Science.gov

Sample records for reveals unexpected genetic

  1. Unexpected Genetic Diversity among and within Populations of the Toxic Dinoflagellate Alexandrium catenella as Revealed by Nuclear Microsatellite Markers▿

    PubMed Central

    Masseret, Estelle; Grzebyk, Daniel; Nagai, Satoshi; Genovesi, Benjamin; Lasserre, Bernard; Laabir, Mohamed; Collos, Yves; Vaquer, André; Berrebi, Patrick

    2009-01-01

    Since 1998, blooms of Alexandrium catenella associated with paralytic shellfish poisoning have been repeatedly reported for Thau Lagoon (French Mediterranean coast). Based on data obtained for rRNA gene markers, it has been suggested that the strains involved could be closely related to the Japanese temperate Asian ribotype of the temperate Asian clade. In order to gain more insight into the origin of these organisms, we carried out a genetic analysis of 61 Mediterranean and 23 Japanese strains using both ribosomal and microsatellite markers. Whereas the phylogeny based on ribosomal markers tended to confirm the previous findings, the analysis of microsatellite sequences revealed an unexpected distinction between the French and Japanese populations. This analysis also highlighted great intraspecific diversity that was not detected with the classical rRNA gene markers. The Japanese strains are divided into two differentiated A. catenella lineages: the Sea of Japan lineage and the east coast lineage, which includes populations from the Inland Sea and the Pacific Ocean. A. catenella strains isolated from Thau Lagoon belong to another lineage. These findings indicate that microsatellite markers are probably better suited to investigations of the population genetics of this species that is distributed worldwide. Finally, application of the population genetics concepts available for macroorganisms could support new paradigms for speciation and migration in phytoplankton assemblages. PMID:19201972

  2. Nuclear markers reveal unexpected genetic variation and a Congolese-Nilotic origin of the Lake Victoria cichlid species flock.

    PubMed Central

    Seehausen, Ole; Koetsier, Egbert; Schneider, Maria Victoria; Chapman, Lauren J; Chapman, Colin A; Knight, Mairi E; Turner, George F; van Alphen, Jacques J M; Bills, Roger

    2003-01-01

    Phylogenetic analyses based on mitochondrial (mt) DNA have indicated that the cichlid species flock of the Lake Victoria region is derived from a single ancestral species found in East African rivers, closely related to the ancestor of the Lake Malawi cichlid species flock. The Lake Victoria flock contains ten times less mtDNA variation than the Lake Malawi radiation, consistent with current estimates of the ages of the lakes. We present results of a phylogenetic investigation using nuclear (amplified fragment length polymorphism) markers and a wider coverage of riverine haplochromines. We demonstrate that the Lake Victoria-Edward flock is derived from the morphologically and ecologically diverse cichlid genus Thoracochromis from the Congo and Nile, rather than from the phenotypically conservative East African Astatotilapia. This implies that the ability to express much of the morphological diversity found in the species flock may by far pre-date the origin of the flock. Our data indicate that the nuclear diversity of the Lake Victoria-Edward species flock is similar to that of the Lake Malawi flock, indicating that the genetic diversity is considerably older than the 15 000 years that have passed since the lake began to refill. Most of this variation is manifested in trans-species polymorphisms, indicating very recent cladogenesis from a genetically very diverse founder stock. Our data do not confirm strict monophyly of either of the species flocks, but raise the possibility that these flocks have arisen from hybrid swarms. PMID:12590750

  3. Complex and unexpected dynamics in simple genetic regulatory networks

    NASA Astrophysics Data System (ADS)

    Borg, Yanika; Ullner, Ekkehard; Alagha, Afnan; Alsaedi, Ahmed; Nesbeth, Darren; Zaikin, Alexey

    2014-03-01

    One aim of synthetic biology is to construct increasingly complex genetic networks from interconnected simpler ones to address challenges in medicine and biotechnology. However, as systems increase in size and complexity, emergent properties lead to unexpected and complex dynamics due to nonlinear and nonequilibrium properties from component interactions. We focus on four different studies of biological systems which exhibit complex and unexpected dynamics. Using simple synthetic genetic networks, small and large populations of phase-coupled quorum sensing repressilators, Goodwin oscillators, and bistable switches, we review how coupled and stochastic components can result in clustering, chaos, noise-induced coherence and speed-dependent decision making. A system of repressilators exhibits oscillations, limit cycles, steady states or chaos depending on the nature and strength of the coupling mechanism. In large repressilator networks, rich dynamics can also be exhibited, such as clustering and chaos. In populations of Goodwin oscillators, noise can induce coherent oscillations. In bistable systems, the speed with which incoming external signals reach steady state can bias the network towards particular attractors. These studies showcase the range of dynamical behavior that simple synthetic genetic networks can exhibit. In addition, they demonstrate the ability of mathematical modeling to analyze nonlinearity and inhomogeneity within these systems.

  4. Sudden unexpected death in epilepsy genetics: Molecular diagnostics and prevention.

    PubMed

    Goldman, Alica M; Behr, Elijah R; Semsarian, Christopher; Bagnall, Richard D; Sisodiya, Sanjay; Cooper, Paul N

    2016-01-01

    Epidemiologic studies clearly document the public health burden of sudden unexpected death in epilepsy (SUDEP). Clinical and experimental studies have uncovered dynamic cardiorespiratory dysfunction, both interictally and at the time of sudden death due to epilepsy. Genetic analyses in humans and in model systems have facilitated our current molecular understanding of SUDEP. Many discoveries have been informed by progress in the field of sudden cardiac death and sudden infant death syndrome. It is becoming apparent that SUDEP genomic complexity parallels that of sudden cardiac death, and that there is a pauci1ty of analytically useful postmortem material. Because many challenges remain, future progress in SUDEP research, molecular diagnostics, and prevention rests in international, collaborative, and transdisciplinary dialogue in human and experimental translational research of sudden death.

  5. Unexpected consequences of genetic selection in broilers and turkeys: problems and solutions.

    PubMed

    Hocking, P M

    2014-02-01

    1. Genetic theory leads to the expectation that unexpected consequences of genetic selection for production traits will inevitably occur and that these changes are likely to be undesirable. 2. Both artificial selection for production efficiency and "natural" selection for adaptation to the production environment result in selection sweeps that increase the frequencies of rare recessive alleles that have a negative effect on fitness. 3. Fitness is broadly defined as any trait that affects the ability to survive, reproduce and contribute to the next generation, such as musculoskeletal disease in growing broiler chickens and multiple ovulation in adult broiler parents. 4. Welfare concerns about the negative effects of genetic selection on bird welfare are sometimes exaggerated but are nevertheless real. Breeders have paid increasing attention to these traits over several decades and have demonstrated improvement in pedigree flocks. There is an urgent need to monitor changes in commercial flocks to ensure that genetic change is accompanied by improvements in that target population. 5. New technologies for trait measurement, whole genome selection and targeted genetic modification hold out the promise of efficient and rapid improvement of welfare traits in future breeding of broiler chickens and turkeys. The potential of targeted genetic modification for enhancing welfare traits is considerable, but the goal of achieving public acceptability for the progeny of transgenic poultry will be politically challenging.

  6. The Crystal Structures of EAP Domains from Staphylococcus aureus Reveal an Unexpected Homology to Bacterial Superantigens

    SciTech Connect

    Geisbrecht, B V; Hamaoka, B Y; Perman, B; Zemla, A; Leahy, D J

    2005-10-14

    The Eap (extracellular adherence protein) of Staphylococcus aureus functions as a secreted virulence factor by mediating interactions between the bacterial cell surface and several extracellular host proteins. Eap proteins from different Staphylococcal strains consist of four to six tandem repeats of a structurally uncharacterized domain (EAP domain). We have determined the three-dimensional structures of three different EAP domains to 1.8, 2.2, and 1.35 {angstrom} resolution, respectively. These structures reveal a core fold that is comprised of an {alpha}-helix lying diagonally across a five-stranded, mixed {beta}-sheet. Comparison of EAP domains with known structures reveals an unexpected homology with the C-terminal domain of bacterial superantigens. Examination of the structure of the superantigen SEC2 bound to the {beta}-chain of a T-cell receptor suggests a possible ligand-binding site within the EAP domain (Fields, B. A., Malchiodi, E. L., Li, H., Ysern, X., Stauffacher, C. V., Schlievert, P. M., Karjalainen, K., and Mariuzza, R. (1996) Nature 384, 188-192). These results provide the first structural characterization of EAP domains, relate EAP domains to a large class of bacterial toxins, and will guide the design of future experiments to analyze EAP domain structure/function relationships.

  7. Kinase inhibitor profiling reveals unexpected opportunities to inhibit disease-associated mutant kinases

    PubMed Central

    Duong-Ly, Krisna C.; Devarajan, Karthik; Liang, Shuguang; Horiuchi, Kurumi Y.; Wang, Yuren; Ma, Haiching; Peterson, Jeffrey R.

    2016-01-01

    Summary Small-molecule kinase inhibitors have typically been designed to inhibit wild-type kinases rather than the mutant forms that frequently arise in diseases such as cancer. Mutations can have serious clinical implications by increasing kinase catalytic activity or conferring therapeutic resistance. To identify opportunities to repurpose inhibitors against disease-associated mutant kinases, we conducted a large-scale functional screen of 183 known kinase inhibitors against 76 recombinant, mutant kinases. The results revealed lead compounds with activity against clinically important mutant kinases including ALK, LRRK2, RET, and EGFR as well as unexpected opportunities for repurposing FDA-approved kinase inhibitors as leads for additional indications. Furthermore, using T674I PDGFRα as an example, we show how single-dose screening data can provide predictive structure-activity data to guide subsequent inhibitor optimization. This study provides a resource for the development of inhibitors against numerous disease-associated mutant kinases and illustrates the potential of unbiased profiling as an approach to compound-centric inhibitor development. PMID:26776524

  8. Citizen Science Reveals Unexpected Continental-Scale Evolutionary Change in a Model Organism

    PubMed Central

    Silvertown, Jonathan; Cook, Laurence; Cameron, Robert; Dodd, Mike; McConway, Kevin; Worthington, Jenny; Skelton, Peter; Anton, Christian; Bossdorf, Oliver; Baur, Bruno; Schilthuizen, Menno; Fontaine, Benoît; Sattmann, Helmut; Bertorelle, Giorgio; Correia, Maria; Oliveira, Cristina; Pokryszko, Beata; Ożgo, Małgorzata; Stalažs, Arturs; Gill, Eoin; Rammul, Üllar; Sólymos, Péter; Féher, Zoltan; Juan, Xavier

    2011-01-01

    Organisms provide some of the most sensitive indicators of climate change and evolutionary responses are becoming apparent in species with short generation times. Large datasets on genetic polymorphism that can provide an historical benchmark against which to test for recent evolutionary responses are very rare, but an exception is found in the brown-lipped banded snail (Cepaea nemoralis). This species is sensitive to its thermal environment and exhibits several polymorphisms of shell colour and banding pattern affecting shell albedo in the majority of populations within its native range in Europe. We tested for evolutionary changes in shell albedo that might have been driven by the warming of the climate in Europe over the last half century by compiling an historical dataset for 6,515 native populations of C. nemoralis and comparing this with new data on nearly 3,000 populations. The new data were sampled mainly in 2009 through the Evolution MegaLab, a citizen science project that engaged thousands of volunteers in 15 countries throughout Europe in the biggest such exercise ever undertaken. A known geographic cline in the frequency of the colour phenotype with the highest albedo (yellow) was shown to have persisted and a difference in colour frequency between woodland and more open habitats was confirmed, but there was no general increase in the frequency of yellow shells. This may have been because snails adapted to a warming climate through behavioural thermoregulation. By contrast, we detected an unexpected decrease in the frequency of Unbanded shells and an increase in the Mid-banded morph. Neither of these evolutionary changes appears to be a direct response to climate change, indicating that the influence of other selective agents, possibly related to changing predation pressure and habitat change with effects on micro-climate. PMID:21556137

  9. Citizen science reveals unexpected continental-scale evolutionary change in a model organism.

    PubMed

    Silvertown, Jonathan; Cook, Laurence; Cameron, Robert; Dodd, Mike; McConway, Kevin; Worthington, Jenny; Skelton, Peter; Anton, Christian; Bossdorf, Oliver; Baur, Bruno; Schilthuizen, Menno; Fontaine, Benoît; Sattmann, Helmut; Bertorelle, Giorgio; Correia, Maria; Oliveira, Cristina; Pokryszko, Beata; Ożgo, Małgorzata; Stalažs, Arturs; Gill, Eoin; Rammul, Üllar; Sólymos, Péter; Féher, Zoltan; Juan, Xavier

    2011-04-27

    Organisms provide some of the most sensitive indicators of climate change and evolutionary responses are becoming apparent in species with short generation times. Large datasets on genetic polymorphism that can provide an historical benchmark against which to test for recent evolutionary responses are very rare, but an exception is found in the brown-lipped banded snail (Cepaea nemoralis). This species is sensitive to its thermal environment and exhibits several polymorphisms of shell colour and banding pattern affecting shell albedo in the majority of populations within its native range in Europe. We tested for evolutionary changes in shell albedo that might have been driven by the warming of the climate in Europe over the last half century by compiling an historical dataset for 6,515 native populations of C. nemoralis and comparing this with new data on nearly 3,000 populations. The new data were sampled mainly in 2009 through the Evolution MegaLab, a citizen science project that engaged thousands of volunteers in 15 countries throughout Europe in the biggest such exercise ever undertaken. A known geographic cline in the frequency of the colour phenotype with the highest albedo (yellow) was shown to have persisted and a difference in colour frequency between woodland and more open habitats was confirmed, but there was no general increase in the frequency of yellow shells. This may have been because snails adapted to a warming climate through behavioural thermoregulation. By contrast, we detected an unexpected decrease in the frequency of Unbanded shells and an increase in the Mid-banded morph. Neither of these evolutionary changes appears to be a direct response to climate change, indicating that the influence of other selective agents, possibly related to changing predation pressure and habitat change with effects on micro-climate.

  10. Metatranscriptome Analysis of Aquifer Samples Reveals Unexpected Metabolic Lifestyles Relevant to Active Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    Beller, H. R.; Jewell, T. N. M.; Karaoz, U.; Banfield, J. F.; Brodie, E.; Williams, K. H.

    2015-12-01

    Modern molecular ecology techniques are revealing the metabolic potential of uncultivated microorganisms, but there is still much to be learned about the actual biogeochemical roles of microbes that have cultivated relatives. Here, we present metatranscriptomic and metagenomic data from a field study that provides evidence of coupled redox processes that have not been documented in cultivated relatives and, indeed, represent strains with metabolic traits that are novel with respect to closely related isolates. The data come from omics analysis of groundwater samples collected during an experiment in which nitrate (a native electron acceptor) was injected into a perennially suboxic aquifer in Rifle (CO). Transcriptional data indicated that just two groups of chemolithoautotrophic bacteria accounted for a very large portion (~80%) of overall community gene expression: (1) members of the Fe(II)-oxidizing Gallionellaceae family and (2) strains of the S-oxidizing species, Sulfurimonas denitrificans. Metabolic lifestyles for Gallionellaceae strains that were novel compared to cultivated representatives included nitrate-dependent Fe(II) oxidation and S oxidation. Evidence for these metabolisms included highly correlated temporal expression in binned data of nitrate reductase (e.g., narGHI) genes (which have never been reported in Gallionellaceae genomes) and Fe(II) oxidation genes (e.g., mtoA) or S oxidation genes (e.g., dsrE, aprA). Of the two most active strains of S. denitrificans, only one showed strong expression of S oxidation genes, whereas the other was apparently using an unexpected (as-yet unidentified) primary electron donor. Transcriptional data added considerable interpretive value to this study, as (1) metagenomic data would not have highlighted these organisms, which had a disproportionately large role in community metabolism relative to their populations, and (2) co-expression of coupled pathway genes could not be predicted based solely on metagenomic data.

  11. New application of intelligent agents in sporadic amyotrophic lateral sclerosis identifies unexpected specific genetic background

    PubMed Central

    Penco, Silvana; Buscema, Massimo; Patrosso, Maria Cristina; Marocchi, Alessandro; Grossi, Enzo

    2008-01-01

    Background Few genetic factors predisposing to the sporadic form of amyotrophic lateral sclerosis (ALS) have been identified, but the pathology itself seems to be a true multifactorial disease in which complex interactions between environmental and genetic susceptibility factors take place. The purpose of this study was to approach genetic data with an innovative statistical method such as artificial neural networks to identify a possible genetic background predisposing to the disease. A DNA multiarray panel was applied to genotype more than 60 polymorphisms within 35 genes selected from pathways of lipid and homocysteine metabolism, regulation of blood pressure, coagulation, inflammation, cellular adhesion and matrix integrity, in 54 sporadic ALS patients and 208 controls. Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis Results Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis. An unexpected discovery of a strong genetic background in sporadic ALS using a DNA multiarray panel and analytical processing of the data with advanced artificial neural networks was found. The predictive accuracy obtained with Linear Discriminant Analysis and Standard Artificial Neural Networks ranged from 70% to 79% (average 75.31%) and from 69.1 to 86.2% (average 76.6%) respectively. The corresponding value obtained with Advanced Intelligent Systems reached an average of 96.0% (range 94.4 to 97.6%). This latter approach allowed the identification of seven genetic variants essential to differentiate cases from controls: apolipoprotein E arg158cys; hepatic lipase

  12. Deep phenotyping of 89 xeroderma pigmentosum patients reveals unexpected heterogeneity dependent on the precise molecular defect.

    PubMed

    Fassihi, Hiva; Sethi, Mieran; Fawcett, Heather; Wing, Jonathan; Chandler, Natalie; Mohammed, Shehla; Craythorne, Emma; Morley, Ana M S; Lim, Rongxuan; Turner, Sally; Henshaw, Tanya; Garrood, Isabel; Giunti, Paola; Hedderly, Tammy; Abiona, Adesoji; Naik, Harsha; Harrop, Gemma; McGibbon, David; Jaspers, Nicolaas G J; Botta, Elena; Nardo, Tiziana; Stefanini, Miria; Young, Antony R; Sarkany, Robert P E; Lehmann, Alan R

    2016-03-01

    Xeroderma pigmentosum (XP) is a rare DNA repair disorder characterized by increased susceptibility to UV radiation (UVR)-induced skin pigmentation, skin cancers, ocular surface disease, and, in some patients, sunburn and neurological degeneration. Genetically, it is assigned to eight complementation groups (XP-A to -G and variant). For the last 5 y, the UK national multidisciplinary XP service has provided follow-up for 89 XP patients, representing most of the XP patients in the United Kingdom. Causative mutations, DNA repair levels, and more than 60 clinical variables relating to dermatology, ophthalmology, and neurology have been measured, using scoring systems to categorize disease severity. This deep phenotyping has revealed unanticipated heterogeneity of clinical features, between and within complementation groups. Skin cancer is most common in XP-C, XP-E, and XP-V patients, previously considered to be the milder groups based on cellular analyses. These patients have normal sunburn reactions and are therefore diagnosed later and are less likely to adhere to UVR protection. XP-C patients are specifically hypersensitive to ocular damage, and XP-F and XP-G patients appear to be much less susceptible to skin cancer than other XP groups. Within XP groups, different mutations confer susceptibility or resistance to neurological damage. Our findings on this large cohort of XP patients under long-term follow-up reveal that XP is more heterogeneous than has previously been appreciated. Our data now enable provision of personalized prognostic information and management advice for each XP patient, as well as providing new insights into the functions of the XP proteins. PMID:26884178

  13. Deep phenotyping of 89 xeroderma pigmentosum patients reveals unexpected heterogeneity dependent on the precise molecular defect

    PubMed Central

    Fassihi, Hiva; Sethi, Mieran; Fawcett, Heather; Wing, Jonathan; Chandler, Natalie; Mohammed, Shehla; Craythorne, Emma; Morley, Ana M. S.; Lim, Rongxuan; Turner, Sally; Henshaw, Tanya; Garrood, Isabel; Giunti, Paola; Hedderly, Tammy; Abiona, Adesoji; Naik, Harsha; Harrop, Gemma; McGibbon, David; Jaspers, Nicolaas G. J.; Botta, Elena; Nardo, Tiziana; Stefanini, Miria; Young, Antony R.; Sarkany, Robert P. E.; Lehmann, Alan R.

    2016-01-01

    Xeroderma pigmentosum (XP) is a rare DNA repair disorder characterized by increased susceptibility to UV radiation (UVR)-induced skin pigmentation, skin cancers, ocular surface disease, and, in some patients, sunburn and neurological degeneration. Genetically, it is assigned to eight complementation groups (XP-A to -G and variant). For the last 5 y, the UK national multidisciplinary XP service has provided follow-up for 89 XP patients, representing most of the XP patients in the United Kingdom. Causative mutations, DNA repair levels, and more than 60 clinical variables relating to dermatology, ophthalmology, and neurology have been measured, using scoring systems to categorize disease severity. This deep phenotyping has revealed unanticipated heterogeneity of clinical features, between and within complementation groups. Skin cancer is most common in XP-C, XP-E, and XP-V patients, previously considered to be the milder groups based on cellular analyses. These patients have normal sunburn reactions and are therefore diagnosed later and are less likely to adhere to UVR protection. XP-C patients are specifically hypersensitive to ocular damage, and XP-F and XP-G patients appear to be much less susceptible to skin cancer than other XP groups. Within XP groups, different mutations confer susceptibility or resistance to neurological damage. Our findings on this large cohort of XP patients under long-term follow-up reveal that XP is more heterogeneous than has previously been appreciated. Our data now enable provision of personalized prognostic information and management advice for each XP patient, as well as providing new insights into the functions of the XP proteins. PMID:26884178

  14. Deep phenotyping of 89 xeroderma pigmentosum patients reveals unexpected heterogeneity dependent on the precise molecular defect.

    PubMed

    Fassihi, Hiva; Sethi, Mieran; Fawcett, Heather; Wing, Jonathan; Chandler, Natalie; Mohammed, Shehla; Craythorne, Emma; Morley, Ana M S; Lim, Rongxuan; Turner, Sally; Henshaw, Tanya; Garrood, Isabel; Giunti, Paola; Hedderly, Tammy; Abiona, Adesoji; Naik, Harsha; Harrop, Gemma; McGibbon, David; Jaspers, Nicolaas G J; Botta, Elena; Nardo, Tiziana; Stefanini, Miria; Young, Antony R; Sarkany, Robert P E; Lehmann, Alan R

    2016-03-01

    Xeroderma pigmentosum (XP) is a rare DNA repair disorder characterized by increased susceptibility to UV radiation (UVR)-induced skin pigmentation, skin cancers, ocular surface disease, and, in some patients, sunburn and neurological degeneration. Genetically, it is assigned to eight complementation groups (XP-A to -G and variant). For the last 5 y, the UK national multidisciplinary XP service has provided follow-up for 89 XP patients, representing most of the XP patients in the United Kingdom. Causative mutations, DNA repair levels, and more than 60 clinical variables relating to dermatology, ophthalmology, and neurology have been measured, using scoring systems to categorize disease severity. This deep phenotyping has revealed unanticipated heterogeneity of clinical features, between and within complementation groups. Skin cancer is most common in XP-C, XP-E, and XP-V patients, previously considered to be the milder groups based on cellular analyses. These patients have normal sunburn reactions and are therefore diagnosed later and are less likely to adhere to UVR protection. XP-C patients are specifically hypersensitive to ocular damage, and XP-F and XP-G patients appear to be much less susceptible to skin cancer than other XP groups. Within XP groups, different mutations confer susceptibility or resistance to neurological damage. Our findings on this large cohort of XP patients under long-term follow-up reveal that XP is more heterogeneous than has previously been appreciated. Our data now enable provision of personalized prognostic information and management advice for each XP patient, as well as providing new insights into the functions of the XP proteins.

  15. Unexpected divergence and lack of divergence revealed in continental Asian Cyornis flycatchers (Aves: Muscicapidae).

    PubMed

    Zhang, Zhen; Wang, Xiaoyang; Huang, Yuan; Olsson, Urban; Martinez, Jonathan; Alström, Per; Lei, Fumin

    2016-01-01

    The flycatcher genus Cyornis (Aves: Muscicapidae) comprises 25 species with Oriental distributions. Their relationships are poorly known. We analyzed the phylogenetic relationships of 70 individuals from 12 species and several subspecies of Cyornis based on three mitochondrial genes and five nuclear introns, with special focus on Chinese and Vietnamese populations of the monotypic C. hainanus and polytypic C. rubeculoides. We found no support for inclusion of C. concretus in Cyornis. Deep divergences were observed among different subspecies of C. banyumas and C. rubeculoides. C. rubeculoides glaucicomans was also shown to have a highly distinctive song, and we propose that it is treated as a distinctive Chinese endemic species, C. glaucicomans. In contrast, the south Vietnamese C. rubeculoides klossi, which has a disjunct distribution from the other subspecies of C. rubeculoides, along with a recently discovered population in Guangdong Province (China) with several plumage features reminiscent of C. r. klossi, were indistinguishable in all loci analyzed from the phenotypically markedly different C. hainanus. More research is needed to elucidate the reasons for this unexpected pattern.

  16. Multi-tissue coexpression networks reveal unexpected subnetworks associated with disease

    PubMed Central

    Dobrin, Radu; Zhu, Jun; Molony, Cliona; Argman, Carmen; Parrish, Mark L; Carlson, Sonia; Allan, Mark F; Pomp, Daniel; Schadt, Eric E

    2009-01-01

    Background Obesity is a particularly complex disease that at least partially involves genetic and environmental perturbations to gene-networks connecting the hypothalamus and several metabolic tissues, resulting in an energy imbalance at the systems level. Results To provide an inter-tissue view of obesity with respect to molecular states that are associated with physiological states, we developed a framework for constructing tissue-to-tissue coexpression networks between genes in the hypothalamus, liver or adipose tissue. These networks have a scale-free architecture and are strikingly independent of gene-gene coexpression networks that are constructed from more standard analyses of single tissues. This is the first systematic effort to study inter-tissue relationships and highlights genes in the hypothalamus that act as information relays in the control of peripheral tissues in obese mice. The subnetworks identified as specific to tissue-to-tissue interactions are enriched in genes that have obesity-relevant biological functions such as circadian rhythm, energy balance, stress response, or immune response. Conclusions Tissue-to-tissue networks enable the identification of disease-specific genes that respond to changes induced by different tissues and they also provide unique details regarding candidate genes for obesity that are identified in genome-wide association studies. Identifying such genes from single tissue analyses would be difficult or impossible. PMID:19463160

  17. Unexpected Regularity in Swimming Behavior of Clausocalanus furcatus Revealed by a Telecentric 3D Computer Vision System

    PubMed Central

    Bianco, Giuseppe; Botte, Vincenzo; Dubroca, Laurent; Ribera d’Alcalà, Maurizio; Mazzocchi, Maria Grazia

    2013-01-01

    Planktonic copepods display a large repertoire of motion behaviors in a three-dimensional environment. Two-dimensional video observations demonstrated that the small copepod Clausocalanus furcatus, one the most widely distributed calanoids at low to medium latitudes, presented a unique swimming behavior that was continuous and fast and followed notably convoluted trajectories. Furthermore, previous observations indicated that the motion of C. furcatus resembled a random process. We characterized the swimming behavior of this species in three-dimensional space using a video system equipped with telecentric lenses, which allow tracking of zooplankton without the distortion errors inherent in common lenses. Our observations revealed unexpected regularities in the behavior of C. furcatus that appear primarily in the horizontal plane and could not have been identified in previous observations based on lateral views. Our results indicate that the swimming behavior of C. furcatus is based on a limited repertoire of basic kinematic modules but exhibits greater plasticity than previously thought. PMID:23826331

  18. Comparative analyses of developmental transcription factor repertoires in sponges reveal unexpected complexity of the earliest animals.

    PubMed

    Fortunato, Sofia A V; Adamski, Marcin; Adamska, Maja

    2015-12-01

    Developmental transcription factors (DTFs) control development of animals by affecting expression of target genes, some of which are transcription factors themselves. In bilaterians and cnidarians, conserved DTFs are involved in homologous processes such as gastrulation or specification of neurons. The genome of Amphimedon queenslandica, the first sponge to be sequenced, revealed that only a fraction of these conserved DTF families are present in demosponges. This finding was in line with the view that morphological complexity in the animal lineage correlates with developmental toolkit complexity. However, as the phylum Porifera is very diverse, Amphimedon's genome may not be representative of all sponges. The recently sequenced genomes of calcareous sponges Sycon ciliatum and Leucosolenia complicata allowed investigations of DTFs in a sponge lineage evolutionarily distant from demosponges. Surprisingly, the phylogenetic analyses of identified DTFs revealed striking differences between the calcareous sponges and Amphimedon. As these differences appear to be a result of independent gene loss events in the two sponge lineages, the last common ancestor of sponges had to possess a much more diverse repertoire of DTFs than extant sponges. Developmental expression of sponge homologs of genes involved in specification of the Bilaterian endomesoderm and the neurosensory cells suggests that roles of many DTFs date back to the last common ancestor of all animals. Strikingly, even DTFs displaying apparent pan-metazoan conservation of sequence and function are not immune to being lost from individual species genomes. The quest for a comprehensive picture of the developmental toolkit in the last common metazoan ancestor is thus greatly benefitting from the increasing accessibility of sequencing, allowing comparisons of multiple genomes within each phylum.

  19. In situ TEM straining of nanograined free-standing thin films reveals various unexpected deformation mechanisms.

    SciTech Connect

    Follstaedt, David Martin; Knapp, James Arthur; Clark, Blythe G.; Hattar, Khalid M.; Robertson, Ian M.

    2010-04-01

    In-situ transmission electron microscopy (TEM) straining experiments provide direct detailed observation of the deformation and failure mechanisms active at a length scale relevant to nanomaterials. This presentation will detail continued investigations into the active mechanisms governing high purity nanograined pulsed-laser deposited (PLD) nickel, as well as recent work into dislocation-particle interactions in nanostructured PLD aluminum-alumina alloys. Straining experiments performed on nanograined PLD free-standing nanograined Ni films with an engineered grain size distribution revealed that the addition of ductility with limited decrease in strength, reported in such metals, can be attributed to the simultaneous activity of three deformation mechanisms in front of the crack tip. At the crack tip, a grain agglomeration mechanism occurs where several nanograins appear to rotate, resulting in a very thin, larger grain immediately prior to failure. In the classical plastic zone in front of the crack tip, a multitude of mechanisms were found to operate in the larger grains including: dislocation pile-up, twinning, and stress-assisted grain growth. The region outside of the plastic zone showed signs of elasticity with limited indications of dislocation activity. The insight gained from in-situ TEM straining experiments of nanograined PLD Ni provides feedback for models of the deformation and failure in nanograined FCC metals, and suggests a greater complexity in the active mechanisms. The investigation into the deformation and failure mechanisms of FCC metals via in-situ TEM straining experiments has been expanded to the effect of hard particles on the active mechanisms in nanograined aluminum with alumina particles. The microstructures investigated were developed with varying composition, grain size, and particle distribution via tailoring of the PLD conditions and subsequent annealing. In order to develop microstructures suitable for in-situ deformation testing

  20. Uranus' Southern Circulation Revealed by Voyager-2 Images: Asymmetric, Unique, Unexpected

    NASA Astrophysics Data System (ADS)

    Karkoschka, Erich

    2014-11-01

    The southern half of Uranus' southern hemisphere of Uranus has been exceptionally bland. Only a single discrete feature was detected in Voyager-2 images, and none has been seen in thousands of HST and ground-based images since. All other observed regions on Uranus and jovian planets have many features that defined circulation patterns of the jovian planets, but the circulation of Uranus south of -45 deg latitude has been unknown.We performed a reanalysis of Voyager images of Uranus that revealed dozens of discrete features instead of the single feature known before. We improved flatfielding, pad-pixel treatment, and nonlinearity correction. We greatly decreased noise by averaging up to 1600 images. The result is a rotational profile without major gaps.Uranus' high southern latitudes are exceptional in several aspects: 1) The rotational profile has sharp kinks while it is smooth elsewhere on the ice giants. This puts current ideas of a simple Hadley cell on each hemisphere into question. 2) The rotational profile has a large north-south asymmetry, an order of magnitude larger than elsewhere on the jovian planets. 3) Between -68 and -59 deg latitude, the rotational shear is some 30 times lower than at other latitudes. Here, winds speeds around 200 m/s are regular to the 0.1 m/s level. 4) The South Pole had a spot off center rotating 5 h faster than the interior, which has not been observed elsewhere on jovian planets. 5) Uranus revealed spirals winding around the whole planet more than once that indicate very regular meridional motions, to the 2 cm/s level. 6) The latitude at -84 deg was featureless even at a signal-to-noise ratio of 55,000, one of the blandest zones in nature.Some features show significant evolution within the 5-week observing period providing constraints on dynamics. Features also show distinct spectral characteristics in the 8-filter data set providing constraints on the physical nature of features and their altitude. We have the data to

  1. The structure of sperm Izumo1 reveals unexpected similarities with Plasmodium invasion proteins.

    PubMed

    Nishimura, Kaoru; Han, Ling; Bianchi, Enrica; Wright, Gavin J; de Sanctis, Daniele; Jovine, Luca

    2016-07-25

    Fertilization, the culminating event in sexual reproduction, occurs when haploid sperm and egg recognize each other and fuse to form a diploid zygote. In mammals this process critically depends on the interaction between Izumo1, a protein exposed on the equatorial segment of acrosome-reacted sperm, and the egg plasma-membrane-anchored receptor Juno [1,2]. The molecular mechanism triggering gamete fusion is unresolved because both Izumo1 and Juno lack sequence similarity to known membrane fusogens. Here we report the crystal structure of Izumo1, which reveals a membrane distal region composed of a four-helix bundle connected to a carboxy-terminal immunoglobulin (Ig)-like domain through a β-hairpin stabilized by disulfide bonds. Remarkably, different regions of Izumo1 display significant structural similarities to two proteins expressed by the invasive sporozoite stage of Plasmodium parasites: SPECT1, which is essential for host cell traversal and hepatocyte invasion [3]; and TRAP, which is necessary for gliding motility and invasion [4]. These observations suggest a link between the molecular mechanisms underlying host cell invasion by the malaria parasite and gamete membrane fusion at fertilization.

  2. Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa.

    PubMed

    Reeder, Tod W; Townsend, Ted M; Mulcahy, Daniel G; Noonan, Brice P; Wood, Perry L; Sites, Jack W; Wiens, John J

    2015-01-01

    Squamate reptiles (lizards and snakes) are a pivotal group whose relationships have become increasingly controversial. Squamates include >9000 species, making them the second largest group of terrestrial vertebrates. They are important medicinally and as model systems for ecological and evolutionary research. However, studies of squamate biology are hindered by uncertainty over their relationships, and some consider squamate phylogeny unresolved, given recent conflicts between molecular and morphological results. To resolve these conflicts, we expand existing morphological and molecular datasets for squamates (691 morphological characters and 46 genes, for 161 living and 49 fossil taxa, including a new set of 81 morphological characters and adding two genes from published studies) and perform integrated analyses. Our results resolve higher-level relationships as indicated by molecular analyses, and reveal hidden morphological support for the molecular hypothesis (but not vice-versa). Furthermore, we find that integrating molecular, morphological, and paleontological data leads to surprising placements for two major fossil clades (Mosasauria and Polyglyphanodontia). These results further demonstrate the importance of combining fossil and molecular information, and the potential problems of estimating the placement of fossil taxa from morphological data alone. Thus, our results caution against estimating fossil relationships without considering relevant molecular data, and against placing fossils into molecular trees (e.g. for dating analyses) without considering the possible impact of molecular data on their placement.

  3. Morphology and Molecules Reveal Unexpected Cryptic Diversity in the Enigmatic Genus Sinobirma Bryk, 1944 (Lepidoptera: Saturniidae)

    PubMed Central

    Rougerie, Rodolphe; Naumann, Stefan; Nässig, Wolfgang A.

    2012-01-01

    The wild silkmoth genus Sinobirma Bryk, 1944 is a poorly known monotypic taxon from the eastern end of the Himalaya Range. It was convincingly proposed to be closely related to some members of an exclusively Afro-tropical group of Saturniidae, but its biogeographical and evolutionary history remains enigmatic. After examining recently collected material from Tibet, northern India, and northeastern Myanmar, we realized that this unique species, S. malaisei Bryk, 1944 only known so far from a few specimens and from a very restricted area near the border between north-eastern Myanmar and the Yunnan province of China, may in fact belong to a group of closely related cryptic species. In this work, we combined morphological comparative study, DNA barcoding, and the sequences of a nuclear marker (D2 expansion segment of the 28S rRNA gene) to unequivocally delimit three distinct species in the genus Sinobirma, of which two are described as new to science: S. myanmarensis sp. n. and S. bouyeri sp. n. An informative DNA barcode sequence was obtained from the female holotype of S. malaisei—collected in 1934—ensuring the proper assignation of this name to the newly collected and studied specimens. Our findings represent another example of the potential of coupling traditional taxonomy and DNA barcoding for revealing and solving difficult cases of cryptic diversity. This approach is now being generalized to the world fauna of Saturniidae, with the participation of most of the taxonomists studying these moths. PMID:23028478

  4. Metagenomic investigation of the geologically unique Hellenic Volcanic Arc reveals a distinctive ecosystem with unexpected physiology.

    PubMed

    Oulas, Anastasis; Polymenakou, Paraskevi N; Seshadri, Rekha; Tripp, H James; Mandalakis, Manolis; Paez-Espino, A David; Pati, Amrita; Chain, Patrick; Nomikou, Paraskevi; Carey, Steven; Kilias, Stephanos; Christakis, Christos; Kotoulas, Georgios; Magoulas, Antonios; Ivanova, Natalia N; Kyrpides, Nikos C

    2016-04-01

    Hydrothermal vents represent a deep, hot, aphotic biosphere where chemosynthetic primary producers, fuelled by chemicals from Earth's subsurface, form the basis of life. In this study, we examined microbial mats from two distinct volcanic sites within the Hellenic Volcanic Arc (HVA). The HVA is geologically and ecologically unique, with reported emissions of CO2 -saturated fluids at temperatures up to 220°C and a notable absence of macrofauna. Metagenomic data reveals highly complex prokaryotic communities composed of chemolithoautotrophs, some methanotrophs, and to our surprise, heterotrophs capable of anaerobic degradation of aromatic hydrocarbons. Our data suggest that aromatic hydrocarbons may indeed be a significant source of carbon in these sites, and instigate additional research into the nature and origin of these compounds in the HVA. Novel physiology was assigned to several uncultured prokaryotic lineages; most notably, a SAR406 representative is attributed with a role in anaerobic hydrocarbon degradation. This dataset, the largest to date from submarine volcanic ecosystems, constitutes a significant resource of novel genes and pathways with potential biotechnological applications. PMID:26487573

  5. Common and unexpected findings in mummies from ancient Egypt and South America as revealed by CT.

    PubMed

    Jackowski, Christian; Bolliger, Stephan; Thali, Michael J

    2008-01-01

    Computed tomography (CT) has proved to be a valuable investigative tool for mummy research and is the method of choice for examining mummies. It allows for noninvasive insight, especially with virtual endoscopy, which reveals detailed information about the mummy's sex, age, constitution, injuries, health, and mummification techniques used. CT also supplies three-dimensional information about the scanned object. Mummification processes can be summarized as "artificial," when the procedure was performed on a body with the aim of preservation, or as "natural," when the body's natural environment resulted in preservation. The purpose of artificial mummification was to preserve that person's morphologic features by delaying or arresting the decay of the body. The ancient Egyptians are most famous for this. Their use of evisceration followed by desiccation with natron (a compound of sodium salts) to halt putrefaction and prevent rehydration was so effective that their embalmed bodies have survived for nearly 4500 years. First, the body was cleaned with a natron solution; then internal organs were removed through the cribriform plate and abdomen. The most important, and probably the most lengthy, phase was desiccation. After the body was dehydrated, the body cavities were rinsed and packed to restore the body's former shape. Finally, the body was wrapped. Animals were also mummified to provide food for the deceased, to accompany the deceased as pets, because they were seen as corporal manifestations of deities, and as votive offerings. Artificial mummification was performed on every continent, especially in South and Central America.

  6. Proteomic Investigation of Aphid Honeydew Reveals an Unexpected Diversity of Proteins

    PubMed Central

    Haubruge, Eric; Hance, Thierry; Thonart, Philippe; De Pauw, Edwin; Francis, Frédéric

    2013-01-01

    Aphids feed on the phloem sap of plants, and are the most common honeydew-producing insects. While aphid honeydew is primarily considered to comprise sugars and amino acids, its protein diversity has yet to be documented. Here, we report on the investigation of the honeydew proteome from the pea aphid Acyrthosiphon pisum. Using a two-Dimensional Differential in-Gel Electrophoresis (2D-Dige) approach, more than 140 spots were isolated, demonstrating that aphid honeydew also represents a diverse source of proteins. About 66% of the isolated spots were identified through mass spectrometry analysis, revealing that the protein diversity of aphid honeydew originates from several organisms (i.e. the host aphid and its microbiota, including endosymbiotic bacteria and gut flora). Interestingly, our experiments also allowed to identify some proteins like chaperonin, GroEL and Dnak chaperones, elongation factor Tu (EF-Tu), and flagellin that might act as mediators in the plant-aphid interaction. In addition to providing the first aphid honeydew proteome analysis, we propose to reconsider the importance of this substance, mainly acknowledged to be a waste product, from the aphid ecology perspective. PMID:24086359

  7. Integrated Analyses Resolve Conflicts over Squamate Reptile Phylogeny and Reveal Unexpected Placements for Fossil Taxa

    PubMed Central

    Reeder, Tod W.; Townsend, Ted M.; Mulcahy, Daniel G.; Noonan, Brice P.; Wood, Perry L.; Sites, Jack W.; Wiens, John J.

    2015-01-01

    Squamate reptiles (lizards and snakes) are a pivotal group whose relationships have become increasingly controversial. Squamates include >9000 species, making them the second largest group of terrestrial vertebrates. They are important medicinally and as model systems for ecological and evolutionary research. However, studies of squamate biology are hindered by uncertainty over their relationships, and some consider squamate phylogeny unresolved, given recent conflicts between molecular and morphological results. To resolve these conflicts, we expand existing morphological and molecular datasets for squamates (691 morphological characters and 46 genes, for 161 living and 49 fossil taxa, including a new set of 81 morphological characters and adding two genes from published studies) and perform integrated analyses. Our results resolve higher-level relationships as indicated by molecular analyses, and reveal hidden morphological support for the molecular hypothesis (but not vice-versa). Furthermore, we find that integrating molecular, morphological, and paleontological data leads to surprising placements for two major fossil clades (Mosasauria and Polyglyphanodontia). These results further demonstrate the importance of combining fossil and molecular information, and the potential problems of estimating the placement of fossil taxa from morphological data alone. Thus, our results caution against estimating fossil relationships without considering relevant molecular data, and against placing fossils into molecular trees (e.g. for dating analyses) without considering the possible impact of molecular data on their placement. PMID:25803280

  8. The structure of sperm Izumo1 reveals unexpected similarities with Plasmodium invasion proteins.

    PubMed

    Nishimura, Kaoru; Han, Ling; Bianchi, Enrica; Wright, Gavin J; de Sanctis, Daniele; Jovine, Luca

    2016-07-25

    Fertilization, the culminating event in sexual reproduction, occurs when haploid sperm and egg recognize each other and fuse to form a diploid zygote. In mammals this process critically depends on the interaction between Izumo1, a protein exposed on the equatorial segment of acrosome-reacted sperm, and the egg plasma-membrane-anchored receptor Juno [1,2]. The molecular mechanism triggering gamete fusion is unresolved because both Izumo1 and Juno lack sequence similarity to known membrane fusogens. Here we report the crystal structure of Izumo1, which reveals a membrane distal region composed of a four-helix bundle connected to a carboxy-terminal immunoglobulin (Ig)-like domain through a β-hairpin stabilized by disulfide bonds. Remarkably, different regions of Izumo1 display significant structural similarities to two proteins expressed by the invasive sporozoite stage of Plasmodium parasites: SPECT1, which is essential for host cell traversal and hepatocyte invasion [3]; and TRAP, which is necessary for gliding motility and invasion [4]. These observations suggest a link between the molecular mechanisms underlying host cell invasion by the malaria parasite and gamete membrane fusion at fertilization. PMID:27374339

  9. Metagenomic investigation of the geologically unique Hellenic Volcanic Arc reveals a distinctive ecosystem with unexpected physiology.

    PubMed

    Oulas, Anastasis; Polymenakou, Paraskevi N; Seshadri, Rekha; Tripp, H James; Mandalakis, Manolis; Paez-Espino, A David; Pati, Amrita; Chain, Patrick; Nomikou, Paraskevi; Carey, Steven; Kilias, Stephanos; Christakis, Christos; Kotoulas, Georgios; Magoulas, Antonios; Ivanova, Natalia N; Kyrpides, Nikos C

    2016-04-01

    Hydrothermal vents represent a deep, hot, aphotic biosphere where chemosynthetic primary producers, fuelled by chemicals from Earth's subsurface, form the basis of life. In this study, we examined microbial mats from two distinct volcanic sites within the Hellenic Volcanic Arc (HVA). The HVA is geologically and ecologically unique, with reported emissions of CO2 -saturated fluids at temperatures up to 220°C and a notable absence of macrofauna. Metagenomic data reveals highly complex prokaryotic communities composed of chemolithoautotrophs, some methanotrophs, and to our surprise, heterotrophs capable of anaerobic degradation of aromatic hydrocarbons. Our data suggest that aromatic hydrocarbons may indeed be a significant source of carbon in these sites, and instigate additional research into the nature and origin of these compounds in the HVA. Novel physiology was assigned to several uncultured prokaryotic lineages; most notably, a SAR406 representative is attributed with a role in anaerobic hydrocarbon degradation. This dataset, the largest to date from submarine volcanic ecosystems, constitutes a significant resource of novel genes and pathways with potential biotechnological applications.

