that different structures, such as pyramid-shaped protrusions, nipple-shaped protrusions or ball-shaped silica particles, were distributed on the copper substrate. The films had a high water contact angle larger than 155.4°. The durability properties revealed that the films had a good superhydrophobicity deposited in 3.5 wt.% sodium chloride solution for up to 14 days.

  5. Effect of Morphology and Manganese Valence on the Voltage Fade and Capacity Retention of Li[Li 2/12Ni 3/12Mn 7/12]O 2

    DOE PAGES

    Verde, Michael G.; Liu, Haodong; Carroll, Kyler J.; ...

    2014-10-02

    We have determined the electrochemical characteristics of the high voltage, high capacity Li-ion battery cathode material Li[Li 2/12Ni 3/12Mn 7/12]O 2 prepared using three different synthesis routes: sol-gel, hydroxide co-precipitation, and carbonate co-precipitation. Each route leads to distinct morphologies and surface areas while maintaining the same crystal structures. X-ray photoelectron spectroscopy (XPS) measurements reveal differences in their surface chemistries upon cycling, which correlate with voltage fading. As expected, we observed the valence state of Mn on the surface to decrease upon lithiation, and this reduction is specifically correlated to discharging below 3.6V. Furthermore, the data shows a correlation of themore » formation of Li 2CO 3 with Mn oxidation state from the« less

  6. Evolutional schemes for objects with active nuclei

    NASA Technical Reports Server (NTRS)

    Komberg, B. V.

    1979-01-01

    The observational properties of quasistellar objects (QSO) reveal that they are extremely violent nuclei of distant galaxies, but the evolutionary stage of these galaxies is still undetermined. Various published attempts to classify QSO under different criteria - including the one based on the morphological type of the surrounding galaxy E- or S- are analyzed. There are evidences that radioactive quasars reside in E-, while radio-quiet quasars reside in both E- and S- systems. The latter may be evolutionary connected to Seyfert-like objects. A correlation between the nuclei activity level in systems of different morphological type and the relative amount of gas in them is noted. From the point of view of activity level and the duration of active stage of nuclei it is concluded that an interaction of galaxies with the intergalactic medium is of particular importance and must be most conspicuous in spheriodal systems of central regions of rich clusters, in tight groups and binary galaxies.

  7. Microcellular foaming of arabinoxylan and PEGylated arabinoxylan with supercritical CO2.

    PubMed

    Härdelin, Linda; Ström, Anna; Di Maio, Ernesto; Iannace, Salvatore; Larsson, Anette

    2018-02-01

    In this study, arabinoxylan extracted from barley husks was reacted with polyethylene glycol (PEG) of various molecular weights to introduce an internal plasticizer into the polymer matrix. A successful PEGylation reaction was identified using FTIR and elemental analysis. Thermal and mechanical properties were studied using dynamic mechanical analysis, which revealed that the attachment of PEG chains reduced the glass transition temperature by up to 25°C. Foaming experiments were conducted under different test conditions in a batch foaming process with supercritical CO 2 in a thermoregulated and pressurized cylinder. The foams were evaluated using SEM by studying the morphology of the samples foamed at different temperatures. The unmodified arabinoxylan sample was found to produce the best foam morphology, though the PEGylated samples could be produced at lower temperatures than could the unmodified arabinoxylan. This was interpreted as due to the decrease in the glass transition temperature. Copyright © 2017. Published by Elsevier Ltd.

  8. Synthesis and characterization of nano-hydroxyapatite in maltodextrin matrix

    NASA Astrophysics Data System (ADS)

    Phan, Bich T. N.; Nguyen, Hanh T.; Đao, Huong Q.; Pham, Lam V.; Quan, Trang T. T.; Nguyen, Duong B.; Nguyen, Huong T. L.; Vu, Thuan T.

    2017-02-01

    In this study, we report the direct precipitation of nano-HA in the present of maltodextrins with the different dextrose equivalent (DE) values in the range of 10-30. Characterization of the obtained samples, using X-ray diffraction and Fourier transform infrared spectrophotometry, indicated that the presence of maltodextrins, with the different DE values, does not affect the phase composition and structure of the obtained composites. Morphology studies of the samples, using field emission scanning electron microscope and transmission electron microscope, revealed that maltodextrin has obvious effect on the size, shape, and morphology of hydroxyapatite nanoparticles. In particular, in studied DE range, maltodextrin DE 28-30 with dominant structure of debranched chain is the most preferable choice to obtain the composite with highly dispersed nanoparticles. In vitro assay on pre-osteoblast MC3T3-E1 cells demonstrated the ability of the composites to stimulate alkaline phosphatase activity and mineralization during differentiation of the cells.

  9. The morphology of streams restored for market and nonmarket purposes: Insights from a mixed natural-social science approach

    NASA Astrophysics Data System (ADS)

    Doyle, Martin W.; Singh, Jai; Lave, Rebecca; Robertson, Morgan M.

    2015-07-01

    We use geomorphic surveys to quantify the differences between restored and nonrestored streams, and the difference between streams restored for market purposes (compensatory mitigation) from those restored for nonmarket programs. We also analyze the social and political-economic drivers of the stream restoration and mitigation industry using analysis of policy documents and interviews with key personnel including regulators, mitigation bankers, stream designers, and scientists. Restored streams are typically wider and geomorphically more homogenous than nonrestored streams. Streams restored for the mitigation market are typically headwater streams and part of a large, complex of long restored main channels, and many restored tributaries; streams restored for nonmarket purposes are typically shorter and consist of the main channel only. Interviews reveal that designers integrate many influences including economic and regulatory constraints, but traditions of practice have a large influence as well. Thus, social forces shape the morphology of restored streams.

  10. Evolution and control of the phase competition morphology in a manganite film

    NASA Astrophysics Data System (ADS)

    Zhou, Haibiao; Wang, Lingfei; Hou, Yubin; Huang, Zhen; Lu, Qingyou; Wu, Wenbin

    2015-11-01

    The competition among different phases in perovskite manganites is pronounced since their energies are very close under the interplay of charge, spin, orbital and lattice degrees of freedom. To reveal the roles of underlying interactions, many efforts have been devoted towards directly imaging phase transitions at microscopic scales. Here we show images of the charge-ordered insulator (COI) phase transition from a pure ferromagnetic metal with reducing field or increasing temperature in a strained phase-separated manganite film, using a home-built magnetic force microscope. Compared with the COI melting transition, this reverse transition is sharp, cooperative and martensitic-like with astonishingly unique yet diverse morphologies. The COI domains show variable-dimensional growth at different temperatures and their distribution can illustrate the delicate balance of the underlying interactions in manganites. Our findings also display how phase domain engineering is possible and how the phase competition can be tuned in a controllable manner.

  11. Evolution and control of the phase competition morphology in a manganite film.

    PubMed

    Zhou, Haibiao; Wang, Lingfei; Hou, Yubin; Huang, Zhen; Lu, Qingyou; Wu, Wenbin

    2015-11-25

    The competition among different phases in perovskite manganites is pronounced since their energies are very close under the interplay of charge, spin, orbital and lattice degrees of freedom. To reveal the roles of underlying interactions, many efforts have been devoted towards directly imaging phase transitions at microscopic scales. Here we show images of the charge-ordered insulator (COI) phase transition from a pure ferromagnetic metal with reducing field or increasing temperature in a strained phase-separated manganite film, using a home-built magnetic force microscope. Compared with the COI melting transition, this reverse transition is sharp, cooperative and martensitic-like with astonishingly unique yet diverse morphologies. The COI domains show variable-dimensional growth at different temperatures and their distribution can illustrate the delicate balance of the underlying interactions in manganites. Our findings also display how phase domain engineering is possible and how the phase competition can be tuned in a controllable manner.

  12. Taxonomic status of Paraguay's only endemic bird, the Chaco Nothura Nothura chacoensis (Aves: Tinamidae).

    PubMed

    Hayes, Floyd E; RodrÍguez, Oscar; Thalman, Erika R; Castellanos, Emily A; Sterling, John

    2018-03-08

    The Chaco Nothura Nothura chacoensis Conover is endemic to the Chaco of western Paraguay. Originally described as a subspecies of the Spotted Nothura N. maculosa (Temminck), it has been regarded by many authorities as a distinct species based on alleged sympatry with N. maculosa. However, an earlier study revealed no differences in cytochrome b sequences between the two taxa. We reanalyzed the geographic distribution and morphological variation of N. chacoensis and N. maculosa in western Paraguay based on museum specimens. There is no locality where specimens of both taxa were collected, thus there is no evidence for sympatry. Morphologically the two taxa did not differ in any size or shape variable. Plumage characters overlapped in a few specimens. We recorded vocalizations from at least four individuals of N. chacoensis within its known range. Its typical territorial song was a very rapid, relatively monotone trill that was virtually identical with the most frequent territorial song of N. maculosa in length, number of notes, rate of notes, and emphasized frequency, and differed substantially from the songs of other species of Nothura. Based on distributional, morphological, biochemical, and especially vocalization data, we conclude that N. chacoensis should be regarded as a subspecies of N. maculosa.

  13. Computer-aided diagnosis with radiogenomics: analysis of the relationship between genotype and morphological changes of the brain magnetic resonance images.

    PubMed

    Kai, Chiharu; Uchiyama, Yoshikazu; Shiraishi, Junji; Fujita, Hiroshi; Doi, Kunio

    2018-05-10

    In the post-genome era, a novel research field, 'radiomics' has been developed to offer a new viewpoint for the use of genotypes in radiology and medicine research which have traditionally focused on the analysis of imaging phenotypes. The present study analyzed brain morphological changes related to the individual's genotype. Our data consisted of magnetic resonance (MR) images of patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD), as well as their apolipoprotein E (APOE) genotypes. First, statistical parametric mapping (SPM) 12 was used for three-dimensional anatomical standardization of the brain MR images. A total of 30 normal images were used to create a standard normal brain image. Z-score maps were generated to identify the differences between an abnormal image and the standard normal brain. Our experimental results revealed that cerebral atrophies, depending on genotypes, can occur in different locations and that morphological changes may differ between MCI and AD. Using a classifier to characterize cerebral atrophies related to an individual's genotype, we developed a computer-aided diagnosis (CAD) scheme to identify the disease. For the early detection of cerebral diseases, a screening system using MR images, called Brain Check-up, is widely performed in Japan. Therefore, our proposed CAD scheme would be used in Brain Check-up.

  14. Visual fields and eye morphology support color vision in a color-changing crab-spider.

    PubMed

    Insausti, Teresita C; Defrize, Jérémy; Lazzari, Claudio R; Casas, Jérôme

    2012-03-01

    Vision plays a major role in many spiders, being involved in prey hunting, orientation or substrate choice, among others. In Misumena vatia, which experiences morphological color changes, vision has been reported to be involved in substrate color matching. Electrophysiological evidence reveals that at least two types of photoreceptors are present in this species, but these data are not backed up by morphological evidence. This work analyzes the functional structure of the eyes of this spider and relates it to its color-changing abilities. A broad superposition of the visual field of the different eyes was observed, even between binocular regions of principal and secondary eyes. The frontal space is simultaneously analyzed by four eyes. This superposition supports the integration of the visual information provided by the different eye types. The mobile retina of the principal eyes of this spider is organized in three layers of three different types of rhabdoms. The third and deepest layer is composed by just one large rhabdom surrounded by dark screening pigments that limit the light entry. The three pairs of secondary eyes have all a single layer of rhabdoms. Our findings provide strong support for an involvement of the visual system in color matching in this spider. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Effects of hydrogen peroxide on the light reflectance and morphology of bovine enamel.

    PubMed

    Kwon, Y H; Huo, M S; Kim, K H; Kim, S K; Kim, Y J

    2002-05-01

    The purpose of this study was to examine the effects of a bleaching agent (30% hydrogen peroxide) on the surface of bovine enamel using a scanning electron microscope and a UV-VIS-NIR spectrophotometer. Five non-carious bovine incisors were bleached for 0, 1, 2 and 3 days using 30% hydrogen peroxide. The light reflectance spectrum was measured using a spectrophotometer with diffuse reflectance mode. Colour values and colour differences in the teeth were evaluated from the reflectance measurements with the CIE L*a*b* colour coordinate system. Surface alterations in the bleached and unbleached teeth were studied using a scanning electron microscope. The change of reflectance in the teeth was related to the change of colour. Most reflectance change occurred within a 1-day bleaching, and this result was confirmed by a CIE L*a*b* colour coordinate system. The colour differences in the bleached teeth were significant enough to be perceived by the observer's eye. The comparison of bleached to unbleached bovine enamel revealed that the bleached surface showed non-uniform slight morphological alterations, and it developed varying degrees of surface porosity. This study indicates that the bleached bovine teeth showed apparent colour differences as well as slight morphological alterations after bleaching.

  16. Stimuli Responsive Morphological Changes of Pnipa Polymer Brushes Synthesized on Silicon Substrate

    NASA Astrophysics Data System (ADS)

    Huda, Muhammad Nurul; Kabir, A. N. M. Hamidul

    2013-08-01

    High-density polymer brushes were grown from the silicon surface by atom transfer radical polymerization of Poly(N-isopropylacrylamide) (PNIPA) at different polymerization conditions. PNIPA brushes were prepared using Copper (I) Chloride/tris(2-(dimetylamino)ethyl)amine (Me6TREN) as a catalytic system in DMSO at 20°C. Free polymer formed during the brush formation was characterized by gel permeation chromatography. The grafting densities up to 0.52 chains/nm2 were obtained. The layer thickness of polymer brush increases with the increase of conversion of the monomer conversion as well as polymerization time. Atomic force microscopy and air bubble contact angle under pH solution were employed to study the surface morphology, reversible conformational changes of and stimulus-response behavior. PNIPA brushes exhibited a different nanomorphology after treatment with different pH solution. It also revealed a unique reversible wetting behavior with pH. The reversible properties of the PNIPA brushes can be used to regulate the adsorption of the sulfonated PS nanoparticles.

  17. Architecture and biogenesis of plus-strand RNA virus replication factories

    PubMed Central

    Paul, David; Bartenschlager, Ralf

    2013-01-01

    Plus-strand RNA virus replication occurs in tight association with cytoplasmic host cell membranes. Both, viral and cellular factors cooperatively generate distinct organelle-like structures, designated viral replication factories. This compartmentalization allows coordination of the different steps of the viral replication cycle, highly efficient genome replication and protection of the viral RNA from cellular defense mechanisms. Electron tomography studies conducted during the last couple of years revealed the three dimensional structure of numerous plus-strand RNA virus replication compartments and highlight morphological analogies between different virus families. Based on the morphology of virus-induced membrane rearrangements, we propose two separate subclasses: the invaginated vesicle/spherule type and the double membrane vesicle type. This review discusses common themes and distinct differences in the architecture of plus-strand RNA virus-induced membrane alterations and summarizes recent progress that has been made in understanding the complex interplay between viral and co-opted cellular factors in biogenesis and maintenance of plus-strand RNA virus replication factories. PMID:24175228

  18. Morphological differences in Macoma balthica (Bivalvia, Tellinacea) from a Dutch and three southeastern United States estuaries

    NASA Astrophysics Data System (ADS)

    Kamermans, Pauline; Van der Veer, Henk W.; Witte, Johannes IJ.; Adriaans, Ewout J.

    1999-05-01

    Field collections of the bivalve Macoma balthica in the Dutch Wadden Sea and three southeastern United States estuaries revealed morphological differences between populations of the two sides of the Atlantic Ocean. Individuals of the same age showed much larger shell lengths at the American stations. In addition, bivalves of the same body weight had higher siphon weights at the American stations than at the Dutch stations. This difference in siphon size was related to their burying depths. The American population, which invested more in heavier siphons, was able to burrow much deeper into the sediment (up to 30 cm). Deep burial may be an adaptation to avoid exposure to the high southern temperatures. Furthermore, it may serve as a refuge from blue crab predation. The results of our comparison between the southern American population and the European support the suggestion that populations of M. balthica living in these two regions should be considered separate and sibling species.

  19. Dysmorphometrics: the modelling of morphological abnormalities.

    PubMed

    Claes, Peter; Daniels, Katleen; Walters, Mark; Clement, John; Vandermeulen, Dirk; Suetens, Paul

    2012-02-06

    The study of typical morphological variations using quantitative, morphometric descriptors has always interested biologists in general. However, unusual examples of form, such as abnormalities are often encountered in biomedical sciences. Despite the long history of morphometrics, the means to identify and quantify such unusual form differences remains limited. A theoretical concept, called dysmorphometrics, is introduced augmenting current geometric morphometrics with a focus on identifying and modelling form abnormalities. Dysmorphometrics applies the paradigm of detecting form differences as outliers compared to an appropriate norm. To achieve this, the likelihood formulation of landmark superimpositions is extended with outlier processes explicitly introducing a latent variable coding for abnormalities. A tractable solution to this augmented superimposition problem is obtained using Expectation-Maximization. The topography of detected abnormalities is encoded in a dysmorphogram. We demonstrate the use of dysmorphometrics to measure abrupt changes in time, asymmetry and discordancy in a set of human faces presenting with facial abnormalities. The results clearly illustrate the unique power to reveal unusual form differences given only normative data with clear applications in both biomedical practice & research.

  20. A Conserved Developmental Patterning Network Produces Quantitatively Different Output in Multiple Species of Drosophila

    PubMed Central

    Meyer, Miriah; Wunderlich, Zeba; Simirenko, Lisa; Luengo Hendriks, Cris L.; Keränen, Soile V. E.; Henriquez, Clara; Knowles, David W.; Biggin, Mark D.; Eisen, Michael B.; DePace, Angela H.

    2011-01-01

    Differences in the level, timing, or location of gene expression can contribute to alternative phenotypes at the molecular and organismal level. Understanding the origins of expression differences is complicated by the fact that organismal morphology and gene regulatory networks could potentially vary even between closely related species. To assess the scope of such changes, we used high-resolution imaging methods to measure mRNA expression in blastoderm embryos of Drosophila yakuba and Drosophila pseudoobscura and assembled these data into cellular resolution atlases, where expression levels for 13 genes in the segmentation network are averaged into species-specific, cellular resolution morphological frameworks. We demonstrate that the blastoderm embryos of these species differ in their morphology in terms of size, shape, and number of nuclei. We present an approach to compare cellular gene expression patterns between species, while accounting for varying embryo morphology, and apply it to our data and an equivalent dataset for Drosophila melanogaster. Our analysis reveals that all individual genes differ quantitatively in their spatio-temporal expression patterns between these species, primarily in terms of their relative position and dynamics. Despite many small quantitative differences, cellular gene expression profiles for the whole set of genes examined are largely similar. This suggests that cell types at this stage of development are conserved, though they can differ in their relative position by up to 3–4 cell widths and in their relative proportion between species by as much as 5-fold. Quantitative differences in the dynamics and relative level of a subset of genes between corresponding cell types may reflect altered regulatory functions between species. Our results emphasize that transcriptional networks can diverge over short evolutionary timescales and that even small changes can lead to distinct output in terms of the placement and number of equivalent cells. PMID:22046143

  1. Stairway to heaven: evaluating levels of biological organization correlated with the successful ascent of natural waterfalls in the Hawaiian stream goby Sicyopterus stimpsoni.

    PubMed

    Schoenfuss, Heiko L; Maie, Takashi; Moody, Kristine N; Lesteberg, Kelsey E; Blob, Richard W; Schoenfuss, Tonya C

    2013-01-01

    Selective pressures generated by locomotor challenges act at the level of the individual. However, phenotypic variation among individuals that might convey a selective advantage may occur across any of multiple levels of biological organization. In this study, we test for differences in external morphology, muscle mechanical advantage, muscle fiber type and protein expression among individuals of the waterfall climbing Hawaiian fish Sicyopterus stimpsoni collected from sequential pools increasing in elevation within a single freshwater stream. Despite predictions from previous laboratory studies of morphological selection, few directional morphometric changes in body shape were observed at successively higher elevations. Similarly, lever arm ratios associated with the main pelvic sucker, central to climbing ability in this species, did not differ between elevations. However, among climbing muscles, the adductor pelvicus complex (largely responsible for generating pelvic suction during climbing) contained a significantly greater red muscle fiber content at upstream sites. A proteomic analysis of the adductor pelvicus revealed two-fold increases in expression levels for two respiratory chain proteins (NADH:ubiquinone reductase and cytochrome b) that are essential for aerobic respiration among individuals from successively higher elevations. Assessed collectively, these evaluations reveal phenotypic differences at some, but not all levels of biological organization that are likely the result of selective pressures experienced during climbing.

  2. Stairway to Heaven: Evaluating Levels of Biological Organization Correlated with the Successful Ascent of Natural Waterfalls in the Hawaiian Stream Goby Sicyopterus stimpsoni

    PubMed Central

    Schoenfuss, Heiko L.; Maie, Takashi; Moody, Kristine N.; Lesteberg, Kelsey E.; Blob, Richard W.; Schoenfuss, Tonya C.

    2013-01-01

    Selective pressures generated by locomotor challenges act at the level of the individual. However, phenotypic variation among individuals that might convey a selective advantage may occur across any of multiple levels of biological organization. In this study, we test for differences in external morphology, muscle mechanical advantage, muscle fiber type and protein expression among individuals of the waterfall climbing Hawaiian fish Sicyopterus stimpsoni collected from sequential pools increasing in elevation within a single freshwater stream. Despite predictions from previous laboratory studies of morphological selection, few directional morphometric changes in body shape were observed at successively higher elevations. Similarly, lever arm ratios associated with the main pelvic sucker, central to climbing ability in this species, did not differ between elevations. However, among climbing muscles, the adductor pelvicus complex (largely responsible for generating pelvic suction during climbing) contained a significantly greater red muscle fiber content at upstream sites. A proteomic analysis of the adductor pelvicus revealed two-fold increases in expression levels for two respiratory chain proteins (NADH:ubiquinone reductase and cytochrome b) that are essential for aerobic respiration among individuals from successively higher elevations. Assessed collectively, these evaluations reveal phenotypic differences at some, but not all levels of biological organization that are likely the result of selective pressures experienced during climbing. PMID:24386424

  3. Morphometric analysis of Passiflora leaves: the relationship between landmarks of the vasculature and elliptical Fourier descriptors of the blade

    PubMed Central

    2017-01-01

    Abstract Background: Leaf shape among Passiflora species is spectacularly diverse. Underlying this diversity in leaf shape are profound changes in the patterning of the primary vasculature and laminar outgrowth. Each of these aspects of leaf morphology—vasculature and blade—provides different insights into leaf patterning. Results: Here, we morphometrically analyze >3300 leaves from 40 different Passiflora species collected sequentially across the vine. Each leaf is measured in two different ways: using 1) 15 homologous Procrustes-adjusted landmarks of the vasculature, sinuses, and lobes; and 2) Elliptical Fourier Descriptors (EFDs), which quantify the outline of the leaf. The ability of landmarks, EFDs, and both datasets together are compared to determine their relative ability to predict species and node position within the vine. Pairwise correlation of x and y landmark coordinates and EFD harmonic coefficients reveals close associations between traits and insights into the relationship between vasculature and blade patterning. Conclusions: Landmarks, more reflective of the vasculature, and EFDs, more reflective of the blade contour, describe both similar and distinct features of leaf morphology. Landmarks and EFDs vary in ability to predict species identity and node position in the vine and exhibit a correlational structure (both within landmark or EFD traits and between the two data types) revealing constraints between vascular and blade patterning underlying natural variation in leaf morphology among Passiflora species. PMID:28369351

  4. Sensing surface morphology of biofibers by decorating spider silk and cellulosic filaments with nematic microdroplets

    PubMed Central

    Aguirre, Luis E.; de Oliveira, Alexandre; Seč, David; Čopar, Simon; Almeida, Pedro L.; Ravnik, Miha; Godinho, Maria Helena; Žumer, Slobodan

    2016-01-01

    Probing the surface morphology of microthin fibers such as naturally occurring biofibers is essential for understanding their structural properties, biological function, and mechanical performance. The state-of-the-art methods for studying the surfaces of biofibers are atomic force microscopy imaging and scanning electron microscopy, which well characterize surface geometry of the fibers but provide little information on the local interaction potential of the fibers with the surrounding material. In contrast, complex nematic fluids respond very well to external fields and change their optical properties upon such stimuli. Here we demonstrate that liquid crystal droplets deposited on microthin biofibers—including spider silk and cellulosic fibers—reveal characteristics of the fibers’ surface, performing as simple but sensitive surface sensors. By combining experiments and numerical modeling, different types of fibers are identified through the fiber-to-nematic droplet interactions, including perpendicular and axial or helicoidal planar molecular alignment. Spider silks align nematic molecules parallel to fibers or perpendicular to them, whereas cellulose aligns the molecules unidirectionally or helicoidally along the fibers, indicating notably different surface interactions. The nematic droplets as sensors thus directly reveal chirality of cellulosic fibers. Different fiber entanglements can be identified by depositing droplets exactly at the fiber crossings. More generally, the presented method can be used as a simple but powerful approach for probing the surface properties of small-size bioobjects, opening a route to their precise characterization. PMID:26768844

  5. Sensing surface morphology of biofibers by decorating spider silk and cellulosic filaments with nematic microdroplets.

    PubMed

    Aguirre, Luis E; de Oliveira, Alexandre; Seč, David; Čopar, Simon; Almeida, Pedro L; Ravnik, Miha; Godinho, Maria Helena; Žumer, Slobodan

    2016-02-02

    Probing the surface morphology of microthin fibers such as naturally occurring biofibers is essential for understanding their structural properties, biological function, and mechanical performance. The state-of-the-art methods for studying the surfaces of biofibers are atomic force microscopy imaging and scanning electron microscopy, which well characterize surface geometry of the fibers but provide little information on the local interaction potential of the fibers with the surrounding material. In contrast, complex nematic fluids respond very well to external fields and change their optical properties upon such stimuli. Here we demonstrate that liquid crystal droplets deposited on microthin biofibers--including spider silk and cellulosic fibers--reveal characteristics of the fibers' surface, performing as simple but sensitive surface sensors. By combining experiments and numerical modeling, different types of fibers are identified through the fiber-to-nematic droplet interactions, including perpendicular and axial or helicoidal planar molecular alignment. Spider silks align nematic molecules parallel to fibers or perpendicular to them, whereas cellulose aligns the molecules unidirectionally or helicoidally along the fibers, indicating notably different surface interactions. The nematic droplets as sensors thus directly reveal chirality of cellulosic fibers. Different fiber entanglements can be identified by depositing droplets exactly at the fiber crossings. More generally, the presented method can be used as a simple but powerful approach for probing the surface properties of small-size bioobjects, opening a route to their precise characterization.

