Sample records for reveals rapidly evolving

  1. Hybridization Reveals the Evolving Genomic Architecture of Speciation

    PubMed Central

    Kronforst, Marcus R.; Hansen, Matthew E.B.; Crawford, Nicholas G.; Gallant, Jason R.; Zhang, Wei; Kulathinal, Rob J.; Kapan, Durrell D.; Mullen, Sean P.

    2014-01-01

    SUMMARY The rate at which genomes diverge during speciation is unknown, as are the physical dynamics of the process. Here, we compare full genome sequences of 32 butterflies, representing five species from a hybridizing Heliconius butterfly community, to examine genome-wide patterns of introgression and infer how divergence evolves during the speciation process. Our analyses reveal that initial divergence is restricted to a small fraction of the genome, largely clustered around known wing-patterning genes. Over time, divergence evolves rapidly, due primarily to the origin of new divergent regions. Furthermore, divergent genomic regions display signatures of both selection and adaptive introgression, demonstrating the link between microevolutionary processes acting within species and the origin of species across macroevolutionary timescales. Our results provide a uniquely comprehensive portrait of the evolving species boundary due to the role that hybridization plays in reducing the background accumulation of divergence at neutral sites. PMID:24183670

  2. Rapidly evolving and luminous transients from Pan-STARRS1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drout, M. R.; Chornock, R.; Soderberg, A. M.

    2014-10-10

    In the past decade, several rapidly evolving transients have been discovered whose timescales and luminosities are not easily explained by traditional supernovae (SNe) models. The sample size of these objects has remained small due, at least in part, to the challenges of detecting short timescale transients with traditional survey cadences. Here we present the results from a search within the Pan-STARRS1 Medium Deep Survey (PS1-MDS) for rapidly evolving and luminous transients. We identify 10 new transients with a time above half-maximum (t {sub 1/2}) of less than 12 days and –16.5 > M > –20 mag. This increases the numbermore » of known events in this region of SN phase space by roughly a factor of three. The median redshift of the PS1-MDS sample is z = 0.275 and they all exploded in star-forming galaxies. In general, the transients possess faster rise than decline timescale and blue colors at maximum light (g {sub P1} – r {sub P1} ≲ –0.2). Best-fit blackbodies reveal photospheric temperatures/radii that expand/cool with time and explosion spectra taken near maximum light are dominated by a blue continuum, consistent with a hot, optically thick, ejecta. We find it difficult to reconcile the short timescale, high peak luminosity (L > 10{sup 43} erg s{sup –1}), and lack of UV line blanketing observed in many of these transients with an explosion powered mainly by the radioactive decay of {sup 56}Ni. Rather, we find that many are consistent with either (1) cooling envelope emission from the explosion of a star with a low-mass extended envelope that ejected very little (<0.03 M {sub ☉}) radioactive material, or (2) a shock breakout within a dense, optically thick, wind surrounding the progenitor star. After calculating the detection efficiency for objects with rapid timescales in the PS1-MDS we find a volumetric rate of 4800-8000 events yr{sup –1} Gpc{sup –3} (4%-7% of the core-collapse SN rate at z = 0.2).« less

  3. Evidence for a high mutation rate at rapidly evolving yeast centromeres.

    PubMed

    Bensasson, Douda

    2011-07-18

    Although their role in cell division is essential, centromeres evolve rapidly in animals, plants and yeasts. Unlike the complex centromeres of plants and aminals, the point centromeres of Saccharomcyes yeasts can be readily sequenced to distinguish amongst the possible explanations for fast centromere evolution. Using DNA sequences of all 16 centromeres from 34 strains of Saccharomyces cerevisiae and population genomic data from Saccharomyces paradoxus, I show that centromeres in both species evolve 3 times more rapidly even than selectively unconstrained DNA. Exceptionally high levels of polymorphism seen in multiple yeast populations suggest that rapid centromere evolution does not result from the repeated selective sweeps expected under meiotic drive. I further show that there is little evidence for crossing-over or gene conversion within centromeres, although there is clear evidence for recombination in their immediate vicinity. Finally I show that the mutation spectrum at centromeres is consistent with the pattern of spontaneous mutation elsewhere in the genome. These results indicate that rapid centromere evolution is a common phenomenon in yeast species. Furthermore, these results suggest that rapid centromere evolution does not result from the mutagenic effect of gene conversion, but from a generalised increase in the mutation rate, perhaps arising from the unusual chromatin structure at centromeres in yeast and other eukaryotes.

  4. Intrinsic immunogenicity of rapidly-degradable polymers evolves during degradation.

    PubMed

    Andorko, James I; Hess, Krystina L; Pineault, Kevin G; Jewell, Christopher M

    2016-03-01

    Recent studies reveal many biomaterial vaccine carriers are able to activate immunostimulatory pathways, even in the absence of other immune signals. How the changing properties of polymers during biodegradation impact this intrinsic immunogenicity is not well studied, yet this information could contribute to rational design of degradable vaccine carriers that help direct immune response. We use degradable poly(beta-amino esters) (PBAEs) to explore intrinsic immunogenicity as a function of the degree of polymer degradation and polymer form (e.g., soluble, particles). PBAE particles condensed by electrostatic interaction to mimic a common vaccine approach strongly activate dendritic cells, drive antigen presentation, and enhance T cell proliferation in the presence of antigen. Polymer molecular weight strongly influences these effects, with maximum stimulation at short degradation times--corresponding to high molecular weight--and waning levels as degradation continues. In contrast, free polymer is immunologically inert. In mice, PBAE particles increase the numbers and activation state of cells in lymph nodes. Mechanistic studies reveal that this evolving immunogenicity occurs as the physicochemical properties and concentration of particles change during polymer degradation. This work confirms the immunological profile of degradable, synthetic polymers can evolve over time and creates an opportunity to leverage this feature in new vaccines. Degradable polymers are increasingly important in vaccination, but how the inherent immunogenicity of polymers changes during degradation is poorly understood. Using common rapidly-degradable vaccine carriers, we show that the activation of immune cells--even in the absence of other adjuvants--depends on polymer form (e.g., free, particulate) and the extent of degradation. These changing characteristics alter the physicochemical properties (e.g., charge, size, molecular weight) of polymer particles, driving changes in

  5. Evidence for a high mutation rate at rapidly evolving yeast centromeres

    PubMed Central

    2011-01-01

    Background Although their role in cell division is essential, centromeres evolve rapidly in animals, plants and yeasts. Unlike the complex centromeres of plants and aminals, the point centromeres of Saccharomcyes yeasts can be readily sequenced to distinguish amongst the possible explanations for fast centromere evolution. Results Using DNA sequences of all 16 centromeres from 34 strains of Saccharomyces cerevisiae and population genomic data from Saccharomyces paradoxus, I show that centromeres in both species evolve 3 times more rapidly even than selectively unconstrained DNA. Exceptionally high levels of polymorphism seen in multiple yeast populations suggest that rapid centromere evolution does not result from the repeated selective sweeps expected under meiotic drive. I further show that there is little evidence for crossing-over or gene conversion within centromeres, although there is clear evidence for recombination in their immediate vicinity. Finally I show that the mutation spectrum at centromeres is consistent with the pattern of spontaneous mutation elsewhere in the genome. Conclusions These results indicate that rapid centromere evolution is a common phenomenon in yeast species. Furthermore, these results suggest that rapid centromere evolution does not result from the mutagenic effect of gene conversion, but from a generalised increase in the mutation rate, perhaps arising from the unusual chromatin structure at centromeres in yeast and other eukaryotes. PMID:21767380

  6. Developing Collective Learning Extension for Rapidly Evolving Information System Courses

    ERIC Educational Resources Information Center

    Agarwal, Nitin; Ahmed, Faysal

    2017-01-01

    Due to rapidly evolving Information System (IS) technologies, instructors find themselves stuck in the constant game of catching up. On the same hand students find their skills obsolete almost as soon as they graduate. As part of IS curriculum and education, we need to emphasize more on teaching the students "how to learn" while keeping…

  7. Delineating slowly and rapidly evolving fractions of the Drosophila genome.

    PubMed

    Keith, Jonathan M; Adams, Peter; Stephen, Stuart; Mattick, John S

    2008-05-01

    Evolutionary conservation is an important indicator of function and a major component of bioinformatic methods to identify non-protein-coding genes. We present a new Bayesian method for segmenting pairwise alignments of eukaryotic genomes while simultaneously classifying segments into slowly and rapidly evolving fractions. We also describe an information criterion similar to the Akaike Information Criterion (AIC) for determining the number of classes. Working with pairwise alignments enables detection of differences in conservation patterns among closely related species. We analyzed three whole-genome and three partial-genome pairwise alignments among eight Drosophila species. Three distinct classes of conservation level were detected. Sequences comprising the most slowly evolving component were consistent across a range of species pairs, and constituted approximately 62-66% of the D. melanogaster genome. Almost all (>90%) of the aligned protein-coding sequence is in this fraction, suggesting much of it (comprising the majority of the Drosophila genome, including approximately 56% of non-protein-coding sequences) is functional. The size and content of the most rapidly evolving component was species dependent, and varied from 1.6% to 4.8%. This fraction is also enriched for protein-coding sequence (while containing significant amounts of non-protein-coding sequence), suggesting it is under positive selection. We also classified segments according to conservation and GC content simultaneously. This analysis identified numerous sub-classes of those identified on the basis of conservation alone, but was nevertheless consistent with that classification. Software, data, and results available at www.maths.qut.edu.au/-keithj/. Genomic segments comprising the conservation classes available in BED format.

  8. Rapidly evolving R genes in diverse grass species confer resistance to rice blast disease

    PubMed Central

    Yang, Sihai; Li, Jing; Zhang, Xiaohui; Zhang, Qijun; Huang, Ju; Chen, Jian-Qun; Hartl, Daniel L.; Tian, Dacheng

    2013-01-01

    We show that the genomes of maize, sorghum, and brachypodium contain genes that, when transformed into rice, confer resistance to rice blast disease. The genes are resistance genes (R genes) that encode proteins with nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains (NBS–LRR proteins). By using criteria associated with rapid molecular evolution, we identified three rapidly evolving R-gene families in these species as well as in rice, and transformed a randomly chosen subset of these genes into rice strains known to be sensitive to rice blast disease caused by the fungus Magnaporthe oryzae. The transformed strains were then tested for sensitivity or resistance to 12 diverse strains of M. oryzae. A total of 15 functional blast R genes were identified among 60 NBS–LRR genes cloned from maize, sorghum, and brachypodium; and 13 blast R genes were obtained from 20 NBS–LRR paralogs in rice. These results show that abundant blast R genes occur not only within species but also among species, and that the R genes in the same rapidly evolving gene family can exhibit an effector response that confers resistance to rapidly evolving fungal pathogens. Neither conventional evolutionary conservation nor conventional evolutionary convergence supplies a satisfactory explanation of our findings. We suggest a unique mechanism termed “constrained divergence,” in which R genes and pathogen effectors can follow only limited evolutionary pathways to increase fitness. Our results open avenues for R-gene identification that will help to elucidate R-gene vs. effector mechanisms and may yield new sources of durable pathogen resistance. PMID:24145399

  9. RAPIDLY EVOLVING AND LUMINOUS TRANSIENTS DRIVEN BY NEWLY BORN NEUTRON STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yun-Wei; Li, Shao-Ze; Dai, Zi-Gao, E-mail: yuyw@mail.ccnu.edu.cn

    2015-06-10

    We provide a general analysis on the properties of the emitting material of some rapidly evolving and luminous transients discovered recently with the Pan-STARRS1 Medium Deep Survey. It was found that these transients are probably produced by a low-mass non-relativistic outflow that is continuously powered by a newly born, rapidly spinning, and highly magnetized neutron star (NS). Such a system could originate from an accretion-induced collapse of a white dwarf or a merger of an NS–NS binary. Therefore, observations of these transients would be helpful for constraining white dwarf and NS physics and/or for searching and identifying gravitational wave signals frommore » the mergers.« less

  10. Rapidly Evolving Toll-3/4 Genes Encode Male-Specific Toll-Like Receptors in Drosophila.

    PubMed

    Levin, Tera C; Malik, Harmit S

    2017-09-01

    Animal Toll-like receptors (TLRs) have evolved through a pattern of duplication and divergence. Whereas mammalian TLRs directly recognize microbial ligands, Drosophila Tolls bind endogenous ligands downstream of both developmental and immune signaling cascades. Here, we find that most Toll genes in Drosophila evolve slowly with little gene turnover (gains/losses), consistent with their important roles in development and indirect roles in microbial recognition. In contrast, we find that the Toll-3/4 genes have experienced an unusually rapid rate of gene gains and losses, resulting in lineage-specific Toll-3/4s and vastly different gene repertoires among Drosophila species, from zero copies (e.g., D. mojavensis) to nineteen copies (e.g., D. willistoni). In D. willistoni, we find strong evidence for positive selection in Toll-3/4 genes, localized specifically to an extracellular region predicted to overlap with the binding site of Spätzle, the only known ligand of insect Tolls. However, because Spätzle genes are not experiencing similar selective pressures, we hypothesize that Toll-3/4s may be rapidly evolving because they bind to a different ligand, akin to TLRs outside of insects. We further find that most Drosophila Toll-3/4 genes are either weakly expressed or expressed exclusively in males, specifically in the germline. Unlike other Toll genes in D. melanogaster, Toll-3, and Toll-4 have apparently escaped from essential developmental roles, as knockdowns have no substantial effects on viability or male fertility. Based on these findings, we propose that the Toll-3/4 genes represent an exceptionally rapidly evolving lineage of Drosophila Toll genes, which play an unusual, as-yet-undiscovered role in the male germline. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Rapidly Evolving Toll-3/4 Genes Encode Male-Specific Toll-Like Receptors in Drosophila

    PubMed Central

    Levin, Tera C.; Malik, Harmit S.

    2017-01-01

    Abstract Animal Toll-like receptors (TLRs) have evolved through a pattern of duplication and divergence. Whereas mammalian TLRs directly recognize microbial ligands, Drosophila Tolls bind endogenous ligands downstream of both developmental and immune signaling cascades. Here, we find that most Toll genes in Drosophila evolve slowly with little gene turnover (gains/losses), consistent with their important roles in development and indirect roles in microbial recognition. In contrast, we find that the Toll-3/4 genes have experienced an unusually rapid rate of gene gains and losses, resulting in lineage-specific Toll-3/4s and vastly different gene repertoires among Drosophila species, from zero copies (e.g., D. mojavensis) to nineteen copies (e.g., D. willistoni). In D. willistoni, we find strong evidence for positive selection in Toll-3/4 genes, localized specifically to an extracellular region predicted to overlap with the binding site of Spätzle, the only known ligand of insect Tolls. However, because Spätzle genes are not experiencing similar selective pressures, we hypothesize that Toll-3/4s may be rapidly evolving because they bind to a different ligand, akin to TLRs outside of insects. We further find that most Drosophila Toll-3/4 genes are either weakly expressed or expressed exclusively in males, specifically in the germline. Unlike other Toll genes in D. melanogaster, Toll-3, and Toll-4 have apparently escaped from essential developmental roles, as knockdowns have no substantial effects on viability or male fertility. Based on these findings, we propose that the Toll-3/4 genes represent an exceptionally rapidly evolving lineage of Drosophila Toll genes, which play an unusual, as-yet-undiscovered role in the male germline. PMID:28541576

  12. Snake venoms are integrated systems, but abundant venom proteins evolve more rapidly.

    PubMed

    Aird, Steven D; Aggarwal, Shikha; Villar-Briones, Alejandro; Tin, Mandy Man-Ying; Terada, Kouki; Mikheyev, Alexander S

    2015-08-28

    While many studies have shown that extracellular proteins evolve rapidly, how selection acts on them remains poorly understood. We used snake venoms to understand the interaction between ecology, expression level, and evolutionary rate in secreted protein systems. Venomous snakes employ well-integrated systems of proteins and organic constituents to immobilize prey. Venoms are generally optimized to subdue preferred prey more effectively than non-prey, and many venom protein families manifest positive selection and rapid gene family diversification. Although previous studies have illuminated how individual venom protein families evolve, how selection acts on venoms as integrated systems, is unknown. Using next-generation transcriptome sequencing and mass spectrometry, we examined microevolution in two pitvipers, allopatrically separated for at least 1.6 million years, and their hybrids. Transcriptomes of parental species had generally similar compositions in regard to protein families, but for a given protein family, the homologs present and concentrations thereof sometimes differed dramatically. For instance, a phospholipase A2 transcript comprising 73.4 % of the Protobothrops elegans transcriptome, was barely present in the P. flavoviridis transcriptome (<0.05 %). Hybrids produced most proteins found in both parental venoms. Protein evolutionary rates were positively correlated with transcriptomic and proteomic abundances, and the most abundant proteins showed positive selection. This pattern holds with the addition of four other published crotaline transcriptomes, from two more genera, and also for the recently published king cobra genome, suggesting that rapid evolution of abundant proteins may be generally true for snake venoms. Looking more broadly at Protobothrops, we show that rapid evolution of the most abundant components is due to positive selection, suggesting an interplay between abundance and adaptation. Given log-scale differences in toxin

  13. Genome-Wide Analysis in Three Fusarium Pathogens Identifies Rapidly Evolving Chromosomes and Genes Associated with Pathogenicity

    PubMed Central

    Sperschneider, Jana; Gardiner, Donald M.; Thatcher, Louise F.; Lyons, Rebecca; Singh, Karam B.; Manners, John M.; Taylor, Jennifer M.

    2015-01-01

    Pathogens and hosts are in an ongoing arms race and genes involved in host–pathogen interactions are likely to undergo diversifying selection. Fusarium plant pathogens have evolved diverse infection strategies, but how they interact with their hosts in the biotrophic infection stage remains puzzling. To address this, we analyzed the genomes of three Fusarium plant pathogens for genes that are under diversifying selection. We found a two-speed genome structure both on the chromosome and gene group level. Diversifying selection acts strongly on the dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici and on distinct core chromosome regions in Fusarium graminearum, all of which have associations with virulence. Members of two gene groups evolve rapidly, namely those that encode proteins with an N-terminal [SG]-P-C-[KR]-P sequence motif and proteins that are conserved predominantly in pathogens. Specifically, 29 F. graminearum genes are rapidly evolving, in planta induced and encode secreted proteins, strongly pointing toward effector function. In summary, diversifying selection in Fusarium is strongly reflected as genomic footprints and can be used to predict a small gene set likely to be involved in host–pathogen interactions for experimental verification. PMID:25994930

  14. Analysis of expression in the Anopheles gambiae developing testes reveals rapidly evolving lineage-specific genes in mosquitoes.

    PubMed

    Krzywinska, Elzbieta; Krzywinski, Jaroslaw

    2009-07-06

    Male mosquitoes do not feed on blood and are not involved in delivery of pathogens to humans. Consequently, they are seldom the subjects of research, which results in a very poor understanding of their biology. To gain insights into male developmental processes we sought to identify genes transcribed exclusively in the reproductive tissues of male Anopheles gambiae pupae. Using a cDNA subtraction strategy, five male-specifically or highly male-biased expressed genes were isolated, four of which remain unannotated in the An. gambiae genome. Spatial and temporal expression patterns suggest that each of these genes is involved in the mid-late stages of spermatogenesis. Their sequences are rapidly evolving; however, two genes possess clear homologs in a wide range of taxa and one of these probably acts in a sperm motility control mechanism conserved in many organisms, including humans. The other three genes have no match to sequences from non-mosquito taxa, thus can be regarded as orphans. RNA in situ hybridization demonstrated that one of the orphans is transcribed in spermatids, which suggests its involvement in sperm maturation. Two other orphans have unknown functions. Expression analysis of orthologs of all five genes indicated that male-biased transcription was not conserved in the majority of cases in Aedes and Culex. Discovery of testis-expressed orphan genes in mosquitoes opens new prospects for the development of innovative control methods. The orphan encoded proteins may represent unique targets of selective anti-mosquito sterilizing agents that will not affect non-target organisms.

  15. A fibre based triature interferometer for measuring rapidly evolving, ablatively driven plasma densities

    NASA Astrophysics Data System (ADS)

    Macdonald, J.; Bland, S. N.; Threadgold, J.

    2015-08-01

    We report on the first use of a fibre interferometer incorporating triature analysis for measuring rapidly evolving plasma densities of ne ˜ 1013/cm3 and above, such as those produced by simple coaxial plasma guns. The resultant system is extremely portable, easy to field in experiments, relatively cheap to produce, and—with the exception of a small open area in which the plasma is sampled—safe in operation as all laser light is enclosed.

  16. Rapidly Evolving Transients in the Dark Energy Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pursiainen, M.; et al.

    We present the results of a search for rapidly evolving transients in the Dark Energy Survey Supernova Programme. These events are characterized by fast light curve evolution (rise to peak inmore » $$\\lesssim 10$$ d and exponential decline in $$\\lesssim30$$ d after peak). We discovered 72 events, including 37 transients with a spectroscopic redshift from host galaxy spectral features. The 37 events increase the total number of rapid optical transients by more than factor of two. They are found at a wide range of redshifts ($0.05M_\\mathrm{g}>-22.25$$). The multiband photometry is well fit by a blackbody up to few weeks after peak. The events appear to be hot ($$T\\approx10000-30000$$ K) and large ($$R\\approx 10^{14}-2\\cdot10^{15}$$ cm) at peak, and generally expand and cool in time, though some events show evidence for a receding photosphere with roughly constant temperature. Spectra taken around peak are dominated by a blue featureless continuum consistent with hot, optically thick ejecta. We compare our events with a previously suggested physical scenario involving shock breakout in an optically thick wind surrounding a core-collapse supernova (CCSNe), we conclude that current models for such a scenario might need an additional power source to describe the exponential decline. We find these transients tend to favor star-forming host galaxies, which could be consistent with a core-collapse origin. However, more detailed modeling of the light curves is necessary to determine their physical origin.« less

  17. Microsatellites evolve more rapidly in humans than in chimpanzees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubinsztein, D.C.; Leggo, J.; Amos, W.

    1995-12-10

    Microsatellites are highly polymorphic markers consisting of varying numbers of tandem repeats. At different loci, these repeats can consist of one to five nucleotides. Microsatellites have been used in many fields of genetics, including genetic mapping, linkage disequilibrium analyses, forensic studies, and population genetics. It is important that we understand their mutational processes better so that they can be exploited optimally for studies of human diversity and evolutionary genetics. We have analyzed 24 microsatellite loci in chimpanzees, East Anglians, and Sub-Saharan Africans. The stepwise-weighted genetic distances between the humans and the chimpanzees and between the two human populations were calculatedmore » according to the method described by Deka et al. The ratio of the genetic distances between the chimpanzees and the humans relative to that between the Africans and the East Anglians was more than 10 times smaller than expected. This suggests that microsatellites have evolved more rapidly in humans than in chimpanzees. 12 refs., 1 tab.« less

  18. Histone variant innovation in a rapidly evolving chordate lineage.

    PubMed

    Moosmann, Alexandra; Campsteijn, Coen; Jansen, Pascal Wtc; Nasrallah, Carole; Raasholm, Martina; Stunnenberg, Henk G; Thompson, Eric M

    2011-07-15

    Histone variants alter the composition of nucleosomes and play crucial roles in transcription, chromosome segregation, DNA repair, and sperm compaction. Modification of metazoan histone variant lineages occurs on a background of genome architecture that shows global similarities from sponges to vertebrates, but the urochordate, Oikopleura dioica, a member of the sister group to vertebrates, exhibits profound modification of this ancestral architecture. We show that a histone complement of 47 gene loci encodes 31 histone variants, grouped in distinct sets of developmental expression profiles throughout the life cycle. A particularly diverse array of 15 male-specific histone variants was uncovered, including a testes-specific H4t, the first metazoan H4 sequence variant reported. Universal histone variants H3.3, CenH3, and H2A.Z are present but O. dioica lacks homologs of macroH2A and H2AX. The genome encodes many H2A and H2B variants and the repertoire of H2A.Z isoforms is expanded through alternative splicing, incrementally regulating the number of acetylatable lysine residues in the functionally important N-terminal "charge patch". Mass spectrometry identified 40 acetylation, methylation and ubiquitylation posttranslational modifications (PTMs) and showed that hallmark PTMs of "active" and "repressive" chromatin were present in O. dioica. No obvious reduction in silent heterochromatic marks was observed despite high gene density in this extraordinarily compacted chordate genome. These results show that histone gene complements and their organization differ considerably even over modest phylogenetic distances. Substantial innovation among all core and linker histone variants has evolved in concert with adaptation of specific life history traits in this rapidly evolving chordate lineage.

  19. Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape.

    PubMed

    Emens, Leisha A; Ascierto, Paolo A; Darcy, Phillip K; Demaria, Sandra; Eggermont, Alexander M M; Redmond, William L; Seliger, Barbara; Marincola, Francesco M

    2017-08-01

    Cancer immunotherapy is now established as a powerful way to treat cancer. The recent clinical success of immune checkpoint blockade (antagonists of CTLA-4, PD-1 and PD-L1) highlights both the universal power of treating the immune system across tumour types and the unique features of cancer immunotherapy. Immune-related adverse events, atypical clinical response patterns, durable responses, and clear overall survival benefit distinguish cancer immunotherapy from cytotoxic cancer therapy. Combination immunotherapies that transform non-responders to responders are under rapid development. Current challenges facing the field include incorporating immunotherapy into adjuvant and neoadjuvant cancer therapy, refining dose, schedule and duration of treatment and developing novel surrogate endpoints that accurately capture overall survival benefit early in treatment. As the field rapidly evolves, we must prioritise the development of biomarkers to guide the use of immunotherapies in the most appropriate patients. Immunotherapy is already transforming cancer from a death sentence to a chronic disease for some patients. By making smart, evidence-based decisions in developing next generation immunotherapies, cancer should become an imminently treatable, curable and even preventable disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. iPTF 16asu: A Luminous, Rapidly Evolving, and High-velocity Supernova

    DOE PAGES

    Whitesides, L.; Lunnan, R.; Kasliwal, M. M.; ...

    2017-12-18

    Wide-field surveys are discovering a growing number of rare transients whose physical origin is not yet well understood. We present optical and UV data and analysis of intermediate Palomar Transient Factory (iPTF) 16asu, a luminous, rapidly evolving, high-velocity, stripped-envelope supernova (SN). With a rest-frame rise time of just four days and a peak absolute magnitude of M g = -20.4 mag, the light curve of iPTF 16asu is faster and more luminous than that of previous rapid transients. The spectra of iPTF 16asu show a featureless blue continuum near peak that develops into an SN Ic-BL spectrum on the decline.more » We show that while the late-time light curve could plausibly be powered by 56Ni decay, the early emission requires a different energy source. Nondetections in the X-ray and radio strongly constrain the energy coupled to relativistic ejecta to be at most comparable to the class of low-luminosity gamma-ray bursts (GRBs). We suggest that the early emission may have been powered by either a rapidly spinning-down magnetar or by shock breakout in an extended envelope of a very energetic explosion. In either scenario a central engine is required, making iPTF 16asu an intriguing transition object between superluminous SNe, SNe Ic-BL, and low-luminosity GRBs.« less

  1. iPTF 16asu: A Luminous, Rapidly Evolving, and High-velocity Supernova

    NASA Astrophysics Data System (ADS)

    Whitesides, L.; Lunnan, R.; Kasliwal, M. M.; Perley, D. A.; Corsi, A.; Cenko, S. B.; Blagorodnova, N.; Cao, Y.; Cook, D. O.; Doran, G. B.; Frederiks, D. D.; Fremling, C.; Hurley, K.; Karamehmetoglu, E.; Kulkarni, S. R.; Leloudas, G.; Masci, F.; Nugent, P. E.; Ritter, A.; Rubin, A.; Savchenko, V.; Sollerman, J.; Svinkin, D. S.; Taddia, F.; Vreeswijk, P.; Wozniak, P.

    2017-12-01

    Wide-field surveys are discovering a growing number of rare transients whose physical origin is not yet well understood. Here we present optical and UV data and analysis of intermediate Palomar Transient Factory (iPTF) 16asu, a luminous, rapidly evolving, high-velocity, stripped-envelope supernova (SN). With a rest-frame rise time of just four days and a peak absolute magnitude of {M}{{g}}=-20.4 mag, the light curve of iPTF 16asu is faster and more luminous than that of previous rapid transients. The spectra of iPTF 16asu show a featureless blue continuum near peak that develops into an SN Ic-BL spectrum on the decline. We show that while the late-time light curve could plausibly be powered by 56Ni decay, the early emission requires a different energy source. Nondetections in the X-ray and radio strongly constrain the energy coupled to relativistic ejecta to be at most comparable to the class of low-luminosity gamma-ray bursts (GRBs). We suggest that the early emission may have been powered by either a rapidly spinning-down magnetar or by shock breakout in an extended envelope of a very energetic explosion. In either scenario a central engine is required, making iPTF 16asu an intriguing transition object between superluminous SNe, SNe Ic-BL, and low-luminosity GRBs.

  2. Revealing evolved massive stars with Spitzer

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Fabrika, S.

    2010-06-01

    Massive evolved stars lose a large fraction of their mass via copious stellar wind or instant outbursts. During certain evolutionary phases, they can be identified by the presence of their circumstellar nebulae. In this paper, we present the results of a search for compact nebulae (reminiscent of circumstellar nebulae around evolved massive stars) using archival 24-μm data obtained with the Multiband Imaging Photometer for Spitzer. We have discovered 115 nebulae, most of which bear a striking resemblance to the circumstellar nebulae associated with luminous blue variables (LBVs) and late WN-type (WNL) Wolf-Rayet (WR) stars in the Milky Way and the Large Magellanic Cloud (LMC). We interpret this similarity as an indication that the central stars of detected nebulae are either LBVs or related evolved massive stars. Our interpretation is supported by follow-up spectroscopy of two dozen of these central stars, most of which turn out to be either candidate LBVs (cLBVs), blue supergiants or WNL stars. We expect that the forthcoming spectroscopy of the remaining objects from our list, accompanied by the spectrophotometric monitoring of the already discovered cLBVs, will further increase the known population of Galactic LBVs. This, in turn, will have profound consequences for better understanding the LBV phenomenon and its role in the transition between hydrogen-burning O stars and helium-burning WR stars. We also report on the detection of an arc-like structure attached to the cLBV HD 326823 and an arc associated with the LBV R99 (HD 269445) in the LMC. Partially based on observations collected at the German-Spanish Astronomical Centre, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). E-mail: vgvaram@mx.iki.rssi.ru (VVG); akniazev@saao.ac.za (AYK); fabrika@sao.ru (SF)

  3. Museum samples reveal rapid evolution by wild honey bees exposed to a novel parasite.

    PubMed

    Mikheyev, Alexander S; Tin, Mandy M Y; Arora, Jatin; Seeley, Thomas D

    2015-08-06

    Understanding genetic changes caused by novel pathogens and parasites can reveal mechanisms of adaptation and genetic robustness. Using whole-genome sequencing of museum and modern specimens, we describe the genomic changes in a wild population of honey bees in North America following the introduction of the ectoparasitic mite, Varroa destructor. Even though colony density in the study population is the same today as in the past, a major loss of haplotypic diversity occurred, indicative of a drastic mitochondrial bottleneck, caused by massive colony mortality. In contrast, nuclear genetic diversity did not change, though hundreds of genes show signs of selection. The genetic diversity within each bee colony, particularly as a consequence of polyandry by queens, may enable preservation of genetic diversity even during population bottlenecks. These findings suggest that genetically diverse honey bee populations can recover from introduced diseases by evolving rapid tolerance, while maintaining much of the standing genetic variation.

  4. Rapidly evolving homing CRISPR barcodes

    PubMed Central

    Kalhor, Reza; Mali, Prashant; Church, George M.

    2017-01-01

    We present here an approach for engineering evolving DNA barcodes in living cells. The methodology entails using a homing guide RNA (hgRNA) scaffold that directs the Cas9-hgRNA complex to target the DNA locus of the hgRNA itself. We show that this homing CRISPR-Cas9 system acts as an expressed genetic barcode that diversifies its sequence and that the rate of diversification can be controlled in cultured cells. We further evaluate these barcodes in cell populations and show the barcode RNAs can be assayed as single molecules in situ . This integrated approach will have wide ranging applications, such as in deep lineage tracing, cellular barcoding, molecular recording, dissecting cancer biology, and connectome mapping. PMID:27918539

  5. Rapid genome-wide evolution in Brassica rapa populations following drought revealed by sequencing of ancestral and descendant gene pools.

    PubMed

    Franks, Steven J; Kane, Nolan C; O'Hara, Niamh B; Tittes, Silas; Rest, Joshua S

    2016-08-01

    There is increasing evidence that evolution can occur rapidly in response to selection. Recent advances in sequencing suggest the possibility of documenting genetic changes as they occur in populations, thus uncovering the genetic basis of evolution, particularly if samples are available from both before and after selection. Here, we had a unique opportunity to directly assess genetic changes in natural populations following an evolutionary response to a fluctuation in climate. We analysed genome-wide differences between ancestors and descendants of natural populations of Brassica rapa plants from two locations that rapidly evolved changes in multiple phenotypic traits, including flowering time, following a multiyear late-season drought in California. These ancestor-descendant comparisons revealed evolutionary shifts in allele frequencies in many genes. Some genes showing evolutionary shifts have functions related to drought stress and flowering time, consistent with an adaptive response to selection. Loci differentiated between ancestors and descendants (FST outliers) were generally different from those showing signatures of selection based on site frequency spectrum analysis (Tajima's D), indicating that the loci that evolved in response to the recent drought and those under historical selection were generally distinct. Very few genes showed similar evolutionary responses between two geographically distinct populations, suggesting independent genetic trajectories of evolution yielding parallel phenotypic changes. The results show that selection can result in rapid genome-wide evolutionary shifts in allele frequencies in natural populations, and highlight the usefulness of combining resurrection experiments in natural populations with genomics for studying the genetic basis of adaptive evolution. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  6. Spatiotemporal reconstruction of the Aquilegia rapid radiation through next-generation sequencing of rapidly evolving cpDNA regions.

    PubMed

    Fior, Simone; Li, Mingai; Oxelman, Bengt; Viola, Roberto; Hodges, Scott A; Ometto, Lino; Varotto, Claudio

    2013-04-01

    Aquilegia is a well-known model system in the field of evolutionary biology, but obtaining a resolved and well-supported phylogenetic reconstruction for the genus has been hindered by its recent and rapid diversification. Here, we applied 454 next-generation sequencing to PCR amplicons of 21 of the most rapidly evolving regions of the plastome to generate c. 24 kb of sequences from each of 84 individuals from throughout the genus. The resulting phylogeny has well-supported resolution of the main lineages of the genus, although recent diversification such as in the European taxa remains unresolved. By producing a chronogram of the whole Ranunculaceae family based on published data, we inferred calibration points for dating the Aquilegia radiation. The genus originated in the upper Miocene c. 6.9 million yr ago (Ma) in Eastern Asia, and diversification occurred c. 4.8 Ma with the split of two main clades, one colonizing North America, and the other Western Eurasia through the mountains of Central Asia. This was followed by a back-to-Asia migration, originating from the European stock using a North Asian route. These results provide the first backbone phylogeny and spatiotemporal reconstruction of the Aquilegia radiation, and constitute a robust framework to address the adaptative nature of speciation within the group. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  7. Museum samples reveal rapid evolution by wild honey bees exposed to a novel parasite

    PubMed Central

    Mikheyev, Alexander S.; Tin, Mandy M. Y.; Arora, Jatin; Seeley, Thomas D.

    2015-01-01

    Understanding genetic changes caused by novel pathogens and parasites can reveal mechanisms of adaptation and genetic robustness. Using whole-genome sequencing of museum and modern specimens, we describe the genomic changes in a wild population of honey bees in North America following the introduction of the ectoparasitic mite, Varroa destructor. Even though colony density in the study population is the same today as in the past, a major loss of haplotypic diversity occurred, indicative of a drastic mitochondrial bottleneck, caused by massive colony mortality. In contrast, nuclear genetic diversity did not change, though hundreds of genes show signs of selection. The genetic diversity within each bee colony, particularly as a consequence of polyandry by queens, may enable preservation of genetic diversity even during population bottlenecks. These findings suggest that genetically diverse honey bee populations can recover from introduced diseases by evolving rapid tolerance, while maintaining much of the standing genetic variation. PMID:26246313

  8. De Novo ORFs in Drosophila Are Important to Organismal Fitness and Evolved Rapidly from Previously Non-coding Sequences

    PubMed Central

    Reinhardt, Josephine A.; Wanjiru, Betty M.; Brant, Alicia T.; Saelao, Perot; Begun, David J.; Jones, Corbin D.

    2013-01-01

    How non-coding DNA gives rise to new protein-coding genes (de novo genes) is not well understood. Recent work has revealed the origins and functions of a few de novo genes, but common principles governing the evolution or biological roles of these genes are unknown. To better define these principles, we performed a parallel analysis of the evolution and function of six putatively protein-coding de novo genes described in Drosophila melanogaster. Reconstruction of the transcriptional history of de novo genes shows that two de novo genes emerged from novel long non-coding RNAs that arose at least 5 MY prior to evolution of an open reading frame. In contrast, four other de novo genes evolved a translated open reading frame and transcription within the same evolutionary interval suggesting that nascent open reading frames (proto-ORFs), while not required, can contribute to the emergence of a new de novo gene. However, none of the genes arose from proto-ORFs that existed long before expression evolved. Sequence and structural evolution of de novo genes was rapid compared to nearby genes and the structural complexity of de novo genes steadily increases over evolutionary time. Despite the fact that these genes are transcribed at a higher level in males than females, and are most strongly expressed in testes, RNAi experiments show that most of these genes are essential in both sexes during metamorphosis. This lethality suggests that protein coding de novo genes in Drosophila quickly become functionally important. PMID:24146629

  9. Time-evolving genetic networks reveal a NAC troika that negatively regulates leaf senescence in Arabidopsis.

    PubMed

    Kim, Hyo Jung; Park, Ji-Hwan; Kim, Jingil; Kim, Jung Ju; Hong, Sunghyun; Kim, Jeongsik; Kim, Jin Hee; Woo, Hye Ryun; Hyeon, Changbong; Lim, Pyung Ok; Nam, Hong Gil; Hwang, Daehee

    2018-05-22

    Senescence is controlled by time-evolving networks that describe the temporal transition of interactions among senescence regulators. Here, we present time-evolving networks for NAM/ATAF/CUC (NAC) transcription factors in Arabidopsis during leaf aging. The most evident characteristic of these time-dependent networks was a shift from positive to negative regulation among NACs at a presenescent stage. ANAC017, ANAC082, and ANAC090, referred to as a "NAC troika," govern the positive-to-negative regulatory shift. Knockout of the NAC troika accelerated senescence and the induction of other NAC s, whereas overexpression of the NAC troika had the opposite effects. Transcriptome and molecular analyses revealed shared suppression of senescence-promoting processes by the NAC troika, including salicylic acid (SA) and reactive oxygen species (ROS) responses, but with predominant regulation of SA and ROS responses by ANAC090 and ANAC017, respectively. Our time-evolving networks provide a unique regulatory module of presenescent repressors that direct the timely induction of senescence-promoting processes at the presenescent stage of leaf aging. Copyright © 2018 the Author(s). Published by PNAS.

  10. Time-evolving genetic networks reveal a NAC troika that negatively regulates leaf senescence in Arabidopsis

    PubMed Central

    Kim, Hyo Jung; Park, Ji-Hwan; Kim, Jingil; Kim, Jung Ju; Hong, Sunghyun; Kim, Jin Hee; Woo, Hye Ryun; Lim, Pyung Ok; Nam, Hong Gil; Hwang, Daehee

    2018-01-01

    Senescence is controlled by time-evolving networks that describe the temporal transition of interactions among senescence regulators. Here, we present time-evolving networks for NAM/ATAF/CUC (NAC) transcription factors in Arabidopsis during leaf aging. The most evident characteristic of these time-dependent networks was a shift from positive to negative regulation among NACs at a presenescent stage. ANAC017, ANAC082, and ANAC090, referred to as a “NAC troika,” govern the positive-to-negative regulatory shift. Knockout of the NAC troika accelerated senescence and the induction of other NACs, whereas overexpression of the NAC troika had the opposite effects. Transcriptome and molecular analyses revealed shared suppression of senescence-promoting processes by the NAC troika, including salicylic acid (SA) and reactive oxygen species (ROS) responses, but with predominant regulation of SA and ROS responses by ANAC090 and ANAC017, respectively. Our time-evolving networks provide a unique regulatory module of presenescent repressors that direct the timely induction of senescence-promoting processes at the presenescent stage of leaf aging. PMID:29735710

  11. Cloning of novel rice blast resistance genes from two rapidly evolving NBS-LRR gene families in rice.

    PubMed

    Guo, Changjiang; Sun, Xiaoguang; Chen, Xiao; Yang, Sihai; Li, Jing; Wang, Long; Zhang, Xiaohui

    2016-01-01

    Most rice blast resistance genes (R-genes) encode proteins with nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains. Our previous study has shown that more rice blast R-genes can be cloned in rapidly evolving NBS-LRR gene families. In the present study, two rapidly evolving R-gene families in rice were selected for cloning a subset of genes from their paralogs in three resistant rice lines. A total of eight functional blast R-genes were identified among nine NBS-LRR genes, and some of these showed resistance to three or more blast strains. Evolutionary analysis indicated that high nucleotide diversity of coding regions served as important parameters in the determination of gene resistance. We also observed that amino-acid variants (nonsynonymous mutations, insertions, or deletions) in essential motifs of the NBS domain contribute to the blast resistance capacity of NBS-LRR genes. These results suggested that the NBS regions might also play an important role in resistance specificity determination. On the other hand, different splicing patterns of introns were commonly observed in R-genes. The results of the present study contribute to improving the effectiveness of R-gene identification by using evolutionary analysis method and acquisition of novel blast resistance genes.

  12. Rapid thermal adaptation in a marine diatom reveals constraints and tradeoffs.

    PubMed

    O'Donnell, Daniel R; Hamman, Carolyn R; Johnson, Evan C; Kremer, Colin T; Klausmeier, Christopher A; Litchman, Elena

    2018-06-25

    Rapid evolution in response to environmental change will likely be a driving force determining the distribution of species across the biosphere in coming decades. This is especially true of microorganisms, many of which may evolve in step with warming, including phytoplankton, the diverse photosynthetic microbes forming the foundation of most aquatic food webs. Here we tested the capacity of a globally important, model marine diatom Thalassiosira pseudonana, for rapid evolution in response to temperature. Selection at 16 and 31°C for 350 generations led to significant divergence in several temperature response traits, demonstrating local adaptation and the existence of tradeoffs associated with adaptation to different temperatures. In contrast, competitive ability for nitrogen (commonly limiting in marine systems), measured after 450 generations of temperature selection, did not diverge in a systematic way between temperatures. This study shows how rapid thermal adaptation affects key temperature and nutrient traits and, thus, a population's long-term physiological, ecological, and biogeographic response to climate change. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Patient with rapidly evolving neurological disease with neuropathological lesions of Creutzfeldt-Jakob disease, Lewy body dementia, chronic subcortical vascular encephalopathy and meningothelial meningioma.

    PubMed

    Vita, Maria Gabriella; Tiple, Dorina; Bizzarro, Alessandra; Ladogana, Anna; Colaizzo, Elisa; Capellari, Sabina; Rossi, Marcello; Parchi, Piero; Masullo, Carlo; Pocchiari, Maurizio

    2017-04-01

    We report a case of rapidly evolving neurological disease in a patient with neuropathological lesions of Creutzfeldt-Jakob disease (CJD), Lewy body dementia (LBD), chronic subcortical vascular encephalopathy and meningothelial meningioma. The coexistence of severe multiple pathologies in a single patient strengthens the need to perform accurate clinical differential diagnoses in rapidly progressive dementias. © 2016 Japanese Society of Neuropathology.

  14. Positive Selection in Rapidly Evolving Plastid–Nuclear Enzyme Complexes

    PubMed Central

    Rockenbach, Kate; Havird, Justin C.; Monroe, J. Grey; Triant, Deborah A.; Taylor, Douglas R.; Sloan, Daniel B.

    2016-01-01

    Rates of sequence evolution in plastid genomes are generally low, but numerous angiosperm lineages exhibit accelerated evolutionary rates in similar subsets of plastid genes. These genes include clpP1 and accD, which encode components of the caseinolytic protease (CLP) and acetyl-coA carboxylase (ACCase) complexes, respectively. Whether these extreme and repeated accelerations in rates of plastid genome evolution result from adaptive change in proteins (i.e., positive selection) or simply a loss of functional constraint (i.e., relaxed purifying selection) is a source of ongoing controversy. To address this, we have taken advantage of the multiple independent accelerations that have occurred within the genus Silene (Caryophyllaceae) by examining phylogenetic and population genetic variation in the nuclear genes that encode subunits of the CLP and ACCase complexes. We found that, in species with accelerated plastid genome evolution, the nuclear-encoded subunits in the CLP and ACCase complexes are also evolving rapidly, especially those involved in direct physical interactions with plastid-encoded proteins. A massive excess of nonsynonymous substitutions between species relative to levels of intraspecific polymorphism indicated a history of strong positive selection (particularly in CLP genes). Interestingly, however, some species are likely undergoing loss of the native (heteromeric) plastid ACCase and putative functional replacement by a duplicated cytosolic (homomeric) ACCase. Overall, the patterns of molecular evolution in these plastid–nuclear complexes are unusual for anciently conserved enzymes. They instead resemble cases of antagonistic coevolution between pathogens and host immune genes. We discuss a possible role of plastid–nuclear conflict as a novel cause of accelerated evolution. PMID:27707788

  15. Single-Molecule Imaging of an in Vitro-Evolved RNA Aptamer Reveals Homogeneous Ligand Binding Kinetics

    PubMed Central

    2009-01-01

    Many studies of RNA folding and catalysis have revealed conformational heterogeneity, metastable folding intermediates, and long-lived states with distinct catalytic activities. We have developed a single-molecule imaging approach for investigating the functional heterogeneity of in vitro-evolved RNA aptamers. Monitoring the association of fluorescently labeled ligands with individual RNA aptamer molecules has allowed us to record binding events over the course of multiple days, thus providing sufficient statistics to quantitatively define the kinetic properties at the single-molecule level. The ligand binding kinetics of the highly optimized RNA aptamer studied here displays a remarkable degree of uniformity and lack of memory. Such homogeneous behavior is quite different from the heterogeneity seen in previous single-molecule studies of naturally derived RNA and protein enzymes. The single-molecule methods we describe may be of use in analyzing the distribution of functional molecules in heterogeneous evolving populations or even in unselected samples of random sequences. PMID:19572753

  16. Two rapidly evolving genes contribute to male fitness in Drosophila

    PubMed Central

    Reinhardt, Josephine A; Jones, Corbin D

    2013-01-01

    Purifying selection often results in conservation of gene sequence and function. The most functionally conserved genes are also thought to be among the most biologically essential. These observations have led to the use of sequence conservation as a proxy for functional conservation. Here we describe two genes that are exceptions to this pattern. We show that lack of sequence conservation among orthologs of CG15460 and CG15323 – herein named jean-baptiste (jb) and karr respectively – does not necessarily predict lack of functional conservation. These two Drosophila melanogaster genes are among the most rapidly evolving protein-coding genes in this species, being nearly as diverged from their D. yakuba orthologs as random sequences are. jb and karr are both expressed at an elevated level in larval males and adult testes, but they are not accessory gland proteins and their loss does not affect male fertility. Instead, knockdown of these genes in D. melanogaster via RNA interference caused male-biased viability defects. These viability effects occur prior to the third instar for jb and during late pupation for karr. We show that putative orthologs to jb and karr are also expressed strongly in the testes of other Drosophila species and have similar gene structure across species despite low levels of sequence conservation. While standard molecular evolution tests could not reject neutrality, other data hint at a role for natural selection. Together these data provide a clear case where a lack of sequence conservation does not imply a lack of conservation of expression or function. PMID:24221639

  17. Rapid divergence and convergence of life-history in experimentally evolved Drosophila melanogaster.

    PubMed

    Burke, Molly K; Barter, Thomas T; Cabral, Larry G; Kezos, James N; Phillips, Mark A; Rutledge, Grant A; Phung, Kevin H; Chen, Richard H; Nguyen, Huy D; Mueller, Laurence D; Rose, Michael R

    2016-09-01

    Laboratory selection experiments are alluring in their simplicity, power, and ability to inform us about how evolution works. A longstanding challenge facing evolution experiments with metazoans is that significant generational turnover takes a long time. In this work, we present data from a unique system of experimentally evolved laboratory populations of Drosophila melanogaster that have experienced three distinct life-history selection regimes. The goal of our study was to determine how quickly populations of a certain selection regime diverge phenotypically from their ancestors, and how quickly they converge with independently derived populations that share a selection regime. Our results indicate that phenotypic divergence from an ancestral population occurs rapidly, within dozens of generations, regardless of that population's evolutionary history. Similarly, populations sharing a selection treatment converge on common phenotypes in this same time frame, regardless of selection pressures those populations may have experienced in the past. These patterns of convergence and divergence emerged much faster than expected, suggesting that intermediate evolutionary history has transient effects in this system. The results we draw from this system are applicable to other experimental evolution projects, and suggest that many relevant questions can be sufficiently tested on shorter timescales than previously thought. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  18. High-Throughput Ligand Discovery Reveals a Sitewise Gradient of Diversity in Broadly Evolved Hydrophilic Fibronectin Domains

    PubMed Central

    Woldring, Daniel R.; Holec, Patrick V.; Zhou, Hong; Hackel, Benjamin J.

    2015-01-01

    Discovering new binding function via a combinatorial library in small protein scaffolds requires balance between appropriate mutations to introduce favorable intermolecular interactions while maintaining intramolecular integrity. Sitewise constraints exist in a non-spatial gradient from diverse to conserved in evolved antibody repertoires; yet non-antibody scaffolds generally do not implement this strategy in combinatorial libraries. Despite the fact that biased amino acid distributions, typically elevated in tyrosine, serine, and glycine, have gained wider use in synthetic scaffolds, these distributions are still predominantly applied uniformly to diversified sites. While select sites in fibronectin domains and DARPins have shown benefit from sitewise designs, they have not been deeply evaluated. Inspired by this disparity between diversity distributions in natural libraries and synthetic scaffold libraries, we hypothesized that binders resulting from discovery and evolution would exhibit a non-spatial, sitewise gradient of amino acid diversity. To identify sitewise diversities consistent with efficient evolution in the context of a hydrophilic fibronectin domain, >105 binders to six targets were evolved and sequenced. Evolutionarily favorable amino acid distributions at 25 sites reveal Shannon entropies (range: 0.3–3.9; median: 2.1; standard deviation: 1.1) supporting the diversity gradient hypothesis. Sitewise constraints in evolved sequences are consistent with complementarity, stability, and consensus biases. Implementation of sitewise constrained diversity enables direct selection of nanomolar affinity binders validating an efficient strategy to balance inter- and intra-molecular interaction demands at each site. PMID:26383268

  19. Collateral damage: rapid exposure-induced evolution of pesticide resistance leads to increased susceptibility to parasites.

    PubMed

    Jansen, Mieke; Stoks, Robby; Coors, Anja; van Doorslaer, Wendy; de Meester, Luc

    2011-09-01

    Although natural populations may evolve resistance to anthropogenic stressors such as pollutants, this evolved resistance may carry costs. Using an experimental evolution approach, we exposed different Daphnia magna populations in outdoor containers to the carbamate pesticide carbaryl and control conditions, and assessed the resulting populations for both their resistance to carbaryl as well as their susceptibility to infection by the widespread bacterial microparasite Pasteuria ramosa. Our results show that carbaryl selection led to rapid evolution of carbaryl resistance with seemingly no cost when assessed in a benign environment. However, carbaryl-resistant populations were more susceptible to parasite infection than control populations. Exposure to both stressors reveals a synergistic effect on sterilization rate by P. ramosa, but this synergism did not evolve under pesticide selection. Assessing costs of rapid adaptive evolution to anthropogenic stress in a semi-natural context may be crucial to avoid too optimistic predictions for the fitness of the evolving populations. © 2011 The Author(s).

  20. Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences

    PubMed Central

    2010-01-01

    Background In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. The multiple independent evolution of the carnivorous syndrome, once in Lentibulariaceae and a second time in Byblidaceae, is strongly supported by all analyses and topological tests. The evolution of selected morphological characters such as flower symmetry is discussed. The addition of further sequence data from introns and spacers holds promise to eventually obtain a fully resolved plastid tree of

  1. HIV-TRACE (Transmission Cluster Engine): a tool for large scale molecular epidemiology of HIV-1 and other rapidly evolving pathogens.

    PubMed

    Kosakovsky Pond, Sergei L; Weaver, Steven; Leigh Brown, Andrew J; Wertheim, Joel O

    2018-01-31

    In modern applications of molecular epidemiology, genetic sequence data are routinely used to identify clusters of transmission in rapidly evolving pathogens, most notably HIV-1. Traditional 'shoeleather' epidemiology infers transmission clusters by tracing chains of partners sharing epidemiological connections (e.g., sexual contact). Here, we present a computational tool for identifying a molecular transmission analog of such clusters: HIV-TRACE (TRAnsmission Cluster Engine). HIV-TRACE implements an approach inspired by traditional epidemiology, by identifying chains of partners whose viral genetic relatedness imply direct or indirect epidemiological connections. Molecular transmission clusters are constructed using codon-aware pairwise alignment to a reference sequence followed by pairwise genetic distance estimation among all sequences. This approach is computationally tractable and is capable of identifying HIV-1 transmission clusters in large surveillance databases comprising tens or hundreds of thousands of sequences in near real time, i.e., on the order of minutes to hours. HIV-TRACE is available at www.hivtrace.org and from github.com/veg/hivtrace, along with the accompanying result visualization module from github.com/veg/hivtrace-viz. Importantly, the approach underlying HIV-TRACE is not limited to the study of HIV-1 and can be applied to study outbreaks and epidemics of other rapidly evolving pathogens. © The Author 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Inheritance of evolved resistance to a novel herbicide (pyroxasulfone).

    PubMed

    Busi, Roberto; Gaines, Todd A; Vila-Aiub, Martin M; Powles, Stephen B

    2014-03-01

    Agricultural weeds have rapidly adapted to intensive herbicide selection and resistance to herbicides has evolved within ecological timescales. Yet, the genetic basis of broad-spectrum generalist herbicide resistance is largely unknown. This study aims to determine the genetic control of non-target-site herbicide resistance trait(s) that rapidly evolved under recurrent selection of the novel lipid biosynthesis inhibitor pyroxasulfone in Lolium rigidum. The phenotypic segregation of pyroxasulfone resistance in parental, F1 and back-cross (BC) families was assessed in plants exposed to a gradient of pyroxasulfone doses. The inheritance of resistance to chemically dissimilar herbicides (cross-resistance) was also evaluated. Evolved resistance to the novel selective agent (pyroxasulfone) is explained by Mendelian segregation of one semi-dominant allele incrementally herbicide-selected at higher frequency in the progeny. In BC families, cross-resistance is conferred by an incompletely dominant single major locus. This study confirms that herbicide resistance can rapidly evolve to any novel selective herbicide agents by continuous and repeated herbicide use. The results imply that the combination of herbicide options (rotation, mixtures or combinations) to exploit incomplete dominance can provide acceptable control of broad-spectrum generalist resistance-endowing monogenic traits. Herbicide diversity within a set of integrated management tactics can be one important component to reduce the herbicide selection intensity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Rapid evolution meets invasive species control: The potential for pesticide resistance in sea lamprey

    USGS Publications Warehouse

    Dunlop, Erin S.; McLaughlin, Robert L.; Adams, Jean V.; Jones, Michael L.; Birceanu, Oana; Christie, Mark R.; Criger, Lori A.; Hinderer, Julia L.M.; Hollingworth, Robert M.; Johnson, Nicholas; Lantz, Stephen R.; Li, Weiming; Miller, James R.; Morrison, Bruce J.; Mota-Sanchez, David; Muir, Andrew M.; Sepulveda, Maria S.; Steeves, Todd B.; Walter, Lisa; Westman, Erin; Wirgin, Isaac; Wilkie, Michael P.

    2018-01-01

    Rapid evolution of pest, pathogen and wildlife populations can have undesirable effects; for example, when insects evolve resistance to pesticides or fishes evolve smaller body size in response to harvest. A destructive invasive species in the Laurentian Great Lakes, the sea lamprey (Petromyzon marinus) has been controlled with the pesticide 3-trifluoromethyl-4-nitrophenol (TFM) since the 1950s. We evaluated the likelihood of sea lamprey evolving resistance to TFM by (1) reviewing sea lamprey life history and control; (2) identifying physiological and behavioural resistance strategies; (3) estimating the strength of selection from TFM; (4) assessing the timeline for evolution; and (5) analyzing historical toxicity data for evidence of resistance. The number of sea lamprey generations exposed to TFM was within the range observed for fish populations where rapid evolution has occurred. Mortality from TFM was estimated as 82-90%, suggesting significant selective pressure. However, 57 years of toxicity data revealed no increase in lethal concentrations of TFM. Vigilance and the development of alternative controls are required to prevent this aquatic invasive species from evolving strategies to evade control.

  4. Sea shell diversity and rapidly evolving secretomes: insights into the evolution of biomineralization.

    PubMed

    Kocot, Kevin M; Aguilera, Felipe; McDougall, Carmel; Jackson, Daniel J; Degnan, Bernard M

    2016-01-01

    An external skeleton is an essential part of the body plan of many animals and is thought to be one of the key factors that enabled the great expansion in animal diversity and disparity during the Cambrian explosion. Molluscs are considered ideal to study the evolution of biomineralization because of their diversity of highly complex, robust and patterned shells. The molluscan shell forms externally at the interface of animal and environment, and involves controlled deposition of calcium carbonate within a framework of macromolecules that are secreted from the dorsal mantle epithelium. Despite its deep conservation within Mollusca, the mantle is capable of producing an incredible diversity of shell patterns, and macro- and micro-architectures. Here we review recent developments within the field of molluscan biomineralization, focusing on the genes expressed in the mantle that encode secreted proteins. The so-called mantle secretome appears to regulate shell deposition and patterning and in some cases becomes part of the shell matrix. Recent transcriptomic and proteomic studies have revealed marked differences in the mantle secretomes of even closely-related molluscs; these typically exceed expected differences based on characteristics of the external shell. All mantle secretomes surveyed to date include novel genes encoding lineage-restricted proteins and unique combinations of co-opted ancient genes. A surprisingly large proportion of both ancient and novel secreted proteins containing simple repetitive motifs or domains that are often modular in construction. These repetitive low complexity domains (RLCDs) appear to further promote the evolvability of the mantle secretome, resulting in domain shuffling, expansion and loss. RLCD families further evolve via slippage and other mechanisms associated with repetitive sequences. As analogous types of secreted proteins are expressed in biomineralizing tissues in other animals, insights into the evolution of the genes

  5. Rapidly evolving conjunctivitis due to Pasteurella multocida, occurring after direct inoculation with animal droplets in an immuno-compromised host.

    PubMed

    Corchia, Anthony; Limelette, Anne; Hubault, Béatrice; Robbins, Ailsa; Quinquenel, Anne; Bani-Sadr, Firouze; N'Guyen, Yohan

    2015-03-08

    The rare descriptions, in the literature, of ocular infections due to Pasteurella multocida include: endophtalmitis, keratitis and corneal ulcers, Parinaud's oculoglandular syndrome, and conjunctivitis. Here, we report a rare case of rapidly evolving conjunctivitis due to Pasteurella multocida, occurring after direct inoculation with animal droplets in an immuno-compromised host. A 69-year-old, Caucasian male was referred to our department with purulent conjunctivitis, occurring five days after chemotherapy for an angioimmunoblastic-T-cell-lymphoma, and thirty-three hours after being struck in his right eye by his sneezing Dachshund dog. Physical examination revealed purulent conjunctivitis of the right eye associated with inflammatory edema of both lids. Direct bacteriological examination of conjunctival secretions showed gram-negative bacilli and regular, grey non-hemolytic colonies appearing the next day on blood agar. The oxidase test was positive for these colonies. An antibiotherapy associating intravenous amoxicillin and amoxicillin/clavulanate was administered. The outcome was favorable in the next three days allowing discharge of the patient with amoxicillin (2 g tid per os). This case report may be of interest for infectious diseases, ophthalmology or oncology specialists, especially nowadays with chemotherapy being administered in day care centres, where unusual home pathogens can be encountered in health related infections. In this case, previous animal contact and conjunctival samples showing Enterobacteriaceae like colonies with positive oxidase test were two important clues which could help clinicians to make the diagnosis of Pasteurella conjunctivitis in every day practice.

  6. A screen for immunity genes evolving under positive selection in Drosophila.

    PubMed

    Jiggins, F M; Kim, K W

    2007-05-01

    Genes involved in the immune system tend to have higher rates of adaptive evolution than other genes in the genome, probably because they are coevolving with pathogens. We have screened a sample of Drosophila genes to identify those evolving under positive selection. First, we identified rapidly evolving immunity genes by comparing 140 loci in Drosophila erecta and D. yakuba. Secondly, we resequenced 23 of the fastest evolving genes from the independent species pair D. melanogaster and D. simulans, and identified those under positive selection using a McDonald-Kreitman test. There was strong evidence of adaptive evolution in two serine proteases (persephone and spirit) and a homolog of the Anopheles serpin SRPN6, and weaker evidence in another serine protease and the death domain protein dFADD. These results add to mounting evidence that immune signalling pathway molecules often evolve rapidly, possibly because they are sites of host-parasite coevolution.

  7. Natural selection promotes antigenic evolvability.

    PubMed

    Graves, Christopher J; Ros, Vera I D; Stevenson, Brian; Sniegowski, Paul D; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections.

  8. Natural Selection Promotes Antigenic Evolvability

    PubMed Central

    Graves, Christopher J.; Ros, Vera I. D.; Stevenson, Brian; Sniegowski, Paul D.; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed ‘cassettes’ that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections

  9. Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain.

    PubMed

    Kotrschal, Alexander; Rogell, Björn; Bundsen, Andreas; Svensson, Beatrice; Zajitschek, Susanne; Brännström, Ioana; Immler, Simone; Maklakov, Alexei A; Kolm, Niclas

    2013-01-21

    The large variation in brain size that exists in the animal kingdom has been suggested to have evolved through the balance between selective advantages of greater cognitive ability and the prohibitively high energy demands of a larger brain (the "expensive-tissue hypothesis"). Despite over a century of research on the evolution of brain size, empirical support for the trade-off between cognitive ability and energetic costs is based exclusively on correlative evidence, and the theory remains controversial. Here we provide experimental evidence for costs and benefits of increased brain size. We used artificial selection for large and small brain size relative to body size in a live-bearing fish, the guppy (Poecilia reticulata), and found that relative brain size evolved rapidly in response to divergent selection in both sexes. Large-brained females outperformed small-brained females in a numerical learning assay designed to test cognitive ability. Moreover, large-brained lines, especially males, developed smaller guts, as predicted by the expensive-tissue hypothesis, and produced fewer offspring. We propose that the evolution of brain size is mediated by a functional trade-off between increased cognitive ability and reproductive performance and discuss the implications of these findings for vertebrate brain evolution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Sex as a strategy against rapidly evolving parasites

    PubMed Central

    Tinkler, Shona K.; Tinsley, Matthew C.

    2016-01-01

    Why is sex ubiquitous when asexual reproduction is much less costly? Sex disrupts coadapted gene complexes; it also causes costs associated with mate finding and the production of males who do not themselves bear offspring. Theory predicts parasites select for host sex, because genetically variable offspring can escape infection from parasites adapted to infect the previous generations. We examine this using a facultative sexual crustacean, Daphnia magna, and its sterilizing bacterial parasite, Pasteuria ramosa. We obtained sexually and asexually produced offspring from wild-caught hosts and exposed them to contemporary parasites or parasites isolated from the same population one year later. We found rapid parasite adaptation to replicate within asexual but not sexual offspring. Moreover, sexually produced offspring were twice as resistant to infection as asexuals when exposed to parasites that had coevolved alongside their parents (i.e. the year two parasite). This fulfils the requirement that the benefits of sex must be both large and rapid for sex to be favoured by selection. PMID:28003455

  11. Digital tissue and what it may reveal about the brain.

    PubMed

    Morgan, Josh L; Lichtman, Jeff W

    2017-10-30

    Imaging as a means of scientific data storage has evolved rapidly over the past century from hand drawings, to photography, to digital images. Only recently can sufficiently large datasets be acquired, stored, and processed such that tissue digitization can actually reveal more than direct observation of tissue. One field where this transformation is occurring is connectomics: the mapping of neural connections in large volumes of digitized brain tissue.

  12. Sex as a strategy against rapidly evolving parasites.

    PubMed

    Auld, Stuart K J R; Tinkler, Shona K; Tinsley, Matthew C

    2016-12-28

    Why is sex ubiquitous when asexual reproduction is much less costly? Sex disrupts coadapted gene complexes; it also causes costs associated with mate finding and the production of males who do not themselves bear offspring. Theory predicts parasites select for host sex, because genetically variable offspring can escape infection from parasites adapted to infect the previous generations. We examine this using a facultative sexual crustacean, Daphnia magna, and its sterilizing bacterial parasite, Pasteuria ramosa We obtained sexually and asexually produced offspring from wild-caught hosts and exposed them to contemporary parasites or parasites isolated from the same population one year later. We found rapid parasite adaptation to replicate within asexual but not sexual offspring. Moreover, sexually produced offspring were twice as resistant to infection as asexuals when exposed to parasites that had coevolved alongside their parents (i.e. the year two parasite). This fulfils the requirement that the benefits of sex must be both large and rapid for sex to be favoured by selection. © 2016 The Author(s).

  13. Chandra Data Reveal Rapidly Whirling Black Holes

    NASA Astrophysics Data System (ADS)

    2008-01-01

    A new study using results from NASA's Chandra X-ray Observatory provides one of the best pieces of evidence yet that many supermassive black holes are spinning extremely rapidly. The whirling of these giant black holes drives powerful jets that pump huge amounts of energy into their environment and affects galaxy growth. A team of scientists compared leading theories of jets produced by rotating supermassive black holes with Chandra data. A sampling of nine giant galaxies that exhibit large disturbances in their gaseous atmospheres showed that the central black holes in these galaxies must be spinning at near their maximum rates. People Who Read This Also Read... NASA’s Swift Satellite Catches First Supernova in The Act of Exploding Black Holes Have Simple Feeding Habits Jet Power and Black Hole Assortment Revealed in New Chandra Image Erratic Black Hole Regulates Itself "We think these monster black holes are spinning close to the limit set by Einstein's theory of relativity, which means that they can drag material around them at close to the speed of light," said Rodrigo Nemmen, a visiting graduate student at Penn State University, and lead author of a paper on the new results presented at American Astronomical Society in Austin, Texas. The research reinforces other, less direct methods previously used which have indicated that some stellar and supermassive black holes are spinning rapidly. According to Einstein's theory, a rapidly spinning black hole makes space itself rotate. This effect, coupled with gas spiraling toward the black hole, can produce a rotating, tightly wound vertical tower of magnetic field that flings a large fraction of the inflowing gas away from the vicinity of the black hole in an energetic, high-speed jet. Computer simulations by other authors have suggested that black holes may acquire their rapid spins when galaxies merge, and through the accretion of gas from their surroundings. "Extremely fast spin might be very common for large

  14. Stable Isotopes Reveal Rapid Enamel Elongation (Amelogenesis) Rates for the Early Cretaceous Iguanodontian Dinosaur Lanzhousaurus magnidens.

    PubMed

    Suarez, Celina A; You, Hai-Lu; Suarez, Marina B; Li, Da-Qing; Trieschmann, J B

    2017-11-10

    Lanzhousaurus magnidens, a large non-hadrosauriform iguanodontian dinosaur from the Lower Cretaceous Hekou Group of Gansu Province, China has the largest known herbivorous dinosaur teeth. Unlike its hadrosauriform relatives possessing tooth batteries of many small teeth, Lanzhousaurus utilized a small number (14) of very large teeth (~10 cm long) to create a large, continuous surface for mastication. Here we investigate the significance of Lanzhousaurus in the evolutionary history of iguanodontian-hadrosauriform transition by using a combination of stable isotope analysis and CT imagery. We infer that Lanzhousaurus had a rapid rate of tooth enamel elongation or amelogenesis at 0.24 mm/day with dental tissues common to other Iguanodontian dinosaurs. Among ornithopods, high rates of amelogenesis have been previously observed in hadrosaurids, where they have been associated with a sophisticated masticatory apparatus. These data suggest rapid amelogenesis evolved among non-hadrosauriform iguanodontians such as Lanzhousaurus, representing a crucial step that was exapted for the evolution of the hadrosaurian feeding mechanism.

  15. Rapid response systems.

    PubMed

    Lyons, Patrick G; Edelson, Dana P; Churpek, Matthew M

    2018-07-01

    Rapid response systems are commonly employed by hospitals to identify and respond to deteriorating patients outside of the intensive care unit. Controversy exists about the benefits of rapid response systems. We aimed to review the current state of the rapid response literature, including evolving aspects of afferent (risk detection) and efferent (intervention) arms, outcome measurement, process improvement, and implementation. Articles written in English and published in PubMed. Rapid response systems are heterogeneous, with important differences among afferent and efferent arms. Clinically meaningful outcomes may include unexpected mortality, in-hospital cardiac arrest, length of stay, cost, and processes of care at end of life. Both positive and negative interventional studies have been published, although the two largest randomized trials involving rapid response systems - the Medical Early Response and Intervention Trial (MERIT) and the Effect of a Pediatric Early Warning System on All-Cause Mortality in Hospitalized Pediatric Patients (EPOCH) trial - did not find a mortality benefit with these systems, albeit with important limitations. Advances in monitoring technologies, risk assessment strategies, and behavioral ergonomics may offer opportunities for improvement. Rapid responses may improve some meaningful outcomes, although these findings remain controversial. These systems may also improve care for patients at the end of life. Rapid response systems are expected to continue evolving with novel developments in monitoring technologies, risk prediction informatics, and work in human factors. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. The rapidly evolving centromere-specific histone has stringent functional requirements in Arabidopsis thaliana.

    PubMed

    Ravi, Maruthachalam; Kwong, Pak N; Menorca, Ron M G; Valencia, Joel T; Ramahi, Joseph S; Stewart, Jodi L; Tran, Robert K; Sundaresan, Venkatesan; Comai, Luca; Chan, Simon W-L

    2010-10-01

    Centromeres control chromosome inheritance in eukaryotes, yet their DNA structure and primary sequence are hypervariable. Most animals and plants have megabases of tandem repeats at their centromeres, unlike yeast with unique centromere sequences. Centromere function requires the centromere-specific histone CENH3 (CENP-A in human), which replaces histone H3 in centromeric nucleosomes. CENH3 evolves rapidly, particularly in its N-terminal tail domain. A portion of the CENH3 histone-fold domain, the CENP-A targeting domain (CATD), has been previously shown to confer kinetochore localization and centromere function when swapped into human H3. Furthermore, CENP-A in human cells can be functionally replaced by CENH3 from distantly related organisms including Saccharomyces cerevisiae. We have used cenh3-1 (a null mutant in Arabidopsis thaliana) to replace endogenous CENH3 with GFP-tagged variants. A H3.3 tail domain-CENH3 histone-fold domain chimera rescued viability of cenh3-1, but CENH3's lacking a tail domain were nonfunctional. In contrast to human results, H3 containing the A. thaliana CATD cannot complement cenh3-1. GFP-CENH3 from the sister species A. arenosa functionally replaces A. thaliana CENH3. GFP-CENH3 from the close relative Brassica rapa was targeted to centromeres, but did not complement cenh3-1, indicating that kinetochore localization and centromere function can be uncoupled. We conclude that CENH3 function in A. thaliana, an organism with large tandem repeat centromeres, has stringent requirements for functional complementation in mitosis.

  17. Conjunctive coding in an evolved spiking model of retrosplenial cortex.

    PubMed

    Rounds, Emily L; Alexander, Andrew S; Nitz, Douglas A; Krichmar, Jeffrey L

    2018-06-04

    Retrosplenial cortex (RSC) is an association cortex supporting spatial navigation and memory. However, critical issues remain concerning the forms by which its ensemble spiking patterns register spatial relationships that are difficult for experimental techniques to fully address. We therefore applied an evolutionary algorithmic optimization technique to create spiking neural network models that matched electrophysiologically observed spiking dynamics in rat RSC neuronal ensembles. Virtual experiments conducted on the evolved networks revealed a mixed selectivity coding capability that was not built into the optimization method, but instead emerged as a consequence of replicating biological firing patterns. The experiments reveal several important outcomes of mixed selectivity that may subserve flexible navigation and spatial representation: (a) robustness to loss of specific inputs, (b) immediate and stable encoding of novel routes and route locations, (c) automatic resolution of input variable conflicts, and (d) dynamic coding that allows rapid adaptation to changing task demands without retraining. These findings suggest that biological retrosplenial cortex can generate unique, first-trial, conjunctive encodings of spatial positions and actions that can be used by downstream brain regions for navigation and path integration. Moreover, these results are consistent with the proposed role for the RSC in the transformation of representations between reference frames and navigation strategy deployment. Finally, the specific modeling framework used for evolving synthetic retrosplenial networks represents an important advance for computational modeling by which synthetic neural networks can encapsulate, describe, and predict the behavior of neural circuits at multiple levels of function. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  18. Revealing the inner accretion flow around black holes using rapid variability

    NASA Astrophysics Data System (ADS)

    Axelsson, Magnus

    2015-08-01

    The geometry of the inner accretion flow of X-ray binaries is complex, with multiple regions contributing to the observed emission. Frequency-resolved spectroscopy is a powerful tool in breaking this spectral degeneracy. We have extracted the spectra of the strong low-frequency quasi-periodic oscillation (QPO) and its harmonic in GX339-4 and XTE J1550-564. We compare these to the time-averaged spectrum and the spectrum of the rapid (< 0.1s) variability. Our results support the picture where the QPO arises from vertical (Lense-Thirring) precession of an inhomogeneous hot flow, so that it is softer at larger radii closer to the truncated disc, and harder in the innermost parts of the flow where the rapid variability is produced. This coupling between variability and spectra allows us to constrain the soft Comptonization component, breaking the degeneracy plaguing the time-averaged spectrum and revealing the geometry of the accretion flow close to the black hole. We further show how the upcoming launch of ASTRO-H will allow even more specific regions in the accretion flow to be probed.

  19. Evolving fuzzy rules for relaxed-criteria negotiation.

    PubMed

    Sim, Kwang Mong

    2008-12-01

    In the literature on automated negotiation, very few negotiation agents are designed with the flexibility to slightly relax their negotiation criteria to reach a consensus more rapidly and with more certainty. Furthermore, these relaxed-criteria negotiation agents were not equipped with the ability to enhance their performance by learning and evolving their relaxed-criteria negotiation rules. The impetus of this work is designing market-driven negotiation agents (MDAs) that not only have the flexibility of relaxing bargaining criteria using fuzzy rules, but can also evolve their structures by learning new relaxed-criteria fuzzy rules to improve their negotiation outcomes as they participate in negotiations in more e-markets. To this end, an evolutionary algorithm for adapting and evolving relaxed-criteria fuzzy rules was developed. Implementing the idea in a testbed, two kinds of experiments for evaluating and comparing EvEMDAs (MDAs with relaxed-criteria rules that are evolved using the evolutionary algorithm) and EMDAs (MDAs with relaxed-criteria rules that are manually constructed) were carried out through stochastic simulations. Empirical results show that: 1) EvEMDAs generally outperformed EMDAs in different types of e-markets and 2) the negotiation outcomes of EvEMDAs generally improved as they negotiated in more e-markets.