  10. Expression of secreted Wnt pathway components reveals unexpected complexity of the planarian amputation response

    PubMed Central

    Gurley, Kyle A.; Elliott, Sarah A.; Simakov, Oleg; Schmidt, Heiko A.; Holstein, Thomas W.; Sánchez Alvarado, Alejandro

    2010-01-01

    Regeneration is widespread throughout the animal kingdom, but our molecular understanding of this process in adult animals remains poorly understood. Wnt/β-catenin signaling plays crucial roles throughout animal life from early development to adulthood. In intact and regenerating planarians, the regulation of Wnt/β-catenin signaling functions to maintain and specify anterior/posterior (A/P) identity. Here, we explore the expression kinetics and RNAi phenotypes for secreted members of the Wnt signaling pathway in the planarian Schmidtea mediterranea. Smed-wnt and sFRP expression during regeneration is surprisingly dynamic and reveals fundamental aspects of planarian biology that have been previously unappreciated. We show that after amputation, a wounding response precedes rapid reorganization of the A/P axis. Furthermore, cells throughout the body plan can mount this response and reassess their new A/P location in the complete absence of stem cells. While initial stages of the amputation response are stem cell independent, tissue remodeling and the integration of new A/P address with anatomy are stem cell dependent. We also show that WNT5 functions in a reciprocal manner with SLIT to pattern the planarian mediolateral axis, while WNT11-2 patterns the posterior midline. Moreover, we perform an extensive phylogenetic analysis on the Smed-wnt genes using a method that combines and integrates both sequence and structural alignments, enabling us to place all nine genes into Wnt subfamilies for the first time. PMID:20707997

  11. The Crystal Structure of Cancer Osaka Thyroid Kinase Reveals an Unexpected Kinase Domain Fold*

    PubMed Central

    Gutmann, Sascha; Hinniger, Alexandra; Fendrich, Gabriele; Drückes, Peter; Antz, Sylvie; Mattes, Henri; Möbitz, Henrik; Ofner, Silvio; Schmiedeberg, Niko; Stojanovic, Aleksandar; Rieffel, Sebastien; Strauss, André; Troxler, Thomas; Glatthar, Ralf; Sparrer, Helmut

    2015-01-01

    Macrophages are important cellular effectors in innate immune responses and play a major role in autoimmune diseases such as rheumatoid arthritis. Cancer Osaka thyroid (COT) kinase, also known as mitogen-activated protein kinase kinase kinase 8 (MAP3K8) and tumor progression locus 2 (Tpl-2), is a serine-threonine (ST) kinase and is a key regulator in the production of pro-inflammatory cytokines in macrophages. Due to its pivotal role in immune biology, COT kinase has been identified as an attractive target for pharmaceutical research that is directed at the discovery of orally available, selective, and potent inhibitors for the treatment of autoimmune disorders and cancer. The production of monomeric, recombinant COT kinase has proven to be very difficult, and issues with solubility and stability of the enzyme have hampered the discovery and optimization of potent and selective inhibitors. We developed a protocol for the production of recombinant human COT kinase that yields pure and highly active enzyme in sufficient yields for biochemical and structural studies. The quality of the enzyme allowed us to establish a robust in vitro phosphorylation assay for the efficient biochemical characterization of COT kinase inhibitors and to determine the x-ray co-crystal structures of the COT kinase domain in complex with two ATP-binding site inhibitors. The structures presented in this study reveal two distinct ligand binding modes and a unique kinase domain architecture that has not been observed previously. The structurally versatile active site significantly impacts the design of potent, low molecular weight COT kinase inhibitors. PMID:25918157

  12. The Crystal Structure of Cancer Osaka Thyroid Kinase Reveals an Unexpected Kinase Domain Fold.

    PubMed

    Gutmann, Sascha; Hinniger, Alexandra; Fendrich, Gabriele; Drückes, Peter; Antz, Sylvie; Mattes, Henri; Möbitz, Henrik; Ofner, Silvio; Schmiedeberg, Niko; Stojanovic, Aleksandar; Rieffel, Sebastien; Strauss, André; Troxler, Thomas; Glatthar, Ralf; Sparrer, Helmut

    2015-06-12

    Macrophages are important cellular effectors in innate immune responses and play a major role in autoimmune diseases such as rheumatoid arthritis. Cancer Osaka thyroid (COT) kinase, also known as mitogen-activated protein kinase kinase kinase 8 (MAP3K8) and tumor progression locus 2 (Tpl-2), is a serine-threonine (ST) kinase and is a key regulator in the production of pro-inflammatory cytokines in macrophages. Due to its pivotal role in immune biology, COT kinase has been identified as an attractive target for pharmaceutical research that is directed at the discovery of orally available, selective, and potent inhibitors for the treatment of autoimmune disorders and cancer. The production of monomeric, recombinant COT kinase has proven to be very difficult, and issues with solubility and stability of the enzyme have hampered the discovery and optimization of potent and selective inhibitors. We developed a protocol for the production of recombinant human COT kinase that yields pure and highly active enzyme in sufficient yields for biochemical and structural studies. The quality of the enzyme allowed us to establish a robust in vitro phosphorylation assay for the efficient biochemical characterization of COT kinase inhibitors and to determine the x-ray co-crystal structures of the COT kinase domain in complex with two ATP-binding site inhibitors. The structures presented in this study reveal two distinct ligand binding modes and a unique kinase domain architecture that has not been observed previously. The structurally versatile active site significantly impacts the design of potent, low molecular weight COT kinase inhibitors.

  13. Comparative transcriptomics of two environmentally relevant cyanobacteria reveals unexpected transcriptome diversity

    PubMed Central

    Voigt, Karsten; Sharma, Cynthia M; Mitschke, Jan; Joke Lambrecht, S; Voß, Björn; Hess, Wolfgang R; Steglich, Claudia

    2014-01-01

    Prochlorococcus is a genus of abundant and ecologically important marine cyanobacteria. Here, we present a comprehensive comparison of the structure and composition of the transcriptomes of two Prochlorococcus strains, which, despite their similarities, have adapted their gene pool to specific environmental constraints. We present genome-wide maps of transcriptional start sites (TSS) for both organisms, which are representatives of the two most diverse clades within the two major ecotypes adapted to high- and low-light conditions, respectively. Our data suggest antisense transcription for three-quarters of all genes, which is substantially more than that observed in other bacteria. We discovered hundreds of TSS within genes, most notably within 16 of the 29 prochlorosin genes, in strain MIT9313. A direct comparison revealed very little conservation in the location of TSS and the nature of non-coding transcripts between both strains. We detected extremely short 5′ untranslated regions with a median length of only 27 and 29 nt for MED4 and MIT9313, respectively, and for 8% of all protein-coding genes the median distance to the start codon is only 10 nt or even shorter. These findings and the absence of an obvious Shine–Dalgarno motif suggest that leaderless translation and ribosomal protein S1-dependent translation constitute alternative mechanisms for translation initiation in Prochlorococcus. We conclude that genome-wide antisense transcription is a major component of the transcriptional output from these relatively small genomes and that a hitherto unrecognized high degree of complexity and variability of gene expression exists in their transcriptional architecture. PMID:24739626

  14. Unexpected genetic heterogeneity in a large consanguineous Brazilian pedigree presenting deafness.

    PubMed

    Lezirovitz, Karina; Pardono, Eliete; de Mello Auricchio, Maria T B; de Carvalho E Silva, Fernando L; Lopes, Juliana J; Abreu-Silva, Ronaldo S; Romanos, Jihane; Batissoco, Ana C; Mingroni-Netto, Regina C

    2008-01-01

    Nonsyndromic autosomal recessive deafness accounts for 80% of hereditary deafness. To date, 52 loci responsible for autosomal recessive deafness have been mapped and 24 genes identified. Here, we report a large inbred Brazilian pedigree with 26 subjects affected by prelingual deafness. Given the extensive consanguinity found in this pedigree, the most probable pattern of inheritance is autosomal recessive. However, our linkage and mutational analysis revealed, instead of an expected homozygous mutation in a single gene, two different mutant alleles and a possible third undetected mutant allele in the MYO15A gene (DFNB3 locus), as well as evidence for other causes for deafness in the same pedigree. Among the 26 affected subjects, 15 were homozygous for the novel c.10573delA mutation in the MYO15A gene, 5 were compound heterozygous for the mutation c.10573delA and the novel deletion c.9957_9960delTGAC and one inherited only a single c.10573delA mutant allele, while the other one could not be identified. Given the extensive consanguinity of the pedigree, there might be at least one more deafness locus segregating to explain the condition in some of the subjects whose deafness is not clearly associated with MYO15A mutations, although overlooked environmental causes could not be ruled out. Our findings illustrate a high level of etiological heterogeneity for deafness in the family and highlight some of the pitfalls of genetic analysis of large genes in extended pedigrees, when homozygosity for a single mutant allele is expected.

  15. High-throughput sequencing-based analysis of endogenetic fungal communities inhabiting the Chinese Cordyceps reveals unexpectedly high fungal diversity

    PubMed Central

    Xia, Fei; Chen, Xin; Guo, Meng-Yuan; Bai, Xiao-Hui; Liu, Yan; Shen, Guang-Rong; Li, Yu-Ling; Lin, Juan; Zhou, Xuan-Wei

    2016-01-01

    Chinese Cordyceps, known in Chinese as “DongChong XiaCao”, is a parasitic complex of a fungus (Ophiocordyceps sinensis) and a caterpillar. The current study explored the endogenetic fungal communities inhabiting Chinese Cordyceps. Samples were collected from five different geographical regions of Qinghai and Tibet, and the nuclear ribosomal internal transcribed spacer-1 sequences from each sample were obtained using Illumina high-throughput sequencing. The results showed that Ascomycota was the dominant fungal phylum in Chinese Cordyceps and its soil microhabitat from different sampling regions. Among the Ascomycota, 65 genera were identified, and the abundant operational taxonomic units showed the strongest sequence similarity to Ophiocordyceps, Verticillium, Pseudallescheria, Candida and Ilyonectria Not surprisingly, the genus Ophiocordyceps was the largest among the fungal communities identified in the fruiting bodies and external mycelial cortices of Chinese Cordyceps. In addition, fungal communities in the soil microhabitats were clustered separately from the external mycelial cortices and fruiting bodies of Chinese Cordyceps from different sampling regions. There was no significant structural difference in the fungal communities between the fruiting bodies and external mycelial cortices of Chinese Cordyceps. This study revealed an unexpectedly high diversity of fungal communities inhabiting the Chinese Cordyceps and its microhabitats. PMID:27625176

  16. Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis

    PubMed Central

    2012-01-01

    Background Filamentous fungi are potent biomass degraders due to their ability to thrive in ligno(hemi)cellulose-rich environments. During the last decade, fungal genome sequencing initiatives have yielded abundant information on the genes that are putatively involved in lignocellulose degradation. At present, additional experimental studies are essential to provide insights into the fungal secreted enzymatic pools involved in lignocellulose degradation. Results In this study, we performed a wide analysis of 20 filamentous fungi for which genomic data are available to investigate their biomass-hydrolysis potential. A comparison of fungal genomes and secretomes using enzyme activity profiling revealed discrepancies in carbohydrate active enzymes (CAZymes) sets dedicated to plant cell wall. Investigation of the contribution made by each secretome to the saccharification of wheat straw demonstrated that most of them individually supplemented the industrial Trichoderma reesei CL847 enzymatic cocktail. Unexpectedly, the most striking effect was obtained with the phytopathogen Ustilago maydis that improved the release of total sugars by 57% and of glucose by 22%. Proteomic analyses of the best-performing secretomes indicated a specific enzymatic mechanism of U. maydis that is likely to involve oxido-reductases and hemicellulases. Conclusion This study provides insight into the lignocellulose-degradation mechanisms by filamentous fungi and allows for the identification of a number of enzymes that are potentially useful to further improve the industrial lignocellulose bioconversion process. PMID:22300648

  17. High-throughput sequencing-based analysis of endogenetic fungal communities inhabiting the Chinese Cordyceps reveals unexpectedly high fungal diversity.

    PubMed

    Xia, Fei; Chen, Xin; Guo, Meng-Yuan; Bai, Xiao-Hui; Liu, Yan; Shen, Guang-Rong; Li, Yu-Ling; Lin, Juan; Zhou, Xuan-Wei

    2016-01-01

    Chinese Cordyceps, known in Chinese as "DongChong XiaCao", is a parasitic complex of a fungus (Ophiocordyceps sinensis) and a caterpillar. The current study explored the endogenetic fungal communities inhabiting Chinese Cordyceps. Samples were collected from five different geographical regions of Qinghai and Tibet, and the nuclear ribosomal internal transcribed spacer-1 sequences from each sample were obtained using Illumina high-throughput sequencing. The results showed that Ascomycota was the dominant fungal phylum in Chinese Cordyceps and its soil microhabitat from different sampling regions. Among the Ascomycota, 65 genera were identified, and the abundant operational taxonomic units showed the strongest sequence similarity to Ophiocordyceps, Verticillium, Pseudallescheria, Candida and Ilyonectria Not surprisingly, the genus Ophiocordyceps was the largest among the fungal communities identified in the fruiting bodies and external mycelial cortices of Chinese Cordyceps. In addition, fungal communities in the soil microhabitats were clustered separately from the external mycelial cortices and fruiting bodies of Chinese Cordyceps from different sampling regions. There was no significant structural difference in the fungal communities between the fruiting bodies and external mycelial cortices of Chinese Cordyceps. This study revealed an unexpectedly high diversity of fungal communities inhabiting the Chinese Cordyceps and its microhabitats. PMID:27625176

  18. Unexpectedly low rangewide population genetic structure of the imperiled eastern box turtle Terrapene c. carolina.

    PubMed

    Kimble, Steven J A; Rhodes, O E; Williams, Rod N

    2014-01-01

    Rangewide studies of genetic parameters can elucidate patterns and processes that operate only over large geographic scales. Herein, we present a rangewide population genetic assessment of the eastern box turtle Terrapene c. carolina, a species that is in steep decline across its range. To inform conservation planning for this species, we address the hypothesis that disruptions to demographic and movement parameters associated with the decline of the eastern box turtle has resulted in distinctive genetic signatures in the form of low genetic diversity, high population structuring, and decreased gene flow. We used microsatellite genotype data from (n = 799) individuals from across the species range to perform two Bayesian population assignment approaches, two methods for comparing historical and contemporary migration among populations, an evaluation of isolation by distance, and a method for detecting barriers to gene flow. Both Bayesian methods of population assignment indicated that there are two populations rangewide, both of which have maintained high levels of genetic diversity (HO = 0.756). Evidence of isolation by distance was detected in this species at a spatial scale of 300-500 km, and the Appalachian Mountains were identified as the primary barrier to gene flow across the species range. We also found evidence for historical but not contemporary migration between populations. Our prediction of many, highly structured populations across the range was not supported. This may point to cryptic contemporary gene flow, which might in turn be explained by the presence of rare transients in populations. However these data may be influenced by historical signatures of genetic connectivity because individuals of this species can be long-lived. PMID:24647580

  19. Unexpectedly Low Rangewide Population Genetic Structure of the Imperiled Eastern Box Turtle Terrapene c. carolina

    PubMed Central

    Kimble, Steven J. A.; Rhodes Jr., O. E.; Williams, Rod N.

    2014-01-01

    Rangewide studies of genetic parameters can elucidate patterns and processes that operate only over large geographic scales. Herein, we present a rangewide population genetic assessment of the eastern box turtle Terrapene c. carolina, a species that is in steep decline across its range. To inform conservation planning for this species, we address the hypothesis that disruptions to demographic and movement parameters associated with the decline of the eastern box turtle has resulted in distinctive genetic signatures in the form of low genetic diversity, high population structuring, and decreased gene flow. We used microsatellite genotype data from (n = 799) individuals from across the species range to perform two Bayesian population assignment approaches, two methods for comparing historical and contemporary migration among populations, an evaluation of isolation by distance, and a method for detecting barriers to gene flow. Both Bayesian methods of population assignment indicated that there are two populations rangewide, both of which have maintained high levels of genetic diversity (HO = 0.756). Evidence of isolation by distance was detected in this species at a spatial scale of 300 – 500 km, and the Appalachian Mountains were identified as the primary barrier to gene flow across the species range. We also found evidence for historical but not contemporary migration between populations. Our prediction of many, highly structured populations across the range was not supported. This may point to cryptic contemporary gene flow, which might in turn be explained by the presence of rare transients in populations. However these data may be influenced by historical signatures of genetic connectivity because individuals of this species can be long-lived. PMID:24647580

  20. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae

    PubMed Central

    Tremaine, Mary; Hebert, Alexander S.; Myers, Kevin S.; Sardi, Maria; Dickinson, Quinn; Reed, Jennifer L.; Zhang, Yaoping; Coon, Joshua J.; Hittinger, Chris Todd; Gasch, Audrey P.; Landick, Robert

    2016-01-01

    The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactions among genes encoding a xylose reductase (GRE3), a component of MAP Kinase (MAPK) signaling (HOG1), a regulator of Protein Kinase A (PKA) signaling (IRA2), and a scaffolding protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis (ISU1). Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism. PMID:27741250

  1. Novel and Unexpected Microbial Diversity in Acid Mine Drainage in Svalbard (78° N), Revealed by Culture-Independent Approaches

    PubMed Central

    García-Moyano, Antonio; Austnes, Andreas Erling; Lanzén, Anders; González-Toril, Elena; Aguilera, Ángeles; Øvreås, Lise

    2015-01-01

    Svalbard, situated in the high Arctic, is an important past and present coal mining area. Dozens of abandoned waste rock piles can be found in the proximity of Longyearbyen. This environment offers a unique opportunity for studying the biological control over the weathering of sulphide rocks at low temperatures. Although the extension and impact of acid mine drainage (AMD) in this area is known, the native microbial communities involved in this process are still scarcely studied and uncharacterized. Several abandoned mining areas were explored in the search for active AMD and a culture-independent approach was applied with samples from two different runoffs for the identification and quantification of the native microbial communities. The results obtained revealed two distinct microbial communities. One of the runoffs was more extreme with regards to pH and higher concentration of soluble iron and heavy metals. These conditions favored the development of algal-dominated microbial mats. Typical AMD microorganisms related to known iron-oxidizing bacteria (Acidithiobacillus ferrivorans, Acidobacteria and Actinobacteria) dominated the bacterial community although some unexpected populations related to Chloroflexi were also significant. No microbial mats were found in the second area. The geochemistry here showed less extreme drainage, most likely in direct contact with the ore under the waste pile. Large deposits of secondary minerals were found and the presence of iron stalks was revealed by microscopy analysis. Although typical AMD microorganisms were also detected here, the microbial community was dominated by other populations, some of them new to this type of system (Saccharibacteria, Gallionellaceae). These were absent or lowered in numbers the farther from the spring source and they could represent native populations involved in the oxidation of sulphide rocks within the waste rock pile. This environment appears thus as a highly interesting field of potential

  2. Novel and Unexpected Microbial Diversity in Acid Mine Drainage in Svalbard (78° N), Revealed by Culture-Independent Approaches

    PubMed Central

    García-Moyano, Antonio; Austnes, Andreas Erling; Lanzén, Anders; González-Toril, Elena; Aguilera, Ángeles; Øvreås, Lise

    2015-01-01

    Svalbard, situated in the high Arctic, is an important past and present coal mining area. Dozens of abandoned waste rock piles can be found in the proximity of Longyearbyen. This environment offers a unique opportunity for studying the biological control over the weathering of sulphide rocks at low temperatures. Although the extension and impact of acid mine drainage (AMD) in this area is known, the native microbial communities involved in this process are still scarcely studied and uncharacterized. Several abandoned mining areas were explored in the search for active AMD and a culture-independent approach was applied with samples from two different runoffs for the identification and quantification of the native microbial communities. The results obtained revealed two distinct microbial communities. One of the runoffs was more extreme with regards to pH and higher concentration of soluble iron and heavy metals. These conditions favored the development of algal-dominated microbial mats. Typical AMD microorganisms related to known iron-oxidizing bacteria (Acidithiobacillus ferrivorans, Acidobacteria and Actinobacteria) dominated the bacterial community although some unexpected populations related to Chloroflexi were also significant. No microbial mats were found in the second area. The geochemistry here showed less extreme drainage, most likely in direct contact with the ore under the waste pile. Large deposits of secondary minerals were found and the presence of iron stalks was revealed by microscopy analysis. Although typical AMD microorganisms were also detected here, the microbial community was dominated by other populations, some of them new to this type of system (Saccharibacteria, Gallionellaceae). These were absent or lowered in numbers the farther from the spring source and they could represent native populations involved in the oxidation of sulphide rocks within the waste rock pile. This environment appears thus as a highly interesting field of potential

  3. Novel and Unexpected Microbial Diversity in Acid Mine Drainage in Svalbard (78° N), Revealed by Culture-Independent Approaches.

    PubMed

    García-Moyano, Antonio; Austnes, Andreas Erling; Lanzén, Anders; González-Toril, Elena; Aguilera, Ángeles; Øvreås, Lise

    2015-10-13

    Svalbard, situated in the high Arctic, is an important past and present coal mining area. Dozens of abandoned waste rock piles can be found in the proximity of Longyearbyen. This environment offers a unique opportunity for studying the biological control over the weathering of sulphide rocks at low temperatures. Although the extension and impact of acid mine drainage (AMD) in this area is known, the native microbial communities involved in this process are still scarcely studied and uncharacterized. Several abandoned mining areas were explored in the search for active AMD and a culture-independent approach was applied with samples from two different runoffs for the identification and quantification of the native microbial communities. The results obtained revealed two distinct microbial communities. One of the runoffs was more extreme with regards to pH and higher concentration of soluble iron and heavy metals. These conditions favored the development of algal-dominated microbial mats. Typical AMD microorganisms related to known iron-oxidizing bacteria (Acidithiobacillus ferrivorans, Acidobacteria and Actinobacteria) dominated the bacterial community although some unexpected populations related to Chloroflexi were also significant. No microbial mats were found in the second area. The geochemistry here showed less extreme drainage, most likely in direct contact with the ore under the waste pile. Large deposits of secondary minerals were found and the presence of iron stalks was revealed by microscopy analysis. Although typical AMD microorganisms were also detected here, the microbial community was dominated by other populations, some of them new to this type of system (Saccharibacteria, Gallionellaceae). These were absent or lowered in numbers the farther from the spring source and they could represent native populations involved in the oxidation of sulphide rocks within the waste rock pile. This environment appears thus as a highly interesting field of potential

  4. Metatranscriptomic analysis of a high-sulfide aquatic spring reveals insights into sulfur cycling and unexpected aerobic metabolism

    PubMed Central

    Elshahed, Mostafa S.; Najar, Fares Z.; Krumholz, Lee R.

    2015-01-01

    Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring’s source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM) of oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons. PMID:26417542

  5. Metatranscriptomic analysis of a high-sulfide aquatic spring reveals insights into sulfur cycling and unexpected aerobic metabolism.

    PubMed

    Spain, Anne M; Elshahed, Mostafa S; Najar, Fares Z; Krumholz, Lee R

    2015-01-01

    Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring's source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM) of oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons. PMID:26417542

  6. Genetic Interaction Maps in Escherichia coli Reveal Functional Crosstalk among Cell Envelope Biogenesis Pathways

    PubMed Central

    Vlasblom, James; Gagarinova, Alla; Phanse, Sadhna; Graham, Chris; Yousif, Fouad; Ding, Huiming; Xiong, Xuejian; Nazarians-Armavil, Anaies; Alamgir, Md; Ali, Mehrab; Pogoutse, Oxana; Pe'er, Asaf; Arnold, Roland; Michaut, Magali; Parkinson, John; Golshani, Ashkan; Whitfield, Chris; Wodak, Shoshana J.; Moreno-Hagelsieb, Gabriel; Greenblatt, Jack F.; Emili, Andrew

    2011-01-01

    As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium) and prototrophic (minimal medium) culture conditions. The differential patterns of genetic interactions detected among >235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens) and an important target. PMID:22125496

  7. Culture-independent genome sequencing of clinical samples reveals an unexpected heterogeneity of infections by Chlamydia pecorum.

    PubMed

    Bachmann, Nathan L; Sullivan, Mitchell J; Jelocnik, Martina; Myers, Garry S A; Timms, Peter; Polkinghorne, Adam

    2015-05-01

    Chlamydia pecorum is an important global pathogen of livestock, and it is also a significant threat to the long-term survival of Australia's koala populations. This study employed a culture-independent DNA capture approach to sequence C. pecorum genomes directly from clinical swab samples collected from koalas with chlamydial disease as well as from sheep with arthritis and conjunctivitis. Investigations into single-nucleotide polymorphisms within each of the swab samples revealed that a portion of the reads in each sample belonged to separate C. pecorum strains, suggesting that all of the clinical samples analyzed contained mixed populations of genetically distinct C. pecorum isolates. This observation was independent of the anatomical site sampled and the host species. Using the genomes of strains identified in each of these samples, whole-genome phylogenetic analysis revealed that a clade containing a bovine and a koala isolate is distinct from other clades comprised of livestock or koala C. pecorum strains. Providing additional evidence to support exposure of koalas to Australian livestock strains, two minor strains assembled from the koala swab samples clustered with livestock strains rather than koala strains. Culture-independent probe-based genome capture and sequencing of clinical samples provides the strongest evidence yet to suggest that naturally occurring chlamydial infections are comprised of multiple genetically distinct strains. PMID:25740768

  8. Culture-independent genome sequencing of clinical samples reveals an unexpected heterogeneity of infections by Chlamydia pecorum.

    PubMed

    Bachmann, Nathan L; Sullivan, Mitchell J; Jelocnik, Martina; Myers, Garry S A; Timms, Peter; Polkinghorne, Adam

    2015-05-01

    Chlamydia pecorum is an important global pathogen of livestock, and it is also a significant threat to the long-term survival of Australia's koala populations. This study employed a culture-independent DNA capture approach to sequence C. pecorum genomes directly from clinical swab samples collected from koalas with chlamydial disease as well as from sheep with arthritis and conjunctivitis. Investigations into single-nucleotide polymorphisms within each of the swab samples revealed that a portion of the reads in each sample belonged to separate C. pecorum strains, suggesting that all of the clinical samples analyzed contained mixed populations of genetically distinct C. pecorum isolates. This observation was independent of the anatomical site sampled and the host species. Using the genomes of strains identified in each of these samples, whole-genome phylogenetic analysis revealed that a clade containing a bovine and a koala isolate is distinct from other clades comprised of livestock or koala C. pecorum strains. Providing additional evidence to support exposure of koalas to Australian livestock strains, two minor strains assembled from the koala swab samples clustered with livestock strains rather than koala strains. Culture-independent probe-based genome capture and sequencing of clinical samples provides the strongest evidence yet to suggest that naturally occurring chlamydial infections are comprised of multiple genetically distinct strains.

  9. Genome-Wide Analysis Reveals a Major Role in Cell Fate Maintenance and an Unexpected Role in Endoreduplication for the Drosophila FoxA Gene Fork Head

    PubMed Central

    Maruyama, Rika; Grevengoed, Elizabeth; Stempniewicz, Peter; Andrew, Deborah J.

    2011-01-01

    Transcription factors drive organogenesis, from the initiation of cell fate decisions to the maintenance and implementation of these decisions. The Drosophila embryonic salivary gland provides an excellent platform for unraveling the underlying transcriptional networks of organ development because Drosophila is relatively unencumbered by significant genetic redundancy. The highly conserved FoxA family transcription factors are essential for various aspects of organogenesis in all animals that have been studied. Here, we explore the role of the single Drosophila FoxA protein Fork head (Fkh) in salivary gland organogenesis using two genome-wide strategies. A large-scale in situ hybridization analysis reveals a major role for Fkh in maintaining the salivary gland fate decision and controlling salivary gland physiological activity, in addition to its previously known roles in morphogenesis and survival. The majority of salivary gland genes (59%) are affected by fkh loss, mainly at later stages of salivary gland development. We show that global expression of Fkh cannot drive ectopic salivary gland formation. Thus, unlike the worm FoxA protein PHA-4, Fkh does not function to specify cell fate. In addition, Fkh only indirectly regulates many salivary gland genes, which is also distinct from the role of PHA-4 in organogenesis. Our microarray analyses reveal unexpected roles for Fkh in blocking terminal differentiation and in endoreduplication in the salivary gland and in other Fkh-expressing embryonic tissues. Overall, this study demonstrates an important role for Fkh in determining how an organ preserves its identity throughout development and provides an alternative paradigm for how FoxA proteins function in organogenesis. PMID:21698206

  10. Unexpected absence of genetic separation of a highly diverse population of hookworms from geographically isolated hosts.

    PubMed

    Haynes, Benjamin T; Marcus, Alan D; Higgins, Damien P; Gongora, Jaime; Gray, Rachael; Šlapeta, Jan

    2014-12-01

    The high natal site fidelity of endangered Australian sea lions (Neophoca cinerea) along the southern Australian coast suggests that their maternally transmitted parasitic species, such as hookworms, will have restricted potential for dispersal. If this is the case, we would expect to find a hookworm haplotype structure corresponding to that of the host mtDNA haplotype structure; that is, restricted among geographically separated colonies. In this study, we used a fragment of the cytochrome c oxidase I mitochondrial DNA (mtDNA) gene to investigate the diversity of hookworms (Uncinaria sanguinis) in N. cinerea to assess the importance of host distribution and ecology on the evolutionary history of the parasite. High haplotype (h=0.986) and nucleotide diversity (π=0.013) were seen, with 45 unique hookworm mtDNA haplotypes across N. cinerea colonies; with most of the variation (78%) arising from variability within hookworms from individual colonies. This is supported by the low genetic differentiation co-efficient (GST=0.007) and a high gene flow (Nm=35.25) indicating a high migration rate between the populations of hookworms. The haplotype network demonstrated no clear distribution and delineation of haplotypes according to geographical location. Our data rejects the vicariance hypothesis; that female host natal site fidelity and the transmammary route of infection restrict hookworm gene flow between N. cinerea populations and highlights the value of studies of parasite diversity and dispersal to challenge our understanding of parasite and host ecology.

  11. Unexpected High Genetic Diversity at the Extreme Northern Geographic Limit of Taurulus bubalis (Euphrasen, 1786)

    PubMed Central

    Almada, Vítor C.; Almada, Frederico; Francisco, Sara M.; Castilho, Rita; Robalo, Joana I.

    2012-01-01

    The longspined bullhead (Taurulus bubalis, Euphrasen 1786) belongs to the family Cottidae and is a rocky shore species that inhabits the intertidal zones of the Eastern Atlantic since Iceland, southward to Portugal and also the North Sea and Baltic, northward to the Gulf of Finland, with some occurrences in the northern Mediterranean coasts eastward to the Gulf of Genoa. We analysed the phylogeographic patterns of this species using mitochondrial and nuclear markers in populations throughout most of its distributional range in west Europe. We found that T. bubalis has a relatively shallow genealogy with some differentiation between Atlantic and North Sea. Genetic diversity was homogeneous across all populations studied. The possibility of a glacial refugium near the North Sea is discussed. In many, but not all, marine temperate organisms, patterns of diversity are similar across the species range. If this phenomenon proves to be most common in cold adapted species, it may reflect the availability of glacial refugia not far from their present-day northern limits. PMID:22952971

  12. Genetic analysis reveals promiscuity among female cheetahs.

    PubMed

    Gottelli, Dada; Wang, Jinliang; Bashir, Sultana; Durant, Sarah M

    2007-08-22

    Cheetahs (Acinonyx jubatus) have a combination of ranging patterns and social system that is unique in mammals, whereby male coalitions occupy small territories less than 10% of the home range of solitary females. This study uses non-invasive genetic sampling of a long-term study population of cheetah in the Serengeti National Park in Tanzania to infer the mating system. Individual cheetah genotypes at up to 13 microsatellite loci were obtained from 171 faecal samples. A statistical method was adapted to partition the cubs within each litter (n=47) into full-sibling clusters and to infer the father of each cluster using these loci. Our data showed a high rate of multiple paternity in the population; 43% of litters with more than one cub were fathered by more than one male. The results also demonstrated that female fidelity was low, and provided some evidence that females chose to mate with unrelated males within an oestrus cycle. The low rate of paternity assignments indicated that males living outside the study area contributed substantially to the reproduction of the cheetah population.

  13. Detailed monitoring of a small but recovering population reveals sublethal effects of disease and unexpected interactions with supplemental feeding.

    PubMed

    Tollington, Simon; Greenwood, Andrew; Jones, Carl G; Hoeck, Paquita; Chowrimootoo, Aurélie; Smith, Donal; Richards, Heather; Tatayah, Vikash; Groombridge, Jim J

    2015-07-01

    Infectious diseases are widely recognized to have substantial impact on wildlife populations. These impacts are sometimes exacerbated in small endangered populations, and therefore, the success of conservation reintroductions to aid the recovery of such species can be seriously threatened by outbreaks of infectious disease. Intensive management strategies associated with conservation reintroductions can further compound these negative effects in such populations. Exploring the sublethal effects of disease outbreaks among natural populations is challenging and requires longitudinal, individual life-history data on patterns of reproductive success and other indicators of individual fitness. Long-term monitoring data concerning detailed reproductive information of the reintroduced Mauritius parakeet (Psittacula echo) population collected before, during and after a disease outbreak was investigated. Deleterious effects of an outbreak of beak and feather disease virus (BFDV) were revealed on hatch success, but these effects were remarkably short-lived and disproportionately associated with breeding pairs which took supplemental food. Individual BFDV infection status was not predicted by any genetic, environmental or conservation management factors and was not associated with any of our measures of immune function, perhaps suggesting immunological impairment. Experimental immunostimulation using the PHA (phytohaemagglutinin assay) challenge technique did, however, provoke a significant cellular immune response. We illustrate the resilience of this bottlenecked and once critically endangered, island-endemic species to an epidemic outbreak of BFDV and highlight the value of systematic monitoring in revealing inconspicuous but nonetheless substantial ecological interactions. Our study demonstrates that the emergence of such an infectious disease in a population ordinarily associated with increased susceptibility does not necessarily lead to deleterious impacts on population

  14. Landscape Genetics Reveals Focal Transmission of a Human Macroparasite

    PubMed Central

    Criscione, Charles D.; Anderson, Joel D.; Sudimack, Dan; Subedi, Janardan; Upadhayay, Ram P.; Jha, Bharat; Williams, Kimberly D.; Williams-Blangero, Sarah; Anderson, Timothy J. C.

    2010-01-01

    Macroparasite infections (e.g., helminths) remain a major human health concern. However, assessing transmission dynamics is problematic because the direct observation of macroparasite dispersal among hosts is not possible. We used a novel landscape genetics approach to examine transmission of the human roundworm Ascaris lumbricoides in a small human population in Jiri, Nepal. Unexpectedly, we found significant genetic structuring of parasites, indicating the presence of multiple transmission foci within a small sampling area (∼14 km2). We analyzed several epidemiological variables, and found that transmission is spatially autocorrelated around households and that transmission foci are stable over time despite extensive human movement. These results would not have been obtainable via a traditional epidemiological study based on worm counts alone. Our data refute the assumption that a single host population corresponds to a single parasite transmission unit, an assumption implicit in many classic models of macroparasite transmission. Newer models have shown that the metapopulation-like pattern observed in our data can adversely affect targeted control strategies aimed at community-wide impacts. Furthermore, the observed metapopulation structure and local mating patterns generate an excess of homozygotes that can accelerate the spread of recessive traits such as drug resistance. Our study illustrates how molecular analyses complement traditional epidemiological information in providing a better understanding of parasite transmission. Similar landscape genetic approaches in other macroparasite systems will be warranted if an accurate depiction of the transmission process is to be used to inform effective control strategies. PMID:20421919

  15. Mitogenome revealed multiple postdomestication genetic mixtures of West African sheep.

    PubMed

    Brahi, O H D; Xiang, H; Chen, X; Farougou, S; Zhao, X

    2015-10-01

    Notable diversity observed within African ovine breeds makes them of great interests, but limited studies on genetic origins and domestications remain poorly understood. Here, we investigate the evolutionary status of West African native breeds, Djallonke and Sahelian sheep using mitogenome sequencing. Compared with other ovine mitogenome sequences, West African sheep were revealed a Eurasian origin, and the initially tamed sheep breeds in West Africa have been genetically mixed with each other and mixed with European breeds. Worldwide domestic sheep is deemed the Eurasian origin and migrated west to Europe and Africa and east to the Far East, in which dispersed and received selection for acclimation to autochthonic environment independently and ultimately evolved into different native breeds, respectively. Our results contribute to the comprehensive understanding of the domestic sheep origin and reveal multiple postdomestication genetic amelioration processes.

  16. Modeling and experiment reveal an unexpected stereoelectronic effect on conformation and scalar couplings of alpha-aminoorganostannanes, with possible relevance to the tin-lithium exchange reaction.

    PubMed

    Santiago, Marcelina; Low, Eddy; Chambournier, Gilles; Gawley, Robert E

    2003-10-31

    The solution conformation of N-methyl-2-(tributylstannyl)piperidines has been determined through the use of vicinal 119Sn-13C coupling constants, revealing a conformational distortion caused by an unexpected stereoelectronic effect in some cases. Specifically, the "equatorial" conformer is distorted into a half-chair, in which the nitrogen lone pair eclipses the C-Sn bond. This distortion, which "costs" approximately 1 kcal/mol, correlates with a conformational dependence of geminal 119Sn-15N couplings and a possible correlation with reactivity in the tin-lithium exchange reaction. PMID:14575474

  17. Modeling and experiment reveal an unexpected stereoelectronic effect on conformation and scalar couplings of alpha-aminoorganostannanes, with possible relevance to the tin-lithium exchange reaction.

    PubMed

    Santiago, Marcelina; Low, Eddy; Chambournier, Gilles; Gawley, Robert E

    2003-10-31

    The solution conformation of N-methyl-2-(tributylstannyl)piperidines has been determined through the use of vicinal 119Sn-13C coupling constants, revealing a conformational distortion caused by an unexpected stereoelectronic effect in some cases. Specifically, the "equatorial" conformer is distorted into a half-chair, in which the nitrogen lone pair eclipses the C-Sn bond. This distortion, which "costs" approximately 1 kcal/mol, correlates with a conformational dependence of geminal 119Sn-15N couplings and a possible correlation with reactivity in the tin-lithium exchange reaction.

  18. Fine-scaled human genetic structure revealed by SNP microarrays.

    PubMed

    Xing, Jinchuan; Watkins, W Scott; Witherspoon, David J; Zhang, Yuhua; Guthery, Stephen L; Thara, Rangaswamy; Mowry, Bryan J; Bulayeva, Kazima; Weiss, Robert B; Jorde, Lynn B

    2009-05-01

    We report an analysis of more than 240,000 loci genotyped using the Affymetrix SNP microarray in 554 individuals from 27 worldwide populations in Africa, Asia, and Europe. To provide a more extensive and complete sampling of human genetic variation, we have included caste and tribal samples from two states in South India, Daghestanis from eastern Europe, and the Iban from Malaysia. Consistent with observations made by Charles Darwin, our results highlight shared variation among human populations and demonstrate that much genetic variation is geographically continuous. At the same time, principal components analyses reveal discernible genetic differentiation among almost all identified populations in our sample, and in most cases, individuals can be clearly assigned to defined populations on the basis of SNP genotypes. All individuals are accurately classified into continental groups using a model-based clustering algorithm, but between closely related populations, genetic and self-classifications conflict for some individuals. The 250K data permitted high-level resolution of genetic variation among Indian caste and tribal populations and between highland and lowland Daghestani populations. In particular, upper-caste individuals from Tamil Nadu and Andhra Pradesh form one defined group, lower-caste individuals from these two states form another, and the tribal Irula samples form a third. Our results emphasize the correlation of genetic and geographic distances and highlight other elements, including social factors that have contributed to population structure. PMID:19411602

  19. Global Population Genetic Structure of Caenorhabditis remanei Reveals Incipient Speciation

    PubMed Central

    Dey, Alivia; Jeon, Yong; Wang, Guo-Xiu; Cutter, Asher D.

    2012-01-01

    Mating system transitions dramatically alter the evolutionary trajectories of genomes that can be revealed by contrasts of species with disparate modes of reproduction. For such transitions in Caenorhabditis nematodes, some major causes of genome variation in selfing species have been discerned. And yet, we have only limited understanding of species-wide population genetic processes for their outcrossing relatives, which represent the reproductive state of the progenitors of selfing species. Multilocus–multipopulation sequence polymorphism data provide a powerful means to uncover the historical demography and evolutionary processes that shape genomes. Here we survey nucleotide polymorphism across the X chromosome for three populations of the outcrossing nematode Caenorhabditis remanei and demonstrate its divergence from a fourth population describing a closely related new species from China, C. sp. 23. We find high genetic variation globally and within each local population sample. Despite geographic barriers and moderate genetic differentiation between Europe and North America, considerable gene flow connects C. remanei populations. We discovered C. sp. 23 while investigating C. remanei, observing strong genetic differentiation characteristic of reproductive isolation that was confirmed by substantial F2 hybrid breakdown in interspecific crosses. That C. sp. 23 represents a distinct biological species provides a cautionary example of how standard practice can fail for mating tests of species identity in this group. This species pair permits full application of divergence population genetic methods to obligately outcrossing species of Caenorhabditis and also presents a new focus for interrogation of the genetics and evolution of speciation with the Caenorhabditis model system. PMID:22649079

  20. Fine-scaled human genetic structure revealed by SNP microarrays.

    PubMed

    Xing, Jinchuan; Watkins, W Scott; Witherspoon, David J; Zhang, Yuhua; Guthery, Stephen L; Thara, Rangaswamy; Mowry, Bryan J; Bulayeva, Kazima; Weiss, Robert B; Jorde, Lynn B

    2009-05-01

    We report an analysis of more than 240,000 loci genotyped using the Affymetrix SNP microarray in 554 individuals from 27 worldwide populations in Africa, Asia, and Europe. To provide a more extensive and complete sampling of human genetic variation, we have included caste and tribal samples from two states in South India, Daghestanis from eastern Europe, and the Iban from Malaysia. Consistent with observations made by Charles Darwin, our results highlight shared variation among human populations and demonstrate that much genetic variation is geographically continuous. At the same time, principal components analyses reveal discernible genetic differentiation among almost all identified populations in our sample, and in most cases, individuals can be clearly assigned to defined populations on the basis of SNP genotypes. All individuals are accurately classified into continental groups using a model-based clustering algorithm, but between closely related populations, genetic and self-classifications conflict for some individuals. The 250K data permitted high-level resolution of genetic variation among Indian caste and tribal populations and between highland and lowland Daghestani populations. In particular, upper-caste individuals from Tamil Nadu and Andhra Pradesh form one defined group, lower-caste individuals from these two states form another, and the tribal Irula samples form a third. Our results emphasize the correlation of genetic and geographic distances and highlight other elements, including social factors that have contributed to population structure.

  1. Second generation sequencing and morphological faecal analysis reveal unexpected foraging behaviour by Myotis nattereri (Chiroptera, Vespertilionidae) in winter

    PubMed Central

    2014-01-01

    Background Temperate winters produce extreme energetic challenges for small insectivorous mammals. Some bat species inhabiting locations with mild temperate winters forage during brief inter-torpor normothermic periods of activity. However, the winter diet of bats in mild temperate locations is studied infrequently. Although microscopic analyses of faeces have traditionally been used to characterise bat diet, recently the coupling of PCR with second generation sequencing has offered the potential to further advance our understanding of animal dietary composition and foraging behaviour by allowing identification of a much greater proportion of prey items often with increased taxonomic resolution. We used morphological analysis and Illumina-based second generation sequencing to study the winter diet of Natterer’s bat (Myotis nattereri) and compared the results obtained from these two approaches. For the first time, we demonstrate the applicability of the Illumina MiSeq platform as a data generation source for bat dietary analyses. Results Faecal pellets collected from a hibernation site in southern England during two winters (December-March 2009–10 and 2010–11), indicated that M. nattereri forages throughout winter at least in a location with a mild winter climate. Through morphological analysis, arthropod fragments from seven taxonomic orders were identified. A high proportion of these was non-volant (67.9% of faecal pellets) and unexpectedly included many lepidopteran larvae. Molecular analysis identified 43 prey species from six taxonomic orders and confirmed the frequent presence of lepidopteran species that overwinter as larvae. Conclusions The winter diet of M. nattereri is substantially different from other times of the year confirming that this species has a wide and adaptable dietary niche. Comparison of DNA derived from the prey to an extensive reference dataset of potential prey barcode sequences permitted fine scale taxonomic resolution of prey

  2. Behavioral idiosyncrasy reveals genetic control of phenotypic variability

    PubMed Central

    Ayroles, Julien F.; Buchanan, Sean M.; O’Leary, Chelsea; Skutt-Kakaria, Kyobi; Grenier, Jennifer K.; Clark, Andrew G.; Hartl, Daniel L.; de Bivort, Benjamin L.

    2015-01-01

    Quantitative genetics has primarily focused on describing genetic effects on trait means and largely ignored the effect of alternative alleles on trait variability, potentially missing an important axis of genetic variation contributing to phenotypic differences among individuals. To study the genetic effects on individual-to-individual phenotypic variability (or intragenotypic variability), we used Drosophila inbred lines and measured the spontaneous locomotor behavior of flies walking individually in Y-shaped mazes, focusing on variability in locomotor handedness, an assay optimized to measure variability. We discovered that some lines had consistently high levels of intragenotypic variability among individuals, whereas lines with low variability behaved as although they tossed a coin at each left/right turn decision. We demonstrate that the degree of variability is itself heritable. Using a genome-wide association study (GWAS) for the degree of intragenotypic variability as the phenotype across lines, we identified several genes expressed in the brain that affect variability in handedness without affecting the mean. One of these genes, Ten-a, implicates a neuropil in the central complex of the fly brain as influencing the magnitude of behavioral variability, a brain region involved in sensory integration and locomotor coordination. We validated these results using genetic deficiencies, null alleles, and inducible RNAi transgenes. Our study reveals the constellation of phenotypes that can arise from a single genotype and shows that different genetic backgrounds differ dramatically in their propensity for phenotypic variabililty. Because traditional mean-focused GWASs ignore the contribution of variability to overall phenotypic variation, current methods may miss important links between genotype and phenotype. PMID:25953335

  3. Noninvasive genetic sampling reveals intrasex territoriality in wolverines.

    PubMed

    Bischof, Richard; Gregersen, Espen R; Brøseth, Henrik; Ellegren, Hans; Flagstad, Øystein

    2016-03-01

    Due to its conspicuous manifestations and its capacity to shape the configuration and dynamics of wild populations, territorial behavior has long intrigued ecologists. Territoriality and other animal interactions in situ have traditionally been studied via direct observations and telemetry. Here, we explore whether noninvasive genetic sampling, which is increasingly supplementing traditional field methods in ecological research, can reveal territorial behavior in an elusive carnivore, the wolverine (Gulo gulo). Using the locations of genotyped wolverine scat samples collected annually over a period of 12 years in central Norway, we test three predictions: (1) male home ranges constructed from noninvasive genetic sampling data are larger than those of females, (2) individuals avoid areas used by other conspecifics of the same sex (intrasexual territoriality), and (3) avoidance of same-sex territories diminishes or disappears after the territory owner's death. Each of these predictions is substantiated by our results: sex-specific differences in home range size and intrasexual territoriality in wolverine are patently reflected in the spatial and temporal configuration of noninvasively collected genetic samples. Our study confirms that wildlife monitoring programs can utilize the spatial information in noninvasive genetic sampling data to detect and quantify home ranges and social organization. PMID:27087927

  4. Elucidating the native sources of an invasive tree species, Acacia pycnantha, reveals unexpected native range diversity and structure

    PubMed Central

    Ndlovu, Joice; Richardson, David M.; Wilson, John R. U.; O'Leary, Martin; Le Roux, Johannes J.