  6. Morphology characterization of organic solar cell materials and blends

    NASA Astrophysics Data System (ADS)

    Roehling, John Daniel

    The organization of polymers and fullerenes, both in their pure states and mixed together, have a large impact on their macroscopic properties. For mixtures used in organic solar cells, the morphology of the mixture has a very large impact upon the mixture's ability to efficiently convert sunlight into useful electrical energy. Understanding how the morphology can change under certain processing conditions and in turn, affect the characteristics of the solar cell is therefore important to improving the function of organic solar cells. Conventional poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) solar cells have served as a staple system to study organic solar cell function for nearly a decade. Much of the understanding of how to make these "poorly"conductive organic materials efficiently convert sunlight into electricity has come from the study of P3HT:PCBM. It has long been understood that in order for a polymer:fullerene (electron donor and acceptor, respectively) mixture to function well as a solar cell, two major criteria for the morphology must be met; first, the interface between the two materials must be large to efficiently create charges, and secondly, there must be continous pathways through the "pure" materials for charges to be efficiently collected at the electrodes. This makes it advantageous for OPV materials to phase-separate into interconnected domains with very small domain sizes, a structure that P3HT:PCBM seems to naturally self-assemble. Despite P3HT:PCBM's ability to reach an optimal morphology, a complete understanding of exactly how the morphology affects device performance has not been realized. Completely different morphological models can end up predicting the same device performance characteristics. Much of the problem comes from the assumed morphology within a particular model, which can often be incorrect. The problem lies in the fact that obtaining real, accurate morphological information is difficult. An often neglected morphological feature is the existence of a third mixed phase, which is often unaccounted for because much about its composition and location are poorly understood. Obtaining this information and measuring the full morphology of OPV layers would therefore enable further understanding of device function. It is the aim of this thesis to demonstrate a technique which can measure the morphology of OPV layers accurately, accounting for the third phase and its composition. By using a scanning transmission electron microscope (STEM) in conjunction with electron tomography (ET) and an easily resolved fullerene component, the morphology of P3HT:fullerene layers are herein investigated. The combination of materials and techniques are demonstrated to accurately measure the morphology, illustrated by results which corroborate previous studies in the literature. It will be shown that not only can the position of each of the three phases present be measured, but their compositions can also be determined. Through this technique, morphologies formed under different processing conditions are quantitatively compared. The technique reveals differences between conventional processing methods that are not obvious through other measurements. Differences in the materials distribution throughout the thickness of the layer are also demonstrated and shown to give implications toward device function. Additionally, the precise changes in morphology which occur from different processing conditions are determined and shown to have a significant impact upon the properties of an OPV layer as a solar energy harvester. Not only does the morphology of the mixed materials affect the solar cell properties, but the local structure of the component materials themselves can strongly influence the macroscopic properties. By removing the fullerene component and forming pure domains of P3HT, the effects of internal structure on the properties of P3HT and how the structure is formed is also herein investigated. Through these techniques, the morphology and structure of different organic solar cell mixtures can now be thoroughly investigated. Through this work and future studies, the exact effects of morphology can be more fully understood. With the availability of accurate morphological data, it may now be possible to decouple morphology from other factors which govern device function.

  7. Root Growth Patterns and Morphometric Change Based on the Growth Media

    NASA Astrophysics Data System (ADS)

    Schultz, Eric R.; Paul, Anna-Lisa; Ferl, Robert J.

    2016-12-01

    Arabidopsis thaliana roots skew with minimal waving in the microgravity environment of the International Space Station. Root skewing and root waving have been studied on the ground as well as in spaceflight, but often using different media types. In this study, Arabidopsis seedlings were grown on nutrient media plates that were comprised of various gelling agents with varied hardness in order to better assess these media for spaceflight research experiments. ImageJ was used to quantify the root morphology of 8-dayold seedlings, while R was used to perform statistical analyses. Root growth was drastically different between Difco agar, agarose, and Phytagel. Additionally, root waving masked skewing in certain media. Regression analysis revealed overall patterns when organized by hardness but also revealed that differences in media type had more of an impact on root growth than hardness itself. Different arrangements of media around the root tip revealed that roots grown on the media surface were longer and had fewer waves per millimeter than roots grown embedded in media. The implications for spaceflight research are discussed.

  8. Mitochondrial transcription factor A (Tfam) gene sequencing and mitochondrial evaluation in inherited retinal dysplasia in miniature schnauzer dogs

    PubMed Central

    Bauer, Bianca S.; Forsyth, George W.; Sandmeyer, Lynne S.; Grahn, Bruce H.

    2011-01-01

    Mitochondrial transcription factor A (Tfam) has been implicated in the pathogenesis of retinal dysplasia in miniature schnauzer dogs and it has been proposed that affected dogs have altered mitochondrial numbers, size, and morphology. To test these hypotheses the Tfam gene of affected and normal miniature schnauzer dogs with retinal dysplasia was sequenced and lymphocyte mitochondria were quantified, measured, and the morphology was compared in normal and affected dogs using transmission electron microscopy. For Tfam sequencing, retina, retinal pigment epithelium (RPE), and whole blood samples were collected. Total RNA was isolated from the retina and RPE and reverse transcribed to make cDNA. Genomic DNA was extracted from white blood cell pellets obtained from the whole blood samples. The Tfam coding sequence, 5′ promoter region, intron1 and the 3′ non-coding sequence of normal and affected dogs were amplified using polymerase chain reaction (PCR), cloned and sequenced. For electron microscopy, lymphocytes from affected and normal dogs were photographed and the mitochondria within each cross-section were identified, quantified, and the mitochondrial area (μm2) per lymphocyte cross-section was calculated. Lastly, using a masked technique, mitochondrial morphology was compared between the 2 groups. Sequencing of the miniature schnauzer Tfam gene revealed no functional sequence variation between affected and normal dogs. Lymphocyte and mitochondrial area, mitochondrial quantification, and morphology assessment also revealed no significant difference between the 2 groups. Further investigation into other candidate genes or factors causing retinal dysplasia in the miniature schnauzer is warranted. PMID:21731185

  9. Mitochondrial transcription factor A (Tfam) gene sequencing and mitochondrial evaluation in inherited retinal dysplasia in miniature schnauzer dogs.

    PubMed

    Bauer, Bianca S; Forsyth, George W; Sandmeyer, Lynne S; Grahn, Bruce H

    2011-04-01

    Mitochondrial transcription factor A (Tfam) has been implicated in the pathogenesis of retinal dysplasia in miniature schnauzer dogs and it has been proposed that affected dogs have altered mitochondrial numbers, size, and morphology. To test these hypotheses the Tfam gene of affected and normal miniature schnauzer dogs with retinal dysplasia was sequenced and lymphocyte mitochondria were quantified, measured, and the morphology was compared in normal and affected dogs using transmission electron microscopy. For Tfam sequencing, retina, retinal pigment epithelium (RPE), and whole blood samples were collected. Total RNA was isolated from the retina and RPE and reverse transcribed to make cDNA. Genomic DNA was extracted from white blood cell pellets obtained from the whole blood samples. The Tfam coding sequence, 5' promoter region, intron1 and the 3' non-coding sequence of normal and affected dogs were amplified using polymerase chain reaction (PCR), cloned and sequenced. For electron microscopy, lymphocytes from affected and normal dogs were photographed and the mitochondria within each cross-section were identified, quantified, and the mitochondrial area (μm²) per lymphocyte cross-section was calculated. Lastly, using a masked technique, mitochondrial morphology was compared between the 2 groups. Sequencing of the miniature schnauzer Tfam gene revealed no functional sequence variation between affected and normal dogs. Lymphocyte and mitochondrial area, mitochondrial quantification, and morphology assessment also revealed no significant difference between the 2 groups. Further investigation into other candidate genes or factors causing retinal dysplasia in the miniature schnauzer is warranted.

  10. Fabrication of Heterojunction Diode Based on n-ZnO Nanowires/p-Si Substrate: Temperature Dependent Transport Characteristics.

    PubMed

    Badran, R I; Umar, Ahmad

    2017-01-01

    Herein, we report the growth and characterizations of well-crystalline n-ZnO nanowires assembled in micro flower-shaped morphologies. The nanowires are grown on p-Silicon substrate and characterized in terms of their structural, morphological and electrical properties. Temperature dependent transport characteristics of the fabricated n-ZnO/p-Si heterojunction diode were examined. The morphological studies revealed that the nanowires are grown in high-density and arrange in special micro flower shaped morphology. The structural characterizations confirmed that the nanowires are well-crystalline and possessing wurtzite hexagonal phase. The electrical properties were evaluated by examining the I–V characteristics of the fabricated n-ZnO/p-Si heterojunction diode. The I–V characteristics were studied at temperature <300 K and ≥300 K in the forward and reverse bias conditions. The detailed temperature dependent electrical properties revealed that the fabricated heterojunction assembly shows a diode-like behavior with a turn-on voltage of 5 V at almost all temperatures and the delivered current changes between ˜1 to ˜5 μA when temperature changes from 77 K to 425 K. The rectifying behavior of the fabricated heterojunction diode, at 5 V, was demonstrated by rectifying ratio of ˜4 at 77 K which decreases to ˜1.5 at 425 K. This analysis also showed that the mean potential barrier of the fabricated heterojunction (˜1.2 eV) is larger than the energy difference (0.72 eV) of the work functions between Si and ZnO.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannachi, Amira, E-mail: amira.hannachi88@gmail.com; Maghraoui-Meherzi, Hager

    Manganese sulfide thin films have been deposited on glass slides by chemical bath deposition (CBD) method. The effects of preparative parameters such as deposition time, bath temperature, concentration of precursors, multi-layer deposition, different source of manganese, different complexing agent and thermal annealing on structural and morphological film properties have been investigated. The prepared thin films have been characterized using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It exhibit the metastable forms of MnS, the hexagonal γ-MnS wurtzite phase with preferential orientation in the (002) plane or the cubic β-MnS zinc blende with preferentialmore » orientation in the (200) plane. Microstructural studies revealed the formation of MnS crystals with different morphologies, such as hexagons, spheres, cubes or flowers like. - Graphical Abstract: We report the preparation of different phases of manganese sulfide thin films (γ, β and α-MnS) by chemical bath deposition method. The effects of deposition parameters such as deposition time and temperature, concentrations of precursors and multi-layer deposition on MnS thin films structure and morphology were investigated. The influence of thermal annealing under nitrogen atmosphere at different temperature on MnS properties was also studied. Different manganese precursors as well as different complexing agent were also used. - Highlights: • γ and β-MnS films were deposited on substrate using the chemical bath deposition. • The effect of deposition parameters on MnS film properties has been investigated. • Multi-layer deposition was also studied to increase film thickness. • The effect of annealing under N{sub 2} at different temperature was investigated.« less

  12. [A research on real-time ventricular QRS classification methods for single-chip-microcomputers].

    PubMed

    Peng, L; Yang, Z; Li, L; Chen, H; Chen, E; Lin, J

    1997-05-01

    Ventricular QRS classification is key technique of ventricular arrhythmias detection in single-chip-microcomputer based dynamic electrocardiogram real-time analyser. This paper adopts morphological feature vector including QRS amplitude, interval information to reveal QRS morphology. After studying the distribution of QRS morphology feature vector of MIT/BIH DB ventricular arrhythmia files, we use morphological feature vector cluster to classify multi-morphology QRS. Based on the method, morphological feature parameters changing method which is suitable to catch occasional ventricular arrhythmias is presented. Clinical experiments verify missed ventricular arrhythmia is less than 1% by this method.

  13. Genetic Divergence and Heritability of 42 Coloured Upland Rice Genotypes (Oryzasativa) as Revealed by Microsatellites Marker and Agro-Morphological Traits

    PubMed Central

    Ahmad, Faiz; Hanafi, Mohamed Musa; Hakim, Md Abdul; Rafii, Mohd Y.; Arolu, Ibrahim Wasiu; Akmar Abdullah, Siti Nor

    2015-01-01

    Coloured rice genotypes have greater nutritious value and consumer demand for these varieties is now greater than ever. The documentation of these genotypes is important for the improvement of the rice plant. In this study, 42 coloured rice genotypes were selected for determination of their genetic divergence using 25 simple sequence repeat (SSR) primers and 15 agro-morphological traits. Twenty-one out of the 25 SSR primers showed distinct, reproducible polymorphism. A dendrogram constructed using the SSR primers clustered the 42 coloured rice genotypes into 7 groups. Further, principle component analysis showed 75.28% of total variations were explained by the first—three components. All agro-morphological traits showed significant difference at the (p≤0.05) and (p≤0.01) levels. From the dendrogram constructed using the agro-morphological traits, all the genotypes were clustered into four distinct groups. Pearson’s correlation coefficient showed that among the 15 agro-morphological traits, the yield contributing factor had positive correlation with the number of tillers, number of panicles, and panicle length. The heritability of the 15 traits ranged from 17.68 to 99.69%. Yield per plant and harvest index showed the highest value for both heritability and genetic advance. The information on the molecular and agro-morphological traits can be used in rice breeding programmes to improve nutritional value and produce higher yields. PMID:26393807

  14. Endothelial cell responses in terms of adhesion, proliferation, and morphology to stiffness of polydimethylsiloxane elastomer substrates.

    PubMed

    Ataollahi, Forough; Pramanik, Sumit; Moradi, Ali; Dalilottojari, Adel; Pingguan-Murphy, Belinda; Wan Abas, Wan Abu Bakar; Abu Osman, Noor Azuan

    2015-07-01

    Extracellular environments can regulate cell behavior because cells can actively sense their mechanical environments. This study evaluated the adhesion, proliferation and morphology of endothelial cells on polydimethylsiloxane (PDMS)/alumina (Al2 O3 ) composites and pure PDMS. The substrates were prepared from pure PDMS and its composites with 2.5, 5, 7.5, and 10 wt % Al2 O3 at a curing temperature of 50°C for 4 h. The substrates were then characterized by mechanical, structural, and morphological analyses. The cell adhesion, proliferation, and morphology of cultured bovine aortic endothelial (BAEC) cells on substrate materials were evaluated by using resazurin assay and 1,1'-dioctadecyl-1,3,3,3',3'-tetramethylindocarbocyanine perchlorate-acetylated LDL (Dil-Ac-LDL) cell staining, respectively. The composites (PDMS/2.5, 5, 7.5, and 10 wt % Al2 O3 ) exhibited higher stiffness than the pure PDMS substrate. The results also revealed that stiffer substrates promoted endothelial cell adhesion and proliferation and also induced spread morphology in the endothelial cells compared with lesser stiff substrates. Statistical analysis showed that the effect of time on cell proliferation depended on stiffness. Therefore, this study concludes that the addition of different Al2 O3 percentages to PDMS elevated substrate stiffness which in turn increased endothelial cell adhesion and proliferation significantly and induced spindle shape morphology in endothelial cells. © 2014 Wiley Periodicals, Inc.

  15. Morphological Analysis of Human Induced Pluripotent Stem Cells During Induced Differentiation and Reverse Programming

    PubMed Central

    Magniez, Aurélie; Oudrhiri, Noufissa; Féraud, Olivier; Bacci, Josette; Gobbo, Emilie; Proust, Stéphanie; Turhan, Ali G.

    2014-01-01

    Abstract The fine analysis of cell components during the generation of pluripotent cells and their comparison to bone fide human embryonic stem cells (hESCs) are valuable tools to understand their biological behavior. In this report, human mesenchymal cells (hMSCs) generated from the human ES cell line H9, were reprogrammed back to induced pluripotent state using Oct-4, Sox2, Nanog, and Lin28 transgenes. Human induced pluripotent stem cells (hIPSCs) were analyzed using electron microscopy and compared with regard to the original hESCs and the hMSCs from which they were derived. This analysis shows that hIPSCs and the original hESCs are morphologically undistinguishable but differ from the hMSCs with respect to the presence of several morphological features of undifferentiated cells at both the cytoplasmic (ribosomes, lipid droplets, glycogen, scarce reticulum) and nuclear levels (features of nuclear plasticity, presence of euchromatin, reticulated nucleoli). We show that hIPSC colonies generated this way presented epithelial aspects with specialized junctions highlighting morphological criteria of the mesenchymal–epithelial transition in cells engaged in a successful reprogramming process. Electron microscopic analysis revealed also specific morphological aspects of partially reprogrammed cells. These results highlight the valuable use of electron microscopy for a better knowledge of the morphological aspects of IPSC and cellular reprogramming. PMID:25371857

  16. Photocatalytic and antibacterial activity of cadmium sulphide/zinc oxide nanocomposite with varied morphology.

    PubMed

    Jana, T K; Maji, S K; Pal, A; Maiti, R P; Dolai, T K; Chatterjee, K

    2016-10-15

    Nanocomposites with multifunctional application prospects have already dragged accelerating interests of materials scientists. Here we present CdS/ZnO nanocomposites with different morphology engineering the precursor molar ratio in a facile wet chemical synthesis route. The materials were structurally and morphologically characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDX) and high-resolution transmission electron microscopy (HRTEM). The growth mechanism of the composite structure with varying molar ratio is delineated with oriented attachment self assemble techniques. Photocatalytic activity of CdS/ZnO nanocomposites with varying morphology were explored for the degradation of rhodamine B (RhB) dye in presence of visible light irradiation and the results reveal that the best catalytic performance arises in CdS/ZnO composite with 1: 1 ratio. The antibacterial efficiency of all nanocomposites were investigated on Escherichia coli, Staphylococcus aureus and Klebsiella pneumonia without light irradiation. Antibacterial activity of CdS/ZnO nanocomposites were studied using the bacteriological test-well diffusion agar method and results showed significant antibacterial activity in CdS/ZnO composite with 1:3 ratio. Overall, CdS/ZnO nanocomposites excel in different potential applications, such as visible light photocatalysis and antimicrobial activity with their tuneable structure. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Differences of skin morphology in Bos indicus, Bos taurus, and their crossbreds

    NASA Astrophysics Data System (ADS)

    Jian, Wang; Duangjinda, M.; Vajrabukka, C.; Katawatin, Suporn

    2014-08-01

    Cutaneous evaporation is the main avenue by which cattle dissipate heat via the involvement of sweat glands and other skin components. The difference in skin morphology between B. indicus and B. taurus has been recognized, as well as differences in their ability to tolerate heat. The objective of this study was to compare skin morphology between B. indicus, B. taurus, and their crossbreds. Skin samples of Sahiwal ( B. indicus) ( n = 10, reddish brown skin) and Holstein Friesian (HF) ( B. taurus) ( n = 10, black and white skin) and crossbred of HF75% ( n = 10, black and white skin) and HF87.5 % ( n = 10, black and white skin) were biopsied for histological study, followed by measurement of skin components. The results indicated that breed significantly affected sweat gland morphology. The shape of the sweat gland, as indicated by the ratio of length/diameter, in Sahiwal was baggier in shape compared to HF (5.99 and 9.52) while values for crossbreds were intermediate (7.82, 8.45). The density and volume of sweat glands in Sahiwal (1,058 glands/cm2; 1.60 μ3 × 10-6) were higher than in HF (920 glands/cm2; 0.51 μ3x10-6) and crossbreds, both HF 75 % (709 glands/cm2; 0.68 μ3 × 10-6) and HF 87.5 % (691 glands/cm2; 0.61 μ3 × 10-6) respectively. However, capillary surface area was greater for HF (2.07 cm2) compared to Sahiwal (1.79 cm2); accordingly, the lower genetic fraction of HF in crossbred cattle showed less capillary surface area (1.83 and 1.9 cm2 for HF75% and HF87.5 %) ( P < 0.01). Nerve density was not significantly different between Sahiwal and HF but was higher in the crossbred ( P < 0.01) cattle. Moreover, the effect of skin color (black and white) was evaluated and it was found that there was an interaction ( P < 0.01) between breed and skin color on the skin components. This study reveals that there are differences in skin morphology among B. indicus, B. taurus and their crossbreds, with these differences being more or less related to the genetic fraction of HF. This may imply that capability for cutaneous evaporative heat loss and tolerance to heat in crossbred cattle could be related to skin morphology.

  18. Study of the Effect of Nanoparticles and Surface Morphology on Reverse Osmosis and Nanofiltration Membrane Productivity

    PubMed Central

    Fang, Yuming; Duranceau, Steven J.

    2013-01-01

    To evaluate the significance of reverse osmosis (RO) and nanofiltration (NF) surface morphology on membrane performance, productivity experiments were conducted using flat-sheet membranes and three different nanoparticles, which included SiO2, TiO2 and CeO2. In this study, the productivity rate was markedly influenced by membrane surface morphology. Atomic force microscopy (AFM) analysis of membrane surfaces revealed that the higher productivity decline rates associated with polyamide RO membranes as compared to that of a cellulose acetate NF membrane was due to the inherent ridge-and-valley morphology of the active layer. The unique polyamide active layer morphology was directly related to the surface roughness, and was found to contribute to particle accumulation in the valleys causing a higher flux decline than in smoother membranes. Extended RO productivity experiments using laboratory grade water and diluted pretreated seawater were conducted to compare the effect that different nanoparticles had on membrane active layers. Membrane flux decline was not affected by particle type when the feed water was laboratory grade water. On the other hand, membrane productivity was affected by particle type when pretreated diluted seawater served as feed water. It was found that CeO2 addition resulted in the least observable flux decline, followed by SiO2 and TiO2. A productivity simulation was conducted by fitting the monitored flux data into a cake growth rate model, where the model was modified using a finite difference method to incorporate surface thickness variation into the analysis. The ratio of cake growth term (k1) and particle back diffusion term (k2) was compared in between different RO and NF membranes. Results indicated that k2 was less significant for surfaces that exhibited a higher roughness. It was concluded that the valley areas of thin-film membrane surfaces have the ability to capture particles, limiting particle back diffusion. PMID:24956946

  19. Phenotypic plasticity in haptoral structures of Ligophorus cephali (Monogenea: Dactylogyridae) on the flathead mullet (Mugil cephalus): a geometric morphometric approach.

    PubMed

    Rodríguez-González, Abril; Míguez-Lozano, Raúl; Llopis-Belenguer, Cristina; Balbuena, Juan Antonio

    2015-04-01

    Evaluating phenotypic plasticity in attachment organs of parasites can provide information on the capacity to colonise new hosts and illuminate evolutionary processes driving host specificity. We analysed the variability in shape and size of the dorsal and ventral anchors of Ligophorus cephali from Mugil cephalus by means of geometric morphometrics and multivariate statistics. We also assessed the morphological integration between anchors and between the roots and points in order to gain insight into their functional morphology. Dorsal and ventral anchors showed a similar gradient of overall shape variation, but the amount of localised changes was much higher in the former. Statistical models describing variations in shape and size revealed clear differences between anchors. The dorsal anchor/bar complex seems more mobile than the ventral one in Ligophorus, and these differences may reflect different functional roles in attachment to the gills. The lower residual variation associated with the ventral anchor models suggests a tighter control of their shape and size, perhaps because these anchors seem to be responsible for firmer attachment and their size and shape would allow more effective responses to characteristics of the microenvironment within the individual host. Despite these putative functional differences, the high level of morphological integration indicates a concerted action between anchors. In addition, we found a slight, although significant, morphological integration between roots and points in both anchors, which suggests that a large fraction of the observed phenotypic variation does not compromise the functional role of anchors as levers. Given the low level of genetic variation in our sample, it is likely that much of the morphological variation reflects host-driven plastic responses. This supports the hypothesis of monogenean specificity through host-switching and rapid speciation. The present study demonstrates the potential of geometric morphometrics to provide new and previously unexplored insights into the functional morphology of attachment and evolutionary processes of host-parasite coevolution. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  20. Hebrew Brain vs. English Brain: Language Modulates the Way It Is Processed

    ERIC Educational Resources Information Center

    Bick, Atira S.; Goelman, Gadi; Frost, Ram

    2011-01-01

    Is language processing universal? How do the specific properties of each language influence the way it is processed? In this study, we compare the neural correlates of morphological processing in Hebrew--a Semitic language with a rich and systematic morphology, to those revealed in English--an Indo-European language with a linear morphology. Using…

  1. The Development of the Hebrew Mental Lexicon: When Morphological Representations become Devoid of Their Meaning

    ERIC Educational Resources Information Center

    Schiff, Rachel; Raveh, Michal; Fighel, Avital

    2012-01-01

    This study investigated the effect of semantic inconsistency of roots on morphological processing to explore the development of morphological representations within the mental lexicon. We examined masked priming of Hebrew words of changing semantic transparency at two reading levels. The results revealed a disparity in the performance of fourth…

  2. What Is the Influence of Morphological Knowledge in the Early Stages of Reading Acquisition Among Low SES Children? A Graphical Modeling Approach

    PubMed Central

    Colé, Pascale; Cavalli, Eddy; Duncan, Lynne G.; Theurel, Anne; Gentaz, Edouard; Sprenger-Charolles, Liliane; El-Ahmadi, Abdessadek

    2018-01-01

    Children from low-SES families are known to show delays in aspects of language development which underpin reading acquisition such as vocabulary and listening comprehension. Research on the development of morphological skills in this group is scarce, and no studies exist in French. The present study investigated the involvement of morphological knowledge in the very early stages of reading acquisition (decoding), before reading comprehension can be reliably assessed. We assessed listening comprehension, receptive vocabulary, phoneme awareness, morphological awareness as well as decoding, word reading and non-verbal IQ in 703 French first-graders from low-SES families after 3 months of formal schooling (November). Awareness of derivational morphology was assessed using three oral tasks: Relationship Judgment (e.g., do these words belong to the same family or not? heat-heater … ham-hammer); Lexical Sentence Completion [e.g., Someone who runs is a …? (runner)]; and Non-lexical Sentence Completion [e.g., Someone who lums is a…? (lummer)]. The tasks differ on implicit/explicit demands and also tap different kinds of morphological knowledge. The Judgement task measures the phonological and semantic properties of the morphological relationship and the Sentence Completion tasks measure knowledge of morphological production rules. Data were processed using a graphical modeling approach which offers key information about how skills known to be involved in learning to read are organized in memory. This modeling approach was therefore useful in revealing a potential network which expresses the conditional dependence structure between skills, after which recursive structural equation modeling was applied to test specific hypotheses. Six main conclusions can be drawn from these analyses about low SES reading acquisition: (1) listening comprehension is at the heart of the reading acquisition process; (2) word reading depends directly on phonemic awareness and indirectly on listening comprehension; (3) decoding depends on word reading; (4) Morphological awareness and vocabulary have an indirect influence on word reading via both listening comprehension and phoneme awareness; (5) the components of morphological awareness assessed by our tasks have independent relationships with listening comprehension; and (6) neither phonemic nor morphological awareness influence vocabulary directly. The implications of these results with regard to early reading acquisition among low SES groups are discussed. PMID:29725313

  3. What Is the Influence of Morphological Knowledge in the Early Stages of Reading Acquisition Among Low SES Children? A Graphical Modeling Approach.

    PubMed

    Colé, Pascale; Cavalli, Eddy; Duncan, Lynne G; Theurel, Anne; Gentaz, Edouard; Sprenger-Charolles, Liliane; El-Ahmadi, Abdessadek

    2018-01-01

    Children from low-SES families are known to show delays in aspects of language development which underpin reading acquisition such as vocabulary and listening comprehension. Research on the development of morphological skills in this group is scarce, and no studies exist in French. The present study investigated the involvement of morphological knowledge in the very early stages of reading acquisition (decoding), before reading comprehension can be reliably assessed. We assessed listening comprehension, receptive vocabulary, phoneme awareness, morphological awareness as well as decoding, word reading and non-verbal IQ in 703 French first-graders from low-SES families after 3 months of formal schooling (November). Awareness of derivational morphology was assessed using three oral tasks: Relationship Judgment (e.g., do these words belong to the same family or not? heat-heater … ham-hammer); Lexical Sentence Completion [e.g., Someone who runs is a …? (runner)]; and Non-lexical Sentence Completion [e.g., Someone who lums is a…? (lummer)]. The tasks differ on implicit/explicit demands and also tap different kinds of morphological knowledge. The Judgement task measures the phonological and semantic properties of the morphological relationship and the Sentence Completion tasks measure knowledge of morphological production rules. Data were processed using a graphical modeling approach which offers key information about how skills known to be involved in learning to read are organized in memory. This modeling approach was therefore useful in revealing a potential network which expresses the conditional dependence structure between skills, after which recursive structural equation modeling was applied to test specific hypotheses. Six main conclusions can be drawn from these analyses about low SES reading acquisition: (1) listening comprehension is at the heart of the reading acquisition process; (2) word reading depends directly on phonemic awareness and indirectly on listening comprehension; (3) decoding depends on word reading; (4) Morphological awareness and vocabulary have an indirect influence on word reading via both listening comprehension and phoneme awareness; (5) the components of morphological awareness assessed by our tasks have independent relationships with listening comprehension; and (6) neither phonemic nor morphological awareness influence vocabulary directly. The implications of these results with regard to early reading acquisition among low SES groups are discussed.