  20. Complex network view of evolving manifolds

    NASA Astrophysics Data System (ADS)

    da Silva, Diamantino C.; Bianconi, Ginestra; da Costa, Rui A.; Dorogovtsev, Sergey N.; Mendes, José F. F.

    2018-03-01

    We study complex networks formed by triangulations and higher-dimensional simplicial complexes representing closed evolving manifolds. In particular, for triangulations, the set of possible transformations of these networks is restricted by the condition that at each step, all the faces must be triangles. Stochastic application of these operations leads to random networks with different architectures. We perform extensive numerical simulations and explore the geometries of growing and equilibrium complex networks generated by these transformations and their local structural properties. This characterization includes the Hausdorff and spectral dimensions of the resulting networks, their degree distributions, and various structural correlations. Our results reveal a rich zoo of architectures and geometries of these networks, some of which appear to be small worlds while others are finite dimensional with Hausdorff dimension equal or higher than the original dimensionality of their simplices. The range of spectral dimensions of the evolving triangulations turns out to be from about 1.4 to infinity. Our models include simplicial complexes representing manifolds with evolving topologies, for example, an h -holed torus with a progressively growing number of holes. This evolving graph demonstrates features of a small-world network and has a particularly heavy-tailed degree distribution.

  1. Ranking in evolving complex networks

    NASA Astrophysics Data System (ADS)

    Liao, Hao; Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng; Zhou, Ming-Yang

    2017-05-01

    Complex networks have emerged as a simple yet powerful framework to represent and analyze a wide range of complex systems. The problem of ranking the nodes and the edges in complex networks is critical for a broad range of real-world problems because it affects how we access online information and products, how success and talent are evaluated in human activities, and how scarce resources are allocated by companies and policymakers, among others. This calls for a deep understanding of how existing ranking algorithms perform, and which are their possible biases that may impair their effectiveness. Many popular ranking algorithms (such as Google's PageRank) are static in nature and, as a consequence, they exhibit important shortcomings when applied to real networks that rapidly evolve in time. At the same time, recent advances in the understanding and modeling of evolving networks have enabled the development of a wide and diverse range of ranking algorithms that take the temporal dimension into account. The aim of this review is to survey the existing ranking algorithms, both static and time-aware, and their applications to evolving networks. We emphasize both the impact of network evolution on well-established static algorithms and the benefits from including the temporal dimension for tasks such as prediction of network traffic, prediction of future links, and identification of significant nodes.

  2. Rapid Presentation of Emotional Expressions Reveals New Emotional Impairments in Tourette’s Syndrome

    PubMed Central

    Mermillod, Martial; Devaux, Damien; Derost, Philippe; Rieu, Isabelle; Chambres, Patrick; Auxiette, Catherine; Legrand, Guillaume; Galland, Fabienne; Dalens, Hélène; Coulangeon, Louise Marie; Broussolle, Emmanuel; Durif, Franck; Jalenques, Isabelle

    2013-01-01

    Objective: Based on a variety of empirical evidence obtained within the theoretical framework of embodiment theory, we considered it likely that motor disorders in Tourette’s syndrome (TS) would have emotional consequences for TS patients. However, previous research using emotional facial categorization tasks suggests that these consequences are limited to TS patients with obsessive-compulsive behaviors (OCB). Method: These studies used long stimulus presentations which allowed the participants to categorize the different emotional facial expressions (EFEs) on the basis of a perceptual analysis that might potentially hide a lack of emotional feeling for certain emotions. In order to reduce this perceptual bias, we used a rapid visual presentation procedure. Results: Using this new experimental method, we revealed different and surprising impairments on several EFEs in TS patients compared to matched healthy control participants. Moreover, a spatial frequency analysis of the visual signal processed by the patients suggests that these impairments may be located at a cortical level. Conclusion: The current study indicates that the rapid visual presentation paradigm makes it possible to identify various potential emotional disorders that were not revealed by the standard visual presentation procedures previously reported in the literature. Moreover, the spatial frequency analysis performed in our study suggests that emotional deficit in TS might lie at the level of temporal cortical areas dedicated to the processing of HSF visual information. PMID:23630481

  3. Transistor Level Circuit Experiments using Evolvable Hardware

    NASA Technical Reports Server (NTRS)

    Stoica, A.; Zebulum, R. S.; Keymeulen, D.; Ferguson, M. I.; Daud, Taher; Thakoor, A.

    2005-01-01

    The Jet Propulsion Laboratory (JPL) performs research in fault tolerant, long life, and space survivable electronics for the National Aeronautics and Space Administration (NASA). With that focus, JPL has been involved in Evolvable Hardware (EHW) technology research for the past several years. We have advanced the technology not only by simulation and evolution experiments, but also by designing, fabricating, and evolving a variety of transistor-based analog and digital circuits at the chip level. EHW refers to self-configuration of electronic hardware by evolutionary/genetic search mechanisms, thereby maintaining existing functionality in the presence of degradations due to aging, temperature, and radiation. In addition, EHW has the capability to reconfigure itself for new functionality when required for mission changes or encountered opportunities. Evolution experiments are performed using a genetic algorithm running on a DSP as the reconfiguration mechanism and controlling the evolvable hardware mounted on a self-contained circuit board. Rapid reconfiguration allows convergence to circuit solutions in the order of seconds. The paper illustrates hardware evolution results of electronic circuits and their ability to perform under 230 C temperature as well as radiations of up to 250 kRad.

  4. Do Close-in Giant Planets Orbiting Evolved Stars Prefer Eccentric Orbits?

    NASA Astrophysics Data System (ADS)

    Grunblatt, Samuel K.; Huber, Daniel; Gaidos, Eric; Lopez, Eric D.; Barclay, Thomas; Chontos, Ashley; Sinukoff, Evan; Van Eylen, Vincent; Howard, Andrew W.; Isaacson, Howard T.

    2018-07-01

    The NASA Kepler and K2 Missions have recently revealed a population of transiting giant planets orbiting moderately evolved, low-luminosity red giant branch stars. Here, we present radial velocity (RV) measurements of three of these systems, revealing significantly non-zero orbital eccentricities in each case. Comparing these systems with the known planet population suggests that close-in giant planets around evolved stars tend to have more eccentric orbits than those around main sequence stars. We interpret this as tentative evidence that the orbits of these planets pass through a transient, moderately eccentric phase where they shrink faster than they circularize due to tides raised on evolved host stars. Additional RV measurements of currently known systems, along with new systems discovered by the recently launched NASA Transiting Exoplanet Survey Satellite (TESS) mission, may constrain the timescale and mass dependence of this process.

  5. Genetic basis for rapidly evolved tolerance in the wild ...

    EPA Pesticide Factsheets

    Atlantic killifish (Fundulus heteroclitus) residing in some urban and industrialized estuaries of the US eastern seaboard demonstrate recently evolved and extreme tolerance to toxic aryl hydrocarbon pollutants, characterized as dioxin-like compounds (DLCs). Here we provide an unusually comprehensive accounting (69%) through Quantitative Trait Locus (QTL) analysis of the genetic basis for DLC tolerance in killifish inhabiting an urban estuary contaminated with PCB congeners, the most toxic of which are DLCs. Consistent with mechanistic knowledge of DLC toxicity in fish and other vertebrates, the Aryl Hydrocarbon Receptor (ahr2) region accounts for 17% of trait variation; however, QTLs on independent linkage groups and their interactions have even greater explanatory power (44%). QTLs interpreted within the context of recently available Fundulus genomic resources and shared synteny among fish species suggest adaptation via inter-acting components of a complex stress response network. Some QTLs were also enriched in other killifish populations characterized as DLC tolerant and residing in distant urban estuaries contaminated with unique mixtures of pollutants. Together, our results suggest that DLC tolerance in killifish represents an emerging example of parallel contemporary evolution that has been driven by intense human-mediated selection on natural populations. This manuscript describes experimental studies that contribute to our understanding of the ecological

  6. Environmental Noise, Genetic Diversity and the Evolution of Evolvability and Robustness in Model Gene Networks

    PubMed Central

    Steiner, Christopher F.

    2012-01-01

    The ability of organisms to adapt and persist in the face of environmental change is accepted as a fundamental feature of natural systems. More contentious is whether the capacity of organisms to adapt (or “evolvability”) can itself evolve and the mechanisms underlying such responses. Using model gene networks, I provide evidence that evolvability emerges more readily when populations experience positively autocorrelated environmental noise (red noise) compared to populations in stable or randomly varying (white noise) environments. Evolvability was correlated with increasing genetic robustness to effects on network viability and decreasing robustness to effects on phenotypic expression; populations whose networks displayed greater viability robustness and lower phenotypic robustness produced more additive genetic variation and adapted more rapidly in novel environments. Patterns of selection for robustness varied antagonistically with epistatic effects of mutations on viability and phenotypic expression, suggesting that trade-offs between these properties may constrain their evolutionary responses. Evolution of evolvability and robustness was stronger in sexual populations compared to asexual populations indicating that enhanced genetic variation under fluctuating selection combined with recombination load is a primary driver of the emergence of evolvability. These results provide insight into the mechanisms potentially underlying rapid adaptation as well as the environmental conditions that drive the evolution of genetic interactions. PMID:23284934

  7. Evolving Approaches to the Ethical Management of Genomic Data

    PubMed Central

    Boyer, Joy T.; Sun, Kathie Y.

    2013-01-01

    The ethical landscape in the field of genomics is rapidly shifting. Plummeting sequencing costs, along with ongoing advances in bioinformatics, now make it possible to generate an enormous volume of genomic data about vast numbers of people. The informational richness, complexity, and frequently uncertain meaning of these data, coupled with evolving norms surrounding the sharing of data and samples and persistent privacy concerns, have generated a range of approaches to the ethical management of genomic information. As calls increase for the expanded use of broad or even open consent, and as controversy grows about how best to handle incidental genomic findings, these approaches, informed by normative analysis and empirical data, will continue to evolve alongside the science. PMID:23453621

  8. Evolution under changing climates: climatic niche stasis despite rapid evolution in a non-native plant.

    PubMed

    Alexander, Jake M

    2013-09-22

    A topic of great current interest is the capacity of populations to adapt genetically to rapidly changing climates, for example by evolving the timing of life-history events, but this is challenging to address experimentally. I use a plant invasion as a model system to tackle this question by combining molecular markers, a common garden experiment and climatic niche modelling. This approach reveals that non-native Lactuca serriola originates primarily from Europe, a climatic subset of its native range, with low rates of admixture from Asia. It has rapidly refilled its climatic niche in the new range, associated with the evolution of flowering phenology to produce clines along climate gradients that mirror those across the native range. Consequently, some non-native plants have evolved development times and grow under climates more extreme than those found in Europe, but not among populations from the native range as a whole. This suggests that many plant populations can adapt rapidly to changed climatic conditions that are already within the climatic niche space occupied by the species elsewhere in its range, but that evolution to conditions outside of this range is more difficult. These findings can also help to explain the prevalence of niche conservatism among non-native species.

  9. Directed evolution to re-adapt a co-evolved network within an enzyme.

    PubMed

    Strafford, John; Payongsri, Panwajee; Hibbert, Edward G; Morris, Phattaraporn; Batth, Sukhjeet S; Steadman, David; Smith, Mark E B; Ward, John M; Hailes, Helen C; Dalby, Paul A

    2012-01-01

    We have previously used targeted active-site saturation mutagenesis to identify a number of transketolase single mutants that improved activity towards either glycolaldehyde (GA), or the non-natural substrate propionaldehyde (PA). Here, all attempts to recombine the singles into double mutants led to unexpected losses of specific activity towards both substrates. A typical trade-off occurred between soluble expression levels and specific activity for all single mutants, but many double mutants decreased both properties more severely suggesting a critical loss of protein stability or native folding. Statistical coupling analysis (SCA) of a large multiple sequence alignment revealed a network of nine co-evolved residues that affected all but one double mutant. Such networks maintain important functional properties such as activity, specificity, folding, stability, and solubility and may be rapidly disrupted by introducing one or more non-naturally occurring mutations. To identify variants of this network that would accept and improve upon our best D469 mutants for activity towards PA, we created a library of random single, double and triple mutants across seven of the co-evolved residues, combining our D469 variants with only naturally occurring mutations at the remaining sites. A triple mutant cluster at D469, E498 and R520 was found to behave synergistically for the specific activity towards PA. Protein expression was severely reduced by E498D and improved by R520Q, yet variants containing both mutations led to improved specific activity and enzyme expression, but with loss of solubility and the formation of inclusion bodies. D469S and R520Q combined synergistically to improve k(cat) 20-fold for PA, more than for any previous transketolase mutant. R520Q also doubled the specific activity of the previously identified D469T to create our most active transketolase mutant to date. Our results show that recombining active-site mutants obtained by saturation mutagenesis

  10. Evolving approaches to the ethical management of genomic data.

    PubMed

    McEwen, Jean E; Boyer, Joy T; Sun, Kathie Y

    2013-06-01

    The ethical landscape in the field of genomics is rapidly shifting. Plummeting sequencing costs, along with ongoing advances in bioinformatics, now make it possible to generate an enormous volume of genomic data about vast numbers of people. The informational richness, complexity, and frequently uncertain meaning of these data, coupled with evolving norms surrounding the sharing of data and samples and persistent privacy concerns, have generated a range of approaches to the ethical management of genomic information. As calls increase for the expanded use of broad or even open consent, and as controversy grows about how best to handle incidental genomic findings, these approaches, informed by normative analysis and empirical data, will continue to evolve alongside the science. Published by Elsevier Ltd.

  11. Rapid evolution and gene expression: a rapidly evolving Mendelian trait that silences field crickets has widespread effects on mRNA and protein expression.

    PubMed

    Pascoal, S; Liu, X; Ly, T; Fang, Y; Rockliffe, N; Paterson, S; Shirran, S L; Botting, C H; Bailey, N W

    2016-06-01

    A major advance in modern evolutionary biology is the ability to start linking phenotypic evolution in the wild with genomic changes that underlie that evolution. We capitalized on a rapidly evolving Hawaiian population of crickets (Teleogryllus oceanicus) to test hypotheses about the genomic consequences of a recent Mendelian mutation of large effect which disrupts the development of sound-producing structures on male forewings. The resulting silent phenotype, flatwing, persists because of natural selection imposed by an acoustically orienting parasitoid, but it interferes with mate attraction. We examined gene expression differences in developing wing buds of wild-type and flatwing male crickets using RNA-seq and quantitative proteomics. Most differentially expressed (DE) transcripts were down-regulated in flatwing males (625 up vs. 1716 down), whereas up- and down-regulated proteins were equally represented (30 up and 34 down). Differences between morphs were clearly not restricted to a single pathway, and we recovered annotations associated with a broad array of functions that would not be predicted a priori. Using a candidate gene detection test based on homology, we identified 30% of putative Drosophila wing development genes in the cricket transcriptome, but only 10% were DE. In addition to wing-related annotations, endocrine pathways and several biological processes such as reproduction, immunity and locomotion were DE in the mutant crickets at both biological levels. Our results illuminate the breadth of genetic pathways that are potentially affected in the early stages of adaptation. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  12. Do Infants Possess an Evolved Spider-Detection Mechanism?

    ERIC Educational Resources Information Center

    Rakison, David H.; Derringer, Jaime

    2008-01-01

    Previous studies with various non-human animals have revealed that they possess an evolved predator recognition mechanism that specifies the appearance of recurring threats. We used the preferential looking and habituation paradigms in three experiments to investigate whether 5-month-old human infants have a perceptual template for spiders that…

  13. Evolvable synthetic neural system

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  14. Rapidly evolving zona pellucida domain proteins are a major component of the vitelline envelope of abalone eggs

    PubMed Central

    Aagaard, Jan E.; Yi, Xianhua; MacCoss, Michael J.; Swanson, Willie J.

    2006-01-01

    Proteins harboring a zona pellucida (ZP) domain are prominent components of vertebrate egg coats. Although less well characterized, the egg coat of the non-vertebrate marine gastropod abalone (Haliotis spp.) is also known to contain a ZP domain protein, raising the possibility of a common molecular basis of metazoan egg coat structures. Egg coat proteins from vertebrate as well as non-vertebrate taxa have been shown to evolve under positive selection. Studied most extensively in the abalone system, coevolution between adaptively diverging egg coat and sperm proteins may contribute to the rapid development of reproductive isolation. Thus, identifying the pattern of evolution among egg coat proteins is important in understanding the role these genes may play in the speciation process. The purpose of the present study is to characterize the constituent proteins of the egg coat [vitelline envelope (VE)] of abalone eggs and to provide preliminary evidence regarding how selection has acted on VE proteins during abalone evolution. A proteomic approach is used to match tandem mass spectra of peptides from purified VE proteins with abalone ovary EST sequences, identifying 9 of 10 ZP domain proteins as components of the VE. Maximum likelihood models of codon evolution suggest positive selection has acted among a subset of amino acids for 6 of these genes. This work provides further evidence of the prominence of ZP proteins as constituents of the egg coat, as well as the prominent role of positive selection in diversification of these reproductive proteins. PMID:17085584

  15. Sensationalistic journalism and tales of snakebite: are rattlesnakes rapidly evolving more toxic venom?

    PubMed

    Hayes, William K; Mackessy, Stephen P

    2010-03-01

    Recent reports in the lay press have suggested that bites by rattlesnakes in the last several years have been more severe than those in the past. The explanation, often citing physicians, is that rattlesnakes are evolving more toxic venom, perhaps in response to anthropogenic causes. We suggest that other explanations are more parsimonious, including factors dependent on the snake and factors associated with the bite victim's response to envenomation. Although bites could become more severe from an increased proportion of bites from larger or more provoked snakes (ie, more venom injected), the venom itself evolves much too slowly to explain the severe symptoms occasionally seen. Increased snakebite severity could also result from a number of demographic changes in the victim profile, including age and body size, behavior toward the snake (provocation), anatomical site of bite, clothing, and general health including asthma prevalence and sensitivity to foreign antigens. Clinical management of bites also changes perpetually, rendering comparisons of snakebite severity over time tenuous. Clearly, careful study taking into consideration many factors will be essential to document temporal changes in snakebite severity or venom toxicity. Presently, no published evidence for these changes exists. The sensationalistic coverage of these atypical bites and accompanying speculation is highly misleading and can produce many detrimental results, such as inappropriate fear of the outdoors and snakes, and distraction from proven snakebite management needs, including a consistent supply of antivenom, adequate health care, and training. We urge healthcare providers to avoid propagating misinformation about snakes and snakebites. Copyright (c) 2010 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  16. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw

    USGS Publications Warehouse

    MacKelprang, R.; Waldrop, M.P.; Deangelis, K.M.; David, M.M.; Chavarria, K.L.; Blazewicz, S.J.; Rubin, E.M.; Jansson, J.K.

    2011-01-01

    Permafrost contains an estimated 1672????????Pg carbon (C), an amount roughly equivalent to the total currently contained within land plants and the atmosphere. This reservoir of C is vulnerable to decomposition as rising global temperatures cause the permafrost to thaw. During thaw, trapped organic matter may become more accessible for microbial degradation and result in greenhouse gas emissions. Despite recent advances in the use of molecular tools to study permafrost microbial communities, their response to thaw remains unclear. Here we use deep metagenomic sequencing to determine the impact of thaw on microbial phylogenetic and functional genes, and relate these data to measurements of methane emissions. Metagenomics, the direct sequencing of DNA from the environment, allows the examination of whole biochemical pathways and associated processes, as opposed to individual pieces of the metabolic puzzle. Our metagenome analyses reveal that during transition from a frozen to a thawed state there are rapid shifts in many microbial, phylogenetic and functional gene abundances and pathways. After one week of incubation at 5 ??C, permafrost metagenomes converge to be more similar to each other than while they are frozen. We find that multiple genes involved in cycling of C and nitrogen shift rapidly during thaw. We also construct the first draft genome from a complex soil metagenome, which corresponds to a novel methanogen. Methane previously accumulated in permafrost is released during thaw and subsequently consumed by methanotrophic bacteria. Together these data point towards the importance of rapid cycling of methane and nitrogen in thawing permafrost. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  17. Comparative transcriptomic analysis reveals phenol tolerance mechanism of evolved Chlorella strain.

    PubMed

    Zhou, Lin; Cheng, Dujia; Wang, Liang; Gao, Juan; Zhao, Quanyu; Wei, Wei; Sun, Yuhan

    2017-03-01

    The growth of microalgae is inhibited by high concentration phenol due to reactive oxygen species. An evolved strain tolerated to 500mg/L phenol, Chlorella sp. L5, was obtained in previous study. In this study, comparative transcriptomic analysis was performed for Chlorella sp. L5 and its original strain (Chlorella sp. L3). The tolerance mechanism of Chlorella sp. L5 for high concentration phenol was explored on genome scale. It was identified that the up-regulations of the related genes according to antioxidant enzymes (SOD, APX, CAT and GR) and carotenoids (astaxanthin, lutein and lycopene) biosynthesis had critical roles to tolerate high concentration phenol. In addition, most of genes of PS I, PS II, photosynthetic electron transport chain and starch biosynthesis were also up-regulated. It was consistent to the experimental results of total carbohydrate contents of Chlorella sp. L3 and Chlorella sp. L5 under 0mg/L and 500mg/L phenol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Whale phylogeny and rapid radiation events revealed using novel retroposed elements and their flanking sequences.

    PubMed

    Chen, Zhuo; Xu, Shixia; Zhou, Kaiya; Yang, Guang

    2011-10-27

    A diversity of hypotheses have been proposed based on both morphological and molecular data to reveal phylogenetic relationships within the order Cetacea (dolphins, porpoises, and whales), and great progress has been made in the past two decades. However, there is still some controversy concerning relationships among certain cetacean taxa such as river dolphins and delphinoid species, which needs to be further addressed with more markers in an effort to address unresolved portions of the phylogeny. An analysis of additional SINE insertions and SINE-flanking sequences supported the monophyly of the order Cetacea as well as Odontocete, Delphinoidea (Delphinidae + Phocoenidae + Mondontidae), and Delphinidae. A sister relationship between Delphinidae and Phocoenidae + Mondontidae was supported, and members of classical river dolphins and the genera Tursiops and Stenella were found to be paraphyletic. Estimates of divergence times revealed rapid divergences of basal Odontocete lineages in the Oligocene and Early Miocene, and a recent rapid diversification of Delphinidae in the Middle-Late Miocene and Pliocene within a narrow time frame. Several novel SINEs were found to differentiate Delphinidae from the other two families (Monodontidae and Phocoenidae), whereas the sister grouping of the latter two families with exclusion of Delphinidae was further revealed using the SINE-flanking sequences. Interestingly, some anomalous PCR amplification patterns of SINE insertions were detected, which can be explained as the result of potential ancestral SINE polymorphisms and incomplete lineage sorting. Although a few loci were potentially anomalous, this study demonstrated that the SINE-based approach is a powerful tool in phylogenetic studies. Identifying additional SINE elements that resolve the relationships in the superfamily Delphinoidea and family Delphinidae will be important steps forward in completely resolving cetacean phylogenetic relationships in the future.

  19. Bayesian Morphological Clock Methods Resurrect Placoderm Monophyly and Reveal Rapid Early Evolution in Jawed Vertebrates.

    PubMed

    King, Benedict; Qiao, Tuo; Lee, Michael S Y; Zhu, Min; Long, John A

    2017-07-01

    The phylogeny of early gnathostomes provides an important framework for understanding one of the most significant evolutionary events, the origin and diversification of jawed vertebrates. A series of recent cladistic analyses have suggested that the placoderms, an extinct group of armoured fish, form a paraphyletic group basal to all other jawed vertebrates. We revised and expanded this morphological data set, most notably by sampling autapomorphies in a similar way to parsimony-informative traits, thus ensuring this data (unlike most existing morphological data sets) satisfied an important assumption of Bayesian tip-dated morphological clock approaches. We also found problems with characters supporting placoderm paraphyly, including character correlation and incorrect codings. Analysis of this data set reveals that paraphyly and monophyly of core placoderms (excluding maxillate forms) are essentially equally parsimonious. The two alternative topologies have different root positions for the jawed vertebrates but are otherwise similar. However, analysis using tip-dated clock methods reveals strong support for placoderm monophyly, due to this analysis favoring trees with more balanced rates of evolution. Furthermore, enforcing placoderm paraphyly results in higher levels and unusual patterns of rate heterogeneity among branches, similar to that generated from simulated trees reconstructed with incorrect root positions. These simulations also show that Bayesian tip-dated clock methods outperform parsimony when the outgroup is largely uninformative (e.g., due to inapplicable characters), as might be the case here. The analysis also reveals that gnathostomes underwent a rapid burst of evolution during the Silurian period which declined during the Early Devonian. This rapid evolution during a period with few articulated fossils might partly explain the difficulty in ascertaining the root position of jawed vertebrates. © The Author(s) 2016. Published by Oxford University

  20. Whale phylogeny and rapid radiation events revealed using novel retroposed elements and their flanking sequences

    PubMed Central

    2011-01-01

    Background A diversity of hypotheses have been proposed based on both morphological and molecular data to reveal phylogenetic relationships within the order Cetacea (dolphins, porpoises, and whales), and great progress has been made in the past two decades. However, there is still some controversy concerning relationships among certain cetacean taxa such as river dolphins and delphinoid species, which needs to be further addressed with more markers in an effort to address unresolved portions of the phylogeny. Results An analysis of additional SINE insertions and SINE-flanking sequences supported the monophyly of the order Cetacea as well as Odontocete, Delphinoidea (Delphinidae + Phocoenidae + Mondontidae), and Delphinidae. A sister relationship between Delphinidae and Phocoenidae + Mondontidae was supported, and members of classical river dolphins and the genera Tursiops and Stenella were found to be paraphyletic. Estimates of divergence times revealed rapid divergences of basal Odontocete lineages in the Oligocene and Early Miocene, and a recent rapid diversification of Delphinidae in the Middle-Late Miocene and Pliocene within a narrow time frame. Conclusions Several novel SINEs were found to differentiate Delphinidae from the other two families (Monodontidae and Phocoenidae), whereas the sister grouping of the latter two families with exclusion of Delphinidae was further revealed using the SINE-flanking sequences. Interestingly, some anomalous PCR amplification patterns of SINE insertions were detected, which can be explained as the result of potential ancestral SINE polymorphisms and incomplete lineage sorting. Although a few loci were potentially anomalous, this study demonstrated that the SINE-based approach is a powerful tool in phylogenetic studies. Identifying additional SINE elements that resolve the relationships in the superfamily Delphinoidea and family Delphinidae will be important steps forward in completely resolving cetacean phylogenetic

  1. Maintaining evolvability.

    PubMed

    Crow, James F

    2008-12-01

    Although molecular methods, such as QTL mapping, have revealed a number of loci with large effects, it is still likely that the bulk of quantitative variability is due to multiple factors, each with small effect. Typically, these have a large additive component. Conventional wisdom argues that selection, natural or artificial, uses up additive variance and thus depletes its supply. Over time, the variance should be reduced, and at equilibrium be near zero. This is especially expected for fitness and traits highly correlated with it. Yet, populations typically have a great deal of additive variance, and do not seem to run out of genetic variability even after many generations of directional selection. Long-term selection experiments show that populations continue to retain seemingly undiminished additive variance despite large changes in the mean value. I propose that there are several reasons for this. (i) The environment is continually changing so that what was formerly most fit no longer is. (ii) There is an input of genetic variance from mutation, and sometimes from migration. (iii) As intermediate-frequency alleles increase in frequency towards one, producing less variance (as p --> 1, p(1 - p) --> 0), others that were originally near zero become more common and increase the variance. Thus, a roughly constant variance is maintained. (iv) There is always selection for fitness and for characters closely related to it. To the extent that the trait is heritable, later generations inherit a disproportionate number of genes acting additively on the trait, thus increasing genetic variance. For these reasons a selected population retains its ability to evolve. Of course, genes with large effect are also important. Conspicuous examples are the small number of loci that changed teosinte to maize, and major phylogenetic changes in the animal kingdom. The relative importance of these along with duplications, chromosome rearrangements, horizontal transmission and polyploidy

  2. Comprehensive Genome-Wide Classification Reveals That Many Plant-Specific Transcription Factors Evolved in Streptophyte Algae

    PubMed Central

    Wilhelmsson, Per K I; Mühlich, Cornelia; Ullrich, Kristian K

    2017-01-01

    Abstract Plant genomes encode many lineage-specific, unique transcription factors. Expansion of such gene families has been previously found to coincide with the evolution of morphological complexity, although comparative analyses have been hampered by severe sampling bias. Here, we make use of the recently increased availability of plant genomes. We have updated and expanded previous rule sets for domain-based classification of transcription associated proteins (TAPs), comprising transcription factors and transcriptional regulators. The genome-wide annotation of these protein families has been analyzed and made available via the novel TAPscan web interface. We find that many TAP families previously thought to be specific for land plants actually evolved in streptophyte (charophyte) algae; 26 out of 36 TAP family gains are inferred to have occurred in the common ancestor of the Streptophyta (uniting the land plants—Embryophyta—with their closest algal relatives). In contrast, expansions of TAP families were found to occur throughout streptophyte evolution. 17 out of 76 expansion events were found to be common to all land plants and thus probably evolved concomitant with the water-to-land-transition. PMID:29216360

  3. Evolving J waves prior to ventricular fibrillation postoperative coronary bypass.

    PubMed

    Kitazawa, Hitoshi; Wakasugi, Takayuki; Sugimoto, Tsutomu; Yamamoto, Kazuo; Yoshii, Shinpei; Aizawa, Yoshifusa

    2011-01-01

    A 74-year-old man without history of ventricular arrhythmias underwent coronary bypass surgery for 3-vessel disease. On the 4th postoperative day, he developed ventricular fibrillation (VF). His monitored ECG showed no elevation of the ST-segment and no prolongation of QT interval, but evolving J waves prior to VF were shown. These J waves gradually decreased after defibrillation. The subsequent angiography revealed patent grafts and normal left ventricular function. J waves reappeared in inferior leads when contrast medium was injected into the coronary artery. Therefore, evolving J wave can be a marker of latent ischemia and a predictor of VF.

  4. Biomimetic molecular design tools that learn, evolve, and adapt.

    PubMed

    Winkler, David A

    2017-01-01

    A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known "S curve", with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine.

  5. Formation of Close-in Super-Earths in an Evolving Disk Due to Disk Winds

    NASA Astrophysics Data System (ADS)

    Ogihara, Masahiro; Kokubo, Eiichiro; Suzuki, Takeru; Morbidelli, Alessandro

    2018-04-01

    Planets with masses larger than Mars mass undergo rapid inward migration (type I migration) in a standard protoplanetary disk. Recent magnetohydrodynamical simulations revealed the presence of magnetically-driven disk winds, which would alter the disk profile and the type I migration in the close-in region (r<1 au). We investigate orbital evolution of planetary embryos in a disk that viscously evolves under effects of magnetically-driven disk winds. The aim is to examine whether observed distributions of close-in super-Earths can be reproduced by simulations. We find that the type I migration is significantly suppressed in a disk with flat surface density profile. After planetary embryos undergo slow inward migration, they are captured in a resonant chain. The resonant chain undergoes late orbital instability during the gas depletion, leading to a non-resonant configuration. We also find that observed distributions of close-in super-Earths (e.g., period ratio, mass ratio) can be reproduced by results of simulations.

  6. Evolving Digital Ecological Networks

    PubMed Central

    Wagner, Aaron P.; Ofria, Charles

    2013-01-01

    “It is hard to realize that the living world as we know it is just one among many possibilities” [1]. Evolving digital ecological networks are webs of interacting, self-replicating, and evolving computer programs (i.e., digital organisms) that experience the same major ecological interactions as biological organisms (e.g., competition, predation, parasitism, and mutualism). Despite being computational, these programs evolve quickly in an open-ended way, and starting from only one or two ancestral organisms, the formation of ecological networks can be observed in real-time by tracking interactions between the constantly evolving organism phenotypes. These phenotypes may be defined by combinations of logical computations (hereafter tasks) that digital organisms perform and by expressed behaviors that have evolved. The types and outcomes of interactions between phenotypes are determined by task overlap for logic-defined phenotypes and by responses to encounters in the case of behavioral phenotypes. Biologists use these evolving networks to study active and fundamental topics within evolutionary ecology (e.g., the extent to which the architecture of multispecies networks shape coevolutionary outcomes, and the processes involved). PMID:23533370

  7. From kissing to belly stridulation: comparative analysis reveals surprising diversity, rapid evolution, and much homoplasy in the mating behaviour of 27 species of sepsid flies (Diptera: Sepsidae).

    PubMed

    Puniamoorthy, N; Ismail, M R B; Tan, D S H; Meier, R

    2009-11-01

    Our understanding of how fast mating behaviour evolves in insects is rather poor due to a lack of comparative studies among insect groups for which phylogenetic relationships are known. Here, we present a detailed study of the mating behaviour of 27 species of Sepsidae (Diptera) for which a well-resolved and supported phylogeny is available. We demonstrate that mating behaviour is extremely diverse in sepsids with each species having its own mating profile. We define 32 behavioural characters and document them with video clips. Based on sister species comparisons, we provide several examples where mating behaviour evolves faster than all sexually dimorphic morphological traits. Mapping the behaviours onto the molecular tree reveals much homoplasy, comparable to that observed for third positions of mitochondrial protein-encoding genes. A partitioned Bremer support (PBS) analysis reveals conflict between the molecular and behavioural data, but behavioural characters have higher PBS values per parsimony-informative character than DNA sequence characters.

  8. Precision medicine in ALK rearranged NSCLC: A rapidly evolving scenario.

    PubMed

    Addeo, Alfredo; Tabbò, Fabrizio; Robinson, Tim; Buffoni, Lucio; Novello, Silvia

    2018-02-01

    The identification of anaplastic lymphoma kinase (ALK) rearrangements in 2-5% of non-small cell lung cancer (NSCLC) patients led to the rapid clinical development of its oral tyrosine kinase inhibitor (TKI). Crizotinib was the first ALK inhibitor approved and utilised in the treatment of ALK+ NSCLC patients in the second line setting first and subsequently in the first line one. Since then many other ALK inhibitors have been developed (ceritinib, alectinib, brigatinib, lorlatinib,etc) and the treatment paradigm of these patients has considerably drifted. The questions regarding their treatment at progression remains unanswered at the moment. Our review clarifies what it is the state of the art in the treatment of ALK rearranged NSCLC patients, highlights the mechanisms of primary and secondary resistance mutations and suggests a treatment algorithm based on specific primary resistance or acquired mutations. Studies that enrolled ALK+ NSCLC patients with locally advance or metastatic disease receiving treatment with ALK inhibitor, first or second line, were identified using electronic databases (MEDLINE, EMBASE, and Cochrane library). Trials were excluded if they were phase 1, enrolled less than 10 patients. Overall 1942 patients were included in our review. It confirms the role and the efficacy in first line of Alectinib but it highlights also that all the ALK inhibitors could play a crucial role during the patients' journey. Identifying the different mutations and utilising the most active ALK inhibitor depending on the "up-to-date" driven mutation is the way forward in the management of those patients. the review shows the rapid drifting in the management of ALK+ NSCLC patients and the importance of fully understanding and acknowledging the role of the resistance mutation, primary or acquired. We strongly advocate a comprehensive genomic approach in the management of ALK+ NSCLC patients who develop resistance mutations that are still targetable by a different ALK

  9. Rapidly Rotating, X-Ray Bright Stars in the Kepler Field

    NASA Technical Reports Server (NTRS)

    Howell, Steve B.; Mason, Elena; Boyd, Patricia; Smith, Krista Lynne; Gelino, Dawn M.

    2016-01-01

    We present Kepler light curves and optical spectroscopy of twenty X-ray bright stars located in the Kepler field of view. The stars, spectral type F-K, show evidence for rapid rotation including chromospheric activity 100 times or more above the Sun at maximum and flaring behavior in their light curves. Eighteen of our objects appear to be (sub)giants and may belong to the class of FK Com variables, which are evolved rapidly spinning single stars with no excretion disk and high levels of chromospheric activity. Such stars are rare and are likely the result of W UMa binary mergers, a process believed to produce the FK Com class of variable and their descendants. The FK Com stage, including the presence of an excretion disk, is short lived but leads to longer-lived stages consisting of single, rapidly rotating evolved (sub)giants with high levels of stellar activity.

  10. Biomimetic molecular design tools that learn, evolve, and adapt

    PubMed Central

    2017-01-01

    A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known “S curve”, with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine. PMID:28694872

  11. Rapid scavenging of jellyfish carcasses reveals the importance of gelatinous material to deep-sea food webs.

    PubMed

    Sweetman, Andrew K; Smith, Craig R; Dale, Trine; Jones, Daniel O B

    2014-12-07

    Jellyfish blooms are common in many oceans, and anthropogenic changes appear to have increased their magnitude in some regions. Although mass falls of jellyfish carcasses have been observed recently at the deep seafloor, the dense necrophage aggregations and rapid consumption rates typical for vertebrate carrion have not been documented. This has led to a paradigm of limited energy transfer to higher trophic levels at jelly falls relative to vertebrate organic falls. We show from baited camera deployments in the Norwegian deep sea that dense aggregations of deep-sea scavengers (more than 1000 animals at peak densities) can rapidly form at jellyfish baits and consume entire jellyfish carcasses in 2.5 h. We also show that scavenging rates on jellyfish are not significantly different from fish carrion of similar mass, and reveal that scavenging communities typical for the NE Atlantic bathyal zone, including the Atlantic hagfish, galatheid crabs, decapod shrimp and lyssianasid amphipods, consume both types of carcasses. These rapid jellyfish carrion consumption rates suggest that the contribution of gelatinous material to organic fluxes may be seriously underestimated in some regions, because jelly falls may disappear much more rapidly than previously thought. Our results also demonstrate that the energy contained in gelatinous carrion can be efficiently incorporated into large numbers of deep-sea scavengers and food webs, lessening the expected impacts (e.g. smothering of the seafloor) of enhanced jellyfish production on deep-sea ecosystems and pelagic-benthic coupling. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. Rapid selective sweep of pre-existing polymorphisms and slow fixation of new mutations in experimental evolution of Desulfovibrio vulgaris.

    PubMed

    Zhou, Aifen; Hillesland, Kristina L; He, Zhili; Schackwitz, Wendy; Tu, Qichao; Zane, Grant M; Ma, Qiao; Qu, Yuanyuan; Stahl, David A; Wall, Judy D; Hazen, Terry C; Fields, Matthew W; Arkin, Adam P; Zhou, Jizhong

    2015-11-01

    To investigate the genetic basis of microbial evolutionary adaptation to salt (NaCl) stress, populations of Desulfovibrio vulgaris Hildenborough (DvH), a sulfate-reducing bacterium important for the biogeochemical cycling of sulfur, carbon and nitrogen, and potentially the bioremediation of toxic heavy metals and radionuclides, were propagated under salt stress or non-stress conditions for 1200 generations. Whole-genome sequencing revealed 11 mutations in salt stress-evolved clone ES9-11 and 14 mutations in non-stress-evolved clone EC3-10. Whole-population sequencing data suggested the rapid selective sweep of the pre-existing polymorphisms under salt stress within the first 100 generations and the slow fixation of new mutations. Population genotyping data demonstrated that the rapid selective sweep of pre-existing polymorphisms was common in salt stress-evolved populations. In contrast, the selection of pre-existing polymorphisms was largely random in EC populations. Consistently, at 100 generations, stress-evolved population ES9 showed improved salt tolerance, namely increased growth rate (2.0-fold), higher biomass yield (1.8-fold) and shorter lag phase (0.7-fold) under higher salinity conditions. The beneficial nature of several mutations was confirmed by site-directed mutagenesis. All four tested mutations contributed to the shortened lag phases under higher salinity condition. In particular, compared with the salt tolerance improvement in ES9-11, a mutation in a histidine kinase protein gene lytS contributed 27% of the growth rate increase and 23% of the biomass yield increase while a mutation in hypothetical gene DVU2472 contributed 24% of the biomass yield increase. Our results suggested that a few beneficial mutations could lead to dramatic improvements in salt tolerance.

  13. Rapid selective sweep of pre-existing polymorphisms and slow fixation of new mutations in experimental evolution of Desulfovibrio vulgaris

    PubMed Central

    Zhou, Aifen; Hillesland, Kristina L; He, Zhili; Schackwitz, Wendy; Tu, Qichao; Zane, Grant M; Ma, Qiao; Qu, Yuanyuan; Stahl, David A; Wall, Judy D; Hazen, Terry C; Fields, Matthew W; Arkin, Adam P; Zhou, Jizhong

    2015-01-01

    To investigate the genetic basis of microbial evolutionary adaptation to salt (NaCl) stress, populations of Desulfovibrio vulgaris Hildenborough (DvH), a sulfate-reducing bacterium important for the biogeochemical cycling of sulfur, carbon and nitrogen, and potentially the bioremediation of toxic heavy metals and radionuclides, were propagated under salt stress or non-stress conditions for 1200 generations. Whole-genome sequencing revealed 11 mutations in salt stress-evolved clone ES9-11 and 14 mutations in non-stress-evolved clone EC3-10. Whole-population sequencing data suggested the rapid selective sweep of the pre-existing polymorphisms under salt stress within the first 100 generations and the slow fixation of new mutations. Population genotyping data demonstrated that the rapid selective sweep of pre-existing polymorphisms was common in salt stress-evolved populations. In contrast, the selection of pre-existing polymorphisms was largely random in EC populations. Consistently, at 100 generations, stress-evolved population ES9 showed improved salt tolerance, namely increased growth rate (2.0-fold), higher biomass yield (1.8-fold) and shorter lag phase (0.7-fold) under higher salinity conditions. The beneficial nature of several mutations was confirmed by site-directed mutagenesis. All four tested mutations contributed to the shortened lag phases under higher salinity condition. In particular, compared with the salt tolerance improvement in ES9-11, a mutation in a histidine kinase protein gene lytS contributed 27% of the growth rate increase and 23% of the biomass yield increase while a mutation in hypothetical gene DVU2472 contributed 24% of the biomass yield increase. Our results suggested that a few beneficial mutations could lead to dramatic improvements in salt tolerance. PMID:25848870

  14. RAPIDLY ROTATING, X-RAY BRIGHT STARS IN THE KEPLER FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howell, Steve B.; Mason, Elena; Boyd, Patricia

    We present Kepler light curves and optical spectroscopy of twenty X-ray bright stars located in the Kepler field of view. The stars, spectral type F-K, show evidence for rapid rotation including chromospheric activity 100 times or more above the Sun at maximum and flaring behavior in their light curves. Eighteen of our objects appear to be (sub)giants and may belong to the class of FK Com variables, which are evolved rapidly spinning single stars with no excretion disk and high levels of chromospheric activity. Such stars are rare and are likely the result of W UMa binary mergers, a processmore » believed to produce the FK Com class of variable and their descendants. The FK Com stage, including the presence of an excretion disk, is short lived but leads to longer-lived stages consisting of single, rapidly rotating evolved (sub)giants with high levels of stellar activity.« less

  15. Robustness to Faults Promotes Evolvability: Insights from Evolving Digital Circuits

    PubMed Central

    Nolfi, Stefano

    2016-01-01

    We demonstrate how the need to cope with operational faults enables evolving circuits to find more fit solutions. The analysis of the results obtained in different experimental conditions indicates that, in absence of faults, evolution tends to select circuits that are small and have low phenotypic variability and evolvability. The need to face operation faults, instead, drives evolution toward the selection of larger circuits that are truly robust with respect to genetic variations and that have a greater level of phenotypic variability and evolvability. Overall our results indicate that the need to cope with operation faults leads to the selection of circuits that have a greater probability to generate better circuits as a result of genetic variation with respect to a control condition in which circuits are not subjected to faults. PMID:27409589

  16. Rapidly rotating single late-type giants: New FK Comae stars?

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.

    1986-01-01

    A group of rapidly rotating single late-type giants was found from surveys of chromospherically active stars. These stars have V sin I's ranging from 6 to 46 km/sec, modest ultraviolet emission line fluxes, and strong H alpha absorption lines. Although certainly chromospherically active, their characteristics are much less extreme than those of FK Com and one or two other similar systems. One possible explanation for the newly identified systems is that they have evolved from stars similar to FK Com. The chromospheric activity and rotation of single giant stars like FK Com would be expected to decrease with time as they do in single dwarfs. Alternatively, this newly identified group may have evolved from single rapidly rotating A, or early F stars.

  17. An international survey and modified Delphi approach revealed numerous rapid review methods.

    PubMed

    Tricco, Andrea C; Zarin, Wasifa; Antony, Jesmin; Hutton, Brian; Moher, David; Sherifali, Diana; Straus, Sharon E

    2016-02-01

    To solicit experiences with and perceptions of rapid reviews from stakeholders, including researchers, policy makers, industry, journal editors, and health care providers. An international survey of rapid review producers and modified Delphi. Forty rapid review producers responded on our survey (63% response rate). Eighty-eight rapid reviews with 31 different names were reported. Rapid review commissioning organizations were predominantly government (78%) and health care (58%) organizations. Several rapid review approaches were identified, including updating the literature search of previous reviews (92%); limiting the search strategy by date of publication (88%); and having only one reviewer screen (85%), abstract data (84%), and assess the quality of studies (86%). The modified Delphi included input from 113 stakeholders on the rapid review approaches from the survey. Approach 1 (search limited by date and language; study selection by one reviewer only, and data abstraction and quality appraisal conducted by one reviewer and one verifier) was ranked the most feasible (72%, 81/113 responses), with the lowest perceived risk of bias (12%, 12/103); it also ranked second in timeliness (37%, 38/102) and fifth in comprehensiveness (5%, 5/100). Rapid reviews have many names and approaches, and some methods might be more desirable than others. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. AN EVOLVING STELLAR INITIAL MASS FUNCTION AND THE GAMMA-RAY BURST REDSHIFT DISTRIBUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, F. Y.; Dai, Z. G.

    2011-02-01

    Recent studies suggest that Swift gamma-ray bursts (GRBs) may not trace an ordinary star formation history (SFH). Here, we show that the GRB rate turns out to be consistent with the SFH with an evolving stellar initial mass function (IMF). We first show that the latest Swift sample of GRBs reveals an increasing evolution in the GRB rate relative to the ordinary star formation rate at high redshifts. We then assume only massive stars with masses greater than the critical value to produce GRBs and use an evolving stellar IMF suggested by Dave to fit the latest GRB redshift distribution.more » This evolving IMF would increase the relative number of massive stars, which could lead to more GRB explosions at high redshifts. We find that the evolving IMF can well reproduce the observed redshift distribution of Swift GRBs.« less

  19. Policy-Based Middleware for QoS Management and Signaling in the Evolved Packet System

    NASA Astrophysics Data System (ADS)

    Good, Richard; Gouveia, Fabricio; Magedanz, Thomas; Ventura, Neco

    The 3GPP are currently finalizing their Evolved Packet System (EPS) with the Evolved Packet Core (EPC) central to this framework. The EPC is a simplified, flat, all IP-based architecture that supports mobility between heterogeneous access networks and incorporates an evolved QoS concept based on the 3GPP Policy Control and Charging (PCC) framework. The IP Multimedia Subsystem (IMS) is an IP service element within the EPS, introduced for the rapid provisioning of innovative multimedia services. The evolved PCC framework extends the scope of operation and defines new interactions - in particular the S9 reference point is introduced to facilitate inter-domain PCC communication. This paper proposes an enhancement to the IMS/PCC framework that uses SIP routing information to discover signaling and media paths. This mechanism uses standardized IMS/PCC operations and allows applications to effectively issue resource requests from their home domain enabling QoS-connectivity across multiple domains. Because the mechanism operates at the service control layer it does not require any significant transport layer modifications or the sharing of potentially sensitive internal topology information. The evolved PCC architecture and inter-domain route discovery mechanisms were implemented in an evaluation testbed and performed favorably without adversely effecting end user experience.

  20. Evolving Strategies for Cancer and Autoimmunity: Back to the Future

    PubMed Central

    Lane, Peter J. L.; McConnell, Fiona M.; Anderson, Graham; Nawaf, Maher G.; Gaspal, Fabrina M.; Withers, David R.

    2014-01-01

    Although current thinking has focused on genetic variation between individuals and environmental influences as underpinning susceptibility to both autoimmunity and cancer, an alternative view is that human susceptibility to these diseases is a consequence of the way the immune system evolved. It is important to remember that the immunological genes that we inherit and the systems that they control were shaped by the drive for reproductive success rather than for individual survival. It is our view that human susceptibility to autoimmunity and cancer is the evolutionarily acceptable side effect of the immune adaptations that evolved in early placental mammals to accommodate a fundamental change in reproductive strategy. Studies of immune function in mammals show that high affinity antibodies and CD4 memory, along with its regulation, co-evolved with placentation. By dissection of the immunologically active genes and proteins that evolved to regulate this step change in the mammalian immune system, clues have emerged that may reveal ways of de-tuning both effector and regulatory arms of the immune system to abrogate autoimmune responses whilst preserving protection against infection. Paradoxically, it appears that such a detuned and deregulated immune system is much better equipped to mount anti-tumor immune responses against cancers. PMID:24782861

  1. Tensions inherent in the evolving role of the infection preventionist.

    PubMed

    Conway, Laurie J; Raveis, Victoria H; Pogorzelska-Maziarz, Monika; Uchida, May; Stone, Patricia W; Larson, Elaine L

    2013-11-01

    The role of infection preventionists (IPs) is expanding in response to demands for quality and transparency in health care. Practice analyses and survey research have demonstrated that IPs spend a majority of their time on surveillance and are increasingly responsible for prevention activities and management; however, deeper qualitative aspects of the IP role have rarely been explored. We conducted a qualitative content analysis of in-depth interviews with 19 IPs at hospitals throughout the United States to describe the current IP role, specifically the ways that IPs effect improvements and the facilitators and barriers they face. The narratives document that the IP role is evolving in response to recent changes in the health care landscape and reveal that this progression is associated with friction and uncertainty. Tensions inherent in the evolving role of the IP emerged from the interviews as 4 broad themes: (1) expanding responsibilities outstrip resources, (2) shifting role boundaries create uncertainty, (3) evolving mechanisms of influence involve trade-offs, and (4) the stress of constant change is compounded by chronic recurring challenges. Advances in implementation science, data standardization, and training in leadership skills are needed to support IPs in their evolving role. Copyright © 2013 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  2. Microbial competition in porous environments can select against rapid biofilm growth

    PubMed Central

    Coyte, Katharine Z.; Tabuteau, Hervé; Gaffney, Eamonn A.; Durham, William M.

    2017-01-01

    Microbes often live in dense communities called biofilms, where competition between strains and species is fundamental to both evolution and community function. Although biofilms are commonly found in soil-like porous environments, the study of microbial interactions has largely focused on biofilms growing on flat, planar surfaces. Here, we use microfluidic experiments, mechanistic models, and game theory to study how porous media hydrodynamics can mediate competition between bacterial genotypes. Our experiments reveal a fundamental challenge faced by microbial strains that live in porous environments: cells that rapidly form biofilms tend to block their access to fluid flow and redirect resources to competitors. To understand how these dynamics influence the evolution of bacterial growth rates, we couple a model of flow–biofilm interaction with a game theory analysis. This investigation revealed that hydrodynamic interactions between competing genotypes give rise to an evolutionarily stable growth rate that stands in stark contrast with that observed in typical laboratory experiments: cells within a biofilm can outcompete other genotypes by growing more slowly. Our work reveals that hydrodynamics can profoundly affect how bacteria compete and evolve in porous environments, the habitat where most bacteria live. PMID:28007984

  3. Genetics of Rapid and Extreme Size Evolution in Island Mice

    PubMed Central

    Gray, Melissa M.; Parmenter, Michelle D.; Hogan, Caley A.; Ford, Irene; Cuthbert, Richard J.; Ryan, Peter G.; Broman, Karl W.; Payseur, Bret A.

    2015-01-01

    Organisms on islands provide a revealing window into the process of adaptation. Populations that colonize islands often evolve substantial differences in body size from their mainland relatives. Although the ecological drivers of this phenomenon have received considerable attention, its genetic basis remains poorly understood. We use house mice (subspecies: Mus musculus domesticus) from remote Gough Island to provide a genetic portrait of rapid and extreme size evolution. In just a few hundred generations, Gough Island mice evolved the largest body size among wild house mice from around the world. Through comparisons with a smaller-bodied wild-derived strain from the same subspecies (WSB/EiJ), we demonstrate that Gough Island mice achieve their exceptional body weight primarily by growing faster during the 6 weeks after birth. We use genetic mapping in large F2 intercrosses between Gough Island mice and WSB/EiJ to identify 19 quantitative trait loci (QTL) responsible for the evolution of 16-week weight trajectories: 8 QTL for body weight and 11 QTL for growth rate. QTL exhibit modest effects that are mostly additive. We conclude that body size evolution on islands can be genetically complex, even when substantial size changes occur rapidly. In comparisons to published studies of laboratory strains of mice that were artificially selected for divergent body sizes, we discover that the overall genetic profile of size evolution in nature and in the laboratory is similar, but many contributing loci are distinct. Our results underscore the power of genetically characterizing the entire growth trajectory in wild populations and lay the foundation necessary for identifying the mutations responsible for extreme body size evolution in nature. PMID:26199233

  4. Genetic basis for rapidly evolved tolerance in the wild: adaptation to toxic pollutants by an estuarine fish species

    EPA Science Inventory

    Atlantic killifish (Fundulus heteroclitus) residing in some urban and industrialized estuaries of the US eastern seaboard demonstrate recently evolved and extreme tolerance to toxic aryl hydrocarbon pollutants, characterized as dioxin-like compounds (DLCs). Here we provide an unu...

  5. The impact of rapid evolution on population dynamics in the wild: experimental test of eco-evolutionary dynamics.

    PubMed

    Turcotte, Martin M; Reznick, David N; Hare, J Daniel

    2011-11-01

    Rapid evolution challenges the assumption that evolution is too slow to impact short-term ecological dynamics. This insight motivates the study of 'Eco-Evolutionary Dynamics' or how evolution and ecological processes reciprocally interact on short time scales. We tested how rapid evolution impacts concurrent population dynamics using an aphid (Myzus persicae) and an undomesticated host (Hirschfeldia incana) in replicated wild populations. We manipulated evolvability by creating non-evolving (single clone) and potentially evolving (two-clone) aphid populations that contained genetic variation in intrinsic growth rate. We observed significant evolution in two-clone populations whether or not they were exposed to predators and competitors. Evolving populations grew up to 42% faster and attained up to 67% higher density, compared with non-evolving control populations but only in treatments exposed to competitors and predators. Increased density also correlates with relative fitness of competing clones suggesting a full eco-evolutionary dynamic cycle defined as reciprocal interactions between evolution and density. © 2011 Blackwell Publishing Ltd/CNRS.

  6. Adaptive Acquisition: An Evolving Framework for Tailoring Engineering and Procurement of Defense Systems

    DTIC Science & Technology

    2017-01-31

    mapping critical business workflows and then optimizing them with appropriate evolutionary technology choices is often called “ Product Line Architecture... technologies , products , services, and processes, and the USG evaluates them against its 360o requirements objectives, and refines them as appropriate, clarity...in rapidly evolving technological domains (e.g. by applying best commercial practices for open standard product line architecture.) An MP might be

  7. Higher rates of sex evolve in spatially heterogeneous environments.

    PubMed

    Becks, Lutz; Agrawal, Aneil F

    2010-11-04

    The evolution and maintenance of sexual reproduction has puzzled biologists for decades. Although this field is rich in hypotheses, experimental evidence is scarce. Some important experiments have demonstrated differences in evolutionary rates between sexual and asexual populations; other experiments have documented evolutionary changes in phenomena related to genetic mixing, such as recombination and selfing. However, direct experiments of the evolution of sex within populations are extremely rare (but see ref. 12). Here we use the rotifer, Brachionus calyciflorus, which is capable of both sexual and asexual reproduction, to test recent theory predicting that there is more opportunity for sex to evolve in spatially heterogeneous environments. Replicated experimental populations of rotifers were maintained in homogeneous environments, composed of either high- or low-quality food habitats, or in heterogeneous environments that consisted of a mix of the two habitats. For populations maintained in either type of homogeneous environment, the rate of sex evolves rapidly towards zero. In contrast, higher rates of sex evolve in populations experiencing spatially heterogeneous environments. The data indicate that the higher level of sex observed under heterogeneity is not due to sex being less costly or selection against sex being less efficient; rather sex is sufficiently advantageous in heterogeneous environments to overwhelm its inherent costs. Counter to some alternative theories for the evolution of sex, there is no evidence that genetic drift plays any part in the evolution of sex in these populations.

  8. Evolving virtual creatures and catapults.

    PubMed

    Chaumont, Nicolas; Egli, Richard; Adami, Christoph

    2007-01-01

    We present a system that can evolve the morphology and the controller of virtual walking and block-throwing creatures (catapults) using a genetic algorithm. The system is based on Sims' work, implemented as a flexible platform with an off-the-shelf dynamics engine. Experiments aimed at evolving Sims-type walkers resulted in the emergence of various realistic gaits while using fairly simple objective functions. Due to the flexibility of the system, drastically different morphologies and functions evolved with only minor modifications to the system and objective function. For example, various throwing techniques evolved when selecting for catapults that propel a block as far as possible. Among the strategies and morphologies evolved, we find the drop-kick strategy, as well as the systematic invention of the principle behind the wheel, when allowing mutations to the projectile.

  9. Ultra-Rapid serial visual presentation reveals dynamics of feedforward and feedback processes in the ventral visual pathway.

    PubMed

    Mohsenzadeh, Yalda; Qin, Sheng; Cichy, Radoslaw M; Pantazis, Dimitrios

    2018-06-21

    Human visual recognition activates a dense network of overlapping feedforward and recurrent neuronal processes, making it hard to disentangle processing in the feedforward from the feedback direction. Here, we used ultra-rapid serial visual presentation to suppress sustained activity that blurs the boundaries of processing steps, enabling us to resolve two distinct stages of processing with MEG multivariate pattern classification. The first processing stage was the rapid activation cascade of the bottom-up sweep, which terminated early as visual stimuli were presented at progressively faster rates. The second stage was the emergence of categorical information with peak latency that shifted later in time with progressively faster stimulus presentations, indexing time-consuming recurrent processing. Using MEG-fMRI fusion with representational similarity, we localized recurrent signals in early visual cortex. Together, our findings segregated an initial bottom-up sweep from subsequent feedback processing, and revealed the neural signature of increased recurrent processing demands for challenging viewing conditions. © 2018, Mohsenzadeh et al.

  10. ASASSN-15oi: a rapidly evolving, luminous tidal disruption event at 216 Mpc

    NASA Astrophysics Data System (ADS)

    Holoien, T. W.-S.; Kochanek, C. S.; Prieto, J. L.; Grupe, D.; Chen, Ping; Godoy-Rivera, D.; Stanek, K. Z.; Shappee, B. J.; Dong, Subo; Brown, J. S.; Basu, U.; Beacom, J. F.; Bersier, D.; Brimacombe, J.; Carlson, E. K.; Falco, E.; Johnston, E.; Madore, B. F.; Pojmanski, G.; Seibert, M.

    2016-12-01

    We present ground-based and Swift photometric and spectroscopic observations of the tidal disruption event (TDE) ASASSN-15oi, discovered at the centre of 2MASX J20390918-3045201 (d ≃ 216 Mpc) by the All-Sky Automated Survey for SuperNovae. The source peaked at a bolometric luminosity of L ≃ 1.3 × 1044 erg s-1 and radiated a total energy of E ≃ 6.6 × 1050 erg over the first ˜3.5 months of observations. The early optical/UV emission of the source can be fit by a blackbody with temperature increasing from T ˜ 2 × 104 K to T ˜ 4 × 104 K while the luminosity declines from L ≃ 1.3 × 1044 erg s-1 to L ≃ 2.3 × 1043 erg s-1, requiring the photosphere to be shrinking rapidly. The optical/UV luminosity decline during this period is most consistent with an exponential decline, L∝ e^{-(t-t_0)/τ}, with τ ≃ 46.5 d for t0 ≃ 57241.6 (MJD), while a power-law decline of L ∝ (t - t0)-α with t0 ≃ 57 212.3 and α = 1.62 provides a moderately worse fit. ASASSN-15oi also exhibits roughly constant soft X-ray emission that is significantly weaker than the optical/UV emission. Spectra of the source show broad helium emission lines and strong blue continuum emission in early epochs, although these features fade rapidly and are not present ˜3 months after discovery. The early spectroscopic features and colour evolution of ASASSN-15oi are consistent with a TDE, but the rapid spectral evolution is unique among optically selected TDEs.

  11. Rapid selective sweep of pre-existing polymorphisms and slow fixation of new mutations in experimental evolution of Desulfovibrio vulgaris

    DOE PAGES

    Zhou, Aifen; Hillesland, Kristina L.; He, Zhili; ...

    2015-04-07

    To investigate the genetic basis of microbial evolutionary adaptation to salt (NaCl) stress, populations of Desulfovibrio vulgaris Hildenborough (DvH), a sulfate-reducing bacterium important for the biogeochemical cycling of sulfur, carbon and nitrogen, and potentially the bioremediation of toxic heavy metals and radionuclides, were propagated under salt stress or non-stress conditions for 1200 generations. Whole-genome sequencing revealed 11 mutations in salt stress-evolved clone ES9-11 and 14 mutations in non-stress-evolved clone EC3-10. Whole-population sequencing data suggested the rapid selective sweep of the pre-existing polymorphisms under salt stress within the first 100 generations and the slow fixation of new mutations. Population genotyping datamore » demonstrated that the rapid selective sweep of pre-existing polymorphisms was common in salt stress-evolved populations. In contrast, the selection of pre-existing polymorphisms was largely random in EC populations. Consistently, at 100 generations, stress-evolved population ES9 showed improved salt tolerance, namely increased growth rate (2.0-fold), higher biomass yield (1.8-fold) and shorter lag phase (0.7-fold) under higher salinity conditions. The beneficial nature of several mutations was confirmed by site-directed mutagenesis. All four tested mutations contributed to the shortened lag phases under higher salinity condition. In particular, compared with the salt tolerance improvement in ES9-11, a mutation in a histidine kinase protein gene lytS contributed 27% of the growth rate increase and 23% of the biomass yield increase while a mutation in hypothetical gene DVU2472 contributed 24% of the biomass yield increase. In conclusion, our results suggested that a few beneficial mutations could lead to dramatic improvements in salt tolerance.« less

  12. Rapid selective sweep of pre-existing polymorphisms and slow fixation of new mutations in experimental evolution of Desulfovibrio vulgaris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Aifen; Hillesland, Kristina L.; He, Zhili

    To investigate the genetic basis of microbial evolutionary adaptation to salt (NaCl) stress, populations of Desulfovibrio vulgaris Hildenborough (DvH), a sulfate-reducing bacterium important for the biogeochemical cycling of sulfur, carbon and nitrogen, and potentially the bioremediation of toxic heavy metals and radionuclides, were propagated under salt stress or non-stress conditions for 1200 generations. Whole-genome sequencing revealed 11 mutations in salt stress-evolved clone ES9-11 and 14 mutations in non-stress-evolved clone EC3-10. Whole-population sequencing data suggested the rapid selective sweep of the pre-existing polymorphisms under salt stress within the first 100 generations and the slow fixation of new mutations. Population genotyping datamore » demonstrated that the rapid selective sweep of pre-existing polymorphisms was common in salt stress-evolved populations. In contrast, the selection of pre-existing polymorphisms was largely random in EC populations. Consistently, at 100 generations, stress-evolved population ES9 showed improved salt tolerance, namely increased growth rate (2.0-fold), higher biomass yield (1.8-fold) and shorter lag phase (0.7-fold) under higher salinity conditions. The beneficial nature of several mutations was confirmed by site-directed mutagenesis. All four tested mutations contributed to the shortened lag phases under higher salinity condition. In particular, compared with the salt tolerance improvement in ES9-11, a mutation in a histidine kinase protein gene lytS contributed 27% of the growth rate increase and 23% of the biomass yield increase while a mutation in hypothetical gene DVU2472 contributed 24% of the biomass yield increase. In conclusion, our results suggested that a few beneficial mutations could lead to dramatic improvements in salt tolerance.« less

  13. Rapid selective sweep of pre-existing polymorphisms and slow fixation of new mutations in experimental evolution of Desulfovibrio vulgaris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Aifen; Hillesland, Kristina L.; He, Zhili

    To investigate the genetic basis of microbial evolutionary adaptation to salt (NaCl) stress, populations of Desulfovibrio vulgaris Hildenborough (DvH), a sulfate-reducing bacterium important for the biogeochemical cycling of sulfur, carbon and nitrogen, and potentially the bioremediation of toxic heavy metals and radionuclides, were propagated under salt stress or non-stress conditions for 1200 generations. Whole-genome sequencing revealed 11 mutations in salt stress-evolved clone ES9-11 and 14 mutations in non-stress-evolved clone EC3-10. Whole-population sequencing data suggested the rapid selective sweep of the pre-existing polymorphisms under salt stress within the first 100 generations and the slow fixation of new mutations. Population genotyping datamore » demonstrated that the rapid selective sweep of pre-existing polymorphisms was common in salt stress-evolved populations. In contrast, the selection of pre-existing polymorphisms was largely random in EC populations. Consistently, at 100 generations, stress-evolved population ES9 showed improved salt tolerance, namely increased growth rate (2.0-fold), higher biomass yield (1.8-fold) and shorter lag phase (0.7-fold) under higher salinity conditions. The beneficial nature of several mutations was confirmed by site-directed mutagenesis. All four tested mutations contributed to the shortened lag phases under higher salinity condition. In particular, compared with the salt tolerance improvement in ES9-11, a mutation in a histidine kinase protein gene lytS contributed 27% of the growth rate increase and 23% of the biomass yield increase while a mutation in hypothetical gene DVU2472 contributed 24% of the biomass yield increase. Our results suggested that a few beneficial mutations could lead to dramatic improvements in salt tolerance.« less

  14. Evolving Systems and Adaptive Key Component Control

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Balas, Mark J.

    2009-01-01

    We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. An introduction to Evolving Systems and exploration of the essential topics of the control and stability properties of Evolving Systems is provided. This chapter defines a framework for Evolving Systems, develops theory and control solutions for fundamental characteristics of Evolving Systems, and provides illustrative examples of Evolving Systems and their control with adaptive key component controllers.

  15. NASA's Space Launch System: An Evolving Capability for Exploration An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimerly F.

    2016-01-01

    A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of propelling the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.

  16. Rapid Holocene coastal change revealed by high-resolution micropaleontological analysis, Pamlico Sound, North Carolina, USA

    USGS Publications Warehouse

    Grand, Pre C.; Culver, S.J.; Mallinson, D.J.; Farrell, K.M.; Corbett, D.R.; Horton, B.P.; Hillier, C.; Riggs, S.R.; Snyder, S.W.; Buzas, M.A.

    2011-01-01

    Foraminiferal analyses of 404 contiguous samples, supported by diatom, lithologic, geochronologic and seismic data, reveal both rapid and gradual Holocene paleoenvironmental changes in an 8.21-m vibracore taken from southern Pamlico Sound, North Carolina. Data record initial flooding of a latest Pleistocene river drainage and the formation of an estuary 9000. yr ago. Estuarine conditions were punctuated by two intervals of marine influence from approximately 4100 to 3700 and 1150 to 500. cal. yr BP. Foraminiferal assemblages in the muddy sand facies that accumulated during these intervals contain many well-preserved benthic foraminiferal species, which occur today in open marine settings as deep as the mid shelf, and significant numbers of well-preserved planktonic foraminifera, some typical of Gulf Stream waters. We postulate that these marine-influenced units resulted from temporary destruction of the southern Outer Banks barrier islands by hurricanes. The second increase in marine influence is coeval with increased rate of sea-level rise and a peak in Atlantic tropical cyclone activity during the Medieval Climate Anomaly. This high-resolution analysis demonstrates the range of environmental variability and the rapidity of coastal change that can result from the interplay of changing climate, sea level and geomorphology in an estuarine setting. ?? 2011 University of Washington.

  17. Sensitivity of human auditory cortex to rapid frequency modulation revealed by multivariate representational similarity analysis.

    PubMed

    Joanisse, Marc F; DeSouza, Diedre D

    2014-01-01

    Functional Magnetic Resonance Imaging (fMRI) was used to investigate the extent, magnitude, and pattern of brain activity in response to rapid frequency-modulated sounds. We examined this by manipulating the direction (rise vs. fall) and the rate (fast vs. slow) of the apparent pitch of iterated rippled noise (IRN) bursts. Acoustic parameters were selected to capture features used in phoneme contrasts, however the stimuli themselves were not perceived as speech per se. Participants were scanned as they passively listened to sounds in an event-related paradigm. Univariate analyses revealed a greater level and extent of activation in bilateral auditory cortex in response to frequency-modulated sweeps compared to steady-state sounds. This effect was stronger in the left hemisphere. However, no regions showed selectivity for either rate or direction of frequency modulation. In contrast, multivoxel pattern analysis (MVPA) revealed feature-specific encoding for direction of modulation in auditory cortex bilaterally. Moreover, this effect was strongest when analyses were restricted to anatomical regions lying outside Heschl's gyrus. We found no support for feature-specific encoding of frequency modulation rate. Differential findings of modulation rate and direction of modulation are discussed with respect to their relevance to phonetic discrimination.

  18. No surviving evolved companions of the progenitor of SN 1006.

    PubMed

    González Hernández, Jonay I; Ruiz-Lapuente, Pilar; Tabernero, Hugo M; Montes, David; Canal, Ramon; Méndez, Javier; Bedin, Luigi R

    2012-09-27

    Type Ia supernovae are thought to occur when a white dwarf made of carbon and oxygen accretes sufficient mass to trigger a thermonuclear explosion. The accretion could be slow, from an unevolved (main-sequence) or evolved (subgiant or giant) star (the single-degenerate channel), or rapid, as the primary star breaks up a smaller orbiting white dwarf (the double-degenerate channel). A companion star will survive the explosion only in the single-degenerate channel. Both channels might contribute to the production of type Ia supernovae, but the relative proportions of their contributions remain a fundamental puzzle in astronomy. Previous searches for remnant companions have revealed one possible case for SN 1572 (refs 8, 9), although that has been questioned. More recently, observations have restricted surviving companions to be small, main-sequence stars, ruling out giant companions but still allowing the single-degenerate channel. Here we report the results of a search for surviving companions of the progenitor of SN 1006 (ref. 14). None of the stars within 4 arc minutes of the apparent site of the explosion is associated with the supernova remnant, and we can firmly exclude all giant and subgiant stars from being companions of the progenitor. In combination with previous results, our findings indicate that fewer than 20 per cent of type Ia supernovae occur through the single-degenerate channel.

  19. Genetics of Rapid and Extreme Size Evolution in Island Mice.

    PubMed

    Gray, Melissa M; Parmenter, Michelle D; Hogan, Caley A; Ford, Irene; Cuthbert, Richard J; Ryan, Peter G; Broman, Karl W; Payseur, Bret A

    2015-09-01

    Organisms on islands provide a revealing window into the process of adaptation. Populations that colonize islands often evolve substantial differences in body size from their mainland relatives. Although the ecological drivers of this phenomenon have received considerable attention, its genetic basis remains poorly understood. We use house mice (subspecies: Mus musculus domesticus) from remote Gough Island to provide a genetic portrait of rapid and extreme size evolution. In just a few hundred generations, Gough Island mice evolved the largest body size among wild house mice from around the world. Through comparisons with a smaller-bodied wild-derived strain from the same subspecies (WSB/EiJ), we demonstrate that Gough Island mice achieve their exceptional body weight primarily by growing faster during the 6 weeks after birth. We use genetic mapping in large F(2) intercrosses between Gough Island mice and WSB/EiJ to identify 19 quantitative trait loci (QTL) responsible for the evolution of 16-week weight trajectories: 8 QTL for body weight and 11 QTL for growth rate. QTL exhibit modest effects that are mostly additive. We conclude that body size evolution on islands can be genetically complex, even when substantial size changes occur rapidly. In comparisons to published studies of laboratory strains of mice that were artificially selected for divergent body sizes, we discover that the overall genetic profile of size evolution in nature and in the laboratory is similar, but many contributing loci are distinct. Our results underscore the power of genetically characterizing the entire growth trajectory in wild populations and lay the foundation necessary for identifying the mutations responsible for extreme body size evolution in nature. Copyright © 2015 by the Genetics Society of America.

  20. Evolving vendor market for HITECH-certified ambulatory EHR products.

    PubMed

    Gold, Marsha; Hossain, Mynti; Charles, Dustin R; Furukawa, Michael F

    2013-11-01

    The ambitious goals of the Health Information Technology for Economic and Clinical Health (HITECH) Act require rapid development and certification of new ambulatory electronic health record (EHR) products. To examine where the vendor market for EHR products stands now and the policy issues emerging from the market's evolution. Descriptive study with policy analysis. We had 3 main sources of information: (1) documents describing this evolving market, which is not well represented in peer-reviewed literature; (2) operational data on certified ambulatory EHR products and their use by Medicareeligible professionals attesting for meaningful use payments from January 2011 to October 2012; and (3) telephone interviews with 10 vendors that account for 57% of the market. Those attesting for Medicare meaningful use payments used ambulatory EHRs from 353 different vendors, although 16 firms accounted for 75% of the market. The Herfindahl-Hirschman Index showed the ambulatory EHR market to be highly competitive, particularly for practices of 50 or fewer professionals. The interviewed vendors and the external analysts agreed that stage 1 requirements set a relatively low bar for market entry, but that likely will change as requirements get more demanding. The HITECH Act met its initial goals to motivate growth of diverse ambulatory EHR products. A market shakeout may emerge, though current data reveal no signs of it. Policy makers can influence the shape and value of such a shakeout, and the extent of disruption, through their approach to certification and "usability" and "interoperability" strategies and requirements.

  1. Evolutionary history of human disease genes reveals phenotypic connections and comorbidity among genetic diseases

    NASA Astrophysics Data System (ADS)

    Park, Solip; Yang, Jae-Seong; Kim, Jinho; Shin, Young-Eun; Hwang, Jihye; Park, Juyong; Jang, Sung Key; Kim, Sanguk

    2012-10-01

    The extent to which evolutionary changes have impacted the phenotypic relationships among human diseases remains unclear. In this work, we report that phenotypically similar diseases are connected by the evolutionary constraints on human disease genes. Human disease groups can be classified into slowly or rapidly evolving classes, where the diseases in the slowly evolving class are enriched with morphological phenotypes and those in the rapidly evolving class are enriched with physiological phenotypes. Our findings establish a clear evolutionary connection between disease classes and disease phenotypes for the first time. Furthermore, the high comorbidity found between diseases connected by similar evolutionary constraints enables us to improve the predictability of the relative risk of human diseases. We find the evolutionary constraints on disease genes are a new layer of molecular connection in the network-based exploration of human diseases.

