Science.gov

Sample records for reveals f-actin dynamics

  1. Application of Lifeact Reveals F-Actin Dynamics in Arabidopsis thaliana and the Liverwort, Marchantia polymorpha

    PubMed Central

    Era, Atsuko; Tominaga, Motoki; Ebine, Kazuo; Awai, Chie; Saito, Chieko; Ishizaki, Kimitsune; Yamato, Katsuyuki T.; Kohchi, Takayuki; Nakano, Akihiko; Ueda, Takashi

    2009-01-01

    Actin plays fundamental roles in a wide array of plant functions, including cell division, cytoplasmic streaming, cell morphogenesis and organelle motility. Imaging the actin cytoskeleton in living cells is a powerful methodology for studying these important phenomena. Several useful probes for live imaging of filamentous actin (F-actin) have been developed, but new versatile probes are still needed. Here, we report the application of a new probe called Lifeact for visualizing F-actin in plant cells. Lifeact is a short peptide comprising 17 amino acids that was derived from yeast Abp140p. We used a Lifeact–Venus fusion protein for staining F-actin in Arabidopsis thaliana and were able to observe dynamic rearrangements of the actin meshwork in root hair cells. We also used Lifeact–Venus to visualize the actin cytoskeleton in the liverwort Marchantia polymorpha; this revealed unique and dynamic F-actin motility in liverwort cells. Our results suggest that Lifeact could be a useful tool for studying the actin cytoskeleton in a wide range of plant lineages. PMID:19369273

  2. Application of Lifeact reveals F-actin dynamics in Arabidopsis thaliana and the liverwort, Marchantia polymorpha.

    PubMed

    Era, Atsuko; Tominaga, Motoki; Ebine, Kazuo; Awai, Chie; Saito, Chieko; Ishizaki, Kimitsune; Yamato, Katsuyuki T; Kohchi, Takayuki; Nakano, Akihiko; Ueda, Takashi

    2009-06-01

    Actin plays fundamental roles in a wide array of plant functions, including cell division, cytoplasmic streaming, cell morphogenesis and organelle motility. Imaging the actin cytoskeleton in living cells is a powerful methodology for studying these important phenomena. Several useful probes for live imaging of filamentous actin (F-actin) have been developed, but new versatile probes are still needed. Here, we report the application of a new probe called Lifeact for visualizing F-actin in plant cells. Lifeact is a short peptide comprising 17 amino acids that was derived from yeast Abp140p. We used a Lifeact-Venus fusion protein for staining F-actin in Arabidopsis thaliana and were able to observe dynamic rearrangements of the actin meshwork in root hair cells. We also used Lifeact-Venus to visualize the actin cytoskeleton in the liverwort Marchantia polymorpha; this revealed unique and dynamic F-actin motility in liverwort cells. Our results suggest that Lifeact could be a useful tool for studying the actin cytoskeleton in a wide range of plant lineages.

  3. Microinjected fluorescent phalloidin in vivo reveals the F-actin dynamics and assembly in higher plant mitotic cells.

    PubMed Central

    Schmit, A C; Lambert, A M

    1990-01-01

    Endosperm mitotic cells microinjected with fluorescent phalloidin enabled us to follow the in vivo dynamics of the F-actin cytoskeleton. The fluorescent probe immediately bound to plant microfilaments. First, we investigated the active rearrangement of F-actin during chromosome migration, which appeared to be slowed down in the presence of phalloidin. These findings were compared with the actin patterns observed in mitotic cells fixed at different stages. Our second aim was to determine the origin of the actin filaments that appear at the equator during anaphase-telophase transition. It is not clear whether this F-actin is newly assembled at the end of mitosis and could control plant cytokinesis or whether it corresponds to a passive redistribution of broken polymers in response to microtubule dynamics. We microinjected the same cells twice, first in metaphase with rhodamine-phalloidin and then in late anaphase with fluorescein isothiocyanate-phalloidin. This technique enabled us to visualize two F-actin populations that are not co-localized, suggesting that actin is newly assembled during cell plate development. These in vivo data shed new light on the role of actin in plant mitosis and cytokinesis. PMID:2136631

  4. Microtubules Modulate F-actin Dynamics during Neuronal Polarization.

    PubMed

    Zhao, Bing; Meka, Durga Praveen; Scharrenberg, Robin; König, Theresa; Schwanke, Birgit; Kobler, Oliver; Windhorst, Sabine; Kreutz, Michael R; Mikhaylova, Marina; Calderon de Anda, Froylan

    2017-08-29

    Neuronal polarization is reflected by different dynamics of microtubule and filamentous actin (F-actin). Axonal microtubules are more stable than those in the remaining neurites, while dynamics of F-actin in axonal growth cones clearly exceed those in their dendritic counterparts. However, whether a functional interplay exists between the microtubule network and F-actin dynamics in growing axons and whether this interplay is instrumental for breaking cellular symmetry is currently unknown. Here, we show that an increment on microtubule stability or number of microtubules is associated with increased F-actin dynamics. Moreover, we show that Drebrin E, an F-actin and microtubule plus-end binding protein, mediates this cross talk. Drebrin E segregates preferentially to growth cones with a higher F-actin treadmilling rate, where more microtubule plus-ends are found. Interruption of the interaction of Drebrin E with microtubules decreases F-actin dynamics and arrests neuronal polarization. Collectively the data show that microtubules modulate F-actin dynamics for initial axon extension during neuronal development.

  5. F-actin localization dynamics during appressorium formation in Colletotrichum graminicola.

    PubMed

    Wang, Chih-Li; Shaw, Brian D

    2016-01-01

    Appressoria are essential penetration structures for many phytopathogenic fungi. Here F-actin localization dynamics were documented during appressorium formation in vitro and in planta in Colletotrichum graminicola Four discernible stages of dynamic F-actin distribution occurring in a programmed order were documented from differentiation of appressoria to formation of penetration pores: (stage A) from germ tube enlargement to complete expansion of the appressorium; (stage S) septation occurs; (stage L) a long period of low F-actin activity; (stage P) the penetration pore forms. The F-actin subcellular localization corresponded to each stage. A distinct redistribution of actin cables occurred at the transition from stage A to stage S. The in planta assays revealed that F-actin also assembled in invasive hyphae and that actin cables might play an essential role for penetration-peg development. The F-actin localization distribution may be used as a subcellular marker to define the developmental stages during appressorium formation. © 2016 by The Mycological Society of America.

  6. Internal dynamics of F-actin and myosin subfragment-1 studied by quasielastic neutron scattering

    SciTech Connect

    Matsuo, Tatsuhito; Arata, Toshiaki; Oda, Toshiro; Nakajima, Kenji; Ohira-Kawamura, Seiko; Kikuchi, Tatsuya; Fujiwara, Satoru

    2015-04-10

    Various biological functions related to cell motility are driven by the interaction between the partner proteins, actin and myosin. To obtain insights into how this interaction occurs, the internal dynamics of F-actin and myosin subfragment-1 (S1) were characterized by the quasielastic neutron scattering measurements on the solution samples of F-actin and S1. Contributions of the internal motions of the proteins to the scattering spectra were separated from those of the global macromolecular diffusion. Analysis of the spectra arising from the internal dynamics showed that the correlation times of the atomic motions were about two times shorter for F-actin than for S1, suggesting that F-actin fluctuates more rapidly than S1. It was also shown that the fraction of the immobile atoms is larger for S1 than for F-actin. These results suggest that F-actin actively facilitates the binding of myosin by utilizing the more frequent conformational fluctuations than those of S1. - Highlights: • We studied the internal dynamics of F-actin and myosin S1 by neutron scattering. • The correlation times of the atomic motions were smaller for F-actin than for S1. • The fraction of the immobile atoms was also smaller for F-actin than for S1. • Our results suggest that mobility of atoms in F-actin is higher than that in S1. • We propose that high flexibility of F-actin facilitates the binding of myosin.

  7. A dynamic formin-dependent deep F-actin network in axons

    PubMed Central

    Ganguly, Archan; Tang, Yong; Wang, Lina; Ladt, Kelsey; Loi, Jonathan; Dargent, Bénédicte; Leterrier, Christophe

    2015-01-01

    Although actin at neuronal growth cones is well-studied, much less is known about actin organization and dynamics along axon shafts and presynaptic boutons. Using probes that selectively label filamentous-actin (F-actin), we found focal “actin hotspots” along axons—spaced ∼3–4 µm apart—where actin undergoes continuous assembly/disassembly. These foci are a nidus for vigorous actin polymerization, generating long filaments spurting bidirectionally along axons—a phenomenon we call “actin trails.” Super-resolution microscopy reveals intra-axonal deep actin filaments in addition to the subplasmalemmal “actin rings” described recently. F-actin hotspots colocalize with stationary axonal endosomes, and blocking vesicle transport diminishes the actin trails, suggesting mechanistic links between vesicles and F-actin kinetics. Actin trails are formin—but not Arp2/3—dependent and help enrich actin at presynaptic boutons. Finally, formin inhibition dramatically disrupts synaptic recycling. Collectively, available data suggest a two-tier F-actin organization in axons, with stable “actin rings” providing mechanical support to the plasma membrane and dynamic "actin trails" generating a flexible cytoskeletal network with putative physiological roles. PMID:26216902

  8. Open Conformation of Ezrin Bound to Phosphatidylinositol 4,5-Bisphosphate and to F-actin Revealed by Neutron Scattering*

    PubMed Central

    Jayasundar, Jayant James; Ju, Jeong Ho; He, Lilin; Liu, Dazhi; Meilleur, Flora; Zhao, Jinkui; Callaway, David J. E.; Bu, Zimei

    2012-01-01

    Ezrin is a member of the ezrin-radixin-moesin family (ERM) of adapter proteins that are localized at the interface between the cell membrane and the cortical actin cytoskeleton, and they regulate a variety of cellular functions. The structure representing a dormant and closed conformation of an ERM protein has previously been determined by x-ray crystallography. Here, using contrast variation small angle neutron scattering, we reveal the structural changes of the full-length ezrin upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2) and to F-actin. Ezrin binding to F-actin requires the simultaneous binding of ezrin to PIP2. Once bound to F-actin, the opened ezrin forms more extensive contacts with F-actin than generally depicted, suggesting a possible role of ezrin in regulating the interfacial structure and dynamics between the cell membrane and the underlying actin cytoskeleton. In addition, using gel filtration, we find that the conformational opening of ezrin in response to PIP2 binding is cooperative, but the cooperativity is disrupted by a phospho-mimic mutation S249D in the 4.1-ezrin/radixin/moesin (FERM) domain of ezrin. Using surface plasmon resonance, we show that the S249D mutation weakens the binding affinity and changes the kinetics of 4.1-ERM to PIP2 binding. The study provides the first structural view of the activated ezrin bound to PIP2 and to F-actin. PMID:22927432

  9. Cofilin 1-Mediated Biphasic F-Actin Dynamics of Neuronal Cells Affect Herpes Simplex Virus 1 Infection and Replication

    PubMed Central

    Xiang, Yangfei; Zheng, Kai; Ju, Huaiqiang; Wang, Shaoxiang; Pei, Ying; Ding, Weichao; Chen, Zhenping; Wang, Qiaoli; Qiu, Xianxiu; Zhong, Meigong; Zeng, Fanli; Ren, Zhe; Qian, Chuiwen; Liu, Ge

    2012-01-01

    Herpes simplex virus 1 (HSV-1) invades the nervous system and causes pathological changes. In this study, we defined the remodeling of F-actin and its possible mechanisms during HSV-1 infection of neuronal cells. HSV-1 infection enhanced the formation of F-actin-based structures in the early stage of infection, which was followed by a continuous decrease in F-actin during the later stages of infection. The disruption of F-actin dynamics by chemical inhibitors significantly reduced the efficiency of viral infection and intracellular HSV-1 replication. The active form of the actin-depolymerizing factor cofilin 1 was found to increase at an early stage of infection and then to continuously decrease in a manner that corresponded to the remodeling pattern of F-actin, suggesting that cofilin 1 may be involved in the biphasic F-actin dynamics induced by HSV-1 infection. Knockdown of cofilin 1 impaired HSV-1-induced F-actin assembly during early infection and inhibited viral entry; however, overexpression of cofilin 1 did not affect F-actin assembly or viral entry during early infection but decreased intracellular viral reproduction efficiently. Our results, for the first time, demonstrated the biphasic F-actin dynamics in HSV-1 neuronal infection and confirmed the association of F-actin with the changes in the expression and activity of cofilin 1. These results may provide insight into the mechanism by which HSV-1 productively infects neuronal cells and causes pathogenesis. PMID:22623803

  10. Cofilin Changes the Twist of F-Actin: Implications for Actin Filament Dynamics and Cellular Function

    PubMed Central

    McGough, Amy; Pope, Brian; Chiu, Wah; Weeds, Alan

    1997-01-01

    Cofilin is an actin depolymerizing protein found widely distributed in animals and plants. We have used electron cryomicroscopy and helical reconstruction to identify its binding site on actin filaments. Cofilin binds filamentous (F)-actin cooperatively by bridging two longitudinally associated actin subunits. The binding site is centered axially at subdomain 2 of the lower actin subunit and radially at the cleft between subdomains 1 and 3 of the upper actin subunit. Our work has revealed a totally unexpected (and unique) property of cofilin, namely, its ability to change filament twist. As a consequence of this change in twist, filaments decorated with cofilin have much shorter ‘actin crossovers' (∼75% of those normally observed in F-actin structures). Although their binding sites are distinct, cofilin and phalloidin do not bind simultaneously to F-actin. This is the first demonstration of a protein that excludes another actin-binding molecule by changing filament twist. Alteration of F-actin structure by cofilin/ADF appears to be a novel mechanism through which the actin cytoskeleton may be regulated or remodeled. PMID:9265645

  11. Dynamic F-actin movement is essential for fertilization in Arabidopsis thaliana

    PubMed Central

    Kawashima, Tomokazu; Maruyama, Daisuke; Shagirov, Murat; Li, Jing; Hamamura, Yuki; Yelagandula, Ramesh; Toyama, Yusuke; Berger, Frédéric

    2014-01-01

    In animals, microtubules and centrosomes direct the migration of gamete pronuclei for fertilization. By contrast, flowering plants have lost essential components of the centrosome, raising the question of how flowering plants control gamete nuclei migration during fertilization. Here, we use Arabidopsis thaliana to document a novel mechanism that regulates F-actin dynamics in the female gametes and is essential for fertilization. Live imaging shows that F-actin structures assist the male nucleus during its migration towards the female nucleus. We identify a female gamete-specific Rho-GTPase that regulates F-actin dynamics and further show that actin–myosin interactions are also involved in male gamete nucleus migration. Genetic analyses and imaging indicate that microtubules are dispensable for migration and fusion of male and female gamete nuclei. The innovation of a novel actin-based mechanism of fertilization during plant evolution might account for the complete loss of the centrosome in flowering plants. DOI: http://dx.doi.org/10.7554/eLife.04501.001 PMID:25303363

  12. Spatially Defined EGF Receptor Activation Reveals an F-Actin-Dependent Phospho-Erk Signaling Complex

    PubMed Central

    Singhai, Amit; Wakefield, Devin L.; Bryant, Kirsten L.; Hammes, Stephen R.; Holowka, David; Baird, Barbara

    2014-01-01

    We investigated the association of signaling proteins with epidermal growth factor (EGF) receptors (EGFR) using biotinylated EGF bound to streptavidin that is covalently coupled in an ordered array of micron-sized features on silicon surfaces. Using NIH-3T3 cells stably expressing EGFR, we observe concentration of fluorescently labeled receptors and stimulated tyrosine phosphorylation that are spatially confined to the regions of immobilized EGF and quantified by cross-correlation analysis. We observe recruitment of phosphorylated paxillin to activated EGFR at these patterned features, as well as β1-containing integrins that preferentially localize to more peripheral EGF features, as quantified by radial fluorescence analysis. In addition, we detect recruitment of EGFP-Ras, MEK, and phosphorylated Erk to patterned EGF in a process that depends on F-actin and phosphoinositides. These studies reveal and quantify the coformation of multiprotein EGFR signaling complexes at the plasma membrane in response to micropatterned growth factors. PMID:25468343

  13. Live Imaging Provides New Insights on Dynamic F-Actin Filopodia and Differential Endocytosis during Myoblast Fusion in Drosophila

    PubMed Central

    Haralalka, Shruti; Shelton, Claude; Cartwright, Heather N.; Guo, Fengli; Trimble, Rhonda; Kumar, Ram P.; Abmayr, Susan M.

    2014-01-01

    The process of myogenesis includes the recognition, adhesion, and fusion of committed myoblasts into multinucleate syncytia. In the larval body wall muscles of Drosophila, this elaborate process is initiated by Founder Cells and Fusion-Competent Myoblasts (FCMs), and cell adhesion molecules Kin-of-IrreC (Kirre) and Sticks-and-stones (Sns) on their respective surfaces. The FCMs appear to provide the driving force for fusion, via the assembly of protrusions associated with branched F-actin and the WASp, SCAR and Arp2/3 pathways. In the present study, we utilize the dorsal pharyngeal musculature that forms in the Drosophila embryo as a model to explore myoblast fusion and visualize the fusion process in live embryos. These muscles rely on the same cell types and genes as the body wall muscles, but are amenable to live imaging since they do not undergo extensive morphogenetic movement during formation. Time-lapse imaging with F-actin and membrane markers revealed dynamic FCM-associated actin-enriched protrusions that rapidly extend and retract into the myotube from different sites within the actin focus. Ultrastructural analysis of this actin-enriched area showed that they have two morphologically distinct structures: wider invasions and/or narrow filopodia that contain long linear filaments. Consistent with this, formin Diaphanous (Dia) and branched actin nucleator, Arp3, are found decorating the filopodia or enriched at the actin focus, respectively, indicating that linear actin is present along with branched actin at sites of fusion in the FCM. Gain-of-function Dia and loss-of-function Arp3 both lead to fusion defects, a decrease of F-actin foci and prominent filopodia from the FCMs. We also observed differential endocytosis of cell surface components at sites of fusion, with actin reorganizing factors, WASp and SCAR, and Kirre remaining on the myotube surface and Sns preferentially taken up with other membrane proteins into early endosomes and lysosomes in the

  14. Electrostatic interaction map reveals a new binding position for tropomyosin on F-actin

    PubMed Central

    Rynkiewicz, Michael J.; Schott, Veronika; Orzechowski, Marek

    2015-01-01

    Azimuthal movement of tropomyosin around the F-actin thin filament is responsible for muscle activation and relaxation. Recently a model of αα-tropomyosin, derived from molecular-mechanics and electron microscopy of different contractile states, showed that tropomyosin is rather stiff and pre-bent to present one specific face to F-actin during azimuthal transitions. However, a new model based on cryo-EM of troponin- and myosin-free filaments proposes that the interacting-face of tropomyosin can differ significantly from that in the original model. Because resolution was insufficient to assign tropomyosin side-chains, the interacting-face could not be unambiguously determined. Here, we use structural analysis and energy landscapes to further examine the proposed models. The observed bend in seven crystal structures of tropomyosin is much closer in direction and extent to the original model than to the new model. Additionally, we computed the interaction map for repositioning tropomyosin over the F-actin surface, but now extended over a much larger surface than previously (using the original interacting-face). This map shows two energy minima— one corresponding to the “blocked-state” as in the original model, and the other related by a simple 24 Å translation of tropomyosin parallel to the F-actin axis. The tropomyosinactin complex defined by the second minimum fits perfectly into the recent cryo-EM density, without requiring any change in the interacting-face. Together, these data suggest that movement of tropomyosin between regulatory states does not require interacting-face rotation. Further, they imply that thin filament assembly may involve an interplay between initially seeded tropomyosin molecules growing from distinct binding-site regions on actin. PMID:26286845

  15. Disentangling Membrane Dynamics and Cell Migration; Differential Influences of F-actin and Cell-Matrix Adhesions

    PubMed Central

    Kowalewski, Jacob M.; Shafqat-Abbasi, Hamdah; Jafari-Mamaghani, Mehrdad; Endrias Ganebo, Bereket; Gong, Xiaowei

    2015-01-01

    Cell migration is heavily interconnected with plasma membrane protrusion and retraction (collectively termed “membrane dynamics”). This makes it difficult to distinguish regulatory mechanisms that differentially influence migration and membrane dynamics. Yet such distinctions may be valuable given evidence that cancer cell invasion in 3D may be better predicted by 2D membrane dynamics than by 2D cell migration, implying a degree of functional independence between these processes. Here, we applied multi-scale single cell imaging and a systematic statistical approach to disentangle regulatory associations underlying either migration or membrane dynamics. This revealed preferential correlations between membrane dynamics and F-actin features, contrasting with an enrichment of links between cell migration and adhesion complex properties. These correlative linkages were often non-linear and therefore context-dependent, strengthening or weakening with spontaneous heterogeneity in cell behavior. More broadly, we observed that slow moving cells tend to increase in area, while fast moving cells tend to shrink, and that the size of dynamic membrane domains is independent of cell area. Overall, we define macromolecular features preferentially associated with either cell migration or membrane dynamics, enabling more specific interrogation and targeting of these processes in future. PMID:26248038

  16. Instantaneous inactivation of cofilin reveals its function of F-actin disassembly in lamellipodia.

    PubMed

    Vitriol, Eric A; Wise, Ariel L; Berginski, Mathew E; Bamburg, James R; Zheng, James Q

    2013-07-01

    Cofilin is a key regulator of the actin cytoskeleton. It can sever actin filaments, accelerate filament disassembly, act as a nucleation factor, recruit or antagonize other actin regulators, and control the pool of polymerization-competent actin monomers. In cells these actions have complex functional outputs. The timing and localization of cofilin activity are carefully regulated, and thus global, long-term perturbations may not be sufficient to probe its precise function. To better understand cofilin's spatiotemporal action in cells, we implemented chromophore-assisted laser inactivation (CALI) to instantly and specifically inactivate it. In addition to globally inhibiting actin turnover, CALI of cofilin generated several profound effects on the lamellipodia, including an increase of F-actin, a rearward expansion of the actin network, and a reduction in retrograde flow speed. These results support the hypothesis that the principal role of cofilin in lamellipodia at steady state is to break down F-actin, control filament turnover, and regulate the rate of retrograde flow.

  17. Influence of botulinum C2 toxin on F-actin and N-formyl peptide receptor dynamics in human neutrophils

    PubMed Central

    1989-01-01

    Stimulation of human neutrophils with the chemotactic N-formyl peptide causes production of oxygen radicals and conversion of monomeric actin (G-actin) to polymeric actin (F-actin). The effects of the binary botulinum C2 toxin on the amount of F-actin and on neutrophil cell responses were studied. Two different methods for analyzing the actin response were used in formyl peptide-stimulated cells: staining of F- actin with rhodamine-phalloidin and a transient right angle light scatter. Preincubation of neutrophils with 400 ng/ml component I and 1,600 ng/ml component II of botulinum C2 toxin for 30 min almost completely inhibited the formyl peptide-stimulated polymerization of G- actin and at the same time decreased the amount of F-actin in unstimulated neutrophils by an average of approximately 30%. Botulinum C2 toxin preincubation for 60 min destroyed approximately 75% of the F- actin in unstimulated neutrophils. Right angle light scatter analysis showed that control neutrophils exhibited the transient response characteristic of actin polymerization; however, after botulinum C2 toxin treatment, degranulation was detected. Single components of the binary botulinum C2 toxin were without effect on the actin polymerization response. Fluorescence flow cytometry and fluorospectrometric binding studies showed little alteration in N- formyl peptide binding or dissociation dynamics in the toxin-treated cells. However, endocytosis of the fluorescent N-formyl peptide ligand- receptor complex was slower but still possible in degranulating neutrophils treated with botulinum C2 toxin for 60 min. The half-time of endocytosis, estimated from initial rates, was 4 and 8 min in control and botulinum C2 toxin-treated neutrophils, respectively. PMID:2768337

  18. Disease-associated mutant alpha-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity.

    PubMed

    Weins, Astrid; Schlondorff, Johannes S; Nakamura, Fumihiko; Denker, Bradley M; Hartwig, John H; Stossel, Thomas P; Pollak, Martin R

    2007-10-09

    Alpha-actinin-4 is a widely expressed protein that employs an actin-binding site with two calponin homology domains to crosslink actin filaments (F-actin) in a Ca(2+)-sensitive manner in vitro. An inherited, late-onset form of kidney failure is caused by point mutations in the alpha-actinin-4 actin-binding domain. Here we show that alpha-actinin-4/F-actin aggregates, observed in vivo in podocytes of humans and mice with disease, likely form as a direct result of the increased actin-binding affinity of the protein. We document that exposure of a buried actin-binding site 1 in mutant alpha-actinin-4 causes an increase in its actin-binding affinity, abolishes its Ca(2+) regulation in vitro, and diverts its normal localization from actin stress fibers and focal adhesions in vivo. Inactivation of this buried actin-binding site returns the affinity of the mutant to that of the WT protein and abolishes aggregate formation in cells. In vitro, actin filaments crosslinked by the mutant alpha-actinin-4 exhibit profound changes of structural and biomechanical properties compared with WT alpha-actinin-4. On a molecular level, our findings elucidate the physiological importance of a dynamic interaction of alpha-actinin with F-actin in podocytes in vivo. We propose that a conformational change with full exposure of actin-binding site 1 could function as a switch mechanism to regulate the actin-binding affinity of alpha-actinin and possibly other calponin homology domain proteins under physiological conditions.

  19. Near-atomic structure of jasplakinolide-stabilized malaria parasite F-actin reveals the structural basis of filament instability.

    PubMed

    Pospich, Sabrina; Kumpula, Esa-Pekka; von der Ecken, Julian; Vahokoski, Juha; Kursula, Inari; Raunser, Stefan

    2017-09-18

    During their life cycle, apicomplexan parasites, such as the malaria parasite Plasmodium falciparum, use actomyosin-driven gliding motility to move and invade host cells. For this process, actin filament length and stability are temporally and spatially controlled. In contrast to canonical actin, P. falciparum actin 1 (PfAct1) does not readily polymerize into long, stable filaments. The structural basis of filament instability, which plays a pivotal role in host cell invasion, and thus infectivity, is poorly understood, largely because high-resolution structures of PfAct1 filaments were missing. Here, we report the near-atomic structure of jasplakinolide (JAS)-stabilized PfAct1 filaments determined by electron cryomicroscopy. The general filament architecture is similar to that of mammalian F-actin. The high resolution of the structure allowed us to identify small but important differences at inter- and intrastrand contact sites, explaining the inherent instability of apicomplexan actin filaments. JAS binds at regular intervals inside the filament to three adjacent actin subunits, reinforcing filament stability by hydrophobic interactions. Our study reveals the high-resolution structure of a small molecule bound to F-actin, highlighting the potential of electron cryomicroscopy for structure-based drug design. Furthermore, our work serves as a strong foundation for understanding the structural design and evolution of actin filaments and their function in motility and host cell invasion of apicomplexan parasites.

  20. Structural dynamics of F-actin: II. Cooperativity in structural transitions.

    PubMed

    Orlova, A; Prochniewicz, E; Egelman, E H

    1995-02-03

    A large body of biochemical evidence suggests that the F-actin filament can have internal cooperativity. We have observed large cooperative effects on the low-resolution structure of actin filaments under three very different conditions. First, when G-Ca(2+)-actin is polymerized by both Mg2+ and KCl, filaments may be found in two different populations, with two discrete positions seen for subdomain 2. When G-Ca2+ actin is polymerized by only Mg2+, a single F-Mg(2+)-actin population is seen. The structural data suggest that an entire filament exists with subdomain 2 in one state or the other when there is a heterogenous mixture of Mg2+ and Ca(2+)-actin. Second, when actin filaments are nucleated from gelsolin there is a conformational change that can be observed throughout the filament that is consistent with a large shift in the actin C terminus. There must be a large cooperative propagation of this effect throughout the filament from the nucleation point. Third, we have used phalloidin to stabilize F-actin in which two C-terminal residues have been proteolytically removed by trypsin. It has been shown biochemically that this stabilization occurs at substoichiometric amounts of phalloidin. Phalloidin, at either a 1:1 or a 1:20 molar ratio with actin, restores the connectivity between the long-pitch helical strands. F-actin's internal cooperativity will have large implications in vivo, particularly in muscle.

  1. Characterization and dynamics of cytoplasmic F-actin in higher plant endosperm cells during interphase, mitosis, and cytokinesis

    PubMed Central

    1987-01-01

    We have identified an F-actin cytoskeletal network that remains throughout interphase, mitosis, and cytokinesis of higher plant endosperm cells. Fluorescent labeling was obtained using actin monoclonal antibodies and/or rhodamine-phalloidin. Video-enhanced microscopy and ultrastructural observations of immunogold-labeled preparations illustrated microfilament-microtubule co-distribution and interactions. Actin was also identified in cell crude extract with Western blotting. During interphase, microfilament and microtubule arrays formed two distinct networks that intermingled. At the onset of mitosis, when microtubules rearranged into the mitotic spindle, microfilaments were redistributed to the cell cortex, while few microfilaments remained in the spindle. During mitosis, the cortical actin network remained as an elastic cage around the mitotic apparatus and was stretched parallel to the spindle axis during poleward movement of chromosomes. This suggested the presence of dynamic cross-links that rearrange when they are submitted to slow and regular mitotic forces. At the poles, the regular network is maintained. After midanaphase, new, short microfilaments invaded the equator when interzonal vesicles were transported along the phragmoplast microtubules. Colchicine did not affect actin distribution, and cytochalasin B or D did not inhibit chromosome transport. Our data on endosperm cells suggested that plant cytoplasmic actin has an important role in the cell cortex integrity and in the structural dynamics of the poorly understood cytoplasm- mitotic spindle interface. F-actin may contribute to the regulatory mechanisms of microtubule-dependent or guided transport of vesicles during mitosis and cytokinesis in higher plant cells. PMID:3680376

  2. Characterization of Ring-Like F-Actin Structure as a Mechanical Partner for Spindle Positioning in Mitosis

    PubMed Central

    Jiang, Hao; Zhu, Tongge; Xia, Peng; Seffens, William; Aikhionbare, Felix; Wang, Dongmei; Dou, Zhen; Yao, Xuebiao

    2014-01-01

    Proper spindle positioning and orientation are essential for accurate mitosis which requires dynamic interactions between microtubule and actin filament (F-actin). Although mounting evidence demonstrates the role of F-actin in cortical cytoskeleton dynamics, it remains elusive as to the structure and function of F-actin-based networks in spindle geometry. Here we showed a ring-like F-actin structure surrounding the mitotic spindle which forms since metaphase and maintains in MG132-arrested metaphase HeLa cells. This cytoplasmic F-actin structure is relatively isotropic and less dynamic. Our computational modeling of spindle position process suggests a possible mechanism by which the ring-like F-actin structure can regulate astral microtubule dynamics and thus mitotic spindle orientation. We further demonstrated that inhibiting Plk1, Mps1 or Myosin, and disruption of microtubules or F-actin polymerization perturbs the formation of the ring-like F-actin structure and alters spindle position and symmetric division. These findings reveal a previously unrecognized but important link between mitotic spindle and ring-like F-actin network in accurate mitosis and enables the development of a method to theoretically illustrate the relationship between mitotic spindle and cytoplasmic F-actin. PMID:25299690

  3. Characterization of ring-like F-actin structure as a mechanical partner for spindle positioning in mitosis.

    PubMed

    Lu, Huan; Zhao, Qun; Jiang, Hao; Zhu, Tongge; Xia, Peng; Seffens, William; Aikhionbare, Felix; Wang, Dongmei; Dou, Zhen; Yao, Xuebiao

    2014-01-01

    Proper spindle positioning and orientation are essential for accurate mitosis which requires dynamic interactions between microtubule and actin filament (F-actin). Although mounting evidence demonstrates the role of F-actin in cortical cytoskeleton dynamics, it remains elusive as to the structure and function of F-actin-based networks in spindle geometry. Here we showed a ring-like F-actin structure surrounding the mitotic spindle which forms since metaphase and maintains in MG132-arrested metaphase HeLa cells. This cytoplasmic F-actin structure is relatively isotropic and less dynamic. Our computational modeling of spindle position process suggests a possible mechanism by which the ring-like F-actin structure can regulate astral microtubule dynamics and thus mitotic spindle orientation. We further demonstrated that inhibiting Plk1, Mps1 or Myosin, and disruption of microtubules or F-actin polymerization perturbs the formation of the ring-like F-actin structure and alters spindle position and symmetric division. These findings reveal a previously unrecognized but important link between mitotic spindle and ring-like F-actin network in accurate mitosis and enables the development of a method to theoretically illustrate the relationship between mitotic spindle and cytoplasmic F-actin.

  4. Microtubule stability affects the unique motility of F-actin in Marchantia polymorpha.

    PubMed

    Era, Atsuko; Kutsuna, Natsumaro; Higaki, Takumi; Hasezawa, Seiichiro; Nakano, Akihiko; Ueda, Takashi

    2013-01-01

    Actin microfilaments play crucial roles in diverse plant functions. Some specific cellular processes require interaction between F-actin and microtubules, and it is believed that there are direct or indirect connections between F-actin and microtubules. We previously reported that actin microfilaments exhibit unique dynamic motility in cells of the liverwort, Marchantia polymorpha; the relevance of this activity to microtubules has not been explored. To examine whether the dynamics of F-actin in M. polymorpha were somehow regulated by microtubules, we investigated the effects of stabilization or destabilization of microtubules on dynamics of actin bundles, which were visualized by Lifeact-Venus. To our surprise, both stabilization and destabilization of microtubules exerted similar effects on F-actin motility; apparent sliding movement of F-actin in M. polymorpha cells was accelerated by both oryzalin and paclitaxel, with the effect of paclitaxel more evident than that of oryzalin. Immunofluorescence staining revealed that some F-actin bundles were arrayed along with microtubules in M. polymorpha thallus cells. These results suggest that microtubules play regulatory roles in the unique F-actin dynamics in M. polymorpha.

  5. The F-Actin Binding Protein Cortactin Regulates the Dynamics of the Exocytotic Fusion Pore through its SH3 Domain.

    PubMed

    González-Jamett, Arlek M; Guerra, María J; Olivares, María J; Haro-Acuña, Valentina; Baéz-Matus, Ximena; Vásquez-Navarrete, Jacqueline; Momboisse, Fanny; Martinez-Quiles, Narcisa; Cárdenas, Ana M

    2017-01-01

    Upon cell stimulation, the network of cortical actin filaments is rearranged to facilitate the neurosecretory process. This actin rearrangement includes both disruption of the preexisting actin network and de novo actin polymerization. However, the mechanism by which a Ca(2+) signal elicits the formation of new actin filaments remains uncertain. Cortactin, an actin-binding protein that promotes actin polymerization in synergy with the nucleation promoting factor N-WASP, could play a key role in this mechanism. We addressed this hypothesis by analyzing de novo actin polymerization and exocytosis in bovine adrenal chromaffin cells expressing different cortactin or N-WASP domains, or cortactin mutants that fail to interact with proline-rich domain (PRD)-containing proteins, including N-WASP, or to be phosphorylated by Ca(2+)-dependent kinases, such as ERK1/2 and Src. Our results show that the activation of nicotinic receptors in chromaffin cells promotes cortactin translocation to the cell cortex, where it colocalizes with actin filaments. We further found that, in association with PRD-containing proteins, cortactin contributes to the Ca(2+)-dependent formation of F-actin, and regulates fusion pore dynamics and the number of exocytotic events induced by activation of nicotinic receptors. However, whereas the actions of cortactin on the fusion pore dynamics seems to depend on the availability of monomeric actin and its phosphorylation by ERK1/2 and Src kinases, cortactin regulates the extent of exocytosis by a mechanism independent of actin polymerization. Together our findings point out a role for cortactin as a critical modulator of actin filament formation and exocytosis in neuroendocrine cells.

  6. The F-Actin Binding Protein Cortactin Regulates the Dynamics of the Exocytotic Fusion Pore through its SH3 Domain

    PubMed Central

    González-Jamett, Arlek M.; Guerra, María J.; Olivares, María J.; Haro-Acuña, Valentina; Baéz-Matus, Ximena; Vásquez-Navarrete, Jacqueline; Momboisse, Fanny; Martinez-Quiles, Narcisa; Cárdenas, Ana M.

    2017-01-01

    Upon cell stimulation, the network of cortical actin filaments is rearranged to facilitate the neurosecretory process. This actin rearrangement includes both disruption of the preexisting actin network and de novo actin polymerization. However, the mechanism by which a Ca2+ signal elicits the formation of new actin filaments remains uncertain. Cortactin, an actin-binding protein that promotes actin polymerization in synergy with the nucleation promoting factor N-WASP, could play a key role in this mechanism. We addressed this hypothesis by analyzing de novo actin polymerization and exocytosis in bovine adrenal chromaffin cells expressing different cortactin or N-WASP domains, or cortactin mutants that fail to interact with proline-rich domain (PRD)-containing proteins, including N-WASP, or to be phosphorylated by Ca2+-dependent kinases, such as ERK1/2 and Src. Our results show that the activation of nicotinic receptors in chromaffin cells promotes cortactin translocation to the cell cortex, where it colocalizes with actin filaments. We further found that, in association with PRD-containing proteins, cortactin contributes to the Ca2+-dependent formation of F-actin, and regulates fusion pore dynamics and the number of exocytotic events induced by activation of nicotinic receptors. However, whereas the actions of cortactin on the fusion pore dynamics seems to depend on the availability of monomeric actin and its phosphorylation by ERK1/2 and Src kinases, cortactin regulates the extent of exocytosis by a mechanism independent of actin polymerization. Together our findings point out a role for cortactin as a critical modulator of actin filament formation and exocytosis in neuroendocrine cells. PMID:28522963

  7. Apical and basal epitheliomuscular F-actin dynamics during Hydra bud evagination

    PubMed Central

    Aufschnaiter, Roland; Wedlich-Söldner, Roland; Zhang, Xiaoming

    2017-01-01

    ABSTRACT Bending of 2D cell sheets is a fundamental morphogenetic mechanism during animal development and reproduction. A critical player driving cell shape during tissue bending is the actin cytoskeleton. Much of our current knowledge about actin dynamics in whole organisms stems from studies of embryonic development in bilaterian model organisms. Here, we have analyzed actin-based processes during asexual bud evagination in the simple metazoan Hydra. We created transgenic Hydra strains stably expressing the actin marker Lifeact-GFP in either ectodermal or endodermal epitheliomuscular cells. We then combined live imaging with conventional phalloidin staining to directly follow actin reorganization. Bending of the Hydra epithelial double layer is initiated by a group of epitheliomuscular cells in the endodermal layer. These cells shorten their apical-basal axis and arrange their basal muscle processes in a circular configuration. We propose that this rearrangement generates the initial forces to bend the endoderm towards the ectoderm. Convergent tissue movement in both epithelial layers towards the centre of evagination then leads to elongation and extension of the bud along its new body axis. Tissue movement into the bud is associated with lateral intercalation of epithelial cells, remodelling of apical septate junctions, and rearrangement of basal muscle processes. The work presented here extends the analysis of morphogenetic mechanisms beyond embryonic tissues of model bilaterians. PMID:28630355

  8. Basement Membrane Laminin α2 Regulation of BTB Dynamics via Its Effects on F-Actin and Microtubule Cytoskeletons Is Mediated Through mTORC1 Signaling.

    PubMed

    Gao, Ying; Chen, Haiqi; Lui, Wing-Yee; Lee, Will M; Cheng, C Yan

    2017-04-01

    A local axis connects the apical ectoplasmic specialization (ES) at the Sertoli-spermatid interface, the basal ES at the blood-testis barrier (BTB), and the basement membrane across the seminiferous epithelium functionally in rat testes. As such, cellular events that take place simultaneously across the epithelium such as spermiation and BTB remodeling that occur at the apical ES and the basal ES, respectively, at stage VIII of the cycle are coordinated. Herein, laminin α2, a structural component of the basement membrane, was found to regulate BTB dynamics. Sertoli cells were cultured in vitro to allow the establishment of a tight junction (TJ) barrier that mimicked the BTB in vivo. Knockdown of laminin α2 by transfecting Sertoli cells with laminin α2-specific short hairpin RNA vs the nontargeting negative control was shown to perturb the Sertoli cell TJ barrier, illustrating laminin α2 was involved in regulating BTB dynamics. This regulatory effect was mediated through mammalian target of rapamycin complex 1 (mTORC1) signaling because the two mTORC1 downstream signaling molecules ribosomal protein S6 and Akt1/2 were activated and inactivated, respectively, consistent with earlier findings that mTORC1 is involved in promoting BTB remodeling. Also, laminin α2 knockdown induced F-actin and microtubule (MT) disorganization through changes in the spatial expression of F-actin regulators actin-related protein 3 and epidermal growth factor receptor pathway substrate 8 vs end-binding protein 1 (a MT plus-end tracking protein, +TIP). These laminin α2 knockdown-mediated effects on F-actin and MT organization was blocked by exposing Sertoli cells to rapamycin, an inhibitor of mTORC1 signaling, and also SC79, an activator of Akt. In summary, laminin α2-mediated regulation on Sertoli cell BTB dynamics is through mTORC1 signaling. Copyright © 2017 Endocrine Society.

  9. F-actin retains a memory of angular order.

    PubMed Central

    Orlova, A; Egelman, E H

    2000-01-01

    Modifications can be made to F-actin that do not interfere with the binding of myosin but inhibit force generation, suggesting that actin's internal dynamics are important for muscle contraction. Observations from electron microscopy and x-ray diffraction have shown that subunits in F-actin have a relatively fixed axial rise but a variable twist. One possible explanation for this is that the actin subunits randomly exist in different discrete states of "twist, " with a significant energy barrier separating these states. This would result in very slow torsional transitions. Paracrystals impose increased order on F-actin filaments by reducing the variability in twist. By looking at filaments that have recently been dissociated from paracrystals, we find that F-actin retains a "memory" of its previous environment that persists for many seconds. This would be consistent with slow torsional transitions between discrete states of twist. PMID:10733996

  10. Ligand-mediated Galectin-1 endocytosis prevents intraneural H2O2 production promoting F-actin dynamics reactivation and axonal re-growth.

    PubMed

    Quintá, Héctor R; Wilson, Carlos; Blidner, Ada G; González-Billault, Christian; Pasquini, Laura A; Rabinovich, Gabriel A; Pasquini, Juana M

    2016-09-01

    Axonal growth cone collapse following spinal cord injury (SCI) is promoted by semaphorin3A (Sema3A) signaling via PlexinA4 surface receptor. This interaction triggers intracellular signaling events leading to increased hydrogen peroxide levels which in turn promote filamentous actin (F-actin) destabilization and subsequent inhibition of axonal re-growth. In the current study, we demonstrated that treatment with galectin-1 (Gal-1), in its dimeric form, promotes a decrease in hydrogen peroxide (H2O2) levels and F-actin repolimerization in the growth cone and in the filopodium of neuron surfaces. This effect was dependent on the carbohydrate recognition activity of Gal-1, as it was prevented using a Gal-1 mutant lacking carbohydrate-binding activity. Furthermore, Gal-1 promoted its own active ligand-mediated endocytosis together with the PlexinA4 receptor, through mechanisms involving complex branched N-glycans. In summary, our results suggest that Gal-1, mainly in its dimeric form, promotes re-activation of actin cytoskeleton dynamics via internalization of the PlexinA4/Gal-1 complex. This mechanism could explain, at least in part, critical events in axonal regeneration including the full axonal re-growth process, de novo formation of synapse clustering, axonal re-myelination and functional recovery of coordinated locomotor activities in an in vivo acute and chronic SCI model. Axonal regeneration is a response of injured nerve cells critical for nerve repair in human spinal cord injury. Understanding the molecular mechanisms controlling nerve repair by Galectin-1, may be critical for therapeutic intervention. Our results show that Galectin-1; in its dimeric form, interferes with hydrogen peroxide production triggered by Semaphorin3A. The high levels of this reactive oxygen species (ROS) seem to be the main factor preventing axonal regeneration due to promotion of actin depolymerization at the axonal growth cone. Thus, Galectin-1 administration emerges as a novel

  11. Structure of the F-actin-tropomyosin complex.

    PubMed

    von der Ecken, Julian; Müller, Mirco; Lehman, William; Manstein, Dietmar J; Penczek, Pawel A; Raunser, Stefan

    2015-03-05

    Filamentous actin (F-actin) is the major protein of muscle thin filaments, and actin microfilaments are the main component of the eukaryotic cytoskeleton. Mutations in different actin isoforms lead to early-onset autosomal dominant non-syndromic hearing loss, familial thoracic aortic aneurysms and dissections, and multiple variations of myopathies. In striated muscle fibres, the binding of myosin motors to actin filaments is mainly regulated by tropomyosin and troponin. Tropomyosin also binds to F-actin in smooth muscle and in non-muscle cells and stabilizes and regulates the filaments there in the absence of troponin. Although crystal structures for monomeric actin (G-actin) are available, a high-resolution structure of F-actin is still missing, hampering our understanding of how disease-causing mutations affect the function of thin muscle filaments and microfilaments. Here we report the three-dimensional structure of F-actin at a resolution of 3.7 Å in complex with tropomyosin at a resolution of 6.5 Å, determined by electron cryomicroscopy. The structure reveals that the D-loop is ordered and acts as a central region for hydrophobic and electrostatic interactions that stabilize the F-actin filament. We clearly identify map density corresponding to ADP and Mg(2+) and explain the possible effect of prominent disease-causing mutants. A comparison of F-actin with G-actin reveals the conformational changes during filament formation and identifies the D-loop as their key mediator. We also confirm that negatively charged tropomyosin interacts with a positively charged groove on F-actin. Comparison of the position of tropomyosin in F-actin-tropomyosin with its position in our previously determined F-actin-tropomyosin-myosin structure reveals a myosin-induced transition of tropomyosin. Our results allow us to understand the role of individual mutations in the genesis of actin- and tropomyosin-related diseases and will serve as a strong foundation for the targeted

  12. Polarity protein Crumbs homolog-3 (CRB3) regulates ectoplasmic specialization dynamics through its action on F-actin organization in Sertoli cells

    PubMed Central

    Gao, Ying; Lui, Wing-yee; Lee, Will M.; Cheng, C. Yan

    2016-01-01

    Crumbs homolog 3 (or Crumbs3, CRB3) is a polarity protein expressed by Sertoli and germ cells at the basal compartment in the seminiferous epithelium. CRB3 also expressed at the blood-testis barrier (BTB), co-localized with F-actin, TJ proteins occludin/ZO-1 and basal ES (ectoplasmic specialization) proteins N-cadherin/β-catenin at stages IV-VII only. The binding partners of CRB3 in the testis were the branched actin polymerization protein Arp3, and the barbed end-capping and bundling protein Eps8, illustrating its possible role in actin organization. CRB3 knockdown (KD) by RNAi in Sertoli cells with an established tight junction (TJ)-permeability barrier perturbed the TJ-barrier via changes in the distribution of TJ- and basal ES-proteins at the cell-cell interface. These changes were the result of CRB3 KD-induced re-organization of actin microfilaments, in which actin microfilaments were truncated, and extensively branched, thereby destabilizing F-actin-based adhesion protein complexes at the BTB. Using Polyplus in vivo-jetPEI as a transfection medium with high efficiency for CRB3 KD in the testis, the CRB3 KD testes displayed defects in spermatid and phagosome transport, and also spermatid polarity due to a disruption of F-actin organization. In summary, CRB3 is an actin microfilament regulator, playing a pivotal role in organizing actin filament bundles at the ES. PMID:27358069

  13. Control of nuclear organization by F-actin binding proteins.

    PubMed

    Pfisterer, Karin; Jayo, Asier; Parsons, Maddy

    2017-03-04

    The regulation of nuclear shape and deformability is a key factor in controlling diverse events from embryonic development to cancer cell metastasis, but the mechanisms governing this process are still unclear. Our recent study demonstrated an unexpected role for the F-actin bundling protein fascin in controlling nuclear plasticity through a direct interaction with Nesprin-2. Nesprin-2 is a component of the LINC complex that is known to couple the F-actin cytoskeleton to the nuclear envelope. We demonstrated that fascin, which is predominantly associated with peripheral F-actin rich filopodia, binds directly to Nesprin-2 at the nuclear envelope in a range of cell types. Depleting fascin or specifically blocking the fascin-Nesprin-2 complex leads to defects in nuclear polarization, movement and cell invasion. These studies reveal a novel role for an F-actin bundling protein in control of nuclear plasticity and underline the importance of defining nuclear-associated roles for F-actin binding proteins in future.

  14. F-actin reorganization upon de- and rehydration in the aeroterrestrial green alga Klebsormidium crenulatum.

    PubMed

    Blaas, Kathrin; Holzinger, Andreas

    2017-03-21

    Filamentous actin (F-actin) is a dynamic network involved in many cellular processes like cell division and cytoplasmic streaming. While many studies have addressed the involvement of F-actin in different cellular processes in cultured cells, little is known on the reactions to environmental stress scenarios, where this system might have essential regulatory functions. We investigated here the de- and rehydration kinetics of breakdown and reassembly of F-actin in the streptophyte green alga Klebsormidium crenulatum. Measurements of the chlorophyll fluorescence (effective quantum yield of photosystem II [ΔF/Fm']) via pulse amplitude modulation were performed as a measure for dehydration induced shut down of physiological activity, which ceased after 141±15min at ∼84% RH. We hypothesized that there is a link between this physiological parameter and the status of the F-actin system. Indeed, 20min of dehydration (ΔF/Fm'=0) leads to a breakdown of the fine cortical F-actin network as visualized by Atto 488 phalloidin staining, and dot-like structures remained. Already 10min after rehydration a beginning reassembly of F-actin is observed, after 25min the F-actin network appeared similar to untreated controls, indicating a full recovery. These results demonstrate the fast kinetics of F-actin dis- and reassembly likely contributing to cellular reorganization upon rehydration.

  15. Rai14 (retinoic acid induced protein 14) is involved in regulating f-actin dynamics at the ectoplasmic specialization in the rat testis*.

    PubMed

    Qian, Xiaojing; Mruk, Dolores D; Cheng, C Yan

    2013-01-01

    Rai14 (retinoic acid induced protein 14) is an actin binding protein first identified in the liver, highly expressed in the placenta, the testis, and the eye. In the course of studying actin binding proteins that regulate the organization of actin filament bundles in the ectoplasmic specialization (ES), a testis-specific actin-rich adherens junction (AJ) type, Rai14 was shown to be one of the regulatory proteins at the ES. In the rat testis, Rai14 was found to be expressed by Sertoli and germ cells, structurally associated with actin and an actin cross-linking protein palladin. Its expression was the highest at the ES in the seminiferous epithelium of adult rat testes, most notably at the apical ES at the Sertoli-spermatid interface, and expressed stage-specifically during the epithelial cycle in stage VII-VIII tubules. However, Rai14 was also found at the basal ES near the basement membrane, associated with the blood-testis barrier (BTB) in stage VIII-IX tubules. A knockdown of Rai14 in Sertoli cells cultured in vitro by RNAi was found to perturb the Sertoli cell tight junction-permeability function in vitro, mediated by a disruption of F-actin, which in turn led to protein mis-localization at the Sertoli cell BTB. When Rai14 in the testis in vivo was knockdown by RNAi, defects in spermatid polarity and adhesion, as well as spermatid transport were noted mediated via changes in F-actin organization and mis-localization of proteins at the apical ES. In short, Rai14 is involved in the re-organization of actin filaments in Sertoli cells during the epithelial cycle, participating in conferring spermatid polarity and cell adhesion in the testis.

  16. F-actin staining of Drosophila testes.

    PubMed

    Bonaccorsi, Silvia; Giansanti, Maria G; Cenci, Giovanni; Gatti, Maurizio

    2012-01-01

    Preparations of Drosophila testes fixed with paraformaldehyde can be stained for F-actin according to the protocol described here. This staining procedure is particularly suitable for staining the male fusome and the cytokinetic contractile ring.

  17. Structural definition of the F-actin-binding THATCH domain from HIP1R.

    PubMed

    Brett, Tom J; Legendre-Guillemin, Valerie; McPherson, Peter S; Fremont, Daved H

    2006-02-01

    Huntingtin-interacting protein-1 related (HIP1R) has a crucial protein-trafficking role, mediating associations between actin and clathrin-coated structures at the plasma membrane and trans-Golgi network. Here, we characterize the F-actin-binding region of HIP1R, termed the talin-HIP1/R/Sla2p actin-tethering C-terminal homology (THATCH) domain. The 1.9-A crystal structure of the human HIP1R THATCH core reveals a large sequence-conserved surface patch created primarily by residues from the third and fourth helices of a unique five-helix bundle. Point mutations of seven contiguous patch residues produced significant decreases in F-actin binding. We also show that THATCH domains have a conserved C-terminal latch capable of oligomerizing the core, thereby modulating F-actin engagement. Collectively, these results establish a framework for investigating the links between endocytosis and actin dynamics mediated by THATCH domain-containing proteins.

  18. The circular F-actin bundles provide a track for turnaround and bidirectional movement of mitochondria in Arabidopsis root hair.

    PubMed

    Zhang, Yu; Sheng, Xiaojing; Meng, Xiangfei; Li, Yan

    2014-01-01

    The movement of organelles in root hairs primarily occurs along the actin cytoskeleton. Circulation and "reverse fountain" cytoplasmic streaming constitute the typical forms by which most organelles (such as mitochondria and the Golgi apparatus) in plant root hair cells engage in bidirectional movement. However, there remains a lack of in-depth research regarding the relationship between the distribution of the actin cytoskeleton and turnaround organelle movement in plant root hair cells. In this paper, Arabidopsis seedlings that had been stably transformed with a GFP-ABD2-GFP (green fluorescent protein-actin-binding domain 2-green fluorescent protein) construct were utilized to study the distribution of bundles of filamentous (F)-actin and the directed motion of mitochondria along these bundles in root hairs. Observations with a confocal laser scanning microscope revealed that there were widespread circular F-actin bundles in the epidermal cells and root hairs of Arabidopsis roots. In root hairs, these circular bundles primarily start at the sub-apical region, which is the location where the turnaround movement of organelles occurs. MitoTracker probes were used to label mitochondria, and the dynamic observation of root hair cells with a confocal laser scanning microscope indicated that turnaround mitochondrial movement occurred along circular F-actin bundles. Relevant experimental results demonstrated that the circular F-actin bundles provide a track for the turnaround and bidirectional movement of mitochondria.

  19. Lamellipodial localization of Dictyostelium myosin heavy chain kinase A is mediated via F-actin binding by the coiled-coil domain.

    PubMed

    Steimle, Paul A; Licate, Lucila; Côté, Graham P; Egelhoff, Thomas T

    2002-04-10

    Myosin heavy chain kinase A (MHCK A) modulates myosin II filament assembly in the amoeba Dictyostelium discoideum. MHCK A localization in vivo is dynamically regulated during chemotaxis, phagocytosis, and other polarized cell motility events, with preferential recruitment into anterior filamentous actin (F-actin)-rich structures. The current work reveals that an amino-terminal segment of MHCK A, previously identified as forming a coiled-coil, mediates anterior localization. MHCK A co-sediments with F-actin, and deletion of the amino-terminal domain eliminated actin binding. These results indicate that the anterior localization of MHCK A is mediated via direct binding to F-actin, and reveal the presence of an actin-binding function not previously detected by primary sequence evaluation of the coiled-coil domain.

  20. Lifeact: a versatile marker to visualize F-actin.

    PubMed

    Riedl, Julia; Crevenna, Alvaro H; Kessenbrock, Kai; Yu, Jerry Haochen; Neukirchen, Dorothee; Bista, Michal; Bradke, Frank; Jenne, Dieter; Holak, Tad A; Werb, Zena; Sixt, Michael; Wedlich-Soldner, Roland

    2008-07-01

    Live imaging of the actin cytoskeleton is crucial for the study of many fundamental biological processes, but current approaches to visualize actin have several limitations. Here we describe Lifeact, a 17-amino-acid peptide, which stained filamentous actin (F-actin) structures in eukaryotic cells and tissues. Lifeact did not interfere with actin dynamics in vitro and in vivo and in its chemically modified peptide form allowed visualization of actin dynamics in nontransfectable cells.

  1. Cilia assembly: a role for F-actin in IFT recruitment.

    PubMed

    Quarmby, Lynne

    2014-09-08

    Ciliary growth rates are limited by the availability of precursors at the growing tip. A new paper reveals that the early rapid growth of nascent cilia is supported by F-actin-facilitated delivery of IFT proteins to basal bodies.

  2. Membrane Supply and Demand Regulates F-Actin in a Cell Surface Reservoir.

    PubMed

    Figard, Lauren; Wang, Mengyu; Zheng, Liuliu; Golding, Ido; Sokac, Anna Marie

    2016-05-09

    Cells store membrane in surface reservoirs of pits and protrusions. These membrane reservoirs facilitate cell shape change and buffer mechanical stress, but we do not know how reservoir dynamics are regulated. During cellularization, the first cytokinesis in Drosophila embryos, a reservoir of microvilli unfolds to fuel cleavage furrow ingression. We find that regulated exocytosis adds membrane to the reservoir before and during unfolding. Dynamic F-actin deforms exocytosed membrane into microvilli. Single microvilli extend and retract in ∼20 s, while the overall reservoir is depleted in sync with furrow ingression over 60-70 min. Using pharmacological and genetic perturbations, we show that exocytosis promotes microvillar F-actin assembly, while furrow ingression controls microvillar F-actin disassembly. Thus, reservoir F-actin and, consequently, reservoir dynamics are regulated by membrane supply from exocytosis and membrane demand from furrow ingression.

  3. Self-organized DNA/F-actin gels: entangled networks of nematic domains with tunable density

    NASA Astrophysics Data System (ADS)

    Butler, John; Zribi, Olena; Smalyukh, Ivan; Hwee Lai, Ghee; Golestanian, Ramin; Angelini, Thomas; Wong, Gerard

    2008-03-01

    We examine mixtures of DNA and F-actin as a model system of like-charged rigid rods and flexible chains. Confocal microscopy reveals the formation of elongated nematic F-actin domains reticulated via defect-free vertices into a network, all embedded in a mesh of random DNA. Synchrotron x-ray scattering results indicate that the DNA mesh squeezes the F-actin domains into a nematic state via the osmotic pressure of uncondensed counterions, so that the inter-actin spacing within the domains decreases with increasing DNA concentration. These observations are consistent with arguments based on electrostatics and nematic elasticity.

  4. F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex

    PubMed Central

    Murrell, Michael P.; Gardel, Margaret L.

    2012-01-01

    Here we develop a minimal model of the cell actomyosin cortex by forming a quasi-2D cross-linked filamentous actin (F-actin) network adhered to a model cell membrane and contracted by myosin thick filaments. Myosin motors generate both compressive and tensile stresses on F-actin and consequently induce large bending fluctuations, which reduces their effective persistence length to <1 μm. Over a large range of conditions, we show the extent of network contraction corresponds exactly to the extent of individual F-actin shortening via buckling. This demonstrates an essential role of buckling in breaking the symmetry between tensile and compressive stresses to facilitate mesoscale network contraction of up to 80% strain. Portions of buckled F-actin with a radius of curvature ∼300 nm are prone to severing and thus compressive stresses mechanically coordinate contractility with F-actin severing, the initial step of F-actin turnover. Finally, the F-actin curvature acquired by myosin-induced stresses can be further constrained by adhesion of the network to a membrane, accelerating filament severing but inhibiting the long-range transmission of the stresses necessary for network contractility. Thus, the extent of membrane adhesion can regulate the coupling between network contraction and F-actin severing. These data demonstrate the essential role of the nonlinear response of F-actin to compressive stresses in potentiating both myosin-mediated contractility and filament severing. This may serve as a general mechanism to mechanically coordinate contractility and cortical dynamics across diverse actomyosin assemblies in smooth muscle and nonmuscle cells. PMID:23213249

  5. A new model for the interaction of dystrophin with F-actin

    PubMed Central

    1996-01-01

    The F-actin binding and cross-linking properties of skeletal muscle dystrophin-glycoprotein complex were examined using high and low speed cosedimentation assays, microcapillary falling ball viscometry, and electron microscopy. Dystrophin-glycoprotein complex binding to F-actin saturated near 0.042 +/- 0.005 mol/ mol, which corresponds to one dystrophin per 24 actin monomers. Dystrophin-glycoprotein complex bound to F-actin with an average apparent Kd for dystrophin of 0.5 microM. These results demonstrate that native, full-length dystrophin in the glycoprotein complex binds F-actin with some properties similar to those measured for several members of the actin cross-linking super- family of proteins. However, we failed to observe dystrophin- glycoprotein complex-induced cross-linking of F-actin by three different methods, each positively controlled with alpha-actinin. Furthermore, high speed cosedimentation analysis of dystrophin- glycoprotein complex digested with calpain revealed a novel F-actin binding site located near the middle of the dystrophin rod domain. Recombinant dystrophin fragments corresponding to the novel actin binding site and the first 246 amino acids of dystrophin both bound F- actin but with significantly lower affinity and higher capacity than was observed with purified dystrophin-glycoprotein complex. Finally, dystrophin-glycoprotein complex was observed to significantly slow the depolymerization of F-actin, Suggesting that dystrophin may lie along side an actin filament through interaction with multiple actin monomers. These data suggest that although dystrophin is most closely related to the actin cross-linking superfamily based on sequence homology, dystrophin binds F-actin in a manner more analogous to actin side-binding proteins. PMID:8909541

  6. Triggering signaling pathways using F-actin self-organization.

    PubMed

    Colin, A; Bonnemay, L; Gayrard, C; Gautier, J; Gueroui, Z

    2016-10-04

    The spatiotemporal organization of proteins within cells is essential for cell fate behavior. Although it is known that the cytoskeleton is vital for numerous cellular functions, it remains unclear how cytoskeletal activity can shape and control signaling pathways in space and time throughout the cell cytoplasm. Here we show that F-actin self-organization can trigger signaling pathways by engineering two novel properties of the microfilament self-organization: (1) the confinement of signaling proteins and (2) their scaffolding along actin polymers. Using in vitro reconstitutions of cellular functions, we found that both the confinement of nanoparticle-based signaling platforms powered by F-actin contractility and the scaffolding of engineered signaling proteins along actin microfilaments can drive a signaling switch. Using Ran-dependent microtubule nucleation, we found that F-actin dynamics promotes the robust assembly of microtubules. Our in vitro assay is a first step towards the development of novel bottom-up strategies to decipher the interplay between cytoskeleton spatial organization and signaling pathway activity.

  7. Triggering signaling pathways using F-actin self-organization

    PubMed Central

    Colin, A.; Bonnemay, L.; Gayrard, C.; Gautier, J.; Gueroui, Z.

    2016-01-01

    The spatiotemporal organization of proteins within cells is essential for cell fate behavior. Although it is known that the cytoskeleton is vital for numerous cellular functions, it remains unclear how cytoskeletal activity can shape and control signaling pathways in space and time throughout the cell cytoplasm. Here we show that F-actin self-organization can trigger signaling pathways by engineering two novel properties of the microfilament self-organization: (1) the confinement of signaling proteins and (2) their scaffolding along actin polymers. Using in vitro reconstitutions of cellular functions, we found that both the confinement of nanoparticle-based signaling platforms powered by F-actin contractility and the scaffolding of engineered signaling proteins along actin microfilaments can drive a signaling switch. Using Ran-dependent microtubule nucleation, we found that F-actin dynamics promotes the robust assembly of microtubules. Our in vitro assay is a first step towards the development of novel bottom-up strategies to decipher the interplay between cytoskeleton spatial organization and signaling pathway activity. PMID:27698406

  8. Effects of binding factors on structural elements in F-actin.

    PubMed

    Scoville, Damon; Stamm, John D; Altenbach, Christian; Shvetsov, Alexander; Kokabi, Kaveh; Rubenstein, Peter A; Hubbell, Wayne L; Reisler, Emil

    2009-01-20

    Understanding the dynamics of the actin filament is essential to a detailed description of their interactions and role in the cell. Previous studies have linked the dynamic properties of actin filaments (F-actin) to three structural elements contributing to a hydrophobic pocket, namely, the hydrophobic loop, the DNase I binding loop, and the C-terminus. Here, we examine how these structural elements are influenced by factors that stabilize or destabilize F-actin, using site-directed spin-labeled (SDSL) electron paramagnetic resonance (EPR), fluorescence, and cross-linking techniques. Specifically, we employ cofilin, an actin destabilizing protein that binds and severs filaments, and phalloidin, a fungal toxin that binds and stabilizes F-actin. We find that cofilin shifts both the DNase I binding loop and the hydrophobic loop away from the C-terminus in F-actin, as demonstrated by weakened spin-spin interactions, and alters the environment of spin probes on residues of these two loops. In contrast, although phalloidin strongly stabilizes F-actin, it causes little or no local change in the environment of the loop residues. This indicates that the stabilizing effect of phalloidin is achieved mainly through constraining structural fluctuations in F-actin and suggests that factors and interactions that control these fluctuations have an important role in the cytoskeleton dynamics.

  9. F-actin aggregates in transformed cells

    PubMed Central

    1981-01-01

    Polymerized actin has been found aggregated into distinctive patches inside transformed cells in culture. The F-actin-specific fluorescent probe, nitrobenzoxadiazole-phallacidin, labels these F-actin aggregates near the ventral cell surface of cells transformed by RNA or DNA tumor viruses, or by chemical mutagens, or spontaneously. Their appearance in all eight transformed cell types studied suggests their ubiquity and involvement in transformation morphology. Actin patches developed in normal rat kidney (NRK) cells transformed by a temperature-sensitive mutant of Rous sarcoma virus (LA23-NRK) within 30 min after a shift from the nonpermissive (39 degrees C) to the permissive temperature (32 degrees C). Patch appearance paralleling viral src gene expression tends to implicate pp60src kinase activity in destabilizing the cytoskeleton. However, appearance of the actin aggregates in cells not transformed by retrovirus calls for alternative mechanisms, perhaps involving an endogenous kinase, for this apparently common trait. PMID:6270163

  10. Ca2+ regulation of gelsolin activity: binding and severing of F-actin.

    PubMed Central

    Kinosian, H J; Newman, J; Lincoln, B; Selden, L A; Gershman, L C; Estes, J E

    1998-01-01

    Regulation of the F-actin severing activity of gelsolin by Ca2+ has been investigated under physiologic ionic conditions. Tryptophan fluorescence intensity measurements indicate that gelsolin contains at least two Ca2+ binding sites with affinities of 2.5 x 10(7) M-1 and 1.5 x 10(5) M-1. At F-actin and gelsolin concentrations in the range of those found intracellularly, gelsolin is able to bind F-actin with half-maximum binding at 0.14 microM free Ca2+ concentration. Steady-state measurements of gelsolin-induced actin depolymerization suggest that half-maximum depolymerization occurs at approximately 0.4 microM free Ca2+ concentration. Dynamic light scattering measurements of the translational diffusion coefficient for actin filaments and nucleated polymerization assays for number concentration of actin filaments both indicate that severing of F-actin occurs slowly at micromolar free Ca2+ concentrations. The data suggest that binding of Ca2+ to the gelsolin-F-actin complex is the rate-limiting step for F-actin severing by gelsolin; this Ca2+ binding event is a committed step that results in a Ca2+ ion bound at a high-affinity, EGTA-resistant site. The very high affinity of gelsolin for the barbed end of an actin filament drives the binding reaction equilibrium toward completion under conditions where the reaction rate is slow. PMID:9826630

  11. Stabilization of F-actin prevents cAMP-elicited Cl- secretion in T84 cells.

    PubMed Central

    Shapiro, M; Matthews, J; Hecht, G; Delp, C; Madara, J L

    1991-01-01

    T84 cells, a human intestinal epithelial cell line, serve as a model of electrogenic Cl- secretion. We find that cAMP-elicited Cl- secretion in T84 cells is accompanied by a marked redistribution of F-actin in the basolateral portion of the cell. To prevent this F-actin redistribution and thereby assess its importance to Cl- secretion, we have defined simple conditions under which this model epithelium can be loaded with nitrobenzoxadiazole (NBD)-phallicidin. This reagent binds F-actin with high affinity thus stabilizing the F-actin cytoskeleton by preventing depolymerization, an event necessary for dynamic reordering of actin microfilaments. NBD-phallicidin loading is not cytotoxic as assessed by lactic dehydrogenase release, protein synthesis, transepithelial resistance, and the ability of the loaded cells to pump Na+ in an absorptive direction in response to the apical addition of a Na+ ionophore. However, cAMP-elicited redistribution of F-actin and the cAMP-elicited Cl- secretory response are both markedly impaired in NBD-phallicidin preloaded T84 cells. In contrast, the carbachol-elicited Cl- secretory response (Ca++ mediated) is not attenuated by NBD-phallicidin preloading nor is it accompanied by redistribution of F-actin. These findings suggest that the cAMP-elicited cytoskeletal redistribution we describe is an integral part of cAMP-elicited Cl- secretion in T84 cells. Images PMID:1645745

  12. Nonmedially assembled F-actin cables incorporate into the actomyosin ring in fission yeast

    PubMed Central

    Huang, Junqi; Huang, Yinyi; Yu, Haochen; Subramanian, Dhivya; Padmanabhan, Anup; Thadani, Rahul; Tao, Yaqiong; Tang, Xie; Wedlich-Soldner, Roland

    2012-01-01

    In many eukaryotes, cytokinesis requires the assembly and constriction of an actomyosin-based contractile ring. Despite the central role of this ring in cytokinesis, the mechanism of F-actin assembly and accumulation in the ring is not fully understood. In this paper, we investigate the mechanism of F-actin assembly during cytokinesis in Schizosaccharomyces pombe using lifeact as a probe to monitor actin dynamics. Previous work has shown that F-actin in the actomyosin ring is assembled de novo at the division site. Surprisingly, we find that a significant fraction of F-actin in the ring was recruited from formin-Cdc12p nucleated long actin cables that were generated at multiple nonmedial locations and incorporated into the ring by a combination of myosin II and myosin V activities. Our results, together with findings in animal cells, suggest that de novo F-actin assembly at the division site and directed transport of F-actin cables assembled elsewhere can contribute to ring assembly. PMID:23185032

  13. Quantitative Studies of Endothelial Cell Fibronectin and Filamentous Actin (F-Actin) Coalignment in Response to Shear Stress.

    PubMed

    Gong, Xianghui; Zhao, Xixi; Li, Bin; Sun, Yan; Liu, Meili; Huang, Yan; Jia, Xiaoling; Ji, Jing; Fan, Yubo

    2017-09-12

    Both fibronectin (FN) and filamentous actin (F-actin) fibers play a critical role for endothelial cells (ECs) in responding to shear stress and modulating cell alignment and functions. FN is dynamically coupled to the F-actin cytoskeleton via focal adhesions. However, it is unclear how ECs cooperatively remodel their subcellular FN matrix and intracellular F-actin cytoskeleton in response to shear stress. Current studies are hampered by the lack of a reliable and sensitive quantification method of FN orientation. In this study, we developed a MATLAB-based feature enhancement method to quantify FN and F-actin orientation. The role of F-actin in FN remodeling was also studied by treating ECs with cytochalasin D. We have demonstrated that FN and F-actin codistributed and coaligned parallel to the flow direction, and that F-actin alignment played an essential role in regulating FN alignment in response to shear stress. Our findings offer insight into how ECs cooperatively remodel their subcellular ECM and intracellular F-actin cytoskeleton in response to mechanical stimuli, and are valuable for vascular tissue engineering.

  14. Nectin-2 and N-cadherin interact through extracellular domains and induce apical accumulation of F-actin in apical constriction of Xenopus neural tube morphogenesis.

    PubMed

    Morita, Hitoshi; Nandadasa, Sumeda; Yamamoto, Takamasa S; Terasaka-Iioka, Chie; Wylie, Christopher; Ueno, Naoto

    2010-04-01

    Neural tube formation is one of the most dynamic morphogenetic processes of vertebrate development. However, the molecules regulating its initiation are mostly unknown. Here, we demonstrated that nectin-2, an immunoglobulin-like cell adhesion molecule, is involved in the neurulation of Xenopus embryos in cooperation with N-cadherin. First, we found that, at the beginning of neurulation, nectin-2 was strongly expressed in the superficial cells of neuroepithelium. The knockdown of nectin-2 impaired neural fold formation by attenuating F-actin accumulation and apical constriction, a cell-shape change that is required for neural tube folding. Conversely, the overexpression of nectin-2 in non-neural ectoderm induced ectopic apical constrictions with accumulated F-actin. However, experiments with domain-deleted nectin-2 revealed that the intracellular afadin-binding motif, which links nectin-2 and F-actin, was not required for the generation of the ectopic apical constriction. Furthermore, we found that nectin-2 physically interacts with N-cadherin through extracellular domains, and they cooperatively enhanced apical constriction by driving the accumulation of F-actin at the apical cell surface. Interestingly, the accumulation of N-cadherin at the apical surface of neuroepithelium was dependent on the presence of nectin-2, but that of nectin-2 was not affected by depletion of N-cadherin. We propose a novel mechanism of neural tube morphogenesis regulated by the two types of cell adhesion molecules.

  15. Formation of long and winding nuclear F-actin bundles by nuclear c-Abl tyrosine kinase

    SciTech Connect

    Aoyama, Kazumasa; Yuki, Ryuzaburo; Horiike, Yasuyoshi; Kubota, Sho; Yamaguchi, Noritaka; Morii, Mariko; Ishibashi, Kenichi; Nakayama, Yuji; Kuga, Takahisa; Hashimoto, Yuuki; Tomonaga, Takeshi; Yamaguchi, Naoto

    2013-12-10

    The non-receptor-type tyrosine kinase c-Abl is involved in actin dynamics in the cytoplasm. Having three nuclear localization signals (NLSs) and one nuclear export signal, c-Abl shuttles between the nucleus and the cytoplasm. Although monomeric actin and filamentous actin (F-actin) are present in the nucleus, little is known about the relationship between c-Abl and nuclear actin dynamics. Here, we show that nuclear-localized c-Abl induces nuclear F-actin formation. Adriamycin-induced DNA damage together with leptomycin B treatment accumulates c-Abl into the nucleus and increases the levels of nuclear F-actin. Treatment of c-Abl-knockdown cells with Adriamycin and leptomycin B barely increases the nuclear F-actin levels. Expression of nuclear-targeted c-Abl (NLS-c-Abl) increases the levels of nuclear F-actin even without Adriamycin, and the increased levels of nuclear F-actin are not inhibited by inactivation of Abl kinase activity. Intriguingly, expression of NLS-c-Abl induces the formation of long and winding bundles of F-actin within the nucleus in a c-Abl kinase activity-dependent manner. Furthermore, NLS-c-AblΔC, which lacks the actin-binding domain but has the full tyrosine kinase activity, is incapable of forming nuclear F-actin and in particular long and winding nuclear F-actin bundles. These results suggest that nuclear c-Abl plays critical roles in actin dynamics within the nucleus. - Highlights: • We show the involvement of c-Abl tyrosine kinase in nuclear actin dynamics. • Nuclear F-actin is formed by nuclear-localized c-Abl and its kinase-dead version. • The c-Abl actin-binding domain is prerequisite for nuclear F-actin formation. • Formation of long nuclear F-actin bundles requires nuclear c-Abl kinase activity. • We discuss a role for nuclear F-actin bundle formation in chromatin regulation.

  16. Drosophila Imp iCLIP identifies an RNA assemblage coordinating F-actin formation.

    PubMed

    Hansen, Heidi Theil; Rasmussen, Simon Horskjær; Adolph, Sidsel Kramshøj; Plass, Mireya; Krogh, Anders; Sanford, Jeremy; Nielsen, Finn Cilius; Christiansen, Jan

    2015-06-09

    Post-transcriptional RNA regulons ensure coordinated expression of monocistronic mRNAs encoding functionally related proteins. In this study, we employ a combination of RIP-seq and short- and long-wave individual-nucleotide resolution crosslinking and immunoprecipitation (iCLIP) technologies in Drosophila cells to identify transcripts associated with cytoplasmic ribonucleoproteins (RNPs) containing the RNA-binding protein Imp. We find extensive binding of Imp to 3' UTRs of transcripts that are involved in F-actin formation. A common denominator of the RNA-protein interface is the presence of multiple motifs with a central UA-rich element flanked by CA-rich elements. Experiments in single cells and intact flies reveal compromised actin cytoskeletal dynamics associated with low Imp levels. The former shows reduced F-actin formation and the latter exhibits abnormal neuronal patterning. This demonstrates a physiological significance of the defined RNA regulon. Our data imply that Drosophila Imp RNPs may function as cytoplasmic mRNA assemblages that encode proteins which participate in actin cytoskeletal remodeling. Thus, they may facilitate coordinated protein expression in sub-cytoplasmic locations such as growth cones.

  17. Apical myosin XI anticipates F-actin during polarized growth of Physcomitrella patens cells.

    PubMed

    Furt, Fabienne; Liu, Yen-Chun; Bibeau, Jeffrey P; Tüzel, Erkan; Vidali, Luis

    2013-02-01

    Tip growth is essential for land colonization by bryophytes, plant sexual reproduction and water and nutrient uptake. Because this specialized form of polarized cell growth requires both a dynamic actin cytoskeleton and active secretion, it has been proposed that the F-actin-associated motor myosin XI is essential for this process. Nevertheless, a spatial and temporal relationship between myosin XI and F-actin during tip growth is not known in any plant cell. Here, we use the highly polarized cells of the moss Physcomitrella patens to show that myosin XI and F-actin localize, in vivo, at the same apical domain and that both signals fluctuate. Surprisingly, phase analysis shows that increase in myosin XI anticipates that of F-actin; in contrast, myosin XI levels at the tip fluctuate in identical phase with a vesicle marker. Pharmacological analysis using a low concentration of the actin polymerization inhibitor latrunculin B showed that the F-actin at the tip can be significantly diminished while myosin XI remains elevated in this region, suggesting that a mechanism exists to cluster myosin XI-associated structures at the cell's apex. In addition, this approach uncovered a mechanism for actin polymerization-dependent motility in the moss cytoplasm, where myosin XI-associated structures seem to anticipate and organize the actin polymerization machinery. From our results, we inferred a model where the interaction between myosin XI-associated vesicular structures and F-actin polymerization-driven motility function at the cell's apex to maintain polarized cell growth. We hypothesize this is a general mechanism for the participation of myosin XI and F-actin in tip growing cells. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  18. Actin Assembly Factors Regulate the Gelation Kinetics and Architecture of F-actin Networks

    PubMed Central

    Falzone, Tobias T.; Oakes, Patrick W.; Sees, Jennifer; Kovar, David R.; Gardel, Margaret L.