  4. An Electrochemical NO2 Sensor Based on Ionic Liquid: Influence of the Morphology of the Polymer Electrolyte on Sensor Sensitivity

    PubMed Central

    Kuberský, Petr; Altšmíd, Jakub; Hamáček, Aleš; Nešpůrek, Stanislav; Zmeškal, Oldřich

    2015-01-01

    A systematic study was carried out to investigate the effect of ionic liquid in solid polymer electrolyte (SPE) and its layer morphology on the characteristics of an electrochemical amperometric nitrogen dioxide sensor. Five different ionic liquids were immobilized into a solid polymer electrolyte and key sensor parameters (sensitivity, response/recovery times, hysteresis and limit of detection) were characterized. The study revealed that the sensor based on 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][N(Tf)2]) showed the best sensitivity, fast response/recovery times, and low sensor response hysteresis. The working electrode, deposited from water-based carbon nanotube ink, was prepared by aerosol-jet printing technology. It was observed that the thermal treatment and crystallinity of poly(vinylidene fluoride) (PVDF) in the solid polymer electrolyte influenced the sensitivity. Picture analysis of the morphology of the SPE layer based on [EMIM][N(Tf)2] ionic liquid treated under different conditions suggests that the sensor sensitivity strongly depends on the fractal dimension of PVDF spherical objects in SPE. Their deformation, e.g., due to crowding, leads to a decrease in sensor sensitivity. PMID:26569248

  5. Performance, gut morphology and carcass characteristics of fattening rabbits as affected by particle size of pelleted diets.

    PubMed

    Tufarelli, Vincenzo; Desantis, Salvatore; Zizza, Sara; Laudadio, Vito

    2010-10-01

    A review of past literature revealed inconsistencies in recommended feed particle size for optimal growth and productive performance of rabbits. Changing diet formulation and subsequent processing conditions may improve pellet texture and potentially affect rabbit performance. In the current study, two isoenergetic and isonitrogenous pelleted diets were formulated, which varied in the particle size of the concentrates (2 and 8 mm, respectively). The objective was to evaluate the effect of different particle sizes of compound diets on performance, nutrient utilisation, gut morphology, and carcass characteristics of fattening Italian White breed rabbits. The finely ground diet led to a significant improvement in feed efficiency and apparent digestibility of crude protein, ether extract, crude fibre and NDF, without any negative effect on gut morphology. Furthermore, a smaller particle size of concentrates in pelleted diets improved carcass traits. Meat colour parameters showed significant differences in longissimus lumborum and biceps femoris due to dietary treatments, but in both muscles pH values 1 h and 24 h after slaughter remained unchanged. It is concluded that a finely ground pelleted diet can be used to improve growth performance of rabbits without affecting carcass parameters.

  6. P(VDF/TrFE) morphologies and crystalline lamellae orientations dependence on substrates characterized by scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Lakbita, Imane; El-Hami, Khalil

    2018-02-01

    Ultra-thin films of the polyvinylidene fluoride and trifluoroethylene (P(VDF/TrFE)) copolymer were elaborated on various different substrates by the spin coating method. The purpose of this paper is to study the P(VDF/TrFE) morphologies and crystalline lamellae orientation dependence on substrates. We chose the potassium chloride (KCl), Sodium Chloride (NaCl) and Potassium Bromide (KBr) with the [110] direction and the highly ordered pyrolytic graphite (HOPG) substrates because they present different crystallographic structures. The atomic force microscopy is used for imaging P(VDF/TrFE) morphologies with nanometer resolution and determining the surface roughness. The analysis of the AFM topography images revealed that the P(VDF/TrFE) film has, almost, the same texture on KCl, NaCl or on KBr substrates and their crystalline lamellae had grown in two preferred orientations. Unlike the HOPG substrate, their crystalline lamellae were entangled, randomly oriented and positioned adjacent to each other. The growth texture of the P(VDF/TrFE) copolymer showed experimentally a strong dependence on substrate types. Since the P(VDF/TrFE) is ferroelectric, piezoelectric and pyroelectric, this finding may lead to potential applications.

  7. Aspects on dental hard tissues in primary teeth from patients with Ehlers-Danlos syndrome.

    PubMed

    Klingberg, Gunilla; Hagberg, Catharina; Norén, Jörgen G; Nietzsche, Sandor

    2009-07-01

    Ehlers-Danlos syndrome (EDS) is a rare hereditary condition affecting connective tissues and dental hard tissues. Primary enamel and dentine from EDS patients were expected to differ from those of healthy subjects regarding morphology and chemical composition. Forty-seven exfoliated primary teeth from 25 patients with EDS were investigated. Morphology was studied using a polarized light microscope, scanning electron microscope, and X-ray microanalysis. Comparisons were made with 36 primary teeth from 36 healthy patients. Morphological analysis of enamel in EDS teeth showed a high frequency of postnatally hypomineralized enamel and postnatally located incremental lines, whereas dentine was normal in all patients. Chemical analysis could not reveal any differences between EDS and control patients except for lower content of C and a higher Ca/P ratio in the enamel in the EDS teeth, indicating porous enamel. Regarding dentine, EDS teeth had a lower content of C, and a higher content of Ca, P, and O. Ratios for Ca/C and Ca/O were also higher compared with controls. There are several aberrations of booth enamel and dentine in primary teeth from patients with EDS. These could explain the occurrence of both more dental caries and tooth fractures in patients with EDS.

  8. Electronic and Morphological Inhomogeneities in Pristine and Deteriorated Perovskite Photovoltaic Films

    DOE PAGES

    Berweger, Samuel; MacDonald, Gordon A.; Yang, Mengjin; ...

    2017-02-02

    We perform scanning microwave microscopy (SMM) to study the spatially varying electronic properties and related morphology of pristine and degraded methylammonium lead-halide (MAPI) perovskite films fabricated under different ambient humidity. Here, we find that higher processing humidity leads to the emergence of increased conductivity at the grain boundaries but also correlates with the appearance of resistive grains that contain PbI 2. Deteriorated films show larger and increasingly insulating grain boundaries as well as spatially localized regions of reduced conductivity within grains. These results suggest that while humidity during film fabrication primarily benefits device properties due to the passivation of trapsmore » at the grain boundaries and self-doping, it also results in the emergence of PbI 2-containing grains. We further establish that MAPI film deterioration under ambient conditions proceeds via the spatially localized breakdown of film conductivity, both at grain boundaries and within grains, due to local variations in susceptibility to deterioration. These results confirm that PbI 2 has both beneficial and adverse effects on device performance and provide new means for device optimization by revealing spatial variations in sample conductivity as well as morphological differences in resistance to sample deterioration.« less

  9. Potent Nematicidal Activity and New Hybrid Metabolite Production by Disruption of a Cytochrome P450 Gene Involved in the Biosynthesis of Morphological Regulatory Arthrosporols in Nematode-Trapping Fungus Arthrobotrys oligospora.

    PubMed

    Song, Tian-Yang; Xu, Zi-Fei; Chen, Yong-Hong; Ding, Qiu-Yan; Sun, Yu-Rong; Miao, Yang; Zhang, Ke-Qin; Niu, Xue-Mei

    2017-05-24

    Types of polyketide synthase-terpenoid synthase (PKS-TPS) hybrid metabolites, including arthrosporols with significant morphological regulatory activity, have been elucidated from nematode-trapping fungus Arthrobotrys oligospora. A previous study suggested that the gene cluster AOL_s00215 in A. oligospora was involved in the production of arthrosporols. Here, we report that disruption of one cytochrome P450 monooxygenase gene AOL_s00215g280 in the cluster resulted in significant phenotypic difference and much aerial hyphae. A further bioassay indicated that the mutant showed a dramatic decrease in the conidial formation but developed numerous traps and killed 85% nematodes within 6 h in contact with prey, in sharp contrast to the wild-type strain with no obvious response. Chemical investigation revealed huge accumulation of three new PKS-TPS epoxycyclohexone derivatives with different oxygenated patterns around the epoxycyclohexone moiety and the absence of arthrosporols in the cultural broth of the mutant ΔAOL_s00215g280. These findings suggested that a study on the biosynthetic pathway for morphological regulatory metabolites in nematode-trapping fungus would provide an efficient way to develop new fungal biocontrol agents.

  10. Words with and without internal structure: what determines the nature of orthographic and morphological processing?

    PubMed Central

    Velan, Hadas; Frost, Ram

    2010-01-01

    Recent studies suggest that basic effects which are markers of visual word recognition in Indo-European languages cannot be obtained in Hebrew or in Arabic. Although Hebrew has an alphabetic writing system, just like English, French, or Spanish, a series of studies consistently suggested that simple form-orthographic priming, or letter-transposition priming are not found in Hebrew. In four experiments, we tested the hypothesis that this is due to the fact that Semitic words have an underlying structure that constrains the possible alignment of phonemes and their respective letters. The experiments contrasted typical Semitic words which are root-derived, with Hebrew words of non-Semitic origin, which are morphologically simple and resemble base words in European languages. Using RSVP, TL priming, and form-priming manipulations, we show that Hebrew readers process Hebrew words which are morphologically simple similar to the way they process English words. These words indeed reveal the typical form-priming and TL priming effects reported in European languages. In contrast, words with internal structure are processed differently, and require a different code for lexical access. We discuss the implications of these findings for current models of visual word recognition. PMID:21163472

  11. Synthesis and Characterization of a New Co-Crystal Explosive with High Energy and Good Sensitivity

    NASA Astrophysics Data System (ADS)

    Gao, Han; Jiang, Wei; Liu, Jie; Hao, Gazi; Xiao, Lei; Ke, Xiang; Chen, Teng

    2017-10-01

    A new energetic co-crystal consisting of one of the most powerful explosive molecules 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and the military explosive cyclotrimethylenetrinitramine (RDX) was prepared with a simple solvent evaporation method. Scanning electron microscopy (SEM) revealed the morphology of the bar-shaped product, which differed greatly from the morphology of the individual components. Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction spectrum (XRD), and differential scanning calorimetry (DSC) proved the formation of the co-crystal at the molecular level. The result of mechanical sensitivity test indicated the sensitivity was effectively reduced compared to raw CL-20. Finally, a possible crystallization mechanism was discussed.

  12. Dystrophic microglia in the aging human brain.

    PubMed

    Streit, Wolfgang J; Sammons, Nicole W; Kuhns, Amanda J; Sparks, D Larry

    2004-01-15

    We have studied microglial morphology in the human cerebral cortex of two nondemented subjects using high-resolution LN-3 immunohistochemistry. Several abnormalities in microglial cytoplasmic structure, including deramification, spheroid formation, gnarling, and fragmentation of processes, were identified. These changes were determined to be different from the morphological changes that occur during microglial activation and they were designated collectively as microglial dystrophy. Quantitative evaluation of dystrophic changes in microglia revealed that these were much more prevalent in the older subject (68-year-old) than in the younger one (38-year-old). Thus, we conclude that microglial dystrophy is a sign of microglial cell senescence. We hypothesize that microglial senescence could be important for understanding age-related declines in cognitive function. Copyright 2003 Wiley-Liss, Inc.

  13. Morphological and thermal studies of chitin-curcumin blends derived polyurethanes.

    PubMed

    Mahmood, Kashif; Zia, Khalid Mahmood; Zuber, Mohammad; Tabasum, Shazia; Rehman, Saima; Zia, Fatima; Noreen, Aqdas

    2017-12-01

    The present study describes a novel ecofriendly series of chitin/curcumin/1,4-butane diol (BDO) blend derived polyurethanes (PUs), using hydroxy terminated polybutadiene (HTPB) and hexamethylene diisocyanate (HDI) along with different mole ratio of chitin, curcumin and BDO. The structural and morphological elucidation of the prepared films was done by FTIR and SEM techniques. The swelling behavior of the films was analyzed in both water and DMSO, which showed that incorporation of chitin increases the hydrophobicity and decreases the rate of swelling. Thermal analysis of synthesized PU blends revealed better thermal stability with following mole ratio 1:0.5:0.5 of chitin: curcumin: BDO as determined by TGA and DSC techniques. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Nitrogen-polar core-shell GaN light-emitting diodes grown by selective area metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Li, Shunfeng; Wang, Xue; Fündling, Sönke; Erenburg, Milena; Ledig, Johannes; Wei, Jiandong; Wehmann, Hergo H.; Waag, Andreas; Bergbauer, Werner; Mandl, Martin; Strassburg, Martin; Trampert, Achim; Jahn, Uwe; Riechert, Henning; Jönen, Holger; Hangleiter, Andreas

    2012-07-01

    Homogeneous nitrogen-polar GaN core-shell light emitting diode (LED) arrays were fabricated by selective area growth on patterned substrates. Transmission electron microscopy measurements prove the core-shell structure of the rod LEDs. Depending on the growth facets, the InGaN/GaN multi-quantum wells (MQWs) show different dimensions and morphology. Cathodoluminescence (CL) measurements reveal a MQWs emission centered at about 415 nm on sidewalls and another emission at 460 nm from top surfaces. CL line scans on cleaved rod also indicate the core-shell morphology. Finally, an internal quantum efficiency of about 28% at room temperature was determined by an all-optical method on a LED array.

  15. Hard X-ray Microscopic Images of the Human Hair

    NASA Astrophysics Data System (ADS)

    Goo, Jawoong; Jeon, Soo Young; Oh, Tak Heon; Hong, Seung Phil; Yon, Hwa Shik; Lee, Won-Soo

    2007-01-01

    The better visualization of the human organs or internal structure is challenging to the physicist and physicians. It can lead to more understanding of the morphology, pathophysiology and the diagnosis. Conventionally used methods to investigate cells or architectures, show limited value due to sample processing procedures and lower resolution. In this respect, Zernike type phase contrast hard x-ray microscopy using 6.95keV photon energy has advantages. We investigated hair fibers of the normal healthy persons. Coherence based phase contrast images revealed three distinct structures of hair, medulla, cortex, and cuticular layer. Some different detailed characters of each sample were noted. And further details would be shown and these results would be utilized as basic data of morphologic study of human hair.

  16. Phenotypic integration in a series of trophic traits: tracing the evolution of myrmecophagy in spiders (Araneae).

    PubMed

    Pekár, Stano; Michalko, Radek; Korenko, Stanislav; Sedo, Ondřej; Líznarová, Eva; Sentenská, Lenka; Zdráhal, Zbyněk

    2013-02-01

    Several hypotheses have been put forward to explain the evolution of prey specificity (stenophagy). Yet little light has so far been shed on the process of evolution of stenophagy in carnivorous predators. We performed a detailed analysis of a variety of trophic adaptations in one species. Our aim was to determine whether a specific form of stenophagy, myrmecophagy, has evolved from euryphagy via parallel changes in several traits from pre-existing characters. For that purpose, we studied the trophic niche and morphological, behavioural, venomic and physiological adaptations in a euryphagous spider, Selamia reticulata. It is a species that is branching off earlier in phylogeny than stenophagous ant-eating spiders of the genus Zodarion (both Zodariidae). The natural diet was wide and included ants. Laboratory feeding trials revealed versatile prey capture strategies that are effective on ants and other prey types. The performance of spiders on two different diets - ants only and mixed insects - failed to reveal differences in most fitness components (survival and developmental rate). However, the weight increase was significantly higher in spiders on the mixed diet. As a result, females on a mixed diet had higher fecundity and oviposited earlier. No differences were found in incubation period, hatching success or spiderling size. S. reticulata possesses a more diverse venom composition than Zodarion. Its venom is more effective for the immobilisation of beetle larvae than of ants. Comparative analysis of morphological traits related to myrmecophagy in the family Zodariidae revealed that their apomorphic states appeared gradually along the phylogeny to derived prey-specialised genera. Our results suggest that myrmecophagy has evolved gradually from the ancestral euryphagous strategy by integrating a series of trophic traits. Copyright © 2012 Elsevier GmbH. All rights reserved.

  17. The necessity of DNA taxonomy to reveal cryptic diversity and spatial distribution of meiofauna, with a focus on Nemertea.

    PubMed

    Leasi, Francesca; Norenburg, Jon L

    2014-01-01

    Meiofauna represent one of the most abundant and diverse communities in marine benthic ecosystems. However, an accurate assessment of diversity at the level of species has been and remains challenging for these microscopic organisms. Therefore, for many taxa, especially the soft body forms such as nemerteans, which often lack clear diagnostic morphological traits, DNA taxonomy is an effective means to assess species diversity. Morphological taxonomy of Nemertea is well documented as complicated by scarcity of unambiguous character states and compromised by diagnoses of a majority of species (and higher clades) being inadequate or based on ambiguous characters and character states. Therefore, recent studies have advocated for the primacy of molecular tools to solve the taxonomy of this group. DNA taxonomy uncovers possible hidden cryptic species, provides a coherent means to systematize taxa in definite clades, and also reveals possible biogeographic patterns. Here, we analyze diversity of nemertean species by considering the barcode region of the mitochondrial gene Cytochrome Oxidase subunit I (COI) and different species delineation approaches in order to infer evolutionarily significant units. In the aim to uncover actual diversity of meiofaunal nemerteans across different sites in Central America, COI sequences were obtained for specimens assigned here to the genera Cephalothrix, Ototyphlonemertes, and Tetrastemma-like worms, each commonly encountered in our sampling. Additional genetic, taxonomic, and geographic data of other specimens belonging to these genera were added from GenBank. Results are consistent across different DNA taxonomy approaches, and revealed (i) the presence of several hidden cryptic species and (ii) numerous potential misidentifications due to traditional taxonomy. (iii) We additionally test a possible biogeographic pattern of taxonomic units revealed by this study, and, except for a few cases, the putative species seem not to be widely distributed, in contrast to what traditional taxonomy would suggest for the recognized morphotypes.

  18. Cellular responses during morphological transformation in Azospirillum brasilense and Its flcA knockout mutant.

    PubMed

    Hou, Xingsheng; McMillan, Mary; Coumans, Joëlle V F; Poljak, Anne; Raftery, Mark J; Pereg, Lily

    2014-01-01

    FlcA is a response regulator controlling flocculation and the morphological transformation of Azospirillum cells from vegetative to cyst-like forms. To understand the cellular responses of Azospirillum to conditions that cause morphological transformation, proteins differentially expressed under flocculation conditions in A. brasilense Sp7 and its flcA knockout mutant were investigated. Comparison of 2-DE protein profiles of wild-type (Sp7) and a flcA deletion mutant (Sp7-flcAΔ) revealed a total of 33 differentially expressed 2-DE gel spots, with 22 of these spots confidently separated to allow protein identification. Analysis of these spots by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and MASCOT database searching identified 48 proteins (≥10% emPAI in each spot). The functional characteristics of these proteins included carbon metabolism (beta-ketothiolase and citrate synthase), nitrogen metabolism (Glutamine synthetase and nitric oxide synthase), stress tolerance (superoxide dismutase, Alkyl hydroperoxidase and ATP-dependent Clp protease proteolytic subunit) and morphological transformation (transducer coupling protein). The observed differences between Sp7 wild-type and flcA- strains enhance our understanding of the morphological transformation process and help to explain previous phenotypical observations. This work is a step forward in connecting the Azospirillum phenome and genome.

  19. Cellular Responses during Morphological Transformation in Azospirillum brasilense and Its flcA Knockout Mutant

    PubMed Central

    Coumans, Joëlle V. F.; Poljak, Anne; Raftery, Mark J.; Pereg, Lily

    2014-01-01

    FlcA is a response regulator controlling flocculation and the morphological transformation of Azospirillum cells from vegetative to cyst-like forms. To understand the cellular responses of Azospirillum to conditions that cause morphological transformation, proteins differentially expressed under flocculation conditions in A. brasilense Sp7 and its flcA knockout mutant were investigated. Comparison of 2-DE protein profiles of wild-type (Sp7) and a flcA deletion mutant (Sp7-flcAΔ) revealed a total of 33 differentially expressed 2-DE gel spots, with 22 of these spots confidently separated to allow protein identification. Analysis of these spots by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and MASCOT database searching identified 48 proteins (≥10% emPAI in each spot). The functional characteristics of these proteins included carbon metabolism (beta-ketothiolase and citrate synthase), nitrogen metabolism (Glutamine synthetase and nitric oxide synthase), stress tolerance (superoxide dismutase, Alkyl hydroperoxidase and ATP-dependent Clp protease proteolytic subunit) and morphological transformation (transducer coupling protein). The observed differences between Sp7 wild-type and flcA − strains enhance our understanding of the morphological transformation process and help to explain previous phenotypical observations. This work is a step forward in connecting the Azospirillum phenome and genome. PMID:25502569

  20. Form and function of the human and chimpanzee forefoot: implications for early hominin bipedalism

    PubMed Central

    Fernández, Peter J.; Holowka, Nicholas B.; Demes, Brigitte; Jungers, William L.

    2016-01-01

    During bipedal walking, modern humans dorsiflex their forefoot at the metatarsophalangeal joints (MTPJs) prior to push off, which tightens the plantar soft tissues to convert the foot into a stiff propulsive lever. Particular features of metatarsal head morphology such as “dorsal doming” are thought to facilitate this stiffening mechanism. In contrast, chimpanzees are believed to possess MTPJ morphology that precludes high dorsiflexion excursions during terrestrial locomotion. The morphological affinity of the metatarsal heads has been used to reconstruct locomotor behavior in fossil hominins, but few studies have provided detailed empirical data to validate the assumed link between morphology and function at the MTPJs. Using three-dimensional kinematic and morphometric analyses, we show that humans push off with greater peak dorsiflexion angles at all MTPJs than do chimpanzees during bipedal and quadrupedal walking, with the greatest disparity occurring at MTPJ 1. Among MTPJs 2–5, both species exhibit decreasing peak angles from medial to lateral. This kinematic pattern is mirrored in the morphometric analyses of metatarsal head shape. Analyses of Australopithecus afarensis metatarsals reveal morphology intermediate between humans and chimpanzees, suggesting that this species used different bipedal push-off kinematics than modern humans, perhaps resulting in a less efficient form of bipedalism. PMID:27464580

  1. Life on the rocks: habitat use drives morphological and performance evolution in lizards.

    PubMed

    Goodman, Brett A; Miles, Donald B; Schwarzkopf, Lin

    2008-12-01

    As a group, lizards occupy a vast array of habitats worldwide, yet there remain relatively few cases where habitat use (ecology), morphology, and thus, performance, are clearly related. The best known examples include: increased limb length in response to increased arboreal perch diameter in anoles and increased limb length in response to increased habitat openness for some skinks. Rocky habitats impose strong natural selection on specific morphological characteristics, which differs from that imposed on terrestrial species, because moving about on inclined substrates of irregular sizes and shapes constrains locomotor performance in predictable ways. We quantified habitat use, morphology, and performance of 19 species of lizards (family Scincidae, subfamily Lygosominae) from 23 populations in tropical Australia. These species use habitats with considerable variation in rock availability. Comparative phylogenetic analyses revealed that occupation of rock-dominated habitats correlated with the evolution of increased limb length, compared to species from forest habitats that predominantly occupied leaf litter. Moreover, increased limb length directly affected performance, with species from rocky habitats having greater sprinting, climbing, and clinging ability than their relatives from less rocky habitats. Thus, we found that the degree of rock use is correlated with both morphological and performance evolution in this group of tropical lizards.

  2. Morphology and ventilatory function of gills in the carpet shark family Parascylliidae (Elasmobranchii, Orectolobiformes).

    PubMed

    Goto, Tomoaki; Shiba, Yojiro; Shibagaki, Kazuhiro; Nakaya, Kazuhiro

    2013-06-01

    We examined gill morphology and ventilatory function in the carpet shark family Parascylliidae using 14 preserved specimens of Parascyllium ferrugineum, P. variolatum, P. collare and Cirrhoscyllium japonicum, and two live specimens of P. ferrugineum and P. variolatum. Morphological examinations revealed eight morphological characteristics related to the fifth gill, based on comparisons with other elasmobranchs, viz. large fifth gill slit without gill filaments, anatomical modifications in the fourth ceratobranchial cartilage and coraco-branchialis muscle, and the hypaxialis muscle associated with the fifth gill arch. Ventilation examinations using dyed seawater and prey items showed different water flows through the gill slits for respiration and prey-capture actions. For respiration, water sucked into the mouth was expelled equally through the first to fourth gill slits via a "double-pump" action, there being no involvement of the fifth gill slit. In prey-capture, however, water sucked into the mouth was discharged only via the widely opened fifth gill slit. This form of water flow is similar to that in other benthic suction-feeding sharks (e.g., Chiloscyllium plagiosum), except for the active water discharge by wide expansion and contraction of the fifth parabranchial cavity. The latter is dependent upon the morphological modifications of the fourth and fifth gill arches, derived phylogenetically as a mechanistic suction specialization in Parascylliidae.

  3. Eurytemora carolleeae in the Laurentian Great Lakes revealed by phylogenetic and morphological analysis

    USGS Publications Warehouse

    Vasquez, Adrian A.; Hudson, Patrick L.; Fujimoto, Masanori; Keeler, Kevin M.; Armenio, Patricia M.; Ram, Jeffrey L.

    2016-01-01

    In the Laurentian Great Lakes, specimens of Eurytemora have been reported asEurytemora affinis since its invasion in the late 1950s. During an intensive collection of aquatic invertebrates for morphological and molecular identification in Western Lake Erie in 2012-2013, several specimens of Eurytemora were collected. Analysis of these specimens identified them as the recently described species Eurytemora carolleeaeAlekseev and Souissi 2011. This result led us to assess E. carolleeae’s identifying features, geographic distribution and historical presence in the Laurentian Great Lakes in view of its recent description in 2011. Cytochrome oxidase I (COI) DNA sequences ofEurytemora specimens were identified as closer (2 - 4% different) to recently describedE. carolleeae than to most E. affinis sequences (14% different). Eurytemora from other areas of the Great Lakes and from North American rivers as far west as South Dakota (Missouri River) and east to Delaware (Christina River) also keyed to E. carolleeae. Morphological analysis of archival specimens from 1962 and from all the Great Lakes was identified as E. carolleeae. Additionally, Eurytemora drawings in previous publications were reassessed to determine if the species was E. carolleeae and are reported here. Additional morphological characters that may distinguish North AmericanE. carolleeae from other taxa are also described. We conclude that E. carolleeae is the correct name for the species of Eurytemora that has inhabited the Great Lakes since its invasion, as established by both morphological and COI sequence comparisons to reference keys and sequence databases in present and archival specimens.

  4. Morphological variation, phylogenetic relationships, and geographic distribution of the Baenidae (Testudines), based on new specimens from the Uinta Formation (Uinta Basin), Utah (USA)

    PubMed Central

    Hutchison, J. Howard; Townsend, K. E. Beth; Adrian, Brent; Jager, Daniel

    2017-01-01

    We described newly discovered baenid specimens from the Uintan North American Land Mammal Age (NALMA), in the Uinta Formation, Uinta Basin, Utah. These specimens include a partial skull and several previously undescribed postcranial elements of Baena arenosa, and numerous well-preserved shells of B. arenosa and Chisternon undatum. Baenids from the Uintan NALMA (46.5–40 Ma) are critical in that they provide valuable insight into the morphology and evolution of the diverse and speciose baenid family near the end of its extensive radiation, just prior to the disappearance of this clade from the fossil record. These Uintan specimens greatly increase the known variation in these late-surviving taxa and indicate that several characters thought to define these species should be reassessed. The partial cranium of B. arenosa, including portions of the basicranium, neurocranium, face, and lower jaw, was recently recovered from Uinta B sediments. While its morphology is consistent with known specimens of B. arenosa, we observed several distinct differences: a crescent-shaped condylus occipitalis that is concave dorsally, tuberculum basioccipitale that flare out laterally, and a distinct frontal-nasal suture. The current sample of plastral and carapacial morphology considerably expands the documented variation in the hypodigms of B. arenosa and C. undatum. Novel shell characters observed include sigmoidal extragular-humeral sulci, and small, subtriangular gular scutes. Subadult specimens reveal ontogenetic processes in both taxa, and demonstrate that diagnostic morphological differences between them were present from an early developmental age. PMID:28686718

  5. Morphological variation, phylogenetic relationships, and geographic distribution of the Baenidae (Testudines), based on new specimens from the Uinta Formation (Uinta Basin), Utah (USA).