  2. Evolutionary history of human disease genes reveals phenotypic connections and comorbidity among genetic diseases.

    PubMed

    Park, Solip; Yang, Jae-Seong; Kim, Jinho; Shin, Young-Eun; Hwang, Jihye; Park, Juyong; Jang, Sung Key; Kim, Sanguk

    2012-01-01

    The extent to which evolutionary changes have impacted the phenotypic relationships among human diseases remains unclear. In this work, we report that phenotypically similar diseases are connected by the evolutionary constraints on human disease genes. Human disease groups can be classified into slowly or rapidly evolving classes, where the diseases in the slowly evolving class are enriched with morphological phenotypes and those in the rapidly evolving class are enriched with physiological phenotypes. Our findings establish a clear evolutionary connection between disease classes and disease phenotypes for the first time. Furthermore, the high comorbidity found between diseases connected by similar evolutionary constraints enables us to improve the predictability of the relative risk of human diseases. We find the evolutionary constraints on disease genes are a new layer of molecular connection in the network-based exploration of human diseases.

  3. A rapidly evolving secretome builds and patterns a sea shell

    PubMed Central

    Jackson, Daniel J; McDougall, Carmel; Green, Kathryn; Simpson, Fiona; Wörheide, Gert; Degnan, Bernard M

    2006-01-01

    Background Instructions to fabricate mineralized structures with distinct nanoscale architectures, such as seashells and coral and vertebrate skeletons, are encoded in the genomes of a wide variety of animals. In mollusks, the mantle is responsible for the extracellular production of the shell, directing the ordered biomineralization of CaCO3 and the deposition of architectural and color patterns. The evolutionary origins of the ability to synthesize calcified structures across various metazoan taxa remain obscure, with only a small number of protein families identified from molluskan shells. The recent sequencing of a wide range of metazoan genomes coupled with the analysis of gene expression in non-model animals has allowed us to investigate the evolution and process of biomineralization in gastropod mollusks. Results Here we show that over 25% of the genes expressed in the mantle of the vetigastropod Haliotis asinina encode secreted proteins, indicating that hundreds of proteins are likely to be contributing to shell fabrication and patterning. Almost 85% of the secretome encodes novel proteins; remarkably, only 19% of these have identifiable homologues in the full genome of the patellogastropod Lottia scutum. The spatial expression profiles of mantle genes that belong to the secretome is restricted to discrete mantle zones, with each zone responsible for the fabrication of one of the structural layers of the shell. Patterned expression of a subset of genes along the length of the mantle is indicative of roles in shell ornamentation. For example, Has-sometsuke maps precisely to pigmentation patterns in the shell, providing the first case of a gene product to be involved in molluskan shell pigmentation. We also describe the expression of two novel genes involved in nacre (mother of pearl) deposition. Conclusion The unexpected complexity and evolvability of this secretome and the modular design of the molluskan mantle enables diversification of shell strength and

  4. Directed evolution reveals unexpected epistatic interactions that alter metabolic regulation and enable anaerobic xylose use by Saccharomyces cerevisiae

    DOE PAGES

    Sato, Trey K.; Tremaine, Mary; Parreiras, Lucas S.; ...

    2016-10-14

    The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactionsmore » among genes encoding a xylose reductase ( GRE3), a component of MAP Kinase (MAPK) signaling ( HOG1), a regulator of Protein Kinase A (PKA) signaling ( IRA2), and a scaffolding protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis ( ISU1). Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Lastly, our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism.« less

  5. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae.

    PubMed

    Sato, Trey K; Tremaine, Mary; Parreiras, Lucas S; Hebert, Alexander S; Myers, Kevin S; Higbee, Alan J; Sardi, Maria; McIlwain, Sean J; Ong, Irene M; Breuer, Rebecca J; Avanasi Narasimhan, Ragothaman; McGee, Mick A; Dickinson, Quinn; La Reau, Alex; Xie, Dan; Tian, Mingyuan; Reed, Jennifer L; Zhang, Yaoping; Coon, Joshua J; Hittinger, Chris Todd; Gasch, Audrey P; Landick, Robert

    2016-10-01

    The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactions among genes encoding a xylose reductase (GRE3), a component of MAP Kinase (MAPK) signaling (HOG1), a regulator of Protein Kinase A (PKA) signaling (IRA2), and a scaffolding protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis (ISU1). Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism.

  6. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae

    PubMed Central

    Tremaine, Mary; Hebert, Alexander S.; Myers, Kevin S.; Sardi, Maria; Dickinson, Quinn; Reed, Jennifer L.; Zhang, Yaoping; Coon, Joshua J.; Hittinger, Chris Todd; Gasch, Audrey P.; Landick, Robert

    2016-01-01

    The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactions among genes encoding a xylose reductase (GRE3), a component of MAP Kinase (MAPK) signaling (HOG1), a regulator of Protein Kinase A (PKA) signaling (IRA2), and a scaffolding protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis (ISU1). Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism. PMID:27741250

  7. MESSENGER Observations of Rapid and Impulsive Magnetic Reconnection in Mercury's Magnetotail

    NASA Astrophysics Data System (ADS)

    Zhong, J.; Wei, Y.; Pu, Z. Y.; Wang, X. G.; Wan, W. X.; Slavin, J. A.; Cao, X.; Raines, J. M.; Zhang, H.; Xiao, C. J.; Du, A. M.; Wang, R. S.; Dewey, R. M.; Chai, L. H.; Rong, Z. J.; Li, Y.

    2018-06-01

    The nature of magnetic reconnection in planetary magnetospheres may differ between various planets. We report the first observations of a rapidly evolving magnetic reconnection process in Mercury’s magnetotail by the MESSENGER spacecraft. The reconnection process was initialized in the plasma sheet and then evolved into the lobe region during a ∼35 s period. The tailward reconnection fronts of primary and secondary flux ropes with clear Hall signatures and energetic electron bursts were observed. The reconnection timescale of a few seconds is substantially shorter than that of terrestrial magnetospheric plasmas. The normalized reconnection rate during a brief quasi-steady period is estimated to be ∼0.2 on average. The observations show the rapid and impulsive nature of the exceedingly driven reconnection in Mercury’s magnetospheric plasma that may be responsible for the much more dynamic magnetosphere of Mercury.

  8. Páramo is the world's fastest evolving and coolest biodiversity hotspot

    PubMed Central

    Madriñán, Santiago; Cortés, Andrés J.; Richardson, James E.

    2013-01-01

    Understanding the processes that cause speciation is a key aim of evolutionary biology. Lineages or biomes that exhibit recent and rapid diversification are ideal model systems for determining these processes. Species rich biomes reported to be of relatively recent origin, i.e., since the beginning of the Miocene, include Mediterranean ecosystems such as the California Floristic Province, oceanic islands such as the Hawaiian archipelago and the Neotropical high elevation ecosystem of the Páramos. Páramos constitute grasslands above the forest tree-line (at elevations of c. 2800–4700 m) with high species endemism. Organisms that occupy this ecosystem are a likely product of unique adaptations to an extreme environment that evolved during the last three to five million years when the Andes reached an altitude that was capable of sustaining this type of vegetation. We compared net diversification rates of lineages in fast evolving biomes using 73 dated molecular phylogenies. Based on our sample, we demonstrate that average net diversification rates of Páramo plant lineages are faster than those of other reportedly fast evolving hotspots and that the faster evolving lineages are more likely to be found in Páramos than the other hotspots. Páramos therefore represent the ideal model system for studying diversification processes. Most of the speciation events that we observed in the Páramos (144 out of 177) occurred during the Pleistocene possibly due to the effects of species range contraction and expansion that may have resulted from the well-documented climatic changes during that period. Understanding these effects will assist with efforts to determine how future climatic changes will impact plant populations. PMID:24130570

  9. Páramo is the world's fastest evolving and coolest biodiversity hotspot.

    PubMed

    Madriñán, Santiago; Cortés, Andrés J; Richardson, James E

    2013-10-09

    Understanding the processes that cause speciation is a key aim of evolutionary biology. Lineages or biomes that exhibit recent and rapid diversification are ideal model systems for determining these processes. Species rich biomes reported to be of relatively recent origin, i.e., since the beginning of the Miocene, include Mediterranean ecosystems such as the California Floristic Province, oceanic islands such as the Hawaiian archipelago and the Neotropical high elevation ecosystem of the Páramos. Páramos constitute grasslands above the forest tree-line (at elevations of c. 2800-4700 m) with high species endemism. Organisms that occupy this ecosystem are a likely product of unique adaptations to an extreme environment that evolved during the last three to five million years when the Andes reached an altitude that was capable of sustaining this type of vegetation. We compared net diversification rates of lineages in fast evolving biomes using 73 dated molecular phylogenies. Based on our sample, we demonstrate that average net diversification rates of Páramo plant lineages are faster than those of other reportedly fast evolving hotspots and that the faster evolving lineages are more likely to be found in Páramos than the other hotspots. Páramos therefore represent the ideal model system for studying diversification processes. Most of the speciation events that we observed in the Páramos (144 out of 177) occurred during the Pleistocene possibly due to the effects of species range contraction and expansion that may have resulted from the well-documented climatic changes during that period. Understanding these effects will assist with efforts to determine how future climatic changes will impact plant populations.

  10. Accurate multiplex polony sequencing of an evolved bacterial genome.

    PubMed

    Shendure, Jay; Porreca, Gregory J; Reppas, Nikos B; Lin, Xiaoxia; McCutcheon, John P; Rosenbaum, Abraham M; Wang, Michael D; Zhang, Kun; Mitra, Robi D; Church, George M

    2005-09-09

    We describe a DNA sequencing technology in which a commonly available, inexpensive epifluorescence microscope is converted to rapid nonelectrophoretic DNA sequencing automation. We apply this technology to resequence an evolved strain of Escherichia coli at less than one error per million consensus bases. A cell-free, mate-paired library provided single DNA molecules that were amplified in parallel to 1-micrometer beads by emulsion polymerase chain reaction. Millions of beads were immobilized in a polyacrylamide gel and subjected to automated cycles of sequencing by ligation and four-color imaging. Cost per base was roughly one-ninth as much as that of conventional sequencing. Our protocols were implemented with off-the-shelf instrumentation and reagents.

  11. Mouse Embryo Cryopreservation by Rapid Cooling.

    PubMed

    Shaw, Jillian

    2018-05-01

    Embryo cryopreservation has been used to archive mouse strains. Protocols have evolved over this time and now vary considerably in terms of cryoprotectant solution, cooling and warming rates, methods to add and remove cryoprotectant, container or carrier type, volume of cryoprotectant, the stage of preimplantation development, and the use of additional treatments such as blastocyst puncture and microinjection. The rapid cooling methods use concentrated solutions of cryoprotectants to reduce the water content of the cell before cooling commences, thus preventing the formation of ice crystals. Embryos are equilibrated with the cryoprotectants, loaded into a carrier, and then rapidly cooled (e.g., by being plunged directly into LN 2 or onto a surface cooled in LN 2 ). The rapid cooling methods eliminate the need for controlled-rate freezers and seeding procedures. However, they are much more sensitive to minor variations when performing the steps. The rapid-cooling protocol described here is suitable for use with plastic insemination straws. Because it uses relatively large volumes, it is less technically demanding than some other methods that use minivolume devices. © 2018 Cold Spring Harbor Laboratory Press.

  12. Unexpectedly rapid evolution of mandibular shape in hominins.

    PubMed

    Raia, P; Boggioni, M; Carotenuto, F; Castiglione, S; Di Febbraro, M; Di Vincenzo, F; Melchionna, M; Mondanaro, A; Papini, A; Profico, A; Serio, C; Veneziano, A; Vero, V A; Rook, L; Meloro, C; Manzi, G

    2018-05-09

    Members of the hominins - namely the so-called 'australopiths' and the species of the genus Homo - are known to possess short and deep mandibles and relatively small incisors and canines. It is commonly assumed that this suite of traits evolved in early members of the clade in response to changing environmental conditions and increased consumption of though food items. With the emergence of Homo, the functional meaning of mandible shape variation is thought to have been weakened by technological advancements and (later) by the control over fire. In contrast to this expectation, we found that mandible shape evolution in hominins is exceptionally rapid as compared to any other primate clade, and that the direction and rate of shape change (from the ape ancestor) are no different between the australopiths and Homo. We deem several factors including the loss of honing complex, canine reduction, and the acquisition of different diets may have concurred in producing such surprisingly high evolutionary rates. This study reveals the evolution of mandibular shape in hominins has strong morpho-functional and ecological significance attached.

  13. Adaptation to High Ethanol Reveals Complex Evolutionary Pathways

    PubMed Central

    Das, Anupam; Espinosa-Cantú, Adriana; De Maeyer, Dries; Arslan, Ahmed; Van Pee, Michiel; van der Zande, Elisa; Meert, Wim; Yang, Yudi; Zhu, Bo; Marchal, Kathleen; DeLuna, Alexander; Van Noort, Vera; Jelier, Rob; Verstrepen, Kevin J.

    2015-01-01

    Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts. PMID:26545090

  14. Navigating the Perfect Storm: Research Strategies for Socialecological Systems in a Rapidly Evolving World

    NASA Astrophysics Data System (ADS)

    Dearing, John A.; Bullock, Seth; Costanza, Robert; Dawson, Terry P.; Edwards, Mary E.; Poppy, Guy M.; Smith, Graham M.

    2012-04-01

    The `Perfect Storm' metaphor describes a combination of events that causes a surprising or dramatic impact. It lends an evolutionary perspective to how social-ecological interactions change. Thus, we argue that an improved understanding of how social-ecological systems have evolved up to the present is necessary for the modelling, understanding and anticipation of current and future social-ecological systems. Here we consider the implications of an evolutionary perspective for designing research approaches. One desirable approach is the creation of multi-decadal records produced by integrating palaeoenvironmental, instrument and documentary sources at multiple spatial scales. We also consider the potential for improved analytical and modelling approaches by developing system dynamical, cellular and agent-based models, observing complex behaviour in social-ecological systems against which to test systems dynamical theory, and drawing better lessons from history. Alongside these is the need to find more appropriate ways to communicate complex systems, risk and uncertainty to the public and to policy-makers.

  15. Network motif frequency vectors reveal evolving metabolic network organisation.

    PubMed

    Pearcy, Nicole; Crofts, Jonathan J; Chuzhanova, Nadia

    2015-01-01

    At the systems level many organisms of interest may be described by their patterns of interaction, and as such, are perhaps best characterised via network or graph models. Metabolic networks, in particular, are fundamental to the proper functioning of many important biological processes, and thus, have been widely studied over the past decade or so. Such investigations have revealed a number of shared topological features, such as a short characteristic path-length, large clustering coefficient and hierarchical modular structure. However, the extent to which evolutionary and functional properties of metabolism manifest via this underlying network architecture remains unclear. In this paper, we employ a novel graph embedding technique, based upon low-order network motifs, to compare metabolic network structure for 383 bacterial species categorised according to a number of biological features. In particular, we introduce a new global significance score which enables us to quantify important evolutionary relationships that exist between organisms and their physical environments. Using this new approach, we demonstrate a number of significant correlations between environmental factors, such as growth conditions and habitat variability, and network motif structure, providing evidence that organism adaptability leads to increased complexities in the resultant metabolic networks.

  16. Evolvability Is an Evolved Ability: The Coding Concept as the Arch-Unit of Natural Selection.

    PubMed

    Janković, Srdja; Ćirković, Milan M

    2016-03-01

    Physical processes that characterize living matter are qualitatively distinct in that they involve encoding and transfer of specific types of information. Such information plays an active part in the control of events that are ultimately linked to the capacity of the system to persist and multiply. This algorithmicity of life is a key prerequisite for its Darwinian evolution, driven by natural selection acting upon stochastically arising variations of the encoded information. The concept of evolvability attempts to define the total capacity of a system to evolve new encoded traits under appropriate conditions, i.e., the accessible section of total morphological space. Since this is dependent on previously evolved regulatory networks that govern information flow in the system, evolvability itself may be regarded as an evolved ability. The way information is physically written, read and modified in living cells (the "coding concept") has not changed substantially during the whole history of the Earth's biosphere. This biosphere, be it alone or one of many, is, accordingly, itself a product of natural selection, since the overall evolvability conferred by its coding concept (nucleic acids as information carriers with the "rulebook of meanings" provided by codons, as well as all the subsystems that regulate various conditional information-reading modes) certainly played a key role in enabling this biosphere to survive up to the present, through alterations of planetary conditions, including at least five catastrophic events linked to major mass extinctions. We submit that, whatever the actual prebiotic physical and chemical processes may have been on our home planet, or may, in principle, occur at some time and place in the Universe, a particular coding concept, with its respective potential to give rise to a biosphere, or class of biospheres, of a certain evolvability, may itself be regarded as a unit (indeed the arch-unit) of natural selection.

  17. Nanocalorimetry-coupled time-of-flight mass spectrometry: identifying evolved species during high-rate thermal measurements.

    PubMed

    Yi, Feng; DeLisio, Jeffery B; Zachariah, Michael R; LaVan, David A

    2015-10-06

    We report on measurements integrating a nanocalorimeter sensor into a time-of-flight mass spectrometer (TOFMS) for simultaneous thermal and speciation measurements at high heating rates. The nanocalorimeter sensor was incorporated into the extraction region of the TOFMS system to provide sample heating and thermal information essentially simultaneously with the evolved species identification. This approach can be used to measure chemical reactions and evolved species for a variety of materials. Furthermore, since the calorimetry is conducted within the same proximal volume as ionization and ion extraction, evolved species detected are in a collision-free environment, and thus, the possibility exists to interrogate intermediate and radical species. We present measurements showing the decomposition of ammonium perchlorate, copper oxide nanoparticles, and sodium azotetrazolate. The rapid, controlled, and quantifiable heating rate capabilities of the nanocalorimeter coupled with the 0.1 ms temporal resolution of the TOFMS provides a new measurement capability and insight into high-rate reactions, such as those seen with reactive and energetic materials, and adsorption\\desorption measurements, critical for understanding surface chemistry and accelerating catalyst selection.

  18. Evolving the machine

    NASA Astrophysics Data System (ADS)

    Bailey, Brent Andrew

    Structural designs by humans and nature are wholly distinct in their approaches. Engineers model components to verify that all mechanical requirements are satisfied before assembling a product. Nature, on the other hand; creates holistically: each part evolves in conjunction with the others. The present work is a synthesis of these two design approaches; namely, spatial models that evolve. Topology optimization determines the amount and distribution of material within a model; which corresponds to the optimal connectedness and shape of a structure. Smooth designs are obtained by using higher-order B-splines in the definition of the material distribution. Higher-fidelity is achieved using adaptive meshing techniques at the interface between solid and void. Nature is an exemplary basis for mass minimization, as processing material requires both resources and energy. Topological optimization techniques were originally formulated as the maximization of the structural stiffness subject to a volume constraint. This research inverts the optimization problem: the mass is minimized subject to deflection constraints. Active materials allow a structure to interact with its environment in a manner similar to muscles and sensory organs in animals. By specifying the material properties and design requirements, adaptive structures with integrated sensors and actuators can evolve.

  19. Rapid Genetic Adaptation during the First Four Months of Survival under Resource Exhaustion.

    PubMed

    Avrani, Sarit; Bolotin, Evgeni; Katz, Sophia; Hershberg, Ruth

    2017-07-01

    Many bacteria, including the model bacterium Escherichia coli can survive for years within spent media, following resource exhaustion. We carried out evolutionary experiments, followed by whole genome sequencing of hundreds of evolved clones to study the dynamics by which E. coli adapts during the first 4 months of survival under resource exhaustion. Our results reveal that bacteria evolving under resource exhaustion are subject to intense selection, manifesting in rapid mutation accumulation, enrichment in functional mutation categories and extremely convergent adaptation. In the most striking example of convergent adaptation, we found that across five independent populations adaptation to conditions of resource exhaustion occurs through mutations to the three same specific positions of the RNA polymerase core enzyme. Mutations to these three sites are strongly antagonistically pleiotropic, in that they sharply reduce exponential growth rates in fresh media. Such antagonistically pleiotropic mutations, combined with the accumulation of additional mutations, severely reduce the ability of bacteria surviving under resource exhaustion to grow exponentially in fresh media. We further demonstrate that the three positions at which these resource exhaustion mutations occur are conserved for the ancestral E. coli allele, across bacterial phyla, with the exception of nonculturable bacteria that carry the resource exhaustion allele at one of these positions, at very high frequencies. Finally, our results demonstrate that adaptation to resource exhaustion is not limited by mutational input and that bacteria are able to rapidly adapt under resource exhaustion in a temporally precise manner through allele frequency fluctuations. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. A study of volatile organic compounds evolved from the decaying human body.

    PubMed

    Statheropoulos, M; Spiliopoulou, C; Agapiou, A

    2005-10-29

    Two men were found dead near the island of Samos, Greece, in the Mediterranean sea. The estimated time of death for both victims was 3-4 weeks. Autopsy revealed no remarkable external injuries or acute poisoning. The exact cause of death remained unclear because the bodies had advanced decomposition. Volatile organic compounds (VOCs) evolved from these two corpses were determined by thermal desorption/gas chromatography/mass spectrometry analysis (TD/GC/MS). Over 80 substances have been identified and quantified. The most prominent among them were dimethyl disulfide (13.39 nmol/L), toluene (10.11 nmol/L), hexane (5.58 nmol/L), benzene 1,2,4-trimethyl (4.04 nmol/L), 2-propanone (3.84 nmol/L), 3-pentanone (3.59 nmol/L). Qualitative and quantitative differences among the evolved VOCs and CO2 mean concentration values might indicate different rates of decomposition between the two bodies. The study of the evolved VOCs appears to be a promising adjunct to the forensic pathologist as they may offer important information which can be used in his final evaluation.

  1. A Quantitative Approach to Assessing System Evolvability

    NASA Technical Reports Server (NTRS)

    Christian, John A., III

    2004-01-01

    When selecting a system from multiple candidates, the customer seeks the one that best meets his or her needs. Recently the desire for evolvable systems has become more important and engineers are striving to develop systems that accommodate this need. In response to this search for evolvability, we present a historical perspective on evolvability, propose a refined definition of evolvability, and develop a quantitative method for measuring this property. We address this quantitative methodology from both a theoretical and practical perspective. This quantitative model is then applied to the problem of evolving a lunar mission to a Mars mission as a case study.

  2. Characterizing Urban Household Waste Generation and Metabolism Considering Community Stratification in a Rapid Urbanizing Area of China.

    PubMed

    Xiao, Lishan; Lin, Tao; Chen, Shaohua; Zhang, Guoqin; Ye, Zhilong; Yu, Zhaowu

    2015-01-01

    The relationship between social stratification and municipal solid waste generation remains uncertain under current rapid urbanization. Based on a multi-object spatial sampling technique, we selected 191 households in a rapidly urbanizing area of Xiamen, China. The selected communities were classified into three types: work-unit, transitional, and commercial communities in the context of housing policy reform in China. Field survey data were used to characterize household waste generation patterns considering community stratification. Our results revealed a disparity in waste generation profiles among different households. The three community types differed with respect to family income, living area, religious affiliation, and homeowner occupation. Income, family structure, and lifestyle caused significant differences in waste generation among work-unit, transitional, and commercial communities, respectively. Urban waste generation patterns are expected to evolve due to accelerating urbanization and associated community transition. A multi-scale integrated analysis of societal and ecosystem metabolism approach was applied to waste metabolism linking it to particular socioeconomic conditions that influence material flows and their evolution. Waste metabolism, both pace and density, was highest for family structure driven patterns, followed by lifestyle and income driven. The results will guide community-specific management policies in rapidly urbanizing areas.

  3. Characterizing Urban Household Waste Generation and Metabolism Considering Community Stratification in a Rapid Urbanizing Area of China

    PubMed Central

    Xiao, Lishan; Lin, Tao; Chen, Shaohua; Zhang, Guoqin; Ye, Zhilong; Yu, Zhaowu

    2015-01-01

    The relationship between social stratification and municipal solid waste generation remains uncertain under current rapid urbanization. Based on a multi-object spatial sampling technique, we selected 191 households in a rapidly urbanizing area of Xiamen, China. The selected communities were classified into three types: work-unit, transitional, and commercial communities in the context of housing policy reform in China. Field survey data were used to characterize household waste generation patterns considering community stratification. Our results revealed a disparity in waste generation profiles among different households. The three community types differed with respect to family income, living area, religious affiliation, and homeowner occupation. Income, family structure, and lifestyle caused significant differences in waste generation among work-unit, transitional, and commercial communities, respectively. Urban waste generation patterns are expected to evolve due to accelerating urbanization and associated community transition. A multi-scale integrated analysis of societal and ecosystem metabolism approach was applied to waste metabolism linking it to particular socioeconomic conditions that influence material flows and their evolution. Waste metabolism, both pace and density, was highest for family structure driven patterns, followed by lifestyle and income driven. The results will guide community-specific management policies in rapidly urbanizing areas. PMID:26690056

  4. Innovations in scholarly publishing. Evolving trends in research communication in a digital age: examples from the BMJ.

    PubMed

    Jain, Anita

    2014-01-01

    As technology and communication evolve rapidly in this digital age, scholarly publishing is also undergoing a makeover to match the diverse needs of researchers and clinicians. The BMJ has been at the forefront of innovating the presentation of research to increase its readabillty and usefulness. This article presents some of recent formats used for research communication at the BMJ.

  5. The thermal dependency of locomotor performance evolves rapidly within an invasive species.

    PubMed

    Kosmala, Georgia K; Brown, Gregory P; Christian, Keith A; Hudson, Cameron M; Shine, Richard

    2018-05-01

    Biological invasions can stimulate rapid shifts in organismal performance, via both plasticity and adaptation. We can distinguish between these two proximate mechanisms by rearing offspring from populations under identical conditions and measuring their locomotor abilities in standardized trials. We collected adult cane toads ( Rhinella marina ) from invasive populations that inhabit regions of Australia with different climatic conditions. We bred those toads and raised their offspring under common-garden conditions before testing their locomotor performance. At high (but not low) temperatures, offspring of individuals from a hotter location (northwestern Australia) outperformed offspring of conspecifics from a cooler location (northeastern Australia). This disparity indicates that, within less than 100 years, thermal performance in cane toads has adapted to the novel abiotic challenges that cane toads have encountered during their invasion of tropical Australia.

  6. Rapid formation of spatiotopic representations as revealed by inhibition of return.

    PubMed

    Pertzov, Yoni; Zohary, Ehud; Avidan, Galia

    2010-06-30

    Inhibition of return (IOR), a performance decrement for stimuli appearing at recently cued locations, occurs when the target and cue share the same screen position. This is in contrast to cue-based attention facilitation effects that were recently suggested to be mapped in a retinotopic reference frame, the prevailing representation throughout early visual processing stages. Here, we investigate the dynamics of IOR in both reference frames, using a modified cued-location saccadic reaction time task with an intervening saccade between cue and target presentation. Thus, on different trials, the target was present either at the same retinotopic location as the cue, or at the same screen position (e.g., spatiotopic location). IOR was primarily found for targets appearing at the same spatiotopic position as the initial cue, when the cue and target were presented at the same hemifield. This suggests that there is restricted information transfer of cue position across the two hemispheres. Moreover, the effect was maximal when the target was presented 10 ms after the intervening saccade ended and was attenuated in longer delays. In our case, therefore, the representation of previously attended locations (as revealed by IOR) is not remapped slowly after the execution of a saccade. Rather, either a retinotopic representation is remapped rapidly, adjacent to the end of the saccade (using a prospective motor command), or the positions of the cue and target are encoded in a spatiotopic reference frame, regardless of eye position. Spatial attention can therefore be allocated to target positions defined in extraretinal coordinates.

  7. Rapid Y degeneration and dosage compensation in plant sex chromosomes

    PubMed Central

    Papadopulos, Alexander S. T.; Chester, Michael; Ridout, Kate; Filatov, Dmitry A.

    2015-01-01

    The nonrecombining regions of animal Y chromosomes are known to undergo genetic degeneration, but previous work has failed to reveal large-scale gene degeneration on plant Y chromosomes. Here, we uncover rapid and extensive degeneration of Y-linked genes in a plant species, Silene latifolia, that evolved sex chromosomes de novo in the last 10 million years. Previous transcriptome-based studies of this species missed unexpressed, degenerate Y-linked genes. To identify sex-linked genes, regardless of their expression, we sequenced male and female genomes of S. latifolia and integrated the genomic contigs with a high-density genetic map. This revealed that 45% of Y-linked genes are not expressed, and 23% are interrupted by premature stop codons. This contrasts with X-linked genes, in which only 1.3% of genes contained stop codons and 4.3% of genes were not expressed in males. Loss of functional Y-linked genes is partly compensated for by gene-specific up-regulation of X-linked genes. Our results demonstrate that the rate of genetic degeneration of Y-linked genes in S. latifolia is as fast as in animals, and that the evolutionary trajectories of sex chromosomes are similar in the two kingdoms. PMID:26438872

  8. The evolving role of telecommunications switching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Personick, S.D.

    1993-01-01

    There are many forces impacting on the evolution of switching vis-a-vis its role in telecommunications/information networking. Many of the technologies that in the past 15 years have enabled the cost reductions the industry has experienced in digital switches, and the emergence of intelligent networks are now also enabling a wide range of new end-user applications. Many of these applications are rapidly emerging and evolving to meet the, as yet, uncertain needs of the marketplace. There is an explosion of new ideas for applications involving personalized, nomadic communications, multimedia communications, and information access. Some of these will succeed in the marketplacemore » and some will not. There is a continuing emergence of new and improved underlying electronic and photonic technologies and, most recently, the emergence of reliable, secure distributed computing, communications, and management environments. End-user CPE and servers have become increasingly powerful and cost effective as places to locate session (call) management and session enabling objects such as user-interfaces, directories, agents, multimedia bridges, and storage/server subsystems. Not only are dramatically new paradigms for building networks to support existing applications possible, but there is a pressing need to support the emerging and evolving new applications in a timely way. Competition is accelerating the rate of introduction of new technologies, architectures, and telecommunication services. Every aspect of the business is being reexamined to find better ways of meeting customers' needs more efficiently. Meanwhile, as new applications become deployed, there are increasing pressures to provide for security, privacy, and network integrity. This article reviews the author's personal views (many of which are widely shared by others) of the implications of all of these forces on what we traditionally call telecommunications switching. 10 refs.« less

  9. Disgust: Evolved Function and Structure

    ERIC Educational Resources Information Center

    Tybur, Joshua M.; Lieberman, Debra; Kurzban, Robert; DeScioli, Peter

    2013-01-01

    Interest in and research on disgust has surged over the past few decades. The field, however, still lacks a coherent theoretical framework for understanding the evolved function or functions of disgust. Here we present such a framework, emphasizing 2 levels of analysis: that of evolved function and that of information processing. Although there is…

  10. Sequencing of the Chlamydophila psittaci ompA Gene Reveals a New Genotype, E/B, and the Need for a Rapid Discriminatory Genotyping Method

    PubMed Central

    Geens, Tom; Desplanques, Ann; Van Loock, Marnix; Bönner, Brigitte M.; Kaleta, Erhard F.; Magnino, Simone; Andersen, Arthur A.; Everett, Karin D. E.; Vanrompay, Daisy

    2005-01-01

    Twenty-one avian Chlamydophila psittaci isolates from different European countries were characterized using ompA restriction fragment length polymorphism, ompA sequencing, and major outer membrane protein serotyping. Results reveal the presence of a new genotype, E/B, in several European countries and stress the need for a discriminatory rapid genotyping method. PMID:15872282

  11. Search for Close-in Planets around Evolved Stars with Phase-curve variations and Radial Velocity Measurements

    NASA Astrophysics Data System (ADS)

    Hirano, Teruyuki; Sato, Bun'ei; Masuda, Kento; Benomar, Othman Michel; Takeda, Yoichi; Omiya, Masashi; Harakawa, Hiroki

    2016-10-01

    Tidal interactions are a key process to understand the evolution history of close-in exoplanets. But tidals still have a large uncertainty in their prediction for the damping timescales of stellar obliquity and semi-major axis. We have worked on a search for transiting giant planets around evolved stars, for which few close-in planets were discovered. It has been reported that evolved stars lack close-in planets, which is often attributed to the tidal evolution and/or engulfment of close-in planets by the hosts. Meanwhile, Kepler has detected a certain fraction of transiting planet candidates around evolved stars. Confirming the planetary nature for these candidates is especially important since the comparison between the occurrence rates of close-in planets around main sequence stars and evolved stars provides a unique opportunity to discuss the final stage of close-in planets. With the aim of confirming KOI planet candidates around evolved stars, we measured precision radial velocities (RVs) for evolved stars with transiting planet candidates using Subaru/HDS. We also developed a new code which simultaneously models and fits the observed RVs and phase-curve variations in the Kepler data (e.g., transits, stellar ellipsoidal variations, and planet emission/reflected light). As a result of applying the global fit to KOI giants/subgiants, we confirmed two giant planets around evolved stars (Kepler-91 and KOI-1894), as well as revealed that KOI-977 is more likely a false positive.

  12. Rapid evolutionary loss of metal resistance revealed by hatching decades-old eggs.

    PubMed

    Turko, Patrick; Sigg, Laura; Hollender, Juliane; Spaak, Piet

    2016-02-01

    We investigated the evolutionary response of an ecologically important freshwater crustacean, Daphnia, to a rapidly changing toxin environment. From the 1920s until the 1960s, the use of leaded gasoline caused the aquatic concentration of Pb to increase at least fivefold, presumably exerting rapid selective pressure on organisms for resistance. We predicted that Daphnia from this time of intense pollution would display greater resistance than those hatched from times of lower pollution. This question was addressed directly using the resurrection ecology approach, whereby dormant propagules from focal time periods were hatched and compared. We hatched several Daphnia genotypes from each of two Swiss lakes, during times of higher (1960s /1980s) and lower (2000s) lead stress, and compared their life histories under different laboratory levels of this stressor. Modern Daphnia had significantly reduced fitness, measured as the population growth rate (λ), when exposed to lead, whereas those genotypes hatched from times of high lead pollution did not display this reduction. These phenotypic differences contrast with only slight differences measured at neutral loci. We infer that Daphnia in these lakes were able to rapidly adapt to increasing lead concentrations, and just as rapidly lost this adaptation when the stressor was removed. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  13. The Evolving Doorframe.

    ERIC Educational Resources Information Center

    Wiens, Janet

    2000-01-01

    Discusses decision making factors when choosing doorframes for educational facilities. Focus is placed on how doorframes have evolved over the years in ways that offer new choice options to consider. (GR)

  14. A Rapid Colorimetric Method Reveals Fraudulent Substitutions in Sea Urchin Roe Marketed in Sardinia (Italy).

    PubMed

    Meloni, Domenico; Spina, Antonio; Satta, Gianluca; Chessa, Vittorio

    2016-06-25

    In recent years, besides the consumption of fresh sea urchin specimens, the demand of minimally-processed roe has grown considerably. This product has made frequent consumption in restaurants possible and frauds are becoming widespread with the partial replacement of sea urchin roe with surrogates that are similar in colour. One of the main factors that determines the quality of the roe is its colour and small differences in colour scale cannot be easily discerned by the consumers. In this study we have applied a rapid colorimetric method for reveal the fraudulent partial substitution of semi-solid sea urchin roe with liquid egg yolk. Objective assessment of whiteness (L*), redness (a*), yellowness (b*), hue (h*), and chroma (C*) was carried out with a digital spectrophotometer using the CIE L*a*b* colour measurement system. The colorimetric method highlighted statistically significant differences among sea urchin roe and liquid egg yolk that could be easily discerned quantitatively.

  15. Evolving technologies drive the new roles of Biomedical Engineering.

    PubMed

    Frisch, P H; St Germain, J; Lui, W

    2008-01-01

    Rapidly changing technology coupled with the financial impact of organized health care, has required hospital Biomedical Engineering organizations to augment their traditional operational and business models to increase their role in developing enhanced clinical applications utilizing new and evolving technologies. The deployment of these technology based applications has required Biomedical Engineering organizations to re-organize to optimize the manner in which they provide and manage services. Memorial Sloan-Kettering Cancer Center has implemented a strategy to explore evolving technologies integrating them into enhanced clinical applications while optimally utilizing the expertise of the traditional Biomedical Engineering component (Clinical Engineering) to provide expanded support in technology / equipment management, device repair, preventive maintenance and integration with legacy clinical systems. Specifically, Biomedical Engineering is an integral component of the Medical Physics Department which provides comprehensive and integrated support to the Center in advanced physical, technical and engineering technology. This organizational structure emphasizes the integration and collaboration between a spectrum of technical expertise for clinical support and equipment management roles. The high cost of clinical equipment purchases coupled with the increasing cost of service has driven equipment management responsibilities to include significant business and financial aspects to provide a cost effective service model. This case study details the dynamics of these expanded roles, future initiatives and benefits for Biomedical Engineering and Memorial Sloan Kettering Cancer Center.

  16. RAPID: Collaborative Commanding and Monitoring of Lunar Assets

    NASA Technical Reports Server (NTRS)

    Torres, Recaredo J.; Mittman, David S.; Powell, Mark W.; Norris, Jeffrey S.; Joswig, Joseph C.; Crockett, Thomas M.; Abramyan, Lucy; Shams, Khawaja S.; Wallick, Michael; Allan, Mark; hide

    2011-01-01

    RAPID (Robot Application Programming Interface Delegate) software utilizes highly robust technology to facilitate commanding and monitoring of lunar assets. RAPID provides the ability for intercenter communication, since these assets are developed in multiple NASA centers. RAPID is targeted at the task of lunar operations; specifically, operations that deal with robotic assets, cranes, and astronaut spacesuits, often developed at different NASA centers. RAPID allows for a uniform way to command and monitor these assets. Commands can be issued to take images, and monitoring is done via telemetry data from the asset. There are two unique features to RAPID: First, it allows any operator from any NASA center to control any NASA lunar asset, regardless of location. Second, by abstracting the native language for specific assets to a common set of messages, an operator may control and monitor any NASA lunar asset by being trained only on the use of RAPID, rather than the specific asset. RAPID is easier to use and more powerful than its predecessor, the Astronaut Interface Device (AID). Utilizing the new robust middleware, DDS (Data Distribution System), developing in RAPID has increased significantly over the old middleware. The API is built upon the Java Eclipse Platform, which combined with DDS, provides platform-independent software architecture, simplifying development of RAPID components. As RAPID continues to evolve and new messages are being designed and implemented, operators for future lunar missions will have a rich environment for commanding and monitoring assets.

  17. Nucleation, growth, and repair of a cobalt-based oxygen evolving catalyst.

    PubMed

    Surendranath, Yogesh; Lutterman, Daniel A; Liu, Yi; Nocera, Daniel G

    2012-04-11

    The mechanism of nucleation, steady-state growth, and repair is investigated for an oxygen evolving catalyst prepared by electrodeposition from Co(2+) solutions in weakly basic electrolytes (Co-OEC). Potential step chronoamperometry and atomic force microscopy reveal that nucleation of Co-OEC is progressive and reaches a saturation surface coverage of ca. 70% on highly oriented pyrolytic graphite substrates. Steady-state electrodeposition of Co-OEC exhibits a Tafel slope approximately equal to 2.3 × RT/F. The electrochemical rate law exhibits a first order dependence on Co(2+) and inverse orders on proton (third order) and proton acceptor, methylphosphonate (first order for 1.8 mM ≤ [MeP(i)] ≤ 18 mM and second order dependence for 32 mM ≤ [MeP(i)] ≤ 180 mM). These electrokinetic studies, combined with recent XAS studies of catalyst structure, suggest a mechanism for steady state growth at intermediate MeP(i) concentration (1.8-18 mM) involving a rapid solution equilibrium between aquo Co(II) and Co(III) hydroxo species accompanied with a rapid surface equilibrium involving electrolyte dissociation and deprotonation of surface bound water. These equilibria are followed by a chemical rate-limiting step for incorporation of Co(III) into the growing cobaltate clusters comprising Co-OEC. At higher concentrations of MeP(i) ([MeP(i)] ≥ 32 mM), MePO(3)(2-) equilibrium binding to Co(II) in solution is suggested by the kinetic data. Consistent with the disparate pH profiles for oxygen evolution electrocatalysis and catalyst formation, NMR-based quantification of catalyst dissolution as a function of pH demonstrates functional stability and repair at pH values >6 whereas catalyst corrosion prevails at lower pH values. These kinetic insights provide a basis for developing and operating functional water oxidation (photo)anodes under benign pH conditions. © 2012 American Chemical Society

  18. Osmoregulatory physiology and rapid evolution of salinity tolerance in threespine stickleback recently introduced to fresh water

    USGS Publications Warehouse

    Divino, Jeffrey N; Monette, Michelle Y.; McCormick, Stephen; Yancey, Paul H.; Flannery, Kyle G.; Bell, Michael A.; Rollins, Jennifer L.; von Hippel, Frank A.; Schultz, Eric T.

    2016-01-01

    Conclusion: Enhanced freshwater tolerance has evolved rapidly in recently landlocked stickleback compared with their anadromous ancestors (0.569 haldanes), but the former have retained ancestral seawater-osmoregulatory function.

  19. How is the fitness landscaped upon which life evolves selected?

    NASA Astrophysics Data System (ADS)

    Deem, Michael

    2008-03-01

    We investigate the selective forces that promote the emergence of modularity in nature. We demonstrate the spontaneous emergence of modularity in a population of individuals that evolve in a changing environment. We show that the level of modularity correlates with the rapidity and severity of environmental change. The modularity arises as a synergistic response to the noise in the environment in the presence of horizontal gene transfer. We suggest that the hierarchical structure observed in the natural world may be a broken symmetry state, which generically results from evolution in a changing environment. The existence of such structure, therefore, need not necessarily rest on intelligent design or the anthropic principle. 1) J. Sun and M. W. Deem, Phys. Rev. Lett., to appear., arXiv:0710.3436

  20. Functional modules of sigma factor regulons guarantee adaptability and evolvability

    PubMed Central

    Binder, Sebastian C.; Eckweiler, Denitsa; Schulz, Sebastian; Bielecka, Agata; Nicolai, Tanja; Franke, Raimo; Häussler, Susanne; Meyer-Hermann, Michael

    2016-01-01

    The focus of modern molecular biology turns from assigning functions to individual genes towards understanding the expression and regulation of complex sets of molecules. Here, we provide evidence that alternative sigma factor regulons in the pathogen Pseudomonas aeruginosa largely represent insulated functional modules which provide a critical level of biological organization involved in general adaptation and survival processes. Analysis of the operational state of the sigma factor network revealed that transcription factors functionally couple the sigma factor regulons and significantly modulate the transcription levels in the face of challenging environments. The threshold quality of newly evolved transcription factors was reached faster and more robustly in in silico testing when the structural organization of sigma factor networks was taken into account. These results indicate that the modular structures of alternative sigma factor regulons provide P. aeruginosa with a robust framework to function adequately in its environment and at the same time facilitate evolutionary change. Our data support the view that widespread modularity guarantees robustness of biological networks and is a key driver of evolvability. PMID:26915971

  1. JavaGenes: Evolving Graphs with Crossover

    NASA Technical Reports Server (NTRS)

    Globus, Al; Atsatt, Sean; Lawton, John; Wipke, Todd

    2000-01-01

    Genetic algorithms usually use string or tree representations. We have developed a novel crossover operator for a directed and undirected graph representation, and used this operator to evolve molecules and circuits. Unlike strings or trees, a single point in the representation cannot divide every possible graph into two parts, because graphs may contain cycles. Thus, the crossover operator is non-trivial. A steady-state, tournament selection genetic algorithm code (JavaGenes) was written to implement and test the graph crossover operator. All runs were executed by cycle-scavagging on networked workstations using the Condor batch processing system. The JavaGenes code has evolved pharmaceutical drug molecules and simple digital circuits. Results to date suggest that JavaGenes can evolve moderate sized drug molecules and very small circuits in reasonable time. The algorithm has greater difficulty with somewhat larger circuits, suggesting that directed graphs (circuits) are more difficult to evolve than undirected graphs (molecules), although necessary differences in the crossover operator may also explain the results. In principle, JavaGenes should be able to evolve other graph-representable systems, such as transportation networks, metabolic pathways, and computer networks. However, large graphs evolve significantly slower than smaller graphs, presumably because the space-of-all-graphs explodes combinatorially with graph size. Since the representation strongly affects genetic algorithm performance, adding graphs to the evolutionary programmer's bag-of-tricks should be beneficial. Also, since graph evolution operates directly on the phenotype, the genotype-phenotype translation step, common in genetic algorithm work, is eliminated.

  2. Rapid prototyping for biomedical engineering: current capabilities and challenges.

    PubMed

    Lantada, Andrés Díaz; Morgado, Pilar Lafont

    2012-01-01

    A new set of manufacturing technologies has emerged in the past decades to address market requirements in a customized way and to provide support for research tasks that require prototypes. These new techniques and technologies are usually referred to as rapid prototyping and manufacturing technologies, and they allow prototypes to be produced in a wide range of materials with remarkable precision in a couple of hours. Although they have been rapidly incorporated into product development methodologies, they are still under development, and their applications in bioengineering are continuously evolving. Rapid prototyping and manufacturing technologies can be of assistance in every stage of the development process of novel biodevices, to address various problems that can arise in the devices' interactions with biological systems and the fact that the design decisions must be tested carefully. This review focuses on the main fields of application for rapid prototyping in biomedical engineering and health sciences, as well as on the most remarkable challenges and research trends.

  3. Rapid evolution of mimicry following local model extinction

    PubMed Central

    Akcali, Christopher K.; Pfennig, David W.

    2014-01-01

    Batesian mimicry evolves when individuals of a palatable species gain the selective advantage of reduced predation because they resemble a toxic species that predators avoid. Here, we evaluated whether—and in which direction—Batesian mimicry has evolved in a natural population of mimics following extirpation of their model. We specifically asked whether the precision of coral snake mimicry has evolved among kingsnakes from a region where coral snakes recently (1960) went locally extinct. We found that these kingsnakes have evolved more precise mimicry; by contrast, no such change occurred in a sympatric non-mimetic species or in conspecifics from a region where coral snakes remain abundant. Presumably, more precise mimicry has continued to evolve after model extirpation, because relatively few predator generations have passed, and the fitness costs incurred by predators that mistook a deadly coral snake for a kingsnake were historically much greater than those incurred by predators that mistook a kingsnake for a coral snake. Indeed, these results are consistent with prior theoretical and empirical studies, which revealed that only the most precise mimics are favoured as their model becomes increasingly rare. Thus, highly noxious models can generate an ‘evolutionary momentum’ that drives the further evolution of more precise mimicry—even after models go extinct. PMID:24919704

  4. Planetary Nebulae: Reviews and Previews of a Rapidly Evolving Field

    NASA Astrophysics Data System (ADS)

    Balick, Bruce

    2015-01-01

    Observational results from the ground and space in the past decade and covering the entire spectrum have jolted and energized research into the nature, the formation, and the evolution of planetary nebulae (PNs). The 101-level bubble structure of PNs turned out to be a pleasant but misleading fantasy as observations by HST and ALMA revealed basic details of their infancy. Some combination of close geriatric binary stars (the precusrors of SN Ia's) and magnetic fields dredged into the dusty winds appear to play vital roles in the ejection and collimation of AGB atmospheres. As a result, PNe and their antecedents, AGB stars and prePNs, are providing an array of new opportunities to study asymmetric wind formation, complex gas dynamics, CNO production rates in various galactic environments, and galaxy structure and evolution. I shall review the highlights of recent results, summarize their interpretations, and show some of the observational opportunities to monitor in the next decade, many of which couple strongly to research to related fields.This talk is dedicated to the career of Olivier Chesneau (1972-2014) who pioneered new high-resolution imaging methods that peered into the deep inner cores of nascent planetary nebulae. We remember Olivier as everyone's enthusiastic friend and colleague whose career ended in full stride.

  5. Rapid molecular evolution of human bocavirus revealed by Bayesian coalescent inference.

    PubMed

    Zehender, Gianguglielmo; De Maddalena, Chiara; Canuti, Marta; Zappa, Alessandra; Amendola, Antonella; Lai, Alessia; Galli, Massimo; Tanzi, Elisabetta

    2010-03-01

    Human bocavirus (HBoV) is a linear single-stranded DNA virus belonging to the Parvoviridae family that has recently been isolated from the upper respiratory tract of children with acute respiratory infection. All of the strains observed so far segregate into two genotypes (1 and 2) with a low level of polymorphism. Given the recent description of the infection and the lack of epidemiological and molecular data, we estimated the virus's rates of molecular evolution and population dynamics. A dataset of forty-nine dated VP2 sequences, including also eight new isolates obtained from pharyngeal swabs of Italian patients with acute respiratory tract infections, was submitted to phylogenetic analysis. The model parameters, evolutionary rates and population dynamics were co-estimated using a Bayesian Markov Chain Monte Carlo approach, and site-specific positive and negative selection was also investigated. Recombination was investigated by seven different methods and one suspected recombinant strain was excluded from further analysis. The estimated mean evolutionary rate of HBoV was 8.6x10(-4)subs/site/year, and that of the 1st+2nd codon positions was more than 15 times less than that of the 3rd codon position. Viral population dynamics analysis revealed that the two known genotypes diverged recently (mean tMRCA: 24 years), and that the epidemic due to HBoV genotype 2 grew exponentially at a rate of 1.01year(-1). Selection analysis of the partial VP2 showed that 8.5% of sites were under significant negative pressure and the absence of positive selection. Our results show that, like other parvoviruses, HBoV is characterised by a rapid evolution. The low level of polymorphism is probably due to a relatively recent divergence between the circulating genotypes and strong purifying selection acting on viral antigens.

  6. Evolving food retail environments in Thailand and implications for the health and nutrition transition.

    PubMed

    Banwell, Cathy; Dixon, Jane; Seubsman, Sam-Ang; Pangsap, S; Kelly, Matthew; Sleigh, Adrian

    2013-04-01

    To investigate evolving food retail systems in Thailand. Rapid assessment procedures based on qualitative research methods including interviews, focus groups discussions and site visits. Seven fresh markets located in the four main regions of Thailand. Managers, food specialists, vendors and shoppers from seven fresh markets who participated in interviews and focus group discussions. Fresh markets are under economic pressure and are declining in number. They are attempting to resist the competition from supermarkets by improving convenience, food diversity, quality and safety. Obesity has increased in Thailand at the same time as rapid growth of modern food retail formats has occurred. As fresh markets are overtaken by supermarkets there is a likely loss of fresh, healthy, affordable food for poorer Thais, and a diminution of regional culinary culture, women's jobs and social capital, with implications for the health and nutrition transition in Thailand.

  7. The evolving magnetic topology of τ Boötis

    NASA Astrophysics Data System (ADS)

    Mengel, M. W.; Fares, R.; Marsden, S. C.; Carter, B. D.; Jeffers, S. V.; Petit, P.; Donati, J.-F.; Folsom, C. P.; BCool Collaboration

    2016-07-01

    We present six epochs of spectropolarimetric observations of the hot-Jupiter-hosting star τ Boötis that extend the exceptional previous multiyear data set of its large-scale magnetic field. Our results confirm that the large-scale magnetic field of τ Boötis varies cyclicly, with the observation of two further magnetic reversals; between 2013 December and 2014 May and between 2015 January and March. We also show that the field evolves in a broadly solar-type manner in contrast to other F-type stars. We further present new results which indicate that the chromospheric activity cycle and the magnetic activity cycles are related, which would indicate a very rapid magnetic cycle. As an exemplar of long-term magnetic field evolution, τ Boötis and this long-term monitoring campaign presents a unique opportunity for studying stellar magnetic cycles.

  8. Duplicate Abalone Egg Coat Proteins Bind Sperm Lysin Similarly, but Evolve Oppositely, Consistent with Molecular Mimicry at Fertilization

    PubMed Central

    Aagaard, Jan E.; Springer, Stevan A.; Soelberg, Scott D.; Swanson, Willie J.

    2013-01-01

    Sperm and egg proteins constitute a remarkable paradigm in evolutionary biology: despite their fundamental role in mediating fertilization (suggesting stasis), some of these molecules are among the most rapidly evolving ones known, and their divergence can lead to reproductive isolation. Because of strong selection to maintain function among interbreeding individuals, interacting fertilization proteins should also exhibit a strong signal of correlated divergence among closely related species. We use evidence of such molecular co-evolution to target biochemical studies of fertilization in North Pacific abalone (Haliotis spp.), a model system of reproductive protein evolution. We test the evolutionary rates (d N/d S) of abalone sperm lysin and two duplicated egg coat proteins (VERL and VEZP14), and find a signal of co-evolution specific to ZP-N, a putative sperm binding motif previously identified by homology modeling. Positively selected residues in VERL and VEZP14 occur on the same face of the structural model, suggesting a common mode of interaction with sperm lysin. We test this computational prediction biochemically, confirming that the ZP-N motif is sufficient to bind lysin and that the affinities of VERL and VEZP14 are comparable. However, we also find that on phylogenetic lineages where lysin and VERL evolve rapidly, VEZP14 evolves slowly, and vice versa. We describe a model of sexual conflict that can recreate this pattern of anti-correlated evolution by assuming that VEZP14 acts as a VERL mimic, reducing the intensity of sexual conflict and slowing the co-evolution of lysin and VERL. PMID:23408913

  9. Rapid and efficient galactose fermentation by engineered Saccharomyces cerevisiae.

    PubMed

    Quarterman, Josh; Skerker, Jeffrey M; Feng, Xueyang; Liu, Ian Y; Zhao, Huimin; Arkin, Adam P; Jin, Yong-Su

    2016-07-10

    In the important industrial yeast Saccharomyces cerevisiae, galactose metabolism requires energy production by respiration; therefore, this yeast cannot metabolize galactose under strict anaerobic conditions. While the respiratory dependence of galactose metabolism provides benefits in terms of cell growth and population stability, it is not advantageous for producing fuels and chemicals since a substantial fraction of consumed galactose is converted to carbon dioxide. In order to force S. cerevisiae to use galactose without respiration, a subunit (COX9) of a respiratory enzyme was deleted, but the resulting deletion mutant (Δcox9) was impaired in terms of galactose assimilation. Interestingly, after serial sub-cultures on galactose, the mutant evolved rapidly and was able to use galactose via fermentation only. The evolved strain (JQ-G1) produced ethanol from galactose with a 94% increase in yield and 6.9-fold improvement in specific productivity as compared to the wild-type strain. (13)C-metabolic flux analysis demonstrated a three-fold reduction in carbon flux through the TCA cycle of the evolved mutant with redirection of flux toward the fermentation pathway. Genome sequencing of the JQ-G1 strain revealed a loss of function mutation in a master negative regulator of the Leloir pathway (Gal80p). The mutation (Glu348*) in Gal80p was found to act synergistically with deletion of COX9 for efficient galactose fermentation, and thus the double deletion mutant Δcox9Δgal80 produced ethanol 2.4 times faster and with 35% higher yield than a single knockout mutant with deletion of GAL80 alone. When we introduced a functional COX9 cassette back into the JQ-G1 strain, the JQ-G1-COX9 strain showed a 33% reduction in specific galactose uptake rate and a 49% reduction in specific ethanol production rate as compared to JQ-G1. The wild-type strain was also subjected to serial sub-cultures on galactose but we failed to isolate a mutant capable of utilizing galactose without

  10. What Technology? Reflections on Evolving Services

    ERIC Educational Resources Information Center

    Collins, Sharon

    2009-01-01

    Each year, the members of the EDUCAUSE Evolving Technologies Committee identify and research the evolving technologies that are having--or are predicted to have--the most direct impact on higher education institutions. The committee members choose the relevant topics, write white papers, and present their findings at the EDUCAUSE annual…

  11. On the spectroscopic nature of the cool evolved Am star HD151878

    NASA Astrophysics Data System (ADS)

    Freyhammer, L. M.; Elkin, V. G.; Kurtz, D. W.

    2008-10-01

    Recently, Tiwari, Chaubey & Pandey detected the bright component of the visual binary HD151878 to exhibit rapid photometric oscillations through a Johnson B filter with a period of 6min (2.78mHz) and a high, modulated amplitude up to 22mmag peak-to-peak, making this star by far the highest amplitude rapidly oscillating Ap (roAp) star known. As a new roAp star, HD151878 is of additional particular interest as a scarce example of the class in the northern sky, and only the second known case of an evolved roAp star - the other being HD116114. We used the FIbre-fed Echelle Spectrograph at the Nordic Optical Telescope to obtain high time-resolution spectra at high dispersion to attempt to verify the rapid oscillations. We show here that the star at this epoch is spectroscopically stable to rapid oscillations of no more than a few tens of ms-1. The high-resolution spectra furthermore show the star to be of type Am rather than Ap and we show the star lacks most of the known characteristics for roAp stars. We conclude that this is an Am star that does not pulsate with a 6-min period. The original discovery of pulsation is likely to be an instrumental artefact. Based on observations collected at the Nordic Optical Telescope as part of programme 36-418. E-mail: lfreyham@gmail.com

  12. Temporal-Spatial Interaction between Reactive Oxygen Species and Abscisic Acid Regulates Rapid Systemic Acclimation in Plants[W][OPEN

    PubMed Central

    Suzuki, Nobuhiro; Miller, Gad; Salazar, Carolina; Mondal, Hossain A.; Shulaev, Elena; Cortes, Diego F.; Shuman, Joel L.; Luo, Xiaozhong; Shah, Jyoti; Schlauch, Karen; Shulaev, Vladimir; Mittler, Ron

    2013-01-01

    Being sessile organisms, plants evolved sophisticated acclimation mechanisms to cope with abiotic challenges in their environment. These are activated at the initial site of exposure to stress, as well as in systemic tissues that have not been subjected to stress (termed systemic acquired acclimation [SAA]). Although SAA is thought to play a key role in plant survival during stress, little is known about the signaling mechanisms underlying it. Here, we report that SAA in plants requires at least two different signals: an autopropagating wave of reactive oxygen species (ROS) that rapidly spreads from the initial site of exposure to the entire plant and a stress-specific signal that conveys abiotic stress specificity. We further demonstrate that SAA is stress specific and that a temporal–spatial interaction between ROS and abscisic acid regulates rapid SAA to heat stress in plants. In addition, we demonstrate that the rapid ROS signal is associated with the propagation of electric signals in Arabidopsis thaliana. Our findings unravel some of the basic signaling mechanisms underlying SAA in plants and reveal that signaling events and transcriptome and metabolome reprogramming of systemic tissues in response to abiotic stress occur at a much faster rate than previously envisioned. PMID:24038652

  13. Evolved atmospheric entry corridor with safety factor

    NASA Astrophysics Data System (ADS)

    Liang, Zixuan; Ren, Zhang; Li, Qingdong

    2018-02-01

    Atmospheric entry corridors are established in previous research based on the equilibrium glide condition which assumes the flight-path angle to be zero. To get a better understanding of the highly constrained entry flight, an evolved entry corridor that considers the exact flight-path angle is developed in this study. Firstly, the conventional corridor in the altitude vs. velocity plane is extended into a three-dimensional one in the space of altitude, velocity, and flight-path angle. The three-dimensional corridor is generated by a series of constraint boxes. Then, based on a simple mapping method, an evolved two-dimensional entry corridor with safety factor is obtained. The safety factor is defined to describe the flexibility of the flight-path angle for a state within the corridor. Finally, the evolved entry corridor is simulated for the Space Shuttle and the Common Aero Vehicle (CAV) to demonstrate the effectiveness of the corridor generation approach. Compared with the conventional corridor, the evolved corridor is much wider and provides additional information. Therefore, the evolved corridor would benefit more to the entry trajectory design and analysis.

  14. Evolvable Neural Software System

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  15. MODIS-Aqua Reveals Evolving Phytoplankton Community Structure During the Arabian Sea Northeast Monsoon

    NASA Technical Reports Server (NTRS)

    Werdell, P. Jeremy; Roesler, Collin S.; Goes, Joaquim I.

    2016-01-01

    Applying a bio-optical model designed to identify the mixotrophic dinoflagellate Noctiluca miliaris to MODIS-Aqua revealed (1) patterns in its spatial distribution not previously seen (including its appearance in places not previously sampled), and (2) the surprising disassociation of total chlorophyll biomass with the presence of N. miliaris.

  16. Genome Sequencing and Mapping Reveal Loss of Heterozygosity as a Mechanism for Rapid Adaptation in the Vegetable Pathogen Phytophthora capsici

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamour, Kurt H.; Mudge, Joann; Gobena, Daniel

    2012-02-07

    The oomycete vegetable pathogen Phytophthora capsici has shown remarkable adaptation to fungicides and new hosts. Like other members of this destructive genus, P. capsici has an explosive epidemiology, rapidly producing massive numbers of asexual spores on infected hosts. In addition, P. capsici can remain dormant for years as sexually recombined oospores, making it difficult to produce crops at infested sites, and allowing outcrossing populations to maintain significant genetic variation. Genome sequencing, development of a high-density genetic map, and integrative genomic or genetic characterization of P. capsici field isolates and intercross progeny revealed significant mitotic loss of heterozygosity (LOH) in diversemore » isolates. LOH was detected in clonally propagated field isolates and sexual progeny, cumulatively affecting >30percent of the genome. LOH altered genotypes for more than 11,000 single-nucleotide variant sites and showed a strong association with changes in mating type and pathogenicity. Overall, it appears that LOH may provide a rapid mechanism for fixing alleles and may be an important component of adaptability for P. capsici.« less

  17. Evolving phenotypic networks in silico.

    PubMed

    François, Paul

    2014-11-01

    Evolved gene networks are constrained by natural selection. Their structures and functions are consequently far from being random, as exemplified by the multiple instances of parallel/convergent evolution. One can thus ask if features of actual gene networks can be recovered from evolutionary first principles. I review a method for in silico evolution of small models of gene networks aiming at performing predefined biological functions. I summarize the current implementation of the algorithm, insisting on the construction of a proper "fitness" function. I illustrate the approach on three examples: biochemical adaptation, ligand discrimination and vertebrate segmentation (somitogenesis). While the structure of the evolved networks is variable, dynamics of our evolved networks are usually constrained and present many similar features to actual gene networks, including properties that were not explicitly selected for. In silico evolution can thus be used to predict biological behaviours without a detailed knowledge of the mapping between genotype and phenotype. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  18. An Evolving Identity: How Chronic Care Is Transforming What it Means to Be a Physician.

    PubMed

    Bogetz, Alyssa L; Bogetz, Jori F

    2015-12-01

    Physician identity and the professional role physicians play in health care is rapidly evolving. Over 130 million adults and children in the USA have complex and chronic diseases, each of which is shaped by aspects of the patient's social, psychological, and economic status. These patients have lifelong health care needs that require the ongoing care of multiple health care providers, access to community services, and the involvement of patients' family support networks. To date, physician professional identity formation has centered on autonomy, authority, and the ability to "heal." These notions of identity may be counterproductive in chronic disease care, which demands interdependency between physicians, their patients, and teams of multidisciplinary health care providers. Medical educators can prepare trainees for practice in the current health care environment by providing training that legitimizes and reinforces a professional identity that emphasizes this interdependency. This commentary outlines the important challenges related to this change and suggests potential strategies to reframe professional identity to better match the evolving role of physicians today.

  19. Rapid evolution of mimicry following local model extinction.

    PubMed

    Akcali, Christopher K; Pfennig, David W

    2014-06-01

    Batesian mimicry evolves when individuals of a palatable species gain the selective advantage of reduced predation because they resemble a toxic species that predators avoid. Here, we evaluated whether-and in which direction-Batesian mimicry has evolved in a natural population of mimics following extirpation of their model. We specifically asked whether the precision of coral snake mimicry has evolved among kingsnakes from a region where coral snakes recently (1960) went locally extinct. We found that these kingsnakes have evolved more precise mimicry; by contrast, no such change occurred in a sympatric non-mimetic species or in conspecifics from a region where coral snakes remain abundant. Presumably, more precise mimicry has continued to evolve after model extirpation, because relatively few predator generations have passed, and the fitness costs incurred by predators that mistook a deadly coral snake for a kingsnake were historically much greater than those incurred by predators that mistook a kingsnake for a coral snake. Indeed, these results are consistent with prior theoretical and empirical studies, which revealed that only the most precise mimics are favoured as their model becomes increasingly rare. Thus, highly noxious models can generate an 'evolutionary momentum' that drives the further evolution of more precise mimicry-even after models go extinct. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. Rapid search for tertiary fragments reveals protein sequence–structure relationships

    PubMed Central

    Zhou, Jianfu; Grigoryan, Gevorg

    2015-01-01

    Finding backbone substructures from the Protein Data Bank that match an arbitrary query structural motif, composed of multiple disjoint segments, is a problem of growing relevance in structure prediction and protein design. Although numerous protein structure search approaches have been proposed, methods that address this specific task without additional restrictions and on practical time scales are generally lacking. Here, we propose a solution, dubbed MASTER, that is both rapid, enabling searches over the Protein Data Bank in a matter of seconds, and provably correct, finding all matches below a user-specified root-mean-square deviation cutoff. We show that despite the potentially exponential time complexity of the problem, running times in practice are modest even for queries with many segments. The ability to explore naturally plausible structural and sequence variations around a given motif has the potential to synthesize its design principles in an automated manner; so we go on to illustrate the utility of MASTER to protein structural biology. We demonstrate its capacity to rapidly establish structure–sequence relationships, uncover the native designability landscapes of tertiary structural motifs, identify structural signatures of binding, and automatically rewire protein topologies. Given the broad utility of protein tertiary fragment searches, we hope that providing MASTER in an open-source format will enable novel advances in understanding, predicting, and designing protein structure. PMID:25420575

  1. Rapid adaptation to climate facilitates range expansion of an invasive plant.

    PubMed

    Colautti, Robert I; Barrett, Spencer C H

    2013-10-18

    Adaptation to climate, evolving over contemporary time scales, could facilitate rapid range expansion across environmental gradients. Here, we examine local adaptation along a climatic gradient in the North American invasive plant Lythrum salicaria. We show that the evolution of earlier flowering is adaptive at the northern invasion front where it increases fitness as much as, or more than, the effects of enemy release and the evolution of increased competitive ability. However, early flowering decreases investment in vegetative growth, which reduces fitness by a factor of 3 in southern environments where the North American invasion commenced. Our results demonstrate that local adaptation can evolve quickly during range expansion, overcoming environmental constraints on propagule production.

  2. Apology and forgiveness evolve to resolve failures in cooperative agreements.

    PubMed

    Martinez-Vaquero, Luis A; Han, The Anh; Pereira, Luís Moniz; Lenaerts, Tom

    2015-06-09

    Making agreements on how to behave has been shown to be an evolutionarily viable strategy in one-shot social dilemmas. However, in many situations agreements aim to establish long-term mutually beneficial interactions. Our analytical and numerical results reveal for the first time under which conditions revenge, apology and forgiveness can evolve and deal with mistakes within ongoing agreements in the context of the Iterated Prisoners Dilemma. We show that, when the agreement fails, participants prefer to take revenge by defecting in the subsisting encounters. Incorporating costly apology and forgiveness reveals that, even when mistakes are frequent, there exists a sincerity threshold for which mistakes will not lead to the destruction of the agreement, inducing even higher levels of cooperation. In short, even when to err is human, revenge, apology and forgiveness are evolutionarily viable strategies which play an important role in inducing cooperation in repeated dilemmas.

  3. Apology and forgiveness evolve to resolve failures in cooperative agreements

    PubMed Central

    Martinez-Vaquero, Luis A.; Han, The Anh; Pereira, Luís Moniz; Lenaerts, Tom

    2015-01-01

    Making agreements on how to behave has been shown to be an evolutionarily viable strategy in one-shot social dilemmas. However, in many situations agreements aim to establish long-term mutually beneficial interactions. Our analytical and numerical results reveal for the first time under which conditions revenge, apology and forgiveness can evolve and deal with mistakes within ongoing agreements in the context of the Iterated Prisoners Dilemma. We show that, when the agreement fails, participants prefer to take revenge by defecting in the subsisting encounters. Incorporating costly apology and forgiveness reveals that, even when mistakes are frequent, there exists a sincerity threshold for which mistakes will not lead to the destruction of the agreement, inducing even higher levels of cooperation. In short, even when to err is human, revenge, apology and forgiveness are evolutionarily viable strategies which play an important role in inducing cooperation in repeated dilemmas. PMID:26057819

  4. Evolving food retail environments in Thailand and implications for the health and nutrition transition

    PubMed Central

    Banwell, Cathy; Dixon, Jane; Seubsman, Sam-ang; Pangsap, Suttinan; Kelly, Matthew; Sleigh, Adrian

    2013-01-01

    Objective An investigation into evolving food retail systems in Thailand Design Rapid assessment procedures based on qualitative research methods such as interviews, focus groups discussions and site visits Setting Seven freshmarkets located in the four main regions of Thailand Subjects Managers, food specialists, vendors and shoppers from seven freshmarkets who participated in interviews and focus group discussions. Results Freshmarkets are under economic pressure and are declining in number. They are attempting to resist the competition from supermarkets by improving convenience, food diversity, quality and safety. Conclusions Obesity has increased in Thailand at the same time as rapid growth of modern food retail formats has occurred. As freshmarkets are overtaken by supermarkets there is a likely loss of fresh, healthy, affordable food for poorer Thais, and a diminution of regional culinary culture, women’s jobs and social capital with implications for the health and nutrition transition in Thailand. PMID:23021291

  5. Link Prediction in Evolving Networks Based on Popularity of Nodes.

    PubMed

    Wang, Tong; He, Xing-Sheng; Zhou, Ming-Yang; Fu, Zhong-Qian

    2017-08-02

    Link prediction aims to uncover the underlying relationship behind networks, which could be utilized to predict missing edges or identify the spurious edges. The key issue of link prediction is to estimate the likelihood of potential links in networks. Most classical static-structure based methods ignore the temporal aspects of networks, limited by the time-varying features, such approaches perform poorly in evolving networks. In this paper, we propose a hypothesis that the ability of each node to attract links depends not only on its structural importance, but also on its current popularity (activeness), since active nodes have much more probability to attract future links. Then a novel approach named popularity based structural perturbation method (PBSPM) and its fast algorithm are proposed to characterize the likelihood of an edge from both existing connectivity structure and current popularity of its two endpoints. Experiments on six evolving networks show that the proposed methods outperform state-of-the-art methods in accuracy and robustness. Besides, visual results and statistical analysis reveal that the proposed methods are inclined to predict future edges between active nodes, rather than edges between inactive nodes.

  6. How Life and Rocks Have Co-Evolved

    NASA Astrophysics Data System (ADS)

    Hazen, R.

    2014-04-01

    The near-surface environment of terrestrial planets and moons evolves as a consequence of selective physical, chemical, and biological processes - an evolution that is preserved in the mineralogical record. Mineral evolution begins with approximately 12 different refractory minerals that form in the cooling envelopes of exploding stars. Subsequent aqueous and thermal alteration of planetessimals results in the approximately 250 minerals now found in unweathered lunar and meteorite samples. Following Earth's accretion and differentiation, mineral evolution resulted from a sequence of geochemical and petrologic processes, which led to perhaps 1500 mineral species. According to some origin-of-life scenarios, a planet must progress through at least some of these stages of chemical processing as a prerequisite for life. Once life emerged, mineralogy and biology co-evolved and dramatically increased Earth's mineral diversity to >4000 species. Sequential stages of a planet's near-surface evolution arise from three primary mechanisms: (1) the progressive separation and concentration of the elements from their original relatively uniform distribution in the presolar nebula; (2) the increase in range of intensive variables such as pressure, temperature, and volatile activities; and (3) the generation of far-from-equilibrium conditions by living systems. Remote observations of the mineralogy of other terrestrial bodies may thus provide evidence for biological influences beyond Earth. Recent studies of mineral diversification through time reveal striking correlations with major geochemical, tectonic, and biological events, including large-changes in ocean chemistry, the supercontinent cycle, the increase of atmospheric oxygen, and the rise of the terrestrial biosphere.

  7. What Discrete and Serial Rapid Automatized Naming Can Reveal about Reading

    ERIC Educational Resources Information Center

    de Jong, Peter F.

    2011-01-01

    Serial rapid automized naming (RAN) has been often found to correlate more strongly with reading than discrete RAN. This study aimed to demonstrate that the strength of the RAN-reading fluency relationship is dependent on the format of both RAN and the reading task if the reading task consists of sight words. Seventy-one first-grade, 74…

  8. Network Analysis of Earth's Co-Evolving Geosphere and Biosphere

    NASA Astrophysics Data System (ADS)

    Hazen, R. M.; Eleish, A.; Liu, C.; Morrison, S. M.; Meyer, M.; Consortium, K. D.

    2017-12-01

    A fundamental goal of Earth science is the deep understanding of Earth's dynamic, co-evolving geosphere and biosphere through deep time. Network analysis of geo- and bio- `big data' provides an interactive, quantitative, and predictive visualization framework to explore complex and otherwise hidden high-dimension features of diversity, distribution, and change in the evolution of Earth's geochemistry, mineralogy, paleobiology, and biochemistry [1]. Networks also facilitate quantitative comparison of different geological time periods, tectonic settings, and geographical regions, as well as different planets and moons, through network metrics, including density, centralization, diameter, and transitivity.We render networks by employing data related to geographical, paragenetic, environmental, or structural relationships among minerals, fossils, proteins, and microbial taxa. An important recent finding is that the topography of many networks reflects parameters not explicitly incorporated in constructing the network. For example, networks for minerals, fossils, and protein structures reveal embedded qualitative time axes, with additional network geometries possibly related to extinction and/or other punctuation events (see Figure). Other axes related to chemical activities and volatile fugacities, as well as pressure and/or depth of formation, may also emerge from network analysis. These patterns provide new insights into the way planets evolve, especially Earth's co-evolving geosphere and biosphere. 1. Morrison, S.M. et al. (2017) Network analysis of mineralogical systems. American Mineralogist 102, in press. Figure Caption: A network of Phanerozoic Era fossil animals from the past 540 million years includes blue, red, and black circles (nodes) representing family-level taxa and grey lines (links) between coexisting families. Age information was not used in the construction of this network; nevertheless an intrinsic timeline is embedded in the network topology. In

  9. Chronic subdural haematoma evolving from traumatic subdural hydroma.

    PubMed

    Wang, Yaodong; Wang, Chuanwei; Liu, Yuguang

    2015-01-01

    This study aimed to investigate the incidence and clinical characteristics of chronic subdural haematoma (CSDH) evolving from traumatic subdual hydroma (TSH). The clinical characteristics of 44 patients with CSDH evolving from TSH were analysed retrospectively and the relevant literature was reviewed. In 22.6% of patients, TSH evolved into CSDH. The time required for this evolution was 14-100 days after injury. All patients were cured with haematoma drainage. TSH is one possible origin of CSDH. The clinical characteristics of TSH evolving into CSDH include polarization of patient age and chronic small effusion. The injuries usually occur during deceleration and are accompanied by mild cerebral damage.