    2013-01-01

    Dynamic regulation of the actin cytoskeleton is required for diverse cellular processes. Proteins regulating the assembly kinetics of the cytoskeletal biopolymer F-actin are known to impact the architecture of actin cytoskeletal networks in vivo, but the underlying mechanisms are not well understood. Here, we demonstrate that changes to actin assembly kinetics with physiologically relevant proteins profilin and formin (mDia1 and Cdc12) have dramatic consequences on the architecture and gelation kinetics of otherwise biochemically identical cross-linked F-actin networks. Reduced F-actin nucleation rates promote the formation of a sparse network of thick bundles, whereas increased nucleation rates result in a denser network of thinner bundles. Changes to F-actin elongation rates also have marked consequences. At low elongation rates, gelation ceases and a solution of rigid bundles is formed. By contrast, rapid filament elongation accelerates dynamic arrest and promotes gelation with minimal F-actin density. These results are consistent with a recently developed model of how kinetic constraints regulate network architecture and underscore how molecular control of polymer assembly is exploited to modulate cytoskeletal architecture and material properties. PMID:23601318

  19. Three cotton genes preferentially expressed in flower tissues encode actin-depolymerizing factors which are involved in F-actin dynamics in cells.

    PubMed

    Li, Xue-Bao; Xu, Dan; Wang, Xiu-Lan; Huang, Geng-Qing; Luo, Juan; Li, Deng-Di; Zhang, Ze-Ting; Xu, Wen-Liang

    2010-01-01

    To investigate whether the high expression levels of actin-depolymerizing factor genes are related to pollen development, three GhADF genes (cDNAs) were isolated and characterized in cotton. Among them, GhADF6 and GhADF8 were preferentially expressed in petals, whereas GhADF7 displayed the highest level of expression in anthers, revealing its anther specificity. The GhADF7 transcripts in anthers reached its peak value at flowering, suggesting that its expression is developmentally-regulated in anthers. The GhADF7 gene including the promoter region was isolated from the cotton genome. To demonstrate the specificity of the GhADF7 promoter, the 5'-flanking region, including the promoter and 5'-untranslated region, was fused with the GUS gene. Histochemical assays demonstrated that the GhADF7:GUS gene was specifically expressed in pollen grains. When pollen grains germinated, very strong GUS staining was detected in the elongating pollen tube. Furthermore, overexpression of GhADF7 gene in Arabidopsis thaliana reduced the viable pollen grains and, consequently, transgenic plants were partially male-sterile. Overexpression of GhADF7 in fission yeast (Schizosaccharomyces pombe) altered the balance of actin depolymerization and polymerization, leading to the defective cytokinesis and multinucleate formation in the cells. Given all the above results together, it is proposed that the GhADF7 gene may play an important role in pollen development and germination.

  20. Self-organized Gels in DNA/F-Actin mixtures without Crosslinkers

    NASA Astrophysics Data System (ADS)

    Butler, John; Hwee Lai, Ghee; Zribi, Olena; Smalyukh, Ivan; Angelini, Thomas; Purdy, Kirstin; Golestanian, Ramin; Wong, Gerard C. L.

    2009-03-01

    Interactions between flexible chains and rigid rods govern a broad range of soft matter systems. As a model system of like-charged rigid rods and flexible chains, we examine mixtures of DNA and filamentous actin (F-actin). Confocal microscopy reveals the formation of elongated nematic F-actin domains reticulated via defect-free vertices into a network embedded in a mesh of random DNA. Synchrotron small-angle x-ray scattering (SAXS) indicates that the DNA mesh squeezes the F-actin domains into a nematic state with an inter-actin spacing that decreases with increasing DNA concentration. Salt strongly influences the domain sizes and transitions the system from a counterion-controlled regime to a depletion-controlled regime, both mechanisms of which are entropic in origin.

  1. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography

    NASA Technical Reports Server (NTRS)

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.

    2000-01-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  2. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography

    NASA Technical Reports Server (NTRS)

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.

    2000-01-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  3. F-actin structure destabilization and DNase I binding loop: fluctuations mutational cross-linking and electron microscopy analysis of loop states and effects on F-actin.

    PubMed

    Oztug Durer, Zeynep A; Diraviyam, Karthikeyan; Sept, David; Kudryashov, Dmitri S; Reisler, Emil

    2010-01-22

    The conformational dynamics of filamentous actin (F-actin) is essential for the regulation and functions of cellular actin networks. The main contribution to F-actin dynamics and its multiple conformational states arises from the mobility and flexibility of the DNase I binding loop (D-loop; residues 40-50) on subdomain 2. Therefore, we explored the structural constraints on D-loop plasticity at the F-actin interprotomer space by probing its dynamic interactions with the hydrophobic loop (H-loop), the C-terminus, and the W-loop via mutational disulfide cross-linking. To this end, residues of the D-loop were mutated to cysteines on yeast actin with a C374A background. These mutants showed no major changes in their polymerization and nucleotide exchange properties compared to wild-type actin. Copper-catalyzed disulfide cross-linking was investigated in equimolar copolymers of cysteine mutants from the D-loop with either wild-type (C374) actin or mutant S265C/C374A (on the H-loop) or mutant F169C/C374A (on the W-loop). Remarkably, all tested residues of the D-loop could be cross-linked to residues 374, 265, and 169 by disulfide bonds, demonstrating the plasticity of the interprotomer region. However, each cross-link resulted in different effects on the filament structure, as detected by electron microscopy and light-scattering measurements. Disulfide cross-linking in the longitudinal orientation produced mostly no visible changes in filament morphology, whereas the cross-linking of D-loop residues >45 to the H-loop, in the lateral direction, resulted in filament disruption and the presence of amorphous aggregates on electron microscopy images. A similar aggregation was also observed upon cross-linking the residues of the D-loop (>41) to residue 169. The effects of disulfide cross-links on F-actin stability were only partially accounted for by the simulations of current F-actin models. Thus, our results present evidence for the high level of conformational plasticity in

  4. Dissociative mechanism of F-actin thermal denaturation.

    PubMed

    Mikhailova, V V; Kurganov, B I; Pivovarova, A V; Levitsky, D I

    2006-11-01

    We have applied differential scanning calorimetry to investigate thermal unfolding of F-actin. It has been shown that the thermal stability of F-actin strongly depends on ADP concentration. The transition temperature, T(m), increases with increasing ADP concentration up to 1 mM. The T(m) value also depends on the concentration of F-actin: it increases by almost 3 degrees C as the F-actin concentration is increased from 0.5 to 2.0 mg/ml. Similar dependence of the T(m) value on protein concentration was demonstrated for F-actin stabilized by phalloidin, whereas it was much less pronounced in the presence of AlF4(-). However, T(m) was independent of protein concentration in the case of monomeric G-actin. The results suggest that at least two reversible stages precede irreversible thermal denaturation of F-actin; one of them is dissociation of ADP from actin subunits, and another is dissociation of subunits from the ends of actin filaments. The model explains why unfolding of F-actin depends on both ADP and protein concentration.

  5. Leading tip drives soma translocation via forward F-actin flow during neuronal migration.

    PubMed

    He, Min; Zhang, Zheng-hong; Guan, Chen-bing; Xia, Di; Yuan, Xiao-bing

    2010-08-11

    Neuronal migration involves coordinated extension of the leading process and translocation of the soma, but the relative contribution of different subcellular regions, including the leading process and cell rear, in driving soma translocation remains unclear. By local manipulation of cytoskeletal components in restricted regions of cultured neurons, we examined the molecular machinery underlying the generation of traction force for soma translocation during neuronal migration. In actively migrating cerebellar granule cells in culture, a growth cone (GC)-like structure at the leading tip exhibits high dynamics, and severing the tip or disrupting its dynamics suppressed soma translocation within minutes. Soma translocation was also suppressed by local disruption of F-actin along the leading process but not at the soma, whereas disrupting microtubules along the leading process or at the soma accelerated soma translocation. Fluorescent speckle microscopy using GFP-alpha-actinin showed that a forward F-actin flow along the leading process correlated with and was required for soma translocation, and such F-actin flow depended on myosin II activity. In migrating neurons, myosin II activity was high at the leading tip but low at the soma, and increasing or decreasing this front-to-rear difference accelerated or impeded soma advance. Thus, the tip of the leading process actively pulls the soma forward during neuronal migration through a myosin II-dependent forward F-actin flow along the leading process.

  6. Excess F-actin mechanically impedes mitosis leading to cytokinesis failure in X-linked neutropenia by exceeding Aurora B kinase error correction capacity.

    PubMed

    Moulding, Dale A; Moeendarbary, Emad; Valon, Leo; Record, Julien; Charras, Guillaume T; Thrasher, Adrian J

    2012-11-01

    The constitutively active mutant of the Wiskott-Aldrich Syndrome protein (CA-WASp) is the cause of X-linked neutropenia and is linked with genomic instability and myelodysplasia. CA-WASp generates abnormally high levels of cytoplasmic F-actin through dysregulated activation of the Arp2/3 complex leading to defects in cell division. As WASp has no reported role in cell division, we hypothesized that alteration of cell mechanics because of increased F-actin may indirectly disrupt dynamic events during mitosis. Inhibition of the Arp2/3 complex revealed that excess cytoplasmic F-actin caused increased cellular viscosity, slowed all phases of mitosis, and perturbed mitotic mechanics. Comparison of chromosome velocity to the cytoplasmic viscosity revealed that cells compensated for increased viscosity by up-regulating force applied to chromosomes and increased the density of microtubules at kinetochores. Mitotic abnormalities were because of overload of the aurora signaling pathway as subcritical inhibition of Aurora in CA-WASp cells caused increased cytokinesis failure, while overexpression reduced defects. These findings demonstrate that changes in cell mechanics can cause significant mitotic abnormalities leading to genomic instability, and highlight the importance of mechanical sensors such as Aurora B in maintaining the fidelity of hematopoietic cell division.

  7. Structural Transitions of F-Actin:Espin Bundles

    NASA Astrophysics Data System (ADS)

    Purdy, Kirstin; Bartles, James; Wong, Gerard

    2006-03-01

    Espin is an actin bundling protein involved in the formation of the parallel bundles of filamentous actin in hair cell stereocilia. Mutations in espin are implicated in deafness phenotypes in mice and humans. We present measurements of the F-actin structures induced by wild type and by mutated espin obtained via small angle x-ray scattering and fluorescence microscopy. We found that wild type espin induced a paracrystalline hexagonal array of twisted F-actin, whereas the mutated espin only condensed the F-actin into a nematic-like phase. The possibility of coexisting nematic and bundled actin in mixtures containing both mutant and wild type espins was also investigated.

  8. Dual chemotaxis signalling regulates Dictyostelium development: intercellular cyclic AMP pulses and intracellular F-actin disassembly waves induce each other.

    PubMed

    Vicker, Michael G; Grutsch, James F

    2008-10-01

    Aggregating Dictyostelium discoideum amoebae periodically emit and relay cAMP, which regulates their chemotaxis and morphogenesis into a multicellular, differentiated organism. Cyclic AMP also stimulates F-actin assembly and chemotactic pseudopodium extension. We used actin-GFP expression to visualise for the first time intracellular F-actin assembly as a spatio-temporal indicator of cell reactions to cAMP, and thus the kinematics of cell communication, in aggregating streams. Every natural cAMP signal pulse induces an autowave of F-actin disassembly, which propagates from each cell's leading end to its trailing end at a linear rate, much slower than the calculated and measured velocities of cAMP diffusion in aggregating Dictyostelium. A sequence of transient reactions follows behind the wave, including anterior F-actin assembly, chemotactic pseudopodium extension and cell advance at the cell front and, at the back, F-actin assembly, extension of a small retrograde pseudopodium (forcing a brief cell retreat) and chemotactic stimulation of the following cell, yielding a 20s cAMP relay delay. These dynamics indicate that stream cell behaviour is mediated by a dual signalling system: a short-range cAMP pulse directed from one cell tail to an immediately following cell front and a slower, long-range wave of intracellular F-actin disassembly, each inducing the other.

  9. Mcp4, a Meiotic Coiled-Coil Protein, Plays a Role in F-Actin Positioning during Schizosaccharomyces pombe Meiosis▿

    PubMed Central

    Ohtaka, Ayami; Okuzaki, Daisuke; Saito, Takamune T.; Nojima, Hiroshi

    2007-01-01

    Some meiosis-specific proteins of Schizosaccharomyces pombe harbor coiled-coil motifs and play essential roles in meiotic progression. Here we describe Mcp4, a novel meiosis-specific protein whose expression is abruptly induced at the horsetail phase and which remains expressed until sporulation is finished. Fluorescence microscopic analysis revealed that Mcp4 alters its subcellular localization during meiosis in a manner that partially resembles the movement of F-actin during meiosis. Mcp4 and F-actin never colocalize; rather, they are located in a side-by-side manner. When forespore membrane formation begins at metaphase II, the Mcp4 signals assemble at the lagging face of the dividing nuclei. At this stage, they are sandwiched between F-actin and the nucleus. Mcp4, in turn, appears to sandwich F-actin with Meu14. In mcp4Δ cells at anaphase II, the F-actin, which is normally dumbbell-shaped, adopts an abnormal balloon shape. Spores of mcp4Δ cells were sensitive to NaCl, although their shape and viability were normal. Taken together, we conclude that Mcp4 plays a role in the accurate positioning of F-actin during S. pombe meiosis. PMID:17435009

  10. Pseudopodium extension and amoeboid locomotion in Dictyostelium discoideum: Possible autowave behaviour of F-actin

    NASA Astrophysics Data System (ADS)

    Vicker, Michael G.; Xiang, Wei; Plath, Peter J.; Wosniok, Werner

    1997-02-01

    Supramolecular patterns of filamentous (F-)actin up to several micrometres across were visualized within projections of locomotory amoebae after cell fixation and staining with phalloidin-rhodamine. The patterns included rings, single and double spirals, some apparently colliding and disintegrating. Cell stimulation with a pulse of the chemoattractant cyclic AMP induced damping oscillations in F-actin ring frequency with a period of 6-7 s. Ring front propagation after stimulation was modelled by Markov and Fourier methods at 3.1-17.5 μm/min, similar to actual cell speed. We argue that the dynamics and detailed morphological correspondence of these F-actin structures to wave patterns in chemical reaction-diffusion systems strongly supports the interpretation that Dictyostelium cytoplasm behaves as an unstable, excitable medium enabling the propagation of self-organized, physico-chemical relaxation oscillations, i.e. autowaves, of reversible F-actin assembly or aggregation - a new state of actin - fundamental to pseudopodium extension, cell locomotion, chemotaxis and other cell functions.

  11. Labeling F-actin barbed ends with rhodamine-actin in permeabilized neuronal growth cones.

    PubMed

    Marsick, Bonnie M; Letourneau, Paul C

    2011-03-17

    The motile tips of growing axons are called growth cones. Growth cones lead navigating axons through developing tissues by interacting with locally expressed molecular guidance cues that bind growth cone receptors and regulate the dynamics and organization of the growth cone cytoskeleton. The main target of these navigational signals is the actin filament meshwork that fills the growth cone periphery and that drives growth cone motility through continual actin polymerization and dynamic remodeling. Positive or attractive guidance cues induce growth cone turning by stimulating actin filament (F-actin) polymerization in the region of the growth cone periphery that is nearer the source of the attractant cue. This actin polymerization drives local growth cone protrusion, adhesion of the leading margin and axonal elongation toward the attractant. Actin filament polymerization depends on the availability of sufficient actin monomer and on polymerization nuclei or actin filament barbed ends for the addition of monomer. Actin monomer is abundantly available in chick retinal and dorsal root ganglion (DRG) growth cones. Consequently, polymerization increases rapidly when free F-actin barbed ends become available for monomer addition. This occurs in chick DRG and retinal growth cones via the local activation of the F-actin severing protein actin depolymerizing factor (ADF/cofilin) in the growth cone region closer to an attractant. This heightened ADF/cofilin activity severs actin filaments to create new F-actin barbed ends for polymerization. The following method demonstrates this mechanism. Total content of F-actin is visualized by staining with fluorescent phalloidin. F-actin barbed ends are visualized by the incorporation of rhodamine-actin within growth cones that are permeabilized with the procedure described in the following, which is adapted from previous studies of other motile cells. When rhodamine-actin is added at a concentration above the critical concentration

  12. Quantitative Analysis of F-Actin Redistribution in Astrocytoma Cells Treated with Candidate Pharmaceuticals

    PubMed Central

    Lockett, Stephen; Verma, Chrissie; Brafman, Alla; Gudla, Prabhakar; Nandy, Kaustav; Mimaki, Yoshihiro; Fuchs, Philip L.; Jaja, Joseph; Reilly, Karlyne M.; Beutler, John; Turbyville, Thomas J.

    2015-01-01

    Actin fibers (F-actin) control the shape and internal organization of cells, and generate force. It has been long appreciated that these functions are tightly coupled, and in some cases drive cell behavior and cell fate. The distribution and dynamics of F-actin is different in cancer versus normal cells and in response to small molecules, including actin-targeting natural products and anticancer drugs. Therefore, quantifying actin structural changes from high resolution fluorescence micrographs is necessary for further understanding actin cytoskeleton dynamics and phenotypic consequences of drug interactions on cells. We applied an artificial neural network algorithm, which used image intensity and anisotropy measurements, to quantitatively classify F-actin subcellular features into actin along the edges of cells, actin at the protrusions of cells, internal fibers and punctate signals. The algorithm measured significant increase in F-actin at cell edges with concomitant decrease in internal punctate actin in astrocytoma cells lacking functional neurofibromin and p53 when treated with three structurally-distinct anticancer small molecules: OSW1, Schweinfurthin A (SA) and a synthetic marine compound 23′-dehydroxycephalostatin 1. Distinctly different changes were measured in cells treated with the actin inhibitor cytochalasin B. These measurements support published reports that SA acts on F-actin in NF1−/− neurofibromin deficient cancer cells through changes in Rho signaling. Quantitative pattern analysis of cells has wide applications for understanding mechanisms of small molecules, because many anticancer drugs directly or indirectly target cytoskeletal proteins. Furthermore, quantitative information about the actin cytoskeleton may make it possible to further understand cell fate decisions using mathematically testable models. Published 2014 Wiley Periodicals Inc.† PMID:24515854

  13. Quantitative analysis of F-actin redistribution in astrocytoma cells treated with candidate pharmaceuticals.

    PubMed

    Lockett, Stephen; Verma, Chrissie; Brafman, Alla; Gudla, Prabhakar; Nandy, Kaustav; Mimaki, Yoshihiro; Fuchs, Philip L; Jaja, Joseph; Reilly, Karlyne M; Beutler, John; Turbyville, Thomas J

    2014-06-01

    Actin fibers (F-actin) control the shape and internal organization of cells, and generate force. It has been long appreciated that these functions are tightly coupled, and in some cases drive cell behavior and cell fate. The distribution and dynamics of F-actin is different in cancer versus normal cells and in response to small molecules, including actin-targeting natural products and anticancer drugs. Therefore, quantifying actin structural changes from high resolution fluorescence micrographs is necessary for further understanding actin cytoskeleton dynamics and phenotypic consequences of drug interactions on cells. We applied an artificial neural network algorithm, which used image intensity and anisotropy measurements, to quantitatively classify F-actin subcellular features into actin along the edges of cells, actin at the protrusions of cells, internal fibers and punctate signals. The algorithm measured significant increase in F-actin at cell edges with concomitant decrease in internal punctate actin in astrocytoma cells lacking functional neurofibromin and p53 when treated with three structurally-distinct anticancer small molecules: OSW1, Schweinfurthin A (SA) and a synthetic marine compound 23'-dehydroxycephalostatin 1. Distinctly different changes were measured in cells treated with the actin inhibitor cytochalasin B. These measurements support published reports that SA acts on F-actin in NF1(-/-) neurofibromin deficient cancer cells through changes in Rho signaling. Quantitative pattern analysis of cells has wide applications for understanding mechanisms of small molecules, because many anti-cancer drugs directly or indirectly target cytoskeletal proteins. Furthermore, quantitative information about the actin cytoskeleton may make it possible to further understand cell fate decisions using mathematically testable models. Published 2014 Wiley Periodicals Inc. This article is a US government work and, as such, is in the public domain in the United States of

  14. Tropomyosin movement on F-actin during muscle activation explained by energy landscapes.

    PubMed

    Orzechowski, Marek; Moore, Jeffrey R; Fischer, Stefan; Lehman, William

    2014-03-01

    Muscle contraction is regulated by tropomyosin movement across the thin filament surface, which exposes or blocks myosin-binding sites on actin. Recent atomic structures of F-actin-tropomyosin have yielded the positions of tropomyosin on myosin-free and myosin-decorated actin. Here, the repositioning of α-tropomyosin between these locations on F-actin was systematically examined by optimizing the energy of the complex for a wide range of tropomyosin positions on F-actin. The resulting energy landscape provides a full-map of the F-actin surface preferred by tropomyosin, revealing a broad energy basin associated with the tropomyosin position that blocks myosin-binding. This is consistent with previously proposed low-energy oscillations of semi-rigid tropomyosin, necessary for shifting of tropomyosin following troponin-binding. In contrast, the landscape shows much less favorable energies when tropomyosin locates near its myosin-induced "open-state" position. This indicates that spontaneous movement of tropomyosin away from its energetic "ground-state" to the open-state is unlikely in absence of myosin. Instead, myosin-binding must drive tropomyosin toward the open-state to activate the thin filament. Additional energy landscapes were computed for disease-causing actin mutants that distort the topology of the actin-tropomyosin energy landscape, explaining their phenotypes. Thus, the computation of such energy landscapes offers a sensitive way to estimate the impact of mutations. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Histones bundle F-actin filaments and affect actin structure.

    PubMed

    Blotnick, Edna; Sol, Asaf; Muhlrad, Andras

    2017-01-01

    Histones are small polycationic proteins complexed with DNA located in the cell nucleus. Upon apoptosis they are secreted from the cells and react with extracellular polyanionic compounds. Actin which is a polyanionic protein, is also secreted from necrotic cells and interacts with histones. We showed that both histone mixture (histone type III) and the recombinant H2A histone bundles F-actin, increases the viscosity of the F-actin containing solution and polymerizes G-actin. The histone-actin bundles are relatively insensitive to increase of ionic strength, unlike other polycation, histatin, lysozyme, spermine and LL-37 induced F-actin bundles. The histone-actin bundles dissociate completely only in the presence of 300-400 mM NaCl. DNA, which competes with F-actin for histones, disassembles histone induced actin bundles. DNase1, which depolymerizes F- to G-actin, actively unbundles the H2A histone induced but slightly affects the histone mixture induced actin bundles. Cofilin decreases the amount of F-actin sedimented by low speed centrifugation, increases light scattering and viscosity of F-actin-histone mixture containing solutions and forms star like superstructures by copolymerizing G-actin with H2A histone. The results indicate that histones are tightly attached to F-actin by strong electrostatic and hydrophobic forces. Since both histones and F-actin are present in the sputum of patients with cystic fibrosis, therefore, the formation of the stable histone-actin bundles can contribute to the pathology of this disease by increasing the viscosity of the sputum. The actin-histone interaction in the nucleus might affect gene expression.

  16. Electrophoresis and orientation of F-actin in agarose gels.

    PubMed

    Borejdo, J; Ortega, H

    1989-08-01

    F-Actin was electrophoresed on agarose gels. In the presence of 2 mM MgCl2 and above pH 8.5 F-actin entered 1% agarose; when the electric field was 2.1 V/cm and the pH was 8.8, F-actin migrated through a gel as a single band at a rate of 2.5 mm/h. Labeling of actin with fluorophores did not affect its rate of migration, but an increase in ionic strength slowed it down. After the electrophoresis actin was able to bind phalloidin and heavy meromyosin (HMM) and it activated Mg2+-dependent ATPase activity of HMM. The mobility of F-actin increased with the rise in pH. Acto-S-1 complex was also able to migrate in agarose at basic pH, but at a lower rate than F-actin alone. The orientation of fluorescein labeled F-actin and of fluorescein labeled S-1 which formed rigor bonds with F-actin was measured during the electrophoresis by the fluorescence detected linear dichroism method. The former showed little orientation, probably because the dye was mobile on the surface of actin, but we were able to measure the orientation of the absorption dipole of the dye bound to S-1 which was attached to F-actin, and found that it assumed an orientation largely parallel to the direction of the electric field. These results show that actin can migrate in agarose gels in the F form and that it is oriented during the electrophoresis.

  17. Global Shapes of F-actin Depolymerization-competent Minimal Gelsolins

    PubMed Central

    Peddada, Nagesh; Sagar, Amin; Rathore, Yogendra S.; Choudhary, Vikas; Pattnaik, U. Bharat K.; Khatri, Neeraj; Garg, Renu; Ashish

    2013-01-01

    Because of its ability to rapidly depolymerize F-actin, plasma gelsolin has emerged as a therapeutic molecule in different disease conditions. High amounts of exogenous gelsolin are, however, required to treat animal models of different diseases. Knowing that the F-actin depolymerizing property of gelsolin resides in its N terminus, we made several truncated versions of plasma gelsolin. The smaller versions, particularly the one composed of the first 28–161 residues, depolymerized the F-actin much faster than the native gelsolin and other truncates at the same molar ratios. Although G1-G3 loses its dependence on Ca2+ or low pH for the actin depolymerization function, interestingly, G1-G2 and its smaller versions were found to regain this requirement. Small angle x-ray scattering-based shape reconstructions revealed that G1-G3 adopts an open shape in both the presence and the absence of Ca2+ as well as low pH, whereas G1-G2 and residues 28–161 prefer collapsed states in Ca2+-free conditions at pH 8. The mutations in the g2-g3 linker resulted in the calcium sensitivity of the mutant G1-G3 for F-actin depolymerization activity, although the F-actin-binding sites remained exposed in the mutant G1-G3 as well as in the smaller truncates even in the Ca2+-free conditions at pH 8. Furthermore, unlike wild type G1-G3, calcium-sensitive mutants of G1-G3 acquired closed shapes in the absence of free calcium, implying a role of g2-g3 linker in determining the open F-actin depolymerizing-competent shape of G1-G3 in this condition. We demonstrate that the mobility of the G1 domain, essential for F-actin depolymerization, is indirectly regulated by the gelsolin-like sequence of g2-g3 linker. PMID:23940055

  18. Quantifying the astrocytoma cell response to candidate pharmaceutical from F-ACTIN image analysis.

    PubMed

    Cui, Chi; JaJa, Joseph; Turbyville, Thomas; Beutler, John; Gudla, Prabhakar; Nandy, Kaustav; Lockett, Stephen

    2009-01-01

    The distribution, directionality and motility of the actin fibers control cell shape, affect cell function and are different in cancer versus normal cells. Quantification of actin structural changes is important for further understanding differences between cell types and for elucidation of the effects and dynamics of drug interactions. We have developed an image analysis framework for quantifying F-actin organization patterns in confocal microscope images in response to different candidate pharmaceutical treatments. The main problem solved was to determine which quantitative features to compute from the images that both capture the visually-observed F-actin patterns and correlate with predicted biological outcomes. The resultant numerical features were effective to quantitatively profile the changes in the spatial distribution of F-actin and facilitate the comparison of different pharmaceuticals. The validation for the segmentation was done through visual inspection and correlation to expected biological outcomes. This is the first study quantifying different structural formations of the same protein in intact cells. Preliminary results show uniquely significant increases in cortical F-actin to stress fiber ratio for increasing doses of OSW-1 and Schweinfurthin A(SA) and a less marked increase for cephalostatin 1 derivative (ceph). This increase was not observed for the actin inhibitors: cytochalasin B (cytoB) and Y-27632 (Y). Ongoing studies are further validating the algorithms, elucidating the underlying molecular pathways and will utilize the algorithms for understanding the kinetics of the F-actin changes. Since many anti-cancer drugs target the cytoskeleton, we believe that the quantitative image analysis method reported here will have broad applications to understanding the mechanisms of action of candidate pharmaceuticals.

  19. F-actin polymerization and retrograde flow drive sustained PLCγ1 signaling during T cell activation

    PubMed Central

    Babich, Alexander; Li, Shuixing; O'Connor, Roddy S.; Milone, Michael C.; Freedman, Bruce D.

    2012-01-01

    Activation of T cells by antigen-presenting cells involves assembly of signaling molecules into dynamic microclusters (MCs) within a specialized membrane domain termed the immunological synapse (IS). Actin and myosin IIA localize to the IS, and depletion of F-actin abrogates MC movement and T cell activation. However, the mechanisms that coordinate actomyosin dynamics and T cell receptor signaling are poorly understood. Using pharmacological inhibitors that perturb individual aspects of actomyosin dynamics without disassembling the network, we demonstrate that F-actin polymerization is the primary driver of actin retrograde flow, whereas myosin IIA promotes long-term integrity of the IS. Disruption of F-actin retrograde flow, but not myosin IIA contraction, arrested MC centralization and inhibited sustained Ca2+ signaling at the level of endoplasmic reticulum store release. Furthermore, perturbation of retrograde flow inhibited PLCγ1 phosphorylation within MCs but left Zap70 activity intact. These studies highlight the importance of ongoing actin polymerization as a central driver of actomyosin retrograde flow, MC centralization, and sustained Ca2+ signaling. PMID:22665519

  20. Microtubules Remodel Actomyosin Networks in Xenopus Egg Extracts via Two Mechanisms of F-Actin Transport

    PubMed Central

    Waterman-Storer, Clare; Duey, Devin Y.; Weber, Kari L.; Keech, John; Cheney, Richard E.; Salmon, E.D.; Bement, William M.

    2000-01-01

    Interactions between microtubules and filamentous actin (F-actin) are crucial for many cellular processes, including cell locomotion and cytokinesis, but are poorly understood. To define the basic principles governing microtubule/F-actin interactions, we used dual-wavelength digital fluorescence and fluorescent speckle microscopy to analyze microtubules and F-actin labeled with spectrally distinct fluorophores in interphase Xenopus egg extracts. In the absence of microtubules, networks of F-actin bundles zippered together or exhibited serpentine gliding along the coverslip. When microtubules were nucleated from Xenopus sperm centrosomes, they were released and translocated away from the aster center. In the presence of microtubules, F-actin exhibited two distinct, microtubule-dependent motilities: rapid (∼250–300 nm/s) jerking and slow (∼50 nm/s), straight gliding. Microtubules remodeled the F-actin network, as F-actin jerking caused centrifugal clearing of F-actin from around aster centers. F-actin jerking occurred when F-actin bound to motile microtubules powered by cytoplasmic dynein. F-actin straight gliding occurred when F-actin bundles translocated along the microtubule lattice. These interactions required Xenopus cytosolic factors. Localization of myosin-II to F-actin suggested it may power F-actin zippering, while localization of myosin-V on microtubules suggested it could mediate interactions between microtubules and F-actin. We examine current models for cytokinesis and cell motility in light of these findings. PMID:10908578

  1. F-actin mechanics control spindle centring in the mouse zygote

    NASA Astrophysics Data System (ADS)

    Chaigne, Agathe; Campillo, Clément; Voituriez, Raphaël; Gov, Nir S.; Sykes, Cécile; Verlhac, Marie-Hélène; Terret, Marie-Emilie

    2016-01-01

    Mitotic spindle position relies on interactions between astral microtubules nucleated by centrosomes and a rigid cortex. Some cells, such as mouse oocytes, do not possess centrosomes and astral microtubules. These cells rely only on actin and on a soft cortex to position their spindle off-centre and undergo asymmetric divisions. While the first mouse embryonic division also occurs in the absence of centrosomes, it is symmetric and not much is known on how the spindle is positioned at the exact cell centre. Using interdisciplinary approaches, we demonstrate that zygotic spindle positioning follows a three-step process: (1) coarse centring of pronuclei relying on the dynamics of an F-actin/Myosin-Vb meshwork; (2) fine centring of the metaphase plate depending on a high cortical tension; (3) passive maintenance at the cell centre. Altogether, we show that F-actin-dependent mechanics operate the switch between asymmetric to symmetric division required at the oocyte to embryo transition.

  2. F-actin mechanics control spindle centring in the mouse zygote

    PubMed Central

    Chaigne, Agathe; Campillo, Clément; Voituriez, Raphaël; Gov, Nir S.; Sykes, Cécile; Verlhac, Marie-Hélène; Terret, Marie-Emilie

    2016-01-01

    Mitotic spindle position relies on interactions between astral microtubules nucleated by centrosomes and a rigid cortex. Some cells, such as mouse oocytes, do not possess centrosomes and astral microtubules. These cells rely only on actin and on a soft cortex to position their spindle off-centre and undergo asymmetric divisions. While the first mouse embryonic division also occurs in the absence of centrosomes, it is symmetric and not much is known on how the spindle is positioned at the exact cell centre. Using interdisciplinary approaches, we demonstrate that zygotic spindle positioning follows a three-step process: (1) coarse centring of pronuclei relying on the dynamics of an F-actin/Myosin-Vb meshwork; (2) fine centring of the metaphase plate depending on a high cortical tension; (3) passive maintenance at the cell centre. Altogether, we show that F-actin-dependent mechanics operate the switch between asymmetric to symmetric division required at the oocyte to embryo transition. PMID:26727405

  3. Self-Organized Gels in DNA/F-Actin Mixtures without Crosslinkers: Networks of Induced Nematic Domains with Tunable Density

    NASA Astrophysics Data System (ADS)

    Lai, Ghee Hwee; Butler, John C.; Zribi, Olena V.; Smalyukh, Ivan I.; Angelini, Thomas E.; Purdy, Kirstin R.; Golestanian, Ramin; Wong, Gerard C. L.

    2008-11-01

    We examine mixtures of DNA and filamentous actin (F-actin) as a model system of like-charged rigid rods and flexible chains. Confocal microscopy reveals the formation of elongated nematic F-actin domains reticulated via defect-free vertices into a network embedded in a mesh of random DNA. Synchrotron x-ray scattering results indicate that the DNA mesh squeezes the F-actin domains into a nematic state with an interactin spacing that decreases with increasing DNA concentration as dactin∝ρDNA-1/2. Interestingly, the system changes from a counterion-controlled regime to a depletion-controlled regime with added salt, with drastic consequences for the osmotic pressure induced phase behavior.

  4. Self-organized gels in DNA/F-actin mixtures without crosslinkers: networks of induced nematic domains with tunable density.

    PubMed

    Lai, Ghee Hwee; Butler, John C; Zribi, Olena V; Smalyukh, Ivan I; Angelini, Thomas E; Purdy, Kirstin R; Golestanian, Ramin; Wong, Gerard C L

    2008-11-21

    We examine mixtures of DNA and filamentous actin (F-actin) as a model system of like-charged rigid rods and flexible chains. Confocal microscopy reveals the formation of elongated nematic F-actin domains reticulated via defect-free vertices into a network embedded in a mesh of random DNA. Synchrotron x-ray scattering results indicate that the DNA mesh squeezes the F-actin domains into a nematic state with an interactin spacing that decreases with increasing DNA concentration as d(actin) proportional, variantrho(DNA)(-1/2). Interestingly, the system changes from a counterion-controlled regime to a depletion-controlled regime with added salt, with drastic consequences for the osmotic pressure induced phase behavior.

  5. Treatment of ras-induced cancers by the F-actin-bundling drug MKT-077.

    PubMed

    Tikoo, A; Shakri, R; Connolly, L; Hirokawa, Y; Shishido, T; Bowers, B; Ye, L H; Kohama, K; Simpson, R J; Maruta, H

    2000-01-01

    A rhodacyanine dye called MKT-077 has shown a highly selective toxicity toward several distinct human malignant cell lines, including bladder carcinoma EJ, and has been subjected to clinical trials for cancer therapy. In the pancreatic carcinoma cell line CRL-1420, but not in normal African green monkey kidney cell line CV-1, it is selectively accumulated in mitochondria. However, both the specific oncogenes responsible for its selective toxicity toward cancer cells, and its target proteins in these cancer cells, still remain to be determined. This study was conducted using normal and ras-transformed NIH 3T3 fibroblasts to determine whether oncogenic ras mutants such as v-Ha-ras are responsible for the selective toxicity of MKT-077 and also to identify its targets, using its derivative called "compound 1" as a specific ligand. We have found that v-Ha-ras is responsible for the selective toxicity of MKT-077 in both in vitro and in vivo. Furthermore, we have identified and affinity purified at least two distinct proteins of 45 kD (p45) and 75 kD (p75), which bind MKT-077 in v-Ha-ras-transformed cells but not in parental normal cells. Microsequencing analysis has revealed that the p45 is a mixture of beta- and gamma-actin, whereas the p75 is HSC70, a constitutive member of the Hsp70 heat shock adenosine triphosphatase family, which inactivates the tumor suppressor p53. MKT-077 binds actin directly, bundles actin filaments by cross-linking, and blocks membrane ruffling. Like a few F-actin-bundling proteins such as HS1, alpha-actinin, and vinculin as well as F-actin cappers such as tensin and chaetoglobosin K (CK), the F-actin-bundling drug MKT-077 suppresses ras transformation by blocking membrane ruffling. These findings suggest that other selective F-actin-bundling/capping compounds are also potentially useful for the chemotherapy of ras-associated cancers.

  6. Coactosin-like protein, a human F-actin-binding protein: critical role of lysine-75.

    PubMed Central

    Provost, P; Doucet, J; Stock, A; Gerisch, G; Samuelsson, B; Rådmark, O

    2001-01-01

    Coactosin-like protein (CLP) was recently identified in a yeast two-hybrid screen using 5-lipoxygenase as bait. In the present study, we report the functional characterization of CLP as a human filamentous actin (F-actin)-binding protein. CLP mRNA shows a wide tissue distribution and is predominantly expressed in placenta, lung, kidney and peripheral-blood leucocytes. Endogenous CLP is localized in the cytosol of myeloid cells. Using a two-hybrid approach, actin was identified as a CLP-interacting protein. Binding experiments indicated that CLP associates with F-actin, but does not form a stable complex with globular actin. In transfected mammalian cells, CLP co-localized with actin stress fibres. CLP bound to actin filaments with a stoichiometry of 1:2 (CLP: actin subunits), but could be cross-linked to only one subunit of actin. Site-directed mutagenesis revealed the involvement of Lys(75) of CLP in actin binding, a residue highly conserved in related proteins and supposed to be exposed on the surface of the CLP protein. Our results identify CLP as a new human protein that binds F-actin in vitro and in vivo, and indicate that Lys(75) is essential for this interaction. PMID:11583571

  7. Toxoplasma gondii F-actin forms an extensive filamentous network required for material exchange and parasite maturation

    PubMed Central

    Periz, Javier; Whitelaw, Jamie; Harding, Clare; Gras, Simon; Del Rosario Minina, Mario Igor; Latorre-Barragan, Fernanda; Lemgruber, Leandro; Reimer, Madita Alice; Insall, Robert; Heaslip, Aoife; Meissner, Markus

    2017-01-01

    Apicomplexan actin is important during the parasite's life cycle. Its polymerization kinetics are unusual, permitting only short, unstable F-actin filaments. It has not been possible to study actin in vivo and so its physiological roles have remained obscure, leading to models distinct from conventional actin behaviour. Here a modified version of the commercially available actin-chromobody was tested as a novel tool for visualising F-actin dynamics in Toxoplasma gondii. Cb labels filamentous actin structures within the parasite cytosol and labels an extensive F-actin network that connects parasites within the parasitophorous vacuole and allows vesicles to be exchanged between parasites. In the absence of actin, parasites lack a residual body and inter-parasite connections and grow in an asynchronous and disorganized manner. Collectively, these data identify new roles for actin in the intracellular phase of the parasites lytic cycle and provide a robust new tool for imaging parasitic F-actin dynamics. DOI: http://dx.doi.org/10.7554/eLife.24119.001 PMID:28322189

  8. Direct Comparison of the Performance of Commonly Employed In Vivo F-actin Markers (Lifeact-YFP, YFP-mTn and YFP-FABD2) in Tobacco Pollen Tubes.

    PubMed

    Montes-Rodriguez, Adriana; Kost, Benedikt

    2017-01-01

    In vivo markers for F-actin organization and dynamics are extensively used to investigate cellular functions of the actin cytoskeleton, which are essential for plant development and pathogen defense. The most widely employed markers are GFP variants fused to F-actin binding domains of mouse talin (GFP-mTn), Arabidopsis fimbrin1 (GFP-FABD2) or yeast Abp140 (Lifeact-GFP). Although numerous reports describing applications of one, or occasionally more, of these markers, are available in the literature, a direct quantitative comparison of the performance of all three markers at different expression levels has been missing. Here, we analyze F-actin organization and growth rate displayed by tobacco pollen tubes expressing YFP-mTn, YFP-FABD2 or Lifeact-YFP at different levels. Results obtained establish that: (1) all markers strongly affect F-actin organization and cell expansion at high expression levels, (2) YFP-mTn and Lifeact-YFP non-invasively label the same F-actin structures (longitudinally oriented filaments in the shank, a subapical fringe) at low expression levels, (3) Lifeact-YFP displays a somewhat lower potential to affect F-actin organization and cell expansion than YFP-mTn, and (4) YFP-FABD2 generally fails to label F-actin structures at the pollen tube tip and affects F-actin organization as well as cell expansion already at lowest expression levels. As pointed out in the discussion, these observations (1) are also meaningful for F-actin labeling in other cell types, which generally respond less sensitively to F-actin perturbation than pollen tubes, (2) help selecting suitable markers for future F-actin labeling experiments, and (3) support the assessment of a substantial amount of published data resulting from such experiments.

  9. Direct Comparison of the Performance of Commonly Employed In Vivo F-actin Markers (Lifeact-YFP, YFP-mTn and YFP-FABD2) in Tobacco Pollen Tubes

    PubMed Central

    Montes-Rodriguez, Adriana; Kost, Benedikt

    2017-01-01

    In vivo markers for F-actin organization and dynamics are extensively used to investigate cellular functions of the actin cytoskeleton, which are essential for plant development and pathogen defense. The most widely employed markers are GFP variants fused to F-actin binding domains of mouse talin (GFP-mTn), Arabidopsis fimbrin1 (GFP-FABD2) or yeast Abp140 (Lifeact-GFP). Although numerous reports describing applications of one, or occasionally more, of these markers, are available in the literature, a direct quantitative comparison of the performance of all three markers at different expression levels has been missing. Here, we analyze F-actin organization and growth rate displayed by tobacco pollen tubes expressing YFP-mTn, YFP-FABD2 or Lifeact-YFP at different levels. Results obtained establish that: (1) all markers strongly affect F-actin organization and cell expansion at high expression levels, (2) YFP-mTn and Lifeact-YFP non-invasively label the same F-actin structures (longitudinally oriented filaments in the shank, a subapical fringe) at low expression levels, (3) Lifeact-YFP displays a somewhat lower potential to affect F-actin organization and cell expansion than YFP-mTn, and (4) YFP-FABD2 generally fails to label F-actin structures at the pollen tube tip and affects F-actin organization as well as cell expansion already at lowest expression levels. As pointed out in the discussion, these observations (1) are also meaningful for F-actin labeling in other cell types, which generally respond less sensitively to F-actin perturbation than pollen tubes, (2) help selecting suitable markers for future F-actin labeling experiments, and (3) support the assessment of a substantial amount of published data resulting from such experiments. PMID:28824684

  10. Cyclase-associated protein (CAP) acts directly on F-actin to accelerate cofilin-mediated actin severing across the range of physiological pH.

    PubMed

    Normoyle, Kieran P M; Brieher, William M

    2012-10-12

    Fast actin depolymerization is necessary for cells to rapidly reorganize actin filament networks. Utilizing a Listeria fluorescent actin comet tail assay to monitor actin disassembly rates, we observed that although a mixture of actin disassembly factors (cofilin, coronin, and actin-interacting protein 1 is sufficient to disassemble actin comet tails in the presence of physiological G-actin concentrations this mixture was insufficient to disassemble actin comet tails in the presence of physiological F-actin concentrations. Using biochemical complementation, we purified cyclase-associated protein (CAP) from thymus extracts as a factor that protects against the inhibition of excess F-actin. CAP has been shown to participate in actin dynamics but has been thought to act by liberating cofilin from ADP·G-actin monomers to restore cofilin activity. However, we found that CAP augments cofilin-mediated disassembly by accelerating the rate of cofilin-mediated severing. We also demonstrated that CAP acts directly on F-actin and severs actin filaments at acidic, but not neutral, pH. At the neutral pH characteristic of cytosol in most mammalian cells, we demonstrated that neither CAP nor cofilin are capable of severing actin filaments. However, the combination of CAP and cofilin rapidly severed actin at all pH values across the physiological range. Therefore, our results reveal a new function for CAP in accelerating cofilin-mediated actin filament severing and provide a mechanism through which cells can maintain high actin turnover rates without having to alkalinize cytosol, which would affect many biochemical reactions beyond actin depolymerization.

  11. Cyclase-associated Protein (CAP) Acts Directly on F-actin to Accelerate Cofilin-mediated Actin Severing across the Range of Physiological pH*

    PubMed Central

    Normoyle, Kieran P. M.; Brieher, William M.

    2012-01-01

    Fast actin depolymerization is necessary for cells to rapidly reorganize actin filament networks. Utilizing a Listeria fluorescent actin comet tail assay to monitor actin disassembly rates, we observed that although a mixture of actin disassembly factors (cofilin, coronin, and actin-interacting protein 1 is sufficient to disassemble actin comet tails in the presence of physiological G-actin concentrations this mixture was insufficient to disassemble actin comet tails in the presence of physiological F-actin concentrations. Using biochemical complementation, we purified cyclase-associated protein (CAP) from thymus extracts as a factor that protects against the inhibition of excess F-actin. CAP has been shown to participate in actin dynamics but has been thought to act by liberating cofilin from ADP·G-actin monomers to restore cofilin activity. However, we found that CAP augments cofilin-mediated disassembly by accelerating the rate of cofilin-mediated severing. We also demonstrated that CAP acts directly on F-actin and severs actin filaments at acidic, but not neutral, pH. At the neutral pH characteristic of cytosol in most mammalian cells, we demonstrated that neither CAP nor cofilin are capable of severing actin filaments. However, the combination of CAP and cofilin rapidly severed actin at all pH values across the physiological range. Therefore, our results reveal a new function for CAP in accelerating cofilin-mediated actin filament severing and provide a mechanism through which cells can maintain high actin turnover rates without having to alkalinize cytosol, which would affect many biochemical reactions beyond actin depolymerization. PMID:22904322

  12. F-actin has a very high calorimetric unfolding enthalpy.

    PubMed

    Gicquaud, C R; Aubin, P H; Heppell, B; St-Gelais, F

    2005-08-19

    The thermal unfolding of F-actin was studied using differential scanning calorimetry. Heat denatures F-actin in two steps. The first is endothermic and corresponds to the unfolding of the peptide chain, while the second is exothermic and is due to the aggregation of the unfolded molecules. The aspect of the thermogram is influenced by the concentration of the protein. For concentrations around 1mg/ml, the steps are superimposed, while the two steps are separated at very low concentrations. It thus becomes possible to estimate the calorimetric enthalpy for the unfolding step. The enthalpy of unfolding is 64 MJ/mol, or 1400 J/g. This value is considerably higher than those mentioned in the literature for the denaturation of actin and other proteins, which are in the range of 25-30 J/g. The large amount of energy required to unfold the molecule of F-actin could be an adaptation of its role as a protein that transmits forces, and consequently must be very resistant to mechanical constraints.

  13. Actin-Capping Protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila.

    PubMed

    Fernández, Beatriz García; Gaspar, Pedro; Brás-Pereira, Catarina; Jezowska, Barbara; Rebelo, Sofia Raquel; Janody, Florence

    2011-06-01

    The conserved Hippo tumor suppressor pathway is a key kinase cascade that controls tissue growth by regulating the nuclear import and activity of the transcription co-activator Yorkie. Here, we report that the actin-Capping Protein αβ heterodimer, which regulates actin polymerization, also functions to suppress inappropriate tissue growth by inhibiting Yorkie activity. Loss of Capping Protein activity results in abnormal accumulation of apical F-actin, reduced Hippo pathway activity and the ectopic expression of several Yorkie target genes that promote cell survival and proliferation. Reduction of two other actin-regulatory proteins, Cofilin and the cyclase-associated protein Capulet, cause abnormal F-actin accumulation, but only the loss of Capulet, like that of Capping Protein, induces ectopic Yorkie activity. Interestingly, F-actin also accumulates abnormally when Hippo pathway activity is reduced or abolished, independently of Yorkie activity, whereas overexpression of the Hippo pathway component expanded can partially reverse the abnormal accumulation of F-actin in cells depleted for Capping Protein. Taken together, these findings indicate a novel interplay between Hippo pathway activity and actin filament dynamics that is essential for normal growth control.

  14. F-actin flow drives affinity maturation and spatial organization of LFA-1 at the immunological synapse

    PubMed Central

    Comrie, William A.; Babich, Alexander

    2015-01-01

    Integrin-dependent interactions between T cells and antigen-presenting cells are vital for proper T cell activation, effector function, and memory. Regulation of integrin function occurs via conformational change, which modulates ligand affinity, and receptor clustering, which modulates valency. Here, we show that conformational intermediates of leukocyte functional antigen 1 (LFA-1) form a concentric array at the immunological synapse. Using an inhibitor cocktail to arrest F-actin dynamics, we show that organization of this array depends on F-actin flow and ligand mobility. Furthermore, F-actin flow is critical for maintaining the high affinity conformation of LFA-1, for increasing valency by recruiting LFA-1 to the immunological synapse, and ultimately for promoting intracellular cell adhesion molecule 1 (ICAM-1) binding. Finally, we show that F-actin forces are opposed by immobilized ICAM-1, which triggers LFA-1 activation through a combination of induced fit and tension-based mechanisms. Our data provide direct support for a model in which the T cell actin network generates mechanical forces that regulate LFA-1 activity at the immunological synapse. PMID:25666810

  15. A Theoretical Model for F-actin Remodeling in Vascular Smooth Muscle Cells Subjected to Cyclic Stretch

    PubMed Central

    Na, S.; Meininger, G.A.; Humphrey, J.D.

    2007-01-01

    A constrained mixture theory model was developed and used to estimate remodeling of F-actin in vascular smooth muscle cells that were subjected to 10% equibiaxial stretching for up to 30 minutes. The model was based on a synthesis of data on time-dependent changes in atomic force microscopy measured cell stiffness and immunofluorescence measured focal adhesion associated vinculin as well as data on stress fiber stiffness and pre-stretch. Results suggest that an observed acute (after 2 minutes of stretching) increase in cell stiffness is consistent with an increased stretch of the originally present F-actin plus an assembly of new F-actin having nearly homeostatic values of stretch. Moreover, the subsequent (after 30 minutes of stretching) decrease in cell stiffness back towards the baseline value is consistent with a replacement of the overstretched original filaments with the new (reassembled), less stretched filaments. That is, overall cell response is consistent with a recently proposed concept of “tensional homeostasis” whereby cells seek to maintain constant certain mechanical factors via a remodeling of intracellular and transmembrane proteins. Although there is a need to refine the model based on more comprehensive data sets, using multiple experimental approaches, the present results suggest that a constrained mixture theory can capture salient features of the dynamics of F-actin remodeling and that it offers some advantages over many past methods of modeling, particularly those based on classical linearized viscoelasticity. PMID:17240401

  16. Quantitative apical membrane proteomics reveals vasopressin-induced actin dynamics in collecting duct cells

    PubMed Central

    Loo, Chin-San; Chen, Cheng-Wei; Wang, Po-Jen; Chen, Pei-Yu; Lin, Shu-Yu; Khoo, Kay-Hooi; Fenton, Robert A.; Knepper, Mark A.; Yu, Ming-Jiun

    2013-01-01

    In kidney collecting duct cells, filamentous actin (F-actin) depolymerization is a critical step in vasopressin-induced trafficking of aquaporin-2 to the apical plasma membrane. However, the molecular components of this response are largely unknown. Using stable isotope-based quantitative protein mass spectrometry and surface biotinylation, we identified 100 proteins that showed significant abundance changes in the apical plasma membrane of mouse cortical collecting duct cells in response to vasopressin. Fourteen of these proteins are involved in actin cytoskeleton regulation, including actin itself, 10 actin-associated proteins, and 3 regulatory proteins. Identified were two integral membrane proteins (Clmn, Nckap1) and one actin-binding protein (Mpp5) that link F-actin to the plasma membrane, five F-actin end-binding proteins (Arpc2, Arpc4, Gsn, Scin, and Capzb) involved in F-actin reorganization, and two actin adaptor proteins (Dbn1, Lasp1) that regulate actin cytoskeleton organization. There were also protease (Capn1), protein kinase (Cdc42bpb), and Rho guanine nucleotide exchange factor 2 (Arhgef2) that mediate signal-induced F-actin changes. Based on these findings, we devised a live-cell imaging method to observe vasopressin-induced F-actin dynamics in polarized mouse cortical collecting duct cells. In response to vasopressin, F-actin gradually disappeared near the center of the apical plasma membrane while consolidating laterally near the tight junction. This F-actin peripheralization was blocked by calcium ion chelation. Vasopressin-induced apical aquaporin-2 trafficking and forskolin-induced water permeability increase were blocked by F-actin disruption. In conclusion, we identified a vasopressin-regulated actin network potentially responsible for vasopressin-induced apical F-actin dynamics that could explain regulation of apical aquaporin-2 trafficking and water permeability increase. PMID:24085853

  17. An atomic model of the tropomyosin cable on F-actin.

    PubMed

    Orzechowski, Marek; Li, Xiaochuan Edward; Fischer, Stefan; Lehman, William

    2014-08-05

    Tropomyosin regulates a wide variety of actin filament functions and is best known for the role that it plays together with troponin in controlling muscle activity. For effective performance on actin filaments, adjacent 42-nm-long tropomyosin molecules are joined together by a 9- to 10-residue head-to-tail overlapping domain to form a continuous cable that wraps around the F-actin helix. Yet, despite the apparent simplicity of tropomyosin's coiled-coil structure and its well-known periodic association with successive actin subunits along F-actin, the structure of the tropomyosin cable on actin is uncertain. This is because the conformation of the overlap region that joins neighboring molecules is poorly understood, thus leaving a significant gap in our understanding of thin-filament structure and regulation. However, recent molecular-dynamics simulations of overlap segments defined their overall shape and provided unique and sufficient cues to model the whole actin-tropomyosin filament assembly in atomic detail. In this study, we show that these MD structures merge seamlessly onto the ends of tropomyosin coiled-coils. Adjacent tropomyosin molecules can then be joined together to provide a comprehensive model of the tropomyosin cable running continuously on F-actin. The resulting complete model presented here describes for the first time (to our knowledge) an atomic-level structure of αα-striated muscle tropomyosin bound to an actin filament that includes the critical overlap domain. Thus, the model provides a structural correlate to evaluate thin-filament mechanics, self-assembly mechanisms, and the effect of disease-causing mutations.

  18. Microstructural model for cyclic hardening in F-actin networks crosslinked by α-actinin

    NASA Astrophysics Data System (ADS)

    López-Menéndez, Horacio; Rodríguez, José Félix

    2016-06-01

    The rheology of F-actin networks has attracted a great attention during the last years. In order to gain a complete understanding of the rheological properties of these novel materials, it is necessary the study in a large deformations regime to alter their internal structure. In this sense, Schmoller et al. (2010) showed that the reconstituted networks of F-actin crosslinked with α-actinin unexpectedly harden when they are subjected to a cyclical shear. This observation contradicts the expected Mullins effect observed in most soft materials, such as rubber and living tissues, where a pronounced softening is observed when they are cyclically deformed. We think that the key to understand this stunning effect is the gelation process. To define it, the most relevant constituents are the chemical crosslinks - α-actinin -, the physical crosslinks - introduced by the entanglement of the semiflexible network - and the interaction between them. As a consequence of this interaction, a pre-stressed network emerges and introduces a feedback effect, where the pre-stress also regulates the adhesion energy of the α-actinin, setting the structure in a metastable reference configuration. Therefore, the external loads and the evolvement of the trapped stress drive the microstructural changes during the cyclic loading protocol. In this work, we propose a micromechanical model into the framework of nonlinear continuum mechanics. The mechanics of the F-actin filaments is modelled using the wormlike chain model for semiflexible filaments and the gelation process is modelled as mesoscale dynamics for the α-actinin and physical crosslink. The model has been validated with reported experimental results.

  19. Disorganization of F-actin cytoskeleton precedes vacuolar disruption in pollen tubes during the in vivo self-incompatibility response in Nicotiana alata

    PubMed Central

    Roldán, Juan A.; Rojas, Hernán J.; Goldraij, Ariel

    2012-01-01

    Background and Aims The integrity of actin filaments (F-actin) is essential for pollen-tube growth. In S-RNase-based self-incompatibility (SI), incompatible pollen tubes are inhibited in the style. Consequently, research efforts have focused on the alterations of pollen F-actin cytoskeleton during the SI response. However, so far, these studies were carried out in in vitro-grown pollen tubes. This study aimed to assess the timing of in vivo changes of pollen F-actin cytoskeleton taking place after compatible and incompatible pollinations in Nicotiana alata. To our knowledge, this is the first report of the in vivo F-actin alterations occurring during pollen rejection in the S-RNase-based SI system. Methods The F-actin cytoskeleton and the vacuolar endomembrane system were fluorescently labelled in compatibly and incompatibly pollinated pistils at different times after pollination. The alterations induced by the SI reaction in pollen tubes were visualized by confocal laser scanning microscopy. Key Results Early after pollination, about 70 % of both compatible and incompatible pollen tubes showed an organized pattern of F-actin cables along the main axis of the cell. While in compatible pollinations this percentage was unchanged until pollen tubes reached the ovary, pollen tubes of incompatible pollinations underwent gradual and progressive F-actin disorganization. Colocalization of the F-actin cytoskeleton and the vacuolar endomembrane system, where S-RNases are compartmentalized, revealed that by day 6 after incompatible pollination, when the pollen-tube growth was already arrested, about 80 % of pollen tubes showed disrupted F-actin but a similar percentage had intact vacuolar compartments. Conclusions The results indicate that during the SI response in Nicotiana, disruption of the F-actin cytoskeleton precedes vacuolar membrane breakdown. Thus, incompatible pollen tubes undergo a sequential disorganization process of major subcellular structures. Results also

  20. In vitro inhibition of incompatible pollen tubes in Nicotiana alata involves the uncoupling of the F-actin cytoskeleton and the endomembrane trafficking system.

    PubMed

    Roldán, Juan A; Rojas, Hernán J; Goldraij, Ariel

    2015-01-01

    In the S-RNase-based self-incompatibility system, subcellular events occurring in the apical region of incompatible pollen tubes during the pollen rejection process are poorly understood. F-actin dynamics and endomembrane trafficking are crucial for polar growth, which is temporally and spatially controlled in the tip region of pollen tubes. Thus, we developed a simple in vitro assay to study the changes in the F-actin cytoskeleton and the endomembrane system at the apical region of incompatible pollen tubes in Nicotiana alata. Growth but not germination of pollen tubes of S c₁₀-, S₇₀-, and S₇₅-haplotypes was selectively inhibited by style extracts carrying the same haplotypes. Pollen F-actin cytoskeleton and endomembrane system, visualized by fluorescent markers, were normal during the initial 60 min of pollen culture in the presence of compatible and incompatible style extracts. Additional culture resulted in complete growth arrest and critical alterations in the integrity of the F-actin cytoskeleton and the endomembrane system of incompatible pollen tubes. The F-actin ring and the V-shaped zone disappeared from the apical region, while distorted F-actin cables and progressive formation of membrane aggregates evolved in the subapical region and the shank. The vacuolar network of incompatible pollen tubes invaded the tip region, but vacuolar membrane integrity remained mostly unaffected. The polar growth machinery of incompatible pollen tubes was uncoupled, as evidenced by the severe disruption of colocalization between the F-actin cytoskeleton and the endomembrane compartments. A model of pollen rejection integrating the main subcellular events occurring in incompatible pollen is discussed.

  1. Mechanics of F-actin characterized with microfabricated cantilevers.

    PubMed Central

    Liu, Xiumei; Pollack, Gerald H

    2002-01-01

    In this report we characterized the longitudinal elasticity of single actin filaments manipulated by novel silicon-nitride microfabricated levers. Single actin filaments were stretched from zero tension to maximal physiological tension, P(0). The obtained length-tension relation was nonlinear in the low-tension range (0-50 pN) with a resultant strain of approximately 0.4-0.6% and then became linear at moderate to high tensions (approximately 50-230 pN). In this region, the stretching stiffness of a single rhodamine-phalloidin-labeled, 1-microm-long F-actin is 34.5 +/- 3.5 pN/nm. Such a length-tension relation could be characterized by an entropic-enthalpic worm-like chain model, which ascribes most of the energy consumed in the nonlinear portion to overcoming thermal undulations arising from the filament's interaction with surrounding solution and the linear portion to the intrinsic stretching elasticity. By fitting the experimental data with such a worm-like chain model, an estimation of persistence length of approximately 8.75 microm was derived. These results suggest that F-actin is more compliant than previously thought and that thin filament compliance may account for a substantial fraction of the sarcomere's elasticity. PMID:12414703

  2. Protein Kinase D1 regulates Cofilin mediated F-actin reorganization and cell motility via Slingshot

    PubMed Central

    Eiseler, Tim; Döppler, Heike; Yan, Irene K.; Kitatani, Kanae; Mizuno, Kensaku; Storz, Peter

    2009-01-01

    Dynamic actin remodelling processes at the leading edge of migrating tumour cells are concerted events controlled by a fine-tuned temporal and spatial interplay of kinases and phosphatases. Actin severing is regulated by ADF/Cofilin which regulates stimulus-induced lamellipodia protrusion and directed cell motility. Cofilin is activated by dephosphorylation via phosphatases of the slingshot (SSH) family. SSH activity is strongly increased by its binding to filamentous actin (F-actin), however, other upstream regulators remain unknown. We show that in response to RhoA activation, Protein Kinase D1 (PKD1) phosphorylates the SSH enzyme SSH1L at a serine residue located in its actin binding motif. This generates a 14-3-3 binding motif, blocks the localization of SSH1L to F-actin-rich structures in the lamellipodium by sequestering it in the cytoplasm. Consequently, expression of constitutively-active PKD1 in invasive tumour cells enhanced phosphorylation of cofilin and effectively blocked the formation of free actin filament barbed ends and directed cell migration. PMID:19329994

  3. Oxidation of F-actin controls the terminal steps of cytokinesis.

    PubMed

    Frémont, Stéphane; Hammich, Hussein; Bai, Jian; Wioland, Hugo; Klinkert, Kerstin; Rocancourt, Murielle; Kikuti, Carlos; Stroebel, David; Romet-Lemonne, Guillaume; Pylypenko, Olena; Houdusse, Anne; Echard, Arnaud

    2017-02-23

    Cytokinetic abscission, the terminal step of cell division, crucially depends on the local constriction of ESCRT-III helices after cytoskeleton disassembly. While the microtubules of the intercellular bridge are cut by the ESCRT-associated enzyme Spastin, the mechanism that clears F-actin at the abscission site is unknown. Here we show that oxidation-mediated depolymerization of actin by the redox enzyme MICAL1 is key for ESCRT-III recruitment and successful abscission. MICAL1 is recruited to the abscission site by the Rab35 GTPase through a direct interaction with a flat three-helix domain found in MICAL1 C terminus. Mechanistically, in vitro assays on single actin filaments demonstrate that MICAL1 is activated by Rab35. Moreover, in our experimental conditions, MICAL1 does not act as a severing enzyme, as initially thought, but instead induces F-actin depolymerization from both ends. Our work reveals an unexpected role for oxidoreduction in triggering local actin depolymerization to control a fundamental step of cell division.

  4. Periodic F-actin structures shape the neck of dendritic spines

    PubMed Central

    Bär, Julia; Kobler, Oliver; van Bommel, Bas; Mikhaylova, Marina

    2016-01-01

    Most of the excitatory synapses on principal neurons of the forebrain are located on specialized structures called dendritic spines. Their morphology, comprising a spine head connected to the dendritic branch via a thin neck, provides biochemical and electrical compartmentalization during signal transmission. Spine shape is defined and tightly controlled by the organization of the actin cytoskeleton. Alterations in synaptic strength correlate with changes in the morphological appearance of the spine head and neck. Therefore, it is important to get a better understanding of the nanoscale organization of the actin cytoskeleton in dendritic spines. A periodic organization of the actin/spectrin lattice was recently discovered in axons and a small fraction of dendrites using super-resolution microscopy. Here we use a small probe phalloidin-Atto647N, to label F-actin in mature hippocampal primary neurons and in living hippocampal slices. STED nanoscopy reveals that in contrast to β-II spectrin antibody labelling, phalloidin-Atto647N stains periodic actin structures in all dendrites and the neck of nearly all dendritic spines, including filopodia-like spines. These findings extend the current view on F-actin organization in dendritic spines and may provide new avenues for understanding the structural changes in the spine neck during induction of synaptic plasticity, active organelle transport or tethering. PMID:27841352

  5. Buckling-induced F-actin fragmentation modulates the contraction of active cytoskeletal networks.

    PubMed

    Li, Jing; Biel, Thomas; Lomada, Pranith; Yu, Qilin; Kim, Taeyoon

    2017-04-11

    Actomyosin contractility originating from interactions between F-actin and myosin facilitates various structural reorganizations of the actin cytoskeleton. Cross-linked actomyosin networks show a tendency to contract to single or multiple foci, which has been investigated extensively in numerous studies. Recently, it was suggested that suppression of F-actin buckling via an increase in bending rigidity significantly reduces network contraction. In this study, we demonstrate that networks may show the largest contraction at intermediate bending rigidity, not at the lowest rigidity, if filaments are severed by buckling arising from myosin activity as demonstrated in recent experiments; if filaments are very flexible, frequent severing events can severely deteriorate network connectivity, leading to the formation of multiple small foci and low network contraction. By contrast, if filaments are too stiff, the networks exhibit minimal contraction due to the inhibition of filament buckling. This study reveals that buckling-induced filament severing can modulate the contraction of active cytoskeletal networks, which has been neglected to date.

  6. Oxidation of F-actin controls the terminal steps of cytokinesis

    PubMed Central

    Frémont, Stéphane; Hammich, Hussein; Bai, Jian; Wioland, Hugo; Klinkert, Kerstin; Rocancourt, Murielle; Kikuti, Carlos; Stroebel, David; Romet-Lemonne, Guillaume; Pylypenko, Olena; Houdusse, Anne; Echard, Arnaud

    2017-01-01

    Cytokinetic abscission, the terminal step of cell division, crucially depends on the local constriction of ESCRT-III helices after cytoskeleton disassembly. While the microtubules of the intercellular bridge are cut by the ESCRT-associated enzyme Spastin, the mechanism that clears F-actin at the abscission site is unknown. Here we show that oxidation-mediated depolymerization of actin by the redox enzyme MICAL1 is key for ESCRT-III recruitment and successful abscission. MICAL1 is recruited to the abscission site by the Rab35 GTPase through a direct interaction with a flat three-helix domain found in MICAL1 C terminus. Mechanistically, in vitro assays on single actin filaments demonstrate that MICAL1 is activated by Rab35. Moreover, in our experimental conditions, MICAL1 does not act as a severing enzyme, as initially thought, but instead induces F-actin depolymerization from both ends. Our work reveals an unexpected role for oxidoreduction in triggering local actin depolymerization to control a fundamental step of cell division. PMID:28230050

  7. Periodic F-actin structures shape the neck of dendritic spines.

    PubMed

    Bär, Julia; Kobler, Oliver; van Bommel, Bas; Mikhaylova, Marina

    2016-11-14

    Most of the excitatory synapses on principal neurons of the forebrain are located on specialized structures called dendritic spines. Their morphology, comprising a spine head connected to the dendritic branch via a thin neck, provides biochemical and electrical compartmentalization during signal transmission. Spine shape is defined and tightly controlled by the organization of the actin cytoskeleton. Alterations in synaptic strength correlate with changes in the morphological appearance of the spine head and neck. Therefore, it is important to get a better understanding of the nanoscale organization of the actin cytoskeleton in dendritic spines. A periodic organization of the actin/spectrin lattice was recently discovered in axons and a small fraction of dendrites using super-resolution microscopy. Here we use a small probe phalloidin-Atto647N, to label F-actin in mature hippocampal primary neurons and in living hippocampal slices. STED nanoscopy reveals that in contrast to β-II spectrin antibody labelling, phalloidin-Atto647N stains periodic actin structures in all dendrites and the neck of nearly all dendritic spines, including filopodia-like spines. These findings extend the current view on F-actin organization in dendritic spines and may provide new avenues for understanding the structural changes in the spine neck during induction of synaptic plasticity, active organelle transport or tethering.

  8. Relationship of F-actin distribution to development of polar shape in human polymorphonuclear neutrophils

    PubMed Central

    1992-01-01

    Polymerization of actin has been associated with development of polar shape in human neutrophils (PMN). To examine the relation of filamentous actin (F-actin) distribution to shape change in PMN, we developed a method using computerized video image analysis and fluorescence microscopy to quantify distribution of F-actin in single cells. PMN were labeled with fluorescent probe NBD-phallicidin to measure filamentous actin and Texas red to assess cell thickness. We show that Texas red fluorescence is a reasonable measure of cell thickness and that correction of the NBD-phallicidin image for cell thickness using the Texas red image permits assessment of focal F-actin content. Parameters were derived that quantify total F-actin content, movement of F-actin away from the center of the cell, asymmetry of F- actin distribution, and change from round to polar shape. The sequence of change in F-actin distribution and its relation to development of polar shape in PMN was determined using these parameters. After stimulation with chemotactic peptide at 25 degrees C, F-actin polymerized first at the rim of the PMN. This was followed by development of asymmetry of F-actin distribution and change to polar shape. The dominant pseudopod developed first in the region of lower F- actin concentration followed later by polymerization of actin in the end of the developed pseudopod. Asymmetric F-actin distribution was detected in round PMN before development of polar shape. Based upon these data, asymmetric distribution of F-actin is coincident with and probably precedes development of polar shape in PMN stimulated in suspension by chemotactic peptide. PMID:1577856

  9. Tropomyosin-1 protects endothelial cell-cell junctions against cigarette smoke extract through F-actin stabilization in EA.hy926 cell line.

    PubMed

    Gagat, Maciej; Grzanka, Dariusz; Izdebska, Magdalena; Sroka, Wiktor Dariusz; Marszałł, Michał Piotr; Grzanka, Alina

    2014-05-01

    The aim of the study was to estimate the effect of cigarette smoke extract (CSE) on EA.hy926 endothelial cells in culture in the context of maintenance of cell-cell junctions through the structural stabilization of the actin cytoskeleton. In the present study, F-actin was stabilized by the overexpression of tropomyosin-1, which is known to stabilize actin filaments in muscle and non-muscle cells. Our study showed that the stabilization of F-actin significantly increased the survival of cells treated with 25% CSE. In addition, after stabilization of F-actin the migratory potential of EA.hy926 cells subjected to CSE treatment was increased. Our results also showed increased fluorescence intensity of alpha- and beta-catenin after CSE treatment in cells which had stabilized F-actin. Analysis of fluorescence intensity of Zonula occludens-1 did not reveal any significant differences when EA.hy926 cells overexpressing tropomyosin-1 were compared with those lacking overexpression. It would appear that overexpression of tropomyosin-1 preserved the structure of actin filaments in the cells treated with CSE. In conclusion, the present study demonstrates that stabilization of F-actin protects EA.hy926 cells against CSE-induced loss of both adherens and tight junctions. The data presented in this study suggest that overexpression of tropomyosin-1 stabilizes the organizational structure of actin filaments and helps preserve the endothelial barrier function under conditions of strong oxidative stress.

  10. Structural Basis for pH-mediated Regulation of F-actin Severing by Gelsolin Domain 1

    PubMed Central

    Fan, Jing-song; Goh, Honzhen; Ding, Ke; Xue, Bo; Robinson, Robert C.; Yang, Daiwen

    2017-01-01

    Six-domain gelsolin regulates actin structural dynamics through its abilities to sever, cap and uncap F-actin. These activities are modulated by various cellular parameters like Ca2+ and pH. Until now, only the molecular activation mechanism of gelsolin by Ca2+ has been understood relatively well. The fragment comprising the first domain and six residues from the linker region into the second domain has been shown to be similar to the full-length protein in F-actin severing activity in the absence of Ca2+ at pH 5. To understand how this gelsolin fragment is activated for F-actin severing by lowering pH, we solved its NMR structures at both pH 7.3 and 5 in the absence of Ca2+ and measured the pKa values of acidic amino acid residues and histidine residues. The overall structure and dynamics of the fragment are not affected significantly by pH. Nevertheless, local structural changes caused by protonation of His29 and Asp109 result in the activation on lowering the pH, and protonation of His151 directly effects filament binding since it resides in the gelsolin/actin interface. Mutagenesis studies support that His29, Asp109 and His151 play important roles in the pH-dependent severing activity of the gelsolin fragment. PMID:28349924

  11. Receptor for Advanced Glycation End Products (RAGE) Prevents Endothelial Cell Membrane Resealing and Regulates F-actin Remodeling in a β-Catenin-dependent Manner*

    PubMed Central

    Xiong, Fei; Leonov, Sergey; Howard, Amber Cyan; Xiong, Shan; Zhang, Bin; Mei, Lin; McNeil, Paul; Simon, Sylvia; Xiong, Wen-Cheng

    2011-01-01

    Receptor for advanced glycation end products (RAGE), an immunoglobin superfamily cell surface receptor, contributes to the vascular pathology associated with multiple disorders, including Alzheimer disease (AD), diabetic complications, and inflammatory conditions. However, the underlying mechanisms remain largely unclear. Here, using the human umbilical vein endothelial cell line (ECV-304) expressing human RAGE, we report that RAGE expression leads to an altered F-actin organization and impaired membrane resealing. To investigate the underlying mechanisms, we showed that RAGE expression increases β-catenin level, which decreases F-actin stress fibers and attenuates plasma membrane resealing. These results thus suggest a negative function for RAGE in endothelial cell membrane repair and reveal a new mechanism underlying RAGE regulation of F-actin remodeling and membrane resealing. PMID:21844192

  12. Environmental toxicants perturb human Sertoli cell adhesive function via changes in F-actin organization mediated by actin regulatory proteins.

    PubMed

    Xiao, Xiang; Mruk, Dolores D; Tang, Elizabeth I; Wong, Chris K C; Lee, Will M; John, Constance M; Turek, Paul J; Silvestrini, Bruno; Cheng, C Yan

    2014-06-01

    Can human Sertoli cells cultured in vitro and that have formed an epithelium be used as a model to monitor toxicant-induced junction disruption and to better understand the mechanism(s) by which toxicants disrupt cell adhesion at the Sertoli cell blood-testis barrier (BTB)? Our findings illustrate that human Sertoli cells cultured in vitro serve as a reliable system to monitor the impact of environmental toxicants on the BTB function. Suspicions of a declining trend in semen quality and a concomitant increase in exposures to environmental toxicants over the past decades reveal the need of an in vitro system that efficiently and reliably monitors the impact of toxicants on male reproductive function. Furthermore, studies in rodents have confirmed that environmental toxicants impede Sertoli cell BTB function in vitro and in vivo. We examined the effects of two environmental toxicants: cadmium chloride (0.5-20 µM) and bisphenol A (0.4-200 µM) on human Sertoli cell function. Cultured Sertoli cells from three men were used in this study, which spanned an 18-month period. Human Sertoli cells from three subjects were cultured in F12/DMEM containing 5% fetal bovine serum. Changes in protein expression were monitored by immunoblotting using specific antibodies. Immunofluorescence analyses were used to assess changes in the distribution of adhesion proteins, F-actin and actin regulatory proteins following exposure to two toxicants: cadmium chloride and bisphenol A (BPA). Human Sertoli cells were sensitive to cadmium and BPA toxicity. Changes in the localization of cell adhesion proteins were mediated by an alteration of the actin-based cytoskeleton. This alteration of F-actin network in Sertoli cells as manifested by truncation and depolymerization of actin microfilaments at the Sertoli cell BTB was caused by mislocalization of actin filament barbed end capping and bundling protein Eps8, and branched actin polymerization protein Arp3. Besides impeding actin dynamics

  13. Comparisons of Endothelial Cell G- and F-Actin Distribution in Situ and in Vitro

    DTIC Science & Technology

    1993-01-01

    treatment (Fig. 3D) indicated Bottaro, D)., Shepro. D., Peterson. S. and flechtman. H. 13. 1986. Serotonin , norepinephrine and his-that the F-actin of...Correlation among endothelial cell shape. D does niot produce net depolyrmcrization of ac- F-actin arrAngement and prostacyclin synthe - tin

  14. Latrunculin B-induced plant dwarfism: Plant cell elongation is F-actin-dependent.

    PubMed

    Baluska, F; Jasik, J; Edelmann, H G; Salajová, T; Volkmann, D

    2001-03-01

    Marine macrolides latrunculins are highly specific toxins which effectively depolymerize actin filaments (generally F-actin) in all eukaryotic cells. We show that latrunculin B is effective on diverse cell types in higher plants and describe the use of this drug in probing F-actin-dependent growth and in plant development-related processes. In contrast to other eukaryotic organisms, cell divisions occurs in plant cells devoid of all actin filaments. However, the alignment of the division planes is often distorted. In addition to cell division, postembryonic development and morphogenesis also continue in the absence of F-actin. These experimental data suggest that F-actin is of little importance in the morphogenesis of higher plants, and that plants can develop more or less normally without F-actin. In contrast, F-actin turns out to be essential for cell elongation. When latrunculin B was added during germination, morphologically normal Arabidopsis and rye seedlings developed but, as a result of the absence of cell elongation, these were stunted, resembling either genetic dwarfs or environmental bonsai plants. In conclusion, F-actin is essential for the plant cell elongation, while this F-actin-dependent cell elongation is not an essential feature of plant-specific developmental programs.