    PubMed

    Smith, Heather F; Hutchison, J Howard; Townsend, K E Beth; Adrian, Brent; Jager, Daniel

    2017-01-01

    We described newly discovered baenid specimens from the Uintan North American Land Mammal Age (NALMA), in the Uinta Formation, Uinta Basin, Utah. These specimens include a partial skull and several previously undescribed postcranial elements of Baena arenosa, and numerous well-preserved shells of B. arenosa and Chisternon undatum. Baenids from the Uintan NALMA (46.5-40 Ma) are critical in that they provide valuable insight into the morphology and evolution of the diverse and speciose baenid family near the end of its extensive radiation, just prior to the disappearance of this clade from the fossil record. These Uintan specimens greatly increase the known variation in these late-surviving taxa and indicate that several characters thought to define these species should be reassessed. The partial cranium of B. arenosa, including portions of the basicranium, neurocranium, face, and lower jaw, was recently recovered from Uinta B sediments. While its morphology is consistent with known specimens of B. arenosa, we observed several distinct differences: a crescent-shaped condylus occipitalis that is concave dorsally, tuberculum basioccipitale that flare out laterally, and a distinct frontal-nasal suture. The current sample of plastral and carapacial morphology considerably expands the documented variation in the hypodigms of B. arenosa and C. undatum. Novel shell characters observed include sigmoidal extragular-humeral sulci, and small, subtriangular gular scutes. Subadult specimens reveal ontogenetic processes in both taxa, and demonstrate that diagnostic morphological differences between them were present from an early developmental age.

  6. Verb and Noun Word Retrieval in Bilingual Aphasia: A Case Study of Language- and Modality-Specific Levels of Breakdown

    ERIC Educational Resources Information Center

    Kambanaros, Maria

    2016-01-01

    This study reports on the pattern of performance on spoken and written naming, spelling to dictation, and oral reading of single verbs and nouns in a bilingual speaker with aphasia in two first languages that differ in morphological complexity, orthographic transparency, and script: Greek (L1a) and English (L1b). The results reveal no verb/noun…

  7. Hunting behaviour and breeding performance of northern goshawks Accipiter gentilis, in relation to resource availability, sex, age and morphology

    NASA Astrophysics Data System (ADS)

    Penteriani, Vincenzo; Rutz, Christian; Kenward, Robert

    2013-10-01

    Animal territories that differ in the availability of food resources will require (all other things being equal) different levels of effort for successful reproduction. As a consequence, breeding performance may become most strongly dependent on factors that affect individual foraging where resources are poor. We investigated potential links between foraging behaviour, reproductive performance and morphology in a goshawk Accipiter gentilis population, which experienced markedly different resource levels in two different parts of the study area (rabbit-rich vs. rabbit-poor areas). Our analyses revealed (1) that rabbit abundance positively affected male reproductive output; (2) that age, size and rabbit abundance (during winter) positively affected different components of female reproductive output; (3) that foraging movements were inversely affected by rabbit abundance for both sexes (for females, this may mainly have reflected poor provisioning by males in the rabbit-poor area); (4) that younger breeders (both in males and females) tended to move over larger distances than older individuals (which may have reflected both a lack of hunting experience and mate searching); and (5) that male body size (wing length) showed some covariation with resource conditions (suggesting possible adaptations to hunting agile avian prey in the rabbit-poor area). Although we are unable to establish firm causal relationships with our observational data set, our results provide an example of how territory quality (here, food abundance) and individual features (here, age and morphology) may combine to shape a predator's foraging behaviour and, ultimately, its breeding performance.

  8. Round and pointed-head grenadier fishes (Actinopterygii: Gadiformes) represent a single sister group: evidence from the complete mitochondrial genome sequences.

    PubMed

    Satoh, Takashi P; Miya, Masaki; Endo, Hiromitsu; Nishida, Mutsumi

    2006-07-01

    The gene order of mitochondrial genomes (mitogenomes) has been employed as a useful phylogenetic marker in various metazoan animals, because it may represent uniquely derived characters shared by members of monophyletic groups. During the course of molecular phylogenetic studies of the order Gadiformes (cods and their relatives) based on whole mitogenome sequences, we found that two deep-sea grenadiers (Squalogadus modificatus and Trachyrincus murrayi: family Macrouridae) revealed a unusually identical gene order (translocation of the tRNA(Leu (UUR))). Both are members of the same family, although their external morphologies differed so greatly (e.g., round vs. pointed head) that they have been placed in different subfamilies Macrouroidinae and Trachyrincinae, respectively. Additionally, we determined the whole mitogenome sequences of two other species, Bathygadus antrodes and Ventrifossa garmani, representing a total of four subfamilies currently recognized within Macrouridae. The latter two species also exhibited gene rearrangements, resulting in a total of three different patterns of unique gene order being observed in the four subfamilies. Partitioned Bayesian analysis was conducted using available whole mitogenome sequences from five macrourids plus five outgroups. The resultant trees clearly indicated that S. modificatus and T. murrayi formed a monophyletic group, having a sister relationship to other macrourids. Thus, monophyly of the two species with disparate head morphologies was corroborated by two different lines of evidence (nucleotide sequences and gene order). The overall topology of the present tree differed from any of the previously proposed, morphology-based phylogenetic hypotheses.

  9. Separating foliar physiology from morphology reveals the relative roles of vertically structured transpiration factors within red maple crowns and limitations of larger scale models

    PubMed Central

    Bauerle, William L.; Bowden, Joseph D.

    2011-01-01

    A spatially explicit mechanistic model, MAESTRA, was used to separate key parameters affecting transpiration to provide insights into the most influential parameters for accurate predictions of within-crown and within-canopy transpiration. Once validated among Acer rubrum L. genotypes, model responses to different parameterization scenarios were scaled up to stand transpiration (expressed per unit leaf area) to assess how transpiration might be affected by the spatial distribution of foliage properties. For example, when physiological differences were accounted for, differences in leaf width among A. rubrum L. genotypes resulted in a 25% difference in transpiration. An in silico within-canopy sensitivity analysis was conducted over the range of genotype parameter variation observed and under different climate forcing conditions. The analysis revealed that seven of 16 leaf traits had a ≥5% impact on transpiration predictions. Under sparse foliage conditions, comparisons of the present findings with previous studies were in agreement that parameters such as the maximum Rubisco-limited rate of photosynthesis can explain ∼20% of the variability in predicted transpiration. However, the spatial analysis shows how such parameters can decrease or change in importance below the uppermost canopy layer. Alternatively, model sensitivity to leaf width and minimum stomatal conductance was continuous along a vertical canopy depth profile. Foremost, transpiration sensitivity to an observed range of morphological and physiological parameters is examined and the spatial sensitivity of transpiration model predictions to vertical variations in microclimate and foliage density is identified to reduce the uncertainty of current transpiration predictions. PMID:21617246

  10. Unpacking boxes: Integration of molecular, morphological and ecological approaches reveals extensive patterns of reticulate evolution in box eucalypts.

    PubMed

    Flores-Rentería, Lluvia; Rymer, Paul D; Riegler, Markus

    2017-03-01

    Reticulate evolution by hybridization is considered a common process shaping the evolution of many plant species, however, reticulation could also be due to incomplete lineage sorting in biodiverse systems. For our study we selected a group of closely related plant taxa with contrasting yet partially overlapping geographic distributions and different population sizes, to distinguish between reticulated patterns due to hybridization and incomplete lineage sorting. We predicted that sympatric or proximal populations of different species are more likely to have gene flow than geographically distant populations of the same widespread species. Furthermore, for species with restricted distributions, and therefore, small effective population sizes, we predicted complete lineage sorting. Eastern grey box eucalypt species (Eucalyptus supraspecies Moluccanae) provide an ideal system to explore patterns of reticulate evolution. They form a diverse, recently evolved and phylogenetically undefined group within Eucalyptus, with overlapping morphological features and hybridization in nature. We used a multi-faceted approach, combining analyses of chloroplast and nuclear DNA, as well as seedling morphology, flowering time and ecological spatial differentiation in order to test for species delimitation and reticulate evolution in this group. The multiple layers of results were consistent and suggested a lack of monophyly at different hierarchical levels due to multidirectional gene flow among several species, challenging species delimitation. Chloroplast and nuclear haplotypes were shared among different species in geographic proximity, consistent with hybridization zones. Furthermore, species with restricted distributions appeared better resolved due to lineage sorting in the absence of hybridization. We conclude that a combination of molecular, morphological and ecological approaches is required to disentangle patterns of reticulate evolution in the box eucalypts. Published by Elsevier Inc.

  11. Growth patterns of an intertidal gastropod as revealed by oxygen isotope analysis

    NASA Astrophysics Data System (ADS)

    Bean, J. R.; Hill, T. M.; Guerra, C.

    2007-12-01

    The size and morphology of mollusk shells are affected by environmental conditions. As a result, it is difficult to assess growth rate, population age structure, shell morphologies associated with ontogenetic stages, and to compare life history patterns across various environments. Oxygen isotope analysis is a useful tool for estimating minimum ages and growth rates of calcium carbonate secreting organisms. Calcite shell material from members of two northern California populations of the intertidal muricid gastropod Acanthinucella spirata was sampled for isotopic analysis. Individual shells were sampled from apex to margin, thus providing a sequential record of juvenile and adult growth. A. spirata were collected from a sheltered habitat in Tomales Bay and from an exposed reef in Bolinas. Abiotic factors, such as temperature, wave exposure, and substrate consistency, and biotic composition differ significantly between these sites, possibly resulting in local adaptations and variation in life history and growth patterns. Shell morphology of A. spirata changes with age as internal shell margin thickenings of denticle rows associated with external growth bands are irregularly accreted. It is not known when, either seasonally and/or ontogentically, these thickenings and bands form or whether inter or intra-populational variation exists. Preliminary results demonstrate the seasonal oxygen isotopic variability present at the two coastal sites, indicating 5-6 degC changes from winter to summertime temperatures; these data are consistent with local intertidal temperature records. Analysis of the seasonal patterns indicate that: 1) differences in growth rate and seasonal growth patterns at different ontogenetic stages within populations, and 2) differences in growth patterns and possibly age structure between the two A. spirata populations. These findings indicate that isotopic analyses, in addition to field observations and morphological measurements, are necessary to assess life history strategies and compare population dynamics under varying environmental conditions.

  12. Sex differences in aneurysm morphologies and clinical outcomes in ruptured anterior communicating artery aneurysms: a retrospective study

    PubMed Central

    Lin, Boli; Chen, Weijian; Ruan, Lei; Chen, Yongchun; Zhong, Ming; Zhuge, Qichuan; Fan, Liang Hao; Zhao, Bing; Yang, Yunjun

    2016-01-01

    Objectives Ruptured anterior communicating artery (ACoA) aneurysms occur more frequently in men. The purpose of the study was to investigate sex difference in aneurysm morphologies and clinical outcomes in patients with ruptured ACoA aneurysms. Setting A tertiary referral hospital. Participants A total of 574 consecutive patients with ACoA aneurysms were admitted to our hospital from December 2007 to February 2015. In all, 474 patients (257 men and 217 women) with ruptured ACoA aneurysms were included in the study. Main outcome measures Aneurysm morphologies were measured using computed tomographic angiography and clinical outcomes were measured with Glasgow coma score at discharge. Results The aneurysm sizes (p=0.001), aneurysm heights (p=0.011), size ratios (p<0.001), flow angles (p=0.047) and vessel angles (p=0.046) were larger in the male patients than in the females. The female patients more often had larger vessel sizes (p=0.002). Multivariate logistic analysis revealed that significant differences in aneurysm morphologies between men and women were aneurysm size (OR 1.1, 95% CI 1.0 to 1.3; p=0.036), aneurysm height (OR 0.8, 95% CI 0. to 0.9; p=0.006) and size ratio (OR 1.4, 95% CI 0.5 to 1.7; p=0.001). There were no statistically significant differences in the outcomes between men and women (OR 1.0, 95% CI 0.6 to 1.7, p=0.857). Conclusions The men were independently associated with larger aneurysm sizes, greater aneurysm heights and larger size ratios. Sex was not a risk factor for poor outcome in patients with ruptured ACoA aneurysms. PMID:27084272

  13. Inhibition of quantum size effects from surface dangling bonds: The first principles study on different morphology SiC nanowires

    NASA Astrophysics Data System (ADS)

    Li, Yan-Jing; Li, Shu-Long; Gong, Pei; Li, Ya-Lin; Fang, Xiao-Yong; Jia, Ya-Hui; Cao, Mao-Sheng

    2018-06-01

    In recent years, we investigated the structure and photoelectric properties of Silicon carbide nanowires (SiCNWs) with different morphologies and sizes by using the first-principle in density functional theory, and found a phenomenon that is opposite to quantum size effect, namely, the band gap of nanowires increases with the increase of the diameter. To reveal the nature of this phenomenon, we further carry out the passivation of SiCNWs. The results show that the hydrogenated SiCNWs are direct band gap semiconductors, and the band gap decreases with the diameter increasing, which indicates the dangling bonds of the SiCNWs suppress its quantum size effect. The optical properties of SiCNWs with different diameters before and after hydrogenated are compared, we found that these surface dangling bonds lead to spectral shift which is different with quantum size effect of SiCNWs. These results have potential scientific value to deepen the understanding of the photoelectric properties of SiCNWs and to promote the development of optoelectronic devices.

  14. A phylogeny of Cichlidogyrus spp. (Monogenea, Dactylogyridea) clarifies a host-switch between fish families and reveals an adaptive component to attachment organ morphology of this parasite genus.

    PubMed

    Messu Mandeng, Françoise D; Bilong Bilong, Charles F; Pariselle, Antoine; Vanhove, Maarten P M; Bitja Nyom, Arnold R; Agnèse, Jean-François

    2015-11-10

    Parasite switches to new host species are of fundamental scientific interest and may be considered an important speciation mechanism. For numerous monogenean fish parasites, infecting different hosts is associated with morphological adaptations, in particular of the attachment organ (haptor). However, haptoral morphology in Cichlidogyrus spp. (Monogenea, Dactylogyridea), parasites of African cichlids, has been mainly linked to phylogenetic rather than to host constraints. Here we determined the position of Cichlidogyrus amieti, a parasite of species of Aphyosemion (Cyprinodontiformes, Nothobranchiidae) in the phylogeny of its congeners in order to infer its origin and assess the morphological changes associated with host-switching events. The DNA of specimens of C. amieti isolated from Aphyosemion cameronense in Cameroon was sequenced and analyzed together with that of Cichlidogyrus spp. from cichlid hosts. In order to highlight the influence of the lateral transfer of C. amieti on the haptoral sclerotised parts we performed a Principal Component Analysis (PCA) to compare the attachment organ structure of C. amieti to that of congeners infecting cichlids. Cichlidogyrus amieti was found to be nested within a strongly supported clade of species described from Hemichromis spp. (i.e. C. longicirrus and C. dracolemma). This clade is located at a derived position of the tree, suggesting that C. amieti transferred from cichlids to Cyprinodontiformes and not inversely. The morphological similarity between features of their copulatory organs suggested that C. amieti shares a recent ancestor with C. dracolemma. It also indicates that in this case, these organs do not seem subjected to strong divergent selection pressure. On the other hand, there are substantial differences in haptoral morphology between C. amieti and all of its closely related congeners described from Hemichromis spp.. Our study provides new evidence supporting the hypothesis of the adaptive nature of haptor morphology. It demonstrates this adaptive component for the first time within Cichlidogyrus, the attachment organs of which were usually considered to be mainly phylogenetically constrained.

  15. Annealing temperature effect on electrical properties of MEH-PPV thin film via spin coating method

    NASA Astrophysics Data System (ADS)

    Azhar, N. E. A.; Shariffudin, S. S.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2018-05-01

    Organic semiconductor has been discovered in different application devices such as organic light emitting diodes (OLEDs). Poly [2-methoxy-5(2' -ethylhexyloxy)-1, 4-phenylenevinylene), MEH-PPV widely used in this device because its ability to produce a good optical quality films. The MEH-PPV was prepared on glass substrate by spin coating method. The thin film was investigated at different annealing temperatures. The scanning electron micrographs (SEM) revealed that sample annealed at 50°C showed uniformity and less aggregation on morphology polymer thin film. Optical properties showed the intensities of visible emission increased as temperatures increased. The current-voltage (I-V) measurement revealed that the temperature of 50°C showed high conductive and it is suitable for optoelectronic device.

  16. Unilateral hearing during development: hemispheric specificity in plastic reorganizations

    PubMed Central

    Kral, Andrej; Heid, Silvia; Hubka, Peter; Tillein, Jochen

    2013-01-01

    The present study investigates the hemispheric contributions of neuronal reorganization following early single-sided hearing (unilateral deafness). The experiments were performed on ten cats from our colony of deaf white cats. Two were identified in early hearing screening as unilaterally congenitally deaf. The remaining eight were bilaterally congenitally deaf, unilaterally implanted at different ages with a cochlear implant. Implanted animals were chronically stimulated using a single-channel portable signal processor for two to five months. Microelectrode recordings were performed at the primary auditory cortex under stimulation at the hearing and deaf ear with bilateral cochlear implants. Local field potentials (LFPs) were compared at the cortex ipsilateral and contralateral to the hearing ear. The focus of the study was on the morphology and the onset latency of the LFPs. With respect to morphology of LFPs, pronounced hemisphere-specific effects were observed. Morphology of amplitude-normalized LFPs for stimulation of the deaf and the hearing ear was similar for responses recorded at the same hemisphere. However, when comparisons were performed between the hemispheres, the morphology was more dissimilar even though the same ear was stimulated. This demonstrates hemispheric specificity of some cortical adaptations irrespective of the ear stimulated. The results suggest a specific adaptation process at the hemisphere ipsilateral to the hearing ear, involving specific (down-regulated inhibitory) mechanisms not found in the contralateral hemisphere. Finally, onset latencies revealed that the sensitive period for the cortex ipsilateral to the hearing ear is shorter than that for the contralateral cortex. Unilateral hearing experience leads to a functionally-asymmetric brain with different neuronal reorganizations and different sensitive periods involved. PMID:24348345

  17. Unilateral hearing during development: hemispheric specificity in plastic reorganizations.

    PubMed

    Kral, Andrej; Heid, Silvia; Hubka, Peter; Tillein, Jochen

    2013-01-01

    The present study investigates the hemispheric contributions of neuronal reorganization following early single-sided hearing (unilateral deafness). The experiments were performed on ten cats from our colony of deaf white cats. Two were identified in early hearing screening as unilaterally congenitally deaf. The remaining eight were bilaterally congenitally deaf, unilaterally implanted at different ages with a cochlear implant. Implanted animals were chronically stimulated using a single-channel portable signal processor for two to five months. Microelectrode recordings were performed at the primary auditory cortex under stimulation at the hearing and deaf ear with bilateral cochlear implants. Local field potentials (LFPs) were compared at the cortex ipsilateral and contralateral to the hearing ear. The focus of the study was on the morphology and the onset latency of the LFPs. With respect to morphology of LFPs, pronounced hemisphere-specific effects were observed. Morphology of amplitude-normalized LFPs for stimulation of the deaf and the hearing ear was similar for responses recorded at the same hemisphere. However, when comparisons were performed between the hemispheres, the morphology was more dissimilar even though the same ear was stimulated. This demonstrates hemispheric specificity of some cortical adaptations irrespective of the ear stimulated. The results suggest a specific adaptation process at the hemisphere ipsilateral to the hearing ear, involving specific (down-regulated inhibitory) mechanisms not found in the contralateral hemisphere. Finally, onset latencies revealed that the sensitive period for the cortex ipsilateral to the hearing ear is shorter than that for the contralateral cortex. Unilateral hearing experience leads to a functionally-asymmetric brain with different neuronal reorganizations and different sensitive periods involved.

  18. Co(II)-doped MOF-5 nano/microcrystals: Solvatochromic behaviour, sensing solvent molecules and gas sorption property

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ji-Min; School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005; Liu, Qing

    2014-10-15

    Co(II)-doped MOF-5 nano/microcrystals with controllable morphology and size were successfully obtained by solvothermal method. The products were characterized by powder X-ray diffraction (PXRD), energy dispersive spectrometry (EDS), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), inductively coupled plasma optical emission spectrometer (ICP-OES), elemental analysis, UV–vis and infrared (IR) spectroscopy. The factors influencing the crystal morphology and size were investigated. The gas sorption measurements reveal that highly crystalline particles have large Langmuir surface area. It was found that the Co(II)-doped MOF-5 shows enhanced hydrostability and the sorption profiles of the Co(II)-doped MOF-5 nano/microcrystals are dependent on the morphology and sizemore » of the particles. Porous Co(II)-doped MOF-5 is stable upon the removal of guest molecules and exhibits different colour with accommodating different solvent molecule, which means that it can act as solvatochromic sensing materials for recognition of solvent molecules. - Graphical abstract: Co(II)-doped MOF-5 nano/microcrystals with different shapes and sizes were synthesized by a facile hydrothermal method, which not only enhance gas sorption properties and structural stability of MOFs towards moisture, but also act as new sensing materials for sensing small molecules. - Highlights: • Co(II)-doped MOF-5 nano/microcrystals with controllable morphology and size were obtained. • Co(II)-doped MOF-5 nano/microcrystals enhance the structural stability towards moisture. • Co(II)-doped MOF-5 can act as new sensing material for sensing small molecules.« less

  19. Effect of different processes and Ti/Zn molar ratios on the structure, morphology, and enhanced photoelectrochemical and photocatalytic performance of Ti3+ self-doped titanium-zinc hybrid oxides

    NASA Astrophysics Data System (ADS)

    Fu, Rongrong; Wang, Qingyao; Gao, Shanmin; Wang, Zeyan; Huang, Baibiao; Dai, Ying; Lu, Jun

    2015-07-01

    Ti3+ self-doped titanium-zinc hybrid oxides with different phase compositions and morphologies were successfully synthesized using Zn powder as the reductant and Zn source by a chemical-reduction precipitation method with subsequent thermal treatment. The fabricated Ti3+ self-doped TiO2(A)/TiO2(R), TiO2(A)/TiO2(R)/ZnTiO3, and TiO2(A)/ZnO heterojunctions were characterized by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectroscopy. The effects of various Ti/Zn molar ratios and preparation processes on the structural, morphological, optical, photocurrent and photocatalytic properties of the resultant samples were investigated systematically. Results reveal that Ti3+ self-doping enhances the photoabsorption capability of titanium-zinc hybrid oxides in the visible-light region. Moreover, different processes and Ti/Zn molar ratios play great influences on the structure, morphology, optical, photocurrent and photocatalytic properties of the final products. Ti3+ self-doped titanium-zinc hybrid oxides exhibit excellent photocurrent and photocatalytic activity than pure TiO2 and ZnTiO3 under visible-light irradiation (λ ≥ 400 nm). The most active Ti3+ self-doped titanium-zinc hybrid oxides photoanode presents significantly improved water splitting performance. The synergistic effect between the Ti3+ self-doped and heterojunctions is responsible for the enhanced performance of these materials.

  20. Effect of different processes and Ti/Zn molar ratios on the structure, morphology, and enhanced photoelectrochemical and photocatalytic performance of Ti3+ self-doped titanium–zinc hybrid oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Rongrong; Wang, Qingyao; Gao, shanmin

    2015-07-01

    Ti3+ self-doped titanium–zinc hybrid oxides with different phase compositions and morphologies were successfully synthesized using Zn powder as the reductant and Zn source by a chemical-reduction precipitation method with subsequent thermal treatment. The fabricated Ti3+ self-doped TiO2(A)/TiO2(R), TiO2(A)/TiO2(R)/ZnTiO3, and TiO2(A)/ZnO heterojunctions were characterized by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and UV–Vis diffuse reflectance spectroscopy. The effects of various Ti/Zn molar ratios and preparation processes on the structural, morphological, optical, photocurrent and photocatalytic properties of the resultant samples were investigated systematically. Results reveal that Ti3+ self-doping enhances the photoabsorption capability of titanium–zinc hybrid oxidesmore » in the visible-light region. Moreover, different processes and Ti/Zn molar ratios play great influences on the structure, morphology, optical, photocurrent and photocatalytic properties of the final products. Ti3+ self-doped titanium–zinc hybrid oxides exhibit excellent photocurrent and photocatalytic activity than pure TiO2 and ZnTiO3 under visible-light irradiation (λ ≥ 400 nm). The most active Ti3+ self-doped titanium–zinc hybrid oxides photoanode presents significantly improved water splitting performance. The synergistic effect between the Ti3+ self-doped and heterojunctions is responsible for the enhanced performance of these materials.« less

  1. Molecular packing and electronic processes in amorphous-like polymer bulk heterojunction solar cells with fullerene intercalation.

    PubMed

    Xiao, Ting; Xu, Haihua; Grancini, Giulia; Mai, Jiangquan; Petrozza, Annamaria; Jeng, U-Ser; Wang, Yan; Xin, Xin; Lu, Yong; Choon, Ng Siu; Xiao, Hu; Ong, Beng S; Lu, Xinhui; Zhao, Ni

    2014-06-09

    The interpenetrating morphology formed by the electron donor and acceptor materials is critical for the performance of polymer:fullerene bulk heterojunction (BHJ) photovoltaic (PV) cells. In this work we carried out a systematic investigation on a high PV efficiency (>6%) BHJ system consisting of a newly developed 5,6-difluorobenzo[c] thiadiazole-based copolymer, PFBT-T20TT, and a fullerene derivative. Grazing incidence X-ray scattering measurements reveal the lower-ordered nature of the BHJ system as well as an intermixing morphology with intercalation of fullerene molecules between the PFBT-T20TT lamella. Steady-state and transient photo-induced absorption spectroscopy reveal ultrafast charge transfer (CT) at the PFBT-T20TT/fullerene interface, indicating that the CT process is no longer limited by exciton diffusion. Furthermore, we extracted the hole mobility based on the space limited current (SCLC) model and found that more efficient hole transport is achieved in the PFBT-T20TT:fullerene BHJ as compared to pure PFBT-T20TT, showing a different trend as compared to the previously reported highly crystalline polymer:fullerene blend with a similar intercalation manner. Our study correlates the fullerene intercalated polymer lamella morphology with device performance and provides a coherent model to interpret the high photovoltaic performance of some of the recently developed weakly-ordered BHJ systems based on conjugated polymers with branched side-chain.

  2. Disseminated Kaposi sarcoma with epithelioid morphology in an HIV/AIDS patient: A previously unreported variant.

    PubMed

    Basra, Pukhraz; Paramo, Juan; Alexis, John

    2018-04-16

    Kaposi sarcoma is an oligoclonal HHV-8-driven vascular proliferation that was first described by a Viennese dermatologist Dr Moritz Kaposi. The disease has been seen in different clinical-epidemiological settings with a wide morphologic spectrum. We report a 52-year-old Caucasian man with HIV/AIDS and Kaposi sarcoma who presented with dyspnea and pleural effusion. He reported numerous tender subcutaneous nodules developing over the past few months on his chest, back and abdomen. An excisional biopsy of one of the nodules was performed. Touch preps revealed malignant cells in clusters. Microscopically, the neoplasm appeared undifferentiated with an epithelioid morphology, and involved the dermis and subcutaneous fat. Despite the medical history, Kaposi sarcoma was not considered foremost in the differential diagnosis. The malignant cells were positive for vimentin and negative for S100 protein, keratin AE1/3, CK7, CK20, napsin A, TTF-1 and synaptophysin. Additional stains revealed positivity for HHV-8, CD31 and D2-40, supporting the diagnosis of Kaposi sarcoma. Kaposi sarcoma has been well described with many variants that may cause diagnostic difficulty. An epithelioid variant has not been reported and consequently, may cause misinterpretation of an otherwise well-known entity that may become life threatening if appropriate treatment is not initiated in a timely manner. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Surface morphology and grain analysis of successively industrially grown amorphous hydrogenated carbon films (a-C:H) on silicon

    NASA Astrophysics Data System (ADS)

    Catena, Alberto; McJunkin, Thomas; Agnello, Simonpietro; Gelardi, Franco M.; Wehner, Stefan; Fischer, Christian B.