  10. Transhydrogenase Promotes the Robustness and Evolvability of E. coli Deficient in NADPH Production

    PubMed Central

    Chou, Hsin-Hung; Marx, Christopher J.; Sauer, Uwe

    2015-01-01

    Metabolic networks revolve around few metabolites recognized by diverse enzymes and involved in myriad reactions. Though hub metabolites are considered as stepping stones to facilitate the evolutionary expansion of biochemical pathways, changes in their production or consumption often impair cellular physiology through their system-wide connections. How does metabolism endure perturbations brought immediately by pathway modification and restore hub homeostasis in the long run? To address this question we studied laboratory evolution of pathway-engineered Escherichia coli that underproduces the redox cofactor NADPH on glucose. Literature suggests multiple possibilities to restore NADPH homeostasis. Surprisingly, genetic dissection of isolates from our twelve evolved populations revealed merely two solutions: (1) modulating the expression of membrane-bound transhydrogenase (mTH) in every population; (2) simultaneously consuming glucose with acetate, an unfavored byproduct normally excreted during glucose catabolism, in two subpopulations. Notably, mTH displays broad phylogenetic distribution and has also played a predominant role in laboratory evolution of Methylobacterium extorquens deficient in NADPH production. Convergent evolution of two phylogenetically and metabolically distinct species suggests mTH as a conserved buffering mechanism that promotes the robustness and evolvability of metabolism. Moreover, adaptive diversification via evolving dual substrate consumption highlights the flexibility of physiological systems to exploit ecological opportunities. PMID:25715029

  11. Inference of Time-Evolving Coupled Dynamical Systems in the Presence of Noise

    NASA Astrophysics Data System (ADS)

    Stankovski, Tomislav; Duggento, Andrea; McClintock, Peter V. E.; Stefanovska, Aneta

    2012-07-01

    A new method is introduced for analysis of interactions between time-dependent coupled oscillators, based on the signals they generate. It distinguishes unsynchronized dynamics from noise-induced phase slips and enables the evolution of the coupling functions and other parameters to be followed. It is based on phase dynamics, with Bayesian inference of the time-evolving parameters achieved by shaping the prior densities to incorporate knowledge of previous samples. The method is tested numerically and applied to reveal and quantify the time-varying nature of cardiorespiratory interactions.

  12. Evolutionary engineering reveals divergent paths when yeast is adapted to different acidic environments.

    PubMed

    Fletcher, Eugene; Feizi, Amir; Bisschops, Markus M M; Hallström, Björn M; Khoomrung, Sakda; Siewers, Verena; Nielsen, Jens

    2017-01-01

    Tolerance of yeast to acid stress is important for many industrial processes including organic acid production. Therefore, elucidating the molecular basis of long term adaptation to acidic environments will be beneficial for engineering production strains to thrive under such harsh conditions. Previous studies using gene expression analysis have suggested that both organic and inorganic acids display similar responses during short term exposure to acidic conditions. However, biological mechanisms that will lead to long term adaptation of yeast to acidic conditions remains unknown and whether these mechanisms will be similar for tolerance to both organic and inorganic acids is yet to be explored. We therefore evolved Saccharomyces cerevisiae to acquire tolerance to HCl (inorganic acid) and to 0.3M L-lactic acid (organic acid) at pH 2.8 and then isolated several low pH tolerant strains. Whole genome sequencing and RNA-seq analysis of the evolved strains revealed different sets of genome alterations suggesting a divergence in adaptation to these two acids. An altered sterol composition and impaired iron uptake contributed to HCl tolerance whereas the formation of a multicellular morphology and rapid lactate degradation was crucial for tolerance to high concentrations of lactic acid. Our findings highlight the contribution of both the selection pressure and nature of the acid as a driver for directing the evolutionary path towards tolerance to low pH. The choice of carbon source was also an important factor in the evolutionary process since cells evolved on two different carbon sources (raffinose and glucose) generated a different set of mutations in response to the presence of lactic acid. Therefore, different strategies are required for a rational design of low pH tolerant strains depending on the acid of interest. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. Experimental evidence of dynamic re-organization of evolving landscapes under changing climatic forcing

    NASA Astrophysics Data System (ADS)

    Singh, Arvind; Tejedor, Alejandro; Zaliapin, Ilya; Reinhardt, Liam; Foufoula-Georgiou, Efi

    2015-04-01

    The aim of this study is to better understand the dynamic re-organization of an evolving landscape under a scenario of changing climatic forcing for improving our knowledge of geomorphic transport laws under transient conditions and developing predictive models of landscape response to external perturbations. Real landscape observations for long-term analysis are limited and to this end a high resolution controlled laboratory experiment was conducted at the St. Anthony Falls laboratory at the University of Minnesota. Elevation data were collected at temporal resolution of 5 mins and spatial resolution of 0.5 mm as the landscape approached steady state (constant uplift and precipitation rate) and in the transient state (under the same uplift and 5x precipitation). The results reveal rapid topographic re-organization under a five-fold precipitation increase with the fluvial regime expanding into the previously debris dominated regime, accelerated erosion happening at hillslope scales, and rivers shifting from an erosion-limited to a transport-limited regime. From a connectivity and clustering analysis of the erosional and depositional events, we demonstrate the strikingly different spatial patterns of landscape evolution under steady-state (SS) and transient-state (TS), even when the time under SS is "stretched" compared to that under TS such as to match the total volume and PDF of erosional and depositional amounts. We quantify the spatial coupling of hillslopes and channels and demonstrate that hillslopes lead and channels follow in re-organizing the whole landscape under such an amplified precipitation regime.

  14. Revisiting Robustness and Evolvability: Evolution in Weighted Genotype Spaces

    PubMed Central

    Partha, Raghavendran; Raman, Karthik

    2014-01-01

    Robustness and evolvability are highly intertwined properties of biological systems. The relationship between these properties determines how biological systems are able to withstand mutations and show variation in response to them. Computational studies have explored the relationship between these two properties using neutral networks of RNA sequences (genotype) and their secondary structures (phenotype) as a model system. However, these studies have assumed every mutation to a sequence to be equally likely; the differences in the likelihood of the occurrence of various mutations, and the consequence of probabilistic nature of the mutations in such a system have previously been ignored. Associating probabilities to mutations essentially results in the weighting of genotype space. We here perform a comparative analysis of weighted and unweighted neutral networks of RNA sequences, and subsequently explore the relationship between robustness and evolvability. We show that assuming an equal likelihood for all mutations (as in an unweighted network), underestimates robustness and overestimates evolvability of a system. In spite of discarding this assumption, we observe that a negative correlation between sequence (genotype) robustness and sequence evolvability persists, and also that structure (phenotype) robustness promotes structure evolvability, as observed in earlier studies using unweighted networks. We also study the effects of base composition bias on robustness and evolvability. Particularly, we explore the association between robustness and evolvability in a sequence space that is AU-rich – sequences with an AU content of 80% or higher, compared to a normal (unbiased) sequence space. We find that evolvability of both sequences and structures in an AU-rich space is lesser compared to the normal space, and robustness higher. We also observe that AU-rich populations evolving on neutral networks of phenotypes, can access less phenotypic variation compared to

  15. In situ regeneration of bioactive coatings enabled by an evolved Staphylococcus aureus sortase A

    NASA Astrophysics Data System (ADS)

    Ham, Hyun Ok; Qu, Zheng; Haller, Carolyn A.; Dorr, Brent M.; Dai, Erbin; Kim, Wookhyun; Liu, David R.; Chaikof, Elliot L.

    2016-04-01

    Surface immobilization of bioactive molecules is a central paradigm in the design of implantable devices and biosensors with improved clinical performance capabilities. However, in vivo degradation or denaturation of surface constituents often limits the long-term performance of bioactive films. Here we demonstrate the capacity to repeatedly regenerate a covalently immobilized monomolecular thin film of bioactive molecules through a two-step stripping and recharging cycle. Reversible transpeptidation by a laboratory evolved Staphylococcus aureus sortase A (eSrtA) enabled the rapid immobilization of an anti-thrombogenic film in the presence of whole blood and permitted multiple cycles of film regeneration in vitro that preserved its biological activity. Moreover, eSrtA transpeptidation facilitated surface re-engineering of medical devices in situ after in vivo implantation through removal and restoration film constituents. These studies establish a rapid, orthogonal and reversible biochemical scheme to regenerate selective molecular constituents with the potential to extend the lifetime of bioactive films.

  16. Rate of novel host invasion affects adaptability of evolving RNA virus lineages.

    PubMed

    Morley, Valerie J; Mendiola, Sandra Y; Turner, Paul E

    2015-08-22

    Although differing rates of environmental turnover should be consequential for the dynamics of adaptive change, this idea has been rarely examined outside of theory. In particular, the importance of RNA viruses in disease emergence warrants experiments testing how differing rates of novel host invasion may impact the ability of viruses to adaptively shift onto a novel host. To test whether the rate of environmental turnover influences adaptation, we experimentally evolved 144 Sindbis virus lineages in replicated tissue-culture environments, which transitioned from being dominated by a permissive host cell type to a novel host cell type. The rate at which the novel host 'invaded' the environment varied by treatment. The fitness (growth rate) of evolved virus populations was measured on each host type, and molecular substitutions were mapped via whole genome consensus sequencing. Results showed that virus populations more consistently reached high fitness levels on the novel host when the novel host 'invaded' the environment more gradually, and gradual invasion resulted in less variable genomic outcomes. Moreover, virus populations that experienced a rapid shift onto the novel host converged upon different genotypes than populations that experienced a gradual shift onto the novel host, suggesting a strong effect of historical contingency. © 2015 The Author(s).

  17. Origins of multicellular evolvability in snowflake yeast

    PubMed Central

    Ratcliff, William C.; Fankhauser, Johnathon D.; Rogers, David W.; Greig, Duncan; Travisano, Michael

    2015-01-01

    Complex life has arisen through a series of ‘major transitions’ in which collectives of formerly autonomous individuals evolve into a single, integrated organism. A key step in this process is the origin of higher-level evolvability, but little is known about how higher-level entities originate and gain the capacity to evolve as an individual. Here we report a single mutation that not only creates a new level of biological organization, but also potentiates higher-level evolvability. Disrupting the transcription factor ACE2 in Saccharomyces cerevisiae prevents mother–daughter cell separation, generating multicellular ‘snowflake’ yeast. Snowflake yeast develop through deterministic rules that produce geometrically defined clusters that preclude genetic conflict and display a high broad-sense heritability for multicellular traits; as a result they are preadapted to multicellular adaptation. This work demonstrates that simple microevolutionary changes can have profound macroevolutionary consequences, and suggests that the formation of clonally developing clusters may often be the first step to multicellularity. PMID:25600558

  18. We really need to talk: adapting FDA processes to rapid change.

    PubMed

    Lykken, Sara

    2013-01-01

    The rapidly evolving realm of modern commerce strains traditional regulatory paradigms. This paper traces the historical evolution of FDA crisis-response regulation and provides examples of ways in which the definitions and procedures resulting from that past continue to be challenged by new products as market entrants, some in good faith and others not, take actions that create disconnects between actual product and marketing controls and those that consumers might expect. The paper then explores some of the techniques used by other federal agencies that have faced similar challenges in environments characterized by rapid innovation, and draws from this analysis suggestions for improvement of the FDA's warning letter system.

  19. Evolving Requirements for Magnetic Tape Data Storage Systems

    NASA Technical Reports Server (NTRS)

    Gniewek, John J.

    1996-01-01

    Magnetic tape data storage systems have evolved in an environment where the major applications have been back-up/restore, disaster recovery, and long term archive. Coincident with the rapidly improving price-performance of disk storage systems, the prime requirements for tape storage systems have remained: (1) low cost per MB, (2) a data rate balanced to the remaining system components. Little emphasis was given to configuring the technology components to optimize retrieval of the stored data. Emerging new applications such as network attached high speed memory (HSM), and digital libraries, place additional emphasis and requirements on the retrieval of the stored data. It is therefore desirable to consider the system to be defined both by STorage And Retrieval System (STARS) requirements. It is possible to provide comparative performance analysis of different STARS by incorporating parameters related to (1) device characteristics, and (2) application characteristics in combination with queuing theory analysis. Results of these analyses are presented here in the form of response time as a function of system configuration for two different types of devices and for a variety of applications.

  20. Phylogenomics reveals habitat-associated body shape divergence in Oryzias woworae species group (Teleostei: Adrianichthyidae).

    PubMed

    Mokodongan, Daniel F; Montenegro, Javier; Mochida, Koji; Fujimoto, Shingo; Ishikawa, Asano; Kakioka, Ryo; Yong, Lengxob; Mulis; Hadiaty, Renny K; Mandagi, Ixchel F; Masengi, Kawilarang W A; Wachi, Nakatada; Hashiguchi, Yasuyuki; Kitano, Jun; Yamahira, Kazunori

    2018-01-01

    The Oryzias woworae species group, composed of O. asinua, O. wolasi, and O. woworae, is widely distributed in southeastern Sulawesi, an island in the Indo-Australian Archipelago. Deep-elongated body shape divergence is evident among these three species to the extent that it is used as a species-diagnostic character. These fishes inhabit a variety of habitats, ranging from upper streams to ponds, suggesting that the body shape divergence among the three species may reflect adaptation to local environments. First, our geometric morphometrics among eight local populations of this species group revealed that the three species cannot be separated by body shape and that riverine populations had more elongated bodies and longer caudal parts than lacustrine populations. Second, their phylogenetic relationships did not support the presence of three species; phylogenies using mitochondrial DNA and genomic data obtained from RNA-Seq revealed that the eight populations could not be sorted into three different clades representing three described species. Third, phylogenetic corrections of body shape variations and ancestral state reconstruction of body shapes demonstrated that body shape divergence between riverine and lacustrine populations persisted even if the phylogenies were considered and that body shape evolved rapidly irrespective of phylogeny. Sexual dimorphism in body shape was also evident, but the degree of dimorphism did not significantly differ between riverine and lacustrine populations after phylogenetic corrections, suggesting that sexual selection may not substantially contribute to geographical variations in body shape. Overall, these results indicate that the deep-elongated body shape divergence of the O. woworae species group evolved locally in response to habitat environments, such as water currents, and that a thorough taxonomic reexamination of the O. woworae species group may be necessary. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution

    USDA-ARS?s Scientific Manuscript database

    Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres comprise of megabase-scale arrays of tandem repeats. The true prevalence of centromere tandem repeats, and whether they exhibit conserved seque...

  2. The genotype-phenotype map of an evolving digital organism.

    PubMed

    Fortuna, Miguel A; Zaman, Luis; Ofria, Charles; Wagner, Andreas

    2017-02-01

    To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms from a vast space of 10141 genotypes (instruction sequences), which can form 512 different phenotypes. These phenotypes are distinguished by different Boolean logic functions they can compute, as well as by the complexity of these functions. We observe several properties with parallels in natural systems, such as connected genotype networks and asymmetric phenotypic transitions. The likely common cause is robustness to genotypic change. We describe an intriguing tension between phenotypic complexity and evolvability that may have implications for biological evolution. On the one hand, genotypic change is more likely to yield novel phenotypes in more complex organisms. On the other hand, the total number of novel phenotypes reachable through genotypic change is highest for organisms with simple phenotypes. Artificial evolving systems can help us study aspects of biological evolvability that are not accessible in vastly more complex natural systems. They can also help identify properties, such as robustness, that are required for both human-designed artificial systems and synthetic biological systems to be evolvable.

  3. The genotype-phenotype map of an evolving digital organism

    PubMed Central

    Zaman, Luis; Wagner, Andreas

    2017-01-01

    To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms from a vast space of 10141 genotypes (instruction sequences), which can form 512 different phenotypes. These phenotypes are distinguished by different Boolean logic functions they can compute, as well as by the complexity of these functions. We observe several properties with parallels in natural systems, such as connected genotype networks and asymmetric phenotypic transitions. The likely common cause is robustness to genotypic change. We describe an intriguing tension between phenotypic complexity and evolvability that may have implications for biological evolution. On the one hand, genotypic change is more likely to yield novel phenotypes in more complex organisms. On the other hand, the total number of novel phenotypes reachable through genotypic change is highest for organisms with simple phenotypes. Artificial evolving systems can help us study aspects of biological evolvability that are not accessible in vastly more complex natural systems. They can also help identify properties, such as robustness, that are required for both human-designed artificial systems and synthetic biological systems to be evolvable. PMID:28241039

  4. The genomic landscape of rapid repeated evolutionary ...

    EPA Pesticide Factsheets

    Atlantic killifish populations have rapidly adapted to normally lethal levels of pollution in four urban estuaries. Through analysis of 384 whole killifish genome sequences and comparative transcriptomics in four pairs of sensitive and tolerant populations, we identify the aryl hydrocarbon receptor–based signaling pathway as a shared target of selection. This suggests evolutionary constraint on adaptive solutions to complex toxicant mixtures at each site. However, distinct molecular variants apparently contribute to adaptive pathway modification among tolerant populations. Selection also targets other toxicity-mediatinggenes and genes of connected signaling pathways; this indicates complex tolerance phenotypes and potentially compensatory adaptations. Molecular changes are consistent with selection on standing genetic variation. In killifish, high nucleotide diversityhas likely been a crucial substrate for selective sweeps to propel rapid adaptation. This manuscript describes genomic evaluations that contribute to our understanding of the ecological and evolutionary risks associated with chronic contaminant exposures to wildlife populations. Here, we assessed genetic patterns associated with long-term response to an important class of highly toxic environmental pollutants. Specifically, chemical-specific tolerance has rapidly and repeatedly evolved in an estuarine fish species resident to estuaries of the Atlantic U.S. coast. We used laboratory studies to ch

  5. Contemporary Strategies for Rapid Recovery Total Hip Arthroplasty.

    PubMed

    Stambough, Jeffrey B; Beaulé, Paul E; Nunley, Ryan M; Clohisy, John

    2016-01-01

    Over the past several years, rapid recovery protocols for total hip arthroplasty have evolved in parallel with advancements in pain management, regional anesthesia, focused rehabilitation, and the patient selection process. As fiscal pressures from payers of health care increase, surgical outcomes and complications are being scrutinized, which evokes a sense of urgency for arthroplasty surgeons as well as hospitals. The implementation of successful accelerated recovery pathways for total hip arthroplasty requires the coordinated efforts of surgeons, practice administrators, anesthesiologists, nurses, physical and occupational therapists, case managers, and postacute care providers. To optimize performance outcomes, it is important for surgeons to select patients who are eligible for rapid recovery. The fundamental tenets of multimodal pain control, regional anesthesia, prudent perioperative blood management, venous thromboembolic prophylaxis, and early ambulation and mobility should be collectively addressed for all patients who undergo primary total hip replacement.

  6. Evolving Prehospital, Emergency Department, and “Inpatient” Management Models for Geriatric Emergencies

    PubMed Central

    Carpenter, Christopher R.; Platts-Mills, Timothy F.

    2013-01-01

    Alternative management methods are essential to ensure high quality and efficient emergency care for the growing number of geriatric adults worldwide. Protocols for case-finding and rapid diagnosis to support early condition-specific treatment for older adults with acute severe illness and injury are needed. Improved emergency department care for older adults will require providers to look beyond the diagnosis to address the influence of other factors on the patient's health: isolation and depression; finances and transportation; and chronic medical conditions and polypharmacy. This review article describes recent and ongoing efforts to enhance the quality of emergency care for older adults using alternative management approaches spanning the spectrum from prehospital care, through the emergency department, and into evolving inpatient or outpatient processes of care. PMID:23177599

  7. High-Throughput Sequencing Reveals Hypothalamic MicroRNAs as Novel Partners Involved in Timing the Rapid Development of Chicken (Gallus gallus) Gonads.

    PubMed

    Han, Wei; Zou, Jianmin; Wang, Kehua; Su, Yijun; Zhu, Yunfen; Song, Chi; Li, Guohui; Qu, Liang; Zhang, Huiyong; Liu, Honglin

    2015-01-01

    Onset of the rapid gonad growth is a milestone in sexual development that comprises many genes and regulatory factors. The observations in model organisms and mammals including humans have shown a potential link between miRNAs and development timing. To determine whether miRNAs play roles in this process in the chicken (Gallus gallus), the Solexa deep sequencing was performed to analyze the profiles of miRNA expression in the hypothalamus of hens from two different pubertal stages, before onset of the rapid gonad development (BO) and after onset of the rapid gonad development (AO). 374 conserved and 46 novel miRNAs were identified as hypothalamus-expressed miRNAs in the chicken. 144 conserved miRNAs were showed to be differentially expressed (reads > 10, P < 0.05) during the transition from BO to AO. Five differentially expressed miRNAs were validated by real-time quantitative RT-PCR (qRT-PCR) method. 2013 putative genes were predicted as the targets of the 15 most differentially expressed miRNAs (fold-change > 4.0, P < 0.01). Of these genes, 7 putative circadian clock genes, Per2, Bmal1/2, Clock, Cry1/2, and Star were found to be targeted multiple times by the miRNAs. qRT-PCR revealed the basic transcription levels of these clock genes were much higher (P < 0.01) in AO than in BO. Further functional analysis suggested that these 15 miRNAs play important roles in transcriptional regulation and signal transduction pathways. The results provide new insights into miRNAs functions in timing the rapid development of chicken gonads. Considering the characteristics of miRNA functional conservation, the results will contribute to the research on puberty onset in humans.

  8. Cooperative behavior and phase transitions in co-evolving stag hunt game

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Li, Y. S.; Xu, C.; Hui, P. M.

    2016-02-01

    Cooperative behavior and different phases in a co-evolving network dynamics based on the stag hunt game is studied. The dynamical processes are parameterized by a payoff r that tends to promote non-cooperative behavior and a probability q for a rewiring attempt that could isolate the non-cooperators. The interplay between the parameters leads to different phases. Detailed simulations and a mean field theory are employed to reveal the properties of different phases. For small r, the cooperators are the majority and form a connected cluster while the non-cooperators increase with q but remain isolated over the whole range of q, and it is a static phase. For sufficiently large r, cooperators disappear in an intermediate range qL ≤ q ≤qU and a dynamical all-non-cooperators phase results. For q >qU, a static phase results again. A mean field theory based on how the link densities change in time by the co-evolving dynamics is constructed. The theory gives a phase diagram in the q- r parameter space that is qualitatively in agreement with simulation results. The sources of discrepancies between theory and simulations are discussed.

  9. Apollo 16 Evolved Lithology Sodic Ferrogabbro

    NASA Technical Reports Server (NTRS)

    Zeigler, Ryan; Jolliff, B. L.; Korotev, R. L.

    2014-01-01

    Evolved lunar igneous lithologies, often referred to as the alkali suite, are a minor but important component of the lunar crust. These evolved samples are incompatible-element rich samples, and are, not surprisingly, most common in the Apollo sites in (or near) the incompatible-element rich region of the Moon known as the Procellarum KREEP Terrane (PKT). The most commonly occurring lithologies are granites (A12, A14, A15, A17), monzogabbro (A14, A15), alkali anorthosites (A12, A14), and KREEP basalts (A15, A17). The Feldspathic Highlands Terrane is not entirely devoid of evolved lithologies, and rare clasts of alkali gabbronorite and sodic ferrogabbro (SFG) have been identified in Apollo 16 station 11 breccias 67915 and 67016. Curiously, nearly all pristine evolved lithologies have been found as small clasts or soil particles, exceptions being KREEP basalts 15382/6 and granitic sample 12013 (which is itself a breccia). Here we reexamine the petrography and geochemistry of two SFG-like particles found in a survey of Apollo 16 2-4 mm particles from the Cayley Plains 62283,7-15 and 62243,10-3 (hereafter 7-15 and 10-3 respectively). We will compare these to previously reported SFG samples, including recent analyses on the type specimen of SFG from lunar breccia 67915.

  10. A new evolutionary system for evolving artificial neural networks.

    PubMed

    Yao, X; Liu, Y

    1997-01-01

    This paper presents a new evolutionary system, i.e., EPNet, for evolving artificial neural networks (ANNs). The evolutionary algorithm used in EPNet is based on Fogel's evolutionary programming (EP). Unlike most previous studies on evolving ANN's, this paper puts its emphasis on evolving ANN's behaviors. Five mutation operators proposed in EPNet reflect such an emphasis on evolving behaviors. Close behavioral links between parents and their offspring are maintained by various mutations, such as partial training and node splitting. EPNet evolves ANN's architectures and connection weights (including biases) simultaneously in order to reduce the noise in fitness evaluation. The parsimony of evolved ANN's is encouraged by preferring node/connection deletion to addition. EPNet has been tested on a number of benchmark problems in machine learning and ANNs, such as the parity problem, the medical diagnosis problems, the Australian credit card assessment problem, and the Mackey-Glass time series prediction problem. The experimental results show that EPNet can produce very compact ANNs with good generalization ability in comparison with other algorithms.

  11. Asymmetric core collapse of rapidly rotating massive star

    NASA Astrophysics Data System (ADS)

    Gilkis, Avishai

    2018-02-01

    Non-axisymmetric features are found in the core collapse of a rapidly rotating massive star, which might have important implications for magnetic field amplification and production of a bipolar outflow that can explode the star, as well as for r-process nucleosynthesis and natal kicks. The collapse of an evolved rapidly rotating MZAMS = 54 M⊙ star is followed in three-dimensional hydrodynamic simulations using the FLASH code with neutrino leakage. A rotating proto-neutron star (PNS) forms with a non-zero linear velocity. This can contribute to the natal kick of the remnant compact object. The PNS is surrounded by a turbulent medium, where high shearing is likely to amplify magnetic fields, which in turn can drive a bipolar outflow. Neutron-rich material in the PNS vicinity might induce strong r-process nucleosynthesis. The rapidly rotating PNS possesses a rotational energy of E_rot ≳ 10^{52} erg. Magnetar formation proceeding in a similar fashion will be able to deposit a portion of this energy later on in the supernova ejecta through a spin-down mechanism. These processes can be important for rare supernovae generated by rapidly rotating progenitors, even though a complete explosion is not simulated in the present study.

  12. The Evolvement of Automobile Steering System Based on TRIZ

    NASA Astrophysics Data System (ADS)

    Zhao, Xinjun; Zhang, Shuang

    Products and techniques pass through a process of birth, growth, maturity, death and quit the stage like biological evolution process. The developments of products and techniques conform to some evolvement rules. If people know and hold these rules, they can design new kind of products and forecast the develop trends of the products. Thereby, enterprises can grasp the future technique directions of products, and make product and technique innovation. Below, based on TRIZ theory, the mechanism evolvement, the function evolvement and the appearance evolvement of automobile steering system had been analyzed and put forward some new ideas about future automobile steering system.

  13. A critical analysis of methods for rapid and nondestructive determination of wood density in standing trees

    Treesearch

    Shan Gao; Xiping Wang; Michael C. Wiemann; Brian K. Brashaw; Robert J. Ross; Lihai Wang

    2017-01-01

    Key message Field methods for rapid determination of wood density in trees have evolved from increment borer, torsiometer, Pilodyn, and nail withdrawal into sophisticated electronic tools of resistance drilling measurement. A partial resistance drilling approach coupled with knowledge of internal tree density distribution may...

  14. OUTFLOWS FROM EVOLVED STARS: THE RAPIDLY CHANGING FINGERS OF CRL 618

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balick, Bruce; Huarte-Espinosa, Martin; Frank, Adam

    2013-07-20

    Our ultimate goal is to probe the nature of the collimator of the outflows in the pre-planetary nebula CRL 618. CRL 618 is uniquely suited for this purpose owing to its multiple, bright, and carefully studied finger-shaped outflows east and west of its nucleus. We compare new Hubble Space Telescope images to images in the same filters observed as much as 11 yr ago to uncover large proper motions and surface brightness changes in its multiple finger-shaped outflows. The expansion age of the ensemble of fingers is close to 100 yr. We find strong brightness variations at the fingertips duringmore » the past decade. Deep IR images reveal a multiple ring-like structure of the surrounding medium into which the outflows propagate and interact. Tightly constrained three-dimensional hydrodynamic models link the properties of the fingers to their possible formation histories. We incorporate previously published complementary information to discern whether each of the fingers of CRL 618 are the results of steady, collimated outflows or a brief ejection event that launched a set of bullets about a century ago. Finally, we argue on various physical grounds that fingers of CRL 618 are likely to be the result of a spray of clumps ejected at the nucleus of CRL 618 since any mechanism that form a sustained set of unaligned jets is unprecedented.« less

  15. Mentoring: An Evolving Relationship.

    PubMed

    Block, Michelle; Florczak, Kristine L

    2017-04-01

    The column concerns itself with mentoring as an evolving relationship between mentor and mentee. The collegiate mentoring model, the transformational transcendence model, and the humanbecoming mentoring model are considered in light of a dialogue with mentors at a Midwest university and conclusions are drawn.

  16. Rapid evolution of analog circuits configured on a field programmable transistor array

    NASA Technical Reports Server (NTRS)

    Stoica, A.; Ferguson, M. I.; Zebulum, R. S.; Keymeulen, D.; Duong, V.; Daud, T.

    2002-01-01

    The purpose of this paper is to illustrate evolution of analog circuits on a stand-alone board-level evolvable system (SABLES). SABLES is part of an effort to achieve integrated evolvable systems. SABLES provides autonomous, fast (tens to hundreds of seconds), on-chip circuit evolution involving about 100,000 circuit evaluations. Its main components are a JPL Field Programmable Transistor Array (FPTA) chip used as transistor-level reconfigurable hardware, and a TI DSP that implements the evolutionary algorithm controlling the FPTA reconfiguration. The paper details an example of evolution on SABLES and points out to certain transient and memory effects that affect the stability of solutions obtained reusing the same piece of hardware for rapid testing of individuals during evolution.

  17. Predicting evolutionary rescue via evolving plasticity in stochastic environments

    PubMed Central

    Baskett, Marissa L.

    2016-01-01

    Phenotypic plasticity and its evolution may help evolutionary rescue in a novel and stressful environment, especially if environmental novelty reveals cryptic genetic variation that enables the evolution of increased plasticity. However, the environmental stochasticity ubiquitous in natural systems may alter these predictions, because high plasticity may amplify phenotype–environment mismatches. Although previous studies have highlighted this potential detrimental effect of plasticity in stochastic environments, they have not investigated how it affects extinction risk in the context of evolutionary rescue and with evolving plasticity. We investigate this question here by integrating stochastic demography with quantitative genetic theory in a model with simultaneous change in the mean and predictability (temporal autocorrelation) of the environment. We develop an approximate prediction of long-term persistence under the new pattern of environmental fluctuations, and compare it with numerical simulations for short- and long-term extinction risk. We find that reduced predictability increases extinction risk and reduces persistence because it increases stochastic load during rescue. This understanding of how stochastic demography, phenotypic plasticity, and evolution interact when evolution acts on cryptic genetic variation revealed in a novel environment can inform expectations for invasions, extinctions, or the emergence of chemical resistance in pests. PMID:27655762

  18. The remarkable outburst of the highly evolved post-period-minimum dwarf nova SSS J122221.7-311525★

    NASA Astrophysics Data System (ADS)

    Neustroev, V. V.; Marsh, T. R.; Zharikov, S. V.; Knigge, C.; Kuulkers, E.; Osborne, J. P.; Page, K. L.; Steeghs, D.; Suleimanov, V. F.; Tovmassian, G.; Breedt, E.; Frebel, A.; García-Díaz, Ma. T.; Hambsch, F.-J.; Jacobson, H.; Parsons, S. G.; Ryu, T.; Sabin, L.; Sjoberg, G.; Miroshnichenko, A. S.; Reichart, D. E.; Haislip, J. B.; Ivarsen, K. M.; LaCluyze, A. P.; Moore, J. P.

    2017-05-01

    We report extensive 3-yr multiwavelength observations of the WZ Sge-type dwarf nova SSS J122221.7-311525 during its unusual double superoutburst, the following decline and in quiescence. The second segment of the superoutburst had a long duration of 33 d and a very gentle decline with a rate of 0.02 mag d-1, and it displayed an extended post-outburst decline lasting at least 500 d. Simultaneously with the start of the rapid fading from the superoutburst plateau, the system showed the appearance of a strong near-infrared excess resulting in very red colours, which reached extreme values (B - I ≃ 1.4) about 20 d later. The colours then became bluer again, but it took at least 250 d to acquire a stable level. Superhumps were clearly visible in the light curve from our very first time-resolved observations until at least 420 d after the rapid fading from the superoutburst. The spectroscopic and photometric data revealed an orbital period of 109.80 min and a fractional superhump period excess ≲0.8 per cent, indicating a very low mass ratio q ≲ 0.045. With such a small mass ratio the donor mass should be below the hydrogen-burning minimum mass limit. The observed infrared flux in quiescence is indeed much lower than is expected from a cataclysmic variable with a near-main-sequence donor star. This strongly suggests a brown-dwarf-like nature for the donor and that SSS J122221.7-311525 has already evolved away from the period minimum towards longer periods, with the donor now extremely dim.

  19. The evolving quality of frictional contact with graphene.

    PubMed

    Li, Suzhi; Li, Qunyang; Carpick, Robert W; Gumbsch, Peter; Liu, Xin Z; Ding, Xiangdong; Sun, Jun; Li, Ju

    2016-11-24

    Graphite and other lamellar materials are used as dry lubricants for macroscale metallic sliding components and high-pressure contacts. It has been shown experimentally that monolayer graphene exhibits higher friction than multilayer graphene and graphite, and that this friction increases with continued sliding, but the mechanism behind this remains subject to debate. It has long been conjectured that the true contact area between two rough bodies controls interfacial friction. The true contact area, defined for example by the number of atoms within the range of interatomic forces, is difficult to visualize directly but characterizes the quantity of contact. However, there is emerging evidence that, for a given pair of materials, the quality of the contact can change, and that this can also strongly affect interfacial friction. Recently, it has been found that the frictional behaviour of two-dimensional materials exhibits traits unlike those of conventional bulk materials. This includes the abovementioned finding that for few-layer two-dimensional materials the static friction force gradually strengthens for a few initial atomic periods before reaching a constant value. Such transient behaviour, and the associated enhancement of steady-state friction, diminishes as the number of two-dimensional layers increases, and was observed only when the two-dimensional material was loosely adhering to a substrate. This layer-dependent transient phenomenon has not been captured by any simulations. Here, using atomistic simulations, we reproduce the experimental observations of layer-dependent friction and transient frictional strengthening on graphene. Atomic force analysis reveals that the evolution of static friction is a manifestation of the natural tendency for thinner and less-constrained graphene to re-adjust its configuration as a direct consequence of its greater flexibility. That is, the tip atoms become more strongly pinned, and show greater synchrony in their stick

  20. Cyberspace Operations: Influence Upon Evolving War Theory

    DTIC Science & Technology

    2011-03-18

    St ra te gy R es ea rc h Pr oj ec t CYBERSPACE OPERATIONS: INFLUENCE UPON EVOLVING WAR THEORY BY COLONEL KRISTIN BAKER United States...DATES COVERED (From - To) 4. TITLE AND SUBTITLE Cyberspace Operations: Influence Upon Evolving War Theory 5a. CONTRACT NUMBER... Leadership 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S

  1. Methods Evolved by Observation

    ERIC Educational Resources Information Center

    Montessori, Maria

    2016-01-01

    Montessori's idea of the child's nature and the teacher's perceptiveness begins with amazing simplicity, and when she speaks of "methods evolved," she is unveiling a methodological system for observation. She begins with the early childhood explosion into writing, which is a familiar child phenomenon that Montessori has written about…

  2. Orbital Decay in Binaries with Evolved Stars

    NASA Astrophysics Data System (ADS)

    Sun, Meng; Arras, Phil; Weinberg, Nevin N.; Troup, Nicholas; Majewski, Steven R.

    2018-01-01

    Two mechanisms are often invoked to explain tidal friction in binary systems. The ``dynamical tide” is the resonant excitation of internal gravity waves by the tide, and their subsequent damping by nonlinear fluid processes or thermal diffusion. The ``equilibrium tide” refers to non-resonant excitation of fluid motion in the star’s convection zone, with damping by interaction with the turbulent eddies. There have been numerous studies of these processes in main sequence stars, but less so on the subgiant and red giant branches. Motivated by the newly discovered close binary systems in the Apache Point Observatory Galactic Evolution Experiment (APOGEE-1), we have performed calculations of both the dynamical and equilibrium tide processes for stars over a range of mass as the star’s cease core hydrogen burning and evolve to shell burning. Even for stars which had a radiative core on the main sequence, the dynamical tide may have very large amplitude in the newly radiative core in post-main sequence, giving rise to wave breaking. The resulting large dynamical tide dissipation rate is compared to the equilibrium tide, and the range of secondary masses and orbital periods over which rapid orbital decay may occur will be discussed, as well as applications to close APOGEE binaries.

  3. A discrete event simulation to model the cost-utility of fingolimod and natalizumab in rapidly evolving severe relapsing-remitting multiple sclerosis in the UK.

    PubMed

    Montgomery, Stephen M; Maruszczak, Maciej J; Slater, David; Kusel, Jeanette; Nicholas, Richard; Adlard, Nicholas

    2017-05-01

    Two disease-modifying therapies are licensed in the EU for use in rapidly-evolving severe (RES) relapsing-remitting multiple sclerosis (RRMS), fingolimod and natalizumab. Here a discrete event simulation (DES) model to analyze the cost-effectiveness of natalizumab and fingolimod in the RES population, from the perspective of the National Health Service (NHS) in the UK, is reported. A DES model was developed to track individual RES patients, based on Expanded Disability Status Scale scores. Individual patient characteristics were taken from the RES sub-groups of the pivotal trials for fingolimod. Utility data were in line with previous models. Published costs were inflated to NHS cost year 2015. Owing to the confidential patient access scheme (PAS) discount applied to fingolimod in the UK, a range of discount levels were applied to the fingolimod list price, to capture the likelihood of natalizumab being cost-effective in a real-world setting. At the lower National Institute of Health and Care Excellence (NICE) threshold of £20,000/quality-adjusted life year (QALY), fingolimod only required a discount greater than 0.8% of list price to be cost-effective. At the upper threshold of £30,000/QALY employed by the NICE, fingolimod was cost-effective if the confidential discount is greater than 2.5%. Sensitivity analyses conducted using fingolimod list-price showed the model to be most sensitive to changes in the cost of each drug, particularly fingolimod. The DES model shows that only a modest discount to the UK fingolimod list-price is required to make fingolimod a more cost-effective option than natalizumab in RES RRMS.

  4. Does the rapid appearance of life on Earth suggest that life is common in the universe?

    PubMed

    Lineweaver, Charles H; Davis, Tamara M

    2002-01-01

    It is sometimes assumed that the rapidity of biogenesis on Earth suggests that life is common in the Universe. Here we critically examine the assumptions inherent in this if-life-evolved-rapidly-life-must-be-common argument. We use the observational constraints on the rapidity of biogenesis on Earth to infer the probability of biogenesis on terrestrial planets with the same unknown probability of biogenesis as the Earth. We find that on such planets, older than approximately 1 Gyr, the probability of biogenesis is > 13% at the 95% confidence level. This quantifies an important term in the Drake Equation but does not necessarily mean that life is common in the Universe.

  5. How Hierarchical Topics Evolve in Large Text Corpora.

    PubMed

    Cui, Weiwei; Liu, Shixia; Wu, Zhuofeng; Wei, Hao

    2014-12-01

    Using a sequence of topic trees to organize documents is a popular way to represent hierarchical and evolving topics in text corpora. However, following evolving topics in the context of topic trees remains difficult for users. To address this issue, we present an interactive visual text analysis approach to allow users to progressively explore and analyze the complex evolutionary patterns of hierarchical topics. The key idea behind our approach is to exploit a tree cut to approximate each tree and allow users to interactively modify the tree cuts based on their interests. In particular, we propose an incremental evolutionary tree cut algorithm with the goal of balancing 1) the fitness of each tree cut and the smoothness between adjacent tree cuts; 2) the historical and new information related to user interests. A time-based visualization is designed to illustrate the evolving topics over time. To preserve the mental map, we develop a stable layout algorithm. As a result, our approach can quickly guide users to progressively gain profound insights into evolving hierarchical topics. We evaluate the effectiveness of the proposed method on Amazon's Mechanical Turk and real-world news data. The results show that users are able to successfully analyze evolving topics in text data.

  6. Rapidly Progressive Quadriplegia and Encephalopathy.

    PubMed

    Wynn, DonRaphael; McCorquodale, Donald; Peters, Angela; Juster-Switlyk, Kelsey; Smith, Gordon; Ansari, Safdar

    2016-11-01

    A woman aged 77 years was transferred to our neurocritical care unit for evaluation and treatment of rapidly progressive motor weakness and encephalopathy. Examination revealed an ability to follow simple commands only and abnormal movements, including myoclonus, tongue and orofacial dyskinesias, and opsoclonus. Imaging study findings were initially unremarkable, but when repeated, they demonstrated enhancement of the cauda equina nerve roots, trigeminal nerve, and pachymeninges. Cerebrospinal fluid examination revealed mildly elevated white blood cell count and protein levels. Serial electrodiagnostic testing demonstrated a rapidly progressive diffuse sensory motor axonopathy, and electroencephalogram findings progressed from generalized slowing to bilateral periodic lateralized epileptiform discharges. Critical details of her recent history prompted a diagnostic biopsy. Over time, the patient became completely unresponsive with no further abnormal movements and ultimately died. The differential diagnosis, pathological findings, and diagnosis are discussed with a brief review of a well-known yet rare diagnosis.

  7. Regolith Evolved Gas Analyzer

    NASA Technical Reports Server (NTRS)

    Hoffman, John H.; Hedgecock, Jud; Nienaber, Terry; Cooper, Bonnie; Allen, Carlton; Ming, Doug

    2000-01-01

    The Regolith Evolved Gas Analyzer (REGA) is a high-temperature furnace and mass spectrometer instrument for determining the mineralogical composition and reactivity of soil samples. REGA provides key mineralogical and reactivity data that is needed to understand the soil chemistry of an asteroid, which then aids in determining in-situ which materials should be selected for return to earth. REGA is capable of conducting a number of direct soil measurements that are unique to this instrument. These experimental measurements include: (1) Mass spectrum analysis of evolved gases from soil samples as they are heated from ambient temperature to 900 C; and (2) Identification of liberated chemicals, e.g., water, oxygen, sulfur, chlorine, and fluorine. REGA would be placed on the surface of a near earth asteroid. It is an autonomous instrument that is controlled from earth but does the analysis of regolith materials automatically. The REGA instrument consists of four primary components: (1) a flight-proven mass spectrometer, (2) a high-temperature furnace, (3) a soil handling system, and (4) a microcontroller. An external arm containing a scoop or drill gathers regolith samples. A sample is placed in the inlet orifice where the finest-grained particles are sifted into a metering volume and subsequently moved into a crucible. A movable arm then places the crucible in the furnace. The furnace is closed, thereby sealing the inner volume to collect the evolved gases for analysis. Owing to the very low g forces on an asteroid compared to Mars or the moon, the sample must be moved from inlet to crucible by mechanical means rather than by gravity. As the soil sample is heated through a programmed pattern, the gases evolved at each temperature are passed through a transfer tube to the mass spectrometer for analysis and identification. Return data from the instrument will lead to new insights and discoveries including: (1) Identification of the molecular masses of all of the gases

  8. Evolving artificial metalloenzymes via random mutagenesis

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Swartz, Alan M.; Park, Hyun June; Srivastava, Poonam; Ellis-Guardiola, Ken; Upp, David M.; Lee, Gihoon; Belsare, Ketaki; Gu, Yifan; Zhang, Chen; Moellering, Raymond E.; Lewis, Jared C.

    2018-03-01

    Random mutagenesis has the potential to optimize the efficiency and selectivity of protein catalysts without requiring detailed knowledge of protein structure; however, introducing synthetic metal cofactors complicates the expression and screening of enzyme libraries, and activity arising from free cofactor must be eliminated. Here we report an efficient platform to create and screen libraries of artificial metalloenzymes (ArMs) via random mutagenesis, which we use to evolve highly selective dirhodium cyclopropanases. Error-prone PCR and combinatorial codon mutagenesis enabled multiplexed analysis of random mutations, including at sites distal to the putative ArM active site that are difficult to identify using targeted mutagenesis approaches. Variants that exhibited significantly improved selectivity for each of the cyclopropane product enantiomers were identified, and higher activity than previously reported ArM cyclopropanases obtained via targeted mutagenesis was also observed. This improved selectivity carried over to other dirhodium-catalysed transformations, including N-H, S-H and Si-H insertion, demonstrating that ArMs evolved for one reaction can serve as starting points to evolve catalysts for others.

  9. Phenotypic variation and covariation indicate high evolvability of acoustic communication in crickets.

    PubMed

    Blankers, T; Lübke, A K; Hennig, R M

    2015-09-01

    Studying the genetic architecture of sexual traits provides insight into the rate and direction at which traits can respond to selection. Traits associated with few loci and limited genetic and phenotypic constraints tend to evolve at high rates typically observed for secondary sexual characters. Here, we examined the genetic architecture of song traits and female song preferences in the field crickets Gryllus rubens and Gryllus texensis. Song and preference data were collected from both species and interspecific F1 and F2 hybrids. We first analysed phenotypic variation to examine interspecific differentiation and trait distributions in parental and hybrid generations. Then, the relative contribution of additive and additive-dominance variation was estimated. Finally, phenotypic variance-covariance (P) matrices were estimated to evaluate the multivariate phenotype available for selection. Song traits and preferences had unimodal trait distributions, and hybrid offspring were intermediate with respect to the parents. We uncovered additive and dominance variation in song traits and preferences. For two song traits, we found evidence for X-linked inheritance. On the one hand, the observed genetic architecture does not suggest rapid divergence, although sex linkage may have allowed for somewhat higher evolutionary rates. On the other hand, P matrices revealed that multivariate variation in song traits aligned with major dimensions in song preferences, suggesting a strong selection response. We also found strong covariance between the main traits that are sexually selected and traits that are not directly selected by females, providing an explanation for the striking multivariate divergence in male calling songs despite limited divergence in female preferences. © 2015 European Society For Evolutionary Biology.

  10. Consumer Health Informatics: Past, Present, and Future of a Rapidly Evolving Domain.

    PubMed

    Demiris, G

    2016-05-20

    Consumer Health Informatics (CHI) is a rapidly growing domain within the field of biomedical and health informatics. The objective of this paper is to reflect on the past twenty five years and showcase informatics concepts and applications that led to new models of care and patient empowerment, and to predict future trends and challenges for the next 25 years. We discuss concepts and systems based on a review and analysis of published literature in the consumer health informatics domain in the last 25 years. The field was introduced with the vision that one day patients will be in charge of their own health care using informatics tools and systems. Scientific literature in the field originally focused on ways to assess the quality and validity of available printed health information, only to grow significantly to cover diverse areas such as online communities, social media, and shared decision-making. Concepts such as home telehealth, mHealth, and the quantified-self movement, tools to address transparency of health care organizations, and personal health records and portals provided significant milestones in the field. Consumers are able to actively participate in the decision-making process and to engage in health care processes and decisions. However, challenges such as health literacy and the digital divide have hindered us from maximizing the potential of CHI tools with a significant portion of underserved populations unable to access and utilize them. At the same time, at a global scale consumer tools can increase access to care for underserved populations in developing countries. The field continues to grow and emerging movements such as precision medicine and the sharing economy will introduce new opportunities and challenges.

  11. Polarization and studies of evolved star mass loss

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin; Srinivasan, Sundar; Riebel, David; Meixner, Margaret

    2012-05-01

    Polarization studies of astronomical dust have proven very useful in constraining its properties. Such studies are used to constrain the spatial arrangement, shape, composition, and optical properties of astronomical dust grains. Here we explore possible connections between astronomical polarization observations to our studies of mass loss from evolved stars. We are studying evolved star mass loss in the Large Magellanic Cloud (LMC) by using photometry from the Surveying the Agents of a Galaxy's Evolution (SAGE; PI: M. Meixner) Spitzer Space Telescope Legacy program. We use the radiative transfer program 2Dust to create our Grid of Red supergiant and Asymptotic giant branch ModelS (GRAMS), in order to model this mass loss. To model emission of polarized light from evolved stars, however, we appeal to other radiative transfer codes. We probe how polarization observations might be used to constrain the dust shell and dust grain properties of the samples of evolved stars we are studying.

  12. Onboard Radar Processing Development for Rapid Response Applications

    NASA Technical Reports Server (NTRS)

    Lou, Yunling; Chien, Steve; Clark, Duane; Doubleday, Josh; Muellerschoen, Ron; Wang, Charles C.

    2011-01-01

    We are developing onboard processor (OBP) technology to streamline data acquisition on-demand and explore the potential of the L-band SAR instrument onboard the proposed DESDynI mission and UAVSAR for rapid response applications. The technology would enable the observation and use of surface change data over rapidly evolving natural hazards, both as an aid to scientific understanding and to provide timely data to agencies responsible for the management and mitigation of natural disasters. We are adapting complex science algorithms for surface water extent to detect flooding, snow/water/ice classification to assist in transportation/ shipping forecasts, and repeat-pass change detection to detect disturbances. We are near completion of the development of a custom FPGA board to meet the specific memory and processing needs of L-band SAR processor algorithms and high speed interfaces to reformat and route raw radar data to/from the FPGA processor board. We have also developed a high fidelity Matlab model of the SAR processor that is modularized and parameterized for ease to prototype various SAR processor algorithms targeted for the FPGA. We will be testing the OBP and rapid response algorithms with UAVSAR data to determine the fidelity of the products.

  13. The evolution of resource adaptation: how generalist and specialist consumers evolve.

    PubMed

    Ma, Junling; Levin, Simon A

    2006-07-01

    Why and how specialist and generalist strategies evolve are important questions in evolutionary ecology. In this paper, with the method of adaptive dynamics and evolutionary branching, we identify conditions that select for specialist and generalist strategies. Generally, generalist strategies evolve if there is a switching benefit; specialists evolve if there is a switching cost. If the switching cost is large, specialists always evolve. If the switching cost is small, even though the consumer will first evolve toward a generalist strategy, it will eventually branch into two specialists.

  14. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Robinson, Kimberly F.

    2016-01-01

    A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS will propel the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.

  15. Volcanic lightning and plume behavior reveal evolving hazards during the April 2015 eruption of Calbuco Volcano, Chile

    DOE PAGES

    Van Eaton, Alexa R.; Behnke, Sonja Ann; Amigo, Alvaro; ...

    2016-04-12

    Soon after the onset of an eruption, model forecasts of ash dispersal are used to mitigate the hazards to aircraft, infrastructure, and communities downwind. However, it is a significant challenge to constrain the model inputs during an evolving eruption. Here we demonstrate that volcanic lightning may be used in tandem with satellite detection to recognize and quantify changes in eruption style and intensity. Using the eruption of Calbuco volcano in southern Chile on 22 and 23 April 2015, we investigate rates of umbrella cloud expansion from satellite observations, occurrence of lightning, and mapped characteristics of the fall deposits. Our remotemore » sensing analysis gives a total erupted volume that is within uncertainty of the mapped volume (0.56 ± 0.28 km3 bulk). Furthermore, observations and volcanic plume modeling further suggest that electrical activity was enhanced both by ice formation in the ash clouds >10 km above sea level and development of a low-level charge layer from ground-hugging currents.« less

  16. Volcanic lightning and plume behavior reveal evolving hazards during the April 2015 eruption of Calbuco volcano, Chile

    USGS Publications Warehouse

    Van Eaton, Alexa; Amigo, Álvaro; Bertin, Daniel; Mastin, Larry G.; Giacosa, Raúl E; González, Jerónimo; Valderrama, Oscar; Fontijn, Karen; Behnke, Sonja A

    2016-01-01

    Soon after the onset of an eruption, model forecasts of ash dispersal are used to mitigate the hazards to aircraft, infrastructure and communities downwind. However, it is a significant challenge to constrain the model inputs during an evolving eruption. Here we demonstrate that volcanic lightning may be used in tandem with satellite detection to recognize and quantify changes in eruption style and intensity. Using the eruption of Calbuco volcano in southern Chile on 22-23 April 2015, we investigate rates of umbrella cloud expansion from satellite observations, occurrence of lightning, and mapped characteristics of the fall deposits. Our remote-sensing analysis gives a total erupted volume that is within uncertainty of the mapped volume (0.56 ±0.28 km3 bulk). Observations and volcanic plume modeling further suggest that electrical activity was enhanced both by ice formation in the ash clouds >10 km asl and development of a low-level charge layer from ground-hugging currents.

  17. Volcanic lightning and plume behavior reveal evolving hazards during the April 2015 eruption of Calbuco Volcano, Chile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Eaton, Alexa R.; Behnke, Sonja Ann; Amigo, Alvaro

    Soon after the onset of an eruption, model forecasts of ash dispersal are used to mitigate the hazards to aircraft, infrastructure, and communities downwind. However, it is a significant challenge to constrain the model inputs during an evolving eruption. Here we demonstrate that volcanic lightning may be used in tandem with satellite detection to recognize and quantify changes in eruption style and intensity. Using the eruption of Calbuco volcano in southern Chile on 22 and 23 April 2015, we investigate rates of umbrella cloud expansion from satellite observations, occurrence of lightning, and mapped characteristics of the fall deposits. Our remotemore » sensing analysis gives a total erupted volume that is within uncertainty of the mapped volume (0.56 ± 0.28 km3 bulk). Furthermore, observations and volcanic plume modeling further suggest that electrical activity was enhanced both by ice formation in the ash clouds >10 km above sea level and development of a low-level charge layer from ground-hugging currents.« less

  18. Dynamic information processing states revealed through neurocognitive models of object semantics

    PubMed Central

    Clarke, Alex

    2015-01-01

    Recognising objects relies on highly dynamic, interactive brain networks to process multiple aspects of object information. To fully understand how different forms of information about objects are represented and processed in the brain requires a neurocognitive account of visual object recognition that combines a detailed cognitive model of semantic knowledge with a neurobiological model of visual object processing. Here we ask how specific cognitive factors are instantiated in our mental processes and how they dynamically evolve over time. We suggest that coarse semantic information, based on generic shared semantic knowledge, is rapidly extracted from visual inputs and is sufficient to drive rapid category decisions. Subsequent recurrent neural activity between the anterior temporal lobe and posterior fusiform supports the formation of object-specific semantic representations – a conjunctive process primarily driven by the perirhinal cortex. These object-specific representations require the integration of shared and distinguishing object properties and support the unique recognition of objects. We conclude that a valuable way of understanding the cognitive activity of the brain is though testing the relationship between specific cognitive measures and dynamic neural activity. This kind of approach allows us to move towards uncovering the information processing states of the brain and how they evolve over time. PMID:25745632

  19. Phenotypic divergence along geographic gradients reveals potential for rapid adaptation of the White-nose Syndrome pathogen, Pseudogymnoascus destructans, in North America.

    PubMed

    Forsythe, Adrian; Giglio, Victoria; Asa, Jonathan; Xu, Jianping

    2018-06-18

    White-nose Syndrome (WNS) is an ongoing epizootic affecting multiple species of North American bats, caused by epidermal infections of the psychrophilic filamentous fungus, Pseudogymnoascus destructans Since its introduction from Europe, WNS has spread rapidly across eastern North America and resulted in high mortality rates in bats. At present, the mechanisms behind its spread and the extent of its adaptation to different geographic and ecological niches remain unknown. The objective of this study was to examine the geographic patterns of phenotypic variation and the potential evidence for adaptation among strains representing broad geographic locations in eastern North America. The morphological features of these strains were evaluated on artificial medium, and the viability of asexual arthroconidia of representative strains were investigated after storage at high (23°C), moderate (14°C), and low (4°C) temperatures at different lengths of times. Our analyses identified evidence for a geographic pattern of colony morphology changes among the clonal descendants of the fungus, with trait values correlated with increased distance from the epicenter of WNS. Our genomic comparisons of three representative isolates revealed novel genetic polymorphisms and suggested potential candidate mutations that might be related to some of the phenotypic changes. These results show that even though this pathogen arrived in North America only recently and reproduces asexually, there has been substantial evolution and phenotypic diversification during its rapid clonal expansion. Importance The causal agent of White-nose Syndrome in bats is Pseudogymnoascus destructans , a filamentous fungus recently introduced from its native range in Europe. Infections caused by P. destructans have progressed across the eastern parts of Canada and the United States over the last ten years. It is not clear how the disease is spread as the pathogen is unable to grow above 23°C and ambient

  20. Consumer Health Informatics: Past, Present, and Future of a Rapidly Evolving Domain

    PubMed Central

    2016-01-01

    Summary Objectives Consumer Health Informatics (CHI) is a rapidly growing domain within the field of biomedical and health informatics. The objective of this paper is to reflect on the past twenty five years and showcase informatics concepts and applications that led to new models of care and patient empowerment, and to predict future trends and challenges for the next 25 years. Methods We discuss concepts and systems based on a review and analysis of published literature in the consumer health informatics domain in the last 25 years. Results The field was introduced with the vision that one day patients will be in charge of their own health care using informatics tools and systems. Scientific literature in the field originally focused on ways to assess the quality and validity of available printed health information, only to grow significantly to cover diverse areas such as online communities, social media, and shared decision-making. Concepts such as home telehealth, mHealth, and the quantified-self movement, tools to address transparency of health care organizations, and personal health records and portals provided significant milestones in the field. Conclusion Consumers are able to actively participate in the decision-making process and to engage in health care processes and decisions. However, challenges such as health literacy and the digital divide have hindered us from maximizing the potential of CHI tools with a significant portion of underserved populations unable to access and utilize them. At the same time, at a global scale consumer tools can increase access to care for underserved populations in developing countries. The field continues to grow and emerging movements such as precision medicine and the sharing economy will introduce new opportunities and challenges. PMID:27199196

  1. Atomic and electronic structure transformations of silver nanoparticles under rapid cooling conditions.

    PubMed

    Lobato, I; Rojas, J; Landauro, C V; Torres, J

    2009-02-04

    The structural evolution and dynamics of silver nanodrops Ag(2869) (4.4 nm in diameter) under rapid cooling conditions have been studied by means of molecular dynamics simulations and electronic density of state calculations. The interaction of silver atoms is modelled by a tight-binding semiempirical interatomic potential proposed by Cleri and Rosato. The pair correlation functions and the pair analysis technique are used to reveal the structural transition in the process of solidification. It is shown that Ag nanoparticles evolve into different nanostructures under different cooling processes. At a cooling rate of 1.5625 × 10(13) K s(-1) the nanoparticles preserve an amorphous-like structure containing a large amount of 1551 and 1541 pairs which correspond to icosahedral symmetry. For a lower cooling rate (1.5625 × 10(12) K s(-1)), the nanoparticles transform into a crystal-like structure consisting mainly of 1421 and 1422 pairs which correspond to the face centred cubic and hexagonal close packed structures, respectively. The variations of the electronic density of states for the differently cooled nanoparticles are small, but in correspondence with the structural changes.

  2. Rapid Sequencing of Complete env Genes from Primary HIV-1 Samples

    PubMed Central

    Eren, Kemal; Ignacio, Caroline; Landais, Elise; Weaver, Steven; Phung, Pham; Ludka, Colleen; Hepler, Lance; Caballero, Gemma; Pollner, Tristan; Guo, Yan; Richman, Douglas; Poignard, Pascal; Paxinos, Ellen E.; Kosakovsky Pond, Sergei L.

    2016-01-01

    Abstract The ability to study rapidly evolving viral populations has been constrained by the read length of next-generation sequencing approaches and the sampling depth of single-genome amplification methods. Here, we develop and characterize a method using Pacific Biosciences’ Single Molecule, Real-Time (SMRT®) sequencing technology to sequence multiple, intact full-length human immunodeficiency virus-1 env genes amplified from viral RNA populations circulating in blood, and provide computational tools for analyzing and visualizing these data. PMID:29492273

  3. Rapid Sequencing of Complete env Genes from Primary HIV-1 Samples.

    PubMed

    Laird Smith, Melissa; Murrell, Ben; Eren, Kemal; Ignacio, Caroline; Landais, Elise; Weaver, Steven; Phung, Pham; Ludka, Colleen; Hepler, Lance; Caballero, Gemma; Pollner, Tristan; Guo, Yan; Richman, Douglas; Poignard, Pascal; Paxinos, Ellen E; Kosakovsky Pond, Sergei L; Smith, Davey M

    2016-07-01

    The ability to study rapidly evolving viral populations has been constrained by the read length of next-generation sequencing approaches and the sampling depth of single-genome amplification methods. Here, we develop and characterize a method using Pacific Biosciences' Single Molecule, Real-Time (SMRT®) sequencing technology to sequence multiple, intact full-length human immunodeficiency virus-1 env genes amplified from viral RNA populations circulating in blood, and provide computational tools for analyzing and visualizing these data.

  4. Dental Therapy: Evolving in Minnesota’s Safety Net

    PubMed Central

    Born, David; Nagy, Amanda

    2014-01-01

    Objectives. We identified Minnesota’s initial dental therapy employers and surveyed dental safety net providers’ perceptions of dental therapy. Methods. In July 2011, we surveyed 32 Minnesota dental safety net providers to assess their prospective views on dental therapy employment options. In October 2013, we used an employment scan to reveal characteristics of the early adopters of dental therapy. Results. Before the availability of licensed dental therapists, safety net dental clinic directors overwhelmingly (77%) supported dental therapy. As dental therapists have become licensed over the past 2 years, the early employers of dental therapists are safety net clinics. Conclusions. Although the concept of dental therapy remains controversial in Minnesota, it now has a firm foundation in the state’s safety net clinics. Dental therapists are being used in innovative and diverse ways, so, as dental therapy continues to evolve, further research to identify best practices for incorporating dental therapists into the oral health care team is needed. PMID:24825234

  5. Emergence of a Norovirus GII.4 Strain Correlates with Changes in Evolving Blockade Epitopes

    PubMed Central

    Lindesmith, Lisa C.; Costantini, Verónica; Swanstrom, Jesica; Debbink, Kari; Donaldson, Eric F.; Vinjé, Jan

    2013-01-01

    The major capsid protein of norovirus GII.4 strains is evolving rapidly, resulting in epidemic strains with altered antigenicity. GII.4.2006 Minerva strains circulated at pandemic levels in 2006 and persisted at lower levels until 2009. In 2009, a new GII.4 variant, GII.4.2009 New Orleans, emerged and since then has become the predominant strain circulating in human populations. To determine whether changes in evolving blockade epitopes correlate with the emergence of the GII.4.2009 New Orleans strains, we compared the antibody reactivity of a panel of mouse monoclonal antibodies (MAbs) against GII.4.2006 and GII.4.2009 virus-like particles (VLPs). Both anti-GII.4.2006 and GII.4.2009 MAbs effectively differentiated the two strains by VLP-carbohydrate ligand blockade assay. Most of the GII.4.2006 MAbs preferentially blocked GII.4.2006, while all of the GII.4.2009 MAbs preferentially blocked GII.4.2009, although 8 of 12 tested blockade MAbs blocked both VLPs. Using mutant VLPs designed to alter predicted antigenic epitopes, binding of seven of the blockade MAbs was impacted by alterations in epitope A, identifying residues 294, 296, 297, 298, 368, and 372 as important antigenic sites in these strains. Convalescent-phase serum collected from a GII.4.2009 outbreak confirmed the immunodominance of epitope A, since alterations of epitope A affected serum reactivity by 40%. These data indicate that the GII.4.2009 New Orleans variant has evolved a key blockade epitope, possibly allowing for at least partial escape from protective herd immunity and provide epidemiological support for the utility of monitoring changes in epitope A in emergent strain surveillance. PMID:23269783

  6. Diversity and Evolution of Bacterial Twin Arginine Translocase Protein, TatC, Reveals a Protein Secretion System That Is Evolving to Fit Its Environmental Niche

    PubMed Central

    Simone, Domenico; Bay, Denice C.; Leach, Thorin; Turner, Raymond J.

    2013-01-01

    Background The twin-arginine translocation (Tat) protein export system enables the transport of fully folded proteins across a membrane. This system is composed of two integral membrane proteins belonging to TatA and TatC protein families and in some systems a third component, TatB, a homolog of TatA. TatC participates in substrate protein recognition through its interaction with a twin arginine leader peptide sequence. Methodology/Principal Findings The aim of this study was to explore TatC diversity, evolution and sequence conservation in bacteria to identify how TatC is evolving and diversifying in various bacterial phyla. Surveying bacterial genomes revealed that 77% of all species possess one or more tatC loci and half of these classes possessed only tatC and tatA genes. Phylogenetic analysis of diverse TatC homologues showed that they were primarily inherited but identified a small subset of taxonomically unrelated bacteria that exhibited evidence supporting lateral gene transfer within an ecological niche. Examination of bacilli tatCd/tatCy isoform operons identified a number of known and potentially new Tat substrate genes based on their frequent association to tatC loci. Evolutionary analysis of these Bacilli isoforms determined that TatCy was the progenitor of TatCd. A bacterial TatC consensus sequence was determined and highlighted conserved and variable regions within a three dimensional model of the Escherichia coli TatC protein. Comparative analysis between the TatC consensus sequence and Bacilli TatCd/y isoform consensus sequences revealed unique sites that may contribute to isoform substrate specificity or make TatA specific contacts. Synonymous to non-synonymous nucleotide substitution analyses of bacterial tatC homologues determined that tatC sequence variation differs dramatically between various classes and suggests TatC specialization in these species. Conclusions/Significance TatC proteins appear to be diversifying within particular bacterial

  7. OT2_nflagey_2: Capturing missing evolved stars in the Galactic plane

    NASA Astrophysics Data System (ADS)

    Flagey, N.

    2011-09-01

    We discovered more than 400 compact shells in the MIPSGAL 24 microns survey of the Galactic plane. About 15% of all these objects were already known as planetary nebulae, supernova remnants, Wolf-Rayet stars, and luminous blue variables. The unknown bubbles are expected to be envelopes of evolved stars that could account for the ``missing massive stars in the Galaxy. Indeed, recent spectroscopic follow-ups in the near-IR and mid-IR have revealed several dust-free planetary nebulae with very hot central white dwarf and significantly increased the number of WR and LBV candidates. Our OT1 Priority 1 proposal just provided us with a first observation in the PACS-SED B2A mode of one object, revealing only a strong [N II] 122 microns line. Without further spectral information, identification and modeling of the target are impossible. However, analysis of the PACS and SPIRE data from the HiGal survey has recently enabled us to measure much higher detection rates of the shells in the far-IR than with MIPS 70 microns. We are thus very confident that dust features and/or gas lines can be detected with the PACS and SPIRE spectrometers. Therefore, we request complementary PACS-SED B2B and SPIRE-FTS observations on our OT1 sample. The complete far-IR/submm spectrum of each target will allow its unequivocal identification thanks to comparison with spectra of known evolved stars from the MESS key program. We will also model with much detail the different phases of the envelopes, thanks to our expertise in circumstellar envelopes, dust models and photoionization codes.

  8. Laplacian Estrada and normalized Laplacian Estrada indices of evolving graphs.

    PubMed

    Shang, Yilun

    2015-01-01

    Large-scale time-evolving networks have been generated by many natural and technological applications, posing challenges for computation and modeling. Thus, it is of theoretical and practical significance to probe mathematical tools tailored for evolving networks. In this paper, on top of the dynamic Estrada index, we study the dynamic Laplacian Estrada index and the dynamic normalized Laplacian Estrada index of evolving graphs. Using linear algebra techniques, we established general upper and lower bounds for these graph-spectrum-based invariants through a couple of intuitive graph-theoretic measures, including the number of vertices or edges. Synthetic random evolving small-world networks are employed to show the relevance of the proposed dynamic Estrada indices. It is found that neither the static snapshot graphs nor the aggregated graph can approximate the evolving graph itself, indicating the fundamental difference between the static and dynamic Estrada indices.

  9. Did the notochord evolve from an ancient axial muscle? The axochord hypothesis

    PubMed Central

    Brunet, Thibaut; Lauri, Antonella

    2015-01-01

    The origin of the notochord is one of the key remaining mysteries of our evolutionary ancestry. Here, we present a multi‐level comparison of the chordate notochord to the axochord, a paired axial muscle spanning the ventral midline of annelid worms and other invertebrates. At the cellular level, comparative molecular profiling in the marine annelids P. dumerilii and C. teleta reveals expression of similar, specific gene sets in presumptive axochordal and notochordal cells. These cells also occupy corresponding positions in a conserved anatomical topology and undergo similar morphogenetic movements. At the organ level, a detailed comparison of bilaterian musculatures reveals that most phyla form axochord‐like muscles, suggesting that such a muscle was already present in urbilaterian ancestors. Integrating comparative evidence at the cell and organ level, we propose that the notochord evolved by modification of a ventromedian muscle followed by the assembly of an axial complex supporting swimming in vertebrate ancestors. PMID:26172338

  10. Did the notochord evolve from an ancient axial muscle? The axochord hypothesis.

    PubMed

    Brunet, Thibaut; Lauri, Antonella; Arendt, Detlev

    2015-08-01

    The origin of the notochord is one of the key remaining mysteries of our evolutionary ancestry. Here, we present a multi-level comparison of the chordate notochord to the axochord, a paired axial muscle spanning the ventral midline of annelid worms and other invertebrates. At the cellular level, comparative molecular profiling in the marine annelids P. dumerilii and C. teleta reveals expression of similar, specific gene sets in presumptive axochordal and notochordal cells. These cells also occupy corresponding positions in a conserved anatomical topology and undergo similar morphogenetic movements. At the organ level, a detailed comparison of bilaterian musculatures reveals that most phyla form axochord-like muscles, suggesting that such a muscle was already present in urbilaterian ancestors. Integrating comparative evidence at the cell and organ level, we propose that the notochord evolved by modification of a ventromedian muscle followed by the assembly of an axial complex supporting swimming in vertebrate ancestors. © 2015 The Authors. Bioessays published by WILEY Periodicals, Inc.

  11. A slowly evolving host moves first in symbiotic interactions

    NASA Astrophysics Data System (ADS)

    Damore, James; Gore, Jeff

    2011-03-01

    Symbiotic relationships, both parasitic and mutualistic, are ubiquitous in nature. Understanding how these symbioses evolve, from bacteria and their phages to humans and our gut microflora, is crucial in understanding how life operates. Often, symbioses consist of a slowly evolving host species with each host only interacting with its own sub-population of symbionts. The Red Queen hypothesis describes coevolutionary relationships as constant arms races with each species rushing to evolve an advantage over the other, suggesting that faster evolution is favored. Here, we use a simple game theoretic model of host- symbiont coevolution that includes population structure to show that if the symbionts evolve much faster than the host, the equilibrium distribution is the same as it would be if it were a sequential game where the host moves first against its symbionts. For the slowly evolving host, this will prove to be advantageous in mutualisms and a handicap in antagonisms. The model allows for symbiont adaptation to its host, a result that is robust to changes in the parameters and generalizes to continuous and multiplayer games. Our findings provide insight into a wide range of symbiotic phenomena and help to unify the field of coevolutionary theory.

  12. The evolving energy budget of accretionary wedges

    NASA Astrophysics Data System (ADS)

    McBeck, Jessica; Cooke, Michele; Maillot, Bertrand; Souloumiac, Pauline

    2017-04-01

    The energy budget of evolving accretionary systems reveals how deformational processes partition energy as faults slip, topography uplifts, and layer-parallel shortening produces distributed off-fault deformation. The energy budget provides a quantitative framework for evaluating the energetic contribution or consumption of diverse deformation mechanisms. We investigate energy partitioning in evolving accretionary prisms by synthesizing data from physical sand accretion experiments and numerical accretion simulations. We incorporate incremental strain fields and cumulative force measurements from two suites of experiments to design numerical simulations that represent accretionary wedges with stronger and weaker detachment faults. One suite of the physical experiments includes a basal glass bead layer and the other does not. Two physical experiments within each suite implement different boundary conditions (stable base versus moving base configuration). Synthesizing observations from the differing base configurations reduces the influence of sidewall friction because the force vector produced by sidewall friction points in opposite directions depending on whether the base is fixed or moving. With the numerical simulations, we calculate the energy budget at two stages of accretion: at the maximum force preceding the development of the first thrust pair, and at the minimum force following the development of the pair. To identify the appropriate combination of material and fault properties to apply in the simulations, we systematically vary the Young's modulus and the fault static and dynamic friction coefficients in numerical accretion simulations, and identify the set of parameters that minimizes the misfit between the normal force measured on the physical backwall and the numerically simulated force. Following this derivation of the appropriate material and fault properties, we calculate the components of the work budget in the numerical simulations and in the

  13. Highly-evolved stars

    NASA Technical Reports Server (NTRS)

    Heap, S. R.

    1981-01-01

    The ways in which the IUE has proved useful in studying highly evolved stars are reviewed. The importance of high dispersion spectra for abundance analyses of the sd0 stars and for studies of the wind from the central star of NGC 6543 and the wind from the 0 type component of Vela X-1 is shown. Low dispersion spectra are used for absolute spectrophotometry of the dwarf nova, Ex Hya. Angular resolution is important for detecting and locating UV sources in globular clusters.

  14. Lower mass limit of an evolving interstellar cloud and chemistry in an evolving oscillatory cloud

    NASA Technical Reports Server (NTRS)

    Tarafdar, S. P.

    1986-01-01

    Simultaneous solution of the equation of motion, equation of state and energy equation including heating and cooling processes for interstellar medium gives for a collapsing cloud a lower mass limit which is significantly smaller than the Jeans mass for the same initial density. The clouds with higher mass than this limiting mass collapse whereas clouds with smaller than critical mass pass through a maximum central density giving apparently similar clouds (i.e., same Av, size and central density) at two different phases of its evolution (i.e., with different life time). Preliminary results of chemistry in such an evolving oscillatory cloud show significant difference in abundances of some of the molecules in two physically similar clouds with different life times. The problems of depletion and short life time of evolving clouds appear to be less severe in such an oscillatory cloud.

  15. Evolving mobile robots able to display collective behaviors.

    PubMed

    Baldassarre, Gianluca; Nolfi, Stefano; Parisi, Domenico

    2003-01-01

    We present a set of experiments in which simulated robots are evolved for the ability to aggregate and move together toward a light target. By developing and using quantitative indexes that capture the structural properties of the emerged formations, we show that evolved individuals display interesting behavioral patterns in which groups of robots act as a single unit. Moreover, evolved groups of robots with identical controllers display primitive forms of situated specialization and play different behavioral functions within the group according to the circumstances. Overall, the results presented in the article demonstrate that evolutionary techniques, by exploiting the self-organizing behavioral properties that emerge from the interactions between the robots and between the robots and the environment, are a powerful method for synthesizing collective behavior.

  16. Rapid Review Summit: an overview and initiation of a research agenda.

    PubMed

    Polisena, Julie; Garritty, Chantelle; Umscheid, Craig A; Kamel, Chris; Samra, Kevin; Smith, Jeannette; Vosilla, Ann

    2015-09-26

    The demand for accelerated forms of evidence synthesis is on the rise, largely in response to requests by health care decision makers for expeditious assessment and up-to-date information about health care technologies and health services and programs. As a field, rapid review evidence synthesis is marked by a tension between the strategic priority to inform health care decision-making and the scientific imperative to produce robust, high-quality research that soundly supports health policy and practice. In early 2015, the Canadian Agency for Drugs and Technologies in Health convened a forum in partnership with the British Columbia Ministry of Health, the British Columbia Centre for Clinical Epidemiology and Evaluation, the Ottawa Hospital Research Institute, and the University of Pennsylvania. More than 150 evidence synthesis producers and end users attended the Rapid Review Summit: Then, Now and in the Future. The Summit program focused on the evolving role and practices of rapid reviews to support informed health care policy and clinical decision-making, including the uptake and use of health technology assessment. Our discussion paper highlights the important discussions that occurred during the Rapid Review Summit. It focuses on the initial development of a research agenda that resulted from the Summit presentations and discussions. The research topics centered on three key areas of interest: (1) how to conduct a rapid review; (2) investigating the validity and utility of rapid reviews; and (3) how to improve access to rapid reviews.