    2013-01-01

    Background and Aims Understanding the introduction history of invasive plant species is important for their management and identifying effective host-specific biological control agents. However, uncertain taxonomy, intra- and interspecific hybridization, and cryptic speciation may obscure introduction histories, making it difficult to identify native regions to explore for host-specific agents. The overall aim of this study was to identify the native source populations of Acacia pycnantha, a tree native to south-eastern Australia and invasive in South Africa, Western Australia and Portugal. Using a phylogeographical approach also allowed an exploration of the historical processes that have shaped the genetic structure of A. pycnantha in its native range. Methods Nuclear (nDNA) and plastid DNA sequence data were used in network and tree-building analyses to reconstruct phylogeographical relationships between native and invasive A. pycnantha populations. In addition, mismatch distributions, relative rates and Bayesian analyses were used to infer recent demographic processes and timing of events in Australia that led to population structure and diversification. Key Results The plastid network indicated that Australian populations of A. pycnantha are geographically structured into two informally recognized lineages, the wetland and dryland forms, whereas the nuclear phylogeny showed little geographical structure between these two forms. Moreover, the dryland form of A. pycnantha showed close genetic similarity to the wetland form based on nDNA sequence data. Hybrid zones may explain these findings, supported here by incongruent phylogenetic placement of some of these taxa between nuclear and plastid genealogies. Conclusions It is hypothesized that habitat fragmentation due to cycles of aridity inter-dispersed with periods of abundant rainfall during the Pleistocene (approx. 100 kya) probably gave rise to native dryland and wetland forms of A. pycnantha. Although the

  5. Bio-mimicking of Proline-Rich Motif Applied to Carbon Nanotube Reveals Unexpected Subtleties Underlying Nanoparticle Functionalization

    PubMed Central

    Zhang, Yuanzhao; Jimenez-Cruz, Camilo A.; Wang, Jian; Zhou, Bo; Yang, Zaixing; Zhou, Ruhong

    2014-01-01

    Here, we report computational studies of the SH3 protein domain interacting with various single-walled carbon nanotubes (SWCNT) either bare or functionalized by mimicking the proline-rich motif (PRM) ligand (PPPVPPRR) and compare it to the SH3-PRM complex binding. With prolines or a single arginine attached, the SWCNT gained slightly on specificity when compared with the bare control, whereas with multi-arginine systems the specificity dropped dramatically to our surprise. Although the electrostatic interaction provided by arginines is crucial in the recognition between PRM and SH3 domain, our results suggest that attaching multiple arginines to the SWCNT has a detrimental effect on the binding affinity. Detailed analysis of the MD trajectories found two main factors that modulate the specificity of the binding: the existence of competing acidic patches at the surface of SH3 that leads to “trapping and clamping” by the arginines, and the rigidity of the SWCNT introducing entropic penalties in the proper binding. Further investigation revealed that the same “clamping” phenomenon exits in the PRM-SH3 system, which has not been reported in previous literature. The competing effects between nanoparticle and its functionalization components revealed by our model system should be of value to current and future nanomedicine designs. PMID:25427563

  6. Revealing the Genetic Basis of Natural Bacterial Phenotypic Divergence

    PubMed Central

    Freddolino, Peter L.; Goodarzi, Hani

    2014-01-01

    Divergent phenotypes for distantly related strains of bacteria, such as differing antibiotic resistances or organic solvent tolerances, are of keen interest both from an evolutionary perspective and for the engineering of novel microbial organisms and consortia in synthetic biology applications. A prerequisite for any practical application of this phenotypic diversity is knowledge of the genetic determinants for each trait of interest. Sequence divergence between strains is often so extensive as to make brute-force approaches to identifying the loci contributing to a given trait impractical. Here we describe a global linkage analysis approach, GLINT, for rapid discovery of the causal genetic variants underlying phenotypic divergence between distantly related strains of Escherichia coli. This general strategy will also be usable, with minor modifications, for revealing genotype-phenotype associations between naturally occurring strains of other bacterial species. PMID:24317396

  7. Screening the Expression of ABCB6 in Erythrocytes Reveals an Unexpectedly High Frequency of Lan Mutations in Healthy Individuals

    PubMed Central

    Kiss, Katalin; Varady, Gyorgy; Gera, Melinda; Antalffy, Geza; Andrikovics, Hajnalka; Tordai, Attila; Studzian, Maciej; Strapagiel, Dominik; Pulaski, Lukasz; Tani, Yoshihiko; Sarkadi, Balazs; Szakacs, Gergely

    2014-01-01

    Lan is a high-incidence blood group antigen expressed in more than 99.9% of the population. Identification of the human ABC transporter ABCB6 as the molecular basis of Lan has opened the way for studies assessing the relation of ABCB6 function and expression to health and disease. To date, 34 ABCB6 sequence variants have been described in association with reduced ABCB6 expression based on the genotyping of stored blood showing weak or no reactivity with anti-Lan antibodies. In the present study we examined the red blood cell (RBC) surface expression of ABCB6 by quantitative flow cytometry in a cohort of 47 healthy individuals. Sequencing of the entire coding region of the ABCB6 gene in low RBC ABCB6 expressors identified a new allele (IVS9+1G>A, affecting a putative splice site at the boundary of exon 9) and two nonsynonymous SNPs listed in the SNP database (R192Q (rs150221689) and G588 S (rs145526996)). The R192Q mutation showed co-segregation with reduced RBC ABCB6 expression in a family, and we found the G588 S mutation in a compound heterozygous individual with undetectable ABCB6 expression, suggesting that both mutations result in weak or no expression of ABCB6 on RBCs. Analysis of the intracellular expression pattern in HeLa cells by confocal microscopy indicated that these mutations do not compromise overall expression or the endolysosomal localization of ABCB6. Genotyping of two large cohorts, containing 235 and 1039 unrelated volunteers, confirmed the high allele frequency of Lan-mutations. Our results suggest that genetic variants linked to lower or absent cell surface expression of ABCB6/Langereis may be more common than previously thought. PMID:25360778

  8. Expression profiling reveals an unexpected growth-stimulating effect of surplus iron on the yeast Saccharomyces cerevisiae.

    PubMed

    Du, Yang; Cheng, Wang; Li, Wei-Fang

    2012-08-01

    Iron homeostasis plays a crucial role in growth and division of cells in all kingdoms of life. Although yeast iron metabolism has been extensively studied, little is known about the molecular mechanism of response to surplus iron. In this study, expression profiling of Saccharomyces cerevisiae in the presence of surplus iron revealed a dual effect at 1 and 4 h. A cluster of stress-responsive genes was upregulated via activation of the stress-resistance transcription factor Msn4, which indicated the stress effect of surplus iron on yeast metabolism. Genes involved in aerobic metabolism and several anabolic pathways are also upregulated in iron-surplus conditions, which could significantly accelerate yeast growth. This dual effect suggested that surplus iron might participate in a more complex metabolic network, in addition to serving as a stress inducer. These findings contribute to our understanding of the global response of yeast to the fluctuating availability of iron in the environment.

  9. Dissecting tRNA-derived fragment complexities using personalized transcriptomes reveals novel fragment classes and unexpected dependencies

    PubMed Central

    Telonis, Aristeidis G.; Loher, Phillipe; Honda, Shozo; Jing, Yi; Palazzo, Juan; Kirino, Yohei; Rigoutsos, Isidore

    2015-01-01

    We analyzed transcriptomic data from 452 healthy men and women representing five different human populations and two races, and, 311 breast cancer samples from The Cancer Genome Atlas. Our studies revealed numerous constitutive, distinct fragments with overlapping sequences and quantized lengths that persist across dozens of individuals and arise from the genomic loci of all nuclear and mitochondrial human transfer RNAs (tRNAs). Surprisingly, we discovered that the tRNA fragments' length, starting and ending points, and relative abundance depend on gender, population, race and also on amino acid identity, anticodon, genomic locus, tissue, disease, and disease subtype. Moreover, the length distribution of mitochondrially-encoded tRNAs differs from that of nuclearly-encoded tRNAs, and the specifics of these distributions depend on tissue. Notably, tRNA fragments from the same anticodon do not have correlated abundances. We also report on a novel category of tRNA fragments that significantly contribute to the differences we observe across tissues, genders, populations, and races: these fragments, referred to as i-tRFs, are abundant in human tissues, wholly internal to the respective mature tRNA, and can straddle the anticodon. HITS-CLIP data analysis revealed that tRNA fragments are loaded on Argonaute in a cell-dependent manner, suggesting cell-dependent functional roles through the RNA interference pathway. We validated experimentally two i-tRF molecules: the first was found in 21 of 22 tested breast tumor and adjacent normal samples and was differentially abundant between health and disease whereas the second was found in all eight tested breast cancer cell lines. PMID:26325506

  10. Genetic Substructure of Kuwaiti Population Reveals Migration History

    PubMed Central

    Alsmadi, Osama; Thareja, Gaurav; Alkayal, Fadi; Rajagopalan, Ramakrishnan; John, Sumi Elsa; Hebbar, Prashantha; Behbehani, Kazem; Thanaraj, Thangavel Alphonse

    2013-01-01

    The State of Kuwait is characterized by settlers from Saudi Arabia, Iran, and other regions of the Arabian Peninsula. The settlements and subsequent admixtures have shaped the genetics of Kuwait. High prevalence of recessive disorders and metabolic syndromes (that increase risk of diabetes) is seen in the peninsula. Understanding the genetic structure of its population will aid studies designed to decipher the underlying causes of these disorders. In this study, we analyzed 572,366 SNP markers from 273 Kuwaiti natives genotyped using the illumina HumanOmniExpress BeadChip. Model-based clustering identified three genetic subgroups with different levels of admixture. A high level of concordance (Mantel test, p=0.0001 for 9999 repeats) was observed between the derived genetic clusters and the surname-based ancestries. Use of Human Genome Diversity Project (HGDP) data to understand admixtures in each group reveals the following: the first group (Kuwait P) is largely of West Asian ancestry, representing Persians with European admixture; the second group (Kuwait S) is predominantly of city-dwelling Saudi Arabian tribe ancestry, and the third group (Kuwait B) includes most of the tent-dwelling Bedouin surnames and is characterized by the presence of 17% African ancestry. Identity by Descent and Homozygosity analyses find Kuwait’s population to be heterogeneous (placed between populations that have large amount of ROH and the ones with low ROH) with Kuwait S as highly endogamous, and Kuwait B as diverse. Population differentiation FST estimates place Kuwait P near Asian populations, Kuwait S near Negev Bedouin tribes, and Kuwait B near the Mozabite population. FST distances between the groups are in the range of 0.005 to 0.008; distances of this magnitude are known to cause false positives in disease association studies. Results of analysis for genetic features such as linkage disequilibrium decay patterns conform to Kuwait’s geographical location at the nexus of

  11. Genetic substructure of Kuwaiti population reveals migration history.

    PubMed

    Alsmadi, Osama; Thareja, Gaurav; Alkayal, Fadi; Rajagopalan, Ramakrishnan; John, Sumi Elsa; Hebbar, Prashantha; Behbehani, Kazem; Thanaraj, Thangavel Alphonse

    2013-01-01

    The State of Kuwait is characterized by settlers from Saudi Arabia, Iran, and other regions of the Arabian Peninsula. The settlements and subsequent admixtures have shaped the genetics of Kuwait. High prevalence of recessive disorders and metabolic syndromes (that increase risk of diabetes) is seen in the peninsula. Understanding the genetic structure of its population will aid studies designed to decipher the underlying causes of these disorders. In this study, we analyzed 572,366 SNP markers from 273 Kuwaiti natives genotyped using the illumina HumanOmniExpress BeadChip. Model-based clustering identified three genetic subgroups with different levels of admixture. A high level of concordance (Mantel test, p=0.0001 for 9999 repeats) was observed between the derived genetic clusters and the surname-based ancestries. Use of Human Genome Diversity Project (HGDP) data to understand admixtures in each group reveals the following: the first group (Kuwait P) is largely of West Asian ancestry, representing Persians with European admixture; the second group (Kuwait S) is predominantly of city-dwelling Saudi Arabian tribe ancestry, and the third group (Kuwait B) includes most of the tent-dwelling Bedouin surnames and is characterized by the presence of 17% African ancestry. Identity by Descent and Homozygosity analyses find Kuwait's population to be heterogeneous (placed between populations that have large amount of ROH and the ones with low ROH) with Kuwait S as highly endogamous, and Kuwait B as diverse. Population differentiation FST estimates place Kuwait P near Asian populations, Kuwait S near Negev Bedouin tribes, and Kuwait B near the Mozabite population. FST distances between the groups are in the range of 0.005 to 0.008; distances of this magnitude are known to cause false positives in disease association studies. Results of analysis for genetic features such as linkage disequilibrium decay patterns conform to Kuwait's geographical location at the nexus of Africa

  12. Genetic substructure of Kuwaiti population reveals migration history.

    PubMed

    Alsmadi, Osama; Thareja, Gaurav; Alkayal, Fadi; Rajagopalan, Ramakrishnan; John, Sumi Elsa; Hebbar, Prashantha; Behbehani, Kazem; Thanaraj, Thangavel Alphonse

    2013-01-01

    The State of Kuwait is characterized by settlers from Saudi Arabia, Iran, and other regions of the Arabian Peninsula. The settlements and subsequent admixtures have shaped the genetics of Kuwait. High prevalence of recessive disorders and metabolic syndromes (that increase risk of diabetes) is seen in the peninsula. Understanding the genetic structure of its population will aid studies designed to decipher the underlying causes of these disorders. In this study, we analyzed 572,366 SNP markers from 273 Kuwaiti natives genotyped using the illumina HumanOmniExpress BeadChip. Model-based clustering identified three genetic subgroups with different levels of admixture. A high level of concordance (Mantel test, p=0.0001 for 9999 repeats) was observed between the derived genetic clusters and the surname-based ancestries. Use of Human Genome Diversity Project (HGDP) data to understand admixtures in each group reveals the following: the first group (Kuwait P) is largely of West Asian ancestry, representing Persians with European admixture; the second group (Kuwait S) is predominantly of city-dwelling Saudi Arabian tribe ancestry, and the third group (Kuwait B) includes most of the tent-dwelling Bedouin surnames and is characterized by the presence of 17% African ancestry. Identity by Descent and Homozygosity analyses find Kuwait's population to be heterogeneous (placed between populations that have large amount of ROH and the ones with low ROH) with Kuwait S as highly endogamous, and Kuwait B as diverse. Population differentiation FST estimates place Kuwait P near Asian populations, Kuwait S near Negev Bedouin tribes, and Kuwait B near the Mozabite population. FST distances between the groups are in the range of 0.005 to 0.008; distances of this magnitude are known to cause false positives in disease association studies. Results of analysis for genetic features such as linkage disequilibrium decay patterns conform to Kuwait's geographical location at the nexus of Africa

  13. Comparative RNA sequencing reveals substantial genetic variation in endangered primates

    PubMed Central

    Perry, George H.; Melsted, Páll; Marioni, John C.; Wang, Ying; Bainer, Russell; Pickrell, Joseph K.; Michelini, Katelyn; Zehr, Sarah; Yoder, Anne D.; Stephens, Matthew; Pritchard, Jonathan K.; Gilad, Yoav

    2012-01-01

    Comparative genomic studies in primates have yielded important insights into the evolutionary forces that shape genetic diversity and revealed the likely genetic basis for certain species-specific adaptations. To date, however, these studies have focused on only a small number of species. For the majority of nonhuman primates, including some of the most critically endangered, genome-level data are not yet available. In this study, we have taken the first steps toward addressing this gap by sequencing RNA from the livers of multiple individuals from each of 16 mammalian species, including humans and 11 nonhuman primates. Of the nonhuman primate species, five are lemurs and two are lorisoids, for which little or no genomic data were previously available. To analyze these data, we developed a method for de novo assembly and alignment of orthologous gene sequences across species. We assembled an average of 5721 gene sequences per species and characterized diversity and divergence of both gene sequences and gene expression levels. We identified patterns of variation that are consistent with the action of positive or directional selection, including an 18-fold enrichment of peroxisomal genes among genes whose regulation likely evolved under directional selection in the ancestral primate lineage. Importantly, we found no relationship between genetic diversity and endangered status, with the two most endangered species in our study, the black and white ruffed lemur and the Coquerel's sifaka, having the highest genetic diversity among all primates. Our observations imply that many endangered lemur populations still harbor considerable genetic variation. Timely efforts to conserve these species alongside their habitats have, therefore, strong potential to achieve long-term success. PMID:22207615

  14. A fifth major genetic group among honeybees revealed in Syria

    PubMed Central

    2013-01-01

    Background Apiculture has been practiced in North Africa and the Middle-East from antiquity. Several thousand years of selective breeding have left a mosaic of Apis mellifera subspecies in the Middle-East, many uniquely adapted and survived to local environmental conditions. In this study we explore the genetic diversity of A. mellifera from Syria (n = 1258), Lebanon (n = 169) and Iraq (n = 35) based on 14 short tandem repeat (STR) loci in the context of reference populations from throughout the Old World (n = 732). Results Our data suggest that the Syrian honeybee Apis mellifera syriaca occurs in both Syrian and Lebanese territories, with no significant genetic variability between respective populations from Syria and Lebanon. All studied populations clustered within a new fifth independent nuclear cluster, congruent with an mtDNA Z haplotype identified in a previous study. Syrian honeybee populations are not associated with Oriental lineage O, except for sporadic introgression into some populations close to the Turkish and Iraqi borders. Southern Syrian and Lebanese populations demonstrated high levels of genetic diversity compared to the northern populations. Conclusion This study revealed the effects of foreign queen importations on Syrian bee populations, especially for the region of Tartus, where extensive introgression of A. m. anatolica and/or A. m. caucasica alleles were identified. The policy of creating genetic conservation centers for the Syrian subspecies should take into consideration the influence of the oriental lineage O from the northern Syrian border and the large population of genetically divergent indigenous honeybees located in southern Syria. PMID:24314104

  15. Multilocus phylogenetic analyses reveal unexpected abundant diversity and significant disjunct distribution pattern of the Hedgehog Mushrooms (Hydnum L.).

    PubMed

    Feng, Bang; Wang, Xiang-Hua; Ratkowsky, David; Gates, Genevieve; Lee, Su See; Grebenc, Tine; Yang, Zhu L

    2016-01-01

    Hydnum is a fungal genus proposed by Linnaeus in the early time of modern taxonomy. It contains several ectomycorrhizal species which are commonly consumed worldwide. However, Hydnum is one of the most understudied fungal genera, especially from a molecular phylogenetic view. In this study, we extensively gathered specimens of Hydnum from Asia, Europe, America and Australasia, and analyzed them by using sequences of four gene fragments (ITS, nrLSU, tef1α and rpb1). Our phylogenetic analyses recognized at least 31 phylogenetic species within Hydnum, 15 of which were reported for the first time. Most Australasian species were recognized as strongly divergent old relics, but recent migration between Australasia and the Northern Hemisphere was also detected. Within the Northern Hemisphere, frequent historical biota exchanges between the Old World and the New World via both the North Atlantic Land Bridge and the Bering Land Bridge could be elucidated. Our study also revealed that most Hydnum species found in subalpine areas of the Hengduan Mountains in southwestern China occur in northeastern/northern China and Europe, indicating that the composition of the mycobiota in the Hengduan Mountains reigion is more complicated than what we have known before. PMID:27151256

  16. Micro-CT scan reveals an unexpected high-volume and interconnected pore network in a Cretaceous Sanagasta dinosaur eggshell.

    PubMed

    Hechenleitner, E Martín; Grellet-Tinner, Gerald; Foley, Matthew; Fiorelli, Lucas E; Thompson, Michael B

    2016-03-01

    The Cretaceous Sanagasta neosauropod nesting site (La Rioja, Argentina) was the first confirmed instance of extinct dinosaurs using geothermal-generated heat to incubate their eggs. The nesting strategy and hydrothermal activities at this site led to the conclusion that the surprisingly 7 mm thick-shelled eggs were adapted to harsh hydrothermal microenvironments. We used micro-CT scans in this study to obtain the first three-dimensional microcharacterization of these eggshells. Micro-CT-based analyses provide a robust assessment of gas conductance in fossil dinosaur eggshells with complex pore canal systems, allowing calculation, for the first time, of the shell conductance through its thickness. This novel approach suggests that the shell conductance could have risen during incubation to seven times more than previously estimated as the eggshell erodes. In addition, micro-CT observations reveal that the constant widening and branching of pore canals form a complex funnel-like pore canal system. Furthermore, the high density of pore canals and the presence of a lateral canal network in the shell reduce the risks of pore obstruction during the extended incubation of these eggs in a relatively highly humid and muddy nesting environment. PMID:27009182

  17. Multilocus phylogenetic analyses reveal unexpected abundant diversity and significant disjunct distribution pattern of the Hedgehog Mushrooms (Hydnum L.)

    PubMed Central

    Feng, Bang; Wang, Xiang-Hua; Ratkowsky, David; Gates, Genevieve; Lee, Su See; Grebenc, Tine; Yang, Zhu L.

    2016-01-01

    Hydnum is a fungal genus proposed by Linnaeus in the early time of modern taxonomy. It contains several ectomycorrhizal species which are commonly consumed worldwide. However, Hydnum is one of the most understudied fungal genera, especially from a molecular phylogenetic view. In this study, we extensively gathered specimens of Hydnum from Asia, Europe, America and Australasia, and analyzed them by using sequences of four gene fragments (ITS, nrLSU, tef1α and rpb1). Our phylogenetic analyses recognized at least 31 phylogenetic species within Hydnum, 15 of which were reported for the first time. Most Australasian species were recognized as strongly divergent old relics, but recent migration between Australasia and the Northern Hemisphere was also detected. Within the Northern Hemisphere, frequent historical biota exchanges between the Old World and the New World via both the North Atlantic Land Bridge and the Bering Land Bridge could be elucidated. Our study also revealed that most Hydnum species found in subalpine areas of the Hengduan Mountains in southwestern China occur in northeastern/northern China and Europe, indicating that the composition of the mycobiota in the Hengduan Mountains reigion is more complicated than what we have known before. PMID:27151256

  18. Analysis of Two Putative Candida albicans Phosphopantothenoylcysteine Decarboxylase / Protein Phosphatase Z Regulatory Subunits Reveals an Unexpected Distribution of Functional Roles

    PubMed Central

    Petrényi, Katalin; Molero, Cristina; Kónya, Zoltán; Erdődi, Ferenc; Ariño, Joaquin; Dombrádi, Viktor

    2016-01-01

    Protein phosphatase Z (Ppz) is a fungus specific enzyme that regulates cell wall integrity, cation homeostasis and oxidative stress response. Work on Saccharomyces cerevisiae has shown that the enzyme is inhibited by Hal3/Vhs3 moonlighting proteins that together with Cab3 constitute the essential phosphopantothenoylcysteine decarboxylase (PPCDC) enzyme. In Candida albicans CaPpz1 is also involved in the morphological changes and infectiveness of this opportunistic human pathogen. To reveal the CaPpz1 regulatory context we searched the C. albicans database and identified two genes that, based on the structure of their S. cerevisiae counterparts, were termed CaHal3 and CaCab3. By pull down analysis and phosphatase assays we demonstrated that both of the bacterially expressed recombinant proteins were able to bind and inhibit CaPpz1 as well as its C-terminal catalytic domain (CaPpz1-Cter) with comparable efficiency. The binding and inhibition were always more pronounced with CaPpz1-Cter, indicating a protective effect against inhibition by the N-terminal domain in the full length protein. The functions of the C. albicans proteins were tested by their overexpression in S. cerevisiae. Contrary to expectations we found that only CaCab3 and not CaHal3 rescued the phenotypic traits that are related to phosphatase inhibition by ScHal3, such as tolerance to LiCl or hygromycin B, requirement for external K+ concentrations, or growth in a MAP kinase deficient slt2 background. On the other hand, both of the Candida proteins turned out to be essential PPCDC components and behaved as their S. cerevisiae counterparts: expression of CaCab3 and CaHal3 rescued the cab3 and hal3 vhs3 S. cerevisiae mutations, respectively. Thus, both CaHal3 and CaCab3 retained the PPCDC related functions and have the potential for CaPpz1 inhibition in vitro. The fact that only CaCab3 exhibits its phosphatase regulatory potential in vivo suggests that in C. albicans CaCab3, but not CaHal3, acts as a

  19. Analysis of Two Putative Candida albicans Phosphopantothenoylcysteine Decarboxylase / Protein Phosphatase Z Regulatory Subunits Reveals an Unexpected Distribution of Functional Roles.

    PubMed

    Petrényi, Katalin; Molero, Cristina; Kónya, Zoltán; Erdődi, Ferenc; Ariño, Joaquin; Dombrádi, Viktor

    2016-01-01

    Protein phosphatase Z (Ppz) is a fungus specific enzyme that regulates cell wall integrity, cation homeostasis and oxidative stress response. Work on Saccharomyces cerevisiae has shown that the enzyme is inhibited by Hal3/Vhs3 moonlighting proteins that together with Cab3 constitute the essential phosphopantothenoylcysteine decarboxylase (PPCDC) enzyme. In Candida albicans CaPpz1 is also involved in the morphological changes and infectiveness of this opportunistic human pathogen. To reveal the CaPpz1 regulatory context we searched the C. albicans database and identified two genes that, based on the structure of their S. cerevisiae counterparts, were termed CaHal3 and CaCab3. By pull down analysis and phosphatase assays we demonstrated that both of the bacterially expressed recombinant proteins were able to bind and inhibit CaPpz1 as well as its C-terminal catalytic domain (CaPpz1-Cter) with comparable efficiency. The binding and inhibition were always more pronounced with CaPpz1-Cter, indicating a protective effect against inhibition by the N-terminal domain in the full length protein. The functions of the C. albicans proteins were tested by their overexpression in S. cerevisiae. Contrary to expectations we found that only CaCab3 and not CaHal3 rescued the phenotypic traits that are related to phosphatase inhibition by ScHal3, such as tolerance to LiCl or hygromycin B, requirement for external K+ concentrations, or growth in a MAP kinase deficient slt2 background. On the other hand, both of the Candida proteins turned out to be essential PPCDC components and behaved as their S. cerevisiae counterparts: expression of CaCab3 and CaHal3 rescued the cab3 and hal3 vhs3 S. cerevisiae mutations, respectively. Thus, both CaHal3 and CaCab3 retained the PPCDC related functions and have the potential for CaPpz1 inhibition in vitro. The fact that only CaCab3 exhibits its phosphatase regulatory potential in vivo suggests that in C. albicans CaCab3, but not CaHal3, acts as a

  20. Unexpected cryptic species diversity in the widespread coral Seriatopora hystrix masks spatial-genetic patterns of connectivity.

    PubMed

    Warner, Patricia A; van Oppen, Madeleine J H; Willis, Bette L

    2015-06-01

    Mounting evidence of cryptic species in a wide range of taxa highlights the need for careful analyses of population genetic data sets to unravel within-species diversity from potential interspecies relationships. Here, we use microsatellite loci and hierarchical clustering analysis to investigate cryptic diversity in sympatric and allopatric (separated by 450 km) populations of the widespread coral Seriatopora hystrix on the Great Barrier Reef. Structure analyses delimited unique genetic clusters that were confirmed by phylogenetic and extensive population-level analyses. Each of four sympatric yet distinct genetic clusters detected within S. hystrix demonstrated greater genetic cohesion across regional scales than between genetic clusters within regions (<10 km). Moreover, the magnitude of genetic differentiation between different clusters (>0.620 G"ST ) was similar to the difference between S. hystrix clusters and the congener S. caliendrum (mean G"ST 0.720). Multiple lines of evidence, including differences in habitat specificity, mitochondrial identity, Symbiodinium associations and morphology, corroborate the nuclear genetic evidence that these distinct clusters constitute different species. Hierarchical clustering analysis combined with more traditional population genetic methods provides a powerful approach for delimiting species and should be regularly applied to ensure that ecological and evolutionary patterns interpreted for single species are not confounded by the presence of cryptic species.

  1. Genetic Diversity of Coastal Bottlenose Dolphins Revealed by Structurally and Functionally Diverse Hemoglobins

    PubMed Central

    Remington, Nicole; Stevens, Robert D.; Wells, Randall S.; Hohn, Aleta; Dhungana, Suraj; Taboy, Celine H.; Crumbliss, Alvin L.; Henkens, Robert; Bonaventura, Celia

    2007-01-01

    Studies of structure-function relationships in the respiratory proteins of marine mammals revealed unexpected variations in the number and types of hemoglobins (Hbs) present in coastal bottlenose dolphins, Tursiops truncatus. We obtained blood samples from free-ranging coastal bottlenose dolphins as a component of capture-release studies. We found that the oxygen-binding functions of bottlenose dolphin blood are poised between effector-saturated and unsaturated levels, enabling exercise-dependent shifts in oxygen transfer functions. Isolated bottlenose dolphin Hbs showed elevated pH sensitivities (Bohr effects) and appreciably lower oxygen affinities than adult human Hb in the absence of allosteric effectors. These properties may be an adaptive modification that enhance oxygen delivery during diving episodes when oxygen tensions and effector levels are low. The Hbs of individual dolphins showed similar oxygen affinities, responses to effectors, and expression of heme-heme interaction in oxygen binding, but differed in their redox potentials and rates of autoxidation. The heterogeneity suggested by these functional variations in Hbs of individual dolphins was born out by variations in the molecular weights and numbers of their α and β globin chains. Although coastal bottlenose dolphins were expected to have a single type of Hb, the mass differences observed revealed considerable genetic diversity. There were multiple Hb forms in some individuals and differences in Hb patterns among individuals within the same community. PMID:17604574

  2. Individual olfactory perception reveals meaningful nonolfactory genetic information.

    PubMed

    Secundo, Lavi; Snitz, Kobi; Weissler, Kineret; Pinchover, Liron; Shoenfeld, Yehuda; Loewenthal, Ron; Agmon-Levin, Nancy; Frumin, Idan; Bar-Zvi, Dana; Shushan, Sagit; Sobel, Noam

    2015-07-14

    Each person expresses a potentially unique subset of ∼ 400 different olfactory receptor subtypes. Given that the receptors we express partially determine the odors we smell, it follows that each person may have a unique nose; to capture this, we devised a sensitive test of olfactory perception we termed the "olfactory fingerprint." Olfactory fingerprints relied on matrices of perceived odorant similarity derived from descriptors applied to the odorants. We initially fingerprinted 89 individuals using 28 odors and 54 descriptors. We found that each person had a unique olfactory fingerprint (P < 10(-10)), which was odor specific but descriptor independent. We could identify individuals from this pool using randomly selected sets of 7 odors and 11 descriptors alone. Extrapolating from this data, we determined that using 34 odors and 35 descriptors we could individually identify each of the 7 billion people on earth. Olfactory perception, however, fluctuates over time, calling into question our proposed perceptual readout of presumably stable genetic makeup. To test whether fingerprints remain informative despite this temporal fluctuation, building on the linkage between olfactory receptors and HLA, we hypothesized that olfactory perception may relate to HLA. We obtained olfactory fingerprints and HLA typing for 130 individuals, and found that olfactory fingerprint matching using only four odorants was significantly related to HLA matching (P < 10(-4)), such that olfactory fingerprints can save 32% of HLA tests in a population screen (P < 10(-6)). In conclusion, a precise measure of olfactory perception reveals meaningful nonolfactory genetic information.

  3. Crystal structure of Rab6A'(Q72L) mutant reveals unexpected GDP/Mg²⁺ binding with opened GTP-binding domain.

    PubMed

    Shin, Young-Cheul; Yoon, Jong Hwan; Jang, Tae-Ho; Kim, Seo Yun; Heo, Won Do; So, Insuk; Jeon, Ju-Hong; Park, Hyun Ho

    2012-07-27

    The Ras small G protein-superfamily is a family of GTP hydrolases whose activity is regulated by GTP/GDP binding states. Rab6A, a member of the Ras superfamily, is involved in the regulation of vesicle trafficking, which is critical for endocytosis, biosynthesis, secretion, cell differentiation and cell growth. Rab6A exists in two isoforms, termed RabA and Rab6A'. Substitution of Gln72 to Leu72 (Q72L) at Rab6 family blocks GTP hydrolysis activity and this mutation usually causes the Rab6 protein to be constitutively in an active form. Here, we report the crystal structure of the human Rab6A'(Q72L) mutant form at 1.9Å resolution. Unexpectedly, we found that Rab6A'(Q72L) possesses GDP/Mg(2+) in the GTP binding pockets, which is formed by a flexible switch I and switch II. Large conformational changes were also detected in the switch I and switch II regions. Our structure revealed that the non-hydrolysable, constitutively active form of Rab6A' can accommodate GDP/Mg(2+) in the open conformation.

  4. A study on the biosynthesis of hygrophorone B(12) in the mushroom Hygrophorus abieticola reveals an unexpected labelling pattern in the cyclopentenone moiety.

    PubMed

    Otto, Alexander; Porzel, Andrea; Schmidt, Jürgen; Wessjohann, Ludger; Arnold, Norbert

    2015-10-01

    The hitherto unknown natural formation of hygrophorones, antibacterial and antifungal cyclopentenone derivatives from mushrooms, was investigated for hygrophorone B(12) in Hygrophorus abieticola Krieglst. ex Gröger & Bresinsky by feeding experiments in the field using (13)C labelled samples of D-glucose and sodium acetate. The incorporation of (13)C isotopes was extensively studied using 1D and 2D NMR spectroscopy as well as ESI-HRMS analyses. In the experiment with [U-(13)C6]-glucose, six different (13)C2 labelled isotopomers were observed in the 2D INADEQUATE spectrum due to incorporation of [1,2-(13)C2]-acetyl-CoA. This labelling pattern demonstrated that hygrophorone B(12) is derived from a fatty acid-polyketide route instead of a 1,4-α-D-glucan derived anhydrofructose pathway. The experiment with [2-(13)C]-acetate revealed an unexpected incorporation pattern in the cyclopentenone functionality of hygrophorone B(12). Four single-labelled isotopomers, in particular [1-(13)C]-, [2-(13)C]-, [3-(13)C]-, and [4-(13)C]-hygrophorone B(12), were detected that showed only half enrichment in comparison to the respective labelled alkyl side chain carbons. This labelling pattern indicates the formation of a symmetrical intermediate during hygrophorone B(12) biosynthesis. Based on these observations, a biogenetic route via a 4-oxo fatty acid and a chrysotrione B homologue is discussed.

  5. Genetic investigations of sudden unexpected deaths in infancy using next-generation sequencing of 100 genes associated with cardiac diseases.

    PubMed

    Hertz, Christin Loeth; Christiansen, Sofie Lindgren; Larsen, Maiken Kudahl; Dahl, Morten; Ferrero-Miliani, Laura; Weeke, Peter Ejvin; Pedersen, Oluf; Hansen, Torben; Grarup, Niels; Ottesen, Gyda Lolk; Frank-Hansen, Rune; Banner, Jytte; Morling, Niels

    2016-06-01

    Sudden infant death syndrome (SIDS) is the most frequent manner of post-perinatal death among infants. One of the suggested causes of the syndrome is inherited cardiac diseases, mainly channelopathies, that can trigger arrhythmias and sudden death. The purpose of this study was to investigate cases of sudden unexpected death in infancy (SUDI) for potential causative variants in 100 cardiac-associated genes. We investigated 47 SUDI cases of which 38 had previously been screened for variants in RYR2, KCNQ1, KCNH2 and SCN5A. Using the Haloplex Target Enrichment System (Agilent) and next-generation sequencing (NGS), the coding regions of 100 genes associated with inherited channelopathies and cardiomyopathies were captured and sequenced on the Illumina MiSeq platform. Sixteen (34%) of the SUDI cases had variants with likely functional effects, based on conservation, computational prediction and allele frequency, in one or more of the genes screened. The possible effects of the variants were not verified with family or functional studies. Eight (17%) of the SUDI cases had variants in genes affecting ion channel functions. The remaining eight cases had variants in genes associated with cardiomyopathies. In total, one third of the SUDI victims in a forensic setting had variants with likely functional effect that presumably contributed to the cause of death. The results support the assumption that channelopathies are important causes of SUDI. Thus, analysis of genes associated with cardiac diseases in SUDI victims is important in the forensic setting and a valuable supplement to the clinical investigation in all cases of sudden death.

  6. Genetic investigations of sudden unexpected deaths in infancy using next-generation sequencing of 100 genes associated with cardiac diseases.

    PubMed

    Hertz, Christin Loeth; Christiansen, Sofie Lindgren; Larsen, Maiken Kudahl; Dahl, Morten; Ferrero-Miliani, Laura; Weeke, Peter Ejvin; Pedersen, Oluf; Hansen, Torben; Grarup, Niels; Ottesen, Gyda Lolk; Frank-Hansen, Rune; Banner, Jytte; Morling, Niels

    2016-06-01

    Sudden infant death syndrome (SIDS) is the most frequent manner of post-perinatal death among infants. One of the suggested causes of the syndrome is inherited cardiac diseases, mainly channelopathies, that can trigger arrhythmias and sudden death. The purpose of this study was to investigate cases of sudden unexpected death in infancy (SUDI) for potential causative variants in 100 cardiac-associated genes. We investigated 47 SUDI cases of which 38 had previously been screened for variants in RYR2, KCNQ1, KCNH2 and SCN5A. Using the Haloplex Target Enrichment System (Agilent) and next-generation sequencing (NGS), the coding regions of 100 genes associated with inherited channelopathies and cardiomyopathies were captured and sequenced on the Illumina MiSeq platform. Sixteen (34%) of the SUDI cases had variants with likely functional effects, based on conservation, computational prediction and allele frequency, in one or more of the genes screened. The possible effects of the variants were not verified with family or functional studies. Eight (17%) of the SUDI cases had variants in genes affecting ion channel functions. The remaining eight cases had variants in genes associated with cardiomyopathies. In total, one third of the SUDI victims in a forensic setting had variants with likely functional effect that presumably contributed to the cause of death. The results support the assumption that channelopathies are important causes of SUDI. Thus, analysis of genes associated with cardiac diseases in SUDI victims is important in the forensic setting and a valuable supplement to the clinical investigation in all cases of sudden death. PMID:26350513

  7. Unexpected genetic differentiation between recently recolonized populations of a long-lived and highly vagile marine mammal.

    PubMed

    Bonin, Carolina A; Goebel, Michael E; Forcada, Jaume; Burton, Ronald S; Hoffman, Joseph I

    2013-10-01

    Many species have been heavily exploited by man leading to local extirpations, yet few studies have attempted to unravel subsequent recolonization histories. This has led to a significant gap in our knowledge of the long-term effects of exploitation on the amount and structure of contemporary genetic variation, with important implications for conservation. The Antarctic fur seal provides an interesting case in point, having been virtually exterminated in the nineteenth century but subsequently staged a dramatic recovery to recolonize much of its original range. Consequently, we evaluated the hypothesis that South Georgia (SG), where a few million seals currently breed, was the main source of immigrants to other locations including Livingston Island (LI), by genotyping 366 individuals from these two populations at 17 microsatellite loci and sequencing a 263 bp fragment of the mitochondrial hypervariable region 1. Contrary to expectations, we found highly significant genetic differences at both types of marker, with 51% of LI individuals carrying haplotypes that were not observed in 246 animals from SG. Moreover, the youngest of three sequentially founded colonies at LI showed greater similarity to SG at mitochondrial DNA than microsatellites, implying temporal and sex-specific variation in recolonization. Our findings emphasize the importance of relict populations and provide insights into the mechanisms by which severely depleted populations can recover while maintaining surprisingly high levels of genetic diversity. PMID:24198934

  8. Unexpected genetic differentiation between recently recolonized populations of a long-lived and highly vagile marine mammal

    PubMed Central

    Bonin, Carolina A; Goebel, Michael E; Forcada, Jaume; Burton, Ronald S; Hoffman, Joseph I

    2013-01-01

    Many species have been heavily exploited by man leading to local extirpations, yet few studies have attempted to unravel subsequent recolonization histories. This has led to a significant gap in our knowledge of the long-term effects of exploitation on the amount and structure of contemporary genetic variation, with important implications for conservation. The Antarctic fur seal provides an interesting case in point, having been virtually exterminated in the nineteenth century but subsequently staged a dramatic recovery to recolonize much of its original range. Consequently, we evaluated the hypothesis that South Georgia (SG), where a few million seals currently breed, was the main source of immigrants to other locations including Livingston Island (LI), by genotyping 366 individuals from these two populations at 17 microsatellite loci and sequencing a 263 bp fragment of the mitochondrial hypervariable region 1. Contrary to expectations, we found highly significant genetic differences at both types of marker, with 51% of LI individuals carrying haplotypes that were not observed in 246 animals from SG. Moreover, the youngest of three sequentially founded colonies at LI showed greater similarity to SG at mitochondrial DNA than microsatellites, implying temporal and sex-specific variation in recolonization. Our findings emphasize the importance of relict populations and provide insights into the mechanisms by which severely depleted populations can recover while maintaining surprisingly high levels of genetic diversity. PMID:24198934

  9. Multilocus genotypic data reveal high genetic diversity and low population genetic structure of Iranian indigenous sheep.

    PubMed

    Vahidi, S M F; Faruque, M O; Falahati Anbaran, M; Afraz, F; Mousavi, S M; Boettcher, P; Joost, S; Han, J L; Colli, L; Periasamy, K; Negrini, R; Ajmone-Marsan, P

    2016-08-01

    Iranian livestock diversity is still largely unexplored, in spite of the interest in the populations historically reared in this country located near the Fertile Crescent, a major livestock domestication centre. In this investigation, the genetic diversity and differentiation of 10 Iranian indigenous fat-tailed sheep breeds were investigated using 18 microsatellite markers. Iranian breeds were found to host a high level of diversity. This conclusion is substantiated by the large number of alleles observed across loci (average 13.83, range 7-22) and by the high within-breed expected heterozygosity (average 0.75, range 0.72-0.76). Iranian sheep have a low level of genetic differentiation, as indicated by the analysis of molecular variance, which allocated a very small proportion (1.67%) of total variation to the between-population component, and by the small fixation index (FST  = 0.02). Both Bayesian clustering and principal coordinates analysis revealed the absence of a detectable genetic structure. Also, no isolation by distance was observed through comparison of genetic and geographical distances. In spite of high within-breed variation, signatures of inbreeding were detected by the FIS indices, which were positive in all and statistically significant in three breeds. Possible factors explaining the patterns observed, such as considerable gene flow and inbreeding probably due to anthropogenic activities in the light of population management and conservation programmes, are discussed. PMID:26953226

  10. Candida milleri species reveals intraspecific genetic and metabolic polymorphisms.

    PubMed

    Vigentini, Ileana; Antoniani, Davide; Roscini, Luca; Comasio, Andrea; Galafassi, Silvia; Picozzi, Claudia; Corte, Laura; Compagno, Concetta; Dal Bello, Fabio; Cardinali, Gianluigi; Foschino, Roberto

    2014-09-01

    Candida milleri, together with Candida humilis, is the most representative yeast species found in type I sourdough ecosystems. In this work, comparison of the ITS region and the D1/D2 domain of 26S rDNA gene partial sequences, karyotyping, mtDNA-RFLP analysis, Intron Splice Site dispersion (ISS-PCR) and (GTG)5 microsatellite analyses, assimilation test of different carbohydrates, and metabolome assessment by FT-IR analysis, were investigated in seventeen strains isolated from four different companies as well as in type strains CBS6897(T) and CBS5658(T). Most isolates were ascribed to C. milleri, even if a strong relatedness was confirmed with C. humilis as well, particularly for three strains. Genetic characterization showed a high degree of intraspecific polymorphism since 12 different genotypes were discriminated. The number of chromosomes varied from 9 to 13 and their size ranged from less than 0.3 to over 2 Mbp. Phenotypic traits let to recognize 9 different profiles of carbon sources assimilation. FT-IR spectra from yeast cells cultivated in different media and collected at different growth phases revealed a diversity of behaviour among strains in accordance with the results of PCR-based fingerprinting. A clear evidence of the polymorphic status of C. milleri species is provided thus representing an important feature for the development of technological applications in bakery industries.

  11. Candida milleri species reveals intraspecific genetic and metabolic polymorphisms.

    PubMed

    Vigentini, Ileana; Antoniani, Davide; Roscini, Luca; Comasio, Andrea; Galafassi, Silvia; Picozzi, Claudia; Corte, Laura; Compagno, Concetta; Dal Bello, Fabio; Cardinali, Gianluigi; Foschino, Roberto

    2014-09-01

    Candida milleri, together with Candida humilis, is the most representative yeast species found in type I sourdough ecosystems. In this work, comparison of the ITS region and the D1/D2 domain of 26S rDNA gene partial sequences, karyotyping, mtDNA-RFLP analysis, Intron Splice Site dispersion (ISS-PCR) and (GTG)5 microsatellite analyses, assimilation test of different carbohydrates, and metabolome assessment by FT-IR analysis, were investigated in seventeen strains isolated from four different companies as well as in type strains CBS6897(T) and CBS5658(T). Most isolates were ascribed to C. milleri, even if a strong relatedness was confirmed with C. humilis as well, particularly for three strains. Genetic characterization showed a high degree of intraspecific polymorphism since 12 different genotypes were discriminated. The number of chromosomes varied from 9 to 13 and their size ranged from less than 0.3 to over 2 Mbp. Phenotypic traits let to recognize 9 different profiles of carbon sources assimilation. FT-IR spectra from yeast cells cultivated in different media and collected at different growth phases revealed a diversity of behaviour among strains in accordance with the results of PCR-based fingerprinting. A clear evidence of the polymorphic status of C. milleri species is provided thus representing an important feature for the development of technological applications in bakery industries. PMID:24929720

  12. New Genetic Susceptibility Factors for Sjögren's Syndrome Revealed

    MedlinePlus

    ... 1999 Spotlight on Research 2014 March 2014 (historical) New Genetic Susceptibility Factors for Sjögren’s Syndrome Revealed By ... the journal Nature Genetics, could help researchers develop new strategies to diagnose and treat the condition. In ...

  13. Functional analysis of the TFIID-specific yeast TAF4 (yTAF(II)48) reveals an unexpected organization of its histone-fold domain.

    PubMed

    Thuault, Sylvie; Gangloff, Yann-Gaël; Kirchner, Jay; Sanders, Steven; Werten, Sebastiaan; Romier, Christophe; Weil, P Anthony; Davidson, Irwin

    2002-11-22

    Yeast TFIID comprises the TATA binding protein and 14 TBP-associated factors (TAF(II)s), nine of which contain histone-fold domains (HFDs). The C-terminal region of the TFIID-specific yTAF4 (yTAF(II)48) containing the HFD shares strong sequence similarity with Drosophila (d)TAF4 (dTAF(II)110) and human TAF4 (hTAF(II)135). A structure/function analysis of yTAF4 demonstrates that the HFD, a short conserved C-terminal domain (CCTD), and the region separating them are all required for yTAF4 function. Temperature-sensitive mutations in the yTAF4 HFD alpha2 helix or the CCTD can be suppressed upon overexpression of yTAF12 (yTAF(II)68). Moreover, coexpression in Escherichia coli indicates direct yTAF4-yTAF12 heterodimerization optimally requires both the yTAF4 HFD and CCTD. The x-ray crystal structure of the orthologous hTAF4-hTAF12 histone-like heterodimer indicates that the alpha3 region within the predicted TAF4 HFD is unstructured and does not correspond to the bona fide alpha3 helix. Our functional and biochemical analysis of yTAF4, rather provides strong evidence that the HFD alpha3 helix of the TAF4 family lies within the CCTD. These results reveal an unexpected and novel HFD organization in which the alpha3 helix is separated from the alpha2 helix by an extended loop containing a conserved functional domain. PMID:12237303

  14. Biological and genetic characterisation of Toxoplasma gondii isolates from chickens (Gallus domesticus) from São Paulo, Brazil: unexpected findings.