  15. F-actin dismantling through a Redox-driven synergy between Mical and cofilin

    PubMed Central

    Grintsevich, Elena E.; Yesilyurt, Hunkar Gizem; Rich, Shannon K.; Hung, Ruei-Jiun; Terman, Jonathan R.; Reisler, Emil

    2016-01-01

    Numerous cellular functions depend on actin filament (F-actin) disassembly. The best-characterized disassembly proteins, the ADF/cofilins/twinstar, sever filaments and recycle monomers to promote actin assembly. Cofilin is also a relatively weak actin disassembler, posing questions about mechanisms of cellular F-actin destabilization. Here we uncover a key link to targeted F-actin disassembly by finding that F-actin is efficiently dismantled through a post-translational-mediated synergism between cofilin and the actin-oxidizing enzyme Mical. We find that Mical-mediated oxidation of actin improves cofilin binding to filaments, where their combined effect dramatically accelerates F-actin disassembly compared to either effector alone. This synergism is also necessary and sufficient for F-actin disassembly in vivo, magnifying the effects of both Mical and cofilin on cellular remodeling, axon guidance, and Semaphorin/Plexin repulsion. Mical and cofilin, therefore, form a Redox-dependent synergistic pair that promotes F-actin instability by rapidly dismantling F-actin and generating post-translationally modified actin that has altered assembly properties. PMID:27454820

  16. Differential requirement of F-actin and microtubule cytoskeleton in cue-induced local protein synthesis in axonal growth cones.

    PubMed

    Piper, Michael; Lee, Aih Cheun; van Horck, Francisca P G; McNeilly, Heather; Lu, Trina Bo; Harris, William A; Holt, Christine E

    2015-02-25

    Local protein synthesis (LPS) via receptor-mediated signaling plays a role in the directional responses of axons to extrinsic cues. An intact cytoskeleton is critical to enact these responses, but it is not known whether the two major cytoskeletal elements, F-actin and microtubules, have any roles in regulating axonal protein synthesis. Here, we show that pharmacological disruption of either microtubules or actin filaments in growth cones blocks netrin-1-induced de novo synthesis of proteins, as measured by metabolic incorporation of labeled amino acids, implicating both elements in axonal synthesis. However, comparative analysis of the activated translation initiation regulator, eIF4E-BP1, revealed a striking difference in the point of action of the two elements: actin disruption completely inhibited netrin-1-induced eIF4E-BP1 phosphorylation while microtubule disruption had no effect. An intact F-actin, but not microtubule, cytoskeleton was also required for netrin-1-induced activation of the PI3K/Akt/mTOR pathway, upstream of translation initiation. Downstream of translation initiation, microtubules were required for netrin-1-induced activation of eukaryotic elongation factor 2 kinase (eEF2K) and eEF2. Taken together, our results show that while actin and microtubules are both crucial for cue-induced axonal protein synthesis, they serve distinct roles with F-actin being required for the initiation of translation and microtubules acting later at the elongation step.

  17. Class XI Myosins Are Required for Development, Cell Expansion, and F-Actin Organization in Arabidopsis[W][OA

    PubMed Central

    Peremyslov, Valera V.; Prokhnevsky, Alexey I.; Dolja, Valerian V.

    2010-01-01

    The actomyosin system is conserved throughout eukaryotes. Although F-actin is essential for cell growth and plant development, roles of the associated myosins are poorly understood. Using multiple gene knockouts in Arabidopsis thaliana, we investigated functional profiles of five class XI myosins, XI-K, XI-1, XI-2, XI-B, and XI-I. Plants lacking three myosins XI showed stunted growth and delayed flowering, whereas elimination of four myosins further exacerbated these defects. Loss of myosins led to decreased leaf cell expansion, with the most severe defects observed in the larger leaf cells. Root hair length in myosin-deficient plants was reduced ∼10-fold, with quadruple knockouts showing morphological abnormalities. It was also found that trafficking of Golgi and peroxisomes was entirely myosin dependent. Surprisingly, myosins were required for proper organization of F-actin and the associated endoplasmic reticulum networks, revealing a novel, architectural function of the class XI myosins. These results establish critical roles of myosin-driven transport and F-actin organization during polarized and diffuse cell growth and indicate that myosins are key factors in plant growth and development. PMID:20581304

  18. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells

    NASA Astrophysics Data System (ADS)

    Gardel, M. L.; Nakamura, F.; Hartwig, J. H.; Crocker, J. C.; Stossel, T. P.; Weitz, D. A.

    2006-02-01

    We show that actin filaments, shortened to physiological lengths by gelsolin and cross-linked with recombinant human filamins (FLNs), exhibit dynamic elastic properties similar to those reported for live cells. To achieve elasticity values of comparable magnitude to those of cells, the in vitro network must be subjected to external prestress, which directly controls network elasticity. A molecular requirement for the strain-related behavior at physiological conditionsis a flexible hinge found in FLNa and some FLNb molecules. Basic physical properties of the in vitro filamin-F-actin network replicate the essential mechanical properties of living cells. This physical behavior could accommodate passive deformation and internal organelle trafficking at low strains yet resist externally or internally generated high shear forces. cytoskeleton | cell mechanics | nonlinear rheology

  19. F-actin links Epac-PKC signaling to purinergic P2X3 receptor sensitization in dorsal root ganglia following inflammation

    PubMed Central

    Gu, Yanping; Wang, Congying; Li, GuangWen

    2016-01-01

    Sensitization of purinergic P2X3 receptors (P2X3Rs) contributes to the production of exaggerated nociceptive responses following inflammatory injury. We showed previously that prostaglandin E2 (PGE2) potentiates P2X3R-mediated ATP currents in dorsal root ganglion neurons isolated from both control and complete Freund’s adjuvant-induced inflamed rats. PGE2 potentiation of ATP currents depends only on PKA signaling in control neurons, but it depends on both PKA and PKC signaling in inflamed neurons. We further found that inflammation evokes an increase in exchange proteins directly activated by cAMP (Epacs) in dorsal root ganglions. This increase promotes the activation of PKC to produce a much enhanced PGE2 effect on ATP currents and to elicit Epac-dependent flinch nocifensive behavioral responses in complete Freund’s adjuvant rats. The link between Epac-PKC signaling and P2X3R sensitization remains unexplored. Here, we show that the activation of Epacs promotes the expression of phosphorylated PKC and leads to an increase in the cytoskeleton, F-actin, expression at the cell perimeter. Depolymerization of F-actin blocks PGE2-enhanced ATP currents and inhibits P2X3R-mediated nocifensive responses after inflammation. Thus, F-actin is dynamically involved in the Epac-PKC-dependent P2X3R sensitization. Furthermore, Epacs induce a PKC-dependent increase in the membrane expression of P2X3Rs. This increase is abolished by F-actin depolymerization, suggesting that F-actin mediates Epac-PKC signaling of P2X3R membrane expression. Thus, after inflammation, an Epac-PKC dependent increase in F-actin in dorsal root ganglion neurons enhances the membrane expression of P2X3Rs to bring about sensitization of P2X3Rs and abnormal pain behaviors. PMID:27385722

  20. EXPRESS: F-actin links Epac-PKC signaling to purinergic P2X3 receptors sensitization in dorsal root ganglia following inflammation.

    PubMed

    Gu, Yanping; Wang, Congying; Li, Guangwen; Huang, Li-Yen Mae

    2016-01-01

    Sensitization of purinergic P2X3 receptors (P2X3Rs) contributes to the production of exaggerated nociceptive responses following inflammatory injury. We showed previously that prostaglandin E2 (PGE2) potentiates P2X3R-mediated ATP currents in dorsal root ganglion neurons isolated from both control and complete Freund’s adjuvant-induced inflamed rats. PGE2 potentiation of ATP currents depends only on PKA signaling in control neurons, but it depends on both PKA and PKC signaling in inflamed neurons. We further found that inflammation evokes an increase in exchange proteins directly activated by cAMP (Epacs) in dorsal root ganglions. This increase promotes the activation of PKC to produce a much enhanced PGE2 effect on ATP currents and to elicit Epac-dependent flinch nocifensive behavioral responses in complete Freund’s adjuvant rats. The link between Epac-PKC signaling and P2X3R sensitization remains unexplored. Here, we show that the activation of Epacs promotes the expression of phosphorylated PKC and leads to an increase in the cytoskeleton, F-actin, expression at the cell perimeter. Depolymerization of F-actin blocks PGE2-enhanced ATP currents and inhibits P2X3R-mediated nocifensive responses after inflammation. Thus, F-actin is dynamically involved in the Epac-PKC-dependent P2X3R sensitization. Furthermore, Epacs induce a PKC-dependent increase in the membrane expression of P2X3Rs. This increase is abolished by F-actin depolymerization, suggesting that F-actin mediates Epac-PKC signaling of P2X3R membrane expression. Thus, after inflammation, an Epac-PKC dependent increase in F-actin in dorsal root ganglion neurons enhances the membrane expression of P2X3Rs to bring about sensitization of P2X3Rs and abnormal pain behaviors.

  1. Live-cell imaging of actin dynamics reveals mechanisms of stereocilia length regulation in the inner ear.

    PubMed

    Drummond, Meghan C; Barzik, Melanie; Bird, Jonathan E; Zhang, Duan-Sun; Lechene, Claude P; Corey, David P; Cunningham, Lisa L; Friedman, Thomas B

    2015-04-21

    The maintenance of sensory hair cell stereocilia is critical for lifelong hearing; however, mechanisms of structural homeostasis remain poorly understood. Conflicting models propose that stereocilia F-actin cores are either continually renewed every 24-48 h via a treadmill or are stable, exceptionally long-lived structures. Here to distinguish between these models, we perform an unbiased survey of stereocilia actin dynamics in more than 500 utricle hair cells. Live-imaging EGFP-β-actin or dendra2-β-actin reveal stable F-actin cores with turnover and elongation restricted to stereocilia tips. Fixed-cell microscopy of wild-type and mutant β-actin demonstrates that incorporation of actin monomers into filaments is required for localization to stereocilia tips. Multi-isotope imaging mass spectrometry and live imaging of single differentiating hair cells capture stereociliogenesis and explain uniform incorporation of (15)N-labelled protein and EGFP-β-actin into nascent stereocilia. Collectively, our analyses support a model in which stereocilia actin cores are stable structures that incorporate new F-actin only at the distal tips.

  2. Nornicotine impairs endothelial cell-cell adherens junction complexes in EA.hy926 cell line via structural reorganization of F-actin.

    PubMed

    Gagat, Maciej; Grzanka, Dariusz; Izdebska, Magdalena; Maczynska, Ewa; Grzanka, Alina

    2013-01-01

    The aim of the study was to estimate the effect of nornicotine on endothelial EA.hy926 cells in the context of its impact on cell-cell junctions. The objective of the study was to determine the relationship between junctional proteins and F-actin after treating the cells with nornicotine. After 24 h of cell exposure to 0.08, 0.12, and 0.16 ng/mL nornicotine, analysis was performed of cell death, cell migration, ultrastructure, and colocalization of beta-catenin/F-actin and zonula occludens (ZO)-1/F-actin. Our study did not reveal any alterations in EA.hy926 cell line survival following treatment with nornicotine. However, nornicotine exerted disparate effects on cell migration and led to changes in both the ultrastructure and organization of cell-cell junctional complexes and F-actin. Moreover, the cell migration observed in the experiments performed in the present work negatively correlated with the number of Weibel-Palade bodies seen through transmission electron microscopy (TEM). Moreover, the mechanism of cell migration promotion was VEGF-independent, and the decrease in the number of Weibel-Palade bodies resulted from nornicotine-induced F-actin depolymerization. In conclusion, the present study demonstrated that low concentrations of nornicotine do not affect cell survival, but promote cell movement and impair adherens junctions through changes in F-actin organization. Our results indicate for the first time the effect of nornicotine on endothelial EA.hy926 cells and suggest that nornicotine may induce transmigration pathways and, consequently, facilitate the transendothelial migration of monocytes associated with atherosclerosis.

  3. Control of Electrostatic Interactions Between F-Actin And Genetically Modified Lysozyme in Aqueous Media

    SciTech Connect

    Sanders, L.K.; Xian, W.; Guaqueta, C.; Strohman, M.; Vrasich, C.R.; Luijten, E.; Wong, G.C.L.

    2009-06-04

    The aim for deterministic control of the interactions between macroions in aqueous media has motivated widespread experimental and theoretical work. Although it has been well established that like-charged macromolecules can aggregate under the influence of oppositely charged condensing agents, the specific conditions for the stability of such aggregates can only be determined empirically. We examine these conditions, which involve an interplay of electrostatic and osmotic effects, by using a well defined model system composed of F-actin, an anionic rod-like polyelectrolyte, and lysozyme, a cationic globular protein with a charge that can be genetically modified. The structure and stability of actin-lysozyme complexes for different lysozyme charge mutants and salt concentrations are examined by using synchrotron x-ray scattering and molecular dynamics simulations. We provide evidence that supports a structural transition from columnar arrangements of F-actin held together by arrays of lysozyme at the threefold interstitial sites of the actin sublattice to marginally stable complexes in which lysozyme resides at twofold bridging sites between actin. The reduced stability arises from strongly reduced partitioning of salt between the complex and the surrounding solution. Changes in the stability of actin-lysozyme complexes are of biomedical interest because their formation has been reported to contribute to the persistence of airway infections in cystic fibrosis by sequestering antimicrobials such as lysozyme. We present x-ray microscopy results that argue for the existence of actin-lysozyme complexes in cystic fibrosis sputum and demonstrate that, for a wide range of salt conditions, charge-reduced lysozyme is not sequestered in ordered complexes while retaining its bacterial killing activity.

  4. Control of electrostatic interactions between F-actin and genetically modified lysozyme in aqueous media

    SciTech Connect

    Sanders, Lori K.; Xian, Wujing; Guaqueta, Camilo; Strohman, Michael J.; Vrasich, Chuck R.; Luijten, Erik; Wong, Gerard C.L.

    2008-07-11

    The aim for deterministic control of the interactions between macroions in aqueous media has motivated widespread experimental and theoretical work. Although it has been well established that like-charged macromolecules can aggregate under the influence of oppositely charged condensing agents, the specific conditions for the stability of such aggregates can only be determined empirically. We examine these conditions, which involve an interplay of electrostatic and osmotic effects, by using a well defined model system composed of F-actin, an anionic rod-like polyelectrolyte, and lysozyme, a cationic globular protein with a charge that can be genetically modified. The structure and stability of actin-lysozyme complexes for different lysozyme charge mutants and salt concentrations are examined by using synchrotron x-ray scattering and molecular dynamics simulations. We provide evidence that supports a structural transition from columnar arrangements of F-actin held together by arrays of lysozyme at the threefold interstitial sites of the actin sublattice to marginally stable complexes in which lysozyme resides at twofold bridging sites between actin. The reduced stability arises from strongly reduced partitioning of salt between the complex and the surrounding solution. Changes in the stability of actin-lysozyme complexes are of biomedical interest because their formation has been reported to contribute to the persistence of airway infections in cystic fibrosis by sequestering antimicrobials such as lysozyme. We present x-ray microscopy results that argue for the existence of actin-lysozyme complexes in cystic fibrosis sputum and demonstrate that, for a wide range of salt conditions, charge-reduced lysozyme is not sequestered in ordered complexes while retaining its bacterial killing activity.

  5. Cytokine-induced F-actin reorganization in endothelial cells involves RhoA activation.

    PubMed

    Campos, Silvia B; Ashworth, Sharon L; Wean, Sarah; Hosford, Melanie; Sandoval, Ruben M; Hallett, Mark A; Atkinson, Simon J; Molitoris, Bruce A

    2009-03-01

    Acute ischemic kidney injury results in marked increases in local and systemic cytokine levels. IL-1alpha, IL-6, and TNF-alpha orchestrate various inflammatory reactions influencing endothelial permeability by altering cell-to-cell and cell-to-extracellular matrix attachments. To explore the role of actin and the regulatory proteins RhoA and cofilin in this process, microvascular endothelial cells (MS1) were exposed to individual cytokines or a cytokine cocktail. Within minutes, a marked, time-dependent redistribution of the actin cytoskeleton occurred with the formation of long, dense F-actin basal stress fibers. The concentration of F-actin, normalized to nuclear staining, significantly increased compared with untreated cells (up 20%, P < or = 0.05). Western blot analysis of MS1 lysates incubated with the cytokine cocktail for 4 h showed an increase in phosphorylated/inactive cofilin (up 25 +/- 15%, P < or = 0.05) and RhoA activation (up to 227 +/- 26% increase, P < or = 0.05) compared with untreated cells. Decreasing RhoA levels using small interfering RNA blocked the effect of cytokines on stress fiber organization. Treatment with Y-27632, an inhibitor of the RhoA effector p160-ROCK, decreased levels of phosphorylated cofilin and reduced stress fiber fluorescence by 22%. In cells treated with Y-27632 followed by treatment with the cytokine cocktail, stress fiber levels were similar to control cells and cofilin phosphorylation was 55% of control levels. Taken together, these studies demonstrate cytokine stimulation of RhoA, which in turn leads to cofilin phosphorylation and formation of numerous basal actin stress fibers. These results suggest cytokines signal through the Rho-ROCK pathway, but also through another pathway to affect actin dynamics.

  6. Cooperative and non-cooperative conformational changes of F-actin induced by cofilin

    SciTech Connect

    Aihara, Tomoki; Oda, Toshiro

    2013-05-31

    Highlights: •Mobility of MTSL attached to C374 in F-actin became high upon addition of cofilin. •Change of motility of MTSL attached to C374 with cofilin-binding was cooperative. •Mobility of MTSL attached to V43C in F-actin became high upon addition of cofilin. •Change of motility of MTSL attached to V43C with cofilin-binding was linear. -- Abstract: Cofilin is an actin-binding protein that promotes F-actin depolymerization. It is well-known that cofilin-coated F-actin is more twisted than naked F-actin, and that the protomer is more tilted. However, the means by which the local changes induced by the binding of individual cofilin proteins proceed to the global conformational changes of the whole F-actin molecule remain unknown. Here we investigated the cofilin-induced changes in several parts of F-actin, through site-directed spin-label electron paramagnetic resonance spectroscopy analyses of recombinant actins containing single reactive cysteines. We found that the global, cooperative conformational changes induced by cofilin-binding, which were detected by the spin-label attached to the Cys374 residue, occurred without the detachment of the D-loop in subdomain 2 from the neighboring protomer. The two processes of local and global changes do not necessarily proceed in sequence.

  7. Interaction of rabbit skeletal muscle troponin T and F-actin at physiological ionic strength

    SciTech Connect

    Heeley, D.H.; Smillie, L.B. )

    1988-10-18

    Troponin T has been shown to interact significantly with F-actin at 150 mM KC1 by using an F-actin pelleting assay and {sup 125}I-labeled proteins. While troponin T fragment T1 (residues 1-158) fails to pellet with F-actin, fragment T2 (residues 159-259) mimics the binding properties of the intact molecule. The weak competition of T2 binding to F-actin, shown by subfragments of T2, indicates that the interaction site(s) encompass(es) an extensive segment of troponin T. The extent of pelleting of troponin T (or T2) with F-actin is only marginally altered in the binary complex troponin IT (or T2), indicating that the direct interactions either of troponin T (or T2) or of troponin I, or both, with F-actin are weakened when these components are incorporated into a binary complex. The binding of troponin T (or T2) is moderately ({minus}Ca{sup 2+}) or more extensively reduced (+Ca{sup 2+}) in the presence of troponin C. The pelleting of Tn-T seen in the presence of Tn-C ({minus}Ca{sup 2+}) and Tn-I was further reduced when either Tn-I or Tn-C ({minus}Ca{sup 2+}) was added, respectively, to form a fully reconstituted Tn complex. As noted by others, whole troponin shows little sensitivity to Ca{sup 2+} in its binding to F-actin ({minus}tropomyosin). These and other observations, taken together with the restoration of troponin IC ({plus minus}Ca{sup 2+}) binding to F-actin by troponin T, implicate a role for the interaction of troponin T and F-actin in the thin filament assembly.

  8. A novel nuclear complex of DRR1, F-actin and COMMD1 involved in NF-κB degradation and cell growth suppression in neuroblastoma.

    PubMed

    Mu, P; Akashi, T; Lu, F; Kishida, S; Kadomatsu, K

    2017-10-12

    Downregulated in renal cell carcinoma 1 (DRR1) has important roles in tumor cell growth, neuron survival and spine formation, and was recently shown to bind actin. However, the roles of nuclear DRR1 remain largely unexplored. Here, we identified an interaction between filamentous actin (F-actin) and DRR1 in the nucleus, and demonstrated that copper metabolism MURR1 domain-containing 1 (COMMD1) is another binding partner of DRR1. Accordingly, DRR1, F-actin and COMMD1 were shown to form a complex in the nucleus, and the stability of COMMD1 was enhanced in this complex. Increased nuclear COMMD1 in turn promoted the degradation of NF-κB. In addition, DRR1 and COMMD1 suppressed the cyclin D1 expression, G1/S transition and cell proliferation of neuroblastoma cells. The binding between DRR1 and F-actin in the nucleus was required for these events. Consistent with these facts, low expressions of DRR1 were associated with tumorigenesis of human neuroblastoma and its mouse model. This study has thus revealed a novel nuclear complex of F-actin, DRR1 and COMMD1 that is involved in NF-κB degradation and cell cycle suppression in neuroblastoma cells.

  9. Phosgene Effects on F-Actin in Cells Grown from Pulmonary Tissues

    DTIC Science & Technology

    1993-05-13

    Plato, N., Alexandersson, R ., Eklund, A., and Falkenberg , C. (1991). Pulmonary reactions caused by welding-induced decomposed trichlorethylene. Chest 99...CY) CO 0= Phosgene Effects on F-actin in Cells Grown on from Pulmonary Tissues I R . Werrlein, J. Madren-Whalley and S.D. Kirby United States Army...shape, the image in Fig. 1 shows organization that was characteristic of F-actin in untreated and sham-treated control populations. B 4000- DPB (7 r 3000

  10. Tracer diffusion through F-actin: effect of filament length and cross-linking.

    PubMed Central

    Jones, J D; Luby-Phelps, K

    1996-01-01

    We have determined diffusion coefficients for small (50- to 70-nm diameter) fluorescein-thiocarbamoyl-labeled Ficoll tracers through F-actin as a function of filament length and cross-linking. fx45 was used to regulate filament length and avidin/biotinylated actin or ABP-280 was used to prepare cross-linked actin gels. We found that tracer diffusion was generally independent of filament length in agreement with theoretical predictions for diffusion through solutions of rods. However, in some experiments diffusion was slower through short (< or = 1.0 micron) filaments, although this result was not consistently reproducible. Measured diffusion coefficients through unregulated F-actin and filaments of lengths > 1.0 micron were more rapid than predicted by theory for tracer diffusion through rigid, random networks, which was consistent with some degree of actin bundling. Avidin-induced cross-linking of biotinylated F-actin did not affect diffusion through unregulated F-actin, but in cases where diffusion was slower through short filaments this cross-linking method resulted in enhanced tracer diffusion rates indistinguishable from unregulated F-actin. This finding, in conjunction with increased turbidity of 1.0-micron filaments upon avidin cross-linking, indicated that this cross-linking method induces F-actin bundling. By contrast, ABP-280 cross-linking retarded diffusion through unregulated F-actin and decreased turbidity. Tracer diffusion under these conditions was well approximated by the diffusion theory. Both cross-linking procedures resulted in gel formation as determined by falling ball viscometry. These results demonstrate that network microscopic geometry is dependent on the cross-linking method, although both methods markedly increase F-actin macroscopic viscosity. PMID:8913611

  11. Disruption of the F-actin cytoskeleton limits statolith movement in Arabidopsis hypocotyls.

    PubMed

    Palmieri, Maria; Kiss, John Z

    2005-09-01

    The F-actin cytoskeleton is hypothesized to play a role in signal transduction mechanisms of gravitropism by interacting with sedimenting amyloplasts as they traverse statocytes of gravistimulated plants. Previous studies have determined that pharmacological disruption of the F-actin cytoskeleton with latrunculin B (Lat-B) causes increased gravitropism in stem-like organs and roots, and results in a more rapid settling of amyloplasts in the columella cells of Arabidopsis roots. These results suggest that the actin cytoskeleton modulates amyloplast movement and also gravitropic signal transduction. To determine the effect of F-actin disruption on amyloplast sedimentation in stem-like organs, Arabidopsis hypocotyls were treated with Lat-B and a detailed analysis of amyloplast sedimentation kinetics was performed by determining amyloplast positions in endodermal cells at various time intervals following reorientation. Confocal microscopy was used to confirm that Lat-B effectively disrupts the actin cytoskeleton in these cells. The results indicate that amyloplasts in hypocotyl endodermal cells settle more quickly compared with amyloplasts in root columella cells. F-actin disruption with Lat-B severely reduces amyloplast mobility within Arabidopsis endodermal statocytes, and these results suggest that amyloplast sedimentation within the hypocotyl endodermal cell is F-actin-dependent. Thus, a model for gravitropism in stem-like organs is proposed in which F-actin modulates the gravity response by actively participating in statolith repositioning within the endodermal statocytes.

  12. Mechanical force-induced polymerization and depolymerization of F-actin at water/solid interfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Xueqiang; Hu, Xiuyuan; Lei, Haozhi; Hu, Jun; Zhang, Yi

    2016-03-01

    polymerization and depolymerization behaviors at water/solid interfaces using an atomic force microscope (AFM) operated in liquid. By raster scanning an AFM probe on a substrate surface with a certain load, it was found that actin monomers could polymerize into filaments without the help of actin related proteins (ARPs). Further study indicated that actin monomers were inclined to form filaments only under a small scanning load. The polymerized actin filaments would be depolymerized when the mechanical force was stronger. A possible mechanism has been suggested to explain the mechanical force induced actin polymerization. Electronic supplementary information (ESI) available: The height histograms of Fig. 1b-1d, the effect of G-actin concentration on the mechanical-force-induced F-actin formation, and the effect of different mechanical forces on the depolymerization of F-actin. See DOI: 10.1039/c5nr08713a

  13. Release of the antimicrobial peptide LL-37 from DNA/F-actin bundles in cystic fibrosis sputum.

    PubMed

    Bucki, R; Byfield, F J; Janmey, P A

    2007-04-01

    Cationic antibacterial peptides (ABPs) are secreted in the airways and function in the first line of defence against infectious agents. They attack multiple molecular targets to cooperatively penetrate and disrupt microbial surfaces and membrane barriers. Antibacterial properties of ABPs, including cathelicidin LL-37, are reduced in cystic fibrosis (CF) airways as a result of direct interaction with DNA and filamentous (F)-actin. Microscopic evaluation of a mixed solution of DNA and F-actin, after the addition of rhodamine-B-labelled LL-37 peptide, revealed the presence of a bundle structure similar to that present in CF sputum. Analysis of CF sputum after centrifugation showed that LL-37 was mostly bound to components of the pellet fraction containing DNA, F-actin and cell remnants. Factors that dissolve DNA/actin bundles and fluidise CF sputum, such as Dornase alfa (recombinant human DNase I), gelsolin, polyaspartate or their combinations, increased the amount of LL-37 peptide detected in the supernatant of CF sputum. The presence of the bacterial endotoxin lipopolysaccharide (LPS) in CF sputum and the ability of LPS to inhibit the antibacterial activity of LL-37 suggests that inactivation of LL-37 function in CF sputum partially results from its interaction with LPS. LL-37-LPS interaction was prevented by an LPS-binding protein (LBP)-derived peptide known for its ability to neutralise LPS, whereas LBPW91A, a mutant peptide that lacks ability to bind LPS, had no effect. A combination of factors that dissolve DNA/filamentous-actin aggregates together with lipopolysaccharide-binding agents may represent a potential treatment for the chronic infections that occur in cystic fibrosis airways.

  14. Differential Effects of G- and F-Actin on the Plasma Membrane Calcium Pump Activity

    PubMed Central

    Vanagas, Laura; de La Fuente, María Candelaria; Dalghi, Marianela; Ferreira-Gomes, Mariela; Rossi, Rolando C.; Strehler, Emanuel E.; Rossi, Juan P. F. C.

    2014-01-01

    We have previously shown that plasma membrane calcium ATPase (PMCA) pump activity is affected by the membrane protein concentration (Vanagas et al., Biochim Biophys Acta 1768:1641–1644, 2007). Results show evidences for the involvement of the actin cytoskeleton. In this study, we explored the relationship between the polymerization state of actin and its effects on purified PMCA activity. Our results show that PMCA associates with the actin cytoskeleton and this interaction causes a modulation of the catalytic activity involving the phosphorylated intermediate of the pump. The state of actin polymerization determines whether it acts as an activator or an inhibitor of the pump: G-actin and/or short oligomers activate the pump, while F-actin inhibits it. The effects of actin on PMCA are the consequence of direct interaction as demonstrated by immunoblotting and cosedimentation experiments. Taken together, these findings suggest that interactions with actin play a dynamic role in the regulation of PMCA-mediated Ca2+ extrusion through the membrane. Our results provide further evidence of the activation–inhibition phenomenon as a property of many cytoskeleton-associated membrane proteins where the cytoskeleton is no longer restricted to a mechanical function but is dynamically involved in modulating the activity of integral proteins with which it interacts. PMID:23152090

  15. Quantification of Filamentous Actin (F-actin) Puncta in Rat Cortical Neurons

    PubMed Central

    Bertrand, Sarah J.; Mactutus, Charles F.; Booze, Rosemarie

    2016-01-01

    Filamentous actin protein (F-actin) plays a major role in spinogenesis, synaptic plasticity, and synaptic stability. Changes in dendritic F-actin rich structures suggest alterations in synaptic integrity and connectivity. Here we provide a detailed protocol for culturing primary rat cortical neurons, Phalloidin staining for F-actin puncta, and subsequent quantification techniques. First, the frontal cortex of E18 rat embryos are dissociated into low-density cell culture, then the neurons grown in vitro for at least 12-14 days. Following experimental treatment, the cortical neurons are stained with AlexaFluor 488 Phalloidin (to label the dendritic F-actin puncta) and microtubule-associated protein 2 (MAP2; to validate the neuronal cells and dendritic integrity). Finally, specialized software is used to analyze and quantify randomly selected neuronal dendrites. F-actin rich structures are identified on second order dendritic branches (length range 25-75 µm) with continuous MAP2 immunofluorescence. The protocol presented here will be a useful method for investigating changes in dendritic synapse structures subsequent to experimental treatments. PMID:26889716

  16. Phosgene effects on F-actin in cells grown from pulmonary tissues

    SciTech Connect

    Werrlein, R.J.; Madren-Whalley, J.; Kirby, S.D.

    1993-05-13

    Confocal laser microscopy has been used to study the effects of phosgene on cells of the lung. Results suggest that the F-actin cytoskeleton is a molecular target and sensitive indicator of phosgene toxicity. Ovine pulmonary artery endothelial cells, exposed at 0.145 to 5.39 x LCT(50) for sheep (3300 ppm.min) showed dose response decreases in F-actin content. Doses of 0.145 and 0.265 LCT(50) caused a significant (p < .01) 25% and 42% decrease in average F-actin per cell. Dense peripheral bands (DPBs) became indistinct at > or = 1.2 LCT(50) and disappeared at > or = 2.3 LCT(50). Organization of stress fibers was parallel to the cell's long axis and was not disrupted by < 1.21 LCT(50). In secretory cells from rat tracheal explants, studies indicate a threshold of resistance to phosgene at doses < 0.2 LCT(50). However, phosgene in excess of 0.2 LCT(50) produced precipitous decreases in secretory cell F-actin. Mature, contiguous populations of untreated secretory cells contained well defined DPBs and tightly connected cell-to-cell boundaries. Exposures to 1.0 and 1.5 LCT(50) did not disrupt boundaries between secretory cells but did cause separation of boundaries between secretory and other cell types. We conclude that concentration and organization are separate aspects of phosgene's effects on F-actin and that the lesions produced are cell-type specific.

  17. The Interplay between Viscoelastic and Thermodynamic Properties Determines the Birefringence of F-Actin Gels

    PubMed Central

    Helfer, Emmanuèle; Panine, Pierre; Carlier, Marie-France; Davidson, Patrick

    2005-01-01

    F-actin gels of increasing concentrations (25–300 μM) display in vitro a progressive onset of birefringence due to orientational ordering of actin filaments. At F-actin concentrations <100 μM, this birefringence can be erased and restored at will by sonication and gentle flow, respectively. Hence, the orientational ordering does not result from a thermodynamic transition to a nematic phase but instead is due to mechanical stresses stored in the gels. In contrast, at F-actin concentrations ≥100 μM, gels display spontaneous birefringence recovery, at rest, which is the sign of true nematic ordering, in good agreement with statistical physics models of the isotropic/nematic transition. Well-aligned samples of F-actin gels could be produced and their small-angle x-ray scattering patterns are quite anisotropic. These patterns show no sign of filament positional short-range order and could be modeled by averaging the form factor with the Maier-Saupe nematic distribution function. The derived nematic order parameter S of the gels ranged from S = 0.7 at 300 μM to S = 0.4 at 25 μM. Both birefringence and small-angle x-ray scattering data indicate that, even in absence of cross-linking proteins, spontaneous cooperative alignment of actin filaments may arise in motile regions of living cells where F-actin concentrations can reach values of a few 100 μM. PMID:15863487

  18. Quantification of Filamentous Actin (F-actin) Puncta in Rat Cortical Neurons.

    PubMed

    Li, Hailong; Aksenova, Marina; Bertrand, Sarah J; Mactutus, Charles F; Booze, Rosemarie

    2016-02-10

    Filamentous actin protein (F-actin) plays a major role in spinogenesis, synaptic plasticity, and synaptic stability. Changes in dendritic F-actin rich structures suggest alterations in synaptic integrity and connectivity. Here we provide a detailed protocol for culturing primary rat cortical neurons, Phalloidin staining for F-actin puncta, and subsequent quantification techniques. First, the frontal cortex of E18 rat embryos are dissociated into low-density cell culture, then the neurons grown in vitro for at least 12-14 days. Following experimental treatment, the cortical neurons are stained with AlexaFluor 488 Phalloidin (to label the dendritic F-actin puncta) and microtubule-associated protein 2 (MAP2; to validate the neuronal cells and dendritic integrity). Finally, specialized software is used to analyze and quantify randomly selected neuronal dendrites. F-actin rich structures are identified on second order dendritic branches (length range 25-75 µm) with continuous MAP2 immunofluorescence. The protocol presented here will be a useful method for investigating changes in dendritic synapse structures subsequent to experimental treatments.

  19. Is there a relationship between phosphatidylinositol trisphosphate and F-actin polymerization in human neutrophils

    SciTech Connect

    Eberle, M.; Traynor-Kaplan, A.E.; Sklar, L.A.; Norgauer, J. )

    1990-10-05

    Stimulation of human neutrophils with the chemoattractant N-formyl peptide caused rapid polymerization of F-actin as detected by right angle light scatter and 7-nitrobenz-2-oxa-1,3-diazol (NBD)-phallacidin staining of F-actin. After labeling neutrophils with 32P, exposure to N-formyl peptide induced a fast decrease of phosphatidylinositol 4-bisphosphate (PIP)2, a slow increase of phosphatidic acid, and a rapid rise of phosphatidylinositol 4-trisphosphate (PIP3). Formation of PIP3 as well as actin polymerization was near maximal at 10 s after stimulation. Half-maximal response and PIP3 formation at early time points resulted from stimulation of neutrophils with 0.01 nM N-formyl peptide or occupation of about 200 receptors. Sustained elevation of PIP3, prolonged right angle light scatter response, and F-actin formation required higher concentrations of N-formyl peptide, occupation of thousands of receptors, and high binding rates. When ligand binding was interrupted with an antagonist, F-actin rapidly depolymerized, transient light scatter response recovered immediately, and elevated (32P)PIP3 levels decayed toward initial values. However, recovery of (32P)PIP2 was not influenced by the antagonist. Based on the parallel time courses and dose response of (32P) PIP3, the right angle light scatter response, and F-actin polymerization, PIP3 is more likely than PIP2 to be involved in modulation of actin polymerization and depolymerization in vivo.

  20. Environmental toxicants perturb human Sertoli cell adhesive function via changes in F-actin organization mediated by actin regulatory proteins

    PubMed Central

    Xiao, Xiang; Mruk, Dolores D.; Tang, Elizabeth I.; Wong, Chris K.C.; Lee, Will M.; John, Constance M.; Turek, Paul J.; Silvestrini, Bruno; Cheng, C. Yan

    2014-01-01

    STUDY QUESTION Can human Sertoli cells cultured in vitro and that have formed an epithelium be used as a model to monitor toxicant-induced junction disruption and to better understand the mechanism(s) by which toxicants disrupt cell adhesion at the Sertoli cell blood–testis barrier (BTB)? SUMMARY ANSWER Our findings illustrate that human Sertoli cells cultured in vitro serve as a reliable system to monitor the impact of environmental toxicants on the BTB function. WHAT IS KNOWN ALREADY Suspicions of a declining trend in semen quality and a concomitant increase in exposures to environmental toxicants over the past decades reveal the need of an in vitro system that efficiently and reliably monitors the impact of toxicants on male reproductive function. Furthermore, studies in rodents have confirmed that environmental toxicants impede Sertoli cell BTB function in vitro and in vivo. STUDY DESIGN, SIZE AND DURATION We examined the effects of two environmental toxicants: cadmium chloride (0.5–20 µM) and bisphenol A (0.4–200 µM) on human Sertoli cell function. Cultured Sertoli cells from three men were used in this study, which spanned an 18-month period. PARTICIPANTS/MATERIALS, SETTING, METHODS Human Sertoli cells from three subjects were cultured in F12/DMEM containing 5% fetal bovine serum. Changes in protein expression were monitored by immunoblotting using specific antibodies. Immunofluorescence analyses were used to assess changes in the distribution of adhesion proteins, F-actin and actin regulatory proteins following exposure to two toxicants: cadmium chloride and bisphenol A (BPA). MAIN RESULTS AND THE ROLE OF CHANCE Human Sertoli cells were sensitive to cadmium and BPA toxicity. Changes in the localization of cell adhesion proteins were mediated by an alteration of the actin-based cytoskeleton. This alteration of F-actin network in Sertoli cells as manifested by truncation and depolymerization of actin microfilaments at the Sertoli cell BTB was caused by

  1. The Membrane-associated Protein, Supervillin, Accelerates F-actin-dependent Rapid Integrin Recycling and Cell Motility

    PubMed Central

    Fang, Zhiyou; Takizawa, Norio; Wilson, Korey A.; Smith, Tara C.; Delprato, Anna; Davidson, Michael W.; Lambright, David G.; Luna, Elizabeth J.

    2010-01-01

    In migrating cells, the cytoskeleton coordinates signal transduction and re-distributions of transmembrane proteins, including integrins and growth factor receptors. Supervillin is an F-actin- and myosin II-binding protein that tightly associates with signaling proteins in cholesterol-rich, “lipid raft” membrane microdomains. We show here that supervillin also can localize with markers for early and sorting endosomes (EE/SE) and with overexpressed components of the Arf6 recycling pathway in the cell periphery. Supervillin tagged with the photoswitchable fluorescent protein, tdEos, moves both into and away from dynamic structures resembling podosomes at the basal cell surface. Rapid integrin recycling from EE/SE is inhibited in supervillin-knockdown cells, but the rates of integrin endocytosis and recycling from the perinuclear recycling center (PNRC) are unchanged. A lack of synergy between supervillin knockdown and the actin filament barbed-end inhibitor, cytochalasin D, suggests that both treatments affect actin-dependent rapid recycling. Supervillin also enhances signaling from the epidermal growth factor receptor (EGFR) to extracellular signal-regulated kinases 1 and 2 (ERK) and increases the velocity of cell translocation. These results suggest that supervillin, F-actin, and associated proteins may coordinate a rapid, basolateral membrane recycling pathway that contributes to ERK signaling and actin-based cell motility. PMID:20331534

  2. The membrane-associated protein, supervillin, accelerates F-actin-dependent rapid integrin recycling and cell motility.

    PubMed

    Fang, Zhiyou; Takizawa, Norio; Wilson, Korey A; Smith, Tara C; Delprato, Anna; Davidson, Michael W; Lambright, David G; Luna, Elizabeth J

    2010-06-01

    In migrating cells, the cytoskeleton coordinates signal transduction and redistribution of transmembrane proteins, including integrins and growth factor receptors. Supervillin is an F-actin- and myosin II-binding protein that tightly associates with signaling proteins in cholesterol-rich, 'lipid raft' membrane microdomains. We show here that supervillin also can localize with markers for early and sorting endosomes (EE/SE) and with overexpressed components of the Arf6 recycling pathway in the cell periphery. Supervillin tagged with the photoswitchable fluorescent protein, tdEos, moves both into and away from dynamic structures resembling podosomes at the basal cell surface. Rapid integrin recycling from EE/SE is inhibited in supervillin-knockdown cells, but the rates of integrin endocytosis and recycling from the perinuclear recycling center (PNRC) are unchanged. A lack of synergy between supervillin knockdown and the actin filament barbed-end inhibitor, cytochalasin D, suggests that both treatments affect actin-dependent rapid recycling. Supervillin also enhances signaling from the epidermal growth factor receptor (EGFR) to extracellular signal-regulated kinases (ERKs) 1 and 2 and increases the velocity of cell translocation. These results suggest that supervillin, F-actin and associated proteins coordinate a rapid, basolateral membrane recycling pathway that contributes to ERK signaling and actin-based cell motility.

  3. A new F-actin structure in fungi: actin ring formation around the cell nucleus of Cryptococcus neoformans.

    PubMed

    Kopecká, Marie; Kawamoto, Susumu; Yamaguchi, Masashi

    2013-04-01

    The F-actin cytoskeleton of Cryptococcus neoformans is known to comprise actin cables, cortical patches and cytokinetic ring. Here, we describe a new F-actin structure in fungi, a perinuclear F-actin collar ring around the cell nucleus, by fluorescent microscopic imaging of rhodamine phalloidin-stained F-actin. Perinuclear F-actin rings form in Cryptococcus neoformans treated with the microtubule inhibitor Nocodazole or with the drug solvent dimethyl sulfoxide (DMSO) or grown in yeast extract peptone dextrose (YEPD) medium, but they are absent in cells treated with Latrunculin A. Perinuclear F-actin rings may function as 'funicular cabin' for the cell nucleus, and actin cables as intracellular 'funicular' suspending nucleus in the central position in the cell and moving nucleus along the polarity axis along actin cables.

  4. Coupling of vinculin to F-actin demands Syndecan-4 proteoglycan.

    PubMed

    Cavalheiro, R P; Lima, M A; Jarrouge-Bouças, T R; Viana, G M; Lopes, C C; Coulson-Thomas, V J; Dreyfuss, J L; Yates, E A; Tersariol, I L S; Nader, H B

    2017-11-01

    Syndecans are heparan sulfate proteoglycans characterized as transmembrane receptors that act cooperatively with the cell surface and extracellular matrix proteins. Syn4 knockdown was performed in order to address its role in endothelial cells (EC) behavior. Normal EC and shRNA-Syn4-EC cells were studied comparatively using complementary confocal, super-resolution and non-linear microscopic techniques. Confocal and super-resolution microscopy revealed that Syn4 knockdown alters the level and arrangement of essential proteins for focal adhesion, evidenced by the decoupling of vinculin from F-actin filaments. Furthermore, Syn4 knockdown alters the actin network leading to filopodial protrusions connected by VE-cadherin-rich junction. shRNA-Syn4-EC showed reduced adhesion and increased migration. Also, Syn4 silencing alters cell cycle as well as cell proliferation. Moreover, the ability of EC to form tube-like structures in matrigel is reduced when Syn4 is silenced. Together, the results suggest a mechanism in which Syndecan-4 acts as a central mediator that bridges fibronectin, integrin and intracellular components (actin and vinculin) and once silenced, the cytoskeleton protein network is disrupted. Ultimately, the results highlight Syn4 relevance for balanced cell behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Cofilin recruits F-actin to SPCA1 and promotes Ca2+-mediated secretory cargo sorting.

    PubMed

    Kienzle, Christine; Basnet, Nirakar; Crevenna, Alvaro H; Beck, Gisela; Habermann, Bianca; Mizuno, Naoko; von Blume, Julia

    2014-09-01

    The actin filament severing protein cofilin-1 (CFL-1) is required for actin and P-type ATPase secretory pathway calcium ATPase (SPCA)-dependent sorting of secretory proteins at the trans-Golgi network (TGN). How these proteins interact and activate the pump to facilitate cargo sorting, however, is not known. We used purified proteins to assess interaction of the cytoplasmic domains of SPCA1 with actin and CFL-1. A 132-amino acid portion of the SPCA1 phosphorylation domain (P-domain) interacted with actin in a CFL-1-dependent manner. This domain, coupled to nickel nitrilotriacetic acid (Ni-NTA) agarose beads, specifically recruited F-actin in the presence of CFL-1 and, when expressed in HeLa cells, inhibited Ca(2+) entry into the TGN and secretory cargo sorting. Mutagenesis of four amino acids in SPCA1 that represent the CFL-1 binding site also affected Ca(2+) import into the TGN and secretory cargo sorting. Altogether, our findings reveal the mechanism of CFL-1-dependent recruitment of actin to SPCA1 and the significance of this interaction for Ca(2+) influx and secretory cargo sorting.

  6. Passive and active microrheology for cross-linked F-actin networks in vitro.

    PubMed

    Lee, Hyungsuk; Ferrer, Jorge M; Nakamura, Fumihiko; Lang, Matthew J; Kamm, Roger D

    2010-04-01

    Actin filament (F-actin) is one of the dominant structural constituents in the cytoskeleton. Orchestrated by various actin-binding proteins (ABPs), F-actin is assembled into higher-order structures such as bundles and networks that provide mechanical support for the cell and play important roles in numerous cellular processes. Although mechanical properties of F-actin networks have been extensively studied, the underlying mechanisms for network elasticity are not fully understood, in part because different measurements probe different length and force scales. Here, we developed both passive and active microrheology techniques using optical tweezers to estimate the mechanical properties of F-actin networks at a length scale comparable to cells. For the passive approach we tracked the motion of a thermally fluctuating colloidal sphere to estimate the frequency-dependent complex shear modulus of the network. In the active approach, we used an optical trap to oscillate an embedded microsphere and monitored the response in order to obtain network viscoelasticity over a physiologically relevant force range. While both active and passive measurements exhibit similar results at low strain, the F-actin network subject to high strain exhibits non-linear behavior which is analogous to the strain-hardening observed in macroscale measurements. Using confocal and total internal reflection fluorescent microscopy, we also characterize the microstructure of reconstituted F-actin networks in terms of filament length, mesh size and degree of bundling. Finally, we propose a model of network connectivity by investigating the effect of filament length on the mechanical properties and structure.

  7. Tracer diffusion in F-actin and Ficoll mixtures. Toward a model for cytoplasm.

    PubMed Central

    Hou, L; Lanni, F; Luby-Phelps, K

    1990-01-01

    We have previously reported that self-diffusion of inert tracer particles in the cytoplasm of living Swiss 3T3 cells is hindered in a size-dependent manner (Luby-Phelps, K., D.L. Taylor, and F. Lanni. 1986. J. Cell Biol. 102:2015-2022; Luby-Phelps, K., P.E. Castle, D.L. Taylor, and F. Lanni. 1987. Proc Natl. Acad. Sci. USA. 84:4910-4913). Lacking a theory that completely explains our data, we are attempting to understand the molecular architecture responsible for this phenomenon by studying tracer diffusion in simple, reconstituted model systems. This report contains our findings on tracer diffusion in concentrated solutions of Ficoll 70 or Ficoll 400, in solutions of entangled F-actin filaments, and in solutions of entangled F-actin containing a background of concentrated Ficoll particles or concentrated bovine serum albumin (BSA). A series of size-fractionated fluorescein-Ficolls were used as tracer particles. By fluorescence recovery after photobleaching (FRAP), we obtained the mean diffusion coefficients in a dilute, aqueous reference phase (Do), the mean diffusion coefficients in the model matrices (D), and the mean hydrodynamic radii (RH) for selected tracer fractions. For each model matrix, the results were compared with similar data obtained from living cells. As in concentrated solutions of globular proteins (Luby-Phelps et al., 1987), D/Do was not significantly size-dependent in concentrated solutions of Ficoll 400 or Ficoll 70. In contrast, D/Do decreased monotonically with increasing RH in solutions of F-actin ranging in concentration from 1 to 12 mg/ml. This size dependence was most pronounced at higher F-actin concentrations. However, the shape of the curve and the extrapolated value of D/Do in the limit, RH----O did not closely resemble the cellular data for tracers in the same size range (3 less than RH less than 30 nm). In mixtures of F-actin and Ficoll or F-actin and BSA, D/Do was well approximated by D/Do for the same concentration of F-actin

  8. F-actin cytoskeleton and the fate of organelles in chromaffin cells.

    PubMed

    Villanueva, José; Gimenez-Molina, Yolanda; Viniegra, Salvador; Gutiérrez, Luis M

    2016-06-01

    In addition to playing a fundamental structural role, the F-actin cytoskeleton in neuroendocrine chromaffin cells has a prominent influence on governing the molecular mechanism and regulating the secretory process. Performing such roles, the F-actin network might be essential to first transport, and later locate the cellular organelles participating in the secretory cycle. Chromaffin granules are transported from the internal cytosolic regions to the cell periphery along microtubular and F-actin structures. Once in the cortical region, they are embedded in the F-actin network where these vesicles experience restrictions in motility. Similarly, mitochondria transport is affected by both microtubule and F-actin inhibitors and suffers increasing motion restrictions when they are located in the cortical region. Therefore, the F-actin cortex is a key factor in defining the existence of two populations of cortical and perinuclear granules and mitochondria which could be distinguished by their different location and mobility. Interestingly, other important organelles for controlling intracellular calcium levels, such as the endoplasmic reticulum network, present clear differences in distribution and much lower mobility than chromaffin vesicles and mitochondria. Nevertheless, both mitochondria and the endoplasmic reticulum appear to distribute in the proximity of secretory sites to fulfill a pivotal role, forming triads with calcium channels ensuring the fine tuning of the secretory response. This review presents the contributions that provide the basis for our current view regarding the influence that F-actin has on the distribution of organelles participating in the release of catecholamines in chromaffin cells, and summarizes this knowledge in simple models. In chromaffin cells, organelles such as granules and mitochondria distribute forming cortical and perinuclear populations whereas others like the ER present homogenous distributions. In the present review we discuss

  9. [Mechanochemical interactions in enzymes. IV. Mechanochemical properties of immobilized preparations of F-actin].

    PubMed

    Bukatine, A E; Morozov, V N

    1976-01-01

    Oriented immobilized F-actin (IA) threads were prepared by extrusion of the concentrated F-actin solutions through a capillar into an aceton-water mixture containing glutaraldehyde. Myosin ATP-ase activity was activated by IA in the presence of Mg+2 and inhibited in the presence of EDTA. ATPase activity of IA at high temperature (55) was about 0.054 min(-1) and was not affected by a deformation of threads. Mechanical properties of IA threads were changed when treated by reagnets influencing intra- and inter-molecular interactions of actin molecules, and these changes themselves were highly dependent on IA threads deformation.

  10. Myosin IIB and F-actin control apical vacuolar morphology and histamine-induced trafficking of H-K-ATPase-containing tubulovesicles in gastric parietal cells.

    PubMed

    Natarajan, Paramasivam; Crothers, James M; Rosen, Jared E; Nakada, Stephanie L; Rakholia, Milap; Okamoto, Curtis T; Forte, John G; Machen, Terry E

    2014-04-15

    Selective inhibitors of myosin or actin function and confocal microscopy were used to test the role of an actomyosin complex in controlling morphology, trafficking, and fusion of tubulovesicles (TV) containing H-K-ATPase with the apical secretory canaliculus (ASC) of primary-cultured rabbit gastric parietal cells. In resting cells, myosin IIB and IIC, ezrin, and F-actin were associated with ASC, whereas H-K-ATPase localized to intracellular TV. Histamine caused fusion of TV with ASC and subsequent expansion resulting from HCl and water secretion; F-actin and ezrin remained associated with ASC whereas myosin IIB and IIC appeared to dissociate from ASC and relocalize to the cytoplasm. ML-7 (inhibits myosin light chain kinase) caused ASC of resting cells to collapse and most myosin IIB, F-actin, and ezrin to dissociate from ASC. TV were unaffected by ML-7. Jasplakinolide (stabilizes F-actin) caused ASC to develop large blebs to which actin, myosin II, and ezrin, as well as tubulin, were prominently localized. When added prior to stimulation, ML-7 and jasplakinolide prevented normal histamine-stimulated transformations of ASC/TV and the cytoskeleton, but they did not affect cells that had been previously stimulated with histamine. These results indicate that dynamic pools of actomyosin are required for maintenance of ASC structure in resting cells and for trafficking of TV to ASC during histamine stimulation. However, the dynamic pools of actomyosin are not required once the histamine-stimulated transformation of TV/ASC and cytoskeleton has occurred. These results also show that vesicle trafficking in parietal cells shares mechanisms with similar processes in renal collecting duct cells, neuronal synapses, and skeletal muscle.

  11. Small heat shock protein Hsp27 prevents heat-induced aggregation of F-actin by forming soluble complexes with denatured actin.

    PubMed

    Pivovarova, Anastasia V; Chebotareva, Natalia A; Chernik, Ivan S; Gusev, Nikolai B; Levitsky, Dmitrii I

    2007-11-01

    Previously, we have shown that the small heat shock protein with apparent molecular mass 27 kDa (Hsp27) does not affect the thermal unfolding of F-actin, but effectively prevents aggregation of thermally denatured F-actin [Pivovarova AV, Mikhailova VV, Chernik IS, Chebotareva NA, Levitsky DI & Gusev NB (2005) Biochem Biophys Res Commun331, 1548-1553], and supposed that Hsp27 prevents heat-induced aggregation of F-actin by forming soluble complexes with denatured actin. In the present work, we applied dynamic light scattering, analytical ultracentrifugation and size exclusion chromatography to examine the properties of complexes formed by denatured actin with a recombinant human Hsp27 mutant (Hsp27-3D) mimicking the naturally occurring phosphorylation of this protein at Ser15, Ser78, and Ser82. Our results show that formation of these complexes occurs upon heating and accompanies the F-actin thermal denaturation. All the methods show that the size of actin-Hsp27-3D complexes decreases with increasing Hsp27-3D concentration in the incubation mixture and that saturation occurs at approximately equimolar concentrations of Hsp27-3D and actin. Under these conditions, the complexes exhibit a hydrodynamic radius of approximately 16 nm, a sedimentation coefficient of 17-20 S, and a molecular mass of about 2 MDa. It is supposed that Hsp27-3D binds to denatured actin monomers or short oligomers dissociated from actin filaments upon heating and protects them from aggregation by forming relatively small and highly soluble complexes. This mechanism might explain how small heat shock proteins prevent aggregation of denatured actin and by this means protect the cytoskeleton and the whole cell from damage caused by accumulation of large insoluble aggregates under heat shock conditions.

  12. Modulating F-actin organization induces organ growth by affecting the Hippo pathway

    PubMed Central

    Sansores-Garcia, Leticia; Bossuyt, Wouter; Wada, Ken-Ichi; Yonemura, Shigenobu; Tao, Chunyao; Sasaki, Hiroshi; Halder, Georg

    2011-01-01

    The Hippo tumour suppressor pathway is a conserved signalling pathway that controls organ size. The core of the Hpo pathway is a kinase cascade, which in Drosophila involves the Hpo and Warts kinases that negatively regulate the activity of the transcriptional coactivator Yorkie. Although several additional components of the Hippo pathway have been discovered, the inputs that regulate Hippo signalling are not fully understood. Here, we report that induction of extra F-actin formation, by loss of Capping proteins A or B, or caused by overexpression of an activated version of the formin Diaphanous, induced strong overgrowth in Drosophila imaginal discs through modulating the activity of the Hippo pathway. Importantly, loss of Capping proteins and Diaphanous overexpression did not significantly affect cell polarity and other signalling pathways, including Hedgehog and Decapentaplegic signalling. The interaction between F-actin and Hpo signalling is evolutionarily conserved, as the activity of the mammalian Yorkie-orthologue Yap is modulated by changes in F-actin. Thus, regulators of F-actin, and in particular Capping proteins, are essential for proper growth control by affecting Hippo signalling. PMID:21556047

  13. F-actin distribution and function during sexual development in Eimeria maxima.

    PubMed

    Frölich, Sonja; Wallach, Michael

    2015-06-01

    To determine the involvement of the actin cytoskeleton in macrogametocyte growth and oocyst wall formation, freshly purified macrogametocytes and oocysts were stained with Oregon Green 514 conjugated phalloidin to visualize F-actin microfilaments, while Evans blue staining was used to detect type 1 wall forming bodies (WFB1s) and the outer oocyst wall. The double-labelled parasites were then analysed at various stages of sexual development using three-dimensional confocal microscopy. The results showed F-actin filaments were distributed throughout the entire cytoplasm of mature Eimeria maxima macrogametocytes forming a web-like meshwork of actin filaments linking the type 1 WFBs together into structures resembling 'beads on a string'. At the early stages of oocyst wall formation, F-actin localization changed in alignment with the egg-shaped morphology of the forming oocysts with F-actin microfilaments making direct contact with the WFB1s. In tissue oocysts, the labelled actin cytoskeleton was situated underneath the forming outer layer of the oocyst wall. Treatment of macrogametocytes in vitro with the actin depolymerizing agents, Cytochalasin D and Latrunculin, led to a reduction in the numbers of mature WFB1s in the cytoplasm of the developing macrogametocytes, indicating that the actin plays an important role in WFB1 transport and oocyst wall formation in E. maxima.

  14. ATP-dependent membrane assembly of F-actin facilitates membrane fusion.

    PubMed

    Jahraus, A; Egeberg, M; Hinner, B; Habermann, A; Sackman, E; Pralle, A; Faulstich, H; Rybin, V; Defacque, H; Griffiths, G

    2001-01-01

    We recently established an in vitro assay that monitors the fusion between latex-bead phagosomes and endocytic organelles in the presence of J774 macrophage cytosol (). Here, we show that different reagents affecting the actin cytoskeleton can either inhibit or stimulate this fusion process. Because the membranes of purified phagosomes can assemble F-actin de novo from pure actin with ATP (), we focused here on the ability of membranes to nucleate actin in the presence of J774 cytosolic extracts. For this, we used F-actin sedimentation, pyrene actin assays, and torsional rheometry, a biophysical approach that could provide kinetic information on actin polymerization and gel formation. We make two major conclusions. First, under our standard in vitro conditions (4 mg/ml cytosol and 1 mM ATP), the presence of membranes actively catalyzed the assembly of cytosolic F-actin, which assembled into highly viscoelastic gels. A model is discussed that links these results to how the actin may facilitate fusion. Second, cytosolic actin paradoxically polymerized more under ATP depletion than under high-ATP conditions, even in the absence of membranes; we discuss these data in the context of the well described, large increases in F-actin seen in many cells during ischemia.

  15. Spectrin-dependent and -independent association of F-actin with the erythrocyte membrane.

    PubMed

    Cohen, C M; Foley, S F

    1980-08-01

    Binding of F-actin to spectrin-actin-depleted erythrocyte membrane inside-out vesicles was measured using [3H]F-actin. F-actin binding to vesicles at 25 degrees C was stimulated 5-10 fold by addition of spectrin dimers or tetramers to vesicles. Spectrin tetramer was twice as effective as dimer in stimulating actin binding, but neither tetramer nor dimer stimulated binding at 4 degrees C. The addition of purified erythrocyte membrane protein band 4.1 to spectrin-reconstituted vesicles doubled their actin-binding capacity. Trypsinization of unreconstituted vesicles that contain < 10% of the spectrin but nearly all of the band 4.1, relative to ghosts, decreased their F-actin-binding capacity by 70%. Whereas little or none of the residual spectrin was affected by trypsinization, band 4.1 was significantly degraded. Our results show that spectrin can anchor actin filaments to the cytoplasmic surface of erythrocyte membranes and suggest that band 4.1 may be importantly involved in the association.

  16. Neuronal Dysfunction in iPSC-Derived Medium Spiny Neurons from Chorea-Acanthocytosis Patients Is Reversed by Src Kinase Inhibition and F-Actin Stabilization.

    PubMed

    Stanslowsky, Nancy; Reinhardt, Peter; Glass, Hannes; Kalmbach, Norman; Naujock, Maximilian; Hensel, Niko; Lübben, Verena; Pal, Arun; Venneri, Anna; Lupo, Francesca; De Franceschi, Lucia; Claus, Peter; Sterneckert, Jared; Storch, Alexander; Hermann, Andreas; Wegner, Florian

    2016-11-23

    Chorea-acanthocytosis (ChAc) is a fatal neurological disorder characterized by red blood cell acanthocytes and striatal neurodegeneration. Recently, severe cell membrane disturbances based on depolymerized cortical actin and an elevated Lyn kinase activity in erythrocytes from ChAc patients were identified. How this contributes to the mechanism of neurodegeneration is still unknown. To gain insight into the pathophysiology, we established a ChAc patient-derived induced pluripotent stem cell model and an efficient differentiation protocol providing a large population of human striatal medium spiny neurons (MSNs), the main target of neurodegeneration in ChAc. Patient-derived MSNs displayed enhanced neurite outgrowth and ramification, whereas synaptic density was similar to controls. Electrophysiological analysis revealed a pathologically elevated synaptic activity in ChAc MSNs. Treatment with the F-actin stabilizer phallacidin or the Src kinase inhibitor PP2 resulted in the significant reduction of disinhibited synaptic currents to healthy control levels, suggesting a Src kinase- and actin-dependent mechanism. This was underlined by increased G/F-actin ratios and elevated Lyn kinase activity in patient-derived MSNs. These data indicate that F-actin stabilization and Src kinase inhibition represent potential therapeutic targets in ChAc that may restore neuronal function.

  17. Hyphal tip-associated localization of Cdc42 is F-actin dependent in Candida albicans.

    PubMed

    Hazan, Idit; Liu, Haoping

    2002-12-01

    The rho-type GTPase Cdc42 is important for the establishment and maintenance of eukaryotic cell polarity. To examine whether Cdc42 is regulated during the yeast-to-hypha transition in Candida albicans, we constructed a green fluorescence protein (GFP)-Cdc42 fusion under the ACT1 promoter and observed its localization in live C. albicans cells. As in Saccharomyces cerevisiae, GFP-Cdc42 was observed around the entire periphery of the cell. In yeast-form cells of C. albicans, it clustered to the tips and sides of small buds as well as to the mother-daughter neck region of large-budded cells. Upon hyphal induction, GFP-Cdc42 clustered to the site of hyphal evagination and remained at the tips of the hyphae. This temporal and spatial localization of Cdc42 suggests that its activity is regulated during the yeast-to-hypha transition. In addition to the accumulation at the hyphal tip, GFP-Cdc42 was also seen as a band within the hyphal tube in cells that had undergone nuclear separation. With the F-actin-assembly inhibitor latrunculin A, we found that GFP-Cdc42 accumulation at the bud site in yeast-form cells is F-actin independent, whereas GFP-Cdc42 accumulation at the hyphal tip requires F-actin. Furthermore, disruption of the F-actin cytoskeleton impaired the transcriptional induction of hypha-specific genes. Therefore, hypha formation resembles mating in Saccharomyces cerevisiae in that both require F-actin for GFP-Cdc42 localization and efficient signaling.

  18. F-actin-anchored focal adhesions distinguish endothelial phenotypes of human arteries and veins.

    PubMed

    van Geemen, Daphne; Smeets, Michel W J; van Stalborch, Anne-Marieke D; Woerdeman, Leonie A E; Daemen, Mat J A P; Hordijk, Peter L; Huveneers, Stephan

    2014-09-01

    Vascular endothelial-cadherin- and integrin-based cell adhesions are crucial for endothelial barrier function. Formation and disassembly of these adhesions controls endothelial remodeling during vascular repair, angiogenesis, and inflammation. In vitro studies indicate that vascular cytokines control adhesion through regulation of the actin cytoskeleton, but it remains unknown whether such regulation occurs in human vessels. We aimed to investigate regulation of the actin cytoskeleton and cell adhesions within the endothelium of human arteries and veins. We used an ex vivo protocol for immunofluorescence in human vessels, allowing detailed en face microscopy of endothelial monolayers. We compared arteries and veins of the umbilical cord and mesenteric, epigastric, and breast tissues and find that the presence of central F-actin fibers distinguishes the endothelial phenotype of adult arteries from veins. F-actin in endothelium of adult veins as well as in umbilical vasculature predominantly localizes cortically at the cell boundaries. By contrast, prominent endothelial F-actin fibers in adult arteries anchor mostly to focal adhesions containing integrin-binding proteins paxillin and focal adhesion kinase and follow the orientation of the extracellular matrix protein fibronectin. Other arterial F-actin fibers end in vascular endothelial-cadherin-based endothelial focal adherens junctions. In vitro adhesion experiments on compliant substrates demonstrate that formation of focal adhesions is strongly induced by extracellular matrix rigidity, irrespective of arterial or venous origin of endothelial cells. Our data show that F-actin-anchored focal adhesions distinguish endothelial phenotypes of human arteries from veins. We conclude that the biomechanical properties of the vascular extracellular matrix determine this endothelial characteristic. © 2014 American Heart Association, Inc.

  19. Quantitation of liquid-crystalline ordering in F-actin solutions.

    PubMed

    Coppin, C M; Leavis, P C

    1992-09-01

    Actin filaments (F-actin) are important determinants of cellular shape and motility. These functions depend on the collective organization of numerous filaments with respect to both position and orientation in the cytoplasm. Much of the orientational organization arises spontaneously through liquid crystal formation in concentrated F-actin solutions. In studying this phenomenon, we found that solutions of purified F-actin undergo a continuous phase transition, from the isotropic state to a liquid crystalline state, when either the mean filament length or the actin concentration is increased above its respective threshold value. The phase diagram representing the threshold filament lengths and concentrations at which the phase transition occurs is consistent with that predicted by Flory's theory on solutions of noninteracting, rigid cylinders (Flory, 1956b). However, in contrast to other predictions based on this model, we found no evidence for the coexistence of isotropic and anisotropic phases. Furthermore, the phase transition proved to be temperature dependent, which suggests the existence of orientation-dependent interfilament interactions or of a temperature-dependent filament flexibility. We developed a simple method for growing undistorted fluorescent acrylodan-labeled F-actin liquid crystals; and we derived a simple theoretical treatment by which polarization-of-fluorescence measurements could be used to quantitate, for the first time, the degree of spontaneous filament ordering (nematic order parameter) in these F-actin liquid crystals. This order parameter was found to increase monotonically with both filament length and concentration. Actin liquid crystals can readily become distorted by a process known as "texturing." Zigzaging and helicoidal liquid crystalline textures which persisted in the absence of ATP were observed through the polarizing microscope. Possible texturing mechanisms are discussed.

  20. Coupled excitable Ras and F-actin activation mediates spontaneous pseudopod formation and directed cell movement.

    PubMed

    van Haastert, Peter J M; Keizer-Gunnink, Ineke; Kortholt, Arjan

    2017-04-01

    Many eukaryotic cells regulate their mobility by external cues. Genetic studies have identified >100 components that participate in chemotaxis, which hinders the identification of the conceptual framework of how cells sense and respond to shallow chemical gradients. The activation of Ras occurs during basal locomotion and is an essential connector between receptor and cytoskeleton during chemotaxis. Using a sensitive assay for activated Ras, we show here that activation of Ras and F-actin forms two excitable systems that are coupled through mutual positive feedback and memory. This coupled excitable system leads to short-lived patches of activated Ras and associated F-actin that precede the extension of protrusions. In buffer, excitability starts frequently with Ras activation in the back/side of the cell or with F-actin in the front of the cell. In a shallow gradient of chemoattractant, local Ras activation triggers full excitation of Ras and subsequently F-actin at the side of the cell facing the chemoattractant, leading to directed pseudopod extension and chemotaxis. A computational model shows that the coupled excitable Ras/F-actin system forms the driving heart for the ordered-stochastic extension of pseudopods in buffer and for efficient directional extension of pseudopods in chemotactic gradients. © 2017 van Haastert et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. A Role for Nuclear F-Actin Induction in Human Cytomegalovirus Nuclear Egress

    PubMed Central

    Wilkie, Adrian R.; Lawler, Jessica L.

    2016-01-01

    ABSTRACT Herpesviruses, which include important pathogens, remodel the host cell nucleus to facilitate infection. This remodeling includes the formation of structures called replication compartments (RCs) in which herpesviruses replicate their DNA. During infection with the betaherpesvirus, human cytomegalovirus (HCMV), viral DNA synthesis occurs at the periphery of RCs within the nuclear interior, after which assembled capsids must reach the inner nuclear membrane (INM) for translocation to the cytoplasm (nuclear egress). The processes that facilitate movement of HCMV capsids to the INM during nuclear egress are unknown. Although an actin-based mechanism of alphaherpesvirus capsid trafficking to the INM has been proposed, it is controversial. Here, using a fluorescently-tagged, nucleus-localized actin-binding peptide, we show that HCMV, but not herpes simplex virus 1, strongly induced nuclear actin filaments (F-actin) in human fibroblasts. Based on studies using UV inactivation and inhibitors, this induction depended on viral gene expression. Interestingly, by 24 h postinfection, nuclear F-actin formed thicker structures that appeared by super-resolution microscopy to be bundles of filaments. Later in infection, nuclear F-actin primarily localized along the RC periphery and between the RC periphery and the nuclear rim. Importantly, a drug that depolymerized nuclear F-actin caused defects in production of infectious virus, capsid accumulation in the cytoplasm, and capsid localization near the nuclear rim, without decreasing capsid accumulation in the nucleus. Thus, our results suggest that for at least one herpesvirus, nuclear F-actin promotes capsid movement to the nuclear periphery and nuclear egress. We discuss our results in terms of competing models for these processes. PMID:27555312

  2. Morphogenetic role of F-actin meshwork in chamber formation: immunolabeling results from symbiont bearing benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Tyszka, Jaroslaw; Raitzsch, Markus; Bijma, Jelle; Höher, Nicole; Bickmeyer, Ulf; Rivera-Ingraham, Georginia; Topa, Paweł; Kaczmarek, Karina; Mewes, Antje; Bowser, Samuel; Travis, Jeffrey

    2015-04-01

    Foraminifera are excellent tracers of palaeoceanographic conditions recorded in their shell (test) morphology and chemical composition. Understanding foraminiferal morphology controlled by chamberwise growth can be reduced to processes of chamber formation. However, little is known about how foraminifera control the shape of the chamber wall to be biosynthesized and precipitated. Searching for fundamental morphogenetic features involved in biomineralization, we focused on foraminifers, which belong to the class Globothalamea. The most critical condition to run experiments was to have convenient access to early stages of chamber formation in any species of cultured benthic foraminifers. We have tested small foraminifers collected from the tidal flats of the North Sea. All species, including Ammonia, Haynesina, and Elphidium, turned out to be unsuitable due to their reproduction seasonality and/or unpredictability. The problem was solved by using symbiont bearing Amphistegina lessonii cultured in small aquaria. In well treated cultures, such foraminifera often reproduce on a glass wall surface, serving as a continuous source of juveniles. They tend to regularly construct chambers. Another important point is that symbiont bearing foraminifers usually do not construct opaque protective cysts from detritus that disturb observations. All these features facilitate immunolabeling experiments observed under confocal microscopy. Therefore, for the first time, we managed to label cytoskeleton proteins during the chamber formation in Foraminifera. The results show that the shape of chamber is predefined by a meshwork of F-actin, which acts as a dynamic organic scaffold most likely responsible for distribution and docking of biomineralizing molecules (glycoproteins). The F-actin meshwork interacts with microtubules and all associated proteins, which are involved in the morphogenesis of biomineralized structures. Foraminifera, like other eukaryotic cells, can form active

  3. F-actin waves, actin cortex disassembly and focal exocytosis driven by actin-phosphoinositide positive feedback.

    PubMed

    Masters, Thomas A; Sheetz, Michael P; Gauthier, Nils C

    2016-04-01

    Actin polymerization is controlled by the phosphoinositide composition of the plasma membrane. However, the molecular mechanisms underlying the spatiotemporal regulation of actin network organization over extended length scales are still unclear. To observe phosphoinositide-dependent cytoskeletal dynamics we combined the model system of frustrated phagocytosis, total internal reflection microscopy and manipulation of the buffer tonicity. We found that macrophages interacting with IgG-coated glass substrates formed circular F-actin waves on their ventral surface enclosing a region of plasma membrane devoid of cortical actin. Plasma membrane free of actin cortex was strongly depleted of PI(4,5)P2 , but enriched in PI(3,4)P2 and displayed a fivefold increase in exocytosis. Wave formation could be promoted by application of a hypotonic shock. The actin waves were characteristic of a bistable wavefront at the boundary between the regions of membrane containing and lacking cortical actin. Phosphoinositide modifiers and RhoGTPase activities dramatically redistributed with respect to the wavefronts, which often exhibited spatial oscillations. Perturbation of either lipid or actin cytoskeleton-related pathways led to rapid loss of both the polarized lipid distribution and the wavefront. As waves travelled over the plasma membrane, wavefront actin was seen to rapidly polymerize and depolymerize at pre-existing clusters of FcγRIIA, coincident with rapid changes in lipid composition. Thus the potential of receptors to support rapid F-actin polymerization appears to depend acutely on the local concentrations of multiple lipid species. We propose that interdependence through positive feedback from the cytoskeleton to lipid modifiers leads to coordinated local cortex remodeling, focal exocytosis, and organizes extended actin networks.

  4. Mitochondrial Dysfunction, Disruption of F-Actin Polymerization, and Transcriptomic Alterations in Zebrafish Larvae Exposed to Trichloroethylene.

    PubMed

    Wirbisky, Sara E; Damayanti, Nur P; Mahapatra, Cecon T; Sepúlveda, Maria S; Irudayaraj, Joseph; Freeman, Jennifer L

    2016-02-15

    Trichloroethylene (TCE) is primarily used as an industrial degreasing agent and has been in use since the 1940s. TCE is released into the soil, surface, and groundwater. From an environmental and regulatory standpoint, more than half of Superfund hazardous waste sites on the National Priority List are contaminated with TCE. Occupational exposure to TCE occurs primarily via inhalation, while environmental TCE exposure also occurs through ingestion of contaminated drinking water. Current literature links TCE exposure to various adverse health effects including cardiovascular toxicity. Current studies aiming to address developmental cardiovascular toxicity utilized rodent and avian models, with the majority of studies using relatively higher parts per million (mg/L) doses. In this study, to further investigate developmental cardiotoxicity of TCE, zebrafish embryos were treated with 0, 10, 100, or 500 parts per billion (ppb; μg/L) TCE during embryogenesis and/or through early larval stages. After the appropriate exposure period, angiogenesis, F-actin, and mitochondrial function were assessed. A significant dose-response decrease in angiogenesis, F-actin, and mitochondrial function was observed. To further complement this data, a transcriptomic profile of zebrafish larvae was completed to identify gene alterations associated with the 10 ppb TCE exposure. Results from the transcriptomic data revealed that embryonic TCE exposure caused significant changes in genes associated with cardiovascular disease, cancer, and organismal injury and abnormalities with a number of targets in the FAK signaling pathway. Overall, results from our study support TCE as a developmental cardiovascular toxicant, provide molecular targets and pathways for investigation in future studies, and indicate a need for continued priority for environmental regulation.

  5. Circular F-actin bundles and a G-actin gradient in pollen and pollen tubes of Lilium davidii.

    PubMed

    Li, Y; Zee, S Y; Liu, Y M; Huang, B Q; Yen, L F

    2001-09-01

    The distribution of and relationship between F-actin and G-actin were investigated in pollen grains and pollen tubes of Lilium davidii Duch. using a confocal laser scanning microscope after fluorescence and immunofluorescence labeling. Circular F-actin bundles were found to be the main form of microfilament cytoskeleton in pollen grains and pollen tubes. Consistent with cytoplasmic streaming in pollen tubes, there were no obvious F-actin bundles in the 10- to 20-microm tip region of long pollen tubes, only a few short F-actin fragments. Labeling with fluorescein isothiocyanate (FITC)-DNase I at first established the presence of a tip-focused gradient of intracellular G-actin concentration at the extreme apex of the tube, the concentration of G-actin being about twice as high in the 10- to 20-microm region of the tip as in other regions of the pollen tube. We also found that the distribution of G-actin was related negatively to that of the F-actin in pollen tubes of L. davidii. Caffeine treatment caused the G-actin tip-focused gradient to disappear, and F-actin to extend into the pollen tube tip. Based on these results, we speculate that the circular F-actin bundles may be the track for bidirectional cytoplasmic streaming in pollen tubes, and that in the pollen tube tip most of the F-actin is depolymerized into G-actin, leading to the absence of F-actin bundles in this region.

  6. Coronin 3 involvement in F-actin-dependent processes at the cell cortex

    SciTech Connect

    Rosentreter, Andre; Hofmann, Andreas; Xavier, Charles-Peter; Stumpf, Maria; Noegel, Angelika A.; Clemen, Christoph S. . E-mail: christoph.clemen@uni-koeln.de

    2007-03-10

    The actin interaction of coronin 3 has been mainly documented by in vitro experiments. Here, we discuss coronin 3 properties in the light of new structural information and focus on assays that reflect in vivo roles of coronin 3 and its impact on F-actin-associated functions. Using GFP-tagged coronin 3 fusion proteins and RNAi silencing we show that coronin 3 has roles in wound healing, protrusion formation, cell proliferation, cytokinesis, endocytosis, axonal growth, and secretion. During formation of cell protrusions actin accumulation precedes the focal enrichment of coronin 3 suggesting a role for coronin 3 in events that follow the initial F-actin assembly. Moreover, we show that coronin 3 similar to other coronins interacts with the Arp2/3-complex and cofilin indicating that this family in general is involved in regulating Arp2/3-mediated events.

  7. Total synthesis of (-)-doliculide, structure-activity relationship studies and its binding to F-actin.

    PubMed

    Matcha, Kiran; Madduri, Ashoka V R; Roy, Sayantani; Ziegler, Slava; Waldmann, Herbert; Hirsch, Anna K H; Minnaard, Adriaan J

    2012-11-26

    Actin, an abundant protein in most eukaryotic cells, is one of the targets in cancer research. Recently, a great deal of attention has been paid to the synthesis and function of actin-targeting compounds and their use as effective molecular probes in chemical biology. In this study, we have developed an efficient synthesis of (-)-doliculide, a very potent actin binder with a higher cell-membrane permeability than phalloidin. Actin polymerization assays with (-)-doliculide and two analogues on HeLa and BSC-1 cells, together with a prediction of their binding mode to F-actin by unbiased computational docking, show that doliculide stabilizes F-actin in a similar way to jasplakinolide and chondramide C. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Direct observation of motion of single F-actin filaments in the presence of myosin

    NASA Astrophysics Data System (ADS)

    Yanagida, Toshio; Nakase, Michiyuki; Nishiyama, Katsumi; Oosawa, Fumio

    1984-01-01

    Actin is found in almost all kinds of non-muscle cells where it is thought to have an important role in cell motility. A proper understanding of that role will only be possible when reliable in vitro systems are available for investigating the interaction of cellular actin and myosin. A start has been made on several systems1-4, most recently by Sheetz and Spudich who demonstrated unidirectional movement of HMM-coated beads along F-actin cables on arrays of chloroplasts exposed by dissection of a Nitella cell5. As an alternative approach, we report here the direct observation by fluorescence microscopy of the movements of single F-actin filaments interacting with soluble myosin fragments energized by Mg2+-ATP.