  17. Towards Evolving Electronic Circuits for Autonomous Space Applications

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Haith, Gary L.; Colombano, Silvano P.; Stassinopoulos, Dimitris

    2000-01-01

    The relatively new field of Evolvable Hardware studies how simulated evolution can reconfigure, adapt, and design hardware structures in an automated manner. Space applications, especially those requiring autonomy, are potential beneficiaries of evolvable hardware. For example, robotic drilling from a mobile platform requires high-bandwidth controller circuits that are difficult to design. In this paper, we present automated design techniques based on evolutionary search that could potentially be used in such applications. First, we present a method of automatically generating analog circuit designs using evolutionary search and a circuit construction language. Our system allows circuit size (number of devices), circuit topology, and device values to be evolved. Using a parallel genetic algorithm, we present experimental results for five design tasks. Second, we investigate the use of coevolution in automated circuit design. We examine fitness evaluation by comparing the effectiveness of four fitness schedules. The results indicate that solution quality is highest with static and co-evolving fitness schedules as compared to the other two dynamic schedules. We discuss these results and offer two possible explanations for the observed behavior: retention of useful information, and alignment of problem difficulty with circuit proficiency.

  18. Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium, Desulfovibrio vulgaris

    PubMed Central

    Zhou, Aifen; Lau, Rebecca; Baran, Richard; Ma, Jincai; von Netzer, Frederick; Shi, Weiling; Gorman-Lewis, Drew; Kempher, Megan L.; He, Zhili; Qin, Yujia; Shi, Zhou; Zane, Grant M.; Wu, Liyou; Bowen, Benjamin P.; Northen, Trent R.; Hillesland, Kristina L.; Stahl, David A.; Wall, Judy D.; Arkin, Adam P.

    2017-01-01

    ABSTRACT Rapid genetic and phenotypic adaptation of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough to salt stress was observed during experimental evolution. In order to identify key metabolites important for salt tolerance, a clone, ES10-5, which was isolated from population ES10 and allowed to experimentally evolve under salt stress for 5,000 generations, was analyzed and compared to clone ES9-11, which was isolated from population ES9 and had evolved under the same conditions for 1,200 generations. These two clones were chosen because they represented the best-adapted clones among six independently evolved populations. ES10-5 acquired new mutations in genes potentially involved in salt tolerance, in addition to the preexisting mutations and different mutations in the same genes as in ES9-11. Most basal abundance changes of metabolites and phospholipid fatty acids (PLFAs) were lower in ES10-5 than ES9-11, but an increase of glutamate and branched PLFA i17:1ω9c under high-salinity conditions was persistent. ES9-11 had decreased cell motility compared to the ancestor; in contrast, ES10-5 showed higher cell motility under both nonstress and high-salinity conditions. Both genotypes displayed better growth energy efficiencies than the ancestor under nonstress or high-salinity conditions. Consistently, ES10-5 did not display most of the basal transcriptional changes observed in ES9-11, but it showed increased expression of genes involved in glutamate biosynthesis, cation efflux, and energy metabolism under high salinity. These results demonstrated the role of glutamate as a key osmolyte and i17:1ω9c as the major PLFA for salt tolerance in D. vulgaris. The mechanistic changes in evolved genotypes suggested that growth energy efficiency might be a key factor for selection. PMID:29138306

  19. The evolvability of programmable hardware.

    PubMed

    Raman, Karthik; Wagner, Andreas

    2011-02-06

    In biological systems, individual phenotypes are typically adopted by multiple genotypes. Examples include protein structure phenotypes, where each structure can be adopted by a myriad individual amino acid sequence genotypes. These genotypes form vast connected 'neutral networks' in genotype space. The size of such neutral networks endows biological systems not only with robustness to genetic change, but also with the ability to evolve a vast number of novel phenotypes that occur near any one neutral network. Whether technological systems can be designed to have similar properties is poorly understood. Here we ask this question for a class of programmable electronic circuits that compute digital logic functions. The functional flexibility of such circuits is important in many applications, including applications of evolutionary principles to circuit design. The functions they compute are at the heart of all digital computation. We explore a vast space of 10(45) logic circuits ('genotypes') and 10(19) logic functions ('phenotypes'). We demonstrate that circuits that compute the same logic function are connected in large neutral networks that span circuit space. Their robustness or fault-tolerance varies very widely. The vicinity of each neutral network contains circuits with a broad range of novel functions. Two circuits computing different functions can usually be converted into one another via few changes in their architecture. These observations show that properties important for the evolvability of biological systems exist in a commercially important class of electronic circuitry. They also point to generic ways to generate fault-tolerant, adaptable and evolvable electronic circuitry.

  20. The evolvability of programmable hardware

    PubMed Central

    Raman, Karthik; Wagner, Andreas

    2011-01-01

    In biological systems, individual phenotypes are typically adopted by multiple genotypes. Examples include protein structure phenotypes, where each structure can be adopted by a myriad individual amino acid sequence genotypes. These genotypes form vast connected ‘neutral networks’ in genotype space. The size of such neutral networks endows biological systems not only with robustness to genetic change, but also with the ability to evolve a vast number of novel phenotypes that occur near any one neutral network. Whether technological systems can be designed to have similar properties is poorly understood. Here we ask this question for a class of programmable electronic circuits that compute digital logic functions. The functional flexibility of such circuits is important in many applications, including applications of evolutionary principles to circuit design. The functions they compute are at the heart of all digital computation. We explore a vast space of 1045 logic circuits (‘genotypes’) and 1019 logic functions (‘phenotypes’). We demonstrate that circuits that compute the same logic function are connected in large neutral networks that span circuit space. Their robustness or fault-tolerance varies very widely. The vicinity of each neutral network contains circuits with a broad range of novel functions. Two circuits computing different functions can usually be converted into one another via few changes in their architecture. These observations show that properties important for the evolvability of biological systems exist in a commercially important class of electronic circuitry. They also point to generic ways to generate fault-tolerant, adaptable and evolvable electronic circuitry. PMID:20534598

  1. Evolved dispersal strategies at range margins

    PubMed Central

    Dytham, Calvin

    2009-01-01

    Dispersal is a key component of a species's ecology and will be under different selection pressures in different parts of the range. For example, a long-distance dispersal strategy suitable for continuous habitat at the range core might not be favoured at the margin, where the habitat is sparse. Using a spatially explicit, individual-based, evolutionary simulation model, the dispersal strategies of an organism that has only one dispersal event in its lifetime, such as a plant or sessile animal, are considered. Within the model, removing habitat, increasing habitat turnover, increasing the cost of dispersal, reducing habitat quality or altering vital rates imposes range limits. In most cases, there is a clear change in the dispersal strategies across the range, although increasing death rate towards the margin has little impact on evolved dispersal strategy across the range. Habitat turnover, reduced birth rate and reduced habitat quality all increase evolved dispersal distances at the margin, while increased cost of dispersal and reduced habitat density lead to lower evolved dispersal distances at the margins. As climate change shifts suitable habitat poleward, species ranges will also start to shift, and it will be the dispersal capabilities of marginal populations, rather than core populations, that will influence the rate of range shifting. PMID:19324810

  2. Evolvable mathematical models: A new artificial Intelligence paradigm

    NASA Astrophysics Data System (ADS)

    Grouchy, Paul

    We develop a novel Artificial Intelligence paradigm to generate autonomously artificial agents as mathematical models of behaviour. Agent/environment inputs are mapped to agent outputs via equation trees which are evolved in a manner similar to Symbolic Regression in Genetic Programming. Equations are comprised of only the four basic mathematical operators, addition, subtraction, multiplication and division, as well as input and output variables and constants. From these operations, equations can be constructed that approximate any analytic function. These Evolvable Mathematical Models (EMMs) are tested and compared to their Artificial Neural Network (ANN) counterparts on two benchmarking tasks: the double-pole balancing without velocity information benchmark and the challenging discrete Double-T Maze experiments with homing. The results from these experiments show that EMMs are capable of solving tasks typically solved by ANNs, and that they have the ability to produce agents that demonstrate learning behaviours. To further explore the capabilities of EMMs, as well as to investigate the evolutionary origins of communication, we develop NoiseWorld, an Artificial Life simulation in which interagent communication emerges and evolves from initially noncommunicating EMM-based agents. Agents develop the capability to transmit their x and y position information over a one-dimensional channel via a complex, dialogue-based communication scheme. These evolved communication schemes are analyzed and their evolutionary trajectories examined, yielding significant insight into the emergence and subsequent evolution of cooperative communication. Evolved agents from NoiseWorld are successfully transferred onto physical robots, demonstrating the transferability of EMM-based AIs from simulation into physical reality.

  3. Enteroaggregative Escherichia coli have evolved independently as distinct complexes within the E. coli population with varying ability to cause disease.

    PubMed

    Chattaway, Marie Anne; Jenkins, Claire; Rajendram, Dunstan; Cravioto, Alejandro; Talukder, Kaisar Ali; Dallman, Tim; Underwood, Anthony; Platt, Steve; Okeke, Iruka N; Wain, John

    2014-01-01

    Enteroaggregative E. coli (EAEC) is an established diarrhoeagenic pathotype. The association with virulence gene content and ability to cause disease has been studied but little is known about the population structure of EAEC and how this pathotype evolved. Analysis by Multi Locus Sequence Typing of 564 EAEC isolates from cases and controls in Bangladesh, Nigeria and the UK spanning the past 29 years, revealed multiple successful lineages of EAEC. The population structure of EAEC indicates some clusters are statistically associated with disease or carriage, further highlighting the heterogeneous nature of this group of organisms. Different clusters have evolved independently as a result of both mutational and recombination events; the EAEC phenotype is distributed throughout the population of E. coli.

  4. KEPLER RAPIDLY ROTATING GIANT STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, A. D.; Martins, B. L. Canto; Bravo, J. P.

    2015-07-10

    Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of substellar companions by their hosting stars. In the present Letter, we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time, the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting a very short rotation period with values ranging from 13 to 55 days. This finding points to remarkable surfacemore » rotation rates, up to 18 times the rotation of the Sun. These giants are combined with six others recently listed in the literature for mid-infrared (IR) diagnostics based on Wide-field Infrared Survey Explorer information, from which a trend for an IR excess is revealed for at least one-half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.« less

  5. Neutral Theory and Rapidly Evolving Viral Pathogens.

    PubMed

    Frost, Simon D W; Magalis, Brittany Rife; Kosakovsky Pond, Sergei L

    2018-06-01

    The evolution of viral pathogens is shaped by strong selective forces that are exerted during jumps to new hosts, confrontations with host immune responses and antiviral drugs, and numerous other processes. However, while undeniably strong and frequent, adaptive evolution is largely confined to small parts of information-packed viral genomes, and the majority of observed variation is effectively neutral. The predictions and implications of the neutral theory have proven immensely useful in this context, with applications spanning understanding within-host population structure, tracing the origins and spread of viral pathogens, predicting evolutionary dynamics, and modeling the emergence of drug resistance. We highlight the multiple ways in which the neutral theory has had an impact, which has been accelerated in the age of high-throughput, high-resolution genomics.

  6. Electrochemical Sensing for a Rapidly Evolving World

    NASA Astrophysics Data System (ADS)

    Mullen, Max Robertson

    This dissertation focuses on three projects involving the development of harsh environment gas sensors. The first project discusses the development of a multipurpose oxygen sensor electrode for use in sealing with the common electrolyte yttria stabilized zirconia. The purpose of the sealing function is to produce an internal reference environment maintained by a metal/metal oxide mixture, a criteria for miniaturization of potentiometric oxygen sensing technology. This sensor measures a potential between the internal reference and a sensing environment. The second project discusses the miniaturization of an oxygen sensor and the fabrication of a more generalized electrochemical sensing platform. The third project discusses the discovery of a new mechanism in the electrochemical sensing of ammonia through molecular recognition and the utilization of a sensor taking advantage of the new mechanism. An initial study involving the development of a microwave synthesized La0.8Sr0.2Al0.9Mn0.1O3 sensor electrode material illustrates the ability of the material developed to meet ionic and electronic conducting requirements for effective and Nernstian oxygen sensing. In addition the material deforms plastically under hot isostatic pressing conditions in a similar temperature and pressure regime with yttria stabilized zirconia to produce a seal and survive temperatures up to 1350 °C. In the second project we show novel methods to seal an oxygen environment inside a device cavity to produce an electrochemical sensor body using room temperature plasma-activated bonding and low temperature and pressure assisted plasma-activated bonding with silicon bodies, both in a clean room environment. The evolution from isostatic hot pressing methods towards room temperature complementary metal oxide semiconductor (CMOS) compatible technologies using single crystal silicon substrates in the clean room allows the sealing of devices on a much larger scale. Through this evolution in bonding technology we move from performing non-scalable experiments to produce one sensor at a time to scalable experiments producing six. The bonding methods we use are compatible with wafer scale processing. Practically speaking this means that the oxygen sensor design is scalable to produce thousands of sensors from one single bond. Using this bonding technology we develop a generalized sensing platform that could be used for a variety of sensing applications, including oxygen sensing, but also potentially involving CO2 or NOx as well. Future efforts will involve completing of O2 sensor construction and adaption of the design for CO2 and NOx sensing. The final project focuses on a novel ammonia sensor and sensing mechanism in Ag loaded zeolite Y. The sensor resistance changes upon exposure to ammonia due to the molecular recognition of Ag+ and ammonia, producing Ag(NH3)x+ species. The sensing mechanism is a Grothuss like mechanism based on the hoping of Ag+ centers. The hopping frequency of Ag+ changes upon introduction of ammonia due to the reduced electrostatic interactions between Ag+ and the negatively charged zeolite framework upon formation of Ag(NH3) x+. The change in hopping frequency results in a measurable change in impedance.

  7. Diversifying selection in the wheat stem rust fungus acts predominantly on pathogen-associated gene families and reveals candidate effectors

    PubMed Central

    Sperschneider, Jana; Ying, Hua; Dodds, Peter N.; Gardiner, Donald M.; Upadhyaya, Narayana M.; Singh, Karam B.; Manners, John M.; Taylor, Jennifer M.

    2014-01-01

    Plant pathogens cause severe losses to crop plants and threaten global food production. One striking example is the wheat stem rust fungus, Puccinia graminis f. sp. tritici, which can rapidly evolve new virulent pathotypes in response to resistant host lines. Like several other filamentous fungal and oomycete plant pathogens, its genome features expanded gene families that have been implicated in host-pathogen interactions, possibly encoding effector proteins that interact directly with target host defense proteins. Previous efforts to understand virulence largely relied on the prediction of secreted, small and cysteine-rich proteins as candidate effectors and thus delivered an overwhelming number of candidates. Here, we implement an alternative analysis strategy that uses the signal of adaptive evolution as a line of evidence for effector function, combined with comparative information and expression data. We demonstrate that in planta up-regulated genes that are rapidly evolving are found almost exclusively in pathogen-associated gene families, affirming the impact of host-pathogen co-evolution on genome structure and the adaptive diversification of specialized gene families. In particular, we predict 42 effector candidates that are conserved only across pathogens, induced during infection and rapidly evolving. One of our top candidates has recently been shown to induce genotype-specific hypersensitive cell death in wheat. This shows that comparative genomics incorporating the evolutionary signal of adaptation is powerful for predicting effector candidates for laboratory verification. Our system can be applied to a wide range of pathogens and will give insight into host-pathogen dynamics, ultimately leading to progress in strategies for disease control. PMID:25225496

  8. Neurogenomics and the role of a large mutational target on rapid behavioral change.

    PubMed

    Stanley, Craig E; Kulathinal, Rob J

    2016-11-08

    Behavior, while complex and dynamic, is among the most diverse, derived, and rapidly evolving traits in animals. The highly labile nature of heritable behavioral change is observed in such evolutionary phenomena as the emergence of converged behaviors in domesticated animals, the rapid evolution of preferences, and the routine development of ethological isolation between diverging populations and species. In fact, it is believed that nervous system development and its potential to evolve a seemingly infinite array of behavioral innovations played a major role in the successful diversification of metazoans, including our own human lineage. However, unlike other rapidly evolving functional systems such as sperm-egg interactions and immune defense, the genetic basis of rapid behavioral change remains elusive. Here we propose that the rapid divergence and widespread novelty of innate and adaptive behavior is primarily a function of its genomic architecture. Specifically, we hypothesize that the broad diversity of behavioral phenotypes present at micro- and macroevolutionary scales is promoted by a disproportionately large mutational target of neurogenic genes. We present evidence that these large neuro-behavioral targets are significant and ubiquitous in animal genomes and suggest that behavior's novelty and rapid emergence are driven by a number of factors including more selection on a larger pool of variants, a greater role of phenotypic plasticity, and/or unique molecular features present in large genes. We briefly discuss the origins of these large neurogenic genes, as they relate to the remarkable diversity of metazoan behaviors, and highlight key consequences on both behavioral traits and neurogenic disease across, respectively, evolutionary and ontogenetic time scales. Current approaches to studying the genetic mechanisms underlying rapid phenotypic change primarily focus on identifying signatures of Darwinian selection in protein-coding regions. In contrast

  9. Project Evolve User-Adopter Manual.

    ERIC Educational Resources Information Center

    Joiner, Lee M.

    An adult basic education (ABE) program for mentally retarded young adults between the ages of 14 and 26 years, Project Evolve can provide education agencies for educationally handicapped children with detailed information concerning an innovative program. The manual format was developed through interviews with professional educators concerning the…

  10. Rapidity dependence in holographic heavy ion collisions

    DOE PAGES

    Wilke van der Schee; Schenke, Bjorn

    2015-12-11

    We present an attempt to closely mimic the initial stage of heavy ion collisions within holography, assuming a decoupling of longitudinal and transverse dynamics in the very early stage. We subsequently evolve the obtained initial state using state-of-the-art hydrodynamic simulations and compare results with experimental data. We present results for charged hadron pseudorapidity spectra and directed and elliptic flow as functions of pseudorapidity for √s NN = 200GeV Au-Au and 2.76TeV Pb-Pb collisions. As a result, the directed flow interestingly turns out to be quite sensitive to the viscosity. The results can explain qualitative features of the collisions, but themore » rapidity spectra in our current model is narrower than the experimental data.« less

  11. Complex Formation History of Highly Evolved Basaltic Shergottite, Zagami

    NASA Technical Reports Server (NTRS)

    Niihara, T.; Misawa, K.; Mikouchi, T.; Nyquist, L. E.; Park, J.; Hirata, D.

    2012-01-01

    Zagami, a basaltic shergottite, contains several kinds of lithologies such as Normal Zagami consisting of Fine-grained (FG) and Coarse-grained (CG), Dark Mottled lithology (DML), and Olivine-rich late-stage melt pocket (DN). Treiman and Sutton concluded that Zagami (Normal Zagami) is a fractional crystallization product from a single magma. It has been suggested that there were two igneous stages (deep magma chamber and shallow magma chamber or surface lava flow) on the basis of chemical zoning features of pyroxenes which have homogeneous Mg-rich cores and FeO, CaO zoning at the rims. Nyquist et al. reported that FG has a different initial Sr isotopic ratio than CG and DML, and suggested the possibility of magma mixing on Mars. Here we report new results of petrology and mineralogy for DML and the Olivine-rich lithology (we do not use DN here), the most evolved lithology in this rock, to understand the relationship among lithologies and reveal Zagami s formation history

  12. The Fate of Exoplanets and the Red Giant Rapid Rotator Connection

    NASA Astrophysics Data System (ADS)

    Carlberg, Joleen K.; Majewski, Steven R.; Arras, Phil; Smith, Verne V.; Cunha, Katia; Bizyaev, Dmitry

    2011-03-01

    We have computed the fate of exoplanet companions around main sequence stars to explore the frequency of planet ingestion by their host stars during the red giant branch evolution. Using published properties of exoplanetary systems combined with stellar evolution models and Zahn's theory of tidal friction, we modeled the tidal decay of the planets' orbits as their host stars evolve. Most planets currently orbiting within 2 AU of their star are expected to be ingested by the end of their stars' red giant branch ascent. Our models confirm that many transiting planets are sufficiently close to their parent star that they will be accreted during the main sequence lifetime of the star. We also find that planet accretion may play an important role in explaining the mysterious red giant rapid rotators, although appropriate planetary systems do not seem to be plentiful enough to account for all such rapid rotators. We compare our modeled rapid rotators and surviving planetary systems to their real-life counterparts and discuss the implications of this work to the broader field of exoplanets.

  13. A Course Evolves-Physical Anthropology.

    ERIC Educational Resources Information Center

    O'Neil, Dennis

    2001-01-01

    Describes the development of an online physical anthropology course at Palomar College (California) that evolved from online tutorials. Discusses the ability to update materials on the Web more quickly than in traditional textbooks; creating Web pages that are readable by most Web browsers; test security issues; and clarifying ownership of online…

  14. Zircon reveals protracted magma storage and recycling beneath Mount St. Helens

    USGS Publications Warehouse

    Claiborne, L.L.; Miller, C.F.; Flanagan, D.M.; Clynne, M.A.; Wooden, J.L.

    2010-01-01

    Current data and models for Mount St. Helens volcano (Washington, United States) suggest relatively rapid transport from magma genesis to eruption, with no evidence for protracted storage or recycling of magmas. However, we show here that complex zircon age populations extending back hundreds of thousands of years from eruption age indicate that magmas regularly stall in the crust, cool and crystallize beneath the volcano, and are then rejuvenated and incorporated by hotter, young magmas on their way to the surface. Estimated dissolution times suggest that entrained zircon generally resided in rejuvenating magmas for no more than about a century. Zircon elemental compositions reflect the increasing influence of mafic input into the system through time, recording growth from hotter, less evolved magmas tens of thousands of years prior to the appearance of mafic magmas at the surface, or changes in whole-rock geochemistry and petrology, and providing a new, time-correlated record of this evolution independent of the eruption history. Zircon data thus reveal the history of the hidden, long-lived intrusive portion of the Mount St. Helens system, where melt and crystals are stored for as long as hundreds of thousands of years and interact with fresh influxes of magmas that traverse the intrusive reservoir before erupting. ?? 2010 Geological Society of America.

  15. More rapid climate change promotes evolutionary rescue through selection for increased dispersal distance.

    PubMed

    Boeye, Jeroen; Travis, Justin M J; Stoks, Robby; Bonte, Dries

    2013-02-01

    Species can either adapt to new conditions induced by climate change or shift their range in an attempt to track optimal environmental conditions. During current range shifts, species are simultaneously confronted with a second major anthropogenic disturbance, landscape fragmentation. Using individual-based models with a shifting climate window, we examine the effect of different rates of climate change on the evolution of dispersal distances through changes in the genetically determined dispersal kernel. Our results demonstrate that the rate of climate change is positively correlated to the evolved dispersal distances although too fast climate change causes the population to crash. When faced with realistic rates of climate change, greater dispersal distances evolve than those required for the population to keep track of the climate, thereby maximizing population size. Importantly, the greater dispersal distances that evolve when climate change is more rapid, induce evolutionary rescue by facilitating the population in crossing large gaps in the landscape. This could ensure population persistence in case of range shifting in fragmented landscapes. Furthermore, we highlight problems in using invasion speed as a proxy for potential range shifting abilities under climate change.

  16. More rapid climate change promotes evolutionary rescue through selection for increased dispersal distance

    PubMed Central

    Boeye, Jeroen; Travis, Justin M J; Stoks, Robby; Bonte, Dries

    2013-01-01

    Species can either adapt to new conditions induced by climate change or shift their range in an attempt to track optimal environmental conditions. During current range shifts, species are simultaneously confronted with a second major anthropogenic disturbance, landscape fragmentation. Using individual-based models with a shifting climate window, we examine the effect of different rates of climate change on the evolution of dispersal distances through changes in the genetically determined dispersal kernel. Our results demonstrate that the rate of climate change is positively correlated to the evolved dispersal distances although too fast climate change causes the population to crash. When faced with realistic rates of climate change, greater dispersal distances evolve than those required for the population to keep track of the climate, thereby maximizing population size. Importantly, the greater dispersal distances that evolve when climate change is more rapid, induce evolutionary rescue by facilitating the population in crossing large gaps in the landscape. This could ensure population persistence in case of range shifting in fragmented landscapes. Furthermore, we highlight problems in using invasion speed as a proxy for potential range shifting abilities under climate change. PMID:23467649

  17. Nuclear transit studies of patients with intractable chronic constipation reveal a subgroup with rapid proximal colonic transit.

    PubMed

    Yik, Yee Ian; Cain, Timothy M; Tudball, Coral F; Cook, David J; Southwell, Bridget R; Hutson, John M

    2011-07-01

    Nuclear transit studies (NTS) allow us to follow transit through the stomach and the small and large intestines. We identified children with chronic constipation with rapid proximal colonic transit and characterized their clinical features. We reviewed NTS from 1998 to 2009 to identify patients with chronic constipation and rapid proximal colonic transit, defined as greater than 25% of tracer beyond hepatic flexure at 6 hour and/or greater than 25% of tracer beyond end of descending colon at 24 hour. This was correlated with clinical symptoms and outcome from patient records. Five hundred twenty children with chronic constipation underwent investigation by NTS, and 64 (12%) were identified with rapid proximal colonic transit. The clinical history, symptoms, and outcome in 55 of 64 available for analysis frequently showed family history of allergy (10.9%) and symptoms associated with food allergy/intolerance: abdominal pain (80%), anal fissure (27.3%), and other allergic symptoms (43.6%). Eighteen children were treated with dietary exclusion, with resolution of symptoms in 9 (50%). Some children with intractable chronic constipation have rapid proximal colonic transit, have symptoms consistent with possible food allergy/intolerance, and may respond to dietary exclusion. The NTS can identify these patients with rapid proximal transit that may be secondary to food intolerance. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Rapidly Progressive Maxillary Atelectasis.

    PubMed

    Elkhatib, Ahmad; McMullen, Kyle; Hachem, Ralph Abi; Carrau, Ricardo L; Mastros, Nicholas

    2017-07-01

    Report of a patient with rapidly progressive maxillary atelectasis documented by sequential imaging. A 51-year-old man, presented with left periorbital and retro-orbital pain associated with left nasal obstruction. An initial computed tomographic (CT) scan of the paranasal sinuses failed to reveal any significant abnormality. A subsequent CT scan, indicated for recurrence of symptoms 11 months later, showed significant maxillary atelectasis. An uncinectomy, maxillary antrostomy, and anterior ethmoidectomy resulted in a complete resolution of the symptoms. Chronic maxillary atelectasis is most commonly a consequence of chronic rhinosinusitis. All previous reports have indicated a chronic process but lacked documentation of the course of the disease. This report documents a patient of rapidly progressive chronic maxillary atelectasis with CT scans that demonstrate changes in the maxillary sinus (from normal to atelectatic) within 11 months.

  19. Educational Psychology as an Evolving Discipline: Trends and Synthesis in Asia Pacific Education Review

    ERIC Educational Resources Information Center

    Kim, Dong-il; Koh, Hye-jung; Jo, Su-yeon; Nam, JeeEun Karin; Kim, Myeung-chan

    2014-01-01

    Educational psychology has seen rapid growth as an academic discipline in recent years. The current study reviewed research articles published in "Asia Pacific Education Review" ("APER"), a journal that has been gaining greater international recognition, to reveal recent trends in educational psychology research in Asia…

  20. Genetic structure and evolved malaria resistance in Hawaiian honeycreepers

    USGS Publications Warehouse

    Foster, J.T.; Woodworth, B.L.; Eggert, L.E.; Hart, P.J.; Palmer, D.; Duffy, D.C.; Fleischer, R.C.

    2007-01-01

    Infectious diseases now threaten wildlife populations worldwide but population recovery following local extinction has rarely been observed. In such a case, do resistant individuals recolonize from a central remnant population, or do they spread from small, perhaps overlooked, populations of resistant individuals? Introduced avian malaria (Plasmodium relictum) has devastated low-elevation populations of native birds in Hawaii, but at least one species (Hawaii amakihi, Hemignathus virens) that was greatly reduced at elevations below about 1000 m tolerates malaria and has initiated a remarkable and rapid recovery. We assessed mitochondrial and nuclear DNA markers from amakihi and two other Hawaiian honeycreepers, apapane (Himatione sanguinea) and iiwi (Vestiaria coccinea), at nine primary study sites from 2001 to 2003 to determine the source of re-establishing birds. In addition, we obtained sequences from tissue from amakihi museum study skins (1898 and 1948-49) to assess temporal changes in allele distributions. We found that amakihi in lowland areas are, and have historically been, differentiated from birds at high elevations and had unique alleles retained through time; that is, their genetic signature was not a subset of the genetic variation at higher elevations. We suggest that high disease pressure rapidly selected for resistance to malaria at low elevation, leaving small pockets of resistant birds, and this resistance spread outward from the scattered remnant populations. Low-elevation amakihi are currently isolated from higher elevations (> 1000 m) where disease emergence and transmission rates appear to vary seasonally and annually. In contrast to results from amakihi, no genetic differentiation between elevations was found in apapane and iiwi, indicating that slight variation in genetic or life-history attributes can determine disease resistance and population recovery. Determining the conditions that allow for the development of resistance to disease is

  1. Signing Apes and Evolving Linguistics.

    ERIC Educational Resources Information Center

    Stokoe, William C.

    Linguistics retains from its antecedents, philology and the study of sacred writings, some of their apologetic and theological bias. Thus it has not been able to face squarely the question how linguistic function may have evolved from animal communication. Chimpanzees' use of signs from American Sign Language forces re-examination of language…

  2. The Evolving Demand for Skills.

    ERIC Educational Resources Information Center

    Greenspan, Alan

    From a macroeconomic perspective, the evolving demand for skills in the United States has been triggered by the accelerated expansion of computer and information technology, which has, in turn, brought significant changes to the workplace. Technological advances have made some wholly manual jobs obsolete. But even for many other workers, a rapidly…

  3. Adaptive inferential sensors based on evolving fuzzy models.

    PubMed

    Angelov, Plamen; Kordon, Arthur

    2010-04-01

    A new technique to the design and use of inferential sensors in the process industry is proposed in this paper, which is based on the recently introduced concept of evolving fuzzy models (EFMs). They address the challenge that the modern process industry faces today, namely, to develop such adaptive and self-calibrating online inferential sensors that reduce the maintenance costs while keeping the high precision and interpretability/transparency. The proposed new methodology makes possible inferential sensors to recalibrate automatically, which reduces significantly the life-cycle efforts for their maintenance. This is achieved by the adaptive and flexible open-structure EFM used. The novelty of this paper lies in the following: (1) the overall concept of inferential sensors with evolving and self-developing structure from the data streams; (2) the new methodology for online automatic selection of input variables that are most relevant for the prediction; (3) the technique to detect automatically a shift in the data pattern using the age of the clusters (and fuzzy rules); (4) the online standardization technique used by the learning procedure of the evolving model; and (5) the application of this innovative approach to several real-life industrial processes from the chemical industry (evolving inferential sensors, namely, eSensors, were used for predicting the chemical properties of different products in The Dow Chemical Company, Freeport, TX). It should be noted, however, that the methodology and conclusions of this paper are valid for the broader area of chemical and process industries in general. The results demonstrate that well-interpretable and with-simple-structure inferential sensors can automatically be designed from the data stream in real time, which predict various process variables of interest. The proposed approach can be used as a basis for the development of a new generation of adaptive and evolving inferential sensors that can address the

  4. Toward a theory of multilevel evolution: long-term information integration shapes the mutational landscape and enhances evolvability.

    PubMed

    Hogeweg, Paulien

    2012-01-01

    Most of evolutionary theory has abstracted away from how information is coded in the genome and how this information is transformed into traits on which selection takes place. While in the earliest stages of biological evolution, in the RNA world, the mapping from the genotype into function was largely predefined by the physical-chemical properties of the evolving entities (RNA replicators, e.g. from sequence to folded structure and catalytic sites), in present-day organisms, the mapping itself is the result of evolution. I will review results of several in silico evolutionary studies which examine the consequences of evolving the genetic coding, and the ways this information is transformed, while adapting to prevailing environments. Such multilevel evolution leads to long-term information integration. Through genome, network, and dynamical structuring, the occurrence and/or effect of random mutations becomes nonrandom, and facilitates rapid adaptation. This is what does happen in the in silico experiments. Is it also what did happen in biological evolution? I will discuss some data that suggest that it did. In any case, these results provide us with novel search images to tackle the wealth of biological data.

  5. Evolving Patient Compliance Trends: Integrating Clinical, Insurance, and Extrapolated Socioeconomic Data

    PubMed Central

    Klobusicky, Joseph J.; Aryasomayajula, Arun; Marko, Nicholas

    2015-01-01

    Efforts toward improving patient compliance in medication focus on either identifying trends in patient features or studying changes through an intervention. Our study seeks to provide an important link between these two approaches through defining trends of evolving compliance. In addition to using clinical covariates provided through insurance claims and health records, we also extracted census based data to provide socioeconomic covariates such as income and population density. Through creating quadrants based on periods of medicine intake, we derive several novel definitions of compliance. These definitions revealed additional compliance trends through considering refill histories later in a patient’s length of therapy. These results suggested that the link between patient features and compliance includes a temporal component, and should be considered in policymaking when identifying compliant subgroups. PMID:26958212

  6. Probing Dust Formation Around Evolved Stars with Near-Infrared Interferometry

    NASA Astrophysics Data System (ADS)

    Sargent, B.; Srinivasan, S.; Riebel, D.; Meixner, M.

    2014-09-01

    Near-infrared interferometry holds great promise for advancing our understanding of the formation of dust around evolved stars. For example, the Magdalena Ridge Observatory Interferometer (MROI), which will be an optical/near-infrared interferometer with down to submilliarcsecond resolution, includes studying stellar mass loss as being of interest to its Key Science Mission. With facilities like MROI, many questions relating to the formation of dust around evolved stars may be probed. How close to an evolved star such as an asymptotic giant branch (AGB) or red supergiant (RSG) star does a dust grain form? Over what temperature ranges will such dust form? How does dust formation temperature and distance from star change as a function of the dust composition (carbonaceous versus oxygen-rich)? What are the ranges of evolved star dust shell geometries, and does dust shell geometry for AGB and RSG stars correlate with dust composition, similar to the correlation seen for planetary nebula outflows? At what point does the AGB star become a post-AGB star, when dust formation ends and the dust shell detaches? Currently we are conducting studies of evolved star mass loss in the Large Magellanic Cloud using photometry from the Surveying the Agents of a Galaxy's Evolution (SAGE; PI: M. Meixner) Spitzer Space Telescope Legacy program. We model this mass loss using the radiative transfer program 2Dust to create our Grid of Red supergiant and Asymptotic giant branch ModelS (GRAMS). For simplicity, we assume spherical symmetry, but 2Dust does have the capability to model axisymmetric, non-spherically-symmetric dust shell geometries. 2Dust can also generate images of models at specified wavelengths. We discuss possible connections of our GRAMS modeling using 2Dust of SAGE data of evolved stars in the LMC and also other data on evolved stars in the Milky Way's Galactic Bulge to near-infrared interferometric studies of such stars. By understanding the origins of dust around evolved

  7. Sex-specific effects of a parasite evolving in a female-biased host population

    PubMed Central

    2012-01-01

    Background Males and females differ in many ways and might present different opportunities and challenges to their parasites. In the same way that parasites adapt to the most common host type, they may adapt to the characteristics of the host sex they encounter most often. To explore this hypothesis, we characterized host sex-specific effects of the parasite Pasteuria ramosa, a bacterium evolving in naturally, strongly, female-biased populations of its host Daphnia magna. Results We show that the parasite proliferates more successfully in female hosts than in male hosts, even though males and females are genetically identical. In addition, when exposure occurred when hosts expressed a sexual dimorphism, females were more infected. In both host sexes, the parasite causes a similar reduction in longevity and leads to some level of castration. However, only in females does parasite-induced castration result in the gigantism that increases the carrying capacity for the proliferating parasite. Conclusions We show that mature male and female Daphnia represent different environments and reveal one parasite-induced symptom (host castration), which leads to increased carrying capacity for parasite proliferation in female but not male hosts. We propose that parasite induced host castration is a property of parasites that evolved as an adaptation to specifically exploit female hosts. PMID:23249484

  8. Sex-specific effects of a parasite evolving in a female-biased host population.

    PubMed

    Duneau, David; Luijckx, Pepijn; Ruder, Ludwig F; Ebert, Dieter

    2012-12-18

    Males and females differ in many ways and might present different opportunities and challenges to their parasites. In the same way that parasites adapt to the most common host type, they may adapt to the characteristics of the host sex they encounter most often. To explore this hypothesis, we characterized host sex-specific effects of the parasite Pasteuria ramosa, a bacterium evolving in naturally, strongly, female-biased populations of its host Daphnia magna. We show that the parasite proliferates more successfully in female hosts than in male hosts, even though males and females are genetically identical. In addition, when exposure occurred when hosts expressed a sexual dimorphism, females were more infected. In both host sexes, the parasite causes a similar reduction in longevity and leads to some level of castration. However, only in females does parasite-induced castration result in the gigantism that increases the carrying capacity for the proliferating parasite. We show that mature male and female Daphnia represent different environments and reveal one parasite-induced symptom (host castration), which leads to increased carrying capacity for parasite proliferation in female but not male hosts. We propose that parasite induced host castration is a property of parasites that evolved as an adaptation to specifically exploit female hosts.

  9. Rapid eye movement sleep reveals epileptogenic spikes for resective surgery in children with generalized interictal discharges.

    PubMed

    Okanari, Kazuo; Baba, Shiro; Otsubo, Hiroshi; Widjaja, Elysa; Sakuma, Satoru; Go, Cristina Y; Jones, Kevin C; Nishioka, Kazuki; Oba, Shimpei; Matsui, Tasuku; Ueno, Makoto; Ukitsu, Shogo; Rutka, James T; Drake, James M; Donner, Elizabeth J; Weiss, Shelly K; Snead, O Carter; Ochi, Ayako

    2015-09-01

    Epilepsy surgery can be successful in children with extensive congenital or early acquired focal or hemispheric brain lesion on magnetic resonance imaging (MRI) despite generalized interictal epileptiform discharges (IEDs). The aim of this study was to assess if rapid eye movement (REM) sleep reduced generalized IEDs and revealed lateralized IEDs to identify the epileptogenic hemisphere in children with generalized IEDs and normal/subtle changes on MRI. We studied 20 children with generalized IEDs on scalp electroencephalography (EEG) and normal/subtle changes on MRI who underwent intracranial video-EEG for epilepsy surgery. We assessed a minimum of 100 IEDs during REM, non-REM, and wakefulness, and assigned the distribution (generalized, left, or right hemisphere) to each IED. The number of lobes in the resected areas and seizure outcome were compared between 20 children with generalized IEDs and a comparison group of 28 children without generalized IEDs. The mean occurrence rate of generalized IEDs during REM (37%) was significantly lower than that during non-REM (67%, p < 0.001) and wakefulness (54%, p = 0.003). The number of children whose largest number of IEDs was lateralized in REM was significantly higher than that in non-REM (15 vs. 3 children, 75% vs. 15%, p < 0.001). The hemisphere with lateralized IEDs among three states corresponded with the surgical side in 16 children with generalized IEDs. Seventeen children (85%) with generalized IEDs and 27 (96%) without generalized IEDs underwent resective surgery. Multilobar resection was required for 16 children (94%) with generalized IEDs more frequently than 7 children (26%) without generalized IEDs (p < 0.001). Thirteen children (77%) with generalized IEDs and 19 (73%) without generalized IEDs were seizure-free with a mean of 3.3 years of follow-up. Our study demonstrates the importance of assessing REM in children with generalized IEDs as it reveals lateralized epileptogenic spikes. Seizure freedom may be

  10. Meiosis evolves: adaptation to external and internal environments.

    PubMed

    Bomblies, Kirsten; Higgins, James D; Yant, Levi

    2015-10-01

    306 I. 306 II. 307 III. 312 IV. 317 V. 318 319 References 319 SUMMARY: Meiosis is essential for the fertility of most eukaryotes and its structures and progression are conserved across kingdoms. Yet many of its core proteins show evidence of rapid or adaptive evolution. What drives the evolution of meiosis proteins? How can constrained meiotic processes be modified in response to challenges without compromising their essential functions? In surveying the literature, we found evidence of two especially potent challenges to meiotic chromosome segregation that probably necessitate adaptive evolutionary responses: whole-genome duplication and abiotic environment, especially temperature. Evolutionary solutions to both kinds of challenge are likely to involve modification of homologous recombination and synapsis, probably via adjustments of core structural components important in meiosis I. Synthesizing these findings with broader patterns of meiosis gene evolution suggests that the structural components of meiosis coevolve as adaptive modules that may change in primary sequence and function while maintaining three-dimensional structures and protein interactions. The often sharp divergence of these genes among species probably reflects periodic modification of entire multiprotein complexes driven by genomic or environmental changes. We suggest that the pressures that cause meiosis to evolve to maintain fertility may cause pleiotropic alterations of global crossover rates. We highlight several important areas for future research. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. Capturing the Interpersonal Implications of Evolved Preferences? Frequency of Sex Shapes Automatic, but Not Explicit, Partner Evaluations.

    PubMed

    Hicks, Lindsey L; McNulty, James K; Meltzer, Andrea L; Olson, Michael A

    2016-06-01

    A strong predisposition to engage in sexual intercourse likely evolved in humans because sex is crucial to reproduction. Given that meeting interpersonal preferences tends to promote positive relationship evaluations, sex within a relationship should be positively associated with relationship satisfaction. Nevertheless, prior research has been inconclusive in demonstrating such a link, with longitudinal and experimental studies showing no association between sexual frequency and relationship satisfaction. Crucially, though, all prior research has utilized explicit reports of satisfaction, which reflect deliberative processes that may override the more automatic implications of phylogenetically older evolved preferences. Accordingly, capturing the implications of sexual frequency for relationship evaluations may require implicit measurements that bypass deliberative reasoning. Consistent with this idea, one cross-sectional and one 3-year study of newlywed couples revealed a positive association between sexual frequency and automatic partner evaluations but not explicit satisfaction. These findings highlight the importance of automatic measurements to understanding interpersonal relationships. © The Author(s) 2016.

  12. Capturing the Interpersonal Implications of Evolved Preferences? Frequency of Sex Shapes Automatic, But Not Explicit, Partner Evaluations

    PubMed Central

    Hicks, Lindsey L.; McNulty, James K.; Meltzer, Andrea L.; Olson, Michael A.

    2016-01-01

    Sex is crucial to reproduction, and thus humans likely evolved a strong predisposition to engage in sexual intercourse. Given that meeting interpersonal preferences tends to promote positive relationship evaluations, sex within a relationship should be positively associated with relationship satisfaction. Nevertheless, prior research has been inconclusive in demonstrating such a link, with longitudinal and experimental studies showing no association between sexual frequency and relationship satisfaction. Crucially, though, all prior research has utilized explicit reports of satisfaction, which reflect deliberative processes that may override the more automatic implications of phylogenetically older evolved preferences. Accordingly, capturing the implications of sexual frequency for relationship evaluations may require implicit measurements that bypass deliberative reasoning. Consistent with this idea, one cross-sectional and one three-year study of newlywed couples revealed a positive association between sexual frequency and automatic partner evaluations but not explicit satisfaction. These findings highlight the importance of automatic measurements to understanding interpersonal relationships. (150 words) PMID:27084851

  13. 18O/16O in CO2 evolved from goethite during some unusually rapid solid state α-FeOOH to α-Fe2O3 phase transitions: Test of an exchange model for possible use in oxygen isotope analyses of goethite

    NASA Astrophysics Data System (ADS)

    Yapp, Crayton J.

    2015-12-01

    The initial ∼60% of an isothermal vacuum dehydration of goethite can commonly be approximated by first order kinetics. Also, natural goethites contain small amounts of an Fe(CO3)OH component in apparent solid solution. The 18O/16O of CO2 evolved from the Fe(CO3)OH during isothermal vacuum dehydrations is related to the 18O/16O of the goethite by an apparent fractionation factor (αapp) that is, in turn, correlated with a first order rate constant, |m|. A kinetic exchange model predicts that αapp should decrease as |m| increases for a range of |m| that corresponds to relatively slow rates of dehydration. This pattern has been observed in published results. In contrast, for rapid rates of dehydration, αapp is predicted to increase with increasing |m|. Isothermal vacuum dehydrations of two natural goethites had unusually large values of |m| and provided serendipitous tests of this rapid-rate prediction. For these experiments, the measured values of αapp were consistent with patterns of variation predicted by the model. This allowed an estimate of the activation energy (E2) of a model parameter, K2, which is the rate constant for oxygen isotope exchange between CO2 and H2O during the solid-state goethite to hematite phase transition. The estimated value of E2 is only ∼9 kJ/mol. Heterogeneous catalysis tends to decrease the activation energies of gas reactions. Consequently, the inferred value of E2 suggests that goethite and/or hematite catalyze oxygen isotope exchange between CO2 and H2O during the solid-state phase change. Yield, δ13C, and δ18O values are routinely measured for increments of CO2 evolved from the Fe(CO3)OH component during isothermal vacuum dehydration of goethite. Model-predicted values of αapp can be combined with plateau δ18O values of the evolved CO2 to estimate the δ18O of the goethite with a less than optimal, but potentially useful, precision of about ±0.8‰. Therefore, a single analytical procedure (incremental dehydration

  14. Tissue Engineering and Regenerative Medicine: Semantic Considerations for an Evolving Paradigm

    PubMed Central

    Katari, Ravi; Peloso, Andrea; Orlando, Giuseppe

    2015-01-01

    Tissue engineering (TE) and regenerative medicine (RM) are rapidly evolving fields that are often obscured by a dense cloud of hype and commercialization potential. We find, in the literature and general commentary, that several of the associated terms are casually referenced in varying contexts that ultimately result in the blurring of the distinguishing boundaries which define them. “TE” and “RM” are often used interchangeably, though some experts vehemently argue that they, in fact, represent different conceptual entities. Nevertheless, contemporary scientists have a general idea of the experiments and milestones that can be classified within either or both categories. Given the groundbreaking achievements reported within the past decade and consequent watershed potential of this field, we feel that it would be useful to properly contextualize these terms semantically and historically. In this concept paper, we explore the various definitions proposed in the literature and emphasize that ambiguous terminology can lead to misplaced apprehension. We assert that the central motifs of both concepts have existed within the surgical sciences long before their appearance as terms in the scientific literature. PMID:25629029

  15. The Notion of Truth and Our Evolving Understanding of Sexual Harassment.

    PubMed

    Recupero, Patricia R

    2018-03-01

    The notion of truth and its determination in legal proceedings is contingent on the cultural setting in which a claim is argued or disputed. Recent years have demonstrated a dramatic shift in the public dialogue concerning sexual harassment. This shift reflects changing cultural mores and standards in the workplace and society as a whole, particularly with respect to the validity of women's voices. The subjective reality experienced by victims of sexual harassment is inherently tied to the legal system's treatment of women throughout history. In determinations of truth, our understanding of which information and perspectives are relevant, and our expectations regarding the credibility of complainants and the accused, are undergoing a period of rapid change. The discourse surrounding the #MeToo movement suggests that the "reasonable-person" standard so often applied by courts is poorly suited to sexual-harassment litigation. As our understanding of what constitutes "severe," "pervasive," and "unwelcome" conduct continues to evolve, forensic psychiatrists must strive to uphold the values of respect for persons in the search for the truth. © 2018 American Academy of Psychiatry and the Law.

  16. An Evolving Asymmetric Game for Modeling Interdictor-Smuggler Problems

    DTIC Science & Technology

    2016-06-01

    ASYMMETRIC GAME FOR MODELING INTERDICTOR-SMUGGLER PROBLEMS by Richard J. Allain June 2016 Thesis Advisor: David L. Alderson Second Reader: W...DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE AN EVOLVING ASYMMETRIC GAME FOR MODELING INTERDICTOR- SMUGGLER PROBLEMS 5. FUNDING NUMBERS 6...using incomplete feedback and allowing two-sided adaptive play. Combining these aspects in an evolving game , we use optimization, simulation, and

  17. Nanotoxicology and nanomedicine: making development decisions in an evolving governance environment

    NASA Astrophysics Data System (ADS)

    Rycroft, Taylor; Trump, Benjamin; Poinsatte-Jones, Kelsey; Linkov, Igor

    2018-02-01

    The fields of nanomedicine, risk analysis, and decision science have evolved considerably in the past decade, providing developers of nano-enabled therapies and diagnostic tools with more complete information than ever before and shifting a fundamental requisite of the nanomedical community from the need for more information about nanomaterials to the need for a streamlined method of integrating the abundance of nano-specific information into higher-certainty product design decisions. The crucial question facing nanomedicine developers that must select the optimal nanotechnology in a given situation has shifted from "how do we estimate nanomaterial risk in the absence of good risk data?" to "how can we derive a holistic characterization of the risks and benefits that a given nanomaterial may pose within a specific nanomedical application?" Many decision support frameworks have been proposed to assist with this inquiry; however, those based in multicriteria decision analysis have proven to be most adaptive in the rapidly evolving field of nanomedicine—from the early stages of the field when conditions of significant uncertainty and incomplete information dominated, to today when nanotoxicology and nano-environmental health and safety information is abundant but foundational paradigms such as chemical risk assessment, risk governance, life cycle assessment, safety-by-design, and stakeholder engagement are undergoing substantial reformation in an effort to address the needs of emerging technologies. In this paper, we reflect upon 10 years of developments in nanomedical engineering and demonstrate how the rich knowledgebase of nano-focused toxicological and risk assessment information developed over the last decade enhances the capability of multicriteria decision analysis approaches and underscores the need to continue the transition from traditional risk assessment towards risk-based decision-making and alternatives-based governance for emerging technologies.

  18. Evolving Systems: Adaptive Key Component Control and Inheritance of Passivity and Dissipativity

    NASA Technical Reports Server (NTRS)

    Frost, S. A.; Balas, M. J.

    2010-01-01

    We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. Autonomous assembly of large, complex flexible structures in space is a target application for Evolving Systems. A critical requirement for autonomous assembling structures is that they remain stable during and after assembly. The fundamental topic of inheritance of stability, dissipativity, and passivity in Evolving Systems is the primary focus of this research. In this paper, we develop an adaptive key component controller to restore stability in Nonlinear Evolving Systems that would otherwise fail to inherit the stability traits of their components. We provide sufficient conditions for the use of this novel control method and demonstrate its use on an illustrative example.

  19. Probing the Boundaries of Orthology: The Unanticipated Rapid Evolution of Drosophila centrosomin

    PubMed Central

    Eisman, Robert C.; Kaufman, Thomas C.

    2013-01-01

    The rapid evolution of essential developmental genes and their protein products is both intriguing and problematic. The rapid evolution of gene products with simple protein folds and a lack of well-characterized functional domains typically result in a low discovery rate of orthologous genes. Additionally, in the absence of orthologs it is difficult to study the processes and mechanisms underlying rapid evolution. In this study, we have investigated the rapid evolution of centrosomin (cnn), an essential gene encoding centrosomal protein isoforms required during syncytial development in Drosophila melanogaster. Until recently the rapid divergence of cnn made identification of orthologs difficult and questionable because Cnn violates many of the assumptions underlying models for protein evolution. To overcome these limitations, we have identified a group of insect orthologs and present conserved features likely to be required for the functions attributed to cnn in D. melanogaster. We also show that the rapid divergence of Cnn isoforms is apparently due to frequent coding sequence indels and an accelerated rate of intronic additions and eliminations. These changes appear to be buffered by multi-exon and multi-reading frame maximum potential ORFs, simple protein folds, and the splicing machinery. These buffering features also occur in other genes in Drosophila and may help prevent potentially deleterious mutations due to indels in genes with large coding exons and exon-dense regions separated by small introns. This work promises to be useful for future investigations of cnn and potentially other rapidly evolving genes and proteins. PMID:23749319

  20. Active printed materials for complex self-evolving deformations.

    PubMed

    Raviv, Dan; Zhao, Wei; McKnelly, Carrie; Papadopoulou, Athina; Kadambi, Achuta; Shi, Boxin; Hirsch, Shai; Dikovsky, Daniel; Zyracki, Michael; Olguin, Carlos; Raskar, Ramesh; Tibbits, Skylar

    2014-12-18

    We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated models are designed and printed as static objects. Here, we introduce a novel approach for simulating and fabricating self-evolving structures that transform into a predetermined shape, changing property and function after fabrication. The new locally coordinated bending primitives combine into a single system, allowing for a global deformation which can stretch, fold and bend given environmental stimulus.

  1. Active Printed Materials for Complex Self-Evolving Deformations

    PubMed Central

    Raviv, Dan; Zhao, Wei; McKnelly, Carrie; Papadopoulou, Athina; Kadambi, Achuta; Shi, Boxin; Hirsch, Shai; Dikovsky, Daniel; Zyracki, Michael; Olguin, Carlos; Raskar, Ramesh; Tibbits, Skylar

    2014-01-01

    We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated models are designed and printed as static objects. Here, we introduce a novel approach for simulating and fabricating self-evolving structures that transform into a predetermined shape, changing property and function after fabrication. The new locally coordinated bending primitives combine into a single system, allowing for a global deformation which can stretch, fold and bend given environmental stimulus. PMID:25522053

  2. Evolving neural networks through augmenting topologies.

    PubMed

    Stanley, Kenneth O; Miikkulainen, Risto

    2002-01-01

    An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixed-topology method on a challenging benchmark reinforcement learning task. We claim that the increased efficiency is due to (1) employing a principled method of crossover of different topologies, (2) protecting structural innovation using speciation, and (3) incrementally growing from minimal structure. We test this claim through a series of ablation studies that demonstrate that each component is necessary to the system as a whole and to each other. What results is significantly faster learning. NEAT is also an important contribution to GAs because it shows how it is possible for evolution to both optimize and complexify solutions simultaneously, offering the possibility of evolving increasingly complex solutions over generations, and strengthening the analogy with biological evolution.

  3. Comparative analysis of complete orthologous centromeres from two subspecies of rice reveals rapid variation of centromere organization and structure.

    PubMed

    Wu, Jianzhong; Fujisawa, Masaki; Tian, Zhixi; Yamagata, Harumi; Kamiya, Kozue; Shibata, Michie; Hosokawa, Satomi; Ito, Yukiyo; Hamada, Masao; Katagiri, Satoshi; Kurita, Kanako; Yamamoto, Mayu; Kikuta, Ari; Machita, Kayo; Karasawa, Wataru; Kanamori, Hiroyuki; Namiki, Nobukazu; Mizuno, Hiroshi; Ma, Jianxin; Sasaki, Takuji; Matsumoto, Takashi

    2009-12-01

    Centromeres are sites for assembly of the chromosomal structures that mediate faithful segregation at mitosis and meiosis. This function is conserved across species, but the DNA components that are involved in kinetochore formation differ greatly, even between closely related species. To shed light on the nature, evolutionary timing and evolutionary dynamics of rice centromeres, we decoded a 2.25-Mb DNA sequence covering the centromeric region of chromosome 8 of an indica rice variety, 'Kasalath' (Kas-Cen8). Analysis of repetitive sequences in Kas-Cen8 led to the identification of 222 long terminal repeat (LTR)-retrotransposon elements and 584 CentO satellite monomers, which account for 59.2% of the region. A comparison of the Kas-Cen8 sequence with that of japonica rice 'Nipponbare' (Nip-Cen8) revealed that about 66.8% of the Kas-Cen8 sequence was collinear with that of Nip-Cen8. Although the 27 putative genes are conserved between the two subspecies, only 55.4% of the total LTR-retrotransposon elements in 'Kasalath' had orthologs in 'Nipponbare', thus reflecting recent proliferation of a considerable number of LTR-retrotransposons since the divergence of two rice subspecies of indica and japonica within Oryza sativa. Comparative analysis of the subfamilies, time of insertion, and organization patterns of inserted LTR-retrotransposons between the two Cen8 regions revealed variations between 'Kasalath' and 'Nipponbare' in the preferential accumulation of CRR elements, and the expansion of CentO satellite repeats within the core domain of Cen8. Together, the results provide insights into the recent proliferation of LTR-retrotransposons, and the rapid expansion of CentO satellite repeats, underlying the dynamic variation and plasticity of plant centromeres.

  4. Submillimeter Array reveals molecular complexity of dying stars

    NASA Astrophysics Data System (ADS)

    Tomasz

    2018-01-01

    The unique capabilities of the Submillimeter Array (SMA) have allowed unprecedented studies of cool evolved stars at submillimeter wavelengths. In particular, the SMA now offers the possibility to image multiple molecular transitions at once, owing to the 32-GHz wide instantaneous bandwidth of SWARM, the SMA’s new correlator. Molecular gas located far and very close to the photosphere of an asymptotic-giant branch (AGB) star, a red supergiant, or a pre-planetary nebula can now be examined in transitions observed simultaneously from a wide range of energy levels. This allows a very detailed quantitative investigation of physical and chemical conditions around these variable objects. Several imaging line surveys have been obtained with the SMA to reveal the beautiful complexity of these evolved systems. The surveys resulted in first submillimeter-wave identifications of molecules of prime astrophysical interest, e.g. of TiO, TiO2, and of rotational transitions at excited vibrational states of CO. An overview of recent SMA observations of cool evolved stars will be given with an emphasize on the interferometric line surveys. We will demonstrate their importance in unraveling the mass-loss phenomena, propagation of shocks in the circumstellar medium, and production of dust at elevated temperatures. The SMA studies of these molecular factories have a direct impact on our understanding of the chemical evolution of the Galaxy and stellar evolution at low and high masses.

  5. Genetic programming for evolving due-date assignment models in job shop environments.

    PubMed

    Nguyen, Su; Zhang, Mengjie; Johnston, Mark; Tan, Kay Chen

    2014-01-01

    Due-date assignment plays an important role in scheduling systems and strongly influences the delivery performance of job shops. Because of the stochastic and dynamic nature of job shops, the development of general due-date assignment models (DDAMs) is complicated. In this study, two genetic programming (GP) methods are proposed to evolve DDAMs for job shop environments. The experimental results show that the evolved DDAMs can make more accurate estimates than other existing dynamic DDAMs with promising reusability. In addition, the evolved operation-based DDAMs show better performance than the evolved DDAMs employing aggregate information of jobs and machines.

  6. Rapid Evolution and the Importance of Recombination to the Gastroenteric Pathogen Campylobacter jejuni

    PubMed Central

    Gabriel, Edith; Leatherbarrow, Andrew J.H.; Cheesbrough, John; Gee, Steven; Bolton, Eric; Fox, Andrew; Hart, C. Anthony; Diggle, Peter J.; Fearnhead, Paul

    2009-01-01

    Responsible for the majority of bacterial gastroenteritis in the developed world, Campylobacter jejuni is a pervasive pathogen of humans and animals, but its evolution is obscure. In this paper, we exploit contemporary genetic diversity and empirical evidence to piece together the evolutionary history of C. jejuni and quantify its evolutionary potential. Our combined population genetics–phylogenetics approach reveals a surprising picture. Campylobacter jejuni is a rapidly evolving species, subject to intense purifying selection that purges 60% of novel variation, but possessing a massive evolutionary potential. The low mutation rate is offset by a large effective population size so that a mutation at any site can occur somewhere in the population within the space of a week. Recombination has a fundamental role, generating diversity at twice the rate of de novo mutation, and facilitating gene flow between C. jejuni and its sister species Campylobacter coli. We attempt to calibrate the rate of molecular evolution in C. jejuni based solely on within-species variation. The rates we obtain are up to 1,000 times faster than conventional estimates, placing the C. jejuni–C. coli split at the time of the Neolithic revolution. We weigh the plausibility of such recent bacterial evolution against alternative explanations and discuss the evidence required to settle the issue. PMID:19008526

  7. Differential Scanning Calorimetry and Evolved Gas Analysis at Mars Ambient Conditions Using the Thermal Evolved Gas Analyzer (TEGA)

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Boynton, W. V.; Ming, Douglas W.; Quadlander, G.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.

    2000-01-01

    Differential Scanning Calorimetry (DSC) combined with evolved gas analysis (EGA) is a well developed technique for the analysis of a wide variety of sample types with broad application in material and soil sciences. However, the use of the technique for samples under conditions of pressure and temperature as found on other planets is one of current C development and cutting edge research. The Thermal Evolved Gas Analyzer (MGA), which was designed, built and tested at the University of Arizona's Lunar and Planetary Lab (LPL), utilizes DSC/EGA. TEGA, which was sent to Mars on the ill-fated Mars Polar Lander, was to be the first application of DSC/EGA on the surface of Mars as well as the first direct measurement of the volatile-bearing mineralogy in martian soil.

  8. Tweeting Supertyphoon Haiyan: Evolving Functions of Twitter during and after a Disaster Event.

    PubMed

    David, Clarissa C; Ong, Jonathan Corpus; Legara, Erika Fille T

    2016-01-01

    When disaster events capture global attention users of Twitter form transient interest communities that disseminate information and other messages online. This paper examines content related to Typhoon Haiyan (locally known as Yolanda) as it hit the Philippines and triggered international humanitarian response and media attention. It reveals how Twitter conversations about disasters evolve over time, showing an issue attention cycle on a social media platform. The paper examines different functions of Twitter and the information hubs that drive and sustain conversation about the event. Content analysis shows that the majority of tweets contain information about the typhoon or its damage, and disaster relief activities. There are differences in types of content between the most retweeted messages and posts that are original tweets. Original tweets are more likely to come from ordinary users, who are more likely to tweet emotions, messages of support, and political content compared with official sources and key information hubs that include news organizations, aid organization, and celebrities. Original tweets reveal use of the site beyond information to relief coordination and response.

  9. Tweeting Supertyphoon Haiyan: Evolving Functions of Twitter during and after a Disaster Event

    PubMed Central

    David, Clarissa C.; Ong, Jonathan Corpus; Legara, Erika Fille T.

    2016-01-01

    When disaster events capture global attention users of Twitter form transient interest communities that disseminate information and other messages online. This paper examines content related to Typhoon Haiyan (locally known as Yolanda) as it hit the Philippines and triggered international humanitarian response and media attention. It reveals how Twitter conversations about disasters evolve over time, showing an issue attention cycle on a social media platform. The paper examines different functions of Twitter and the information hubs that drive and sustain conversation about the event. Content analysis shows that the majority of tweets contain information about the typhoon or its damage, and disaster relief activities. There are differences in types of content between the most retweeted messages and posts that are original tweets. Original tweets are more likely to come from ordinary users, who are more likely to tweet emotions, messages of support, and political content compared with official sources and key information hubs that include news organizations, aid organization, and celebrities. Original tweets reveal use of the site beyond information to relief coordination and response. PMID:27019425

  10. Population-Based Resequencing of Experimentally Evolved Populations Reveals the Genetic Basis of Body Size Variation in Drosophila melanogaster

    PubMed Central

    Turner, Thomas L.; Stewart, Andrew D.; Fields, Andrew T.; Rice, William R.; Tarone, Aaron M.

    2011-01-01

    Body size is a classic quantitative trait with evolutionarily significant variation within many species. Locating the alleles responsible for this variation would help understand the maintenance of variation in body size in particular, as well as quantitative traits in general. However, successful genome-wide association of genotype and phenotype may require very large sample sizes if alleles have low population frequencies or modest effects. As a complementary approach, we propose that population-based resequencing of experimentally evolved populations allows for considerable power to map functional variation. Here, we use this technique to investigate the genetic basis of natural variation in body size in Drosophila melanogaster. Significant differentiation of hundreds of loci in replicate selection populations supports the hypothesis that the genetic basis of body size variation is very polygenic in D. melanogaster. Significantly differentiated variants are limited to single genes at some loci, allowing precise hypotheses to be formed regarding causal polymorphisms, while other significant regions are large and contain many genes. By using significantly associated polymorphisms as a priori candidates in follow-up studies, these data are expected to provide considerable power to determine the genetic basis of natural variation in body size. PMID:21437274

  11. Rapid disappearance of a warm, dusty circumstellar disk.

    PubMed

    Melis, Carl; Zuckerman, B; Rhee, Joseph H; Song, Inseok; Murphy, Simon J; Bessell, Michael S

    2012-07-04

    Stars form with gaseous and dusty circumstellar envelopes, which rapidly settle into disks that eventually give rise to planetary systems. Understanding the process by which these disks evolve is paramount in developing an accurate theory of planet formation that can account for the variety of planetary systems discovered so far. The formation of Earth-like planets through collisional accumulation of rocky objects within a disk has mainly been explored in theoretical and computational work in which post-collision ejecta evolution typically is ignored, although recent work has considered the fate of such material. Here we report observations of a young, Sun-like star (TYC 8241 2652 1) where infrared flux from post-collisional ejecta has decreased drastically, by a factor of about 30, over a period of less than two years. The star seems to have gone from hosting substantial quantities of dusty ejecta, in a region analogous to where the rocky planets orbit in the Solar System, to retaining at most a meagre amount of cooler dust. Such a phase of rapid ejecta evolution has not been previously predicted or observed, and no currently available physical model satisfactorily explains the observations.

  12. Rapid parallel evolution overcomes global honey bee parasite.

    PubMed

    Oddie, Melissa; Büchler, Ralph; Dahle, Bjørn; Kovacic, Marin; Le Conte, Yves; Locke, Barbara; de Miranda, Joachim R; Mondet, Fanny; Neumann, Peter

    2018-05-16

    In eusocial insect colonies nestmates cooperate to combat parasites, a trait called social immunity. However, social immunity failed for Western honey bees (Apis mellifera) when the ectoparasitic mite Varroa destructor switched hosts from Eastern honey bees (Apis cerana). This mite has since become the most severe threat to A. mellifera world-wide. Despite this, some isolated A. mellifera populations are known to survive infestations by means of natural selection, largely by supressing mite reproduction, but the underlying mechanisms of this are poorly understood. Here, we show that a cost-effective social immunity mechanism has evolved rapidly and independently in four naturally V. destructor-surviving A. mellifera populations. Worker bees of all four 'surviving' populations uncapped/recapped worker brood cells more frequently and targeted mite-infested cells more effectively than workers in local susceptible colonies. Direct experiments confirmed the ability of uncapping/recapping to reduce mite reproductive success without sacrificing nestmates. Our results provide striking evidence that honey bees can overcome exotic parasites with simple qualitative and quantitative adaptive shifts in behaviour. Due to rapid, parallel evolution in four host populations this appears to be a key mechanism explaining survival of mite infested colonies.

  13. Evolving gene regulation networks into cellular networks guiding adaptive behavior: an outline how single cells could have evolved into a centralized neurosensory system

    PubMed Central

    Fritzsch, Bernd; Jahan, Israt; Pan, Ning; Elliott, Karen L.

    2014-01-01

    Understanding the evolution of the neurosensory system of man, able to reflect on its own origin, is one of the major goals of comparative neurobiology. Details of the origin of neurosensory cells, their aggregation into central nervous systems and associated sensory organs, their localized patterning into remarkably different cell types aggregated into variably sized parts of the central nervous system begin to emerge. Insights at the cellular and molecular level begin to shed some light on the evolution of neurosensory cells, partially covered in this review. Molecular evidence suggests that high mobility group (HMG) proteins of pre-metazoans evolved into the definitive Sox [SRY (sex determining region Y)-box] genes used for neurosensory precursor specification in metazoans. Likewise, pre-metazoan basic helix-loop-helix (bHLH) genes evolved in metazoans into the group A bHLH genes dedicated to neurosensory differentiation in bilaterians. Available evidence suggests that the Sox and bHLH genes evolved a cross-regulatory network able to synchronize expansion of precursor populations and their subsequent differentiation into novel parts of the brain or sensory organs. Molecular evidence suggests metazoans evolved patterning gene networks early and not dedicated to neuronal development. Only later in evolution were these patterning gene networks tied into the increasing complexity of diffusible factors, many of which were already present in pre-metazoans, to drive local patterning events. It appears that the evolving molecular basis of neurosensory cell development may have led, in interaction with differentially expressed patterning genes, to local network modifications guiding unique specializations of neurosensory cells into sensory organs and various areas of the central nervous system. PMID:25416504

  14. Evolving gene regulatory networks into cellular networks guiding adaptive behavior: an outline how single cells could have evolved into a centralized neurosensory system.

    PubMed

    Fritzsch, Bernd; Jahan, Israt; Pan, Ning; Elliott, Karen L

    2015-01-01

    Understanding the evolution of the neurosensory system of man, able to reflect on its own origin, is one of the major goals of comparative neurobiology. Details of the origin of neurosensory cells, their aggregation into central nervous systems and associated sensory organs and their localized patterning leading to remarkably different cell types aggregated into variably sized parts of the central nervous system have begun to emerge. Insights at the cellular and molecular level have begun to shed some light on the evolution of neurosensory cells, partially covered in this review. Molecular evidence suggests that high mobility group (HMG) proteins of pre-metazoans evolved into the definitive Sox [SRY (sex determining region Y)-box] genes used for neurosensory precursor specification in metazoans. Likewise, pre-metazoan basic helix-loop-helix (bHLH) genes evolved in metazoans into the group A bHLH genes dedicated to neurosensory differentiation in bilaterians. Available evidence suggests that the Sox and bHLH genes evolved a cross-regulatory network able to synchronize expansion of precursor populations and their subsequent differentiation into novel parts of the brain or sensory organs. Molecular evidence suggests metazoans evolved patterning gene networks early, which were not dedicated to neuronal development. Only later in evolution were these patterning gene networks tied into the increasing complexity of diffusible factors, many of which were already present in pre-metazoans, to drive local patterning events. It appears that the evolving molecular basis of neurosensory cell development may have led, in interaction with differentially expressed patterning genes, to local network modifications guiding unique specializations of neurosensory cells into sensory organs and various areas of the central nervous system.

  15. Evolving MEMS Resonator Designs for Fabrication

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.; Kraus, William F.; Lohn, Jason D.

    2008-01-01

    Because of their small size and high reliability, microelectromechanical (MEMS) devices have the potential to revolution many areas of engineering. As with conventionally-sized engineering design, there is likely to be a demand for the automated design of MEMS devices. This paper describes our current status as we progress toward our ultimate goal of using an evolutionary algorithm and a generative representation to produce designs of a MEMS device and successfully demonstrate its transfer to an actual chip. To produce designs that are likely to transfer to reality, we present two ways to modify evaluation of designs. The first is to add location noise, differences between the actual dimensions of the design and the design blueprint, which is a technique we have used for our work in evolving antennas and robots. The second method is to add prestress to model the warping that occurs during the extreme heat of fabrication. In future we expect to fabricate and test some MEMS resonators that are evolved in this way.

  16. Stability and the Evolvability of Function in a Model Protein

    PubMed Central

    Bloom, Jesse D.; Wilke, Claus O.; Arnold, Frances H.; Adami, Christoph

    2004-01-01

    Functional proteins must fold with some minimal stability to a structure that can perform a biochemical task. Here we use a simple model to investigate the relationship between the stability requirement and the capacity of a protein to evolve the function of binding to a ligand. Although our model contains no built-in tradeoff between stability and function, proteins evolved function more efficiently when the stability requirement was relaxed. Proteins with both high stability and high function evolved more efficiently when the stability requirement was gradually increased than when there was constant selection for high stability. These results show that in our model, the evolution of function is enhanced by allowing proteins to explore sequences corresponding to marginally stable structures, and that it is easier to improve stability while maintaining high function than to improve function while maintaining high stability. Our model also demonstrates that even in the absence of a fundamental biophysical tradeoff between stability and function, the speed with which function can evolve is limited by the stability requirement imposed on the protein. PMID:15111394

  17. Evolving Systems: An Outcome of Fondest Hopes and Wildest Dreams

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Balas, Mark J.

    2012-01-01

    New theory is presented for evolving systems, which are autonomously controlled subsystems that self-assemble into a new evolved system with a higher purpose. Evolving systems of aerospace structures often require additional control when assembling to maintain stability during the entire evolution process. This is the concept of Adaptive Key Component Control that operates through one specific component to maintain stability during the evolution. In addition, this control must often overcome persistent disturbances that occur while the evolution is in progress. Theoretical results will be presented for Adaptive Key Component control for persistent disturbance rejection. An illustrative example will demonstrate the Adaptive Key Component controller on a system composed of rigid body and flexible body modes.

  18. Bioinformatics Reveal Five Lineages of Oleosins and the Mechanism of Lineage Evolution Related to Structure/Function from Green Algae to Seed Plants1[OPEN

    PubMed Central

    Huang, Ming-Der; Huang, Anthony H.C.

    2015-01-01

    Plant cells contain subcellular lipid droplets with a triacylglycerol matrix enclosed by a layer of phospholipids and the small structural protein oleosin. Oleosins possess a conserved central hydrophobic hairpin of approximately 72 residues penetrating into the lipid droplet matrix and amphipathic amino- and carboxyl (C)-terminal peptides lying on the phospholipid surface. Bioinformatics of 1,000 oleosins of green algae and all plants emphasizing biological implications reveal five oleosin lineages: primitive (in green algae, mosses, and ferns), universal (U; all land plants), and three in specific organs or phylogenetic groups, termed seed low-molecular-weight (SL; seed plants), seed high-molecular-weight (SH; angiosperms), and tapetum (T; Brassicaceae) oleosins. Transition from one lineage to the next is depicted from lineage intermediates at junctions of phylogeny and organ distributions. Within a species, each lineage, except the T oleosin lineage, has one to four genes per haploid genome, only approximately two of which are active. Primitive oleosins already possess all the general characteristics of oleosins. U oleosins have C-terminal sequences as highly conserved as the hairpin sequences; thus, U oleosins including their C-terminal peptide exert indispensable, unknown functions. SL and SH oleosin transcripts in seeds are in an approximately 1:1 ratio, which suggests the occurrence of SL-SH oleosin dimers/multimers. T oleosins in Brassicaceae are encoded by rapidly evolved multitandem genes for alkane storage and transfer. Overall, oleosins have evolved to retain conserved hairpin structures but diversified for unique structures and functions in specific cells and plant families. Also, our studies reveal oleosin in avocado (Persea americana) mesocarp and no acyltransferase/lipase motifs in most oleosins. PMID:26232488

  19. Rapid effects of 17β-estradiol on aggressive behavior in songbirds: Environmental and genetic influences.

    PubMed

    Heimovics, Sarah A; Merritt, Jennifer R; Jalabert, Cecilia; Ma, Chunqi; Maney, Donna L; Soma, Kiran K

    2018-04-24

    17β-estradiol (E 2 ) has numerous rapid effects on the brain and behavior. This review focuses on the rapid effects of E 2 on aggression, an important social behavior, in songbirds. First, we highlight the contributions of studies on song sparrows, which reveal that seasonal changes in the environment profoundly influence the capacity of E 2 to rapidly alter aggressive behavior. E 2 administration to male song sparrows increases aggression within 20 min in the non-breeding season, but not in the breeding season. Furthermore, E 2 rapidly modulates several phosphoproteins in the song sparrow brain. In particular, E 2 rapidly affects pCREB in the medial preoptic nucleus, in the non-breeding season only. Second, we describe studies of the white-throated sparrow, which reveal how a genetic polymorphism may influence the rapid effects of E 2 on aggression. In this species, a chromosomal rearrangement that includes ESR1, which encodes estrogen receptor α (ERα), affects ERα expression in the brain and the ability of E 2 to rapidly promote aggression. Third, we summarize studies showing that aggressive interactions rapidly affect levels of E 2 and other steroids, both in the blood and in specific brain regions, and the emerging potential for steroid profiling by liquid chromatography tandem mass spectrometry (LC-MS/MS). Such studies of songbirds demonstrate the value of an ethologically informed approach, in order to reveal how steroids act rapidly on the brain to alter naturally-occurring behavior. Copyright © 2018. Published by Elsevier Inc.