    PubMed

    Dubey, J P; Graham, D H; Blackston, C R; Lehmann, T; Gennari, S M; Ragozo, A M A; Nishi, S M; Shen, S K; Kwok, O C H; Hill, D E; Thulliez, P

    2002-01-01

    In spite of a wide host range and a world wide distribution, Toxoplasma gondii has a low genetic diversity. Most isolates of T. gondii can be grouped into two to three lineages. Type I strains are considered highly virulent in outbred laboratory mice, and have been isolated predominantly from clinical cases of human toxoplasmosis whereas types II and III strains are considered avirulent for mice. In the present study, 17 of 25 of the T. gondii isolates obtained from asymptomatic chickens from rural areas surrounding São Paulo, Brazil were type I. Antibodies to T. gondii were measured in 82 chicken sera by the modified agglutination test using whole formalin-preserved tachyzoites and mercaptoethanol and titres of 1:10 or more were found in 32 chickens. Twenty-two isolates of T. gondii were obtained by bioassay in mice inoculated with brains and hearts of 29 seropositive (> or =1:40) chickens and three isolates were obtained from the faeces of cats fed tissues from 52 chickens with no or low levels (<1:40) of antibodies. In total, 25 isolates of T. gondii were obtained by bioassay of 82 chicken tissues into mice and cats. All type I isolates killed all infected mice within 4 weeks whereas type III isolates were less virulent to mice. There were no type II strains. Tissue cysts were found in mice infected with all 25 isolates and all nine type I isolates produced oocysts. Infected chickens were from localities that were 18-200 km apart, indicating no common source for T. gondii isolates. This is the first report of isolation of predominantly type I strains of T. gondii from a food animal. Epidemiological implications of these findings are discussed.

  15. In Estimated Good Prognosis Patients Could Unexpected "Hyporesponse" to Controlled Ovarian Stimulation be Related to Genetic Polymorphisms of FSH Receptor?

    PubMed

    Alviggi, Carlo; Conforti, Alessandro; Caprio, Francesca; Gizzo, Salvatore; Noventa, Marco; Strina, Ida; Pagano, Tiziana; De Rosa, Pasquale; Carbone, Floriana; Colacurci, Nicola; De Placido, Giuseppe

    2016-08-01

    It has been reported that 10% to 15% of young normogonadotrophic women show suboptimal response to standard gonadotropin-releasing hormone-a long protocol. These patients require higher doses of exogenous follicle-stimulating hormone (FSH). This phenomenon could be associated with genetic characteristics. In this study, FSH receptor polymorphism was retrospectively evaluated in 42 normoresponder young women undergoing an in vitro fertilization/intracytoplasmic sperm injection cycle; patients were stratified according to recombinant human FSH (r-hFSH) consumption. We selected 17 normoresponder young patients who required a cumulative dose of recombinant FSH (rFSH) >2500 UI (group A). A control group was randomly selected among patients who required a cumulative dose of rFSH <2500 UI (group B). Follicle-stimulating hormone receptor (FSH-R) 307Ala and 680Ser variants were analyzed in all our patients. Our results show that the mean number of rFSH vials (36.3 ± 7.5 vs 28.6 ± 4.5, P = .0001) and days of stimulation (12.7 ± 2.4 vs 10.8 ± 2.8, P = .03) were significantly lower in group B, whereas the number of oocytes retrieved (7.1 ± 1.5 vs 9.6 ± 2.4; P = .0005) and the average number of embryos transferred (2.1 ± 0.7 vs 2.7 ± 0.4; P = .001) were significantly lower in group A. Estradiol serum levels on the human chorionic gonadotrophin day were significantly lower in group A (997.8 ± 384.9 pg/mL vs 1749.1 ± 644.4; P = .0001). The incidence of the Ser/Ser genotype was higher in patients with higher r-hFSH consumption (group A; P = .02). Based on our results, we hypothesize an association between the FSH-R polymorphisms and a "hyporesponse" to exogenous FSH. PMID:26902430

  16. Unexpected Diversity of Feral Genetically Modified Oilseed Rape (Brassica napus L.) Despite a Cultivation and Import Ban in Switzerland

    PubMed Central

    Schulze, Juerg; Frauenknecht, Tina; Brodmann, Peter; Bagutti, Claudia

    2014-01-01

    Despite cultivation and seed import bans of genetically modified (GM) oilseed rape (Brassica napus L.), feral GM plants were found growing along railway lines and in port areas at four sites in Switzerland in 2011 and 2012. All GM plants were identified as glyphosate-resistant GM event GT73 (Roundup Ready, Monsanto). The most affected sites were the Rhine port of Basel and the St. Johann freight railway station in Basel. To assess the distribution and intra- and interspecific outcrossing of GM oilseed rape in more detail, we monitored these two sites in 2013. Leaves and seed pods of feral oilseed rape plants, their possible hybridization partners and putative hybrid plants were sampled in monthly intervals and analysed for the presence of transgenes by real-time PCR. Using flow cytometry, we measured DNA contents of cell nuclei to confirm putative hybrids. In total, 2787 plants were sampled. The presence of GT73 oilseed rape could be confirmed at all previously documented sampling locations and was additionally detected at one new sampling location within the Rhine port. Furthermore, we found the glufosinate-resistant GM events MS8xRF3, MS8 and RF3 (all traded as InVigor, Bayer) at five sampling locations in the Rhine port. To our knowledge, this is the first time that feral MS8xRF3, MS8 or RF3 plants were detected in Europe. Real-time PCR analyses of seeds showed outcrossing of GT73 into two non-GM oilseed rape plants, but no outcrossing of transgenes into related wild species was observed. We found no hybrids between oilseed rape and related species. GM plants most frequently occurred at unloading sites for ships, indicating that ship cargo traffic is the main entry pathway for GM oilseed rape. In the future, it will be of major interest to determine the source of GM oilseed rape seeds. PMID:25464509

  17. Unexpected diversity of feral genetically modified oilseed rape (Brassica napus L.) despite a cultivation and import ban in Switzerland.

    PubMed

    Schulze, Juerg; Frauenknecht, Tina; Brodmann, Peter; Bagutti, Claudia

    2014-01-01

    Despite cultivation and seed import bans of genetically modified (GM) oilseed rape (Brassica napus L.), feral GM plants were found growing along railway lines and in port areas at four sites in Switzerland in 2011 and 2012. All GM plants were identified as glyphosate-resistant GM event GT73 (Roundup Ready, Monsanto). The most affected sites were the Rhine port of Basel and the St. Johann freight railway station in Basel. To assess the distribution and intra- and interspecific outcrossing of GM oilseed rape in more detail, we monitored these two sites in 2013. Leaves and seed pods of feral oilseed rape plants, their possible hybridization partners and putative hybrid plants were sampled in monthly intervals and analysed for the presence of transgenes by real-time PCR. Using flow cytometry, we measured DNA contents of cell nuclei to confirm putative hybrids. In total, 2787 plants were sampled. The presence of GT73 oilseed rape could be confirmed at all previously documented sampling locations and was additionally detected at one new sampling location within the Rhine port. Furthermore, we found the glufosinate-resistant GM events MS8xRF3, MS8 and RF3 (all traded as InVigor, Bayer) at five sampling locations in the Rhine port. To our knowledge, this is the first time that feral MS8xRF3, MS8 or RF3 plants were detected in Europe. Real-time PCR analyses of seeds showed outcrossing of GT73 into two non-GM oilseed rape plants, but no outcrossing of transgenes into related wild species was observed. We found no hybrids between oilseed rape and related species. GM plants most frequently occurred at unloading sites for ships, indicating that ship cargo traffic is the main entry pathway for GM oilseed rape. In the future, it will be of major interest to determine the source of GM oilseed rape seeds. PMID:25464509

  18. Unexpected diversity of feral genetically modified oilseed rape (Brassica napus L.) despite a cultivation and import ban in Switzerland.

    PubMed

    Schulze, Juerg; Frauenknecht, Tina; Brodmann, Peter; Bagutti, Claudia

    2014-01-01

    Despite cultivation and seed import bans of genetically modified (GM) oilseed rape (Brassica napus L.), feral GM plants were found growing along railway lines and in port areas at four sites in Switzerland in 2011 and 2012. All GM plants were identified as glyphosate-resistant GM event GT73 (Roundup Ready, Monsanto). The most affected sites were the Rhine port of Basel and the St. Johann freight railway station in Basel. To assess the distribution and intra- and interspecific outcrossing of GM oilseed rape in more detail, we monitored these two sites in 2013. Leaves and seed pods of feral oilseed rape plants, their possible hybridization partners and putative hybrid plants were sampled in monthly intervals and analysed for the presence of transgenes by real-time PCR. Using flow cytometry, we measured DNA contents of cell nuclei to confirm putative hybrids. In total, 2787 plants were sampled. The presence of GT73 oilseed rape could be confirmed at all previously documented sampling locations and was additionally detected at one new sampling location within the Rhine port. Furthermore, we found the glufosinate-resistant GM events MS8xRF3, MS8 and RF3 (all traded as InVigor, Bayer) at five sampling locations in the Rhine port. To our knowledge, this is the first time that feral MS8xRF3, MS8 or RF3 plants were detected in Europe. Real-time PCR analyses of seeds showed outcrossing of GT73 into two non-GM oilseed rape plants, but no outcrossing of transgenes into related wild species was observed. We found no hybrids between oilseed rape and related species. GM plants most frequently occurred at unloading sites for ships, indicating that ship cargo traffic is the main entry pathway for GM oilseed rape. In the future, it will be of major interest to determine the source of GM oilseed rape seeds.

  19. Species History Masks the Effects of Human-Induced Range Loss – Unexpected Genetic Diversity in the Endangered Giant Mayfly Palingenia longicauda

    PubMed Central

    Bálint, Miklós; Málnás, Kristóf; Nowak, Carsten; Geismar, Jutta; Váncsa, Éva; Polyák, László; Lengyel, Szabolcs; Haase, Peter

    2012-01-01

    Freshwater biodiversity has declined dramatically in Europe in recent decades. Because of massive habitat pollution and morphological degradation of water bodies, many once widespread species persist in small fractions of their original range. These range contractions are generally believed to be accompanied by loss of intraspecific genetic diversity, due to the reduction of effective population sizes and the extinction of regional genetic lineages. We aimed to assess the loss of genetic diversity and its significance for future potential reintroduction of the long-tailed mayfly Palingenia longicauda (Olivier), which experienced approximately 98% range loss during the past century. Analysis of 936 bp of mitochondrial DNA of 245 extant specimens across the current range revealed a surprisingly large number of haplotypes (87), and a high level of haplotype diversity (). In contrast, historic specimens (6) from the lost range (Rhine catchment) were not differentiated from the extant Rába population (, ), despite considerable geographic distance separating the two rivers. These observations can be explained by an overlap of the current with the historic (Pleistocene) refugia of the species. Most likely, the massive recent range loss mainly affected the range which was occupied by rapid post-glacial dispersal. We conclude that massive range losses do not necessarily coincide with genetic impoverishment and that a species' history must be considered when estimating loss of genetic diversity. The assessment of spatial genetic structures and prior phylogeographic information seems essential to conserve once widespread species. PMID:22412844

  20. Unexpected tolerance of glycosylation by UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase revealed by electron capture dissociation mass spectrometry: carbohydrate as potential protective groups.

    PubMed

    Yoshimura, Yayoi; Matsushita, Takahiko; Fujitani, Naoki; Takegawa, Yasuhiro; Fujihira, Haruhiko; Naruchi, Kentarou; Gao, Xiao-Dong; Manri, Naomi; Sakamoto, Takeshi; Kato, Kentaro; Hinou, Hiroshi; Nishimura, Shin-Ichiro

    2010-07-20

    UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferases (ppGalNAcTs, EC 2.4.1.41), a family of key enzymes that initiate posttranslational modification with O-glycans in mucin synthesis by introduction of alpha-GalNAc residues, are structurally composed of a catalytic domain and a lectin domain. It has been known that multiple Ser/Thr residues are assigned in common mucin glycoproteins as potential O-glycosylation sites and more than 20 distinct isoforms of this enzyme family contribute to produce densely O-glycosylated mucin glycoproteins. However, it seems that the functional role of the lectin domain of ppGalNAcTs remains unclear. We considered that electron capture dissociation mass spectrometry (ECD-MS), a promising method for highly selective fragmentation at peptide linkages of glycopeptides to generate unique c and z series of ions, should allow for precise structural characterization to uncover the mechanism in O-glycosylation of mucin peptides by ppGalNAcTs. In the present study, it was demonstrated that a system composed of an electrospray source, a linear RFQ ion trap that isolates precursor ions, the ECD device, and a TOF mass spectrometer is a nice tool to identify the preferential O-glycosylation sites without any decomposition of the carbohydrate moiety. It should be noted that electrons used for ECD are accelerated within a range from 1.75 to 9.75 eV depending on the structures of glycopeptides of interest. We revealed for the first time that additional installation of a alpha-GalNAc residue at potential glycosylation sites by ppGalNAcT2 proceeds smoothly in various unnatural glycopeptides having alpha-Man, alpha-Fuc, and beta-Gal residues as well as alpha-GalNAc residues. The results may suggest that ppGalNAcT2 did not differentiate totally presubstituted sugar residues in terms of configuration of functional groups, d-, l-configuration, and even alpha-, beta-stereochemistry at an anomeric carbon atom when relatively short synthetic

  1. Genome-wide expression profiling in the Drosophila eye reveals unexpected repression of Notch signaling by the JAK/STAT pathway

    PubMed Central

    Flaherty, Maria Sol; Zavadil, Jiri; Ekas, Laura A.; Bach, Erika A.

    2010-01-01

    Although the JAK/STAT pathway regulates numerous processes in vertebrates and invertebrates through modulating transcription, its functionally-relevant transcriptional targets remain largely unknown. With one jak and one stat (stat92E), Drosophila provides a powerful system for finding new JAK/STAT target genes. Genome-wide expression profiling on eye discs in which Stat92E is hyperactivated, revealed 584 differentially-regulated genes, including known targets domeless, socs36E and wingless. Other differentially-regulated genes (chinmo, lama, Mo25, Imp-L2, Serrate, Delta) were validated and may represent new Stat92E targets. Genetic experiments revealed that Stat92E cell-autonomously represses Serrate, which encodes a Notch ligand. Loss of Stat92E led to de-repression of Serrate in the dorsal eye, resulting in ectopic Notch signaling and aberrant eye growth there. Thus, our micro-array documents a new Stat92E target gene and a previously-unidentified inhibitory action of Stat92E on Notch signaling. These data suggest that this study will be a useful resource for the identification of additional Stat92E targets. PMID:19504457

  2. Genetic map of the human pseudoautosomal region reveals a high rate of recombination in female meiosis at the Xp telomere

    SciTech Connect

    Henke, A.; Fischer, C.; Rappold, G.A. )

    1993-12-01

    This paper describes the genetic map of the pseudoautosomal region bounded by the telomere of the short arms of the X and Y chromosomes. In males, meiotic exchange on Xp/Yp is confined to this region, leading to highly elevated recombination rates. The map was constructed using 11 pseudoautosomal probes (six of which are new) and typing individuals from 38 CEPH families. All markers have been physically mapped, thus providing the opportunity to compare genetic distance to physical distance through all intervals of the map. This comparison reveals an unexpected high rate of recombination in female meiosis between loci DXYS20 and DXYS78, within 20-80 kb from the telomere. Within this telemore-adjacent region no differences in male and female recombination rates are seen. Furthermore, data from this genetic map support the hypothesis of a linear gradient of recombination across most of the region in male meiosis and provide densely spaced anchor points for linkage studies especially in the telomeric portion of the pseudoautosomal region. 34 refs., 4 figs., 4 tabs.

  3. Quantitative Genome-Wide Genetic Interaction Screens Reveal Global Epistatic Relationships of Protein Complexes in Escherichia coli

    PubMed Central

    Kumar, Ashwani; Stewart, Geordie; Samanfar, Bahram; Aoki, Hiroyuki; Wagih, Omar; Vlasblom, James; Phanse, Sadhna; Lad, Krunal; Yeou Hsiung Yu, Angela; Graham, Christopher; Jin, Ke; Brown, Eric; Golshani, Ashkan; Kim, Philip; Moreno-Hagelsieb, Gabriel; Greenblatt, Jack; Houry, Walid A.; Parkinson, John; Emili, Andrew

    2014-01-01

    Large-scale proteomic analyses in Escherichia coli have documented the composition and physical relationships of multiprotein complexes, but not their functional organization into biological pathways and processes. Conversely, genetic interaction (GI) screens can provide insights into the biological role(s) of individual gene and higher order associations. Combining the information from both approaches should elucidate how complexes and pathways intersect functionally at a systems level. However, such integrative analysis has been hindered due to the lack of relevant GI data. Here we present a systematic, unbiased, and quantitative synthetic genetic array screen in E. coli describing the genetic dependencies and functional cross-talk among over 600,000 digenic mutant combinations. Combining this epistasis information with putative functional modules derived from previous proteomic data and genomic context-based methods revealed unexpected associations, including new components required for the biogenesis of iron-sulphur and ribosome integrity, and the interplay between molecular chaperones and proteases. We find that functionally-linked genes co-conserved among γ-proteobacteria are far more likely to have correlated GI profiles than genes with divergent patterns of evolution. Overall, examining bacterial GIs in the context of protein complexes provides avenues for a deeper mechanistic understanding of core microbial systems. PMID:24586182

  4. Genetic mapping of adaptation reveals fitness tradeoffs in Arabidopsis thaliana.

    PubMed

    Ågrena, Jon; Oakley, Christopher G; McKay, John K; Lovell, John T; Schemske, Douglas W

    2013-12-24

    Organisms inhabiting different environments are often locally adapted, and yet despite a considerable body of theory, the genetic basis of local adaptation is poorly understood. Unanswered questions include the number and effect sizes of adaptive loci, whether locally favored loci reduce fitness elsewhere (i.e., fitness tradeoffs), and whether a lack of genetic variation limits adaptation. To address these questions, we mapped quantitative trait loci (QTL) for total fitness in 398 recombinant inbred lines derived from a cross between locally adapted populations of the highly selfing plant Arabidopsis thaliana from Sweden and Italy and grown for 3 consecutive years at the parental sites (>40,000 plants monitored). We show that local adaptation is controlled by relatively few genomic regions of small to modest effect. A third of the 15 fitness QTL we detected showed evidence of tradeoffs, which contrasts with the minimal evidence for fitness tradeoffs found in previous studies. This difference may reflect the power of our multiyear study to distinguish conditionally neutral QTL from those that reflect fitness tradeoffs. In Sweden, but not in Italy, the local genotype underlying fitness QTL was often maladaptive, suggesting that adaptation there is constrained by a lack of adaptive genetic variation, attributable perhaps to genetic bottlenecks during postglacial colonization of Scandinavia or to recent changes in selection regime caused by climate change. Our results suggest that adaptation to markedly different environments can be achieved through changes in relatively few genomic regions, that fitness tradeoffs are common, and that lack of genetic variation can limit adaptation.

  5. Bovine Genetic Diversity Revealed By mtDNA Sequence Variation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mitochondrial DNA single nucleotide polymorphism (SNP) data were used to determine genetic distance, nucleotide diversity, construction of haplotypes, estimation of information contents, and phylogenic relationships in bovine HapMap breeds. The Bovine International HapMap panel consists of 720 anima...

  6. Unintended effects in genetically modified crops: revealed by metabolomics?

    PubMed

    Rischer, Heiko; Oksman-Caldentey, Kirsi-Marja

    2006-03-01

    In Europe the commercialization of food derived from genetically modified plants has been slow because of the complex regulatory process and the concerns of consumers. Risk assessment is focused on potential adverse effects on humans and the environment, which could result from unintended effects of genetic modifications: unintended effects are connected to changes in metabolite levels in the plants. One of the major challenges is how to analyze the overall metabolite composition of GM plants in comparison to conventional cultivars, and one possible solution is offered by metabolomics. The ultimate aim of metabolomics is the identification and quantification of all small molecules in an organism; however, a single method enabling complete metabolome analysis does not exist. Given a comprehensive extraction method, a hierarchical strategy--starting with global fingerprinting and followed by complementary profiling attempts--is the most logical and economic approach to detect unintended effects in GM crops.

  7. Targeted exome sequencing for mitochondrial disorders reveals high genetic heterogeneity

    PubMed Central

    2013-01-01

    Background Mitochondrial disorders are difficult to diagnose due to extreme genetic and phenotypic heterogeneities. Methods We explored the utility of targeted next-generation sequencing for the diagnosis of mitochondrial disorders in 148 patients submitted for clinical testing. A panel of 447 nuclear genes encoding mitochondrial respiratory chain complexes, and other genes inducing secondary mitochondrial dysfunction or that cause diseases which mimic mitochondrial disorders were tested. Results We identified variants considered to be possibly disease-causing based on family segregation data and/or variants already known to cause disease in twelve genes in thirteen patients. Rare or novel variants of unknown significance were identified in 45 additional genes for various metabolic, genetic or neurogenetic disorders. Conclusions Primary mitochondrial defects were confirmed only in four patients indicating that majority of patients with suspected mitochondrial disorders are presumably not the result of direct impairment of energy production. Our results support that clinical and routine laboratory ascertainment for mitochondrial disorders are challenging due to significant overlapping non-specific clinical symptoms and lack of specific biomarkers. While next-generation sequencing shows promise for diagnosing suspected mitochondrial disorders, the challenges remain as the underlying genetic heterogeneity may be greater than suspected and it is further confounded by the similarity of symptoms with other conditions as we report here. PMID:24215330

  8. Microsatellites reveal genetic diversity in Rotylenchulus reniformis populations

    PubMed Central

    Arias, Renée S.; Stetina, Salliana R.; Tonos, Jennifer L.; Scheffler, Jodi A.

    2009-01-01

    Rotylenchulus reniformis is the predominant parasitic nematode of cotton in the Mid South area of the United States. Although variable levels of infection and morphological differences have been reported for this nematode, genetic variability has been more elusive. We developed microsatellite-enriched libraries for R. reniformis, produced 1152 clones, assembled 694 contigs, detected 783 simple sequence repeats (SSR) and designed 192 SSR-markers. The markers were tested on six R. reniformis cultures from four states, Texas, Louisiana, Mississippi and Georgia, in the USA. Based on performance we selected 156 SSR markers for R. reniformis from which 88 were polymorphic across the six reniform nematode populations, showing as the most frequent motif the dinucleotide AG. The polymorphic information content of the markers ranged from 0.00 to 0.82, and the percentage of multiallelic loci of the isolates was between 40.9 and 45.1%. An interesting finding in this study was the genetic variability detected among the three Mississippi isolates, for which 22 SSR markers were polymorphic. We also tested the level of infection of these isolates on six cotton genotypes, where significant differences were found between the Texas and Georgia isolates. Coincidentally, 62 polymorphic markers were able to distinguish these two populations. Further studies will be necessary to establish possible connections, if any, between markers and level of pathogenicity of the nematode. The SSR markers developed here will be useful in the assessment of the genetic diversity of this nematode, could assist in management practices for control of reniform nematode, be used in breeding programs for crop resistance, and help in detecting the origin and spread of this nematode in the United States. PMID:22661788

  9. Quantitative Genetic Interactions Reveal Layers of Biological Modularity

    PubMed Central

    Beltrao, Pedro; Cagney, Gerard; Krogan, Nevan J.

    2010-01-01

    In the past, biomedical research has embraced a reductionist approach, primarily focused on characterizing the individual components that comprise a system of interest. Recent technical developments have significantly increased the size and scope of data describing biological systems. At the same time, advances in the field of systems biology have evoked a broader view of how the underlying components are interconnected. In this essay, we discuss how quantitative genetic interaction mapping has enhanced our view of biological systems, allowing a deeper functional interrogation at different biological scales. PMID:20510918

  10. The human splicing code reveals new insights into the genetic determinants of disease

    PubMed Central

    Xiong, Hui Y.; Alipanahi, Babak; Lee, Leo J.; Bretschneider, Hannes; Merico, Daniele; Yuen, Ryan K.C.; Hua, Yimin; Gueroussov, Serge; Najafabadi, Hamed S.; Hughes, Timothy R.; Morris, Quaid; Barash, Yoseph; Krainer, Adrian R.; Jojic, Nebojsa; Scherer, Stephen W.; Blencowe, Benjamin J.; Frey, Brendan J.

    2015-01-01

    Introduction Advancing whole-genome precision medicine requires understanding how gene expression is altered by genetic variants, especially those that are outside of protein-coding regions. We developed a computational technique that scores how strongly genetic variants alter RNA splicing, a critical step in gene expression whose disruption contributes to many diseases, including cancers and neurological disorders. A genome-wide analysis reveals tens of thousands of variants that alter splicing and are enriched with a wide range of known diseases. Our results provide insight into the genetic basis of spinal muscular atrophy, hereditary nonpolyposis colorectal cancer and autism spectrum disorder. Methods We used machine learning to derive a computational model that takes as input DNA sequences and applies general rules to predict splicing in human tissues. Given a test variant, our model computes a score that predicts how much the variant disrupts splicing. The model was derived in such a way that it can be used to study diverse diseases and disorders, and to determine the consequences of common, rare, and even spontaneous variants. Results Our technique is able to accurately classify disease-causing variants and provides insights into the role of aberrant splicing in disease. We scored over 650,000 DNA variants and found that disease-causing variants have higher scores than common variants and even those associated with disease in genome-wide association studies. Our model predicts substantial and unexpected aberrant splicing due to variants within introns and exons, including those far from the splice site. For example, among intronic variants that are more than 30 nucleotides away from a splice site, known disease variants alter splicing nine times more often than common variants; among missense exonic disease variants, those that least impact protein function are over five times more likely to alter splicing than other variants. Autism has been associated with

  11. Hereditary hemochromatosis: HFE mutation analysis in Greeks reveals genetic heterogeneity.

    PubMed

    Papanikolaou, G; Politou, M; Terpos, E; Fourlemadis, S; Sakellaropoulos, N; Loukopoulos, D

    2000-04-01

    Hereditary hemochromatosis (HH) is common among Caucasians; reported disease frequencies vary from 0.3 to 0.8%. Identification of a candidate HFE gene in 1996 was soon followed by the description of two ancestral mutations, i.e., c.845G-->A (C282Y) and c.187C-->G (H63D). To these was recently added the mutation S65C, which may represent a simple polymorphism. The incidence of HH in Greece is unknown but clinical cases are rare. Also unknown is the carrier frequency of the two mutant alleles. A first estimate of the latter is given in the present report. It is based on data from the genetic analysis of 10 unrelated patients of Greek origin who were referred to our center for genotyping and 158 unselected male blood donors. The allele frequencies for the C282Y and H63D mutations were 0.003 and 0.145, respectively. The C282Y allele was detected in 50% of HH patients. This is considerably lower than the frequencies reported for HH patients in the U.S.A. (82%) and France (91 %) and closer to that reported in Italy (64%). Five patients did not carry any known HFE mutation; three may represent cases of juvenile hemochromatosis, given their early onset with iron overload, hypogonadism, and heart disease. We suggest that genetic heterogeneity is more prominent in Southern Europe. It is also possible that the penetrance of the responsible genes is different across the Mediterranean.

  12. Musa genetic diversity revealed by SRAP and AFLP.

    PubMed

    Youssef, Muhammad; James, Andrew C; Rivera-Madrid, Renata; Ortiz, Rodomiro; Escobedo-GraciaMedrano, Rosa María

    2011-03-01

    The sequence-related amplified polymorphism (SRAP) technique, aimed for the amplification of open reading frames (ORFs), vis-â-vis that of the amplified fragment length polymorphisms (AFLP) were used to analyze the genetic variation and relationships among forty Musa accessions; which include commercial cultivars and wild species of interest for the genetic enhancement of Musa. A total of 403 SRAP and 837 AFLP amplicons were generated by 10 SRAP and 15 AFLP primer combinations, of which 353 and 787 bands were polymorphic, respectively. Both cluster analysis of unweighted pair-grouping method with arithmetic averages (UPGMA) and principal coordinate (PCO) analysis separated the forty accessions into their recognized sections (Eumusa, Australimusa, Callimusa and Rhodochlamys) and species. The percentage of polymorphism amongst sections and species and the relationships within Eumusa species and subspecies varied between the two marker systems. In addition to its practical simplicity, SRAP exhibited approximately threefold more specific and unique bands than AFLP, 37 and 13%, respectively. SRAP markers are demonstrated here to be proficient tools for discriminating amongst M. acuminata, M. balbisiana and M. schizocarpa in the Eumusa section, as well as between plantains and cooking bananas within triploid cultivars.

  13. Comparative riverscape genetics reveals reservoirs of genetic diversity for conservation and restoration of Great Plains fishes

    PubMed Central

    Osborne, Megan J; Perkin, Joshuah S.; Gido, Keith B.; Turner, Thomas F.

    2014-01-01

    We used comparative landscape genetics to examine the relative roles of historical events, intrinsic traits, and landscape factors in determining the distribution of genetic diversity of river fishes across the North American Great Plains. Spatial patterns of diversity were overlaid on a patch-based graphical model, and then compared within and among three species that co-occurred across five Great Plains watersheds. Species differing in reproductive strategy (benthic vs. pelagic spawning) were hypothesized to have different patterns of genetic diversity, but the overriding factor shaping contemporary patterns of diversity was the signature of past climates and geological history. Allelic diversity was significantly higher at southern latitudes for Cyprinella lutrensis and Hybognathus placitus, consistent with northward expansion from southern Pleistocene refugia. Within the historical context, all species exhibited lowered occupancy and abundance in heavily fragmented and drier upstream reaches, particularly H. placitus; a pelagic-spawning species, suggesting rates of extirpation have outpaced losses of genetic diversity in this species. Within most basins, genetically diverse populations of each species persisted. Hence, reconnecting genetically diverse populations with those characterized by reduced diversity (regardless of their position within the riverine network) would provide populations with greater genetic and demographic resilience. We discuss cases where cross-basin transfer may be appropriate to enhance genetic diversity and mitigate negative effects of climate change. Overall, striking similarities in genetic patterns and response to fragmentation and dewatering suggest a common strategy for genetic resource management in this unique riverine fish assemblage. PMID:25327780

  14. Epistatic study reveals two genetic interactions in blood pressure regulation

    PubMed Central

    2013-01-01

    Background Although numerous candidate gene and genome-wide association studies have been performed on blood pressure, a small number of regulating genetic variants having a limited effect have been identified. This phenomenon can partially be explained by possible gene-gene/epistasis interactions that were little investigated so far. Methods We performed a pre-planned two-phase investigation: in phase 1, one hundred single nucleotide polymorphisms (SNPs) in 65 candidate genes were genotyped in 1,912 French unrelated adults in order to study their two-locus combined effects on blood pressure (BP) levels. In phase 2, the significant epistatic interactions observed in phase 1 were tested in an independent population gathering 1,755 unrelated European adults. Results Among the 9 genetic variants significantly associated with systolic and diastolic BP in phase 1, some may act through altering the corresponding protein levels: SNPs rs5742910 (Padjusted≤0.03) and rs6046 (Padjusted =0.044) in F7 and rs1800469 (Padjusted ≤0.036) in TGFB1; whereas some may be functional through altering the corresponding protein structure: rs1800590 (Padjusted =0.028, SE=0.088) in LPL and rs2228570 (Padjusted ≤9.48×10-4) in VDR. The two epistatic interactions found for systolic and diastolic BP in the discovery phase: VCAM1 (rs1041163) * APOB (rs1367117), and SCGB1A1 (rs3741240) * LPL (rs1800590), were tested in the replication population and we observed significant interactions on DBP. In silico analyses yielded putative functional properties of the SNPs involved in these epistatic interactions trough the alteration of corresponding protein structures. Conclusions These findings support the hypothesis that different pathways and then different genes may act synergistically in order to modify BP. This could highlight novel pathophysiologic mechanisms underlying hypertension. PMID:23298194

  15. Genetically Engineered Transvestites Reveal Novel Mating Genes in Budding Yeast

    PubMed Central

    Huberman, Lori B.; Murray, Andrew W.

    2013-01-01

    Haploid budding yeast has two mating types, defined by the alleles of the MAT locus, MATa and MATα. Two haploid cells of opposite mating types mate by signaling to each other using reciprocal pheromones and receptors, polarizing and growing toward each other, and eventually fusing to form a single diploid cell. The pheromones and receptors are necessary and sufficient to define a mating type, but other mating-type-specific proteins make mating more efficient. We examined the role of these proteins by genetically engineering “transvestite” cells that swap the pheromone, pheromone receptor, and pheromone processing factors of one mating type for another. These cells mate with each other, but their mating is inefficient. By characterizing their mating defects and examining their transcriptomes, we found Afb1 (a-factor barrier), a novel MATα-specific protein that interferes with a-factor, the pheromone secreted by MATa cells. Strong pheromone secretion is essential for efficient mating, and the weak mating of transvestites can be improved by boosting their pheromone production. Synthetic biology can characterize the factors that control efficiency in biological processes. In yeast, selection for increased mating efficiency is likely to have continually boosted pheromone levels and the ability to discriminate between partners who make more and less pheromone. This discrimination comes at a cost: weak mating in situations where all potential partners make less pheromone. PMID:24121774

  16. Genotyping of ancient Mycobacterium tuberculosis strains reveals historic genetic diversity

    PubMed Central

    Müller, Romy; Roberts, Charlotte A.; Brown, Terence A.

    2014-01-01

    The evolutionary history of the Mycobacterium tuberculosis complex (MTBC) has previously been studied by analysis of sequence diversity in extant strains, but not addressed by direct examination of strain genotypes in archaeological remains. Here, we use ancient DNA sequencing to type 11 single nucleotide polymorphisms and two large sequence polymorphisms in the MTBC strains present in 10 archaeological samples from skeletons from Britain and Europe dating to the second–nineteenth centuries AD. The results enable us to assign the strains to groupings and lineages recognized in the extant MTBC. We show that at least during the eighteenth–nineteenth centuries AD, strains of M. tuberculosis belonging to different genetic groups were present in Britain at the same time, possibly even at a single location, and we present evidence for a mixed infection in at least one individual. Our study shows that ancient DNA typing applied to multiple samples can provide sufficiently detailed information to contribute to both archaeological and evolutionary knowledge of the history of tuberculosis. PMID:24573854

  17. The integration of quantitative genetics, paleontology, and neontology reveals genetic underpinnings of primate dental evolution

    PubMed Central

    Hlusko, Leslea J.; Schmitt, Christopher A.; Monson, Tesla A.; Brasil, Marianne F.; Mahaney, Michael C.

    2016-01-01

    Developmental genetics research on mice provides a relatively sound understanding of the genes necessary and sufficient to make mammalian teeth. However, mouse dentitions are highly derived compared with human dentitions, complicating the application of these insights to human biology. We used quantitative genetic analyses of data from living nonhuman primates and extensive osteological and paleontological collections to refine our assessment of dental phenotypes so that they better represent how the underlying genetic mechanisms actually influence anatomical variation. We identify ratios that better characterize the output of two dental genetic patterning mechanisms for primate dentitions. These two newly defined phenotypes are heritable with no measurable pleiotropic effects. When we consider how these two phenotypes vary across neontological and paleontological datasets, we find that the major Middle Miocene taxonomic shift in primate diversity is characterized by a shift in these two genetic outputs. Our results build on the mouse model by combining quantitative genetics and paleontology, and thereby elucidate how genetic mechanisms likely underlie major events in primate evolution. PMID:27402751

  18. The integration of quantitative genetics, paleontology, and neontology reveals genetic underpinnings of primate dental evolution.

    PubMed

    Hlusko, Leslea J; Schmitt, Christopher A; Monson, Tesla A; Brasil, Marianne F; Mahaney, Michael C

    2016-08-16

    Developmental genetics research on mice provides a relatively sound understanding of the genes necessary and sufficient to make mammalian teeth. However, mouse dentitions are highly derived compared with human dentitions, complicating the application of these insights to human biology. We used quantitative genetic analyses of data from living nonhuman primates and extensive osteological and paleontological collections to refine our assessment of dental phenotypes so that they better represent how the underlying genetic mechanisms actually influence anatomical variation. We identify ratios that better characterize the output of two dental genetic patterning mechanisms for primate dentitions. These two newly defined phenotypes are heritable with no measurable pleiotropic effects. When we consider how these two phenotypes vary across neontological and paleontological datasets, we find that the major Middle Miocene taxonomic shift in primate diversity is characterized by a shift in these two genetic outputs. Our results build on the mouse model by combining quantitative genetics and paleontology, and thereby elucidate how genetic mechanisms likely underlie major events in primate evolution.

  19. Genetics of the pig tapeworm in madagascar reveal a history of human dispersal and colonization.

    PubMed

    Yanagida, Tetsuya; Carod, Jean-François; Sako, Yasuhito; Nakao, Minoru; Hoberg, Eric P; Ito, Akira

    2014-01-01

    An intricate history of human dispersal and geographic colonization has strongly affected the distribution of human pathogens. The pig tapeworm Taenia solium occurs throughout the world as the causative agent of cysticercosis, one of the most serious neglected tropical diseases. Discrete genetic lineages of T. solium in Asia and Africa/Latin America are geographically disjunct; only in Madagascar are they sympatric. Linguistic, archaeological and genetic evidence has indicated that the people in Madagascar have mixed ancestry from Island Southeast Asia and East Africa. Hence, anthropogenic introduction of the tapeworm from Southeast Asia and Africa had been postulated. This study shows that the major mitochondrial haplotype of T. solium in Madagascar is closely related to those from the Indian Subcontinent. Parasitological evidence presented here, and human genetics previously reported, support the hypothesis of an Indian influence on Malagasy culture coinciding with periods of early human migration onto the island. We also found evidence of nuclear-mitochondrial discordance in single tapeworms, indicating unexpected cross-fertilization between the two lineages of T. solium. Analyses of genetic and geographic populations of T. solium in Madagascar will shed light on apparently rapid evolution of this organism driven by recent (<2,000 yr) human migrations, following tens of thousands of years of geographic isolation. PMID:25329310

  20. Genetics of the Pig Tapeworm in Madagascar Reveal a History of Human Dispersal and Colonization

    PubMed Central

    Yanagida, Tetsuya; Carod, Jean-François; Sako, Yasuhito; Nakao, Minoru; Hoberg, Eric P.; Ito, Akira

    2014-01-01

    An intricate history of human dispersal and geographic colonization has strongly affected the distribution of human pathogens. The pig tapeworm Taenia solium occurs throughout the world as the causative agent of cysticercosis, one of the most serious neglected tropical diseases. Discrete genetic lineages of T. solium in Asia and Africa/Latin America are geographically disjunct; only in Madagascar are they sympatric. Linguistic, archaeological and genetic evidence has indicated that the people in Madagascar have mixed ancestry from Island Southeast Asia and East Africa. Hence, anthropogenic introduction of the tapeworm from Southeast Asia and Africa had been postulated. This study shows that the major mitochondrial haplotype of T. solium in Madagascar is closely related to those from the Indian Subcontinent. Parasitological evidence presented here, and human genetics previously reported, support the hypothesis of an Indian influence on Malagasy culture coinciding with periods of early human migration onto the island. We also found evidence of nuclear-mitochondrial discordance in single tapeworms, indicating unexpected cross-fertilization between the two lineages of T. solium. Analyses of genetic and geographic populations of T. solium in Madagascar will shed light on apparently rapid evolution of this organism driven by recent (<2,000 yr) human migrations, following tens of thousands of years of geographic isolation. PMID:25329310

  1. Comparative genomic analysis reveals bilateral breast cancers are genetically independent.

    PubMed

    Song, Fangfang; Li, Xiangchun; Song, Fengju; Zhao, Yanrui; Li, Haixin; Zheng, Hong; Gao, Zhibo; Wang, Jun; Zhang, Wei; Chen, Kexin

    2015-10-13

    Bilateral breast cancer (BBC) poses a major challenge for oncologists because of the cryptic relationship between the two lesions. The purpose of this study was to determine the origin of the contralateral breast cancer (either dependent or independent of the index tumor). Here, we used ultra-deep whole-exome sequencing and array comparative genomic hybridization (aCGH) to study four paired samples of BBCs with different tumor subtypes and time intervals between the developments of each tumor. We used two paired primary breast tumors and corresponding metastatic liver lesions as the control. We tested the origin independent nature of BBC in three ways: mutational concordance, mutational signature clustering, and clonality analysis using copy number profiles. We found that the paired BBC samples had near-zero concordant mutation rates, which were much lower than those of the paired primary/metastasis samples. The results of a mutational signature analysis also suggested that BBCs are independent of one another. A clonality analysis using aCGH data further revealed that paired BBC samples was clonally independent, in contrast to clonal related origin found for paired primary/metastasis samples. Our preliminary findings show that BBCs in Han Chinese women are origin independent and thus should be treated separately. PMID:26378809

  2. Marine viruses, a genetic reservoir revealed by targeted viromics

    PubMed Central

    Martínez, Joaquín Martínez; Swan, Brandon K; Wilson, William H

    2014-01-01

    Metagenomics has opened new windows on investigating viral diversity and functions. Viromic studies typically require large sample volumes and filtration through 0.2 μm pore-size filters, consequently excluding or under-sampling tailed and very large viruses. We have optimized a targeted viromic approach that employs fluorescence-activated sorting and whole genome amplification to produce dsDNA-enriched libraries from discrete viral populations from a 1-ml water sample. Using this approach on an environmental sample from the Patagonian Shelf, we produced three distinct libraries. One of the virus libraries was dominated (79.65% of sequences with known viral homology) by giant viruses from the Mimiviridae and Phycodnaviridae families, while the two other viromes were dominated by smaller phycodnaviruses, cyanophages and other bacteriophages. The estimated genotypic richness and diversity in our sorted viromes, with 52–163 estimated genotypes, was much lower than in previous virome reports. Fragment recruitment of metagenome reads to selected reference viral genomes yields high genome coverage, suggesting little amplification and sequencing bias against some genomic regions. These results underscore the value of our approach as an effective way to target and investigate specific virus groups. In particular, it will help reveal the diversity and abundance of giant viruses in marine ecosystems. PMID:24304671

  3. The intergenerational correlation in weight: How genetic resemblance reveals the social role of families*

    PubMed Central

    Martin, Molly A.

    2009-01-01

    According to behavioral genetics research, the intergenerational correlation in weight derives solely from shared genetic predispositions, but complete genetic determinism contradicts the scientific consensus that social and behavioral change underlies the modern obesity epidemic. To address this conundrum, this article utilizes sibling data from the National Longitudinal Study of Adolescent Health and extends structural equation sibling models to incorporate siblings’ genetic relationships to explore the role of families’ social characteristics for adolescent weight. The article is the first to demonstrate that the association between parents’ obesity and adolescent weight is both social and genetic. Furthermore, by incorporating genetic information, the shared and social origins of the correlation between inactivity and weight are better revealed. PMID:19569401

  4. The genetic basis for ecological adaptation of the Atlantic herring revealed by genome sequencing.

    PubMed

    Martinez Barrio, Alvaro; Lamichhaney, Sangeet; Fan, Guangyi; Rafati, Nima; Pettersson, Mats; Zhang, He; Dainat, Jacques; Ekman, Diana; Höppner, Marc; Jern, Patric; Martin, Marcel; Nystedt, Björn; Liu, Xin; Chen, Wenbin; Liang, Xinming; Shi, Chengcheng; Fu, Yuanyuan; Ma, Kailong; Zhan, Xiao; Feng, Chungang; Gustafson, Ulla; Rubin, Carl-Johan; Sällman Almén, Markus; Blass, Martina; Casini, Michele; Folkvord, Arild; Laikre, Linda; Ryman, Nils; Ming-Yuen Lee, Simon; Xu, Xun; Andersson, Leif

    2016-01-01

    Ecological adaptation is of major relevance to speciation and sustainable population management, but the underlying genetic factors are typically hard to study in natural populations due to genetic differentiation caused by natural selection being confounded with genetic drift in subdivided populations. Here, we use whole genome population sequencing of Atlantic and Baltic herring to reveal the underlying genetic architecture at an unprecedented detailed resolution for both adaptation to a new niche environment and timing of reproduction. We identify almost 500 independent loci associated with a recent niche expansion from marine (Atlantic Ocean) to brackish waters (Baltic Sea), and more than 100 independent loci showing genetic differentiation between spring- and autumn-spawning populations irrespective of geographic origin. Our results show that both coding and non-coding changes contribute to adaptation. Haplotype blocks, often spanning multiple genes and maintained by selection, are associated with genetic differentiation. PMID:27138043

  5. The genetic basis for ecological adaptation of the Atlantic herring revealed by genome sequencing

    PubMed Central

    Martinez Barrio, Alvaro; Lamichhaney, Sangeet; Fan, Guangyi; Rafati, Nima; Pettersson, Mats; Zhang, He; Dainat, Jacques; Ekman, Diana; Höppner, Marc; Jern, Patric; Martin, Marcel; Nystedt, Björn; Liu, Xin; Chen, Wenbin; Liang, Xinming; Shi, Chengcheng; Fu, Yuanyuan; Ma, Kailong; Zhan, Xiao; Feng, Chungang; Gustafson, Ulla; Rubin, Carl-Johan; Sällman Almén, Markus; Blass, Martina; Casini, Michele; Folkvord, Arild; Laikre, Linda; Ryman, Nils; Ming-Yuen Lee, Simon; Xu, Xun; Andersson, Leif

    2016-01-01

    Ecological adaptation is of major relevance to speciation and sustainable population management, but the underlying genetic factors are typically hard to study in natural populations due to genetic differentiation caused by natural selection being confounded with genetic drift in subdivided populations. Here, we use whole genome population sequencing of Atlantic and Baltic herring to reveal the underlying genetic architecture at an unprecedented detailed resolution for both adaptation to a new niche environment and timing of reproduction. We identify almost 500 independent loci associated with a recent niche expansion from marine (Atlantic Ocean) to brackish waters (Baltic Sea), and more than 100 independent loci showing genetic differentiation between spring- and autumn-spawning populations irrespective of geographic origin. Our results show that both coding and non-coding changes contribute to adaptation. Haplotype blocks, often spanning multiple genes and maintained by selection, are associated with genetic differentiation. DOI: http://dx.doi.org/10.7554/eLife.12081.001 PMID:27138043

  6. The genetic basis for ecological adaptation of the Atlantic herring revealed by genome sequencing.

    PubMed

    Martinez Barrio, Alvaro; Lamichhaney, Sangeet; Fan, Guangyi; Rafati, Nima; Pettersson, Mats; Zhang, He; Dainat, Jacques; Ekman, Diana; Höppner, Marc; Jern, Patric; Martin, Marcel; Nystedt, Björn; Liu, Xin; Chen, Wenbin; Liang, Xinming; Shi, Chengcheng; Fu, Yuanyuan; Ma, Kailong; Zhan, Xiao; Feng, Chungang; Gustafson, Ulla; Rubin, Carl-Johan; Sällman Almén, Markus; Blass, Martina; Casini, Michele; Folkvord, Arild; Laikre, Linda; Ryman, Nils; Ming-Yuen Lee, Simon; Xu, Xun; Andersson, Leif

    2016-05-03

    Ecological adaptation is of major relevance to speciation and sustainable population management, but the underlying genetic factors are typically hard to study in natural populations due to genetic differentiation caused by natural selection being confounded with genetic drift in subdivided populations. Here, we use whole genome population sequencing of Atlantic and Baltic herring to reveal the underlying genetic architecture at an unprecedented detailed resolution for both adaptation to a new niche environment and timing of reproduction. We identify almost 500 independent loci associated with a recent niche expansion from marine (Atlantic Ocean) to brackish waters (Baltic Sea), and more than 100 independent loci showing genetic differentiation between spring- and autumn-spawning populations irrespective of geographic origin. Our results show that both coding and non-coding changes contribute to adaptation. Haplotype blocks, often spanning multiple genes and maintained by selection, are associated with genetic differentiation.

  7. Screening of random peptide library of hemagglutinin from pandemic 2009 A(H1N1) influenza virus reveals unexpected antigenically important regions.