  9. Tropomodulin 1 controls erythroblast enucleation via regulation of F-actin in the enucleosome.

    PubMed

    Nowak, Roberta B; Papoin, Julien; Gokhin, David S; Casu, Carla; Rivella, Stefano; Lipton, Jeffrey M; Blanc, Lionel; Fowler, Velia M

    2017-08-31

    Biogenesis of mammalian red blood cells requires nuclear expulsion by orthochromatic erythoblasts late in terminal differentiation (enucleation), but the mechanism is largely unexplained. Here, we employed high-resolution confocal microscopy to analyze nuclear morphology and F-actin rearrangements during the initiation, progression, and completion of mouse and human erythroblast enucleation in vivo. Mouse erythroblast nuclei acquire a dumbbell-shaped morphology during enucleation, whereas human bone marrow erythroblast nuclei unexpectedly retain their spherical morphology. These morphological differences are linked to differential expression of Lamin isoforms, with primary mouse erythroblasts expressing only Lamin B and primary human erythroblasts only Lamin A/C. We did not consistently identify a continuous F-actin ring at the cell surface constriction in mouse erythroblasts, nor at the membrane protein-sorting boundary in human erythroblasts, which do not have a constriction, arguing against a contractile ring-based nuclear expulsion mechanism. However, both mouse and human erythroblasts contain an F-actin structure at the rear of the translocating nucleus, enriched in tropomodulin 1 (Tmod1) and nonmuscle myosin IIB. We investigated Tmod1 function in mouse and human erythroblasts both in vivo and in vitro and found that absence of Tmod1 leads to enucleation defects in mouse fetal liver erythroblasts, and in CD34(+) hematopoietic stem and progenitor cells, with increased F-actin in the structure at the rear of the nucleus. This novel structure, the "enucleosome," may mediate common cytoskeletal mechanisms underlying erythroblast enucleation, notwithstanding the morphological heterogeneity of enucleation across species. © 2017 by The American Society of Hematology.

  10. F-actin accumulates in the vulva of female Strongyloides venezuelensis.

    PubMed

    Silva, C V; Gonçalves, A L R; Cruz, L; Cruz, M C; Ueta, M T; Costa-Cruz, J M

    2013-09-01

    Little is known about the actin cytoskeleton architecture in female Strongyloides venezuelensis and thus to investigate the distribution and concentration of actin, female worms were labelled with phalloidin-rhodamine and visualized under confocal microscopy. Our results demonstrate that filamentous actin accumulates in the vulva and the concentration of F-actin at this site suggests its important role, especially during oviposition, in the life cycle of S. venezuelensis.

  11. A glycolytic metabolon in Saccharomyces cerevisiae is stabilized by F-actin.

    PubMed

    Araiza-Olivera, Daniela; Chiquete-Felix, Natalia; Rosas-Lemus, Mónica; Sampedro, José G; Peña, Antonio; Mujica, Adela; Uribe-Carvajal, Salvador

    2013-08-01

    In the Saccharomyces cerevisiae glycolytic pathway, 11 enzymes catalyze the stepwise conversion of glucose to two molecules of ethanol plus two CO₂ molecules. In the highly crowded cytoplasm, this pathway would be very inefficient if it were dependent on substrate/enzyme diffusion. Therefore, the existence of a multi-enzymatic glycolytic complex has been suggested. This complex probably uses the cytoskeleton to stabilize the interaction of the various enzymes. Here, the role of filamentous actin (F-actin) in stabilization of a putative glycolytic metabolon is reported. Experiments were performed in isolated enzyme/actin mixtures, cytoplasmic extracts and permeabilized yeast cells. Polymerization of actin was promoted using phalloidin or inhibited using cytochalasin D or latrunculin. The polymeric filamentous F-actin, but not the monomeric globular G-actin, stabilized both the interaction of isolated glycolytic pathway enzyme mixtures and the whole fermentation pathway, leading to higher fermentation activity. The associated complexes were resistant against inhibition as a result of viscosity (promoted by the disaccharide trehalose) or inactivation (using specific enzyme antibodies). In S. cerevisiae, a glycolytic metabolon appear to assemble in association with F-actin. In this complex, fermentation activity is enhanced and enzymes are partially protected against inhibition by trehalose or by antibodies.

  12. Local F-actin network links synapse formation and axon branching.

    PubMed

    Chia, Poh Hui; Chen, Baoyu; Li, Pengpeng; Rosen, Michael K; Shen, Kang

    2014-01-16

    Axonal branching and synapse formation are tightly linked developmental events during the establishment of synaptic circuits. Newly formed synapses promote branch initiation and stability. However, little is known about molecular mechanisms that link these two processes. Here, we show that local assembly of an F-actin cytoskeleton at nascent presynaptic sites initiates both synapse formation and axon branching. We further find that assembly of the F-actin network requires a direct interaction between the synaptic cell adhesion molecule SYG-1 and a key regulator of actin cytoskeleton, the WVE-1/WAVE regulatory complex (WRC). SYG-1 cytoplasmic tail binds to the WRC using a consensus WRC interacting receptor sequence (WIRS). WRC mutants or mutating the SYG-1 WIRS motif leads to loss of local F-actin, synaptic material, and axonal branches. Together, these data suggest that synaptic adhesion molecules, which serve as a necessary component for both synaptogenesis and axonal branch formation, directly regulate subcellular actin cytoskeletal organization. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Presence of F-actin in sperm head of Armadillidium peraccae (Isopoda, Oniscidea).

    PubMed

    Trovato, M; Mazzei, V; Sinatra, F; Longo, G

    2011-10-01

    Sperm of Armadillidium peraccae have been examined with cytochemical and immunocytochemical methods for fluorescence and electron microscopic visualization of cytoskeleton components. Sperm incubation in an antibody anti-β-tubulin shows only the presence of two centrioles located in the cytoplasmic region above the nucleus; no other microtubules are present in the sperm head. Instead, fluorescence microscopy of sperm incubated in FITC-phalloidin allowed to detect the presence of a large amount of F-actin in the apical region of the sperm head. The incubation of ultrathin sections of sperm embedded in Lowicryl K4M with a phalloidin-gold complex allowed a more precise localization of F-actin in the amorphous part of the acrosome and in the cytoplasmic region between acrosome and nucleus; F-actin is also present in the thin cytoplasmic layer between plasma membrane and nuclear envelope at the apical portion of the nucleus. Although the sperm was always found completely devoid of motility, the discovery of the presence of an actin cytoskeleton leads us to hypothesize a possible acquisition of motility by the sperm at the time of its interaction with the female gamete. Such a hypothesis is supported by what is known for ostracods whose aflagellate sperm implement a type of amoeboid movement only at the time of their interaction with the female gamete.

  14. Fluorescence studies of the carboxyl-terminal domain of smooth muscle calponin effects of F-actin and salts.

    PubMed

    Bartegi, A; Roustan, C; Kassab, R; Fattoum, A

    1999-06-01

    The fluorescence parameters of the environment-sensitive acrylodan, selectively attached to Cys273 in the C-terminal domain of smooth muscle calponin, were studied in the presence of F-actin and using varying salt concentrations. The formation of the F-actin acrylodan labeled calponin complex at 75 mm NaCl resulted in a 21-nm blue shift of the maximum emission wavelength from 496 nm to 474 nm and a twofold increase of the fluorescent quantum yield at 460 nm. These spectral changes were observed at the low ionic strengths (< 110 mm) where the calponin : F-actin stoichiometry is 1 : 1 as well as at the high ionic strengths (> 110 mm) where the binding stoichiometry is a 1 : 2 ratio of calponin : actin monomers. On the basis of previous three-dimensional reconstruction and chemical crosslinking of the F-actin-calponin complex, the actin effect is shown to derive from the low ionic strength interaction of calponin with the bottom of subdomain-1 of an upper actin monomer in F-actin and not from its further association with the subdomain-1 of the adjacent lower monomer which occurs at the high ionic strength. Remarkably, the F-actin-dependent fluorescence change of acrylodan is qualitatively but not quantitatively similar to that earlier reported for the complexes of calponin and Ca2+-calmodulin or Ca2+-caltropin. As the three calponin ligands bind to the same segment of the protein, encompassing residues 145-182, the acrylodan can be considered as a sensitive probe of the functioning of this critical region. A distance of 29 A was measured by fluorescence resonance energy transfer between Cys273 of calponin and Cys374 of actin in the 1 : 1 F-actin-calponin complex suggesting that the F-actin effect was allosteric reflecting a global conformational change in the C-terminal domain of calponin.

  15. Severing of F-actin by the amino-terminal half of gelsolin suggests internal cooperativity in gelsolin.

    PubMed Central

    Selden, L A; Kinosian, H J; Newman, J; Lincoln, B; Hurwitz, C; Gershman, L C; Estes, J E

    1998-01-01

    Gelsolin is a Ca2+-regulated actin-binding protein that can sever, cap, and nucleate growth from the pointed ends of actin filaments. In this study we have measured the binding of the amino-terminal half of gelsolin, G1-3, to pyrene-labeled F-actin as a function of Ca2+ concentration. The rate of binding is shown to be dependent on micromolar concentrations of Ca2+. Independent experiments demonstrate that conformational changes in G1-3 are induced by micromolar concentrations of Ca2+. Titrations of pyrene-F-actin with G1-3 and gelsolin show that the quenching of pyrene fluorescence is identical in extent and stoichiometry for both G1-3 and gelsolin. In contrast, severing of F-actin by G1-3 is found to be much less efficient than is severing by gelsolin. In experiments in which F-actin severing is quantitatively measured, the filament number is found to be proportional to the 1.35 power of the G1-3 concentration. This deviation from linearity may be explained by cooperativity; the binding of two G1-3 molecules in close proximity may lead to cooperative severing of the polymer, thus increasing the severing efficiency. This model is supported by experiments that show that the efficiency of G1-3 severing of F-actin increases with increasing G1-3:F-actin ratios. Extrapolating from these results, we conclude that G4-6, the carboxyl-terminal half of gelsolin, has an active role in the severing of F-actin by intact gelsolin. Whereas F-actin severing by G1-3 is enhanced by cooperative binding of two separate G1-3 molecules, cooperativity is inherent to intact gelsolin because the cooperative partners are covalently linked. PMID:9826629

  16. Shwachman-Diamond syndrome neutrophils have altered chemoattractant-induced F-actin polymerization and polarization characteristics.

    PubMed

    Orelio, Claudia; Kuijpers, Taco W

    2009-03-01

    Shwachman-Diamond syndrome is a hereditary disorder characterized by pancreatic insufficiency and bone marrow failure. Most Shwachman-Diamond syndrome patients have mutations in the SBDS gene located at chromosome 7 and suffer from recurrent infections, due to neutropenia in combination with impaired neutrophil chemotaxis. Currently, the role of the actin cytoskeleton in Shwachman-Diamond syndrome neutrophils has not been investigated. Therefore, we performed immunofluorescence for SBDS and F-actin on human neutrophilic cells. Additionally, we examined in control neutrophils and cells from genetically defined Shwachman-Diamond syndrome patients F-actin polymerization and cytoskeletal polarization characteristics upon chemoattractant stimulation. These studies showed that SBDS and F-actin co-localize in neutrophilic cells and that F-actin polymerization and depolymerization characteristics are altered in Shwachman-Diamond syndrome neutrophils as compared to control neutrophils in response to both fMLP and C5a. Moreover, F-actin cytoskeletal polarization is delayed in Shwachman-Diamond syndrome neutrophils. Thus, Shwachman-Diamond syndrome neutrophils have aberrant chemoattractant-induced F-actin properties which might contribute to the impaired neutrophil chemotaxis.

  17. Piracy of decay-accelerating factor (CD55) signal transduction by the diffusely adhering strain Escherichia coli C1845 promotes cytoskeletal F-actin rearrangements in cultured human intestinal INT407 cells.

    PubMed

    Peiffer, I; Servin, A L; Bernet-Camard, M F

    1998-09-01

    Diffusely adhering Escherichia coli (DAEC) C1845 (clinical isolate) harboring the fimbrial adhesin F1845 can infect cultured human differentiated intestinal epithelial cells; this process is followed by the disassembly of the actin network in the apical domain. The aim of this study was to examine the mechanism by which DAEC C1845 promotes F-actin rearrangements. For this purpose, we used a human embryonic intestinal cell line (INT407) expressing the membrane-associated glycosylphosphatidylinositol (GPI) protein-anchored decay-accelerating factor (DAF), the receptor of the F1845 adhesin. We show here that infection of INT407 cells by DAEC C1845 can provoke dramatic F-actin rearrangements without cell entry. Clustering of phosphotyrosines was observed, revealing that the DAEC C1845-DAF interaction involves the recruitment of signal transduction molecules. A pharmacological approach with a subset of inhibitors of signal transduction molecules was used to identify the cascade of signal transduction molecules that are coupled to the DAF, that are activated upon infection, and that promote the F-actin rearrangements. DAEC C1845-induced F-actin rearrangements can be blocked dose dependently by protein tyrosine kinase, phospholipase Cgamma, phosphatidylinositol 3-kinase, protein kinase C, and Ca2+ inhibitors. F-actin rearrangements and blocking by inhibitors were observed after infection of the cells with two E. coli recombinants carrying the plasmids containing the fimbrial adhesin F1845 or the fimbrial hemagglutinin Dr, belonging to the same family of adhesins. These findings show that the DAEC Dr family of pathogens promotes alterations in the intestinal cell cytoskeleton by piracy of the DAF-GPI signal cascade without bacterial cell entry.

  18. Endophilin, Lamellipodin, and Mena cooperate to regulate F-actin-dependent EGF-receptor endocytosis.

    PubMed

    Vehlow, Anne; Soong, Daniel; Vizcay-Barrena, Gema; Bodo, Cristian; Law, Ah-Lai; Perera, Upamali; Krause, Matthias

    2013-10-16

    The epidermal growth factor receptor (EGFR) plays an essential role during development and diseases including cancer. Lamellipodin (Lpd) is known to control lamellipodia protrusion by regulating actin filament elongation via Ena/VASP proteins. However, it is unknown whether this mechanism supports endocytosis of the EGFR. Here, we have identified a novel role for Lpd and Mena in clathrin-mediated endocytosis (CME) of the EGFR. We have discovered that endogenous Lpd is in a complex with the EGFR and Lpd and Mena knockdown impairs EGFR endocytosis. Conversely, overexpressing Lpd substantially increases the EGFR uptake in an F-actin-dependent manner, suggesting that F-actin polymerization is limiting for EGFR uptake. Furthermore, we found that Lpd directly interacts with endophilin, a BAR domain containing protein implicated in vesicle fission. We identified a role for endophilin in EGFR endocytosis, which is mediated by Lpd. Consistently, Lpd localizes to clathrin-coated pits (CCPs) just before vesicle scission and regulates vesicle scission. Our findings suggest a novel mechanism in which Lpd mediates EGFR endocytosis via Mena downstream of endophilin.

  19. Myosin IIA is critical for organelle distribution and F-actin organization in megakaryocytes and platelets.

    PubMed

    Pertuy, Fabien; Eckly, Anita; Weber, Josiane; Proamer, Fabienne; Rinckel, Jean-Yves; Lanza, François; Gachet, Christian; Léon, Catherine

    2014-02-20

    During proplatelet formation, a relatively homogeneous content of organelles is transported from the megakaryocyte (MK) to the nascent platelets along microtubule tracks. We found that platelets from Myh9(-/-) mice and a MYH9-RD patient were heterogeneous in their organelle content (granules and mitochondria). In addition, Myh9(-/-) MKs have an abnormal cytoplasmic clustering of organelles, suggesting that the platelet defect originates in the MKs. Myosin is not involved in the latest stage of organelle traffic along microtubular tracks in the proplatelet shafts as shown by confocal observations of proplatelet buds. By contrast, it is required for the earlier distribution of organelles within the large MK preplatelet fragments shed into the sinusoid circulation before terminal proplatelet remodeling. We show here that F-actin is abnormally clustered in the cytoplasm of Myh9(-/-) MKs and actin polymerization is impaired in platelets. Myosin IIA is required for normal granule motility and positioning within MKs, mechanisms that may be dependent on organelle traveling and tethering onto F-actin cytoskeleton tracks. Altogether, our results indicate that the distribution of organelles within platelets critically depends on a homogeneous organelle distribution within MKs and preplatelet fragments, which requires myosin IIA.

  20. Filamin-regulated F-actin assembly is essential for morphogenesis and controls phototaxis in Dictyostelium.

    PubMed

    Khaire, Nandkumar; Müller, Rolf; Blau-Wasser, Rosemarie; Eichinger, Ludwig; Schleicher, Michael; Rief, Matthias; Holak, Tad A; Noegel, Angelika A

    2007-01-19

    Dictyostelium strains lacking the F-actin cross-linking protein filamin (ddFLN) have a severe phototaxis defect at the multicellular slug stage. Filamins are rod-shaped homodimers that cross-link the actin cytoskeleton into highly viscous, orthogonal networks. Each monomer chain of filamin is comprised of an F-actin-binding domain and a rod domain. In rescue experiments only intact filamin re-established correct phototaxis in filamin minus mutants, whereas C-terminally truncated filamin proteins that had lost the dimerization domain and molecules lacking internal repeats but retaining the dimerization domain did not rescue the phototaxis defect. Deletion of individual rod repeats also changed their subcellular localization, and mutant filamins in general were less enriched at the cell cortex as compared with the full-length protein and were increasingly present in the cytoplasm. For correct phototaxis ddFLN is only required at the tip of the slug because expression under control of the cell type-specific extracellular-matrix protein A (ecmA) promoter and mixing experiments with wild type cells supported phototactic orientation. Likewise, in chimeric slugs wild type cells were primarily found at the tip of the slug, which acts as an organizer in Dictyostelium morphogenesis.

  1. Binding to F-actin guides cadherin cluster assembly, stability, and movement

    PubMed Central

    Hong, Soonjin; Troyanovsky, Regina B.

    2013-01-01

    The cadherin extracellular region produces intercellular adhesion clusters through trans- and cis-intercadherin bonds, and the intracellular region connects these clusters to the cytoskeleton. To elucidate the interdependence of these binding events, cadherin adhesion was reconstructed from the minimal number of structural elements. F-actin–uncoupled adhesive clusters displayed high instability and random motion. Their assembly required a cadherin cis-binding interface. Coupling these clusters with F-actin through an α-catenin actin-binding domain (αABD) dramatically extended cluster lifetime and conferred direction to cluster motility. In addition, αABD partially lifted the requirement for the cis-interface for cluster assembly. Even more dramatic enhancement of cadherin clustering was observed if αABD was joined with cadherin through a flexible linker or if it was replaced with an actin-binding domain of utrophin. These data present direct evidence that binding to F-actin stabilizes cadherin clusters and cooperates with the cis-interface in cadherin clustering. Such cooperation apparently synchronizes extracellular and intracellular binding events in the process of adherens junction assembly. PMID:23547031

  2. Damage effects of protoporphyrin IX - sonodynamic therapy on the cytoskeletal F-actin of Ehrlich ascites carcinoma cells.

    PubMed

    Zhao, Xia; Liu, Quanhong; Tang, Wei; Wang, Xiaobing; Wang, Pan; Gong, Liyan; Wang, Yuan

    2009-01-01

    In this study, we report evidence of the damage effects of sonodynamic therapy (SDT) on a novel intracellular target, cytoskeletal F-actin, that has great importance for cancer treatment. Ehrlich ascites carcinoma (EAC) cells suspended in PBS were exposed to ultrasound at 1.34 MHz for up to 60s in the presence and absence of protoporphyrin IX (PPIX). To evaluate the polymeric state and distribution of actin filaments (AF) we employed FITC-Phalloidin staining. The percentage of cells with intact AF was decreased with 10-80 microM PPIX after ultrasonic exposure, while only few cells with disturbed F-actin were observed with 80 microM PPIX alone. The fluorescence intensity of FITC-Phalloidin labeled cells was detected by flow cytometry. The morphological changes of EAC cells were observed by scanning electron microscope (SEM). The nuclei were stained with Hoechst 33258 to determine apoptosis. Cytoskeletal F-actin and cell morphological changes were dependent on the time after SDT. Some cells suffered deformations of plasma membrane as blebs that reacted positively to FITC-Phalloidin at 2h after SDT treatment. Many of the cells showed the typically apoptotic chromatin fragmentation. The alterations were more significant 4h later. Our results showed that cytoskeletal F-actin might represent an important target for the SDT treatment and the observed effect on F-actin and the subsequent bleb formation mainly due to apoptosis formation due to the treatment.

  3. The effects of collapsing factors on F-actin content and microtubule distribution of Helisoma growth cones.

    PubMed

    Torreano, Paul J; Waterman-Storer, Clare M; Cohan, Christopher S

    2005-03-01

    Growth cone collapsing factors induce growth cone collapse or repulsive growth cone turning by interacting with membrane receptors that induce alterations in the growth cone cytoskeleton. A common change induced by collapsing factors in the cytoskeleton of the peripheral domain, the thin lamellopodial area of growth cones, is a decline in the number of radially aligned F-actin bundles that form the core of filopodia. The present study examined whether ML-7, a myosin light chain kinase inhibitor, serotonin, a neurotransmitter and TPA, an activator of protein kinase C, which induce growth cone collapse of Helisoma growth cones, depolymerized or debundled F-actin. We report that these collapsing factors had different effects. ML-7 induced F-actin reorganization consistent with debundling whereas serotonin and TPA predominately depolymerized and possibly debundled F-actin. Additionally, these collapsing factors induced the formation of a dense actin-ring around the central domain, the thicker proximal area of growth cones [Zhou and Cohan, 2001: J. Cell Biol. 153:1071-1083]. The formation of the actin-ring occurred subsequent to the loss of actin bundles. The ML-7-induced actin-ring was found to inhibit microtubule extension into the P-domain. Thus, ML-7, serotonin, and TPA induce growth cone collapse associated with a decline in radially aligned F-actin bundles through at least two mechanisms involving debundling of actin filaments and/or actin depolymerization.

  4. Adhesive F-actin Waves: A Novel Integrin-Mediated Adhesion Complex Coupled to Ventral Actin Polymerization

    PubMed Central

    Case, Lindsay B.; Waterman, Clare M.

    2011-01-01

    At the leading lamellipodium of migrating cells, protrusion of an Arp2/3-nucleated actin network is coupled to formation of integrin-based adhesions, suggesting that Arp2/3-mediated actin polymerization and integrin-dependent adhesion may be mechanistically linked. Arp2/3 also mediates actin polymerization in structures distinct from the lamellipodium, in “ventral F-actin waves” that propagate as spots and wavefronts along the ventral plasma membrane. Here we show that integrins engage the extracellular matrix downstream of ventral F-actin waves in several mammalian cell lines as well as in primary mouse embryonic fibroblasts. These “adhesive F-actin waves” require a cycle of integrin engagement and disengagement to the extracellular matrix for their formation and propagation, and exhibit morphometry and a hierarchical assembly and disassembly mechanism distinct from other integrin-containing structures. After Arp2/3-mediated actin polymerization, zyxin and VASP are co-recruited to adhesive F-actin waves, followed by paxillin and vinculin, and finally talin and integrin. Adhesive F-actin waves thus represent a previously uncharacterized integrin-based adhesion complex associated with Arp2/3-mediated actin polymerization. PMID:22069459

  5. Cortactin Localization to Sites of Actin Assembly in Lamellipodia Requires Interactions with F-Actin and the Arp2/3 Complex

    PubMed Central

    Weed, Scott A.; Karginov, Andrei V.; Schafer, Dorothy A.; Weaver, Alissa M.; Kinley, Andrew W.; Cooper, John A.; Parsons, J. Thomas

    2000-01-01

    Cortactin is an actin-binding protein that is enriched within the lamellipodia of motile cells and in neuronal growth cones. Here, we report that cortactin is localized with the actin-related protein (Arp) 2/3 complex at sites of actin polymerization within the lamellipodia. Two distinct sequence motifs of cortactin contribute to its interaction with the cortical actin network: the fourth of six tandem repeats and the amino-terminal acidic region (NTA). Cortactin variants lacking either the fourth tandem repeat or the NTA failed to localize at the cell periphery. Tandem repeat four was necessary for cortactin to stably bind F-actin in vitro. The NTA region interacts directly with the Arp2/3 complex based on affinity chromatography, immunoprecipitation assays, and binding assays using purified components. Cortactin variants containing the NTA region were inefficient at promoting Arp2/3 actin nucleation activity. These data provide strong evidence that cortactin is specifically localized to sites of dynamic cortical actin assembly via simultaneous interaction with F-actin and the Arp2/3 complex. Cortactin interacts via its Src homology 3 (SH3) domain with ZO-1 and the SHANK family of postsynaptic density 95/dlg/ZO-1 homology (PDZ) domain–containing proteins, suggesting that cortactin contributes to the spatial organization of sites of actin polymerization coupled to selected cell surface transmembrane receptor complexes. PMID:11018051

  6. A novel mammalian myosin I from rat with an SH3 domain localizes to Con A-inducible, F-actin-rich structures at cell-cell contacts

    PubMed Central

    1995-01-01

    In an effort to determine diversity and function of mammalian myosin I molecules, we report here the cloning and characterization of myr 3 (third unconventional myosin from rat), a novel mammalian myosin I from rat tissues that is related to myosin I molecules from protozoa. Like the protozoan myosin I molecules, myr 3 consists of a myosin head domain, a single light chain binding motif, and a tail region that includes a COOH-terminal SH3 domain. However, myr 3 lacks the regulatory phosphorylation site present in the head domain of protozoan myosin I molecules. Evidence was obtained that the COOH terminus of the tail domain is involved in regulating F-actin binding activity of the NH2-terminal head domain. The light chain of myr 3 was identified as the Ca(2+)-binding protein calmodulin. Northern blot and immunoblot analyses revealed that myr 3 is expressed in many tissues and cell lines. Immunofluorescence studies with anti-myr 3 antibodies in NRK cells demonstrated that myr 3 is localized in the cytoplasm and in elongated structures at regions of cell-cell contact. These elongated structures contained F-actin and alpha-actinin but were devoid of vinculin. Incubation of NRK cells with Con A stimulated the formation of myr 3-containing structures along cell-cell contacts. These results suggest for myr 3 a function mediated by cell-cell contact. PMID:7730414

  7. The NMR structure of dematin headpiece reveals a dynamic loop that is conformationally altered upon phosphorylation at a distal site.

    PubMed

    Frank, Benjamin S; Vardar, Didem; Chishti, Athar H; McKnight, C James

    2004-02-27

    Dematin (band 4.9) is found in the junctional complex of the spectrin cytoskeleton that supports the erythrocyte cell membrane. Dematin is a member of the larger class of cytoskeleton-associated proteins that contain a modular "headpiece" domain at their extreme C termini. The dematin headpiece domain provides the second F-actin-binding site required for in vitro F-actin bundling. The dematin headpiece is found in two forms in the cell, one of 68 residues (DHP) and one containing a 22-amino acid insert near its N terminus (DHP+22). In addition, dematin contains the only headpiece domain that is phosphorylated, in vivo. The 22-amino acid insert in DHP+22 appeared unstructured in NMR spectra; therefore, we have determined the three-dimensional structure of DHP by multidimensional NMR methods. Although the overall three-dimensional structure of DHP is similar to that of the villin headpiece, there are two novel characteristics revealed by this structure. First, unlike villin headpiece that contains a single buried salt bridge, DHP contains a buried charged cluster comprising residues Glu(39), Arg(66), Lys(70), and the C-terminal carboxylate of Phe(76). Second, (15)N relaxation experiments indicate that the longer "variable loop" region near the N terminus of DHP (residues 20-29) is dynamic, undergoing significantly greater motions that the rest of the structure. Furthermore, NMR chemical shift changes indicate that the conformation of the dynamic variable loop is altered by phosphorylation of serine 74, which is far in the sequence from the variable loop region. Our results suggest that phosphorylation of the dematin headpiece acts as a conformational switch within this headpiece domain.

  8. Roles of Bifocal, Homer, and F-actin in anchoring Oskar to the posterior cortex of Drosophila oocytes

    PubMed Central

    Babu, Kavita; Cai, Yu; Bahri, Sami; Yang, Xiaohang; Chia, William

    2004-01-01

    Transport, translation, and anchoring of osk mRNA and proteins are essential for posterior patterning of Drosophila embryos. Here we show that Homer and Bifocal act redundantly to promote posterior anchoring of the osk gene products. Disruption of actin microfilaments, which causes delocalization of Bifocal but not Homer from the oocyte cortex, severely disrupts anchoring of osk gene products only when Homer (not Bifocal) is absent. Our data suggest that two processes, one requiring Bifocal and an intact F-actin cytoskeleton and a second requiring Homer but independent of intact F-actin, may act redundantly to mediate posterior anchoring of the osk gene products. PMID:14752008

  9. Mesenchymal Remodeling during Palatal Shelf Elevation Revealed by Extracellular Matrix and F-Actin Expression Patterns

    PubMed Central

    Chiquet, Matthias; Blumer, Susan; Angelini, Manuela; Mitsiadis, Thimios A.; Katsaros, Christos

    2016-01-01

    During formation of the secondary palate in mammalian embryos, two vertically oriented palatal shelves rapidly elevate into a horizontal position above the tongue, meet at the midline, and fuse to form a single entity. Previous observations suggested that elevation occurs by a simple 90° rotation of the palatal shelves. More recent findings showed that the presumptive midline epithelial cells are not located at the tips of palatal shelves before elevation, but mostly toward their medial/lingual part. This implied extensive tissue remodeling during shelf elevation. Nevertheless, it is still not known how the shelf mesenchyme reorganizes during this process, and what mechanism drives it. To address this question, we mapped the distinct and restricted expression domains of certain extracellular matrix components within the developing palatal shelves. This procedure allowed to monitor movements of entire mesenchymal regions relative to each other during shelf elevation. Consistent with previous notions, our results confirm a flipping movement of the palatal shelves anteriorly, whereas extensive mesenchymal reorganization is observed more posteriorly. There, the entire lingual portion of the vertical shelves moves close to the midline after elevation, whereas the mesenchyme at the original tip of the shelves ends up ventrolaterally. Moreover, we observed that the mesenchymal cells of elevating palatal shelves substantially align their actin cytoskeleton, their extracellular matrix, and their nuclei in a ventral to medial direction. This indicates that, like in other morphogenetic processes, actin-dependent cell contractility is a major driving force for mesenchymal tissue remodeling during palatogenesis. PMID:27656150

  10. Viscoelasticity and primitive path analysis of entangled polymer liquids: From F-actin to polyethylene

    NASA Astrophysics Data System (ADS)

    Uchida, Nariya; Grest, Gary S.; Everaers, Ralf

    2008-01-01

    We combine computer simulations and scaling arguments to develop a unified view of polymer entanglement based on the primitive path analysis of the microscopic topological state. Our results agree with experimentally measured plateau moduli for three different polymer classes over a wide range of reduced polymer densities: (i) semidilute theta solutions of synthetic polymers, (ii) the corresponding dense melts above the glass transition or crystallization temperature, and (iii) solutions of semiflexible (bio)polymers such as F-actin or suspensions of rodlike viruses. Together, these systems cover the entire range from loosely to tightly entangled polymers. In particular, we argue that the primitive path analysis renormalizes a loosely to a tightly entangled system and provide a new explanation of the successful Lin-Noolandi packing conjecture for polymer melts.

  11. F-actin-binding protein drebrin regulates CXCR4 recruitment to the immune synapse.

    PubMed

    Pérez-Martínez, Manuel; Gordón-Alonso, Mónica; Cabrero, José Román; Barrero-Villar, Marta; Rey, Mercedes; Mittelbrunn, María; Lamana, Amalia; Morlino, Giulia; Calabia, Carmen; Yamazaki, Hiroyuki; Shirao, Tomoaki; Vázquez, Jesús; González-Amaro, Roberto; Veiga, Esteban; Sánchez-Madrid, Francisco

    2010-04-01

    The adaptive immune response depends on the interaction of T cells and antigen-presenting cells at the immune synapse. Formation of the immune synapse and the subsequent T-cell activation are highly dependent on the actin cytoskeleton. In this work, we describe that T cells express drebrin, a neuronal actin-binding protein. Drebrin colocalizes with the chemokine receptor CXCR4 and F-actin at the peripheral supramolecular activation cluster in the immune synapse. Drebrin interacts with the cytoplasmic tail of CXCR4 and both proteins redistribute to the immune synapse with similar kinetics. Drebrin knockdown in T cells impairs the redistribution of CXCR4 and inhibits actin polymerization at the immune synapse as well as IL-2 production. Our data indicate that drebrin exerts an unexpected and relevant functional role in T cells during the generation of the immune response.

  12. The Differential Organization of F-Actin Alters the Distribution of Organelles in Cultured When Compared to Native Chromaffin Cells.

    PubMed

    Gimenez-Molina, Yolanda; Villanueva, José; Nanclares, Carmen; Lopez-Font, Inmaculada; Viniegra, Salvador; Francés, Maria Del Mar; Gandia, Luis; Gil, Amparo; Gutiérrez, Luis M

    2017-01-01

    Cultured bovine chromaffin cells have been used extensively as a neuroendocrine model to study regulated secretion. In order to extend such experimental findings to the physiological situation, it is necessary to study mayor cellular structures affecting secretion in cultured cells with their counterparts present in the adrenomedullary tissue. F-actin concentrates in a peripheral ring in cultured cells, as witnessed by phalloidin-rodhamine labeling, while extends throughout the cytoplasm in native cells. This result is also confirmed when studying the localization of α-fodrin, a F-actin-associated protein. Furthermore, as a consequence of this redistribution of F-actin, we observed that chromaffin granules and mitochondria located into two different cortical and internal populations in cultured cells, whereas they are homogeneously distributed throughout the cytoplasm in the adrenomedullary tissue. Nevertheless, secretion from isolated cells and adrenal gland pieces is remarkably similar when measured by amperometry. Finally, we generate mathematical models to consider how the distribution of organelles affects the secretory kinetics of intact and cultured cells. Our results imply that we have to consider F-actin structural changes to interpret functional data obtained in cultured neuroendocrine cells.

  13. The Differential Organization of F-Actin Alters the Distribution of Organelles in Cultured When Compared to Native Chromaffin Cells

    PubMed Central

    Gimenez-Molina, Yolanda; Villanueva, José; Nanclares, Carmen; Lopez-Font, Inmaculada; Viniegra, Salvador; Francés, Maria del Mar; Gandia, Luis; Gil, Amparo; Gutiérrez, Luis M.

    2017-01-01

    Cultured bovine chromaffin cells have been used extensively as a neuroendocrine model to study regulated secretion. In order to extend such experimental findings to the physiological situation, it is necessary to study mayor cellular structures affecting secretion in cultured cells with their counterparts present in the adrenomedullary tissue. F-actin concentrates in a peripheral ring in cultured cells, as witnessed by phalloidin–rodhamine labeling, while extends throughout the cytoplasm in native cells. This result is also confirmed when studying the localization of α-fodrin, a F-actin-associated protein. Furthermore, as a consequence of this redistribution of F-actin, we observed that chromaffin granules and mitochondria located into two different cortical and internal populations in cultured cells, whereas they are homogeneously distributed throughout the cytoplasm in the adrenomedullary tissue. Nevertheless, secretion from isolated cells and adrenal gland pieces is remarkably similar when measured by amperometry. Finally, we generate mathematical models to consider how the distribution of organelles affects the secretory kinetics of intact and cultured cells. Our results imply that we have to consider F-actin structural changes to interpret functional data obtained in cultured neuroendocrine cells. PMID:28522964

  14. Plasma membrane-associated SCAR complex subunits promote cortical F-actin accumulation and normal growth characteristics in Arabidopsis roots

    USDA-ARS?s Scientific Manuscript database

    The ARP2/3 complex, a highly conserved nucleator of F-actin polymerization, and its activator, the SCAR complex, have been shown to play important roles in leaf epidermal cell morphogenesis in Arabidopsis. However, the intracellular site(s) and function(s) of SCAR complex and ARP2/3 complex-depende...

  15. Arg/Abl2 modulates the affinity and stoichiometry of binding of cortactin to F-actin.

    PubMed

    MacGrath, Stacey M; Koleske, Anthony J

    2012-08-21

    The Abl family nonreceptor tyrosine kinase Arg/Abl2 interacts with cortactin, an Arp2/3 complex activator, to promote actin-driven cell edge protrusion. Both Arg and cortactin bind directly to filamentous actin (F-actin). While protein-protein interactions between Arg and cortactin have well-characterized downstream effects on the actin cytoskeleton, it is unclear whether and how Arg and cortactin affect each other's actin binding properties. We employ actin cosedimentation assays to show that Arg increases the stoichiometry of binding of cortactin to F-actin at saturation. Using a series of Arg deletion mutants and fragments, we demonstrate that the Arg C-terminal calponin homology domain is necessary and sufficient to increase the stoichiometry of binding of cortactin to F-actin. We also show that interactions between Arg and cortactin are required for optimal affinity between cortactin and the actin filament. Our data suggest a mechanism for Arg-dependent stimulation of binding of cortactin to F-actin, which may facilitate the recruitment of cortactin to sites of local actin network assembly.

  16. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis.

    PubMed

    Spracklen, Andrew J; Fagan, Tiffany N; Lovander, Kaylee E; Tootle, Tina L

    2014-09-15

    Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools--Utrophin, Lifeact, and F-tractin--for characterizing the actin remodeling events occurring within the germline-derived nurse cells during Drosophila mid-oogenesis or follicle development. Specifically, we used the UAS/GAL4 system to express these tools at different levels and in different cells, and analyzed these tools for effects on fertility, alterations in the actin cytoskeleton, and ability to label filamentous actin (F-actin) structures by both fixed and live imaging. While both Utrophin and Lifeact robustly label F-actin structures within the Drosophila germline, when strongly expressed they cause sterility and severe actin defects including cortical actin breakdown resulting in multi-nucleate nurse cells, early F-actin filament and aggregate formation during stage 9 (S9), and disorganized parallel actin filament bundles during stage 10B (S10B). However, by using a weaker germline GAL4 driver in combination with a higher temperature, Utrophin can label F-actin with minimal defects. Additionally, strong Utrophin expression within the germline causes F-actin formation in the nurse cell nuclei and germinal vesicle during mid-oogenesis. Similarly, Lifeact expression results in nuclear F-actin only within the germinal vesicle. F-tractin expresses at a lower level than the other two labeling tools, but labels cytoplasmic F-actin structures well without causing sterility or striking actin defects. Together these studies reveal how critical it is to evaluate the utility of each actin labeling tool

  17. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis

    PubMed Central

    Spracklen, Andrew J.; Fagan, Tiffany N.; Lovander, Kaylee E.; Tootle, Tina L.

    2015-01-01

    Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools – Utrophin, Lifeact, and F-tractin – for characterizing the actin remodeling events occurring within the germline-derived nurse cells during Drosophila mid-oogenesis or follicle development. Specifically, we used the UAS/GAL4 system to express these tools at different levels and in different cells, and analyzed these tools for effects on fertility, alterations in the actin cytoskeleton, and ability to label filamentous actin (F-actin) structures by both fixed and live imaging. While both Utrophin and Lifeact robustly label F-actin structures within the Drosophila germline, when strongly expressed they cause sterility and severe actin defects including cortical actin breakdown resulting in multi-nucleate nurse cells, early F-actin filament and aggregate formation during stage 9 (S9), and disorganized parallel actin filament bundles during stage 10B (S10B). However, by using a weaker germline GAL4 driver in combination with a higher temperature, Utrophin can label F-actin with minimal defects. Additionally, strong Utrophin expression within the germline causes F-actin formation in the nurse cell nuclei and germinal vesicle during mid-oogenesis. Similarly, Lifeact expression results in nuclear F-actin only within the germinal vesicle. F-tractin expresses at a lower level than the other two labeling tools, but labels cytoplasmic F-actin structures well without causing sterility or striking actin defects. Together these studies reveal how critical it is to evaluate the utility of each actin labeling

  18. Structure of the 34 kDa F-actin-bundling protein ABP34 from Dictyostelium discoideum.

    PubMed

    Kim, Min-Kyu; Kim, Ji-Hye; Kim, Ji-Sun; Kang, Sa-Ouk

    2015-09-01

    The crystal structure of the 34 kDa F-actin-bundling protein ABP34 from Dictyostelium discoideum was solved by Ca(2+)/S-SAD phasing and refined at 1.89 Å resolution. ABP34 is a calcium-regulated actin-binding protein that cross-links actin filaments into bundles. Its in vitro F-actin-binding and F-actin-bundling activities were confirmed by a co-sedimentation assay and transmission electron microscopy. The co-localization of ABP34 with actin in cells was also verified. ABP34 adopts a two-domain structure with an EF-hand-containing N-domain and an actin-binding C-domain, but has no reported overall structural homologues. The EF-hand is occupied by a calcium ion with a pentagonal bipyramidal coordination as in the canonical EF-hand. The C-domain structure resembles a three-helical bundle and superposes well onto the rod-shaped helical structures of some cytoskeletal proteins. Residues 216-244 in the C-domain form part of the strongest actin-binding sites (193-254) and exhibit a conserved sequence with the actin-binding region of α-actinin and ABP120. Furthermore, the second helical region of the C-domain is kinked by a proline break, offering a convex surface towards the solvent area which is implicated in actin binding. The F-actin-binding model suggests that ABP34 binds to the side of the actin filament and residues 216-244 fit into a pocket between actin subdomains -1 and -2 through hydrophobic interactions. These studies provide insights into the calcium coordination in the EF-hand and F-actin-binding site in the C-domain of ABP34, which are associated through interdomain interactions.

  19. An actin-binding protein, LlLIM1, mediates calcium and hydrogen regulation of actin dynamics in pollen tubes.

    PubMed

    Wang, Huei-Jing; Wan, Ai-Ru; Jauh, Guang-Yuh

    2008-08-01

    Actin microfilaments are crucial for polar cell tip growth, and their configurations and dynamics are regulated by the actions of various actin-binding proteins (ABPs). We explored the function of a lily (Lilium longiflorum) pollen-enriched LIM domain-containing protein, LlLIM1, in regulating the actin dynamics in elongating pollen tube. Cytological and biochemical assays verified LlLIM1 functioning as an ABP, promoting filamentous actin (F-actin) bundle assembly and protecting F-actin against latrunculin B-mediated depolymerization. Overexpressed LlLIM1 significantly disturbed pollen tube growth and morphology, with multiple tubes protruding from one pollen grain and coaggregation of FM4-64-labeled vesicles and Golgi apparatuses at the subapex of the tube tip. Moderate expression of LlLIM1 induced an oscillatory formation of asterisk-shaped F-actin aggregates that oscillated with growth period but in different phases at the subapical region. These results suggest that the formation of LlLIM1-mediated overstabilized F-actin bundles interfered with endomembrane trafficking to result in growth retardation. Cosedimentation assays revealed that the binding affinity of LlLIM1 to F-actin was simultaneously regulated by both pH and Ca(2+): LlLIM1 showed a preference for F-actin binding under low pH and low Ca(2+) concentration. The potential functions of LlLIM1 as an ABP sensitive to pH and calcium in integrating endomembrane trafficking, oscillatory pH, and calcium circumstances to regulate tip-focused pollen tube growth are discussed.

  20. F-actin cross-linking enhances the stability of force generation in disordered actomyosin networks

    NASA Astrophysics Data System (ADS)

    Jung, Wonyeong; Murrell, Michael P.; Kim, Taeyoon

    2015-12-01

    Myosin molecular motors and actin cross-linking proteins (ACPs) are known to mediate the generation and transmission of mechanical forces within the cortical F-actin cytoskeleton that drive major cellular processes such as cell division and migration. However, how motors and ACPs interact collectively over diverse timescales to modulate the time-dependent mechanical properties of the cytoskeleton remains unclear. In this study, we present a three-dimensional agent-based computational model of the cortical actomyosin network to quantitatively determine the effects of motor activity and the density and kinetics of ACPs on the accumulation and maintenance of mechanical tension within a disordered actomyosin network. We found that motors accumulate large stress quickly by behaving as temporary cross-linkers although this stress is relaxed over time unless there are sufficient passive ACPs to stabilize the network. Stabilization by ACPs helps motors to generate forces up to their maximum potential, leading to significant enhancement of the efficiency and stability of stress generation. Thus, we demonstrated that the force-dependent kinetics of ACP dissociation plays a critical role for the accumulation and sustainment of stress and the structural remodeling of networks.

  1. Protein Kinases Possibly Mediate Hypergravity-Induced Changes in F-Actin Expression by Endothelial Cells

    NASA Technical Reports Server (NTRS)

    Love, Felisha D.; Melhado, Caroline D.; Bosah, Francis N.; Harris-Hooker, Sandra A.; Sanford, Gary L.

    1998-01-01

    Basic cellular functions such as electrolyte concentration, cell growth rate, glucose utilization, bone formation, response to growth stimulation, and exocytosis are modified in microgravity. These studies indicate that microgravity affects a number of physiological systems and included in this are cell signaling mechanisms. Rijken and coworkers performed growth factor studies that showed PKC signaling and actin microfilament organization appears to be sensitive to microgravity, suggesting that the inhibition of signal transduction by microgravity may be related to alterations in actin microfilament organization. However, similar studies have not been done for vascular cells. Vascular endothelial cells play critical roles in providing nutrients to organ and tissues and in wound repair. The major deterrent to ground-based microgravity studies is that it is impossible to achieved true microgravity for longer than a few minutes on earth. Hence, it has not been possible to conduct prolonged microgravity studies except for two models that simulate certain aspects of microgravity. However, hypergravity is quite easily achieved. Several researchers have shown that hypergravity will increase the proliferation of several different cell lines while decreasing cell motility and slowing liver regeneration following partial hepatectomy, These studies indicate the hypergravity also alters the behavior of most cells. Several investigators have shown that hypergravity affects the activation of several protein kinases (PKs) in cells. In this study, we investigated whether hypergravity alters the expression of f-actin by bovine aortic endothelial cells (BAECs) and the role of PK's (calmodulin 11 dependent, PKA and PKC) as mediators of these effects.

  2. Labeling cytoskeletal F-actin with rhodamine phalloidin or fluorescein phalloidin for imaging.

    PubMed

    Chazotte, Brad

    2010-05-01

    The eukaryotic cell has evolved to compartmentalize its functions and transport various metabolites among cellular compartments. Therefore, in cell biology, the study of organization and structure/function relationships is of great importance. The cytoskeleton is composed of a series of filamentous structures, including intermediate filaments, actin filaments, and microtubules. Immunofluorescent staining has been most frequently used to study cytoskeletal components. However, it is also possible to fluorescently label isolated cytoskeletal proteins and either microinject them back into the cell or add them to fixed, permeabilized cells. Alternatively, it is possible to use the mushroom-derived fluorescinated toxins, phalloidin or phallacidin, to label F-actin of the cytoskeleton, as is described in this article. Phalloidin is available labeled with different fluorophores. The choice of the specific fluorophore should depend on whether phalloidin labeling for actin is part of a double-label experiment. In most cells, the abundance of actin filaments should provide a very strong signal. In double-label experiments, the fluorophore should be chosen to take this into account. In general, rhodamine labels are more resistant to photobleaching and can be subjected to the longer exposures required for finer structures.

  3. Chlamydia trachomatis Tarp harbors distinct G and F actin binding domains that bundle actin filaments.

    PubMed

    Jiwani, Shahanawaz; Alvarado, Stephenie; Ohr, Ryan J; Romero, Adriana; Nguyen, Brenda; Jewett, Travis J

    2013-02-01

    All species of Chlamydia undergo a unique developmental cycle that transitions between extracellular and intracellular environments and requires the capacity to invade new cells for dissemination. A chlamydial protein called Tarp has been shown to nucleate actin in vitro and is implicated in bacterial entry into human cells. Colocalization studies of ectopically expressed enhanced green fluorescent protein (EGFP)-Tarp indicate that actin filament recruitment is restricted to the C-terminal half of the effector protein. Actin filaments are presumably associated with Tarp via an actin binding alpha helix that is also required for actin nucleation in vitro, but this has not been investigated. Tarp orthologs from C. pneumoniae, C. muridarum, and C. caviae harbor between 1 and 4 actin binding domains located in the C-terminal half of the protein, but C. trachomatis serovar L2 has only one characterized domain. In this work, we examined the effects of domain-specific mutations on actin filament colocalization with EGFP-Tarp. We now demonstrate that actin filament colocalization with Tarp is dependent on two novel F-actin binding domains that endow the Tarp effector with actin-bundling activity. Furthermore, Tarp-mediated actin bundling did not require actin nucleation, as the ability to bundle actin filaments was observed in mutant Tarp proteins deficient in actin nucleation. These data shed molecular insight on the complex cytoskeletal rearrangements required for C. trachomatis entry into host cells.

  4. Protein Kinases Possibly Mediate Hypergravity-Induced Changes in F-Actin Expression by Endothelial Cells

    NASA Technical Reports Server (NTRS)

    Love, Felisha D.; Melhado, Caroline D.; Bosah, Francis N.; Harris-Hooker, Sandra A.; Sanford, Gary L.

    1998-01-01

    Basic cellular functions such as electrolyte concentration, cell growth rate, glucose utilization, bone formation, response to growth stimulation, and exocytosis are modified in microgravity. These studies indicate that microgravity affects a number of physiological systems and included in this are cell signaling mechanisms. Rijken and coworkers performed growth factor studies that showed PKC signaling and actin microfilament organization appears to be sensitive to microgravity, suggesting that the inhibition of signal transduction by microgravity may be related to alterations in actin microfilament organization. However, similar studies have not been done for vascular cells. Vascular endothelial cells play critical roles in providing nutrients to organ and tissues and in wound repair. The major deterrent to ground-based microgravity studies is that it is impossible to achieved true microgravity for longer than a few minutes on earth. Hence, it has not been possible to conduct prolonged microgravity studies except for two models that simulate certain aspects of microgravity. However, hypergravity is quite easily achieved. Several researchers have shown that hypergravity will increase the proliferation of several different cell lines while decreasing cell motility and slowing liver regeneration following partial hepatectomy, These studies indicate the hypergravity also alters the behavior of most cells. Several investigators have shown that hypergravity affects the activation of several protein kinases (PKs) in cells. In this study, we investigated whether hypergravity alters the expression of f-actin by bovine aortic endothelial cells (BAECs) and the role of PK's (calmodulin 11 dependent, PKA and PKC) as mediators of these effects.

  5. Effect of ADP on binding of skeletal S1 to F-actin.

    PubMed

    Andreev, O A; Ushakov, D S; Borejdo, J

    1998-12-22

    The proximity of skeletal myosin subfragment-1 (S1) to actin, and its orientation with respect to thin filaments of single muscle fibers, were compared in the presence and in the absence of ADP. The proximity was assessed by the efficiency of carbodiimide-induced cross-linking and the orientation by polarization of fluorescence of probes attached to the essential light chains. ADP made no difference in proximity or orientation when the molar ratio of S1 to actin was low or high. However, at the intermediate ratios, ADP made a significant difference. Strong dissociating agents, AMP-PNP and PPi, made significant differences at all ratios. To explain this behavior, it is unnecessary to invoke the ADP-induced "swinging" of the tail of S1. Rather, it is simply explained by the "two-state" model which we proposed earlier, in which S1 binds to one or to two actin protomers, depending on the saturation of the filaments with S1s. The dissociation induced by the ADP shifts the equilibrium between the two bound states. At high and low degrees of saturation, ADP is unable to significantly decrease the amount of S1 bound to F-actin. However, at intermediate saturation levels, ADP causes significantly more S1s to bind to two actins. These results suggest that the ADP-induced changes seen at the intermediate molar ratios are due to the dissociation-induced reorientation of S1.

  6. Role of the DNase-I-binding loop in dynamic properties of actin filament.

    PubMed Central

    Khaitlina, Sofia Yu; Strzelecka-Gołaszewska, Hanna

    2002-01-01

    Effects of proteolytic modifications of the DNase-I-binding loop (residues 39-51) in subdomain 2 of actin on F-actin dynamics were investigated by measuring the rates of the polymer subunit exchange with the monomer pool at steady state and of ATP hydrolysis associated with it, and by determination of relative rate constants for monomer addition to and dissociation from the polymer ends. Cleavage of actin between Gly-42 and Val-43 by protease ECP32 resulted in enhancement of the turnover rate of polymer subunits by an order of magnitude or more, in contrast to less than a threefold increase produced by subtilisin cleavage between Met-47 and Gly-48. Probing the structure of the modified actins by limited digestion with trypsin revealed a correlation between the increased F-actin dynamics and a change in the conformation of subdomain 2, indicating a more open state of the filament subunits relative to intact F-actin. The cleavage with trypsin and steady-state ATPase were cooperatively inhibited by phalloidin, with half-maximal effects at phalloidin to actin molar ratio of 1:8 and full inhibition at a 1:1 ratio. The results support F-actin models in which only the N-terminal segment of loop 39-51 is involved in monomer-monomer contacts, and suggest a possibility of regulation of actin dynamics in the cell through allosteric effects on this segment of the actin polypeptide chain. PMID:11751319

  7. Role of the DNase-I-binding loop in dynamic properties of actin filament.

    PubMed

    Khaitlina, Sofia Yu; Strzelecka-Gołaszewska, Hanna

    2002-01-01

    Effects of proteolytic modifications of the DNase-I-binding loop (residues 39-51) in subdomain 2 of actin on F-actin dynamics were investigated by measuring the rates of the polymer subunit exchange with the monomer pool at steady state and of ATP hydrolysis associated with it, and by determination of relative rate constants for monomer addition to and dissociation from the polymer ends. Cleavage of actin between Gly-42 and Val-43 by protease ECP32 resulted in enhancement of the turnover rate of polymer subunits by an order of magnitude or more, in contrast to less than a threefold increase produced by subtilisin cleavage between Met-47 and Gly-48. Probing the structure of the modified actins by limited digestion with trypsin revealed a correlation between the increased F-actin dynamics and a change in the conformation of subdomain 2, indicating a more open state of the filament subunits relative to intact F-actin. The cleavage with trypsin and steady-state ATPase were cooperatively inhibited by phalloidin, with half-maximal effects at phalloidin to actin molar ratio of 1:8 and full inhibition at a 1:1 ratio. The results support F-actin models in which only the N-terminal segment of loop 39-51 is involved in monomer-monomer contacts, and suggest a possibility of regulation of actin dynamics in the cell through allosteric effects on this segment of the actin polypeptide chain.

  8. An Actin-Binding Protein, LlLIM1, Mediates Calcium and Hydrogen Regulation of Actin Dynamics in Pollen Tubes1[C][W][OA

    PubMed Central

    Wang, Huei-Jing; Wan, Ai-Ru; Jauh, Guang-Yuh

    2008-01-01

    Actin microfilaments are crucial for polar cell tip growth, and their configurations and dynamics are regulated by the actions of various actin-binding proteins (ABPs). We explored the function of a lily (Lilium longiflorum) pollen-enriched LIM domain-containing protein, LlLIM1, in regulating the actin dynamics in elongating pollen tube. Cytological and biochemical assays verified LlLIM1 functioning as an ABP, promoting filamentous actin (F-actin) bundle assembly and protecting F-actin against latrunculin B-mediated depolymerization. Overexpressed LlLIM1 significantly disturbed pollen tube growth and morphology, with multiple tubes protruding from one pollen grain and coaggregation of FM4-64-labeled vesicles and Golgi apparatuses at the subapex of the tube tip. Moderate expression of LlLIM1 induced an oscillatory formation of asterisk-shaped F-actin aggregates that oscillated with growth period but in different phases at the subapical region. These results suggest that the formation of LlLIM1-mediated overstabilized F-actin bundles interfered with endomembrane trafficking to result in growth retardation. Cosedimentation assays revealed that the binding affinity of LlLIM1 to F-actin was simultaneously regulated by both pH and Ca2+: LlLIM1 showed a preference for F-actin binding under low pH and low Ca2+ concentration. The potential functions of LlLIM1 as an ABP sensitive to pH and calcium in integrating endomembrane trafficking, oscillatory pH, and calcium circumstances to regulate tip-focused pollen tube growth are discussed. PMID:18480376

  9. S-crystallin and arginine kinase bind F-actin in light- and dark-adapted octopus retinas.

    PubMed

    Zuniga, Freddi Isaac; Ochoa, Gina H; Kelly, Shannon D; Robles, Laura J

    2004-05-01

    Rhabdomere microvilli dramatically reorganize in conditions of light and dark. This reorganization involves remodeling of the microvillus actin cytoskeleton. We are using the rhabdomeric retina of Octopus bimaculoides to identify actin-binding proteins that may be involved in this remodeling. Octopus were light-/dark-adapted, retinas separated into dorsal and ventral halves, and homogenized. Actin-binding proteins were recognized using F-actin overlay blot assays and selected proteins from the overlays were identified using N-terminal sequencing methods or mass spectroscopy. Protein concentrations were quantified and compared by statistical analysis. Total protein gels of light-/dark-adapted, ventral/dorsal halves were almost identical except for a protein band at 26 kD. The relative amount of this protein in the dark was almost double that found in the light. The levels of other proteins did not vary significantly between the light and dark. F-actin overlays also showed matching patterns of actin-binding proteins except for the 26 kD protein. Although the 26 kD protein from light-adapted retinas transferred to the blotting membranes, it did not bind F-actin while the 26 kD protein on overlays from dark-adapted retinas always demonstrated F-actin binding. Besides the 26 kD protein, other proteins at 200 kD, 80 kD, 40 kD appeared on the overlays. These proteins and the 26 kD protein were sequenced and identified as hemocynanin, transitional ER ATPase, arginine kinase and S-crystallin, respectively. The amount of S-crystallin present in the octopus retina is significantly greater in dark-adapted retinas and it binds to F-actin. In the light, the level of S-crystallin is greatly reduced and there is no apparent F-actin binding. No other studies, to our knowledge, show that S-crystallin binds to the actin cytoskeleton or that its expression is regulated by light. Arginine kinase may provide energy for cytoskeletal remodeling as it may in other neural tissues.

  10. Sinoporphyrin sodium mediated photodynamic therapy inhibits the migration associated with collapse of F-actin filaments cytoskeleton in MDA-MB-231 cells.

    PubMed

    Wu, Lijie; Wang, Xiaobing; Liu, Quanhong; Wingnang Leung, Albert; Wang, Pan; Xu, Chuanshan

    2016-03-01

    We previously demonstrated that the photosensitizer sinoporphyrin sodium (DVDMS) mediated photodynamic therapy (PDT) had potential advantages in inhibiting tumor growth and metastasis. However, details regarding the mechanism of cell migration inhibition remain unclear. Therefore, in this study, we aimed to investigate the effects of DVDMS-PDT on F-actin filaments, cell migration, apoptotic response and the possible interactions between them in human breast cancer MDA-MB-231 cells. The cell viability was evaluated by MTT and Guava ViaCount assays. The subcellular localization of DVDMS and reactive oxygen species (ROS) generation were analyzed by fluorescence microscope and flow cytometry. FITC-phalloidin was used to evaluate the changes of F-actin filaments. Cell migration was analyzed by scratch assay and Transwell assay. Cell apoptosis was determined by nuclear TUNEL staining and Annexin V-PE/7-AAD assay. Jasplakinolide, an F-actin stabilizer, was applied to dissect the influences of F-actin filaments disruption on cell migration and apoptosis. DVDMS-PDT significantly suppressed cell proliferation, promoted early apoptotic response, triggered collapse of F-actin filaments and inhibited cell migration in MDA-MB-231 cells. Cell migration significantly increased when cells were pretreated with F-actin stabilizer jasplakinolide after PDT, while cell apoptosis was not obviously affected. Moreover, ROS was a key factor in causing collapse of F-actin filaments. We demonstrated that DVDMS-PDT triggered cell apoptosis and collapse of F-actin filaments through the induction of ROS in MDA-MB-231 cells. F-actin filaments contributed to cell migration but produced no obvious effect on cell apoptosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Differences in the motility of Amoeba proteus isolated fragments are determined by F-actin arrangement and cell nucleus presence.

    PubMed

    Grebecka, L; Pomorski, P; Lopatowska, A

    1995-10-01

    Isolated fragments produced by bisection of Amoeba proteus differ by their position in the original cell and by the presence or absence of the cell nucleus. Immediately after the operation, both types of anterior fragments preserve the former motory polarity, and do not interrupt locomotion. In the same time, all posterior fragments stop, round up and fail to react stimuli. In the second phase of experiment, these anterior fragments, which had no nucleus ceased to move, whereas the nucleated posterior ones resumed locomotion. It was demonstrated, that the behaviour of a fragment is primarily determined by the peripheral F-actin distribution, which is different depending on the origin of the fragment either from the anterior or from the posterior cell region. Later, the "inherited" F-actin distribution may be stabilized or reorganized in the presence of the nucleus, or desorganized in its absence.

  12. Temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction

    PubMed Central

    1990-01-01

    Wound contraction can substantially reduce the amount of new tissue needed to reestablish organ integrity after tissue loss. Fibroblasts, rich in F-actin bundles, generate the force of wound contraction. Fibronectin-containing microfibrils link fibroblasts to each other and to collagen bundles and thereby provide transduction cables across the wound for contraction. The temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction have not been determined. To establish these relationships, we used a cutaneous gaping wound model in outbred Yorkshire pigs. Granulation tissue filled approximately 80% of the wound space by day 5 after injury while wound contraction was first apparent at day 10. Neither actin bundles nor fibronectin receptors were observed in 5-d wound fibroblasts. Although fibronectin fibrils were assembled on the surfaces of 5-d fibroblasts, few fibrils coursed between cells. Day-7 fibroblasts stained strongly for nonmuscle- type F-actin bundles consistent with a contractile fibroblast phenotype. These cells expressed fibronectin receptors, were embedded in a fibronectin matrix that appeared to connect fibroblasts to the matrix and to each other, and were coaligned across the wound. Transmission EM confirmed the presence of microfilament bundles, cell- cell and cell-matrix linkages at day 7. Fibroblast coalignment, matrix interconnections, and actin bundles became more pronounced at days 10 and 14 coinciding with tissue contraction. These findings demonstrate that granulation tissue formation, F-actin bundle and fibronectin receptor expression in wound fibroblasts, and fibroblast-matrix linkage precede wound contraction. PMID:2136860

  13. In Vivo, Villin Is Required for Ca2+-Dependent F-Actin Disruption in Intestinal Brush Borders

    PubMed Central

    Ferrary, Evelyne; Cohen-Tannoudji, Michel; Pehau-Arnaudet, Gérard; Lapillonne, Alexandre; Athman, Rafika; Ruiz, Tereza; Boulouha, Lilia; El Marjou, Fatima; Doye, Anne; Fontaine, Jean-Jacques; Antony, Claude; Babinet, Charles; Louvard, Daniel; Jaisser, Frédéric; Robine, Sylvie

    1999-01-01

    Villin is an actin-binding protein localized in intestinal and kidney brush borders. In vitro, villin has been demonstrated to bundle and sever F-actin in a Ca2+-dependent manner. We generated knockout mice to study the role of villin in vivo. In villin-null mice, no noticeable changes were observed in the ultrastructure of the microvilli or in the localization and expression of the actin-binding and membrane proteins of the intestine. Interestingly, the response to elevated intracellular Ca2+ differed significantly between mutant and normal mice. In wild-type animals, isolated brush borders were disrupted by the addition of Ca2+, whereas Ca2+ had no effect in villin-null isolates. Moreover, increase in intracellular Ca2+ by serosal carbachol or mucosal Ca2+ ionophore A23187 application abolished the F-actin labeling only in the brush border of wild-type animals. This F-actin disruption was also observed in physiological fasting/refeeding experiments. Oral administration of dextran sulfate sodium, an agent that causes colonic epithelial injury, induced large mucosal lesions resulting in a higher death probability in mice lacking villin, 36 ± 9.6%, compared with wild-type mice, 70 ± 8.8%, at day 13. These results suggest that in vivo, villin is not necessary for the bundling of F-actin microfilaments, whereas it is necessary for the reorganization elicited by various signals. We postulate that this property might be involved in cellular plasticity related to cell injury. PMID:10459016

  14. Functional Characterization of Human Myosin-18A and Its Interaction with F-actin and GOLPH3*

    PubMed Central

    Taft, Manuel H.; Behrmann, Elmar; Munske-Weidemann, Lena-Christin; Thiel, Claudia; Raunser, Stefan; Manstein, Dietmar J.

    2013-01-01

    Molecular motors of the myosin superfamily share a generic motor domain region. They commonly bind actin in an ATP-sensitive manner, exhibit actin-activated ATPase activity, and generate force and movement in this interaction. Class-18 myosins form heavy chain dimers and contain protein interaction domains located at their unique N-terminal extension. Here, we characterized human myosin-18A molecular function in the interaction with nucleotides, F-actin, and its putative binding partner, the Golgi-associated phosphoprotein GOLPH3. We show that myosin-18A comprises two actin binding sites. One is located in the KE-rich region at the start of the N-terminal extension and appears to mediate ATP-independent binding to F-actin. The second actin-binding site resides in the generic motor domain and is regulated by nucleotide binding in the absence of intrinsic ATP hydrolysis competence. This core motor domain displays its highest actin affinity in the ADP state. Electron micrographs of myosin-18A motor domain-decorated F-actin filaments show a periodic binding pattern independent of the nucleotide state. We show that the PDZ module mediates direct binding of myosin-18A to GOLPH3, and this interaction in turn modulates the actin binding properties of the N-terminal extension. Thus, myosin-18A can act as an actin cross-linker with multiple regulatory modulators that targets interacting proteins or complexes to the actin-based cytoskeleton. PMID:23990465

  15. F-actin and beta-tubulin localization in the myxospore stinging apparatus of Myxobolus pseudodispar Gorbunova, 1936 (Myxozoa, Myxosporea).

    PubMed

    Uspenskaya, A V; Raikova, O I

    2004-01-01

    To understand the discharge mechanism of Myxozoan polar capsule (cnida) it is necessary to verify the role of major cytoskeletal proteins in the process. With this aim F-actin and beta-tubulin localization in spores of myxosporean developmental phase (in myxospores) of Myxobolus pseudodispar Gorbunova, 1936 has been studied under confocal scanning laser microscope using phalloidin fluorescent staining of F-actin and indirect anti-beta-tubulin immunostaining. F-actin has been detected in walls of the stinging tube invaginated into the polar capsule of myxospore. The fact suggests the contractile proteins involvement in the process of myxozoan polar capsule extrusion. In addition, the cytoplasm of amoeboid sporoplasm inside the spore cavity is stained by phalloidin. A polar cap with strong beta-tubulin immunoreacton is observed at the front pole of fully mature myxospore above the outlets of the polar capsule discharge channels. The role of the beta-tubulin cap is supposed to be similar to that of the cnidarian cnidocil made of microtubules. The weaker beta-tubulin immunoreactivity has been found in stinging tubes, in polar capsule walls as well as in the suture line of spore walls and in the cytoplasm of amoeboid sporoplasm. The involvement of cytoskeletal proteins in the process of polar capsule extrusion is discussed. A hypothesis on the myxozoan polar capsule discharge mechanism is suggested. The mechanism of myxozoan cnida discharge is compared with that of cnidaria.

  16. NAB-1 instructs synapse assembly by linking adhesion molecules and F-actin to active zone proteins.

    PubMed

    Chia, Poh Hui; Patel, Maulik R; Shen, Kang

    2012-01-08

    During synaptogenesis, macromolecular protein complexes assemble at the pre- and postsynaptic membrane. Extensive literature identifies many transmembrane molecules sufficient to induce synapse formation and several intracellular scaffolding molecules responsible for assembling active zones and recruiting synaptic vesicles. However, little is known about the molecular mechanisms coupling membrane receptors to active zone molecules during development. Using Caenorhabditis elegans, we identify an F-actin network present at nascent presynaptic terminals and required for presynaptic assembly. We unravel a sequence of events whereby specificity-determining adhesion molecules define the location of developing synapses and locally assemble F-actin. Next, the adaptor protein NAB-1 (neurabin) binds to F-actin and recruits active zone proteins SYD-1 and SYD-2 (liprin-α) by forming a tripartite complex. NAB-1 localizes transiently to synapses during development and is required for presynaptic assembly. Altogether, we identify a role for the actin cytoskeleton during presynaptic development and characterize a molecular pathway whereby NAB-1 links synaptic partner recognition to active zone assembly.

  17. F-actin rearrangement is regulated by mTORC2/Akt/Girdin in mouse fertilized eggs.

    PubMed

    Wu, Didi; Yu, Dahai; Wang, Xiuxia; Yu, Bingzhi

    2016-12-01

    In mouse fertilized eggs, correct assembly and distribution of the actin cytoskeleton are intimately related to cleavage in early-stage embryos. However, in mouse fertilized eggs, mechanisms and involved factors responsible for regulating the actin cytoskeleton are poorly defined. In this study, mTORC2, PKB/Akt and Girdin were found to modulate division of mouse fertilized eggs by regulating distribution of the actin cytoskeleton. RNA interference (RNAi)-mediated depletion of mTORC2, Akt1 or Girdin disrupted F-actin rearrangement and strongly inhibited egg development. PKB/Akt has been proven to be a downstream target of the mTORC2 signalling pathway. Girdin, a newly found actin cross-linker, has been proven to be a downstream target of the Akt signalling pathway. Furthermore, phosphorylation of both Akt1 and girdin was affected by knockdown of mTORC2. Akt1 positively regulated development of the mouse fertilized eggs by girdin-mediated F-actin rearrangement. Thus it seems that girdin could be a downstream target of the Akt1-mediated signalling pathway. Collectively, this study aimed to prove participation of mTORC2/Akt in F-actin assembly in early-stage cleavage of mouse fertilized eggs via the function of girdin.

  18. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation

    PubMed Central

    Chen, Zhe; Luo, Qing; Lin, Chuanchuan; Kuang, Dongdong; Song, Guanbin

    2016-01-01

    Microgravity induces observed bone loss in space flight, and reduced osteogenesis of bone mesenchymal stem cells (BMSCs) partly contributes to this phenomenon. Abnormal regulation or functioning of the actin cytoskeleton induced by microgravity may cause the inhibited osteogenesis of BMSCs, but the underlying mechanism remains obscure. In this study, we demonstrated that actin cytoskeletal changes regulate nuclear aggregation of the transcriptional coactivator with PDZ-binding motif (TAZ), which is indispensable for osteogenesis of bone mesenchymal stem cells (BMSCs). Moreover, we utilized a clinostat to model simulated microgravity (SMG) and demonstrated that SMG obviously depolymerized F-actin and hindered TAZ nuclear translocation. Interestingly, stabilizing the actin cytoskeleton induced by Jasplakinolide (Jasp) significantly rescued TAZ nuclear translocation and recovered the osteogenic differentiation of BMSCs in SMG, independently of large tumor suppressor 1(LATS1, an upstream kinase of TAZ). Furthermore, lysophosphatidic acid (LPA) also significantly recovered the osteogenic differentiation of BMSCs in SMG through the F-actin-TAZ pathway. Taken together, we propose that the depolymerized actin cytoskeleton inhibits osteogenic differentiation of BMSCs through impeding nuclear aggregation of TAZ, which provides a novel connection between F-actin cytoskeleton and osteogenesis of BMSCs and has important implications in bone loss caused by microgravity. PMID:27444891

  19. Enterocyte loss of polarity and gut wound healing rely upon the F-actin-severing function of villin.

    PubMed

    Ubelmann, Florent; Chamaillard, Mathias; El-Marjou, Fatima; Simon, Anthony; Netter, Jeanne; Vignjevic, Danijela; Nichols, Buford L; Quezada-Calvillo, Roberto; Grandjean, Teddy; Louvard, Daniel; Revenu, Céline; Robine, Sylvie

    2013-04-09

    Efficient wound healing is required to maintain the integrity of the intestinal epithelial barrier because of its constant exposure to a large variety of environmental stresses. This process implies a partial cell depolarization and the acquisition of a motile phenotype that involves rearrangements of the actin cytoskeleton. Here we address how polarized enterocytes harboring actin-rich apical microvilli undergo extensive cell remodeling to drive injury repair. Using live imaging technologies, we demonstrate that enterocytes in vitro and in vivo rapidly depolarize their microvilli at the wound edge. Through its F-actin-severing activity, the microvillar actin-binding protein villin drives both apical microvilli disassembly in vitro and in vivo and promotes lamellipodial extension. Photoactivation experiments indicate that microvillar actin is mobilized at the lamellipodium, allowing optimal migration. Finally, efficient repair of colonic mechanical injuries requires villin severing of F-actin, emphasizing the importance of villin function in intestinal homeostasis. Thus, villin severs F-actin to ensure microvillus depolarization and enterocyte remodeling upon injury. This work highlights the importance of specialized apical pole disassembly for the repolarization of epithelial cells initiating migration.

  20. Neutrophil enhancement of Pseudomonas aeruginosa biofilm development: human F-actin and DNA as targets for therapy

    PubMed Central

    Parks, Quinn M.; Young, Robert L.; Poch, Katie R.; Malcolm, Kenneth C.; Vasil, Michael L.; Nick, Jerry A.

    2009-01-01

    In the cystic fibrosis (CF) airway, chronic infection by Pseudomonas aeruginosa results from biofilm formation in a neutrophil-rich environment. We tested the capacity of human neutrophils to modify early biofilm formation of P. aeruginosa strain PAO1, and an isogenic CF strain isolated early and years later in infection. In a static reactor, P. aeruginosa biofilm density of all strains was enhanced at 24 h in the presence of neutrophils, with the greatest relative increase associated with the lowest inoculum of P. aeruginosa tested. Previously, neutrophil-induced biofilm enhancement was shown to largely result from the incorporation of F-actin and DNA polymers into the bacterial biofilm. This finding was advanced by the comparison of biofilm enhancement from intact unstimulated neutrophils and from lysed or apoptotic neutrophils. Apoptotic neutrophils, with an intact cell membrane, were unable to contribute to biofilm enhancement, while lysed neutrophils evoked a similar response to that of intact cells. Using F-actin and DNA as targets, the capacity of negatively charged poly(amino acids) to disrupt, or prevent, early biofilm formation was tested. Anionic poly(aspartic acid) effectively prevented or disrupted biofilm formation. Combination of poly(aspartic acid) with DNase resulted in a synergistic increase in biofilm disruption. These results demonstrate that the presence of dying neutrophils can facilitate the initial stages of biofilm development by low inocula of P. aeruginosa. Neutrophil F-actin represents a potential new therapeutic target for disruption of pathogenic biofilms. PMID:19273646

  1. Flexibility of myosin attachment to surfaces influences F-actin motion.

    PubMed

    Winkelmann, D A; Bourdieu, L; Ott, A; Kinose, F; Libchaber, A

    1995-06-01

    We have analyzed the dependence of actin filament sliding movement on the mode of myosin attachment to surfaces. Monoclonal antibodies (mAbs) that bind to three distinct sites were used to tether myosin to nitrocellulose-coated glass. One antibody reacts with an epitope on the regulatory light chain (LC2) located at the head-rod junction. The other two react with sites in the rod domain, one in the S2 region near the S2-LMM hinge, and the other at the C terminus of the myosin rod. This method of attachment provides a means of controlling the flexibility and density of myosin on the surface. Fast skeletal muscle myosin monomers were bound to the surfaces through the specific interaction with these mAbs, and the sliding movement of fluorescently labeled actin filaments was analyzed by video microscopy. Each of these antibodies produced stable myosin-coated surfaces that supported uniform motion of actin over the course of several hours. Attachment of myosin through the anti-S2 and anti-LMM mAbs yielded significantly higher velocities (10 microns/s at 30 degrees C) than attachment through anti-LC2 (4-5 microns/s at 30 degrees C). For each antibody, we observed a characteristic value of the myosin density for the onset of F-actin motion and a second critical density for velocity saturation. The specific mode of attachment influences the velocity of actin filaments and the characteristic surface density needed to support movement.

  2. Flexibility of myosin attachment to surfaces influences F-actin motion.

    PubMed Central

    Winkelmann, D A; Bourdieu, L; Ott, A; Kinose, F; Libchaber, A

    1995-01-01

    We have analyzed the dependence of actin filament sliding movement on the mode of myosin attachment to surfaces. Monoclonal antibodies (mAbs) that bind to three distinct sites were used to tether myosin to nitrocellulose-coated glass. One antibody reacts with an epitope on the regulatory light chain (LC2) located at the head-rod junction. The other two react with sites in the rod domain, one in the S2 region near the S2-LMM hinge, and the other at the C terminus of the myosin rod. This method of attachment provides a means of controlling the flexibility and density of myosin on the surface. Fast skeletal muscle myosin monomers were bound to the surfaces through the specific interaction with these mAbs, and the sliding movement of fluorescently labeled actin filaments was analyzed by video microscopy. Each of these antibodies produced stable myosin-coated surfaces that supported uniform motion of actin over the course of several hours. Attachment of myosin through the anti-S2 and anti-LMM mAbs yielded significantly higher velocities (10 microns/s at 30 degrees C) than attachment through anti-LC2 (4-5 microns/s at 30 degrees C). For each antibody, we observed a characteristic value of the myosin density for the onset of F-actin motion and a second critical density for velocity saturation. The specific mode of attachment influences the velocity of actin filaments and the characteristic surface density needed to support movement. Images FIGURE 1 FIGURE 4 FIGURE 8 PMID:7544167

  3. Effect of Flumorph on F-Actin Dynamics in the Potato Late Blight Pathogen Phytophthora infestans.

    PubMed

    Hua, Chenlei; Kots, Kiki; Ketelaar, Tijs; Govers, Francine; Meijer, Harold J G

    2015-04-01

    Oomycetes are fungal-like pathogens that cause notorious diseases. Protecting crops against oomycetes requires regular spraying with chemicals, many with an unknown mode of action. In the 1990s, flumorph was identified as a novel crop protection agent. It was shown to inhibit the growth of oomycete pathogens including Phytophthora spp., presumably by targeting actin. We recently generated transgenic Phytophthora infestans strains that express Lifeact-enhanced green fluorescent protein (eGFP), which enabled us to monitor the actin cytoskeleton during hyphal growth. For analyzing effects of oomicides on the actin cytoskeleton in vivo, the P. infestans Lifeact-eGFP strain is an excellent tool. Here, we confirm that flumorph is an oomicide with growth inhibitory activity. Microscopic analyses showed that low flumorph concentrations provoked hyphal tip swellings accompanied by accumulation of actin plaques in the apex, a feature reminiscent of tips of nongrowing hyphae. At higher concentrations, swelling was more pronounced and accompanied by an increase in hyphal bursting events. However, in hyphae that remained intact, actin filaments were indistinguishable from those in nontreated, nongrowing hyphae. In contrast, in hyphae treated with the actin depolymerizing drug latrunculin B, no hyphal bursting was observed but the actin filaments were completely disrupted. This difference demonstrates that actin is not the primary target of flumorph.