  20. The Dynamical Classification of Centaurs which Evolve into Comets

    NASA Astrophysics Data System (ADS)

    Wood, Jeremy R.; Horner, Jonathan; Hinse, Tobias; Marsden, Stephen; Swinburne University of Technology

    2016-10-01

    Centaurs are small Solar system bodies with semi-major axes between Jupiter and Neptune and perihelia beyond Jupiter. Centaurs can be further subclassified into two dynamical categories - random walk and resonance hopping. Random walk Centaurs have mean square semi-major axes (< a2 >) which vary in time according to a generalized diffusion equation where < a2 > ~t2H. H is the Hurst exponent with 0 < H < 1, and t is time. The behavior of < a2 > for resonance hopping Centaurs is not well described by generalized diffusion.The aim of this study is to determine which dynamical type of Centaur is most likely to evolve into each class of comet. 31,722 fictional massless test particles were integrated for 3 Myr in the 6-body problem (Sun, Jovian planets, test particle). Initially each test particle was a member of one of four groups. The semi-major axes of all test particles in a group were clustered within 0.27 au from a first order, interior Mean Motion resonance of Neptune. The resonances were centered at 18.94 au, 22.95 au, 24.82 au and 28.37 au.If the perihelion of a test particle reached < 4 au then the test particle was considered to be a comet and classified as either a random walk or resonance hopping Centaur. The results showed that over 4,000 test particles evolved into comets within 3 Myr. 59% of these test particles were random walk and 41% were resonance hopping. The behavior of the semi-major axis in time was usually well described by generalized diffusion for random walk Centaurs (ravg = 0.98) and poorly described for resonance hopping Centaurs (ravg = 0.52). The average Hurst exponent was 0.48 for random walk Centaurs and 0.20 for resonance hopping Centaurs. Random walk Centaurs were more likely to evolve into short period comets while resonance hopping Centaurs were more likely to evolve into long period comets. For each initial cluster, resonance hopping Centaurs took longer to evolve into comets than random walk Centaurs. Overall the population of

  1. Evolving Organizational Structures in Special Education.

    ERIC Educational Resources Information Center

    McCarthy, Eileen F., Ed.; Sage, Daniel D., Ed.

    The monograph addresses evolving organizational structures in special education from the perspectives of theory and practice. The initial paper, "Issues in Organizational Structure" (D. Sage), focuses on how the multiple units and operations of the special education system should be related and how the management authority and responsibility for…

  2. The Evolving Office of the Registrar

    ERIC Educational Resources Information Center

    Pace, Harold L.

    2011-01-01

    A healthy registrar's office will continue to evolve as it considers student, faculty, and institutional needs; staff talents and expectations; technological opportunities; economic realities; space issues; work environments; and where the strategic plan is taking the institution in support of the mission. Several recognized leaders in the field…

  3. Unlocking the "Black box": internal female genitalia in Sepsidae (Diptera) evolve fast and are species-specific

    PubMed Central

    2010-01-01

    Background The species-specificity of male genitalia has been well documented in many insect groups and sexual selection has been proposed as the evolutionary force driving the often rapid, morphological divergence. The internal female genitalia, in sharp contrast, remain poorly studied. Here, we present the first comparative study of the internal reproductive system of Sepsidae. We test the species-specificity of the female genitalia by comparing recently diverged sister taxa. We also compare the rate of change in female morphological characters with the rate of fast-evolving, molecular and behavioral characters. Results We describe the ectodermal parts of the female reproductive tract for 41 species representing 21 of the 37 described genera and define 19 morphological characters with discontinuous variation found in eight structures that are part of the reproductive tract. Using a well-resolved molecular phylogeny based on 10 genes, we reconstruct the evolution of these characters across the family [120 steps; Consistency Index (CI): 0.41]. Two structures, in particular, evolve faster than the rest. The first is the ventral receptacle, which is a secondary sperm storage organ. It accounts for more than half of all the evolutionary changes observed (7 characters; 61 steps; CI: 0.46). It is morphologically diverse across genera, can be bi-lobed or multi-chambered (up to 80 chambers), and is strongly sclerotized in one clade. The second structure is the dorsal sclerite, which is present in all sepsids except Orygma luctuosum and Ortalischema albitarse. It is associated with the opening of the spermathecal ducts and is often distinct even among sister species (4 characters; 16 steps; CI: 0.56). Conclusions We find the internal female genitalia are diverse in Sepsidae and diagnostic for all species. In particular, fast-evolving structures like the ventral receptacle and dorsal sclerite are likely involved in post-copulatory sexual selection. In comparison to

  4. Differential Scanning Calorimetry and Evolved Gas Analysis at Mars Ambient Conditions Using the Thermal Evolved Gas Analyser (TEGA)

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Boynton, W. V.; Ming, D. W.; Quadlander, G.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.

    2000-01-01

    Differential Scanning Calorimetry (DSC) combined with evolved gas analysis (EGA) is a well developed technique for the analysis of a wide variety of sample types with broad application in material and soil sciences. However, the use of the technique for samples under conditions of pressure and temperature as found on other planets is one of current development and cutting edge research. The Thermal Evolved Gas Analyzer (TEGA), which was designed, built and tested at the University of Arizona's Lunar and Planetary Lab (LPL), utilizes DSC/EGA. TEGA, which was sent to Mars on the ill-fated Mars Polar Lander, was to be the first application of DSC/EGA on the surface of Mars as well as the first direct measurement of the volatile-bearing mineralogy in martian soil. Additional information is available in the original extended abstract.

  5. New strategy to identify radicals in a time evolving EPR data set by multivariate curve resolution-alternating least squares.

    PubMed

    Fadel, Maya Abou; de Juan, Anna; Vezin, Hervé; Duponchel, Ludovic

    2016-12-01

    Electron paramagnetic resonance (EPR) spectroscopy is a powerful technique that is able to characterize radicals formed in kinetic reactions. However, spectral characterization of individual chemical species is often limited or even unmanageable due to the severe kinetic and spectral overlap among species in kinetic processes. Therefore, we applied, for the first time, multivariate curve resolution-alternating least squares (MCR-ALS) method to EPR time evolving data sets to model and characterize the different constituents in a kinetic reaction. Here we demonstrate the advantage of multivariate analysis in the investigation of radicals formed along the kinetic process of hydroxycoumarin in alkaline medium. Multiset analysis of several EPR-monitored kinetic experiments performed in different conditions revealed the individual paramagnetic centres as well as their kinetic profiles. The results obtained by MCR-ALS method demonstrate its prominent potential in analysis of EPR time evolved spectra. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Three-Fingered RAVERs: Rapid Accumulation of Variations in Exposed Residues of Snake Venom Toxins

    PubMed Central

    Sunagar, Kartik; Jackson, Timothy N. W.; Undheim, Eivind A. B.; Ali, Syed. A.; Antunes, Agostinho; Fry, Bryan G.

    2013-01-01

    Three-finger toxins (3FTx) represent one of the most abundantly secreted and potently toxic components of colubrid (Colubridae), elapid (Elapidae) and psammophid (Psammophiinae subfamily of the Lamprophidae) snake venom arsenal. Despite their conserved structural similarity, they perform a diversity of biological functions. Although they are theorised to undergo adaptive evolution, the underlying diversification mechanisms remain elusive. Here, we report the molecular evolution of different 3FTx functional forms and show that positively selected point mutations have driven the rapid evolution and diversification of 3FTx. These diversification events not only correlate with the evolution of advanced venom delivery systems (VDS) in Caenophidia, but in particular the explosive diversification of the clade subsequent to the evolution of a high pressure, hollow-fanged VDS in elapids, highlighting the significant role of these toxins in the evolution of advanced snakes. We show that Type I, II and III α-neurotoxins have evolved with extreme rapidity under the influence of positive selection. We also show that novel Oxyuranus/Pseudonaja Type II forms lacking the apotypic loop-2 stabilising cysteine doublet characteristic of Type II forms are not phylogenetically basal in relation to other Type IIs as previously thought, but are the result of secondary loss of these apotypic cysteines on at least three separate occasions. Not all 3FTxs have evolved rapidly: κ-neurotoxins, which form non-covalently associated heterodimers, have experienced a relatively weaker influence of diversifying selection; while cytotoxic 3FTx, with their functional sites, dispersed over 40% of the molecular surface, have been extremely constrained by negative selection. We show that the a previous theory of 3FTx molecular evolution (termed ASSET) is evolutionarily implausible and cannot account for the considerable variation observed in very short segments of 3FTx. Instead, we propose a theory of

  7. Rapid evolution of troglomorphic characters suggests selection rather than neutral mutation as a driver of eye reduction in cave crabs.

    PubMed

    Klaus, Sebastian; Mendoza, José C E; Liew, Jia Huan; Plath, Martin; Meier, Rudolf; Yeo, Darren C J

    2013-04-23

    This study asked whether reductive traits in cave organisms evolve at a slower pace (suggesting neutral evolution under relaxed selection) than constructive changes, which are likely to evolve under directional selection. We investigated 11 subterranean and seven surface populations of Sundathelphusa freshwater crabs on Bohol Island, Philippines, and examined constructive traits associated with improved food finding in darkness (increased leg and setae length) and reductive traits (reduced cornea size and eyestalk length). All changes occurred rapidly, given that the age of the most recent common ancestor was estimated to be 722-271 ka based on three mitochondrial markers. In order to quantify the speed of character change, we correlated the degree of morphological change with genetic distances between surface and subterranean individuals. The temporal pattern of character change following the transition to subterranean life was indistinguishable for constructive and reductive traits, characterized by an immediate onset and rapid evolutionary change. We propose that the evolution of these reductive traits-just like constructive traits-is most likely driven by strong directional selection.

  8. MSL SAM-Like Evolved Gas Analyses of Si-rich Amorphous Materials

    NASA Technical Reports Server (NTRS)

    McAdam, Amy; Knudson, Christine; Sutter, Brad; Andrejkovicova, Slavka; Archer, P. Douglas; Franz, Heather; Eigenbrode, Jennifer; Morris, Richard; Ming, Douglas; Sun, Vivian; hide

    2016-01-01

    Chemical and mineralogical analyses of several samples from Murray Formation mudstones and Stimson Formation sandstones by the Mars Science Laboratory (MSL) revealed the presence of Si-rich amorphous or poorly ordered materials. It is possible to identify the presence of high-SiO2 vs. lower SiO2 amorphous materials (e.g., basaltic glasses), based on the position of the resulting wide diffraction features in XRD patterns from the Chemistry and Mineralogy (CheMin) instrument, but it is not possible to distinguish between several candidate high-SiO2 amorphous materials such as opal-A or rhyolitic glass. In the Buckskin (BS) sample from the upper Murray Formation, and the Big Sky (BY) and Greenhorn (GH) samples from the Stimson Formation, analyses by the Sample Analysis at Mars (SAM) instrument showed very broad H2O evolutions during sample heating at temperatures >450-500degC which had not been observed from previous samples. BS also had a significant broad evolution <450-500degC. We have undertaken a laboratory study targeted at understanding if the data from SAM can be used to place constraints on the nature of the amorphous phases. SAM-like evolved gas analyses have been performed on several opal and rhyolitic glass samples. Opal-A samples exhibited wide <500degC H2O evolutions, with lesser H2O evolved above 500degC. H2O evolution traces from rhyolitic glasses varied, having either two broad H2O peaks, <300degC and >500degC, or a broad peak centered around 400degC. For samples that produced two evolutions, the lower temperature peak is more intense than the higher temperature peak, a trend also exhibited by opal-A. This trend is consistent with data from BS, but does not seem consistent with data from BY and GH which evolved most of their H2O >500degC. It may be that dehydration of opal-A and/or rhyolitic glass can result in some preferential loss of lower temperature H2O, to produce traces that more closely resemble BY and GH. This is currently under investigation

  9. Rapid preparation process of antiparkinsonian drug Mucuna pruriens silver nanoparticle by bioreduction and their characterization

    PubMed Central

    Arulkumar, Subramanian; Sabesan, Muthukumaran

    2010-01-01

    Backgorund: Development of biologically inspired experimental processes for the synthesis of nanoparticles is evolving an important branch of nanotechnology. Methods: The bioreduction behavior of plant seed extract of Mucuna pruriens in the synthesis of silver nanoparticles was investigated employing UV/visible spectrophotometry, X-ray diffraction (XRD), and transmission electron microscopy (TEM), Fourier transform – infra red (FT- IR). Result: M. pruriens was found to exhibit strong potential for rapid reduction of silver ions. The formation of nanoparticles by this method is extremely rapid, requires no toxic chemicals, and the nanoparticles are stable for several months. Conclusion: The main conclusion is that the bioreduction method to produce nanoparticles is a good alternative to the electrochemical methods and it is expected to be biocompatible. PMID:21808573

  10. Surviving rapid climate change in the deep sea during the Paleogene hyperthermals.

    PubMed

    Foster, Laura C; Schmidt, Daniela N; Thomas, Ellen; Arndt, Sandra; Ridgwell, Andy

    2013-06-04

    Predicting the impact of ongoing anthropogenic CO2 emissions on calcifying marine organisms is complex, owing to the synergy between direct changes (acidification) and indirect changes through climate change (e.g., warming, changes in ocean circulation, and deoxygenation). Laboratory experiments, particularly on longer-lived organisms, tend to be too short to reveal the potential of organisms to acclimatize, adapt, or evolve and usually do not incorporate multiple stressors. We studied two examples of rapid carbon release in the geological record, Eocene Thermal Maximum 2 (∼53.2 Ma) and the Paleocene Eocene Thermal Maximum (PETM, ∼55.5 Ma), the best analogs over the last 65 Ma for future ocean acidification related to high atmospheric CO2 levels. We use benthic foraminifers, which suffered severe extinction during the PETM, as a model group. Using synchrotron radiation X-ray tomographic microscopy, we reconstruct the calcification response of survivor species and find, contrary to expectations, that calcification significantly increased during the PETM. In contrast, there was no significant response to the smaller Eocene Thermal Maximum 2, which was associated with a minor change in diversity only. These observations suggest that there is a response threshold for extinction and calcification response, while highlighting the utility of the geological record in helping constrain the sensitivity of biotic response to environmental change.

  11. Spin-up of a rapidly rotating star by angular momentum loss - Effects of general relativity

    NASA Technical Reports Server (NTRS)

    Cook, Gregory B.; Shapiro, Stuart L.; Teukolsky, Saul A.

    1992-01-01

    It has recently been shown that a rapidly rotating Newtonian star can spin up by radiating angular momentum. Extremely fast pulsars losing energy and angular momentum by magnetic dipole radiation or gravitational radiation may exhibit this behavior. Here, we show that this phenomenon is more widespread for rapidly rotating stars in general relativity. We construct and tabulate polytropic sequences of fully relativistic rotating stars of constant rest mass and entropy. We find that the range of adiabatic indices allowing spin-up extends somewhat above 4/3 because of the nonlinear effects of relativistic gravity. In addition, there is a new class of 'supramassive' stars which will inevitably spin up by losing angular momentum regardless of their equation of state. A supramassive star, spinning up via angular momentum loss, will ultimately evolve until it becomes unstable to catastrophic collapse to a black hole. Spin-up in a rapidly rotating star may thus be an observational precursor to such collapse.

  12. Perturbation propagation in random and evolved Boolean networks

    NASA Astrophysics Data System (ADS)

    Fretter, Christoph; Szejka, Agnes; Drossel, Barbara

    2009-03-01

    In this paper, we investigate the propagation of perturbations in Boolean networks by evaluating the Derrida plot and its modifications. We show that even small random Boolean networks agree well with the predictions of the annealed approximation, but nonrandom networks show a very different behaviour. We focus on networks that were evolved for high dynamical robustness. The most important conclusion is that the simple distinction between frozen, critical and chaotic networks is no longer useful, since such evolved networks can display the properties of all three types of networks. Furthermore, we evaluate a simplified empirical network and show how its specific state space properties are reflected in the modified Derrida plots.

  13. Recent and rapid speciation with limited morphological disparity in the genus Rattus.

    PubMed

    Rowe, Kevin C; Aplin, Ken P; Baverstock, Peter R; Moritz, Craig

    2011-03-01

    Recent and rapid radiations provide rich material to examine the factors that drive speciation. Most recent and rapid radiations that have been well-characterized involve species that exhibit overt ecomorphological differences associated with clear partitioning of ecological niches in sympatry. The most diverse genus of rodents, Rattus (66 species), evolved fairly recently, but without overt ecomorphological divergence among species. We used multilocus molecular phylogenetic data and five fossil calibrations to estimate the tempo of diversification in Rattus, and their radiation on Australia and New Guinea (Sahul, 24 species). Based on our analyses, the genus Rattus originated at a date centered on the Pliocene-Pleistocene boundary (1.84-3.17 Ma) with a subsequent colonization of Sahul in the middle Pleistocene (0.85-1.28 Ma). Given these dates, the per lineage diversification rates in Rattus and Sahulian Rattus are among the highest reported for vertebrates (1.1-1.9 and 1.6-3.0 species per lineage per million years, respectively). Despite their rapid diversification, Rattus display little ecomorphological divergence among species and do not fit clearly into current models of adaptive radiations. Lineage through time plots and ancestral state reconstruction of ecological characters suggest that diversification of Sahulian Rattus was most rapid early on as they expanded into novel ecological conditions. However, rapid lineage accumulation occurred even when morphological disparity within lineages was low suggesting that future studies consider other phenotypes in the diversification of Rattus.

  14. An Evolving Joint Acquisition Force

    DTIC Science & Technology

    2004-03-19

    COVERED - 4. TITLE AND SUBTITLE An Evolving Joint Acquisition Force 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ...Theodore Jennings 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) U.S. Army War...College,Carlisle Barracks,Carlisle,PA,17013-5050 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10

  15. Evolvable Hardware for Space Applications

    NASA Technical Reports Server (NTRS)

    Lohn, Jason; Globus, Al; Hornby, Gregory; Larchev, Gregory; Kraus, William

    2004-01-01

    This article surveys the research of the Evolvable Systems Group at NASA Ames Research Center. Over the past few years, our group has developed the ability to use evolutionary algorithms in a variety of NASA applications ranging from spacecraft antenna design, fault tolerance for programmable logic chips, atomic force field parameter fitting, analog circuit design, and earth observing satellite scheduling. In some of these applications, evolutionary algorithms match or improve on human performance.

  16. Rapid resolution of retinoschisis with acetazolamide.

    PubMed

    Zhang, Lijuan; Reyes, Roberto; Lee, Winston; Chen, Ching-Lung; Chan, Lawrence; Sujirakul, Tharikarn; Chang, Stanley; Tsang, Stephen H

    2015-08-01

    To report the results of an acetazolamide (Diamox(®)) treatment regimen in a genetically confirmed case of X-linked juvenile retinoschisis (XLRS). A patient with XLRS was prescribed acetazolamide (Diamox(®)) at a dose of 500 mg/day, then discontinued the treatment due to non-compliance for 4 days, and finally resumed the course of treatment. Best-corrected visual acuity, retinal structure, and function were monitored with autofluorescence, spectral domain-optical coherence tomography (SD-OCT), adaptive optics scanning laser ophthalmoscopy (AOSLO), and full-field electroretinogram (ERG). Full-field ERG was performed using DTL recording electrodes and Ganzfeld stimulation according to ISCEV standards. Serial monitoring of the cysts by SD-OCT revealed a strong association between the effects of acetazolamide administration and the size of the schisis. A reduction in foveal cyst size was significant in as rapid as 6 days after acetazolamide initiation. AOSLO data revealed that the resolution of cone cell images improves as the foveal schisis decreases in size. Efficacy of acetazolamide in patients with XLRS can be apparent in as rapid as a week of therapy. AOSLO can be a good method to evaluate the cone cells after acetazolamide treatment in the early stages of XLRS.

  17. Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium, Desulfovibrio vulgaris.

    PubMed

    Zhou, Aifen; Lau, Rebecca; Baran, Richard; Ma, Jincai; von Netzer, Frederick; Shi, Weiling; Gorman-Lewis, Drew; Kempher, Megan L; He, Zhili; Qin, Yujia; Shi, Zhou; Zane, Grant M; Wu, Liyou; Bowen, Benjamin P; Northen, Trent R; Hillesland, Kristina L; Stahl, David A; Wall, Judy D; Arkin, Adam P; Zhou, Jizhong

    2017-11-14

    Rapid genetic and phenotypic adaptation of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough to salt stress was observed during experimental evolution. In order to identify key metabolites important for salt tolerance, a clone, ES10-5, which was isolated from population ES10 and allowed to experimentally evolve under salt stress for 5,000 generations, was analyzed and compared to clone ES9-11, which was isolated from population ES9 and had evolved under the same conditions for 1,200 generations. These two clones were chosen because they represented the best-adapted clones among six independently evolved populations. ES10-5 acquired new mutations in genes potentially involved in salt tolerance, in addition to the preexisting mutations and different mutations in the same genes as in ES9-11. Most basal abundance changes of metabolites and phospholipid fatty acids (PLFAs) were lower in ES10-5 than ES9-11, but an increase of glutamate and branched PLFA i17:1ω9c under high-salinity conditions was persistent. ES9-11 had decreased cell motility compared to the ancestor; in contrast, ES10-5 showed higher cell motility under both nonstress and high-salinity conditions. Both genotypes displayed better growth energy efficiencies than the ancestor under nonstress or high-salinity conditions. Consistently, ES10-5 did not display most of the basal transcriptional changes observed in ES9-11, but it showed increased expression of genes involved in glutamate biosynthesis, cation efflux, and energy metabolism under high salinity. These results demonstrated the role of glutamate as a key osmolyte and i17:1ω9c as the major PLFA for salt tolerance in D. vulgaris The mechanistic changes in evolved genotypes suggested that growth energy efficiency might be a key factor for selection. IMPORTANCE High salinity (e.g., elevated NaCl) is a stressor that affects many organisms. Salt tolerance, a complex trait involving multiple cellular pathways, is attractive for

  18. Potential Biomarkers and Their Applications for Rapid and Reliable Detection of Malaria

    PubMed Central

    Jain, Priyamvada; Chakma, Babina; Patra, Sanjukta; Goswami, Pranab

    2014-01-01

    Malaria has been responsible for the highest mortality in most malaria endemic countries. Even after decades of malaria control campaigns, it still persists as a disease of high mortality due to improper diagnosis and rapidly evolving drug resistant malarial parasites. For efficient and economical malaria management, WHO recommends that all malaria suspected patients should receive proper diagnosis before administering drugs. It is thus imperative to develop fast, economical, and accurate techniques for diagnosis of malaria. In this regard an in-depth knowledge on malaria biomarkers is important to identify an appropriate biorecognition element and utilize it prudently to develop a reliable detection technique for diagnosis of the disease. Among the various biomarkers, plasmodial lactate dehydrogenase and histidine-rich protein II (HRP II) have received increasing attention for developing rapid and reliable detection techniques for malaria. The widely used rapid detection tests (RDTs) for malaria succumb to many drawbacks which promotes exploration of more efficient economical detection techniques. This paper provides an overview on the current status of malaria biomarkers, along with their potential utilization for developing different malaria diagnostic techniques and advanced biosensors. PMID:24804253

  19. The evolving role of alemtuzumab (Campath-1H) in renal transplantation

    PubMed Central

    Pham, Phuong-Thu T; Lipshutz, Gerald S; Pham, Phuong-Truc T; Kawahji, Joseph; Singer, Jennifer S; Pham, Phuong-Chi T

    2009-01-01

    The introduction of new immunosuppressive agents into clinical transplantation in the 1990s has resulted in excellent short-term graft survival. Nonetheless, extended long-term graft outcomes have not been achieved due in part to the nephrotoxic effects of calcineurin inhibitors (CNIs) and the adverse effects of steroid on cardiovascular disease risk factors. Induction therapy with lymphocyte depleting antibodies has originally been introduced into renal transplantation to provide intense immunosuppression in the early post-transplant period to prevent allograft rejection. Over the past half decade, induction therapy with both non-lymphocyte depleting (basiliximab and daclizumab) and lymphocyte-depleting antibodies (antithymocyte antibodies, OKT3, alemtuzumab) has increasingly been utilized in steroid or CNI sparing protocols in the early postoperative period. Alemtuzumab is a humanized monoclonal antibody targeted against CD52 on the surface of circulatory mononuclear cells. The ability of alemtuzumab (Campath-1H) to provide rapid and profound depletion of lymphocytes from the peripheral blood has sparked interest in the use of this agent as induction therapy in steroid and/or CNI minimization or avoidance protocols. This article provides an overview of the literarure on the evolving role of alemtuzumab in renal transplantation. PMID:19920920

  20. Have plants evolved to self-immolate?

    PubMed Central

    Bowman, David M. J. S.; French, Ben J.; Prior, Lynda D.

    2014-01-01

    By definition fire prone ecosystems have highly combustible plants, leading to the hypothesis, first formally stated by Mutch in 1970, that community flammability is the product of natural selection of flammable traits. However, proving the “Mutch hypothesis” has presented an enormous challenge for fire ecologists given the difficulty in establishing cause and effect between landscape fire and flammable plant traits. Individual plant traits (such as leaf moisture content, retention of dead branches and foliage, oil rich foliage) are known to affect the flammability of plants but there is no evidence these characters evolved specifically to self-immolate, although some of these traits may have been secondarily modified to increase the propensity to burn. Demonstrating individual benefits from self-immolation is extraordinarily difficult, given the intersection of the physical environmental factors that control landscape fire (fuel production, dryness and ignitions) with community flammability properties that emerge from numerous traits of multiple species (canopy cover and litter bed bulk density). It is more parsimonious to conclude plants have evolved mechanisms to tolerate, but not promote, landscape fire. PMID:25414710

  1. Complement and the control of HIV infection: an evolving story.

    PubMed

    Frank, Michael M; Hester, Christopher; Jiang, Haixiang

    2014-05-01

    Thirty years ago, investigators isolated and later determined the structure of HIV-1 and its envelope proteins. Using techniques that were effective with other viruses, they prepared vaccines designed to generate antibody or T-cell responses, but they were ineffective in clinical trials. In this article, we consider the role of complement in host defense against enveloped viruses, the role it might play in the antibody response and why complement has not controlled HIV-1 infection. Complement consists of a large group of cell-bound and plasma proteins that are an integral part of the innate immune system. They provide a first line of defense against microbes and also play a role in the immune response. Here we review the studies of complement-mediated HIV destruction and the role of complement in the HIV antibody response. HIV-1 has evolved a complex defense to prevent complement-mediated killing reviewed here. As part of these studies, we have discovered that HIV-1 envelope, on administration into animals, is rapidly broken down into small peptides that may prove to be very inefficient at provident the type of antigenic stimulation that leads to an effective immune response. Improving complement binding and stabilizing envelope may improve the vaccine response.

  2. Transcriptomics reveals the molecular processes of light-induced rapid darkening of the non-obligate cave dweller Oreolalax rhodostigmatus (Megophryidae, Anura) and their genetic basis of pigmentation strategy.

    PubMed

    Zhu, Wei; Liu, Lusha; Wang, Xungang; Gao, Xinyu; Jiang, Jianping; Wang, Bin

    2018-05-31

    Vertebrates use different pigmentation strategies to adapt to various environments. A large amount of research has been done on disclosing the mechanisms of pigmentation strategies in vertebrates either under light, or, living in constant darkness. However, less attention has been paid to non-obligate, darkness dwellers. Red-spotted toothed toads Oreolalax rhodostigmatus (Megophryidae; Anura) from the karst mountainous region of southwestern China are non-obligate cave dwellers. Most tadpoles of the species possess transparent skin as they inhabit the dark karst caves. But remarkably, the transparent tadpoles can darken just within 15 h once exposed to light. Obviously, it is very significant to reveal molecular mechanisms of the unexpected rapid-darkening phenomenon. We compared the transcriptomes of O. rhodostigmatus tadpoles with different durations of light exposure to investigate the cellular processes and potential regulation signals for their light-induced rapid darkening. Genes involved in melanogenesis (i.e. TYR, TYRP1 and DCT) and melanocyte proliferation, as well as their transcriptional factor (MITF), showed light-induced transcription, suggesting a dominating role of morphological color change (MCC) in this process. Transcription of genes related to growth factor, MAPK and PI3K-Akt pathways increased with time of light exposure, suggesting that light could induce significant growth signal, which might facilitate the rapid skin darkening. Most importantly, an in-frame deletion of four residues was identified in O. rhodostigmatus melanocortin-1 receptor (MC1R), a critical receptor in MCC. This deletion results in a more negatively charged ligand pocket with three stereo-tandem aspartate residues. Such structural changes likely decrease the constitutive activity of MC1R, but increase its ligands-dependent activity, thus coordinating pigment regression and rapid melanogenesis in the dark and light, respectively. Our study suggested that rapid MCC was

  3. Primordial evolvability: Impasses and challenges.

    PubMed

    Vasas, Vera; Fernando, Chrisantha; Szilágyi, András; Zachár, István; Santos, Mauro; Szathmáry, Eörs

    2015-09-21

    While it is generally agreed that some kind of replicating non-living compounds were the precursors of life, there is much debate over their possible chemical nature. Metabolism-first approaches propose that mutually catalytic sets of simple organic molecules could be capable of self-replication and rudimentary chemical evolution. In particular, the graded autocatalysis replication domain (GARD) model, depicting assemblies of amphiphilic molecules, has received considerable interest. The system propagates compositional information across generations and is suggested to be a target of natural selection. However, evolutionary simulations indicate that the system lacks selectability (i.e. selection has negligible effect on the equilibrium concentrations). We elaborate on the lessons learnt from the example of the GARD model and, more widely, on the issue of evolvability, and discuss the implications for similar metabolism-first scenarios. We found that simple incorporation-type chemistry based on non-covalent bonds, as assumed in GARD, is unlikely to result in alternative autocatalytic cycles when catalytic interactions are randomly distributed. An even more serious problem stems from the lognormal distribution of catalytic factors, causing inherent kinetic instability of such loops, due to the dominance of efficiently catalyzed components that fail to return catalytic aid. Accordingly, the dynamics of the GARD model is dominated by strongly catalytic, but not auto-catalytic, molecules. Without effective autocatalysis, stable hereditary propagation is not possible. Many repetitions and different scaling of the model come to no rescue. Despite all attempts to show the contrary, the GARD model is not evolvable, in contrast to reflexively autocatalytic networks, complemented by rare uncatalyzed reactions and compartmentation. The latter networks, resting on the creation and breakage of chemical bonds, can generate novel ('mutant') autocatalytic loops from a given set of

  4. Discordance between genomic divergence and phenotypic variation in a rapidly evolving avian genus (Motacilla).

    PubMed

    Harris, Rebecca B; Alström, Per; Ödeen, Anders; Leaché, Adam D

    2018-03-01

    Generally, genotypes and phenotypes are expected to be spatially congruent; however, in widespread species complexes with few barriers to dispersal, multiple contact zones, and limited reproductive isolation, discordance between phenotypes and phylogeographic groups is more probable. Wagtails (Motacilla) are a genus of birds with striking plumage pattern variation across the Old World. Up to 13 subspecies are recognized within a single species, yet previous studies using mitochondrial DNA have supported polyphyletic phylogeographic groups that are inconsistent with subspecies plumage characteristics. In this study, we investigate the link between phenotypes and genotype by taking a phylogenetic approach. We use genome-wide SNPs, nuclear introns, and mitochondrial DNA to estimate population structure, isolation by distance, and species relationships. Together, our genetic sampling includes complete species-level sampling and comprehensive coverage of the three most phenotypically diverse Palearctic species. Our study provides strong evidence for species-level patterns of differentiation, however population-level differentiation is less pronounced. SNPs provide a robust estimate of species-level relationships, which are mostly corroborated by a combined analysis of mtDNA and nuclear introns (the first time-calibrated species tree for the genus). However, the mtDNA tree is strongly incongruent and is considered to misrepresent the species phylogeny. The extant wagtail lineages originated during the Pliocene and the Eurasian lineage underwent rapid diversification during the Pleistocene. Three of four widespread Eurasian species exhibit an east-west divide that contradicts both subspecies taxonomy and phenotypic variation. Indeed, SNPs fail to distinguish between phenotypically distinct subspecies within the M. alba and M. flava complexes, and instead support geographical regions, each of which is home to two or more different looking subspecies. This is a major step

  5. Basal forebrain neuronal inhibition enables rapid behavioral stopping

    PubMed Central

    Mayse, Jeffrey D.; Nelson, Geoffrey M.; Avila, Irene; Gallagher, Michela; Lin, Shih-Chieh

    2015-01-01

    Cognitive inhibitory control, the ability to rapidly suppress responses inappropriate for the context, is essential for flexible and adaptive behavior. While most studies on inhibitory control have focused on the fronto-basal-ganglia circuit, here we explore a novel hypothesis and show that rapid behavioral stopping is enabled by neuronal inhibition in the basal forebrain (BF). In rats performing the stop signal task, putative noncholinergic BF neurons with phasic bursting responses to the go signal were inhibited nearly completely by the stop signal. The onset of BF neuronal inhibition was tightly coupled with and temporally preceded the latency to stop, the stop signal reaction time. Artificial inhibition of BF activity in the absence of the stop signal was sufficient to reproduce rapid behavioral stopping. These results reveal a novel subcortical mechanism of rapid inhibitory control by the BF, which provides bidirectional control over the speed of response generation and inhibition. PMID:26368943

  6. An Evolving Trio of Hybrid Stars: C 111

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald (Technical Monitor); Dupree, Andrea K.

    2004-01-01

    Our goal is to understand the behavior of the outer atmosphere in this intermediate stage to create a comprehensive picture of atmospheric evolution. In the hybrid phase, the large-scale magnetic dynamo activity decays and hydrodynamic processes assume importance. Some hot plasma is still confined close to the star by magnetic loops, yet the confining field is breaking open, the atmosphere can escape through these open field lines, and the diffuse corona may be warm. There may well be a more extended and variable transition process. It remains for FUSE to identify the controlling parameters of the hybrid stars. It shows the positions of our 3 targets in the color-magnitude diagram where it is seen that they are at the extreme end of the hybrid region. Originally we had been awarded the hybrid star Iota Aur, but due to newly imposed pointing constraints of FUSE, that target was not accessible. And so we substituted Iota Dra, a giant of mass similar to our other targets but less evolved. In addition, Iota Dra was recently found to harbor a sub-stellar objects, possibly a planet, and so it could reveal the stellar environment of the planet. This substitution was accepted.

  7. The Rapidly Evolving Concept of Whole Heart Engineering

    PubMed Central

    Dal Sasso, Eleonora; Menabò, Roberta; Di Lisa, Fabio; Gerosa, Gino

    2017-01-01

    Whole heart engineering represents an incredible journey with as final destination the challenging aim to solve end-stage cardiac failure with a biocompatible and living organ equivalent. Its evolution started in 2008 with rodent organs and is nowadays moving closer to clinical application thanks to scaling-up strategies to human hearts. This review will offer a comprehensive examination on the important stages to be reached for the bioengineering of the whole heart, by describing the approaches of organ decellularization, repopulation, and maturation so far applied and the novel technologies of potential interest. In addition, it will carefully address important demands that still need to be satisfied in order to move to a real clinical translation of the whole bioengineering heart concept. PMID:29250121

  8. Emerging Zika Virus Infection: A Rapidly Evolving Situation.

    PubMed

    Bordi, Licia; Avsic-Zupanc, Tatjana; Lalle, Eleonora; Vairo, Francesco; Capobianchi, Maria Rosaria; da Costa Vasconcelos, Pedro Fernando

    2017-01-01

    Zika virus is a mosquito-borne flavivirus, firstly identified in Uganda and responsible for sporadic human cases in Africa and Asia until recently, when large outbreak occurred in Pacific Ocean and the Americas. Since the main vectors during its spread outside of Africa have been Ae. albopictus and Ae. aegypti mosquitoes, which are widely distributed all over the world, there is urgent need for a coordinated response for prevention and spread of ZIKV epidemics.Despite clinical manifestation of Zika virus infection are usually mild and self limiting, there are reports suggesting, during the recent epidemic, an association of ZIKV infection with severe consequences, including fetal/newborn microcephaly, due to vertical in utero transmission, autoimmune-neurological presentations including cranial nerve dysfunction, and Guillain-Barré Syndrome in adults. The primary mode of transmission of Zika virus between humans is through the bite of an infected female mosquito of the Aedes genus, but also sexual and blood transfusion transmission may occur. Moreover, a case of non-sexual spread from one person to another has been described, indicating that we still have more to learn about Zika transmission.Biological basis for pathogenetic effects are under investigation. Laboratory diagnosis is challenging since, so far, there are no "gold standard" diagnostic tools, and the low and short viremia in the acute phase, and together with the high cross-reactivity among the members of flavivirus genus are the most challenging aspects to be overcome.

  9. The efficacy and safety of adjuvant interferon-alfa therapy in the evolving treatment landscape for resected high-risk melanoma.

    PubMed

    Trinh, Van Anh; Zobniw, Chrystia; Hwu, Wen-Jen

    2017-08-01

    Patients with resected stage II or III melanoma are at high risk of recurrence, with 5-year mortality rate of 40-60%. Adjuvant interferon-alfa has demonstrated a small RFS and OS benefit versus observation in this patient population. However, the adjuvant treatment landscape is evolving rapidly. Areas covered: This review aims to summarize the safety and efficacy profiles of adjuvant IFNα/PEG-IFNα, revisit the controversy surrounding its application, and reappraise its position in the rapidly changing treatment landscape of resected melanoma. A literature search using PubMed database was undertaken using search words melanoma, interferon-alfa, pegylated interferon-alfa, adjuvant therapy. Expert opinion: Currently, there is no international consensus regarding the optimal dosing schedule for adjuvant IFNα, but HD IFNα-2b remains the most widely used regimen. The AEs of HD IFNα-2b are substantial; however, toxicity management experience amassed over the past 2 decades has significantly improved safety. Many exciting studies are ongoing to examine the roles of immune checkpoint inhibitors and BRAF-targeted therapies in the adjuvant setting and will further delineate the role of adjuvant IFNα.

  10. Thermal and Evolved Gas Analysis of "Nanophase" Carbonates: Implications for Thermal and Evolved Gas Analysis on Mars Missions

    NASA Technical Reports Server (NTRS)

    Lauer, Howard V., Jr.; Archer, P. D., Jr.; Sutter, B.; Niles, P. B.; Ming, Douglas W.

    2012-01-01

    Data collected by the Mars Phoenix Lander's Thermal and Evolved Gas Analyzer (TEGA) suggested the presence of calcium-rich carbonates as indicated by a high temperature CO2 release while a low temperature (approx.400-680 C) CO2 release suggested possible Mg- and/or Fe-carbonates [1,2]. Interpretations of the data collected by Mars remote instruments is done by comparing the mission data to a database on the thermal properties of well-characterized Martian analog materials collected under reduced and Earth ambient pressures [3,4]. We are proposing that "nano-phase" carbonates may also be contributing to the low temperature CO2 release. The objectives of this paper is to (1) characterize the thermal and evolved gas proper-ties of carbonates of varying particle size, (2) evaluate the CO2 releases from CO2 treated CaO samples and (3) examine the secondary CO2 release from reheated calcite of varying particle size.

  11. Spin-orbit coupling for tidally evolving super-Earths

    NASA Astrophysics Data System (ADS)

    Rodríguez, A.; Callegari, N.; Michtchenko, T. A.; Hussmann, H.

    2012-12-01

    We investigate the spin behaviour of close-in rocky planets and the implications for their orbital evolution. Considering that the planet rotation evolves under simultaneous actions of the torque due to the equatorial deformation and the tidal torque, both raised by the central star, we analyse the possibility of temporary captures in spin-orbit resonances. The results of the numerical simulations of the exact equations of motions indicate that, whenever the planet rotation is trapped in a resonant motion, the orbital decay and the eccentricity damping are faster than the ones in which the rotation follows the so-called pseudo-synchronization. Analytical results obtained through the averaged equations of the spin-orbit problem show a good agreement with the numerical simulations. We apply the analysis to the cases of the recently discovered hot super-Earths Kepler-10 b, GJ 3634 b and 55 Cnc e. The simulated dynamical history of these systems indicates the possibility of capture in several spin-orbit resonances; particularly, GJ 3634 b and 55 Cnc e can currently evolve under a non-synchronous resonant motion for suitable values of the parameters. Moreover, 55 Cnc e may avoid a chaotic rotation behaviour by evolving towards synchronization through successive temporary resonant trappings.

  12. Rapidly rotating neutron stars in general relativity: Realistic equations of state

    NASA Technical Reports Server (NTRS)

    Cook, Gregory B.; Shapiro, Stuart L.; Teukolsky, Saul A.

    1994-01-01

    We construct equilibrium sequences of rotating neutron stars in general relativity. We compare results for 14 nuclear matter equations of state. We determine a number of important physical parameters for such stars, including the maximum mass and maximum spin rate. The stability of the configurations to quasi-radial perturbations is assessed. We employ a numerical scheme particularly well suited to handle rapid rotation and large departures from spherical symmetry. We provide an extensive tabulation of models for future reference. Two classes of evolutionary sequences of fixed baryon rest mass and entropy are explored: normal sequences, which behave very much like Newtonian sequences, and supramassive sequences, which exist for neutron stars solely because of general relativistic effects. Adiabatic dissipation of energy and angular momentum causes a star to evolve in quasi-stationary fashion along an evolutionary sequence. Supramassive sequences have masses exceeding the maximum mass of a nonrotating neutron star. A supramassive star evolves toward eventual catastrophic collapse to a black hole. Prior to collapse, the star actually spins up as it loses angular momentum, an effect that may provide an observable precursor to gravitational collapse to a black hole.

  13. Earthquake Rate Models for Evolving Induced Seismicity Hazard in the Central and Eastern US

    NASA Astrophysics Data System (ADS)

    Llenos, A. L.; Ellsworth, W. L.; Michael, A. J.

    2015-12-01

    Injection-induced earthquake rates can vary rapidly in space and time, which presents significant challenges to traditional probabilistic seismic hazard assessment methodologies that are based on a time-independent model of mainshock occurrence. To help society cope with rapidly evolving seismicity, the USGS is developing one-year hazard models for areas of induced seismicity in the central and eastern US to forecast the shaking due to all earthquakes, including aftershocks which are generally omitted from hazards assessments (Petersen et al., 2015). However, the spatial and temporal variability of the earthquake rates make them difficult to forecast even on time-scales as short as one year. An initial approach is to use the previous year's seismicity rate to forecast the next year's seismicity rate. However, in places such as northern Oklahoma the rates vary so rapidly over time that a simple linear extrapolation does not accurately forecast the future, even when the variability in the rates is modeled with simulations based on an Epidemic-Type Aftershock Sequence (ETAS) model (Ogata, JASA, 1988) to account for earthquake clustering. Instead of relying on a fixed time period for rate estimation, we explore another way to determine when the earthquake rate should be updated. This approach could also objectively identify new areas where the induced seismicity hazard model should be applied. We will estimate the background seismicity rate by optimizing a single set of ETAS aftershock triggering parameters across the most active induced seismicity zones -- Oklahoma, Guy-Greenbrier, the Raton Basin, and the Azle-Dallas-Fort Worth area -- with individual background rate parameters in each zone. The full seismicity rate, with uncertainties, can then be estimated using ETAS simulations and changes in rate can be detected by applying change point analysis in ETAS transformed time with methods already developed for Poisson processes.

  14. Undercooled and rapidly quenched Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Glasgow, T. K.

    1986-01-01

    Hypoeutectic, eutectic, and hypereutectic nickel-molybdenum alloys were rapidly solidified by both bulk undercooling and melt spinning techniques. Alloys were undercooled in both electromagnetic levitation and differential thermal analysis equipment. The rate of recalescence depended upon the degree of initial undercooling and the nature (faceted or nonfaceted) of the primary nucleating phase. Alloy melts were observed to undercool more in the presence of primary Beta (NiMo intermetallic) phase than in gamma (fcc solid solution) phase. Melt spinning resulted in an extension of molybdenum solid solubility in gamma nickel, from 28 to 37.5 at % Mo. Although the microstructures observed by undercooling and melt spinning were similar the microsegregation pattern across the gamma dendries was different. The range of microstructures evolved was analyzed in terms of the nature of the primary phase to nucleate, its subsequent dendritic growth, coarsening and fragmentation, and final solidification of interfenderitic liquid.

  15. Intelligent reservoir operation system based on evolving artificial neural networks

    NASA Astrophysics Data System (ADS)

    Chaves, Paulo; Chang, Fi-John

    2008-06-01

    We propose a novel intelligent reservoir operation system based on an evolving artificial neural network (ANN). Evolving means the parameters of the ANN model are identified by the GA evolutionary optimization technique. Accordingly, the ANN model should represent the operational strategies of reservoir operation. The main advantages of the Evolving ANN Intelligent System (ENNIS) are as follows: (i) only a small number of parameters to be optimized even for long optimization horizons, (ii) easy to handle multiple decision variables, and (iii) the straightforward combination of the operation model with other prediction models. The developed intelligent system was applied to the operation of the Shihmen Reservoir in North Taiwan, to investigate its applicability and practicability. The proposed method is first built to a simple formulation for the operation of the Shihmen Reservoir, with single objective and single decision. Its results were compared to those obtained by dynamic programming. The constructed network proved to be a good operational strategy. The method was then built and applied to the reservoir with multiple (five) decision variables. The results demonstrated that the developed evolving neural networks improved the operation performance of the reservoir when compared to its current operational strategy. The system was capable of successfully simultaneously handling various decision variables and provided reasonable and suitable decisions.

  16. Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the mangrove Bruguiera gymnorrhiza.

    PubMed

    Sugihara, K; Hanagata, N; Dubinsky, Z; Baba, S; Karube, I

    2000-11-01

    Young plants of the common Okinawa mangrove species Bruguiera gymnorrhiza were transferred from freshwater to a medium with seawater salt level (500 mM NaCl). Two-dimensional gel electrophoresis revealed in the leaf extract of the plant a 33 kDa protein with pI 5.2, whose quantity increased as a result of NaCl treatment. The N-terminal amino acids sequence of this protein had a significant homology with mature region of oxygen evolving enhancer protein 1 (OEE1) precursor. The cloning of OEE1 precursor cDNA fragment was carried out by means of reverse transcription-PCR (RT-PCR) using degenerated primers. Both 3'- and 5'-regions were isolated by rapid amplification of cDNA ends (RACE) method. The deduced amino acid sequence consisted of 322 amino acids and was 87% identical to that of Nicotiana tabacum. In B. gymnorrhiza, the predicted amino acid sequence of the mature protein starts at the residue number 85 of the open reading frame. The first 84-amino acid residues correspond to a typical transit sequence for the signal directing OEE1 to its appropriate compartment of chloroplast. The expression of OEE1 was analyzed together with other OEE subunits and D1 protein of photosystem II. The transcript levels of all the three OEEs were enhanced by NaCl treatment, but the significant increase of D1 protein was not observed.

  17. Evolving provider payment models and patient access to innovative medical technology.

    PubMed

    Long, Genia; Mortimer, Richard; Sanzenbacher, Geoffrey

    2014-12-01

    Abstract Objective: To investigate the evolving use and expected impact of pay-for-performance (P4P) and risk-based provider reimbursement on patient access to innovative medical technology. Structured interviews with leading private payers representing over 110 million commercially-insured lives exploring current and planned use of P4P provider payment models, evidence requirements for technology assessment and new technology coverage, and the evolving relationship between the two topics. Respondents reported rapid increases in the use of P4P and risk-sharing programs, with roughly half of commercial lives affected 3 years ago, just under two-thirds today, and an expected three-quarters in 3 years. All reported well-established systems for evaluating new technology coverage. Five of nine reported becoming more selective in the past 3 years in approving new technologies; four anticipated that in the next 3 years there will be a higher evidence requirement for new technology access. Similarly, four expected it will become more difficult for clinically appropriate but costly technologies to gain coverage. All reported planning to rely more on these types of provider payment incentives to control costs, but didn't see them as a substitute for payer technology reviews and coverage limitations; they each have a role to play. Interviews limited to nine leading payers with models in place; self-reported data. Likely implications include a more uncertain payment environment for providers, and indirectly for innovative medical technology and future investment, greater reliance on quality and financial metrics, and increased evidence requirements for favorable coverage and utilization decisions. Increasing provider financial risk may challenge the traditional technology adoption paradigm, where payers assumed a 'gatekeeping' role and providers a countervailing patient advocacy role with regard to access to new technology. Increased provider financial risk may result in an

  18. Our evolving universe

    NASA Astrophysics Data System (ADS)

    Longair, Malcolm S.

    Our Evolving Universe is a lucid, non-technical and infectiously enthusiastic introduction to current astronomy and cosmology. Highly illustrated throughout with the latest colour images from the world's most advanced telescopes, it also provides a colourful view of our Universe. Malcolm Longair takes us on a breathtaking tour of the most dramatic recent results astronomers have on the birth of stars, the hunt for black holes and dark matter, on gravitational lensing and the latest tests of the Big Bang. He leads the reader right up to understand the key questions that future research in astronomy and cosmology must answer. A clear and comprehensive glossary of technical terms is also provided. For the general reader, student or professional wishing to understand the key questions today's astronomers and cosmologists are trying to answer, this is an invaluable and inspiring read.

  19. Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous–Paleogene boundary

    PubMed Central

    Feng, Yan-Jie; Liang, Dan; Hillis, David M.; Cannatella, David C.; Zhang, Peng

    2017-01-01

    Frogs (Anura) are one of the most diverse groups of vertebrates and comprise nearly 90% of living amphibian species. Their worldwide distribution and diverse biology make them well-suited for assessing fundamental questions in evolution, ecology, and conservation. However, despite their scientific importance, the evolutionary history and tempo of frog diversification remain poorly understood. By using a molecular dataset of unprecedented size, including 88-kb characters from 95 nuclear genes of 156 frog species, in conjunction with 20 fossil-based calibrations, our analyses result in the most strongly supported phylogeny of all major frog lineages and provide a timescale of frog evolution that suggests much younger divergence times than suggested by earlier studies. Unexpectedly, our divergence-time analyses show that three species-rich clades (Hyloidea, Microhylidae, and Natatanura), which together comprise ∼88% of extant anuran species, simultaneously underwent rapid diversification at the Cretaceous–Paleogene (K–Pg) boundary (KPB). Moreover, anuran families and subfamilies containing arboreal species originated near or after the KPB. These results suggest that the K–Pg mass extinction may have triggered explosive radiations of frogs by creating new ecological opportunities. This phylogeny also reveals relationships such as Microhylidae being sister to all other ranoid frogs and African continental lineages of Natatanura forming a clade that is sister to a clade of Eurasian, Indian, Melanesian, and Malagasy lineages. Biogeographical analyses suggest that the ancestral area of modern frogs was Africa, and their current distribution is largely associated with the breakup of Pangaea and subsequent Gondwanan fragmentation. PMID:28673970

  20. Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous-Paleogene boundary.

    PubMed

    Feng, Yan-Jie; Blackburn, David C; Liang, Dan; Hillis, David M; Wake, David B; Cannatella, David C; Zhang, Peng

    2017-07-18

    Frogs (Anura) are one of the most diverse groups of vertebrates and comprise nearly 90% of living amphibian species. Their worldwide distribution and diverse biology make them well-suited for assessing fundamental questions in evolution, ecology, and conservation. However, despite their scientific importance, the evolutionary history and tempo of frog diversification remain poorly understood. By using a molecular dataset of unprecedented size, including 88-kb characters from 95 nuclear genes of 156 frog species, in conjunction with 20 fossil-based calibrations, our analyses result in the most strongly supported phylogeny of all major frog lineages and provide a timescale of frog evolution that suggests much younger divergence times than suggested by earlier studies. Unexpectedly, our divergence-time analyses show that three species-rich clades (Hyloidea, Microhylidae, and Natatanura), which together comprise ∼88% of extant anuran species, simultaneously underwent rapid diversification at the Cretaceous-Paleogene (K-Pg) boundary (KPB). Moreover, anuran families and subfamilies containing arboreal species originated near or after the KPB. These results suggest that the K-Pg mass extinction may have triggered explosive radiations of frogs by creating new ecological opportunities. This phylogeny also reveals relationships such as Microhylidae being sister to all other ranoid frogs and African continental lineages of Natatanura forming a clade that is sister to a clade of Eurasian, Indian, Melanesian, and Malagasy lineages. Biogeographical analyses suggest that the ancestral area of modern frogs was Africa, and their current distribution is largely associated with the breakup of Pangaea and subsequent Gondwanan fragmentation.

  1. From "herbal highs" to the "heroin of cannabis": Exploring the evolving discourse on synthetic cannabinoid use in a Norwegian Internet drug forum.

    PubMed

    Bilgrei, Ola Røed

    2016-03-01

    In the early 2000s, online vendors began selling an array of so-called "legal highs"--apparently organic produce made from exotic herbs. Simultaneously, members of online drug discussion forums began to debate the alleged effects of the new drugs, creating an enormous base of user-derived information based on personal experiences. This study combines the historical data spanning a seven-year period derived from a Norwegian drug discussion forum about synthetic cannabinoids and interviews with 14 male forum members who all had experience with the drug. By combining the two sources, this study reveals not only the evolving discourse on synthetic cannabinoid use but also how forum members related to the online information that they gathered and co-produced. Analysis of the evolving online discourse revealed three distinct phases. The first was an enthusiastic phase, with users embracing the new drugs. The second was a phase characterized by growing ambivalence and scepticism towards use of the drugs. The third was one in which members of the community rejected the new drugs based on negative reviews from users. The analysis displays the communal process whereby members co-operate in the exchange of an extensive body of knowledge accumulated about synthetic cannabinoids, and the way in which this evolving discourse influences members of the forum in their views and representations of the drugs. Paradoxically, the online discussions of synthetic cannabinoids, which had great significance for their proliferation when they were initially introduced to the market, now seem to be a deterrent. The role of online drug communities in the development of new drug trends should receive renewed attention. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels.

    PubMed

    Steinacher, Arno; Bates, Declan G; Akman, Ozgur E; Soyer, Orkun S

    2016-01-01

    Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability) under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest an explanation for

  3. Exploring the Requisite Skills and Competencies of Pharmacists Needed for Success in an Evolving Health Care Environment.

    PubMed

    McLaughlin, Jacqueline E; Bush, Antonio A; Rodgers, Philip T; Scott, Mollie Ashe; Zomorodi, Meg; Pinelli, Nicole R; Roth, Mary T

    2017-08-01

    Objective. To identify and describe the core competencies and skills considered essential for success of pharmacists in today's rapidly evolving health care environment. Methods. Six breakout groups of 15-20 preceptors, pharmacists, and partners engaged in a facilitated discussion about the qualities and characteristics relevant to the success of a pharmacy graduate. Data were analyzed using qualitative methods. Peer-debriefing, multiple coders, and member-checking were used to promote trustworthiness of findings. Results. Eight overarching themes were identified: critical thinking and problem solving; collaboration across networks and leading by influence; agility and adaptability; initiative and entrepreneurialism; effective oral and written communication; accessing and analyzing information; curiosity and imagination; and self-awareness. Conclusion. This study is an important step toward understanding how to best prepare pharmacy students for the emerging health care needs of society.

  4. PyEvolve: a toolkit for statistical modelling of molecular evolution.

    PubMed

    Butterfield, Andrew; Vedagiri, Vivek; Lang, Edward; Lawrence, Cath; Wakefield, Matthew J; Isaev, Alexander; Huttley, Gavin A

    2004-01-05

    Examining the distribution of variation has proven an extremely profitable technique in the effort to identify sequences of biological significance. Most approaches in the field, however, evaluate only the conserved portions of sequences - ignoring the biological significance of sequence differences. A suite of sophisticated likelihood based statistical models from the field of molecular evolution provides the basis for extracting the information from the full distribution of sequence variation. The number of different problems to which phylogeny-based maximum likelihood calculations can be applied is extensive. Available software packages that can perform likelihood calculations suffer from a lack of flexibility and scalability, or employ error-prone approaches to model parameterisation. Here we describe the implementation of PyEvolve, a toolkit for the application of existing, and development of new, statistical methods for molecular evolution. We present the object architecture and design schema of PyEvolve, which includes an adaptable multi-level parallelisation schema. The approach for defining new methods is illustrated by implementing a novel dinucleotide model of substitution that includes a parameter for mutation of methylated CpG's, which required 8 lines of standard Python code to define. Benchmarking was performed using either a dinucleotide or codon substitution model applied to an alignment of BRCA1 sequences from 20 mammals, or a 10 species subset. Up to five-fold parallel performance gains over serial were recorded. Compared to leading alternative software, PyEvolve exhibited significantly better real world performance for parameter rich models with a large data set, reducing the time required for optimisation from approximately 10 days to approximately 6 hours. PyEvolve provides flexible functionality that can be used either for statistical modelling of molecular evolution, or the development of new methods in the field. The toolkit can be used

  5. Distinct developmental genetic mechanisms underlie convergently evolved tooth gain in sticklebacks

    PubMed Central

    Ellis, Nicholas A.; Glazer, Andrew M.; Donde, Nikunj N.; Cleves, Phillip A.; Agoglia, Rachel M.; Miller, Craig T.

    2015-01-01

    Teeth are a classic model system of organogenesis, as repeated and reciprocal epithelial and mesenchymal interactions pattern placode formation and outgrowth. Less is known about the developmental and genetic bases of tooth formation and replacement in polyphyodonts, which are vertebrates with continual tooth replacement. Here, we leverage natural variation in the threespine stickleback fish Gasterosteus aculeatus to investigate the genetic basis of tooth development and replacement. We find that two derived freshwater stickleback populations have both convergently evolved more ventral pharyngeal teeth through heritable genetic changes. In both populations, evolved tooth gain manifests late in development. Using pulse-chase vital dye labeling to mark newly forming teeth in adult fish, we find that both high-toothed freshwater populations have accelerated tooth replacement rates relative to low-toothed ancestral marine fish. Despite the similar evolved phenotype of more teeth and an accelerated adult replacement rate, the timing of tooth number divergence and the spatial patterns of newly formed adult teeth are different in the two populations, suggesting distinct developmental mechanisms. Using genome-wide linkage mapping in marine-freshwater F2 genetic crosses, we find that the genetic basis of evolved tooth gain in the two freshwater populations is largely distinct. Together, our results support a model whereby increased tooth number and an accelerated tooth replacement rate have evolved convergently in two independently derived freshwater stickleback populations using largely distinct developmental and genetic mechanisms. PMID:26062935

  6. Octree-based, GPU implementation of a continuous cellular automaton for the simulation of complex, evolving surfaces

    NASA Astrophysics Data System (ADS)

    Ferrando, N.; Gosálvez, M. A.; Cerdá, J.; Gadea, R.; Sato, K.

    2011-03-01

    Presently, dynamic surface-based models are required to contain increasingly larger numbers of points and to propagate them over longer time periods. For large numbers of surface points, the octree data structure can be used as a balance between low memory occupation and relatively rapid access to the stored data. For evolution rules that depend on neighborhood states, extended simulation periods can be obtained by using simplified atomistic propagation models, such as the Cellular Automata (CA). This method, however, has an intrinsic parallel updating nature and the corresponding simulations are highly inefficient when performed on classical Central Processing Units (CPUs), which are designed for the sequential execution of tasks. In this paper, a series of guidelines is presented for the efficient adaptation of octree-based, CA simulations of complex, evolving surfaces into massively parallel computing hardware. A Graphics Processing Unit (GPU) is used as a cost-efficient example of the parallel architectures. For the actual simulations, we consider the surface propagation during anisotropic wet chemical etching of silicon as a computationally challenging process with a wide-spread use in microengineering applications. A continuous CA model that is intrinsically parallel in nature is used for the time evolution. Our study strongly indicates that parallel computations of dynamically evolving surfaces simulated using CA methods are significantly benefited by the incorporation of octrees as support data structures, substantially decreasing the overall computational time and memory usage.

  7. Rapid thinning of Pine Island Glacier in the early Holocene.

    PubMed

    Johnson, J S; Bentley, M J; Smith, J A; Finkel, R C; Rood, D H; Gohl, K; Balco, G; Larter, R D; Schaefer, J M

    2014-02-28

    Pine Island Glacier, a major outlet of the West Antarctic Ice Sheet, has been undergoing rapid thinning and retreat for the past two decades. We demonstrate, using glacial-geological and geochronological data, that Pine Island Glacier (PIG) also experienced rapid thinning during the early Holocene, around 8000 years ago. Cosmogenic (10)Be concentrations in glacially transported rocks show that this thinning was sustained for decades to centuries at an average rate of more than 100 centimeters per year, which is comparable with contemporary thinning rates. The most likely mechanism was a reduction in ice shelf buttressing. Our findings reveal that PIG has experienced rapid thinning at least once in the past and that, once set in motion, rapid ice sheet changes in this region can persist for centuries.

  8. Knowledge extraction from evolving spiking neural networks with rank order population coding.

    PubMed

    Soltic, Snjezana; Kasabov, Nikola

    2010-12-01

    This paper demonstrates how knowledge can be extracted from evolving spiking neural networks with rank order population coding. Knowledge discovery is a very important feature of intelligent systems. Yet, a disproportionally small amount of research is centered on the issue of knowledge extraction from spiking neural networks which are considered to be the third generation of artificial neural networks. The lack of knowledge representation compatibility is becoming a major detriment to end users of these networks. We show that a high-level knowledge can be obtained from evolving spiking neural networks. More specifically, we propose a method for fuzzy rule extraction from an evolving spiking network with rank order population coding. The proposed method was used for knowledge discovery on two benchmark taste recognition problems where the knowledge learnt by an evolving spiking neural network was extracted in the form of zero-order Takagi-Sugeno fuzzy IF-THEN rules.

  9. An assay for evoked locomotor behavior in Drosophila reveals a role for integrins in ethanol sensitivity and rapid ethanol tolerance.

    PubMed

    Bhandari, Poonam; Kendler, Kenneth S; Bettinger, Jill C; Davies, Andrew G; Grotewiel, Mike

    2009-10-01

    Ethanol induces similar behavioral responses in mammals and the fruit fly, Drosophila melanogaster. By coupling assays for ethanol-related behavior to the genetic tools available in flies, a number of genes have been identified that influence physiological responses to ethanol. To enhance the utility of the Drosophila model for investigating genes involved in ethanol-related behavior, we explored the value of an assay that measures the sedative effects of ethanol on negative geotaxis, an evoked locomotor response. We established eRING (ethanol Rapid Iterative Negative Geotaxis) as an assay for quantitating the sedative effects of ethanol on negative geotaxis (i.e., startle-induced climbing). We validated the assay by assessing acute sensitivity to ethanol and rapid ethanol tolerance in several different control strains and in flies with mutations known to disrupt these behaviors. We also used eRING in a candidate screen to identify mutants with altered ethanol-related behaviors. Negative geotaxis measured in eRING assays was dose-dependently impaired by ethanol exposure. Flies developed tolerance to the intoxicating effects of ethanol when tested during a second exposure. Ethanol sensitivity and rapid ethanol tolerance varied across 4 control strains, but internal ethanol concentrations were indistinguishable in the 4 strains during a first and second challenge with ethanol. Ethanol sensitivity and rapid ethanol tolerance, respectively, were altered in flies with mutations in amnesiac and hangover, genes known to influence these traits. Additionally, mutations in the beta integrin gene myospheroid and the alpha integrin gene scab increased the initial sensitivity to ethanol and enhanced the development of rapid ethanol tolerance without altering internal ethanol concentrations. The eRING assay is suitable for investigating genetic mechanisms that influence ethanol sensitivity and rapid ethanol tolerance. Ethanol sensitivity and rapid ethanol tolerance depend on the

  10. Rapid Resolution of Retinoschisis with Acetazolamide

    PubMed Central

    Zhang, Lijuan; Reyes, Roberto; Lee, Winston; Chen, Ching-Lung; Chan, Lawrence; Sujirakul, Tharikarn; Chang, Stanley; Tsang, Stephen H.

    2015-01-01

    Purpose To report the results of an azetazolamide (Diamox®) treatment regimen in a genetically confirmed case of X-linked Juvenile Retinoschisis (XLRS). Methods A patient with XLRS was prescribed azetazolamide (Diamox®) at a dose of 500 mg/day, then discontinued the treatment due to non-compliance for 4 days, and finally resumed the course of treatment. Best-corrected visual acuity, retinal structure, and function were monitored with autofluorescence (AF), spectral domain-optical coherence tomography (SD-OCT), adaptive optics scanning laser ophthalmoloscopy (AOSLO), and full-field electroretinogram (ERG). Full-field ERG was performed using DTL recording electrodes and Ganzfeld stimulation according to ISCEV standards. Results Serial monitoring of the cysts by SD-OCT revealed a strong association between the effects of acetazolamide administration and the size of the schisis. A reduction in foveal cyst size was significant in as rapid as 6 days after acetazolamide initiation. AOSLO data revealed that the resolution of cone cell images improves as the foveal schisis decreases in size. Conclusions Efficacy of acetazolamide in patients with XLRS can be apparent in as rapid as a week of therapy. AOSLO can be a good method to evaluate the cone cells after acetazolamide treatment in the early stages of XLRS. PMID:25796216

  11. The SOS response increases bacterial fitness, but not evolvability, under a sublethal dose of antibiotic.

    PubMed

    Torres-Barceló, Clara; Kojadinovic, Mila; Moxon, Richard; MacLean, R Craig

    2015-10-07

    Exposure to antibiotics induces the expression of mutagenic bacterial stress-response pathways, but the evolutionary benefits of these responses remain unclear. One possibility is that stress-response pathways provide a short-term advantage by protecting bacteria against the toxic effects of antibiotics. Second, it is possible that stress-induced mutagenesis provides a long-term advantage by accelerating the evolution of resistance. Here, we directly measure the contribution of the Pseudomonas aeruginosa SOS pathway to bacterial fitness and evolvability in the presence of sublethal doses of ciprofloxacin. Using short-term competition experiments, we demonstrate that the SOS pathway increases competitive fitness in the presence of ciprofloxacin. Continued exposure to ciprofloxacin results in the rapid evolution of increased fitness and antibiotic resistance, but we find no evidence that SOS-induced mutagenesis accelerates the rate of adaptation to ciprofloxacin during a 200 generation selection experiment. Intriguingly, we find that the expression of the SOS pathway decreases during adaptation to ciprofloxacin, and this helps to explain why this pathway does not increase long-term evolvability. Furthermore, we argue that the SOS pathway fails to accelerate adaptation to ciprofloxacin because the modest increase in the mutation rate associated with SOS mutagenesis is offset by a decrease in the effective strength of selection for increased resistance at a population level. Our findings suggest that the primary evolutionary benefit of the SOS response is to increase bacterial competitive ability, and that stress-induced mutagenesis is an unwanted side effect, and not a selected attribute, of this pathway. © 2015 The Authors.

  12. The SOS response increases bacterial fitness, but not evolvability, under a sublethal dose of antibiotic

    PubMed Central

    Torres-Barceló, Clara; Kojadinovic, Mila; Moxon, Richard; MacLean, R. Craig

    2015-01-01

    Exposure to antibiotics induces the expression of mutagenic bacterial stress–response pathways, but the evolutionary benefits of these responses remain unclear. One possibility is that stress–response pathways provide a short-term advantage by protecting bacteria against the toxic effects of antibiotics. Second, it is possible that stress-induced mutagenesis provides a long-term advantage by accelerating the evolution of resistance. Here, we directly measure the contribution of the Pseudomonas aeruginosa SOS pathway to bacterial fitness and evolvability in the presence of sublethal doses of ciprofloxacin. Using short-term competition experiments, we demonstrate that the SOS pathway increases competitive fitness in the presence of ciprofloxacin. Continued exposure to ciprofloxacin results in the rapid evolution of increased fitness and antibiotic resistance, but we find no evidence that SOS-induced mutagenesis accelerates the rate of adaptation to ciprofloxacin during a 200 generation selection experiment. Intriguingly, we find that the expression of the SOS pathway decreases during adaptation to ciprofloxacin, and this helps to explain why this pathway does not increase long-term evolvability. Furthermore, we argue that the SOS pathway fails to accelerate adaptation to ciprofloxacin because the modest increase in the mutation rate associated with SOS mutagenesis is offset by a decrease in the effective strength of selection for increased resistance at a population level. Our findings suggest that the primary evolutionary benefit of the SOS response is to increase bacterial competitive ability, and that stress-induced mutagenesis is an unwanted side effect, and not a selected attribute, of this pathway. PMID:26446807

  13. Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium, Desulfovibrio vulgaris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Aifen; Lau, Rebecca; Baran, Richard

    ABSTRACT. Rapid genetic and phenotypic adaptation of the sulfate-reducing bacteriumDesulfovibrio vulgarisHildenborough to salt stress was observed during experimental evolution. In order to identify key metabolites important for salt tolerance, a clone, ES10-5, which was isolated from population ES10 and allowed to experimentally evolve under salt stress for 5,000 generations, was analyzed and compared to clone ES9-11, which was isolated from population ES9 and had evolved under the same conditions for 1,200 generations. These two clones were chosen because they represented the best-adapted clones among six independently evolved populations. ES10-5 acquired new mutations in genes potentially involved in salt tolerance, inmore » addition to the preexisting mutations and different mutations in the same genes as in ES9-11. Most basal abundance changes of metabolites and phospholipid fatty acids (PLFAs) were lower in ES10-5 than ES9-11, but an increase of glutamate and branched PLFA i17:1ω9c under high-salinity conditions was persistent. ES9-11 had decreased cell motility compared to the ancestor; in contrast, ES10-5 showed higher cell motility under both nonstress and high-salinity conditions. Both genotypes displayed better growth energy efficiencies than the ancestor under nonstress or high-salinity conditions. Consistently, ES10-5 did not display most of the basal transcriptional changes observed in ES9-11, but it showed increased expression of genes involved in glutamate biosynthesis, cation efflux, and energy metabolism under high salinity. These results demonstrated the role of glutamate as a key osmolyte and i17:1ω9c as the major PLFA for salt tolerance inD. vulgaris. The mechanistic changes in evolved genotypes suggested that growth energy efficiency might be a key factor for selection. IMPORTANCE. High salinity (e.g., elevated NaCl) is a stressor that affects many organisms. Salt tolerance, a complex trait involving multiple cellular pathways, is

  14. Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium, Desulfovibrio vulgaris

    DOE PAGES

    Zhou, Aifen; Lau, Rebecca; Baran, Richard; ...

    2017-11-14

    ABSTRACT. Rapid genetic and phenotypic adaptation of the sulfate-reducing bacteriumDesulfovibrio vulgarisHildenborough to salt stress was observed during experimental evolution. In order to identify key metabolites important for salt tolerance, a clone, ES10-5, which was isolated from population ES10 and allowed to experimentally evolve under salt stress for 5,000 generations, was analyzed and compared to clone ES9-11, which was isolated from population ES9 and had evolved under the same conditions for 1,200 generations. These two clones were chosen because they represented the best-adapted clones among six independently evolved populations. ES10-5 acquired new mutations in genes potentially involved in salt tolerance, inmore » addition to the preexisting mutations and different mutations in the same genes as in ES9-11. Most basal abundance changes of metabolites and phospholipid fatty acids (PLFAs) were lower in ES10-5 than ES9-11, but an increase of glutamate and branched PLFA i17:1ω9c under high-salinity conditions was persistent. ES9-11 had decreased cell motility compared to the ancestor; in contrast, ES10-5 showed higher cell motility under both nonstress and high-salinity conditions. Both genotypes displayed better growth energy efficiencies than the ancestor under nonstress or high-salinity conditions. Consistently, ES10-5 did not display most of the basal transcriptional changes observed in ES9-11, but it showed increased expression of genes involved in glutamate biosynthesis, cation efflux, and energy metabolism under high salinity. These results demonstrated the role of glutamate as a key osmolyte and i17:1ω9c as the major PLFA for salt tolerance inD. vulgaris. The mechanistic changes in evolved genotypes suggested that growth energy efficiency might be a key factor for selection. IMPORTANCE. High salinity (e.g., elevated NaCl) is a stressor that affects many organisms. Salt tolerance, a complex trait involving multiple cellular pathways, is

  15. Neural evidence reveals the rapid effects of reward history on selective attention.

    PubMed

    MacLean, Mary H; Giesbrecht, Barry

    2015-05-05

    Selective attention is often framed as being primarily driven by two factors: task-relevance and physical salience. However, factors like selection and reward history, which are neither currently task-relevant nor physically salient, can reliably and persistently influence visual selective attention. The current study investigated the nature of the persistent effects of irrelevant, physically non-salient, reward-associated features. These features affected one of the earliest reliable neural indicators of visual selective attention in humans, the P1 event-related potential, measured one week after the reward associations were learned. However, the effects of reward history were moderated by current task demands. The modulation of visually evoked activity supports the hypothesis that reward history influences the innate salience of reward associated features, such that even when no longer relevant, nor physically salient, these features have a rapid, persistent, and robust effect on early visual selective attention. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Initialization, Prediction and Diagnosis of the Rapid Intensification of Tropical Cyclones using the Australian Community Climate and Earth System Simulator, ACCESS

    DTIC Science & Technology

    2012-10-12

    structure on the evolving storm behaviour. 13 7. Large scale influences on Rapid Intensification and Extratropical Transition: RI and ET...assimilation techniques to better initialize and validate TC structures (including the intense inner core and storm asymmetries) consistent with the large...Without vortex specification, initial conditions usually contain a weak and misplaced circulation. Based on estimates of central pressure and storm size

  17. Evolved stars and the origin of abundance trends in planet hosts

    NASA Astrophysics Data System (ADS)

    Maldonado, J.; Villaver, E.

    2016-04-01

    Context. Detailed chemical abundance studies have revealed different trends between samples of planet and non-planet hosts. Whether these trends are related to the presence of planets or not is strongly debated. At the same time, tentative evidence that the properties of evolved stars with planets may be different from what we know for main-sequence hosts has recently been reported. Aims: We aim to test whether evolved stars with planets show any chemical peculiarity that could be related to the planet formation process. Methods: In a consistent way, we determine the metallicity and individual abundances of a large sample of evolved (subgiants and red giants) and main-sequence stars that are with and without known planetary companions, and discuss their metallicity distribution and trends. Our methodology is based on the analysis of high-resolution échelle spectra (R ≳ 57 000) from 2-3 m class telescopes. It includes the calculation of the fundamental stellar parameters, as well as individual abundances of C, O , Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, and Zn. Results: No differences in the ⟨[X/Fe]⟩ vs. condensation temperature (TC) slopes are found between the samples of planet and non-planet hosts when all elements are considered. However, if the analysis is restricted to only refractory elements, differences in the TC-slopes between stars with and without known planets are found. This result is found to be dependent on the stellar evolutionary stage, as it holds for main-sequence and subgiant stars, while there seems to be no difference between planet and non-planet hosts among the sample of giants. A search for correlations between the TC-slope and the stellar properties reveals significant correlations with the stellar mass and the stellar age. The data also suggest that differences in terms of mass and age between main-sequence planet and non-planet hosts may be present. Conclusions: Our results are well explained by radial mixing in the

  18. Evolving Nonthermal Electron Distributions in Simulations of Sgr A*

    NASA Astrophysics Data System (ADS)

    Chael, Andrew; Narayan, Ramesh

    2018-01-01

    The accretion flow around Sagittarius A* (Sgr A*), the black hole at the Galactic Center, produces strong variability from the radio to X-rays on timescales of minutes to hours. This rapid, powerful variability is thought to be powered by energetic particle acceleration by plasma processes like magnetic reconnection and shocks. These processes can accelerate particles into non-thermal distributions which do not quickly isothermal in the low densities found around hot accretion flows. Current state-of-the-art simulations of accretion flows around black holes assume either a single-temperature gas or, at best, a two-temperature gas with thermal ions and electrons. We present results from incorporating the self-consistent evolution of a non-thermal electron population in a GRRMHD simulation of Sgr A*. The electron distribution is evolved across space, time, and Lorentz factor in parallel with background thermal ion, electron, and radiation fluids. Energy injection into the non-thermal distribution is modeled with a sub-grid prescription based on results from particle-in-cell simulations of magnetic reconnection. The energy distribution of the non-thermal electrons shows strong variability, and the spectral shape traces the complex interplay between the local viscous heating rate, magnetic field strength, and fluid velocity. Results from these simulations will be used in interpreting forthcoming data from the Event Horizon Telescope that resolves Sgr A*'s sub-mm variability in both time and space.