    2015-08-01

    Silicon (1 0 0) has been gradually covered by amorphous hydrogenated carbon (a-C:H) films via an industrial process. Two types of these diamond-like carbon (DLC) coatings, one more flexible (f-DLC) and one more robust (r-DLC), have been investigated. Both types have been grown by a radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique with acetylene plasma. Surface morphologies have been studied in detail by atomic force microscopy (AFM) and Raman spectroscopy has been used to investigate the DLC structure. Both types appeared to have very similar morphology and sp2 carbon arrangement. The average height and area for single grains have been analyzed for all depositions. A random distribution of grain heights was found for both types. The individual grain structures between the f- and r-type revealed differences: the shape for the f-DLC grains is steeper than for the r-DLC grains. By correlating the average grain heights to the average grain areas for all depositions a limited region is identified, suggesting a certain regularity during the DLC deposition mechanisms that confines both values. A growth of the sp2 carbon entities for high r-DLC depositions is revealed and connected to a structural rearrangement of carbon atom hybridizations and hydrogen content in the DLC structure.

  4. Ballistic tongue projection in a miniaturized salamander.

    PubMed

    Deban, Stephen M; Bloom, Segall V

    2018-05-20

    Miniaturization of body size is often accompanied by peculiarities in morphology that can have functional consequences. We examined the feeding behavior and morphology of the miniaturized plethodontid salamander Thorius, one of the smallest vertebrates, to determine if its performance and biomechanics differ from those of its larger relatives. High-speed imaging and dynamics analysis of feeding at a range of temperatures show that tongue projection in Thorius macdougalli is ballistic and achieves accelerations of up to 600 G with low thermal sensitivity, indicating that tongue projection is powered by an elastic-recoil mechanism. Preceding ballistic projection is an unusual preparatory phase of tongue protrusion, which, like tongue retraction, shows lower performance and higher thermal sensitivity that are indicative of movement being powered directly by muscle shortening. The variability of tongue-projection kinematics and dynamics is comparable to larger ballistic-tongued plethodontids and reveals that Thorius is capable of modulating its tongue movements in response to prey distance. Morphological examination revealed that T. macdougalli possesses a reduced number of myofibers in the tongue muscles, a large projector muscle mass relative to tongue mass, and an unusual folding of the tongue skeleton, compared with larger relatives. Nonetheless, T. macdougalli retains the elaborated collagen aponeuroses in the projector muscle that store elastic energy and a tongue skeleton that is free of direct myofiber insertion, two features that appear to be essential for ballistic tongue projection in salamanders. © 2018 Wiley Periodicals, Inc.

  5. Cryptic species revealed by molecular phylogenetic analysis of sequences obtained from basidiomata of Tulasnella.

    PubMed

    Cruz, Darío; Suárez, Juan Pablo; Kottke, Ingrid; Piepenbring, Meike

    2014-01-01

    Delimitation of species and the search for a proper threshold for defining phylogenetic species in fungi are under discussion. In this study, morphological and molecular data are correlated to delimit species of Tulasnella, the most important mycobionts of Orchidaceae, which suffer from poor taxonomy. Resupinate basidiomata of Tulasnella species were collected in Ecuador and Germany, and 11 specimens (seven from Ecuador, four from Germany) were assigned to traditional species concepts by use of morphological keys. The specimens were compared by micro-anatomical examination with 75 specimens of Tulasnella borrowed from fungaria to obtain better insights on variation of characters. Sequences of the ITS region (127) were obtained after cloning from the fresh basidiomata and from pure cultures. Proportional variability of ITS sequences was analyzed within and among the cultures and the specimens designated to different morphospecies. Results suggested an intragenomic variation of less than 2%, an intraspecific variation of up to 4% and an interspecific divergence of more than 9% in Tulasnella. Cryptic species in Tulasnella, mostly from Ecuador, were revealed by phylogenetic analyses with 4% intraspecific divergence as a minimum threshold for delimiting species. Conventional diagnostic morphological characters appeared insufficient for species characterization. Arguments are presented for molecular delimitation of the established species Tulasnella albida, T. asymmetrica, T. eichleriana, T. cf. pinicola, T. tomaculum and T. violea. © 2014 by The Mycological Society of America.

  6. Two-component gelator isomers with different combination of amine and acid: Helical/non-helical morphology and selective adsorption of dyes.

    PubMed

    Han, Xiaoyu; Liu, Jiahui; Zhao, Chaoyue; Zhang, Bao; Xu, Xiufang; Song, Jian

    2018-09-01

    Hydrogels induced by two-component gelator isomers based on the different amine/acid interactions were investigated. Scanning electron microscopy and atomic force microscopy images of the xerogel obtained from the two hydrogels revealed different assembly morphologies. While left-handed helical fibers were observed for the amine-acid based xerogel, acid-amine underwent self-assembly to afford smooth fibers. Fourier transform infrared spectroscopy, fluorescence, and X-ray diffraction measurements combined with density functional theory calculations suggested that the different self-assembly patterns of gelators resulted in opposite electric charges on the xerogel surfaces, in line with Zeta potential measurements. Based on these opposite charges resulting from their different self-assemblies, both xerogels demonstrated efficient dye adsorption abilities with different selectivities. Interestingly, the adsorption performance was not influenced by the salt in the dye solution. Furthermore, the xerogels still showed high dye adsorption efficiency after four cycles. These results provide a two-component hydrogel method for the purification of dye-polluted water systems, while also paving the way for future design of functionalized supramolecular self-assembly systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Stable Co-crystals of Glipizide with Enhanced Dissolution Profiles: Preparation and Characterization.

    PubMed

    Pandey, Narendra Kumar; Sehal, Hans Raj; Garg, Varun; Gaur, Tejasvi; Kumar, Bimlesh; Singh, Sachin Kumar; Gulati, Monica; Gowthamarajan, K; Bawa, Palak; Rajesh, Sarvi Yadav; Sharma, Parth; Narang, Rakesh

    2017-10-01

    Present study deciphers preparation of co-crystals of lipophilic glipizide by using four different acids, oxalic, malonic, stearic, and benzoic acids, in order to achieve enhanced solubility and dissolution along with stability. All co-crystals were prepared by dissolving drug and individual acids in the ratio of 1:0.5 in acetonitrile at 60-70°C for 15 min, followed by cooling at room temperature for 24 h. FT-IR spectroscopy revealed no molecular interaction between acids and drug as the internal structure and their geometric configurations remain unchanged. Differential scanning calorimetry revealed closer melting points of raw glipizide and its co-crystals, which speculates absence of difference in crystallinity as well as intermolecular bonding of the co-crystals and drug. PXRD further revealed that all the co-crystals were having similar crystallinity as that of raw glipizide except glipizide-malonic acid co-crystals. This minor difference in the relative intensities of some of the diffraction peaks could be attributed to the crystal habit or crystal size modification. SEM revealed difference in the crystal morphology for all the co-crystals. Micromeritic, solubility, dissolution, and stability data revealed that among all the prepared co-crystals, glipizide-stearic acid co-crystals were found superior. Hence, it was concluded that glipizide-stearic acid co-crystals could offer an improved drug design strategy to overcome dissolution and bioavailability related challenges associated with lipophilic glipizide.

  8. Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography

    NASA Astrophysics Data System (ADS)

    Liu, Qinhe; Xu, Xianhui; Xia, Weixing; Che, Renchao; Chen, Chen; Cao, Qi; He, Jingang

    2015-01-01

    To design and fabricate rational surface architecture of individual particles is one of the key factors that affect their magnetic properties and microwave absorption capability, which is still a great challenge. Herein, a series of Co20Ni80 hierarchical structures with different surface morphologies, including flower-, urchin-, ball-, and chain-like morphologies, were obtained using structure-directing templates via a facile one-step solvothermal treatment. The microwave reflection loss (RL) of urchin-like Co20Ni80 hierarchical structures reaches as high as -33.5 dB at 3 GHz, with almost twice the RL intensity of the ball- and chain-like structures, and the absorption bandwidth (<-10 dB) is about 5.5 GHz for the flower-like morphology, indicating that the surface nanospikes and nanoflakes on the Co20Ni80 microsphere surfaces have great influences on their magnetic microwave absorption properties. Electron holography analysis reveals that the surface nanospikes and nanoflakes could generate a high density of stray magnetic flux lines and contribute a large saturation magnetization (105.62 emu g-1 for urchin-like and 96.41 emu g-1 for flower-like morphology), leading the urchin-like and flower-like Co20Ni80 to possess stronger microwave RL compared with the ball-like and chain-like Co20Ni80 alloys. The eddy-current absorption mechanism μ''(μ')-2(f)-1 is dominant in the frequency region above 8 GHz, implying that eddy-current loss is a vital factor for microwave RL in the high frequency range. It can be supposed from our findings that different surface morphologies of magnetic hierarchical structures might become an effective path to achieve high-performance microwave absorption for electromagnetic shielding and stealth camouflage applications.To design and fabricate rational surface architecture of individual particles is one of the key factors that affect their magnetic properties and microwave absorption capability, which is still a great challenge. Herein, a series of Co20Ni80 hierarchical structures with different surface morphologies, including flower-, urchin-, ball-, and chain-like morphologies, were obtained using structure-directing templates via a facile one-step solvothermal treatment. The microwave reflection loss (RL) of urchin-like Co20Ni80 hierarchical structures reaches as high as -33.5 dB at 3 GHz, with almost twice the RL intensity of the ball- and chain-like structures, and the absorption bandwidth (<-10 dB) is about 5.5 GHz for the flower-like morphology, indicating that the surface nanospikes and nanoflakes on the Co20Ni80 microsphere surfaces have great influences on their magnetic microwave absorption properties. Electron holography analysis reveals that the surface nanospikes and nanoflakes could generate a high density of stray magnetic flux lines and contribute a large saturation magnetization (105.62 emu g-1 for urchin-like and 96.41 emu g-1 for flower-like morphology), leading the urchin-like and flower-like Co20Ni80 to possess stronger microwave RL compared with the ball-like and chain-like Co20Ni80 alloys. The eddy-current absorption mechanism μ''(μ')-2(f)-1 is dominant in the frequency region above 8 GHz, implying that eddy-current loss is a vital factor for microwave RL in the high frequency range. It can be supposed from our findings that different surface morphologies of magnetic hierarchical structures might become an effective path to achieve high-performance microwave absorption for electromagnetic shielding and stealth camouflage applications. Electronic supplementary information (ESI) available: EDS analysis data, SEM images, electron holography schematic diagram, electron holography and magnetic hysteresis loops. See DOI: 10.1039/c4nr05547k

  9. Morphological Awareness and Children's Writing: Accuracy, Error, and Invention

    PubMed Central

    McCutchen, Deborah; Stull, Sara

    2014-01-01

    This study examined the relationship between children's morphological awareness and their ability to produce accurate morphological derivations in writing. Fifth-grade U.S. students (n = 175) completed two writing tasks that invited or required morphological manipulation of words. We examined both accuracy and error, specifically errors in spelling and errors of the sort we termed morphological inventions, which entailed inappropriate, novel pairings of stems and suffixes. Regressions were used to determine the relationship between morphological awareness, morphological accuracy, and spelling accuracy, as well as between morphological awareness and morphological inventions. Linear regressions revealed that morphological awareness uniquely predicted children's generation of accurate morphological derivations, regardless of whether or not accurate spelling was required. A logistic regression indicated that morphological awareness was also uniquely predictive of morphological invention, with higher morphological awareness increasing the probability of morphological invention. These findings suggest that morphological knowledge may not only assist children with spelling during writing, but may also assist with word production via generative experimentation with morphological rules during sentence generation. Implications are discussed for the development of children's morphological knowledge and relationships with writing. PMID:25663748

  10. Letting the ‘cat’ out of the bag: pouch young development of the extinct Tasmanian tiger revealed by X-ray computed tomography

    PubMed Central

    Spoutil, Frantisek; Prochazka, Jan; Black, Jay R.; Medlock, Kathryn; Paddle, Robert N.; Knitlova, Marketa; Hipsley, Christy A.

    2018-01-01

    The Tasmanian tiger or thylacine (Thylacinus cynocephalus) was an iconic Australian marsupial predator that was hunted to extinction in the early 1900s. Despite sharing striking similarities with canids, they failed to evolve many of the specialized anatomical features that characterize carnivorous placental mammals. These evolutionary limitations are thought to arise from functional constraints associated with the marsupial mode of reproduction, in which otherwise highly altricial young use their well-developed forelimbs to climb to the pouch and mouth to suckle. Here we present the first three-dimensional digital developmental series of the thylacine throughout its pouch life using X-ray computed tomography on all known ethanol-preserved specimens. Based on detailed skeletal measurements, we refine the species growth curve to improve age estimates for the individuals. Comparison of allometric growth trends in the appendicular skeleton (fore- and hindlimbs) with that of other placental and marsupial mammals revealed that despite their unique adult morphologies, thylacines retained a generalized early marsupial ontogeny. Our approach also revealed mislabelled specimens that possessed large epipubic bones (vestigial in thylacine) and differing vertebral numbers. All of our generated CT models are publicly available, preserving their developmental morphology and providing a novel digital resource for future studies of this unique marsupial. PMID:29515893

  11. Isolation and characterization of T7-like lytic bacteriophages infecting multidrug resistant Pseudomonas aeruginosa isolated from Egypt.

    PubMed

    El Didamony, Gamal; Askora, Ahmed; Shehata, Aya A

    2015-06-01

    In this study, two lytic phages designated as ϕPSZ1 and ϕPSZ2 infecting multidrug resistant Pseudomonas aeruginosa were isolated from sewage samples collected in Zagazig, Egypt. Morphological analysis by transmission electron microscopy revealed that both phages belong to the podoviridae family and resembles typical T7-like phages. ϕPSZ1 has a head of about 60 ± 5 nm in diameter with a short tail of 19 ± 2 nm in length, while ϕPSZ2 has a head of about 57 ± 5 nm in diameter with a short tail of 14 ± 2 nm in length. Both phages were shown to be able to infect 13 different P. aeruginosa strains and has no effect on other tested bacteria. In spite of morphological similarity, these phages showed diverged genomic sequences revealed by restriction enzyme digestion analysis. One-step growth curves of bacteriophages revealed eclipse and latent periods of 12 min for ϕPSZ1 and 15 min for ϕPSZ2, respectively, with burst sizes of about 100 per infected cell. Phage treatment prevented the growth of P. aeruginosa for up to 18 h with multiplicity of infection ratios of 1. These results suggest that both phages have a high potential for phage application to control P. aeruginosa.

  12. Description and molecular diagnosis of a new species of Brunfelsia (Solanaceae) from the Bolivian and Argentinean Andes

    PubMed Central

    Filipowicz, Natalia; Nee, Michael H.; Renner, Susanne S.

    2012-01-01

    Abstract Brunfelsia plowmaniana N.Filipowicz & M.Nee sp. nov., a species from humid and cloud forests of the Bolivian and Argentinean Andes, is described and provided with a molecular diagnosis, using provisions available in the recently approved International Code of Nomenclature for algae, fungi and plants. Specimens belonging to the new species were previously placed in the polymorphic Brunfelsia uniflora (Pohl) D.Don, which a molecular phylogeny revealed as polyphyletic. Revision of numerous collections revealed clear morphological differences between the new species and Brunfelsia uniflora, the type locality of which is in the state of São Paulo, Brazil. PMID:22461731

  13. Exceptional preservation reveals gastrointestinal anatomy and evolution in early actinopterygian fishes

    PubMed Central

    Argyriou, Thodoris; Clauss, Marcus; Maxwell, Erin E.; Furrer, Heinz; Sánchez-Villagra, Marcelo R.

    2016-01-01

    Current knowledge about the evolutionary morphology of the vertebrate gastrointestinal tract (GIT) is hindered by the low preservation potential of soft tissues in fossils. Exceptionally preserved cololites of individual †Saurichthys from the Middle Triassic of Switzerland provide unique insights into the evolutionary morphology of the GIT. The GIT of †Saurichthys differed from that of other early actinopterygians, and was convergent to that of some living sharks and rays, in exhibiting up to 30 turns of the spiral valve. Dissections and literature review demonstrate the phylogenetic diversity of GIT features and signs of biological factors that influence its morphology. A phylogenetically informed analysis of a dataset containing 134 taxa suggests that body size and phylogeny are important factors affecting the spiral valve turn counts. The high number of turns in the spiral valve of †Saurichthys and some recent sharks and rays reflect both energetically demanding lifestyles and the evolutionary histories of the groups. PMID:26732746

  14. DNA Barcoding of genus Hexacentrus in China reveals cryptic diversity within Hexacentrus japonicus (Orthoptera, Tettigoniidae).

    PubMed

    Guo, Hui-Fang; Guan, Bei; Shi, Fu-Ming; Zhou, Zhi-Jun

    2016-01-01

    DNA barcoding has been proved successful to provide resolution beyond the boundaries of morphological information. Hence, a study was undertaken to establish DNA barcodes for all morphologically determined Hexacentrus species in China collections. In total, 83 specimens of five Hexacentrus species were barcoded using standard mitochondrial cytochrome c oxidase subunit I (COI) gene. Except for Hexacentrus japonicus, barcode gaps were present in the remaining Hexacentrus species. Taxon ID tree generated seven BOLD's barcode index numbers (BINs), four of which were in agreement with the morphological species. For Hexacentrus japonicus, the maximum intraspecific divergence (4.43%) produced a minimal overlap (0.64%), and 19 specimens were divided into three different BINs. There may be cryptic species within the current Hexacentrus japonicus. This study adds to a growing body of DNA barcodes that have become available for katydids, and shows that a DNA barcoding approach enables the identification of known Hexacentrus species with a very high resolution.

  15. DNA Barcoding of genus Hexacentrus in China reveals cryptic diversity within Hexacentrus japonicus (Orthoptera, Tettigoniidae)

    PubMed Central

    Guo, Hui-Fang; Guan, Bei; Shi, Fu-Ming; Zhou, Zhi-Jun

    2016-01-01

    Abstract DNA barcoding has been proved successful to provide resolution beyond the boundaries of morphological information. Hence, a study was undertaken to establish DNA barcodes for all morphologically determined Hexacentrus species in China collections. In total, 83 specimens of five Hexacentrus species were barcoded using standard mitochondrial cytochrome c oxidase subunit I (COI) gene. Except for Hexacentrus japonicus, barcode gaps were present in the remaining Hexacentrus species. Taxon ID tree generated seven BOLD’s barcode index numbers (BINs), four of which were in agreement with the morphological species. For Hexacentrus japonicus, the maximum intraspecific divergence (4.43%) produced a minimal overlap (0.64%), and 19 specimens were divided into three different BINs. There may be cryptic species within the current Hexacentrus japonicus. This study adds to a growing body of DNA barcodes that have become available for katydids, and shows that a DNA barcoding approach enables the identification of known Hexacentrus species with a very high resolution. PMID:27408576

  16. Facile design of ultra-thin anodic aluminum oxide membranes for the fabrication of plasmonic nanoarrays.

    PubMed

    Hao, Qi; Huang, Hao; Fan, Xingce; Hou, Xiangyu; Yin, Yin; Li, Wan; Si, Lifang; Nan, Haiyan; Wang, Huaiyu; Mei, Yongfeng; Qiu, Teng; Chu, Paul K

    2017-03-10

    Ultra-thin anodic aluminum oxide (AAO) membranes are efficient templates for the fabrication of patterned nanostructures. Herein, a three-step etching method to control the morphology of AAO is described. The morphological evolution of the AAO during phosphoric acid etching is systematically investigated and a nonlinear growth mechanism during unsteady-state anodization is revealed. The thickness of the AAO can be quantitatively controlled from ∼100 nm to several micrometers while maintaining the tunablity of the pore diameter. The AAO membranes are robust and readily transferable to different types of substrates to prepare patterned plasmonic nanoarrays such as nanoislands, nanoclusters, ultra-small nanodots, and core-satellite superstructures. The localized surface plasmon resonance from these nanostructures can be easily tuned by adjusting the morphology of the AAO template. The custom AAO template provides a platform for the fabrication of low-cost and large-scale functional nanoarrays suitable for fundamental studies as well as applications including biochemical sensing, imaging, photocatalysis, and photovoltaics.

  17. Facile design of ultra-thin anodic aluminum oxide membranes for the fabrication of plasmonic nanoarrays

    NASA Astrophysics Data System (ADS)

    Hao, Qi; Huang, Hao; Fan, Xingce; Hou, Xiangyu; Yin, Yin; Li, Wan; Si, Lifang; Nan, Haiyan; Wang, Huaiyu; Mei, Yongfeng; Qiu, Teng; Chu, Paul K.

    2017-03-01

    Ultra-thin anodic aluminum oxide (AAO) membranes are efficient templates for the fabrication of patterned nanostructures. Herein, a three-step etching method to control the morphology of AAO is described. The morphological evolution of the AAO during phosphoric acid etching is systematically investigated and a nonlinear growth mechanism during unsteady-state anodization is revealed. The thickness of the AAO can be quantitatively controlled from ˜100 nm to several micrometers while maintaining the tunablity of the pore diameter. The AAO membranes are robust and readily transferable to different types of substrates to prepare patterned plasmonic nanoarrays such as nanoislands, nanoclusters, ultra-small nanodots, and core-satellite superstructures. The localized surface plasmon resonance from these nanostructures can be easily tuned by adjusting the morphology of the AAO template. The custom AAO template provides a platform for the fabrication of low-cost and large-scale functional nanoarrays suitable for fundamental studies as well as applications including biochemical sensing, imaging, photocatalysis, and photovoltaics.

  18. Observation of eight ancient olive trees (Olea europaea L.) growing in the Garden of Gethsemane.

    PubMed

    Petruccelli, Raffaella; Giordano, Cristiana; Salvatici, Maria Cristina; Capozzoli, Laura; Ciaccheri, Leonardo; Pazzini, Massimo; Lain, Orietta; Testolin, Raffaele; Cimato, Antonio

    2014-05-01

    For thousands of years, olive trees (Olea europaea L.) have been a significant presence and a symbol in the Garden of Gethsemane, a place located at the foot of the Mount of Olives, Jerusalem, remembered for the agony of Jesus Christ before his arrest. This investigation comprises the first morphological and genetic characterization of eight olive trees in the Garden of Gethsemane. Pomological traits, morphometric, and ultrastructural observations as well as SSR (Simple Sequence Repeat) analysis were performed to identify the olive trees. Statistical analyses were conducted to evaluate their morphological variability. The study revealed a low morphological variability and minimal dissimilarity among the olive trees. According to molecular analysis, these trees showed the same allelic profile at all microsatellite loci analyzed. Combining the results of the different analyses carried out in the frame of the present work, we could conclude that the eight olive trees of the Gethsemane Garden have been propagated from a single genotype. Copyright © 2014. Published by Elsevier SAS.

  19. [Morphologic changes in cultures of different tissues exposed to the toxins of C1. perfringens types B, C, E and F].

    PubMed

    Ermakova, M P; Zemlianitskaia, E P

    1975-11-01

    There were revealed morphological peculiarities of the action of C1. perfringens toxins, types B, C, D, E and F on the cultures of fibroblasts of chick embryo, amniotic cells and intestinal tissue. The toxin type B was characterized by a marked vocuolization of the cell cytoplasm; the action of the toxin of type C was expressed in the swelling of the nuclei and the lysis of the chromatine substance, the toxin of type E casued kariorhexis, and the toxin of type F--hyperchromatosis of the nuclei. All the cultures proved to be insensitive to the toxin of type D. Peculiarity of the morphological affection of the cells permitted to differentiate toxin of type B in the cultures of the fibroblasts of chick embryo, whereas the toxins of types C, E and F--in the cultures of the amniotic cells under control of the reaction of neutralization with the homologous antitoxic sera.

  20. Sodium Iodate Selectively Injuries the Posterior Pole of the Retina in a Dose-Dependent Manner: Morphological and Electrophysiological Study

    PubMed Central

    Machalińska, Anna; Lubiński, Wojciech; Kłos, Patrycja; Kawa, Miłosz; Baumert, Bartłomiej; Penkala, Krzysztof; Grzegrzółka, Ryszard; Karczewicz, Danuta; Wiszniewska, Barbara

    2010-01-01

    Sequential morphological and functional features of retinal damage in mice exposed to different doses (40 vs. 20 mg/kg) of sodium iodate (NaIO3) were analyzed. Retinal morphology, apoptosis (TUNEL assay), and function (electroretinography; ERG) were examined at several time points after NaIO3 administration. The higher dose of NaIO3 caused progressive degeneration of the whole retinal area and total suppression of scotopic and photopic ERG. In contrast, the lower dose induced much less severe degeneration in peripheral part of retina along with a moderate decline of b- and a-wave amplitudes in ERG, corroborating the presence of regions within retina that retain their function. The peak of photoreceptor apoptosis was found on the 3rd day, but the lower dose induced more intense reaction within the central retina than in its peripheral region. In conclusion, these results indicate that peripheral area of the retina reveals better resistance to NaIO3 injury than its central part. PMID:20725778

  1. Impact of Tortuosity on Charge-Carrier Transport in Organic Bulk Heterojunction Blends

    NASA Astrophysics Data System (ADS)

    Heiber, Michael C.; Kister, Klaus; Baumann, Andreas; Dyakonov, Vladimir; Deibel, Carsten; Nguyen, Thuc-Quyen

    2017-11-01

    The impact of the tortuosity of the charge-transport pathways through a bulk heterojunction film on the charge-carrier mobility is theoretically investigated using model morphologies and kinetic Monte Carlo simulations. The tortuosity descriptor provides a quantitative metric to characterize the quality of the charge-transport pathways, and model morphologies with controlled domain size and tortuosity are created using an anisotropic domain growth procedure. The tortuosity is found to be dependent on the anisotropy of the domain structure and is highly tunable. Time-of-flight charge-transport simulations on morphologies with a range of tortuosity values reveal that tortuosity can significantly reduce the magnitude of the mobility and the electric-field dependence relative to a neat material. These reductions are found to be further controlled by the energetic disorder and temperature. Most significantly, the sensitivity of the electric-field dependence to the tortuosity can explain the different experimental relationships previously reported, and exploiting this sensitivity could lead to simpler methods for characterizing and optimizing charge transport in organic solar cells.

  2. Effect of deformation schedule on the microstructure and mechanical properties of a thermomechanically processed C-Mn-Si transformation-induced plasticity steel

    NASA Astrophysics Data System (ADS)

    Timokhina, I. B.; Hodgson, P. D.; Pereloma, E. V.

    2003-08-01

    Thermomechanical processing simulations were performed using a hot-torsion machine, in order to develop a comprehensive understanding of the effect of severe deformation in the recrystallized and nonrecrystallized austenite regions on the microstructural evolution and mechanical properties of the 0.2 wt pct C-1.55 wt pct Mn-1.5 wt pct Si transformation-induced plasticity (TRIP) steel. The deformation schedule affected all constituents (polygonal ferrite, bainite in different morphologies, retained austenite, and martensite) of the multiphased TRIP steel microstructure. The complex relationships between the volume fraction of the retained austenite, the morphology and distribution of all phases present in the microstructure, and the mechanical properties of TRIP steel were revealed. The bainite morphology had a more pronounced effect on the mechanical behavior than the refinement of the microstructure. The improvement of the mechanical properties of TRIP steel was achieved by variation of the volume fraction of the retained austenite rather than the overall refinement of the microstructure.

  3. Incomplete development of human spermatozoa is associated with increased creatine phosphokinase concentration and abnormal head morphology.

    PubMed

    Huszar, G; Vigue, L

    1993-03-01

    Our previous creatine phosphokinase (CK) activity studies in human sperm revealed differences among men and among sperm populations within the same specimen. Samples with low sperm concentrations, high incidence of abnormal sperm morphology, and diminished fertility had higher per sperm CK activity. In the present work, we demonstrated, with 14C-FDNB covalent CK active site modification and with direct CK immunocytochemistry, that the higher CK activity is related to an increased content of CK and of other proteins in sperm. Also, sperm heads with higher CK content were significantly larger and rounder and showed a higher incidence of amorph configuration. We suggest that these biochemical and morphological irregularities are related and are due to a failure of spermatogenesis, more specifically, to a higher retention of cytoplasm, which in normal sperm development is lost to the Sertoli cells as residual bodies. Thus higher CK activity and larger or irregular head size in human sperm signify cellular immaturity and a failure to complete spermatogenesis.