  4. Plasma levels of F-actin and F:G-actin ratio as potential new biomarkers in patients with septic shock.

    PubMed

    Belsky, Justin B; Morris, Daniel C; Bouchebl, Ralph; Filbin, Michael R; Bobbitt, Kevin R; Jaehne, Anja K; Rivers, Emanuel P

    2016-01-01

    To compare plasma levels of F-actin, G-actin and thymosin beta 4 (TB4) in humans with septic shock, noninfectious systemic inflammatory response syndrome (SIRS) and healthy controls. F-actin was significantly elevated in septic shock as compared with noninfectious SIRS and healthy controls. G-actin levels were greatest in the noninfectious SIRS group but significantly elevated in septic shock as compared with healthy controls. TB4 was not detectable in the septic shock or noninfectious SIRS group above the assay's lowest detection range (78 ng/ml). F-actin is significantly elevated in patients with septic shock as compared with noninfectious SIRS. F-actin and the F:G-actin ratio are potential biomarkers for the diagnosis of septic shock.

  5. Nuclear F-actin enhances the transcriptional activity of β-catenin by increasing its nuclear localization and binding to chromatin.

    PubMed

    Yamazaki, Shota; Yamamoto, Koji; de Lanerolle, Primal; Harata, Masahiko

    2016-04-01

    Actin plays multiple roles both in the cytoplasm and in the nucleus. Cytoplasmic actin, in addition to its structural role in the cytoskeleton, also contributes to the subcellular localization of transcription factors by interacting with them or their partners. The transcriptional cofactor β-catenin, which acts as an intracellular transducer of canonical Wnt signaling, indirectly associates with the cytoplasmic filamentous actin (F-actin). Recently, it has been observed that F-actin is transiently formed within the nucleus in response to serum stimulation and integrin signaling, and also during gene reprogramming. Despite these earlier observations, information about the function of nuclear F-actin is poorly defined. Here, by facilitating the accumulation of nuclear actin artificially, we demonstrate that polymerizing nuclear actin enhanced the nuclear accumulation and transcriptional function of β-catenin. Our results also show that the nuclear F-actin colocalizes with β-catenin and enhances the binding of β-catenin to the downstream target genes of the Wnt/β-catenin signaling pathway, including the genes for the cell cycle regulators c-myc and cyclin D, and the OCT4 gene. Nuclear F-actin itself also associated with these genes. Since Wnt/β-catenin signaling has important roles in cell differentiation and pluripotency, our observations suggest that nuclear F-actin formed during these biological processes is involved in regulating Wnt/β-catenin signaling.

  6. Ultrastructural localization of F-actin using phalloidin and quantum dots in HL-60 promyelocytic leukemia cell line after cell death induction by arsenic trioxide.

    PubMed

    Izdebska, Magdalena; Gagat, Maciej; Grzanka, Dariusz; Grzanka, Alina

    2013-06-01

    Quantum dots (QDs) are fluorescent nanocrystals whose unique properties are fundamentally different from organic fluorophores. Moreover, their cores display sufficient electron density to be visible under transmission electron microscopy (TEM). Here, we report a technique for phalloidin-based TEM detection of F-actin. The ultrastructural reorganization of F-actin after arsenic trioxide (ATO) treatment was estimated using a combination of pre- and post-embedding techniques with biotinylated phalloidin and QD-streptavidin conjugates or colloidal gold (AU) conjugated to streptavidin. Ultrastructural studies showed ATO-induced apoptosis of HL-60 cells. Moreover, different patterns of QD-labeled F-actin after ATO treatment were seen. In the case of AU labeling, only a few gold particles were seen and it was impossible to see any difference in F-actin distribution. TEM imaging experiments using QDs and colloidal gold (AU) showed that the strategy of bioconjugation of nanoprobes is the most important factor in biotinylated phalloidin detection of F-actin using streptavidin-coated nanoparticles, especially at the ultrastructural level. Additionally, the results presented in present study confirm the essential role of F-actin in chromatin reorganization during cell death processes.

  7. Gln-41 is intermolecularly cross-linked to Lys-113 in F-actin by N-(4-azidobenzoyl)-putrescine.

    PubMed Central

    Hegyi, G.; Michel, H.; Shabanowitz, J.; Hunt, D. F.; Chatterjie, N.; Healy-Louie, G.; Elzinga, M.

    1992-01-01

    The bifunctional reagent N-(4-azidobenzoyl)-putrescine was synthesized and covalently bound to rabbit skeletal muscle actin. The incorporation was mediated by guinea pig liver transglutaminase under conditions similar to those described by Takashi (1988, Biochemistry 27, 938-943); up to 0.5 M/M were incorporated into G-actin, whereas F-actin was refractory to incorporation. Peptide fractionation showed that at least 90% of the label was bound to Gln-41. The labeled G-actin was polymerized, and irradiation of the F-actin led to covalent intermolecular cross-linking. A cross-linked peptide complex was isolated from a tryptic digest of the cross-linked actin in which digestion was limited to arginine; sequence analysis as well as mass spectrometry indicated that the linked peptides contained residues 40-62 and residues 96-116, and that the actual cross-link was between Gln-41 and Lys-113. Thus the gamma-carboxyl group of Gln-41 must be within 10.7 A of the side chain (probably the amino group) of Lys-113 in an adjacent actin monomer. In the atomic model for F-actin proposed by Holmes et al. (1990, Nature 347, 44-49), the alpha-carbons of these residues in adjacent monomers along the two-start helices are sufficiently close to permit cross-linking of their side chains, and, pending atomic resolution of the side chains, the results presented here seem to support the proposed model. PMID:1363931

  8. Eye Movements Reveal Dynamics of Task Control

    ERIC Educational Resources Information Center

    Mayr, Ulrich; Kuhns, David; Rieter, Miranda

    2013-01-01

    With the goal to determine the cognitive architecture that underlies flexible changes of control settings, we assessed within-trial and across-trial dynamics of attentional selection by tracking of eye movements in the context of a cued task-switching paradigm. Within-trial dynamics revealed a switch-induced, discrete delay in onset of…

  9. Eye Movements Reveal Dynamics of Task Control

    ERIC Educational Resources Information Center

    Mayr, Ulrich; Kuhns, David; Rieter, Miranda

    2013-01-01

    With the goal to determine the cognitive architecture that underlies flexible changes of control settings, we assessed within-trial and across-trial dynamics of attentional selection by tracking of eye movements in the context of a cued task-switching paradigm. Within-trial dynamics revealed a switch-induced, discrete delay in onset of…

  10. Fluid Shear Stress Upregulates E-Tmod41 via miR-23b-3p and Contributes to F-Actin Cytoskeleton Remodeling during Erythropoiesis

    PubMed Central

    Mu, Weiyun; Wang, Xifu; Zhang, Xiaolan; Zhu, Sida; Sun, Dagong; Ka, Weibo; Sung, Lanping Amy; Yao, Weijuan

    2015-01-01

    The membrane skeleton of mature erythrocyte is formed during erythroid differentiation. Fluid shear stress is one of the main factors that promote embryonic hematopoiesis, however, its effects on erythroid differentiation and cytoskeleton remodeling are unclear. Erythrocyte tropomodulin of 41 kDa (E-Tmod41) caps the pointed end of actin filament (F-actin) and is critical for the formation of hexagonal topology of erythrocyte membrane skeleton. Our study focused on the regulation of E-Tmod41 and its role in F-actin cytoskeleton remodeling during erythroid differentiation induced by fluid shear stress. Mouse erythroleukemia (MEL) cells and embryonic erythroblasts were subjected to fluid shear stress (5 dyn/cm2) and erythroid differentiation was induced in both cells. F-actin content and E-Tmod41 expression were significantly increased in MEL cells after shearing. E-Tmod41 overexpression resulted in a significant increase in F-actin content, while the knockdown of E-Tmod41 generated the opposite result. An E-Tmod 3’UTR targeting miRNA, miR-23b-3p, was found suppressed by shear stress. When miR-23b-3p level was overexpressed / inhibited, both E-Tmod41 protein level and F-actin content were reduced / augmented. Furthermore, among the two alternative promoters of E-Tmod, PE0 (upstream of exon 0), which mainly drives the expression of E-Tmod41, was found activated by shear stress. In conclusion, our results suggest that fluid shear stress could induce erythroid differentiation and F-actin cytoskeleton remodeling. It upregulates E-Tmod41 expression through miR-23b-3p suppression and PE0 promoter activation, which, in turn, contributes to F-actin cytoskeleton remodeling. PMID:26308647

  11. F-actin sequesters elongation factor 1alpha from interaction with aminoacyl-tRNA in a pH-dependent reaction

    PubMed Central

    1996-01-01

    The machinery of eukaryotic protein synthesis is found in association with the actin cytoskeleton. A major component of this translational apparatus, which is involved in the shuttling of aa-tRNA, is the actin- binding protein elongation factor 1alpha (EF-1alpha). To investigate the consequences for translation of the interaction of EF-1alpha with F- actin, we have studied the effect of F-actin on the ability of EF- 1alpha to bind to aa-tRNA. We demonstrate that binding of EF-1alpha:GTP to aa-tRNA is not pH sensitive with a constant binding affinity of approximately 0.2 microM over the physiological range of pH. However, the sharp pH dependence of binding of EF-1alpha to F-actin is sufficient to shift the binding of EF-1alpha from F-actin to aa-tRNA as pH increases. The ability of EF-1alpha to bind either F-actin or aa- tRNA in competition binding experiments is also consistent with the observation that EF-1alpha's binding to F-actin and aa-tRNA is mutually exclusive. Two pH-sensitive actin-binding sequences in EF-1alpha are identified and are predicted to overlap with the aa-tRNA-binding sites. Our results suggest that pH-regulated recruitment and release of EF- 1alpha from actin filaments in vivo will supply a high local concentration of EF-1alpha to facilitate polypeptide elongation by the F-actin-associated translational apparatus. PMID:8922379

  12. Distribution of GAP-43, beta-III tubulin and F-actin in developing and regenerating axons and their growth cones in vitro, following neurotrophin treatment.

    PubMed

    Avwenagha, Ovokeloye; Campbell, Gregor; Bird, Margaret M

    2003-11-01

    Brain derived neurotrophic factor (BDNF) when added to explant cultures of both embryonic and adult retinal ganglion cell (RGC) axons exerted a marked effect on their growth cone size and complexity and also on the intensity of GAP-43, beta-III tubulin and F-actin immunoreaction product in their axons. GAP-43 was distributed in axons, lamellipodia, and filopodia whereas beta-III tubulin was distributed along the length of developing and adult regenerating axons and also in the C-domain of their growth cones. BDNF-treated developing RGC growth cones were larger and displayed increased numbers of GAP-43 and microtubule-containing branches. Although filopodia and lamellipodia were lost from both developing and adult RGC growth cones following trkB-IgG treatment, the intensity of the immunoreaction product of all these molecules was reduced and trkB-IgGs had no effect on the axonal distribution of betas-III tubulin and GAP-43. BDNF-treated growth cones also displayed increased numbers of F-actin containing filopodia and axonal protrusions. This study demonstrates, for the first time, that trkB-IgG treatment causes the loss of F-actin in the P-domain of growth cone tips in developing and regenerating RGC axons. Although microtubules and F-actin domains normally remained distinct in cultured growth cones, beta-III tubulin and F-actin overlapped within the growth cone C-domain, and within axonal protrusions of adult RGC axons, under higher concentrations of BDNF. The collapse of RGC growth cones appeared to correlate with the loss of F-actin. In vitro, trkB signalling may therefore be involved in the maintenance and stabilisation of RGC axons, by influencing F-actin polymerisation, stabilisation and distribution.

  13. A Wnt-planar polarity pathway instructs neurite branching by restricting F-actin assembly through endosomal signaling

    PubMed Central

    Chen, Chun-Hao; Liao, Chien-Po

    2017-01-01

    Spatial arrangement of neurite branching is instructed by both attractive and repulsive cues. Here we show that in C. elegans, the Wnt family of secreted glycoproteins specify neurite branching sites in the PLM mechanosensory neurons. Wnts function through MIG-1/Frizzled and the planar cell polarity protein (PCP) VANG-1/Strabismus/Vangl2 to restrict the formation of F-actin patches, which mark branching sites in nascent neurites. We find that VANG-1 promotes Wnt signaling by facilitating Frizzled endocytosis and genetically acts in a common pathway with arr-1/β-arrestin, whose mutation results in defective PLM branching and F-actin patterns similar to those in the Wnt, mig-1 or vang-1 mutants. On the other hand, the UNC-6/Netrin pathway intersects orthogonally with Wnt-PCP signaling to guide PLM branch growth along the dorsal-ventral axis. Our study provides insights for how attractive and repulsive signals coordinate to sculpt neurite branching patterns, which are critical for circuit connectivity. PMID:28384160

  14. Elevated phagocytosis, oxidative burst, and F-actin formation in PMNs from individuals with intraoral manifestations of HIV infection.

    PubMed

    Ryder, M I; Winkler, J R; Weinreb, R N

    1988-01-01

    Alterations in polymorphonuclear leucocyte (PMN) function are frequently associated with intraoral disease. The purpose of this study was to evaluate if alterations exist in three early stimulatory events of PMN function in individuals with intraoral manifestations of human immunodeficiency virus (HIV) infection. Peripheral PMNs were isolated from nine HIV-seropositive male homosexuals with HIV-associated periodontitis and intraoral candidiasis and healthy HIV-seronegative age-matched heterosexuals (controls). Phagocytosis was assessed using fluorescent microspheres, oxidative burst was assessed via hydrolysis of 2',7'-dichlorofluorescein (FCDH) to 2',7'-dichlorofluorescein (FCDA) with PMA stimulation, and F-actin formation was assessed with NBD-phallacidin stain after stimulation with f-Met-Leu-Phe. Compared to controls, seven of nine HIV-seropositive patients demonstrated a significant increase in the percentage of phagocytic cells while seven of nine HIV-seropositive patients demonstrated a 5-59% increase in number of beads per cell. In the oxidative burst assay, seven of seven HIV-seropositive patients demonstrated a significant increase over controls in FCDA stain with PMA stimulation. In the F-actin assay, four of five HIV-seropositive patients demonstrated a significant increase over controls in NBD-phallacidin staining after f-Met-Leu-Phe stimulation.

  15. Inositol kinase and its product accelerate wound healing by modulating calcium levels, Rho GTPases, and F-actin assembly

    PubMed Central

    Soto, Ximena; Li, Jingjing; Lea, Robert; Dubaissi, Eamon; Papalopulu, Nancy; Amaya, Enrique

    2013-01-01

    Wound healing is essential for survival. We took advantage of the Xenopus embryo, which exhibits remarkable capacities to repair wounds quickly and efficiently, to investigate the mechanisms responsible for wound healing. Previous work has shown that injury triggers a rapid calcium response, followed by the activation of Ras homolog (Rho) family guanosine triphosphatases (GTPases), which regulate the formation and contraction of an F-actin purse string around the wound margin. How these processes are coordinated following wounding remained unclear. Here we show that inositol-trisphosphate 3-kinase B (Itpkb) via its enzymatic product inositol 1,3,4,5-tetrakisphosphate (InsP4) plays an essential role during wound healing by modulating the activity of Rho family GTPases and F-actin ring assembly. Furthermore, we show that Itpkb and InsP4 modulate the speed of the calcium wave, which propagates from the site of injury into neighboring uninjured cells. Strikingly, both overexpression of itpkb and exogenous application of InsP4 accelerate the speed of wound closure, a finding that has potential implications in our quest to find treatments that improve wound healing in patients with acute or chronic wounds. PMID:23776233

  16. Plasma Gelsolin Levels Decrease in Diabetic State and Increase upon Treatment with F-Actin Depolymerizing Versions of Gelsolin

    PubMed Central

    Khatri, Neeraj; Sagar, Amin; Peddada, Nagesh; Choudhary, Vikas; Chopra, Bhupinder Singh; Garg, Veena; Ashish

    2014-01-01

    The study aims to map plasma gelsolin (pGSN) levels in diabetic humans and mice models of type II diabetes and to evaluate the efficacy of gelsolin therapy in improvement of diabetes in mice. We report that pGSN values decrease by a factor of 0.45 to 0.5 in the blood of type II diabetic humans and mice models. Oral glucose tolerance test in mice models showed that subcutaneous administration of recombinant pGSN and its F-actin depolymerizing competent versions brought down blood sugar levels comparable to Sitagliptin, a drug used to manage hyperglycemic condition. Further, daily dose of pGSN or its truncated versions to diabetic mice for a week kept sugar levels close to normal values. Also, diabetic mice treated with Sitagliptin for 7 days, showed increase in their pGSN values with the decrease in blood glucose as compared to their levels at the start of treatment. Gelsolin helped in improving glycemic control in diabetic mice. We propose that gelsolin level monitoring and replacement of F-actin severing capable gelsolin(s) should be considered in diabetic care. PMID:25478578

  17. F-actin-rich contractile endothelial pores prevent vascular leakage during leukocyte diapedesis through local RhoA signalling.

    PubMed

    Heemskerk, Niels; Schimmel, Lilian; Oort, Chantal; van Rijssel, Jos; Yin, Taofei; Ma, Bin; van Unen, Jakobus; Pitter, Bettina; Huveneers, Stephan; Goedhart, Joachim; Wu, Yi; Montanez, Eloi; Woodfin, Abigail; van Buul, Jaap D

    2016-01-27

    During immune surveillance and inflammation, leukocytes exit the vasculature through transient openings in the endothelium without causing plasma leakage. However, the exact mechanisms behind this intriguing phenomenon are still unknown. Here we report that maintenance of endothelial barrier integrity during leukocyte diapedesis requires local endothelial RhoA cycling. Endothelial RhoA depletion in vitro or Rho inhibition in vivo provokes neutrophil-induced vascular leakage that manifests during the physical movement of neutrophils through the endothelial layer. Local RhoA activation initiates the formation of contractile F-actin structures that surround emigrating neutrophils. These structures that surround neutrophil-induced endothelial pores prevent plasma leakage through actomyosin-based pore confinement. Mechanistically, we found that the initiation of RhoA activity involves ICAM-1 and the Rho GEFs Ect2 and LARG. In addition, regulation of actomyosin-based endothelial pore confinement involves ROCK2b, but not ROCK1. Thus, endothelial cells assemble RhoA-controlled contractile F-actin structures around endothelial pores that prevent vascular leakage during leukocyte extravasation.

  18. A Dictyostelium mutant lacking an F-actin cross-linking protein, the 120-kD gelation factor

    PubMed Central

    1990-01-01

    Actin-binding proteins are known to regulate in vitro the assembly of actin into supramolecular structures, but evidence for their activities in living nonmuscle cells is scarce. Amebae of Dictyostelium discoideum are nonmuscle cells in which mutants defective in several actin-binding proteins have been described. Here we characterize a mutant deficient in the 120-kD gelation factor, one of the most abundant F-actin cross- linking proteins of D. discoideum cells. No F-actin cross-linking activity attributable to the 120-kD protein was detected in mutant cell extracts, and antibodies recognizing different epitopes on the polypeptide showed the entire protein was lacking. Under the conditions used, elimination of the gelation factor did not substantially alter growth, shape, motility, or chemotactic orientation of the cells towards a cAMP source. Aggregates of the mutant developed into fruiting bodies consisting of normally differentiated spores and stalk cells. In cytoskeleton preparations a dense network of actin filaments as typical of the cell cortex, and bundles as they extend along the axis of filopods, were recognized. A significant alteration found was an enhanced accumulation of actin in cytoskeletons of the mutant when cells were stimulated with cyclic AMP. Our results indicate that control of cell shape and motility does not require the fine-tuned interactions of all proteins that have been identified as actin-binding proteins by in vitro assays. PMID:1698791

  19. MAP18 regulates the direction of pollen tube growth in Arabidopsis by modulating F-actin organization.

    PubMed

    Zhu, Lei; Zhang, Yan; Kang, Erfang; Xu, Qiangyi; Wang, Miaoying; Rui, Yue; Liu, Baoquan; Yuan, Ming; Fu, Ying

    2013-03-01

    For fertilization to occur in plants, the pollen tube must be guided to enter the ovule via the micropyle. Previous reports have implicated actin filaments, actin binding proteins, and the tip-focused calcium gradient as key contributors to polar growth of pollen tubes; however, the regulation of directional pollen tube growth is largely unknown. We reported previously that Arabidopsis thaliana MICROTUBULE-ASSOCIATED PROTEIN18 (MAP18) contributes to directional cell growth and cortical microtubule organization. The preferential expression of MAP18 in pollen and in pollen tubes suggests that MAP18 also may function in pollen tube growth. In this study, we demonstrate that MAP18 functions in pollen tubes by influencing actin organization, rather than microtubule assembly. In vitro biochemical results indicate that MAP18 exhibits Ca(2+)-dependent filamentous (F)-actin-severing activity. Abnormal expression of MAP18 in map18 and MAP18 OX plants was associated with disorganization of the actin cytoskeleton in the tube apex, resulting in aberrant pollen tube growth patterns and morphologies, inaccurate micropyle targeting, and fewer fertilization events. Experiments with MAP18 mutants created by site-directed mutagenesis suggest that F-actin-severing activity is essential to the effects of MAP18 on pollen tube growth direction. Our study demonstrates that in Arabidopsis, MAP18 guides the direction of pollen tube growth by modulating actin filaments.

  20. ARF6 promotes the formation of Rac1 and WAVE-dependent ventral F-actin rosettes in breast cancer cells in response to epidermal growth factor.

    PubMed

    Marchesin, Valentina; Montagnac, Guillaume; Chavrier, Philippe

    2015-01-01

    Coordination between actin cytoskeleton assembly and localized polarization of intracellular trafficking routes is crucial for cancer cell migration. ARF6 has been implicated in the endocytic recycling of surface receptors and membrane components and in actin cytoskeleton remodeling. Here we show that overexpression of an ARF6 fast-cycling mutant in MDA-MB-231 breast cancer-derived cells to mimick ARF6 hyperactivation observed in invasive breast tumors induced a striking rearrangement of the actin cytoskeleton at the ventral cell surface. This phenotype consisted in the formation of dynamic actin-based podosome rosette-like structures expanding outward as wave positive for F-actin and actin cytoskeleton regulatory components including cortactin, Arp2/3 and SCAR/WAVE complexes and upstream Rac1 regulator. Ventral rosette-like structures were similarly induced in MDA-MB-231 cells in response to epidermal growth factor (EGF) stimulation and to Rac1 hyperactivation. In addition, interference with ARF6 expression attenuated activation and plasma membrane targeting of Rac1 in response to EGF treatment. Our data suggest a role for ARF6 in linking EGF-receptor signaling to Rac1 recruitment and activation at the plasma membrane to promote breast cancer cell directed migration.

  1. BDNF attenuates IL-1β-induced F-actin remodeling by inhibiting NF-κB signaling in hippocampal neurons.

    PubMed

    Cai, Zhongxiang; Zhang, Xueping; Wang, Gaohua; Wang, Huiling; Liu, Zhongchun; Guo, Xin; Yang, Can; Wang, Xiaoping; Wang, Hesheng; Shu, Chang; Xiao, Ling

    2014-01-01

    To examine the effect of BDNF on F-actin during the stimulation of IL-1β in hippocampal neurons. We cultured hippocampal neurons from rat embryos. Cell stimulation was induced by IL-1β. Cell culture success was evaluated by an activity analysis of CCK-8, staining of gliocyte by immunohistochemistry. Changes in F-actin, BDNF and NF-ĸB were examined using molecular analyses. Our results demonstrate that a high concentration of IL-1β exaggerates the stimulation-induced degradation of F-actin by BDNF, whereas a low concentration of IL-1β protects F-actin against this degradation. These beneficial effects might be associated with the inhibition or exaggeration of the NF-ĸB signaling cascade. Taken together, our findings indicate that BDNF acts as an F-actin-protective regulator during stimulation by IL-1β and that this function largely occurs via the regulation of NF- ĸB signaling. These results suggest that interventions targeting the BDNF signaling system may be of therapeutic value against major depressive disorder (MDD).

  2. Effect of the length and effective diameter of F-actin on the filament orientation in liquid crystalline sols measured by x-ray fiber diffraction.

    PubMed

    Oda, T; Makino, K; Yamashita, I; Namba, K; Maéda, Y

    1998-12-01

    We examined factors that affect the filament orientation in F-actin sols to prepare highly well-oriented liquid crystalline sols suitable for x-ray fiber diffraction structure analysis. Filamentous particles such as F-actin spontaneously align with one another when concentrated above a certain threshold concentration. This alignment is attributed to the excluded volume effect of the particles. In trying to improve the orientation of F-actin sols, we focused on the excluded volume to see how it affects the alignment. The achievable orientation was sensitive to the ionic strength of the solvent; the filaments were better oriented at lower ionic strengths, where the effective diameter of the filament is relatively large. Sols of longer filaments were better oriented than those of shorter filaments at the same concentration, but the best achievable orientation was limited, probably because of the filament flexibility. The best strategy for making well-oriented F-actin sols is therefore to concentrate F-actin filaments of relatively short length (<1 micrometer) by slow centrifugation in a low-ionic-strength solvent (<30 mM).

  3. Functional characterization of skeletal F-actin labeled on the NH2-terminal segment of residues 1-28.

    PubMed

    Bertrand, R; Chaussepied, P; Audemard, E; Kassab, R

    1989-05-15

    Rabbit skeletal alpha-actin was covalently labeled in the filamentous state by the fluorescent nucleophile, N-(5-sulfo-1-naphthyl)ethylenediamine (EDANS) in the presence of the carboxyl group activator 1-(3-dimethyl-aminopropyl)-3-ethylcarbodiimide (EDC). The coupling reaction was continued until the incorporation of nearly 1 mol EDANS/mol actin. After limited proteolytic digestion of the labeled protein and chromatographic identification of the EDANS-peptides, about 80% of the attached fluorophore was found on the actin segment of residues 1-28, most probably within the N-terminal acidic region of residues 1-7. A minor labeling site was located on the segment that consists of residues 40-113. No label was incorporated into the COOH-terminal moiety consisting of residues 113-375. The isolated EDANS-G-actin undergoes polymerization in the presence of salts but at a rate significantly greater than unlabeled actin. The EDANS-F-actin could be complexed to skeletal chymotryptic myosin subfragment 1 (S-1) and to tropomyosin. The complex formed between EDANS-F-actin and S-1 could not be further crosslinked by EDC but the two proteins were readily joined by glutaraldehyde as observed for native actin-S-1, suggesting that the EDANS-substituted carboxyl site is also involved in the EDC crosslinking of native actin to S-1. Moreover, the EDANS labeling of F-actin resulted in a 20-fold increase in the Km of the actin-activated Mg2+.ATPase of S-1. Thus, this labeling, while it did not much affect the rigor actin-S-1 interaction, changes the actin binding to the S-1-nucleotide complexes significantly. The selective introduction of a variety of spectral probes, like EDANS, or other classes of fluorophores, on the N-terminal region of actin, through the reported carbodiimide coupling reaction, would provide several different derivatives valuable for assessing the functional role of the negatively charged N-terminus of actin during its interaction with myosin and other actin

  4. Targeting Fyn in Ras-transformed cells induces F-actin to promote adherens junction-mediated cell-cell adhesion.

    PubMed

    Fenton, Sarah E; Hutchens, Kelli A; Denning, Mitchell F

    2015-10-01

    Fyn, a member of the Src family kinases (SFK), is an oncogene in murine epidermis and is associated with cell-cell adhesion turnover and induction of cell migration. Additionally, Fyn upregulation has been reported in multiple tumor types, including cutaneous squamous cell carcinoma (cSCC). Introduction of active H-Ras(G12V) into the HaCaT human keratinocyte cell line resulted in upregulation of Fyn mRNA (200-fold) and protein, while expression of other SFKs remained unaltered. Transduction of active Ras or Fyn was sufficient to induce an epithelial-to-mesenchymal transition in HaCaT cells. Inhibition of Fyn activity, using siRNA or the clinical SFK inhibitor Dasatinib, increased cell-cell adhesion and rapidly (5-60 min) increased levels of cortical F-actin. Fyn inhibition with siRNA or Dasatinib also induced F-actin in MDA-MB-231 breast cancer cells, which have elevated Fyn. F-actin co-localized with adherens junction proteins, and Dasatinib-induced cell-cell adhesion could be blocked by Cytochalasin D, indicating that F-actin polymerization was a key initiator of cell-cell adhesion through the adherens junction. Conversely, inhibiting cell-cell adhesion with low Ca(2+) media did not block Dasatinib-induced F-actin polymerization. Inhibition of the Rho effector kinase ROCK blocked Dasatinib-induced F-actin and cell-cell adhesion, implicating relief of Rho GTPase inhibition as a mechanism of Dasatinib-induced cell-cell adhesion. Finally, topical Dasatinib treatment significantly reduced total tumor burden in the SKH1 mouse model of UV-induced skin carcinogenesis. Together these results identify the promotion of actin-based cell-cell adhesion as a newly described mechanism of action for Dasatinib and suggest that Fyn inhibition may be an effective therapeutic approach in treating cSCC.

  5. Protein kinase D promotes plasticity-induced F-actin stabilization in dendritic spines and regulates memory formation

    PubMed Central

    Bencsik, Norbert; Szíber, Zsófia; Liliom, Hanna; Tárnok, Krisztián; Borbély, Sándor; Gulyás, Márton; Rátkai, Anikó; Szűcs, Attila; Hazai-Novák, Diána; Ellwanger, Kornelia; Rácz, Bence; Pfizenmaier, Klaus; Hausser, Angelika

    2015-01-01

    Actin turnover in dendritic spines influences spine development, morphology, and plasticity, with functional consequences on learning and memory formation. In nonneuronal cells, protein kinase D (PKD) has an important role in stabilizing F-actin via multiple molecular pathways. Using in vitro models of neuronal plasticity, such as glycine-induced chemical long-term potentiation (LTP), known to evoke synaptic plasticity, or long-term depolarization block by KCl, leading to homeostatic morphological changes, we show that actin stabilization needed for the enlargement of dendritic spines is dependent on PKD activity. Consequently, impaired PKD functions attenuate activity-dependent changes in hippocampal dendritic spines, including LTP formation, cause morphological alterations in vivo, and have deleterious consequences on spatial memory formation. We thus provide compelling evidence that PKD controls synaptic plasticity and learning by regulating actin stability in dendritic spines. PMID:26304723

  6. Probing the flexibility of tropomyosin and its binding to filamentous actin using molecular dynamics simulations.

    PubMed

    Zheng, Wenjun; Barua, Bipasha; Hitchcock-DeGregori, Sarah E

    2013-10-15

    Tropomyosin (Tm) is a coiled-coil protein that binds to filamentous actin (F-actin) and regulates its interactions with actin-binding proteins like myosin by moving between three positions on F-actin (the blocked, closed, and open positions). To elucidate the molecular details of Tm flexibility in relation to its binding to F-actin, we conducted extensive molecular dynamics simulations for both Tm alone and Tm-F-actin complex in the presence of explicit solvent (total simulation time >400 ns). Based on the simulations, we systematically analyzed the local flexibility of the Tm coiled coil using multiple parameters. We found a good correlation between the regions with high local flexibility and a number of destabilizing regions in Tm, including six clusters of core alanines. Despite the stabilization by F-actin binding, the distribution of local flexibility in Tm is largely unchanged in the absence and presence of F-actin. Our simulations showed variable fluctuations of individual Tm periods from the closed position toward the open position. In addition, we performed Tm-F-actin binding calculations based on the simulation trajectories, which support the importance of Tm flexibility to Tm-F-actin binding. We identified key residues of Tm involved in its dynamic interactions with F-actin, many of which have been found in recent mutational studies to be functionally important, and the rest of which will make promising targets for future mutational experiments.

  7. A Dictyostelium mutant deficient in severin, an F-actin fragmenting protein, shows normal motility and chemotaxis

    PubMed Central

    1989-01-01

    A severin deficient mutant of Dictyostelium discoideum has been isolated by the use of colony immunoblotting after chemical mutagenesis. In homogenates of wild-type cells, severin is easily detected as a very active F-actin fragmenting protein. Tests for severin in the mutant, HG1132, included viscometry for the assay of F- actin fragmentation in fractions from DEAE-cellulose columns, labeling of blots with monoclonal and polyclonal antibodies, and immunofluorescent-labeling of cryosections. Severin could not be detected in the mutant using these methods. The mutation in HG1132 is recessive and has been mapped to linkage group VII. The mutant failed to produce the normal severin mRNA, but small amounts of a transcript that was approximately 100 bases larger than the wild-type mRNA were detected in the mutant throughout all stages of development. On the DNA level a new Mbo II restriction site was found in the mutant within the coding region of the severin gene. The severin deficient mutant cells grew at an approximately normal rate, aggregated and formed fruiting bodies with viable spores. By the use of an image processing system, speed of cell movement, turning rates, and precision of chemotactic orientation in a stable gradient of cyclic AMP were quantitated, and no significant differences between wild-type and mutant cells were found. Thus, under the culture conditions used, severin proved to be neither essential for growth of D. discoideum nor for any cell function that is important for aggregation or later development. PMID:2537840

  8. [Effects of wild-type PTEN overexpression and its mutation on F-actin in activated hepatic stellate cells].

    PubMed

    Hao, L S; Liu, Y L; Zhang, G L; Chen, J; Song, X J; Wang, Y L; Wang, J; Jin, L M

    2017-01-20

    Objective: To investigate the effect of overexpression of wild-type phosphatase and tensin homolog (PTEN) deleted on chromosome 10 and its mutant G129E (exhibiting the activity of protein phosphatase and losing the activity of lipid phosphatase) on F-actin in activated hepatic stellate cells (HSCs) cultured in vitro. Methods: The activated hepatic stellate cell-T6 (HSC-T6) cells were cultured in vitro, and activated HSCs were transfected with adenovirus that carried wild-type PTEN gene and G129E gene using transient transfection. The HSCs were divided into the following groups: control group, which was transfected with DMEM medium instead of virus solution; Ad-GFP group, which was transfected with the empty adenovirus vector with the expression of green fluorescent protein (GFP); Ad-PTEN group, which was transfected with the recombinant adenovirus with wild-type PTEN gene and GFP expression; Ad-G129E group, which was transfected with the recombinant adenovirus with G129E gene and GFP expression. Western blot and quantitative real-time PCR were used to measure the protein and mRNA expression of PTEN in activated HSCs; under a laser scanning confocal microscope (LSCM), phalloidine labeled with the fluorescein tetramethylrhodamine isothiocyanate (TRITC) was used to observe the morphology of HSCs, distribution and fluorescence intensity of F-actin, and changes in pseudopodia and stress fibers, and a calcium fluorescence probe (Rhod-2/AM) was used to measure the changes in Ca(2+) concentration in HSCs. A one-way analysis of variance was used for comparison between multiple groups, and the least significant difference test was used for comparison between two groups. Results: Wild-type PTEN and G129E genes were highly expressed in activated HSCs. In the control group and the Ad-GFP group, HSCs had a starlike or polygonal shape, F-actin was reconfigured and formed a large number of stress fibers which stretched across the whole cell, and layered pseudopodia were seen

  9. Moesin is required for HIV-1-induced CD4-CXCR4 interaction, F-actin redistribution, membrane fusion and viral infection in lymphocytes.

    PubMed

    Barrero-Villar, Marta; Cabrero, José Román; Gordón-Alonso, Mónica; Barroso-González, Jonathan; Alvarez-Losada, Susana; Muñoz-Fernández, M Angeles; Sánchez-Madrid, Francisco; Valenzuela-Fernández, Agustín

    2009-01-01

    The human immunodeficiency virus 1 (HIV-1) envelope regulates the initial attachment of viral particles to target cells through its association with CD4 and either CXCR4 or CCR5. Although F-actin is required for CD4 and CXCR4 redistribution, little is known about the molecular mechanisms underlying this fundamental process in HIV infection. Using CD4(+) CXCR4(+) permissive human leukemic CEM T cells and primary lymphocytes, we have investigated whether HIV-1 Env might promote viral entry and infection by activating ERM (ezrin-radixin-moesin) proteins to regulate F-actin reorganization and CD4/CXCR4 co-clustering. The interaction of the X4-tropic protein HIV-1 gp120 with CD4 augments ezrin and moesin phosphorylation in human permissive T cells, thereby regulating ezrin-moesin activation. Moreover, the association and clustering of CD4-CXCR4 induced by HIV-1 gp120 requires moesin-mediated anchoring of actin in the plasma membrane. Suppression of moesin expression with dominant-negative N-moesin or specific moesin silencing impedes reorganization of F-actin and HIV-1 entry and infection mediated by the HIV-1 envelope protein complex. Therefore, we propose that activated moesin promotes F-actin redistribution and CD4-CXCR4 clustering and is also required for efficient X4-tropic HIV-1 infection in permissive lymphocytes.

  10. Danio rerio αE-catenin Is a Monomeric F-actin Binding Protein with Distinct Properties from Mus musculus αE-catenin*

    PubMed Central

    Miller, Phillip W.; Pokutta, Sabine; Ghosh, Agnidipta; Almo, Steven C.; Weis, William I.; Nelson, W. James; Kwiatkowski, Adam V.

    2013-01-01

    It is unknown whether homologs of the cadherin·catenin complex have conserved structures and functions across the Metazoa. Mammalian αE-catenin is an allosterically regulated actin-binding protein that binds the cadherin·β-catenin complex as a monomer and whose dimerization potentiates F-actin association. We tested whether these functional properties are conserved in another vertebrate, the zebrafish Danio rerio. Here we show, despite 90% sequence identity, that Danio rerio and Mus musculus αE-catenin have striking functional differences. We demonstrate that D. rerio αE-catenin is monomeric by size exclusion chromatography, native PAGE, and small angle x-ray scattering. D. rerio αE-catenin binds F-actin in cosedimentation assays as a monomer and as an α/β-catenin heterodimer complex. D. rerio αE-catenin also bundles F-actin, as shown by negative stained transmission electron microscopy, and does not inhibit Arp2/3 complex-mediated actin nucleation in bulk polymerization assays. Thus, core properties of α-catenin function, F-actin and β-catenin binding, are conserved between mouse and zebrafish. We speculate that unique regulatory properties have evolved to match specific developmental requirements. PMID:23788645

  11. Danio rerio αE-catenin is a monomeric F-actin binding protein with distinct properties from Mus musculus αE-catenin.

    PubMed

    Miller, Phillip W; Pokutta, Sabine; Ghosh, Agnidipta; Almo, Steven C; Weis, William I; Nelson, W James; Kwiatkowski, Adam V

    2013-08-02

    It is unknown whether homologs of the cadherin·catenin complex have conserved structures and functions across the Metazoa. Mammalian αE-catenin is an allosterically regulated actin-binding protein that binds the cadherin·β-catenin complex as a monomer and whose dimerization potentiates F-actin association. We tested whether these functional properties are conserved in another vertebrate, the zebrafish Danio rerio. Here we show, despite 90% sequence identity, that Danio rerio and Mus musculus αE-catenin have striking functional differences. We demonstrate that D. rerio αE-catenin is monomeric by size exclusion chromatography, native PAGE, and small angle x-ray scattering. D. rerio αE-catenin binds F-actin in cosedimentation assays as a monomer and as an α/β-catenin heterodimer complex. D. rerio αE-catenin also bundles F-actin, as shown by negative stained transmission electron microscopy, and does not inhibit Arp2/3 complex-mediated actin nucleation in bulk polymerization assays. Thus, core properties of α-catenin function, F-actin and β-catenin binding, are conserved between mouse and zebrafish. We speculate that unique regulatory properties have evolved to match specific developmental requirements.

  12. Bulkiness or aromatic nature of tyrosine-143 of actin is important for the weak binding between F-actin and myosin-ADP-phosphate

    SciTech Connect

    Gomibuchi, Yuki; Uyeda, Taro Q.P.; Wakabayashi, Takeyuki

    2013-11-29

    Highlights: •The effect of mutation of Tyr143 that becomes more exposed on assembly was examined. •Mutation of tyrosine-143 of Dictyostelium actin changed actin polymerizability. •The bulkiness or aromatic nature of Tyr143 is important for the weak binding. •The weak interaction between myosin and actin strengthened by Tyr143Trp mutation. -- Abstract: Actin filaments (F-actin) interact with myosin and activate its ATPase to support force generation. By comparing crystal structures of G-actin and the quasi-atomic model of F-actin based on high-resolution cryo-electron microscopy, the tyrosine-143 was found to be exposed more than 60 Å{sup 2} to the solvent in F-actin. Because tyrosine-143 flanks the hydrophobic cleft near the hydrophobic helix that binds to myosin, the mutant actins, of which the tyrosine-143 was replaced with tryptophan, phenylalanine, or isoleucine, were generated using the Dictyostelium expression system. It polymerized significantly poorly when induced by NaCl, but almost normally by KCl. In the presence of phalloidin and KCl, the extents of the polymerization of all the mutant actins were comparable to that of the wild-type actin so that the actin-activated myosin ATPase activity could be reliably compared. The affinity of skeletal heavy meromyosin to F-actin and the maximum ATPase activity (V{sub max}) were estimated by a double reciprocal plot. The Tyr143Trp-actin showed the higher affinity (smaller K{sub app}) than that of the wild-type actin, with the V{sub max} being almost unchanged. The K{sub app} and V{sub max} of the Tyr143Phe-actin were similar to those of the wild-type actin. However, the activation by Tyr143Ile-actin was much smaller than the wild-type actin and the accurate determination of K{sub app} was difficult. Comparison of the myosin ATPase activated by the various mutant actins at the same concentration of F-actin showed that the extent of activation correlates well with the solvent-accessible surface areas (ASA

  13. F-actin and G-actin binding are uncoupled by mutation of conserved tyrosine residues in maize actin depolymerizing factor (ZmADF)

    PubMed Central

    Jiang, Chang-Jie; Weeds, Alan G.; Khan, Safina; Hussey, Patrick J.

    1997-01-01

    Actin depolymerizing factors (ADF) are stimulus responsive actin cytoskeleton modulating proteins. They bind both monomeric actin (G-actin) and filamentous actin (F-actin) and, under certain conditions, F-actin binding is followed by filament severing. In this paper, using mutant maize ADF3 proteins, we demonstrate that the maize ADF3 binding of F-actin can be spatially distinguished from that of G-actin. One mutant, zmadf3–1, in which Tyr-103 and Ala-104 (equivalent to destrin Tyr-117 and Ala-118) have been replaced by phenylalanine and glycine, respectively, binds more weakly to both G-actin and F-actin compared with maize ADF3. A second mutant, zmadf3–2, in which both Tyr-67 and Tyr-70 are replaced by phenylalanine, shows an affinity for G-actin similar to maize ADF3, but F-actin binding is abolished. The two tyrosines, Tyr-67 and Tyr-70, are in the equivalent position to Tyr-82 and Tyr-85 of destrin, respectively. Using the tertiary structure of destrin, yeast cofilin, and Acanthamoeba actophorin, we discuss the implications of removing the aromatic hydroxyls of Tyr-82 and Tyr-85 (i.e., the effect of substituting phenylalanine for tyrosine) and conclude that Tyr-82 plays a critical role in stabilizing the tertiary structure that is essential for F-actin binding. We propose that this tertiary structure is maintained as a result of a hydrogen bond between the hydroxyl of Tyr-82 and the carbonyl of Tyr-117, which is located in the long α-helix; amino acid components of this helix (Leu-111 to Phe-128) have been implicated in G-actin and F-actin binding. The structures of human destrin and yeast cofilin indicate a hydrogen distance of 2.61 and 2.77 Å, respectively, with corresponding bond angles of 99.5° and 113°, close to the optimum for a strong hydrogen bond. PMID:9275236

  14. Yeast Translation Elongation Factor-1A Binds Vacuole-localized Rho1p to Facilitate Membrane Integrity through F-actin Remodeling*

    PubMed Central

    Bodman, James A. R.; Yang, Yang; Logan, Michael R.; Eitzen, Gary

    2015-01-01

    Rho GTPases are molecular switches that modulate a variety of cellular processes, most notably those involving actin dynamics. We have previously shown that yeast vacuolar membrane fusion requires re-organization of actin filaments mediated by two Rho GTPases, Rho1p and Cdc42p. Cdc42p initiates actin polymerization to facilitate membrane tethering; Rho1p has a role in the late stages of vacuolar fusion, but its mode of action is unknown. Here, we identified eEF1A as a vacuolar Rho1p-interacting protein. eEF1A (encoded by the TEF1 and TEF2 genes in yeast) is an aminoacyl-tRNA transferase needed during protein translation. eEF1A also has a second function that is independent of translation; it binds and organizes actin filaments into ordered cable structures. Here, we report that eEF1A interacts with Rho1p via a C-terminal subdomain. This interaction occurs predominantly when both proteins are in the GDP-bound state. Therefore, eEF1A is an atypical downstream effector of Rho1p. eEF1A does not promote vacuolar fusion; however, overexpression of the Rho1p-interacting subdomain affects vacuolar morphology. Vacuoles were destabilized and prone to leakage when treated with the eEF1A inhibitor narciclasine. We propose a model whereby eEF1A binds to Rho1p-GDP on the vacuolar membrane; it is released upon Rho1p activation and then bundles actin filaments to stabilize fused vacuoles. Therefore, the Rho1p-eEF1A complex acts to spatially localize a pool of eEF1A to vacuoles where it can readily organize F-actin. PMID:25561732

  15. Cholesterol modulates the volume-regulated anion current in Ehrlich-Lettre ascites cells via effects on Rho and F-actin.

    PubMed

    Klausen, Thomas Kjaer; Hougaard, Charlotte; Hoffmann, Else K; Pedersen, Stine F

    2006-10-01

    The mechanisms controlling the volume-regulated anion current (VRAC) are incompletely elucidated. Here, we investigate the modulation of VRAC by cellular cholesterol and the potential involvement of F-actin, Rho, Rho kinase, and phosphatidylinositol-(4,5)-bisphosphate [PtdIns(4,5)P(2)] in this process. In Ehrlich-Lettre ascites (ELA) cells, a current with biophysical and pharmacological properties characteristic of VRAC was activated by hypotonic swelling. A 44% increase in cellular cholesterol content had no detectable effects on F-actin organization or VRAC activity. A 47% reduction in cellular cholesterol content increased cortical and stress fiber-associated F-actin content in swollen cells. Cholesterol depletion increased VRAC activation rate and maximal current after a modest (15%), but not after a severe (36%) reduction in extracellular osmolarity. The cholesterol depletion-induced increase in maximal VRAC current was prevented by F-actin disruption using latrunculin B (LB), while the current activation rate was unaffected by LB, but dependent on Rho kinase. Rho activity was decreased by approximately 20% in modestly, and approximately 50% in severely swollen cells. In modestly swollen cells, this reduction was prevented by cholesterol depletion, which also increased isotonic Rho activity. Thrombin, which stimulates Rho and causes actin polymerization, potentiated VRAC in modestly swollen cells. VRAC activity was unaffected by inclusion of a water-soluble PtdIns(4,5)P(2) analogue or a PtdIns(4,5)P(2)-blocking antibody in the pipette, or neomycin treatment to sequester PtdIns(4,5)P(2). It is suggested that in ELA cells, F-actin and Rho-Rho kinase modulate VRAC magnitude and activation rate, respectively, and that cholesterol depletion potentiates VRAC at least in part by preventing the hypotonicity-induced decrease in Rho activity and eliciting actin polymerization.

  16. FAK contributes to proteinuria in hypercholesterolaemic rats and modulates podocyte F-actin re-organization via activating p38 in response to ox-LDL.

    PubMed

    Hu, Mengsi; Fan, Minghua; Zhen, Junhui; Lin, Jiangong; Wang, Qun; Lv, Zhimei; Wang, Rong

    2017-03-01

    Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that regulates cell adhesion, proliferation and differentiation. In the present study, a rat model of high fat diet-induced hypercholesterolaemia was established to investigate the involvement of FAK in lipid disorder-related kidney diseases. We showed focal fusion of podocyte foot process that occurred at as early as 4 weeks in rats consuming high fat diet, preceding the onset of proteinuria when aberrant phosphorylation of FAK was found. These abnormalities were ameliorated by dietary intervention of TAE226, a reported inhibitor of FAK. FAK is also an adaptor protein initiating cascades of intracellular signals including c-Src, Rho GTPase and mitogen-activated protein kinase (MAPK). P38 MAPK belongs to the latter and is centrally involved in kidney diseases. Our cell culture data revealed oxidized low-density lipoprotein (ox-LDL) triggered hyper-phosphorylation of FAK and p38, ectopic expression of cellular markers (manifested as decreased WT1, podocin and NEPH1, and increased vimentin and mmp9), and re-arrangement of F-actin filaments with enhanced cell motility; these mutations were significantly rectified by FAK shRNA. Notably, pre-treatment of p38 inhibitor did not alter FAK activation, albeit its deletion of p38 hyper-activity and attenuation of cellular abnormalities, demonstrating that p38 acted as a downstream effector of FAK signalling and ox-LDL damaged podocytes in a FAK/p38-dependent manner. This was further identified by animal data that p38 activation was also abrogated by TAE226 treatment in hypercholesterolaemic rats, suggesting that FAK/p38 axis might also be involved in in vivo events. These findings provided a potential early mechanism of hypercholesterolaemia-related podocyte damage and proteinuria.

  17. Decavanadate binding to a high affinity site near the myosin catalytic centre inhibits F-actin-stimulated myosin ATPase activity.

    PubMed

    Tiago, Teresa; Aureliano, Manuel; Gutiérrez-Merino, Carlos

    2004-05-11

    Decameric vanadate (V(10)) inhibits the actin-stimulated myosin ATPase activity, noncompetitively with actin or with ATP upon interaction with a high-affinity binding site (K(i) = 0.27 +/- 0.05 microM) in myosin subfragment-1 (S1). The binding of V(10) to S1 can be monitored from titration with V(10) of the fluorescence of S1 labeled at Cys-707 and Cys-697 with N-iodo-acetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (IAEDANS) or 5-(iodoacetamido) fluorescein, which showed the presence of only one V(10) binding site per monomer with a dissociation constant of 0.16-0.7 microM, indicating that S1 labeling with these dyes produced only a small distortion of the V(10) binding site. The large quenching of AEDANS-labeled S1 fluorescence produced by V(10) indicated that the V(10) binding site is close to Cys-697 and 707. Fluorescence studies demonstrated the following: (i) the binding of V(10) to S1 is not competitive either with actin or with ADP.V(1) or ADP.AlF(4); (ii) the affinity of V(10) for the complex S1/ADP.V(1) and S1/ADP.AlF(4) is 2- and 3-fold lower than for S1; and (iii) it is competitive with the S1 "back door" ligand P(1)P(5)-diadenosine pentaphosphate. A local conformational change in S1 upon binding of V(10) is supported by (i) a decrease of the efficiency of fluorescence energy transfer between eosin-labeled F-actin and fluorescein-labeled S1, and (ii) slower reassociation between S1 and F-actin after ATP hydrolysis. The results are consistent with binding of V(10) to the Walker A motif of ABC ATPases, which in S1 corresponds to conserved regions of the P-loop which form part of the phosphate tube.

  18. Control of tissue growth by Yap relies on cell density and F-actin in zebrafish fin regeneration.

    PubMed

    Mateus, Rita; Lourenço, Raquel; Fang, Yi; Brito, Gonçalo; Farinho, Ana; Valério, Fábio; Jacinto, Antonio

    2015-08-15

    Caudal fin regeneration is characterized by a proliferation boost in the mesenchymal blastema that is controlled precisely in time and space. This allows a gradual and robust restoration of original fin size. However, how this is established and regulated is not well understood. Here, we report that Yap, the Hippo pathway effector, is a chief player in this process: functionally manipulating Yap during regeneration dramatically affects cell proliferation and expression of key signaling pathways, impacting regenerative growth. The intracellular location of Yap is tightly associated with different cell densities along the blastema proximal-distal axis, which correlate with alterations in cell morphology, cytoskeleton and cell-cell contacts in a gradient-like manner. Importantly, Yap inactivation occurs in high cell density areas, conditional to F-actin distribution and polymerization. We propose that Yap is essential for fin regeneration and that its function is dependent on mechanical tension, conferred by a balancing act of cell density and cytoskeleton activity. © 2015. Published by The Company of Biologists Ltd.

  19. Ablation of EYS in zebrafish causes mislocalisation of outer segment proteins, F-actin disruption and cone-rod dystrophy

    PubMed Central

    Lu, Zhaojing; Hu, Xuebin; Liu, Fei; Soares, Dinesh C.; Liu, Xiliang; Yu, Shanshan; Gao, Meng; Han, Shanshan; Qin, Yayun; Li, Chang; Jiang, Tao; Luo, Daji; Guo, An-Yuan; Tang, Zhaohui; Liu, Mugen

    2017-01-01

    Mutations in EYS are associated with autosomal recessive retinitis pigmentosa (arRP) and autosomal recessive cone-rod dystrophy (arCRD) however, the function of EYS and the molecular mechanisms of how these mutations cause retinal degeneration are still unclear. Because EYS is absent in mouse and rat, and the structure of the retina differs substantially between humans and Drosophila, we utilised zebrafish as a model organism to study the function of EYS in the retina. We constructed an EYS-knockout zebrafish-line by TALEN technology which showed visual impairment at an early age, while the histological and immunofluorescence assays indicated the presence of progressive retinal degeneration with a cone predominately affected pattern. These phenotypes recapitulate the clinical manifestations of arCRD patients. Furthermore, the EYS−/− zebrafish also showed mislocalisation of certain outer segment proteins (rhodopsin, opn1lw, opn1sw1, GNB3 and PRPH2), and disruption of actin filaments in photoreceptors. Protein mislocalisation may, therefore, disrupt the function of cones and rods in these zebrafish and cause photoreceptor death. Collectively, these results point to a novel role for EYS in maintaining the morphological structure of F-actin and in protein transport, loss of this function might be the trigger for the resultant cellular events that ultimately lead to photoreceptor death. PMID:28378834

  20. Ablation of EYS in zebrafish causes mislocalisation of outer segment proteins, F-actin disruption and cone-rod dystrophy.

    PubMed

    Lu, Zhaojing; Hu, Xuebin; Liu, Fei; Soares, Dinesh C; Liu, Xiliang; Yu, Shanshan; Gao, Meng; Han, Shanshan; Qin, Yayun; Li, Chang; Jiang, Tao; Luo, Daji; Guo, An-Yuan; Tang, Zhaohui; Liu, Mugen

    2017-04-05

    Mutations in EYS are associated with autosomal recessive retinitis pigmentosa (arRP) and autosomal recessive cone-rod dystrophy (arCRD) however, the function of EYS and the molecular mechanisms of how these mutations cause retinal degeneration are still unclear. Because EYS is absent in mouse and rat, and the structure of the retina differs substantially between humans and Drosophila, we utilised zebrafish as a model organism to study the function of EYS in the retina. We constructed an EYS-knockout zebrafish-line by TALEN technology which showed visual impairment at an early age, while the histological and immunofluorescence assays indicated the presence of progressive retinal degeneration with a cone predominately affected pattern. These phenotypes recapitulate the clinical manifestations of arCRD patients. Furthermore, the EYS(-/-) zebrafish also showed mislocalisation of certain outer segment proteins (rhodopsin, opn1lw, opn1sw1, GNB3 and PRPH2), and disruption of actin filaments in photoreceptors. Protein mislocalisation may, therefore, disrupt the function of cones and rods in these zebrafish and cause photoreceptor death. Collectively, these results point to a novel role for EYS in maintaining the morphological structure of F-actin and in protein transport, loss of this function might be the trigger for the resultant cellular events that ultimately lead to photoreceptor death.

  1. 54Mn2+ as a tracer of the polymerization of actin. Intermediate oligomers condense to give F-actin.

    PubMed Central

    Grazi, E

    1984-01-01

    Mg2+, at submicromolar concentrations, is needed for the nucleation of actin [Maruyama (1981) J. Biol. Chem. 256, 1060-1062]. I show here that Mn2+ fulfils the same function. It binds to oligomers present in the ATP-G-actin solutions with a ratio of 2-3 Mn2+ ions per 100 actin monomers and with an association constant of 0.66 X 10(10) M-1 at pH 8.2 at 25 degrees C. The time course of the binding of Mn2+ to polymerizing actin is not affected by the initial concentration of the protein. Analysis of the distribution of the binding shows that, both in the large oligomeric species and in the polymers, 1 Mn2+ ion is bound for every 14-25 actin monomers, whereas in the smaller oligomeric species 1 Mn2+ ion is bound for every 4 actin monomers. The proposal is made that Mn2+ stabilizes actin nuclei and decreases the concentration of the monomers at the steady state. It is also proposed that, at least in some experimental conditions, the direct condensation of oligomers of intermediate length is an effective mechanism of F-actin formation. PMID:6508731

  2. Disassembly of F-Actin Cytoskeleton after Interaction of Bacillus cereus with Fully Differentiated Human Intestinal Caco-2 Cells

    PubMed Central

    Minnaard, Jessica; Lievin-Le Moal, Vanessa; Coconnier, Marie-Helene; Servin, Alain L.; Pérez, Pablo F.

    2004-01-01

    In the present study, the role of direct procaryote-eucaryote interactions in the virulence of Bacillus cereus was investigated. As a model of human enterocytes, differentiated Caco-2 cells were used. Infection of fully differentiated Caco-2 cells with B. cereus in the exponential phase of growth, in order to minimize the concentration of spores or sporulating microorganisms, shows that a strain-dependent cytopathic effect develops. Interestingly, addition of 3-h-old cultures of some strains resulted in complete detachment of the cultured cells after a 3-h infection whereas no such effect was found after a 3-h infection with 16-h-old cultures. Infection of enterocyte-like cells with B. cereus leads to disruption of the F-actin network and necrosis. Even though the effect of secreted factors cannot be ruled out, direct eucaryote-procaryote interaction seems to be necessary. In addition, we observed that some B. cereus strains were able to be internalized in Caco-2 cells. Our findings add a new insight into the mechanisms of virulence of B. cereus in the context of intestinal infection. PMID:15155611

  3. Direct binding of F actin to the cytoplasmic domain of the alpha 2 integrin chain in vitro

    NASA Technical Reports Server (NTRS)

    Kieffer, J. D.; Plopper, G.; Ingber, D. E.; Hartwig, J. H.; Kupper, T. S.

    1995-01-01

    The transmembrane integrins have been shown to interact with the cytoskeleton via noncovalent binding between cytoplasmic domains (CDs) of integrin beta chains and various actin binding proteins within the focal adhesion complex. Direct or indirect integrin alpha chain CD binding to the actin cytoskeleton has not been reported. We show here that actin, as an abundant constituent of focal adhesion complex proteins isolated from fibroblasts, binds strongly and specifically to alpha 2 CD, but not to alpha 1 CD peptide. Similar specific binding to alpha 2 CD peptide was seen for highly purified F actin, free of putative actin-binding proteins. The bound complex of actin and peptide was visualized directly by coprecipitation, and actin binding was abrogated by removal of a five amino acid sequence from the alpha 2 CD peptide. Our findings may explain the earlier observation that, while integrins alpha 2 beta 1 and alpha 1 beta 1 both bind to collagen, only alpha 2 beta 1 can mediate contraction of extracellular collagen matrices.

  4. Direct binding of F actin to the cytoplasmic domain of the alpha 2 integrin chain in vitro

    NASA Technical Reports Server (NTRS)

    Kieffer, J. D.; Plopper, G.; Ingber, D. E.; Hartwig, J. H.; Kupper, T. S.

    1995-01-01

    The transmembrane integrins have been shown to interact with the cytoskeleton via noncovalent binding between cytoplasmic domains (CDs) of integrin beta chains and various actin binding proteins within the focal adhesion complex. Direct or indirect integrin alpha chain CD binding to the actin cytoskeleton has not been reported. We show here that actin, as an abundant constituent of focal adhesion complex proteins isolated from fibroblasts, binds strongly and specifically to alpha 2 CD, but not to alpha 1 CD peptide. Similar specific binding to alpha 2 CD peptide was seen for highly purified F actin, free of putative actin-binding proteins. The bound complex of actin and peptide was visualized directly by coprecipitation, and actin binding was abrogated by removal of a five amino acid sequence from the alpha 2 CD peptide. Our findings may explain the earlier observation that, while integrins alpha 2 beta 1 and alpha 1 beta 1 both bind to collagen, only alpha 2 beta 1 can mediate contraction of extracellular collagen matrices.

  5. Dexamethasone alters F-actin architecture and promotes cross-linked actin network formation in human trabecular meshwork tissue.

    PubMed

    Clark, Abbot F; Brotchie, Daniel; Read, A Thomas; Hellberg, Peggy; English-Wright, Sherry; Pang, Iok-Hou; Ethier, C Ross; Grierson, Ian

    2005-02-01

    Elevated intraocular pressure is an important risk factor for the development of glaucoma, a leading cause of irreversible blindness. This ocular hypertension is due to increased hydrodynamic resistance to the drainage of aqueous humor through specialized outflow tissues, including the trabecular meshwork (TM) and the endothelial lining of Schlemm's canal. We know that glucocorticoid therapy can cause increased outflow resistance and glaucoma in susceptible individuals, that the cytoskeleton helps regulate aqueous outflow resistance, and that glucocorticoid treatment alters the actin cytoskeleton of cultured TM cells. Our purpose was to characterize the actin cytoskeleton of cells in outflow pathway tissues in situ, to characterize changes in the cytoskeleton due to dexamethasone treatment in situ, and to compare these with changes observed in cell culture. Human ocular anterior segments were perfused with or without 10(-7) M dexamethasone, and F-actin architecture was investigated by confocal laser scanning microscopy. We found that outflow pathway cells contained stress fibers, peripheral actin staining, and occasional actin "tangles." Dexamethasone treatment caused elevated IOP in several eyes and increased overall actin staining, with more actin tangles and the formation of cross-linked actin networks (CLANs). The actin architecture in TM tissues was remarkably similar to that seen in cultured TM cells. Although CLANs have been reported previously in cultured cells, this is the first report of CLANs in tissue. These cytoskeletal changes may be associated with increased aqueous humor outflow resistance after ocular glucocorticoid treatment.

  6. Zyxin antagonizes the FERM protein expanded to couple F-actin and Yorkie-dependent organ growth.

    PubMed

    Gaspar, Pedro; Holder, Maxine V; Aerne, Birgit L; Janody, Florence; Tapon, Nicolas

    2015-03-16

    Coordinated multicellular growth during development is achieved by the sensing of spatial and nutritional boundaries. The conserved Hippo (Hpo) signaling pathway has been proposed to restrict tissue growth by perceiving mechanical constraints through actin cytoskeleton networks. The actin-associated LIM proteins Zyxin (Zyx) and Ajuba (Jub) have been linked to the control of tissue growth via regulation of Hpo signaling, but the study of Zyx has been hampered by a lack of genetic tools. We generated a zyx mutant in Drosophila using TALEN endonucleases and used this to show that Zyx antagonizes the FERM-domain protein Expanded (Ex) to control tissue growth, eye differentiation, and F-actin accumulation. Zyx membrane targeting promotes the interaction between the transcriptional co-activator Yorkie (Yki) and the transcription factor Scalloped (Sd), leading to activation of Yki target gene expression and promoting tissue growth. Finally, we show that Zyx's growth-promoting function is dependent on its interaction with the actin-associated protein Enabled (Ena) via a conserved LPPPP motif and is antagonized by Capping Protein (CP). Our results show that Zyx is a functional antagonist of Ex in growth control and establish a link between actin filament polymerization and Yki activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Diagnostic accuracy of four different immunological methods for the detection of anti-F-actin autoantibodies in type 1 autoimmune hepatitis and other liver-related disorders.

    PubMed

    Villalta, Danilo; Bizzaro, Nicola; Da Re, Mirella; Tozzoli, Renato; Komorowski, Lars; Tonutti, Elio

    2008-02-01

    Smooth muscle antibodies (SMA) with anti-F-actin specificity are commonly regarded as specific markers of type 1 autoimmune hepatitis (AIH-1) but, at the moment, a gold standard method for their identification is not available. To evaluate the diagnostic accuracy for AIH-1 of three new methods of detecting anti-F-actin antibodies, and to compare the results with those obtained using the indirect immunofluorescence (IIF) method on rodent tissue. The sera of 33 AIH-1 patients and 104 controls (eight with type 2 AIH, 30 with chronic hepatitis C, 16 with celiac disease, 40 with primary biliary cirrhosis, and 10 with liver steatosis) were assayed for anti-F-actin antibodies using four methods: two IIF methods (one on rat tissue sections and the other on VSM 47 cell line derived from the thoracic aorta of rat embryo), an ELISA method and an Immunodot (ID) method. The diagnostic sensitivity, specificity, positive predictive value and negative predictive value were, respectively, 51.5, 95.2, 77.3 and 86.1% for IIF on the VSM 47 cell line; 63.6, 86.5, 60 and 88.2% for the ELISA method; 72.7, 82.7, 57.1 and 90.5% for the ID assay; and 57.6, 96.1, 82.6 and 87.7% for the IIF on rat tissue sections. The methods used for anti-F-actin antibody detection have different diagnostic performances. Both IIF methods, the one on rat tissues and the other on VSM47 cell line, are highly specific for AIH-1. In contrast, ELISA and especially ID show positive results in control population, although usually at low levels (with the single exception of PBC patients). Therefore, having a high positive predictive value, both IIF methods are reliable tools for the specific detection of AIH-associated anti-F-actin autoantibodies, whereas the immunometric assays might be integrated into the diagnostic scheme as second level tests upon improvement of their respective cut-offs to confirm anti-F-actin positivity in case of SMA positivity.

  8. F-actin and myosin II accelerate catecholamine release from chromaffin granules

    PubMed Central

    Berberian, Khajak; Torres, Alexis J; Fang, Qinghua; Kisler, Kassandra

    2009-01-01

    The roles of non-muscle myosin II and cortical actin filaments in chromaffin granule exocytosis were studied by confocal fluorescence microscopy, amperometry, and cell-attached capacitance measurements. Fluorescence imaging indicated decreased mobility of granules near the plasma membrane following inhibition of myosin II function with Blebbistatin. Slower fusion pore expansion rates and longer fusion pore lifetimes were observed after inhibition of actin polymerization using Cytochalasin-D. Amperometric recordings revealed increased amperometric spike half-widths without change in quantal size after either myosin II inhibition or actin disruption. These results suggest that actin and myosin II facilitate release from individual chromaffin granules by accelerating dissociation of catecholamines from the intragranular matrix possibly through generation of mechanical forces. PMID:19158310

  9. Neutron Imaging Reveals Internal Plant Hydraulic Dynamics

    SciTech Connect

    Warren, Jeffrey; Bilheux, Hassina Z; Kang, Misun; Voisin, Sophie; Cheng, Chu-Lin; Horita, Jusuke; Perfect, Edmund

    2013-01-01

    Many terrestrial ecosystem processes are constrained by water availability and transport within the soil. Knowledge of plant water fluxes is thus critical for assessing mechanistic processes linked to biogeochemical cycles, yet resolution of root structure and xylem water transport dynamics has been a particularly daunting task for the ecologist. Through neutron imaging, we demonstrate the ability to non-invasively monitor individual root functionality and water fluxes within Zea mays L. (maize) and Panicum virgatum L. (switchgrass) seedlings growing in a sandy medium. Root structure and growth were readily imaged by neutron radiography and neutron computed tomography. Seedlings were irrigated with water or deuterium oxide and imaged through time as a growth lamp was cycled on to alter leaf demand for water. Sub-millimeter scale resolution reveals timing and magnitudes of root water uptake, redistribution within the roots, and root-shoot hydraulic linkages, relationships not well characterized by other techniques.

  10. Sawfishes stealth revealed using computational fluid dynamics.

    PubMed

    Bradney, D R; Davidson, A; Evans, S P; Wueringer, B E; Morgan, D L; Clausen, P D

    2017-02-27

    Detailed computational fluid dynamics simulations for the rostrum of three species of sawfish (Pristidae) revealed that negligible turbulent flow is generated from all rostra during lateral swipe prey manipulation and swimming. These results suggest that sawfishes are effective stealth hunters that may not be detected by their teleost prey's lateral line sensory system during pursuits. Moreover, during lateral swipes, the rostra were found to induce little velocity into the surrounding fluid. Consistent with previous data of sawfish feeding behaviour, these data indicate that the rostrum is therefore unlikely to be used to stir up the bottom to uncover benthic prey. Whilst swimming with the rostrum inclined at a small angle to the horizontal, the coefficient of drag of the rostrum is relatively low and the coefficient of lift is zero.

  11. F actin bundles in Drosophila bristles. I. Two filament cross-links are involved in bundling

    PubMed Central

    1995-01-01

    Transverse sections though Drosophila bristles reveal 7-11 nearly round, plasma membrane-associated bundles of actin filaments. These filaments are hexagonally packed and in a longitudinal section they show a 12-nm periodicity in both the 1.1 and 1.0 views. From earlier studies this periodicity is attributable to cross-links and indicates that the filaments are maximally cross-linked, singed mutants also have 7-11 bundles, but the bundles are smaller, flattened, and the filaments within the bundles are randomly packed (not hexagonal); no periodicity can be detected in longitudinal sections. Another mutant, forked (f36a), also has 7-11 bundles but even though the bundles are very small, the filaments within them are hexagonally packed and display a 12-nm periodicity in longitudinal section. The singed-forked double mutant lacks filament bundles. Thus there are at least two species of cross-links between adjacent actin filaments. Hints of why two species of cross-links are necessary can be gleaned by studying bristle formation. Bristles sprout with only microtubules within them. A little later in development actin filaments appear. At early stages the filaments in the bundles are randomly packed. Later the filaments in the bundles become hexagonally packed and maximally cross-linked. We consider that the forked proteins may be necessary early in development to tie the filaments together in a bundle so that they can be subsequently zippered together by fascin (the singed gene product). PMID:7622563

  12. Solution structure of the calponin CH domain and fitting to the 3D-helical reconstruction of F-actin:calponin.

    PubMed

    Bramham, Janice; Hodgkinson, Julie L; Smith, Brian O; Uhrín, Dusan; Barlow, Paul N; Winder, Steven J

    2002-02-01

    Calponin is involved in the regulation of contractility and organization of the actin cytoskeleton in smooth muscle cells. It is the archetypal member of the calponin homology (CH) domain family of actin binding proteins that includes cytoskeletal linkers such as alpha-actinin, spectrin, and dystrophin, and regulatory proteins including VAV, IQGAP, and calponin. We have determined the first structure of a CH domain from a single CH domain-containing protein, that of calponin, and have fitted the NMR-derived coordinates to the 3D-helical reconstruction of the F-actin:calponin complex using cryo-electron microscopy. The tertiary fold of this single CH domain is typical of, yet significantly different from, those of the CH domains that occur in tandem pairs to form high-affinity ABDs in other proteins. We thus provide a structural insight into the mode of interaction between F-actin and CH domain-containing proteins.

  13. UNC-40/DCC, SAX-3/Robo, and VAB-1/Eph Polarize F-Actin during Embryonic Morphogenesis by Regulating the WAVE/SCAR Actin Nucleation Complex

    PubMed Central

    Bernadskaya, Yelena Y.; Wallace, Andre; Nguyen, Jillian; Mohler, William A.; Soto, Martha C.

    2012-01-01

    Many cells in a developing embryo, including neurons and their axons and growth cones, must integrate multiple guidance cues to undergo directed growth and migration. The UNC-6/netrin, SLT-1/slit, and VAB-2/Ephrin guidance cues, and their receptors, UNC-40/DCC, SAX-3/Robo, and VAB-1/Eph, are known to be major regulators of cellular growth and migration. One important area of research is identifying the molecules that interpret this guidance information downstream of the guidance receptors to reorganize the actin cytoskeleton. However, how guidance cues regulate the actin cytoskeleton is not well understood. We report here that UNC-40/DCC, SAX-3/Robo, and VAB-1/Eph differentially regulate the abundance and subcellular localization of the WAVE/SCAR actin nucleation complex and its activator, Rac1/CED-10, in the Caenorhabditis elegans embryonic epidermis. Loss of any of these three pathways results in embryos that fail embryonic morphogenesis. Similar defects in epidermal enclosure have been observed when CED-10/Rac1 or the WAVE/SCAR actin nucleation complex are missing during embryonic development in C. elegans. Genetic and molecular experiments demonstrate that in fact, these three axonal guidance proteins differentially regulate the levels and membrane enrichment of the WAVE/SCAR complex and its activator, Rac1/CED-10, in the epidermis. Live imaging of filamentous actin (F-actin) in embryos developing in the absence of individual guidance receptors shows that high levels of F-actin are not essential for polarized cell migrations, but that properly polarized distribution of F-actin is essential. These results suggest that proper membrane recruitment and activation of CED-10/Rac1 and of WAVE/SCAR by signals at the plasma membrane result in polarized F-actin that permits directed movements and suggest how multiple guidance cues can result in distinct changes in actin nucleation during morphogenesis. PMID:22876199

  14. Regulation of SGLT expression and localization through Epac/PKA-dependent caveolin-1 and F-actin activation in renal proximal tubule cells.

    PubMed

    Lee, Yu Jin; Kim, Mi Ok; Ryu, Jung Min; Han, Ho Jae

    2012-04-01

    This study demonstrated that exchange proteins directly activated by cAMP (Epac) and protein kinase A (PKA) by 8-bromo (8-Br)-adenosine 3',5'-cyclic monophosphate (cAMP) stimulated [(14)C]-α-methyl-D-glucopyranoside (α-MG) uptake through increased sodium-glucose cotransporters (SGLTs) expression and translocation to lipid rafts in renal proximal tubule cells (PTCs). In PTCs, SGLTs were colocalized with lipid raft caveolin-1 (cav-1), disrupted by methyl-β-cyclodextrin (MβCD). Selective activators of Epac or PKA, 8-Br-cAMP, and forskolin stimulated expressions of SGLTs and α-MG uptake in PTCs. In addition, 8-Br-cAMP-induced PKA and Epac activation increased phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), and nuclear factor kappa B (NF-κB), which were involved in expressions of SGLTs. Furthermore, 8-Br-cAMP stimulated SGLTs translocation to lipid rafts via filamentous actin (F-actin) organization, which was blocked by cytochalasin D. In addition, cav-1 and SGLTs stimulated by 8-Br-cAMP were detected in lipid rafts, which were blocked by cytochalasin D. Furthermore, 8-Br-cAMP-induced SGLTs translocation and α-MG uptake were attenuated by inhibition of cav-1 activation with cav-1 small interfering RNA (siRNA) and inhibition of F-actin organization with TRIO and F-actin binding protein (TRIOBP). In conclusion, 8-Br-cAMP stimulated α-MG uptake via Epac and PKA-dependent SGLTs expression and trafficking through cav-1 and F-actin in PTCs.

  15. Platelet rich plasma promotes skeletal muscle cell migration in association with up-regulation of FAK, paxillin, and F-Actin formation.

    PubMed

    Tsai, Wen-Chung; Yu, Tung-Yang; Lin, Li-Ping; Lin, Mioa-Sui; Tsai, Ting-Ta; Pang, Jong-Hwei S

    2017-02-24

    Platelet rich plasma (PRP) contains various cytokines and growth factors which may be beneficial to the healing process of injured muscle. The aim of this study was to investigate the effect and molecular mechanism of PRP on migration of skeletal muscle cells. Skeletal muscle cells intrinsic to Sprague-Dawley rats were treated with PRP. The cell migration was evaluated by transwell filter migration assay and electric cell-substrate impedance sensing. The spreading of cells was evaluated microscopically. The formation of filamentous actin (F-actin) cytoskeleton was assessed by immunofluorescence staining. The protein expressions of paxillin and focal adhesion kinase (FAK) were assessed by Western blot analysis. Transfection of paxillin small-interfering RNA (siRNAs) to muscle cells was performed to validate the role of paxillin in PRP-mediated promotion of cell migration. Dose-dependently PRP promotes migration of and spreading and muscle cells. Protein expressions of paxillin and FAK were up-regulated dose-dependently. F-actin formation was also enhanced by PRP treatment. Furthermore, the knockdown of paxillin expression impaired the effect of PRP to promote cell migration. It was concluded that PRP promoting migration of muscle cells is associated with up-regulation of proteins expression of paxillin and FAK as well as increasing F-actin formation. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. The knock-out of ARP3a gene affects F-actin cytoskeleton organization altering cellular tip growth, morphology and development in moss Physcomitrella patens.

    PubMed

    Finka, Andrija; Saidi, Younousse; Goloubinoff, Pierre; Neuhaus, Jean-Marc; Zrÿd, Jean-Pierre; Schaefer, Didier G

    2008-10-01

    The seven subunit Arp2/3 complex is a highly conserved nucleation factor of actin microfilaments. We have isolated the genomic sequence encoding a putative Arp3a protein of the moss Physcomitrella patens. The disruption of this ARP3A gene by allele replacement has generated loss-of-function mutants displaying a complex developmental phenotype. The loss-of function of ARP3A gene results in shortened, almost cubic chloronemal cells displaying affected tip growth and lacking differentiation to caulonemal cells. In moss arp3a mutants, buds differentiate directly from chloronemata to form stunted leafy shoots having differentiated leaves similar to wild type. Yet, rhizoids never differentiate from stem epidermal cells. To characterize the F-actin organization in the arp3a-mutated cells, we disrupted ARP3A gene in the previously described HGT1 strain expressing conditionally the GFP-talin marker. In vivo observation of the F-actin cytoskeleton during P. patens development demonstrated that loss-of-function of Arp3a is associated with the disappearance of specific F-actin cortical structures associated with the establishment of localized cellular growth domains. Finally, we show that constitutive expression of the P. patens Arp3a and its Arabidopsis thaliana orthologs efficiently complement the mutated phenotype indicating a high degree of evolutionary conservation of the Arp3 function in land plants.