    PubMed

    Xu, Wanghui; Han, Lu; Lin, Zhanglin

    2011-01-01

    The antigenic structure of the membrane protein hemagglutinin (HA) from the 2009 A(H1N1) influenza virus was dissected with a high-throughput screening method using complex antisera. The approach involves generating yeast cell libraries displaying a pool of random peptides of controllable lengths on the cell surface, followed by one round of fluorescence-activated cell sorting (FACS) against antisera from mouse, goat and human, respectively. The amino acid residue frequency appearing in the antigenic peptides at both the primary sequence and structural level was determined and used to identify "hot spots" or antigenically important regions. Unexpectedly, different antigenic structures were seen for different antisera. Moreover, five antigenic regions were identified, of which all but one are located in the conserved HA stem region that is responsible for membrane fusion. Our findings are corroborated by several recent studies on cross-neutralizing H1 subtype antibodies that recognize the HA stem region. The antigenic peptides identified may provide clues for creating peptide vaccines with better accessibility to memory B cells and better induction of cross-neutralizing antibodies than the whole HA protein. The scheme used in this study enables a direct mapping of the antigenic regions of viral proteins recognized by antisera, and may be useful for dissecting the antigenic structures of other viral proteins. PMID:21437206

  8. Analysis of genetic diversity in red clover (Trifolium pratense L.) breeding populations as revealed by RAPD genetic markers.

    PubMed

    Ulloa, Odeth; Ortega, Fernando; Campos, Hugo

    2003-08-01

    Red clover is an important forage legume species for temperate regions and very little is known about the genetic organization of its breeding populations. We used random amplified polymorphic DNA (RAPD) genetic markers to address the genetic diversity and the distribution of variation in 20 breeding populations and cultivars from Chile, Argentina, Uruguay, and Switzerland. Genetic distances were calculated for all possible pairwise combinations. A high level of polymorphism was found and the proportion of polymorphic loci across populations was 74.2%. A population derived from a non-certified seedlot displayed a higher proportion of polymorphic loci than its respective certified seedlot. Gene diversity values and population genetics parameters suggest that the populations analyzed are diverse. An analysis of molecular variance (AMOVA) revealed that the largest proportion of variation (80.4%) resides at the within population level. RAPD markers are a useful tool for red clover breeding programs. A dendrogram based on genetic distances divided the breeding populations analyzed into three distinct groups. The amount and partition of diversity observed can be of value in identifying the populations that parents of synthetic cultivars are derived from and to exploit the variation available in the populations analyzed. PMID:12897860

  9. Genetically targeted single-channel optical recording reveals multiple Orai1 gating states and oscillations in calcium influx

    PubMed Central

    Dynes, Joseph L.; Amcheslavsky, Anna; Cahalan, Michael D.

    2016-01-01

    Orai1 comprises the pore-forming subunit of the Ca2+ release-activated Ca2+ (CRAC) channel. When bound and activated by stromal interacting molecule 1 (STIM1), an endoplasmic reticulum (ER)-resident calcium sensor, Orai1 channels possess high selectivity for calcium but extremely small conductance that has precluded direct recording of single-channel currents. We have developed an approach to visualize Orai1 activity by fusing Orai1 to fluorescent, genetically encoded calcium indicators (GECIs). The GECI–Orai1 probes reveal local Ca2+ influx at STIM1–Orai1 puncta. By whole cell recording, these fusions are fully functional as CRAC channels. When GECI–Orai1 and the CRAC-activating domain (CAD) of STIM1 were coexpressed at low levels and imaged using a total internal reflectance fluorescence microscope, cells exhibited sporadic fluorescence transients the size of diffraction-limited spots and the brightness of a few activated GECI proteins. Transients typically rose rapidly and fell into two classes according to duration: briefer “flickers” lasting only a few hundred milliseconds, and longer “pulses” lasting one to several seconds. The size, intensity, trace shape, frequency, distribution, physiological characteristics, and association with CAD binding together demonstrate that GECI–Orai1 fluorescence transients correspond to single-channel Orai1 responses. Single Orai1 channels gated by CAD, and small Orai1 puncta gated by STIM1, exhibit repetitive fluctuations in single-channel output. CAD binding supports a role in open state maintenance and reveals a second phase of CAD/STIM1 binding after channel opening. These first recordings of single-channel Orai1 currents reveal unexpected dynamics, and when paired with CAD association, support multiple single-channel states. PMID:26712003

  10. Essay Contest Reveals Misconceptions of High School Students in Genetics Content

    PubMed Central

    Mills Shaw, Kenna R.; Van Horne, Katie; Zhang, Hubert; Boughman, Joann

    2008-01-01

    National educational organizations have called upon scientists to become involved in K–12 education reform. From sporadic interaction with students to more sustained partnerships with teachers, the engagement of scientists takes many forms. In this case, scientists from the American Society of Human Genetics (ASHG), the Genetics Society of America (GSA), and the National Society of Genetic Counselors (NSGC) have partnered to organize an essay contest for high school students as part of the activities surrounding National DNA Day. We describe a systematic analysis of 500 of 2443 total essays submitted in response to this contest over 2 years. Our analysis reveals the nature of student misconceptions in genetics, the possible sources of these misconceptions, and potential ways to galvanize genetics education. PMID:18245328

  11. Essay contest reveals misconceptions of high school students in genetics content.

    PubMed

    Mills Shaw, Kenna R; Van Horne, Katie; Zhang, Hubert; Boughman, Joann

    2008-03-01

    National educational organizations have called upon scientists to become involved in K-12 education reform. From sporadic interaction with students to more sustained partnerships with teachers, the engagement of scientists takes many forms. In this case, scientists from the American Society of Human Genetics (ASHG), the Genetics Society of America (GSA), and the National Society of Genetic Counselors (NSGC) have partnered to organize an essay contest for high school students as part of the activities surrounding National DNA Day. We describe a systematic analysis of 500 of 2443 total essays submitted in response to this contest over 2 years. Our analysis reveals the nature of student misconceptions in genetics, the possible sources of these misconceptions, and potential ways to galvanize genetics education.

  12. Genetic Signature of Histiocytic Sarcoma Revealed by a Sleeping Beauty Transposon Genetic Screen in Mice

    PubMed Central

    Been, Raha A.; Linden, Michael A.; Hager, Courtney J.; DeCoursin, Krista J.; Abrahante, Juan E.; Landman, Sean R.; Steinbach, Michael; Sarver, Aaron L.; Largaespada, David A.; Starr, Timothy K.

    2014-01-01

    Histiocytic sarcoma is a rare, aggressive neoplasm that responds poorly to therapy. Histiocytic sarcoma is thought to arise from macrophage precursor cells via genetic changes that are largely undefined. To improve our understanding of the etiology of histiocytic sarcoma we conducted a forward genetic screen in mice using the Sleeping Beauty transposon as a mutagen to identify genetic drivers of histiocytic sarcoma. Sleeping Beauty mutagenesis was targeted to myeloid lineage cells using the Lysozyme2 promoter. Mice with activated Sleeping Beauty mutagenesis had significantly shortened lifespan and the majority of these mice developed tumors resembling human histiocytic sarcoma. Analysis of transposon insertions identified 27 common insertion sites containing 28 candidate cancer genes. Several of these genes are known drivers of hematological neoplasms, like Raf1, Fli1, and Mitf, while others are well-known cancer genes, including Nf1, Myc, Jak2, and Pten. Importantly, several new potential drivers of histiocytic sarcoma were identified and could serve as targets for therapy for histiocytic sarcoma patients. PMID:24827933

  13. Genetic diversity and population structure of endangered Aquilaria malaccensis revealed potential for future conservation.

    PubMed

    Singh, Pradeep; Nag, Akshay; Parmar, Rajni; Ghosh, Sneha; Bhau, Brijmohan Singh; Sharma, Ram Kumar

    2015-12-01

    The endangered Aquilaria malaccensis,is an important plant with high economic values. Characterization of genetic diversity and population structure is receiving tremendous attention for effective conservation of genetic resources. Considering important repositories of biological diversity, the genetic relationships of 127 A. malaccensis accessions from 10 home gardens of three states of northeast India were assessed using amplified fragment length polymorphism (AFLP). Of the 1153 fragments amplified with four AFLP primer combinations, 916 (79.4%) were found to be polymorphic. Polymorphic information content (PIC) and marker index (MI) of each primer combination correlate significantly with the number of genotypes resolved. Overall, a high genetic diversity (avg. 71.85%) was recorded. Further, high gene flow (Nm: 3.37), low genetic differentiation (FST: 0.069) and high within population genetic variation (93%) suggests that most of the genetic diversity is restricted within population. Neighbour joining (NJ), principal coordinate analysis (PCoA) and Bayesian-based STRUCTURE grouped all the accessions in two clusters with significant intermixing between populations, therefore, revealed that two genetically distinct gene pools are operating in the A. malaccensis populations cultivated in home gardens. Based on the various diversity inferences, five diverse populations (JOH, FN, HLF, DHM and ITN) were identified, which can be potentially exploited to develop conservation strategies for A. malaccensis.

  14. Genetic characterization of Toxoplasma gondii isolates from Portugal, Austria and Israel reveals higher genetic variability within the type II lineage.

    PubMed

    Verma, S K; Ajzenberg, D; Rivera-Sanchez, A; Su, C; Dubey, J P

    2015-06-01

    This study compared genetic diversity of Toxoplasma gondii isolates from Portugal, Austria and Israel. For this, we genotyped 90 T. gondii isolates (16 from Portugal, 67 from Austria and 7 from Israel) using 10 nested PCR-restriction length polymorphism (RFLP) genetic markers and 15 microsatellite (MS) markers. By PCR-RFLP typing, 7 isolates from Portugal chickens were identified as type II (ToxoDB #1 or #3), 4 were type III (ToxoDB #2) and the remaining 4 isolates have unique genotype pattern were designated as ToxoDB #254. One mouse virulent isolate from a bovine fetus (Bos taurus) in Portugal was type I (ToxoDB #10) at all loci and designated as TgCowPr1. All 67 isolates from Austria and 7 from Israel were type II (ToxoDB #1 or #3). By MS typing, many additional genetic variations were revealed among the type II and type III isolates. Phylogenetic analysis showed that isolates from the same geographical locations tend to cluster together, and there is little overlapping of genotypes among different locations. This study demonstrated that the MS markers can provide higher discriminatory power to reveal association of genotypes with geographical locations. Future studies of the type II strains in Europe by these MS markers will be useful to reveal transmission patterns of the parasite.

  15. Cloning of opal suppressor tRNA genes of a filamentous fungus reveals two tRNASerUGA genes with unexpected structural differences.

    PubMed Central

    Debuchy, R; Brygoo, Y

    1985-01-01

    The informational suppressors su4-1 and su8-1 of Podospora anserina were isolated by transformation of Schizosaccharomyces pombe UGA mutants. The DNA sequence revealed that they were opal (UGA) suppressor tRNAs. Wild-type alleles were also isolated by hybridization. The DNA sequence showed that they both encode species of tRNASerUGA. The gene SU8 has an 18-bp intervening sequence and its primary sequence is very different from that of SU4. PMID:3937728

  16. Mitochondrial genome of the homoscleromorph Oscarella carmela (Porifera, Demospongiae) reveals unexpected complexity in the common ancestor of sponges and other animals.

    PubMed

    Wang, Xiujuan; Lavrov, Dennis V

    2007-02-01

    Homoscleromorpha is a small group in the phylum Porifera (Sponges) characterized by several morphological features (basement membrane, acrosomes in spermatozoa, and cross-striated rootlets of the flagellar basal apparatus) shared with eumetazoan animals but not found in most other sponges. To clarify the phylogenetic position of this group, we determined and analyzed the complete mitochondrial DNA (mtDNA) sequence of the homoscleromorph sponge Oscarella carmela (Porifera, Demospongiae). O. carmela mtDNA is 20,327 bp and contains the largest complement of genes reported for animal mtDNA, including a putative gene for the C subunit of the twin-arginine translocase (tatC) that has never been found in animal mtDNA. The genes in O. carmela mtDNA are arranged in 2 clusters with opposite transcriptional orientations, a gene arrangement reminiscent of those in several cnidarian mtDNAs but unlike those reported in sponges. At the same time, phylogenetic analyses based on concatenated amino acid sequences from 12 mitochondrial (mt) protein genes strongly support the phylogenetic affinity between the Homoscleromorpha and other demosponges. Altogether, our data suggest that homoscleromorphs are demosponges that have retained ancestral features in both mt genome and morphological organization lost in other taxa and that the most recent common ancestor of sponges and other animals was morphologically and genetically more complex than previously thought.

  17. In vivo intracellular pH measurements in tobacco and Arabidopsis reveal an unexpected pH gradient in the endomembrane system.

    PubMed

    Martinière, Alexandre; Bassil, Elias; Jublanc, Elodie; Alcon, Carine; Reguera, Maria; Sentenac, Hervé; Blumwald, Eduardo; Paris, Nadine

    2013-10-01

    The pH homeostasis of endomembranes is essential for cellular functions. In order to provide direct pH measurements in the endomembrane system lumen, we targeted genetically encoded ratiometric pH sensors to the cytosol, the endoplasmic reticulum, and the trans-Golgi, or the compartments labeled by the vacuolar sorting receptor (VSR), which includes the trans-Golgi network and prevacuoles. Using noninvasive live-cell imaging to measure pH, we show that a gradual acidification from the endoplasmic reticulum to the lytic vacuole exists, in both tobacco (Nicotiana tabacum) epidermal (ΔpH -1.5) and Arabidopsis thaliana root cells (ΔpH -2.1). The average pH in VSR compartments was intermediate between that of the trans-Golgi and the vacuole. Combining pH measurements with in vivo colocalization experiments, we found that the trans-Golgi network had an acidic pH of 6.1, while the prevacuole and late prevacuole were both more alkaline, with pH of 6.6 and 7.1, respectively. We also showed that endosomal pH, and subsequently vacuolar trafficking of soluble proteins, requires both vacuolar-type H(+) ATPase-dependent acidification as well as proton efflux mediated at least by the activity of endosomal sodium/proton NHX-type antiporters.

  18. Mitochondrial DNA analyses reveal low genetic diversity in Culex quinquefasciatus from residential areas in Malaysia.

    PubMed

    Low, V L; Lim, P E; Chen, C D; Lim, Y A L; Tan, T K; Norma-Rashid, Y; Lee, H L; Sofian-Azirun, M

    2014-06-01

    The present study explored the intraspecific genetic diversity, dispersal patterns and phylogeographic relationships of Culex quinquefasciatus Say (Diptera: Culicidae) in Malaysia using reference data available in GenBank in order to reveal this species' phylogenetic relationships. A statistical parsimony network of 70 taxa aligned as 624 characters of the cytochrome c oxidase subunit I (COI) gene and 685 characters of the cytochrome c oxidase subunit II (COII) gene revealed three haplotypes (A1-A3) and four haplotypes (B1-B4), respectively. The concatenated sequences of both COI and COII genes with a total of 1309 characters revealed seven haplotypes (AB1-AB7). Analysis using tcs indicated that haplotype AB1 was the common ancestor and the most widespread haplotype in Malaysia. The genetic distance based on concatenated sequences of both COI and COII genes ranged from 0.00076 to 0.00229. Sequence alignment of Cx. quinquefasciatus from Malaysia and other countries revealed four haplotypes (AA1-AA4) by the COI gene and nine haplotypes (BB1-BB9) by the COII gene. Phylogenetic analyses demonstrated that Malaysian Cx. quinquefasciatus share the same genetic lineage as East African and Asian Cx. quinquefasciatus. This study has inferred the genetic lineages, dispersal patterns and hypothetical ancestral genotypes of Cx. quinquefasciatus.

  19. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity.

    PubMed

    Pope, Welkin H; Bowman, Charles A; Russell, Daniel A; Jacobs-Sera, Deborah; Asai, David J; Cresawn, Steven G; Jacobs, William R; Hendrix, Roger W; Lawrence, Jeffrey G; Hatfull, Graham F

    2015-01-01

    The bacteriophage population is large, dynamic, ancient, and genetically diverse. Limited genomic information shows that phage genomes are mosaic, and the genetic architecture of phage populations remains ill-defined. To understand the population structure of phages infecting a single host strain, we isolated, sequenced, and compared 627 phages of Mycobacterium smegmatis. Their genetic diversity is considerable, and there are 28 distinct genomic types (clusters) with related nucleotide sequences. However, amino acid sequence comparisons show pervasive genomic mosaicism, and quantification of inter-cluster and intra-cluster relatedness reveals a continuum of genetic diversity, albeit with uneven representation of different phages. Furthermore, rarefaction analysis shows that the mycobacteriophage population is not closed, and there is a constant influx of genes from other sources. Phage isolation and analysis was performed by a large consortium of academic institutions, illustrating the substantial benefits of a disseminated, structured program involving large numbers of freshman undergraduates in scientific discovery. PMID:25919952

  20. Genetic evolution of nevus of Ota reveals clonal heterogeneity acquiring BAP1 and TP53 mutations.

    PubMed

    Vivancos, Ana; Caratú, Ginevra; Matito, Judit; Muñoz, Eva; Ferrer, Berta; Hernández-Losa, Javier; Bodet, Domingo; Pérez-Alea, Mileidys; Cortés, Javier; Garcia-Patos, Vicente; Recio, Juan A

    2016-03-01

    Melanoma presents molecular alterations based on its anatomical location and exposure to environmental factors. Due to its intrinsic genetic heterogeneity, a simple snapshot of a tumor's genetic alterations does not reflect the tumor clonal complexity or specific gene-gene cooperation. Here, we studied the genetic alterations and clonal evolution of a unique patient with a Nevus of Ota that developed into a recurring uveal-like dermal melanoma. The Nevus of Ota and ulterior lesions contained GNAQ mutations were c-KIT positive, and tumors showed an increased RAS pathway activity during progression. Whole-exome sequencing of these lesions revealed the acquisition of BAP1 and TP53 mutations during tumor evolution, thereby unmasking clonal heterogeneity and allowing the identification of cooperating genes within the same tumor. Our results highlight the importance of studying tumor genetic evolution to identify cooperating mechanisms and delineate effective therapies. PMID:26701415

  1. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity.

    PubMed

    Pope, Welkin H; Bowman, Charles A; Russell, Daniel A; Jacobs-Sera, Deborah; Asai, David J; Cresawn, Steven G; Jacobs, William R; Hendrix, Roger W; Lawrence, Jeffrey G; Hatfull, Graham F

    2015-04-28

    The bacteriophage population is large, dynamic, ancient, and genetically diverse. Limited genomic information shows that phage genomes are mosaic, and the genetic architecture of phage populations remains ill-defined. To understand the population structure of phages infecting a single host strain, we isolated, sequenced, and compared 627 phages of Mycobacterium smegmatis. Their genetic diversity is considerable, and there are 28 distinct genomic types (clusters) with related nucleotide sequences. However, amino acid sequence comparisons show pervasive genomic mosaicism, and quantification of inter-cluster and intra-cluster relatedness reveals a continuum of genetic diversity, albeit with uneven representation of different phages. Furthermore, rarefaction analysis shows that the mycobacteriophage population is not closed, and there is a constant influx of genes from other sources. Phage isolation and analysis was performed by a large consortium of academic institutions, illustrating the substantial benefits of a disseminated, structured program involving large numbers of freshman undergraduates in scientific discovery.

  2. Measurement of PIP3 Levels Reveals an Unexpected Role for p110β in Early Adaptive Responses to p110α-Specific Inhibitors in Luminal Breast Cancer

    PubMed Central

    Costa, Carlotta; Ebi, Hiromichi; Martini, Miriam; Beausoleil, Sean A.; Faber, Anthony C.; Jakubik, Charles T.; Huang, Alan; Wang, Youzhen; Nishtala, Madhuri; Hall, Ben; Rikova, Klarisa; Zhao, Jean; Hirsch, Emilio; Benes, Cyril H.

    2016-01-01

    SUMMARY BYL719, which selectively inhibits the alpha isoform of the phosphatidylinositol 3-kinase (PI3K) catalytic subunit (p110α), is currently in clinical trials for the treatment of solid tumors, especially luminal breast cancers with PIK3CA mutations and/or HER2 amplification. This study reveals that, even among these sensitive cancers, the initial efficacy of p110α inhibition is mitigated by rapid re-accumulation of the PI3K product PIP3 produced by the p110β isoform. Importantly, the reactivation of PI3K mediated by p110β does not invariably restore AKT phosphorylation, demonstrating the limitations of using phospho-AKT as a surrogate to measure PI3K activation. Consistently, we show that the addition of the p110β inhibitor to BYL719 prevents the PIP3 rebound and induces greater antitumor efficacy in HER2-amplified and PIK3CA mutant cancers. PMID:25544637

  3. Genetic assessment of traits and genetic relationship in blackgram (Vigna mungo) revealed by isoenzymes.

    PubMed

    Singh, Ajay Kumar; Mishra, Avinash; Shukla, Arvind

    2009-08-01

    Sixty blackgram accessions were evaluated and classified into different clusters to assess genetic diversity and traits using isoenzymes. Trait-specific expression was assessed, and isoenzyme bands were observed: a peroxidase band (Rm 0.60) associated with dwarfness and an esterase band (Rm 0.25) with tallness. Early maturing varieties were characterized by a specific esterase isoenzyme band of Rm 0.51. All yellow mosaic virus susceptible genotypes had two bands of esterase isoenzyme, Rm 0.42 and 0.70. Resistant genotypes showed three bands (0.32, 0.33, and 0.35) of alkaline phosphatase. Peroxidase isoenzyme was helpful to differentiate green-seeded from black-seeded varieties. Two bands (0.58 and 0.83) were observed in black-seeded accessions, and two different bands (0.74 and 0.76) were observed in green-seeded accessions. Clustering of germplasm and assessment of traits will facilitate the use of germplasm for the improvement of blackgram.

  4. Severe Left Ventricular Hypertrophy, Small Pericardial Effusion, and Diffuse Late Gadolinium Enhancement by Cardiac Magnetic Resonance Suspecting Cardiac Amyloidosis: Endomyocardial Biopsy Reveals an Unexpected Diagnosis

    PubMed Central

    Hofmann, Nina P.; Giusca, Sorin; Klingel, Karin; Nunninger, Peter; Korosoglou, Grigorios

    2016-01-01

    Left ventricular (LV) hypertrophy can be related to a multitude of cardiac disorders, such as hypertrophic cardiomyopathy (HCM), cardiac amyloidosis, and hypertensive heart disease. Although the presence of LV hypertrophy is generally associated with poorer cardiac outcomes, the early differentiation between these pathologies is crucial due to the presence of specific treatment options. The diagnostic process with LV hypertrophy requires the integration of clinical evaluation, electrocardiography (ECG), echocardiography, biochemical markers, and if required CMR and endomyocardial biopsy in order to reach the correct diagnosis. Here, we present a case of a patient with severe LV hypertrophy (septal wall thickness of 23 mm, LV mass of 264 g, and LV mass index of 147 g/m2), severely impaired longitudinal function, and preserved radial contractility (ejection fraction = 55%), accompanied by small pericardial effusion and diffuse late gadolinium enhancement (LGE) by cardiac magnetic resonance (CMR). Due to the imaging findings, an infiltrative cardiomyopathy, such as cardiac amyloidosis, was suspected. However, amyloid accumulation was excluded by endomyocardial biopsy, which revealed the presence of diffuse myocardial fibrosis in an advanced hypertensive heart disease. PMID:27247807

  5. Temporal analysis of mtDNA variation reveals decreased genetic diversity in least terns

    USGS Publications Warehouse

    Draheim, Hope M.; Baird, Patricia; Haig, Susan M.

    2012-01-01

    The Least Tern (Sternula antillarum) has undergone large population declines over the last century as a result of direct and indirect anthropogenic factors. The genetic implications of these declines are unknown. We used historical museum specimens (pre-1960) and contemporary (2001–2005) samples to examine range-wide phylogeographic patterns and investigate potential loss in the species' genetic variation. We obtained sequences (522 bp) of the mitochondrial gene for NADH dehydrogenase subunit 6 (ND6) from 268 individuals from across the species' range. Phylogeographic analysis revealed no association with geography or traditional subspecies designations. However, we detected potential reductions in genetic diversity in contemporary samples from California and the Atlantic coast Least Tern from that in historical samples, suggesting that current genetic diversity in Least Tern populations is lower than in their pre-1960 counterparts. Our results offer unique insights into changes in the Least Tern's genetic diversity over the past century and highlight the importance and utility of museum specimens in studies of conservation genetics.

  6. Modeling development and quantitative trait mapping reveal independent genetic modules for leaf size and shape.

    PubMed

    Baker, Robert L; Leong, Wen Fung; Brock, Marcus T; Markelz, R J Cody; Covington, Michael F; Devisetty, Upendra K; Edwards, Christine E; Maloof, Julin; Welch, Stephen; Weinig, Cynthia

    2015-10-01

    Improved predictions of fitness and yield may be obtained by characterizing the genetic controls and environmental dependencies of organismal ontogeny. Elucidating the shape of growth curves may reveal novel genetic controls that single-time-point (STP) analyses do not because, in theory, infinite numbers of growth curves can result in the same final measurement. We measured leaf lengths and widths in Brassica rapa recombinant inbred lines (RILs) throughout ontogeny. We modeled leaf growth and allometry as function valued traits (FVT), and examined genetic correlations between these traits and aspects of phenology, physiology, circadian rhythms and fitness. We used RNA-seq to construct a SNP linkage map and mapped trait quantitative trait loci (QTL). We found genetic trade-offs between leaf size and growth rate FVT and uncovered differences in genotypic and QTL correlations involving FVT vs STPs. We identified leaf shape (allometry) as a genetic module independent of length and width and identified selection on FVT parameters of development. Leaf shape is associated with venation features that affect desiccation resistance. The genetic independence of leaf shape from other leaf traits may therefore enable crop optimization in leaf shape without negative effects on traits such as size, growth rate, duration or gas exchange.

  7. Modeling development and quantitative trait mapping reveal independent genetic modules for leaf size and shape.

    PubMed

    Baker, Robert L; Leong, Wen Fung; Brock, Marcus T; Markelz, R J Cody; Covington, Michael F; Devisetty, Upendra K; Edwards, Christine E; Maloof, Julin; Welch, Stephen; Weinig, Cynthia

    2015-10-01

    Improved predictions of fitness and yield may be obtained by characterizing the genetic controls and environmental dependencies of organismal ontogeny. Elucidating the shape of growth curves may reveal novel genetic controls that single-time-point (STP) analyses do not because, in theory, infinite numbers of growth curves can result in the same final measurement. We measured leaf lengths and widths in Brassica rapa recombinant inbred lines (RILs) throughout ontogeny. We modeled leaf growth and allometry as function valued traits (FVT), and examined genetic correlations between these traits and aspects of phenology, physiology, circadian rhythms and fitness. We used RNA-seq to construct a SNP linkage map and mapped trait quantitative trait loci (QTL). We found genetic trade-offs between leaf size and growth rate FVT and uncovered differences in genotypic and QTL correlations involving FVT vs STPs. We identified leaf shape (allometry) as a genetic module independent of length and width and identified selection on FVT parameters of development. Leaf shape is associated with venation features that affect desiccation resistance. The genetic independence of leaf shape from other leaf traits may therefore enable crop optimization in leaf shape without negative effects on traits such as size, growth rate, duration or gas exchange. PMID:26083847

  8. Genetic code evolution reveals the neutral emergence of mutational robustness, and information as an evolutionary constraint.

    PubMed

    Massey, Steven E

    2015-01-01

    The standard genetic code (SGC) is central to molecular biology and its origin and evolution is a fundamental problem in evolutionary biology, the elucidation of which promises to reveal much about the origins of life. In addition, we propose that study of its origin can also reveal some fundamental and generalizable insights into mechanisms of molecular evolution, utilizing concepts from complexity theory. The first is that beneficial traits may arise by non-adaptive processes, via a process of "neutral emergence". The structure of the SGC is optimized for the property of error minimization, which reduces the deleterious impact of point mutations. Via simulation, it can be shown that genetic codes with error minimization superior to the SGC can emerge in a neutral fashion simply by a process of genetic code expansion via tRNA and aminoacyl-tRNA synthetase duplication, whereby similar amino acids are added to codons related to that of the parent amino acid. This process of neutral emergence has implications beyond that of the genetic code, as it suggests that not all beneficial traits have arisen by the direct action of natural selection; we term these "pseudaptations", and discuss a range of potential examples. Secondly, consideration of genetic code deviations (codon reassignments) reveals that these are mostly associated with a reduction in proteome size. This code malleability implies the existence of a proteomic constraint on the genetic code, proportional to the size of the proteome (P), and that its reduction in size leads to an "unfreezing" of the codon - amino acid mapping that defines the genetic code, consistent with Crick's Frozen Accident theory. The concept of a proteomic constraint may be extended to propose a general informational constraint on genetic fidelity, which may be used to explain variously, differences in mutation rates in genomes with differing proteome sizes, differences in DNA repair capacity and genome GC content between organisms, a

  9. Genetic Code Evolution Reveals the Neutral Emergence of Mutational Robustness, and Information as an Evolutionary Constraint

    PubMed Central

    Massey, Steven E.

    2015-01-01

    The standard genetic code (SGC) is central to molecular biology and its origin and evolution is a fundamental problem in evolutionary biology, the elucidation of which promises to reveal much about the origins of life. In addition, we propose that study of its origin can also reveal some fundamental and generalizable insights into mechanisms of molecular evolution, utilizing concepts from complexity theory. The first is that beneficial traits may arise by non-adaptive processes, via a process of “neutral emergence”. The structure of the SGC is optimized for the property of error minimization, which reduces the deleterious impact of point mutations. Via simulation, it can be shown that genetic codes with error minimization superior to the SGC can emerge in a neutral fashion simply by a process of genetic code expansion via tRNA and aminoacyl-tRNA synthetase duplication, whereby similar amino acids are added to codons related to that of the parent amino acid. This process of neutral emergence has implications beyond that of the genetic code, as it suggests that not all beneficial traits have arisen by the direct action of natural selection; we term these “pseudaptations”, and discuss a range of potential examples. Secondly, consideration of genetic code deviations (codon reassignments) reveals that these are mostly associated with a reduction in proteome size. This code malleability implies the existence of a proteomic constraint on the genetic code, proportional to the size of the proteome (P), and that its reduction in size leads to an “unfreezing” of the codon – amino acid mapping that defines the genetic code, consistent with Crick’s Frozen Accident theory. The concept of a proteomic constraint may be extended to propose a general informational constraint on genetic fidelity, which may be used to explain variously, differences in mutation rates in genomes with differing proteome sizes, differences in DNA repair capacity and genome GC content

  10. A Genetic Strategy to Measure Circulating Drosophila Insulin Reveals Genes Regulating Insulin Production and Secretion

    PubMed Central

    Park, Sangbin; Alfa, Ronald W.; Topper, Sydni M.; Kim, Grace E. S.; Kockel, Lutz; Kim, Seung K.

    2014-01-01

    Insulin is a major regulator of metabolism in metazoans, including the fruit fly Drosophila melanogaster. Genome-wide association studies (GWAS) suggest a genetic basis for reductions of both insulin sensitivity and insulin secretion, phenotypes commonly observed in humans with type 2 diabetes mellitus (T2DM). To identify molecular functions of genes linked to T2DM risk, we developed a genetic tool to measure insulin-like peptide 2 (Ilp2) levels in Drosophila, a model organism with superb experimental genetics. Our system permitted sensitive quantification of circulating Ilp2, including measures of Ilp2 dynamics during fasting and re-feeding, and demonstration of adaptive Ilp2 secretion in response to insulin receptor haploinsufficiency. Tissue specific dissection of this reduced insulin signaling phenotype revealed a critical role for insulin signaling in specific peripheral tissues. Knockdown of the Drosophila orthologues of human T2DM risk genes, including GLIS3 and BCL11A, revealed roles of these Drosophila genes in Ilp2 production or secretion. Discovery of Drosophila mechanisms and regulators controlling in vivo insulin dynamics should accelerate functional dissection of diabetes genetics. PMID:25101872

  11. Genetic analyses reveal unusually high diversity of infectious haematopoietic necrosis virus in rainbow trout aquaculture

    USGS Publications Warehouse

    Troyer, Ryan M.; LaPatra, Scott E.; Kurath, Gael

    2000-01-01

    Infectious haematopoietic necrosis virus (IHNV) is the most significant virus pathogen of salmon and trout in North America. Previous studies have shown relatively low genetic diversity of IHNV within large geographical regions. In this study, the genetic heterogeneity of 84 IHNV isolates sampled from rainbow trout (Oncorhynchus mykiss) over a 20 year period at four aquaculture facilities within a 12 mile stretch of the Snake River in Idaho, USA was investigated. The virus isolates were characterized using an RNase protection assay (RPA) and nucleotide sequence analyses. Among the 84 isolates analysed, 46 RPA haplotypes were found and analyses revealed a high level of genetic heterogeneity relative to that detected in other regions. Sequence analyses revealed up to 7·6% nucleotide divergence, which is the highest level of diversity reported for IHNV to date. Phylogenetic analyses identified four distinct monophyletic clades representing four virus lineages. These lineages were distributed across facilities, and individual facilities contained multiple lineages. These results suggest that co-circulating IHNV lineages of relatively high genetic diversity are present in the IHNV populations in this rainbow trout culture study site. Three of the four lineages exhibited temporal trends consistent with rapid evolution.

  12. Tracing the genetic origin of Europe's first farmers reveals insights into their social organization.

    PubMed

    Szécsényi-Nagy, Anna; Brandt, Guido; Haak, Wolfgang; Keerl, Victoria; Jakucs, János; Möller-Rieker, Sabine; Köhler, Kitti; Mende, Balázs Gusztáv; Oross, Krisztián; Marton, Tibor; Osztás, Anett; Kiss, Viktória; Fecher, Marc; Pálfi, György; Molnár, Erika; Sebők, Katalin; Czene, András; Paluch, Tibor; Šlaus, Mario; Novak, Mario; Pećina-Šlaus, Nives; Ősz, Brigitta; Voicsek, Vanda; Somogyi, Krisztina; Tóth, Gábor; Kromer, Bernd; Bánffy, Eszter; Alt, Kurt W

    2015-04-22

    Farming was established in Central Europe by the Linearbandkeramik culture (LBK), a well-investigated archaeological horizon, which emerged in the Carpathian Basin, in today's Hungary. However, the genetic background of the LBK genesis is yet unclear. Here we present 9 Y chromosomal and 84 mitochondrial DNA profiles from Mesolithic, Neolithic Starčevo and LBK sites (seventh/sixth millennia BC) from the Carpathian Basin and southeastern Europe. We detect genetic continuity of both maternal and paternal elements during the initial spread of agriculture, and confirm the substantial genetic impact of early southeastern European and Carpathian Basin farming cultures on Central European populations of the sixth-fourth millennia BC. Comprehensive Y chromosomal and mitochondrial DNA population genetic analyses demonstrate a clear affinity of the early farmers to the modern Near East and Caucasus, tracing the expansion from that region through southeastern Europe and the Carpathian Basin into Central Europe. However, our results also reveal contrasting patterns for male and female genetic diversity in the European Neolithic, suggesting a system of patrilineal descent and patrilocal residential rules among the early farmers.

  13. Intraspecific genetic variation in Paramecium revealed by mitochondrial cytochrome C oxidase I sequences.

    PubMed

    Barth, Dana; Krenek, Sascha; Fokin, Sergei I; Berendonk, Thomas U

    2006-01-01

    Studies of intraspecific genetic diversity of ciliates, such as population genetics and biogeography, are particularly hampered by the lack of suitable DNA markers. For example, sequences of the non-coding ribosomal internal transcribed spacer (ITS) regions are often too conserved for intraspecific analyses. We have therefore identified primers for the mitochondrial cytochrome c oxidase I (COI) gene and applied them for intraspecific investigations in Paramecium caudatum and Paramecium multimicronucleatum. Furthermore, we obtained sequences of the ITS regions from the same strains and carried out comparative sequence analyses of both data sets. The mitochondrial sequences revealed substantially higher variation in both Paramecium species, with intraspecific divergences up to 7% in P. caudatum and 9.5% in P. multimicronucleatum. Moreover, an initial survey of the population structure discovered different mitochondrial haplotypes of P. caudatum in one pond, thereby demonstrating the potential of this genetic marker for population genetic analyses. Our primers successfully amplified the COI gene of other Paramecium. This is the first report of intraspecific variation in free-living protozoans based on mitochondrial sequence data. Our results show that the high variation in mitochondrial DNA makes it a suitable marker for intraspecific and population genetic studies.

  14. Genetic diversity of Cosmos species revealed by RAPD and ISSR markers.

    PubMed

    Rodríguez-Bernal, A; Piña-Escutia, J L; Vázquez-García, L M; Arzate-Fernández, A M

    2013-12-04

    The genus Cosmos is native of America and is constituted by 34 species; 28 of them are endemic of Mexico. The cosmos are used as a nematicide, antimalarial, and antioxidative agent. The aim of this study was to estimate the genetic diversity among 7 cosmos species based on random amplified polymorphic DNA (RAPD) and inter-simple sequences repeats (ISSR) markers. With RAPD markers, the obtained polymorphism was 91.7 % and the genetic diversity was 0.33, whereas these values were 65.6%, and 0.22 from ISSR markers, respectively, indicating the presence of high genetic diversity among the Cosmos species that were analyzed. The unweighted pair group method with arithmetic mean dendrograms that were obtained with both markers were notably similar, revealing 2 clusters and indicating a clear genetic differentiation among the Cosmos species that were assessed. The first cluster comprised the species Cosmos sulphureus, Cosmos pacificus, and Cosmos diversifolius, while the second cluster included the species Cosmos purpureus, Cosmos crithmifolius, Cosmos bipinnatus, and Cosmos parviflorus. Besides this, the Cosmos species were clustered according to their collection sites. The Mantel test corroborates the correlation between the genetic distance and the geographic altitude of each Cosmos species. The results suggest that it is necessary to preserve the Cosmos species in their natural habitat in addition to the germoplasm collection for ex situ conservation.

  15. Tracing the genetic origin of Europe's first farmers reveals insights into their social organization

    PubMed Central

    Szécsényi-Nagy, Anna; Brandt, Guido; Haak, Wolfgang; Keerl, Victoria; Jakucs, János; Möller-Rieker, Sabine; Köhler, Kitti; Mende, Balázs Gusztáv; Oross, Krisztián; Marton, Tibor; Osztás, Anett; Kiss, Viktória; Fecher, Marc; Pálfi, György; Molnár, Erika; Sebők, Katalin; Czene, András; Paluch, Tibor; Šlaus, Mario; Novak, Mario; Pećina-Šlaus, Nives; Ősz, Brigitta; Voicsek, Vanda; Somogyi, Krisztina; Tóth, Gábor; Kromer, Bernd; Bánffy, Eszter; Alt, Kurt W.

    2015-01-01

    Farming was established in Central Europe by the Linearbandkeramik culture (LBK), a well-investigated archaeological horizon, which emerged in the Carpathian Basin, in today's Hungary. However, the genetic background of the LBK genesis is yet unclear. Here we present 9 Y chromosomal and 84 mitochondrial DNA profiles from Mesolithic, Neolithic Starčevo and LBK sites (seventh/sixth millennia BC) from the Carpathian Basin and southeastern Europe. We detect genetic continuity of both maternal and paternal elements during the initial spread of agriculture, and confirm the substantial genetic impact of early southeastern European and Carpathian Basin farming cultures on Central European populations of the sixth–fourth millennia BC. Comprehensive Y chromosomal and mitochondrial DNA population genetic analyses demonstrate a clear affinity of the early farmers to the modern Near East and Caucasus, tracing the expansion from that region through southeastern Europe and the Carpathian Basin into Central Europe. However, our results also reveal contrasting patterns for male and female genetic diversity in the European Neolithic, suggesting a system of patrilineal descent and patrilocal residential rules among the early farmers. PMID:25808890

  16. Health trajectories reveal the dynamic contributions of host genetic resistance and tolerance to infection outcome

    PubMed Central

    Lough, Graham; Kyriazakis, Ilias; Bergmann, Silke; Lengeling, Andreas; Doeschl-Wilson, Andrea B.

    2015-01-01

    Resistance and tolerance are two alternative strategies hosts can adopt to survive infections. Both strategies may be genetically controlled. To date, the relative contribution of resistance and tolerance to infection outcome is poorly understood. Here, we use a bioluminescent Listeria monocytogenes (Lm) infection challenge model to study the genetic determination and dynamic contributions of host resistance and tolerance to listeriosis in four genetically diverse mouse strains. Using conventional statistical analyses, we detect significant genetic variation in both resistance and tolerance, but cannot capture the time-dependent relative importance of either host strategy. We overcome these limitations through the development of novel statistical tools to analyse individual infection trajectories portraying simultaneous changes in infection severity and health. Based on these tools, early expression of resistance followed by expression of tolerance emerge as important hallmarks for surviving Lm infections. Our trajectory analysis further reveals that survivors and non-survivors follow distinct infection paths (which are also genetically determined) and provides new survival thresholds as objective endpoints in infection experiments. Future studies may use trajectories as novel traits for mapping and identifying genes that control infection dynamics and outcome. A Matlab script for user-friendly trajectory analysis is provided. PMID:26582028

  17. Microsatellite markers reveal high genetic diversity in date palm (Phoenix dactylifera L.) germplasm from Sudan.

    PubMed

    Elshibli, Sakina; Korpelainen, Helena

    2008-10-01

    Genetic diversity in date palm germplasm from Sudan representing 37 female and 23 male accessions was investigated using 16 loci of microsatellite (SSR) primers. Eight female accessions from Morocco were included as reference material. The tested SSR markers showed a high level of polymorphism. A total of 343 alleles were detected at the 16 loci. The number of alleles per marker ranged from 14 to 44 with an average of 21.4 per locus. A high level of expected heterozygosity was observed among Sudan cultivars (0.841), Morocco cultivars (0.820) and male accessions (0.799). The results indicate that the genetic groups of the Sudan cultivars and/or males do not follow a clear geographic pattern. However, the morocco group showed significant differentiation in relation to the Sudan groups, as measured by F (ST) values and genetic distances. The effect of the methods of pollination and cultivar selection on the genetic structure was clearly detected by the weak clustering association that was observed for the majority of accessions originating from Sudan and Morocco as well. This suggests the need for further investigation on the genetic diversity of Sudanese date palm germplasm. A deeper insight will be revealed by a detailed analysis of populations originating from different geographic locations.

  18. Unexpected response. Student essay

    SciTech Connect

    White, T.R.

    1985-05-08

    This paper reviews the NATO mission of deterrence and the threat of its use of nuclear weapons. It suggests that the threat is viable until a war starts, but then becomes meaningless because the Federal Republic of Germany would opt for a different course of action - its Unexpected Response. The conclusion is that convential forces are the essential deterrent given strategic parity. Then strategic mobility is addressed as it provides greater conventional reinforcement potential than generally assumed. An Unexpected Response by the Congress which could be counter-productive to the use of our new mobility is then discussed.

  19. Population genetics of Sargassum horneri (Fucales, Phaeophyta) in China revealed by ISSR and SRAP markers

    NASA Astrophysics Data System (ADS)

    Yu, Shenhui; Chong, Zhuo; Zhao, Fengjuan; Yao, Jianting; Duan, Delin

    2013-05-01

    Sargassum horneri is a common brown macro-alga that is found in the inter-tidal ecosystems of China. To investigate the current status of seaweed resources and provide basic data for its sustainable development, ISSR (inter simple sequence repeat) and SRAP (sequence related amplified polymorphism) markers were used to analyze the population genetics among nine natural populations of S. horneri. The nine studied populations were distributed over 2 000 km from northeast to south China. The percentage of polymorphic loci P % (ISSR, 99.44%; SRAP, 100.00%), Nei's genetic diversity H (ISSR, 0.107-0.199; SRAP, 0.100-0.153), and Shannon's information index I (ISSR, 0.157-0.291; SRAP, 0.148-0.219) indicated a fair amount of genetic variability among the nine populations. Moreover, the high degree of gene differentiation G st (ISSR, 0.654; SRAP, 0.718) and low gene flow N m (ISSR, 0.265; SRAP, 0.196) implied that there was significant among-population differentiation, possibly as a result of habitat fragmentation. The matrices of genetic distances and fixation indices ( F st) among the populations correlated well with their geographical distribution (Mantel test R =0.541 5, 0.541 8; P =0.005 0, 0.002 0 and R =0.728 6, 0.641 2; P =0.001 0, 0.001 0, respectively); the Rongcheng population in the Shandong peninsula was the only exception. Overall, the genetic differentiation agreed with the geographic isolation. The fair amount of genetic diversity that was revealed in the S. horneri populations in China indicated that the seaweed resources had not been seriously affected by external factors.

  20. Genetic structure of Cerasus jamasakura, a Japanese flowering cherry, revealed by nuclear SSRs: implications for conservation.

    PubMed

    Tsuda, Yoshiaki; Kimura, Madoka; Kato, Shuri; Katsuki, Toshio; Mukai, Yuzuru; Tsumura, Yoshihiko

    2009-07-01

    The genetic resources of a particular species of flowering cherry, Cerasus jamasakura, have high conservation priority because of its cultural, ecological and economic value in Japan. Therefore, the genetic structures of 12 natural populations of C. jamasakura were assessed using ten nuclear SSR loci. The population differentiation was relatively low (F (ST), 0.043), reflecting long-distance dispersal of seeds by animals and historical human activities. However, a neighbor-joining tree derived from the acquired data, spatial analysis of molecular variance and STRUCTURE analysis revealed that the populations could be divided into two groups: one located on Kyusyu Island and one on Honshu Island. Genetic diversity parameters such as allelic richness and gene diversity were significantly lower in the Kyushu group than the Honshu group. Furthermore, STRUCTURE analysis revealed that the two lineages were admixed in the western part of Honshu Island. Thus, although the phylogeographical structure of the species and hybridization dynamics among related species need to be evaluated in detail using several marker systems, the Kyusyu Island and Honshu Island populations should be considered as different conservation units, and the islands should be regarded as distinct seed transfer zones for C. jamasakura, especially when rapid assessments are required. PMID:19340524

  1. Clinical and genetic analyses reveal novel pathogenic ABCA4 mutations in Stargardt disease families

    PubMed Central

    Lin, Bing; Cai, Xue-Bi; Zheng, Zhi-Li; Huang, Xiu-Feng; Liu, Xiao-Ling; Qu, Jia; Jin, Zi-Bing

    2016-01-01

    Stargardt disease (STGD1) is a juvenile macular degeneration predominantly inherited in an autosomal recessive pattern, characterized by decreased central vision in the first 2 decades of life. The condition has a genetic basis due to mutation in the ABCA4 gene, and arises from the deposition of lipofuscin-like substance in the retinal pigmented epithelium (RPE) with secondary photoreceptor cell death. In this study, we describe the clinical and genetic features of Stargardt patients from four unrelated Chinese cohorts. The targeted exome sequencing (TES) was carried out in four clinically confirmed patients and their family members using a gene panel comprising 164 known causative inherited retinal dystrophy (IRD) genes. Genetic analysis revealed eight ABCA4 mutations in all of the four pedigrees, including six mutations in coding exons and two mutations in adjacent intronic areas. All the affected individuals showed typical manifestations consistent with the disease phenotype. We disclose two novel ABCA4 mutations in Chinese patients with STGD disease, which will expand the existing spectrum of disease-causing variants and will further aid in the future mutation screening and genetic counseling, as well as in the understanding of phenotypic and genotypic correlations. PMID:27739528

  2. Genetic heterogeneity of the tropical abalone (Haliotis asinina) revealed by RAPD and microsatellite analyses.

    PubMed

    Tang, Sureerat; Popongviwat, Aporn; Klinbunga, Sirawut; Tassanakajon, Anchalee; Jarayabhand, Padermsak; Menasveta, Piamsak

    2005-03-31

    Genetic heterogeneity of the tropical abalone, Haliotis asinina was examined using randomly amplified polymorphic DNA (RAPD) and microsatellite analyses. One hundred and thirteen polymorphic RAPD fragments were generated. The percentage of polymorphic bands of H. asinina across overall primers was 85.20%. The average genetic distance of natural samples within the Gulf of Thailand (HACAME and HASAME) was 0.0219. Larger distance was observed when those samples were compared with HATRAW from the Andaman Sea (0.2309 and 0.2314). Geographic heterogeneity and F(ST) analyses revealed population differentiation between H. asinina from the Gulf of Thailand and the Andaman Sea (p < 0.0001). Three microsatellite loci (CUHas1, CUHas4 and CUHas5) indicated relatively high genetic diversity in H. asinina (total number of alleles = 26, 5, 23 and observed heterozygosity = 0.84, 0.42 and 0.33, respectively). Significant population differentiation was also found between samples from different coastal regions (p < 0.0001). Therefore, the gene pool of natural H. asinina in coastal Thai waters can be genetically divided to 2 different populations; the Gulf of Thailand (A) and the Andaman Sea (B).