  4. Sparse genetic tracing reveals regionally specific functional organization of mammalian nociceptors.

    PubMed

    Olson, William; Abdus-Saboor, Ishmail; Cui, Lian; Burdge, Justin; Raabe, Tobias; Ma, Minghong; Luo, Wenqin

    2017-10-12

    The human distal limbs have a high spatial acuity for noxious stimuli but a low density of pain-sensing neurites. To elucidate mechanisms underlying regional differences in processing nociception, we sparsely traced non-peptidergic nociceptors across the body using a newly generated Mrgprd CreERT2 mouse line. We found that mouse plantar paw skin is also innervated by a low density of Mrgprd + nociceptors, while individual arbors in different locations are comparable in size. Surprisingly, the central arbors of plantar paw and trunk innervating nociceptors have distinct morphologies in the spinal cord. This regional difference is well correlated with a heightened signal transmission for plantar paw circuits, as revealed by both spinal cord slice recordings and behavior assays. Taken together, our results elucidate a novel somatotopic functional organization of the mammalian pain system and suggest that regional central arbor structure could facilitate the "enlarged representation" of plantar paw regions in the CNS.

  5. Neurogenesis-Promoting Natural Product α-Asarone Modulates Morphological Dynamics of Activated Microglia

    PubMed Central

    Cai, Qing; Li, Yuanyuan; Mao, Jianxin; Pei, Gang

    2016-01-01

    α-Asarone is an active constituent of Acori Tatarinowii, one of the widely used traditional Chinese Medicine to treat cognitive defect, and recently is shown to promote neurogenesis. Here, we demonstrated that low level (3 μM) of α-asarone attenuated LPS-induced BV2 cell bipolar elongated morphological change, with no significant effect on the LPS-induced pro-inflammatory cytokine expressions. In addition, time-lapse analysis also revealed that α-asarone modulated LPS-induced BV2 morphological dynamics. Consistently a significant reduction in the LPS-induced Monocyte Chemoattractant Protein (MCP-1) mRNA and protein levels was also detected along with the morphological change. Mechanistic study showed that the attenuation effect to the LPS-resulted morphological modulation was also detected in the presence of MCP-1 antibodies or a CCR2 antagonist. This result has also been confirmed in primary cultured microglia. The in vivo investigation provided further evidence that α-asarone reduced the proportion of activated microglia, and reduced microglial tip number and maintained the velocity. Our study thus reveals α-asarone effectively modulates microglial morphological dynamics, and implies this effect of α-asarone may functionally relate to its influence on neurogenesis. PMID:28018174

  6. Spatial confinement effects on spectroscopic and morphological studies of nanosecond laser-ablated Zirconium

    NASA Astrophysics Data System (ADS)

    Hayat, Asma; Bashir, Shazia; Rafique, Muhammad Shahid; Ahmad, Riaz; Akram, Mahreen; Mahmood, Khaliq; Zaheer, Ali

    2017-12-01

    Spatial confinement effects on plasma parameters and surface morphology of laser ablated Zr (Zirconium) are studied by introducing a metallic blocker. Nd:YAG laser at various fluencies ranging from 8 J cm-2 to 32 J cm-2 was employed as an irradiation source. All measurements were performed in the presence of Ar under different pressures. Confinement effects offered by metallic blocker are investigated by placing the blocker at different distances of 6 mm, 8 mm and 10 mm from the target surface. It is revealed from LIBS analysis that both plasma parameters i.e. excitation temperature and electron number density increase with increasing laser fluence due to enhancement in energy deposition. It is also observed that spatial confinement offered by metallic blocker is responsible for the enhancement of both electron temperature and electron number density of Zr plasma. This is true for all laser fluences and pressures of Ar. Maximum values of electron temperature and electron number density without blocker are 12,600 K and 14 × 1017 cm-3 respectively whereas, these values are enhanced to 15,000 K and 21 × 1017 cm-3 in the presence of blocker. The physical mechanisms responsible for the enhancement of Zr plasma parameters are plasma compression, confinement and pronounced collisional excitations due to reflection of shock waves. Scanning Electron Microscope (SEM) analysis was performed to explore the surface morphology of laser ablated Zr. It reveals the formation of cones, cavities and ripples. These features become more distinct and well defined in the presence of blocker due to plasma confinement. The optimum combination of blocker distance, fluence and Ar pressure can identify the suitable conditions for defining the role of plasma parameters for surface structuring.

  7. Morphological and ultrastructural comparative analysis of bone tissue after Er:YAG laser and surgical drill osteotomy.

    PubMed

    Panduric, Dragana Gabric; Juric, Ivona Bago; Music, Svetozar; Molčanov, Krešimir; Sušic, Mato; Anic, Ivica

    2014-07-01

    The purpose of this study was to analyze morphological, chemical, and crystallographic changes of bone tissue after osteotomy performed with an erbium:yttrium-aluminium-garnet (Er:YAG) laser and a low speed pilot drill. Bone blocks were prepared from porcine ribs, and on each block, two tunnel preparations were performed using the Er:YAG laser (pulse energy: 1000 mJ, pulse duration: 300 μs, pulse repetition rate: 20 Hz) or the low-speed surgical pilot drill. The morphological changes of the cortical and the spongious surface of the tunnel preparations were analyzed under the field emission scanning electron microscopy (FE-SEM) at low and high resolution. The distribution and the level of chemical elements in the treated surfaces were evaluated by qualitative and semiquantitative energy dispersive x-ray analysis (SEM-EDX). Diffraction x-ray analysis was used to detect any differences and thermally induced modifications of hydroxyapatite crystals. FE-SEM revealed sharp edges of the Er:YAG preparations, with empty intertrabecular spaces and no signs of carbonization. In the drill group, the surface of the preparations was smooth, completely covered with smear layer and microcracks, and with hairy-like irregularities on the edges. SEM-EDX analysis did not reveal any differences in the number of specific chemical elements between the laser and the drill group. There were no thermally induced modifications of hydroxyapatite crystal structure in the bone tissue in either group. The Er:YAG laser ablation did not cause any chemical or crystallographic changes of the bone tissue. Compared with the drill, Er:YAG laser created well-defined edges of the preparations, and cortical bone had no smear layer.

  8. Impression of plasma voltage on growth of α-V2O5 nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Rabindar Kumar; Kumar, Prabhat; Reddy, G. B.

    2015-06-01

    In this communication, we synthesized vanadium pentoxide (α-V2O5) nanostructured thin films (NSTs) accompanied with nanoflakes/ nanoplates on the Ni-coated glass substrates employing plasma assisted sublimation process (PASP) as a function of plasma voltage (Vp). The effect of plasma voltage on structural, morphological, compositional, and vibrational properties have been studied systematically. The structural analysis divulged that all films deposited at different Vp have pure orthorhombic phase, no impurity phase is detected under resolution limit of XRD and XPS. The morphological studies of samples is carried out by SEM, revealed that features as well as alignment of V2O5 NSTs is greatly monitored by Vp and the film possessing the best features is obtained at 2500volt. In addition, XPS results reveal that V5+ oxidation state is the most prominent state in sample V2, which represents better stoichiometric nature of film. The vibrational study of all samples is performed by FTIR and strongly support the XRD observations. All the results are in consonance with each other.

  9. Description of two new sympatric species of the genus Leptolalax (Anura: Megophryidae) from western Yunnan of China

    PubMed Central

    Zeng, Zhao-Chi; Wang, Ying-Yong

    2018-01-01

    The Asian leaf litter toads of the genus Leptolalax represent a highly diverse species group and currently contain 53 recognized species. During herpetological surveys in Yingjiang County, western Yunnan of China, we collected series of Leptolalax specimens from an isolated small fragment of montane evergreen forest. Subsequent study based on acoustic, morphological and molecular data reveals that there were three different species among the specimens sampled: while one of them belongs to Leptolalax ventripunctataus, the other two species represent unknown taxa and are described herein: Leptolalax purpurus sp. nov. and Leptolalax yingjiangensis sp. nov. The two new species can be distinguished from other congeners by the molecular divergences, acoustic data, and by a combination of morphological characters including: body size, dorsal and ventral patterns, dorsal skin texture, sizes of pectoral and femoral glands, degree of webbing and fringing on the toes and fingers, dorsum coloration and iris coloration in life. Our results further reveal that species diversity of the genus Leptolalax still remains highly underestimated and warrants further attention. PMID:29666755

  10. Thermal stability enhancement of modified carboxymethyl cellulose films using SnO2 nanoparticles.

    PubMed

    Baniasad, Arezou; Ghorbani, Mohsen

    2016-05-01

    In this study, in-situ and ex-situ hydrothermal synthesis procedures were applied to synthesize novel CMC/porous SnO2 nanocomposites from rice husk extracted carboxymethyl cellulose (CMC) biopolymer. In addition, the effects of SnO2 nanoparticles on thermal stability of the prepared nanocomposite were specifically studied. Products were investigated in terms of morphology, particle size, chemical structure, crystallinity and thermal stability by using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. Presence of characteristic bands in the FTIR spectra of samples confirmed the successful formation of CMC and CMC/SnO2 nanocomposites. In addition, FESEM images revealed four different morphologies of porous SnO2 nanoparticles including nanospheres, microcubes, nanoflowers and olive-like nanoparticles with hollow cores which were formed on CMC. These nanoparticles possessed d-spacing values of 3.35Å. Thermal stability measurements revealed that introduction of SnO2 nanoparticles in the structure of CMC enhanced stability of CMC to 85%. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A second, cryptic species of the soft coral genus Incrustatus (Anthozoa: Octocorallia: Clavulariidae) from Tierra del Fuego, Argentina, revealed by DNA barcoding

    NASA Astrophysics Data System (ADS)

    McFadden, Catherine S.; van Ofwegen, Leen P.

    2013-03-01

    The encrusting soft coral Incrustatus comauensis is a common denizen of hard substrates in the shallow sub-tidal zone from the central Chilean fjords to the Cape Horn region of southern South America. DNA barcoding of specimens collected from the Beagle Channel, Tierra del Fuego, Argentina, revealed the presence of a second, cryptic species of Incrustatus that is syntopic with I. comauensis. We describe Incrustatus niarchosi, a new species that can be distinguished morphologically from I. comauensis by differences in the microscopic ornamentation of the coenenchymal sclerites. To date, I. niarchosi n. sp. is known only from the Beagle Channel. A population of I. comauensis discovered in the intertidal zone in eastern Tierra del Fuego represents a new record of the species for that habitat and geographic region. Although the intertidal population is also distinct genetically, it is morphologically indistinguishable from sub-tidal Chilean populations of I. comauensis, and at present, there is insufficient evidence to support its status as a separate species.

  12. Morphologic, phenotypic, and transcriptomic characterization of classically and alternatively activated canine blood-derived macrophages in vitro

    PubMed Central

    Heinrich, Franziska; Lehmbecker, Annika; Raddatz, Barbara B.; Kegler, Kristel; Tipold, Andrea; Stein, Veronika M.; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang; Ulrich, Reiner

    2017-01-01

    Macrophages are a heterogeneous cell population playing a pivotal role in tissue homeostasis and inflammation, and their phenotype strongly depends on the micromilieu. Despite its increasing importance as a translational animal model for human diseases, there is a considerable gap of knowledge with respect to macrophage polarization in dogs. The present study comprehensively investigated the morphologic, phenotypic, and transcriptomic characteristics of unstimulated (M0), M1- (GM-CSF, LPS, IFNγ-stimulated) and M2- (M-CSF, IL-4-stimulated)-polarized canine blood-derived macrophages in vitro. Scanning electron microscopy revealed distinct morphologies of polarized macrophages with formation of multinucleated cells in M2-macrophages, while immunofluorescence employing literature-based prototype-antibodies against CD16, CD32, iNOS, MHC class II (M1-markers), CD163, CD206, and arginase-1 (M2-markers) demonstrated that only CD206 was able to discriminate M2-macrophages from both other phenotypes, highlighting this molecule as a promising marker for canine M2-macrophages. Global microarray analysis revealed profound changes in the transcriptome of polarized canine macrophages. Functional analysis pointed out that M1-polarization was associated with biological processes such as “respiratory burst”, whereas M2-polarization was associated with processes such as “mitosis”. Literature-based marker gene selection revealed only minor overlaps in the gene sets of the dog compared to prototype markers of murine and human macrophages. Biomarker selection using supervised clustering suggested latexin (LXN) and membrane-spanning 4-domains, subfamily A, member 2 (MS4A2) to be the most powerful predicting biomarkers for canine M1- and M2-macrophages, respectively. Immunofluorescence for both markers demonstrated expression of both proteins by macrophages in vitro but failed to reveal differences between canine M1 and M2-macrophages. The present study provides a solid basis for future studies upon the role of macrophage polarization in spontaneous diseases of the dog, a species that has emerging importance for translational research. PMID:28817687

  13. Persistence of distinctive morphotypes in the native range of the CITES-listed Aldabra giant tortoise.

    PubMed

    Turnbull, Lindsay A; Ozgul, Arpat; Accouche, Wilna; Baxter, Rich; ChongSeng, Lindsay; Currie, Jock C; Doak, Naomi; Hansen, Dennis M; Pistorius, Pierre; Richards, Heather; van de Crommenacker, Janske; von Brandis, Rainer; Fleischer-Dogley, Frauke; Bunbury, Nancy

    2015-12-01

    Understanding the extent of morphological variation in the wild population of Aldabra giant tortoises is important for conservation, as morphological variation in captive populations has been interpreted as evidence for lingering genes from extinct tortoise lineages. If true, this could impact reintroduction programmes in the region. The population of giant tortoises on Aldabra Atoll is subdivided and distributed around several islands. Although pronounced morphological variation was recorded in the late 1960s, it was thought to be a temporary phenomenon. Early researchers also raised concerns over the future of the population, which was perceived to have exceeded its carrying capacity. We analyzed monthly monitoring data from 12 transects spanning a recent 15-year period (1998-2012) during which animals from four subpopulations were counted, measured, and sexed. In addition, we analyzed survival data from individuals first tagged during the early 1970s. The population is stable with no sign of significant decline. Subpopulations differ in density, but these differences are mostly due to differences in the prevailing vegetation type. However, subpopulations differ greatly in both the size of animals and the degree of sexual dimorphism. Comparisons with historical data reveal that phenotypic differences among the subpopulations of tortoises on Aldabra have been apparent for the last 50 years with no sign of diminishing. We conclude that the giant tortoise population on Aldabra is subject to varying ecological selection pressures, giving rise to stable morphotypes in discrete subpopulations. We suggest therefore that (1) the presence of morphological differences among captive Aldabra tortoises does not alone provide convincing evidence of genes from other extinct species; and (2) Aldabra serves as an important example of how conservation and management in situ can add to the scientific value of populations and perhaps enable them to better adapt to future ecological pressures.

  14. Morphological and chemical information in fresh and vitrified ovarian tissues revealed by X-ray Microscopy and Fluorescence: observational study

    NASA Astrophysics Data System (ADS)

    Pascolo, L.; Venturin, I.; Gianoncelli, A.; Salomé, M.; Altissimo, M.; Bedolla, D. E.; Giolo, E.; Martinelli, M.; Luppi, S.; Romano, F.; Zweyer, M.; Ricci, G.

    2018-06-01

    Many clinical circumstances impose the necessity of collection and prolonged storage of gametes and/or ovarian tissue in order to preserve the reproduction potential of subjects. This is particularly appropriate in the case of young women and pre-pubertal girls undergoing chemotherapeutic treatments. The success of later assisted fertilization will depend on the suitable cooling protocols minimizing cryo-damages and preserving their biological function. The freeze-thaw processes of cryopreservation may induce, in fact, morphological and structural damages of oocytes and tissue mainly due to the formation of intracellular ice and to the toxicity of cryoprotectant. The most used cryo-protocol is the slow freezing procedure, but recently many authors have proposed vitrification as an alternative, because of its simplicity. The damage extent and the quality of follicles after cryopreservation are usually evaluated morphologically by conventional histological procedures, light and electron microscopy. Our laboratory, to further improve the evaluation and to better investigate damages, is adopting a combination of Synchrotron soft X-ray Microscopy (at TwinMic – Elettra) and XRF at different incident energies (at TwinMic – Elettra and ID21 – ESRF). X-ray techniques were performed on histological sections at micro and sub-micron resolution. Phase contrast and absorption images revealed changes in the compactness of the tissues, as well as cellular abnormalities revealed at sub-micrometric resolution. The distributions of the elements detected at 7.3 and 1.5 keV were compared and particularly Cl resulted to be indicative of follicle integrity. The results demonstrate the utility and the potential of X-ray microscopy and fluorescence in this research field.

  15. Characterization of Hepatozoon spp. in Leptodactylus chaquensis and Leptodactylus podicipinus from two regions of the Pantanal, state of Mato Grosso do Sul, Brazil.

    PubMed

    Leal, Denise Dutra Menezes; Dreyer, Carine Spenassatto; da Silva, Reinaldo José; Ribolla, Paulo Eduardo Martins; Paduan, Karina dos Santos; Bianchi, Inácio; O'Dwyer, Lucia Helena

    2015-04-01

    Hepatozoon sp. are parasites that commonly infect frogs and arthropod vectors. This species has variability in the morphological and morphometric characteristics. Due to these variations, the naming of the species is thus impaired and only by visualizing the sporogonic cycle in vector and by molecular studies this problem can be solved. Recently, the use of molecular genetics has helped the species denomination. In this work, we collected 145 frogs (68 Leptodactylus chaquensis and 77 Leptodactylus podicipinus) in different sampling sites, where were found 18 (26.47%) L. chaquensis and 24 (31.17%) L. podicipinus parasitized; besides of gamonts, schizogonic forms were also seen in animals organs. The positivity difference between the collection sites for both frog species was not significant (p = 0.958). Comparing gamonts found in each species of anuran, we observed differences in morphology. The comparison in the molecular level for L. podicipinus was not possible due to small amount of blood obtained, just L. chaquensis had their parasites DNA sequenced. The amplified and sequenced samples, named HEP1 to HEP10, are presented in the phylogenetic tree as a different branch from other haemogregarines described on other hosts. Therefore, we have seen that, although the morphology and morphometry of the collected parasites at each site showed differences, the sequencing of these samples revealed identical species of Hepatozoon, and different compared to those from GenBank, thereby demonstrating that the species of Hepatozoon in L. chaquensis observed in this study probably represent a new species.

  16. Confinement effects on thin polymer films

    NASA Astrophysics Data System (ADS)

    Dalnoki-Veress, Karoly J. T.

    We present the results of four projects investigating the effects of confinement on polymeric systems. The first study dealt with polymer blends that are quenched using a spincoating technique rather than a temperature quench. The mass fraction of two blends was varied to determine the effect of the substrate-blend interface on the thin film phase separation morphology. Quantitative measurements of the morphology on three different substrates revealed significant differences in the phase separation morphology as a result of the different wetting properties of the polymer blend on the substrates. The second project dealt with the effect of mechanical confinement on the phase separation of polymer blend thin films. We measured the phase separation morphology of polystyrene/poly (methyl methacrylate) (PS/PMMA) blend films of thickness h on a silicon oxide (SiOx) substrate with a SiOx capping layer. A novel phase separation morphology was observed for small capping layer thicknesses L as well as a transition from lateral to lamellar morphology as L is increased. A simple model is presented which explains the observed lateral morphology, and the morphology transition, in terms of a balance between the free energy increase associated with forming the interfaces between PS-rich and PMMA-rich domains, and the free energy increase associated with the elastic bending of the SiOx capping layer. Direct control of the amplitude and period of the deformation is achieved by varying h and L. Reasonable agreement is obtained between the predicted amplitude of the rippling of the film surface and that measured directly using atomic force microscopy. For temperatures greater than the glass transition temperature Tg, thin freely-standing polymer films are unstable to the formation of holes. In the third project, we have studied the formation and growth of two types of holes: those which form spontaneously when the films are heated above Tg, and those purposely nucleated using a heated scanning tunneling microscope tip. For both types of holes, we observe exponential growth of the hole radius, corresponding to the viscous regime of hole formation, and a decrease in the film viscosity with decreasing film thickness h for h < 250 nm. In the last project the thermal stability of freely-standing films was enhanced by symmetrically confining the films between thin layers of silicon oxide to form SiOx/PS/SiOx trilayer films. Aggressive annealing of the films produced a novel morphology consisting of long, parallel domains with a well-defined periodicity. A simple model is presented which describes the scaling behavior of the morphology. We discuss the direct control of the morphology through manipulation of the individual film thicknesses and the long-range Van der Waals or dispersion interactions.

  17. On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II.

    PubMed

    Jin, Ersuo; Guo, Jiaqi; Yang, Fang; Zhu, Yangyang; Song, Junlong; Jin, Yongcan; Rojas, Orlando J

    2016-06-05

    Polymorphic and morphological transformations of cellulosic materials are strongly associated to their properties and applications, especially in the case of emerging nanocelluloses. Related changes that take place upon treatment of cellulose nanocrystals (CNC) in alkaline conditions are studied here by XRD, TEM, AFM, and other techniques. The results indicate polymorphic transformation of CNC proceeds gradually in a certain range of alkali concentrations, i.e. from about 8% to 12.5% NaOH. In such transition alkali concentration, cellulose I and II allomorphs coexists. Such value and range of the transition concentration is strongly interdependent with the crystallite size of CNCs. In addition, it is distinctively lower than that for macroscopic fibers (12-15% NaOH). Transmission electron microscopy and particle sizing reveals that after mercerization CNCs tend to associate. Furthermore, TEMPO-oxidized mercerized CNC reveals the morphology of individual nanocrystal of the cellulose II type, which is composed of some interconnected granular structures. Overall, this work reveals how the polymorphism and morphology of individual CNC change in alkali conditions and sheds light onto the polymorphic transition from cellulose I to II. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Further study on Physaloptera clausa Rudolphi, 1819 (Spirurida: Physalopteridae) from the Amur hedgehog Erinaceus amurensis Schrenk (Eulipotyphla: Erinaceidae).

    PubMed

    Chen, Hui-Xia; Ju, Hui-Dong; Li, Yang; Li, Liang

    2017-12-20

    In the present study, light and scanning electron microscopy (SEM) were used to further study the detailed morphology of Physaloptera clausa Rudolphi, 1819, based on the material collected from the Amur hedgehog E. amurensis Schrenk in China. The results revealed a few previously unreported morphological features and some morphological and morphometric variability between our specimens and the previous studies. The present supplementary morphological characters and morphometric data could help us to recognize this species more accurately.

  19. Salience in Second Language Acquisition: Physical Form, Learner Attention, and Instructional Focus

    PubMed Central

    Cintrón-Valentín, Myrna C.; Ellis, Nick C.

    2016-01-01

    We consider the role of physical form, prior experience, and form focused instruction (FFI) in adult language learning. (1) When presented with competing cues to interpretation, learners are more likely to attend to physically more salient cues in the input. (2) Learned attention is an associative learning phenomenon where prior-learned cues block those that are experienced later. (3) The low salience of morphosyntactic cues can be overcome by FFI, which leads learners to attend cues which might otherwise be ignored. Experiment 1 used eye-tracking to investigate how language background influences learners’ attention to morphological cues, as well as the attentional processes whereby different types of FFI overcome low cue salience, learned attention and blocking. Chinese native speakers (no L1 verb-tense morphology) viewed Latin utterances combining lexical and morphological cues to temporality under control conditions (CCs) and three types of explicit FFI: verb grammar instruction (VG), verb salience with textual enhancement (VS), and verb pretraining (VP), and their use of these cues was assessed in a subsequent comprehension test. CC participants were significantly more sensitive to the adverbs than verb morphology. Instructed participants showed greater sensitivity to the verbs. These results reveal attentional processes whereby learners’ prior linguistic experience can shape their attention toward cues in the input, and whereby FFI helps learners overcome the long-term blocking of verb-tense morphology. Experiment 2 examined the role of modality of input presentation – aural or visual – in L1 English learners’ attentional focus on morphological cues and the effectiveness of different FFI manipulations. CC participants showed greater sensitivity toward the adverb cue. FFI was effective in increasing attention to verb-tense morphology, however, the processing of morphological cues was considerably more difficult under aural presentation. From visual exposure, the FFI conditions were broadly equivalent at tuning attention to the morphology, although VP resulted in balanced attention to both cues. The effectiveness of morphological salience-raising varied across modality: VS was effective under visual exposure, but not under aural exposure. From aural exposure, only VG was effective. These results demonstrate how salience in physical form, learner attention, and instructional focus all variously affect the success of L2 acquisition. PMID:27621715

  20. Genetic, morphological, and acoustic evidence reveals lack of diversification in the colonization process in an island bird.

    PubMed

    Illera, Juan Carlos; Palmero, Ana M; Laiolo, Paola; Rodríguez, Felipe; Moreno, Ángel C; Navascués, Miguel

    2014-08-01

    Songbirds with recently (i.e., early Holocene) founded populations are suitable models for studying incipient differentiation in oceanic islands. On such systems each colonization event represents a different evolutionary episode that can be studied by addressing sets of diverging phenotypic and genetic traits. We investigate the process of early differentiation in the spectacled warbler (Sylvia conspicillata) in 14 populations separated by sea barriers from three Atlantic archipelagos and from continental regions spanning from tropical to temperate latitudes. Our approach involved the study of sexual acoustic signals, morphology, and genetic data. Mitochondrial DNA did not provide clear population structure. However, microsatellites analyses consistently identified two genetic groups, albeit without correspondence to subspecies classification and little correspondence to geography. Coalescent analyses showed significant evidence for gene flow between the two genetic groups. Discriminant analyses could not correctly assign morphological or acoustic traits to source populations. Therefore, although theory predicting that in isolated populations genetic, morphological, or acoustic traits can lead to radiation, we have strikingly failed to document differentiation on these attributes in a resident passerine throughout three oceanic archipelagos. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  1. [Survivability and morphologic anomalies in higher plants wolffia arrhiza following exposure to heavy ions of the galactic space radiation].

    PubMed

    Nevzgodina, L V; Kaminskaia, E V; Maksimova, E N; Fatsius, R; Sherrer, K; Shtraukh, V

    2000-01-01

    Experimental data on the effects of spaceflight factors, space radiation in particular, on higher plant Wolffia arrhiza firstly exposed in the "Bioblock" assembly and measurements made by physical track detectors of heavy ions (HI) are presented. Death of individual Wolffia plants and morphologic anomalies were the basic evaluation criteria. The peculiar feature of this biological object consists in the possibility to reveal delayed effects after 1-2 months since space flight as Wolffia has a high rate of vegetative reproduction. German investigators through microscopic examination of track detectors performed identification of individual plants affected by HI. With specially developed software and a coordinate system of supposition of biolayers and track detectors with the accuracy of 1 micron, tracks and even separate sections of individual HI tracks were determined in biological objects. Thereafter each Wolffia plant hit by HI was examined and data were compared with other variants. As a result, correlation between Wolffia death rate and morphologic anomalies were determined at different times post flight and topography of HI tracks was found. It is hypothesized that morphological anomalies in Walffia were caused by direct hits of plant germs by heavy ions or close passage of particles.

  2. Prevalence of cryptic species in morphologically uniform taxa - fast speciation and evolutionary radiation in Asian toads.

    PubMed

    Liu, Zuyao; Chen, Guoling; Zhu, Tianqi; Zeng, Zhaochi; Lyu, Zhitong; Wang, Jian; Messenger, Kevin; Greenberg, Anthony J; Guo, Zixiao; Yang, Ziheng; Shi, Suhua; Wang, Yingyong

    2018-06-16

    Diversity and distributions of cryptic species have long been a vexing issue. Identification of species boundaries is made difficult by the lack of obvious morphological differences. Here, we investigate the cryptic diversity and evolutionary history of an underappreciated group of Asian frog species (Megophrys) to explore the pattern and dynamic of amphibian cryptic species. We sequenced four mitochondrial genes and five nuclear genes and delineated species using multiple approaches, combining DNA and mating-call data. A Bayesian species tree was generated to estimate divergence times and to reconstruct ancestral ranges. Macroevolutionary analyses and hybridization tests were conducted to explore the evolutionary dynamics of this cryptic group. Our phylogenies support the current subgenera. We revealed 43 cryptic species, 158% higher than previously thought. The species-delimitation results were further confirmed by mating-call data and morphological divergence. We found that these Asian frogss entered China from the Sunda Shelf 48 Mya, followed by an ancient radiation event during middle Miocene. We confirmed the efficiency of the multispecies coalescent model for delimitation of species with low morphological diversity. Species diversity of Megophrys is severely underappreciated, and species distributions have been misestimated as a result. Copyright © 2018. Published by Elsevier Inc.