  17. Activation of the osmo-sensitive chloride conductance involves P21rho and is accompanied by a transient reorganization of the F-actin cytoskeleton.

    PubMed Central

    Tilly, B C; Edixhoven, M J; Tertoolen, L G; Morii, N; Saitoh, Y; Narumiya, S; de Jonge, H R

    1996-01-01

    Hypo-osmotic stimulation of human Intestine 407 cells rapidly activated compensatory CL- and K+ conductances that limited excessive cell swelling and, finally, restored the original cell volume. Osmotic cell swelling was accompanied by a rapid and transient reorganization of the F-actin cytoskeleton, affecting both stress fibers as well as apical ruffles. In addition, an increase in total cellular F-actin was observed. Pretreatment of the cells with recombinant Clostridium botulinum C3 exoenzyme, but not with mutant enzyme (C3-E173Q) devoid of ADP-ribosyltransferase activity, greatly reduced the activation of the osmo-sensitive anion efflux, suggesting a role for the ras-related GTPase p21rho. In contrast, introducing dominant negative N17-p21rac into the cells did not affect the volume-sensitive efflux. Cell swelling-induced reorganization of F-actin coincided with a transient, C3 exoenzyme-sensitive tyrosine phosphorylation of p125 focal adhesion kinase (p125FAK) as well as with an increase in phosphatidylinositol-3-kinase (PtdIns-3-kinase) activity. Pretreatment of the cells with wortmannin, a specific inhibitor of PtdIns-3-kinase, largely inhibited the volume-sensitive ion efflux. Taken together, our results indicate the involvement of a p21rho signaling cascade and actin filaments in the activation of volume-sensitive chloride channels. Images PMID:8885236

  18. Re-evaluating the roles of myosin 18Aα and F-actin in determining Golgi morphology.

    PubMed

    Bruun, Kyle; Beach, Jordan R; Heissler, Sarah M; Remmert, Kirsten; Sellers, James R; Hammer, John A

    2017-03-22

    The peri-centrosomal localization and morphology of the Golgi apparatus depends largely on the microtubule cytoskeleton and the microtubule motor protein dynein. Recent studies proposed that myosin 18Aα (M18Aα) also contributes to Golgi morphology by binding the Golgi protein GOLPH3 and walking along adjacent actin filaments to stretch the Golgi into its classic ribbon structure. Biochemical analyses have shown, however, that M18A is not an actin-activated ATPase and lacks motor activity. Our goal, therefore, was to define the precise molecular mechanism by which M18Aα determines Golgi morphology. We show that purified M18Aα remains inactive in the presence of GOLPH3, arguing against the Golgi-specific activation of the myosin. Using M18A-specific antibodies and expression of GFP-tagged M18Aα, we find no evidence that it localizes to the Golgi. Moreover, several cell lines with reduced or eliminated M18Aα expression exhibited normal Golgi morphology. Interestingly, actin filament disassembly resulted in a marked reduction in lateral stretching of the Golgi in both control and M18Aα-deficient cells. Importantly, this reduction was accompanied by an expansion of the Golgi in the vertical direction, vertical movement of the centrosome, and increases in the height of both the nucleus and the cell. Collectively, our data indicate that M18Aα does not localize to the Golgi or play a significant role in determining its morphology, and suggest that global F-actin disassembly alters Golgi morphology indirectly by altering cell shape. This article is protected by copyright. All rights reserved.

  19. Shear stress modulates endothelial cell morphology and F-actin organization through the regulation of focal adhesion-associated proteins.

    PubMed

    Girard, P R; Nerem, R M

    1995-04-01

    Flow-related shear stress has been shown to modulate endothelial cell structure and function including F-actin microfilament organization. Focal adhesion-associated proteins such as vinculin, talin, and specific integrins may play a role in the modulation of these cytoskeletal and morphological changes. Double-label immunofluorescence studies indicated that, in static culture, alpha 5 beta 1 fibronectin receptors (alpha 5 beta 1 FNRs) and alpha v beta 3 vitronectin receptors (alpha v beta 3 VNRs) were found predominantly in the peripheral regions of bovine aortic endothelial cells (BAECs) corresponding to the localization of vinculin, talin, and actin microfilament terminations. In response to shear stress, concomitant with cell elongation and the appearance of stress fibers aligned with the direction of flow, there was a prominent localization of vinculin and alpha v beta 3 VNRs as the "upstream" end of the cells. Stress fiber terminations were clearly evident at these concentrations of focal adhesion-associated proteins. These data suggest that the upstream concentration of these proteins may direct shear stress-induced stress fiber formation and may function in the alignment of the fibers in the direction of flow. Levels of surface alpha v beta 3 VNRs were found to decrease in response to flow, possibly reflecting the decrease in numbers of "downstream" receptors. Unlike the arrangement of vinculin and alpha v beta 3 VNRs observed following exposure to flow, talin and alpha 5 beta 1 FNRs, in addition to being localized at the upstream end of the cell, were also evenly distributed throughout the rest of the cell. Surface levels of alpha 5 beta 1 FNRs increased in response to shear stress, perhaps providing an increased adherence of BAECs to the extracellular matrix through these receptors. These data suggest that focal adhesion-associated proteins play specific roles in the response of BAECs to shear stress.

  20. Calmodulin-Dependent Protein Kinase mediates Hypergravity-Induced Changes in F-Actin Expression by Endothelial Cells

    NASA Technical Reports Server (NTRS)

    Love, Felisha D.; Melhado, Caroline; Bosah, Francis; Harris-Hooker, Sandra A.; Sanford, Gary L.

    1997-01-01

    A number of basic cellular functions, e.g., electrolyte concentration cell growth rate, glucose utilization, bone formation, response to growth stimulation and exocytosis are modified by microgravity or during spaceflight. Studies with intact animal during spaceflights have found lipid accumulations within the lumen of the vasculature and degeneration of the vascular wall. Capillary alterations with extensive endothelial invaginations were also seen. Hemodynamic studies have shown that there is a redistribution of blood from the lower extremities to the upper part of the body; this will alter vascular permeability, resulting in leakage into surrounding tissues. These studies indicate that changes in gravity will affect a number of physiological systems, including the vasculature. However, few studies have addressed the effect of microgravity on vascular cell function and metabolism. A major problem with ground based studies is that achieving a true microgravity hand, environment for prolonged period is not possible. On the other increasing gravity (i.e., hypergravity) is easily achieved. Several researchers have shown that hypergravity will increase the proliferation of several different cell limes (e.g., chick embryo fibroblasts) while decreasing cell motility and slowing liver regeneration following partial hepatectomy. These studies suggest that hypergravity will alter the behavior of most cells. Several investigators have shown that hypergravity affects the expression of the early response genes (c-fos and c-myc) and the activation of several protein kinases (PK's) in cells (10,11). In this study we investigated whether hypergravity alters the expression of f-actin by aortic endothelial cells, and the possible role of protein kinases (calmodulin(II)-dependent and PKA) as mediators of these effects.

  1. Neutron Imaging Reveals Internal Plant Hydraulic Dynamics

    NASA Astrophysics Data System (ADS)

    Warren, J.; Bilheux, H.; Kang, M.; Voisin, S.; Cheng, C.; Horita, J.; Perfect, E.

    2011-12-01

    In situ quantification of soil-plant water fluxes have not been fully successful due to a lack of non-destructive techniques capable of revealing roots or water fluxes at relevant spatial scales. Neutron imaging is a unique non-invasive tool that can assess sub-millimeter scale material properties and transport in situ, and which has been successfully applied to characterize soil and plant water status. Here, we have applied neutron radiography and tomography to quantify water transport through individual maize roots in response to internal plant demand. Zea mays seedlings were grown for 10 days in Flint silica sand within 2.6 cm diameter Al chambers. Using a reactor-based neutron source at Oak Ridge National Laboratory (HFIR), water fluxes were tracked through the maize soil-root systems by collecting consecutive neutron radiographs over a 12 h period following irrigation with D2O. D has a much lower neutron attenuation than H, thus D2O displacement of existing H2O within the plant vascular system, or influx of D2O into previously dry tissue or soil is readily tracked by changes in image intensity through time. Plant water release and uptake was regulated by periodically cycling on a high-intensity grow light. From each maize replicate, selected regions of interest (ROI) were delineated around individual roots, root free soil, stem and leaf segments. Changes in ROI were tracked through time to reveal patterns of water flux. The hydration of root and stem tissue cycled in response to illumination; root water content often increased during darkness, then decreased with illumination as water was transported from the root into the stem. Relative root-shoot hydration through time illustrates the balance between demand, storage capacity and uptake, which varies depending on root characteristics and its localized soil environment. The dynamic transport of water between soil, individual roots, stems and leaves was readily visualized and quantified illustrating the value

  2. Noise-induced cochlear F-actin depolymerization is mediated via ROCK2/p-ERM signaling.

    PubMed

    Han, Yu; Wang, Xianren; Chen, Jun; Sha, Su-Hua

    2015-06-01

    Our previous work has suggested that traumatic noise activates Rho-GTPase pathways in cochlear outer hair cells (OHCs), resulting in cell death and noise-induced hearing loss (NIHL). In this study, we investigated Rho effectors, Rho-associated kinases (ROCKs), and the targets of ROCKs, the ezrin-radixin-moesin (ERM) proteins, in the regulation of the cochlear actin cytoskeleton using adult CBA/J mice under conditions of noise-induced temporary threshold shift (TTS) and permanent threshold shift (PTS) hearing loss, which result in changes to the F/G-actin ratio. The levels of cochlear ROCK2 and p-ERM decreased 1 h after either TTS- or PTS-noise exposure. In contrast, ROCK2 and p-ERM in OHCs decreased only after PTS-, not after TTS-noise exposure. Treatment with lysophosphatidic acid, an activator of the Rho pathway, resulted in significant reversal of the F/G-actin ratio changes caused by noise exposure and attenuated OHC death and NIHL. Conversely, the down-regulation of ROCK2 by pretreatment with ROCK2 siRNA reduced the expression of ROCK2 and p-ERM in OHCs, exacerbated TTS to PTS, and worsened OHC loss. Additionally, pretreatment with siRNA against radixin, an ERM protein, aggravated TTS to PTS. Our results indicate that a ROCK2-mediated ERM-phosphorylation signaling cascade modulates noise-induced hair cell loss and NIHL by targeting the cytoskeleton. We propose the following cascade following noise trauma leading to alteration of the F-actin arrangement in the outer hair cell cytoskeleton: Noise exposure reduces the levels of GTP-RhoA and subsequently diminishes levels of RhoA effector ROCK2 (Rho-associated kinase 2). Phosphorylation of ezrin-radixin-moesin (ERM) by ROCK2 normally allows ERM to cross-link actin filaments with the plasma membrane. Noise-decreased levels of ROCK results in reduction of phosphorylation of ERM that leads to depolymerization of actin filaments. Lysophosphatidic acid (LPA), an agonist of RhoA, binds to the G-protein-coupled receptor

  3. Planetary Interior Structure Revealed by Spin Dynamics

    NASA Astrophysics Data System (ADS)

    Margot, J.; Peale, S. J.; Jurgens, R. F.; Slade, M. A.; Holin, I. V.

    2002-12-01

    The spin state of a planet depends on the distribution of mass within the interior, gradual and discrete changes in its moments of inertia, dissipation mechanisms at the surface and below, and external torques. Detailed measurements of the spin dynamics can therefore reveal much about planetary interior structure, interactions at the core-mantle and atmosphere-surface boundaries, and mass redistribution events. Studies of the spin precession, polar wobble, and length of day variations have been used to determine Earth's moments of inertia and rigidity and to study the effects of atmospheric angular momentum changes, post-glacial rebound, and large earthquakes. In planetary investigations the spin measurements are particularly important because other means of constraining interior properties require in-situ or orbiting sensors (e.g. seismometers, magnetometers, and Doppler tracking of spacecraft). Here we describe the successful implementation of a new Earth-based radar technique (Holin, 1992) that provides spin state measurements with unprecedented accuracy. Our first observations were designed to characterize Mercury's core. Peale (1976) showed that the measurement of four quantities (the obliquity of the planet, the amplitude of its longitude librations, and the second-degree gravitational harmonics) are sufficient to determine the size and state of Mercury's core. The existence of a molten core would place strong constraints on the thermal and rotational histories of the planet, with profound implications for the composition and rotation state of the planet at the time of formation. A solid core would have a fundamental impact on theories of planetary magnetic field generation. We observed Mercury with the Goldstone radar and the Green Bank Telescope in May-June 2002. We illuminated the planet with a monochromatic signal, recorded the scattered power at the two antennas, and cross-correlated the echoes in the time domain. We obtained strong correlations which

  4. Dispersion of Response Times Reveals Cognitive Dynamics

    PubMed Central

    Holden, John G.; Van Orden, Guy C.; Turvey, Michael T.

    2013-01-01

    Trial to trial variation in word pronunciation times exhibits 1/f scaling. One explanation is that human performances are consequent on multiplicative interactions among interdependent processes – interaction dominant dynamics. This article describes simulated distributions of pronunciation times in a further test for multiplicative interactions and interdependence. Individual participant distributions of ≈1100 word pronunciation times are successfully mimicked for each participant in combinations of lognormal and power law behavior. Successful hazard function simulations generalize these results to establish interaction dominant dynamics, in contrast with component dominant dynamics, as a likely mechanism for cognitive activity. PMID:19348544

  5. Revealing networks from dynamics: an introduction

    NASA Astrophysics Data System (ADS)

    Timme, Marc; Casadiego, Jose

    2014-08-01

    What can we learn from the collective dynamics of a complex network about its interaction topology? Taking the perspective from nonlinear dynamics, we briefly review recent progress on how to infer structural connectivity (direct interactions) from accessing the dynamics of the units. Potential applications range from interaction networks in physics, to chemical and metabolic reactions, protein and gene regulatory networks as well as neural circuits in biology and electric power grids or wireless sensor networks in engineering. Moreover, we briefly mention some standard ways of inferring effective or functional connectivity.

  6. Actin-Dynamics in Plant Cells: The Function of Actin-Perturbing Substances: Jasplakinolide, Chondramides, Phalloidin, Cytochalasins, and Latrunculins.

    PubMed

    Holzinger, Andreas; Blaas, Kathrin

    2016-01-01

    This chapter gives an overview of the most common F-actin-perturbing substances that are used to study actin dynamics in living plant cells in studies on morphogenesis, motility, organelle movement, or when apoptosis has to be induced. These substances can be divided into two major subclasses: F-actin-stabilizing and -polymerizing substances like jasplakinolide and chondramides and F-actin-severing compounds like chytochalasins and latrunculins. Jasplakinolide was originally isolated form a marine sponge, and can now be synthesized and has become commercially available, which is responsible for its wide distribution as membrane-permeable F-actin-stabilizing and -polymerizing agent, which may even have anticancer activities. Cytochalasins, derived from fungi, show an F-actin-severing function and many derivatives are commercially available (A, B, C, D, E, H, J), also making it a widely used compound for F-actin disruption. The same can be stated for latrunculins (A, B), derived from red sea sponges; however the mode of action is different by binding to G-actin and inhibiting incorporation into the filament. In the case of swinholide a stable complex with actin dimers is formed resulting also in severing of F-actin. For influencing F-actin dynamics in plant cells only membrane permeable drugs are useful in a broad range. We however introduce also the phallotoxins and synthetic derivatives, as they are widely used to visualize F-actin in fixed cells. A particular uptake mechanism has been shown for hepatocytes, but has also been described in siphonal giant algae. In the present chapter the focus is set on F-actin dynamics in plant cells where alterations in cytoplasmic streaming can be particularly well studied; however methods by fluorescence applications including phalloidin and antibody staining as well as immunofluorescence-localization of the inhibitor drugs are given.

  7. Actin-Dynamics in Plant Cells: The Function of Actin Perturbing Substances Jasplakinolide, Chondramides, Phalloidin, Cytochalasins, and Latrunculins

    PubMed Central

    Holzinger, Andreas; Blaas, Kathrin

    2016-01-01

    This chapter will give an overview of the most common F-actin perturbing substances, that are used to study actin dynamics in living plant cells in studies on morphogenesis, motility, organelle movement or when apoptosis has to be induced. These substances can be divided into two major subclasses – F-actin stabilizing and polymerizing substances like jasplakinolide, chondramides and F-actin severing compounds like chytochalasins and latrunculins. Jasplakinolide was originally isolated form a marine sponge, and can now be synthesized and has become commercially available, which is responsible for its wide distribution as membrane permeable F-actin stabilizing and polymerizing agent, which may even have anti-cancer activities. Cytochalasins, derived from fungi show an F-actin severing function and many derivatives are commercially available (A, B, C, D, E, H, J), also making it a widely used compound for F-actin disruption. The same can be stated for latrunculins (A, B), derived from red sea sponges, however the mode of action is different by binding to G-actin and inhibiting incorporation into the filament. In the case of swinholide a stable complex with actin dimers is formed resulting also in severing of F-actin. For influencing F-actin dynamics in plant cells only membrane permeable drugs are useful in a broad range. We however introduce also the phallotoxins and synthetic derivatives, as they are widely used to visualize F-actin in fixed cells. A particular uptake mechanism has been shown for hepatocytes, but has also been described in siphonal giant algae. In the present chapter the focus is set on F-actin dynamics in plant cells where alterations in cytoplasmic streaming can be particularly well studied; however methods by fluorescence applications including phalloidin- and antibody staining as well as immunofluorescence-localization of the inhibitor drugs are given. PMID:26498789

  8. Multiscale Study of Counterion-Induced Attraction and Bundle Formation of F-Actin Using an Ising-like Mean-Field Model

    PubMed Central

    Yu, Xueping; Carlsson, A. E.

    2003-01-01

    An Ising-like counterion-binding model is developed and solved by a mean-field method. For G-actin, the calculated affinity constants of all the binding sites ranging from loose to tight binding match the experimental data. The model is used to calculate the interaction energy between two F-actin filaments. Within a certain counterion concentration range, a rapidly decaying attractive force between two parallel filaments is produced not only by the correlation of the counterion distributions on the two filaments, but also by the correlation of the configurations of the two filaments with fixed counterion positions, which has been ignored in previous calculations. The bundling energy depends strongly on the configuration of the filaments. Upon bundling, the tightly bound counterion site is not affected, but the medium and loosely bound ones are. The model reproduces the observed minimal divalent counterion concentration for bundling, and naturally predicts the resolubilization of bundles which is seen in recent experiments. At the optimal counterion concentration, we obtain a bundling energy of ∼−0.01 eV per monomer along the filament. The counterion valence strongly affects the optimal counterion concentration, but has only minor effects on the optimal bundling energy. We show that the attractive potential between filaments can be simplified as the sum of interactions between their monomers. This simplification makes it possible to calculate the exact free energy of a two-F-actin-filament system. We are thus able to probe the effects of filament length on F-actin bundling and obtain a critical length for bundling of 59 monomers at 1 μM monomer concentration and pH = 7.2. PMID:14645048

  9. Multiscale study of counterion-induced attraction and bundle formation of F-actin using an Ising-like mean-field model.

    PubMed

    Yu, Xueping; Carlsson, A E

    2003-12-01

    An Ising-like counterion-binding model is developed and solved by a mean-field method. For G-actin, the calculated affinity constants of all the binding sites ranging from loose to tight binding match the experimental data. The model is used to calculate the interaction energy between two F-actin filaments. Within a certain counterion concentration range, a rapidly decaying attractive force between two parallel filaments is produced not only by the correlation of the counterion distributions on the two filaments, but also by the correlation of the configurations of the two filaments with fixed counterion positions, which has been ignored in previous calculations. The bundling energy depends strongly on the configuration of the filaments. Upon bundling, the tightly bound counterion site is not affected, but the medium and loosely bound ones are. The model reproduces the observed minimal divalent counterion concentration for bundling, and naturally predicts the resolubilization of bundles which is seen in recent experiments. At the optimal counterion concentration, we obtain a bundling energy of approximately -0.01 eV per monomer along the filament. The counterion valence strongly affects the optimal counterion concentration, but has only minor effects on the optimal bundling energy. We show that the attractive potential between filaments can be simplified as the sum of interactions between their monomers. This simplification makes it possible to calculate the exact free energy of a two-F-actin-filament system. We are thus able to probe the effects of filament length on F-actin bundling and obtain a critical length for bundling of 59 monomers at 1 microM monomer concentration and pH=7.2.

  10. Expression of Tau Produces Aberrant Plasma Membrane Blebbing in Glial Cells Through RhoA-ROCK-Dependent F-Actin Remodeling.

    PubMed

    Torres-Cruz, Francisco M; Rodríguez-Cruz, Fanny; Escobar-Herrera, Jaime; Barragán-Andrade, Norma; Basurto-Islas, Gustavo; Ripova, Daniela; Ávila, Jesús; Garcia-Sierra, Francisco

    2016-03-21

    Abnormal aggregation of Tau in glial cells has been reported in Alzheimer's disease (AD) and other tauopathies; however, the pathological significance of these aggregates remains unsolved to date. In this study, we evaluated whether full-length Tau (Tau441) and its aspartic acid421-truncated Tau variant (Tau421) produce alterations in the normal organization of the cytoskeleton and plasma membrane (PM) when transiently expressed in cultured C6-glial cells. Forty-eight hours post-transfection, abnormal microtubule bundling was observed in the majority of the cells, which expressed either Tau441 or Tau421. Moreover, both variants of Tau produced extensive PM blebbing associated with cortical redistribution of filamentous actin (F-Actin). These effects were reverted when Tau-expressing cells were incubated with drugs that depolymerize F-Actin. In addition, when glial cells showing Tau-induced PM blebbing were incubated with inhibitors of the Rho-associated protein kinase (ROCK) signaling pathway, both formation of abnormal PM blebs and F-Actin remodeling were avoided. All of these effects were initiated upstream by abnormal Tau-induced microtubule bundling, which may release the microtubule-bound guanine nucleotide exchange factor-H1 (GEF-H1) into the cytoplasm in order to activate its major effector RhoA-GTPase. These results may represent a new mechanism of Tau toxicity in which Tau-induced microtubule bundling produces activation of the Rho-GTPase-ROCK pathway that in turn mediates the remodeling of cortical Actin and PM blebbing. In AD and other tauopathies, these Tau-induced abnormalities may occur and contribute to the impairment of glial activity.

  11. A Gly65Val substitution in an actin, GhACT_LI1, disrupts cell polarity and F-actin organization resulting in dwarf, lintless cotton plants.

    PubMed

    Thyssen, Gregory N; Fang, David D; Turley, Rickie B; Florane, Christopher B; Li, Ping; Mattison, Christopher P; Naoumkina, Marina

    2017-04-01

    Actin polymerizes to form part of the cytoskeleton and organize polar growth in all eukaryotic cells. Species with numerous actin genes are especially useful for the dissection of actin molecular function due to redundancy and neofunctionalization. Here, we investigated the role of a cotton (Gossypium hirsutum) actin gene in the organization of actin filaments in lobed cotyledon pavement cells and the highly elongated single-celled trichomes that comprise cotton lint fibers. Using mapping-by-sequencing, virus-induced gene silencing, and molecular modeling, we identified the causative mutation of the dominant dwarf Ligon lintless Li1 short fiber mutant as a single Gly65Val amino acid substitution in a polymerization domain of an actin gene, GhACT_LI1 (Gh_D04G0865). We observed altered cell morphology and disrupted organization of F-actin in Li1 plant cells by confocal microscopy. Mutant leaf cells lacked interdigitation of lobes and F-actin did not uniformly decorate the nuclear envelope. While wild-type lint fiber trichome cells contained long longitudinal actin cables, the short Li1 fiber cells accumulated disoriented transverse cables. The polymerization-defective Gly65Val allele in Li1 plants likely disrupts processive elongation of F-actin, resulting in a disorganized cytoskeleton and reduced cell polarity, which likely accounts for the dominant gene action and diverse pleiotropic effects associated with the Li1 mutation. Lastly, we propose a model to account for these effects, and underscore the roles of actin organization in determining plant cell polarity, shape and plant growth. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  12. Kinetic heterogeneity of F-actin polymers. Further evidence that the elongation reaction may occur through condensation of the actin filaments with small aggregates.

    PubMed Central

    Grazi, E; Magri, E

    1987-01-01

    We have shown that F-actin, polymerized in 50 mM-KCl at 20 degrees C and pH 8.0, can be resolved by centrifugation into two polymer populations, which differ morphologically as well as kinetically. The first population represents about 10% of the overall polymer and is composed of small amorphous aggregates. It rapidly exchanges the bound nucleotide with free ATP in the medium, either directly or through the monomers. The second population is composed of long actin filaments. These are labelled by free ATP in the medium only through condensation with labelled small amorphous aggregates. Images Fig. 1. PMID:3435480

  13. Deuterium reveals the dynamics of notch activation.

    PubMed

    Raphael, Kopan

    2011-04-13

    Notch activation requires unfolding of a juxtamembrane negative regulatory domain (NRR). Tiyanont et al. (2011) analyzed the dynamics of NRR unfolding in the presence of EGTA. As predicted from the crystal structure and deletion analyses, the lin-Notch repeats unfold first, facilitating access by ADAM proteases. Surprisingly, the heterodimerization domain remains stable.

  14. Using Dynamic Graphs to Reveal Student Reasoning

    ERIC Educational Resources Information Center

    Lassak, Marshall

    2009-01-01

    Using dynamic graphs, future secondary mathematics teachers were able to represent and communicate their understanding of a brief mathematical investigation in a way that a symbolic proof of the problem could not. Four different student work samples are discussed. (Contains 6 figures.)

  15. Dispersion of Response Times Reveals Cognitive Dynamics

    ERIC Educational Resources Information Center

    Holden, John G.; Van Orden, Guy C.; Turvey, Michael T.

    2009-01-01

    Trial-to-trial variation in word-pronunciation times exhibits 1/f scaling. One explanation is that human performances are consequent on multiplicative interactions among interdependent processes-interaction dominant dynamics. This article describes simulated distributions of pronunciation times in a further test for multiplicative interactions and…

  16. Peptide crystal simulations reveal hidden dynamics

    PubMed Central

    Janowski, Pawel A.; Cerutti, David S.; Holton, James; Case, David A.

    2013-01-01

    Molecular dynamics simulations of biomolecular crystals at atomic resolution have the potential to recover information on dynamics and heterogeneity hidden in the X-ray diffraction data. We present here 9.6 microseconds of dynamics in a small helical peptide crystal with 36 independent copies of the unit cell. The average simulation structure agrees with experiment to within 0.28 Å backbone and 0.42 Å all-atom rmsd; a model refined against the average simulation density agrees with the experimental structure to within 0.20 Å backbone and 0.33 Å all-atom rmsd. The R-factor between the experimental structure factors and those derived from this unrestrained simulation is 23% to 1.0 Å resolution. The B-factors for most heavy atoms agree well with experiment (Pearson correlation of 0.90), but B-factors obtained by refinement against the average simulation density underestimate the coordinate fluctuations in the underlying simulation where the simulation samples alternate conformations. A dynamic flow of water molecules through channels within the crystal lattice is observed, yet the average water density is in remarkable agreement with experiment. A minor population of unit cells is characterized by reduced water content, 310 helical propensity and a gauche(−) side-chain rotamer for one of the valine residues. Careful examination of the experimental data suggests that transitions of the helices are a simulation artifact, although there is indeed evidence for alternate valine conformers and variable water content. This study highlights the potential for crystal simulations to detect dynamics and heterogeneity in experimental diffraction data, as well as to validate computational chemistry methods. PMID:23631449

  17. Nuclear factor of activated T cells c1 mediates p21-activated kinase 1 activation in the modulation of chemokine-induced human aortic smooth muscle cell F-actin stress fiber formation, migration, and proliferation and injury-induced vascular wall remodeling.

    PubMed

    Kundumani-Sridharan, Venkatesh; Singh, Nikhlesh K; Kumar, Sanjay; Gadepalli, Ravisekhar; Rao, Gadiparthi N

    2013-07-26

    Recent literature suggests that cyclin-dependent kinases (CDKs) mediate cell migration. However, the mechanisms were not known. Therefore, the objective of this study is to test whether cyclin/CDKs activate Pak1, an effector of Rac1, whose involvement in the modulation of cell migration and proliferation is well established. Monocyte chemotactic protein 1 (MCP1) induced Pak1 phosphorylation/activation in human aortic smooth muscle cells (HASMCs) in a delayed time-dependent manner. MCP1 also stimulated F-actin stress fiber formation in a delayed manner in HASMCs, as well as the migration and proliferation of these cells. Inhibition of Pak1 suppressed MCP1-induced HASMC F-actin stress fiber formation, migration, and proliferation. MCP1 induced cyclin D1 expression as well as CDK6 and CDK4 activities, and these effects were dependent on activation of NFATc1. Depletion of NFATc1, cyclin D1, CDK6, or CDK4 levels attenuated MCP1-induced Pak1 phosphorylation/activation and resulted in decreased HASMC F-actin stress fiber formation, migration, and proliferation. CDK4, which appeared to be activated downstream of CDK6, formed a complex with Pak1 in response to MCP1. MCP1 also activated Rac1 in a time-dependent manner, and depletion/inhibition of its levels/activation abrogated MCP1-induced NFATc1-cyclin D1-CDK6-CDK4-Pak1 signaling and, thereby, decreased HASMC F-actin stress fiber formation, migration, and proliferation. In addition, smooth muscle-specific deletion of NFATc1 led to decreased cyclin D1 expression and CDK6, CDK4, and Pak1 activities, resulting in reduced neointima formation in response to injury. Thus, these observations reveal that Pak1 is a downstream effector of CDK4 and Rac1-dependent, NFATc1-mediated cyclin D1 expression and CDK6 activity mediate this effect. In addition, smooth muscle-specific deletion of NFATc1 prevented the capacity of vascular smooth muscle cells for MCP-1-induced activation of the cyclin D1-CDK6-CDK4-Pak1 signaling axis, affecting

  18. Septins Arrange F-Actin-Containing Fibers on the Chlamydia trachomatis Inclusion and Are Required for Normal Release of the Inclusion by Extrusion

    PubMed Central

    Volceanov, Larisa; Herbst, Katharina; Biniossek, Martin; Schilling, Oliver; Haller, Dirk; Nölke, Thilo; Subbarayal, Prema; Rudel, Thomas; Zieger, Barbara

    2014-01-01

    ABSTRACT Chlamydia trachomatis is an obligate intracellular human pathogen that grows inside a membranous, cytosolic vacuole termed an inclusion. Septins are a group of 13 GTP-binding proteins that assemble into oligomeric complexes and that can form higher-order filaments. We report here that the septins SEPT2, -9, -11, and probably -7 form fibrillar structures around the chlamydial inclusion. Colocalization studies suggest that these septins combine with F actin into fibers that encase the inclusion. Targeting the expression of individual septins by RNA interference (RNAi) prevented the formation of septin fibers as well as the recruitment of actin to the inclusion. At the end of the developmental cycle of C. trachomatis, newly formed, infectious elementary bodies are released, and this release occurs at least in part through the organized extrusion of intact inclusions. RNAi against SEPT9 or against the combination of SEPT2/7/9 substantially reduced the number of extrusions from a culture of infected HeLa cells. The data suggest that a higher-order structure of four septins is involved in the recruitment or stabilization of the actin coat around the chlamydial inclusion and that this actin recruitment by septins is instrumental for the coordinated egress of C. trachomatis from human cells. The organization of F actin around parasite-containing vacuoles may be a broader response mechanism of mammalian cells to the infection by intracellular, vacuole-dwelling pathogens. PMID:25293760

  19. Myosin II ATPase Activity Mediates the Long-Term Potentiation-Induced Exodus of Stable F-Actin Bound by Drebrin A from Dendritic Spines

    PubMed Central

    Mizui, Toshiyuki; Sekino, Yuko; Yamazaki, Hiroyuki; Ishizuka, Yuta; Takahashi, Hideto; Kojima, Nobuhiko; Kojima, Masami; Shirao, Tomoaki

    2014-01-01

    The neuronal actin-binding protein drebrin A forms a stable structure with F-actin in dendritic spines. NMDA receptor activation causes an exodus of F-actin bound by drebrin A (DA-actin) from dendritic spines, suggesting a pivotal role for DA-actin exodus in synaptic plasticity. We quantitatively assessed the extent of DA-actin localization to spines using the spine-dendrite ratio of drebrin A in cultured hippocampal neurons, and found that (1) chemical long-term potentiation (LTP) stimulation induces rapid DA-actin exodus and subsequent DA-actin re-entry in dendritic spines, (2) Ca2+ influx through NMDA receptors regulates the exodus and the basal accumulation of DA-actin, and (3) the DA-actin exodus is blocked by myosin II ATPase inhibitor, but is not blocked by myosin light chain kinase (MLCK) or Rho-associated kinase (ROCK) inhibitors. These results indicate that myosin II mediates the interaction between NMDA receptor activation and DA-actin exodus in LTP induction. Furthermore, myosin II seems to be activated by a rapid actin-linked mechanism rather than slow MLC phosphorylation. Thus the myosin-II mediated DA-actin exodus might be an initial event in LTP induction, triggering actin polymerization and spine enlargement. PMID:24465547

  20. N- and E-cadherins in Xenopus are specifically required in the neural and non-neural ectoderm, respectively, for F-actin assembly and morphogenetic movements

    PubMed Central

    Nandadasa, Sumeda; Tao, Qinghua; Menon, Nikhil R.; Heasman, Janet; Wylie, Christopher

    2009-01-01

    Summary Transmembrane cadherins are calcium-dependent intercellular adhesion molecules. Recently, they have also been shown to be sites of actin assembly during adhesive contact formation. However, the roles of actin assembly on transmembrane cadherins during development are not fully understood. We show here, using the developing ectoderm of the Xenopus embryo as a model, that F-actin assembly is a primary function of both N-cadherin in the neural ectoderm and E-cadherin in the non-neural (epidermal) ectoderm, and that each cadherin is essential for the characteristic morphogenetic movements of these two tissues. However, depletion of N-cadherin and E-cadherin did not cause dissociation in these tissues at the neurula stage, probably owing to the expression of C-cadherin in each tissue. Depletion of each of these cadherins is not rescued by the other, nor by the expression of C-cadherin, which is expressed in both tissues. One possible reason for this is that each cadherin is expressed in a different domain of the cell membrane. These data indicate the combinatorial nature of cadherin function, the fact that N- and E-cadherin play primary roles in F-actin assembly in addition to roles in cell adhesion, and that this function is specific to individual cadherins. They also show how cell adhesion and motility can be combined in morphogenetic tissue movements that generate the form and shape of the embryonic organs. PMID:19279134

  1. Myosin II ATPase activity mediates the long-term potentiation-induced exodus of stable F-actin bound by drebrin A from dendritic spines.

    PubMed

    Mizui, Toshiyuki; Sekino, Yuko; Yamazaki, Hiroyuki; Ishizuka, Yuta; Takahashi, Hideto; Kojima, Nobuhiko; Kojima, Masami; Shirao, Tomoaki

    2014-01-01

    The neuronal actin-binding protein drebrin A forms a stable structure with F-actin in dendritic spines. NMDA receptor activation causes an exodus of F-actin bound by drebrin A (DA-actin) from dendritic spines, suggesting a pivotal role for DA-actin exodus in synaptic plasticity. We quantitatively assessed the extent of DA-actin localization to spines using the spine-dendrite ratio of drebrin A in cultured hippocampal neurons, and found that (1) chemical long-term potentiation (LTP) stimulation induces rapid DA-actin exodus and subsequent DA-actin re-entry in dendritic spines, (2) Ca(2+) influx through NMDA receptors regulates the exodus and the basal accumulation of DA-actin, and (3) the DA-actin exodus is blocked by myosin II ATPase inhibitor, but is not blocked by myosin light chain kinase (MLCK) or Rho-associated kinase (ROCK) inhibitors. These results indicate that myosin II mediates the interaction between NMDA receptor activation and DA-actin exodus in LTP induction. Furthermore, myosin II seems to be activated by a rapid actin-linked mechanism rather than slow MLC phosphorylation. Thus the myosin-II mediated DA-actin exodus might be an initial event in LTP induction, triggering actin polymerization and spine enlargement.

  2. Asymmetric Mbc, active Rac1 and F-actin foci in the fusion-competent myoblasts during myoblast fusion in Drosophila

    PubMed Central

    Haralalka, Shruti; Shelton, Claude; Cartwright, Heather N.; Katzfey, Erin; Janzen, Evan; Abmayr, Susan M.

    2011-01-01

    Myoblast fusion is an intricate process that is initiated by cell recognition and adhesion, and culminates in cell membrane breakdown and formation of multinucleate syncytia. In the Drosophila embryo, this process occurs asymmetrically between founder cells that pattern the musculature and fusion-competent myoblasts (FCMs) that account for the bulk of the myoblasts. The present studies clarify and amplify current models of myoblast fusion in several important ways. We demonstrate that the non-conventional guanine nucleotide exchange factor (GEF) Mbc plays a fundamental role in the FCMs, where it functions to activate Rac1, but is not required in the founder cells for fusion. Mbc, active Rac1 and F-actin foci are highly enriched in the FCMs, where they localize to the Sns:Kirre junction. Furthermore, Mbc is crucial for the integrity of the F-actin foci and the FCM cytoskeleton, presumably via its activation of Rac1 in these cells. Finally, the local asymmetric distribution of these proteins at adhesion sites is reminiscent of invasive podosomes and, consistent with this model, they are enriched at sites of membrane deformation, where the FCM protrudes into the founder cell/myotube. These data are consistent with models promoting actin polymerization as the driving force for myoblast fusion. PMID:21389053

  3. 2-Aminoethoxydiphenyl borate (2-APB) reduces alkaline phosphatase release, CD63 expression, F-actin polymerization and chemotaxis without affecting the phagocytosis activity in bovine neutrophils.

    PubMed

    Conejeros, I; Velásquez, Z D; Carretta, M D; Alarcón, P; Hidalgo, M A; Burgos, R A

    2012-01-15

    2-Aminoethoxydiphenyl borate (2-APB) interferes with the Ca(2+) influx and reduces the ROS production, gelatinase secretion and CD11b expression in bovine neutrophils. Moreover, it has been suggested that inhibition of the Ca(2+) channel involved in the store operated Ca(2+) entry (SOCE) is a potential target for the development of new anti-inflammatory drugs in cattle, however it is unknown whether 2-APB affects neutrophil functions associated with the innate immune response. This study describes the effect of 2-APB, a putative SOCE inhibitor, on alkaline phosphatase activity a marker of secretory vesicles, CD63 a marker for azurophil granules, F-actin polymerization and in vitro chemotaxis in bovine neutrophils stimulated with platelet-activating factor (PAF). Also, we evaluated the effect of 2-APB in the phagocytic activity against Escherichia coli and Staphylococcus aureus bioparticles. We observed that doses of 2-APB ≥10 μM significantly reduced alkaline phosphatase activity and in vitro chemotaxis, whereas concentrations of 2-APB ≥50 μM reduced CD63 expression and F-actin polymerization. Finally, we observed that 2-APB did not affect the phagocytic activity in neutrophils incubated with E. coli and S. aureus bioparticles. We concluded that inhibition of Ca(2+) influx could be a useful strategy to reduce inflammatory process in cattle.

  4. MAP18 Regulates the Direction of Pollen Tube Growth in Arabidopsis by Modulating F-Actin Organization[C][W][OA

    PubMed Central

    Zhu, Lei; Zhang, Yan; Kang, Erfang; Xu, Qiangyi; Wang, Miaoying; Rui, Yue; Liu, Baoquan; Yuan, Ming; Fu, Ying

    2013-01-01

    For fertilization to occur in plants, the pollen tube must be guided to enter the ovule via the micropyle. Previous reports have implicated actin filaments, actin binding proteins, and the tip-focused calcium gradient as key contributors to polar growth of pollen tubes; however, the regulation of directional pollen tube growth is largely unknown. We reported previously that Arabidopsis thaliana MICROTUBULE-ASSOCIATED PROTEIN18 (MAP18) contributes to directional cell growth and cortical microtubule organization. The preferential expression of MAP18 in pollen and in pollen tubes suggests that MAP18 also may function in pollen tube growth. In this study, we demonstrate that MAP18 functions in pollen tubes by influencing actin organization, rather than microtubule assembly. In vitro biochemical results indicate that MAP18 exhibits Ca2+-dependent filamentous (F)-actin-severing activity. Abnormal expression of MAP18 in map18 and MAP18 OX plants was associated with disorganization of the actin cytoskeleton in the tube apex, resulting in aberrant pollen tube growth patterns and morphologies, inaccurate micropyle targeting, and fewer fertilization events. Experiments with MAP18 mutants created by site-directed mutagenesis suggest that F-actin-severing activity is essential to the effects of MAP18 on pollen tube growth direction. Our study demonstrates that in Arabidopsis, MAP18 guides the direction of pollen tube growth by modulating actin filaments. PMID:23463774

  5. [Synergetic protective effects of glial cell line-derived neurotrophic factor combined with neurotrophin-3 in F-actin on hair cell after noise trauma].

    PubMed

    Yang, W; Hu, B; Guo, W; Hu, Y; Wang, P; Jiang, S

    2001-10-01

    To investigate if glial cell line-derived neurotrophic factor (GDNF) combined with neurotrophin-3 (NT-3) provides synergetic protection in filamentous actin (F-actin) on hair cell (HC) from acoustic trauma. Guinea pigs were exposed to 4 kHz narrow band noise at 115 dB SPL for 4 h. Test group (n = 12) with a mixture of GDNF (100 ng/ml) and NT-3(2.5 micrograms/ml) or control group (n = 9) with artificial perilymph (AP) was delivered to the scala tympani via a mini-osmotic pump (0.5 microliter/h) for a total of 14 days. Auditory function was assessed by measuring thresholds of auditory brainstem responses (ABRs) elicited by clicks prior to surgery, 3 days after surgery (1 day before noise exposure) and 10 days following noise exposure (before animals were sacrificed), respectively. F-actin, labeled by rhodamine-phalloidin, was examined in the guinea pig cochlea using fluorescence microscopy for quantitative assessment of hair cell damage. There was a statistically significant increase the survival of out hair cell(P < 0.001, P < 0.01) and inner hair cell(P < 0.01, P < 0.01) and decrease in ABR threshold (P < 0.05, P < 0.01) in both the GDNF and NT-3 treated and untreated ear of animals. Our findings indicate that GDNF combined with NT-3 may effectively protect the inner ear from noise--induced hearing loss.

  6. The ER Stress Sensor PERK Coordinates ER-Plasma Membrane Contact Site Formation through Interaction with Filamin-A and F-Actin Remodeling.

    PubMed

    van Vliet, Alexander R; Giordano, Francesca; Gerlo, Sarah; Segura, Inmaculada; Van Eygen, Sofie; Molenberghs, Geert; Rocha, Susana; Houcine, Audrey; Derua, Rita; Verfaillie, Tom; Vangindertael, Jeroen; De Keersmaecker, Herlinde; Waelkens, Etienne; Tavernier, Jan; Hofkens, Johan; Annaert, Wim; Carmeliet, Peter; Samali, Afshin; Mizuno, Hideaki; Agostinis, Patrizia

    2017-03-02

    Loss of ER Ca(2+) homeostasis triggers endoplasmic reticulum (ER) stress and drives ER-PM contact sites formation in order to refill ER-luminal Ca(2+). Recent studies suggest that the ER stress sensor and mediator of the unfolded protein response (UPR) PERK regulates intracellular Ca(2+) fluxes, but the mechanisms remain elusive. Here, using proximity-dependent biotin identification (BioID), we identified the actin-binding protein Filamin A (FLNA) as a key PERK interactor. Cells lacking PERK accumulate F-actin at the cell edges and display reduced ER-PM contacts. Following ER-Ca(2+) store depletion, the PERK-FLNA interaction drives the expansion of ER-PM juxtapositions by regulating F-actin-assisted relocation of the ER-associated tethering proteins Stromal Interaction Molecule 1 (STIM1) and Extended Synaptotagmin-1 (E-Syt1) to the PM. Cytosolic Ca(2+) elevation elicits rapid and UPR-independent PERK dimerization, which enforces PERK-FLNA-mediated ER-PM juxtapositions. Collectively, our data unravel an unprecedented role of PERK in the regulation of ER-PM appositions through the modulation of the actin cytoskeleton.

  7. AVHRR imagery reveals Antarctic ice dynamics

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert A.; Vornberger, Patricia L.

    1990-01-01

    A portion of AVHRR data taken on December 5, 1987 at 06:15 GMT over a part of Antarctica is used here to show that many of the most significant dynamic features of ice sheets can be identified by a careful examination of AVHRR imagery. The relatively low resolution of this instrument makes it ideal for obtaining a broad view of the ice sheets, while its wide swath allows coverage of areas beyond the reach of high-resolution imagers either currently in orbit or planned. An interpretation is given of the present data, which cover the area of ice streams that drain the interior of the West Antarctic ice sheet into the Ross Ice Shelf.

  8. AVHRR imagery reveals Antarctic ice dynamics

    SciTech Connect

    Bindschadler, R.A.; Vornberger, P.L. STX Corp., Lanham, MD )

    1990-06-01

    A portion of AVHRR data taken on December 5, 1987 at 06:15 GMT over a part of Antarctica is used here to show that many of the most significant dynamic features of ice sheets can be identified by a careful examination of AVHRR imagery. The relatively low resolution of this instrument makes it ideal for obtaining a broad view of the ice sheets, while its wide swath allows coverage of areas beyond the reach of high-resolution imagers either currently in orbit or planned. An interpretation is given of the present data, which cover the area of ice streams that drain the interior of the West Antarctic ice sheet into the Ross Ice Shelf. 21 refs.

  9. Human dynamics revealed through Web analytics.

    PubMed

    Gonçalves, Bruno; Ramasco, José J

    2008-08-01

    The increasing ubiquity of Internet access and the frequency with which people interact with it raise the possibility of using the Web to better observe, understand, and monitor several aspects of human social behavior. Web sites with large numbers of frequently returning users are ideal for this task. If these sites belong to companies or universities, their usage patterns can furnish information about the working habits of entire populations. In this work, we analyze the properly anonymized logs detailing the access history to Emory University's Web site. Emory is a medium-sized university located in Atlanta, Georgia. We find interesting structure in the activity patterns of the domain and study in a systematic way the main forces behind the dynamics of the traffic. In particular, we find that linear preferential linking, priority-based queuing, and the decay of interest for the contents of the pages are the essential ingredients to understand the way users navigate the Web.

  10. Human dynamics revealed through Web analytics

    NASA Astrophysics Data System (ADS)

    Gonçalves, Bruno; Ramasco, José J.

    2008-08-01

    The increasing ubiquity of Internet access and the frequency with which people interact with it raise the possibility of using the Web to better observe, understand, and monitor several aspects of human social behavior. Web sites with large numbers of frequently returning users are ideal for this task. If these sites belong to companies or universities, their usage patterns can furnish information about the working habits of entire populations. In this work, we analyze the properly anonymized logs detailing the access history to Emory University’s Web site. Emory is a medium-sized university located in Atlanta, Georgia. We find interesting structure in the activity patterns of the domain and study in a systematic way the main forces behind the dynamics of the traffic. In particular, we find that linear preferential linking, priority-based queuing, and the decay of interest for the contents of the pages are the essential ingredients to understand the way users navigate the Web.

  11. Wigner flow reveals topological order in quantum phase space dynamics.

    PubMed

    Steuernagel, Ole; Kakofengitis, Dimitris; Ritter, Georg

    2013-01-18

    The behavior of classical mechanical systems is characterized by their phase portraits, the collections of their trajectories. Heisenberg's uncertainty principle precludes the existence of sharply defined trajectories, which is why traditionally only the time evolution of wave functions is studied in quantum dynamics. These studies are quite insensitive to the underlying structure of quantum phase space dynamics. We identify the flow that is the quantum analog of classical particle flow along phase portrait lines. It reveals hidden features of quantum dynamics and extra complexity. Being constrained by conserved flow winding numbers, it also reveals fundamental topological order in quantum dynamics that has so far gone unnoticed.

  12. Association of Phosphatidylinositol Kinase, Phosphatidylinositol Monophosphate Kinase, and Diacylglycerol Kinase with the Cytoskeleton and F-Actin Fractions of Carrot (Daucus carota L.) Cells Grown in Suspension Culture 1

    PubMed Central

    Tan, Zheng; Boss, Wendy F.

    1992-01-01

    Phosphatidylinositol kinase (PI), phosphatidylinositol monophosphate (PIP) kinase, and diacylglycerol (DAG) kinase activities were detected in the cytoskeletal fraction isolated from microsomes and plasma membranes of carrot (Daucus carota L.) cells grown in suspension culture. The lipid kinase activities were associated with the actin filament fraction (F-actin fraction) isolated from the cytoskeleton. The PI and PIP kinase activity in the F-actin fraction significantly increased after cells were treated with Driselase, a mixture of cell wall-degrading enzymes; however, the DAG kinase activity in the F-actin fraction was unaffected by the Driselase treatment. These data indicate that at least one form of PI, PIP, and DAG kinase preferentially associates with actin filaments and/or actin binding proteins and that cytoskeletal-associated PI and PIP kinase activities can change in response to external stimulation. Images Figure 2 PMID:16653250

  13. Association of Phosphatidylinositol Kinase, Phosphatidylinositol Monophosphate Kinase, and Diacylglycerol Kinase with the Cytoskeleton and F-Actin Fractions of Carrot (Daucus carota L.) Cells Grown in Suspension Culture : Response to Cell Wall-Degrading Enzymes.

    PubMed

    Tan, Z; Boss, W F

    1992-12-01

    Phosphatidylinositol kinase (PI), phosphatidylinositol monophosphate (PIP) kinase, and diacylglycerol (DAG) kinase activities were detected in the cytoskeletal fraction isolated from microsomes and plasma membranes of carrot (Daucus carota L.) cells grown in suspension culture. The lipid kinase activities were associated with the actin filament fraction (F-actin fraction) isolated from the cytoskeleton. The PI and PIP kinase activity in the F-actin fraction significantly increased after cells were treated with Driselase, a mixture of cell wall-degrading enzymes; however, the DAG kinase activity in the F-actin fraction was unaffected by the Driselase treatment. These data indicate that at least one form of PI, PIP, and DAG kinase preferentially associates with actin filaments and/or actin binding proteins and that cytoskeletal-associated PI and PIP kinase activities can change in response to external stimulation.

  14. Revealing physical interaction networks from statistics of collective dynamics.

    PubMed

    Nitzan, Mor; Casadiego, Jose; Timme, Marc

    2017-02-01

    Revealing physical interactions in complex systems from observed collective dynamics constitutes a fundamental inverse problem in science. Current reconstruction methods require access to a system's model or dynamical data at a level of detail often not available. We exploit changes in invariant measures, in particular distributions of sampled states of the system in response to driving signals, and use compressed sensing to reveal physical interaction networks. Dynamical observations following driving suffice to infer physical connectivity even if they are temporally disordered, are acquired at large sampling intervals, and stem from different experiments. Testing various nonlinear dynamic processes emerging on artificial and real network topologies indicates high reconstruction quality for existence as well as type of interactions. These results advance our ability to reveal physical interaction networks in complex synthetic and natural systems.

  15. Revealing physical interaction networks from statistics of collective dynamics

    PubMed Central

    Nitzan, Mor; Casadiego, Jose; Timme, Marc

    2017-01-01

    Revealing physical interactions in complex systems from observed collective dynamics constitutes a fundamental inverse problem in science. Current reconstruction methods require access to a system’s model or dynamical data at a level of detail often not available. We exploit changes in invariant measures, in particular distributions of sampled states of the system in response to driving signals, and use compressed sensing to reveal physical interaction networks. Dynamical observations following driving suffice to infer physical connectivity even if they are temporally disordered, are acquired at large sampling intervals, and stem from different experiments. Testing various nonlinear dynamic processes emerging on artificial and real network topologies indicates high reconstruction quality for existence as well as type of interactions. These results advance our ability to reveal physical interaction networks in complex synthetic and natural systems. PMID:28246630

  16. The neuronal protein Neurexin directly interacts with the Scribble-Pix complex to stimulate F-actin assembly for synaptic vesicle clustering.

    PubMed

    Rui, Menglong; Qian, Jinjun; Liu, Lijuan; Cai, Yihan; Lv, Huihui; Han, Junhai; Jia, Zhengping; Xie, Wei

    2017-09-01

    Synaptic vesicles (SVs) form distinct pools at synaptic terminals, and this well-regulated separation is necessary for normal neurotransmission. However, how the SV cluster, in particular synaptic compartments, maintains normal neurotransmitter release remains a mystery. The presynaptic protein Neurexin (NRX) plays a significant role in synaptic architecture and function, and some evidence suggests that NRX is associated with neurological disorders, including autism spectrum disorders. However, the role of NRX in SV clustering is unclear. Here, using the neuromuscular junction at the 2-3 instar stages of Drosophila larvae as a model and biochemical imaging and electrophysiology techniques, we demonstrate that Drosophila NRX (DNRX) plays critical roles in regulating synaptic terminal clustering and release of SVs. We found that DNRX controls the terminal clustering and release of SVs by stimulating presynaptic F-actin. Furthermore, our results indicate that DNRX functions through the scaffold protein Scribble and the GEF protein DPix to activate the small GTPase Ras-related C3 Botulinum toxin substrate 1 (Rac1). We observed a direct interaction between the C-terminal PDZ-binding motif of DNRX and the PDZ domains of Scribble and that Scribble bridges DNRX to DPix, forming a DNRX-Scribble-DPix complex that activates Rac1 and subsequently stimulates presynaptic F-actin assembly and SV clustering. Taken together, our work provides important insights into the function of DNRX in regulating SV clustering, which could help inform further research into pathological neurexin-mediated mechanisms in neurological disorders such as autism. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Selenium nanoparticles induced membrane bio-mechanical property changes in MCF-7 cells by disturbing membrane molecules and F-actin.

    PubMed

    Pi, Jiang; Yang, Fen; Jin, Hua; Huang, Xun; Liu, Ruiying; Yang, Peihui; Cai, Jiye

    2013-12-01

    Selenium nanoparticles (Se NPs) have been served as promising materials for biomedical applications, especially for cancer treatment. The anti-cancer effects of Se NPs against cancer cells have been widely studied in recent years, but whether Se NPs can induce the changes of cell membrane bio-mechanical properties in cancer cells still remain unexplored. In this Letter, we prepared Se NPs for investigating the intracellular localization of Se NPs in MCF-7 cells and determined the effects of Se NPs on apoptosis and necrosis in MCF-7 cells. Especially, we reported for the first time about the effects of Se NPs on the bio-mechanical properties of cancer cells and found that Se NPs could remarkably decrease the adhesion force and Young's modulus of MCF-7 cells. To further understand the potential mechanisms about how Se NPs affect the bio-mechanical properties of MCF-7 cells, we also investigated the expression of CD44 molecules, the structure and the amounts of F-actin. The results indicated that the decreased adhesion force between AFM tip and cell membrane was partially due to the changes of membrane molecules induced by Se NPs, such as the down-regulation of trans-membrane CD44 molecules. Additionally, the decrease of Young's modulus of MCF-7 cells was due to the dis-organization and down-regulation of F-actin induced by Se NPs. These results collectively suggested that cell membrane was of vital importance in Se NPs induced toxicity in cancer cells, which could be served as a potential target for cancer treatment by Se NPs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Perfluorooctanesulfonate (PFOS) Perturbs Male Rat Sertoli Cell Blood-Testis Barrier Function by Affecting F-Actin Organization via p-FAK-Tyr407: An in Vitro Study

    PubMed Central

    Wan, Hin-Ting; Mruk, Dolores D.; Wong, Chris K. C.

    2014-01-01

    Environmental toxicants such as perfluorooctanesulfonate (PFOS) have been implicated in male reproductive dysfunction, including reduced sperm count and semen quality, in humans. However, the underlying mechanism(s) remains unknown. Herein PFOS at 10–20 μM (∼5–10 μg/mL) was found to be more potent than bisphenol A (100 μM) in perturbing the blood-testis barrier (BTB) function by disrupting the Sertoli cell tight junction-permeability barrier without detectable cytotoxicity. We also delineated the underlying molecular mechanism by which PFOS perturbed Sertoli cell BTB function using an in vitro model that mimics the BTB in vivo. First, PFOS perturbed F-actin organization in Sertoli cells, causing truncation of actin filaments at the BTB. Thus, the actin-based cytoskeleton was no longer capable of supporting the distribution and/or localization of actin-regulatory and adhesion proteins at the cell-cell interface necessary to maintain BTB integrity. Second, PFOS was found to perturb inter-Sertoli cell gap junction (GJ) communication based on a dye-transfer assay by down-regulating the expression of connexin-43, a GJ integral membrane protein. Third, phosphorylated focal adhesion kinase (FAK)-Tyr407 was found to protect the BTB from the destructive effects of PFOS as shown in a study via an overexpression of an FAK Y407E phosphomimetic mutant. Also, transfection of Sertoli cells with an FAK-specific microRNA, miR-135b, to knock down the expression of phosphorylated FAK-Tyr407 was found to worsen PFOS-mediated Sertoli cell tight junction disruption. In summary, PFOS-induced BTB disruption is mediated by down-regulating phosphorylated FAK-Tyr407 and connexin-43, which in turn perturbed F-actin organization and GJ-based intercellular communication, leading to mislocalization of actin-regulatory and adhesion proteins at the BTB. PMID:24169556

  19. Phosphatidylinositol 3-kinase activity and asymmetrical accumulation of F-actin are necessary for establishment of cell polarity in the early development of monospores from the marine red alga Porphyra yezoensis.

    PubMed

    Li, Lin; Saga, Naotsune; Mikami, Koji

    2008-01-01

    The polarized distribution of F-actin is important in providing the driving force for directional migration in mammalian leukocytes and Dictyostelium cells, in which compartmentation of phosphatidylinositol 3-kinase (PI3K) and phosphatidylinositol phosphatase is critical for the establishment of cell polarity. Since monospores from the red alga Porphyra yezoensis are a real example of migrating plant cells, the involvement of the cytoskeleton and PI3K was investigated during their early development. Our results indicate that the asymmetrical localization of F-actin at the leading edge is fixed by the establishment of the anterior-posterior axis in migrating monospores, which is PI3K-dependent and protein synthesis-independent. After migration, monospores adhere to the substratum and then become upright, developing into multicellular thalli via the establishment of the apical-basal axis. In this process, F-actin usually accumulates at the bottom of the basal cell and development after migration requires new protein synthesis. These findings suggest that the establishment of anterior-posterior and apical-basal axes are differentially regulated during the early development of monospores. Our results also indicate that PI3K-dependent F-actin asymmetry is evolutionally conserved in relation to the establishment of cell polarity in migrating eukaryotic cells.

  20. Coupling of the hydration water dynamics and the internal dynamics of actin detected by quasielastic neutron scattering

    SciTech Connect

    Fujiwara, Satoru; Plazanet, Marie; Oda, Toshiro

    2013-02-15

    Highlights: ► Quasielastic neutron scattering spectra of F-actin and G-actin were measured. ► Analysis of the samples in D{sub 2}O and H{sub 2}O provided the spectra of hydration water. ► The first layer hydration water around F-actin is less mobile than around G-actin. ► This difference in hydration water is in concert with the internal dynamics of actin. ► Water outside the first layer behaves bulk-like but influenced by the first layer. -- Abstract: In order to characterize dynamics of water molecules around F-actin and G-actin, quasielastic neutron scattering experiments were performed on powder samples of F-actin and G-actin, hydrated either with D{sub 2}O or H{sub 2}O, at hydration ratios of 0.4 and 1.0. By combined analysis of the quasielastic neutron scattering spectra, the parameter values characterizing the dynamics of the water molecules in the first hydration layer and those of the water molecules outside of the first layer were obtained. The translational diffusion coefficients (D{sub T}) of the hydration water in the first layer were found to be 1.2 × 10{sup −5} cm{sup 2}/s and 1.7 × 10{sup −5} cm{sup 2}/s for F-actin and G-actin, respectively, while that for bulk water was 2.8 × 10{sup −5} cm{sup 2}/s. The residence times were 6.6 ps and 5.0 ps for F-actin and G-actin, respectively, while that for bulk water was 0.62 ps. These differences between F-actin and G-actin, indicating that the hydration water around G-actin is more mobile than that around F-actin, are in concert with the results of the internal dynamics of F-actin and G-actin, showing that G-actin fluctuates more rapidly than F-actin. This implies that the dynamics of the hydration water is coupled to the internal dynamics of the actin molecules. The D{sub T} values of the water molecules outside of the first hydration layer were found to be similar to that of bulk water though the residence times are strongly affected by the first hydration layer. This supports the

  1. Shear stress-mediated changes in the expression of complement regulatory protein CD59 on human endothelial progenitor cells by ECM-integrinαVβ3-F-actin pathway in vitro.

    PubMed

    Cui, Xiaodong; Zhang, Xiaoyun; Bu, Hongnan; Liu, Na; Li, Hong; Guan, Xiumei; Yan, Hong; Wang, Yuzhen; Zhang, Hua; Ding, Yuzhen; Cheng, Min

    2017-09-21

    Membrane regulatory proteins, such as CD46, CD55, and CD59, prevent excess complement activation and to protect cells from damage. Previous investigations confirmed that shear stress in the physiological range was more favorable for endothelial progenitor cells (EPCs) to repair injured vascular endothelial cells and operates mainly in atheroprotective actions. However, detailed events that contribute to shear stress-induced protection in EPCs, particularly the mechanisms of signal transduction, remain poorly understood. In this study, we observed shear stress-mediated changes in the expression of complement regulatory proteins CD46, CD55, and CD59 on human EPCs and focused on the mechanical transmission mechanism in transformed cells in response to the ECM-F-actin pathway in vitro. Shear stress was observed to promote the expression of complement regulatory protein CD59, but not CD46 or CD55, on EPCs. In addition, the shear stress-induced CD59 expression was confirmed to be associated with the ECM components and was alleviated in EPCs pretreated with GRGDSP, which inhibits ECM components-integrin interaction. Furthermore, shear stress also promotes the rearrangement and polymerization of F-actin. However, shear stress-induced CD59 expression was reduced when the F-actin stress fiber formation process was delayed by Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP) or destroyed by cytochalasin D (Cyto D), while Jasplakinolide (JAS) reversed the expression of CD59 through promotion of F-actin polymerization and its stabilizing capacities. Our results indicates that shear stress is an important mediator in EPC expression of CD59 regulated by the ECM-F-actin pathway, which is a key factor in preventing membrane attack complex (MAC) -mediated cell autolysis. Copyright © 2017. Published by Elsevier Inc.

  2. Novel approaches in anti-angiogenic treatment targeting endothelial F-actin: a new anti-angiogenic strategy?

    PubMed

    Thoenes, Lilja; Günther, Michael

    2008-12-01

    As a functional blood supply is crucial for growth of solid tumors, the development of anticancer agents to inhibit the formation of new tumor blood vessels is an area of extensive research. Endothelial cell motility driven by the dynamics of the cytoskeleton is a key feature of angiogenesis. Agents that preferentially target endothelial tubulin are well established, and inhibition of the endothelial actin dynamics appears to be another promising anti-angiogenic strategy. Remodeling of the actin cytoskeleton is regulated by several pathways involving a large number of signaling proteins. Therefore, therapeutic strategies for the modulation of actin dynamics include agents that target the actin cytoskeleton directly, as well as inhibitors of actin binding proteins and regulators in upstream pathways. This review provides an overview of the regulation of the actin cytoskeleton and proteins that could potentially be targeted by therapeutic agents. In addition, an outline of promising agents, which includes recombinant proteins, endogenous effectors and treatment regimes that exert anti-angiogenic effects partly mediated by affecting endothelial actin dynamics is provided.

  3. Revealing the Effects of Cognitive Education Programmes through Dynamic Assessment

    ERIC Educational Resources Information Center

    Tzuriel, David

    2011-01-01

    The major objective of this paper is to demonstrate the effectiveness of dynamic assessment (DA) in revealing outcomes of cognitive education programmes. Three programmes based on "mediated learning experience" theory are reviewed: "Feuerstein's Instrumental Enrichment", "Bright Start", and "Peer Mediation with…

  4. Septins arrange F-actin-containing fibers on the Chlamydia trachomatis inclusion and are required for normal release of the inclusion by extrusion.

    PubMed

    Volceanov, Larisa; Herbst, Katharina; Biniossek, Martin; Schilling, Oliver; Haller, Dirk; Nölke, Thilo; Subbarayal, Prema; Rudel, Thomas; Zieger, Barbara; Häcker, Georg

    2014-10-07

    Chlamydia trachomatis is an obligate intracellular human pathogen that grows inside a membranous, cytosolic vacuole termed an inclusion. Septins are a group of 13 GTP-binding proteins that assemble into oligomeric complexes and that can form higher-order filaments. We report here that the septins SEPT2, -9, -11, and probably -7 form fibrillar structures around the chlamydial inclusion. Colocalization studies suggest that these septins combine with F actin into fibers that encase the inclusion. Targeting the expression of individual septins by RNA interference (RNAi) prevented the formation of septin fibers as well as the recruitment of actin to the inclusion. At the end of the developmental cycle of C. trachomatis, newly formed, infectious elementary bodies are released, and this release occurs at least in part through the organized extrusion of intact inclusions. RNAi against SEPT9 or against the combination of SEPT2/7/9 substantially reduced the number of extrusions from a culture of infected HeLa cells. The data suggest that a higher-order structure of four septins is involved in the recruitment or stabilization of the actin coat around the chlamydial inclusion and that this actin recruitment by septins is instrumental for the coordinated egress of C. trachomatis from human cells. The organization of F actin around parasite-containing vacuoles may be a broader response mechanism of mammalian cells to the infection by intracellular, vacuole-dwelling pathogens. Importance: Chlamydia trachomatis is a frequent bacterial pathogen throughout the world, causing mostly eye and genital infections. C. trachomatis can develop only inside host cells; it multiplies inside a membranous vacuole in the cytosol, termed an inclusion. The inclusion is covered by cytoskeletal "coats" or "cages," whose organization and function are poorly understood. We here report that a relatively little-characterized group of proteins, septins, is required to organize actin fibers on the

  5. RhoA and RhoC are involved in stromal cell-derived factor-1-induced cell migration by regulating F-actin redistribution and assembly.

    PubMed

    Luo, Jixian; Li, Dingyun; Wei, Dan; Wang, Xiaoguang; Wang, Lan; Zeng, Xianlu

    2017-05-23

    Stromal cell-derived factor-1 (SDF-1) signaling is important to the maintenance and progression of T-cell acute lymphoblastic leukemia by inducing chemotaxis migration. To identify the mechanism of SDF-1 signaling in the migration of T-ALL, Jurkat acute lymphoblastic leukemia cells were used. Results showed that SDF-1 induces Jurkat cell migration by F-actin redistribution and assembly, which is dependent on Rho activity. SDF-1 induced RhoA and RhoC activation, as well as reactive oxygen species (ROS) production, which was inhibited by Rho inhibitor. The Rho-dependent ROS production led to subsequent cytoskeleton redistribution and assembly in the process of migration. Additionally, RhoA and RhoC were involved in SDF-1-induced Jurkat cell migration. Taken together, we found a SDF-1/CXCR4-RhoA and RhoC-ROS-cytoskeleton pathway that regulates Jurkat cell migration in response to SDF-1. This work will contribute to a clearer insight into the migration mechanism of acute lymphoblastic leukemia.

  6. Two novel members of the ABLIM protein family, ABLIM-2 and -3, associate with STARS and directly bind F-actin.

    PubMed

    Barrientos, Tomasa; Frank, Derk; Kuwahara, Koichiro; Bezprozvannaya, Svetlana; Pipes, G C Teg; Bassel-Duby, Rhonda; Richardson, James A; Katus, Hugo A; Olson, Eric N; Frey, Norbert

    2007-03-16

    In addition to regulating cell motility, contractility, and cytokinesis, the actin cytoskeleton plays a critical role in the regulation of transcription and gene expression. We have previously identified a novel muscle-specific actin-binding protein, STARS (striated muscle activator of Rho signaling), which directly binds actin and stimulates serum-response factor (SRF)-dependent transcription. To further dissect the STARS/SRF pathway, we performed a yeast two-hybrid screen of a skeletal muscle cDNA library using STARS as bait, and we identified two novel members of the ABLIM protein family, ABLIM-2 and -3, as STARS-interacting proteins. ABLIM-1, which is expressed in retina, brain, and muscle tissue, has been postulated to function as a tumor suppressor. ABLIM-2 and -3 display distinct tissue-specific expression patterns with the highest expression levels in muscle and neuronal tissue. Moreover, these novel ABLIM proteins strongly bind F-actin, are localized to actin stress fibers, and synergistically enhance STARS-dependent activation of SRF. Conversely, knockdown of endogenous ABLIM expression utilizing small interfering RNA significantly blunted SRF-dependent transcription in C2C12 skeletal muscle cells. These findings suggest that the members of the novel ABLIM protein family may serve as a scaffold for signaling modules of the actin cytoskeleton and thereby modulate transcription.

  7. Baculovirus VP80 protein and the F-actin cytoskeleton interact and connect the viral replication factory with the nuclear periphery.

    PubMed

    Marek, Martin; Merten, Otto-Wilhelm; Galibert, Lionel; Vlak, Just M; van Oers, Monique M

    2011-06-01

    Recently, we showed that the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) VP80 protein is essential for the formation of both virion types, budded virus (BV) and occlusion-derived virus (ODV). Deletion of the vp80 gene did not affect assembly of nucleocapsids. However, these nucleocapsids were not able to migrate from the virogenic stroma to the nuclear periphery. In the current paper, we constructed a baculovirus recombinant with enhanced-green fluorescent protein (EGFP)-tagged VP80, allowing visualization of the VP80 distribution pattern during infection. In baculovirus-infected cells, the EGFP-VP80 protein is entirely localized in nuclei, adjacent to the virus-triggered F-actin scaffold that forms a highly organized three-dimensional network connecting the virogenic stroma physically with the nuclear envelope. Interaction between VP80 and host actin was confirmed by coimmunoprecipitation. We further showed that VP80 is associated with the nucleocapsid fraction of both BVs and ODVs, typically at one end of the nucleocapsids. In addition, the presence of sequence motifs with homology to invertebrate paramyosin proteins strongly supports a role for VP80 in the polar transport of nucleocapsids to the periphery of the nucleus on their way to the plasma membrane to form BVs and for assembly in the nuclear periphery to form ODVs for embedding in viral occlusion bodies.

  8. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin.

    PubMed Central

    Bernardini, M L; Mounier, J; d'Hauteville, H; Coquis-Rondon, M; Sansonetti, P J

    1989-01-01

    The capacity of Shigella to spread within the cytosol of infected epithelial cells and to infect adjacent cells is critical for the development of infection foci, which lead to mucosal abscesses. Shigella is a nonmotile microorganism that appears to utilize host cell microfilaments to generate intra- as well as intercellular movements, since this movement was inhibited by cytochalasin D and involvement of F-actin was demonstrated by direct labeling of infected cells with the specific dye N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)phallacidin. Such movements led to the formation of extracellular protrusions, which may explain cell to cell spread. icsA, a locus necessary for intra- and intercellular spread, was identified on the Shigella flexneri virulence plasmid pWR100. This locus was cloned and shown to express a 120-kDa outer membrane protein, which plays an important role in the interactions established between host cell microfilaments and the bacterial surface, thus leading to intracellular movement. Images PMID:2542950

  9. Role of the basic C-terminal half of caldesmon in its regulation of F-actin: comparison between caldesmon and calponin.

    PubMed

    Takiguchi, Kingo; Matsumura, Fumio

    2005-12-01

    We previously reported that caldesmon (CaD), together with tropomyosin (TM), effectively protects actin filaments from gelsolin, an actin-severing protein. To elucidate the structure/function relationship of CaD, we dissected the functional domain of CaD required for the protection. The basic C-terminal half of rat nonmuscle CaD (D3) inhibits gelsolin activity to the same degree as intact CaD, although a smaller C-terminal region of D3 does not. This smaller C-terminal region contains the minimum regulatory domain responsible for the inhibition of actomyosin ATPase, and for the binding to actin, calmodulin and TM. These results suggest that the domain responsible for the inhibition of gelsolin activity lies outside the minimum regulatory domain, and that the positive charge possessed by the C-terminal half of CaD is important for its interaction with actin. Moreover, while the D3 fragment promotes the aggregation of F-actin into bundles as reported previously, this bundle formation is inhibited by the acidic N-terminal half of CaD, as well as by poly-l-glutamate. It seems likely that the acidic N-terminal half of CaD neutralizes the superfluous basic feature of the C-terminal half. A comparison between D3 and calponin, another actin-binding protein that is also basic and has similar actin-regulatory activities, is also discussed.

  10. Topological structure dynamics revealing collective evolution in active nematics.

    PubMed

    Shi, Xia-qing; Ma, Yu-qiang

    2013-01-01

    Topological defects frequently emerge in active matter like bacterial colonies, cytoskeleton extracts on substrates, self-propelled granular or colloidal layers and so on, but their dynamical properties and the relations to large-scale organization and fluctuations in these active systems are seldom touched. Here we reveal, through a simple model for active nematics using self-driven hard elliptic rods, that the excitation, annihilation and transportation of topological defects differ markedly from those in non-active media. These dynamical processes exhibit strong irreversibility in active nematics in the absence of detailed balance. Moreover, topological defects are the key factors in organizing large-scale dynamic structures and collective flows, resulting in multi-spatial temporal effects. These findings allow us to control the self-organization of active matter through topological structures.

  11. Probing cytoskeletal modulation of passive and active intracellular dynamics using nanobody-functionalized quantum dots

    PubMed Central

    Katrukha, Eugene A.; Mikhaylova, Marina; van Brakel, Hugo X.; van Bergen en Henegouwen, Paul M.; Akhmanova, Anna; Hoogenraad, Casper C.; Kapitein, Lukas C.

    2017-01-01

    The cytoplasm is a highly complex and heterogeneous medium that is structured by the cytoskeleton. How local transport depends on the heterogeneous organization and dynamics of F-actin and microtubules is poorly understood. Here we use a novel delivery and functionalization strategy to utilize quantum dots (QDs) as probes for active and passive intracellular transport. Rapid imaging of non-functionalized QDs reveals two populations with a 100-fold difference in diffusion constant, with the faster fraction increasing upon actin depolymerization. When nanobody-functionalized QDs are targeted to different kinesin motor proteins, their trajectories do not display strong actin-induced transverse displacements, as suggested previously. Only kinesin-1 displays subtle directional fluctuations, because the subset of microtubules used by this motor undergoes prominent undulations. Using actin-targeting agents reveals that F-actin suppresses most microtubule shape remodelling, rather than promoting it. These results demonstrate how the spatial heterogeneity of the cytoskeleton imposes large variations in non-equilibrium intracellular dynamics. PMID:28322225

  12. Association of cortactin with dynamic actin in lamellipodia and on endosomal vesicles.

    PubMed

    Kaksonen, M; Peng, H B; Rauvala, H

    2000-12-01

    We have used fluorescent protein tagging to study the localization and dynamics of the actin-binding protein cortactin in living NIH 3T3 fibroblast cells. Cortactin was localized to active lamellipodia and to small cytoplasmic spots. Time-lapse imaging revealed that these cortactin labeled structures were very dynamic. In the lamellipodia, cortactin labeled structures formed at the leading edge and then moved toward the cell center. Experiments with green fluorescent protein (GFP)-tagged actin showed that cortactin movement was coincident with the actin retrograde flow in the lamellipodia. Cytoplasmic cortactin spots also contained F-actin and were propelled by actin polymerization. Arp3, a component of the arp2/3 complex which is a key regulator of actin polymerization, co-localized with cortactin. Cytoplasmic cortactin-labeled spots were found to be associated with endosomal vesicles. Association was asymmetric and approximately half of the endosomes were associated with cortactin spots. Time-lapse imaging suggested that these cortactin and F-actin-containing spots propelled endosomes. Actin polymerization based propulsion may be a common mechanism for endomembrane trafficking in the same manner as used in the plasma membrane protrusions. As cortactin is known to interact with membrane-associated signaling proteins it could have a role in linking signaling complexes with dynamic actin on endosomes and in lamellipodia.

  13. NMR reveals a dynamic allosteric pathway in thrombin

    PubMed Central

    Handley, Lindsey D.; Fuglestad, Brian; Stearns, Kyle; Tonelli, Marco; Fenwick, R. Bryn; Markwick, Phineus R. L.; Komives, Elizabeth A.

    2017-01-01

    Although serine proteases are found ubiquitously in both eukaryotes and prokaryotes, and they comprise the largest of all of the peptidase families, their dynamic motions remain obscure. The backbone dynamics of the coagulation serine protease, apo-thrombin (S195M-thrombin), were compared to the substrate-bound form (PPACK-thrombin). R1, R2, 15N-{1H}NOEs, and relaxation dispersion NMR experiments were measured to capture motions across the ps to ms timescale. The ps-ns motions were not significantly altered upon substrate binding. The relaxation dispersion data revealed that apo-thrombin is highly dynamic, with μs-ms motions throughout the molecule. The region around the N-terminus of the heavy chain, the Na+-binding loop, and the 170 s loop, all of which are implicated in allosteric coupling between effector binding sites and the active site, were dynamic primarily in the apo-form. Most of the loops surrounding the active site become more ordered upon PPACK-binding, but residues in the N-terminal part of the heavy chain, the γ-loop, and anion-binding exosite 1, the main allosteric binding site, retain μs-ms motions. These residues form a dynamic allosteric pathway connecting the active site to the main allosteric site that remains in the substrate-bound form. PMID:28059082

  14. Revealing the properties of plant defensins through dynamics.

    PubMed

    Valente, Ana Paula; de Paula, Viviane Silva; Almeida, Fabio C L

    2013-09-13

    Defensins are potent, ancient natural antibiotics that are present in organisms ranging from lower organisms to humans. Although the structures of several defensins have been well characterized, the dynamics of only a few have been studied. This review discusses the diverse dynamics of two plant defensins for which the structure and dynamics have been characterized, both in the free state and in the presence of target membranes. Multiple motions are observed in loops and in secondary structure elements and may be related to twisting or breathing of the α-helix and β-sheet. This complex behavior is altered in the presence of an interface and is responsive to the presence of the putative target. The stages of membrane recognition and disruption can be mapped over a large time scale range, demonstrating that defensins in solution exist as an ensemble of different conformations, a subset of which is selected upon membrane binding. Therefore, studies on the dynamics have revealed that defensins interact with membranes through a mechanism of conformational selection.