  19. Rapid Emergence of Highly Pathogenic Avian Influenza Subtypes from a Subtype H5N1 Hemagglutinin Variant.

    PubMed

    de Vries, Erik; Guo, Hongbo; Dai, Meiling; Rottier, Peter J M; van Kuppeveld, Frank J M; de Haan, Cornelis A M

    2015-05-01

    In 2014, novel highly pathogenic avian influenza A H5N2, H5N5, H5N6, and H5N8 viruses caused outbreaks in Asia, Europe, and North America. The H5 genes of these viruses form a monophyletic group that evolved from a clade 2.3.4 H5N1 variant. This rapid emergence of new H5Nx combinations is unprecedented in the H5N1 evolutionary history.

  20. Assessment of Inheritance and Fitness Costs Associated with Field-Evolved Resistance to Cry3Bb1 Maize by Western Corn Rootworm.

    PubMed

    Paolino, Aubrey R; Gassmann, Aaron J

    2017-05-11

    The western corn rootworm, Diabrotica virgifera virgifera LeConte, is among the most serious insect pests of maize in North America. One strategy used to manage this pest is transgenic maize that produces one or more crystalline (Cry) toxins derived from the bacterium Bacillus thuringiensis (Bt). To delay Bt resistance by insect pests, refuges of non-Bt maize are grown in conjunction with Bt maize. Two factors influencing the success of the refuge strategy to delay resistance are the inheritance of resistance and fitness costs, with greater delays in resistance expected when inheritance of resistance is recessive and fitness costs are present. We measured inheritance and fitness costs of resistance for two strains of western corn rootworm with field-evolved resistance to Cry3Bb1 maize. Plant-based and diet-based bioassays revealed that the inheritance of resistance was non-recessive. In a greenhouse experiment, in which larvae were reared on whole maize plants in field soil, no fitness costs of resistance were detected. In a laboratory experiment, in which larvae experienced intraspecific and interspecific competition for food, a fitness cost of delayed larval development was identified, however, no other fitness costs were found. These findings of non-recessive inheritance of resistance and minimal fitness costs, highlight the potential for the rapid evolution of resistance to Cry3Bb1 maize by western corn rootworm, and may help to improve resistance management strategies for this pest.

  1. REM Sleep Behavior Disorder: Updated Review of the Core Features, the RBD-Neurodegenerative Disease Association, Evolving Concepts, Controversies, and Future Directions

    PubMed Central

    Boeve, Bradley F.

    2010-01-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia manifested by vivid, often frightening dreams associated with simple or complex motor behavior during REM sleep. Patients appear to “act out their dreams,” in which the exhibited behaviors mirror the content of the dreams, and the dream content often involves a chasing or attacking theme. The polysomnographic features of RBD include increased electromyographic tone +/- dream enactment behavior during REM sleep. Management with counseling and pharmacologic measures is usually straight-forward and effective. In this review, the terminology, clinical and polysomnographic features, demographic and epidemiologic features, diagnostic criteria, differential diagnosis, and management strategies are discussed. Recent data on the suspected pathophysiologic mechanisms of RBD are also reviewed. The literature and our institutional experience on RBD are next discussed, with an emphasis on the RBD-neurodegenerative disease association and particularly the RBD-synucleinopathy association. Several issues relating to evolving concepts, controversies, and future directions are then reviewed, with an emphasis on idiopathic RBD representing an early feature of a neurodegenerative disease and particularly an evolving synucleinopathy. Planning for future therapies that impact patients with idiopathic RBD is reviewed in detail. PMID:20146689

  2. Space Missions Trade Space Generation and Assessment Using JPL Rapid Mission Architecture (RMA) Team Approach

    NASA Technical Reports Server (NTRS)

    Moeller, Robert C.; Borden, Chester; Spilker, Thomas; Smythe, William; Lock, Robert

    2011-01-01

    The JPL Rapid Mission Architecture (RMA) capability is a novel collaborative team-based approach to generate new mission architectures, explore broad trade space options, and conduct architecture-level analyses. RMA studies address feasibility and identify best candidates to proceed to further detailed design studies. Development of RMA first began at JPL in 2007 and has evolved to address the need for rapid, effective early mission architectural development and trade space exploration as a precursor to traditional point design evaluations. The RMA approach integrates a small team of architecture-level experts (typically 6-10 people) to generate and explore a wide-ranging trade space of mission architectures driven by the mission science (or technology) objectives. Group brainstorming and trade space analyses are conducted at a higher level of assessment across multiple mission architectures and systems to enable rapid assessment of a set of diverse, innovative concepts. This paper describes the overall JPL RMA team, process, and high-level approach. Some illustrative results from previous JPL RMA studies are discussed.

  3. Nanophase Carbonates on Mars: Does Evolved Gas Analysis of Nanophase Carbonates Reveal a Large Organic Carbon Budget in Near-surface Martian Materials?

    NASA Astrophysics Data System (ADS)

    Archer, P. D., Jr.; Ming, D. W.; Sutter, B.; Niles, P. B.; Eigenbrode, J. L.

    2015-12-01

    Evolved Gas Analysis (EGA), which involves heating a sample and monitoring the gases released, has been performed on Mars by the Viking gas chromatography/mass spectrometry instruments, the Thermal and Evolved Gas Analyzer (TEGA) on the Phoenix lander, and the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory. All of these instruments detected CO2 released during sample analysis at abundances of ~0.1 to 5 wt% assuming a carbonate source. The source of the CO2 can be constrained by evaluating the temperature of the gas release, a capability of both the TEGA and SAM instruments. The samples analyzed by SAM show that the majority of the CO2is released below 400 °C, much lower than traditional carbonate decomposition temperatures which can be as low as 400 °C for some siderites, with magnesites and calcites decomposing at even higher temperatures. In addition to mineralogy, decomposition temperature can depend on particle size (among other factors). If carbonates formed on Mars under low temperature and relative humidity conditions, the resulting small particle size (nanophase) carbonates could have low decomposition temperatures. We have found that calcite can be synthesized by exposing CaO to water vapor and CO2 and that the resulting mineral has an EGA peak of ~550 °C for CO2, which is about 200 °C lower than for other calcites. Work is ongoing to produce Fe and Mg-bearing carbonates using the same process. Current results suggest that nanophase calcium carbonates cannot explain the CO2 released from martian samples. If the decomposition temperatures of Mg and Fe-bearing nanophase carbonates are not significantly lower than 400 °C, other candidate sources include oxalates and carboxylated organic molecules. If present, the abundance of organic carbon in these samples could be > 0.1 wt % (1000s of ppm), a signficant departure from the paradigm of the organic-poor Mars based on Viking results.

  4. Nanophase Carbonates on Mars: Does Evolved Gas Analysis of Nanophase Carbonates Reveal a Large Organic Carbon Budget in Near-Surface Martian Materials?

    NASA Technical Reports Server (NTRS)

    Archer, P. Douglas, Jr.; Niles, Paul B.; Ming, Douglas W.; Sutter, Brad; Eigenbrode, Jen

    2015-01-01

    Evolved Gas Analysis (EGA), which involves heating a sample and monitoring the gases released, has been performed on Mars by the Viking gas chromatography/mass spectrometry instruments, the Thermal and Evolved Gas Analyzer (TEGA) on the Phoenix lander, and the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory. All of these instruments detected CO2 released during sample analysis at abundances of approx. 0.1 to 5 wt% assuming a carbonate source. The source of the CO2 can be constrained by evaluating the temperature of the gas release, a capability of both the TEGA and SAM instruments. The samples analyzed by SAM show that the majority of the CO2 is released below 400C, much lower than traditional carbonate decomposition temperatures which can be as low as 400C for some siderites, with magnesites and calcites decomposing at even higher temperatures. In addition to mineralogy, decomposition temperature can depend on particle size (among other factors). If carbonates formed on Mars under low temperature and relative humidity conditions, the resulting small particle size (nanophase) carbonates could have low decomposition temperatures. We have found that calcite can be synthesized by exposing CaO to water vapor and CO2 and that the resulting mineral has an EGA peak of approx. 550C for CO2, which is about 200C lower than for other calcites. Work is ongoing to produce Fe and Mg-bearing carbonates using the same process. Current results suggest that nanophase calcium carbonates cannot explain the CO2 released from martian samples. If the decomposition temperatures of Mg and Fe-bearing nanophase carbonates are not significantly lower than 400C, other candidate sources include oxalates and carboxylated organic molecules. If present, the abundance of organic carbon in these samples could be greater than 0.1 wt % (1000s of ppm), a signficant departure from the paradigm of the organic-poor Mars based on Viking results.

  5. The 'E' factor -- evolving endodontics.

    PubMed

    Hunter, M J

    2013-03-01

    Endodontics is a constantly developing field, with new instruments, preparation techniques and sealants competing with trusted and traditional approaches to tooth restoration. Thus general dental practitioners must question and understand the significance of these developments before adopting new practices. In view of this, the aim of this article, and the associated presentation at the 2013 British Dental Conference & Exhibition, is to provide an overview of endodontic methods and constantly evolving best practice. The presentation will review current preparation techniques, comparing rotary versus reciprocation, and question current trends in restoration of the endodontically treated tooth.

  6. Rapid Spontaneous Redistribution of Acute Epidural Hematoma : Case Report and Literature Review

    PubMed Central

    Eom, Ki Seong; Park, Jong Tae; Kim, Tae Young

    2009-01-01

    Acute epidural hematoma (AEDH) occurring as a result of traumatic head injury constitutes one of the most critical emergencies in neurosurgery. However, there are only several reports that show the rapid disappearance of AEDH without surgical intervention. We suggest redistribution of hematoma through the overlying skull fractures as the mechanism of rapid disappearance of AEDH. A 13-year-old female fell from a height of about 2 m and presented with mild headache. A computed tomography (CT) scan performed 4 hours after the injury revealed an AEDH with an overlying fracture in the right temporal region and acute small hemorrhagic contusion in the left frontal region. A repeat CT scan 16 hours after injury revealed that the AEDH had almost completely disappeared and showed an increase in the epicranial hematoma. The patient was discharged 10 days after injury with no neurological deficits. This case is characterized by the rapid disappearance of an AEDH associated with an overlying skull fracture. We believe that the rapid disappearance of the AEDH is due to the redistribution of the hematoma, rather than its resolution or absorption, and fracture plays a key role in this process. PMID:19274119

  7. Phenotypic Analysis Reveals that the 2010 Haiti Cholera Epidemic Is Linked to a Hypervirulent Strain

    PubMed Central

    Jones, Christopher J.; Wong, Jennifer; Queen, Jessica; Agarwal, Shivani; Yildiz, Fitnat H.

    2016-01-01

    Vibrio cholerae O1 El Tor strains have been responsible for pandemic cholera since 1961. These strains have evolved over time, spreading globally in three separate waves. Wave 3 is caused by altered El Tor (AET) variant strains, which include the strain with the signature ctxB7 allele that was introduced in 2010 into Haiti, where it caused a devastating epidemic. In this study, we used phenotypic analysis to compare an early isolate from the Haiti epidemic to wave 1 El Tor isolates commonly used for research. It is demonstrated that the Haiti isolate has increased production of cholera toxin (CT) and hemolysin, increased motility, and a reduced ability to form biofilms. This strain also outcompetes common wave 1 El Tor isolates for colonization of infant mice, indicating that it has increased virulence. Monitoring of CT production and motility in additional wave 3 isolates revealed that this phenotypic variation likely evolved over time rather than in a single genetic event. Analysis of available whole-genome sequences and phylogenetic analyses suggested that increased virulence arose from positive selection for mutations found in known and putative regulatory genes, including hns and vieA, diguanylate cyclase genes, and genes belonging to the lysR and gntR regulatory families. Overall, the studies presented here revealed that V. cholerae virulence potential can evolve and that the currently prevalent wave 3 AET strains are both phenotypically distinct from and more virulent than many El Tor isolates. PMID:27297393

  8. A fast-evolving luminous transient discovered by K2/Kepler

    NASA Astrophysics Data System (ADS)

    Rest, A.; Garnavich, P. M.; Khatami, D.; Kasen, D.; Tucker, B. E.; Shaya, E. J.; Olling, R. P.; Mushotzky, R.; Zenteno, A.; Margheim, S.; Strampelli, G.; James, D.; Smith, R. C.; Förster, F.; Villar, V. A.

    2018-04-01

    For decades, optical time-domain searches have been tuned to find ordinary supernovae, which rise and fall in brightness over a period of weeks. Recently, supernova searches have improved their cadences and a handful of fast-evolving luminous transients have been identified1-5. These have peak luminosities comparable to type Ia supernovae, but rise to maximum in less than ten days and fade from view in less than one month. Here we present the most extreme example of this class of object thus far: KSN 2015K, with a rise time of only 2.2 days and a time above half-maximum of only 6.8 days. We show that, unlike type Ia supernovae, the light curve of KSN 2015K was not powered by the decay of radioactive elements. We further argue that it is unlikely that it was powered by continuing energy deposition from a central remnant (a magnetar or black hole). Using numerical radiation hydrodynamical models, we show that the light curve of KSN 2015K is well fitted by a model where the supernova runs into external material presumably expelled in a pre-supernova mass-loss episode. The rapid rise of KSN 2015K therefore probes the venting of photons when a hypersonic shock wave breaks out of a dense extended medium.

  9. Advances in the Study of Moving Sediments and Evolving Seabeds

    NASA Astrophysics Data System (ADS)

    Davies, Alan G.; Thorne, Peter D.

    2008-01-01

    Sands and mud are continually being transported around the world’s coastal seas due to the action of tides, wind and waves. The transport of these sediments modifies the boundary between the land and the sea, changing and reshaping its form. Sometimes the nearshore bathymetry evolves slowly over long time periods, at other times more rapidly due to natural episodic events or the introduction of manmade structures at the shoreline. For over half a century we have been trying to understand the physics of sediment transport processes and formulate predictive models. Although significant progress has been made, our capability to forecast the future behaviour of the coastal zone from basic principles is still relatively poor. However, innovative acoustic techniques for studying the fundamentals of sediment movement experimentally are now providing new insights, and it is expected that such observations, coupled with developing theoretical works, will allow us to take further steps towards the goal of predicting the evolution of coastlines and coastal bathymetry. This paper presents an overview of our existing predictive capabilities, primarily in the field of non-cohesive sediment transport, and highlights how new acoustic techniques are enabling our modelling efforts to achieve greater sophistication and accuracy. The paper is aimed at coastal scientists and managers seeking to understand how detailed physical studies can contribute to the improvement of coastal area models and, hence, inform coastal zone management strategies.

  10. Quantum games on evolving random networks

    NASA Astrophysics Data System (ADS)

    Pawela, Łukasz

    2016-09-01

    We study the advantages of quantum strategies in evolutionary social dilemmas on evolving random networks. We focus our study on the two-player games: prisoner's dilemma, snowdrift and stag-hunt games. The obtained result show the benefits of quantum strategies for the prisoner's dilemma game. For the other two games, we obtain regions of parameters where the quantum strategies dominate, as well as regions where the classical strategies coexist.

  11. On the Relationships between Generative Encodings, Regularity, and Learning Abilities when Evolving Plastic Artificial Neural Networks

    PubMed Central

    Tonelli, Paul; Mouret, Jean-Baptiste

    2013-01-01

    A major goal of bio-inspired artificial intelligence is to design artificial neural networks with abilities that resemble those of animal nervous systems. It is commonly believed that two keys for evolving nature-like artificial neural networks are (1) the developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks, and (2) synaptic plasticity, which allows neural networks to change during their lifetime. So far, these two topics have been mainly studied separately. The present paper shows that they are actually deeply connected. Using a simple operant conditioning task and a classic evolutionary algorithm, we compare three ways to encode plastic neural networks: a direct encoding, a developmental encoding inspired by computational neuroscience models, and a developmental encoding inspired by morphogen gradients (similar to HyperNEAT). Our results suggest that using a developmental encoding could improve the learning abilities of evolved, plastic neural networks. Complementary experiments reveal that this result is likely the consequence of the bias of developmental encodings towards regular structures: (1) in our experimental setup, encodings that tend to produce more regular networks yield networks with better general learning abilities; (2) whatever the encoding is, networks that are the more regular are statistically those that have the best learning abilities. PMID:24236099

  12. Mitogenomics and phylogenomics reveal priapulid worms as extant models of the ancestral Ecdysozoan.

    PubMed

    Webster, Bonnie L; Copley, Richard R; Jenner, Ronald A; Mackenzie-Dodds, Jacqueline A; Bourlat, Sarah J; Rota-Stabelli, Omar; Littlewood, D T J; Telford, Maximilian J

    2006-01-01

    Research into arthropod evolution is hampered by the derived nature and rapid evolution of the best-studied out-group: the nematodes. We consider priapulids as an alternative out-group. Priapulids are a small phylum of bottom-dwelling marine worms; their tubular body with spiny proboscis or introvert has changed little over 520 million years and recognizable priapulids are common among exceptionally preserved Cambrian fossils. Using the complete mitochondrial genome and 42 nuclear genes from Priapulus caudatus, we show that priapulids are slowly evolving ecdysozoans; almost all these priapulid genes have evolved more slowly than nematode orthologs and the priapulid mitochondrial gene order may be unchanged since the Cambrian. Considering their primitive bodyplan and embryology and the great conservation of both nuclear and mitochondrial genomes, priapulids may deserve the popular epithet of "living fossil." Their study is likely to yield significant new insights into the early evolution of the Ecdysozoa and the origins of the arthropods and their kin as well as aiding inference of the morphology of ancestral Ecdysozoa and Bilateria and their genomes.

  13. A Statistical Study of Rapid Sunspot Structure Change Associated with Flares

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Zhong; Liu, Chang; Song, Hui; Deng, Na; Tan, Chang-Yi; Wang, Hai-Min

    2007-10-01

    We reported recently some rapid changes of sunspot structure in white-light (WL) associated with major flares. We extend the study to smaller events and present here results of a statistical study of this phenomenon. In total, we investigate 403 events from 1998 May 9 to 2004 July 17, including 40 X-class, 174 M-class, and 189 C-class flares. By monitoring the structure of the flaring active regions using the WL observations from the Transition Region and Coronal Explorer (TRACE), we find that segments in the outer sunspot structure decayed rapidly right after many flares; and that, on the other hand, the central part of sunspots near the flare-associated magnetic neutral line became darkened. These rapid and permanent changes are evidenced in the time profiles of WL mean intensity and are not likely resulted from the flare emissions. Our study further shows that the outer sunspot structure decay as well as the central structure darkening are more likely to be detected in larger solar flares. For X-class flares, over 40% events show distinct sunspot structure change. For M- and C-class flares, this percentage drops to 17% and 10%, respectively. The results of this statistical study support our previously proposed reconnection picture, i.e., the flare-related magnetic fields evolve from a highly inclined to a more vertical configuration.

  14. Evolved osmotolerant Escherichia coli mutants frequently exhibit defective N-acetylglucosamine catabolism and point mutations in cell shape-regulating protein MreB.

    PubMed

    Winkler, James D; Garcia, Carlos; Olson, Michelle; Callaway, Emily; Kao, Katy C

    2014-06-01

    Biocatalyst robustness toward stresses imposed during fermentation is important for efficient bio-based production. Osmotic stress, imposed by high osmolyte concentrations or dense populations, can significantly impact growth and productivity. In order to better understand the osmotic stress tolerance phenotype, we evolved sexual (capable of in situ DNA exchange) and asexual Escherichia coli strains under sodium chloride (NaCl) stress. All isolates had significantly improved growth under selection and could grow in up to 0.80 M (47 g/liter) NaCl, a concentration that completely inhibits the growth of the unevolved parental strains. Whole genome resequencing revealed frequent mutations in genes controlling N-acetylglucosamine catabolism (nagC, nagA), cell shape (mrdA, mreB), osmoprotectant uptake (proV), and motility (fimA). Possible epistatic interactions between nagC, nagA, fimA, and proV deletions were also detected when reconstructed as defined mutations. Biofilm formation under osmotic stress was found to be decreased in most mutant isolates, coupled with perturbations in indole secretion. Transcriptional analysis also revealed significant changes in ompACGL porin expression and increased transcription of sulfonate uptake systems in the evolved mutants. These findings expand our current knowledge of the osmotic stress phenotype and will be useful for the rational engineering of osmotic tolerance into industrial strains in the future. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. The Comet Cometh: Evolving Developmental Systems.

    PubMed

    Jaeger, Johannes; Laubichler, Manfred; Callebaut, Werner

    In a recent opinion piece, Denis Duboule has claimed that the increasing shift towards systems biology is driving evolutionary and developmental biology apart, and that a true reunification of these two disciplines within the framework of evolutionary developmental biology (EvoDevo) may easily take another 100 years. He identifies methodological, epistemological, and social differences as causes for this supposed separation. Our article provides a contrasting view. We argue that Duboule's prediction is based on a one-sided understanding of systems biology as a science that is only interested in functional, not evolutionary, aspects of biological processes. Instead, we propose a research program for an evolutionary systems biology, which is based on local exploration of the configuration space in evolving developmental systems. We call this approach-which is based on reverse engineering, simulation, and mathematical analysis-the natural history of configuration space. We discuss a number of illustrative examples that demonstrate the past success of local exploration, as opposed to global mapping, in different biological contexts. We argue that this pragmatic mode of inquiry can be extended and applied to the mathematical analysis of the developmental repertoire and evolutionary potential of evolving developmental mechanisms and that evolutionary systems biology so conceived provides a pragmatic epistemological framework for the EvoDevo synthesis.

  16. Evidence for rapid evolutionary change in an invasive plant in response to biological control.

    PubMed

    Stastny, M; Sargent, R D

    2017-05-01

    We present evidence that populations of an invasive plant species that have become re-associated with a specialist herbivore in the exotic range through biological control have rapidly evolved increased antiherbivore defences compared to populations not exposed to biocontrol. We grew half-sib families of the invasive plant Lythrum salicaria sourced from 17 populations near Ottawa, Canada, that differed in their history of exposure to a biocontrol agent, the specialist beetle Neogalerucella calmariensis. In a glasshouse experiment, we manipulated larval and adult herbivory to examine whether a population's history of biocontrol influenced plant defence and growth. Plants sourced from populations with a history of biocontrol suffered lower defoliation than naïve, previously unexposed populations, strongly suggesting they had evolved higher resistance. Plants from biocontrol-exposed populations were also larger and produced more branches in response to herbivory, regrew faster even in the absence of herbivory and were better at compensating for the impacts of herbivory on growth (i.e. they exhibited increased tolerance). Furthermore, resistance and tolerance were positively correlated among genotypes with a history of biocontrol but not among naïve genotypes. Our findings suggest that biocontrol can rapidly select for increased defences in an invasive plant and may favour a mixed defence strategy of resistance and tolerance without an obvious cost to plant vigour. Although rarely studied, such evolutionary responses in the target species have important implications for the long-term efficacy of biocontrol programmes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  17. Social networks: Evolving graphs with memory dependent edges

    NASA Astrophysics Data System (ADS)

    Grindrod, Peter; Parsons, Mark

    2011-10-01

    The plethora of digital communication technologies, and their mass take up, has resulted in a wealth of interest in social network data collection and analysis in recent years. Within many such networks the interactions are transient: thus those networks evolve over time. In this paper we introduce a class of models for such networks using evolving graphs with memory dependent edges, which may appear and disappear according to their recent history. We consider time discrete and time continuous variants of the model. We consider the long term asymptotic behaviour as a function of parameters controlling the memory dependence. In particular we show that such networks may continue evolving forever, or else may quench and become static (containing immortal and/or extinct edges). This depends on the existence or otherwise of certain infinite products and series involving age dependent model parameters. We show how to differentiate between the alternatives based on a finite set of observations. To test these ideas we show how model parameters may be calibrated based on limited samples of time dependent data, and we apply these concepts to three real networks: summary data on mobile phone use from a developing region; online social-business network data from China; and disaggregated mobile phone communications data from a reality mining experiment in the US. In each case we show that there is evidence for memory dependent dynamics, such as that embodied within the class of models proposed here.

  18. Mutational profiles of breast cancer metastases from a rapid autopsy series reveal multiple evolutionary trajectories.

    PubMed

    Avigdor, Bracha Erlanger; Cimino-Mathews, Ashley; DeMarzo, Angelo M; Hicks, Jessica L; Shin, James; Sukumar, Saraswati; Fetting, John; Argani, Pedram; Park, Ben H; Wheelan, Sarah J

    2017-12-21

    Heterogeneity within and among tumors in a metastatic cancer patient is a well-established phenomenon that may confound treatment and accurate prognosis. Here, we used whole-exome sequencing to survey metastatic breast cancer tumors from 5 patients in a rapid autopsy program to construct the origin and genetic development of metastases. Metastases were obtained from 5 breast cancer patients using a rapid autopsy protocol and subjected to whole-exome sequencing. Metastases were evaluated for sharing of somatic mutations, correlation of copy number variation and loss of heterozygosity, and genetic similarity scores. Pathological features of the patients' disease were assessed by immunohistochemical analyses. Our data support a monoclonal origin of metastasis in 3 cases, but in 2 cases, metastases arose from at least 2 distinct subclones in the primary tumor. In the latter 2 cases, the primary tumor presented with mixed histologic and pathologic features, suggesting early divergent evolution within the primary tumor with maintenance of metastatic capability in multiple lineages. We used genetic and histopathological evidence to demonstrate that metastases can be derived from a single or multiple independent clones within a primary tumor. This underscores the complexity of breast cancer clonal evolution and has implications for how best to determine and implement therapies for early- and late-stage disease.

  19. Mutational profiles of breast cancer metastases from a rapid autopsy series reveal multiple evolutionary trajectories

    PubMed Central

    Avigdor, Bracha Erlanger; Cimino-Mathews, Ashley; DeMarzo, Angelo M.; Hicks, Jessica L.; Shin, James; Sukumar, Saraswati; Fetting, John; Argani, Pedram; Park, Ben H.; Wheelan, Sarah J.

    2017-01-01

    Heterogeneity within and among tumors in a metastatic cancer patient is a well-established phenomenon that may confound treatment and accurate prognosis. Here, we used whole-exome sequencing to survey metastatic breast cancer tumors from 5 patients in a rapid autopsy program to construct the origin and genetic development of metastases. Metastases were obtained from 5 breast cancer patients using a rapid autopsy protocol and subjected to whole-exome sequencing. Metastases were evaluated for sharing of somatic mutations, correlation of copy number variation and loss of heterozygosity, and genetic similarity scores. Pathological features of the patients’ disease were assessed by immunohistochemical analyses. Our data support a monoclonal origin of metastasis in 3 cases, but in 2 cases, metastases arose from at least 2 distinct subclones in the primary tumor. In the latter 2 cases, the primary tumor presented with mixed histologic and pathologic features, suggesting early divergent evolution within the primary tumor with maintenance of metastatic capability in multiple lineages. We used genetic and histopathological evidence to demonstrate that metastases can be derived from a single or multiple independent clones within a primary tumor. This underscores the complexity of breast cancer clonal evolution and has implications for how best to determine and implement therapies for early- and late-stage disease. PMID:29263308

  20. Linking rapid magma reservoir assembly and eruption trigger mechanisms at evolved Yellowstone-type supervolcanoes

    USGS Publications Warehouse

    Wotzlaw, J.F.; Bindeman, I.N.; Watts, Kathryn E.; Schmitt, A.K.; Caricchi, L.; Schaltegger, U.

    2014-01-01

    The geological record contains evidence of volcanic eruptions that were as much as two orders of magnitude larger than the most voluminous eruption experienced by modern civilizations, the A.D. 1815 Tambora (Indonesia) eruption. Perhaps nowhere on Earth are deposits of such supereruptions more prominent than in the Snake River Plain–Yellowstone Plateau (SRP-YP) volcanic province (northwest United States). While magmatic activity at Yellowstone is still ongoing, the Heise volcanic field in eastern Idaho represents the youngest complete caldera cycle in the SRP-YP, and thus is particularly instructive for current and future volcanic activity at Yellowstone. The Heise caldera cycle culminated 4.5 Ma ago in the eruption of the ∼1800 km3 Kilgore Tuff. Accessory zircons in the Kilgore Tuff display significant intercrystalline and intracrystalline oxygen isotopic heterogeneity, and the vast majority are 18O depleted. This suggests that zircons crystallized from isotopically distinct magma batches that were generated by remelting of subcaldera silicic rocks previously altered by low-δ18O meteoric-hydrothermal fluids. Prior to eruption these magma batches were assembled and homogenized into a single voluminous reservoir. U-Pb geochronology of isotopically diverse zircons using chemical abrasion–isotope dilution–thermal ionization mass spectrometry yielded indistinguishable crystallization ages with a weighted mean 206Pb/238U date of 4.4876 ± 0.0023 Ma (MSWD = 1.5; n = 24). These zircon crystallization ages are also indistinguishable from the sanidine 40Ar/39Ar dates, and thus zircons crystallized close to eruption. This requires that shallow crustal melting, assembly of isolated batches into a supervolcanic magma reservoir, homogenization, and eruption occurred extremely rapidly, within the resolution of our geochronology (103–104 yr). The crystal-scale image of the reservoir configuration, with several isolated magma batches, is very similar to the

  1. An Evolved International Lunar Decade Global Exploration Roadmap

    NASA Astrophysics Data System (ADS)

    Dunlop, D.; Holder, K.

    2015-10-01

    An Evolved Global Exploration Roadmap (GER) reflecting a proposed International Lunar Decade is presented by an NSS chapter to address many of the omissions and new prospective commercial mission developments since the 2013 edition of the ISECG GER.

  2. Infrared video tracking of Anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localised net contact

    PubMed Central

    Parker, Josephine E.A.; Angarita-Jaimes, Natalia; Abe, Mayumi; Towers, Catherine E.; Towers, David; McCall, Philip J.

    2015-01-01

    Long-lasting insecticidal bed nets (LLINs) protect humans from malaria transmission and are fundamental to malaria control worldwide, but little is known of how mosquitoes interact with nets. Elucidating LLIN mode of action is essential to maintain or improve efficacy, an urgent need as emerging insecticide resistance threatens their future. Tracking multiple free-flying Anopheles gambiae responding to human-occupied bed nets in a novel large-scale system, we characterised key behaviours and events. Four behavioural modes with different levels of net contact were defined: swooping, visiting, bouncing and resting. Approximately 75% of all activity occurred at the bed net roof where multiple brief contacts were focussed above the occupant’s torso. Total flight and net contact times were lower at LLINs than untreated nets but the essential character of the response was unaltered. LLINs did not repel mosquitoes but impacted rapidly: LLIN contact of less than 1 minute per mosquito during the first ten minutes reduced subsequent activity; after thirty minutes, activity at LLINs was negligible. Velocity measurements showed that mosquitoes detected nets, including unbaited untreated nets, prior to contact. This is the most complete characterisation of mosquito-LLIN interactions to date, and reveals many aspects of LLIN mode of action, important for developing the next generation of LLINs. PMID:26323965

  3. Rapid Spontaneously Resolving Acute Subdural Hematoma

    PubMed Central

    Gan, Qi; Zhao, Hexiang; Zhang, Hanmei; You, Chao

    2017-01-01

    Introduction: This study reports a rare patient of a rapid spontaneously resolving acute subdural hematoma. In addition, an analysis of potential clues for the phenomenon is presented with a review of the literature. Patient Presentation: A 1-year-and-2-month-old boy fell from a height of approximately 2 m. The patient was in a superficial coma with a Glasgow Coma Scale of 8 when he was transferred to the authors’ hospital. Computed tomography revealed the presence of an acute subdural hematoma with a midline shift beyond 1 cm. His guardians refused invasive interventions and chose conservative treatment. Repeat imaging after 15 hours showed the evident resolution of the hematoma and midline reversion. Progressive magnetic resonance imaging demonstrated the complete resolution of the hematoma, without redistribution to a remote site. Conclusions: Even though this phenomenon has a low incidence, the probability of a rapid spontaneously resolving acute subdural hematoma should be considered when patients present with the following characteristics: children or elderly individuals suffering from mild to moderate head trauma; stable or rapidly recovered consciousness; and simple acute subdural hematoma with a moderate thickness and a particularly low-density band in computed tomography scans. PMID:28468224

  4. The evolving definition of a chondrodysplasia?

    PubMed

    Horton, William A

    2003-01-01

    Most individuals who deal with chondrodysplasias would agree that this term refers collectively to a genetically and clinically heterogeneous group of disorders of skeletal development and growth. But they might not agree on what constitutes a specific chondrodysplasia. Indeed, the way in which a specific chondrodysplasia is defined has evolved substantially over the past several decades. David Rimoin, to whom this special issue is dedicated, has played a vital role in this evolution.

  5. Characterizing the evolving K -band luminosity function using the UltraVISTA, CANDELS and HUDF surveys

    NASA Astrophysics Data System (ADS)

    Mortlock, Alice; McLure, Ross J.; Bowler, Rebecca A. A.; McLeod, Derek J.; Mármol-Queraltó, Esther; Parsa, Shaghayegh; Dunlop, James S.; Bruce, Victoria A.

    2017-02-01

    We present the results of a new study of the K-band galaxy luminosity function (KLF) at redshifts z ≤ 3.75, based on a nested combination of the UltraVISTA, Cosmic Assembly Near-infrared Deep Legacy Extragalactic Survey and HUDF surveys. The large dynamic range in luminosity spanned by this new data set (3-4 dex over the full redshift range) is sufficient to clearly demonstrate for the first time that the faint-end slope of the KLF at z ≥ 0.25 is relatively steep (-1.3 ≤ α ≤ -1.5 for a single Schechter function), in good agreement with recent theoretical and phenomenological models. Moreover, based on our new data set, we find that a double Schechter function provides a significantly improved description of the KLF at z ≤ 2. At redshifts z ≥ 0.25, the evolution of the KLF is remarkably smooth, with little or no evolution evident at faint (MK ≥ -20.5) or bright magnitudes (MK ≤ -24.5). Instead, the KLF is seen to evolve rapidly at intermediate magnitudes, with the number density of galaxies at MK ≃-23 dropping by a factor of ≃5 over the redshift interval 0.25 ≤ z ≤ 3.75. Motivated by this, we explore a simple description of the evolving KLF based on a double Schechter function with fixed faint-end slopes (α1 = -0.5, α2 = -1.5) and a shared characteristic magnitude (MK^{star }). According to this parametrization, the normalization of the component which dominates the faint end of the KLF remains approximately constant, with φ ^{star }2 decreasing by only a factor of ≃2 between z ≃0 and 3.25. In contrast, the component which dominates the bright end of the KLF at low redshifts evolves dramatically, becoming essentially negligible by z ≃3. Finally, we note that within this parametrization, the observed evolution of MK^{star } between z ≃0 and 3.25 is entirely consistent with MK^{star } corresponding to a constant stellar mass of M⋆ ≃5 × 1010 M⊙ at all redshifts.

  6. Summary of Results from the Mars Phoenix Lander's Thermal Evolved Gas Analyzer

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Ming, D. W.; Boynton, W. V.; Niles, P. B.; Hoffman, J.; Lauer, H. V.; Golden, D. C.

    2009-01-01

    The Mars Phoenix Scout Mission with its diverse instrument suite successfully examined several soils on the Northern plains of Mars. The Thermal and Evolved Gas Analyzer (TEGA) was employed to detect evolved volatiles and organic and inorganic materials by coupling a differential scanning calorimeter (DSC) with a magnetic-sector mass spectrometer (MS) that can detect masses in the 2 to 140 dalton range [1]. Five Martian soils were individually heated to 1000 C in the DSC ovens where evolved gases from mineral decompostion products were examined with the MS. TEGA s DSC has the capability to detect endothermic and exothermic reactions during heating that are characteristic of minerals present in the Martian soil.

  7. Molecular dynamics explorations of active site structure in designed and evolved enzymes.

    PubMed

    Osuna, Sílvia; Jiménez-Osés, Gonzalo; Noey, Elizabeth L; Houk, K N

    2015-04-21

    This Account describes the use of molecular dynamics (MD) simulations to reveal how mutations alter the structure and organization of enzyme active sites. As proposed by Pauling about 70 years ago and elaborated by many others since then, biocatalysis is efficient when functional groups in the active site of an enzyme are in optimal positions for transition state stabilization. Changes in mechanism and covalent interactions are often critical parts of enzyme catalysis. We describe our explorations of the dynamical preorganization of active sites using MD, studying the fluctuations between active and inactive conformations normally concealed to static crystallography. MD shows how the various arrangements of active site residues influence the free energy of the transition state and relates the populations of the catalytic conformational ensemble to the enzyme activity. This Account is organized around three case studies from our laboratory. We first describe the importance of dynamics in evaluating a series of computationally designed and experimentally evolved enzymes for the Kemp elimination, a popular subject in the enzyme design field. We find that the dynamics of the active site is influenced not only by the original sequence design and subsequent mutations but also by the nature of the ligand present in the active site. In the second example, we show how microsecond MD has been used to uncover the role of remote mutations in the active site dynamics and catalysis of a transesterase, LovD. This enzyme was evolved by Tang at UCLA and Codexis, Inc., and is a useful commercial catalyst for the production of the drug simvastatin. X-ray analysis of inactive and active mutants did not reveal differences in the active sites, but relatively long time scale MD in solution showed that the active site of the wild-type enzyme preorganizes only upon binding of the acyl carrier protein (ACP) that delivers the natural acyl group to the active site. In the absence of bound ACP

  8. Witnessing Atmospheric Motions in Cool Evolved Stars with VLTI/Amber

    NASA Astrophysics Data System (ADS)

    Ohnaka, Keiichi

    2018-04-01

    Studies of the mass loss from stars in late evolutionary stages are of utmost importance for improving our understanding of not only stellar evolution but also the chemical enrichment of galaxies. Despite such importance, the mass loss from cool evolved stars is one of the long-standing problems in stellar astrophysics. Milliarcsecond resolution achieved by optical/infrared long-baseline interferometry provides a unique opportunity to spatially resolve this innermost key region. We have recently succeeded not only in imaging the surface of the red supergiant Antares in the 2.3 micron CO lines in unprecedented detail but also in witnessing, for the first time, the complex gas dynamics over the surface and atmosphere of the star. Our 2-D velocity field map of Antares reveals vigorous upwelling and downdrafting motions of large gas clumps in the atmosphere extending out to 1.7 stellar radii. This suggests that the mass loss in red supergiants may be launched in a turbulent, clumpy manner. We will also present preliminary results of the velocity-resolved imaging of an AGB star. Our work opens an entirely new window to observe stars just like in observations of the Sun.

  9. Did Language Evolve Like the Vertebrate Eye?

    ERIC Educational Resources Information Center

    Botha, Rudolf P.

    2002-01-01

    Offers a critical appraisal of the way in which the idea that human language or some of its features evolved like the vertebrate eye by natural selection is articulated in Pinker and Bloom's (1990) selectionist account of language evolution. Argues that this account is less than insightful because it fails to draw some of the conceptual…

  10. The evolving star formation rate: M⋆ relation and sSFR since z ≃ 5 from the VUDS spectroscopic survey

    NASA Astrophysics Data System (ADS)

    Tasca, L. A. M.; Le Fèvre, O.; Hathi, N. P.; Schaerer, D.; Ilbert, O.; Zamorani, G.; Lemaux, B. C.; Cassata, P.; Garilli, B.; Le Brun, V.; Maccagni, D.; Pentericci, L.; Thomas, R.; Vanzella, E.; Zucca, E.; Amorin, R.; Bardelli, S.; Cassarà, L. P.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Paltani, S.; Ribeiro, B.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Pforr, J.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.

    2015-09-01

    We study the evolution of the star formation rate (SFR) - stellar mass (M⋆) relation and specific star formation rate (sSFR) of star-forming galaxies (SFGs) since a redshift z ≃ 5.5 using 2435 (4531) galaxies with highly reliable spectroscopic redshifts in the VIMOS Ultra-Deep Survey (VUDS). It is the first time that these relations can be followed over such a large redshift range from a single homogeneously selected sample of galaxies with spectroscopic redshifts. The log (SFR) - log (M⋆) relation for SFGs remains roughly linear all the way up to z = 5, but the SFR steadily increases at fixed mass with increasing redshift. We find that for stellar masses M⋆ ≥ 3.2 × 109M⊙ the SFR increases by a factor of ~13 between z = 0.4 and z = 2.3. Weextend this relation up to z = 5, finding an additional increase in SFR by a factor of 1.7 from z = 2.3 to z = 4.8 for masses M⋆ ≥ 1010M⊙. We observe a turn-off in the SFR-M⋆ relation at the highest mass end up to a redshift z ~ 3.5. We interpret this turn-off as the signature of a strong on-going quenching mechanism and rapid mass growth. The sSFR increases strongly up to z ~ 2, but it grows much less rapidly in 2 evolves more rapidly with Φ = 2.8 ± 0.2. Above z ~ 2, the reverse is happening with the data evolving more slowly with Φ = 1.2 ± 0.1. The observed sSFR evolution over a large redshift range 0

  11. Audiovisual Simultaneity Judgment and Rapid Recalibration throughout the Lifespan.

    PubMed

    Noel, Jean-Paul; De Niear, Matthew; Van der Burg, Erik; Wallace, Mark T

    2016-01-01

    Multisensory interactions are well established to convey an array of perceptual and behavioral benefits. One of the key features of multisensory interactions is the temporal structure of the stimuli combined. In an effort to better characterize how temporal factors influence multisensory interactions across the lifespan, we examined audiovisual simultaneity judgment and the degree of rapid recalibration to paired audiovisual stimuli (Flash-Beep and Speech) in a sample of 220 participants ranging from 7 to 86 years of age. Results demonstrate a surprisingly protracted developmental time-course for both audiovisual simultaneity judgment and rapid recalibration, with neither reaching maturity until well into adolescence. Interestingly, correlational analyses revealed that audiovisual simultaneity judgments (i.e., the size of the audiovisual temporal window of simultaneity) and rapid recalibration significantly co-varied as a function of age. Together, our results represent the most complete description of age-related changes in audiovisual simultaneity judgments to date, as well as being the first to describe changes in the degree of rapid recalibration as a function of age. We propose that the developmental time-course of rapid recalibration scaffolds the maturation of more durable audiovisual temporal representations.

  12. Suprafamilial relationships among Rodentia and the phylogenetic effect of removing fast-evolving nucleotides in mitochondrial, exon and intron fragments.

    PubMed

    Montgelard, Claudine; Forty, Ellen; Arnal, Véronique; Matthee, Conrad A

    2008-11-26

    The number of rodent clades identified above the family level is contentious, and to date, no consensus has been reached on the basal evolutionary relationships among all rodent families. Rodent suprafamilial phylogenetic relationships are investigated in the present study using approximately 7600 nucleotide characters derived from two mitochondrial genes (Cytochrome b and 12S rRNA), two nuclear exons (IRBP and vWF) and four nuclear introns (MGF, PRKC, SPTBN, THY). Because increasing the number of nucleotides does not necessarily increase phylogenetic signal (especially if the data is saturated), we assess the potential impact of saturation for each dataset by removing the fastest-evolving positions that have been recognized as sources of inconsistencies in phylogenetics. Taxonomic sampling included multiple representatives of all five rodent suborders described. Fast-evolving positions for each dataset were identified individually using a discrete gamma rate category and sites belonging to the most rapidly evolving eighth gamma category were removed. Phylogenetic tree reconstructions were performed on individual and combined datasets using Parsimony, Bayesian, and partitioned Maximum Likelihood criteria. Removal of fast-evolving positions enhanced the phylogenetic signal to noise ratio but the improvement in resolution was not consistent across different data types. The results suggested that elimination of fastest sites only improved the support for nodes moderately affected by homoplasy (the deepest nodes for introns and more recent nodes for exons and mitochondrial genes). The present study based on eight DNA fragments supports a fully resolved higher level rodent phylogeny with moderate to significant nodal support. Two inter-suprafamilial associations emerged. The first comprised a monophyletic assemblage containing the Anomaluromorpha (Anomaluridae + Pedetidae) + Myomorpha (Muridae + Dipodidae) as sister clade to the Castorimorpha (Castoridae + Geomyoidea

  13. Suprafamilial relationships among Rodentia and the phylogenetic effect of removing fast-evolving nucleotides in mitochondrial, exon and intron fragments

    PubMed Central

    2008-01-01

    Background The number of rodent clades identified above the family level is contentious, and to date, no consensus has been reached on the basal evolutionary relationships among all rodent families. Rodent suprafamilial phylogenetic relationships are investigated in the present study using ~7600 nucleotide characters derived from two mitochondrial genes (Cytochrome b and 12S rRNA), two nuclear exons (IRBP and vWF) and four nuclear introns (MGF, PRKC, SPTBN, THY). Because increasing the number of nucleotides does not necessarily increase phylogenetic signal (especially if the data is saturated), we assess the potential impact of saturation for each dataset by removing the fastest-evolving positions that have been recognized as sources of inconsistencies in phylogenetics. Results Taxonomic sampling included multiple representatives of all five rodent suborders described. Fast-evolving positions for each dataset were identified individually using a discrete gamma rate category and sites belonging to the most rapidly evolving eighth gamma category were removed. Phylogenetic tree reconstructions were performed on individual and combined datasets using Parsimony, Bayesian, and partitioned Maximum Likelihood criteria. Removal of fast-evolving positions enhanced the phylogenetic signal to noise ratio but the improvement in resolution was not consistent across different data types. The results suggested that elimination of fastest sites only improved the support for nodes moderately affected by homoplasy (the deepest nodes for introns and more recent nodes for exons and mitochondrial genes). Conclusion The present study based on eight DNA fragments supports a fully resolved higher level rodent phylogeny with moderate to significant nodal support. Two inter-suprafamilial associations emerged. The first comprised a monophyletic assemblage containing the Anomaluromorpha (Anomaluridae + Pedetidae) + Myomorpha (Muridae + Dipodidae) as sister clade to the Castorimorpha

  14. Rapid Solidification in Bulk Ti-Nb Alloys by Single-Track Laser Melting

    NASA Astrophysics Data System (ADS)

    Roehling, John D.; Perron, Aurélien; Fattebert, Jean-Luc; Haxhimali, Tomorr; Guss, Gabe; Li, Tian T.; Bober, David; Stokes, Adam W.; Clarke, Amy J.; Turchi, Patrice E. A.; Matthews, Manyalibo J.; McKeown, Joseph T.

    2018-05-01

    Single-track laser melting experiments were performed on bulk Ti-Nb alloys to explore process parameters and the resultant macroscopic structure and microstructure. The microstructures in Ti-20Nb and Ti-50Nb (at.%) alloys exhibited cellular growth during rapid solidification, with average cell size of approximately 0.5 µm. Solidification velocities during cellular growth were calculated from images of melt tracks. Measurements of the composition in the cellular and intercellular regions revealed nonequilibrium partitioning and its dependence on velocity during rapid solidification. Experimental results were used to benchmark a phase-field model to describe rapid solidification under conditions relevant to additive manufacturing.

  15. Analyzing Evolving Social Network 2 (EVOLVE2)

    DTIC Science & Technology

    2015-04-01

    Facebook friendship graph. We simulated two different interaction models: one-to-one and one-to-many interactions . Both types of models revealed...to an unbiased random walk on the reweighed “ interaction graph” W with entries wij = αiAijαj . The generalized Laplacian framework is flexible enough...Information Intelligence Systems & Analysis Division Information Directorate This report is published in the interest of scientific and technical

  16. FREQ-Seq: A Rapid, Cost-Effective, Sequencing-Based Method to Determine Allele Frequencies Directly from Mixed Populations

    PubMed Central

    Delaney, Nigel F.; Marx, Christopher J.

    2012-01-01

    Understanding evolutionary dynamics within microbial populations requires the ability to accurately follow allele frequencies through time. Here we present a rapid, cost-effective method (FREQ-Seq) that leverages Illumina next-generation sequencing for localized, quantitative allele frequency detection. Analogous to RNA-Seq, FREQ-Seq relies upon counts from the >105 reads generated per locus per time-point to determine allele frequencies. Loci of interest are directly amplified from a mixed population via two rounds of PCR using inexpensive, user-designed oligonucleotides and a bar-coded bridging primer system that can be regenerated in-house. The resulting bar-coded PCR products contain the adapters needed for Illumina sequencing, eliminating further library preparation. We demonstrate the utility of FREQ-Seq by determining the order and dynamics of beneficial alleles that arose as a microbial population, founded with an engineered strain of Methylobacterium, evolved to grow on methanol. Quantifying allele frequencies with minimal bias down to 1% abundance allowed effective analysis of SNPs, small in-dels and insertions of transposable elements. Our data reveal large-scale clonal interference during the early stages of adaptation and illustrate the utility of FREQ-Seq as a cost-effective tool for tracking allele frequencies in populations. PMID:23118913

  17. Rapid Decisions From Experience

    PubMed Central

    Zeigenfuse, Matthew D.; Pleskac, Timothy J.; Liu, Taosheng

    2014-01-01

    In many everyday decisions, people quickly integrate noisy samples of information to form a preference among alternatives that offer uncertain rewards. Here, we investigated this decision process using the Flash Gambling Task (FGT), in which participants made a series of choices between a certain payoff and an uncertain alternative that produced a normal distribution of payoffs. For each choice, participants experienced the distribution of payoffs via rapid samples updated every 50 ms. We show that people can make these rapid decisions from experience and that the decision process is consistent with a sequential sampling process. Results also reveal a dissociation between these preferential decisions and equivalent perceptual decisions where participants had to determine which alternatives contained more dots on average. To account for this dissociation, we developed a sequential sampling rank-dependent utility model, which showed that participants in the FGT attended more to larger potential payoffs than participants in the perceptual task despite being given equivalent information. We discuss the implications of these findings in terms of computational models of preferential choice and a more complete understanding of experience-based decision making. PMID:24549141

  18. Fission of Rapidly Rotating Protostars

    NASA Astrophysics Data System (ADS)

    Lozier, Jennifer L.; Michael, S.; Durisen, R. H.; Imamura, J. N.

    2006-12-01

    It has long been conjectured that close binary star systems might form through the fission of a rapidly rotating and contracting protostar (for a review see Durisen & Tohline 1985). Protostars that are axisymmetric beyond the point of dynamic bar-like mode instability do not fission (Imamura et al. 2000), but contracting non-axisymmetric protostars might encounter bifurcations of surface shape leading to fission. In addition, they may be susceptible to hydrodynamic instabilities, first described by Lebovitz & Lifschitz (1996), whose nonlinear effects are still unknown. We will present a series of hydrodynamic simulations of rapidly rotating polytropic protostars to investigate fission in contracting protostars. The initial model is an equilibrium configuration with T/|W| ≈ 0.14, where T is the rotational kinetic energy and W is the total gravitational energy. It is given a bar-like cos(2φ) density perturbation with an amplitude of .02, .10 or .25. These perturbed polytropes are then cooled by reducing the polytropic constant K where P = Kρ1+1/n. Here P is the pressure, ρ is the density and n is the polytropic index, here chosen to be 3/2. As the polytrope contracts, we find no strong signal of a growing instability. All simulations evolve through to the dynamic bar-like mode instability point at T/|W|≈ 0.27 and produce a ring around a bar, not a binary. However, there is some indication of amplitude growth at a T/|W|≈0.22. We are investigating this growth further with follow-up simulations that start at an equilibrium model with a T/|W| ≈ 0.22. This enables us to study growth in this regime with higher resolution and slower contraction rates. This work has been supported by the National Science Foundation through grant AST-0452975 (astronomy REU program to Indiana University).

  19. Rapid diagnosis of tuberculosis in dromedary camel (Camelus dromedarius) using lateral flow assay-based kit.

    PubMed

    Ranjan, Rakesh; Narnaware, Shirish D; Nath, Kashi; Sawal, R K; Patil, N V

    2018-04-01

    Accurate early antemortem diagnosis of tuberculosis in dromedary camels is difficult due to the lack of reliable diagnostic test. The present study aimed to evaluate a lateral flow assay-based kit (rapid assay kit) in tuberculosis diagnosis that employs immuno-chromatographic detection of antibodies in serum, plasma, or whole blood. In a dromedary camel herd comprising 337 animals located at Bikaner, Rajasthan, India, 50 adult weak camels (11 males and 39 females) were tested by applying a single intradermal tuberculin test (SIDT) and rapid assay kit. A total of 14 animals (2 males, 12 females) were found positive in rapid assay. In SIDT, four animals revealed a positive reaction in the neck region and seven animals in the tail base. Another male animal was found SIDT positive but negative in rapid assay; it died after 12 months. Nine rapid assay positive animals died asymptomatically in 1- to 11-month period revealing postmortem tuberculosis lesions that were confirmed by Ziehl-Neelsen staining and histopathology. No tuberculous lesion was evident in the animal found positive in SIDT alone. Results of the present study indicated that serological tests like rapid assay kit can serve as a reliable test for antemortem diagnosis of tuberculosis in dromedary camel.

  20. Rapidity window dependences of higher order cumulants and diffusion master equation

    NASA Astrophysics Data System (ADS)

    Kitazawa, Masakiyo

    2015-10-01

    We study the rapidity window dependences of higher order cumulants of conserved charges observed in relativistic heavy ion collisions. The time evolution and the rapidity window dependence of the non-Gaussian fluctuations are described by the diffusion master equation. Analytic formulas for the time evolution of cumulants in a rapidity window are obtained for arbitrary initial conditions. We discuss that the rapidity window dependences of the non-Gaussian cumulants have characteristic structures reflecting the non-equilibrium property of fluctuations, which can be observed in relativistic heavy ion collisions with the present detectors. It is argued that various information on the thermal and transport properties of the hot medium can be revealed experimentally by the study of the rapidity window dependences, especially by the combined use, of the higher order cumulants. Formulas of higher order cumulants for a probability distribution composed of sub-probabilities, which are useful for various studies of non-Gaussian cumulants, are also presented.

  1. Methods of rapid diagnosis for the etiology of meningitis in adults

    PubMed Central

    Bahr, Nathan C; Boulware, David R

    2014-01-01

    Infectious meningitis may be due to bacterial, mycobacterial, fungal or viral agents. Diagnosis of meningitis must take into account numerous items of patient history and symptomatology along with regional epidemiology and basic cerebrospinal fluid testing (protein, etc.) to allow the clinician to stratify the likelihood of etiology possibilities and rationally select additional diagnostic tests. Culture is the mainstay for diagnosis in many cases, but technology is evolving to provide more rapid, reliable diagnosis. The cryptococcal antigen lateral flow assay (Immuno-Mycologics) has revolutionized diagnosis of cryptococcosis and automated nucleic acid amplification assays hold promise for improving diagnosis of bacterial and mycobacterial meningitis. This review will focus on a holistic approach to diagnosis of meningitis as well as recent technological advances. PMID:25402579

  2. Fine-Scale Recombination Maps of Fungal Plant Pathogens Reveal Dynamic Recombination Landscapes and Intragenic Hotspots

    PubMed Central

    Stukenbrock, Eva H.; Dutheil, Julien Y.

    2018-01-01

    Meiotic recombination is an important driver of evolution. Variability in the intensity of recombination across chromosomes can affect sequence composition, nucleotide variation, and rates of adaptation. In many organisms, recombination events are concentrated within short segments termed recombination hotspots. The variation in recombination rate and positions of recombination hotspot can be studied using population genomics data and statistical methods. In this study, we conducted population genomics analyses to address the evolution of recombination in two closely related fungal plant pathogens: the prominent wheat pathogen Zymoseptoria tritici and a sister species infecting wild grasses Z. ardabiliae. We specifically addressed whether recombination landscapes, including hotspot positions, are conserved in the two recently diverged species and if recombination contributes to rapid evolution of pathogenicity traits. We conducted a detailed simulation analysis to assess the performance of methods of recombination rate estimation based on patterns of linkage disequilibrium, in particular in the context of high nucleotide diversity. Our analyses reveal overall high recombination rates, a lack of suppressed recombination in centromeres, and significantly lower recombination rates on chromosomes that are known to be accessory. The comparison of the recombination landscapes of the two species reveals a strong correlation of recombination rate at the megabase scale, but little correlation at smaller scales. The recombination landscapes in both pathogen species are dominated by frequent recombination hotspots across the genome including coding regions, suggesting a strong impact of recombination on gene evolution. A significant but small fraction of these hotspots colocalize between the two species, suggesting that hotspot dynamics contribute to the overall pattern of fast evolving recombination in these species. PMID:29263029

  3. Fine-Scale Recombination Maps of Fungal Plant Pathogens Reveal Dynamic Recombination Landscapes and Intragenic Hotspots.

    PubMed

    Stukenbrock, Eva H; Dutheil, Julien Y

    2018-03-01

    Meiotic recombination is an important driver of evolution. Variability in the intensity of recombination across chromosomes can affect sequence composition, nucleotide variation, and rates of adaptation. In many organisms, recombination events are concentrated within short segments termed recombination hotspots. The variation in recombination rate and positions of recombination hotspot can be studied using population genomics data and statistical methods. In this study, we conducted population genomics analyses to address the evolution of recombination in two closely related fungal plant pathogens: the prominent wheat pathogen Zymoseptoria tritici and a sister species infecting wild grasses Z. ardabiliae We specifically addressed whether recombination landscapes, including hotspot positions, are conserved in the two recently diverged species and if recombination contributes to rapid evolution of pathogenicity traits. We conducted a detailed simulation analysis to assess the performance of methods of recombination rate estimation based on patterns of linkage disequilibrium, in particular in the context of high nucleotide diversity. Our analyses reveal overall high recombination rates, a lack of suppressed recombination in centromeres, and significantly lower recombination rates on chromosomes that are known to be accessory. The comparison of the recombination landscapes of the two species reveals a strong correlation of recombination rate at the megabase scale, but little correlation at smaller scales. The recombination landscapes in both pathogen species are dominated by frequent recombination hotspots across the genome including coding regions, suggesting a strong impact of recombination on gene evolution. A significant but small fraction of these hotspots colocalize between the two species, suggesting that hotspot dynamics contribute to the overall pattern of fast evolving recombination in these species. Copyright © 2018 Stukenbrock and Dutheil.

  4. Collapse of cooperation in evolving games

    PubMed Central

    Stewart, Alexander J.; Plotkin, Joshua B.

    2014-01-01

    Game theory provides a quantitative framework for analyzing the behavior of rational agents. The Iterated Prisoner’s Dilemma in particular has become a standard model for studying cooperation and cheating, with cooperation often emerging as a robust outcome in evolving populations. Here we extend evolutionary game theory by allowing players’ payoffs as well as their strategies to evolve in response to selection on heritable mutations. In nature, many organisms engage in mutually beneficial interactions and individuals may seek to change the ratio of risk to reward for cooperation by altering the resources they commit to cooperative interactions. To study this, we construct a general framework for the coevolution of strategies and payoffs in arbitrary iterated games. We show that, when there is a tradeoff between the benefits and costs of cooperation, coevolution often leads to a dramatic loss of cooperation in the Iterated Prisoner’s Dilemma. The collapse of cooperation is so extreme that the average payoff in a population can decline even as the potential reward for mutual cooperation increases. Depending upon the form of tradeoffs, evolution may even move away from the Iterated Prisoner’s Dilemma game altogether. Our work offers a new perspective on the Prisoner’s Dilemma and its predictions for cooperation in natural populations; and it provides a general framework to understand the coevolution of strategies and payoffs in iterated interactions. PMID:25422421

  5. Collapse of cooperation in evolving games.

    PubMed

    Stewart, Alexander J; Plotkin, Joshua B

    2014-12-09

    Game theory provides a quantitative framework for analyzing the behavior of rational agents. The Iterated Prisoner's Dilemma in particular has become a standard model for studying cooperation and cheating, with cooperation often emerging as a robust outcome in evolving populations. Here we extend evolutionary game theory by allowing players' payoffs as well as their strategies to evolve in response to selection on heritable mutations. In nature, many organisms engage in mutually beneficial interactions and individuals may seek to change the ratio of risk to reward for cooperation by altering the resources they commit to cooperative interactions. To study this, we construct a general framework for the coevolution of strategies and payoffs in arbitrary iterated games. We show that, when there is a tradeoff between the benefits and costs of cooperation, coevolution often leads to a dramatic loss of cooperation in the Iterated Prisoner's Dilemma. The collapse of cooperation is so extreme that the average payoff in a population can decline even as the potential reward for mutual cooperation increases. Depending upon the form of tradeoffs, evolution may even move away from the Iterated Prisoner's Dilemma game altogether. Our work offers a new perspective on the Prisoner's Dilemma and its predictions for cooperation in natural populations; and it provides a general framework to understand the coevolution of strategies and payoffs in iterated interactions.

  6. Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts.

    PubMed

    Daugherty, Matthew D; Young, Janet M; Kerns, Julie A; Malik, Harmit S

    2014-01-01

    Post-translational protein modifications such as phosphorylation and ubiquitinylation are common molecular targets of conflict between viruses and their hosts. However, the role of other post-translational modifications, such as ADP-ribosylation, in host-virus interactions is less well characterized. ADP-ribosylation is carried out by proteins encoded by the PARP (also called ARTD) gene family. The majority of the 17 human PARP genes are poorly characterized. However, one PARP protein, PARP13/ZAP, has broad antiviral activity and has evolved under positive (diversifying) selection in primates. Such evolution is typical of domains that are locked in antagonistic 'arms races' with viral factors. To identify additional PARP genes that may be involved in host-virus interactions, we performed evolutionary analyses on all primate PARP genes to search for signatures of rapid evolution. Contrary to expectations that most PARP genes are involved in 'housekeeping' functions, we found that nearly one-third of PARP genes are evolving under strong recurrent positive selection. We identified a >300 amino acid disordered region of PARP4, a component of cytoplasmic vault structures, to be rapidly evolving in several mammalian lineages, suggesting this region serves as an important host-pathogen specificity interface. We also found positive selection of PARP9, 14 and 15, the only three human genes that contain both PARP domains and macrodomains. Macrodomains uniquely recognize, and in some cases can reverse, protein mono-ADP-ribosylation, and we observed strong signatures of recurrent positive selection throughout the macro-PARP macrodomains. Furthermore, PARP14 and PARP15 have undergone repeated rounds of gene birth and loss during vertebrate evolution, consistent with recurrent gene innovation. Together with previous studies that implicated several PARPs in immunity, as well as those that demonstrated a role for virally encoded macrodomains in host immune evasion, our

  7. Rapid Evolution of PARP Genes Suggests a Broad Role for ADP-Ribosylation in Host-Virus Conflicts

    PubMed Central

    Daugherty, Matthew D.; Young, Janet M.; Kerns, Julie A.; Malik, Harmit S.

    2014-01-01

    Post-translational protein modifications such as phosphorylation and ubiquitinylation are common molecular targets of conflict between viruses and their hosts. However, the role of other post-translational modifications, such as ADP-ribosylation, in host-virus interactions is less well characterized. ADP-ribosylation is carried out by proteins encoded by the PARP (also called ARTD) gene family. The majority of the 17 human PARP genes are poorly characterized. However, one PARP protein, PARP13/ZAP, has broad antiviral activity and has evolved under positive (diversifying) selection in primates. Such evolution is typical of domains that are locked in antagonistic ‘arms races’ with viral factors. To identify additional PARP genes that may be involved in host-virus interactions, we performed evolutionary analyses on all primate PARP genes to search for signatures of rapid evolution. Contrary to expectations that most PARP genes are involved in ‘housekeeping’ functions, we found that nearly one-third of PARP genes are evolving under strong recurrent positive selection. We identified a >300 amino acid disordered region of PARP4, a component of cytoplasmic vault structures, to be rapidly evolving in several mammalian lineages, suggesting this region serves as an important host-pathogen specificity interface. We also found positive selection of PARP9, 14 and 15, the only three human genes that contain both PARP domains and macrodomains. Macrodomains uniquely recognize, and in some cases can reverse, protein mono-ADP-ribosylation, and we observed strong signatures of recurrent positive selection throughout the macro-PARP macrodomains. Furthermore, PARP14 and PARP15 have undergone repeated rounds of gene birth and loss during vertebrate evolution, consistent with recurrent gene innovation. Together with previous studies that implicated several PARPs in immunity, as well as those that demonstrated a role for virally encoded macrodomains in host immune evasion, our

  8. Genes under weaker stabilizing selection increase network evolvability and rapid regulatory adaptation to an environmental shift.

    PubMed

    Laarits, T; Bordalo, P; Lemos, B

    2016-08-01

    Regulatory networks play a central role in the modulation of gene expression, the control of cellular differentiation, and the emergence of complex phenotypes. Regulatory networks could constrain or facilitate evolutionary adaptation in gene expression levels. Here, we model the adaptation of regulatory networks and gene expression levels to a shift in the environment that alters the optimal expression level of a single gene. Our analyses show signatures of natural selection on regulatory networks that both constrain and facilitate rapid evolution of gene expression level towards new optima. The analyses are interpreted from the standpoint of neutral expectations and illustrate the challenge to making inferences about network adaptation. Furthermore, we examine the consequence of variable stabilizing selection across genes on the strength and direction of interactions in regulatory networks and in their subsequent adaptation. We observe that directional selection on a highly constrained gene previously under strong stabilizing selection was more efficient when the gene was embedded within a network of partners under relaxed stabilizing selection pressure. The observation leads to the expectation that evolutionarily resilient regulatory networks will contain optimal ratios of genes whose expression is under weak and strong stabilizing selection. Altogether, our results suggest that the variable strengths of stabilizing selection across genes within regulatory networks might itself contribute to the long-term adaptation of complex phenotypes. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  9. The Rapid Burster

    NASA Image and Video Library

    2017-01-31

    These four images show an artist's impression of gas accreting onto the neutron star in the binary system MXB 1730-335, also known as the "Rapid Burster." In such a binary system, the gravitational pull of the dense neutron star is stripping gas away from its stellar companion (a low-mass star, not shown in these images). The gas forms an accretion disk and spirals towards the neutron star. Observations of the Rapid Burster using three X-ray space telescopes -- NASA's NuSTAR and Swift, and ESA's XMM-Newton -- have revealed what happens around the neutron star before and during a so-called "type-II" burst. These bursts are sudden, erratic and extremely intense releases of X-rays that liberate enormous amounts of energy during periods when very little emission occurs otherwise. Before the burst, the fast-spinning magnetic field of the neutron star keeps the gas flowing from the companion star at bay, preventing it from reaching closer to the neutron star and effectively creating an inner edge at the center of the disk (Figure 1, panel 1). During this phase, only small amounts of gas leak towards the neutron star. However, as the gas continues to flow and accumulate near this edge, it spins faster and faster. http://photojournal.jpl.nasa.gov/catalog/PIA21418

  10. Adaptive evolution of centromere proteins in plants and animals.

    PubMed

    Talbert, Paul B; Bryson, Terri D; Henikoff, Steven

    2004-01-01

    Centromeres represent the last frontiers of plant and animal genomics. Although they perform a conserved function in chromosome segregation, centromeres are typically composed of repetitive satellite sequences that are rapidly evolving. The nucleosomes of centromeres are characterized by a special H3-like histone (CenH3), which evolves rapidly and adaptively in Drosophila and Arabidopsis. Most plant, animal and fungal centromeres also bind a large protein, centromere protein C (CENP-C), that is characterized by a single 24 amino-acid motif (CENPC motif). Whereas we find no evidence that mammalian CenH3 (CENP-A) has been evolving adaptively, mammalian CENP-C proteins contain adaptively evolving regions that overlap with regions of DNA-binding activity. In plants we find that CENP-C proteins have complex duplicated regions, with conserved amino and carboxyl termini that are dissimilar in sequence to their counterparts in animals and fungi. Comparisons of Cenpc genes from Arabidopsis species and from grasses revealed multiple regions that are under positive selection, including duplicated exons in some grasses. In contrast to plants and animals, yeast CENP-C (Mif2p) is under negative selection. CENP-Cs in all plant and animal lineages examined have regions that are rapidly and adaptively evolving. To explain these remarkable evolutionary features for a single-copy gene that is needed at every mitosis, we propose that CENP-Cs, like some CenH3s, suppress meiotic drive of centromeres during female meiosis. This process can account for the rapid evolution and the complexity of centromeric DNA in plants and animals as compared to fungi.

  11. Perspectives on evolving dental care payment and delivery models.

    PubMed

    Rubin, Marcie S; Edelstein, Burton L

    2016-01-01

    Health care reform is well under way in the United States as reflected in evolving delivery, financing, and payment approaches that are affecting medicine ahead of dentistry. The authors explored health systems changes under way, distinguished historical and organizational differences between medicine and dentistry, and developed alternative models to characterize the relationships between these professions. The authors explored a range of medical payment approaches, including those tied to objective performance metrics, and their potential application to dentistry. Advances in understanding the essential role of oral health in general health have pulled dentistry into the broader discussion of care integration and payment reform. Dentistry's fit with primary and specialty medical care may take a variety of forms. Common provider payment approaches in dentistry-fee-for-service, capitation, and salary-are tied insufficiently to performance when measured as either health processes or health outcomes. Dentistry can anticipate potential payment reforms by observing changes already under way in medicine and by understanding alternative payment approaches that are tied to performance metrics, such as those now in development by the Dental Quality Alliance and others. Novel forms of dental practice may be expected to evolve continuously as medical-dental integration and payment reforms that promote accountability evolve. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  12. Evolving Nature of Sexual Orientation and Gender Identity

    ERIC Educational Resources Information Center

    Jourian, T. J.

    2015-01-01

    This chapter discusses the historical and evolving terminology, constructs, and ideologies that inform the language used by those who are lesbian, gay, bisexual, and same-gender loving, who may identify as queer, as well as those who are members of trans* communities from multiple and intersectional perspectives.

  13. Multiwavelength Rapid Variability in XTE J1118+480

    NASA Astrophysics Data System (ADS)

    Hynes, R. I.; Haswell, C. A.; Chaty, S.; Cui, W.; Shrader, C. R.

    2000-10-01

    The black hole candidate XTE J1118+480 has been in an unusual low-state outburst since January 2000. It has exhibited large amplitude rapid variability on timescales of tens of seconds and less at all wavelengths with a sufficient count rate to detect such variability. We will compare X-ray data with simultaneous (UV) and contemporaneous (UV--IR) data. Very similar power density spectra are seen at X-ray and UV wavelengths, with a prominent low-frequency QPO at ~0.1 Hz, evolving with time. Simultaneous X-ray and UV lightcurves are well correlated down to timescales of seconds. The correlated variability could arise either from reprocessing of X-ray variations by the disc or companion star, or from a component of emission originating in the X-ray production region, likely close to the compact object. Possible lags between the wavebands will constrain explanations. This presentation is funded by the Leverhulme Trust.

  14. Implications of a Culturally Evolved Self for Notions of Free Will

    PubMed Central

    Robertson, Lloyd Hawkeye

    2017-01-01

    Most schools in psychology have emphasized individual choice despite evidence of genetic and cultural determinism. It is suggested in this paper that the rejection of classical behaviorism by psychology and other humanities flowed from deeply held cultural assumptions about volition and free will. While compatibilists have suggested that notions of free will and determinism are not mutually exclusive, the psychological mechanisms by which such an accommodation could be explained have been inadequately explored. Drawing on research into classical cultures, this paper builds an argument that the notion of free will was adaptive flowing from culturally evolved changes to the self, and that this “evolved self,” containing assumptions of personal volition, continuity, and reason, became benchmarks of what it means to be human. The paper proposes a model of a culturally evolved self that is compatible with understandings of free will and determinism. Implications for therapeutic practice and future research are discussed. PMID:29163273

  15. Ultra-high-performance liquid chromatography-quadrupole/time of flight mass spectrometry based chemical profiling approach to rapidly reveal chemical transformation of sulfur-fumigated medicinal herbs, a case study on white ginseng.

    PubMed

    Li, Song-Lin; Shen, Hong; Zhu, Ling-Ying; Xu, Jun; Jia, Xiao-Bin; Zhang, Hong-Mei; Lin, Ge; Cai, Hao; Cai, Bao-Chang; Chen, Shi-Lin; Xu, Hong-Xi

    2012-03-30

    Sulfur-fumigation may induce chemical transformation of medicinal herbs. Development of rapid method to reveal potential sulfur-fumigation induced chemical transformation of herbs is a very important issue for efficacy and safety of herb application. In present study, a new strategy was proposed to rapidly reveal chemical transformation of sulfur-fumigated herbs by ultra-high-performance liquid chromatography-quadrupole/time of flight mass spectrometry (UHPLC-QTOF-MS/MS) based chemical profiling approach. The non-fumigated herb was water-wetted and further treated with burning sulfur to get sulfur-fumigated herb. Then the chemical fingerprints of both non-fumigated and sulfur-fumigated samples were compared by UHPLC-QTOF-MS/MS analysis. The identities of all detected peaks, in particular those newly generated in sulfur-fumigated samples were confirmed by comparing the mass spectra and retention times of peaks with that of reference compounds, and/or tentatively assigned by matching empirical molecular formula with that of published compounds, and/or elucidating quasi-molecular ions and fragment ions referring to available literature information. The identification could be rationalized through deducing possible reactions involved in the generation of these newly detected compounds. The proposed strategy was extensively investigated in the case of white ginseng. Total 82 components were detected in non-fumigated and sulfur-fumigated white ginseng samples, among them 35 sulfur-containing compounds detected only in sulfur-fumigated white ginseng and its decoction were assigned to be sulfate or sulfite derivatives of original ginsenosides, and were deduced to be generated via reactions of esterification, addition, hydrolysis and dehydration during sulfur-fumigation and decocting of white ginseng. The established approach was applied to discriminate sulfur-fumigated white ginseng among commercial samples from America, Canada, and Hong Kong SAR, Macau SAR and Mainland of

  16. Programming adaptive control to evolve increased metabolite production.

    PubMed

    Chou, Howard H; Keasling, Jay D

    2013-01-01

    The complexity inherent in biological systems challenges efforts to rationally engineer novel phenotypes, especially those not amenable to high-throughput screens and selections. In nature, increased mutation rates generate diversity in a population that can lead to the evolution of new phenotypes. Here we construct an adaptive control system that increases the mutation rate in order to generate diversity in the population, and decreases the mutation rate as the concentration of a target metabolite increases. This system is called feedback-regulated evolution of phenotype (FREP), and is implemented with a sensor to gauge the concentration of a metabolite and an actuator to alter the mutation rate. To evolve certain novel traits that have no known natural sensors, we develop a framework to assemble synthetic transcription factors using metabolic enzymes and construct four different sensors that recognize isopentenyl diphosphate in bacteria and yeast. We verify FREP by evolving increased tyrosine and isoprenoid production.