  3. Combining morphometrics with molecular taxonomy: how different are similar foliose keratose sponges from the Australian tropics?

    PubMed

    Abdul Wahab, M A; Fromont, J; Whalan, S; Webster, N; Andreakis, N

    2014-04-01

    Sponge taxonomy can be challenging as many groups exhibit extreme morphological plasticity induced by local environmental conditions. Foliose keratose sponges of the sub-family Phyllospongiinae (Dictyoceratida, Thorectidae: Strepsichordaia, Phyllospongia and Carteriospongia) are commonly found in intertidal and subtidal habitats of the Indo-Pacific. Lacking spicules, these sponges can be difficult to differentiate due to the lack of reliable morphological characters for species delineation. We use molecular phylogenies inferred from the nuclear Internal Transcribed Spacer 2 region (ITS2) and morphometrics (19 characters; 52 character states) to identify evolutionarily significant units (ESUs; sensu Moritz) within foliose Phyllosponginiids collected from seven geographic locations across tropical eastern and Western Australia. The ITS2 topology was congruent with the tree derived from Bayesian inference of discrete morphological characters supporting expected taxonomic relationships at the genus level and the identification of five ESUs. However, phylogenies inferred from the ITS2 marker revealed multiple sequence clusters, some of which were characterised by distinct morphological features and specific geographic ranges. Our results are discussed in light of taxonomic incongruences within this study, hidden sponge diversity and the role of vicariant events in influencing present day distribution patterns. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Relationship between axenic growth of Dictyostelium discoideum strains and their track morphology on substrates coated with gold particles

    PubMed Central

    1983-01-01

    Amoebae of Dictyostelium discoideum produce tracks with two distinct morphologies on gold-coated coverslips. The wild-type strain and other strains that feed only by phagocytosis produced indistinct, fuzzy tracks, whereas mutants capable of axenic growth produced clear, sharp tracks. The sharp track morphology was found to be a recessive phenotype that segregates with axenicity and probably requires a previously unidentified axenic mutation. Axenic and nonaxenic strains also differed in their ability to pinocytose. When the two types of cells were shifted from bacterial growth plates to nutrient media, within 24 h the axenic strain established a rapid rate of pinocytosis, approximately 100-fold higher than the low rate detectable for the nonaxenic strain. However, track formation did not appear to be directly related to endocytosis. Electron microscopic examination of cells during track formation showed that both axenic and nonaxenic strains accumulated gold particles on their surfaces, but neither strain internalized the gold to any significant degree. Observation of living cells revealed that axenic strains collected all particles that they contacted, whereas wild-type strains left many particles undisturbed. The size of the gold particle clusters discarded by the cells also contributed to track morphology. PMID:6619183

  5. Integrative taxonomy allows the identification of synonymous species and the erection of a new genus of Echiniscidae (Tardigrada, Heterotardigrada).

    PubMed

    Vicente, Filipe; Fontoura, Paulo; Cesari, Michele; Rebecchi, Lorena; Guidetti, Roberto; Serrano, Artur; Bertolani, Roberto

    2013-02-14

    The taxonomy of tardigrades is challenging as these animals demonstrate a limited number of useful morphological characters, therefore several species descriptions are supported by only minor differences. For example, Echiniscus oihonnae and Echiniscus multispinosus are separated exclusively by the absence or presence of dorsal spines at position Bd. Doubts were raised on the validity of these two species, which were often sampled together. Using an integrative approach, based on genetic and morphological investigations, we studied two new Portuguese populations, and compared these with archived collections. We have determined that the two species must be considered synonymous with Echiniscus oihonnae the senior synonym. Our study showed generally low genetic distances of cox1 gene (with a maximum of 4.1%), with specimens displaying both morphologies sharing the same haplotype, and revealed character Bd to be variable. Addition-ally, a more detailed morphological and phylogenetic study based on the 18S gene uncovered a new evolutionary line within the Echiniscidae, which justified the erection of Diploechiniscus gen. nov. The new genus is in a sister group relationship with Echiniscus and is, for the moment, composed of a single species.

  6. Emerging principles of regulatory evolution.

    PubMed

    Prud'homme, Benjamin; Gompel, Nicolas; Carroll, Sean B

    2007-05-15

    Understanding the genetic and molecular mechanisms governing the evolution of morphology is a major challenge in biology. Because most animals share a conserved repertoire of body-building and -patterning genes, morphological diversity appears to evolve primarily through changes in the deployment of these genes during development. The complex expression patterns of developmentally regulated genes are typically controlled by numerous independent cis-regulatory elements (CREs). It has been proposed that morphological evolution relies predominantly on changes in the architecture of gene regulatory networks and in particular on functional changes within CREs. Here, we discuss recent experimental studies that support this hypothesis and reveal some unanticipated features of how regulatory evolution occurs. From this growing body of evidence, we identify three key operating principles underlying regulatory evolution, that is, how regulatory evolution: (i) uses available genetic components in the form of preexisting and active transcription factors and CREs to generate novelty; (ii) minimizes the penalty to overall fitness by introducing discrete changes in gene expression; and (iii) allows interactions to arise among any transcription factor and downstream CRE. These principles endow regulatory evolution with a vast creative potential that accounts for both relatively modest morphological differences among closely related species and more profound anatomical divergences among groups at higher taxonomical levels.

  7. Molecular phylogeny and morphological evolution of the Acantharia (Radiolaria).

    PubMed

    Decelle, Johan; Suzuki, Noritoshi; Mahé, Fredéric; de Vargas, Colomban; Not, Fabrice

    2012-05-01

    Acantharia are ubiquitous and abundant rhizarian protists in the world ocean. The skeleton made of strontium sulphate and the fact that certain harbour microalgal endosymbionts make them key planktonic players for the ecology of marine ecosystems. Based on morphological criteria, the current taxonomy of Acantharia was established by W.T. Schewiakoff in 1926, since when no major revision has been undertaken. Here, we established the first comprehensive molecular phylogeny from single morphologically-identified acantharian cells, isolated from various oceans. Our phylogenetic analyses based on 78 18S rDNA and 107 partial 28S rDNA revealed the existence of 6 main clades, sub-divided into 13 sub-clades. The polyphyletic nature of acantharian families and genera demonstrates the need for revision of the current taxonomy. This molecular phylogeny, which highlights the taxonomic relevance of specific morphological criteria, such as the presence of a shell and the organisation of the central junction, provides a robust phylogenetic framework for future taxonomic emendation. Finally, mapping all the existing environmental sequences available to date from different marine ecosystems onto our reference phylogeny unveiled another 3 clades and improved the understanding of the biogeography and ecology of Acantharia. Copyright © 2011 Elsevier GmbH. All rights reserved.

  8. Acoustic measurement and morphological features of organic sediment deposits in combined sewer networks.

    PubMed

    Carnacina, Iacopo; Larrarte, Frédérique; Leonardi, Nicoletta

    2017-04-01

    The performance of sewer networks has important consequences from an environmental and social point of view. Poor functioning can result in flood risk and pollution at a large scale. Sediment deposits forming in sewer trunks might severely compromise the sewer line by affecting the flow field, reducing cross-sectional areas, and increasing roughness coefficients. In spite of numerous efforts, the morphological features of these depositional environments remain poorly understood. The interface between water and sediment remains inefficiently identified and the estimation of the stock of deposit is frequently inaccurate. In part, this is due to technical issues connected to difficulties in collecting accurate field measurements without disrupting existing morphologies. In this paper, results from an extensive field campaign are presented; during the campaign a new survey methodology based on acoustic techniques has been tested. Furthermore, a new algorithm for the detection of the soil-water interface, and therefore for the correct esteem of sediment stocks is proposed. Finally, results in regard to bed topography, and morphological features at two different field sites are presented and reveal that a large variability in bed forms is present along sewer networks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Root morphology and seed and leaf ionomic traits in a Brassica napus L. diversity panel show wide phenotypic variation and are characteristic of crop habit.

    PubMed

    Thomas, C L; Alcock, T D; Graham, N S; Hayden, R; Matterson, S; Wilson, L; Young, S D; Dupuy, L X; White, P J; Hammond, J P; Danku, J M C; Salt, D E; Sweeney, A; Bancroft, I; Broadley, M R

    2016-10-04

    Mineral nutrient uptake and utilisation by plants are controlled by many traits relating to root morphology, ion transport, sequestration and translocation. The aims of this study were to determine the phenotypic diversity in root morphology and leaf and seed mineral composition of a polyploid crop species, Brassica napus L., and how these traits relate to crop habit. Traits were quantified in a diversity panel of up to 387 genotypes: 163 winter, 127 spring, and seven semiwinter oilseed rape (OSR) habits, 35 swede, 15 winter fodder, and 40 exotic/unspecified habits. Root traits of 14 d old seedlings were measured in a 'pouch and wick' system (n = ~24 replicates per genotype). The mineral composition of 3-6 rosette-stage leaves, and mature seeds, was determined on compost-grown plants from a designed experiment (n = 5) by inductively coupled plasma-mass spectrometry (ICP-MS). Seed size explained a large proportion of the variation in root length. Winter OSR and fodder habits had longer primary and lateral roots than spring OSR habits, with generally lower mineral concentrations. A comparison of the ratios of elements in leaf and seed parts revealed differences in translocation processes between crop habits, including those likely to be associated with crop-selection for OSR seeds with lower sulphur-containing glucosinolates. Combining root, leaf and seed traits in a discriminant analysis provided the most accurate characterisation of crop habit, illustrating the interdependence of plant tissues. High-throughput morphological and composition phenotyping reveals complex interrelationships between mineral acquisition and accumulation linked to genetic control within and between crop types (habits) in B. napus. Despite its recent genetic ancestry (<10 ky), root morphology, and leaf and seed composition traits could potentially be used in crop improvement, if suitable markers can be identified and if these correspond with suitable agronomy and quality traits.

  10. To 3D or Not to 3D, That Is the Question: Do 3D Surface Analyses Improve the Ecomorphological Power of the Distal Femur in Placental Mammals?

    PubMed Central

    Gould, Francois D. H.

    2014-01-01

    Improvements in three-dimensional imaging technologies have renewed interest in the study of functional and ecological morphology. Quantitative approaches to shape analysis are used increasingly to study form-function relationships. These methods are computationally intensive, technically demanding, and time-consuming, which may limit sampling potential. There have been few side-by-side comparisons of the effectiveness of such approaches relative to more traditional analyses using linear measurements and ratios. Morphological variation in the distal femur of mammals has been shown to reflect differences in locomotor modes across clades. Thus I tested whether a geometric morphometric analysis of surface shape was superior to a multivariate analysis of ratios for describing ecomorphological patterns in distal femoral variation. A sample of 164 mammalian specimens from 44 genera was assembled. Each genus was assigned to one of six locomotor categories. The same hypotheses were tested using two methods. Six linear measurements of the distal femur were taken with calipers, from which four ratios were calculated. A 3D model was generated with a laser scanner, and analyzed using three dimensional geometric morphometrics. Locomotor category significantly predicted variation in distal femoral morphology in both analyses. Effect size was larger in the geometric morphometric analysis than in the analysis of ratios. Ordination reveals a similar pattern with arboreal and cursorial taxa as extremes on a continuum of morphologies in both analyses. Discriminant functions calculated from the geometric morphometric analysis were more accurate than those calculated from ratios. Both analysis of ratios and geometric morphometric surface analysis reveal similar, biologically meaningful relationships between distal femoral shape and locomotor mode. The functional signal from the morphology is slightly higher in the geometric morphometric analysis. The practical costs of conducting these sorts of analyses should be weighed against potentially slight increases in power when designing protocols for ecomorphological studies. PMID:24633081

  11. Understanding Pluto's Surface: Correlations between Geology and Composition

    NASA Astrophysics Data System (ADS)

    Spencer, J. R.; Stern, A.; Weaver, H. A., Jr.; Young, L. A.; Olkin, C.; Ennico Smith, K.; Moore, J. M.; Grundy, W. M.

    2015-12-01

    New Horizons has revealed that Pluto's surface is composed of a remarkable variety of terrains that differ strikingly in their landforms, color, and near-infrared spectral characteristics. Strong correlations are seen between the morphology revealed by high-resolution imaging from the Long Range Reconnaissance Imager (LORRI), and the surface composition inferred from the spacecraft's color camera and near-infrared spectrometer, which are both included in the Ralph instrument. These correlations provide the potential for a much deeper understanding of the processes that have shaped Pluto's complex surface that was possible for Pluto's sibling Triton, for which Voyager did not provide compositional maps. We will discuss how the full suite of New Horizons remote sensing instruments reveal a surface modified by the interplay of insolation variations, meteorology, and endogenic processes.

  12. Nano-ZnO/ZnO-HAPw prepared via sol-gel method and antibacterial activities of inorganic agents on six bacteria associated with oral infections

    NASA Astrophysics Data System (ADS)

    Jin, Jianfeng; Liu, Wenying; Zhang, Wenyun; Chen, Qinghua; Yuan, Yanbo; Yang, Lidou; Wang, Qintao

    2014-10-01

    The antibacterial activity of zinc oxide (ZnO) and the strengthening of hydroxylapatite whiskers (HAPws) have been widely studied and applied. However, the antibacterial properties of ZnO-HAPws have scarcely been researched. The aim of this study was to further investigate several types of nano-ZnO morphologies of ZnO-HAPws that were prepared using the sol-gel method at different pondus hydrogenii (pH) values and temperatures. The four morphologies of ZnO-HAPws that were investigated here were granule, triangle, short rod and disc type, and these morphologies were investigated at 70 °C at pH 6.4, 37 °C at pH 6.6, 70 °C at pH 6.6 and 70 °C at pH 6.6, respectively. Next, the antibacterial activity of ZnO-HAPw was compared to that of nano-ZnO, commercially available ZnO and tetrapod-like ZnO whiskers (T-ZnOw) with six bacteria that are associated with oral infections: Streptococcus mutans, Lactobacillus casei, Candida albicans, Actinomyces viscosus, Staphylococcus aureus and Escherichia coli. The results of examinations of the minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) showed that the antibacterial activity of ZnO-HAPw exceeded that of the commercially available ZnO and T-ZnOw. Additionally, analysis of variance (ANOVA) analysis of the MBCs revealed that the four tested antibacterial agents had significantly different effects on S. mutans ( F = 8.940; P = 0.006), S. aureus ( F = 6.924; P = 0.013) and E. coli ( F = 4.468; P = 0.04). ANOVA analyses of the MICs revealed that the four tested antibacterial agents had significantly different effects on S. mutans ( F = 6.183; P = 0.018), A. viscosus ( F = 4.531; P = 0.039) and S. aureus ( F = 18.976; P = 0.001).

  13. Valley formation by groundwater seepage, pressurized groundwater outbursts and crater-lake overflow in flume experiments with implications for Mars

    NASA Astrophysics Data System (ADS)

    Marra, Wouter A.; Braat, Lisanne; Baar, Anne W.; Kleinhans, Maarten G.

    2014-04-01

    Remains of fluvial valleys on Mars reveal the former presence of water on the surface. However, the source of water and the hydrological setting is not always clear, especially in types of valleys that are rare on Earth and where we have limited knowledge of the processes involved. We investigated three hydrological scenarios for valley formation on Mars: hydrostatic groundwater seepage, release of pressurized groundwater and crater-lake overflow. Using physical modeling in laboratory experiments and numerical hydrological modeling we quantitatively studied the morphological development and processes involved in channel formation that result from these different sources of water in unconsolidated sediment. Our results show that valleys emerging from seeping groundwater by headward erosion form relatively slowly as fluvial transport takes place in a channel much smaller than the valley. Pressurized groundwater release forms a characteristic source area at the channel head by fluidization processes. This head consist of a pit in case of superlithostatic pressure and may feature small radial channels and collapse features. Valleys emerging from a crater-lake overflow event develop quickly in a run-away process of rim erosion and discharge increase. The valley head at the crater outflow point has a converging fan shape, and the rapid incision of the rim leaves terraces and collapse features. Morphological elements observed in the experiments can help in identifying the formative processes on Mars, when considerations of experimental scaling and lithological characteristics of the martian surface are taken into account. These morphological features might reveal the associated hydrological settings and formative timescales of a valley. An estimate of formative timescale from sediment transport is best based on the final channel dimensions for groundwater seepage valleys and on the valley dimensions for pressurized groundwater release and crater-lake overflow valleys. Our experiments show that different sources of water form valleys of similar size in quite different timescales.

  14. The Evolution of Morphospace in Phytophagous Scarab Chafers: No Competition - No Divergence?

    PubMed Central

    Eberle, Jonas; Myburgh, Renier; Ahrens, Dirk

    2014-01-01

    Body shape reflects species' evolution and mediates its role in the environment as it integrates gene expression, life style, and structural morphology. Its comparative analysis may reveal insight on what shapes shape, being a useful approach when other evidence is lacking. Here we investigated evolutionary patterns of body shape in the highly diverse phytophagous chafers (Scarabaeidae: Pleurosticti), a polyphagous group utilizing different parts of angiosperms. Because the reasons of their successful diversification are largely unknown, we used a phylogenetic tree and multivariate analysis on twenty linear measurements of body morphology including all major Pleurosticti lineages to infer patterns of morphospace covariation and divergence. The chafer's different feeding types resulted to be not distinguishable in the described morphospace which was largely attributed to large occupancy of the morphospace of some feeding types and to multiple convergences of feeding behavior (particularly of anthophagy). Low correlation between molecular and morphological rates of evolution, including significant rate shifts for some lineages, indicated directed selection within feeding types. This is supported by morphospace divergence within feeding types and convergent evolution in Australian Melolonthinae. Traits driving morphospace divergence were extremities and traits linked with locomotion behavior, but also body size. Being highly adaptive for burrowing and locomotion these traits showed major changes in the evolution of pleurostict scarabs. These activities also affected another trait, the metacoxal length, which is highly influenced by key innovations of the metacoxa (extended mesal process, secondary closure) particularly in one lineage, the Sericini. Significant shape divergence between major lineages and a lack of strong differentiation among closely related lineages indicated that the question about the presence or absence of competition-derived directed selection needs to be addressed for different time scales. Striking divergence between some sister lineages at their origin revealed strong driven selection towards morphospace divergence, possibly linked with resource partitioning. PMID:24875856

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pariona, Moises Meza, E-mail: mmpariona@uepg.br; Teleginski, Viviane; Santos, Kelly dos

    Laser beam welding has recently been incorporated into the fabrication process of aircraft and automobile structures. Surface roughness is an important parameter of product quality that strongly affects the performance of mechanical parts, as well as production costs. This parameter influences the mechanical properties such as fatigue behavior, corrosion resistance, creep life, etc., and other functional characteristics such as friction, wear, light reflection, heat transmission, lubrification, electrical conductivity, etc. The effects of laser surface remelting (LSR) on the morphology of Al-Fe aerospace alloys were examined before and after surface treatments, using optical microscopy (OM), scanning electron microscopy (SEM), low-angle X-raymore » diffraction (LA-XRD), atomic force microscopy (AFM), microhardness measurements (Vickers hardness), and cyclic voltammetry. This analysis was performed on both laser-treated and untreated sanded surfaces, revealing significant differences. The LA-XRD analysis revealed the presence of alumina, simple metals and metastable intermetallic phases, which considerably improved the microhardness of laser-remelted surfaces. The morphology produced by laser surface remelting enhanced the microstructure of the Al-Fe alloys by reducing their roughness and increasing their hardness. The treated surfaces showed passivity and stability characteristics in the electrolytic medium employed in this study. - Highlights: Black-Right-Pointing-Pointer The samples laser-treated and untreated showed significant differences. Black-Right-Pointing-Pointer The La-XRD revealed the presence of alumina in Al-1.5 wt.% Fe. Black-Right-Pointing-Pointer The laser-treated reducing the roughness and increasing the hardness. Black-Right-Pointing-Pointer The laser-treated surfaces showed characteristic passive in the electrolytic medium. Black-Right-Pointing-Pointer The laser-treated is a promising technique for applications technological.« less

  16. Physiological Perturbation Reveals Modularity of Eyespot Development in the Painted Lady Butterfly, Vanessa cardui

    PubMed Central

    Rhen, Turk; Simmons, Rebecca B.

    2016-01-01

    Butterfly eyespots are complex morphological traits that can vary in size, shape and color composition even on the same wing surface. Homology among eyespots suggests they share a common developmental basis and function as an integrated unit in response to selection. Despite strong evidence of genetic integration, eyespots can also exhibit modularity or plasticity, indicating an underlying flexibility in pattern development. The extent to which particular eyespots or eyespot color elements exhibit modularity or integration is poorly understood, particularly following exposure to novel conditions. We used perturbation experiments to explore phenotypic correlations among different eyespots and their color elements on the ventral hindwing of V. cardui. Specifically, we identified which eyespots and eyespot features are most sensitive to perturbation by heat shock and injection of heparin—a cold shock mimic. For both treatments, the two central eyespots (3 + 4) were most affected by the experimental perturbations, whereas the outer eyespot border was more resistant to modification than the interior color elements. Overall, the individual color elements displayed a similar response to heat shock across all eyespots, but varied in their response to each other. Graphical modeling also revealed that although eyespots differ morphologically, regulation of eyespot size and colored elements appear to be largely integrated across the wing. Patterns of integration, however, were disrupted following heat shock, revealing that the strength of integration varies across the wing and is strongest between the two central eyespots. These findings support previous observations that document coupling between eyespots 3 + 4 in other nymphalid butterflies. PMID:27560365

  17. Physiological Perturbation Reveals Modularity of Eyespot Development in the Painted Lady Butterfly, Vanessa cardui.

    PubMed

    Connahs, Heidi; Rhen, Turk; Simmons, Rebecca B

    2016-01-01

    Butterfly eyespots are complex morphological traits that can vary in size, shape and color composition even on the same wing surface. Homology among eyespots suggests they share a common developmental basis and function as an integrated unit in response to selection. Despite strong evidence of genetic integration, eyespots can also exhibit modularity or plasticity, indicating an underlying flexibility in pattern development. The extent to which particular eyespots or eyespot color elements exhibit modularity or integration is poorly understood, particularly following exposure to novel conditions. We used perturbation experiments to explore phenotypic correlations among different eyespots and their color elements on the ventral hindwing of V. cardui. Specifically, we identified which eyespots and eyespot features are most sensitive to perturbation by heat shock and injection of heparin-a cold shock mimic. For both treatments, the two central eyespots (3 + 4) were most affected by the experimental perturbations, whereas the outer eyespot border was more resistant to modification than the interior color elements. Overall, the individual color elements displayed a similar response to heat shock across all eyespots, but varied in their response to each other. Graphical modeling also revealed that although eyespots differ morphologically, regulation of eyespot size and colored elements appear to be largely integrated across the wing. Patterns of integration, however, were disrupted following heat shock, revealing that the strength of integration varies across the wing and is strongest between the two central eyespots. These findings support previous observations that document coupling between eyespots 3 + 4 in other nymphalid butterflies.

  18. Morphological evolution in dewetting polystyrene/polyhedral oligomeric silsesquioxane thin film bilayers.

    PubMed

    Paul, Rituparna; Karabiyik, Ufuk; Swift, Michael C; Hottle, John R; Esker, Alan R

    2008-05-06

    Morphological evolution in dewetting thin film bilayers of polystyrene (PS) and a polyhedral oligomeric silsesquioxane (POSS), trisilanolphenyl-POSS (TPP), was studied as a function of annealing temperature and annealing time. The results demonstrate unique dewetting morphologies in PS/TPP bilayers at elevated temperatures that are significantly different from those typically observed in dewetting polymer/polymer bilayers. During temperature ramp studies by optical microscopy (OM) in the reflection mode, PS/TPP bilayers form cracks with a weak optical contrast at approximately 130 degrees C. The crack formation is attributed to tensile stresses within the upper TPP layer. The weak optical contrast of the cracks observed in the bilayers for annealing temperatures below approximately 160 degrees C is consistent with the cracking and dewetting of only the upper TPP layer from the underlying PS layer. The optical contrast of the morphological features is significantly enhanced at annealing temperatures of >160 degrees C. This observation suggests dewetting of both the upper TPP and the lower PS layers that results in the exposure of the silicon substrate. Upon annealing the PS/TPP bilayers at 200 degrees C in a temperature jump experiment, the upper TPP layer undergoes instantaneous cracking as observed by OM. These cracks in the upper TPP layer serve as nucleation sites for rapid dewetting and aggregation of the TPP layer, as revealed by OM and atomic force microscopy (AFM). X-ray photoelectron spectroscopy (XPS) results indicated that dewetting of the lower PS layer ensued for annealing times >5 min and progressed up to 90 min. For annealing times >90 min, OM, AFM, and XPS results revealed complete dewetting of both the layers with the formation of TPP encapsulated PS droplets.

  19. Different patterns of morphological changes in the hippocampus and dentate gyrus accompany the differential expression of disability following nerve injury.

    PubMed

    Kalman, Eszter; Keay, Kevin A

    2014-12-01

    Physical and psychological trauma which results in mood disorders and the disruption of complex behaviours is associated with reductions in hippocampal volume. Clinical evaluation of neuropathic pain reveals mood and behavioural change in a significant number of patients. A rat model of neuropathic injury results in complex behavioural changes in a subpopulation (~30%) of injured rats; these changes are co-morbid with a range of other 'disabilities'. The specific objective of this study was to determine in rats the morphology of the hippocampus and dentate gyrus in individuals with and without complex behavioural disruptions following a constriction injury of the sciatic nerve, and to determine whether rats that develop disabilities following nerve injury have a reduced hippocampal volume compared with injured rats with no disabilities. The social behaviours of nerve-injured rats were evaluated before and after nerve injury. The morphology of the hippocampus of rats with and without behavioural disruptions was compared in serial histological sections. Single-housing and repeated social-interaction testing had no effect on the morphology of either the hippocampus or the dentate gyrus. Rats with transient or ongoing disability identified by behavioural disruption following sciatic nerve injury, show bilateral reductions in hippocampal volume, and lateralised reduction in the dentate gyrus (left side). Disabled rats display a combination of behavioural and physiological changes, which resemble many of the criteria used clinically to diagnose mood disorders. They also show reductions in the volume of the hippocampus similar to people with clinically diagnosed mood disorders. The sciatic nerve injury model reveals a similarity to the human neuropathic pain presentation presenting an anatomically specific focus for the investigation of the neural mechanisms underpinning the co-morbidity of chronic pain and mood disorder. © 2014 Anatomical Society.

  20. Nuclear microsatellite variation in Malagasy baobabs (Adansonia, Bombacoideae, Malvaceae) reveals past hybridization and introgression.

    PubMed

    Leong Pock Tsy, Jean-Michel; Lumaret, Roselyne; Flaven-Noguier, Elodie; Sauve, Mathieu; Dubois, Marie-Pierre; Danthu, Pascal

    2013-12-01

    Adansonia comprises nine species, six of which are endemic to Madagascar. Genetic relationships between the Malagasy species remain unresolved due to conflicting results between nuclear and plastid DNA variation. Morphologically intermediate individuals between distinct species have been identified, indicative of interspecific hybridization. In this paper, microsatellite data are used to identify potential cases of hybridization and to provide insights into the evolutionary history of the genus on Madagascar. Eleven microsatellites amplified with new primers developed for Adansonia rubrostipa were used to analyse 672 individuals collected at 27 sites for the six Malagasy species and morphologically intermediate individuals. Rates of individual admixture were examined using three Bayesian clustering programs, STRUCTURE, BAPS and NewHybrids, with no a priori species assignment. Population differentiation was coherent, with recognized species boundaries. In the four Malagasy species of section Longitubae, 8·0, 9·0 and 9·5 % of individuals with mixed genotypes were identified by BAPS, NewHybrids and STRUCTURE, respectively. At sites with sympatric populations of A. rubrostipa and A. za, NewHybrids indicated these individuals to be F2 and, predominantly, backcrosses with both parental species. In northern Madagascar, two populations of trees combining A. za and A. perrieri morphology and microsatellite alleles were identified in the current absence of the parental species. The clear genetic differentiation observed between the six species may reflect their adaptation to different assortments of climate regimes and habitats during the colonization of the island. Microsatellite variation reveals that hybridization probably occurred in secondary contact between species of section Longitubae. This type of hybridization may also have been involved in the differentiation of a local new stabilized entity showing specific microsatellite alleles and morphological characters, suggesting a potential role of hybridization in the recent history of diversification on Madagascar.