  15. Insulin protects against damage to pulmonary endothelial tight junctions after thermal injury: relationship with zonula occludens-1, F-actin, and AKT activity.

    PubMed

    Han, Jun-Tao; Zhang, Wan-Fu; Wang, Yun-Chuan; Cai, Wei-Xia; Lv, Gen-Fa; Hu, Da-Hai

    2014-01-01

    Intensive insulin therapy during critical illness protects the endothelium and thereby prevents organ failure. This study tested the hypothesis that insulin directly affects the attenuation of burn injury-induced damage to pulmonary endothelial tight junction and investigated the underlying mechanisms. Sprague Dawley rats with severe burn injury were randomized to treatment with insulin dissolved in normal saline (maintenance of blood glucose at a level between 5.0 and 7.0 mmol/L) or normal saline alone (in vivo treatment). Pulmonary damage was evaluated. Rat pulmonary microvascular endothelial cells were treated with 20% burn serum or 20% burn serum + insulin (in vitro treatment). Selected cultures were pretreated with phosphatidylinositol 3-kinase/protein kinase B (AKT) inhibitor (LY294002). Permeability was assessed by migration of bovine serum albumin across cell monolayers. Cells were stained with rhodamine phalloidin and were examined. Cell extracts were obtained to assess zonula occludens-1, occludin, and phosphorylated AKT levels by immunoblotting. Treatment with insulin attenuated the pulmonary edema, hemorrhage, and inflammatory cell infiltration of rats with severe burn injury. Burn serum significantly enhanced monolayer permeability to albumin, whereas treatment with insulin (10(-7 ) mol/L) limited this effect. Meanwhile, insulin (10(-7 ) mol/L) reduced burn serum-induced F-actin stress fiber formation and decreased zonula occludens-1 expression. LY294002 decreased cytoplasmic AKT phosphorylation and inhibited the protection effects of insulin. Through the phosphatidylinositol 3-kinase/AKT pathway, insulin independent of glucose toxicity can attenuate increased pulmonary endothelial permeability induced by burn injury. The effect is attributed to the attenuation of the architectural disruption of protein components of the endothelial tight junction. This result is useful in inhibiting multiple organ failure after burn injury. © 2014 by the

  16. High-frequency microrheology reveals cytoskeleton dynamics in living cells

    NASA Astrophysics Data System (ADS)

    Rigato, Annafrancesca; Miyagi, Atsushi; Scheuring, Simon; Rico, Felix

    2017-08-01

    Living cells are viscoelastic materials, dominated by an elastic response on timescales longer than a millisecond. On shorter timescales, the dynamics of individual cytoskeleton filaments are expected to emerge, but active microrheology measurements on cells accessing this regime are scarce. Here, we develop high-frequency microrheology experiments to probe the viscoelastic response of living cells from 1 Hz to 100 kHz. We report the viscoelasticity of different cell types under cytoskeletal drug treatments. On previously inaccessible short timescales, cells exhibit rich viscoelastic responses that depend on the state of the cytoskeleton. Benign and malignant cancer cells revealed remarkably different scaling laws at high frequencies, providing a unique mechanical fingerprint. Microrheology over a wide dynamic range--up to the frequency characterizing the molecular components--provides a mechanistic understanding of cell mechanics.

  17. Ultrafast cooling reveals microsecond-scale biomolecular dynamics.

    PubMed

    Polinkovsky, Mark E; Gambin, Yann; Banerjee, Priya R; Erickstad, Michael J; Groisman, Alex; Deniz, Ashok A

    2014-12-17

    The temperature-jump technique, in which the sample is rapidly heated by a powerful laser pulse, has been widely used to probe the fast dynamics of folding of proteins and nucleic acids. However, the existing temperature-jump setups tend to involve sophisticated and expensive instrumentation, while providing only modest temperature changes of ~10-15 °C, and the temperature changes are only rapid for heating, but not cooling. Here we present a setup comprising a thermally conductive sapphire substrate with light-absorptive nano-coating, a microfluidic device and a rapidly switched moderate-power infrared laser with the laser beam focused on the nano-coating, enabling heating and cooling of aqueous solutions by ~50 °C on a 1-μs time scale. The setup is used to probe folding and unfolding dynamics of DNA hairpins after direct and inverse temperature jumps, revealing low-pass filter behaviour during periodic temperature variations.

  18. Memory in motion: movement dynamics reveal memory strength.

    PubMed

    Papesh, Megan H; Goldinger, Stephen D

    2012-10-01

    Recognition memory is typically examined as a discrete end-state, describable by static variables, such as accuracy, response time, and confidence. In the present study, we combined real-time mouse-tracking with subsequent, overt confidence estimates to examine the dynamic nature of memory decisions. By examining participants' streaming x-, y- mouse coordinates during recognition decisions, we observed that movement trajectories revealed underlying response confidence. More confident decisions were associated with shorter decision times and more linear response trajectories. Less confident decisions were made slowly, with increased trajectory curvature. Statistical indices of curvature and decision times, including area-under-the-curve and time to maximum deviation, suggested that memory strength relates to response dynamics. Whether participants were correct or incorrect, old responses showed a stronger correspondence between mouse trajectories and confidence, relative to new responses. We suggest that people subjectively experience a correspondence between feelings of memory and feelings of confidence; that subjective experience reveals itself in real-time decision processes, as suggested by sequential sampling models of recognition decisions.

  19. Ananke: temporal clustering reveals ecological dynamics of microbial communities

    PubMed Central

    Rohwer, Robin R.; Perrie, Jonathan; McMahon, Katherine D.

    2017-01-01

    Taxonomic markers such as the 16S ribosomal RNA gene are widely used in microbial community analysis. A common first step in marker-gene analysis is grouping genes into clusters to reduce data sets to a more manageable size and potentially mitigate the effects of sequencing error. Instead of clustering based on sequence identity, marker-gene data sets collected over time can be clustered based on temporal correlation to reveal ecologically meaningful associations. We present Ananke, a free and open-source algorithm and software package that complements existing sequence-identity-based clustering approaches by clustering marker-gene data based on time-series profiles and provides interactive visualization of clusters, including highlighting of internal OTU inconsistencies. Ananke is able to cluster distinct temporal patterns from simulations of multiple ecological patterns, such as periodic seasonal dynamics and organism appearances/disappearances. We apply our algorithm to two longitudinal marker gene data sets: faecal communities from the human gut of an individual sampled over one year, and communities from a freshwater lake sampled over eleven years. Within the gut, the segregation of the bacterial community around a food-poisoning event was immediately clear. In the freshwater lake, we found that high sequence identity between marker genes does not guarantee similar temporal dynamics, and Ananke time-series clusters revealed patterns obscured by clustering based on sequence identity or taxonomy. Ananke is free and open-source software available at https://github.com/beiko-lab/ananke. PMID:28966891

  20. Mechanical integration of actin and adhesion dynamics in cell migration.

    PubMed

    Gardel, Margaret L; Schneider, Ian C; Aratyn-Schaus, Yvonne; Waterman, Clare M

    2010-01-01

    Directed cell migration is a physical process that requires dramatic changes in cell shape and adhesion to the extracellular matrix. For efficient movement, these processes must be spatiotemporally coordinated. To a large degree, the morphological changes and physical forces that occur during migration are generated by a dynamic filamentous actin (F-actin) cytoskeleton. Adhesion is regulated by dynamic assemblies of structural and signaling proteins that couple the F-actin cytoskeleton to the extracellular matrix. Here, we review current knowledge of the dynamic organization of the F-actin cytoskeleton in cell migration and the regulation of focal adhesion assembly and disassembly with an emphasis on how mechanical and biochemical signaling between these two systems regulate the coordination of physical processes in cell migration.

  1. The F-actin bundler α-actinin Ain1 is tailored for ring assembly and constriction during cytokinesis in fission yeast

    PubMed Central

    Li, Yujie; Christensen, Jenna R.; Homa, Kaitlin E.; Hocky, Glen M.; Fok, Alice; Sees, Jennifer A.; Voth, Gregory A.; Kovar, David R.

    2016-01-01

    The actomyosin contractile ring is a network of cross-linked actin filaments that facilitates cytokinesis in dividing cells. Contractile ring formation has been well characterized in Schizosaccharomyces pombe, in which the cross-linking protein α-actinin SpAin1 bundles the actin filament network. However, the specific biochemical properties of SpAin1 and whether they are tailored for cytokinesis are not known. Therefore we purified SpAin1 and quantified its ability to dynamically bind and bundle actin filaments in vitro using a combination of bulk sedimentation assays and direct visualization by two-color total internal reflection fluorescence microscopy. We found that, while SpAin1 bundles actin filaments of mixed polarity like other α-actinins, SpAin1 has lower bundling activity and is more dynamic than human α-actinin HsACTN4. To determine whether dynamic bundling is important for cytokinesis in fission yeast, we created the less dynamic bundling mutant SpAin1(R216E). We found that dynamic bundling is critical for cytokinesis, as cells expressing SpAin1(R216E) display disorganized ring material and delays in both ring formation and constriction. Furthermore, computer simulations of initial actin filament elongation and alignment revealed that an intermediate level of cross-linking best facilitates filament alignment. Together our results demonstrate that dynamic bundling by SpAin1 is important for proper contractile ring formation and constriction. PMID:27075176

  2. Direct high-resolution label-free imaging of cellular nanostructure dynamics in living cells

    NASA Astrophysics Data System (ADS)

    Heo, Chaejeong; Lee, Sohee; Lee, Si Young; Jeong, Mun Seok; Lee, Young Hee; Suh, Minah

    2013-06-01

    We report the application of an optical microscope equipped with a high-resolution dark-field condenser for detecting dynamic responses of cellular nanostructures in real time. Our system provides an easy-to-use technique to visualize biological specimens without any staining. This system can visualize the dynamic behavior of nanospheres and nanofibers, such as F-actin, at the leading edges of adjacent neuronal cells. We confirmed that the nanofibers imaged with this high-resolution optical microscopic technique are F-actin by using fluorescence microscopy after immunostaining the F-actin of fixed cells. Furthermore, cellular dynamics are enhanced by applying noncontact electric field stimulation through a transparent graphene electric field stimulator. High-resolution label-free optical microscopy enables the visualization of nanofiber dynamics initiated by filopodial nanofiber contacts. In conclusion, our optical microscopy system allows the visualization of nanoscale cellular dynamics under various external stimuli in real time without specific staining.

  3. Coupled nucleotide covariations reveal dynamic RNA interaction patterns.

    PubMed Central

    Gultyaev, A P; Franch, T; Gerdes, K

    2000-01-01

    Evolutionarily conserved structures in related RNA molecules contain coordinated variations (covariations) of paired nucleotides. Analysis of covariations is a very powerful approach to deduce phylogenetically conserved (i.e., functional) conformations, including tertiary interactions. Here we discuss conserved RNA folding pathways that are revealed by covariation patterns. In such pathways, structural requirements for alternative pairings cause some nucleotides to covary with two different partners. Such "coupled" covariations between three or more nucleotides were found in various types of RNAs. The analysis of coupled covariations can unravel important features of RNA folding dynamics and improve phylogeny reconstruction in some cases. Importantly, it is necessary to distinguish between multiple covariations determined by mutually exclusive structures and those determined by tertiary contacts. PMID:11105748

  4. Stochastic heart-rate model can reveal pathologic cardiac dynamics

    NASA Astrophysics Data System (ADS)

    Kuusela, Tom

    2004-03-01

    A simple one-dimensional Langevin-type stochastic difference equation can simulate the heart-rate fluctuations in a time scale from minutes to hours. The model consists of a deterministic nonlinear part and a stochastic part typical of Gaussian noise, and both parts can be directly determined from measured heart-rate data. Data from healthy subjects typically exhibit the deterministic part with two or more stable fixed points. Studies of 15 congestive heart-failure subjects reveal that the deterministic part of pathologic heart dynamics has no clear stable fixed points. Direct simulations of the stochastic model for normal and pathologic cases can produce statistical parameters similar to those of real subjects. Results directly indicate that pathologic situations simplify the heart-rate control system.

  5. Circulating protein synthesis rates reveal skeletal muscle proteome dynamics

    PubMed Central

    Shankaran, Mahalakshmi; King, Chelsea L.; Angel, Thomas E.; Holmes, William E.; Li, Kelvin W.; Colangelo, Marc; Price, John C.; Turner, Scott M.; Bell, Christopher; Hamilton, Karyn L.; Miller, Benjamin F.; Hellerstein, Marc K.

    2015-01-01

    Here, we have described and validated a strategy for monitoring skeletal muscle protein synthesis rates in rodents and humans over days or weeks from blood samples. We based this approach on label incorporation into proteins that are synthesized specifically in skeletal muscle and escape into the circulation. Heavy water labeling combined with sensitive tandem mass spectrometric analysis allowed integrated synthesis rates of proteins in muscle tissue across the proteome to be measured over several weeks. Fractional synthesis rate (FSR) of plasma creatine kinase M-type (CK-M) and carbonic anhydrase 3 (CA-3) in the blood, more than 90% of which is derived from skeletal muscle, correlated closely with FSR of CK-M, CA-3, and other proteins of various ontologies in skeletal muscle tissue in both rodents and humans. Protein synthesis rates across the muscle proteome generally changed in a coordinate manner in response to a sprint interval exercise training regimen in humans and to denervation or clenbuterol treatment in rodents. FSR of plasma CK-M and CA-3 revealed changes and interindividual differences in muscle tissue proteome dynamics. In human subjects, sprint interval training primarily stimulated synthesis of structural and glycolytic proteins. Together, our results indicate that this approach provides a virtual biopsy, sensitively revealing individualized changes in proteome-wide synthesis rates in skeletal muscle without a muscle biopsy. Accordingly, this approach has potential applications for the diagnosis, management, and treatment of muscle disorders. PMID:26657858

  6. Carbonylation and disassembly of the F-actin cytoskeleton in oxidant induced barrier dysfunction and its prevention by epidermal growth factor and transforming growth factor α in a human colonic cell line

    PubMed Central

    Banan, A; Zhang, Y; Losurdo, J; Keshavarzian, A

    2000-01-01

    BACKGROUND—Intestinal barrier dysfunction concomitant with high levels of reactive oxygen metabolites (ROM) in the inflamed mucosa have been observed in inflammatory bowel disease (IBD). The cytoskeletal network has been suggested to be involved in the regulation of barrier function. Growth factors (epidermal growth factor (EGF) and transforming growth factor α (TGF-α)) protect gastrointestinal barrier integrity against a variety of noxious agents. However, the underlying mechanisms of oxidant induced disruption and growth factor mediated protection remain elusive.
AIMS—To determine: (1) if oxidation and disassembly of actin (a key cytoskeletal component) plays a major role in ROM induced epithelial monolayer barrier dysfunction; and (2) if growth factor mediated protection involves prevention of theses alterations.
METHODS—Caco-2 monolayers were preincubated with EGF, TGF-α, or vehicle before incubation with ROM (H2O2 or HOCl). Effects on cell integrity, barrier function, and G- and F-actin (oxidation, disassembly, and assembly) were determined.
RESULTS—ROM dose dependently and significantly increased F- and G-actin oxidation (carbonylation), decreased the stable F-actin fraction (index of stability), and increased the monomeric G-actin fraction (index of disassembly). Concomitant with these changes were disruption of the actin cytoskeleton and loss of the monolayer barrier function. In contrast, growth factor pretreatment decreased actin oxidation and enhanced the stable F-actin, while in concert prevented actin disruption and restored normal barrier function of monolayers exposed to ROM. Cytochalasin-D, an inhibitor of actin assembly, not only caused actin disassembly and barrier dysfunction but also abolished the protective action of growth factors. Moreover, an actin stabilising agent, phalloidin, mimicked the protective actions of the growth factors.
CONCLUSIONS—Oxidation, disassembly, and instability of the actin cytoskeleton appears to

  7. Temporal dynamics of reward processing revealed by magnetoencephalography.

    PubMed

    Doñamayor, Nuria; Marco-Pallarés, Josep; Heldmann, Marcus; Schoenfeld, M Ariel; Münte, Thomas F

    2011-12-01

    Monetary gains and losses in gambling situations are associated with a distinct electroencephalographic signature: in the event-related potentials (ERPs), a mediofrontal feedback-related negativity (FRN) is seen for losses, whereas oscillatory activity shows a burst of in the θ-range for losses and in the β-range for gains. We used whole-head magnetoencephalography to pinpoint the magnetic counterparts of these effects in young healthy adults and explore their evolution over time. On each trial, participants bet on one of two visually presented numbers (25 or 5) by button-press. Both numbers changed color: if the chosen number turned green (red), it indicated a gain (loss) of the corresponding sum in Euro cent. For losses, we found the magnetic correlate of the FRN extending between 230 and 465 ms. Source localization with low-resolution electromagnetic tomography indicated a first generator in posterior cingulate cortex with subsequent activity in the anterior cingulate cortex. Importantly, this effect was sensitive to the magnitude of the monetary loss (25 cent > 5 cent). Later activation was also found in the right insula. Time-frequency analysis revealed a number of oscillatory components in the theta, alpha, and high-beta/low-gamma bands associated to gains, and in the high-beta band, associated to the magnitude of the loss. All together, these effects provide a more fine-grained picture of the temporal dynamics of the processing of monetary rewards and losses in the brain.

  8. Substrate Channel in Nitrogenase Revealed by a Molecular Dynamics Approach

    SciTech Connect

    Smith, Dayle; Danyal, Karamatullah; Raugei, Simone; Seefeldt, Lance C.

    2014-03-22

    Mo-dependent nitrogenase catalyzes the biological reduction of N2 to 2NH3 at the FeMo-cofactor buried deep inside the MoFe protein. Access of substrates, such as N2, to the active site is likely restricted by the surrounding protein, requiring substrate channels that lead from the surface to the active site. Earlier studies on crystallographic structures of the MoFe protein have suggested three putative substrate channels. Here, we have utilized sub-microsecond atomistic molecular dynamics simulations to allow the nitrogenase MoFe protein to explore its conformational space in an aqueous solution at physiological ionic strength, revealing a putative substrate channel not previously reported. The viability of the proposed channel was tested by examining the free energy of passage of N2 from the surface through the channel to FeMo-cofactor, with discovery of a very low energy barrier. These studies point to a viable substrate channel in nitrogenase that appears during thermal motions of the protein in an aqueous environment that approaches a face of FeMo-cofactor earlier implicated in substrate binding.

  9. Cytoplasmic dynamics reveals two modes of nucleoid-dependent mobility.

    PubMed

    Stylianidou, Stella; Kuwada, Nathan J; Wiggins, Paul A

    2014-12-02

    It has been proposed that forces resulting from the physical exclusion of macromolecules from the bacterial nucleoid play a central role in organizing the bacterial cell, yet this proposal has not been quantitatively tested. To investigate this hypothesis, we mapped the generic motion of large protein complexes in the bacterial cytoplasm through quantitative analysis of thousands of complete cell-cycle trajectories of fluorescently tagged ectopic MS2-mRNA complexes. We find the motion of these complexes in the cytoplasm is strongly dependent on their spatial position along the long axis of the cell, and that their dynamics are consistent with a quantitative model that requires only nucleoid exclusion and membrane confinement. This analysis also reveals that the nucleoid increases the mobility of MS2-mRNA complexes, resulting in a fourfold increase in diffusion coefficients between regions of the lowest and highest nucleoid density. These data provide strong quantitative support for two modes of nucleoid action: the widely accepted mechanism of nucleoid exclusion in organizing the cell and a newly proposed mode, in which the nucleoid facilitates rapid motion throughout the cytoplasm.

  10. Accumulation of Glucosylceramide in the Absence of the Beta-Glucosidase GBA2 Alters Cytoskeletal Dynamics

    PubMed Central

    Raju, Diana; Schonauer, Sophie; Hamzeh, Hussein; Flynn, Kevin C.; Bradke, Frank; vom Dorp, Katharina; Dörmann, Peter; Yildiz, Yildiz; Trötschel, Christian; Poetsch, Ansgar; Breiden, Bernadette; Sandhoff, Konrad; Körschen, Heinz G.; Wachten, Dagmar

    2015-01-01

    Glycosphingolipids are key elements of cellular membranes, thereby, controlling a variety of cellular functions. Accumulation of the simple glycosphingolipid glucosylceramide results in life-threatening lipid storage-diseases or in male infertility. How glucosylceramide regulates cellular processes is ill defined. Here, we reveal that glucosylceramide accumulation in GBA2 knockout-mice alters cytoskeletal dynamics due to a more ordered lipid organization in the plasma membrane. In dermal fibroblasts, accumulation of glucosylceramide augments actin polymerization and promotes microtubules persistence, resulting in a higher number of filopodia and lamellipodia and longer microtubules. Similar cytoskeletal defects were observed in male germ and Sertoli cells from GBA2 knockout-mice. In particular, the organization of F-actin structures in the ectoplasmic specialization and microtubules in the sperm manchette is affected. Thus, glucosylceramide regulates cytoskeletal dynamics, providing mechanistic insights into how glucosylceramide controls signaling pathways not only during sperm development, but also in other cell types. PMID:25803043

  11. ACF7 regulates inflammatory colitis and intestinal wound response by orchestrating tight junction dynamics

    PubMed Central

    Ma, Yanlei; Yue, Jiping; Zhang, Yao; Shi, Chenzhang; Odenwald, Matt; Liang, Wenguang G.; Wei, Qing; Goel, Ajay; Gou, Xuewen; Zhang, Jamie; Chen, Shao-Yu; Tang, Wei-Jen; Turner, Jerrold R.; Yang, Feng; Liang, Hong; Qin, Huanlong; Wu, Xiaoyang

    2017-01-01

    In the intestinal epithelium, the aberrant regulation of cell/cell junctions leads to intestinal barrier defects, which may promote the onset and enhance the severity of inflammatory bowel disease (IBD). However, it remains unclear how the coordinated behaviour of cytoskeletal network may contribute to cell junctional dynamics. In this report, we identified ACF7, a crosslinker of microtubules and F-actin, as an essential player in this process. Loss of ACF7 leads to aberrant microtubule organization, tight junction stabilization and impaired wound closure in vitro. With the mouse genetics approach, we show that ablation of ACF7 inhibits intestinal wound healing and greatly increases susceptibility to experimental colitis in mice. ACF7 level is also correlated with development and progression of ulcerative colitis (UC) in human patients. Together, our results reveal an important molecular mechanism whereby coordinated cytoskeletal dynamics contributes to cell adhesion regulation during intestinal wound repair and the development of IBD. PMID:28541346

  12. Dynamics of the Wulong landslide revealed by broadband seismic records

    NASA Astrophysics Data System (ADS)

    Li, Zhengyuan; Huang, Xinghui; Xu, Qiang; Yu, Dan; Fan, Junyi; Qiao, Xuejun

    2017-02-01

    The catastrophic Wulong landslide occurred at 14:51 (Beijing time, UTC+8) on 5 June 2009, in Wulong Prefecture, Southwest China. This rockslide occurred in a complex topographic environment. Seismic signals generated by this event were recorded by the seismic network deployed in the surrounding area, and long-period signals were extracted from 8 broadband seismic stations within 250 km to obtain source time functions by inversion. The location of this event was simultaneously acquired using a stepwise refined grid search approach, with an error of 2.2 km. The estimated source time functions reveal that, according to the movement parameters, this landslide could be divided into three stages with different movement directions, velocities, and increasing inertial forces. The sliding mass moved northward, northeastward and northward in the three stages, with average velocities of 6.5, 20.3, and 13.8 m/s, respectively. The maximum movement velocity of the mass reached 35 m/s before the end of the second stage. The basal friction coefficients were relatively small in the first stage and gradually increasing; large in the second stage, accompanied by the largest variability; and oscillating and gradually decreasing to a stable value, in the third stage. Analysis shows that the movement characteristics of these three stages are consistent with the topography of the sliding zone, corresponding to the northward initiation, eastward sliding after being stopped by the west wall, and northward debris flowing after collision with the east slope of the Tiejianggou valley. The maximum movement velocity of the sliding mass results from the largest height difference of the west slope of the Tiejianggou valley. The basal friction coefficients of the three stages represent the thin weak layer in the source zone, the dramatically varying topography of the west slope of the Tiejianggou valley, and characteristics of the debris flow along the Tiejianggou valley. Based on the above

  13. Actomyosin-dependent dynamic spatial patterns of cytoskeletal components drive mesoscale podosome organization

    PubMed Central

    Meddens, Marjolein B. M.; Pandzic, Elvis; Slotman, Johan A.; Guillet, Dominique; Joosten, Ben; Mennens, Svenja; Paardekooper, Laurent M.; Houtsmuller, Adriaan B.; van den Dries, Koen; Wiseman, Paul W.; Cambi, Alessandra

    2016-01-01

    Podosomes are cytoskeletal structures crucial for cell protrusion and matrix remodelling in osteoclasts, activated endothelial cells, macrophages and dendritic cells. In these cells, hundreds of podosomes are spatially organized in diversely shaped clusters. Although we and others established individual podosomes as micron-sized mechanosensing protrusive units, the exact scope and spatiotemporal organization of podosome clustering remain elusive. By integrating a newly developed extension of Spatiotemporal Image Correlation Spectroscopy with novel image analysis, we demonstrate that F-actin, vinculin and talin exhibit directional and correlated flow patterns throughout podosome clusters. Pattern formation and magnitude depend on the cluster actomyosin machinery. Indeed, nanoscopy reveals myosin IIA-decorated actin filaments interconnecting multiple proximal podosomes. Extending well-beyond podosome nearest neighbours, the actomyosin-dependent dynamic spatial patterns reveal a previously unappreciated mesoscale connectivity throughout the podosome clusters. This directional transport and continuous redistribution of podosome components provides a mechanistic explanation of how podosome clusters function as coordinated mechanosensory area. PMID:27721497

  14. Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics.

    PubMed

    Csatho, Beata M; Schenk, Anton F; van der Veen, Cornelis J; Babonis, Gregory; Duncan, Kyle; Rezvanbehbahani, Soroush; van den Broeke, Michiel R; Simonsen, Sebastian B; Nagarajan, Sudhagar; van Angelen, Jan H

    2014-12-30

    We present a new record of ice thickness change, reconstructed at nearly 100,000 sites on the Greenland Ice Sheet (GrIS) from laser altimetry measurements spanning the period 1993-2012, partitioned into changes due to surface mass balance (SMB) and ice dynamics. We estimate a mean annual GrIS mass loss of 243 ± 18 Gt ⋅ y(-1), equivalent to 0.68 mm ⋅ y(-1) sea level rise (SLR) for 2003-2009. Dynamic thinning contributed 48%, with the largest rates occurring in 2004-2006, followed by a gradual decrease balanced by accelerating SMB loss. The spatial pattern of dynamic mass loss changed over this time as dynamic thinning rapidly decreased in southeast Greenland but slowly increased in the southwest, north, and northeast regions. Most outlet glaciers have been thinning during the last two decades, interrupted by episodes of decreasing thinning or even thickening. Dynamics of the major outlet glaciers dominated the mass loss from larger drainage basins, and simultaneous changes over distances up to 500 km are detected, indicating climate control. However, the intricate spatiotemporal pattern of dynamic thickness change suggests that, regardless of the forcing responsible for initial glacier acceleration and thinning, the response of individual glaciers is modulated by local conditions. Recent projections of dynamic contributions from the entire GrIS to SLR have been based on the extrapolation of four major outlet glaciers. Considering the observed complexity, we question how well these four glaciers represent all of Greenland's outlet glaciers.

  15. Partial structure factors reveal atomic dynamics in metallic alloy melts

    NASA Astrophysics Data System (ADS)

    Nowak, B.; Holland-Moritz, D.; Yang, F.; Voigtmann, Th.; Kordel, T.; Hansen, T. C.; Meyer, A.

    2017-07-01

    We investigate the dynamical decoupling of the diffusion coefficients of the different components in a metallic alloy melt, using a combination of neutron diffraction, isotopic substitution, and electrostatic levitation in Zr-Ni melts. We show that excess Ni atoms can diffuse more freely in a background of saturated chemical interaction, causing their dynamics to become much faster and thus decoupled than anticipated from the interparticle interactions. Based on the mode-coupling theory of the glass transition, the averaged structure as given by the partial static structure factors is able to explain the observed dynamical behavior.

  16. Dynamic Coupling among Protein Binding, Sliding, and DNA Bending Revealed by Molecular Dynamics.

    PubMed

    Tan, Cheng; Terakawa, Tsuyoshi; Takada, Shoji

    2016-07-13

    Protein binding to DNA changes the DNA's structure, and altered DNA structure can, in turn, modulate the dynamics of protein binding. This mutual dependency is poorly understood. Here we investigated dynamic couplings among protein binding to DNA, protein sliding on DNA, and DNA bending by applying a coarse-grained simulation method to the bacterial architectural protein HU and 14 other DNA-binding proteins. First, we verified our method by showing that the simulated HU exhibits a weak preference for A/T-rich regions of DNA and a much higher affinity for gapped and nicked DNA, consistent with biochemical experiments. The high affinity was attributed to a local DNA bend, but not the specific chemical moiety of the gap/nick. The long-time dynamic analysis revealed that HU sliding is associated with the movement of the local DNA bending site. Deciphering single sliding steps, we found the coupling between HU sliding and DNA bending is akin to neither induced-fit nor population-shift; instead they moved concomitantly. This is reminiscent of a cation transfer on DNA and can be viewed as a protein version of polaron-like sliding. Interestingly, on shorter time scales, HU paused when the DNA was highly bent at the bound position and escaped from pauses once the DNA spontaneously returned to a less bent structure. The HU sliding is largely regulated by DNA bending dynamics. With 14 other proteins, we explored the generality and versatility of the dynamic coupling and found that 6 of the 15 assayed proteins exhibit the polaron-like sliding.

  17. Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics

    PubMed Central

    Csatho, Beata M.; Schenk, Anton F.; van der Veen, Cornelis J.; Babonis, Gregory; Duncan, Kyle; Rezvanbehbahani, Soroush; van den Broeke, Michiel R.; Simonsen, Sebastian B.; Nagarajan, Sudhagar; van Angelen, Jan H.

    2014-01-01

    We present a new record of ice thickness change, reconstructed at nearly 100,000 sites on the Greenland Ice Sheet (GrIS) from laser altimetry measurements spanning the period 1993–2012, partitioned into changes due to surface mass balance (SMB) and ice dynamics. We estimate a mean annual GrIS mass loss of 243 ± 18 Gt⋅y−1, equivalent to 0.68 mm⋅y−1 sea level rise (SLR) for 2003–2009. Dynamic thinning contributed 48%, with the largest rates occurring in 2004–2006, followed by a gradual decrease balanced by accelerating SMB loss. The spatial pattern of dynamic mass loss changed over this time as dynamic thinning rapidly decreased in southeast Greenland but slowly increased in the southwest, north, and northeast regions. Most outlet glaciers have been thinning during the last two decades, interrupted by episodes of decreasing thinning or even thickening. Dynamics of the major outlet glaciers dominated the mass loss from larger drainage basins, and simultaneous changes over distances up to 500 km are detected, indicating climate control. However, the intricate spatiotemporal pattern of dynamic thickness change suggests that, regardless of the forcing responsible for initial glacier acceleration and thinning, the response of individual glaciers is modulated by local conditions. Recent projections of dynamic contributions from the entire GrIS to SLR have been based on the extrapolation of four major outlet glaciers. Considering the observed complexity, we question how well these four glaciers represent all of Greenland’s outlet glaciers. PMID:25512537

  18. Cytoskeletal F-actin polymerization from cytosolic G-actin occurs in the phagocytosing immunocytes of arthropods (Limulus polyphemus and Gromphadorhina portentosa): does [cAMP]i play any role?

    PubMed

    Gupta, A P; Campenot, E S

    1996-09-01

    Phagocytosis is a major defense reaction in arthropods and is accomplished by two blood cells (hemocytes), the granulocyte (GRs) and plasmatocytes (PLs), collectively called immunocytes. Immunocytes (principally the GRs) from two arthropods, Limulus polyphemus (horseshoe crab) and Gromphadorhina portentosa (Madagascar hissing cockroach) effectively phagocytose fluorescein isothiocyanate (FITC)-conjugated fluoresbrite microspheres (FITC-FM) and chicken (Gallus domesticus) erythrocytes within 1 hr of incubation. Although actin polymerization and changes in intracellular cAMP ([cAMP]i) levels occur during the early stages of phagocytosis in vertebrates, these two phenomena have not been studied in arthropod immunocytes. Using the DNase I inhibition assay, we found a decrease in cytosolic G-actin and an increase in the cytoskeletal F-actin in the phagocytosing immunocytes; the total actin in both resting and phagocytosing immunocytes remained constant. These results showed an 86% increase in F-actin in G. portentosa immunocytes and a 29% increase in those of L. polyphemus after 1 hr of initial incubation with FITC-FM. As in some vertebrates, the role of [cAMP]i in the early stages of phagocytosis in these two animals- and perhaps in arthropods in general-is variable; although we detected some negligible amounts of [cAMP]i (0.10-0.80 pmol/cell at different time intervals) in L. polyphemus immunocytes, it was inconclusive whether those in G. portentosa also contained [cAMP]i. Even in L. polyphemus, the difference in the amounts of [cAMP]i in resting and phagocytosing cells was insignificant (P > 0.05). It was also inconclusive whether [Ca2+]i and/or [Mg2+]i play any roles in the early stages of phagocytosis in the two arthropods in this study. These results suggest that the two phenomena (F-actin polymerization and levels of [cAMP]i in arthropods) are basically similar to those in vertebrate neutrophils and macrophages, which suggests that certain immunological

  19. Reveal protein dynamics by combining computer simulation and neutron scattering

    NASA Astrophysics Data System (ADS)

    Hong, Liang; Smith, Jeremy; CenterMolecular Biophysics Team

    2014-03-01

    Protein carries out most functions in living things on the earth through characteristic modulation of its three-dimensional structure over time. Understanding the microscopic nature of the protein internal motion and its connection to the function and structure of the biomolecule is a central topic in biophysics, and of great practical importance for drug design, study of diseases, and the development of renewable energy, etc. Under physiological conditions, protein exhibits a complex dynamics landscape, i.e., a variety of diffusive and conformational motions occur on similar time and length scales. This variety renders difficult the derivation of a simplified description of protein internal motions in terms of a small number of distinct, additive components. This difficulty is overcome by our work using a combined approach of Molecular Dynamics (MD) simulations and the Neutron Scattering experiments. Our approach enables distinct protein motions to be characterized separately, furnishing an in-depth understanding of the connection between protein structure, dynamics and function.

  20. Structure and Dynamics of Four-way DNA Junctions Dynamics Revealed by Single-Molecule AFM

    NASA Astrophysics Data System (ADS)

    Lyubchenko, Yuri

    2004-03-01

    For-way DNA junctions (Holliday junctions) are critical intermediates for homologous, site-specific recombination, DNA repair and replication. A wealth of structural information is available for immobile four-way junctions. However, these data cannot give the answer on the mechanism of branch migration, the major property of the Holliday junction. Two models for the mechanism of branch migration were suggested. According to the early model of Alberts-Meselson-Sigal, exchanging DNA strands around the junction remain parallel during branch migration. Kinetic studies of branch migration suggest an alternative model in which the junction adopts an extended conformation. We tested these models using a Holliday junction undergoing branch migration. Note that it was the first time when the dynamics of the four-way DNA junction capable of branch migration had been analyzed. We applied time-lapse atomic force microscopy (single molecule dynamics AFM) to image directly loosely bound DNA at liquid-surface interface. These experiments show that mobile Holliday junctions adopt an unfolded conformation during branch migration. This conformation of the junction remains unchanged until strand separation. The data obtained support the model for branch migration having the extended conformation of the Holliday junction. The analysis of the Holliday junctions dynamics at conditions limiting branch migration revealed a broad movement of the arms suggesting that the range of mobility of these junctions is much wider than detected before. Further applications of the time-lapse AFM approach in attempt to resolve the subpopulations of the junctions conformers and the prospects for analyses of dynamics of complex biological systems will be discussed.

  1. Rhodopsin Photoactivation Dynamics Revealed by Quasi-Elastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Bhowmik, Debsindhu; Shrestha, Utsab; Perera, Suchhithranga M. C. D.; Chawla, Udeep; Mamontov, Eugene; Brown, Michael; Chu, Xiang-Qiang

    2015-03-01

    Rhodopsin is a G-protein-coupled receptor (GPCR) responsible for vision. During photoactivation, the chromophore retinal dissociates from protein yielding the opsin apoprotein. What are the changes in protein dynamics that occur during the photoactivation process? Here, we studied the microscopic dynamics of dark-state rhodopsin and the ligand-free opsin using quasielastic neutron scattering (QENS). The QENS technique tracks individual hydrogen atom motion because of the much higher neutron scattering cross-section of hydrogen than other atoms. We used protein with CHAPS detergent hydrated with heavy water. The activation of proteins is confirmed at low temperatures up to 300 K by mean-square displacement (MSD) analysis. The QENS experiments at temperatures ranging from 220 K to 300 K clearly indicate an increase in protein dynamic behavior with temperature. The relaxation time for the ligand-bound protein rhodopsin is faster compared to opsin, which can be correlated with the photoactivation. Moreover, the protein dynamics are orders of magnitude slower than the accompanying CHAPS detergent, which unlike protein, manifests localized motions.

  2. Communicability angles reveal critical edges for network consensus dynamics

    NASA Astrophysics Data System (ADS)

    Estrada, Ernesto; Vargas-Estrada, Eusebio; Ando, Hiroyasu

    2015-11-01

    We consider the question of determining how the topological structure influences a consensus dynamical processes taking place on a network. By considering a large data set of real-world networks we first determine that the removal of edges according to their communicability angle, an angle between position vectors of the nodes in an Euclidean communicability space, increases the average time of consensus by a factor of 5.68 in real-world networks. The edge betweenness centrality also identifies, in a smaller proportion, those critical edges for the consensus dynamics; i.e., its removal increases the time of consensus by a factor of 3.70 . We justify theoretically these findings on the basis of the role played by the algebraic connectivity and the isoperimetric number of networks on the dynamical process studied and their connections with the properties mentioned before. Finally, we study the role played by global topological parameters of networks on the consensus dynamics. We determine that the network density and the average distance-sum, which is analogous of the node degree for shortest-path distances, account for more than 80% of the variance of the average time of consensus in the real-world networks studied.

  3. Fire scars reveal variability and dynamics of eastern fire regimes

    Treesearch

    Richard P. Guyette; Daniel C. Dey; Michael C. Stambaugh; Rose-Marie Muzika

    2006-01-01

    Fire scar evidence in eastern North America is sparse and complex but shows promise in defining the dynamics of these fire regimes and their influence on ecosystems. We review fire scar data, methods, and limitations, and use this information to identify and examine the factors influencing fire regimes. Fire scar data from studies at more than 40 sites in Eastern North...

  4. Rhodopsin photoactivation dynamics revealed by quasi-elastic neutron scattering

    DOE PAGES

    Bhowmik, Debsindhu; Shrestha, Utsab; Perera, Suchithranga M.d.c.; ...

    2015-01-27

    Rhodopsin is a G-protein-coupled receptor (GPCR) responsible for vision under dim light conditions. During rhodopsin photoactivation, the chromophore retinal undergoes cis-trans isomerization, and subsequently dissociates from the protein yielding the opsin apoprotein [1]. What are the changes in protein dynamics that occur during the rhodopsin photoactivation process? Here, we studied the microscopic dynamics of the dark-state rhodopsin and the ligand-free opsin using quasi-elastic neutron scattering (QENS). The QENS technique tracks the individual hydrogen atom motions in the protein molecules, because the neutron scattering cross-section of hydrogen is much higher than other atoms [2-4]. We used protein (rhodopsin/opsin) samples with CHAPSmore » detergent hydrated with heavy water. The solvent signal is suppressed due to the heavy water, so that only the signals from proteins and detergents are detected. The activation of proteins is confirmed at low temperatures up to 300 K by the mean-square displacement (MSD) analysis. Our QENS experiments conducted at temperatures ranging from 220 K to 300 K clearly indicate that the protein dynamic behavior increases with temperature. The relaxation time for the ligand-bound protein rhodopsin was longer compared to opsin, which can be correlated with the photoactivation. Moreover, the protein dynamics are orders of magnitude slower than the accompanying CHAPS detergent, which forms a band around the protein molecule in the micelle. Unlike the protein, the CHAPS detergent manifests localized motions that are the same as in the bulk empty micelles. Furthermore QENS provides unique understanding of the key dynamics involved in the activation of the GPCR involved in the visual process.« less

  5. Rhodopsin photoactivation dynamics revealed by quasi-elastic neutron scattering

    SciTech Connect

    Bhowmik, Debsindhu; Shrestha, Utsab; Perera, Suchithranga M.d.c.; Chawla, Udeep; Mamontov, Eugene; Brown, Michael F.; Chu, Xiang -Qiang

    2015-01-27

    Rhodopsin is a G-protein-coupled receptor (GPCR) responsible for vision under dim light conditions. During rhodopsin photoactivation, the chromophore retinal undergoes cis-trans isomerization, and subsequently dissociates from the protein yielding the opsin apoprotein [1]. What are the changes in protein dynamics that occur during the rhodopsin photoactivation process? Here, we studied the microscopic dynamics of the dark-state rhodopsin and the ligand-free opsin using quasi-elastic neutron scattering (QENS). The QENS technique tracks the individual hydrogen atom motions in the protein molecules, because the neutron scattering cross-section of hydrogen is much higher than other atoms [2-4]. We used protein (rhodopsin/opsin) samples with CHAPS detergent hydrated with heavy water. The solvent signal is suppressed due to the heavy water, so that only the signals from proteins and detergents are detected. The activation of proteins is confirmed at low temperatures up to 300 K by the mean-square displacement (MSD) analysis. Our QENS experiments conducted at temperatures ranging from 220 K to 300 K clearly indicate that the protein dynamic behavior increases with temperature. The relaxation time for the ligand-bound protein rhodopsin was longer compared to opsin, which can be correlated with the photoactivation. Moreover, the protein dynamics are orders of magnitude slower than the accompanying CHAPS detergent, which forms a band around the protein molecule in the micelle. Unlike the protein, the CHAPS detergent manifests localized motions that are the same as in the bulk empty micelles. Furthermore QENS provides unique understanding of the key dynamics involved in the activation of the GPCR involved in the visual process.

  6. SGR9, a RING type E3 ligase, modulates amyloplast dynamics important for gravity sensing.

    NASA Astrophysics Data System (ADS)

    Morita, Miyo T.; Nakamura, Moritaka; Tasaka, Masao

    Gravitropism is triggered when the directional change of gravity is sensed in the specific cells, called statocytes. In higher plants, statocytes contain sinking heavier amyloplasts which are particular plastids accumulating starch granules. The displacement of amyloplasts within the statocytes is thought to be the initial event of gravity perception. We have demonstrated that endodermal cells are most likely to be the statocytes in Arabidop-sis shoots. Live cell imaging of the endodermal cell of stem has shown that most amyloplasts are sediment to the direction of gravity but they are not static. Several amyloplasts move dynamically in an actin filament (F-actin) dependent manner. In the presence of actin poly-merization inhibitor, all amyloplasts become static and sediment to the direction of gravity. In addition, stems treated with the inhibitor can exhibit gravitropism. These results suggest that F-actin-dependent dynamic movement of amyloplasts is not essential for gravity sensing. sgr (shoot gravitropism) 9 mutant exhibits greatly reduced shoot gravitropism. In endodermal cells of sgr9, dynamic amyloplast movement was predominantly observed and amyloplasts did not sediment to the direction of gravity. Interestingly, inhibition of actin polymerization re-stored both gravitropism and amyloplast sedimentation in sgr9. The SGR9 encodes a novel RING finger protein, which is localized to amyloplasts in endodermal cells. SGR9 showed ubiq-uitin E3 ligase activity in vitro. Together with live cell imaging of amyloplasts and F-actin, our data suggest that SGR9 modulate interaction between amyloplasts and F-actin on amylo-plasts. SGR9 positively act on amyloplasts sedimentation, probably by releasing amyloplasts from F-actin. SGR9 that is localized to amyloplast, possibly degrades unknown substrates by its E3 ligase activity, and this might promote release of amyloplasts from F-actin.

  7. Fluctuation power spectra reveal dynamical heterogeneity of peptides

    NASA Astrophysics Data System (ADS)

    Khatri, Bhavin; Yew, Zu Thur; Krivov, Sergei; McLeish, Tom; Paci, Emanuele

    2010-07-01

    Characterizing the conformational properties and dynamics of biopolymers and their relation to biological activity and function is an ongoing challenge. Single molecule techniques have provided a rich experimental window on these properties, yet they have often relied on simple one-dimensional projections of a multidimensional free energy landscape for a practical interpretation of the results. Here, we study three short peptides with different structural propensity (α helical, β hairpin, and random coil) in the presence (or absence) of a force applied to their ends using Langevin dynamics simulation and an all-atom model with implicit solvation. Each peptide produces fluctuation power spectra with a characteristic dynamic fingerprint consistent with persistent structural motifs of helices, hairpins, and random coils. The spectra for helix formation shows two well-defined relaxation modes, corresponding to local relaxation and cooperative coil to uncoil interconversion. In contrast, both the hairpin and random coil are polymerlike, showing a broad and continuous range of relaxation modes giving characteristic power laws of ω-5/4 and ω-3/2, respectively; the -5/4 power law for hairpins is robust and has not been previously observed. Langevin dynamics simulations of diffusers on a potential of mean force derived from the atomistic simulations fail to reproduce the fingerprints of each peptide motif in the power spectral density, demonstrating explicitly that such information is lacking in such one-dimensional projections. Our results demonstrate the yet unexploited potential of single molecule fluctuation spectroscopy to probe more fine scaled properties of proteins and biological macromolecules and how low dimensional projections may cause the loss of relevant information.

  8. Scanning angle interference microscopy reveals cell dynamics at the nanoscale.

    PubMed

    Paszek, Matthew J; DuFort, Christopher C; Rubashkin, Matthew G; Davidson, Michael W; Thorn, Kurt S; Liphardt, Jan T; Weaver, Valerie M

    2012-07-01

    Emerging questions in cell biology necessitate nanoscale imaging in live cells. Here we present scanning angle interference microscopy, which is capable of localizing fluorescent objects with nanoscale precision along the optical axis in motile cellular structures. We use this approach to resolve nanotopographical features of the cell membrane and cytoskeleton as well as the temporal evolution, three-dimensional architecture and nanoscale dynamics of focal adhesion complexes.

  9. A Dynamical Model Reveals Gene Co-Localizations in Nucleus

    PubMed Central

    Yao, Ye; Lin, Wei; Hennessy, Conor; Fraser, Peter; Feng, Jianfeng

    2011-01-01

    Co-localization of networks of genes in the nucleus is thought to play an important role in determining gene expression patterns. Based upon experimental data, we built a dynamical model to test whether pure diffusion could account for the observed co-localization of genes within a defined subnuclear region. A simple standard Brownian motion model in two and three dimensions shows that preferential co-localization is possible for co-regulated genes without any direct interaction, and suggests the occurrence may be due to a limitation in the number of available transcription factors. Experimental data of chromatin movements demonstrates that fractional rather than standard Brownian motion is more appropriate to model gene mobilizations, and we tested our dynamical model against recent static experimental data, using a sub-diffusion process by which the genes tend to colocalize more easily. Moreover, in order to compare our model with recently obtained experimental data, we studied the association level between genes and factors, and presented data supporting the validation of this dynamic model. As further applications of our model, we applied it to test against more biological observations. We found that increasing transcription factor number, rather than factory number and nucleus size, might be the reason for decreasing gene co-localization. In the scenario of frequency- or amplitude-modulation of transcription factors, our model predicted that frequency-modulation may increase the co-localization between its targeted genes. PMID:21760760

  10. Optogenetic perturbations reveal the dynamics of an oculomotor integrator

    PubMed Central

    Gonçalves, Pedro J.; Arrenberg, Aristides B.; Hablitzel, Bastian; Baier, Herwig; Machens, Christian K.

    2014-01-01

    Many neural systems can store short-term information in persistently firing neurons. Such persistent activity is believed to be maintained by recurrent feedback among neurons. This hypothesis has been fleshed out in detail for the oculomotor integrator (OI) for which the so-called “line attractor” network model can explain a large set of observations. Here we show that there is a plethora of such models, distinguished by the relative strength of recurrent excitation and inhibition. In each model, the firing rates of the neurons relax toward the persistent activity states. The dynamics of relaxation can be quite different, however, and depend on the levels of recurrent excitation and inhibition. To identify the correct model, we directly measure these relaxation dynamics by performing optogenetic perturbations in the OI of zebrafish expressing halorhodopsin or channelrhodopsin. We show that instantaneous, inhibitory stimulations of the OI lead to persistent, centripetal eye position changes ipsilateral to the stimulation. Excitatory stimulations similarly cause centripetal eye position changes, yet only contralateral to the stimulation. These results show that the dynamics of the OI are organized around a central attractor state—the null position of the eyes—which stabilizes the system against random perturbations. Our results pose new constraints on the circuit connectivity of the system and provide new insights into the mechanisms underlying persistent activity. PMID:24616666

  11. Dynamic Monitoring Reveals Motor Task Characteristics in Prehistoric Technical Gestures

    PubMed Central

    Pfleging, Johannes; Stücheli, Marius; Iovita, Radu; Buchli, Jonas

    2015-01-01

    Reconstructing ancient technical gestures associated with simple tool actions is crucial for understanding the co-evolution of the human forelimb and its associated control-related cognitive functions on the one hand, and of the human technological arsenal on the other hand. Although the topic of gesture is an old one in Paleolithic archaeology and in anthropology in general, very few studies have taken advantage of the new technologies from the science of kinematics in order to improve replicative experimental protocols. Recent work in paleoanthropology has shown the potential of monitored replicative experiments to reconstruct tool-use-related motions through the study of fossil bones, but so far comparatively little has been done to examine the dynamics of the tool itself. In this paper, we demonstrate that we can statistically differentiate gestures used in a simple scraping task through dynamic monitoring. Dynamics combines kinematics (position, orientation, and speed) with contact mechanical parameters (force and torque). Taken together, these parameters are important because they play a role in the formation of a visible archaeological signature, use-wear. We present our new affordable, yet precise methodology for measuring the dynamics of a simple hide-scraping task, carried out using a pull-to (PT) and a push-away (PA) gesture. A strain gage force sensor combined with a visual tag tracking system records force, torque, as well as position and orientation of hafted flint stone tools. The set-up allows switching between two tool configurations, one with distal and the other one with perpendicular hafting of the scrapers, to allow for ethnographically plausible reconstructions. The data show statistically significant differences between the two gestures: scraping away from the body (PA) generates higher shearing forces, but requires greater hand torque. Moreover, most benchmarks associated with the PA gesture are more highly variable than in the PT gesture

  12. Dynamic Monitoring Reveals Motor Task Characteristics in Prehistoric Technical Gestures.

    PubMed

    Pfleging, Johannes; Stücheli, Marius; Iovita, Radu; Buchli, Jonas

    2015-01-01

    Reconstructing ancient technical gestures associated with simple tool actions is crucial for understanding the co-evolution of the human forelimb and its associated control-related cognitive functions on the one hand, and of the human technological arsenal on the other hand. Although the topic of gesture is an old one in Paleolithic archaeology and in anthropology in general, very few studies have taken advantage of the new technologies from the science of kinematics in order to improve replicative experimental protocols. Recent work in paleoanthropology has shown the potential of monitored replicative experiments to reconstruct tool-use-related motions through the study of fossil bones, but so far comparatively little has been done to examine the dynamics of the tool itself. In this paper, we demonstrate that we can statistically differentiate gestures used in a simple scraping task through dynamic monitoring. Dynamics combines kinematics (position, orientation, and speed) with contact mechanical parameters (force and torque). Taken together, these parameters are important because they play a role in the formation of a visible archaeological signature, use-wear. We present our new affordable, yet precise methodology for measuring the dynamics of a simple hide-scraping task, carried out using a pull-to (PT) and a push-away (PA) gesture. A strain gage force sensor combined with a visual tag tracking system records force, torque, as well as position and orientation of hafted flint stone tools. The set-up allows switching between two tool configurations, one with distal and the other one with perpendicular hafting of the scrapers, to allow for ethnographically plausible reconstructions. The data show statistically significant differences between the two gestures: scraping away from the body (PA) generates higher shearing forces, but requires greater hand torque. Moreover, most benchmarks associated with the PA gesture are more highly variable than in the PT gesture

  13. Dynamics of the Wulong Landslide Revealed by Broadband Seismic Records

    NASA Astrophysics Data System (ADS)

    Huang, X.; Dan, Y.

    2016-12-01

    Long-period seismic signals are frequently used to trace the dynamic process of large scale landslides. The catastrophic WuLong landslide occurred at 14:51 on 5 June 2009 (Beijing time, UTC+8) in Wulong Prefecture, Southwest China. The topography in landslide area varies dramatically, enhancing the complexity in its movement characteristics. The mass started sliding northward on the upper part of the cliff located upon the west slope of the Tiejianggou gully, and shifted its movement direction to northeastward after being blocked by stable bedrock in front, leaving a scratch zone. The sliding mass then moved downward along the west slope of the gully until it collided with the east slope, and broke up into small pieces after the collision, forming a debris flow along the gully. We use long-period seismic signals extracted from eight broadband seismic stations within 250 km of the landslide to estimate its source time functions. Combining with topographic surveys done before and after the event, we can also resolve kinematic parameters of sliding mass, i.e. velocities, displacements and trajectories, perfectly characterizing its movement features. The runout trajectory deduced from source time functions is consistent with the sliding path, including two direction changing processes, corresponding to scratching the western bedrock and collision with the east slope respectively. Topographic variations can be reflected from estimated velocities. The maximum velocity of the sliding mass reaches 35 m/s before the collision with the east slope of the Tiejianggou gully, resulting from the height difference between the source zone and the deposition zone. What is important is that dynamics of scratching and collision can be characterized by source time functions. Our results confirm that long-period seismic signals are sufficient to characterize dynamics and kinematics of large scale landslides which occur in a region with complex topography.

  14. Differential DNase I hypersensitivity reveals factor-dependent chromatin dynamics

    PubMed Central

    He, Housheng Hansen; Meyer, Clifford A.; Chen, Mei Wei; Brown, Myles; Liu, X. Shirley

    2012-01-01

    Transcription factor cistromes are highly cell-type specific. Chromatin accessibility, histone modifications, and nucleosome occupancy have all been found to play a role in defining these binding locations. Here, we show that hormone-induced DNase I hypersensitivity changes (ΔDHS) are highly predictive of androgen receptor (AR) and estrogen receptor 1 (ESR1) binding in prostate cancer and breast cancer cells, respectively. While chromatin structure prior to receptor binding and nucleosome occupancy after binding are strikingly different for ESR1 and AR, ΔDHS is highly predictive for both. AR binding is associated with changes in both local nucleosome occupancy and DNase I hypersensitivity. In contrast, while global ESR1 binding is unrelated to changes in nucleosome occupancy, DNase I hypersensitivity dynamics are also predictive of the ESR1 cistrome. These findings suggest that AR and ESR1 have distinct modes of interaction with chromatin and that DNase I hypersensitivity dynamics provides a general approach for predicting cell-type specific cistromes. PMID:22508765

  15. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    NASA Astrophysics Data System (ADS)

    Stingaciu, Laura-Roxana; O’Neill, Hugh; Liberton, Michelle; Urban, Volker S.; Pakrasi, Himadri B.; Ohl, Michael

    2016-01-01

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membranes in terms of their flexibility and motion during the photosynthetic process. We present a direct observation of thylakoid membrane undulatory motion in vivo and show a connection between membrane mobility and photosynthetic activity. High-resolution inelastic neutron scattering experiments on the cyanobacterium Synechocystis sp. PCC 6803 assessed the flexibility of cyanobacterial thylakoid membrane sheets and the dependence of the membranes on illumination conditions. We observed softer thylakoid membranes in the dark that have three-to four fold excess mobility compared to membranes under high light conditions. Our analysis indicates that electron transfer between photosynthetic reaction centers and the associated electrochemical proton gradient across the thylakoid membrane result in a significant driving force for excess membrane dynamics. These observations provide a deeper understanding of the relationship between photosynthesis and cellular architecture.

  16. Photon echo spectroscopy reveals structure-dynamics relationships in carotenoids

    NASA Astrophysics Data System (ADS)

    Christensson, N.; Polivka, T.; Yartsev, A.; Pullerits, T.

    2009-06-01

    Based on simultaneous analysis of the frequency-resolved transient grating, peak shift, and echo width signals, we present a model for the third-order optical response of carotenoids including population dynamics and system-bath interactions. Our frequency-resolved photon echo experiments show that the model needs to incorporate the excited-state absorption from both the S2 and the S1 states. We apply our model to analyze the experimental results on astaxanthin and lycopene, aiming to elucidate the relation between structure and system-bath interactions. Our analysis allows us to relate structural motifs to changes in the energy-gap correlation functions. We find that the terminal rings of astaxanthin lead to increased coupling between slow molecular motions and the electronic transition. We also find evidence for stronger coupling to higher frequency overdamped modes in astaxanthin, pointing to the importance of the functional groups in providing coupling to fluctuations influencing the dynamics in the passage through the conical intersection governing the S2-S1 relaxation.

  17. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    DOE PAGES

    Stingaciu, Laura-Roxana; O’Neill, Hugh; Liberton, Michelle; ...

    2016-01-21

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membranes in terms of their flexibility and motion during the photosynthetic process. Here, we present a direct observation of thylakoid membrane undulatory motion in vivo and show a connection between membrane mobility and photosynthetic activity.more » High-resolution inelastic neutron scattering experiments on the cyanobacterium Synechocystis sp. PCC 6803 assessed the flexibility of cyanobacterial thylakoid membrane sheets and the dependence of the membranes on illumination conditions. Moreover, we observed softer thylakoid membranes in the dark that have three-to four fold excess mobility compared to membranes under high light conditions. Finally, our analysis indicates that electron transfer between photosynthetic reaction centers and the associated electrochemical proton gradient across the thylakoid membrane result in a significant driving force for excess membrane dynamics. These observations provide a deeper understanding of the relationship between photosynthesis and cellular architecture.« less

  18. Genomic analysis of regulatory network dynamics reveals large topological changes

    NASA Astrophysics Data System (ADS)

    Luscombe, Nicholas M.; Madan Babu, M.; Yu, Haiyuan; Snyder, Michael; Teichmann, Sarah A.; Gerstein, Mark

    2004-09-01

    Network analysis has been applied widely, providing a unifying language to describe disparate systems ranging from social interactions to power grids. It has recently been used in molecular biology, but so far the resulting networks have only been analysed statically. Here we present the dynamics of a biological network on a genomic scale, by integrating transcriptional regulatory information and gene-expression data for multiple conditions in Saccharomyces cerevisiae. We develop an approach for the statistical analysis of network dynamics, called SANDY, combining well-known global topological measures, local motifs and newly derived statistics. We uncover large changes in underlying network architecture that are unexpected given current viewpoints and random simulations. In response to diverse stimuli, transcription factors alter their interactions to varying degrees, thereby rewiring the network. A few transcription factors serve as permanent hubs, but most act transiently only during certain conditions. By studying sub-network structures, we show that environmental responses facilitate fast signal propagation (for example, with short regulatory cascades), whereas the cell cycle and sporulation direct temporal progression through multiple stages (for example, with highly inter-connected transcription factors). Indeed, to drive the latter processes forward, phase-specific transcription factors inter-regulate serially, and ubiquitously active transcription factors layer above them in a two-tiered hierarchy. We anticipate that many of the concepts presented here-particularly the large-scale topological changes and hub transience-will apply to other biological networks, including complex sub-systems in higher eukaryotes.

  19. GRACE storage-runoff hystereses reveal the dynamics of ...

    EPA Pesticide Factsheets

    Watersheds function as integrated systems where climate and geology govern the movement of water. In situ instrumentation can provide local-scale insights into the non-linear relationship between streamflow and water stored in a watershed as snow, soil moisture, and groundwater. However, there is a poor understanding of these processes at the regional scale—primarily because of our inability to measure water stores and fluxes in the subsurface. Now NASA’s Gravity Recovery and Climate Experiment (GRACE) satellites quantify changes in the amount of water stored across and through the Earth, providing measurements of regional hydrologic behavior. Here we apply GRACE data to characterize for the first time how regional watersheds function as simple, dynamic systems through a series of hysteresis loops. While the physical processes underlying the loops are inherently complex, the vertical integration of terrestrial water in the GRACE signal provides process-based insights into the dynamic and non-linear function of regional-scale watersheds. We use this process-based understanding with GRACE data to effectively forecast seasonal runoff (mean R2 of 0.91) and monthly runoff (mean R2 of 0.77) in three regional-scale watersheds (>150,000 km2) of the Columbia River Basin, USA. Data from the Gravity Recovery and Climate Experiment (GRACE) satellites provide a novel dataset for understanding changes in the amount of water stored across and through the surface of the Ear

  20. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    SciTech Connect

    Stingaciu, Laura-Roxana; O’Neill, Hugh; Urban, Volker S.; Ohl, Michael

    2016-01-21

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membranes in terms of their flexibility and motion during the photosynthetic process. Here, we present a direct observation of thylakoid membrane undulatory motion in vivo and show a connection between membrane mobility and photosynthetic activity. High-resolution inelastic neutron scattering experiments on the cyanobacterium Synechocystis sp. PCC 6803 assessed the flexibility of cyanobacterial thylakoid membrane sheets and the dependence of the membranes on illumination conditions. Moreover, we observed softer thylakoid membranes in the dark that have three-to four fold excess mobility compared to membranes under high light conditions. Finally, our analysis indicates that electron transfer between photosynthetic reaction centers and the associated electrochemical proton gradient across the thylakoid membrane result in a significant driving force for excess membrane dynamics. These observations provide a deeper understanding of the relationship between photosynthesis and cellular architecture.

  1. Genomic analysis of regulatory network dynamics reveals large topological changes.

    PubMed

    Luscombe, Nicholas M; Babu, M Madan; Yu, Haiyuan; Snyder, Michael; Teichmann, Sarah A; Gerstein, Mark

    2004-09-16

    Network analysis has been applied widely, providing a unifying language to describe disparate systems ranging from social interactions to power grids. It has recently been used in molecular biology, but so far the resulting networks have only been analysed statically. Here we present the dynamics of a biological network on a genomic scale, by integrating transcriptional regulatory information and gene-expression data for multiple conditions in Saccharomyces cerevisiae. We develop an approach for the statistical analysis of network dynamics, called SANDY, combining well-known global topological measures, local motifs and newly derived statistics. We uncover large changes in underlying network architecture that are unexpected given current viewpoints and random simulations. In response to diverse stimuli, transcription factors alter their interactions to varying degrees, thereby rewiring the network. A few transcription factors serve as permanent hubs, but most act transiently only during certain conditions. By studying sub-network structures, we show that environmental responses facilitate fast signal propagation (for example, with short regulatory cascades), whereas the cell cycle and sporulation direct temporal progression through multiple stages (for example, with highly inter-connected transcription factors). Indeed, to drive the latter processes forward, phase-specific transcription factors inter-regulate serially, and ubiquitously active transcription factors layer above them in a two-tiered hierarchy. We anticipate that many of the concepts presented here--particularly the large-scale topological changes and hub transience--will apply to other biological networks, including complex sub-systems in higher eukaryotes.

  2. Invisible Electronic States and Their Dynamics Revealed by Perturbations

    NASA Astrophysics Data System (ADS)

    Merer, Anthony J.

    2011-06-01

    Sooner or later everyone working in the field of spectroscopy encounters perturbations. These can range in size from a small shift of a single rotational level to total destruction of the vibrational and rotational patterns of an electronic state. To some workers perturbations are a source of terror, but to others they are the most fascinating features of molecular spectra, because they give information about molecular dynamics, and about states that would otherwise be invisible as a result of unfavorable selection rules. An example of the latter is the essentially complete characterization of the tilde{b}^3A_2 state of SO_2 from the vibronic perturbations it causes in the tilde{a}^3B_1 state. The S_1-trans state of acetylene is a beautiful example of dynamics in action. The level patterns of the three bending vibrations change dramatically with increasing vibrational excitation as a result of the vibrational angular momentum and the approach to the isomerization barrier. Several vibrational levels of the S_1-cis isomer, previously thought to be unobservable, can now be assigned. They obtain their intensity through interactions with nearby levels of the trans isomer.

  3. Charge-dependent conformations and dynamics of pamam dendrimers revealed by neutron scattering and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Bin

    spatial instrumental scales, understanding experimental results involves extensive and difficult data analysis based on liquid theory and condensed matter physics. Therefore, a model that successfully describes the inter- and intra-dendrimer correlations is crucial in obtaining and delivering reliable information. On the other hand, making meaningful comparisons between molecular dynamics and neutron scattering is a fundamental challenge to link simulations and experiments at the nano-scale. This challenge stems from our approach to utilize MD simulation to explain the underlying mechanism of experimental observation. The SANS measurements were conducted on a series of SANS spectrometers including the Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) and the General-Purpose Small-Angle Neutron Scattering Diffractometer (GP-SANS) at the Oak Ridge National Laboratory (ORNL), and NG7 Small Angle Neutron Scattering Spectrometer at National Institute of Standards (NIST) and Technology in U.S.A., large dynamic range small-angle diffractometer D22 at Institut Laue-Langevin (ILL) in France, and 40m-SANS Spectrometer at Korea Atomic Energy Research Institute (KAERI) in Korea. On the other hand, the Amber molecular dynamics simulation package is utilized to carry out the computational study. In this dissertation, the following observations have been revealed. The previously developed theoretical model for polyelectrolyte dendrimers are adopted to analyze SANS measurements and superb model fitting quality is found. Coupling with advanced contrast variation small angle neutron scattering (CVSANS) data analysis scheme reported recently, the intra-dendrimer hydration and hydrocarbon components distributions are revealed experimentally. The results indeed indicate that the maximum density is located in the molecular center rather than periphery, which is consistent to previous SANS studies and the back-folding picture of PAMAM dendrimers. According to this picture

  4. Shapiro like steps reveals molecular nanomagnets’ spin dynamics

    SciTech Connect

    Abdollahipour, Babak; Abouie, Jahanfar Ebrahimi, Navid

    2015-09-15

    We present an accurate way to detect spin dynamics of a nutating molecular nanomagnet by inserting it in a tunnel Josephson junction and studying the current voltage (I-V) characteristic. The spin nutation of the molecular nanomagnet is generated by applying two circularly polarized magnetic fields. We demonstrate that modulation of the Josephson current by the nutation of the molecular nanomagnet’s spin appears as a stepwise structure like Shapiro steps in the I-V characteristic of the junction. Width and heights of these Shapiro-like steps are determined by two parameters of the spin nutation, frequency and amplitude of the nutation, which are simply tuned by the applied magnetic fields.

  5. Revealing the dynamics of polymicrobial infections: implications for antibiotic therapy

    PubMed Central

    Rogers, Geraint B.; Hoffman, Lucas R.; Whiteley, Marvin; Daniels, Thomas W.V.; Carroll, Mary P.; Bruce, Kenneth D.

    2011-01-01

    As a new generation of culture-independent analytical strategies emerge, the amount of data on polymicrobial infections will increase dramatically. For these data to inform clinical thinking, and in turn to maximise benefits for patients, an appropriate framework for their interpretation is required. Here, we use cystic fibrosis (CF) lower airway infections as a model system to examine how conceptual and technological advances can address two clinical questions that are central to improved management of CF respiratory disease. Firstly, can markers of the microbial community be identified that predict a change in infection dynamics and clinical outcomes? Secondly, can these new strategies directly characterize the impact of antimicrobial therapies, allowing treatment efficacy to be both assessed and optimized? PMID:20554204

  6. Bacterial associations reveal spatial population dynamics in Anopheles gambiae mosquitoes

    PubMed Central

    Buck, Moritz; Nilsson, Louise K. J.; Brunius, Carl; Dabiré, Roch K.; Hopkins, Richard; Terenius, Olle

    2016-01-01

    The intolerable burden of malaria has for too long plagued humanity and the prospect of eradicating malaria is an optimistic, but reachable, target in the 21st century. However, extensive knowledge is needed about the spatial structure of mosquito populations in order to develop effective interventions against malaria transmission. We hypothesized that the microbiota associated with a mosquito reflects acquisition of bacteria in different environments. By analyzing the whole-body bacterial flora of An. gambiae mosquitoes from Burkina Faso by 16 S amplicon sequencing, we found that the different environments gave each mosquito a specific bacterial profile. In addition, the bacterial profiles provided precise and predicting information on the spatial dynamics of the mosquito population as a whole and showed that the mosquitoes formed clear local populations within a meta-population network. We believe that using microbiotas as proxies for population structures will greatly aid improving the performance of vector interventions around the world. PMID:26960555

  7. Imaging of Cell-Cell Communication in a Vertical Orientation Reveals High-Resolution Structure of Immunological Synapse and Novel PD-1 Dynamics

    PubMed Central

    Jang, Joon Hee; Huang, Yu; Zheng, Peilin; Jo, Myeong Chan; Bertolet, Grant; Qin, Lidong; Liu, Dongfang

    2015-01-01

    The immunological synapse (IS) is one of the most pivotal communication strategies in immune cells. Understanding the molecular basis of the IS provides critical information regarding how immune cells mount an effective immune response. Fluorescence microscopy provides a fundamental tool to study the IS. However, current imaging techniques for studying the IS cannot sufficiently achieve high resolution in real cell-cell conjugates. Here we present a new device that allows for high-resolution imaging of the IS with conventional confocal microscopy in a high-throughput manner. Combining micropits and single cell trap arrays, we have developed a new microfluidic platform that allows visualization of the IS in vertically “stacked” cells. Using this vertical cell pairing (VCP) system, we investigated the dynamics of the inhibitory synapse mediated by an inhibitory receptor, programed death protein-1 (PD-1) and the cytotoxic synapse at the single cell level. In addition to the technique innovation, we demonstrated novel biological findings by this VCP device, including novel distribution of F-actin and cytolytic granules at the IS, PD-1 microclusters in the NK IS, and kinetics of cytotoxicity. We propose that this high-throughput, cost-effective, easy-to-use VCP system, along with conventional imaging techniques, can be used to address a number of significant biological questions in a variety of disciplines. PMID:26123352

  8. Epitope flexibility and dynamic footprint revealed by molecular dynamics of a pMHC-TCR complex.

    PubMed

    Reboul, Cyril F; Meyer, Grischa R; Porebski, Benjamin T; Borg, Natalie A; Buckle, Ashley M

    2012-01-01

    The crystal structures of unliganded and liganded pMHC molecules provide a structural basis for TCR recognition yet they represent 'snapshots' and offer limited insight into dynamics that may be important for interaction and T cell activation. MHC molecules HLA-B*3501 and HLA-B*3508 both bind a 13 mer viral peptide (LPEP) yet only HLA-B*3508-LPEP induces a CTL response characterised by the dominant TCR clonetype SB27. HLA-B*3508-LPEP forms a tight and long-lived complex with SB27, but the relatively weak interaction between HLA-B*3501-LPEP and SB27 fails to trigger an immune response. HLA-B*3501 and HLA-B*3508 differ by only one amino acid (L/R156) located on α2-helix, but this does not alter the MHC or peptide structure nor does this polymorphic residue interact with the peptide or SB27. In the absence of a structural rationalisation for the differences in TCR engagement we performed a molecular dynamics study of both pMHC complexes and HLA-B*3508-LPEP in complex with SB27. This reveals that the high flexibility of the peptide in HLA-B*3501 compared to HLA-B*3508, which was not apparent in the crystal structure alone, may have an under-appreciated role in SB27 recognition. The TCR pivots atop peptide residues 6-9 and makes transient MHC contacts that extend those observed in the crystal structure. Thus MD offers an insight into 'scanning' mechanism of SB27 that extends the role of the germline encoded CDR2α and CDR2β loops. Our data are consistent with the vast body of experimental observations for the pMHC-LPEP-SB27 interaction and provide additional insights not accessible using crystallography.

  9. Epitope Flexibility and Dynamic Footprint Revealed by Molecular Dynamics of a pMHC-TCR Complex

    PubMed Central

    Porebski, Benjamin T.; Borg, Natalie A.; Buckle, Ashley M.

    2012-01-01

    The crystal structures of unliganded and liganded pMHC molecules provide a structural basis for TCR recognition yet they represent ‘snapshots’ and offer limited insight into dynamics that may be important for interaction and T cell activation. MHC molecules HLA-B*3501 and HLA-B*3508 both bind a 13 mer viral peptide (LPEP) yet only HLA-B*3508-LPEP induces a CTL response characterised by the dominant TCR clonetype SB27. HLA-B*3508-LPEP forms a tight and long-lived complex with SB27, but the relatively weak interaction between HLA-B*3501-LPEP and SB27 fails to trigger an immune response. HLA-B*3501 and HLA-B*3508 differ by only one amino acid (L/R156) located on α2-helix, but this does not alter the MHC or peptide structure nor does this polymorphic residue interact with the peptide or SB27. In the absence of a structural rationalisation for the differences in TCR engagement we performed a molecular dynamics study of both pMHC complexes and HLA-B*3508-LPEP in complex with SB27. This reveals that the high flexibility of the peptide in HLA-B*3501 compared to HLA-B*3508, which was not apparent in the crystal structure alone, may have an under-appreciated role in SB27 recognition. The TCR pivots atop peptide residues 6–9 and makes transient MHC contacts that extend those observed in the crystal structure. Thus MD offers an insight into ‘scanning’ mechanism of SB27 that extends the role of the germline encoded CDR2α and CDR2β loops. Our data are consistent with the vast body of experimental observations for the pMHC-LPEP-SB27 interaction and provide additional insights not accessible using crystallography. PMID:22412359

  10. The complexity of gene expression dynamics revealed by permutation entropy

    PubMed Central

    2010-01-01

    Background High complexity is considered a hallmark of living systems. Here we investigate the complexity of temporal gene expression patterns using the concept of Permutation Entropy (PE) first introduced in dynamical systems theory. The analysis of gene expression data has so far focused primarily on the identification of differentially expressed genes, or on the elucidation of pathway and regulatory relationships. We aim to study gene expression time series data from the viewpoint of complexity. Results Applying the PE complexity metric to abiotic stress response time series data in Arabidopsis thaliana, genes involved in stress response and signaling were found to be associated with the highest complexity not only under stress, but surprisingly, also under reference, non-stress conditions. Genes with house-keeping functions exhibited lower PE complexity. Compared to reference conditions, the PE of temporal gene expression patterns generally increased upon stress exposure. High-complexity genes were found to have longer upstream intergenic regions and more cis-regulatory motifs in their promoter regions indicative of a more complex regulatory apparatus needed to orchestrate their expression, and to be associated with higher correlation network connectivity degree. Arabidopsis genes also present in other plant species were observed to exhibit decreased PE complexity compared to Arabidopsis specific genes. Conclusions We show that Permutation Entropy is a simple yet robust and powerful approach to identify temporal gene expression profiles of varying complexity that is equally applicable to other types of molecular profile data. PMID:21176199

  11. Indole Localization in an Explicit Bilayer Revealed via Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Norman, Kristen

    2005-11-01

    It is well known that the amino-acid tryptophan is particularly stable in the interfacial region of biological membranes, and this preference is a property of the tryptophan side-chain. Analogues of this side-chain, such as indole, strongly localize in the interfacial region, especially near the glycerol moiety of the lipids in the bilayer. Using molecular dynamics calculations, we determine the potential of mean force (PMF) for indoles in the bilayer. We compare the calculated PMF for indole with that of benzene to show that exclusion from the center of the lipid bilayer does not occur in all aromatics, but is strong in indoles. We find three minima in the PMF. Indole is most stabilized near the glycerol moiety. A weaker binding location is found near the choline groups of the lipid molecules. An even weaker binding side is found near the center of the lipid hydrocarbon core. Comparisions between uncharged, weakly charged, and highly charged indoles demonstrate that the exclusion is caused by the charge distribution on the indole rather than the ``lipo-phobic'' effect. High temperature simulations are used to determine the relative contribution of enthalpy and entropy to indole localization. The orientation of indole is found to be largely charge independent and is a strong function of depth within the bilayer. We find good agreement between simulated SCD order parameters for indole and experimentally determined order parameters.

  12. Dynamic Zebrafish Interactome Reveals Transcriptional Mechanisms of Dioxin Toxicity

    PubMed Central

    Alexeyenko, Andrey; Wassenberg, Deena M.; Lobenhofer, Edward K.; Yen, Jerry; Linney, Elwood; Sonnhammer, Erik L. L.; Meyer, Joel N.