  3. Genetic diversity and substantial population differentiation in Crassostrea hongkongensis revealed by mitochondrial DNA.

    PubMed

    Li, Lu; Wu, Xiangyun; Yu, Ziniu

    2013-09-01

    The Hong Kong oyster, Crassostrea hongkongensis, is an important fisheries resource that is cultivated in the coastal waters of the South China Sea. Despite significant advances in understanding biological and taxonomic aspects of this species, no detailed study of its population genetic diversity in regions of extensive cultivation are available. Direct sequencing of the mtDNA cox1 gene region was used to investigate genetic variation within and between eleven C. hongkongensis populations collected from typical habitats. Sixty-two haplotypes were identified; only haplotype 2 (21.74% of total haplotypes) was shared among all the eleven populations, and most of the observed haplotypes were restricted to individual populations. Both AMOVA and FST analyses revealed significant population structure, and the isolation by distance (IBD) was confirmed. The highest local differentiation was observed between the sample pools from Guangxi versus Guangdong and Fujian, which are separated by a geographic barrier, the Leizhou Peninsula. Current knowledge from seed management suggests that seed transfer from Guangxi province has likely reduced the divergence that somewhat naturally exists between these pools. The findings from the present study could be useful for genetic management and may serve as a baseline by which to monitor future changes in genetic diversity, either due to natural or anthropogenic impacts.

  4. Yeast Genetic Analysis Reveals the Involvement of Chromatin Reassembly Factors in Repressing HIV-1 Basal Transcription

    PubMed Central

    Respaldiza, Iñaki; Rodríguez-Gil, Alfonso; Gómez-Herreros, Fernando; Jimeno-González, Silvia; Jordan, Albert; Chávez, Sebastián

    2009-01-01

    Rebound of HIV viremia after interruption of anti-retroviral therapy is due to the small population of CD4+ T cells that remain latently infected. HIV-1 transcription is the main process controlling post-integration latency. Regulation of HIV-1 transcription takes place at both initiation and elongation levels. Pausing of RNA polymerase II at the 5′ end of HIV-1 transcribed region (5′HIV-TR), which is immediately downstream of the transcription start site, plays an important role in the regulation of viral expression. The activation of HIV-1 transcription correlates with the rearrangement of a positioned nucleosome located at this region. These two facts suggest that the 5′HIV-TR contributes to inhibit basal transcription of those HIV-1 proviruses that remain latently inactive. However, little is known about the cell elements mediating the repressive role of the 5′HIV-TR. We performed a genetic analysis of this phenomenon in Saccharomyces cerevisiae after reconstructing a minimal HIV-1 transcriptional system in this yeast. Unexpectedly, we found that the critical role played by the 5′HIV-TR in maintaining low levels of basal transcription in yeast is mediated by FACT, Spt6, and Chd1, proteins so far associated with chromatin assembly and disassembly during ongoing transcription. We confirmed that this group of factors plays a role in HIV-1 postintegration latency in human cells by depleting the corresponding human orthologs with shRNAs, both in HIV latently infected cell populations and in particular single-integration clones, including a latent clone with a provirus integrated in a highly transcribed gene. Our results indicate that chromatin reassembly factors participate in the establishment of the equilibrium between activation and repression of HIV-1 when it integrates into the human genome, and they open the possibility of considering these factors as therapeutic targets of HIV-1 latency. PMID:19148280

  5. The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges.

    PubMed

    Riesgo, Ana; Farrar, Nathan; Windsor, Pamela J; Giribet, Gonzalo; Leys, Sally P

    2014-05-01

    Sponges (Porifera) are among the earliest evolving metazoans. Their filter-feeding body plan based on choanocyte chambers organized into a complex aquiferous system is so unique among metazoans that it either reflects an early divergence from other animals prior to the evolution of features such as muscles and nerves, or that sponges lost these characters. Analyses of the Amphimedon and Oscarella genomes support this view of uniqueness-many key metazoan genes are absent in these sponges-but whether this is generally true of other sponges remains unknown. We studied the transcriptomes of eight sponge species in four classes (Hexactinellida, Demospongiae, Homoscleromorpha, and Calcarea) specifically seeking genes and pathways considered to be involved in animal complexity. For reference, we also sought these genes in transcriptomes and genomes of three unicellular opisthokonts, two sponges (A. queenslandica and O. carmela), and two bilaterian taxa. Our analyses showed that all sponge classes share an unexpectedly large complement of genes with other metazoans. Interestingly, hexactinellid, calcareous, and homoscleromorph sponges share more genes with bilaterians than with nonbilaterian metazoans. We were surprised to find representatives of most molecules involved in cell-cell communication, signaling, complex epithelia, immune recognition, and germ-lineage/sex, with only a few, but potentially key, absences. A noteworthy finding was that some important genes were absent from all demosponges (transcriptomes and the Amphimedon genome), which might reflect divergence from main-stem lineages including hexactinellids, calcareous sponges, and homoscleromorphs. Our results suggest that genetic complexity arose early in evolution as shown by the presence of these genes in most of the animal lineages, which suggests sponges either possess cryptic physiological and morphological complexity and/or have lost ancestral cell types or physiological processes.

  6. Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity.

    PubMed

    Yeger-Lotem, Esti; Riva, Laura; Su, Linhui Julie; Gitler, Aaron D; Cashikar, Anil G; King, Oliver D; Auluck, Pavan K; Geddie, Melissa L; Valastyan, Julie S; Karger, David R; Lindquist, Susan; Fraenkel, Ernest

    2009-03-01

    Cells respond to stimuli by changes in various processes, including signaling pathways and gene expression. Efforts to identify components of these responses increasingly depend on mRNA profiling and genetic library screens. By comparing the results of these two assays across various stimuli, we found that genetic screens tend to identify response regulators, whereas mRNA profiling frequently detects metabolic responses. We developed an integrative approach that bridges the gap between these data using known molecular interactions, thus highlighting major response pathways. We used this approach to reveal cellular pathways responding to the toxicity of alpha-synuclein, a protein implicated in several neurodegenerative disorders including Parkinson's disease. For this we screened an established yeast model to identify genes that when overexpressed alter alpha-synuclein toxicity. Bridging these data and data from mRNA profiling provided functional explanations for many of these genes and identified previously unknown relations between alpha-synuclein toxicity and basic cellular pathways. PMID:19234470

  7. Ancient DNA reveals key stages in the formation of Central European mitochondrial genetic diversity

    PubMed Central

    Brandt, Guido; Haak, Wolfgang; Adler, Christina J.; Roth, Christina; Szécsényi-Nagy, Anna; Karimnia, Sarah; Möller-Rieker, Sabine; Meller, Harald; Ganslmeier, Robert; Friederich, Susanne; Dresely, Veit; Nicklisch, Nicole; Pickrell, Joseph K.; Sirocko, Frank; Reich, David; Cooper, Alan; Alt, Kurt W.

    2014-01-01

    The processes which shaped modern European mitochondrial DNA (mtDNA) variation remain unclear. The initial peopling by Palaeolithic hunter-gatherers ~42kyrs ago and the immigration of Neolithic farmers into Europe ~8kyrs ago appear to have played important roles, but do not explain present-day mtDNA diversity. We generated mtDNA profiles of 364 individuals from prehistoric cultures in Central Europe to perform a chronological study, spanning the Early Neolithic to the Early Bronze Age (5,500–1,550 cal BC). We use this transect through time to identify four marked shifts in genetic composition during the Neolithic period, revealing a key role for Late Neolithic cultures in shaping modern Central European genetic diversity. PMID:24115443

  8. Genetic interactions of separase regulatory subunits reveal the diverged Drosophila Cenp-C homolog

    PubMed Central

    Heeger, Sebastian; Leismann, Oliver; Schittenhelm, Ralf; Schraidt, Oliver; Heidmann, Stefan; Lehner, Christian F.

    2005-01-01

    Faithful transmission of genetic information during mitotic divisions depends on bipolar attachment of sister kinetochores to the mitotic spindle and on complete resolution of sister-chromatid cohesion immediately before the metaphase-to-anaphase transition. Separase is thought to be responsible for sister-chromatid separation, but its regulation is not completely understood. Therefore, we have screened for genetic loci that modify the aberrant phenotypes caused by overexpression of the regulatory separase complex subunits Pimples/securin and Three rows in Drosophila. An interacting gene was found to encode a constitutive centromere protein. Characterization of its centromere localization domain revealed the presence of a diverged CENPC motif. While direct evidence for an involvement of this Drosophila Cenp-C homolog in separase activation at centromeres could not be obtained, in vivo imaging clearly demonstrated that it is required for normal attachment of kinetochores to the spindle. PMID:16140985

  9. Genetic diversity of Toona sinensis Roem in China revealed by ISSR and SRAP markers.

    PubMed

    Xing, P Y; Liu, T; Song, Z Q; Li, X F

    2016-07-29

    Toona sinensis Roem has an important value as a type of traditional vegetable and Chinese medicinal herb, and is also a valuable source of wood in China. In this study, we used the inter-simple sequence repeat (ISSR) and sequence-related amplified polymorphism (SRAP) markers to assess the level and pattern of genetic diversity in five domesticated T. sinensis populations in China. Our results indicated a relatively low level of genetic diversity both at species (Hs = 0.1662, 0.2098, respectively) and population levels (Hs = 0.0978, 0.1145, respectively). Molecular variance analyses revealed a relatively high degree of differentiation among populations (GST = 0.3901, 0.4498), and low levels of gene flow (Nm = 0.7816 and 0.6116). We divided the five populations into two groups by cluster analysis: group one consists of populations collected from the south part of China (e.g., Yuxi, Yunan Province and Zuanjiang, Chongqing Municipality), and group two contains those cultivated in north part of China (e.g., Hengshui, Hebei Province, Jinan and Rizhao, Shandong Province). The correlation of genetic relationships among populations fits well with their geographical distribution (Mantel test; r = 0.7236 and 0.6789, respectively). Asexual propagation, limited gene flow and geographic isolation are most likely the key factors associated with the observed genetic structure of T. sinensis grown in China. The present study indicated that both ISSR and SRAP markers were effective and reliable for assessing the degree of T. sinensis genetic variations.

  10. Disease-aging network reveals significant roles of aging genes in connecting genetic diseases.

    PubMed

    Wang, Jiguang; Zhang, Shihua; Wang, Yong; Chen, Luonan; Zhang, Xiang-Sun

    2009-09-01

    One of the challenging problems in biology and medicine is exploring the underlying mechanisms of genetic diseases. Recent studies suggest that the relationship between genetic diseases and the aging process is important in understanding the molecular mechanisms of complex diseases. Although some intricate associations have been investigated for a long time, the studies are still in their early stages. In this paper, we construct a human disease-aging network to study the relationship among aging genes and genetic disease genes. Specifically, we integrate human protein-protein interactions (PPIs), disease-gene associations, aging-gene associations, and physiological system-based genetic disease classification information in a single graph-theoretic framework and find that (1) human disease genes are much closer to aging genes than expected by chance; and (2) diseases can be categorized into two types according to their relationships with aging. Type I diseases have their genes significantly close to aging genes, while type II diseases do not. Furthermore, we examine the topological characters of the disease-aging network from a systems perspective. Theoretical results reveal that the genes of type I diseases are in a central position of a PPI network while type II are not; (3) more importantly, we define an asymmetric closeness based on the PPI network to describe relationships between diseases, and find that aging genes make a significant contribution to associations among diseases, especially among type I diseases. In conclusion, the network-based study provides not only evidence for the intricate relationship between the aging process and genetic diseases, but also biological implications for prying into the nature of human diseases.

  11. The Nature of Genetic Variation for Complex Traits Revealed by GWAS and Regional Heritability Mapping Analyses.

    PubMed

    Caballero, Armando; Tenesa, Albert; Keightley, Peter D

    2015-12-01

    We use computer simulations to investigate the amount of genetic variation for complex traits that can be revealed by single-SNP genome-wide association studies (GWAS) or regional heritability mapping (RHM) analyses based on full genome sequence data or SNP chips. We model a large population subject to mutation, recombination, selection, and drift, assuming a pleiotropic model of mutations sampled from a bivariate distribution of effects of mutations on a quantitative trait and fitness. The pleiotropic model investigated, in contrast to previous models, implies that common mutations of large effect are responsible for most of the genetic variation for quantitative traits, except when the trait is fitness itself. We show that GWAS applied to the full sequence increases the number of QTL detected by as much as 50% compared to the number found with SNP chips but only modestly increases the amount of additive genetic variance explained. Even with full sequence data, the total amount of additive variance explained is generally below 50%. Using RHM on the full sequence data, a slightly larger number of QTL are detected than by GWAS if the same probability threshold is assumed, but these QTL explain a slightly smaller amount of genetic variance. Our results also suggest that most of the missing heritability is due to the inability to detect variants of moderate effect (∼0.03-0.3 phenotypic SDs) segregating at substantial frequencies. Very rare variants, which are more difficult to detect by GWAS, are expected to contribute little genetic variation, so their eventual detection is less relevant for resolving the missing heritability problem.

  12. Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring

    PubMed Central

    Lamichhaney, Sangeet; Barrio, Alvaro Martinez; Rafati, Nima; Sundström, Görel; Rubin, Carl-Johan; Gilbert, Elizabeth R.; Berglund, Jonas; Wetterbom, Anna; Laikre, Linda; Webster, Matthew T.; Grabherr, Manfred; Ryman, Nils; Andersson, Leif

    2012-01-01

    The Atlantic herring (Clupea harengus), one of the most abundant marine fishes in the world, has historically been a critical food source in Northern Europe. It is one of the few marine species that can reproduce throughout the brackish salinity gradient of the Baltic Sea. Previous studies based on few genetic markers have revealed a conspicuous lack of genetic differentiation between geographic regions, consistent with huge population sizes and minute genetic drift. Here, we present a cost-effective genome-wide study in a species that lacks a genome sequence. We first assembled a muscle transcriptome and then aligned genomic reads to the transcripts, creating an “exome assembly,” capturing both exons and flanking sequences. We then resequenced pools of fish from a wide geographic range, including the Northeast Atlantic, as well as different regions in the Baltic Sea, aligned the reads to the exome assembly, and identified 440,817 SNPs. The great majority of SNPs showed no appreciable differences in allele frequency among populations; however, several thousand SNPs showed striking differences, some approaching fixation for different alleles. The contrast between low genetic differentiation at most loci and striking differences at others implies that the latter category primarily reflects natural selection. A simulation study confirmed that the distribution of the fixation index FST deviated significantly from expectation for selectively neutral loci. This study provides insights concerning the population structure of an important marine fish and establishes the Atlantic herring as a model for population genetic studies of adaptation and natural selection. PMID:23134729

  13. Comparative sequence and genetic analyses of asparagus BACs reveal no microsynteny with onion or rice.

    PubMed

    Jakse, Jernej; Telgmann, Alexa; Jung, Christian; Khar, Anil; Melgar, Sergio; Cheung, Foo; Town, Christopher D; Havey, Michael J

    2006-12-01

    The Poales (includes the grasses) and Asparagales [includes onion (Allium cepa L.) and asparagus (Asparagus officinalis L.)] are the two most economically important monocot orders. The Poales are a member of the commelinoid monocots, a group of orders sister to the Asparagales. Comparative genomic analyses have revealed a high degree of synteny among the grasses; however, it is not known if this synteny extends to other major monocot groups such as the Asparagales. Although we previously reported no evidence for synteny at the recombinational level between onion and rice, microsynteny may exist across shorter genomic regions in the grasses and Asparagales. We sequenced nine asparagus BACs to reveal physically linked genic-like sequences and determined their most similar positions in the onion and rice genomes. Four of the asparagus BACs were selected using molecular markers tightly linked to the sex-determining M locus on chromosome 5 of asparagus. These BACs possessed only two putative coding regions and had long tracts of degenerated retroviral elements and transposons. Five asparagus BACs were selected after hybridization of three onion cDNAs that mapped to three different onion chromosomes. Genic-like sequences that were physically linked on the cDNA-selected BACs or genetically linked on the M-linked BACs showed significant similarities (e < -20) to expressed sequences on different rice chromosomes, revealing no evidence for microsynteny between asparagus and rice across these regions. Genic-like sequences that were linked in asparagus were used to identify highly similar (e < -20) expressed sequence tags (ESTs) of onion. These onion ESTs mapped to different onion chromosomes and no relationship was observed between physical or genetic linkages in asparagus and genetic linkages in onion. These results further indicate that synteny among grass genomes does not extend to a sister order in the monocots and that asparagus may not be an appropriate smaller genome

  14. Comparative sequence and genetic analyses of asparagus BACs reveal no microsynteny with onion or rice.

    PubMed

    Jakse, Jernej; Telgmann, Alexa; Jung, Christian; Khar, Anil; Melgar, Sergio; Cheung, Foo; Town, Christopher D; Havey, Michael J

    2006-12-01

    The Poales (includes the grasses) and Asparagales [includes onion (Allium cepa L.) and asparagus (Asparagus officinalis L.)] are the two most economically important monocot orders. The Poales are a member of the commelinoid monocots, a group of orders sister to the Asparagales. Comparative genomic analyses have revealed a high degree of synteny among the grasses; however, it is not known if this synteny extends to other major monocot groups such as the Asparagales. Although we previously reported no evidence for synteny at the recombinational level between onion and rice, microsynteny may exist across shorter genomic regions in the grasses and Asparagales. We sequenced nine asparagus BACs to reveal physically linked genic-like sequences and determined their most similar positions in the onion and rice genomes. Four of the asparagus BACs were selected using molecular markers tightly linked to the sex-determining M locus on chromosome 5 of asparagus. These BACs possessed only two putative coding regions and had long tracts of degenerated retroviral elements and transposons. Five asparagus BACs were selected after hybridization of three onion cDNAs that mapped to three different onion chromosomes. Genic-like sequences that were physically linked on the cDNA-selected BACs or genetically linked on the M-linked BACs showed significant similarities (e < -20) to expressed sequences on different rice chromosomes, revealing no evidence for microsynteny between asparagus and rice across these regions. Genic-like sequences that were linked in asparagus were used to identify highly similar (e < -20) expressed sequence tags (ESTs) of onion. These onion ESTs mapped to different onion chromosomes and no relationship was observed between physical or genetic linkages in asparagus and genetic linkages in onion. These results further indicate that synteny among grass genomes does not extend to a sister order in the monocots and that asparagus may not be an appropriate smaller genome

  15. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease.

    PubMed

    Xiong, Hui Y; Alipanahi, Babak; Lee, Leo J; Bretschneider, Hannes; Merico, Daniele; Yuen, Ryan K C; Hua, Yimin; Gueroussov, Serge; Najafabadi, Hamed S; Hughes, Timothy R; Morris, Quaid; Barash, Yoseph; Krainer, Adrian R; Jojic, Nebojsa; Scherer, Stephen W; Blencowe, Benjamin J; Frey, Brendan J

    2015-01-01

    To facilitate precision medicine and whole-genome annotation, we developed a machine-learning technique that scores how strongly genetic variants affect RNA splicing, whose alteration contributes to many diseases. Analysis of more than 650,000 intronic and exonic variants revealed widespread patterns of mutation-driven aberrant splicing. Intronic disease mutations that are more than 30 nucleotides from any splice site alter splicing nine times as often as common variants, and missense exonic disease mutations that have the least impact on protein function are five times as likely as others to alter splicing. We detected tens of thousands of disease-causing mutations, including those involved in cancers and spinal muscular atrophy. Examination of intronic and exonic variants found using whole-genome sequencing of individuals with autism revealed misspliced genes with neurodevelopmental phenotypes. Our approach provides evidence for causal variants and should enable new discoveries in precision medicine.

  16. Whole-Genome Sequencing Reveals Genetic Variation in the Asian House Rat

    PubMed Central

    Teng, Huajing; Zhang, Yaohua; Shi, Chengmin; Mao, Fengbiao; Hou, Lingling; Guo, Hongling; Sun, Zhongsheng; Zhang, Jianxu

    2016-01-01

    Whole-genome sequencing of wild-derived rat species can provide novel genomic resources, which may help decipher the genetics underlying complex phenotypes. As a notorious pest, reservoir of human pathogens, and colonizer, the Asian house rat, Rattus tanezumi, is successfully adapted to its habitat. However, little is known regarding genetic variation in this species. In this study, we identified over 41,000,000 single-nucleotide polymorphisms, plus insertions and deletions, through whole-genome sequencing and bioinformatics analyses. Moreover, we identified over 12,000 structural variants, including 143 chromosomal inversions. Further functional analyses revealed several fixed nonsense mutations associated with infection and immunity-related adaptations, and a number of fixed missense mutations that may be related to anticoagulant resistance. A genome-wide scan for loci under selection identified various genes related to neural activity. Our whole-genome sequencing data provide a genomic resource for future genetic studies of the Asian house rat species and have the potential to facilitate understanding of the molecular adaptations of rats to their ecological niches. PMID:27172215

  17. Mitochondrial DNA Reveals Genetic Structuring of Pinna nobilis across the Mediterranean Sea

    PubMed Central

    Sanna, Daria; Cossu, Piero; Dedola, Gian Luca; Scarpa, Fabio; Maltagliati, Ferruccio; Castelli, Alberto; Franzoi, Piero; Lai, Tiziana; Cristo, Benedetto; Curini-Galletti, Marco; Francalacci, Paolo; Casu, Marco

    2013-01-01

    Pinna nobilis is the largest endemic Mediterranean marine bivalve. During past centuries, various human activities have promoted the regression of its populations. As a consequence of stringent standards of protection, demographic expansions are currently reported in many sites. The aim of this study was to provide the first large broad-scale insight into the genetic variability of P. nobilis in the area that encompasses the western Mediterranean, Ionian Sea, and Adriatic Sea marine ecoregions. To accomplish this objective twenty-five populations from this area were surveyed using two mitochondrial DNA markers (COI and 16S). Our dataset was then merged with those obtained in other studies for the Aegean and Tunisian populations (eastern Mediterranean), and statistical analyses (Bayesian model-based clustering, median-joining network, AMOVA, mismatch distribution, Tajima’s and Fu’s neutrality tests and Bayesian skyline plots) were performed. The results revealed genetic divergence among three distinguishable areas: (1) western Mediterranean and Ionian Sea; (2) Adriatic Sea; and (3) Aegean Sea and Tunisian coastal areas. From a conservational point of view, populations from the three genetically divergent groups found may be considered as different management units. PMID:23840684

  18. Genomic View of Bipolar Disorder Revealed by Whole Genome Sequencing in a Genetic Isolate

    PubMed Central

    Georgi, Benjamin; Craig, David; Kember, Rachel L.; Liu, Wencheng; Lindquist, Ingrid; Nasser, Sara; Brown, Christopher; Egeland, Janice A.; Paul, Steven M.; Bućan, Maja

    2014-01-01

    Bipolar disorder is a common, heritable mental illness characterized by recurrent episodes of mania and depression. Despite considerable effort to elucidate the genetic underpinnings of bipolar disorder, causative genetic risk factors remain elusive. We conducted a comprehensive genomic analysis of bipolar disorder in a large Old Order Amish pedigree. Microsatellite genotypes and high-density SNP-array genotypes of 388 family members were combined with whole genome sequence data for 50 of these subjects, comprising 18 parent-child trios. This study design permitted evaluation of candidate variants within the context of haplotype structure by resolving the phase in sequenced parent-child trios and by imputation of variants into multiple unsequenced siblings. Non-parametric and parametric linkage analysis of the entire pedigree as well as on smaller clusters of families identified several nominally significant linkage peaks, each of which included dozens of predicted deleterious variants. Close inspection of exonic and regulatory variants in genes under the linkage peaks using family-based association tests revealed additional credible candidate genes for functional studies and further replication in population-based cohorts. However, despite the in-depth genomic characterization of this unique, large and multigenerational pedigree from a genetic isolate, there was no convergence of evidence implicating a particular set of risk loci or common pathways. The striking haplotype and locus heterogeneity we observed has profound implications for the design of studies of bipolar and other related disorders. PMID:24625924

  19. Whole-Genome Sequencing Reveals Genetic Variation in the Asian House Rat.

    PubMed

    Teng, Huajing; Zhang, Yaohua; Shi, Chengmin; Mao, Fengbiao; Hou, Lingling; Guo, Hongling; Sun, Zhongsheng; Zhang, Jianxu

    2016-07-07

    Whole-genome sequencing of wild-derived rat species can provide novel genomic resources, which may help decipher the genetics underlying complex phenotypes. As a notorious pest, reservoir of human pathogens, and colonizer, the Asian house rat, Rattus tanezumi, is successfully adapted to its habitat. However, little is known regarding genetic variation in this species. In this study, we identified over 41,000,000 single-nucleotide polymorphisms, plus insertions and deletions, through whole-genome sequencing and bioinformatics analyses. Moreover, we identified over 12,000 structural variants, including 143 chromosomal inversions. Further functional analyses revealed several fixed nonsense mutations associated with infection and immunity-related adaptations, and a number of fixed missense mutations that may be related to anticoagulant resistance. A genome-wide scan for loci under selection identified various genes related to neural activity. Our whole-genome sequencing data provide a genomic resource for future genetic studies of the Asian house rat species and have the potential to facilitate understanding of the molecular adaptations of rats to their ecological niches.

  20. Genetic structure along an elevational gradient in Hawaiian honeycreepers reveals contrasting evolutionary responses to avian malaria

    USGS Publications Warehouse

    Eggert, L.S.; Terwilliger, L.A.; Woodworth, B.L.; Hart, P.J.; Palmer, D.; Fleischer, R.C.

    2008-01-01

    Background. The Hawaiian honeycreepers (Drepanidinae) are one of the best-known examples of an adaptive radiation, but their persistence today is threatened by the introduction of exotic pathogens and their vector, the mosquito Culex quinquefasciatus. Historically, species such as the amakihi (Hemignathus virens), the apapane (Himatione sanguinea), and the iiwi (Vestiaria coccinea) were found from the coastal lowlands to the high elevation forests, but by the late 1800's they had become extremely rare in habitats below 900 m. Recently, however, populations of amakihi and apapane have been observed in low elevation habitats. We used twelve polymorphic microsatellite loci to investigate patterns of genetic structure, and to infer responses of these species to introduced avian malaria along an elevational gradient on the eastern flanks of Mauna Loa and Kilauea volcanoes on the island of Hawaii. Results. Our results indicate that amakihi have genetically distinct, spatially structured populations that correspond with altitude. We detected very few apapane and no iiwi in low-elevation habitats, and genetic results reveal only minimal differentiation between populations at different altitudes in either of these species. Conclusion. Our results suggest that amakihi populations in low elevation habitats have not been recolonized by individuals from mid or high elevation refuges. After generations of strong selection for pathogen resistance, these populations have rebounded and amakihi have become common in regions in which they were previously rare or absent. ?? 2008 Eggert et al; licensee BioMed Central Ltd.

  1. A Comprehensive Genomic Analysis Reveals the Genetic Landscape of Mitochondrial Respiratory Chain Complex Deficiencies.

    PubMed

    Kohda, Masakazu; Tokuzawa, Yoshimi; Kishita, Yoshihito; Nyuzuki, Hiromi; Moriyama, Yohsuke; Mizuno, Yosuke; Hirata, Tomoko; Yatsuka, Yukiko; Yamashita-Sugahara, Yzumi; Nakachi, Yutaka; Kato, Hidemasa; Okuda, Akihiko; Tamaru, Shunsuke; Borna, Nurun Nahar; Banshoya, Kengo; Aigaki, Toshiro; Sato-Miyata, Yukiko; Ohnuma, Kohei; Suzuki, Tsutomu; Nagao, Asuteka; Maehata, Hazuki; Matsuda, Fumihiko; Higasa, Koichiro; Nagasaki, Masao; Yasuda, Jun; Yamamoto, Masayuki; Fushimi, Takuya; Shimura, Masaru; Kaiho-Ichimoto, Keiko; Harashima, Hiroko; Yamazaki, Taro; Mori, Masato; Murayama, Kei; Ohtake, Akira; Okazaki, Yasushi

    2016-01-01

    Mitochondrial disorders have the highest incidence among congenital metabolic disorders characterized by biochemical respiratory chain complex deficiencies. It occurs at a rate of 1 in 5,000 births, and has phenotypic and genetic heterogeneity. Mutations in about 1,500 nuclear encoded mitochondrial proteins may cause mitochondrial dysfunction of energy production and mitochondrial disorders. More than 250 genes that cause mitochondrial disorders have been reported to date. However exact genetic diagnosis for patients still remained largely unknown. To reveal this heterogeneity, we performed comprehensive genomic analyses for 142 patients with childhood-onset mitochondrial respiratory chain complex deficiencies. The approach includes whole mtDNA and exome analyses using high-throughput sequencing, and chromosomal aberration analyses using high-density oligonucleotide arrays. We identified 37 novel mutations in known mitochondrial disease genes and 3 mitochondria-related genes (MRPS23, QRSL1, and PNPLA4) as novel causative genes. We also identified 2 genes known to cause monogenic diseases (MECP2 and TNNI3) and 3 chromosomal aberrations (6q24.3-q25.1, 17p12, and 22q11.21) as causes in this cohort. Our approaches enhance the ability to identify pathogenic gene mutations in patients with biochemically defined mitochondrial respiratory chain complex deficiencies in clinical settings. They also underscore clinical and genetic heterogeneity and will improve patient care of this complex disorder.

  2. Time-series analysis reveals genetic responses to intensive management of razorback sucker (Xyrauchen texanus).

    PubMed

    Dowling, Thomas E; Turner, Thomas F; Carson, Evan W; Saltzgiver, Melody J; Adams, Deborah; Kesner, Brian; Marsh, Paul C

    2014-03-01

    Time-series analysis is used widely in ecology to study complex phenomena and may have considerable potential to clarify relationships of genetic and demographic processes in natural and exploited populations. We explored the utility of this approach to evaluate population responses to management in razorback sucker, a long-lived and fecund, but declining freshwater fish species. A core population in Lake Mohave (Arizona-Nevada, USA) has experienced no natural recruitment for decades and is maintained by harvesting naturally produced larvae from the lake, rearing them in protective custody, and repatriating them at sizes less vulnerable to predation. Analyses of mtDNA and 15 microsatellites characterized for sequential larval cohorts collected over a 15-year time series revealed no changes in geographic structuring but indicated significant increase in mtDNA diversity for the entire population over time. Likewise, ratios of annual effective breeders to annual census size (N b /N a) increased significantly despite sevenfold reduction of N a. These results indicated that conservation actions diminished near-term extinction risk due to genetic factors and should now focus on increasing numbers of fish in Lake Mohave to ameliorate longer-term risks. More generally, time-series analysis permitted robust testing of trends in genetic diversity, despite low precision of some metrics. PMID:24665337

  3. Experimental evolution for generalists and specialists reveals multivariate genetic constraints on thermal reaction norms.

    PubMed

    Berger, D; Walters, R J; Blanckenhorn, W U

    2014-09-01

    Theory predicts the emergence of generalists in variable environments and antagonistic pleiotropy to favour specialists in constant environments, but empirical data seldom support such generalist-specialist trade-offs. We selected for generalists and specialists in the dung fly Sepsis punctum (Diptera: Sepsidae) under conditions that we predicted would reveal antagonistic pleiotropy and multivariate trade-offs underlying thermal reaction norms for juvenile development. We performed replicated laboratory evolution using four treatments: adaptation at a hot (31 °C) or a cold (15 °C) temperature, or under regimes fluctuating between these temperatures, either within or between generations. After 20 generations, we assessed parental effects and genetic responses of thermal reaction norms for three correlated life-history traits: size at maturity, juvenile growth rate and juvenile survival. We find evidence for antagonistic pleiotropy for performance at hot and cold temperatures, and a temperature-mediated trade-off between juvenile survival and size at maturity, suggesting that trade-offs associated with environmental tolerance can arise via intensified evolutionary compromises between genetically correlated traits. However, despite this antagonistic pleiotropy, we found no support for the evolution of increased thermal tolerance breadth at the expense of reduced maximal performance, suggesting low genetic variance in the generalist-specialist dimension.

  4. Time-series analysis reveals genetic responses to intensive management of razorback sucker (Xyrauchen texanus)

    PubMed Central

    Dowling, Thomas E; Turner, Thomas F; Carson, Evan W; Saltzgiver, Melody J; Adams, Deborah; Kesner, Brian; Marsh, Paul C

    2014-01-01

    Time-series analysis is used widely in ecology to study complex phenomena and may have considerable potential to clarify relationships of genetic and demographic processes in natural and exploited populations. We explored the utility of this approach to evaluate population responses to management in razorback sucker, a long-lived and fecund, but declining freshwater fish species. A core population in Lake Mohave (Arizona-Nevada, USA) has experienced no natural recruitment for decades and is maintained by harvesting naturally produced larvae from the lake, rearing them in protective custody, and repatriating them at sizes less vulnerable to predation. Analyses of mtDNA and 15 microsatellites characterized for sequential larval cohorts collected over a 15-year time series revealed no changes in geographic structuring but indicated significant increase in mtDNA diversity for the entire population over time. Likewise, ratios of annual effective breeders to annual census size (Nb/Na) increased significantly despite sevenfold reduction of Na. These results indicated that conservation actions diminished near-term extinction risk due to genetic factors and should now focus on increasing numbers of fish in Lake Mohave to ameliorate longer-term risks. More generally, time-series analysis permitted robust testing of trends in genetic diversity, despite low precision of some metrics. PMID:24665337

  5. A Comprehensive Genomic Analysis Reveals the Genetic Landscape of Mitochondrial Respiratory Chain Complex Deficiencies.

    PubMed

    Kohda, Masakazu; Tokuzawa, Yoshimi; Kishita, Yoshihito; Nyuzuki, Hiromi; Moriyama, Yohsuke; Mizuno, Yosuke; Hirata, Tomoko; Yatsuka, Yukiko; Yamashita-Sugahara, Yzumi; Nakachi, Yutaka; Kato, Hidemasa; Okuda, Akihiko; Tamaru, Shunsuke; Borna, Nurun Nahar; Banshoya, Kengo; Aigaki, Toshiro; Sato-Miyata, Yukiko; Ohnuma, Kohei; Suzuki, Tsutomu; Nagao, Asuteka; Maehata, Hazuki; Matsuda, Fumihiko; Higasa, Koichiro; Nagasaki, Masao; Yasuda, Jun; Yamamoto, Masayuki; Fushimi, Takuya; Shimura, Masaru; Kaiho-Ichimoto, Keiko; Harashima, Hiroko; Yamazaki, Taro; Mori, Masato; Murayama, Kei; Ohtake, Akira; Okazaki, Yasushi

    2016-01-01

    Mitochondrial disorders have the highest incidence among congenital metabolic disorders characterized by biochemical respiratory chain complex deficiencies. It occurs at a rate of 1 in 5,000 births, and has phenotypic and genetic heterogeneity. Mutations in about 1,500 nuclear encoded mitochondrial proteins may cause mitochondrial dysfunction of energy production and mitochondrial disorders. More than 250 genes that cause mitochondrial disorders have been reported to date. However exact genetic diagnosis for patients still remained largely unknown. To reveal this heterogeneity, we performed comprehensive genomic analyses for 142 patients with childhood-onset mitochondrial respiratory chain complex deficiencies. The approach includes whole mtDNA and exome analyses using high-throughput sequencing, and chromosomal aberration analyses using high-density oligonucleotide arrays. We identified 37 novel mutations in known mitochondrial disease genes and 3 mitochondria-related genes (MRPS23, QRSL1, and PNPLA4) as novel causative genes. We also identified 2 genes known to cause monogenic diseases (MECP2 and TNNI3) and 3 chromosomal aberrations (6q24.3-q25.1, 17p12, and 22q11.21) as causes in this cohort. Our approaches enhance the ability to identify pathogenic gene mutations in patients with biochemically defined mitochondrial respiratory chain complex deficiencies in clinical settings. They also underscore clinical and genetic heterogeneity and will improve patient care of this complex disorder. PMID:26741492

  6. Comparative genomic analysis of Lactobacillus plantarum ZJ316 reveals its genetic adaptation and potential probiotic profiles* #

    PubMed Central

    Li, Ping; Li, Xuan; Gu, Qing; Lou, Xiu-yu; Zhang, Xiao-mei; Song, Da-feng; Zhang, Chen

    2016-01-01

    Objective: In previous studies, Lactobacillus plantarum ZJ316 showed probiotic properties, such as antimicrobial activity against various pathogens and the capacity to significantly improve pig growth and pork quality. The purpose of this study was to reveal the genes potentially related to its genetic adaptation and probiotic profiles based on comparative genomic analysis. Methods: The genome sequence of L. plantarum ZJ316 was compared with those of eight L. plantarum strains deposited in GenBank. BLASTN, Mauve, and MUMmer programs were used for genome alignment and comparison. CRISPRFinder was applied for searching the clustered regularly interspaced short palindromic repeats (CRISPRs). Results: We identified genes that encode proteins related to genetic adaptation and probiotic profiles, including carbohydrate transport and metabolism, proteolytic enzyme systems and amino acid biosynthesis, CRISPR adaptive immunity, stress responses, bile salt resistance, ability to adhere to the host intestinal wall, exopolysaccharide (EPS) biosynthesis, and bacteriocin biosynthesis. Conclusions: Comparative characterization of the L. plantarum ZJ316 genome provided the genetic basis for further elucidating the functional mechanisms of its probiotic properties. ZJ316 could be considered a potential probiotic candidate. PMID:27487802

  7. A Comprehensive Genomic Analysis Reveals the Genetic Landscape of Mitochondrial Respiratory Chain Complex Deficiencies

    PubMed Central

    Nyuzuki, Hiromi; Moriyama, Yohsuke; Mizuno, Yosuke; Hirata, Tomoko; Yatsuka, Yukiko; Yamashita-Sugahara, Yzumi; Nakachi, Yutaka; Kato, Hidemasa; Okuda, Akihiko; Tamaru, Shunsuke; Borna, Nurun Nahar; Banshoya, Kengo; Aigaki, Toshiro; Sato-Miyata, Yukiko; Ohnuma, Kohei; Suzuki, Tsutomu; Nagao, Asuteka; Maehata, Hazuki; Matsuda, Fumihiko; Higasa, Koichiro; Nagasaki, Masao; Yasuda, Jun; Yamamoto, Masayuki; Fushimi, Takuya; Shimura, Masaru; Kaiho-Ichimoto, Keiko; Harashima, Hiroko; Yamazaki, Taro; Mori, Masato; Murayama, Kei; Ohtake, Akira; Okazaki, Yasushi

    2016-01-01

    Mitochondrial disorders have the highest incidence among congenital metabolic disorders characterized by biochemical respiratory chain complex deficiencies. It occurs at a rate of 1 in 5,000 births, and has phenotypic and genetic heterogeneity. Mutations in about 1,500 nuclear encoded mitochondrial proteins may cause mitochondrial dysfunction of energy production and mitochondrial disorders. More than 250 genes that cause mitochondrial disorders have been reported to date. However exact genetic diagnosis for patients still remained largely unknown. To reveal this heterogeneity, we performed comprehensive genomic analyses for 142 patients with childhood-onset mitochondrial respiratory chain complex deficiencies. The approach includes whole mtDNA and exome analyses using high-throughput sequencing, and chromosomal aberration analyses using high-density oligonucleotide arrays. We identified 37 novel mutations in known mitochondrial disease genes and 3 mitochondria-related genes (MRPS23, QRSL1, and PNPLA4) as novel causative genes. We also identified 2 genes known to cause monogenic diseases (MECP2 and TNNI3) and 3 chromosomal aberrations (6q24.3-q25.1, 17p12, and 22q11.21) as causes in this cohort. Our approaches enhance the ability to identify pathogenic gene mutations in patients with biochemically defined mitochondrial respiratory chain complex deficiencies in clinical settings. They also underscore clinical and genetic heterogeneity and will improve patient care of this complex disorder. PMID:26741492

  8. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity.

    PubMed

    Jones, Michelle R; Brower, Meredith A; Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I; Taylor, Kent D; Azziz, Ricardo; Goodarzi, Mark O

    2015-08-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS.

  9. Comparison of a Modern and Fossil Pithovirus Reveals Its Genetic Conservation and Evolution

    PubMed Central

    Levasseur, Anthony; Andreani, Julien; Delerce, Jeremy; Bou Khalil, Jacques; Robert, Catherine; La Scola, Bernard; Raoult, Didier

    2016-01-01

    Most theories on viral evolution are speculative and lack fossil comparison. Here, we isolated a modern Pithovirus-like virus from sewage samples. This giant virus, named Pithovirus massiliensis, was compared with its prehistoric counterpart, Pithovirus sibericum, found in Siberian permafrost. Our analysis revealed near-complete gene repertoire conservation, including horizontal gene transfer and ORFans. Furthermore, all orthologous genes evolved under strong purifying selection with a non-synonymous and synonymous ratio in the same range as the ratio found in the prokaryotic world. The comparison between fossil and modern Pithovirus species provided an estimation of the cadence of the molecular clock, reaching up to 3 × 10−6 mutations/site/year. In addition, the strict conservation of HGTs and ORFans in P. massiliensis revealed the stable genetic mosaicism in giant viruses and excludes the concept of a bag of genes. The genetic stability for 30,000 years of P. massiliensis demonstrates that giant viruses evolve similarly to prokaryotes by classical mechanisms of evolution, including selection and fixation of genes, followed by selective constraints. PMID:27389688

  10. Genetic relationships of the Japanese persimmon Diospyros kaki (Ebenaceae) and related species revealed by SSR analysis.

    PubMed

    Guo, D L; Luo, Z R

    2011-06-07

    Simple sequence repeat (SSR) molecular markers based on 18 primers were employed to study the genetic relationship of Japanese persimmon (Diospyros kaki) specimens. Two hundred and sixty-two bands were detected in 30 Japanese persimmon samples, including 14 Japanese and 10 Chinese genotypes of Japanese persimmon (Diospyros kaki) and six related species, D. lotus, D. glaucifolia, D. oleifera, D. rhombifolia, D. virginiana, and Jinzaoshi (unclassified - previously indicated to be D. kaki). All SSR primers developed from D. kaki were successfully employed to reveal the polymorphism in other species of Diospyros. Most of the primers were highly polymorphic, with a degree of polymorphism equal to or higher than 0.66. The results from the neighbor-joining dendrogram and the principal coordinate analysis diagram were the same; i.e., the Chinese and Japanese genotypes and related species were separated and the relationships revealed were consistent with the known pedigrees. We also concluded that 'Xiangxitianshi' from Xiangxi municipality, Hunan Province, China, is actually a sport or somaclonal variant of 'Maekawa-Jirou', and that 'Jinzaoshi' should be classified as a distinct species of Diospyros. We found that SSR markers are a valuable tool for the estimation of genetic diversity and divergence in Diospyros.

  11. Globalization’s unexpected impact on soybean production in South America: linkages between preferences for non-genetically modified crops, eco-certifications, and land use

    NASA Astrophysics Data System (ADS)

    Garrett, Rachael D.; Rueda, Ximena; Lambin, Eric F.

    2013-12-01

    The land use impacts of globalization and of increasing global food and fuel demand depend on the trade relationships that emerge between consuming and producing countries. In the case of soybean production, increasing trade between South American farmers and consumers in Asia and Europe has facilitated soybean expansion in the Amazon, Chaco, and Cerrado biomes. While these telecouplings have been well documented, there is little understanding of how quality preferences influence trade patterns and supply chains, incentivizing or discouraging particular land use practices. In this study we provide empirical evidence that Brazil’s continued production of non-genetically modified (GM) soybeans has increased its competitive advantage in European countries with preferences against GM foods. Brazil’s strong trade relationship with European consumers has facilitated an upgrading of the soybean supply chain. Upgraded soybean supply chains create new conservation opportunities by allowing farmers to differentiate their products based on environmental quality in order to access premiums in niche markets in Europe. These interactions between GM preferences, trade flows, and supply chain structure help to explain why Brazilian soybean farmers have adopted environmental certification programs on a larger scale than Argentinian, Bolivian, Paraguayan, and Uruguayan soybean producers.

  12. The Genetic Relationship between Leishmania aethiopica and Leishmania tropica Revealed by Comparing Microsatellite Profiles

    PubMed Central

    Krayter, Lena; Schnur, Lionel F.; Schönian, Gabriele

    2015-01-01

    Background Leishmania (Leishmania) aethiopica and L. (L.) tropica cause cutaneous leishmaniases and appear to be related. L. aethiopica is geographically restricted to Ethiopia and Kenya; L. tropica is widely dispersed from the Eastern Mediterranean, through the Middle East into eastern India and in north, east and south Africa. Their phylogenetic inter-relationship is only partially revealed. Some studies indicate a close relationship. Here, eight strains of L. aethiopica were characterized genetically and compared with 156 strains of L. tropica from most of the latter species' geographical range to discern the closeness. Methodology/Principal Findings Twelve unlinked microsatellite markers previously used to genotype strains of L. tropica were successfully applied to the eight strains of L. aethiopica and their microsatellite profiles were compared to those of 156 strains of L. tropica from various geographical locations that were isolated from human cases of cutaneous and visceral leishmaniasis, hyraxes and sand fly vectors. All the microsatellite profiles were subjected to various analytical algorithms: Bayesian statistics, distance-based and factorial correspondence analysis, revealing: (i) the species L. aethiopica, though geographically restricted, is genetically very heterogeneous; (ii) the strains of L. aethiopica formed a distinct genetic cluster; and (iii) strains of L. aethiopica are closely related to strains of L. tropica and more so to the African ones, although, by factorial correspondence analysis, clearly separate from them. Conclusions/Significance The successful application of the 12 microsatellite markers, originally considered species-specific for the species L. tropica, to strains of L. aethiopica confirmed the close relationship between these two species. The Bayesian and distance-based methods clustered the strains of L. aethiopica among African strains of L. tropica, while the factorial correspondence analysis indicated a clear separation

  13. Association genetics and transcriptome analysis reveal a gibberellin-responsive pathway involved in regulating photosynthesis.