  1. Continuous noninvasive orthostatic blood pressure measurements and their relationship with orthostatic intolerance, falls, and frailty in older people.

    PubMed

    Romero-Ortuno, Roman; Cogan, Lisa; Foran, Tim; Kenny, Rose Anne; Fan, Chie Wei

    2011-04-01

    To identify morphological orthostatic blood pressure (BP) phenotypes in older people and assess their correlation with orthostatic intolerance (OI), falls, and frailty and to compare the discriminatory performance of a morphological classification with two established orthostatic hypotension (OH) definitions: consensus (COH) and initial (IOH). Cross-sectional. Geriatric research clinic. Four hundred forty-two participants (mean age 72, 72% female) without dementia or risk factors for autonomic neuropathy. Active lying-to-standing test monitored using a continuous noninvasive BP monitor. For the morphological classification, four orthostatic systolic BP variables were extracted (delta (baseline - nadir) and maximum percentage of baseline recovered by 30 seconds and 1 and 2 minutes) using the 5-second averages method and entered in K-means cluster analysis (three clusters). Main outcomes were OI, falls (≥1 in past 6 months), and frailty (modified Fried criteria). The morphological clusters were small drop, fast overrecovery (n=112); medium drop, slow recovery (n=238); and large drop, nonrecovery (n=92). Their characterization revealed an increasing OI gradient (17.9%, 27.5%, and 44.6% respectively, P<.001) but no significant gradients in falls or frailty. The COH definition failed to reveal clinical differences between COH+ (n=416) and COH- (n=26) participants. The IOH definition resulted in a clinically meaningful separation between IOH+ (n=85) and IOH- (n=357) subgroups, as assessed according to OI (100% vs 11.5%, P<.001), falls (24.7% vs 10.4%, P<.001), and frailty (14.1% vs 5.4%, P=.005). It is recommended that the IOH definition be applied when taking continuous noninvasive orthostatic BP measurements in older people. © 2011, Copyright the Authors. Journal compilation © 2011, The American Geriatrics Society.

  2. Turtle Functions Downstream of Cut in Differentially Regulating Class Specific Dendrite Morphogenesis in Drosophila

    PubMed Central

    Sulkowski, Mikolaj J.; Iyer, Srividya Chandramouli; Kurosawa, Mathieu S.; Iyer, Eswar Prasad R.; Cox, Daniel N.

    2011-01-01

    Background Dendritic morphology largely determines patterns of synaptic connectivity and electrochemical properties of a neuron. Neurons display a myriad diversity of dendritic geometries which serve as a basis for functional classification. Several types of molecules have recently been identified which regulate dendrite morphology by acting at the levels of transcriptional regulation, direct interactions with the cytoskeleton and organelles, and cell surface interactions. Although there has been substantial progress in understanding the molecular mechanisms of dendrite morphogenesis, the specification of class-specific dendritic arbors remains largely unexplained. Furthermore, the presence of numerous regulators suggests that they must work in concert. However, presently, few genetic pathways regulating dendrite development have been defined. Methodology/Principal Findings The Drosophila gene turtle belongs to an evolutionarily conserved class of immunoglobulin superfamily members found in the nervous systems of diverse organisms. We demonstrate that Turtle is differentially expressed in Drosophila da neurons. Moreover, MARCM analyses reveal Turtle acts cell autonomously to exert class specific effects on dendritic growth and/or branching in da neuron subclasses. Using transgenic overexpression of different Turtle isoforms, we find context-dependent, isoform-specific effects on mediating dendritic branching in class II, III and IV da neurons. Finally, we demonstrate via chromatin immunoprecipitation, qPCR, and immunohistochemistry analyses that Turtle expression is positively regulated by the Cut homeodomain transcription factor and via genetic interaction studies that Turtle is downstream effector of Cut-mediated regulation of da neuron dendrite morphology. Conclusions/Significance Our findings reveal that Turtle proteins differentially regulate the acquisition of class-specific dendrite morphologies. In addition, we have established a transcriptional regulatory interaction between Cut and Turtle, representing a novel pathway for mediating class specific dendrite development. PMID:21811639

  3. Nanosecond laser-induced damage at different initial temperatures of Ta{sub 2}O{sub 5} films prepared by dual ion beam sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Cheng, E-mail: xucheng@cumt.edu.cn; Jia, Jiaojiao; Fan, Heliang

    2014-08-07

    Ta{sub 2}O{sub 5} films were deposited by dual ion beam sputtering method. The nanosecond laser-induced damage threshold (LIDT) at different initial temperatures and time of the films was investigated by an in situ high temperature laser-induced damage testing platform. It was shown that, when the initial temperature increased from 298 K to 383 K, the LIDT at 1064 nm and 12 ns significantly decreased by nearly 14%. Then the LIDT at 1064 nm and 12 ns decreased slower with the same temperature increment. Different damage morphologies were found at different initial temperatures. At low initial temperatures, it was the defects-isolated damage while at high initial temperaturesmore » it was the defects-combined damage. The theoretical calculations based on the defect-induced damage model revealed that both the significant increase of the highest temperature and the duration contributed to the different damage morphologies. With the initial temperature being increased, the thermal-stress coupling damage mechanism transformed gradually to the thermal dominant damage mechanism.« less

  4. Preliminary analysis of the distribution of water in human hair by small-angle neutron scattering.

    PubMed

    Kamath, Yash; Murthy, N Sanjeeva; Ramaprasad, Ram

    2014-01-01

    Diffusion and distribution of water in hair can reveal the internal structure of hair that determines the penetration of various products used to treat hair. The distribution of water into different morphological components in unmodified hair, cuticle-free hair, and hair saturated with oil at various levels of humidity was examined using small-angle neutron scattering (SANS) by substituting water with deuterium oxide (D(2)O). Infrared spectroscopy was used to follow hydrogen-deuterium exchange. Water present in hair gives basically two types of responses in SANS: (i) interference patterns, and (ii) central diffuse scattering (CDS) around the beam stop. The amount of water in the matrix between the intermediate filaments that gives rise to interference patterns remained essentially constant over the 50-98% humidity range without swelling this region of the fiber extensively. This observation suggests that a significant fraction of water in the hair, which contributes to the CDS, is likely located in a different morphological region of hair that is more like pores in a fibrous structure, which leads to significant additional swelling of the fiber. Comparison of the scattering of hair treated with oil shows that soybean oil, which diffuses less into hair, allows more water into hair than coconut oil. These preliminary results illustrate the utility of SANS for evaluating and understanding the diffusion of deuterated liquids into different morphological structures in hair.

  5. Genome-Wide Association Mapping and Genomic Prediction Elucidate the Genetic Architecture of Morphological Traits in Arabidopsis.

    PubMed

    Kooke, Rik; Kruijer, Willem; Bours, Ralph; Becker, Frank; Kuhn, André; van de Geest, Henri; Buntjer, Jaap; Doeswijk, Timo; Guerra, José; Bouwmeester, Harro; Vreugdenhil, Dick; Keurentjes, Joost J B

    2016-04-01

    Quantitative traits in plants are controlled by a large number of genes and their interaction with the environment. To disentangle the genetic architecture of such traits, natural variation within species can be explored by studying genotype-phenotype relationships. Genome-wide association studies that link phenotypes to thousands of single nucleotide polymorphism markers are nowadays common practice for such analyses. In many cases, however, the identified individual loci cannot fully explain the heritability estimates, suggesting missing heritability. We analyzed 349 Arabidopsis accessions and found extensive variation and high heritabilities for different morphological traits. The number of significant genome-wide associations was, however, very low. The application of genomic prediction models that take into account the effects of all individual loci may greatly enhance the elucidation of the genetic architecture of quantitative traits in plants. Here, genomic prediction models revealed different genetic architectures for the morphological traits. Integrating genomic prediction and association mapping enabled the assignment of many plausible candidate genes explaining the observed variation. These genes were analyzed for functional and sequence diversity, and good indications that natural allelic variation in many of these genes contributes to phenotypic variation were obtained. For ACS11, an ethylene biosynthesis gene, haplotype differences explaining variation in the ratio of petiole and leaf length could be identified. © 2016 American Society of Plant Biologists. All Rights Reserved.

  6. Ion aggregation in high salt solutions. VII. The effect of cations on the structures of ion aggregates and water hydrogen-bonding network

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Choi, Hyung Ran; Jeon, Jonggu; Cho, Minhaeng

    2017-10-01

    Ions in high salt solutions have a strong propensity to form polydisperse ion aggregates with broad size and shape distributions. In a series of previous comparative investigations using femtosecond IR pump-probe spectroscopy, molecular dynamics simulation, and graph theoretical analysis, we have shown that there exists a morphological difference in the structures of ion aggregates formed in various salt solutions. As salt concentration increases, the ions in high salt solutions form either cluster-like structures excluding water molecules or network-like structures entwined with water hydrogen-bonding networks. Interestingly, such morphological characteristics of the ion aggregates have been found to be in correlation with the solubility limits of salts. An important question that still remains unexplored is why certain salts with different cations have notably different solubility limits in water. Here, carrying out a series of molecular dynamics simulations of aqueous salt solutions and analyzing the distributions and connectivity patterns of ion aggregates with a spectral graph analysis method, we establish the relationship between the salt solubility and the ion aggregate morphology with a special emphasis on the cationic effects on water structures and ion aggregation. We anticipate that the understanding of large scale ion aggregate structures revealed in this study will be critical for elucidating the specific ion effects on the solubility and conformational stability of co-solute molecules such as proteins in water.

  7. A study of the solvent effect on the morphology of RDX crystal by molecular modeling method.

    PubMed

    Chen, Gang; Xia, Mingzhu; Lei, Wu; Wang, Fengyun; Gong, Xuedong

    2013-12-01

    Molecular dynamics simulations have been performed to investigate the effect of acetone solvent on the crystal morphology of RDX. The results show that the growth morphology of RDX crystal in vacuum is dominated by the (111), (020), (200), (002), and (210) faces using the BFDH laws, and (111) face is morphologically the most important. The analysis of surface structures of RDX crystal indicates that (020) face is non-polar, while (210), (111), (002), and (200) faces are polar among which (210) face has the strongest polarity. The interaction between acetone solvent and each RDX crystal face is different, and the order of binding energy on these surfaces is (210) > (111) > (002) > (200) > (020). The analysis of interactions among RDX and acetone molecules reveal that the system nonbond interactions are primary strong van der Waals and electrostatic interactions containing π-hole interactions, the weak hydrogen bond interactions are also existent. The effect of acetone on the growth of RDX crystal can be evaluated by comparing the binding energies of RDX crystalline faces. It can be predicted that compared to that in vacuum, in the process of RDX crystallization from acetone, the morphological importance of (210) face is increased more and (111) face is not the most important among RDX polar surfaces, while the non-polar (020) face probably disappears. The experimentally obtained RDX morphology grown from acetone is in agreement with the theoretical prediction.

  8. Experimental and theoretical study to explain the morphology of CaMoO4 crystals

    NASA Astrophysics Data System (ADS)

    Oliveira, F. K. F.; Oliveira, M. C.; Gracia, L.; Tranquilin, R. L.; Paskocimas, C. A.; Motta, F. V.; Longo, E.; Andrés, J.; Bomio, M. R. D.

    2018-03-01

    CaMoO4 crystals were prepared by a controlled co-precipitation method and processed in a domestic microwave-assisted hydrothermal system with two different surfactants (ethyl 4-dimethylaminobenzoate and 1,2,4,5-benzenetetracarboxylic dianhydride). The corresponding structures were characterized by X-ray diffraction and Rietveld refinement techniques, Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy, and photoluminescence measurements. Field emission scanning electron microscopy was used to investigate the morphology of the as-synthesized aggregates. The structure, the surface stability of the (001), (112), (100), (110), (101), and (111) surfaces of CaMoO4, and their morphological transformations were investigated through systematic first-principles calculations within the density functional theory method at the B3LYP level. Analysis of the surface structures showed that the electronic properties were associated with the presence of undercoordinated [CaOx] (x = 5 and 6) and [MoOy] (y = 4 and 3) clusters. The relative surfaces energies were tuned to predict a complete map of the morphologies available through a Wulff construction approach. The results reveal that the experimental and theoretical morphologies obtained coincide when the surface energies of the (001) and (101) surfaces increase, while the surface energy of the (100) facet decreases simultaneously. The results provide a comprehensive catalog of the morphologies most likely to be present under realistic conditions, and will serve as a starting point for future studies on the surface chemistry of CaMoO4 crystals.

  9. Transactivation of TrkB by Sigma-1 receptor mediates cocaine-induced changes in dendritic spine density and morphology in hippocampal and cortical neurons

    PubMed Central

    Ka, Minhan; Kook, Yeon-Hee; Liao, Ke; Buch, Shilpa; Kim, Woo-Yang

    2016-01-01

    Cocaine is a highly addictive narcotic associated with dendritic spine plasticity in the striatum. However, it remains elusive whether cocaine modifies spines in a cell type-specific or region-specific manner or whether it alters different types of synapses in the brain. In addition, there is a paucity of data on the regulatory mechanism(s) involved in cocaine-induced modification of spine density. In the current study, we report that cocaine exposure differentially alters spine density, spine morphology, and the types of synapses in hippocampal and cortical neurons. Cocaine exposure in the hippocampus resulted in increased spine density, but had no significant effect on cortical neurons. Although cocaine exposure altered spine morphology in both cell types, the patterns of spine morphology were distinct for each cell type. Furthermore, we observed that cocaine selectively affects the density of excitatory synapses. Intriguingly, in hippocampal neurons cocaine-mediated effects on spine density and morphology involved sigma-1 receptor (Sig-1 R) and its downstream TrkB signaling, which were not the case in cortical neurons. Furthermore, pharmacological inhibition of Sig-1 R prevented cocaine-induced TrkB activation in hippocampal neurons. Our findings reveal a novel mechanism by which cocaine induces selective changes in spine morphology, spine density, and synapse formation, and could provide insights into the cellular basis for the cognitive impairment observed in cocaine addicts. PMID:27735948

  10. Investigation of the relationship of crater depths and diameters in selected regions of Mars

    NASA Astrophysics Data System (ADS)

    Hsu, Hsin-Jen

    2013-03-01

    Impact craters are common geomorphological features on Mars. The density of craters is different among various regions. Higher crater density means older terrain. Craters can be divided into two types by the interior morphology: simple and complex. The cavity of Simple craters is bowl-shape, and complex craters display various interior features, such as central peaks. The depth/diameter ratio (d/D) of simple craters is larger than that of complex craters. The transition diameter from simple to complex morphologies ranges between 5 and 10 km, and is commonly cited to be about 7 km in the equatorial regions and 6 km near the poles, but the exact value also could vary with terrain type. In this research, seven regions, Amazonis Planitia, Arabia Terra, Chryse Planitia, Hesperia Planum, Isidis Planitia, Solis/Syria/Sinai Planum, and Terra Sirenum, were selected to investigate the onset diameter of complex craters and the relationship of crater diameter and depth in these regions on Mars in order to understand how the geology affects crater d/D. The analysis revealed that the slopes of the d/D relations are different, and these are linked to the surface material in different regions. The onset diameters in young volcanic regions with stronger material are slightly higher than older volcanic regions, and much higher than that of volatile regions. The research proves the different geological units can affect the morphology and morphometry of craters.

  11. Evolutionary dynamics of ecological niche in three Rhinogobio fishes from the upper Yangtze River inferred from morphological traits

    PubMed Central

    Wang, Meirong; Liu, Fei; Lin, Pengcheng; Yang, Shaorong; Liu, Huanzhang

    2015-01-01

    In the past decades, it has been debated whether ecological niche should be conserved among closely related species (phylogenetic niche conservatism, PNC) or largely divergent (traditional ecological niche theory and ecological speciation) and whether niche specialist and generalist might remain in equilibrium or niche generalist could not appear. In this study, we employed morphological traits to describe ecological niche and test whether different niche dimensions exhibit disparate evolutionary patterns. We conducted our analysis on three Rhinogobio fish species (R. typus,R. cylindricus, and R. ventralis) from the upper Yangtze River, China. Among the 32 measured morphological traits except body length, PCA extracted the first four principal components with their loading scores >1.000. To find the PNC among species, Mantel tests were conducted with the Euclidean distances calculated from the four principal components (representing different niche dimensions) against the pairwise distances calculated from mitochondrial cytochrome b sequence variations. The results showed that the second and the third niche dimension, both related to swimming ability and behavior, exhibited phylogenetic conservatism. Further comparison on niche breadth among these three species revealed that the fourth dimension of R. typus showed the greatest width, indicating that this dimension exhibited niche generalism. In conclusion, our results suggested that different niche dimensions could show different evolutionary dynamic patterns: they may exhibit PNC or not, and some dimensions may evolve generalism. PMID:25691981

  12. Charge transport in CdTe solar cells revealed by conductive tomographic atomic force microscopy

    DOE PAGES

    Luria, Justin; Kutes, Yasemin; Moore, Andrew; ...

    2016-09-26

    Polycrystalline photovoltaics comprising cadmium telluride (CdTe) represent a growing portion of the solar cell market, yet the physical picture of charge transport through the meso-scale grain morphology remains a topic of debate. It is unknown how thin film morphology affects the transport of electron-hole pairs. Accordingly this study is the first to generate three dimensional images of photocurrent throughout a thin-film solar cell, revealing the profound influence of grain boundaries and stacking faults on device efficiency.

  13. Morphology and FT IR spectra of porous silicon

    NASA Astrophysics Data System (ADS)

    Kopani, Martin; Mikula, Milan; Kosnac, Daniel; Gregus, Jan; Pincik, Emil

    2017-12-01

    The morphology and chemical bods of p-type and n-type porous Si was compared. The surface of n-type sample is smooth, homogenous without any features. The surface of p-type sample reveals micrometer-sized islands. FTIR investigation reveals various distribution of SiOxHy complexes in both p-and n-type samples. From the conditions leading to porous silicon layer formation (the presence of holes) we suggest both SiOxHy and SiFxHy complexes in the layer.

  14. Lexicality, Morphological Structure, and Semantic Transparency in the Processing of German Ver-Verbs: The Complementarity of On-Line and Off-Line Evidence

    ERIC Educational Resources Information Center

    Schirmeier, Matthias K.; Derwing, Bruce L.; Libben, Gary

    2004-01-01

    Two types of experiments investigate the visual on-line and off-line processing of German ver-verbs (e.g., verbittern "to embitte"). In Experiments 1 and 2 (morphological priming), latency patterns revealed the existence of facilitation effects for the morphological conditions (BITTER-VERBITTERN and BITTERN-VERBITTERN) as compared to the neutral…

  15. Gray matter structural compromise is equally distributed in left and right temporal lobe epilepsy.

    PubMed

    Liu, Min; Bernhardt, Boris C; Bernasconi, Andrea; Bernasconi, Neda

    2016-02-01

    In drug-resistant temporal lobe epilepsy (TLE), MRI studies have shown consistent mesiotemporal and neocortical structural alterations when comparing patients to healthy controls. It remains, however, relatively unclear whether the side of seizure focus differentially impacts the degree of structural damage. This work performed a comprehensive surface-based analysis of mesiotemporal and neocortical morphology on preoperative 1.5 T MRI in 25/35 LTLE/RTLE patients that achieved seizure freedom after surgery (i.e., Engel-I outcome; 7 ± 2 years follow-up), an imaging-independent confirmation of focus lateralization. Compared to 46 age- and sex-matched controls, both TLE groups displayed marked ipsilateral atrophy in mesiotemporal regions, while cortical thinning was bilateral. Direct contrasts between LTLE and RTLE did not reveal significant differences. Bootstrap simulations indicated low reproducibility of observing a between-cohort difference; power analysis revealed that more than 110 patients would be necessary to detect subtle differences. No difference between LTLE and RTLE was confirmed when using voxel-based morphometry, an independent proxy of gray matter volume. Similar results were obtained analyzing a separate 3 T dataset (15/15 LTLE/RTLE patients; Engel-I after 4 ± 2 years follow-up; 42 controls). Our results strongly support equivalent gray matter compromise in left and right TLE. The morphological profile of seizure-free patients, presenting with ipsilateral mesiotemporal and bilateral cortical atrophy, motivates the development of neuromarkers of outcome that consider both mesiotemporal and neocortical structures. Hum Brain Mapp 37:515-524, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raul, Prasanta Kumar, E-mail: prasanta.drdo@gmail.com; Devi, Rashmi Rekha; Umlong, Iohborlang M.

    Graphical abstract: Non-magnetic polycrystalline iron oxide hydroxide nanoparticle with flower like morphology is found to play as an effective adsorbent media to remove As(III) from 300 μg L{sup −1} to less than 10 μg L{sup −1} from drinking water over wide range of pH. TEM image clearly reveals that the nanoparticle looks flower like morphology with average particle size less than 20 nm. The maximum sorption capacity of the sorbent is found to be 475 μg g{sup −1} for arsenic at room temperature and the data fitted to different isotherm models indicate the heterogeneity of the adsorbent surface. The materialmore » can be regenerated up to 70% using dilute hydrochloric acid and it would be utilized for de-arsenification purposes. - Highlights: • The work includes synthesis of iron oxide hydroxide nanoflower and its applicability for the removal of arsenic from water. • The nanoparticle was characterized using modern instrumental methods like FESEM, TEM, BET, XRD, etc. • The maximum sorption capacity of the sorbent is found to be 475 μg g{sup −1} for arsenic at room temperature. • The sorption is multilayered on the heterogeneous surface of the nano adsorbent. • The mechanism of arsenic removal of IOH nanoflower follows both adsorption and ion-exchange. - Abstract: Non-magnetic polycrystalline iron oxide hydroxide nanoparticle with flower like morphology is found to play as an effective adsorbent media to remove As(III) from 300 μg L{sup −1} to less than 10 μg L{sup −1} from drinking water over wide range of pH. The nanoparticle was characterized by X-ray powder diffraction analysis (XRD), BET surface area, FTIR, FESEM and TEM images. TEM image clearly reveals flower like morphology with average particle size less than 20 nm. The nanoflower morphology is also supported by FESEM images. The maximum sorption capacity of the sorbent is found to be 475 μg g{sup −1} for arsenic and the data fitted to different isotherm models indicate the heterogeneity of the adsorbent surface. Study on adsorption kinetics shows that adsorption of arsenic onto iron oxide hydroxide nanoflower follows pseudo-second order kinetic. The material can be regenerated up to 70% using dilute hydrochloric acid and it would be utilized for de-arsenification purposes.« less

  17. Non-monophyly and intricate morphological evolution within the avian family Cettiidae revealed by multilocus analysis of a taxonomically densely sampled dataset

    PubMed Central

    2011-01-01

    Background The avian family Cettiidae, including the genera Cettia, Urosphena, Tesia, Abroscopus and Tickellia and Orthotomus cucullatus, has recently been proposed based on analysis of a small number of loci and species. The close relationship of most of these taxa was unexpected, and called for a comprehensive study based on multiple loci and dense taxon sampling. In the present study, we infer the relationships of all except one of the species in this family using one mitochondrial and three nuclear loci. We use traditional gene tree methods (Bayesian inference, maximum likelihood bootstrapping, parsimony bootstrapping), as well as a recently developed Bayesian species tree approach (*BEAST) that accounts for lineage sorting processes that might produce discordance between gene trees. We also analyse mitochondrial DNA for a larger sample, comprising multiple individuals and a large number of subspecies of polytypic species. Results There are many topological incongruences among the single-locus trees, although none of these is strongly supported. The multi-locus tree inferred using concatenated sequences and the species tree agree well with each other, and are overall well resolved and well supported by the data. The main discrepancy between these trees concerns the most basal split. Both methods infer the genus Cettia to be highly non-monophyletic, as it is scattered across the entire family tree. Deep intraspecific divergences are revealed, and one or two species and one subspecies are inferred to be non-monophyletic (differences between methods). Conclusions The molecular phylogeny presented here is strongly inconsistent with the traditional, morphology-based classification. The remarkably high degree of non-monophyly in the genus Cettia is likely to be one of the most extraordinary examples of misconceived relationships in an avian genus. The phylogeny suggests instances of parallel evolution, as well as highly unequal rates of morphological divergence in different lineages. This complex morphological evolution apparently misled earlier taxonomists. These results underscore the well-known but still often neglected problem of basing classifications on overall morphological similarity. Based on the molecular data, a revised taxonomy is proposed. Although the traditional and species tree methods inferred much the same tree in the present study, the assumption by species tree methods that all species are monophyletic is a limitation in these methods, as some currently recognized species might have more complex histories. PMID:22142197

  18. Premna bhamoensis (Lamiaceae, Premnoideae), a new species from Kachin State, northeastern Myanmar

    PubMed Central

    Tan, Yunhong; Li, Derong; Chen, Yongjun; Li, Bo

    2017-01-01

    Abstract In the present study, we describe and illustrate a new species, Premna bhamoensis Y. T. Tan & B. Li (Lamiaceae), from Myanmar. In the 1980s, this species was transplanted from Bhamo County in northeastern Myanmar to the Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences. The species shows striking morphological similarity to P. menglaensis B. Li, and thus, has been misidentified as the latter for a long period of time. However, morphological comparison revealed that P. bhamoensis is distinct from P. menglaensis in many aspects. Moreover, literature survey and specimen examinations also indicated that P. bhamoensis is undoubtedly different from all seven known congenetic species recorded from Kachin State, Myanmar, and a key for their identification has been provided in this paper. PMID:29033651

  19. Water vascular system architecture in an Ordovician ophiuroid.

    PubMed

    Clark, Elizabeth G; Bhullar, Bhart-Anjan S; Darroch, Simon A F; Briggs, Derek E G

    2017-12-01

    Understanding the water vascular system (WVS) in early fossil echinoderms is critical to elucidating the evolution of this system in extant forms. Here we present the first report of the internal morphology of the water vascular system of a stem ophiuroid. The radial canals are internal to the arm, but protected dorsally by a plate separate to the ambulacrals. The canals zig-zag with no evidence of constrictions, corresponding to sphincters, which control pairs of tube feet in extant ophiuroids. The morphology suggests that the unpaired tube feet must have operated individually, and relied on the elasticity of the radial canals, lateral valves and tube foot musculature alone for extension and retraction. This arrangement differs radically from that in extant ophiuroids, revealing a previously unknown Palaeozoic configuration. © 2017 The Author(s).

  20. Revision of Tomocerus similis Chen & Ma, with discussion of the kinoshitai complex and the distal tibiotarsal chaetae in Tomocerinae (Collembola, Tomoceridae).

    PubMed

    Yu, Daoyuan; Ding, Yinhuan; Ma, Yitong

    2017-05-17

    Molecular analysis and a detailed morphological comparison revealed that Tomocerus similis Chen & Ma was described from individuals belonging to several species from several localities. Based on both old and new material from Anhui and Jiangsu Provinces, China, T. similis is redescribed and two new species are described. The three species are morphologically similar. Tomocerus persimilis sp. nov. differs from the others by the presence of central macrochaeta on head and of several distinct distal inner teeth on unguis. Tomocerus dissimilis sp. nov. is characterised by pointed tenent hairs on anterior legs. Remarks are made on the systematics and ecology of the kinoshitai complex, and on the taxonomic value of tenent hair and its adjacent chaetae.

Top