    2010-01-01

    Background In order to generate hypotheses regarding the mechanisms by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) causes toxicity, we analyzed global gene expression changes in developing zebrafish embryos exposed to this potent toxicant in the context of a dynamic gene network. For this purpose, we also computationally inferred a zebrafish (Danio rerio) interactome based on orthologs and interaction data from other eukaryotes. Methodology/Principal Findings Using novel computational tools to analyze this interactome, we distinguished between dioxin-dependent and dioxin-independent interactions between proteins, and tracked the temporal propagation of dioxin-dependent transcriptional changes from a few genes that were altered initially, to large groups of biologically coherent genes at later times. The most notable processes altered at later developmental stages were calcium and iron metabolism, embryonic morphogenesis including neuronal and retinal development, a variety of mitochondria-related functions, and generalized stress response (not including induction of antioxidant genes). Within the interactome, many of these responses were connected to cytochrome P4501A (cyp1a) as well as other genes that were dioxin-regulated one day after exposure. This suggests that cyp1a may play a key role initiating the toxic dysregulation of those processes, rather than serving simply as a passive marker of dioxin exposure, as suggested by earlier research. Conclusions/Significance Thus, a powerful microarray experiment coupled with a flexible interactome and multi-pronged interactome tools (which are now made publicly available for microarray analysis and related work) suggest the hypothesis that dioxin, best known in fish as a potent cardioteratogen, has many other targets. Many of these types of toxicity have been observed in mammalian species and are potentially caused by alterations to cyp1a. PMID:20463971

  13. Structures of carboxylic acid reductase reveal domain dynamics underlying catalysis.

    PubMed

    Gahloth, Deepankar; Dunstan, Mark S; Quaglia, Daniela; Klumbys, Evaldas; Lockhart-Cairns, Michael P; Hill, Andrew M; Derrington, Sasha R; Scrutton, Nigel S; Turner, Nicholas J; Leys, David

    2017-09-01

    Carboxylic acid reductase (CAR) catalyzes the ATP- and NADPH-dependent reduction of carboxylic acids to the corresponding aldehydes. The enzyme is related to the nonribosomal peptide synthetases, consisting of an adenylation domain fused via a peptidyl carrier protein (PCP) to a reductase termination domain. Crystal structures of the CAR adenylation-PCP didomain demonstrate that large-scale domain motions occur between the adenylation and thiolation states. Crystal structures of the PCP-reductase didomain reveal that phosphopantetheine binding alters the orientation of a key Asp, resulting in a productive orientation of the bound nicotinamide. This ensures that further reduction of the aldehyde product does not occur. Combining crystallography with small-angle X-ray scattering (SAXS), we propose that molecular interactions between initiation and termination domains are limited to competing PCP docking sites. This theory is supported by the fact that (R)-pantetheine can support CAR activity for mixtures of the isolated domains. Our model suggests directions for further development of CAR as a biocatalyst.

  14. Timetree of Aselloidea reveals species diversification dynamics in groundwater.

    PubMed

    Morvan, Claire; Malard, Florian; Paradis, Emmanuel; Lefébure, Tristan; Konecny-Dupré, Lara; Douady, Christophe J

    2013-07-01

    A key challenge for biologists is to document and explain global patterns of diversification in a wide range of environments. Here, we explore patterns of continental-scale diversification in a groundwater species-rich clade, the superfamily Aselloidea (Pancrustacea: Isopoda). Our analyses supported a constant diversification rate during most of the course of Aselloidea evolution, until 4-15 Ma when diversification rates started to decrease. This constant accumulation of lineages challenges the view that groundwater species diversification in temperate regions might have been primarily driven by major changes in physical environment leading to the extinction of surface populations and subsequent synchronous isolation of multiple groundwater populations. Rather than acting synchronously over broad geographic regions, factors causing extinction of surface populations and subsequent reproductive isolation of groundwater populations may act in a local and asynchronous manner, thereby resulting in a constant speciation rate over time. Our phylogeny also revealed several cases of parapatric distributions among closely related surface-water and groundwater species suggesting that species diversification could also arise from a process of disruptive selection along the surface-subterranean environmental gradient. Our results call for re-evaluating the spatial scale and timing of factors causing diversification events in groundwater.

  15. Dynamical analysis reveals individuality of locomotion in goldfish.

    PubMed

    Neumeister, H; Cellucci, C J; Rapp, P E; Korn, H; Faber, D S

    2004-02-01

    Goldfish swimming was analysed quantitatively to determine if it exhibits distinctive individual spatio-temporal patterns. Due to the inherent variability in fish locomotion, this hypothesis was tested using five nonlinear measures, complemented by mean velocity. A library was constructed of 75 trajectories, each of 5 min duration, acquired from five fish swimming in a constant and relatively homogeneous environment. Three nonlinear measures, the 'characteristic fractal dimension' and 'Richardson dimension', both quantifying the degree to which a trajectory departs from a straight line, and 'relative dispersion', characterizing the variance as a function of the duration, have coefficients of variation less than 7%, in contrast to mean velocity (30%). A discriminant analysis, or classification system, based on all six measures revealed that trajectories are indeed highly individualistic, with the probability that any two trajectories generated from different fish are equivalent being less than 1%. That is, the combination of these measures allows a given trajectory to be assigned to its source with a high degree of confidence. The Richardson dimension and the 'Hurst exponent', which quantifies persistence, were the most effective measures.

  16. Persistent predator–prey dynamics revealed by mass extinction

    PubMed Central

    Sallan, Lauren Cole; Kammer, Thomas W.; Ausich, William I.; Cook, Lewis A.

    2011-01-01

    Predator–prey interactions are thought by many researchers to define both modern ecosystems and past macroevolutionary events. In modern ecosystems, experimental removal or addition of taxa is often used to determine trophic relationships and predator identity. Both characteristics are notoriously difficult to infer in the fossil record, where evidence of predation is usually limited to damage from failed attacks, individual stomach contents, one-sided escalation, or modern analogs. As a result, the role of predation in macroevolution is often dismissed in favor of competition and abiotic factors. Here we show that the end-Devonian Hangenberg event (359 Mya) was a natural experiment in which vertebrate predators were both removed and added to an otherwise stable prey fauna, revealing specific and persistent trophic interactions. Despite apparently favorable environmental conditions, crinoids diversified only after removal of their vertebrate consumers, exhibiting predatory release on a geological time scale. In contrast, later Mississippian (359–318 Mya) camerate crinoids declined precipitously in the face of increasing predation pressure from new durophagous fishes. Camerate failure is linked to the retention of obsolete defenses or “legacy adaptations” that prevented coevolutionary escalation. Our results suggest that major crinoid evolutionary phenomena, including rapid diversification, faunal turnover, and species selection, might be linked to vertebrate predation. Thus, interactions observed in small ecosystems, such as Lotka-Volterra cycles and trophic cascades, could operate at geologic time scales and higher taxonomic ranks. Both trophic knock-on effects and retention of obsolete traits might be common in the aftermath of predator extinction. PMID:21536875

  17. Oman metamorphic sole formation reveals early subduction dynamics

    NASA Astrophysics Data System (ADS)

    Soret, Mathieu; Agard, Philippe; Dubacq, Benoît; Plunder, Alexis; Ildefonse, Benoît; Yamato, Philippe; Prigent, Cécile

    2016-04-01

    Metamorphic soles correspond to m to ~500m thick tectonic slices welded beneath most of the large-scale ophiolites. They typically show a steep inverted metamorphic structure where the pressure and temperature conditions of crystallization increase upward (from 500±100°C at 0.5±0.2 GPa to 800±100°C at 1.0±0.2 GPa), with isograds subparallel to the contact with the overlying ophiolitic peridotite. The proportion of mafic rocks in metamorphic soles also increases from the bottom (meta-sediments rich) to the top (approaching the ophiolite peridotites). These soles are interpreted as the result of heat transfer from the incipient mantle wedge toward the nascent slab (associated with large-scale fluid transfer and possible shear heating) during the first My of intra-oceanic subduction (as indicated by radiometric ages). Metamorphic soles provide therefore major constraints on early subduction dynamics (i.e., thermal structure, fluid migration and rheology along the nascent slab interface). We present a detailed structural and petrological study of the metamorphic sole from 4 major cross-sections along the Oman ophiolite. We show precise pressure-temperature estimates obtained by pseudosection modelling and EBSD measurements performed on both the garnet-bearing and garnet-free high-grade sole. Results allow quantification of the micro-scale deformation and highlight differences in pressure-temperature-deformation conditions between the 4 different locations, showing that the inverted metamorphic gradient through the sole is not continuous in all locations. Based on these new constraints, we suggest a new tectonic-petrological model for the formation of metamorphic soles below ophiolites. This model involves the stacking of several homogeneous slivers of oceanic crust leading to the present-day structure of the sole. In this view, these thrusts are the result of rheological contrasts between the sole and the peridotite as the plate interface progressively cools down

  18. HUBBLE IMAGES REVEAL A YOUNG STAR'S DYNAMIC DISK AND JETS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These images of HH 30 show changes over only a five-year period in the disk and jets of this newborn star, which is about half a million years old. The pictures were taken between 1995 and 2000 with the Wide Field and Planetary Camera 2 aboard NASA's Hubble Space Telescope. Astronomers are interested in the disk because it is probably similar to the one from which the Sun and the planets in our solar system formed. Hubble reveals an edge-on disk (located at the bottom of the images), which appears as a flattened cloud of dust split into two halves by a dark lane. The disk blocks light from the central star. All that is visible is the reflection of the star's light by dust above and below the plane of the disk. The disk's diameter is 450 astronomical units (one astronomical unit equals the Earth-Sun distance). Shadows billions of miles in size can be seen moving across the disk. In 1995 and 2000, the left and right sides of the disk were about the same brightness, but in 1998 the right side was brighter. These patterns may be caused by bright spots on the star or variations in the disk near the star. The dust cloud near the top of these frames is illuminated by the star and reflects changes in its brightness. The star's magnetic field plays a major role in forming the jets (located above and below the disk), which look like streams of water from a fire hose. The powerful magnetic field creates the jets by channeling gas from the disk along the magnetic poles above and below the star. The gaps between the compact knots of gas seen in the jet above the disk indicate that this is a sporadic process. By tracking the motion of these knots over time, astronomers have measured the jet's speed at between 200,000 to 600,000 miles per hour (160,000 and 960,000 kilometers per hour). Oddly, the jet below the disk is moving twice as fast as the one above it. Credits: NASA, Alan Watson (Universidad Nacional Autonoma de Mexico), Karl Stapelfeldt (Jet Propulsion Laboratory), John

  19. Self-similar multiscale structure of lignin revealed by neutron scattering and molecular dynamics simulation

    SciTech Connect

    Petridis, Loukas; Pingali, Sai Venkatesh; Urban, Volker; Heller, William T; O'Neill, Hugh Michael; Foston, Marcus B; Ragauskas, Arthur J; Smith, Jeremy C

    2011-01-01

    Lignin, a major polymeric component of plant cell walls, forms aggregates in vivo and poses a barrier to cellulosic ethanol production. Here, neutron scattering experiments and molecular dynamics simulations reveal that lignin aggregates are characterized by a surface fractal dimension that is invariant under change of scale from 1 1000 A. The simulations also reveal extensive water penetration of the aggregates and heterogeneous chain dynamics corresponding to a rigid core with a fluid surface.

  20. F-actin assembly in Dictyostelium cell locomotion and shape oscillations propagates as a self-organized reaction-diffusion wave.

    PubMed

    Vicker, Michael G

    2002-01-02

    The crawling locomotion and shape of eukaryotic cells have been associated with the stochastic molecular dynamics of actin and its protein regulators, chiefly Arp2/3 and Rho family GTPases, in making a cytoskeleton meshwork within cell extensions. However, the cell's actin-dependent oscillatory shape and extension dynamics may also yield insights into locomotory mechanisms. Confocal observations of live Dictyostelium cells, expressing a green fluorescent protein-actin fusion protein, demonstrate oscillating supramolecular patterns of filamentous actin throughout the cell, which generate pseudopodia at the cell edge. The distinctively dissipative spatio-temporal behavior of these structures provides strong evidence that reversible actin filament assembly propagates as a self-organized, chemical reaction-diffusion wave.

  1. A synthetic mechano-growth factor E peptide promotes rat tenocyte migration by lessening cell stiffness and increasing F-actin formation via the FAK-ERK1/2 signaling pathway

    SciTech Connect

    Zhang, Bingyu; Luo, Qing; Mao, Xinjian; Xu, Baiyao; Yang, Li; Ju, Yang; Song, Guanbin

    2014-03-10

    Tendon injuries are common in sports and are frequent reasons for orthopedic consultations. The management of damaged tendons is one of the most challenging problems in orthopedics. Mechano-growth factor (MGF), a recently discovered growth repair factor, plays positive roles in tissue repair through the improvement of cell proliferation and migration and the protection of cells against injury-induced apoptosis. However, it remains unclear whether MGF has the potential to accelerate tendon repair. We used a scratch wound assay in this study to demonstrate that MGF-C25E (a synthetic mechano-growth factor E peptide) promotes the migration of rat tenocytes and that this promotion is accompanied by an elevation in the expression of the following signaling molecules: focal adhesion kinase (FAK) and extracellular signal regulated kinase1/2 (ERK1/2). Inhibitors of the FAK and ERK1/2 pathways inhibited the MGF-C25E-induced tenocyte migration, indicating that MGF-C25E promotes tenocyte migration through the FAK-ERK1/2 signaling pathway. The analysis of the mechanical properties showed that the Young's modulus of tenocytes was decreased through treatment of MGF-C25E, and an obvious formation of pseudopodia and F-actin was observed in MGF-C25E-treated tenocytes. The inhibition of the FAK or ERK1/2 signals restored the decrease in Young's modulus and inhibited the formation of pseudopodia and F-actin. Overall, our study demonstrated that MGF-C25E promotes rat tenocyte migration by lessening cell stiffness and increasing pseudopodia formation via the FAK-ERK1/2 signaling pathway. - Highlights: • Mechano-growth factor E peptide (MGF-C25E) promotes migration of rat tenocytes. • MGF-C25E activates the FAK-ERK1/2 pathway in rat tenocytes. • MGF-C25E induces the actin remodeling and the formation of pseudopodia, and decreases the stiffness in rat tenocytes. • MGF-C25E promotes tenocyte migration via altering stiffness and forming pseudopodia by the activation of the FAK-ERK1

  2. An Arabidopsis E3 Ligase, SHOOT GRAVITROPISM9, Modulates the Interaction between Statoliths and F-Actin in Gravity Sensing[W][OA

    PubMed Central

    Nakamura, Moritaka; Toyota, Masatsugu; Tasaka, Masao; Morita, Miyo Terao

    2011-01-01

    Higher plants use the sedimentation of amyloplasts in statocytes as statolith to sense the direction of gravity during gravitropism. In Arabidopsis thaliana inflorescence stem statocyte, amyloplasts are in complex movement; some show jumping-like saltatory movement and some tend to sediment toward the gravity direction. Here, we report that a RING-type E3 ligase SHOOT GRAVITROPISM9 (SGR9) localized to amyloplasts modulates amyloplast dynamics. In the sgr9 mutant, which exhibits reduced gravitropism, amyloplasts did not sediment but exhibited increased saltatory movement. Amyloplasts sometimes formed a cluster that is abnormally entangled with actin filaments (AFs) in sgr9. By contrast, in the fiz1 mutant, an ACT8 semidominant mutant that induces fragmentation of AFs, amyloplasts, lost saltatory movement and sedimented with nearly statically. Both treatment with Latrunculin B, an inhibitor of AF polymerization, and the fiz1 mutation rescued the gravitropic defect of sgr9. In addition, fiz1 decreased saltatory movement and induced amyloplast sedimentation even in sgr9. Our results suggest that amyloplasts are in equilibrium between sedimentation and saltatory movement in wild-type endodermal cells. Furthermore, this equilibrium is the result of the interaction between amyloplasts and AFs modulated by the SGR9. SGR9 may promote detachment of amyloplasts from AFs, allowing the amyloplasts to sediment in the AFs-dependent equilibrium of amyloplast dynamics. PMID:21602290

  3. Slow dynamics of nanocomposite polymer aerogels as revealed by X-ray photocorrelation spectroscopy (XPCS).

    PubMed

    Hernández, Rebeca; Nogales, Aurora; Sprung, Michael; Mijangos, Carmen; Ezquerra, Tiberio A

    2014-01-14

    We report on a novel slow dynamics of polymer xerogels, aerogels, and nanocomposite aerogels with iron oxide nanoparticles, as revealed by X-ray photon correlation spectroscopy. The polymer aerogel and its nanocomposite aerogels, which are porous in nature, exhibit hyper-diffusive dynamics at room temperature. In contrast, non-porous polymer xerogels exhibit an absence of this peculiar dynamics. This slow dynamical process has been assigned to a relaxation of the characteristic porous structure of these materials and not to the presence of nanoparticles.

  4. Slow dynamics of nanocomposite polymer aerogels as revealed by X-ray photocorrelation spectroscopy (XPCS)

    SciTech Connect

    Hernández, Rebeca E-mail: aurora.nogales@csic.es; Mijangos, Carmen; Nogales, Aurora E-mail: aurora.nogales@csic.es; Ezquerra, Tiberio A.; Sprung, Michael

    2014-01-14

    We report on a novel slow dynamics of polymer xerogels, aerogels, and nanocomposite aerogels with iron oxide nanoparticles, as revealed by X-ray photon correlation spectroscopy. The polymer aerogel and its nanocomposite aerogels, which are porous in nature, exhibit hyper-diffusive dynamics at room temperature. In contrast, non-porous polymer xerogels exhibit an absence of this peculiar dynamics. This slow dynamical process has been assigned to a relaxation of the characteristic porous structure of these materials and not to the presence of nanoparticles.

  5. Mammalian target of rapamycin complex (mTOR) pathway modulates blood-testis barrier (BTB) function through F-actin organization and gap junction.

    PubMed

    Li, Nan; Cheng, C Yan

    2016-09-01

    mTOR (mammalian target of rapamycin) is one of the most important signaling molecules in mammalian cells which regulates an array of cellular events, ranging from cell metabolism to cell proliferation. Based on the association of mTOR with the core component proteins, such as Raptor or Rictor, mTOR can become the mTORC1 (mammalian target of rapamycin complex 1) or mTORC2, respectively. Studies have shown that during the epithelial cycle of spermatogenesis, mTORC1 promotes remodeling and restructuring of the blood-testis barrier (BTB) in vitro and in vivo, making the Sertoli cell tight junction (TJ)-permeability barrier "leaky"; whereas mTORC2 promotes BTB integrity, making the Sertoli cell TJ-barrier "tighter". These contrasting effects, coupled with the spatiotemporal expression of the core signaling proteins at the BTB that confer the respective functions of mTORC1 vs. mTORC2 thus provide a unique mechanism to modulate BTB dynamics, allowing or disallowing the transport of biomolecules and also preleptotene spermatocytes across the immunological barrier. More importantly, studies have shown that these changes to BTB dynamics conferred by mTORC1 and mTORC2 are mediated by changes in the organization of the actin microfilament networks at the BTB, and involve gap junction (GJ) intercellular communication. Since GJ has recently been shown to be crucial to reboot spermatogenesis and meiosis following toxicant-induced aspermatogenesis, these findings thus provide new insightful information regarding the integration of mTOR and GJ to regulate spermatogenesis.

  6. Disodium pentaborate decahydrate (DPD) induced apoptosis by decreasing hTERT enzyme activity and disrupting F-actin organization of prostate cancer cells.

    PubMed

    Korkmaz, Mehmet; Avcı, Cigir Biray; Gunduz, Cumhur; Aygunes, Duygu; Erbaykent-Tepedelen, Burcu

    2014-02-01

    Animal and cell culture studies have showed that boron and its derivatives may be promising anticancer agents in prostate cancer treatment. Thus, DU145 cells were treated with disodium pentaborate decahydrate (DPD) for 24, 48, and 72 h in order to investigate the inhibitor effect and mechanisms of DPD. Then, cell proliferation, telomerase enzyme activity, actin polymerization, and apoptosis were detected by WST-1 assay, qRT-PCR, immunofluorescence labeling, and flow cytometry, respectively. We found that DPD inhibited the growth of human prostate cancer cell line DU145 at the concentration of 3.5 mM for 24 h. Our results demonstrated that 7 mM of DPD treatment prevented the telomerase enzyme activity at the rate of 38 %. Furthermore, DPD has an apoptotic effect on DU145 cells which were examined by labeling DNA breaks. With 7 mM of DPD treatment, 8, 14, and 41 % of apoptotic cells were detected for 24, 48, and 72 h, respectively. Additionally, immunofluorescence labeling showed that the normal organization of actin filaments was disrupted in DPD-exposed cells, which is accompanied by the alteration of cell shape and by apoptosis in targeted cells. Taken together, the results indicate that DPD may exert its cytotoxicity at least partly by interfering with the dynamic properties of actin polymerization and decreasing the telomerase activity. Eventually, for the first time, the results of this study showed that DPD suppressed the activity of telomerase in DU145 cells, and therefore, we suggested that DPD could be an important agent for its therapeutic potential in the treatment of prostate cancer.

  7. Affixin interacts with alpha-actinin and mediates integrin signaling for reorganization of F-actin induced by initial cell-substrate interaction.

    PubMed

    Yamaji, Satoshi; Suzuki, Atsushi; Kanamori, Heiwa; Mishima, Wataru; Yoshimi, Ryusuke; Takasaki, Hirotaka; Takabayashi, Maki; Fujimaki, Katsumichi; Fujisawa, Shin; Ohno, Shigeo; Ishigatsubo, Yoshiaki

    2004-05-24

    The linking of integrin to cytoskeleton is a critical event for an effective cell migration. Previously, we have reported that a novel integrin-linked kinase (ILK)-binding protein, affixin, is closely involved in the linkage between integrin and cytoskeleton in combination with ILK. In the present work, we demonstrated that the second calponin homology domain of affixin directly interacts with alpha-actinin in an ILK kinase activity-dependent manner, suggesting that integrin-ILK signaling evoked by substrate adhesion induces affixin-alpha-actinin interaction. The overexpression of a peptide corresponding to the alpha-actinin-binding site of affixin as well as the knockdown of endogenous affixin by small interference RNA resulted in the blockade of cell spreading. Time-lapse observation revealed that in both experiments cells were round with small peripheral blebs and failed to develop lamellipodia, suggesting that the ILK-affixin complex serves as an integrin-anchoring site for alpha-actinin and thereby mediates integrin signaling to alpha-actinin, which has been shown to play a critical role in actin polymerization at focal adhesions.

  8. Revealing radiotherapy- and chemoradiation-induced pathway dynamics in glioblastoma by analyzing multiple differential networks.

    PubMed

    Zhou, Jia; Chen, Chao; Li, Hua-Feng; Hu, Yu-Jie; Xie, Hong-Ling

    2017-07-01

    The progression of glioblastoma (GBM) is driven by dynamic alterations in the activity and connectivity of gene pathways. Revealing these dynamic events is necessary in order to understand the pathological mechanisms of, and develop effective treatments for, GBM. The present study aimed to investigate dynamic alterations in pathway activity and connectivity across radiotherapy and chemoradiation conditions in GBM, and to give system‑level insights into molecular mechanisms for GBM therapy. A total of two differential co‑expression networks (DCNs) were constructed using Pearson correlation coefficient analysis and one sided t‑tests, based on gene expression profiles and protein‑protein interaction networks, one for each condition. Subsequently, shared differential modules across DCNs were detected via significance analysis for candidate modules, which were obtained according to seed selection, module search by seed expansion and refinement of searched modules. As condition‑specific differential modules mediate differential biological processes, the module connectivity dynamic score (MCDS) was implemented to explore dynamic alterations among them. Based on DCNs with 287 nodes and 1,052 edges, a total of 28 seed genes and seven candidate modules were identified. Following significance analysis, five shared differential modules were identified in total. Dynamic alterations among these differential modules were identified using the MCDS, and one module with significant dynamic alterations was identified, termed the dynamic module. The present study revealed the dynamic alterations of shared differential modules, identified one dynamic module between the radiotherapy and chemoradiation conditions, and demonstrated that pathway dynamics may applied to the study of the pathogenesis and therapy of GBM.

  9. The new anti-actin agent dihydrohalichondramide reveals fenestrae-forming centers in hepatic endothelial cells

    PubMed Central

    Braet, Filip; Spector, Ilan; Shochet, Nava; Crews, Phillip; Higa, Tatsuo; Menu, Eline; de Zanger, Ronald; Wisse, Eddie

    2002-01-01

    Background Liver sinusoidal endothelial cells (LSECs) react to different anti-actin agents by increasing their number of fenestrae. A new structure related to fenestrae formation could be observed when LSECs were treated with misakinolide. In this study, we investigated the effects of two new actin-binding agents on fenestrae dynamics. High-resolution microscopy, including immunocytochemistry and a combination of fluorescence- and scanning electron microscopy was applied. Results Halichondramide and dihydrohalichondramide disrupt microfilaments within 10 minutes and double the number of fenestrae in 30 minutes. Dihydrohalichondramide induces fenestrae-forming centers, whereas halichondramide only revealed fenestrae-forming centers without attached rows of fenestrae with increasing diameter. Correlative microscopy showed the absence of actin filaments (F-actin) in sieve plates and fenestrae-forming centers. Comparable experiments on umbilical vein endothelial cells and bone marrow sinusoidal endothelial cells revealed cell contraction without the appearance of fenestrae or fenestrae-forming centers. Conclusion (I) A comparison of all anti-actin agents tested so far, revealed that the only activity that misakinolide and dihydrohalichondramide have in common is their barbed end capping activity; (II) this activity seems to slow down the process of fenestrae formation to such extent that it becomes possible to resolve fenestrae-forming centers; (III) fenestrae formation resulting from microfilament disruption is probably unique to LSECs. PMID:11914125

  10. An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis

    DOE PAGES

    Kayode, Olumide; Wang, Ruiying; Pendlebury, Devon F.; ...

    2016-11-03

    The molecular basis of enzyme catalytic power and specificity derives from dynamic interactions between enzyme and substrate during catalysis. While considerable effort has been devoted to understanding how conformational dynamics within enzymes affect catalysis, the role of conformational dynamics within protein substrates has not been addressed. Here in this paper, we examine the importance of substrate dynamics in the cleavage of Kunitz-BPTI protease inhibitors by mesotrypsin, finding that the varied conformational dynamics of structurally similar substrates can profoundly impact the rate of catalysis. A 1.4 Å crystal structure of a mesotrypsin-product complex formed with a rapidly cleaved substrate reveals amore » dramatic conformational change in the substrate upon proteolysis. Using long all-atom molecular dynamics simulations of acyl-enzyme intermediates with proteolysis rates spanning three orders of magnitude, we identify global and local dynamic features of substrates on the ns-μs timescale that correlate with enzymatic rates and explain differential susceptibility to proteolysis. By integrating multiple enhanced sampling methods for molecular dynamics, we model a viable conformational pathway between substratelike and product-like states, linking substrate dynamics on the ns-μs timescale with large collective substrate motions on the much slower timescale of catalysis. Our findings implicate substrate flexibility as a critical determinant of catalysis.« less

  11. An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis

    SciTech Connect

    Kayode, Olumide; Wang, Ruiying; Pendlebury, Devon F.; Cohen, Itay; Henin, Rachel D.; Hockla, Alexandra; Soares, Alexei S.; Papo, Niv; Caulfield, Thomas R.; Radisky, Evette S.

    2016-11-03

    The molecular basis of enzyme catalytic power and specificity derives from dynamic interactions between enzyme and substrate during catalysis. While considerable effort has been devoted to understanding how conformational dynamics within enzymes affect catalysis, the role of conformational dynamics within protein substrates has not been addressed. Here in this paper, we examine the importance of substrate dynamics in the cleavage of Kunitz-BPTI protease inhibitors by mesotrypsin, finding that the varied conformational dynamics of structurally similar substrates can profoundly impact the rate of catalysis. A 1.4 Å crystal structure of a mesotrypsin-product complex formed with a rapidly cleaved substrate reveals a dramatic conformational change in the substrate upon proteolysis. Using long all-atom molecular dynamics simulations of acyl-enzyme intermediates with proteolysis rates spanning three orders of magnitude, we identify global and local dynamic features of substrates on the ns-μs timescale that correlate with enzymatic rates and explain differential susceptibility to proteolysis. By integrating multiple enhanced sampling methods for molecular dynamics, we model a viable conformational pathway between substratelike and product-like states, linking substrate dynamics on the ns-μs timescale with large collective substrate motions on the much slower timescale of catalysis. Our findings implicate substrate flexibility as a critical determinant of catalysis.

  12. Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons

    SciTech Connect

    Trivedi, Niraj; Ramahi, Joseph S.; Karakaya, Mahmut; Howell, Danielle; Kerekes, Ryan A.; Solecki, David J.

    2014-12-02

    During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. Our results show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia are motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. In conclusion, we propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.

  13. Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons

    DOE PAGES

    Trivedi, Niraj; Ramahi, Joseph S.; Karakaya, Mahmut; ...

    2014-12-02

    During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. Our results show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia aremore » motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. In conclusion, we propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.« less

  14. Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons.

    PubMed

    Trivedi, Niraj; Ramahi, Joseph S; Karakaya, Mahmut; Howell, Danielle; Kerekes, Ryan A; Solecki, David J

    2014-12-02

    During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. We show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia are motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. We propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.

  15. ICT-Based Dynamic Assessment to Reveal Special Education Students' Potential in Mathematics

    ERIC Educational Resources Information Center

    Peltenburg, Marjolijn; van den Heuvel-Panhuizen, Marja; Robitzsch, Alexander

    2010-01-01

    This paper reports on a research project on information and communication technology (ICT)-based dynamic assessment. The project aims to reveal the mathematical potential of students in special education. The focus is on a topic that is generally recognised as rather difficult for weak students: subtraction up to 100 with crossing the ten. The…

  16. A novel dynamics combination model reveals the hidden information of community structure

    NASA Astrophysics Data System (ADS)

    Li, Hui-Jia; Li, Huiying; Jia, Chuanliang

    2015-09-01

    The analysis of the dynamic details of community structure is an important question for scientists from many fields. In this paper, we propose a novel Markov-Potts framework to uncover the optimal community structures and their stabilities across multiple timescales. Specifically, we model the Potts dynamics to detect community structure by a Markov process, which has a clear mathematical explanation. Then the local uniform behavior of spin values revealed by our model is shown that can naturally reveal the stability of hierarchical community structure across multiple timescales. To prove the validity, phase transition of stochastic dynamic system is used to indicate that the stability of community structure we proposed is able to describe the significance of community structure based on eigengap theory. Finally, we test our framework on some example networks and find it does not have resolute limitation problem at all. Results have shown the model we proposed is able to uncover hierarchical structure in different scales effectively and efficiently.

  17. Dynamic regulation of eve stripe 2 expression reveals transcriptional bursts in living Drosophila embryos.

    PubMed

    Bothma, Jacques P; Garcia, Hernan G; Esposito, Emilia; Schlissel, Gavin; Gregor, Thomas; Levine, Michael

    2014-07-22

    We present the use of recently developed live imaging methods to examine the dynamic regulation of even-skipped (eve) stripe 2 expression in the precellular Drosophila embryo. Nascent transcripts were visualized via MS2 RNA stem loops. The eve stripe 2 transgene exhibits a highly dynamic pattern of de novo transcription, beginning with a broad domain of expression during nuclear cycle 12 (nc12), and progressive refinement during nc13 and nc14. The mature stripe 2 pattern is surprisingly transient, constituting just ∼15 min of the ∼90-min period of expression. Nonetheless, this dynamic transcription profile faithfully predicts the limits of the mature stripe visualized by conventional in situ detection methods. Analysis of individual transcription foci reveals intermittent bursts of de novo transcription, with duration cycles of 4-10 min. We discuss a multistate model of transcription regulation and speculate on its role in the dynamic repression of the eve stripe 2 expression pattern during development.

  18. Dynamic changes in network synchrony reveal resting-state functional networks

    NASA Astrophysics Data System (ADS)

    Vuksanović, Vesna; Hövel, Philipp

    2015-02-01

    Experimental functional magnetic resonance imaging studies have shown that spontaneous brain activity, i.e., in the absence of any external input, exhibit complex spatial and temporal patterns of co-activity between segregated brain regions. These so-called large-scale resting-state functional connectivity networks represent dynamically organized neural assemblies interacting with each other in a complex way. It has been suggested that looking at the dynamical properties of complex patterns of brain functional co-activity may reveal neural mechanisms underlying the dynamic changes in functional interactions. Here, we examine how global network dynamics is shaped by different network configurations, derived from realistic brain functional interactions. We focus on two main dynamics measures: synchrony and variations in synchrony. Neural activity and the inferred hemodynamic response of the network nodes are simulated using a system of 90 FitzHugh-Nagumo neural models subject to system noise and time-delayed interactions. These models are embedded into the topology of the complex brain functional interactions, whose architecture is additionally reduced to its main structural pathways. In the simulated functional networks, patterns of correlated regional activity clearly arise from dynamical properties that maximize synchrony and variations in synchrony. Our results on the fast changes of the level of the network synchrony also show how flexible changes in the large-scale network dynamics could be.

  19. Dynamics of methane ebullition from a peat monolith revealed from a dynamic flux chamber system

    NASA Astrophysics Data System (ADS)

    Yu, Zhongjie; Slater, Lee D.; Schäfer, Karina V. R.; Reeve, Andrew S.; Varner, Ruth K.

    2014-09-01

    Methane (CH4) ebullition in northern peatlands is poorly quantified in part due to its high spatiotemporal variability. In this study, a dynamic flux chamber (DFC) system was used to continuously measure CH4 fluxes from a monolith of near-surface Sphagnum peat at the laboratory scale to understand the complex behavior of CH4 ebullition. Coincident transmission ground penetrating radar measurements of gas content were also acquired at three depths within the monolith. A graphical method was developed to separate diffusion, steady ebullition, and episodic ebullition fluxes from the total CH4 flux recorded and to identify the timing and CH4 content of individual ebullition events. The results show that the application of the DFC had minimal disturbance on air-peat CH4 exchange and estimated ebullition fluxes were not sensitive to the uncertainties associated with the graphical model. Steady and episodic ebullition fluxes were estimated to be averagely 36 ± 24% and 38 ± 24% of the total fluxes over the study period, respectively. The coupling between episodic CH4 ebullition and gas content within the three layers supports the existence of a threshold gas content regulating CH4 ebullition. However, the threshold at which active ebullition commenced varied between peat layers with a larger threshold (0.14 m3 m-3) observed in the deeper layers, suggesting that the peat physical structure controls gas bubble dynamics in peat. Temperature variation (23°C to 27°C) was likely only responsible for small episodic ebullition events from the upper peat layer, while large ebullition events from the deeper layers were most likely triggered by drops in atmospheric pressure.

  20. Revealing glacier flow and surge dynamics from animated satellite image sequences: examples from the Karakoram

    NASA Astrophysics Data System (ADS)

    Paul, F.

    2015-04-01

    Although animated images are very popular on the Internet, they have so far found only limited use for glaciological applications. With long time-series of satellite images becoming increasingly available and glaciers being well recognized for their rapid changes and variable flow dynamics, animated sequences of multiple satellite images reveal glacier dynamics in a time-lapse mode, making the otherwise slow changes of glacier movement visible and understandable for a wide public. For this study animated image sequences were created from freely available image quick-looks of orthorectified Landsat scenes for four regions in the central Karakoram mountain range. The animations play automatically in a web-browser and might help to demonstrate glacier flow dynamics for educational purposes. The animations revealed highly complex patterns of glacier flow and surge dynamics over a 15-year time period (1998-2013). In contrast to other regions, surging glaciers in the Karakoram are often small (around 10 km2), steep, debris free, and advance for several years at comparably low annual rates (a few hundred m a-1). The advance periods of individual glaciers are generally out of phase, indicating a limited climatic control on their dynamics. On the other hand, nearly all other glaciers in the region are either stable or slightly advancing, indicating balanced or even positive mass budgets over the past few years to decades.

  1. Combined TMS and FMRI reveal dissociable cortical pathways for dynamic and static face perception.

    PubMed

    Pitcher, David; Duchaine, Bradley; Walsh, Vincent

    2014-09-08

    Faces contain structural information, for identifying individuals, as well as changeable information, which can convey emotion and direct attention. Neuroimaging studies reveal brain regions that exhibit preferential responses to invariant [1, 2] or changeable [3-5] facial aspects but the functional connections between these regions are unknown. We addressed this issue by causally disrupting two face-selective regions with thetaburst transcranial magnetic stimulation (TBS) and measuring the effects of this disruption in local and remote face-selective regions with functional magnetic resonance imaging (fMRI). Participants were scanned, over two sessions, while viewing dynamic or static faces and objects. During these sessions, TBS was delivered over the right occipital face area (rOFA) or right posterior superior temporal sulcus (rpSTS). Disruption of the rOFA reduced the neural response to both static and dynamic faces in the downstream face-selective region in the fusiform gyrus. In contrast, the response to dynamic and static faces was doubly dissociated in the rpSTS. Namely, disruption of the rOFA reduced the response to static but not dynamic faces, while disruption of the rpSTS itself reduced the response to dynamic but not static faces. These results suggest that dynamic and static facial aspects are processed via dissociable cortical pathways that begin in early visual cortex, a conclusion inconsistent with current models of face perception [6-9].

  2. Entangled Valence Electron-Hole Dynamics Revealed by Stimulated Attosecond X-ray Raman Scattering

    PubMed Central

    Healion, Daniel; Zhang, Yu; Biggs, Jason D.; Govind, Niranjan

    2012-01-01

    We show that broadband x-ray pulses can create wavepackets of valence electrons and holes localized in the vicinity of a selected atom (nitrogen, oxygen or sulfur in cysteine) by stimulated resonant Raman scattering. The subsequent dynamics reveals highly correlated motions of entangled electrons and hole quasiparticles. This information goes beyond the time-dependent total charge density derived from x-ray diffraction. PMID:23755318

  3. Light-induced nuclear export reveals rapid dynamics of epigenetic modifications

    PubMed Central

    Yumerefendi, Hayretin; Lerner, Andrew Michael; Zimmerman, Seth Parker; Hahn, Klaus; Bear, James E; Strahl, Brian D.; Kuhlman, Brian

    2016-01-01

    We engineered a photoactivatable system for rapidly and reversibly exporting proteins from the nucleus by embedding a nuclear export signal in the LOV2 domain from phototropin 1. Fusing the chromatin modifier Bre1 to the photoswitch, we achieved light-dependent control of histone H2B monoubiquitylation in yeast, revealing fast turnover of the ubiquitin mark. Moreover, this inducible system allowed us to dynamically monitor the status of epigenetic modifications dependent on H2B ubiquitylation. PMID:27089030

  4. Entangled valence electron-hole dynamics revealed by stimulated attosecond x-ray Raman scattering

    SciTech Connect

    Healion, Daniel; Zhang, Yu; Biggs, Jason D.; Govind, Niranjan; Mukamel, Shaul

    2012-09-06

    We show that broadband x-ray pulses can create wavepackets of valence electrons and holes localized in the vicinity of a selected atom (nitrogen, oxygen or sulfur in cysteine) by resonant stimulated Raman scattering. The subsequent dynamics reveals highly correlated motions of entangled electrons and hole quasiparticles. This information goes beyond the time-dependent total charge density derived from x-ray diffraction.

  5. Entangled Valence Electron-Hole Dynamics Revealed by Stimulated Attosecond X-ray Raman Scattering.

    PubMed

    Healion, Daniel; Zhang, Yu; Biggs, Jason D; Govind, Niranjan; Mukamel, Shaul

    2012-08-08

    We show that broadband x-ray pulses can create wavepackets of valence electrons and holes localized in the vicinity of a selected atom (nitrogen, oxygen or sulfur in cysteine) by stimulated resonant Raman scattering. The subsequent dynamics reveals highly correlated motions of entangled electrons and hole quasiparticles. This information goes beyond the time-dependent total charge density derived from x-ray diffraction.

  6. Aerial photographs reveal late-20th-century dynamic ice loss in northwestern Greenland.

    PubMed

    Kjær, Kurt H; Khan, Shfaqat A; Korsgaard, Niels J; Wahr, John; Bamber, Jonathan L; Hurkmans, Ruud; van den Broeke, Michiel; Timm, Lars H; Kjeldsen, Kristian K; Bjørk, Anders A; Larsen, Nicolaj K; Jørgensen, Lars Tyge; Færch-Jensen, Anders; Willerslev, Eske

    2012-08-03

    Global warming is predicted to have a profound impact on the Greenland Ice Sheet and its contribution to global sea-level rise. Recent mass loss in the northwest of Greenland has been substantial. Using aerial photographs, we produced digital elevation models and extended the time record of recent observed marginal dynamic thinning back to the mid-1980s. We reveal two independent dynamic ice loss events on the northwestern Greenland Ice Sheet margin: from 1985 to 1993 and 2005 to 2010, which were separated by limited mass changes. Our results suggest that the ice mass changes in this sector were primarily caused by short-lived dynamic ice loss events rather than changes in the surface mass balance. This finding challenges predictions about the future response of the Greenland Ice Sheet to increasing global temperatures.

  7. More Dynamical Properties Revealed from a 3D Lorenz-like System

    NASA Astrophysics Data System (ADS)

    Wang, Haijun; Li, Xianyi

    After a 3D Lorenz-like system has been revisited, more rich hidden dynamics that was not found previously is clearly revealed. Some more precise mathematical work, such as for the complete distribution and the local stability and bifurcation of its equilibrium points, the existence of singularly degenerate heteroclinic cycles as well as homoclinic and heteroclinic orbits, and the dynamics at infinity, is carried out in this paper. In particular, another possible new mechanism behind the creation of chaotic attractors is presented. Based on this mechanism, some different structure types of chaotic attractors are numerically found in the case of small b > 0. All theoretical results obtained are further illustrated by numerical simulations. What we formulate in this paper is to not only show those dynamical properties hiding in this system, but also (more mainly) present a kind of way and means — both "locally" and "globally" and both "finitely" and "infinitely" — to comprehensively explore a given system.

  8. Multiannual forecasting of seasonal influenza dynamics reveals climatic and evolutionary drivers.

    PubMed

    Axelsen, Jacob Bock; Yaari, Rami; Grenfell, Bryan T; Stone, Lewi

    2014-07-01

    Human influenza occurs annually in most temperate climatic zones of the world, with epidemics peaking in the cold winter months. Considerable debate surrounds the relative role of epidemic dynamics, viral evolution, and climatic drivers in driving year-to-year variability of outbreaks. The ultimate test of understanding is prediction; however, existing influenza models rarely forecast beyond a single year at best. Here, we use a simple epidemiological model to reveal multiannual predictability based on high-quality influenza surveillance data for Israel; the model fit is corroborated by simple metapopulation comparisons within Israel. Successful forecasts are driven by temperature, humidity, antigenic drift, and immunity loss. Essentially, influenza dynamics are a balance between large perturbations following significant antigenic jumps, interspersed with nonlinear epidemic dynamics tuned by climatic forcing.

  9. Axonal actin in action: Imaging actin dynamics in neurons.

    PubMed

    Ladt, Kelsey; Ganguly, Archan; Roy, Subhojit

    2016-01-01

    Actin is a highly conserved, key cytoskeletal protein involved in numerous structural and functional roles. In neurons, actin has been intensively investigated in axon terminals-growth cones-and dendritic spines, but details about actin structure and dynamics in axon shafts have remained obscure for decades. A major barrier in the field has been imaging actin. Actin exists as soluble monomers (G-actin) as well as actin filaments (F-actin), and labeling actin with conventional fluorescent probes like GFP/RFP typically leads to a diffuse haze that makes it difficult to discern kinetic behaviors. In a recent publication, we used F-actin selective probes to visualize actin dynamics in axons, resolving striking actin behaviors that have not been described before. However, using these probes to visualize actin dynamics is challenging as they can cause bundling of actin filaments; thus, experimental parameters need to be strictly optimized. Here we describe some practical methodological details related to using these probes for visualizing F-actin dynamics in axons.

  10. Dynamic functional network connectivity reveals unique and overlapping profiles of insula subdivisions.

    PubMed

    Nomi, Jason S; Farrant, Kristafor; Damaraju, Eswar; Rachakonda, Srinivas; Calhoun, Vince D; Uddin, Lucina Q

    2016-05-01

    The human insular cortex consists of functionally diverse subdivisions that engage during tasks ranging from interoception to cognitive control. The multiplicity of functions subserved by insular subdivisions calls for a nuanced investigation of their functional connectivity profiles. Four insula subdivisions (dorsal anterior, dAI; ventral, VI; posterior, PI; middle, MI) derived using a data-driven approach were subjected to static- and dynamic functional network connectivity (s-FNC and d-FNC) analyses. Static-FNC analyses replicated previous work demonstrating a cognition-emotion-interoception division of the insula, where the dAI is functionally connected to frontal areas, the VI to limbic areas, and the PI and MI to sensorimotor areas. Dynamic-FNC analyses consisted of k-means clustering of sliding windows to identify variable insula connectivity states. The d-FNC analysis revealed that the most frequently occurring dynamic state mirrored the cognition-emotion-interoception division observed from the s-FNC analysis, with less frequently occurring states showing overlapping and unique subdivision connectivity profiles. In two of the states, all subdivisions exhibited largely overlapping profiles, consisting of subcortical, sensory, motor, and frontal connections. Two other states showed the dAI exhibited a unique connectivity profile compared with other insula subdivisions. Additionally, the dAI exhibited the most variable functional connections across the s-FNC and d-FNC analyses, and was the only subdivision to exhibit dynamic functional connections with regions of the default mode network. These results highlight how a d-FNC approach can capture functional dynamics masked by s-FNC approaches, and reveal dynamic functional connections enabling the functional flexibility of the insula across time. Hum Brain Mapp 37:1770-1787, 2016. © 2016 Wiley Periodicals, Inc.

  11. Solution structure and dynamics of ADF from Toxoplasma gondii.

    PubMed

    Yadav, Rahul; Pathak, Prem Prakash; Shukla, Vaibhav Kumar; Jain, Anupam; Srivastava, Shubhra; Tripathi, Sarita; Krishna Pulavarti, S V S R; Mehta, Simren; Sibley, L David; Arora, Ashish

    2011-10-01

    Toxoplasma gondii ADF (TgADF) belongs to a functional subtype characterized by strong G-actin sequestering activity and low F-actin severing activity. Among the characterized ADF/cofilin proteins, TgADF has the shortest length and is missing a C-terminal helix implicated in F-actin binding. In order to understand its characteristic properties, we have determined the solution structure of TgADF and studied its backbone dynamics from ¹⁵N-relaxation measurements. TgADF has conserved ADF/cofilin fold consisting of a central mixed β-sheet comprised of six β-strands that are partially surrounded by three α-helices and a C-terminal helical turn. The high G-actin sequestering activity of TgADF relies on highly structurally and dynamically optimized interactions between G-actin and G-actin binding surface of TgADF. The equilibrium dissociation constant for TgADF and rabbit muscle G-actin was 23.81 nM, as measured by ITC, which reflects very strong affinity of TgADF and G-actin interactions. The F-actin binding site of TgADF is partially formed, with a shortened F-loop that does not project out of the ellipsoid structure and a C-terminal helical turn in place of the C-terminal helix α4. Yet, it is more rigid than the F-actin binding site of Leishmania donovani cofilin. Experimental observations and structural features do not support the interaction of PIP2 with TgADF, and PIP2 does not affect the interaction of TgADF with G-actin. Overall, this study suggests that conformational flexibility of G-actin binding sites enhances the affinity of TgADF for G-actin, while conformational rigidity of F-actin binding sites of conventional ADF/cofilins is necessary for stable binding to F-actin.

  12. Effects of pressure on the dynamics of a hyperthermophilic protein revealed by quasielastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Shrestha, U. R.; Bhowmik, D.; Copley, J. R. D.; Tyagi, M.; Leao, J. B.; Chu, X.-Q.

    Inorganic pyrophosphatase (IPPase) from Thermococcus thioreducens is a large oligomeric protein derived from hyperthermophilic microorganism that is found near hydrothermal vents deep under the sea, where the pressure is nearly 100 MPa. Here we study the effects of pressure on the conformational flexibility and relaxation dynamics of IPPase over a wide temperature range using quasielastic neutron scattering (QENS) technique. Two spectrometers were used to investigate the β-relaxation dynamics of proteins in time ranges from 2 to 25 ps, and from 100 ps to 2 ns. Our results reveal that, under the pressure of 100 MPa, IPPase displays much faster relaxation dynamics than a mesophilic model protein, hen egg white lysozyme (HEWL), opposite to what we observed previously under the ambient pressure. These contradictory observations imply that high pressure affects the dynamical properties of proteins by distorting their energy landscapes. Accordingly, we derived a general schematic denaturation phase diagram that can be used as a general picture to understand the effects of pressure on protein dynamics and activities Wayne State Univ Startup Fund.

  13. Structure and dynamics of protein waters revealed by radiolysis and mass spectrometry

    PubMed Central

    Gupta, Sayan; D’Mello, Rhijuta; Chance, Mark R.

    2012-01-01

    Water is critical for the structure, stability, and functions of macromolecules. Diffraction and NMR studies have revealed structure and dynamics of bound waters at atomic resolution. However, localizing the sites and measuring the dynamics of bound waters, particularly on timescales relevant to catalysis and macromolecular assembly, is quite challenging. Here we demonstrate two techniques: first, temperature-dependent radiolytic hydroxyl radical labeling with a mass spectrometry (MS)-based readout to identify sites of bulk and bound water interactions with surface and internal residue side chains, and second, H218O radiolytic exchange coupled MS to measure the millisecond dynamics of bound water interactions with various internal residue side chains. Through an application of the methods to cytochrome c and ubiquitin, we identify sites of water binding and measure the millisecond dynamics of bound waters in protein crevices. As these MS-based techniques are very sensitive and not protein size limited, they promise to provide unique insights into protein–water interactions and water dynamics for both small and large proteins and their complexes. PMID:22927377

  14. Nonlinear elastic behavior of rocks revealed by dynamic acousto-elastic testing

    NASA Astrophysics Data System (ADS)

    Shokouhi, Parisa; Riviere, Jacques; Guyer, Robert; Johnson, Paul

    2017-04-01

    Nonlinear elastic behavior of rocks is studied at the laboratory scale with the goal of illuminating observations at the Earth scale, for instance during strong ground motion and earthquake slip processes. A technique called Dynamic Acousto-Elastic Testing (DAET) is used to extract the nonlinear elastic response of disparate rocks (sandstone, granite and soapstone). DAET is the dynamic analogous to standard (quasi-static) acousto-elastic testing. It consists in measuring speed of sound with high-frequency low amplitude pulses (MHz range) across the sample while it is dynamically loaded with a low frequency, large amplitude resonance (kHz range). This particular configuration provides the instantaneous elastic response over a full dynamic cycle and reveals unprecedented details: instantaneous softening, tension/compression asymmetry as well as hysteretic behaviors. The strain-induced modulation of ultrasonic pulse velocities ('fast dynamics') is analyzed to extract nonlinearity parameters. A projection method is used to extract the harmonic content and a careful comparison of the fast dynamics response is made. In order to characterize the rate of elastic recovery ('slow dynamics'), we continue to monitor the ultrasonic wave velocity for about 30 minutes after the low-frequency resonance is turned off. In addition, the frequency, pressure and humidity dependences of the nonlinear parameters are reported for a subset of samples. We find that the nonlinear components can be clustered into two categories, which suggests that two main mechanisms are at play. The first one, related to the second harmonic, is likely related to the opening/closing of microstructural features such as cracks and grain/grain contacts. In contrast, the second mechanism is related to all other nonlinear parameters (transient softening, hysteresis area and higher order harmonics) and may arise from shearing mechanisms at grain interfaces.

  15. Dynamic processes in biological membrane mimics revealed by quasielastic neutron scattering.

    PubMed

    Lautner, Lisa; Pluhackova, Kristyna; Barth, Nicolai K H; Seydel, Tilo; Lohstroh, Wiebke; Böckmann, Rainer A; Unruh, Tobias

    2017-08-01

    Neutron scattering is a powerful tool to study relaxation processes in biological membrane mimics in space and time. Combining different inelastic and quasielastic neutron scattering techniques, a large dynamic range can be covered: from atomic to mesoscopic lengths and from femto- to some hundreds of nanoseconds in time. This allows studies on e.g. the diffusion of lipids, the membrane undulation motions, the dispersion of sound waves in membranes as well as the mutual interactions of membrane constituents such as lipids, proteins, and additives. In particular, neutron scattering provides a quite direct experimental approach to the inter-atomic and inter-molecular potentials on length and time scales which are perfectly accessible by molecular dynamics (MD) simulations. Neutron scattering experiments may thus substantially support the further refinement of biomolecular force fields for MD simulations by supplying structural and dynamical information with high spatial and temporal resolution. In turn, MD simulations support the interpretation of neutron scattering data. The combination of both, neutron scattering experiments and MD simulations, yields an unprecedented insight into the molecular interactions governing the structure and dynamics of biological membranes. This review provides an overview of the molecular dynamics in biological membrane mimics as revealed by neutron scattering. It focuses on the latest findings such as the fundamental molecular mechanism of lateral lipid diffusion as well as the influence of additives and proteins on the short-time dynamics of lipids. Special emphasis is placed on the comparison of recent neutron scattering and MD simulation data with respect to molecular membrane dynamics on the pico- to nanosecond time scale. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. An analysis toolbox to explore mesenchymal migration heterogeneity reveals adaptive switching between distinct modes

    PubMed Central

    Shafqat-Abbasi, Hamdah; Kowalewski, Jacob M; Kiss, Alexa; Gong, Xiaowei; Hernandez-Varas, Pablo; Berge, Ulrich; Jafari-Mamaghani, Mehrdad; Lock, John G; Strömblad, Staffan

    2016-01-01

    Mesenchymal (lamellipodial) migration is heterogeneous, although whether this reflects progressive variability or discrete, 'switchable' migration modalities, remains unclear. We present an analytical toolbox, based on quantitative single-cell imaging data, to interrogate this heterogeneity. Integrating supervised behavioral classification with multivariate analyses of cell motion, membrane dynamics, cell-matrix adhesion status and F-actin organization, this toolbox here enables the detection and characterization of two quantitatively distinct mesenchymal migration modes, termed 'Continuous' and 'Discontinuous'. Quantitative mode comparisons reveal differences in cell motion, spatiotemporal coordination of membrane protrusion/retraction, and how cells within each mode reorganize with changed cell speed. These modes thus represent distinctive migratory strategies. Additional analyses illuminate the macromolecular- and cellular-scale effects of molecular targeting (fibronectin, talin, ROCK), including 'adaptive switching' between Continuous (favored at high adhesion/full contraction) and Discontinuous (low adhesion/inhibited contraction) modes. Overall, this analytical toolbox now facilitates the exploration of both spontaneous and adaptive heterogeneity in mesenchymal migration. DOI: http://dx.doi.org/10.7554/eLife.11384.001 PMID:26821527

  17. Fragmentation Is Crucial for the Steady-State Dynamics of Actin Filaments

    PubMed Central

    Schmoller, Kurt M.; Niedermayer, Thomas; Zensen, Carla; Wurm, Christine; Bausch, Andreas R.

    2011-01-01

    Despite the recognition that actin filaments are important for numerous cellular processes, and decades of investigation, the dynamics of in vitro actin filaments are still not completely understood. Here, we follow the time evolution of the length distribution of labeled actin reporter filaments in an unlabeled F-actin solution via fluorescence microscopy. Whereas treadmilling and diffusive length fluctuations cannot account for the observed dynamics, our results suggest that at low salt conditions, spontaneous fragmentation is crucial. PMID:21843470

  18. Visualization of microtubule growth in living platelets reveals a dynamic marginal band with multiple microtubules

    PubMed Central

    Patel-Hett, Sunita; Richardson, Jennifer L.; Schulze, Harald; Drabek, Ksenija; Isaac, Natasha A.; Hoffmeister, Karin; Shivdasani, Ramesh A.; Bulinski, J. Chloë; Galjart, Niels; Hartwig, John H.

    2008-01-01

    The marginal band of microtubules maintains the discoid shape of resting blood platelets. Although studies of platelet microtubule coil structure conclude that it is composed of a single microtubule, no investigations of its dynamics exist. In contrast to previous studies, permeabilized platelets incubated with GTP-rhodamine-tubulin revealed tubulin incorporation at 7.9 (± 1.9) points throughout the coil, and anti-EB1 antibodies stained 8.7 (± 2.0) sites, indicative of multiple free microtubules. To pursue this result, we expressed the microtubule plus-end marker EB3-GFP in megakaryocytes and examined its behavior in living platelets released from these cells. Time-lapse microscopy of EB3-GFP in resting platelets revealed multiple assembly sites within the coil and a bidirectional pattern of assembly. Consistent with these findings, tyrosinated tubulin, a marker of newly assembled microtubules, localized to resting platelet microtubule coils. These results suggest that the resting platelet marginal band contains multiple highly dynamic microtubules of mixed polarity. Analysis of microtubule coil diameters in newly formed resting platelets indicates that microtubule coil shrinkage occurs with aging. In addition, activated EB3-GFP–expressing platelets exhibited a dramatic increase in polymerizing microtubules, which travel outward and into filopodia. Thus, the dynamic microtubules associated with the marginal band likely function during both resting and activated platelet states. PMID:18230754

  19. Venus trap in the mouse embryo reveals distinct molecular dynamics underlying specification of first embryonic lineages.

    PubMed

    Dietrich, Jens-Erik; Panavaite, Laura; Gunther, Stefan; Wennekamp, Sebastian; Groner, Anna C; Pigge, Anton; Salvenmoser, Stefanie; Trono, Didier; Hufnagel, Lars; Hiiragi, Takashi

    2015-08-01

    Mammalian development begins with the segregation of embryonic and extra-embryonic lineages in the blastocyst. Recent studies revealed cell-to-cell gene expression heterogeneity and dynamic cell rearrangements during mouse blastocyst formation. Thus, mechanistic understanding of lineage specification requires quantitative description of gene expression dynamics at a single-cell resolution in living embryos. However, only a few fluorescent gene expression reporter mice are available and quantitative live image analysis is limited so far. Here, we carried out a fluorescence gene-trap screen and established reporter mice expressing Venus specifically in the first lineages. Lineage tracking, quantitative gene expression and cell position analyses allowed us to build a comprehensive lineage map of mouse pre-implantation development. Our systematic analysis revealed that, contrary to the available models, the timing and mechanism of lineage specification may be distinct between the trophectoderm and the inner cell mass. While expression of our trophectoderm-specific lineage marker is upregulated in outside cells upon asymmetric divisions at 8- and 16-cell stages, the inside-specific upregulation of the inner-cell-mass marker only becomes evident at the 64-cell stage. This study thus provides a framework toward systems-level understanding of embryogenesis marked by high dynamicity and stochastic variability.

  20. Live-cell CRISPR imaging in plants reveals dynamic telomere movements.

    PubMed

    Dreissig, Steven; Schiml, Simon; Schindele, Patrick; Weiss, Oda; Rutten, Twan; Schubert, Veit; Gladilin, Evgeny; Mette, Michael F; Puchta, Holger; Houben, Andreas

    2017-08-01

    Elucidating the spatiotemporal organization of the genome inside the nucleus is imperative to our understanding of the regulation of genes and non-coding sequences during development and environmental changes. Emerging techniques of chromatin imaging promise to bridge the long-standing gap between sequencing studies, which reveal genomic information, and imaging studies that provide spatial and temporal information of defined genomic regions. Here, we demonstrate such an imaging technique based on two orthologues of the bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9). By fusing eGFP/mRuby2 to catalytically inactive versions of Streptococcus pyogenes and Staphylococcus aureus Cas9, we show robust visualization of telomere repeats in live leaf cells of Nicotiana benthamiana. By tracking the dynamics of telomeres visualized by CRISPR-dCas9, we reveal dynamic telomere movements of up to 2 μm over 30 min during interphase. Furthermore, we show that CRISPR-dCas9 can be combined with fluorescence-labelled proteins to visualize DNA-protein interactions in vivo. By simultaneously using two dCas9 orthologues, we pave the way for the imaging of multiple genomic loci in live plants cells. CRISPR imaging bears the potential to significantly improve our understanding of the dynamics of chromosomes in live plant cells. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  1. Single-molecule chemical reaction reveals molecular reaction kinetics and dynamics.

    PubMed

    Zhang, Yuwei; Song, Ping; Fu, Qiang; Ruan, Mingbo; Xu, Weilin

    2014-06-25

    Understanding the microscopic elementary process of chemical reactions, especially in condensed phase, is highly desirable for improvement of efficiencies in industrial chemical processes. Here we show an approach to gaining new insights into elementary reactions in condensed phase by combining quantum chemical calculations with a single-molecule analysis. Elementary chemical reactions in liquid-phase, revealed from quantum chemical calculations, are studied by tracking the fluorescence of single dye molecules undergoing a reversible redox process. Statistical analyses of single-molecule trajectories reveal molecular reaction kinetics and dynamics of elementary reactions. The reactivity dynamic fluctuations of single molecules are evidenced and probably arise from either or both of the low-frequency approach of the molecule to the internal surface of the SiO2 nanosphere or the molecule diffusion-induced memory effect. This new approach could be applied to other chemical reactions in liquid phase to gain more insight into their molecular reaction kinetics and the dynamics of elementary steps.

  2. Specialized Dynamical Properties of Promiscuous Residues Revealed by Simulated Conformational Ensembles

    PubMed Central

    2013-01-01

    The ability to interact with different partners is one of the most important features in proteins. Proteins that bind a large number of partners (hubs) have been often associated with intrinsic disorder. However, many examples exist of hubs with an ordered structure, and evidence of a general mechanism promoting promiscuity in ordered proteins is still elusive. An intriguing hypothesis is that promiscuous binding sites have specific dynamical properties, distinct from the rest of the interface and pre-existing in the protein isolated state. Here, we present the first comprehensive study of the intrinsic dynamics of promiscuous residues in a large protein data set. Different computational methods, from coarse-grained elastic models to geometry-based sampling methods and to full-atom Molecular Dynamics simulations, were used to generate conformational ensembles for the isolated proteins. The flexibility and dynamic correlations of interface residues with a different degree of binding promiscuity were calculated and compared considering side chain and backbone motions, the latter both on a local and on a global scale. The study revealed that (a) promiscuous residues tend to be more flexible than nonpromiscuous ones, (b) this additional flexibility has a higher degree of organization, and (c) evolutionary conservation and binding promiscuity have opposite effects on intrinsic dynamics. Findings on simulated ensembles were also validated on ensembles of experimental structures extracted from the Protein Data Bank (PDB). Additionally, the low occurrence of single nucleotide polymorphisms observed for promiscuous residues indicated a tendency to preserve binding diversity at these positions. A case study on two ubiquitin-like proteins exemplifies how binding promiscuity in evolutionary related proteins can be modulated by the fine-tuning of the interface dynamics. The interplay between promiscuity and flexibility highlighted here can inspire new directions in protein

  3. Computer vision profiling of neurite outgrowth dynamics reveals spatiotemporal modularity of Rho GTPase signaling

    PubMed Central

    Fusco, Ludovico; Lefort, Riwal; Smith, Kevin; Benmansour, Fethallah; Gonzalez, German; Barillari, Caterina; Rinn, Bernd; Fleuret, Francois; Fua, Pascal

    2016-01-01

    Rho guanosine triphosphatases (GTPases) control the cytoskeletal dynamics that power neurite outgrowth. This process consists of dynamic neurite initiation, elongation, retraction, and branching cycles that are likely to be regulated by specific spatiotemporal signaling networks, which cannot be resolved with static, steady-state assays. We present NeuriteTracker, a computer-vision approach to automatically segment and track neuronal morphodynamics in time-lapse datasets. Feature extraction then quantifies dynamic neurite outgrowth phenotypes. We identify a set of stereotypic neurite outgrowth morphodynamic behaviors in a cultured neuronal cell system. Systematic RNA interference perturbation of a Rho GTPase interactome consisting of 219 proteins reveals a limited set of morphodynamic phenotypes. As proof of concept, we show that loss of function of two distinct RhoA-specific GTPase-activating proteins (GAPs) leads to opposite neurite outgrowth phenotypes. Imaging of RhoA activation dynamics indicates that both GAPs regulate different spatiotemporal Rho GTPase pools, with distinct functions. Our results provide a starting point to dissect spatiotemporal Rho GTPase signaling networks that regulate neurite outgrowth. PMID:26728857

  4. Inverting observations of GPS refractivies to reveal dynamical structures for climate model testing

    NASA Astrophysics Data System (ADS)

    Dykema, J. A.; Leroy, S. S.; Farrell, B. F.; Anderson, J. G.

    2004-12-01

    Refractivities derived from measurements of GPS radio occultation, with an optimal choice of orbits, can provide a globally homogeneous record of the state of the climate. These refractivities contribute information in both the troposphere and stratosphere, sensitive to temperature, water vapor, and pressure in all weather conditions. This submission describes a method to extract information directly from these space observations to diagnose climate model dynamics. Although traditionally remotely sensed variables (such as refractivities) have been inverted to produce profiles of more familiar atmospheric state variables such as temperature, pressure, or water vapor, the refractivities themselves provide an ideal state vector for analysis by linear inverse modeling (LIM). The success of LIM for ENSO and seasonal climate forecasting (Penland and Magorian 1993; Winkler et al. 2001) reveals that inverting selected observations for dynamics is a powerful methodology compared with approximating dynamics of complex processes from first principles. Development of this approach based on observation state space reconstruction is motivated in part by the realization that identifying model error and improving model parameterizations is a very difficult task to accomplish by appeal to physical argument and first principle reasoning alone, as the variety of cloud parameterizations testifies. Continued progress in model refinement requires developing methods to systematize parameterization improvement. A benchmark for model improvement, therefore, is that the model reproduce the LIM dynamics in appropriate variables.

  5. Dynamic Localization of Electronic Excitation in Photosynthetic Complexes Revealed with Chiral Two-Dimensional Spectroscopy

    PubMed Central

    Fidler, Andrew F.; Singh, Ved P.; Long, Phillip D.; Dahlberg, Peter D.; Engel, Gregory S.

    2014-01-01

    Time-resolved ultrafast optical probes of chiral dynamics provide a new window allowing us to explore how interactions with such structured environments drive electronic dynamics. Incorporating optical activity into time-resolved spectroscopies has proven challenging due to the small signal and large achiral background. Here, we demonstrate that two-dimensional electronic spectroscopy can be adapted to detect chiral signals and that these signals reveal how excitations delocalize and contract following excitation. We dynamically probe the evolution of chiral electronic structure in the light harvesting complex 2 of purple bacteria following photoexcitation by creating a chiral two-dimensional mapping. The dynamics of the chiral two-dimensional signal directly reports on changes in the degree of delocalization of the excitonic state following photoexcitation. The mechanism of energy transfer in this system may enhance transfer probability due to the coherent coupling among chromophores while suppressing fluorescence that arises from populating delocalized states. This generally applicable spectroscopy will provide an incisive tool to probe ultrafast transient molecular fluctuations that are obscured in non-chiral experiments. PMID:24504144

  6. Dynamic diversity of synthetic supramolecular polymers in water as revealed by hydrogen/deuterium exchange

    NASA Astrophysics Data System (ADS)

    Lou, Xianwen; Lafleur, René P. M.; Leenders, Christianus M. A.; Schoenmakers, Sandra M. C.; Matsumoto, Nicholas M.; Baker, Matthew B.; van Dongen, Joost L. J.; Palmans, Anja R. A.; Meijer, E. W.

    2017-05-01

    Numerous self-assembling molecules have been synthesized aiming at mimicking both the structural and dynamic properties found in living systems. Here we show the application of hydrogen/deuterium exchange (HDX) mass spectrometry (MS) to unravel the nanoscale organization and the structural dynamics of synthetic supramolecular polymers in water. We select benzene-1,3,5-tricarboxamide (BTA) derivatives that self-assemble in H2O to illustrate the strength of this technique for supramolecular polymers. The BTA structure has six exchangeable hydrogen atoms and we follow their exchange as a function of time after diluting the H2O solution with a 100-fold excess of D2O. The kinetic H/D exchange profiles reveal that these supramolecular polymers in water are dynamically diverse; a notion that has previously not been observed using other techniques. In addition, we report that small changes in the molecular structure can be used to control the dynamics of synthetic supramolecular polymers in water.

  7. Ligation-Dependent Picosecond Dynamics in Human Hemoglobin As Revealed by Quasielastic Neutron Scattering.

    PubMed

    Fujiwara, Satoru; Chatake, Toshiyuki; Matsuo, Tatsuhito; Kono, Fumiaki; Tominaga, Taiki; Shibata, Kaoru; Sato-Tomita, Ayana; Shibayama, Naoya

    2017-08-31

    Hemoglobin, the vital O2 carrier in red blood cells, has long served as a classic example of an allosteric protein. Although high-resolution X-ray structural models are currently available for both the deoxy tense (T) and fully liganded relaxed (R) states of hemoglobin, much less is known about their dynamics, especially on the picosecond to subnanosecond time scales. Here, we investigate the picosecond dynamics of the deoxy and CO forms of human hemoglobin using quasielastic neutron scattering under near physiological conditions in order to extract the dynamics changes upon ligation. From the analysis of the global motions, we found that whereas the apparent diffusion coefficients of the deoxy form can be described by assuming translational and rotational diffusion of a rigid body, those of the CO form need to involve an additional contribution of internal large-scale motions. We also found that the local dynamics in the deoxy and CO forms are very similar in amplitude but are slightly lower in frequency in the former than in the latter. Our results reveal the presence of rapid large-scale motions in hemoglobin and further demonstrate that this internal mobility is governed allosterically by the ligation state of the heme group.

  8. Cape buffalo mitogenomics reveals a Holocene shift in the African human-megafauna dynamics.

    PubMed

    Heller, Rasmus; Brüniche-Olsen, Anna; Siegismund, Hans R

    2012-08-01

    Africa is unique among the continents in having maintained an extraordinarily diverse and prolific megafauna spanning the Pleistocene-Holocene epochs. Little is known about the historical dynamics of this community and even less about the reasons for its unique persistence to modern times. We sequenced complete mitochondrial genomes from 43 Cape buffalo (Syncerus caffer caffer) to infer the demographic history of this large mammal. A combination of Bayesian skyline plots, simulations and Approximate Bayesian Computation (ABC) were used to distinguish population size dynamics from the confounding effect of population structure and identify the most probable demographic scenario. Our analyses revealed a late Pleistocene expansion phase concurrent with the human expansion between 80 000 and 10 000 years ago, refuting an adverse ecological effect of Palaeolithic humans on this quarry species, but also showed that the buffalo subsequently declined during the Holocene. The distinct two-phased dynamic inferred here suggests that a major ecological transition occurred in the Holocene. The timing of this transition coincides with the onset of drier conditions throughout tropical Africa following the Holocene Optimum (∼9000-5000 years ago), but also with the explosive growth in human population size associated with the transition from the Palaeolithic to the Neolithic cultural stage. We evaluate each of these possible causal factors and their potential impact on the African megafauna, providing the first systematic assessment of megafauna dynamics on the only continent where large mammals remain abundant.

  9. Dynamic diversity of synthetic supramolecular polymers in water as revealed by hydrogen/deuterium exchange.

    PubMed

    Lou, Xianwen; Lafleur, René P M; Leenders, Christianus M A; Schoenmakers, Sandra M C; Matsumoto, Nicholas M; Baker, Matthew B; van Dongen, Joost L J; Palmans, Anja R A; Meijer, E W

    2017-05-15

    Numerous self-assembling molecules have been synthesized aiming at mimicking both the structural and dynamic properties found in living systems. Here we show the application of hydrogen/deuterium exchange (HDX) mass spectrometry (MS) to unravel the nanoscale organization and the structural dynamics of synthetic supramolecular polymers in water. We select benzene-1,3,5-tricarboxamide (BTA) derivatives that self-assemble in H2O to illustrate the strength of this technique for supramolecular polymers. The BTA structure has six exchangeable hydrogen atoms and we follow their exchange as a function of time after diluting the H2O solution with a 100-fold excess of D2O. The kinetic H/D exchange profiles reveal that these supramolecular polymers in water are dynamically diverse; a notion that has previously not been observed using other techniques. In addition, we report that small changes in the molecular structure can be used to control the dynamics of synthetic supramolecular polymers in water.

  10. Automatic generation of predictive dynamic models reveals nuclear phosphorylation as the key Msn2 control mechanism.

    PubMed

    Sunnåker, Mikael; Zamora-Sillero, Elias; Dechant, Reinhard; Ludwig, Christina; Busetto, Alberto Giovanni; Wagner, Andreas; Stelling, Joerg

    2013-05-28

    Predictive dynamical models are critical for the analysis of complex biological systems. However, methods to systematically develop and discriminate among systems biology models are still lacking. We describe a computational method that incorporates all hypothetical mechanisms about the architecture of a biological system into a single model and automatically generates a set of simpler models compatible with observational data. As a proof of principle, we analyzed the dynamic control of the transcription factor Msn2 in Saccharomyces cerevisiae, specifically the short-term mechanisms mediating the cells' recovery after release from starvation stress. Our method determined that 12 of 192 possible models were compatible with available Msn2 localization data. Iterations between model predictions and rationally designed phosphoproteomics and imaging experiments identified a single-circuit topology with a relative probability of 99% among the 192 models. Model analysis revealed that the coupling of dynamic phenomena in Msn2 phosphorylation and transport could lead to efficient stress response signaling by establishing a rate-of-change sensor. Similar principles could apply to mammalian stress response pathways. Systematic construction of dynamic models may yield detailed insight into nonobvious molecular mechanisms.

  11. Capturing Arabidopsis root architecture dynamics with ROOT-FIT reveals diversity in responses to salinity.

    PubMed

    Julkowska, Magdalena M; Hoefsloot, Huub C J; Mol, Selena; Feron, Richard; de Boer, Gert-Jan; Haring, Michel A; Testerink, Christa

    2014-11-01

    The plant root is the first organ to encounter salinity stress, but the effect of salinity on root system architecture (RSA) remains elusive. Both the reduction in main root (MR) elongation and the redistribution of the root mass between MRs and lateral roots (LRs) are likely to play crucial roles in water extraction efficiency and ion exclusion. To establish which RSA parameters are responsive to salt stress, we performed a detailed time course experiment in which Arabidopsis (Arabidopsis thaliana) seedlings were grown on agar plates under different salt stress conditions. We captured RSA dynamics with quadratic growth functions (root-fit) and summarized the salt-induced differences in RSA dynamics in three growth parameters: MR elongation, average LR elongation, and increase in number of LRs. In the ecotype Columbia-0 accession of Arabidopsis, salt stress affected MR elongation more severely than LR elongation and an increase in LRs, leading to a significantly altered RSA. By quantifying RSA dynamics of 31 different Arabidopsis accessions in control and mild salt stress conditions, different strategies for regulation of MR and LR meristems and root branching were revealed. Different RSA strategies partially correlated with natural variation in abscisic acid sensitivity and different Na(+)/K(+) ratios in shoots of seedlings grown under mild salt stress. Applying root-fit to describe the dynamics of RSA allowed us to uncover the natural diversity in root morphology and cluster it into four response types that otherwise would have been overlooked.

  12. Arabidopsis RIC1 Severs Actin Filaments at the Apex to Regulate Pollen Tube Growth

    PubMed Central

    Zhou, Zhenzhen; Shi, Haifan; Chen, Binqing; Zhang, Ruihui; Huang, Shanjin; Fu, Ying

    2015-01-01

    Pollen tubes deliver sperms to the ovule for fertilization via tip growth. The rapid turnover of F-actin in pollen tube tips plays an important role in this process. In this study, we demonstrate that Arabidopsis thaliana RIC1, a member of the ROP-interactive CRIB motif-containing protein family, regulates pollen tube growth via its F-actin severing activity. Knockout of RIC1 enhanced pollen tube elongation, while overexpression of RIC1 dramatically reduced tube growth. Pharmacological analysis indicated that RIC1 affected F-actin dynamics in pollen tubes. In vitro biochemical assays revealed that RIC1 directly bound and severed F-actin in the presence of Ca2+ in addition to interfering with F-actin turnover by capping F-actin at the barbed ends. In vivo, RIC1 localized primarily to the apical plasma membrane (PM) of pollen tubes. The level of RIC1 at the apical PM oscillated during pollen tube growth. The frequency of F-actin severing at the apex was notably decreased in ric1-1 pollen tubes but was increased in pollen tubes overexpressing RIC1. We propose that RIC1 regulates F-actin dynamics at the apical PM as well as the cytosol by severing F-actin and capping the barbed ends in the cytoplasm, establishing a novel mechanism that underlies the regulation of pollen tube growth. PMID:25804540

  13. Simultaneous Measurement of Amyloid Fibril Formation by Dynamic Light Scattering and Fluorescence Reveals Complex Aggregation Kinetics

    PubMed Central

    Streets, Aaron M.; Sourigues, Yannick; Kopito, Ron R.; Melki, Ronald; Quake, Stephen R.

    2013-01-01

    An apparatus that combines dynamic light scattering and Thioflavin T fluorescence detection is used to simultaneously probe fibril formation in polyglutamine peptides, the aggregating subunit associated with Huntington's disease, in vitro. Huntington's disease is a neurodegenerative disorder in a class of human pathologies that includes Alzheimer's and Parkinson's disease. These pathologies are all related by the propensity of their associated protein or polypeptide to form insoluble, β-sheet rich, amyloid fibrils. Despite the wide range of amino acid sequence in the aggregation prone polypeptides associated with these diseases, the resulting amyloids display strikingly similar physical structure, an observation which suggests a physical basis for amyloid fibril formation. Thioflavin T fluorescence reports β-sheet fibril content while dynamic light scattering measures particle size distributions. The combined techniques allow elucidation of complex aggregation kinetics and are used to reveal multiple stages of amyloid fibril formation. PMID:23349924

  14. Single-molecule spectroscopy reveals how calmodulin activates NO synthase by controlling its conformational fluctuation dynamics

    PubMed Central

    He, Yufan; Haque, Mohammad Mahfuzul; Stuehr, Dennis J.; Lu, H. Peter

    2015-01-01

    Mechanisms that regulate the nitric oxide synthase enzymes (NOS) are of interest in biology and medicine. Although NOS catalysis relies on domain motions, and is activated by calmodulin binding, the relationships are unclear. We used single-molecule fluorescence resonance energy transfer (FRET) spectroscopy to elucidate the conformational states distribution and associated conformational fluctuation dynamics of the two electron transfer domains in a FRET dye-labeled neuronal NOS reductase domain, and to understand how calmodulin affects the dynamics to regulate catalysis. We found that calmodulin alters NOS conformational behaviors in several ways: It changes the distance distribution between the NOS domains, shortens the lifetimes of the individual conformational states, and instills conformational discipline by greatly narrowing the distributions of the conformational states and fluctuation rates. This information was specifically obtainable only by single-molecule spectroscopic measurements, and reveals how calmodulin promotes catalysis by shaping the physical and temporal conformational behaviors of NOS. PMID:26311846

  15. Cilium transition zone proteome reveals compartmentalization and differential dynamics of ciliopathy complexes

    PubMed Central

    Moreira-Leite, Flavia; Varga, Vladimir; Gull, Keith

    2016-01-01

    The transition zone (TZ) of eukaryotic cilia and flagella is a structural intermediate between the basal body and the axoneme that regulates ciliary traffic. Mutations in genes encoding TZ proteins (TZPs) cause human inherited diseases (ciliopathies). Here, we use the trypanosome to identify TZ components and localize them to TZ subdomains, showing that the Bardet-Biedl syndrome complex (BBSome) is more distal in the TZ than the Meckel syndrome (MKS) complex. Several of the TZPs identified here have hu