  17. The emotion system promotes diversity and evolvability.

    PubMed

    Giske, Jarl; Eliassen, Sigrunn; Fiksen, Øyvind; Jakobsen, Per J; Aksnes, Dag L; Mangel, Marc; Jørgensen, Christian

    2014-09-22

    Studies on the relationship between the optimal phenotype and its environment have had limited focus on genotype-to-phenotype pathways and their evolutionary consequences. Here, we study how multi-layered trait architecture and its associated constraints prescribe diversity. Using an idealized model of the emotion system in fish, we find that trait architecture yields genetic and phenotypic diversity even in absence of frequency-dependent selection or environmental variation. That is, for a given environment, phenotype frequency distributions are predictable while gene pools are not. The conservation of phenotypic traits among these genetically different populations is due to the multi-layered trait architecture, in which one adaptation at a higher architectural level can be achieved by several different adaptations at a lower level. Our results emphasize the role of convergent evolution and the organismal level of selection. While trait architecture makes individuals more constrained than what has been assumed in optimization theory, the resulting populations are genetically more diverse and adaptable. The emotion system in animals may thus have evolved by natural selection because it simultaneously enhances three important functions, the behavioural robustness of individuals, the evolvability of gene pools and the rate of evolutionary innovation at several architectural levels.

  18. Rings in Evolved Stars: Fingerprints of Their Mass-Loss History

    NASA Astrophysics Data System (ADS)

    Ramos-Larios, Gerardo; Santamaria, Edgar; Sabin, Laurence; Guerrero, Martin; Marquez-Lugo, Alejandro

    2015-08-01

    The majority of intermediate mass evolved stars i.e. asymptotic giant branch (AGB) stars, post-AGB and pre-planetary nebulae (PPN) are well known for been characterized by external structures such as knots, arcs, ansae, jets, haloes, shells and even annular enhancements in intensity -features which are commonly referred to as rings. These are well described either as spherical bubbles of periodic isotropic nuclear mass pulsations (Balick, Wilson & Hajian 2001) or projections of spherical shells onto the plane of the sky by Kwok (2001).These interesting structures are part of the AGB wind, suggesting that this wind comes in a series of semi periodic lapses, indicating that the outflow has quasi-periodic oscillations.After an extensive analysis in the Hubble Space Telescope (HST) archives we found new ring-like structures in several evolved stars. Following the image analysis procedure described by Corradi et al. (2004), and using unsharp masking techniques it was possible to enhance the ring structures, and to obtain an effective removal of the underlying halo emission.Our new findings will help first to constrain the physical processes responsible for the rings creation and then to better understand the mass loss activity in these evolved stars.

  19. Visualization of evolving laser-generated structures by frequency domain tomography

    NASA Astrophysics Data System (ADS)

    Chang, Yenyu; Li, Zhengyan; Wang, Xiaoming; Zgadzaj, Rafal; Downer, Michael

    2011-10-01

    We introduce frequency domain tomography (FDT) for single-shot visualization of time-evolving refractive index structures (e.g. laser wakefields, nonlinear index structures) moving at light-speed. Previous researchers demonstrated single-shot frequency domain holography (FDH), in which a probe-reference pulse pair co- propagates with the laser-generated structure, to obtain snapshot-like images. However, in FDH, information about the structure's evolution is averaged. To visualize an evolving structure, we use several frequency domain streak cameras (FDSCs), in each of which a probe-reference pulse pair propagates at an angle to the propagation direction of the laser-generated structure. The combination of several FDSCs constitutes the FDT system. We will present experimental results for a 4-probe FDT system that has imaged the whole-beam self-focusing of a pump pulse propagating through glass in a single laser shot. Combining temporal and angle multiplexing methods, we successfully processed data from four probe pulses in one spectrometer in a single-shot. The output of data processing is a multi-frame movie of the self- focusing pulse. Our results promise the possibility of visualizing evolving laser wakefield structures that underlie laser-plasma accelerators used for multi-GeV electron acceleration.

  20. The Rapid Intensification of Typhoon Soudelor (2015) Explored through Next-Generation Satellite Observations

    NASA Astrophysics Data System (ADS)

    Munsell, E.; Braun, S. A.; Zhang, F.

    2017-12-01

    The dynamics that govern the intensification of tropical cyclones (TC) are dominated by rapidly evolving moist convective processes in the inner-core region. Remotely sensed satellite observations are typically available but in the past have lacked the necessary resolution to sufficiently examine TC intensification processes. However, as a result of the recent launch of next-generation high-resolution satellites (JMA's Himawari-8 and NOAA/NASA's GOES-16), the spatial and temporal frequency of remotely-sensed observations of TCs have increased significantly. This study utilizes brightness temperatures observed by the Advanced Himawari Imager to examine the structure of Typhoon Soudelor (2015) throughout its rapid intensification (RI) from a tropical storm to a super typhoon. Wavenumber decompositions are performed on brightness temperature fields that correspond to channels sensitive to upper-, mid-, and lower-level water vapor, and IR longwave radiation, to study wave features associated with the inner-core region. A scale-separation is also performed to assess the degree to which the intensification processes are dominated by phenomenon of various wavelengths. Higher-order wavenumbers reveal asymmetric features that propagate outwards from the storm on short time scales ( 1-2 h). The identification of these waves and their contribution to intensification is ongoing. A deterministic forecast of Typhoon Soudelor performed using a convection-permitting WRF simulation coupled to an Ensemble Kalman Filter that assimilates brightness temperatures, accurately captures the TCs RI event. The Community Radiative Transfer Model (CRTM) is used to produce simulated brightness temperature fields for the applicable channels. The model demonstrates the ability to reproduce the observed brightness temperatures in great detail, including smaller-scale features such as primary rainbands and the eye; however, a uniform warm bias is present. It is hypothesized that this likely results

  1. Children and the Patient Protection and Affordable Care Act: opportunities and challenges in an evolving system.

    PubMed

    Keller, David; Chamberlain, Lisa J

    2014-01-01

    The Patient Protection and Affordable Care Act (ACA), passed in 2010, focused primarily on the problems of adults, but the changes in payment for and delivery of care it fosters will likely impact the health care of children. The evolving epidemiology of pediatric illness in the United States has resulted in a relatively small population of medically fragile children dispersed through the country and a large population of children with developmental and behavioral health issues who experience wide degrees of health disparities. Review of previous efforts to change the health care system reveals specific innovations in child health delivery that have been designed to address issues of child health. The ACA is complex and contains some language that improves access to care, quality of care, and the particular needs of the pediatric workforce. Most of the payment models and delivery systems proposed in the ACA, however, were not designed with the needs of children in mind and will need to be adapted to address their needs. To assure that the needs of children are met as systems evolve, child health professionals within and outside academe will need to focus their efforts in clinical care, research, education, and advocacy to incorporate child health programs into changing systems and to prevent unintended harm to systems designed to care for children. Copyright © 2014 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  2. The new galaxy evolution paradigm revealed by the Herschel surveys

    NASA Astrophysics Data System (ADS)

    Eales, Stephen; Smith, Dan; Bourne, Nathan; Loveday, Jon; Rowlands, Kate; van der Werf, Paul; Driver, Simon; Dunne, Loretta; Dye, Simon; Furlanetto, Cristina; Ivison, R. J.; Maddox, Steve; Robotham, Aaron; Smith, Matthew W. L.; Taylor, Edward N.; Valiante, Elisabetta; Wright, Angus; Cigan, Philip; De Zotti, Gianfranco; Jarvis, Matt J.; Marchetti, Lucia; Michałowski, Michał J.; Phillipps, Steven; Viaene, Sebastien; Vlahakis, Catherine

    2018-01-01

    The Herschel Space Observatory has revealed a very different galaxyscape from that shown by optical surveys which presents a challenge for galaxy-evolution models. The Herschel surveys reveal (1) that there was rapid galaxy evolution in the very recent past and (2) that galaxies lie on a single Galaxy Sequence (GS) rather than a star-forming 'main sequence' and a separate region of 'passive' or 'red-and-dead' galaxies. The form of the GS is now clearer because far-infrared surveys such as the Herschel ATLAS pick up a population of optically red star-forming galaxies that would have been classified as passive using most optical criteria. The space-density of this population is at least as high as the traditional star-forming population. By stacking spectra of H-ATLAS galaxies over the redshift range 0.001 < z < 0.4, we show that the galaxies responsible for the rapid low-redshift evolution have high stellar masses, high star-formation rates but, even several billion years in the past, old stellar populations - they are thus likely to be relatively recent ancestors of early-type galaxies in the Universe today. The form of the GS is inconsistent with rapid quenching models and neither the analytic bathtub model nor the hydrodynamical EAGLE simulation can reproduce the rapid cosmic evolution. We propose a new gentler model of galaxy evolution that can explain the new Herschel results and other key properties of the galaxy population.

  3. Rapid evolution of avirulence genes in rice blast fungus Magnaporthe oryzae

    PubMed Central

    2014-01-01

    Background Rice blast fungus Magnaporthe oryzae is one of the most devastating pathogens in rice. Avirulence genes in this fungus share a gene-for-gene relationship with the resistance genes in its host rice. Although numerous studies have shown that rice blast R-genes are extremely diverse and evolve rapidly in their host populations, little is known about the evolutionary patterns of the Avr-genes in the pathogens. Results Here, six well-characterized Avr-genes and seven randomly selected non-Avr control genes were used to investigate the genetic variations in 62 rice blast strains from different parts of China. Frequent presence/absence polymorphisms, high levels of nucleotide variation (~10-fold higher than non-Avr genes), high non-synonymous to synonymous substitution ratios, and frequent shared non-synonymous substitution were observed in the Avr-genes of these diversified blast strains. In addition, most Avr-genes are closely associated with diverse repeated sequences, which may partially explain the frequent presence/absence polymorphisms in Avr-genes. Conclusion The frequent deletion and gain of Avr-genes and rapid non-synonymous variations might be the primary mechanisms underlying rapid adaptive evolution of pathogens toward virulence to their host plants, and these features can be used as the indicators for identifying additional Avr-genes. The high number of nucleotide polymorphisms among Avr-gene alleles could also be used to distinguish genetic groups among different strains. PMID:24725999

  4. Evolving Approaches to Educating Children from Nomadic Communities

    ERIC Educational Resources Information Center

    Dyer, Caroline

    2016-01-01

    Evolving policies have increasingly aimed to include nomadic groups in EFA, but an overemphasis on mobility has distracted policy makers from going beyond access logistics to consider learning needs within nomads' contemporary livelihoods and cultural values. Notable global trends are the growth and institutionalization of forms of Alternative…

  5. Strategic Planning for Policy Development--An Evolving Model.

    ERIC Educational Resources Information Center

    Verstegen, Deborah A.; Wagoner, Jennings L., Jr.

    1989-01-01

    Strategic planning, a necessary alternative to logical incrementalism in turbulent environments, will let educators move from a reactive to a proactive posture. This article briefly reviews strategic planning literature, focuses on environmental scanning, and describes an evolving model developed for the chief state school officers of a four-state…

  6. Evolvable circuit with transistor-level reconfigurability

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian (Inventor); Salazar-Lazaro, Carlos Harold (Inventor)

    2004-01-01

    An evolvable circuit includes a plurality of reconfigurable switches, a plurality of transistors within a region of the circuit, the plurality of transistors having terminals, the plurality of transistors being coupled between a power source terminal and a power sink terminal so as to be capable of admitting power between the power source terminal and the power sink terminal, the plurality of transistors being coupled so that every transistor terminal to transistor terminal coupling within the region of the circuit comprises a reconfigurable switch.

  7. Rapid Detection of Urinary Tract Infections via Bacterial Nuclease Activity.

    PubMed

    Flenker, Katie S; Burghardt, Elliot L; Dutta, Nirmal; Burns, William J; Grover, Julia M; Kenkel, Elizabeth J; Weaver, Tyler M; Mills, James; Kim, Hyeon; Huang, Lingyan; Owczarzy, Richard; Musselman, Catherine A; Behlke, Mark A; Ford, Bradley; McNamara, James O

    2017-06-07

    Rapid and accurate bacterial detection methods are needed for clinical diagnostic, water, and food testing applications. The wide diversity of bacterial nucleases provides a rich source of enzymes that could be exploited as signal amplifying biomarkers to enable rapid, selective detection of bacterial species. With the exception of the use of micrococcal nuclease activity to detect Staphylococcus aureus, rapid methods that detect bacterial pathogens via their nuclease activities have not been developed. Here, we identify endonuclease I as a robust biomarker for E. coli and develop a rapid ultrasensitive assay that detects its activity. Comparison of nuclease activities of wild-type and nuclease-knockout E. coli clones revealed that endonuclease I is the predominant DNase in E. coli lysates. Endonuclease I is detectable by immunoblot and activity assays in uropathogenic E. coli strains. A rapid assay that detects endonuclease I activity in patient urine with an oligonucleotide probe exhibited substantially higher sensitivity for urinary tract infections than that reported for rapid urinalysis methods. The 3 hr turnaround time is much shorter than that of culture-based methods, thereby providing a means for expedited administration of appropriate antimicrobial therapy. We suggest this approach could address various unmet needs for rapid detection of E. coli. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  8. Revealing structure within the coronae of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Wilkins, D.

    2017-10-01

    Detailed analysis of the reflection and reverberation of X-rays from the innermost regions of AGN accretion discs reveals the structure and processes that produce the intense continuum emission and the extreme variability we see, right down to the innermost stable orbit and event horizon of the black hole. Observations of Seyfert galaxies spanning more than a decade have enabled measurement of the geometry of the corona and how it evolves, leading to orders of magnitude of variability. They reveal processes the corona undergoes during transient events, notably the collimation and ejection of the corona during X-ray flares, reminiscent of the aborted launching of a jet. Recent reverberation studies, including those of the Seyfert galaxy I Zwicky 1 with XMM-Newton, are revealing structures within the corona for the first time. A persistent collimated core is found, akin to the base of a jet embedded in the innermost regions. The evolution of both the collimated and extended portions point to the mechanisms powering the X-ray emission and variability. This gives us important constraints on the processes by which energy is liberated from black hole accretion flows and by which jets are launched, allowing us to understand how these extreme objects are powered.

  9. HPLC method development for evolving applications in the pharmaceutical industry and nanoscale chemistry

    NASA Astrophysics Data System (ADS)

    Castiglione, Steven Louis

    As scientific research trends towards trace levels and smaller architectures, the analytical chemist is often faced with the challenge of quantitating said species in a variety of matricies. The challenge is heightened when the analytes prove to be potentially toxic or possess physical or chemical properties that make traditional analytical methods problematic. In such cases, the successful development of an acceptable quantitative method plays a critical role in the ability to further develop the species under study. This is particularly true for pharmaceutical impurities and nanoparticles (NP). The first portion of the research focuses on the development of a part-per-billion level HPLC method for a substituted phenazine-class pharmaceutical impurity. The development of this method was required due to the need for a rapid methodology to quantitatively determine levels of a potentially toxic phenazine moiety in order to ensure patient safety. As the synthetic pathway for the active ingredient was continuously refined to produce progressively lower amounts of the phenazine impurity, the approach for increasingly sensitive quantitative methods was required. The approaches evolved across four discrete methods, each employing a unique scheme for analyte detection. All developed methods were evaluated with regards to accuracy, precision and linear adherence as well as ancillary benefits and detriments -- e.g., one method in this evolution demonstrated the ability to resolve and detect other species from the phenazine class. The second portion of the research focuses on the development of an HPLC method for the quantitative determination of NP size distributions. The current methodology for the determination of NP sizes employs tunneling electron microscopy (TEM), which requires sample drying without particle size alteration and which, in many cases, may prove infeasible due to cost or availability. The feasibility of an HPLC method for NP size characterizations evolved

  10. Development of a Rapidly Deployable Special Operations Component Command (SOCC) Core Concept for the North Atlantic Treaty Organization (NATO) Special Operations Headquarters (NSHQ)

    DTIC Science & Technology

    2011-12-01

    operating in their territory. NSHQ is a new and evolving organization, which was instructed to develop a rapidly deployable HQ. NSHQ receives its...single overarching concept, eliminating redundancy, and integrates new deployable operational C2 structures (notably NSHQ) agreed through the...of the command and control issue is the ability to communicate effectively both up and down the chain of command. With the new technologies

  11. Vibrationally excited water emission at 658 GHz from evolved stars

    NASA Astrophysics Data System (ADS)

    Baudry, A.; Humphreys, E. M. L.; Herpin, F.; Torstensson, K.; Vlemmings, W. H. T.; Richards, A. M. S.; Gray, M. D.; De Breuck, C.; Olberg, M.

    2018-01-01

    Context. Several rotational transitions of ortho- and para-water have been identified toward evolved stars in the ground vibrational state as well as in the first excited state of the bending mode (v2 = 1 in (0, 1, 0) state). In the latter vibrational state of water, the 658 GHz J = 11,0-10,1 rotational transition is often strong and seems to be widespread in late-type stars. Aims: Our main goals are to better characterize the nature of the 658 GHz emission, compare the velocity extent of the 658 GHz emission with SiO maser emission to help locate the water layers and, more generally, investigate the physical conditions prevailing in the excited water layers of evolved stars. Another goal is to identify new 658 GHz emission sources and contribute in showing that this emission is widespread in evolved stars. Methods: We have used the J = 11,0-10,1 rotational transition of water in the (0, 1, 0) vibrational state nearly 2400 K above the ground-state to trace some of the physical conditions of evolved stars. Eleven evolved stars were extracted from our mini-catalog of existing and potential 658 GHz sources for observations with the Atacama Pathfinder EXperiment (APEX) telescope equipped with the SEPIA Band 9 receiver. The 13CO J = 6-5 line at 661 GHz was placed in the same receiver sideband for simultaneous observation with the 658 GHz line of water. We have compared the ratio of these two lines to the same ratio derived from HIFI earlier observations to check for potential time variability in the 658 GHz line. We have compared the 658 GHz line properties with our H2O radiative transfer models in stars and we have compared the velocity ranges of the 658 GHz and SiO J = 2-1, v = 1 maser lines. Results: Eleven stars have been extracted from our catalog of known or potential 658 GHz evolved stars. All of them show 658 GHz emission with a peak flux density in the range ≈50-70 Jy (RU Hya and RT Eri) to ≈2000-3000 Jy (VY CMa and W Hya). Five Asymptotic Giant Branch (AGB

  12. Rapid Evolution of Ovarian-Biased Genes in the Yellow Fever Mosquito (Aedes aegypti).

    PubMed

    Whittle, Carrie A; Extavour, Cassandra G

    2017-08-01

    Males and females exhibit highly dimorphic phenotypes, particularly in their gonads, which is believed to be driven largely by differential gene expression. Typically, the protein sequences of genes upregulated in males, or male-biased genes, evolve rapidly as compared to female-biased and unbiased genes. To date, the specific study of gonad-biased genes remains uncommon in metazoans. Here, we identified and studied a total of 2927, 2013, and 4449 coding sequences (CDS) with ovary-biased, testis-biased, and unbiased expression, respectively, in the yellow fever mosquito Aedes aegypti The results showed that ovary-biased and unbiased CDS had higher nonsynonymous to synonymous substitution rates (dN/dS) and lower optimal codon usage (those codons that promote efficient translation) than testis-biased genes. Further, we observed higher dN/dS in ovary-biased genes than in testis-biased genes, even for genes coexpressed in nonsexual (embryo) tissues. Ovary-specific genes evolved exceptionally fast, as compared to testis- or embryo-specific genes, and exhibited higher frequency of positive selection. Genes with ovary expression were preferentially involved in olfactory binding and reception. We hypothesize that at least two potential mechanisms could explain rapid evolution of ovary-biased genes in this mosquito: (1) the evolutionary rate of ovary-biased genes may be accelerated by sexual selection (including female-female competition or male-mate choice) affecting olfactory genes during female swarming by males, and/or by adaptive evolution of olfactory signaling within the female reproductive system ( e.g. , sperm-ovary signaling); and/or (2) testis-biased genes may exhibit decelerated evolutionary rates due to the formation of mating plugs in the female after copulation, which limits male-male sperm competition. Copyright © 2017 by the Genetics Society of America.

  13. Mass Loss at Higher Metallicity: Quantifying the Mass Return from Evolved Stars in the Galactic

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin

    Bulge Mass-losing evolved stars, and in particular asymptotic giant branch (AGB) stars and red supergiant (RSG) stars, are expected to be the major producers of dust in galaxies. This dust will help form planetary systems around future generations of stars. Our ADAP program to measure the mass loss from the AGB and RSG stars in the Magellanic Clouds is nearing completion, and we wish to extend this successful study to the Galactic bulge of the Milky Way Galaxy. Metallicity should determine the amount of elements available to condense dust in the star's outflow, so evolved stars of differing metallicities should have differing mass-loss rates. Building upon our work on evolved stars in the Magellanic Clouds, we will compare the mass-loss rates from AGB and RSG stars in the older and potentially more metal-rich Bulge to the mass-loss rates of AGB and RSG stars in the Magellanic Clouds, which have lower metallicity, making for an interesting contrast. In addition, the Galactic bulge, like the Clouds, is located at a well-determined distance ( 8 kpc), thereby removing the distance ambiguities that present a major uncertainty in determining mass-loss rates and luminosities for evolved stars. To model photometric observations of outflowing dust shells around evolved stars, we have constructed the Grid of Red supergiant and Asymptotic giant branch ModelS (GRAMS; Sargent et al 2011; Srinivasan et al 2011) using the radiative transfer code 2Dust (Ueta and Meixner 2003). Our study will apply these models to the large photometric database of sources identified in the Spitzer Space Telescope GLIMPSE survey of the Milky Way and also to the various infrared spectra of Bulge AGB and RSG stars from Spitzer, ISO, etc. We have already modeled a few Galactic bulge evolved stars with GRAMS, and we will use these results as the foundation for modeling a large and representative sample of Galactic bulge evolved stars identified and measured photometrically by GLIMPSE. We will use our

  14. The Evolving Virtual Library: Visions and Case Studies.

    ERIC Educational Resources Information Center

    Saunders, Laverna M., Ed.

    This book addresses many of the practical issues involved in developing the virtual library. Seven presentations from the Eighth Annual Computers in Libraries Conference are included in this book in augmented form. The papers are supplemented by "The Evolving Virtual Library: An Overview" (Laverna M. Saunders and Maurice Mitchell), a…

  15. Singular perturbation of smoothly evolving Hele-Shaw solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegel, M.; Tanveer, S.

    1996-01-01

    We present analytical scaling results, confirmed by accurate numerics, to show that there exists a class of smoothly evolving zero surface tension solutions to the Hele-Shaw problem that are significantly perturbed by an arbitrarily small amount of surface tension in order one time. {copyright} {ital 1996 The American Physical Society.}

  16. Research Notes - Openness and Evolvability - Documentation Quality Assessment

    DTIC Science & Technology

    2016-08-01

    UNCLASSIFIED UNCLASSIFIED Notes – Openness and Evolvability – Documentation Quality Assessment Michael Haddy* and Adam Sbrana...Methods and Processes. This set of Research Notes focusses on Documentation Quality Assessment. This work was undertaken from the late 1990s to 2007...1 2. DOCUMENTATION QUALITY ASSESSMENT ......................................................... 1 2.1 Documentation Quality Assessment

  17. "Reinventing Life": Introductory Biology for a Rapidly Evolving World

    ERIC Educational Resources Information Center

    Coker, Jeffrey Scott

    2009-01-01

    Evolutionary concepts are essential for a scientific understanding of most issues surrounding modern medicine, agriculture, biotechnology, and the environment. If the mantra for biology education in the 20th century was, "Nothing in biology makes sense except in the light of evolution," the mantra for the 21st century must be, "Nothing in biology…

  18. Rapid prototyping--when virtual meets reality.

    PubMed

    Beguma, Zubeda; Chhedat, Pratik

    2014-01-01

    Rapid prototyping (RP) describes the customized production of solid models using 3D computer data. Over the past decade, advances in RP have continued to evolve, resulting in the development of new techniques that have been applied to the fabrication of various prostheses. RP fabrication technologies include stereolithography (SLA), fused deposition modeling (FDM), computer numerical controlled (CNC) milling, and, more recently, selective laser sintering (SLS). The applications of RP techniques for dentistry include wax pattern fabrication for dental prostheses, dental (facial) prostheses mold (shell) fabrication, and removable dental prostheses framework fabrication. In the past, a physical plastic shape of the removable partial denture (RPD) framework was produced using an RP machine, and then used as a sacrificial pattern. Yet with the advent of the selective laser melting (SLM) technique, RPD metal frameworks can be directly fabricated, thereby omitting the casting stage. This new approach can also generate the wax pattern for facial prostheses directly, thereby reducing labor-intensive laboratory procedures. Many people stand to benefit from these new RP techniques for producing various forms of dental prostheses, which in the near future could transform traditional prosthodontic practices.

  19. Analysis and quantitation of volatile organic compounds emitted from plastics used in museum construction by evolved gas analysis-gas chromatography-mass spectrometry.

    PubMed

    Samide, Michael J; Smith, Gregory D

    2015-12-24

    Construction materials used in museums for the display, storage, and transportation of artwork must be assessed for their tendency to emit harmful pollution that could potentially damage cultural treasures. Traditionally, a subjective metals corrosion test known as the Oddy test has been widely utilized in museums for this purpose. To augment the Oddy test, an instrumental sampling approach based on evolved gas analysis (EGA) coupled to gas chromatography (GC) with mass spectral (MS) detection has been implemented for the first time to qualitatively identify off-gassed pollutants under specific conditions. This approach is compared to other instrumental methods reported in the literature. This novel application of the EGA sampling technique yields several benefits over traditional testing, including rapidity, high sensitivity, and broad detectability of volatile organic compounds (VOCs). Furthermore, unlike other reported instrumental approaches, the EGA method was used to determine quantitatively the amount of VOCs emitted by acetate resins and polyurethane foams under specific conditions using both an external calibration method as well as surrogate response factors. EGA was successfully employed to rapidly characterize emissions from 12 types of common plastics. This analysis is advocated as a rapid pre-screening method to rule out poorly performing materials prior to investing time and energy in Oddy testing. The approach is also useful for rapid, routine testing of construction materials previously vetted by traditional testing, but which may experience detrimental formulation changes over time. As an example, a case study on batch re-orders of rigid expanded poly(vinyl chloride) board stock is presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Ring-breaking electron attachment to uracil: following bond dissociations via evolving resonances.

    PubMed

    Gianturco, Franco A; Sebastianelli, F; Lucchese, R R; Baccarelli, I; Sanna, N

    2008-05-07

    Calculations are carried out at various distinct energies to obtain both elastic cross sections and S-matrix resonance indicators (poles) from a quantum treatment of the electron scattering from gas-phase uracil. The low-energy region confirms the presence of pi(*) resonances as revealed by earlier calculations and experiments which are compared with the present findings. They turn out to be little affected by bond deformation, while the transient negative ions (TNIs) associated with sigma(*) resonances in the higher energy region ( approximately 8 eV) indeed show that ring deformations which allow vibrational redistribution of the excess electron energy into the molecular target strongly affect these shape resonances: They therefore evolve along different dissociative pathways and stabilize different fragment anions. The calculations further show that the occurrence of conical intersections between sigma(*) and pi(*)-type potential energy surfaces (real parts) is a very likely mechanism responsible for energy transfers between different TNIs. The excess electron wavefunctions for such scattering states, once mapped over the molecular space, provide nanoscopic reasons for the selective breaking of different bonds in the ring region.

  1. Behavioural plasticity in evolving robots.

    PubMed

    Carvalho, Jônata Tyska; Nolfi, Stefano

    2016-12-01

    In this paper, we show how the development of plastic behaviours, i.e., behaviour displaying a modular organisation characterised by behavioural subunits that are alternated in a context-dependent manner, can enable evolving robots to solve their adaptive task more efficiently also when it does not require the accomplishment of multiple conflicting functions. The comparison of the results obtained in different experimental conditions indicates that the most important prerequisites for the evolution of behavioural plasticity are: the possibility to generate and perceive affordances (i.e., opportunities for behaviour execution), the possibility to rely on flexible regulatory processes that exploit both external and internal cues, and the possibility to realise smooth and effective transitions between behaviours.

  2. NASA's Evolving Views of Pluto

    NASA Image and Video Library

    2015-07-15

    NASA's New Horizons spacecraft flew within 8,000 miles of dwarf planet Pluto on 14 July 2015. Our view of this cold, previously unexplored world, 4.67 billion miles from Earth, has evolved since its discovery by Clyde W. Tombaugh in 1930. This short clip shows images from Tombaugh, Hubble and New Horizons over the years, arranged to illustrate improvements in resolution. The close-up image at the end of this clip was taken about 1.5 hours before New Horizons closest approach to Pluto, when the craft was 47,800 miles (77,000 kilometers) from the surface of the planet. The image easily resolves structures smaller than a mile across. Credit: NASA/Goddard

  3. Stable Isotopes Reveal Rapid Cycling of Soil Nitrogen after Manure Application.

    PubMed

    Snider, David M; Wagner-Riddle, Claudia; Spoelstra, John

    2017-03-01

    Understanding the fate of applied nitrogen (N) in agricultural soils is important for agronomic, environmental, and human health reasons, but it is methodologically difficult to study at the field scale. Natural abundance stable isotope measurements (δN) were used in this field study with micrometeorological measurements of nitrous oxide (NO) emissions to identify the biogeochemical processes responsible for rapid N transformations immediately after application of liquid dairy manure. Fifteen samplings occurred between 16 Mar. 2012 and 5 Apr. 2013, with a focus on spring manure application (before and after) and a winter snowmelt period. Concentrations and δN values of ammonium (NH), nitrate (NO), NO, and total N were measured throughout the year. Approximately 56 (±7)% of the NH-N applied in the spring could not be accounted for 3 d after manure application and was presumably lost by ammonia volatilization before it was tilled into the soil and/or removed from the inorganic N pool by microbial assimilation. Almost all of the remaining manure-NH (95 ± 1.1%) was converted within 3 wk to NO and NO by nitrification and nitrifier-denitrification, respectively. The in situ N isotope effect for nitrification (ε) was calculated to be -32.0 (±5.3)‰. Overall, field-scale measurements of δN at natural abundance provided valuable information that was used to distinguish sources of NH (manure vs. soil organic N) and to follow the production and consumption of NO and the pathways of NO production in soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Differential Scanning Calorimetry and Evolved Gas Analysis of Hydromagnesite

    NASA Technical Reports Server (NTRS)

    Lauer, H. V., Jr.; Golden, D. C.; Ming, Douglas W.; Boynton, W. V.

    1999-01-01

    Volatile-bearing minerals (e.g., Fe-oxyhydroxides, phyllosilicates, carbonates and sulfates) may be important phases on the surface of Mars. In order to characterize these phases the Thermal and Evolved Gas Analyzer (TEGA) flying on the Mars'98 lander will perform analyses on surface samples from Mars. Hydromagnesite [Mg5(CO3)4(OH)2.4H2O] is considered a good standard mineral to examine as a Mars soil analog component because it evolves both H2O and CO2 at temperatures between 0 and 600 C. Our aim here is to interpret the DSC signature of hydromagnesite under ambient pressure and 20 sccm N2 flow in the range 25 to 600 C. The DSC curve for hydromagnesite under the above conditions consists of three endothermic peaks at temperatures 296, 426, and 548 and one sharp exotherm at 511 C. X-ray analysis of the sample at different stop temperatures suggested that the exotherm corresponded with the formation of crystalline magnesite. The first endotherm was due to dehydration of hydromagnesite, and then the second one was due to the decomposition of carbonate, immediately followed by the formation of magnesite (exotherm) and its decomposition to periclase (last endotherm). Evolution of water and CO2 were consistent with the observed enthalpy changes. A library of such DSC-evolved gas curves for putative Martian minerals are currently being acquired in order to facilitate the interpretation of results obtained by a robotic lander.

  5. Rapid self-healing hydrogels

    PubMed Central

    Phadke, Ameya; Zhang, Chao; Arman, Bedri; Hsu, Cheng-Chih; Mashelkar, Raghunath A.; Lele, Ashish K.; Tauber, Michael J.; Arya, Gaurav; Varghese, Shyni

    2012-01-01

    Synthetic materials that are capable of autonomous healing upon damage are being developed at a rapid pace because of their many potential applications. Despite these advancements, achieving self-healing in permanently cross-linked hydrogels has remained elusive because of the presence of water and irreversible cross-links. Here, we demonstrate that permanently cross-linked hydrogels can be engineered to exhibit self-healing in an aqueous environment. We achieve this feature by arming the hydrogel network with flexible-pendant side chains carrying an optimal balance of hydrophilic and hydrophobic moieties that allows the side chains to mediate hydrogen bonds across the hydrogel interfaces with minimal steric hindrance and hydrophobic collapse. The self-healing reported here is rapid, occurring within seconds of the insertion of a crack into the hydrogel or juxtaposition of two separate hydrogel pieces. The healing is reversible and can be switched on and off via changes in pH, allowing external control over the healing process. Moreover, the hydrogels can sustain multiple cycles of healing and separation without compromising their mechanical properties and healing kinetics. Beyond revealing how secondary interactions could be harnessed to introduce new functions to chemically cross-linked polymeric systems, we also demonstrate various potential applications of such easy-to-synthesize, smart, self-healing hydrogels. PMID:22392977

  6. Unilateral proptosis revealing a fronto-ethmoidal mucocele.

    PubMed

    Lajmi, Houda; Hmaied, Wassim; Ben Jalel, Wady; Ben Romdhane, Khaoula; Chelly, Zied; El Fekih, Lamia

    2017-06-01

    Backgroud: The fronto-ethmoidal mucocele is a benign condition leading commonly to limited eye movement or ocular pain but it could also induce visual acuity impairment by compressing the optic nerve Aim: To discuss, through a case report, different ophthalmologic manifestations of the fronto-ethmoidalmucocele. Reported case: A 46-years-old man with no general history consulted for a bilateral ocular redness and itching. He reported, however, a mild protrusion of his left globe evolving for oneyear. The clinical examination revealed a unilateral proptosis in the left eye with a discrete limitation of theadduction. A brain and orbital computer tomography (CT)and a magnetic resonance imaging(MRI)revealed a grade I exophthalmos caused by an oval formation of fluid density in the left anterior and posterior ethmoidal cells in addition to the frontal sinus,driving theeyeball and internal oculomotor muscles back and out.The patient was referred to otorhinolaryngology department for a precocious surgical management. The ophtalmologic manifestations of the disease depend on the location, the size of the formation and involvement of adjacent structures. The loss of vision and the apex syndrome due to the compressionof the ocular globe are the most serious complications.

  7. Rapid diversification of the cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes.

    Treesearch

    Richard C. Cronn; Randall L. Small; Tamara Hanselkorn; Jonathan F. Wendel

    2002-01-01

    Previous molecular phylogenetic studies have failed to resolve the branching order among the major cotton (Gossypium) lineages, and it has been unclear whether this reflects actual history (rapid radiation) or sampling properties of the genes evaluated. In this paper, we reconsider the phylogenetic relationships of diploid cotton genome groups using DNA sequences from...

  8. Deep Sequencing of Influenza A Virus from a Human Challenge Study Reveals a Selective Bottleneck and Only Limited Intrahost Genetic Diversification.

    PubMed

    Sobel Leonard, Ashley; McClain, Micah T; Smith, Gavin J D; Wentworth, David E; Halpin, Rebecca A; Lin, Xudong; Ransier, Amy; Stockwell, Timothy B; Das, Suman R; Gilbert, Anthony S; Lambkin-Williams, Robert; Ginsburg, Geoffrey S; Woods, Christopher W; Koelle, Katia

    2016-12-15

    Knowledge of influenza virus evolution at the point of transmission and at the intrahost level remains limited, particularly for human hosts. Here, we analyze a unique viral data set of next-generation sequencing (NGS) samples generated from a human influenza challenge study wherein 17 healthy subjects were inoculated with cell- and egg-passaged virus. Nasal wash samples collected from 7 of these subjects were successfully deep sequenced. From these, we characterized changes in the subjects' viral populations during infection and identified differences between the virus in these samples and the viral stock used to inoculate the subjects. We first calculated pairwise genetic distances between the subjects' nasal wash samples, the viral stock, and the influenza virus A/Wisconsin/67/2005 (H3N2) reference strain used to generate the stock virus. These distances revealed that considerable viral evolution occurred at various points in the human challenge study. Further quantitative analyses indicated that (i) the viral stock contained genetic variants that originated and likely were selected for during the passaging process, (ii) direct intranasal inoculation with the viral stock resulted in a selective bottleneck that reduced nonsynonymous genetic diversity in the viral hemagglutinin and nucleoprotein, and (iii) intrahost viral evolution continued over the course of infection. These intrahost evolutionary dynamics were dominated by purifying selection. Our findings indicate that rapid viral evolution can occur during acute influenza infection in otherwise healthy human hosts when the founding population size of the virus is large, as is the case with direct intranasal inoculation. Influenza viruses circulating among humans are known to rapidly evolve over time. However, little is known about how influenza virus evolves across single transmission events and over the course of a single infection. To address these issues, we analyze influenza virus sequences from a human

  9. Spatio-Temporal Data Model for Integrating Evolving Nation-Level Datasets

    NASA Astrophysics Data System (ADS)

    Sorokine, A.; Stewart, R. N.

    2017-10-01

    Ability to easily combine the data from diverse sources in a single analytical workflow is one of the greatest promises of the Big Data technologies. However, such integration is often challenging as datasets originate from different vendors, governments, and research communities that results in multiple incompatibilities including data representations, formats, and semantics. Semantics differences are hardest to handle: different communities often use different attribute definitions and associate the records with different sets of evolving geographic entities. Analysis of global socioeconomic variables across multiple datasets over prolonged time is often complicated by the difference in how boundaries and histories of countries or other geographic entities are represented. Here we propose an event-based data model for depicting and tracking histories of evolving geographic units (countries, provinces, etc.) and their representations in disparate data. The model addresses the semantic challenge of preserving identity of geographic entities over time by defining criteria for the entity existence, a set of events that may affect its existence, and rules for mapping between different representations (datasets). Proposed model is used for maintaining an evolving compound database of global socioeconomic and environmental data harvested from multiple sources. Practical implementation of our model is demonstrated using PostgreSQL object-relational database with the use of temporal, geospatial, and NoSQL database extensions.

  10. Towards a Framework for Evolvable Network Design

    NASA Astrophysics Data System (ADS)

    Hassan, Hoda; Eltarras, Ramy; Eltoweissy, Mohamed

    The layered Internet architecture that had long guided network design and protocol engineering was an “interconnection architecture” defining a framework for interconnecting networks rather than a model for generic network structuring and engineering. We claim that the approach of abstracting the network in terms of an internetwork hinders the thorough understanding of the network salient characteristics and emergent behavior resulting in impeding design evolution required to address extreme scale, heterogeneity, and complexity. This paper reports on our work in progress that aims to: 1) Investigate the problem space in terms of the factors and decisions that influenced the design and development of computer networks; 2) Sketch the core principles for designing complex computer networks; and 3) Propose a model and related framework for building evolvable, adaptable and self organizing networks We will adopt a bottom up strategy primarily focusing on the building unit of the network model, which we call the “network cell”. The model is inspired by natural complex systems. A network cell is intrinsically capable of specialization, adaptation and evolution. Subsequently, we propose CellNet; a framework for evolvable network design. We outline scenarios for using the CellNet framework to enhance legacy Internet protocol stack.

  11. The emotion system promotes diversity and evolvability

    PubMed Central

    Giske, Jarl; Eliassen, Sigrunn; Fiksen, Øyvind; Jakobsen, Per J.; Aksnes, Dag L.; Mangel, Marc; Jørgensen, Christian

    2014-01-01

    Studies on the relationship between the optimal phenotype and its environment have had limited focus on genotype-to-phenotype pathways and their evolutionary consequences. Here, we study how multi-layered trait architecture and its associated constraints prescribe diversity. Using an idealized model of the emotion system in fish, we find that trait architecture yields genetic and phenotypic diversity even in absence of frequency-dependent selection or environmental variation. That is, for a given environment, phenotype frequency distributions are predictable while gene pools are not. The conservation of phenotypic traits among these genetically different populations is due to the multi-layered trait architecture, in which one adaptation at a higher architectural level can be achieved by several different adaptations at a lower level. Our results emphasize the role of convergent evolution and the organismal level of selection. While trait architecture makes individuals more constrained than what has been assumed in optimization theory, the resulting populations are genetically more diverse and adaptable. The emotion system in animals may thus have evolved by natural selection because it simultaneously enhances three important functions, the behavioural robustness of individuals, the evolvability of gene pools and the rate of evolutionary innovation at several architectural levels. PMID:25100697

  12. You 3.0: The Most Important Evolving Technology

    ERIC Educational Resources Information Center

    Tamarkin, Molly; Bantz, David A.; Childs, Melody; diFilipo, Stephen; Landry, Stephen G.; LoPresti, Frances; McDonald, Robert H.; McGuthry, John W.; Meier, Tina; Rodrigo, Rochelle; Sparrow, Jennifer; Diggs, D. Teddy; Yang, Catherine W.

    2010-01-01

    That technology evolves is a given. Not as well understood is the impact of technological evolution on each individual--on oneself, one's skill development, one's career, and one's relationship with the work community. The authors believe that everyone in higher education will become an IT worker and that IT workers will be managing a growing…

  13. Hip Hop Is Now: An Evolving Youth Culture

    ERIC Educational Resources Information Center

    Taylor, Carl; Taylor, Virgil

    2007-01-01

    Emerging from Rap music, Hip Hop has become a lifestyle to many modern youth around the world. Embodying both creativity and controversy, Hip Hop mirrors the values, violence, and hypocrisy of modern culture. The authors dispel some of the simplistic views that surround this evolving youth movement embraced by millions of young people who are…

  14. Rapid response to coastal upwelling in a semienclosed bay

    NASA Astrophysics Data System (ADS)

    Gilcoto, Miguel; Largier, John L.; Barton, Eric D.; Piedracoba, Silvia; Torres, Ricardo; Graña, Rocío.; Alonso-Pérez, Fernando; Villacieros-Robineau, Nicolás.; de la Granda, Francisco

    2017-03-01

    Bays/estuaries forced by local wind show bidirectional exchange flow. When forced by remote wind, they exhibit unidirectional flow adjustment to coastal sea level. Acoustic Doppler Current Profiler observations over 1 year show that the Ria de Vigo (Iberian Upwelling) responds to coastal wind events with bidirectional exchange flow. The duration of the upwelling and downwelling events, estimated from the current variability, was 3.3 days and 2.6 days, respectively. Vectorial correlations reveal a rapid response to upwelling/downwelling, in which currents lag local wind by <6 h and remote wind by <14 h, less than the Ekman spinup (17.8 h). This rapidity arises from the ria's narrowness (nonrotational local response), equatorward orientation (additive remote and local wind responses), depth greater than the Ekman depth (penetration of shelf circulation into the interior), and vertical stratification (shear reinforcing shelf circulation). Similar rapid responses are expected in other narrow bays where local and remote winds act together and stratification enhances bidirectional flow.

  15. Rapid Statistical Learning Supporting Word Extraction From Continuous Speech.

    PubMed

    Batterink, Laura J

    2017-07-01

    The identification of words in continuous speech, known as speech segmentation, is a critical early step in language acquisition. This process is partially supported by statistical learning, the ability to extract patterns from the environment. Given that speech segmentation represents a potential bottleneck for language acquisition, patterns in speech may be extracted very rapidly, without extensive exposure. This hypothesis was examined by exposing participants to continuous speech streams composed of novel repeating nonsense words. Learning was measured on-line using a reaction time task. After merely one exposure to an embedded novel word, learners demonstrated significant learning effects, as revealed by faster responses to predictable than to unpredictable syllables. These results demonstrate that learners gained sensitivity to the statistical structure of unfamiliar speech on a very rapid timescale. This ability may play an essential role in early stages of language acquisition, allowing learners to rapidly identify word candidates and "break in" to an unfamiliar language.

  16. Hawaii's volcanoes revealed

    USGS Publications Warehouse

    Eakins, Barry W.; Robinson, Joel E.; Kanamatsu, Toshiya; Naka, Jiro; Smith, John R.; Takahashi, Eiichi; Clague, David A.

    2003-01-01

    Hawaiian volcanoes typically evolve in four stages as volcanism waxes and wanes: (1) early alkalic, when volcanism originates on the deep sea floor; (2) shield, when roughly 95 percent of a volcano's volume is emplaced; (3) post-shield alkalic, when small-volume eruptions build scattered cones that thinly cap the shield-stage lavas; and (4) rejuvenated, when lavas of distinct chemistry erupt following a lengthy period of erosion and volcanic quiescence. During the early alkalic and shield stages, two or more elongate rift zones may develop as flanks of the volcano separate. Mantle-derived magma rises through a vertical conduit and is temporarily stored in a shallow summit reservoir from which magma may erupt within the summit region or be injected laterally into the rift zones. The ongoing activity at Kilauea's Pu?u ?O?o cone that began in January 1983 is one such rift-zone eruption. The rift zones commonly extend deep underwater, producing submarine eruptions of bulbous pillow lava. Once a volcano has grown above sea level, subaerial eruptions produce lava flows of jagged, clinkery ?a?a or smooth, ropy pahoehoe. If the flows reach the ocean they are rapidly quenched by seawater and shatter, producing a steep blanket of unstable volcanic sediment that mantles the upper submarine slopes. Above sea level then, the volcanoes develop the classic shield profile of gentle lava-flow slopes, whereas below sea level slopes are substantially steeper. While the volcanoes grow rapidly during the shield stage, they may also collapse catastrophically, generating giant landslides and tsunami, or fail more gradually, forming slumps. Deformation and seismicity along Kilauea's south flank indicate that slumping is occurring there today. Loading of the underlying Pacific Plate by the growing volcanic edifices causes subsidence, forming deep basins at the base of the volcanoes. Once volcanism wanes and lava flows no longer reach the ocean, the volcano continues to submerge, while

  17. Evolving cell models for systems and synthetic biology.

    PubMed

    Cao, Hongqing; Romero-Campero, Francisco J; Heeb, Stephan; Cámara, Miguel; Krasnogor, Natalio

    2010-03-01

    This paper proposes a new methodology for the automated design of cell models for systems and synthetic biology. Our modelling framework is based on P systems, a discrete, stochastic and modular formal modelling language. The automated design of biological models comprising the optimization of the model structure and its stochastic kinetic constants is performed using an evolutionary algorithm. The evolutionary algorithm evolves model structures by combining different modules taken from a predefined module library and then it fine-tunes the associated stochastic kinetic constants. We investigate four alternative objective functions for the fitness calculation within the evolutionary algorithm: (1) equally weighted sum method, (2) normalization method, (3) randomly weighted sum method, and (4) equally weighted product method. The effectiveness of the methodology is tested on four case studies of increasing complexity including negative and positive autoregulation as well as two gene networks implementing a pulse generator and a bandwidth detector. We provide a systematic analysis of the evolutionary algorithm's results as well as of the resulting evolved cell models.

  18. Dissection of Ire1 Functions Reveals Stress Response Mechanisms Uniquely Evolved in Candida glabrata

    PubMed Central

    Miyazaki, Taiga; Nakayama, Hironobu; Nagayoshi, Yohsuke; Kakeya, Hiroshi; Kohno, Shigeru

    2013-01-01

    Proper protein folding in the endoplasmic reticulum (ER) is vital in all eukaryotes. When misfolded proteins accumulate in the ER lumen, the transmembrane kinase/endoribonuclease Ire1 initiates splicing of HAC1 mRNA to generate the bZIP transcription factor Hac1, which subsequently activates its target genes to increase the protein-folding capacity of the ER. This cellular machinery, called the unfolded protein response (UPR), is believed to be an evolutionarily conserved mechanism in eukaryotes. In this study, we comprehensively characterized mutant phenotypes of IRE1 and other related genes in the human fungal pathogen Candida glabrata. Unexpectedly, Ire1 was required for the ER stress response independently of Hac1 in this fungus. C. glabrata Ire1 did not cleave mRNAs encoding Hac1 and other bZIP transcription factors identified in the C. glabrata genome. Microarray analysis revealed that the transcriptional response to ER stress is not mediated by Ire1, but instead is dependent largely on calcineurin signaling and partially on the Slt2 MAPK pathway. The loss of Ire1 alone did not confer increased antifungal susceptibility in C. glabrata contrary to UPR-defective mutants in other fungi. Taken together, our results suggest that the canonical Ire1-Hac1 UPR is not conserved in C. glabrata. It is known in metazoans that active Ire1 nonspecifically cleaves and degrades a subset of ER-localized mRNAs to reduce the ER load. Intriguingly, this cellular response could occur in an Ire1 nuclease-dependent fashion in C. glabrata. We also uncovered the attenuated virulence of the C. glabrata Δire1 mutant in a mouse model of disseminated candidiasis. This study has unveiled the unique evolution of ER stress response mechanisms in C. glabrata. PMID:23382685

  19. Synchrotron scanning reveals amphibious ecomorphology in a new clade of bird-like dinosaurs.

    PubMed

    Cau, Andrea; Beyrand, Vincent; Voeten, Dennis F A E; Fernandez, Vincent; Tafforeau, Paul; Stein, Koen; Barsbold, Rinchen; Tsogtbaatar, Khishigjav; Currie, Philip J; Godefroit, Pascal

    2017-12-21

    Maniraptora includes birds and their closest relatives among theropod dinosaurs. During the Cretaceous period, several maniraptoran lineages diverged from the ancestral coelurosaurian bauplan and evolved novel ecomorphologies, including active flight, gigantism, cursoriality and herbivory. Propagation X-ray phase-contrast synchrotron microtomography of a well-preserved maniraptoran from Mongolia, still partially embedded in the rock matrix, revealed a mosaic of features, most of them absent among non-avian maniraptorans but shared by reptilian and avian groups with aquatic or semiaquatic ecologies. This new theropod, Halszkaraptor escuilliei gen. et sp. nov., is related to other enigmatic Late Cretaceous maniraptorans from Mongolia in a novel clade at the root of Dromaeosauridae. This lineage adds an amphibious ecomorphology to those evolved by maniraptorans: it acquired a predatory mode that relied mainly on neck hyperelongation for food procurement, it coupled the obligatory bipedalism of theropods with forelimb proportions that may support a swimming function, and it developed postural adaptations convergent with short-tailed birds.

  20. Synchrotron scanning reveals amphibious ecomorphology in a new clade of bird-like dinosaurs

    NASA Astrophysics Data System (ADS)

    Cau, Andrea; Beyrand, Vincent; Voeten, Dennis F. A. E.; Fernandez, Vincent; Tafforeau, Paul; Stein, Koen; Barsbold, Rinchen; Tsogtbaatar, Khishigjav; Currie, Philip J.; Godefroit, Pascal

    2017-12-01

    Maniraptora includes birds and their closest relatives among theropod dinosaurs. During the Cretaceous period, several maniraptoran lineages diverged from the ancestral coelurosaurian bauplan and evolved novel ecomorphologies, including active flight, gigantism, cursoriality and herbivory. Propagation X-ray phase-contrast synchrotron microtomography of a well-preserved maniraptoran from Mongolia, still partially embedded in the rock matrix, revealed a mosaic of features, most of them absent among non-avian maniraptorans but shared by reptilian and avian groups with aquatic or semiaquatic ecologies. This new theropod, Halszkaraptor escuilliei gen. et sp. nov., is related to other enigmatic Late Cretaceous maniraptorans from Mongolia in a novel clade at the root of Dromaeosauridae. This lineage adds an amphibious ecomorphology to those evolved by maniraptorans: it acquired a predatory mode that relied mainly on neck hyperelongation for food procurement, it coupled the obligatory bipedalism of theropods with forelimb proportions that may support a swimming function, and it developed postural adaptations convergent with short-tailed birds.

  1. Current and future antimicrobial treatment of gonorrhoea - the rapidly evolving Neisseria gonorrhoeae continues to challenge.

    PubMed

    Unemo, Magnus

    2015-08-21

    , randomized controlled clinical trials evaluating efficacy, ideal dose, toxicity, adverse effects, cost, and pharmacokinetic/pharmacodynamics data for anogenital and, importantly, also pharyngeal gonorrhoea, i.e. because treatment failures initially emerge at this anatomical site. Finally, in the future treatment at first health care visit will ideally be individually-tailored, i.e. by novel rapid phenotypic AMR tests and/or genetic point of care AMR tests, including detection of gonococci, which will improve the management and public health control of gonorrhoea and AMR. Nevertheless, now is certainly the right time to readdress the challenges of developing a gonococcal vaccine.

  2. Evolved Gas Measurements Planned for the Lower Layers of the Gale Crater Mound with the Sample Analysis at Mars Instrument Suite

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Brunner, Anna; McAdam, Amy; Franz, Heather; Conrad, Pamela; Webster, Chris; Cabane, Michel

    2009-01-01

    The lower mound strata of Gale Crater provide a diverse set of chemical environments for exploration by the varied tools of the Curiosity Rover of the Mars Science Laboratory (MSL) Mission. Orbital imaging and spectroscopy clearly reveal distinct layers of hydrated minerals, sulfates, and clays with abundant evidence of a variety of fluvial processes. The three instruments of the MSL Sample Analysis at aMars (SAM) investigation, the Quadrupole Mass Spectrometer (QMS), the Tunable Laser Spectrometer (TLS), and the Gas Chromatograph (GC) are designed to analyze either atmospheric gases or volatiles thermally evolved or chemically extracted from powdered rock or soil. The presence or absence of organic compounds in these layers is of great interest since such an in situ search for this type of record has not been successfully implemented since the mid-60s Viking GCMS experiments. However, regardless of the outcome of the analysis for organics, the abundance and isotopic composition of thermally evolved inorganic compounds should also provide a rich data set to complement the mineralogical and elemental information provided by other MSL instruments. In addition, these evolved gas analysis (EGA) experiments will help test sedimentary models proposed by Malin and Edgett (2000) and then further developed by Milliken et al (2010) for Gale Crater. In the SAM EGA experiments the evolution temperatures of H2O, CO2, SO2, O2, or other simple compounds as the samples are heated in a helium stream to 1000 C provides information on mineral types and their associations. The isotopic composition of O, H, C, and S can be precisely determined in several evolved compounds and compared with the present day atmosphere. Such SAM results might be able to test mineralogical evidence of changing sedimentary and alteration processes over an extended period of time. For example, Bibring et al (2006) have suggested such a major shift from early nonacidic to later acidic alteration. We will

  3. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature.

    PubMed

    Ghalambor, Cameron K; Hoke, Kim L; Ruell, Emily W; Fischer, Eva K; Reznick, David N; Hughes, Kimberly A

    2015-09-17

    Phenotypic plasticity is the capacity for an individual genotype to produce different phenotypes in response to environmental variation. Most traits are plastic, but the degree to which plasticity is adaptive or non-adaptive depends on whether environmentally induced phenotypes are closer or further away from the local optimum. Existing theories make conflicting predictions about whether plasticity constrains or facilitates adaptive evolution. Debate persists because few empirical studies have tested the relationship between initial plasticity and subsequent adaptive evolution in natural populations. Here we show that the direction of plasticity in gene expression is generally opposite to the direction of adaptive evolution. We experimentally transplanted Trinidadian guppies (Poecilia reticulata) adapted to living with cichlid predators to cichlid-free streams, and tested for evolutionary divergence in brain gene expression patterns after three to four generations. We find 135 transcripts that evolved parallel changes in expression within the replicated introduction populations. These changes are in the same direction exhibited in a native cichlid-free population, suggesting rapid adaptive evolution. We find 89% of these transcripts exhibited non-adaptive plastic changes in expression when the source population was reared in the absence of predators, as they are in the opposite direction to the evolved changes. By contrast, the remaining transcripts exhibiting adaptive plasticity show reduced population divergence. Furthermore, the most plastic transcripts in the source population evolved reduced plasticity in the introduction populations, suggesting strong selection against non-adaptive plasticity. These results support models predicting that adaptive plasticity constrains evolution, whereas non-adaptive plasticity potentiates evolution by increasing the strength of directional selection. The role of non-adaptive plasticity in evolution has received relatively

  4. Multivariate Epi-splines and Evolving Function Identification Problems

    DTIC Science & Technology

    2015-04-15

    such extrinsic information as well as observed function and subgradient values often evolve in applications, we establish conditions under which the...previous study [30] dealt with compact intervals of IR. Splines are intimately tied to optimization problems through their variational theory pioneered...approxima- tion. Motivated by applications in curve fitting, regression, probability density estimation, variogram computation, financial curve construction

  5. Metabolomic profiling of the heart during acute ischemic preconditioning reveals a role for SIRT1 in rapid cardioprotective metabolic adaptation.

    PubMed

    Nadtochiy, Sergiy M; Urciuoli, William; Zhang, Jimmy; Schafer, Xenia; Munger, Joshua; Brookes, Paul S

    2015-11-01

    Ischemic preconditioning (IPC) protects tissues such as the heart from prolonged ischemia-reperfusion (IR) injury. We previously showed that the lysine deacetylase SIRT1 is required for acute IPC, and has numerous metabolic targets. While it is known that metabolism is altered during IPC, the underlying metabolic regulatory mechanisms are unknown, including the relative importance of SIRT1. Thus, we sought to test the hypothesis that some of the metabolic adaptations that occur in IPC may require SIRT1 as a regulatory mediator. Using both ex-vivo-perfused and in-vivo mouse hearts, LC-MS/MS based metabolomics and (13)C-labeled substrate tracing, we found that acute IPC altered several metabolic pathways including: (i) stimulation of glycolysis, (ii) increased synthesis of glycogen and several amino acids, (iii) increased reduced glutathione levels, (iv) elevation in the oncometabolite 2-hydroxyglutarate, and (v) inhibition of fatty-acid dependent respiration. The majority (83%) of metabolic alterations induced by IPC were ablated when SIRT1 was acutely inhibited with splitomicin, and a principal component analysis revealed that metabolic changes in response to IPC were fundamentally different in nature when SIRT1 was inhibited. Furthermore, the protective benefit of IPC was abrogated by eliminating glucose from perfusion media while sustaining normal cardiac function by burning fat, thus indicating that glucose dependency is required for acute IPC. Together, these data suggest that SIRT1 signaling is required for rapid cardioprotective metabolic adaptation in acute IPC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Evolving Character of Chronic Central Nervous System HIV Infection

    PubMed Central

    Price, Richard W.; Spudich, Serena S.; Peterson, Julia; Joseph, Sarah; Fuchs, Dietmar; Zetterberg, Henrik; Gisslén, Magnus; Swanstrom, Ronald

    2014-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS) begins early in systemic infection and continues throughout its untreated course. Despite a common cerebrospinal fluid inflammatory response, it is usually neurologically asymptomatic for much of this course, but can evolve in some individuals to HIV-associated dementia (HAD), a severe encephalopathy with characteristic cognitive and motor dysfunction. While widespread use of combination antiretroviral therapy (ART) has led to a marked decline in both the CNS infection and its neurologic severe consequence, HAD continues to afflict individuals presenting with advanced systemic infection in the developed world and a larger number in resource-poor settings where ART is more restricted. Additionally, milder CNS injury and dysfunction have broader prevalence, including in those treated with ART. Here we review the history and evolving nomenclature of HAD, its viral pathogenesis, clinical presentation and diagnosis, and treatment. PMID:24715483

  7. Adaptive evolution of centromere proteins in plants and animals

    PubMed Central

    Talbert, Paul B; Bryson, Terri D; Henikoff, Steven

    2004-01-01

    Background Centromeres represent the last frontiers of plant and animal genomics. Although they perform a conserved function in chromosome segregation, centromeres are typically composed of repetitive satellite sequences that are rapidly evolving. The nucleosomes of centromeres are characterized by a special H3-like histone (CenH3), which evolves rapidly and adaptively in Drosophila and Arabidopsis. Most plant, animal and fungal centromeres also bind a large protein, centromere protein C (CENP-C), that is characterized by a single 24 amino-acid motif (CENPC motif). Results Whereas we find no evidence that mammalian CenH3 (CENP-A) has been evolving adaptively, mammalian CENP-C proteins contain adaptively evolving regions that overlap with regions of DNA-binding activity. In plants we find that CENP-C proteins have complex duplicated regions, with conserved amino and carboxyl termini that are dissimilar in sequence to their counterparts in animals and fungi. Comparisons of Cenpc genes from Arabidopsis species and from grasses revealed multiple regions that are under positive selection, including duplicated exons in some grasses. In contrast to plants and animals, yeast CENP-C (Mif2p) is under negative selection. Conclusions CENP-Cs in all plant and animal lineages examined have regions that are rapidly and adaptively evolving. To explain these remarkable evolutionary features for a single-copy gene that is needed at every mitosis, we propose that CENP-Cs, like some CenH3s, suppress meiotic drive of centromeres during female meiosis. This process can account for the rapid evolution and the complexity of centromeric DNA in plants and animals as compared to fungi. PMID:15345035

  8. Netgram: Visualizing Communities in Evolving Networks

    PubMed Central

    Mall, Raghvendra; Langone, Rocco; Suykens, Johan A. K.

    2015-01-01

    Real-world complex networks are dynamic in nature and change over time. The change is usually observed in the interactions within the network over time. Complex networks exhibit community like structures. A key feature of the dynamics of complex networks is the evolution of communities over time. Several methods have been proposed to detect and track the evolution of these groups over time. However, there is no generic tool which visualizes all the aspects of group evolution in dynamic networks including birth, death, splitting, merging, expansion, shrinkage and continuation of groups. In this paper, we propose Netgram: a tool for visualizing evolution of communities in time-evolving graphs. Netgram maintains evolution of communities over 2 consecutive time-stamps in tables which are used to create a query database using the sql outer-join operation. It uses a line-based visualization technique which adheres to certain design principles and aesthetic guidelines. Netgram uses a greedy solution to order the initial community information provided by the evolutionary clustering technique such that we have fewer line cross-overs in the visualization. This makes it easier to track the progress of individual communities in time evolving graphs. Netgram is a generic toolkit which can be used with any evolutionary community detection algorithm as illustrated in our experiments. We use Netgram for visualization of topic evolution in the NIPS conference over a period of 11 years and observe the emergence and merging of several disciplines in the field of information processing systems. PMID:26356538

  9. Oscillatory support for rapid frequency change processing in infants.

    PubMed

    Musacchia, Gabriella; Choudhury, Naseem A; Ortiz-Mantilla, Silvia; Realpe-Bonilla, Teresa; Roesler, Cynthia P; Benasich, April A

    2013-11-01

    Rapid auditory processing and auditory change detection abilities are crucial aspects of speech and language development, particularly in the first year of life. Animal models and adult studies suggest that oscillatory synchrony, and in particular low-frequency oscillations play key roles in this process. We hypothesize that infant perception of rapid pitch and timing changes is mediated, at least in part, by oscillatory mechanisms. Using event-related potentials (ERPs), source localization and time-frequency analysis of event-related oscillations (EROs), we examined the neural substrates of rapid auditory processing in 4-month-olds. During a standard oddball paradigm, infants listened to tone pairs with invariant standard (STD, 800-800 Hz) and variant deviant (DEV, 800-1200 Hz) pitch. STD and DEV tone pairs were first presented in a block with a short inter-stimulus interval (ISI) (Rapid Rate: 70 ms ISI), followed by a block of stimuli with a longer ISI (Control Rate: 300 ms ISI). Results showed greater ERP peak amplitude in response to the DEV tone in both conditions and later and larger peaks during Rapid Rate presentation, compared to the Control condition. Sources of neural activity, localized to right and left auditory regions, showed larger and faster activation in the right hemisphere for both rate conditions. Time-frequency analysis of the source activity revealed clusters of theta band enhancement to the DEV tone in right auditory cortex for both conditions. Left auditory activity was enhanced only during Rapid Rate presentation. These data suggest that local low-frequency oscillatory synchrony underlies rapid processing and can robustly index auditory perception in young infants. Furthermore, left hemisphere recruitment during rapid frequency change discrimination suggests a difference in the spectral and temporal resolution of right and left hemispheres at a very young age. © 2013 Elsevier Ltd. All rights reserved.

  10. Bioaugmentation of rapid sand filters by microbiome priming with a nitrifying consortium will optimize production of drinking water from groundwater.

    PubMed

    Albers, Christian Nyrop; Ellegaard-Jensen, Lea; Hansen, Lars Hestbjerg; Sørensen, Sebastian R

    2018-02-01

    Ammonium oxidation to nitrite and then to nitrate (nitrification) is a key process in many waterworks treating groundwater to make it potable. In rapid sand filters, nitrifying microbial communities may evolve naturally from groundwater bacteria entering the filters. However, in new filters this may take several months, and in some cases the nitrification process is never sufficiently rapid to be efficient or is only performed partially, with nitrite as an undesired end product. The present study reports the first successful priming of nitrification in a rapid sand filter treating groundwater. It is shown that nitrifying communities could be enriched by microbiomes from well-functioning rapid sand filters in waterworks and that the enriched nitrifying consortium could be used to inoculate fresh filters, significantly shortening the time taken for the nitrification process to start. The key nitrifiers in the enrichment were different from those in the well-functioning filter, but similar to those that initiated the nitrification process in fresh filters without inoculation. Whether or not the nitrification was primed with the enriched nitrifying consortium, the bacteria performing the nitrification process during start-up appeared to be slowly outcompeted by Nitrospira, the dominant nitrifying bacterium in well-functioning rapid sand filters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Bacteriophage Taxonomy: An Evolving Discipline.

    PubMed

    Tolstoy, Igor; Kropinski, Andrew M; Brister, J Rodney

    2018-01-01

    While taxonomy is an often-unappreciated branch of science it serves very important roles. Bacteriophage taxonomy has evolved from a mainly morphology-based discipline, characterized by the work of David Bradley and Hans-Wolfgang Ackermann, to the holistic approach that is taken today. The Bacterial and Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) takes a comprehensive approach to classifying prokaryote viruses measuring overall DNA and protein identity and phylogeny before making decisions about the taxonomic position of a new virus. The huge number of complete genomes being deposited with NCBI and other public databases has resulted in a reassessment of the taxonomy of many viruses, and the future will see the introduction of new viral families and higher orders.

  12. Resiliently evolving supply-demand networks

    NASA Astrophysics Data System (ADS)

    Rubido, Nicolás; Grebogi, Celso; Baptista, Murilo S.

    2014-01-01

    The ability to design a transport network such that commodities are brought from suppliers to consumers in a steady, optimal, and stable way is of great importance for distribution systems nowadays. In this work, by using the circuit laws of Kirchhoff and Ohm, we provide the exact capacities of the edges that an optimal supply-demand network should have to operate stably under perturbations, i.e., without overloading. The perturbations we consider are the evolution of the connecting topology, the decentralization of hub sources or sinks, and the intermittence of supplier and consumer characteristics. We analyze these conditions and the impact of our results, both on the current United Kingdom power-grid structure and on numerically generated evolving archetypal network topologies.

  13. Isotopic Analysis and Evolved Gases

    NASA Technical Reports Server (NTRS)

    Swindle, Timothy D.; Boynton, William V.; Chutjian, Ara; Hoffman, John H.; Jordan, Jim L.; Kargel, Jeffrey S.; McEntire, Richard W.; Nyquist, Larry

    1996-01-01

    Precise measurements of the chemical, elemental, and isotopic composition of planetary surface material and gases, and observed variations in these compositions, can contribute significantly to our knowledge of the source(s), ages, and evolution of solar system materials. The analyses discussed in this paper are mostly made by mass spectrometers or some other type of mass analyzer, and address three broad areas of interest: (1) atmospheric composition - isotopic, elemental, and molecular, (2) gases evolved from solids, and (3) solids. Current isotopic data on nine elements, mostly from in situ analysis, but also from meteorites and telescopic observations are summarized. Potential instruments for isotopic analysis of lunar, Martian, Venusian, Mercury, and Pluto surfaces, along with asteroid, cometary and icy satellites, surfaces are discussed.

  14. Elements of effective palliative care models: a rapid review

    PubMed Central

    2014-01-01

    Background Population ageing, changes to the profiles of life-limiting illnesses and evolving societal attitudes prompt a critical evaluation of models of palliative care. We set out to identify evidence-based models of palliative care to inform policy reform in Australia. Method A rapid review of electronic databases and the grey literature was undertaken over an eight week period in April-June 2012. We included policy documents and comparative studies from countries within the Organisation for Economic Co-operation and Development (OECD) published in English since 2001. Meta-analysis was planned where >1 study met criteria; otherwise, synthesis was narrative using methods described by Popay et al. (2006). Results Of 1,959 peer-reviewed articles, 23 reported systematic reviews, 9 additional RCTs and 34 non-randomised comparative studies. Variation in the content of models, contexts in which these were implemented and lack of detailed reporting meant that elements of models constituted a more meaningful unit of analysis than models themselves. Case management was the element most consistently reported in models for which comparative studies provided evidence for effectiveness. Essential attributes of population-based palliative care models identified by policy and addressed by more than one element were communication and coordination between providers (including primary care), skill enhancement, and capacity to respond rapidly to individuals’ changing needs and preferences over time. Conclusion Models of palliative care should integrate specialist expertise with primary and community care services and enable transitions across settings, including residential aged care. The increasing complexity of care needs, services, interventions and contextual drivers warrants future research aimed at elucidating the interactions between different components and the roles played by patient, provider and health system factors. The findings of this review are limited by its

  15. Real-time visualization of soliton molecules with evolving behavior in an ultrafast fiber laser

    NASA Astrophysics Data System (ADS)

    Liu, Meng; Li, Heng; Luo, Ai-Ping; Cui, Hu; Xu, Wen-Cheng; Luo, Zhi-Chao

    2018-03-01

    Ultrafast fiber lasers have been demonstrated to be great platforms for the investigation of soliton dynamics. The soliton molecules, as one of the most fascinating nonlinear phenomena, have been a hot topic in the field of nonlinear optics in recent years. Herein, we experimentally observed the real-time evolving behavior of soliton molecule in an ultrafast fiber laser by using the dispersive Fourier transformation technology. Several types of evolving soliton molecules were obtained in our experiments, such as soliton molecules with monotonically or chaotically evolving phase, flipping and hopping phase. These results would be helpful to the communities interested in soliton nonlinear dynamics as well as ultrafast laser technologies.

  16. Examining faculty awards for gender equity and evolving values.

    PubMed

    Abbuhl, Stephanie; Bristol, Mirar N; Ashfaq, Hera; Scott, Patricia; Tuton, Lucy Wolf; Cappola, Anne R; Sonnad, Seema S

    2010-01-01

    Awards given to medical school faculty are one important mechanism for recognizing what is valued in academic medicine. There have been concerns expressed about the gender distribution of awards, and there is also a growing appreciation for the evolving accomplishments and talents that define academic excellence in the 21st century and that should be considered worthy of award recognition. Examine faculty awards at our institution for gender equity and evolving values. Recipient data were collected on awards from 1996 to 2007 inclusively at the University of Pennsylvania School of Medicine (SOM). Descriptions of each award also were collected. The female-to-male ratio of award recipients over the time span was reviewed for changes and trends. The title and text of each award announcement were reviewed to determine if the award represented a traditional or a newer concept of excellence in academic medicine. There were 21 annual awards given to a total of 59 clinical award recipients, 60 research award recipients, and 154 teaching award recipients. Women received 28% of research awards, 29% of teaching awards and 10% of clinical awards. Gender distribution of total awards was similar to that of SOM full-time faculty except in the clinical awards category. Only one award reflected a shift in the culture of individual achievement to one of collaboration and team performance. Examining both the recipients and content of awards is important to assure they reflect the current composition of diverse faculty and the evolving ideals of leadership and excellence in academic medicine.

  17. Examining Faculty Awards for Gender Equity and Evolving Values

    PubMed Central

    Abbuhl, Stephanie; Bristol, Mirar N.; Ashfaq, Hera; Scott, Patricia; Tuton, Lucy Wolf; Cappola, Anne R.

    2009-01-01

    ABSTRACT BACKGROUND Awards given to medical school faculty are one important mechanism for recognizing what is valued in academic medicine. There have been concerns expressed about the gender distribution of awards, and there is also a growing appreciation for the evolving accomplishments and talents that define academic excellence in the 21st century and that should be considered worthy of award recognition. OBJECTIVE Examine faculty awards at our institution for gender equity and evolving values. METHODS Recipient data were collected on awards from 1996 to 2007 inclusively at the University of Pennsylvania School of Medicine (SOM). Descriptions of each award also were collected. The female-to-male ratio of award recipients over the time span was reviewed for changes and trends. The title and text of each award announcement were reviewed to determine if the award represented a traditional or a newer concept of excellence in academic medicine. MAIN RESULTS There were 21 annual awards given to a total of 59 clinical award recipients, 60 research award recipients, and 154 teaching award recipients. Women received 28% of research awards, 29% of teaching awards and 10% of clinical awards. Gender distribution of total awards was similar to that of SOM full-time faculty except in the clinical awards category. Only one award reflected a shift in the culture of individual achievement to one of collaboration and team performance. CONCLUSION Examining both the recipients and content of awards is important to assure they reflect the current composition of diverse faculty and the evolving ideals of leadership and excellence in academic medicine. PMID:19727968

  18. China’s Rapidly Aging Population Creates Policy Challenges In Shaping A Viable Long-Term Care System

    PubMed Central

    Feng, Zhanlian; Liu, Chang; Guan, Xinping; Mor, Vincent

    2013-01-01

    In China, formal long-term care services for the large aging population have increased to meet escalating demands as demographic shifts and socioeconomic changes have eroded traditional elder care. We analyze China’s evolving long-term care landscape and trace major government policies and private-sector initiatives shaping it. Although home and community-based services remain spotty, institutional care is booming with little regulatory oversight. Chinese policy makers face mounting challenges overseeing the rapidly growing residential care sector, given the tension arising from policy inducements to further institutional growth, a weak regulatory framework, and the lack of enforcement capacity. We recommend addressing the following pressing policy issues: building a balanced system of services and avoiding an “institutional bias” that promotes rapid growth of elder care institutions over home or community-based care; strengthening regulatory oversight and quality assurance with information systems; and prioritizing education and training initiatives to grow a professionalized long-term care workforce. PMID:23213161

  19. Evolved Minimal Frustration in Multifunctional Biomolecules.

    PubMed

    Röder, Konstantin; Wales, David J

    2018-05-25

    Protein folding is often viewed in terms of a funnelled potential or free energy landscape. A variety of experiments now indicate the existence of multifunnel landscapes, associated with multifunctional biomolecules. Here, we present evidence that these systems have evolved to exhibit the minimal number of funnels required to fulfil their cellular functions, suggesting an extension to the principle of minimum frustration. We find that minimal disruptive mutations result in additional funnels, and the associated structural ensembles become more diverse. The same trends are observed in an atomic cluster. These observations suggest guidelines for rational design of engineered multifunctional biomolecules.

  20. Investigating Evolved Compositions Around Wolf Crater

    NASA Technical Reports Server (NTRS)

    Greenhagen, B. T.; Cahill, J. T. S.; Jolliff, B. L.; Lawrence, S. J.; Glotch, T. D.

    2017-01-01

    Wolf crater is an irregularly shaped, approximately 25 km crater in the south-central portion of Mare Nubium on the lunar nearside. While not previously identified as a lunar "red spot", Wolf crater was identified as a Th anomaly by Lawrence and coworkers. We have used data from the Lunar Reconnaissance Orbiter (LRO) to determine the area surrounding Wolf crater has composition more similar to highly evolved, non-mare volcanic structures than typical lunar crustal lithology. In this presentation, we will investigate the geomorphology and composition of the Wolf crater and discuss implications for the origin of the anomalous terrain.