    PubMed

    Xie, Jianbo; Tian, Jiaxing; Du, Qingzhang; Chen, Jinhui; Li, Ying; Yang, Xiaohui; Li, Bailian; Zhang, Deqiang

    2016-05-01

    Gibberellins (GAs) regulate a wide range of important processes in plant growth and development, including photosynthesis. However, the mechanism by which GAs regulate photosynthesis remains to be understood. Here, we used multi-gene association to investigate the effect of genes in the GA-responsive pathway, as constructed by RNA sequencing, on photosynthesis, growth, and wood property traits, in a population of 435 Populus tomentosa By analyzing changes in the transcriptome following GA treatment, we identified many key photosynthetic genes, in agreement with the observed increase in measurements of photosynthesis. Regulatory motif enrichment analysis revealed that 37 differentially expressed genes related to photosynthesis shared two essential GA-related cis-regulatory elements, the GA response element and the pyrimidine box. Thus, we constructed a GA-responsive pathway consisting of 47 genes involved in regulating photosynthesis, including GID1, RGA, GID2, MYBGa, and 37 photosynthetic differentially expressed genes. Single nucleotide polymorphism (SNP)-based association analysis showed that 142 SNPs, representing 40 candidate genes in this pathway, were significantly associated with photosynthesis, growth, and wood property traits. Epistasis analysis uncovered interactions between 310 SNP-SNP pairs from 37 genes in this pathway, revealing possible genetic interactions. Moreover, a structural gene-gene matrix based on a time-course of transcript abundances provided a better understanding of the multi-gene pathway affecting photosynthesis. The results imply a functional role for these genes in mediating photosynthesis, growth, and wood properties, demonstrating the potential of combining transcriptome-based regulatory pathway construction and genetic association approaches to detect the complex genetic networks underlying quantitative traits.

  14. Association genetics and transcriptome analysis reveal a gibberellin-responsive pathway involved in regulating photosynthesis.

    PubMed

    Xie, Jianbo; Tian, Jiaxing; Du, Qingzhang; Chen, Jinhui; Li, Ying; Yang, Xiaohui; Li, Bailian; Zhang, Deqiang

    2016-05-01

    Gibberellins (GAs) regulate a wide range of important processes in plant growth and development, including photosynthesis. However, the mechanism by which GAs regulate photosynthesis remains to be understood. Here, we used multi-gene association to investigate the effect of genes in the GA-responsive pathway, as constructed by RNA sequencing, on photosynthesis, growth, and wood property traits, in a population of 435 Populus tomentosa By analyzing changes in the transcriptome following GA treatment, we identified many key photosynthetic genes, in agreement with the observed increase in measurements of photosynthesis. Regulatory motif enrichment analysis revealed that 37 differentially expressed genes related to photosynthesis shared two essential GA-related cis-regulatory elements, the GA response element and the pyrimidine box. Thus, we constructed a GA-responsive pathway consisting of 47 genes involved in regulating photosynthesis, including GID1, RGA, GID2, MYBGa, and 37 photosynthetic differentially expressed genes. Single nucleotide polymorphism (SNP)-based association analysis showed that 142 SNPs, representing 40 candidate genes in this pathway, were significantly associated with photosynthesis, growth, and wood property traits. Epistasis analysis uncovered interactions between 310 SNP-SNP pairs from 37 genes in this pathway, revealing possible genetic interactions. Moreover, a structural gene-gene matrix based on a time-course of transcript abundances provided a better understanding of the multi-gene pathway affecting photosynthesis. The results imply a functional role for these genes in mediating photosynthesis, growth, and wood properties, demonstrating the potential of combining transcriptome-based regulatory pathway construction and genetic association approaches to detect the complex genetic networks underlying quantitative traits. PMID:27091876

  15. Outlier SNP markers reveal fine-scale genetic structuring across European hake populations (Merluccius merluccius).

    PubMed

    Milano, Ilaria; Babbucci, Massimiliano; Cariani, Alessia; Atanassova, Miroslava; Bekkevold, Dorte; Carvalho, Gary R; Espiñeira, Montserrat; Fiorentino, Fabio; Garofalo, Germana; Geffen, Audrey J; Hansen, Jakob H; Helyar, Sarah J; Nielsen, Einar E; Ogden, Rob; Patarnello, Tomaso; Stagioni, Marco; Tinti, Fausto; Bargelloni, Luca

    2014-01-01

    Shallow population structure is generally reported for most marine fish and explained as a consequence of high dispersal, connectivity and large population size. Targeted gene analyses and more recently genome-wide studies have challenged such view, suggesting that adaptive divergence might occur even when neutral markers provide genetic homogeneity across populations. Here, 381 SNPs located in transcribed regions were used to assess large- and fine-scale population structure in the European hake (Merluccius merluccius), a widely distributed demersal species of high priority for the European fishery. Analysis of 850 individuals from 19 locations across the entire distribution range showed evidence for several outlier loci, with significantly higher resolving power. While 299 putatively neutral SNPs confirmed the genetic break between basins (F(CT) = 0.016) and weak differentiation within basins, outlier loci revealed a dramatic divergence between Atlantic and Mediterranean populations (F(CT) range 0.275-0.705) and fine-scale significant population structure. Outlier loci separated North Sea and Northern Portugal populations from all other Atlantic samples and revealed a strong differentiation among Western, Central and Eastern Mediterranean geographical samples. Significant correlation of allele frequencies at outlier loci with seawater surface temperature and salinity supported the hypothesis that populations might be adapted to local conditions. Such evidence highlights the importance of integrating information from neutral and adaptive evolutionary patterns towards a better assessment of genetic diversity. Accordingly, the generated outlier SNP data could be used for tackling illegal practices in hake fishing and commercialization as well as to develop explicit spatial models for defining management units and stock boundaries.

  16. Y-chromosome diversity in Native Mexicans reveals continental transition of genetic structure in the Americas.

    PubMed

    Sandoval, Karla; Moreno-Estrada, Andres; Mendizabal, Isabel; Underhill, Peter A; Lopez-Valenzuela, Maria; Peñaloza-Espinosa, Rosenda; Lopez-Lopez, Marisol; Buentello-Malo, Leonor; Avelino, Heriberto; Calafell, Francesc; Comas, David

    2012-07-01

    The genetic characterization of Native Mexicans is important to understand multiethnic based features influencing the medical genetics of present Mexican populations, as well as to the reconstruct the peopling of the Americas. We describe the Y-chromosome genetic diversity of 197 Native Mexicans from 11 populations and 1,044 individuals from 44 Native American populations after combining with publicly available data. We found extensive heterogeneity among Native Mexican populations and ample segregation of Q-M242* (46%) and Q-M3 (54%) haplogroups within Mexico. The northernmost sampled populations falling outside Mesoamerica (Pima and Tarahumara) showed a clear differentiation with respect to the other populations, which is in agreement with previous results from mtDNA lineages. However, our results point toward a complex genetic makeup of Native Mexicans whose maternal and paternal lineages reveal different narratives of their population history, with sex-biased continental contributions and different admixture proportions. At a continental scale, we found that Arctic populations and the northernmost groups from North America cluster together, but we did not find a clear differentiation within Mesoamerica and the rest of the continent, which coupled with the fact that the majority of individuals from Central and South American samples are restricted to the Q-M3 branch, supports the notion that most Native Americans from Mesoamerica southwards are descendants from a single wave of migration. This observation is compatible with the idea that present day Mexico might have constituted an area of transition in the diversification of paternal lineages during the colonization of the Americas.

  17. Rangewide genetic analysis of Lesser Prairie-Chicken reveals population structure, range expansion, and possible introgression

    USGS Publications Warehouse

    Oyler-McCance, Sara J.; DeYoung, Randall W; Fike, Jennifer; Hagen, Christian A.; Johnson, Jeff A.; Larsson, Lena C; Patten, Michael

    2016-01-01

    The distribution of the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) has been markedly reduced due to loss and fragmentation of habitat. Portions of the historical range, however, have been recolonized and even expanded due to planting of conservation reserve program (CRP) fields that provide favorable vegetation structure for Lesser Prairie-Chickens. The source population(s) feeding the range expansion is unknown, yet has resulted in overlap between Lesser and Greater Prairie-Chickens (T. cupido) increasing the potential for hybridization. Our objectives were to characterize connectivity and genetic diversity among populations, identify source population(s) of recent range expansion, and examine hybridization with the Greater Prairie-Chicken. We analyzed 640 samples from across the range using 13 microsatellites. We identified three to four populations corresponding largely to ecoregions. The Shinnery Oak Prairie and Sand Sagebrush Prairie represented genetically distinct populations (F ST > 0.034 and F ST > 0.023 respectively). The Shortgrass/CRP Mosaic and Mixed Grass ecoregions appeared admixed (F ST = 0.009). Genetic diversity was similar among ecoregions and N e ranged from 142 (95 % CI 99–236) for the Shortgrass/CRP Mosaic to 296 (95 % CI 233–396) in the Mixed Grass Prairie. No recent migration was detected among ecoregions, except asymmetric dispersal from both the Mixed Grass Prairie and to a lesser extent the Sand Sagebrush Prairie north into adjacent Shortgrass/CRP Mosaic (m = 0.207, 95 % CI 0.116–0.298, m = 0.097, 95 % CI 0.010–0.183, respectively). Indices investigating potential hybridization in the Shortgrass/CRP Mosaic revealed that six of the 13 individuals with hybrid phenotypes were significantly admixed suggesting hybridization. Continued monitoring of diversity within and among ecoregions is warranted as are actions promoting genetic connectivity and range expansion.

  18. Partitioning the Heritability of Tourette Syndrome and Obsessive Compulsive Disorder Reveals Differences in Genetic Architecture

    PubMed Central

    Davis, Lea K.; Yu, Dongmei; Keenan, Clare L.; Gamazon, Eric R.; Konkashbaev, Anuar I.; Derks, Eske M.; Neale, Benjamin M.; Yang, Jian; Lee, S. Hong; Evans, Patrick; Barr, Cathy L.; Bellodi, Laura; Benarroch, Fortu; Berrio, Gabriel Bedoya; Bienvenu, Oscar J.; Bloch, Michael H.; Blom, Rianne M.; Bruun, Ruth D.; Budman, Cathy L.; Camarena, Beatriz; Campbell, Desmond; Cappi, Carolina; Cardona Silgado, Julio C.; Cath, Danielle C.; Cavallini, Maria C.; Chavira, Denise A.; Chouinard, Sylvain; Conti, David V.; Cook, Edwin H.; Coric, Vladimir; Cullen, Bernadette A.; Deforce, Dieter; Delorme, Richard; Dion, Yves; Edlund, Christopher K.; Egberts, Karin; Falkai, Peter; Fernandez, Thomas V.; Gallagher, Patience J.; Garrido, Helena; Geller, Daniel; Girard, Simon L.; Grabe, Hans J.; Grados, Marco A.; Greenberg, Benjamin D.; Gross-Tsur, Varda; Haddad, Stephen; Heiman, Gary A.; Hemmings, Sian M. J.; Hounie, Ana G.; Illmann, Cornelia; Jankovic, Joseph; Jenike, Michael A.; Kennedy, James L.; King, Robert A.; Kremeyer, Barbara; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F.; Lennertz, Leonhard; Liu, Chunyu; Lochner, Christine; Lowe, Thomas L.; Macciardi, Fabio; McCracken, James T.; McGrath, Lauren M.; Mesa Restrepo, Sandra C.; Moessner, Rainald; Morgan, Jubel; Muller, Heike; Murphy, Dennis L.; Naarden, Allan L.; Ochoa, William Cornejo; Ophoff, Roel A.; Osiecki, Lisa; Pakstis, Andrew J.; Pato, Michele T.; Pato, Carlos N.; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Rauch, Scott L.; Renner, Tobias J.; Reus, Victor I.; Richter, Margaret A.; Riddle, Mark A.; Robertson, Mary M.; Romero, Roxana; Rosàrio, Maria C.; Rosenberg, David; Rouleau, Guy A.; Ruhrmann, Stephan; Ruiz-Linares, Andres; Sampaio, Aline S.; Samuels, Jack; Sandor, Paul; Sheppard, Brooke; Singer, Harvey S.; Smit, Jan H.; Stein, Dan J.; Strengman, E.; Tischfield, Jay A.; Valencia Duarte, Ana V.; Vallada, Homero; Van Nieuwerburgh, Filip; Veenstra-VanderWeele, Jeremy; Walitza, Susanne; Wang, Ying; Wendland, Jens R.; Westenberg, Herman G. M.; Shugart, Yin Yao; Miguel, Euripedes C.; McMahon, William; Wagner, Michael; Nicolini, Humberto; Posthuma, Danielle; Hanna, Gregory L.; Heutink, Peter; Denys, Damiaan; Arnold, Paul D.; Oostra, Ben A.; Nestadt, Gerald; Freimer, Nelson B.; Pauls, David L.; Wray, Naomi R.

    2013-01-01

    The direct estimation of heritability from genome-wide common variant data as implemented in the program Genome-wide Complex Trait Analysis (GCTA) has provided a means to quantify heritability attributable to all interrogated variants. We have quantified the variance in liability to disease explained by all SNPs for two phenotypically-related neurobehavioral disorders, obsessive-compulsive disorder (OCD) and Tourette Syndrome (TS), using GCTA. Our analysis yielded a heritability point estimate of 0.58 (se = 0.09, p = 5.64e-12) for TS, and 0.37 (se = 0.07, p = 1.5e-07) for OCD. In addition, we conducted multiple genomic partitioning analyses to identify genomic elements that concentrate this heritability. We examined genomic architectures of TS and OCD by chromosome, MAF bin, and functional annotations. In addition, we assessed heritability for early onset and adult onset OCD. Among other notable results, we found that SNPs with a minor allele frequency of less than 5% accounted for 21% of the TS heritability and 0% of the OCD heritability. Additionally, we identified a significant contribution to TS and OCD heritability by variants significantly associated with gene expression in two regions of the brain (parietal cortex and cerebellum) for which we had available expression quantitative trait loci (eQTLs). Finally we analyzed the genetic correlation between TS and OCD, revealing a genetic correlation of 0.41 (se = 0.15, p = 0.002). These results are very close to previous heritability estimates for TS and OCD based on twin and family studies, suggesting that very little, if any, heritability is truly missing (i.e., unassayed) from TS and OCD GWAS studies of common variation. The results also indicate that there is some genetic overlap between these two phenotypically-related neuropsychiatric disorders, but suggest that the two disorders have distinct genetic architectures. PMID:24204291

  19. Genetic diversity of cultivated and wild tomatoes revealed by morphological traits and SSR markers.

    PubMed

    Zhou, R; Wu, Z; Cao, X; Jiang, F L

    2015-01-01

    In the current study, morphological traits and molecular markers were used to assess the genetic diversity of 29 cultivated tomatoes, 14 wild tomatoes and seven introgression lines. The three components of the principal component analysis (PCA) explained 78.54% of the total morphological variation in the 50 tomato genotypes assessed. Based on these morphological traits, a three-dimensional PCA plot separated the 50 genotypes into distinct groups, and a dendrogram divided them into six clusters. Fifteen polymorphic genomic simple- sequence repeat (genomic-SSR) and 13 polymorphic expressed sequence tag-derived SSR (EST-SSR) markers amplified 1115 and 780 clear fragments, respectively. Genomic-SSRs detected a total of 64 alleles, with a mean of 4 alleles per primer, while EST-SSRs detected 52 alleles, with a mean of 4 alleles per primer. The polymorphism information content was slightly higher in genomic-SSRs (0.49) than in EST-SSRs (0.45). The mean similarity coefficient among the wild tomatoes was lower than the mean similarity coefficient among the cultivated tomatoes. The dendrogram based on genetic distance divided the 50 tomato genotypes into eight clusters. The Mantel test between genomic-SSR and EST-SSR matrices revealed a good correlation, whereas the morphological matrices and the molecular matrices were weakly correlated. We confirm the applicability of EST-SSRs in analyzing genetic diversity among cultivated and wild tomatoes. High variability of the 50 tomato genotypes was observed at the morphological and molecular level, indicating valuable tomato germplasm, especially in the wild tomatoes, which could be used for further genetic studies.

  20. Unexpected population genetic structure of European roe deer in Poland: an invasion of the mtDNA genome from Siberian roe deer.

    PubMed

    Matosiuk, Maciej; Borkowska, Anetta; Świsłocka, Magdalena; Mirski, Paweł; Borowski, Zbigniew; Krysiuk, Kamil; Danilkin, Aleksey A; Zvychaynaya, Elena Y; Saveljev, Alexander P; Ratkiewicz, Mirosław

    2014-05-01

    Introgressive hybridization is a widespread evolutionary phenomenon which may lead to increased allelic variation at selective neutral loci and to transfer of fitness-related traits to introgressed lineages. We inferred the population genetic structure of the European roe deer (Capreolus capreolus) in Poland from mitochondrial (CR and cyt b) and sex-linked markers (ZFX, SRY, DBY4 and DBY8). Analyses of CR mtDNA sequences from 452 individuals indicated widespread introgression of Siberian roe deer (C. pygargus) mtDNA in the European roe deer genome, 2000 km from the current distribution range of C. pygargus. Introgressed individuals constituted 16.6% of the deer studied. Nearly 75% of them possessed haplotypes belonging to the group which arose 23 kyr ago and have not been detected within the natural range of Siberian roe deer, indicating that majority of present introgression has ancient origin. Unlike the mtDNA results, sex-specific markers did not show signs of introgression. Species distribution modelling analyses suggested that C. pygargus could have extended its range as far west as Central Europe after last glacial maximum. The main hybridization event was probably associated with range expansion of the most abundant European roe deer lineage from western refugia and took place in Central Europe after the Younger Dryas (10.8-10.0 ka BP). Initially, introgressed mtDNA variants could have spread out on the wave of expansion through the mechanism of gene surfing, reaching high frequencies in European roe deer populations and leading to observed asymmetrical gene flow. Human-mediated introductions of C. pygargus had minimal effect on the extent of mtDNA introgression.

  1. Unexpected Angiography Findings and Effects on Management

    PubMed Central

    Neill, Matthew; Charles, Hearns W; Gross, Jonathan S; Farquharson, Sean; Deipolyi, Amy R

    2016-01-01

    Despite progress in noninvasive imaging with computed tomography and magnetic resonance imaging, conventional angiography still contributes to the diagnostic workup of oncologic and other diseases. Arteriography can reveal tumors not evident on cross-sectional imaging, in addition to defining aberrant or unexpected arterial supply to targeted lesions. This additional and potentially unanticipated information can alter management decisions during interventional procedures. PMID:27688932

  2. Unexpected Angiography Findings and Effects on Management.

    PubMed

    Neill, Matthew; Charles, Hearns W; Gross, Jonathan S; Farquharson, Sean; Deipolyi, Amy R

    2016-01-01

    Despite progress in noninvasive imaging with computed tomography and magnetic resonance imaging, conventional angiography still contributes to the diagnostic workup of oncologic and other diseases. Arteriography can reveal tumors not evident on cross-sectional imaging, in addition to defining aberrant or unexpected arterial supply to targeted lesions. This additional and potentially unanticipated information can alter management decisions during interventional procedures. PMID:27688932

  3. Unexpected Angiography Findings and Effects on Management

    PubMed Central

    Neill, Matthew; Charles, Hearns W; Gross, Jonathan S; Farquharson, Sean; Deipolyi, Amy R

    2016-01-01

    Despite progress in noninvasive imaging with computed tomography and magnetic resonance imaging, conventional angiography still contributes to the diagnostic workup of oncologic and other diseases. Arteriography can reveal tumors not evident on cross-sectional imaging, in addition to defining aberrant or unexpected arterial supply to targeted lesions. This additional and potentially unanticipated information can alter management decisions during interventional procedures.

  4. Genetic scores based on risk-associated single nucleotide polymorphisms (SNPs) can reveal inherited risk of renal cell carcinoma.

    PubMed

    Wu, Yishuo; Zhang, Ning; Li, Kaiwen; Chen, Haitao; Lin, Xiaolin; Yu, Yang; Gou, Yuancheng; Hou, Jiangang; Jiang, Deke; Na, Rong; Wang, Xiang; Ding, Qiang; Xu, Jianfeng

    2016-04-01

    The objective of this study was to evaluate whether renal cell carcinoma (RCC) risk-associated single nucleotide polymorphisms (SNPs) could reflect the individual inherited risks of RCC. A total of 346 RCC patients and 1,130 controls were recruited in this case-control study. Genetic scores were calculated for each individual based on the odds ratios and frequencies of risk-associated SNPs. Four SNPs were significantly associated with RCC in Chinese population. Two genetic score models were established, genetic score 1 (rs10054504, rs7023329 and rs718314) and genetic score 2 (rs10054504, rs7023329 and rs1049380). For genetic score 1, the individual likelihood of RCC with low (<0.8), medium (0.8-1.2) and high (≥1.2) genetic score 1 was 15.61%, 22.25% and 33.92% respectively (P-trend=6.88×10(-7)). For genetic score 2, individual with low (<0.8), medium (0.8-1.2) and high (≥1.2) genetic score 2 would have likelihood of RCC as 14.39%, 24.54% and 36.48%, respectively (P-trend=1.27×10(-10)). The area under the receiver operating curve (AUC) of genetic score 1 was 0.626, and AUC of genetic score 2 was 0.658. We concluded that genetic score can reveal personal risk and inherited risk of RCC, especially when family history is not available.

  5. Genetic scores based on risk-associated single nucleotide polymorphisms (SNPs) can reveal inherited risk of renal cell carcinoma

    PubMed Central

    Chen, Haitao; Lin, Xiaolin; Yu, Yang; Gou, Yuancheng; Hou, Jiangang; Jiang, Deke; Na, Rong; Wang, Xiang; Ding, Qiang; Xu, Jianfeng

    2016-01-01

    The objective of this study was to evaluate whether renal cell carcinoma (RCC) risk-associated single nucleotide polymorphisms (SNPs) could reflect the individual inherited risks of RCC. A total of 346 RCC patients and 1,130 controls were recruited in this case-control study. Genetic scores were calculated for each individual based on the odds ratios and frequencies of risk-associated SNPs. Four SNPs were significantly associated with RCC in Chinese population. Two genetic score models were established, genetic score 1 (rs10054504, rs7023329 and rs718314) and genetic score 2 (rs10054504, rs7023329 and rs1049380). For genetic score 1, the individual likelihood of RCC with low (<0.8), medium (0.8-1.2) and high (≥1.2) genetic score 1 was 15.61%, 22.25% and 33.92% respectively (P-trend=6.88×10−7). For genetic score 2, individual with low (<0.8), medium (0.8-1.2) and high (≥1.2) genetic score 2 would have likelihood of RCC as 14.39%, 24.54% and 36.48%, respectively (P-trend=1.27×10−10). The area under the receiver operating curve (AUC) of genetic score 1 was 0.626, and AUC of genetic score 2 was 0.658. We concluded that genetic score can reveal personal risk and inherited risk of RCC, especially when family history is not available. PMID:27229762

  6. Demographic costs of inbreeding revealed by sex-specific genetic rescue effects

    PubMed Central

    2009-01-01

    Background Inbreeding can slow population growth and elevate extinction risk. A small number of unrelated immigrants to an inbred population can substantially reduce inbreeding and improve fitness, but little attention has been paid to the sex-specific effects of immigrants on such "genetic rescue". We conducted two subsequent experiments to investigate demographic consequences of inbreeding and genetic rescue in guppies. Results Populations established from pairs of full siblings that were descended either from two generations of full-sibling inbreeding or unrelated outbred guppies did not grow at different rates initially, but when the first generation offspring started breeding, outbred-founded populations grew more slowly than inbred-founded populations. In a second experiment, adding two outbred males to the inbred populations resulted in significantly faster population growth than in control populations where no immigrants were added. Adding females resulted in growth at a rate intermediate to the control and male-immigrant treatments. Conclusion The slower growth of the outbred-founded than inbred-founded populations is the opposite of what would be expected under inbreeding depression unless many deleterious recessive alleles had already been selectively purged in the inbreeding that preceded the start of the experiment, and that significant inbreeding depression occurred when the first generation offspring in outbred-founded populations started to inbreed. The second experiment revealed strong inbreeding depression in the inbred founded populations, despite the apparent lack thereof in these populations earlier on. Moreover, the fact that the addition of male immigrants resulted in the highest levels of population growth suggests that sex-specific genetic rescue may occur in promiscuous species, with male rescue resulting in higher levels of outbreeding than female rescue. PMID:20003302

  7. Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth

    PubMed Central

    Palkopoulou, Eleftheria; Mallick, Swapan; Skoglund, Pontus; Enk, Jacob; Rohland, Nadin; Li, Heng; Omrak, Ayça; Vartanyan, Sergey; Poinar, Hendrik; Götherström, Anders; Reich, David; Dalén, Love

    2015-01-01

    Summary The processes leading up to species extinctions are typically characterized by prolonged declines in population size and geographic distribution, followed by a phase in which populations are very small and may be subject to intrinsic threats, including loss of genetic diversity and inbreeding [1]. However, whether such genetic factors have had an impact on species prior to their extinction is unclear [2, 3]; examining this would require a detailed reconstruction of a species’ demographic history as well as changes in genome-wide diversity leading up to its extinction. Here, we present high-quality complete genome sequences from two woolly mammoths (Mammuthus primigenius). The first mammoth was sequenced at 17.1-fold coverage, and dates to ~4,300 years before present, constituting one of the last surviving individuals on Wrangel Island. The second mammoth, sequenced at 11.2-fold coverage, was obtained from a ~44,800 year old specimen from the Late Pleistocene population in northeastern Siberia. The demographic trajectories inferred from the two genomes are qualitatively similar and reveal a population bottleneck during the Middle or Early Pleistocene, and a more recent severe decline in the ancestors of the Wrangel mammoth at the end of the last glaciation. A comparison of the two genomes shows that the Wrangel mammoth has a 20% reduction in heterozygosity as well as a 28-fold increase in the fraction of the genome that is comprised of runs of homozygosity. We conclude that the population on Wrangel Island, which was the last surviving woolly mammoth population, was subject to reduced genetic diversity shortly before it became extinct. PMID:25913407

  8. Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth.

    PubMed

    Palkopoulou, Eleftheria; Mallick, Swapan; Skoglund, Pontus; Enk, Jacob; Rohland, Nadin; Li, Heng; Omrak, Ayça; Vartanyan, Sergey; Poinar, Hendrik; Götherström, Anders; Reich, David; Dalén, Love

    2015-05-18

    The processes leading up to species extinctions are typically characterized by prolonged declines in population size and geographic distribution, followed by a phase in which populations are very small and may be subject to intrinsic threats, including loss of genetic diversity and inbreeding. However, whether such genetic factors have had an impact on species prior to their extinction is unclear; examining this would require a detailed reconstruction of a species' demographic history as well as changes in genome-wide diversity leading up to its extinction. Here, we present high-quality complete genome sequences from two woolly mammoths (Mammuthus primigenius). The first mammoth was sequenced at 17.1-fold coverage and dates to ∼4,300 years before present, representing one of the last surviving individuals on Wrangel Island. The second mammoth, sequenced at 11.2-fold coverage, was obtained from an ∼44,800-year-old specimen from the Late Pleistocene population in northeastern Siberia. The demographic trajectories inferred from the two genomes are qualitatively similar and reveal a population bottleneck during the Middle or Early Pleistocene, and a more recent severe decline in the ancestors of the Wrangel mammoth at the end of the last glaciation. A comparison of the two genomes shows that the Wrangel mammoth has a 20% reduction in heterozygosity as well as a 28-fold increase in the fraction of the genome that comprises runs of homozygosity. We conclude that the population on Wrangel Island, which was the last surviving woolly mammoth population, was subject to reduced genetic diversity shortly before it became extinct.

  9. Genetic Interaction Landscape Reveals Critical Requirements for Schizosaccharomyces pombe Brc1 in DNA Damage Response Mutants.

    PubMed

    Sánchez, Arancha; Roguev, Assen; Krogan, Nevan J; Russell, Paul

    2015-05-01

    Brc1, which was first identified as a high-copy, allele-specific suppressor of a mutation impairing the Smc5-Smc6 holocomplex in Schizosaccharomyces pombe, protects genome integrity during normal DNA replication and when cells are exposed to toxic compounds that stall or collapse replication forks. The C-terminal tandem BRCT (BRCA1 C-terminus) domain of fission yeast Brc1 docks with phosphorylated histone H2A (γH2A)-marked chromatin formed by ATR/Rad3 checkpoint kinase at arrested and damaged replication forks; however, how Brc1 functions in relation to other genome protection modules remains unclear. Here, an epistatic mini-array profile reveals critical requirements for Brc1 in mutants that are defective in multiple DNA damage response pathways, including checkpoint signaling by Rad3-Rad26/ATR-ATRIP kinase, DNA repair by Smc5-Smc6 holocomplex, replication fork stabilization by Mrc1/claspin and Swi1-Swi3/Timeless-Tipin, and control of ubiquitin-regulated proteolysis by the COP9 signalosome (CSN). Exogenous genotoxins enhance these negative genetic interactions. Rad52 and RPA foci are increased in CSN-defective cells, and loss of γH2A increases genotoxin sensitivity, indicating a critical role for the γH2A-Brc1 module in stabilizing replication forks in CSN-defective cells. A negative genetic interaction with the Nse6 subunit of Smc5-Smc6 holocomplex indicates that the DNA repair functions of Brc1 and Smc5-Smc6 holocomplex are at least partially independent. Rtt107, the Brc1 homolog in Saccharomyces cerevisiae, has a very different pattern of genetic interactions, indicating evolutionary divergence of functions and DNA damage responses.

  10. Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth.

    PubMed

    Palkopoulou, Eleftheria; Mallick, Swapan; Skoglund, Pontus; Enk, Jacob; Rohland, Nadin; Li, Heng; Omrak, Ayça; Vartanyan, Sergey; Poinar, Hendrik; Götherström, Anders; Reich, David; Dalén, Love

    2015-05-18

    The processes leading up to species extinctions are typically characterized by prolonged declines in population size and geographic distribution, followed by a phase in which populations are very small and may be subject to intrinsic threats, including loss of genetic diversity and inbreeding. However, whether such genetic factors have had an impact on species prior to their extinction is unclear; examining this would require a detailed reconstruction of a species' demographic history as well as changes in genome-wide diversity leading up to its extinction. Here, we present high-quality complete genome sequences from two woolly mammoths (Mammuthus primigenius). The first mammoth was sequenced at 17.1-fold coverage and dates to ∼4,300 years before present, representing one of the last surviving individuals on Wrangel Island. The second mammoth, sequenced at 11.2-fold coverage, was obtained from an ∼44,800-year-old specimen from the Late Pleistocene population in northeastern Siberia. The demographic trajectories inferred from the two genomes are qualitatively similar and reveal a population bottleneck during the Middle or Early Pleistocene, and a more recent severe decline in the ancestors of the Wrangel mammoth at the end of the last glaciation. A comparison of the two genomes shows that the Wrangel mammoth has a 20% reduction in heterozygosity as well as a 28-fold increase in the fraction of the genome that comprises runs of homozygosity. We conclude that the population on Wrangel Island, which was the last surviving woolly mammoth population, was subject to reduced genetic diversity shortly before it became extinct. PMID:25913407

  11. Genetic Patterns in European Geometrid Moths Revealed by the Barcode Index Number (BIN) System

    PubMed Central

    Hausmann, Axel; Godfray, H. Charles J.; Huemer, Peter; Mutanen, Marko; Rougerie, Rodolphe; van Nieukerken, Erik J.; Ratnasingham, Sujeevan; Hebert, Paul D. N.

    2013-01-01

    Background The geometrid moths of Europe are one of the best investigated insect groups in traditional taxonomy making them an ideal model group to test the accuracy of the Barcode Index Number (BIN) system of BOLD (Barcode of Life Datasystems), a method that supports automated, rapid species delineation and identification. Methodology/Principal Findings This study provides a DNA barcode library for 219 of the 249 European geometrid moth species (88%) in five selected subfamilies. The data set includes COI sequences for 2130 specimens. Most species (93%) were found to possess diagnostic barcode sequences at the European level while only three species pairs (3%) were genetically indistinguishable in areas of sympatry. As a consequence, 97% of the European species we examined were unequivocally discriminated by barcodes within their natural areas of distribution. We found a 1:1 correspondence between BINs and traditionally recognized species for 67% of these species. Another 17% of the species (15 pairs, three triads) shared BINs, while specimens from the remaining species (18%) were divided among two or more BINs. Five of these species are mixtures, both sharing and splitting BINs. For 82% of the species with two or more BINs, the genetic splits involved allopatric populations, many of which have previously been hypothesized to represent distinct species or subspecies. Conclusions/Significance This study confirms the effectiveness of DNA barcoding as a tool for species identification and illustrates the potential of the BIN system to characterize formal genetic units independently of an existing classification. This suggests the system can be used to efficiently assess the biodiversity of large, poorly known assemblages of organisms. For the moths examined in this study, cases of discordance between traditionally recognized species and BINs arose from several causes including overlooked species, synonymy, and cases where DNA barcodes revealed regional variation of

  12. The genome of Romanomermis culicivorax: revealing fundamental changes in the core developmental genetic toolkit in Nematoda

    PubMed Central

    2013-01-01

    Background The genetics of development in the nematode Caenorhabditis elegans has been described in exquisite detail. The phylum Nematoda has two classes: Chromadorea (which includes C. elegans) and the Enoplea. While the development of many chromadorean species resembles closely that of C. elegans, enoplean nematodes show markedly different patterns of early cell division and cell fate assignment. Embryogenesis of the enoplean Romanomermis culicivorax has been studied in detail, but the genetic circuitry underpinning development in this species has not been explored. Results We generated a draft genome for R. culicivorax and compared its gene content with that of C. elegans, a second enoplean, the vertebrate parasite Trichinella spiralis, and a representative arthropod, Tribolium castaneum. This comparison revealed that R. culicivorax has retained components of the conserved ecdysozoan developmental gene toolkit lost in C. elegans. T. spiralis has independently lost even more of this toolkit than has C. elegans. However, the C. elegans toolkit is not simply depauperate, as many novel genes essential for embryogenesis in C. elegans are not found in, or have only extremely divergent homologues in R. culicivorax and T. spiralis. Our data imply fundamental differences in the genetic programmes not only for early cell specification but also others such as vulva formation and sex determination. Conclusions Despite the apparent morphological conservatism, major differences in the molecular logic of development have evolved within the phylum Nematoda. R. culicivorax serves as a tractable system to contrast C. elegans and understand how divergent genomic and thus regulatory backgrounds nevertheless generate a conserved phenotype. The R. culicivorax draft genome will promote use of this species as a research model. PMID:24373391

  13. Association analysis reveals genetic variation altering bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Paun, Alexandra; Lemay, Anne-Marie; Tomko, Tomasz G; Haston, Christina K

    2013-03-01

    Pulmonary fibrosis is a disease of significant morbidity, with an incompletely defined genetic basis. Here, we combine linkage and association studies to identify genetic variations associated with pulmonary fibrosis in mice. Mice were treated with bleomycin by osmotic minipump, and pulmonary fibrosis was histologically assessed 6 weeks later. Fibrosis was mapped in C57BL6/J (fibrosis-susceptible) × A/J (fibrosis-resistant) F2 mice, and the major identified linkage intervals were evaluated in consomic mice. Genome-wide and linkage-interval genes were assessed for their association with fibrosis, using phenotypic data from 23 inbred strains and the murine single-nucleotide polymorphism map. Susceptibility to pulmonary fibrosis mapped to a locus on chromosome 17, which was verified with consomic mice, and to three additional suggestive loci that may interact with alleles on chromosome 17 to affect the trait in F2 mice. Two of the loci, including the region on chromosome 17, are homologous to previously mapped loci of human idiopathic fibrosis. Of the 23 phenotyped murine strains, four developed significant fibrosis, and the majority presented minimal disease. Genome-wide and linkage region-specific association studies revealed 11 pulmonary expressed genes (including the autophagy gene Cep55, and Masp2, which is a complement component) to contain polymorphisms significantly associated with bleomycin-induced fibrotic lung disease. In conclusion, genomic approaches were used to identify linkage intervals and specific genetic variations associated with pulmonary fibrosis in mice. The common loci and similarities in phenotype suggest these findings to be of relevance to clinical pulmonary fibrosis.

  14. Genetic diversity of Clavispora lusitaniae isolated from Agave fourcroydes Lem, as revealed by DNA fingerprinting.

    PubMed

    Pérez-Brito, Daisy; Magaña-Alvarez, Anuar; Lappe-Oliveras, Patricia; Cortes-Velazquez, Alberto; Torres-Calzada, Claudia; Herrera-Suarez, Teófilo; Larqué-Saavedra, Alfonso; Tapia-Tussell, Raul

    2015-01-01

    This study characterized Clavispora lusitaniae strains isolated from different stages of the processing and early fermentation of a henequen (Agave fourcroydes) spirit produced in Yucatan, Mexico using a molecular technique. Sixteen strains identified based on morphological features, obtained from different substrates, were typed molecularly. Nine different versions of the divergent D1/D2 domain of the large-subunit ribosomal DNA sequence were identified among the C. lusitaniae strains. The greatest degree of polymorphism was found in the 90-bp structural motif of the D2 domain. The MSP-PCR technique was able to differentiate 100% of the isolates. This study provides significant insight into the genetic diversity of the mycobiota present during the henequen fermentation process, especially that of C. lusitaniae, for which only a few studies in plants have been published. The applied MSP-PCR markers were very efficient in revealing olymorphisms between isolates of this species.

  15. Genetic diversity of Clavispora lusitaniae isolated from Agave fourcroydes Lem, as revealed by DNA fingerprinting.

    PubMed

    Pérez-Brito, Daisy; Magaña-Alvarez, Anuar; Lappe-Oliveras, Patricia; Cortes-Velazquez, Alberto; Torres-Calzada, Claudia; Herrera-Suarez, Teófilo; Larqué-Saavedra, Alfonso; Tapia-Tussell, Raul

    2015-01-01

    This study characterized Clavispora lusitaniae strains isolated from different stages of the processing and early fermentation of a henequen (Agave fourcroydes) spirit produced in Yucatan, Mexico using a molecular technique. Sixteen strains identified based on morphological features, obtained from different substrates, were typed molecularly. Nine different versions of the divergent D1/D2 domain of the large-subunit ribosomal DNA sequence were identified among the C. lusitaniae strains. The greatest degree of polymorphism was found in the 90-bp structural motif of the D2 domain. The MSP-PCR technique was able to differentiate 100% of the isolates. This study provides significant insight into the genetic diversity of the mycobiota present during the henequen fermentation process, especially that of C. lusitaniae, for which only a few studies in plants have been published. The applied MSP-PCR markers were very efficient in revealing olymorphisms between isolates of this species. PMID:25557477

  16. Notch2 genetic fate mapping reveals two previously unrecognized mammary epithelial lineages

    PubMed Central

    Šale, Sanja; Lafkas, Daniel; Artavanis-Tsakonas, Spyros

    2013-01-01

    Notch signalling is implicated in stem and progenitor cell fate control in numerous organs. Using conditional in vivo genetic labelling we traced the fate of cells expressing the Notch2 receptor paralogue and uncovered the existence of two previously unrecognized mammary epithelial cell lineages that we term S (Small) and L (Large). S cells appear in a bead-on-a-string formation and are embedded between the luminal and basal/myoepithelial layers in a unique reiterative pattern, whereas single or paired L cells appear among ductal and alveolar cells. Long-term lineage tracing and functional studies indicate that S and L cells regulate ipsi- and contralateral spatial placement of tertiary branches and formation of alveolar clusters. Our findings revise present models of mammary epithelial cell hierarchy, reveal a hitherto undescribed mechanism regulating branching morphogenesis and may have important implications for identification of the cell-of-origin of distinct breast cancer subtypes. PMID:23604318

  17. Moderate Genetic Diversity and Genetic Differentiation in the Relict Tree Liquidambar formosana Hance Revealed by Genic Simple Sequence Repeat Markers

    PubMed Central

    Sun, Rongxi; Lin, Furong; Huang, Ping; Zheng, Yongqi

    2016-01-01

    Chinese sweetgum (Liquidambar formosana) is a relatively fast-growing ecological pioneer species. It is widely used for multiple purposes. To assess the genetic diversity and genetic differentiation of the species, genic SSR markers were mined from transcriptome data for subsequent analysis of the genetic diversity and population structure of natural populations. A total of 10645 potential genic SSR loci were identified in 80482 unigenes. The average frequency was one SSR per 5.12 kb, and the dinucleotide unit was the most abundant motif. A total of 67 alleles were found, with a mean of 6.091 alleles per locus and a mean polymorphism information content of 0.390. Moreover, the species exhibited a relatively moderate level of genetic diversity (He = 0.399), with the highest was found in population XY (He = 0.469). At the regional level, the southwestern region displayed the highest genetic diversity (He = 0.435) and the largest number of private alleles (n = 5), which indicated that the Southwestern region may be the diversity hot spot of L. formosana. The AMOVA results showed that variation within populations (94.02%) was significantly higher than among populations (5.98%), which was in agreement with the coefficient of genetic differentiation (Fst = 0.076). According to the UPGMA analysis and principal coordinate analysis and confirmed by the assignment test, 25 populations could be divided into three groups, and there were different degrees of introgression among populations. No correlation was found between genetic distance and geographic distance (P > 0.05). These results provided further evidence that geographic isolation was not the primary factor leading to the moderate genetic differentiation of L. formosana. As most of the genetic diversity of L. formosana exists among individuals within a population, individual plant selection would be an effective way to use natural variation in genetic improvement programs. This would be helpful to not only protect the

  18. Uniparental Markers in Italy Reveal a Sex-Biased Genetic Structure and Different Historical Strata

    PubMed Central

    Sarno, Stefania; Harmant, Christine; Useli, Antonella; Sanz, Paula; Yang-Yao, Daniele; Manry, Jeremy; Ciani, Graziella; Luiselli, Donata; Quintana-Murci, Lluis; Comas, David; Pettener, Davide

    2013-01-01

    Located in the center of the Mediterranean landscape and with an extensive coastal line, the territory of what is today Italy has played an important role in the history of human settlements and movements of Southern Europe and the Mediterranean Basin. Populated since Paleolithic times, the complexity of human movements during the Neolithic, the Metal Ages and the most recent history of the two last millennia (involving the overlapping of different cultural and demic strata) has shaped the pattern of the modern Italian genetic structure. With the aim of disentangling this pattern and understanding which processes more importantly shaped the distribution of diversity, we have analyzed the uniparentally-inherited markers in ∼900 individuals from an extensive sampling across the Italian peninsula, Sardinia and Sicily. Spatial PCAs and DAPCs revealed a sex-biased pattern indicating different demographic histories for males and females. Besides the genetic outlier position of Sardinians, a North West–South East Y-chromosome structure is found in continental Italy. Such structure is in agreement with recent archeological syntheses indicating two independent and parallel processes of Neolithisation. In addition, date estimates pinpoint the importance of the cultural and demographic events during the late Neolithic and Metal Ages. On the other hand, mitochondrial diversity is distributed more homogeneously in agreement with older population events that might be related to the presence of an Italian Refugium during the last glacial period in Europe. PMID:23734255

  19. Genetic characterization of Toxoplasma gondii from Brazilian wildlife revealed abundant new genotypes.

    PubMed

    Vitaliano, S N; Soares, H S; Minervino, A H H; Santos, A L Q; Werther, K; Marvulo, M F V; Siqueira, D B; Pena, H F J; Soares, R M; Su, C; Gennari, S M

    2014-12-01

    This study aimed to isolate and genotype T. gondii from Brazilian wildlife. For this purpose, 226 samples were submitted to mice bioassay and screened by PCR based on 18S rRNA sequences. A total of 15 T. gondii isolates were obtained, including samples from four armadillos (three Dasypus novemcinctus, one Euphractus sexcinctus), three collared anteaters (Tamandua tetradactyla), three whited-lipped peccaries (Tayassu pecari), one spotted paca (Cuniculus paca), one oncilla (Leopardus tigrinus), one hoary fox (Pseudalopex vetulus), one lineated woodpecker (Dryocopus lineatus) and one maned wolf (Chrysocyon brachyurus). DNA from the isolates, originated from mice bioassay, and from the tissues of the wild animal, designated as "primary samples", were genotyped by PCR-restriction fragment length polymorphism (PCR/RFLP), using 12 genetic markers (SAG1, SAG2, alt.SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L258, PK1, CS3 and Apico). A total of 17 genotypes were identified, with 13 identified for the first time and four already reported in published literature. Results herein obtained corroborate previous studies in Brazil, confirming high diversity and revealing unique genotypes in this region. Given most of genotypes here identified are different from previous studies in domestic animals, future studies on T. gondii from wildlife is of interest to understand population genetics and structure of this parasite. PMID:25426424

  20. Genetically encoding a light switch in an ionotropic glutamate receptor reveals subunit-specific interfaces.

    PubMed

    Zhu, Shujia; Riou, Morgane; Yao, C Andrea; Carvalho, Stéphanie; Rodriguez, Pamela C; Bensaude, Olivier; Paoletti, Pierre; Ye, Shixin

    2014-04-22

    Reprogramming receptors to artificially respond to light has strong potential for molecular studies and interrogation of biological functions. Here, we design a light-controlled ionotropic glutamate receptor by genetically encoding a photoreactive unnatural amino acid (UAA). The photo-cross-linker p-azido-L-phenylalanine (AzF) was encoded in NMDA receptors (NMDARs), a class of glutamate-gated ion channels that play key roles in neuronal development and plasticity. AzF incorporation in the obligatory GluN1 subunit at the GluN1/GluN2B N-terminal domain (NTD) upper lobe dimer interface leads to an irreversible allosteric inhibition of channel activity upon UV illumination. In contrast, when pairing the UAA-containing GluN1 subunit with the GluN2A subunit, light-dependent inactivation is completely absent. By combining electrophysiological and biochemical analyses, we identify subunit-specific structural determinants at the GluN1/GluN2 NTD dimer interfaces that critically dictate UV-controlled inactivation. Our work reveals that the two major NMDAR subtypes differ in their ectodomain-subunit interactions, in particular their electrostatic contacts, resulting in GluN1 NTD coupling more tightly to the GluN2B NTD than to the GluN2A NTD. It also paves the way for engineering light-sensitive ligand-gated ion channels with subtype specificity through the genetic code expansion. PMID:24715733

  1. Uniparental markers in Italy reveal a sex-biased genetic structure and different historical strata.

    PubMed

    Boattini, Alessio; Martinez-Cruz, Begoña; Sarno, Stefania; Harmant, Christine; Useli, Antonella; Sanz, Paula; Yang-Yao, Daniele; Manry, Jeremy; Ciani, Graziella; Luiselli, Donata; Quintana-Murci, Lluis; Comas, David; Pettener, Davide

    2013-01-01

    Located in the center of the Mediterranean landscape and with an extensive coastal line, the territory of what is today Italy has played an important role in the history of human settlements and movements of Southern Europe and the Mediterranean Basin. Populated since Paleolithic times, the complexity of human movements during the Neolithic, the Metal Ages and the most recent history of the two last millennia (involving the overlapping of different cultural and demic strata) has shaped the pattern of the modern Italian genetic structure. With the aim of disentangling this pattern and understanding which processes more importantly shaped the distribution of diversity, we have analyzed the uniparentally-inherited markers in ∼900 individuals from an extensive sampling across the Italian peninsula, Sardinia and Sicily. Spatial PCAs and DAPCs revealed a sex-biased pattern indicating different demographic histories for males and females. Besides the genetic outlier position of Sardinians, a North West-South East Y-chromosome structure is found in continental Italy. Such structure is in agreement with recent archeological syntheses indicating two independent and parallel processes of Neolithisation. In addition, date estimates pinpoint the importance of the cultural and demographic events during the late Neolithic and Metal Ages. On the other hand, mitochondrial diversity is distributed more homogeneously in agreement with older population events that might be related to the presence of an Italian Refugium during the last glacial period in Europe.

  2. Multilocus sequence analysis reveals high genetic diversity in clinical isolates of Burkholderia cepacia complex from India

    PubMed Central

    Gautam, Vikas; Patil, Prashant P.; Kumar, Sunil; Midha, Samriti; Kaur, Mandeep; Kaur, Satinder; Singh, Meenu; Mali, Swapna; Shastri, Jayanthi; Arora, Anita; Ray, Pallab; Patil, Prabhu B.

    2016-01-01

    Burkholderia cepacia complex (Bcc) is a complex group of bacteria causing opportunistic infections in immunocompromised and cystic fibrosis (CF) patients. Herein, we report multilocus sequence typing and analysis of the 57 clinical isolates of Bcc collected over the period of seven years (2005–2012) from several hospitals across India. A total of 21 sequence types (ST) including two STs from cystic fibrosis patient’s isolates and twelve novel STs were identified in the population reflecting the extent of genetic diversity. Multilocus sequence analysis revealed two lineages in population, a major lineage belonging to B. cenocepacia and a minor lineage belonging to B. cepacia. Split-decomposition analysis suggests absence of interspecies recombination and intraspecies recombination contributed in generating genotypic diversity amongst isolates. Further linkage disequilibrium analysis indicates that recombination takes place at a low frequency, which is not sufficient to break down the clonal relationship. This knowledge of the genetic structure of Bcc population from a rapidly developing country will be invaluable in the epidemiology, surveillance and understanding global diversity of this group of a pathogen. PMID:27767197

  3. Computational dissection of human episodic memory reveals mental process-specific genetic profiles

    PubMed Central

    Luksys, Gediminas; Fastenrath, Matthias; Coynel, David; Freytag, Virginie; Gschwind, Leo; Heck, Angela; Jessen, Frank; Maier, Wolfgang; Milnik, Annette; Riedel-Heller, Steffi G.; Scherer, Martin; Spalek, Klara; Vogler, Christian; Wagner, Michael; Wolfsgruber, Steffen; Papassotiropoulos, Andreas; de Quervain, Dominique J.-F.

    2015-01-01

    Episodic memory performance is the result of distinct mental processes, such as learning, memory maintenance, and emotional modulation of memory strength. Such processes can be effectively dissociated using computational models. Here we performed gene set enrichment analyses of model parameters estimated from the episodic memory performance of 1,765 healthy young adults. We report robust and replicated associations of the amine compound SLC (solute-carrier) transporters gene set with the learning rate, of the collagen formation and transmembrane receptor protein tyrosine kinase activity gene sets with the modulation of memory strength by negative emotional arousal, and of the L1 cell adhesion molecule (L1CAM) interactions gene set with the repetition-based memory improvement. Furthermore, in a large functional MRI sample of 795 subjects we found that the association between L1CAM interactions and memory maintenance revealed large clusters of differences in brain activity in frontal cortical areas. Our findings provide converging evidence that distinct genetic profiles underlie specific mental processes of human episodic memory. They also provide empirical support to previous theoretical and neurobiological studies linking specific neuromodulators to the learning rate and linking neural cell adhesion molecules to memory maintenance. Furthermore, our study suggests additional memory-related genetic pathways, which may contribute to a better understanding of the neurobiology of human memory. PMID:26261317

  4. Ethiopian genetic diversity reveals linguistic stratification and complex influences on the Ethiopian gene pool.

    PubMed

    Pagani, Luca; Kivisild, Toomas; Tarekegn, Ayele; Ekong, Rosemary; Plaster, Chris; Gallego Romero, Irene; Ayub, Qasim; Mehdi, S Qasim; Thomas, Mark G; Luiselli, Donata; Bekele, Endashaw; Bradman, Neil; Balding, David J; Tyler-Smith, Chris

    2012-07-13

    Humans and their ancestors have traversed the Ethiopian landscape for millions of years, and present-day Ethiopians show great cultural, linguistic, and historical diversity, which makes them essential for understanding African variability and human origins. We genotyped 235 individuals from ten Ethiopian and two neighboring (South Sudanese and Somali) populations on an Illumina Omni 1M chip. Genotypes were compared with published data from several African and non-African populations. Principal-component and STRUCTURE-like analyses confirmed substantial genetic diversity both within and between populations, and revealed a match between genetic data and linguistic affiliation. Using comparisons with African and non-African reference samples in 40-SNP genomic windows, we identified "African" and "non-African" haplotypic components for each Ethiopian individual. The non-African component, which includes the SLC24A5 allele associated with light skin pigmentation in Europeans, may represent gene flow into Africa, which we estimate to have occurred ~3 thousand years ago (kya). The non-African component was found to be more similar to populations inhabiting the Levant rather than the Arabian Peninsula, but the principal route for the expansion out of Africa ~60 kya remains unresolved. Linkage-disequilibrium decay with genomic distance was less rapid in both the whole genome and the African component than in southern African samples, suggesting a less ancient history for Ethiopian populations.

  5. Ethiopian Genetic Diversity Reveals Linguistic Stratification and Complex Influences on the Ethiopian Gene Pool

    PubMed Central

    Pagani, Luca; Kivisild, Toomas; Tarekegn, Ayele; Ekong, Rosemary; Plaster, Chris; Gallego Romero, Irene; Ayub, Qasim; Mehdi, S. Qasim; Thomas, Mark G.; Luiselli, Donata; Bekele, Endashaw; Bradman, Neil; Balding, David J.; Tyler-Smith, Chris

    2012-01-01

    Humans and their ancestors have traversed the Ethiopian landscape for millions of years, and present-day Ethiopians show great cultural, linguistic, and historical diversity, which makes them essential for understanding African variability and human origins. We genotyped 235 individuals from ten Ethiopian and two neighboring (South Sudanese and Somali) populations on an Illumina Omni 1M chip. Genotypes were compared with published data from several African and non-African populations. Principal-component and STRUCTURE-like analyses confirmed substantial genetic diversity both within and between populations, and revealed a match between genetic data and linguistic affiliation. Using comparisons with African and non-African reference samples in 40-SNP genomic windows, we identified “African” and “non-African” haplotypic components for each Ethiopian individual. The non-African component, which includes the SLC24A5 allele associated with light skin pigmentation in Europeans, may represent gene flow into Africa, which we estimate to have occurred ∼3 thousand years ago (kya). The non-African component was found to be more similar to populations inhabiting the Levant rather than the Arabian Peninsula, but the principal route for the expansion out of Africa ∼60 kya remains unresolved. Linkage-disequilibrium decay with genomic distance was less rapid in both the whole genome and the African component than in southern African samples, suggesting a less ancient history for Ethiopian populations. PMID:22726845

  6. Genetic variation in the popular lab worm Lumbriculus variegatus (Annelida: Clitellata: Lumbriculidae) reveals cryptic speciation.

    PubMed

    Gustafsson, Daniel R; Price, David A; Erséus, Christer

    2009-05-01

    Genetic variation in the freshwater oligochaete Lumbriculus variegatus from Europe, North America and Japan was studied by sequencing and analysing the mitochondrial 16S and COI genes, and the nuclear ITS region. What hitherto has been regarded as L. variegatus was found to consist of at least two distinct clades (I and II), both of which occur in Europe as well as North America (clade I also in Japan). Specimens from a single locality in Sierra Nevada, California, also morphologically identified as L. variegatus, represent a third clade, which appears to be more closely related to clade II than to clade I, based on 16S data only. Average COI genetic distances were 17.7% between clades I and II, 0.6% within clade I, and 1.3% within clade II. Further, for these two clades, the mitochondrial (16S and COI) gene trees, which consider only the maternal lineages, are congruent with the ITS gene tree, which is the result of recombinations of paternal as well as maternal genomes. Finally, chromosome counts revealed clade I specimens to be highly polyploid, and clade II specimens to be diploid. We therefore conclude that clades I-II are separately evolving lineages, and that they should be regarded as separate species. This will have to be taken into account in the continued use of L. variegatus as a model organism in biological sciences.

  7. A forward genetic screen reveals essential and non-essential RNAi factors in Paramecium tetraurelia

    PubMed Central

    Marker, Simone; Carradec, Quentin; Tanty, Véronique; Arnaiz, Olivier; Meyer, Eric

    2014-01-01

    In most eukaryotes, small RNA-mediated gene silencing pathways form complex interacting networks. In the ciliate Paramecium tetraurelia, at least two RNA interference (RNAi) mechanisms coexist, involving distinct but overlapping sets of protein factors and producing different types of short interfering RNAs (siRNAs). One is specifically triggered by high-copy transgenes, and the other by feeding cells with double-stranded RNA (dsRNA)-producing bacteria. In this study, we designed a forward genetic screen for mutants deficient in dsRNA-induced silencing, and a powerful method to identify the relevant mutations by whole-genome sequencing. We present a set of 47 mutant alleles for five genes, revealing two previously unknown RNAi factors: a novel Paramecium-specific protein (Pds1) and a Cid1-like nucleotidyl transferase. Analyses of allelic diversity distinguish non-essential and essential genes and suggest that the screen is saturated for non-essential, single-copy genes. We show that non-essential genes are specifically involved in dsRNA-induced RNAi while essential ones are also involved in transgene-induced RNAi. One of the latter, the RNA-dependent RNA polymerase RDR2, is further shown to be required for all known types of siRNAs, as well as for sexual reproduction. These results open the way for the dissection of the genetic complexity, interconnection, mechanisms and natural functions of RNAi pathways in P. tetraurelia. PMID:24860163

  8. Computational dissection of human episodic memory reveals mental process-specific genetic profiles.

    PubMed

    Luksys, Gediminas; Fastenrath, Matthias; Coynel, David; Freytag, Virginie; Gschwind, Leo; Heck, Angela; Jessen, Frank; Maier, Wolfgang; Milnik, Annette; Riedel-Heller, Steffi G; Scherer, Martin; Spalek, Klara; Vogler, Christian; Wagner, Michael; Wolfsgruber, Steffen; Papassotiropoulos, Andreas; de Quervain, Dominique J-F

    2015-09-01

    Episodic memory performance is the result of distinct mental processes, such as learning, memory maintenance, and emotional modulation of memory strength. Such processes can be effectively dissociated using computational models. Here we performed gene set enrichment analyses of model parameters estimated from the episodic memory performance of 1,765 healthy young adults. We report robust and replicated associations of the amine compound SLC (solute-carrier) transporters gene set with the learning rate, of the collagen formation and transmembrane receptor protein tyrosine kinase activity gene sets with the modulation of memory strength by negative emotional arousal, and of the L1 cell adhesion molecule (L1CAM) interactions gene set with the repetition-based memory improvement. Furthermore, in a large functional MRI sample of 795 subjects we found that the association between L1CAM interactions and memory maintenance revealed large clusters of differences in brain activity in frontal cortical areas. Our findings provide converging evidence that distinct genetic profiles underlie specific mental processes of human episodic memory. They also provide empirical support to previous theoretical and neurobiological studies linking specific neuromodulators to the learning rate and linking neural cell adhesion molecules to memory maintenance. Furthermore, our study suggests additional memory-related genetic pathways, which may contribute to a better understanding of the neurobiology of human memory. PMID:26261317

  9. Genetically encoding a light switch in an ionotropic glutamate receptor reveals subunit-specific interfaces

    PubMed Central

    Zhu, Shujia; Riou, Morgane; Yao, C. Andrea; Carvalho, Stéphanie; Rodriguez, Pamela C.; Bensaude, Olivier; Paoletti, Pierre; Ye, Shixin

    2014-01-01

    Reprogramming receptors to artificially respond to light has strong potential for molecular studies and interrogation of biological functions. Here, we design a light-controlled ionotropic glutamate receptor by genetically encoding a photoreactive unnatural amino acid (UAA). The photo–cross-linker p-azido-l-phenylalanine (AzF) was encoded in NMDA receptors (NMDARs), a class of glutamate-gated ion channels that play key roles in neuronal development and plasticity. AzF incorporation in the obligatory GluN1 subunit at the GluN1/GluN2B N-terminal domain (NTD) upper lobe dimer interface leads to an irreversible allosteric inhibition of channel activity upon UV illumination. In contrast, when pairing the UAA-containing GluN1 subunit with the GluN2A subunit, light-dependent inactivation is completely absent. By combining electrophysiological and biochemical analyses, we identify subunit-specific structural determinants at the GluN1/GluN2 NTD dimer interfaces that critically dictate UV-controlled inactivation. Our work reveals that the two major NMDAR subtypes differ in their ectodomain-subunit interactions, in particular their electrostatic contacts, resulting in GluN1 NTD coupling more tightly to the GluN2B NTD than to the GluN2A NTD. It also paves the way for engineering light-sensitive ligand-gated ion channels with subtype specificity through the genetic code expansion. PMID:24715733

  10. Genetic characterization of Toxoplasma gondii from Brazilian wildlife revealed abundant new genotypes

    PubMed Central

    Vitaliano, S.N.; Soares, H.S.; Minervino, A.H.H.; Santos, A.L.Q.; Werther, K.; Marvulo, M.F.V.; Siqueira, D.B.; Pena, H.F.J.; Soares, R.M.; Su, C.; Gennari, S.M.

    2014-01-01

    This study aimed to isolate and genotype T. gondii from Brazilian wildlife. For this purpose, 226 samples were submitted to mice bioassay and screened by PCR based on 18S rRNA sequences. A total of 15 T. gondii isolates were obtained, including samples from four armadillos (three Dasypus novemcinctus, one Euphractus sexcinctus), three collared anteaters (Tamandua tetradactyla), three whited-lipped peccaries (Tayassu pecari), one spotted paca (Cuniculus paca), one oncilla (Leopardus tigrinus), one hoary fox (Pseudalopex vetulus), one lineated woodpecker (Dryocopus lineatus) and one maned wolf (Chrysocyon brachyurus). DNA from the isolates, originated from mice bioassay, and from the tissues of the wild animal, designated as “primary samples”, were genotyped by PCR–restriction fragment length polymorphism (PCR/RFLP), using 12 genetic markers (SAG1, SAG2, alt.SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L258, PK1, CS3 and Apico). A total of 17 genotypes were identified, with 13 identified for the first time and four already reported in published literature. Results herein obtained corroborate previous studies in Brazil, confirming high diversity and revealing unique genotypes in this region. Given most of genotypes here identified are different from previous studies in domestic animals, future studies on T. gondii from wildlife is of interest to understand population genetics and structure of this parasite. PMID:25426424

  11. A forward genetic screen reveals essential and non-essential RNAi factors in Paramecium tetraurelia.

    PubMed

    Marker, Simone; Carradec, Quentin; Tanty, Véronique; Arnaiz, Olivier; Meyer, Eric

    2014-06-01

    In most eukaryotes, small RNA-mediated gene silencing pathways form complex interacting networks. In the ciliate Paramecium tetraurelia, at least two RNA interference (RNAi) mechanisms coexist, involving distinct but overlapping sets of protein factors and producing different types of short interfering RNAs (siRNAs). One is specifically triggered by high-copy transgenes, and the other by feeding cells with double-stranded RNA (dsRNA)-producing bacteria. In this study, we designed a forward genetic screen for mutants deficient in dsRNA-induced silencing, and a powerful method to identify the relevant mutations by whole-genome sequencing. We present a set of 47 mutant alleles for five genes, revealing two previously unknown RNAi factors: a novel Paramecium-specific protein (Pds1) and a Cid1-like nucleotidyl transferase. Analyses of allelic diversity distinguish non-essential and essential genes and suggest that the screen is saturated for non-essential, single-copy genes. We show that non-essential genes are specifically involved in dsRNA-induced RNAi while essential ones are also involved in transgene-induced RNAi. One of the latter, the RNA-dependent RNA polymerase RDR2, is further shown to be required for all known types of siRNAs, as well as for sexual reproduction. These results open the way for the dissection of the genetic complexity, interconnection, mechanisms and natural functions of RNAi pathways in P. tetraurelia. PMID:24860163

  12. A pangenomic analysis of the Nannochloropsis organellar genomes reveals novel genetic variations in key metabolic genes

    PubMed Central

    2014-01-01

    Background Microalgae in the genus Nannochloropsis are photosynthetic marine Eustigmatophytes of significant interest to the bioenergy and aquaculture sectors due to their ability to efficiently accumulate biomass and lipids for utilization in renewable transportation fuels, aquaculture feed, and other useful bioproducts. To better understand the genetic complement that drives the metabolic processes of these organisms, we present the assembly and comparative pangenomic analysis of the chloroplast and mitochondrial genomes from Nannochloropsis salina CCMP1776. Results The chloroplast and mitochondrial genomes of N. salina are 98.4% and 97% identical to their counterparts in Nannochloropsis gaditana. Comparison of the Nannochloropsis pangenome to other algae within and outside of the same phyla revealed regions of significant genetic divergence in key genes that encode proteins needed for regulation of branched chain amino synthesis (acetohydroxyacid synthase), carbon fixation (RuBisCO activase), energy conservation (ATP synthase), protein synthesis and homeostasis (Clp protease, ribosome). Conclusions Many organellar gene modifications in Nannochloropsis are unique and deviate from conserved orthologs found across the tree of life. Implementation of secondary and tertiary structure prediction was crucial to functionally characterize many proteins and therefore should be implemented in automated annotation pipelines. The exceptional similarity of the N. salina and N. gaditana organellar genomes suggests that N. gaditana be reclassified as a strain of N. salina. PMID:24646409

  13. Genetic analysis reveals the wild ancestors of the llama and the alpaca.

    PubMed Central

    Kadwell, M.; Fernandez, M.; Stanley, H. F.; Baldi, R.; Wheeler, J. C.; Rosadio, R.; Bruford, M. W.

    2001-01-01

    The origins of South America's domestic alpaca and llama remain controversial due to hybridization, near extirpation during the Spanish conquest and difficulties in archaeological interpretation. Traditionally, the ancestry of both forms is attributed to the guanaco, while the vicuña is assumed never to have been domesticated. Recent research has, however, linked the alpaca to the vicuña, dating domestication to 6000-7000 years before present in the Peruvian Andes. Here, we examine in detail the genetic relationships between the South American camelids in order to determine the origins of the domestic forms, using mitochondrial (mt) and microsatellite DNA. MtDNA analysis places 80% of llama and alpaca sequences in the guanaco lineage, with those possessing vicuña mtDNA being nearly all alpaca or alpaca-vicuña hybrids. We also examined four microsatellites in wild known-provenance vicuña and guanaco, including two loci with non-overlapping allele size ranges in the wild species. In contrast to the mtDNA, these markers show high genetic similarity between alpaca and vicuña, and between llama and guanaco, although bidirectional hybridization is also revealed. Finally, combined marker analysis on a subset of samples confirms the microsatellite interpretation and suggests that the alpaca is descended from the vicuña, and should be reclassified as Vicugna pacos. This result has major implications for the future management of wild and domestic camelids in South America. PMID:11749713

  14. Spatial genetic analysis reveals high connectivity of tiger (Panthera tigris) populations in the Satpura–Maikal landscape of Central India

    PubMed Central

    Sharma, Sandeep; Dutta, Trishna; Maldonado, Jesús E; Wood, Thomas C; Panwar, Hemendra Singh; Seidensticker, John

    2013-01-01

    We investigated the spatial genetic structure of the tiger meta-population in the Satpura–Maikal landscape of central India using population- and individual-based genetic clustering methods on multilocus genotypic data from 273 individuals. The Satpura–Maikal landscape is classified as a global-priority Tiger Conservation Landscape (TCL) due to its potential for providing sufficient habitat that will allow the long-term persistence of tigers. We found that the tiger meta-population in the Satpura–Maikal landscape has high genetic variation and very low genetic subdivision. Individual-based Bayesian clustering algorithms reveal two highly admixed genetic populations. We attribute this to forest connectivity and high gene flow in this landscape. However, deforestation, road widening, and mining may sever this connectivity, impede gene exchange, and further exacerbate the genetic division of tigers in central India. PMID:23403813

  15. Spatial genetic analysis reveals high connectivity of tiger (Panthera tigris) populations in the Satpura-Maikal landscape of Central India.

    PubMed

    Sharma, Sandeep; Dutta, Trishna; Maldonado, Jesús E; Wood, Thomas C; Panwar, Hemendra Singh; Seidensticker, John

    2012-01-01

    We investigated the spatial genetic structure of the tiger meta-population in the Satpura-Maikal landscape of central India using population- and individual-based genetic clustering methods on multilocus genotypic data from 273 individuals. The Satpura-Maikal landscape is classified as a global-priority Tiger Conservation Landscape (TCL) due to its potential for providing sufficient habitat that will allow the long-term persistence of tigers. We found that the tiger meta-population in the Satpura-Maikal landscape has high genetic variation and very low genetic subdivision. Individual-based Bayesian clustering algorithms reveal two highly admixed genetic populations. We attribute this to forest connectivity and high gene flow in this landscape. However, deforestation, road widening, and mining may sever this connectivity, impede gene exchange, and further exacerbate the genetic division of tigers in central India. PMID:23403813

  16. Genetic characterization of Toxoplasma gondii isolates from Portugal, Austria, and Israel reveals higher genetic variability within the type II lineage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study compared genetic diversity of Toxoplasma gondii isolates from Portugal, Austria and Israel. For this, we genotyped 90 T. gondii isolates (16 from Portugal, 67 from Austria and 7 from Israel) using 10 nested PCR-restriction length polymorphism (RFLP) genetic markers and 15 microsatellite (...

  17. SNP typing reveals similarity in Mycobacterium tuberculosis genetic diversity between Portugal and Northeast Brazil.

    PubMed

    Lopes, Joao S; Marques, Isabel; Soares, Patricia; Nebenzahl-Guimaraes, Hanna; Costa, Joao; Miranda, Anabela; Duarte, Raquel; Alves, Adriana; Macedo, Rita; Duarte, Tonya A; Barbosa, Theolis; Oliveira, Martha; Nery, Joilda S; Boechat, Neio; Pereira, Susan M; Barreto, Mauricio L; Pereira-Leal, Jose; Gomes, Maria Gabriela Miranda; Penha-Goncalves, Carlos

    2013-08-01

    Human tuberculosis is an infectious disease caused by bacteria from the Mycobacterium tuberculosis complex (MTBC). Although spoligotyping and MIRU-VNTR are standard methodologies in MTBC genetic epidemiology, recent studies suggest that Single Nucleotide Polymorphisms (SNP) are advantageous in phylogenetics and strain group/lineages identification. In this work we use a set of 79 SNPs to characterize 1987 MTBC isolates from Portugal and 141 from Northeast Brazil. All Brazilian samples were further characterized using spolygotyping. Phylogenetic analysis against a reference set revealed that about 95% of the isolates in both populations are singly attributed to bacterial lineage 4. Within this lineage, the most frequent strain groups in both Portugal and Brazil are LAM, followed by Haarlem and X. Contrary to these groups, strain group T showed a very different prevalence between Portugal (10%) and Brazil (1.5%). Spoligotype identification shows about 10% of mis-matches compared to the use of SNPs and a little more than 1% of strains unidentifiability. The mis-matches are observed in the most represented groups of our sample set (i.e., LAM and Haarlem) in almost the same proportion. Besides being more accurate in identifying strain groups/lineages, SNP-typing can also provide phylogenetic relationships between strain groups/lineages and, thus, indicate cases showing phylogenetic incongruence. Overall, the use of SNP-typing revealed striking similarities between MTBC populations from Portugal and Brazil.

  18. Transcription closed and open complex dynamics studies reveal balance between genetic determinants and co-factors.

    PubMed

    Sala, Adrien; Shoaib, Muhammad; Anufrieva, Olga; Mutharasu, Gnanavel; Jahan Hoque, Rawnak; Yli-Harja, Olli; Kandhavelu, Meenakshisundaram

    2015-05-19

    In E. coli, promoter closed and open complexes are key steps in transcription initiation, where magnesium-dependent RNA polymerase catalyzes RNA synthesis. However, the exact mechanism of initiation remains to be fully elucidated. Here, using single mRNA detection and dual reporter studies, we show that increased intracellular magnesium concentration affects Plac initiation complex formation resulting in a highly dynamic process over the cell growth phases. Mg2+ regulates transcription transition, which modulates bimodality of mRNA distribution in the exponential phase. We reveal that Mg2+ regulates the size and frequency of the mRNA burst by changing the open complex duration. Moreover, increasing magnesium concentration leads to higher intrinsic and extrinsic noise in the exponential phase. RNAP-Mg2+ interaction simulation reveals critical movements creating a shorter contact distance between aspartic acid residues and Nucleotide Triphosphate residues and increasing electrostatic charges in the active site. Our findings provide unique biophysical insights into the balanced mechanism of genetic determinants and magnesium ion in transcription initiation regulation during cell growth.

  19. Multilocus Sequence Analysis of Nectar Pseudomonads Reveals High Genetic Diversity and Contrasting Recombination Patterns

    PubMed Central

    Álvarez-Pérez, Sergio; de Vega, Clara; Herrera, Carlos M.

    2013-01-01

    The genetic and evolutionary relationships among floral nectar-dwelling Pseudomonas ‘sensu stricto’ isolates associated to South African and Mediterranean plants were investigated by multilocus sequence analysis (MLSA) of four core housekeeping genes (rrs, gyrB, rpoB and rpoD). A total of 35 different sequence types were found for the 38 nectar bacterial isolates characterised. Phylogenetic analyses resulted in the identification of three main clades [nectar groups (NGs) 1, 2 and 3] of nectar pseudomonads, which were closely related to five intrageneric groups: Pseudomonas oryzihabitans (NG 1); P. fluorescens, P. lutea and P. syringae (NG 2); and P. rhizosphaerae (NG 3). Linkage disequilibrium analysis pointed to a mostly clonal population structure, even when the analysis was restricted to isolates from the same floristic region or belonging to the same NG. Nevertheless, signatures of recombination were observed for NG 3, which exclusively included isolates retrieved from the floral nectar of insect-pollinated Mediterranean plants. In contrast, the other two NGs comprised both South African and Mediterranean isolates. Analyses relating diversification to floristic region and pollinator type revealed that there has been more unique evolution of the nectar pseudomonads within the Mediterranean region than would be expected by chance. This is the first work analysing the sequence of multiple loci to reveal geno- and ecotypes of nectar bacteria. PMID:24116076

  20. Multilocus sequence analysis of nectar pseudomonads reveals high genetic diversity and contrasting recombination patterns.

    PubMed

    Alvarez-Pérez, Sergio; de Vega, Clara; Herrera, Carlos M

    2013-01-01

    The genetic and evolutionary relationships among floral nectar-dwelling Pseudomonas 'sensu stricto' isolates associated to South African and Mediterranean plants were investigated by multilocus sequence analysis (MLSA) of four core housekeeping genes (rrs, gyrB, rpoB and rpoD). A total of 35 different sequence types were found for the 38 nectar bacterial isolates characterised. Phylogenetic analyses resulted in the identification of three main clades [nectar groups (NGs) 1, 2 and 3] of nectar pseudomonads, which were closely related to five intrageneric groups: Pseudomonas oryzihabitans (NG 1); P. fluorescens, P. lutea and P. syringae (NG 2); and P. rhizosphaerae (NG 3). Linkage disequilibrium analysis pointed to a mostly clonal population structure, even when the analysis was restricted to isolates from the same floristic region or belonging to the same NG. Nevertheless, signatures of recombination were observed for NG 3, which exclusively included isolates retrieved from the floral nectar of insect-pollinated Mediterranean plants. In contrast, the other two NGs comprised both South African and Mediterranean isolates. Analyses relating diversification to floristic region and pollinator type revealed that there has been more unique evolution of the nectar pseudomonads within the Mediterranean region than would be expected by chance. This is the first work analysing the sequence of multiple loci to reveal geno- and ecotypes of nectar bacteria.

  1. Transcription closed and open complex dynamics studies reveal balance between genetic determinants and co-factors

    NASA Astrophysics Data System (ADS)

    Sala, Adrien; Shoaib, Muhammad; Anufrieva, Olga; Mutharasu, Gnanavel; Jahan Hoque, Rawnak; Yli-Harja, Olli; Kandhavelu, Meenakshisundaram

    2015-05-01

    In E. coli, promoter closed and open complexes are key steps in transcription initiation, where magnesium-dependent RNA polymerase catalyzes RNA synthesis. However, the exact mechanism of initiation remains to be fully elucidated. Here, using single mRNA detection and dual reporter studies, we show that increased intracellular magnesium concentration affects Plac initiation complex formation resulting in a highly dynamic process over the cell growth phases. Mg2+ regulates transcription transition, which modulates bimodality of mRNA distribution in the exponential phase. We reveal that Mg2+ regulates the size and frequency of the mRNA burst by changing the open complex duration. Moreover, increasing magnesium concentration leads to higher intrinsic and extrinsic noise in the exponential phase. RNAP-Mg2+ interaction simulation reveals critical movements creating a shorter contact distance between aspartic acid residues and Nucleotide Triphosphate residues and increasing electrostatic charges in the active site. Our findings provide unique biophysical insights into the balanced mechanism of genetic determinants and magnesium ion in transcription initiation regulation during cell growth.

  2. Genetic analysis reveals candidate species in the Scinax catharinae clade (Amphibia: Anura) from Central Brazil.

    PubMed

    Nogueira, Lídia; Solé, Mirco; Siqueira, Sérgio; Affonso, Paulo Roberto Antunes de Mello; Strüssmann, Christine; Sampaio, Iracilda

    2016-03-01

    Scinax (Anura: Hylidae) is a species-rich genus of amphibians (113 spp.), divided into five species groups by morphological features. Cladistic analyses however revealed only two monophyletic clades in these groups: Scinax catharinae and Scinax ruber. Most species from the S. catharinae clade are found in Atlantic rainforest, except for Scinax canastrensis,S. centralis, S. luizotavioi, S. machadoi,S. pombali and S. skaios. In the present work, specimens of Scinax collected in Chapada dos Guimarães, central Brazil, were morphologically compatible with species from theS. catharinae group. On the other hand, genetic analysis based on mitochondrial (16S and 12S) and nuclear (rhodopsin) sequences revealed a nucleotide divergence of 6 to 20% between Scinax sp. and other congeners from the Brazilian savannah (Cerrado). Accordingly, Bayesian inference placed Scinax sp. in the S. catharinae clade with high support values. Hence, these findings strongly indicate the presence of a new species in the S. catharinae clade from the southwestern portion of the Brazilian savannah. To be properly validated as a novel species, detailed comparative morphological and bioacustic studies with other taxa from Brazil such asS. canastrensis, S. centralis, S. luizotavioi, S. machadoi, S. pombali and S. skaios are required. PMID:27007898

  3. Multilocus sequence analysis of nectar pseudomonads reveals high genetic diversity and contrasting recombination patterns.

    PubMed

    Alvarez-Pérez, Sergio; de Vega, Clara; Herrera, Carlos M

    2013-01-01

    The genetic and evolutionary relationships among floral nectar-dwelling Pseudomonas 'sensu stricto' isolates associated to South African and Mediterranean plants were investigated by multilocus sequence analysis (MLSA) of four core housekeeping genes (rrs, gyrB, rpoB and rpoD). A total of 35 different sequence types were found for the 38 nectar bacterial isolates characterised. Phylogenetic analyses resulted in the identification of three main clades [nectar groups (NGs) 1, 2 and 3] of nectar pseudomonads, which were closely related to five intrageneric groups: Pseudomonas oryzihabitans (NG 1); P. fluorescens, P. lutea and P. syringae (NG 2); and P. rhizosphaerae (NG 3). Linkage disequilibrium analysis pointed to a mostly clonal population structure, even when the analysis was restricted to isolates from the same floristic region or belonging to the same NG. Nevertheless, signatures of recombination were observed for NG 3, which exclusively included isolates retrieved from the floral nectar of insect-pollinated Mediterranean plants. In contrast, the other two NGs comprised both South African and Mediterranean isolates. Analyses relating diversification to floristic region and pollinator type revealed that there has been more unique evolution of the nectar pseudomonads within the Mediterranean region than would be expected by chance. This is the first work analysing the sequence of multiple loci to reveal geno- and ecotypes of nectar bacteria. PMID:24116076

  4. Genetic analysis reveals candidate species in the Scinax catharinae clade (Amphibia: Anura) from Central Brazil

    PubMed Central

    Nogueira, Lídia; Solé, Mirco; Siqueira, Sérgio; Affonso, Paulo Roberto Antunes de Mello; Strüssmann, Christine; Sampaio, Iracilda

    2016-01-01

    Abstract Scinax (Anura: Hylidae) is a species-rich genus of amphibians (113 spp.), divided into five species groups by morphological features. Cladistic analyses however revealed only two monophyletic clades in these groups: Scinax catharinae and Scinax ruber. Most species from the S. catharinae clade are found in Atlantic rainforest, except for Scinax canastrensis,S. centralis, S. luizotavioi, S. machadoi,S. pombali and S. skaios. In the present work, specimens of Scinax collected in Chapada dos Guimarães, central Brazil, were morphologically compatible with species from theS. catharinae group. On the other hand, genetic analysis based on mitochondrial (16S and 12S) and nuclear (rhodopsin) sequences revealed a nucleotide divergence of 6 to 20% between Scinax sp. and other congeners from the Brazilian savannah (Cerrado). Accordingly, Bayesian inference placed Scinax sp. in the S. catharinae clade with high support values. Hence, these findings strongly indicate the presence of a new species in the S. catharinae clade from the southwestern portion of the Brazilian savannah. To be properly validated as a novel species, detailed comparative morphological and bioacustic studies with other taxa from Brazil such asS. canastrensis, S. centralis, S. luizotavioi, S. machadoi, S. pombali and S. skaios are required. PMID:27007898

  5. Genetic Networks of Liver Metabolism Revealed by Integration of Metabolic and Transcriptional Profiling

    PubMed Central

    Ferrara, Christine T.; Wang, Ping; Neto, Elias Chaibub; Stevens, Robert D.; Bain, James R.; Wenner, Brett R.; Ilkayeva, Olga R.; Keller, Mark P.; Blasiole, Daniel A.; Kendziorski, Christina; Yandell, Brian S.; Newgard, Christopher B.; Attie, Alan D.

    2008-01-01

    Although numerous quantitative trait loci (QTL) influencing disease-related phenotypes have been detected through gene mapping and positional cloning, identification of the individual gene(s) and molecular pathways leading to those phenotypes is often elusive. One way to improve understanding of genetic architecture is to classify phenotypes in greater depth by including transcriptional and metabolic profiling. In the current study, we have generated and analyzed mRNA expression and metabolic profiles in liver samples obtained in an F2 intercross between the diabetes-resistant C57BL/6 leptinob/ob and the diabetes-susceptible BTBR leptinob/ob mouse strains. This cross, which segregates for genotype and physiological traits, was previously used to identify several diabetes-related QTL. Our current investigation includes microarray analysis of over 40,000 probe sets, plus quantitative mass spectrometry-based measurements of sixty-seven intermediary metabolites in three different classes (amino acids, organic acids, and acyl-carnitines). We show that liver metabolites map to distinct genetic regions, thereby indicating that tissue metabolites are heritable. We also demonstrate that genomic analysis can be integrated with liver mRNA expression and metabolite profiling data to construct causal networks for control of specific metabolic processes in liver. As a proof of principle of the practical significance of this integrative approach, we illustrate the construction of a specific causal network that links gene expression and metabolic changes in the context of glutamate metabolism, and demonstrate its validity by showing that genes in the network respond to changes in glutamine and glutamate availability. Thus, the methods described here have the potential to reveal regulatory networks that contribute to chronic, complex, and highly prevalent diseases and conditions such as obesity and diabetes. PMID:18369453

  6. Comparative Genome of GK and Wistar Rats Reveals Genetic Basis of Type 2 Diabetes

    PubMed Central

    Ding, Guohui; Wang, Zhen; Chen, Yunqin; Liu, Lei; Li, Yuanyuan; Li, Yixue

    2015-01-01

    The Goto-Kakizaki (GK) rat, which has been developed by repeated inbreeding of glucose-intolerant Wistar rats, is the most widely studied rat model for Type 2 diabetes (T2D). However, the detailed genetic background of T2D phenotype in GK rats is still largely unknown. We report a survey of T2D susceptible variations based on high-quality whole genome sequencing of GK and Wistar rats, which have generated a list of GK-specific variations (228 structural variations, 2660 CNV amplification and 2834 CNV deletion, 1796 protein affecting SNVs or indels) by comparative genome analysis and identified 192 potential T2D-associated genes. The genes with variants are further refined with prior knowledge and public resource including variant polymorphism of rat strains, protein-protein interactions and differential gene expression. Finally we have identified 15 genetic mutant genes which include seven known T2D related genes (Tnfrsf1b, Scg5, Fgb, Sell, Dpp4, Icam1, and Pkd2l1) and eight high-confidence new candidate genes (Ldlr, Ccl2, Erbb3, Akr1b1, Pik3c2a, Cd5, Eef2k, and Cpd). Our result reveals that the T2D phenotype may be caused by the accumulation of multiple variations in GK rat, and that the mutated genes may affect biological functions including adipocytokine signaling, glycerolipid metabolism, PPAR signaling, T cell receptor signaling and insulin signaling pathways. We present the genomic difference between two closely related rat strains (GK and Wistar) and narrow down the scope of susceptible loci. It also requires further experimental study to understand and validate the relationship between our candidate variants and T2D phenotype. Our findings highlight the importance of sequenced-based comparative genomics for investigating disease susceptibility loci in inbreeding animal models. PMID:26529237

  7. Genetic diversity and phylogenetic relationships of two closely related northeast China Vicia species revealed with RAPD and ISSR markers.

    PubMed

    Han, Ying; Wang, Hao-You

    2010-06-01

    RAPD and ISSR analyses revealed genetic diversity and relationships among 11 populations of two closely related northeast China Vicia species, Vicia ramuliflora and V. unijuga. Both methods yielded similar and complementary results, showing high genetic diversity. Vicia ramuliflora had 100% polymorphic loci in both RAPD and ISSR, and V. unijuga had 100% polymorphic loci for RAPD and 98.96% for ISSR. Genetic differentiation was moderate among populations of each species. Genetic variation was distributed mainly within populations for the two species. The high level of gene flow was important for the allocation of genetic variation. The UPGMA dendrogram and principal coordinates analysis at the level of individuals and populations showed that V. ramuliflora and V. unijuga were more closely related than either of them was to the outgroup species, V. cracca. The small molecular variance of V. ramuliflora and V. unijuga supports the conclusion that these two species had a common ancestor.

  8. Microsatellite markers reveal spatial genetic structure of Tetranychus urticae (Acari: Tetranychidae) populations along a latitudinal gradient in Europe.

    PubMed

    Carbonnelle, Sabine; Hance, Thierry; Migeon, Alain; Baret, Philippe; Cros-Arteil, Sandrine; Navajas, Maria

    2007-01-01

    The genetic structure of populations of the two-spotted spider mite Tetranychus urticae was investigated along a south-north European transect spanning from southern France to The Netherlands. Mites were collected on Urtica dioica in 6 sampling zones. Microsatellite variation at 5 loci revealed considerable genetic variation with an average heterozygozity of 0.49. Significant heterozygote deficiency was found in 7 populations out of the 18 samples analyzed and one of them was completely monomorphic. Tetranychus urticae populations show some level of genetic structuring. First, genetic differentiation between localities (F (ST) estimates) was significant for all comparisons. Second, the analysis of molecular variance, AMOVA, indicates that there is an effect, albeit low (9%), of the locality in accounting for allele frequency variance. Geographic distance emerges as a factor responsible for this genetic structure. The results are discussed in relation to the biological features of the species and the known patterns of migration. Related agronomical issues are addressed.

  9. Population genetic studies revealed local adaptation in a high gene-flow marine fish, the small yellow croaker (Larimichthys polyactis).

    PubMed

    Wang, Le; Liu, Shufang; Zhuang, Zhimeng; Guo, Liang; Meng, Zining; Lin, Haoran

    2013-01-01

    The genetic differentiation of many marine fish species is low. Yet local adaptation may be common in marine fish species as the vast and changing marine environment provides more chances for natural selection. Here, we used anonymous as well as known protein gene linked microsatellites and mitochondrial DNA to detect the population structure of the small yellow croaker (Larimichthys polyactis) in the Northwest Pacific marginal seas. Among these loci, we detected at least two microsatellites, anonymous H16 and HSP27 to be clearly under diversifying selection in outlier tests. Sequence cloning and analysis revealed that H16 was located in the intron of BAHCC1 gene. Landscape genetic analysis showed that H16 mutations were significantly associated with temperature, which further supported the diversifying selection at this locus. These marker types presented different patterns of population structure: (i) mitochondrial DNA phylogeny showed no evidence of genetic divergence and demonstrated only one glacial linage; (ii) population differentiation using putatively neutral microsatellites presented a pattern of high gene flow in the L. polyactis. In addition, several genetic barriers were identified; (iii) the population differentiation pattern revealed by loci under diversifying selection was rather different from that revealed by putatively neutral loci. The results above suggest local adaptation in the small yellow croaker. In summary, population genetic studies based on different marker types disentangle the effects of demographic history, migration, genetic drift and local adaptation on population structure and also provide valuable new insights for the design of management strategies in L. polyactis.

  10. Mitochondrial DNA markers reveal high genetic diversity but low genetic differentiation in the black fly Simulium tani Takaoka & Davies along an elevational gradient in Malaysia.

    PubMed

    Low, Van Lun; Adler, Peter H; Takaoka, Hiroyuki; Ya'cob, Zubaidah; Lim, Phaik Eem; Tan, Tiong Kai; Lim, Yvonne A L; Chen, Chee Dhang; Norma-Rashid, Yusoff; Sofian-Azirun, Mohd

    2014-01-01

    The population genetic structure of Simulium tani was inferred from mitochondria-encoded sequences of cytochrome c oxidase subunits I (COI) and II (COII) along an elevational gradient in Cameron Highlands, Malaysia. A statistical parsimony network of 71 individuals revealed 71 haplotypes in the COI gene and 43 haplotypes in the COII gene; the concatenated sequences of the COI and COII genes revealed 71 haplotypes. High levels of genetic diversity but low levels of genetic differentiation were observed among populations of S. tani at five elevations. The degree of genetic diversity, however, was not in accordance with an altitudinal gradient, and a Mantel test indicated that elevation did not have a limiting effect on gene flow. No ancestral haplotype of S. tani was found among the populations. Pupae with unique structural characters at the highest elevation showed a tendency to form their own haplotype cluster, as revealed by the COII gene. Tajima's D, Fu's Fs, and mismatch distribution tests revealed population expansion of S. tani in Cameron Highlands. A strong correlation was found between nucleotide diversity and the levels of dissolved oxygen in the streams where S. tani was collected. PMID:24941043

  11. Stretched peer-review on unexpected results (GMOs).

    PubMed

    Myhr, A I

    2005-01-01

    Science is the basis for governance of risk from genetically modified organisms (GMO), and it is also a primary source of legitimacy for policy decision. However, recently the publication of unexpected results has caused controversies and challenged the way in which science should be performed, be published in scientific journals, and how preliminary results should be communicated. These studies have subsequently, after being accepted for publication within the peer-review process of leading scientific journals, been thoroughly re-examined by many actors active within the GMO debate and thereby drawn extensive media coverage. The publicized charges that the research involved does not constitute significant evidence or represent bad science have in fact deflected attention away from the important questions related to ecological and health risks raised by the research. In this paper, I will argue that unexpected findings may represent "early warnings." Although early warnings may not represent reality, such reports are necessary to inform other scientists and regulators, and should be followed up by further research to reveal the validity of the warnings. Furthermore, science that embraces robust, participatory and transparent approaches will be imperative in the future to reduce the present controversy surrounding GMO use and release.

  12. Crossing the uncrossable: novel trans-valley biogeographic patterns revealed in the genetic history of low-dispersal mygalomorph spiders (Antrodiaetidae, Antrodiaetus) from California.

    PubMed

    Hedin, Marshal; Starrett, James; Hayashi, Cheryl

    2013-01-01

    Antrodiaetus riversi is a dispersal-limited, habitat-specialized mygalomorph spider species endemic to mesic woodlands of northern and central California. Here, we build upon prior phylogeographic research using a much larger geographic sample and include additional nuclear genes, providing more detailed biogeographic insights throughout the range of this complex. Of particular interest is the uncovering of unexpected and replicated trans-valley biogeographic patterns, where in two separate genetic clades western haplotypes in the California south Coast Ranges are phylogenetically closely related to eastern haplotypes from central and northern Sierran foothills. In both instances, these trans-valley phylogenetic patterns are strongly supported by multiple genes. These western and eastern populations are currently separated by the Central Valley, a well-recognized modern-day and historical biogeographic barrier in California. For one clade, the directionality is clearly northeast to southwest, and all available evidence is consistent with a jump dispersal event estimated at 1.2-1.3 Ma. During this time period, paleogeographic data indicate that northern Sierran rivers emptied to the ocean in the south Coast Ranges, rather than at the San Francisco Bay. For the other trans-valley clade genetic evidence is less conclusive regarding the mechanism and directionality of biogeographic exchange, although the estimated timeframe is similar (approximately 1.8 Ma). Despite the large number of biogeographic studies previously conducted in central California, to the best of our knowledge no prior studies have discussed or revealed a northern Sierran to south Coast Range biogeographic connection. This uniqueness may reflect the low-dispersal biology of mygalomorph spiders, where 'post-event' gene exchange rarely erases historical biogeographic signal.

  13. An unexpected tetanus case.

    PubMed

    Ergonul, Onder; Egeli, Demet; Kahyaoglu, Bulent; Bahar, Mois; Etienne, Mill; Bleck, Thomas

    2016-06-01

    1 million cases of tetanus are estimated to occur worldwide each year, with more than 200 000 deaths. Tetanus is a life-threatening but preventable disease caused by a toxin produced by Clostridium tetani-a Gram-positive bacillus found in high concentrations in soil and animal excrement. Tetanus is almost completely preventable by active immunisation, but very rarely unexpected cases can occur in individuals who have been previously vaccinated. We report a case of generalised tetanus in a 22-year-old woman that arose despite the protective antitoxin antibody in her serum. The patient received all her vaccinations in the USA; her last vaccination was 6 years ago. The case was unusual because the patient had received all standard vaccinations, had no defined port of entry at disease onset, and had symptoms lasting for 6 months. Tetanus can present with unusual clinical forms; therefore, the diagnosis and management of this rare but difficult disease should be updated. In this Grand Round, we review the clinical features, epidemiology, treatment, and prognosis of C tetani infections. PMID:27301930

  14. An integrated systems genetics screen reveals the transcriptional structure of inherited predisposition to metastatic disease

    PubMed Central

    Faraji, Farhoud; Hu, Ying; Wu, Gang; Goldberger, Natalie E.; Walker, Renard C.; Zhang, Jinghui; Hunter, Kent W.

    2014-01-01

    Metastasis is the result of stochastic genomic and epigenetic events leading to gene expression profiles that drive tumor dissemination. Here we exploit the principle that metastatic propensity is modified by the genetic background to generate prognostic gene expression signatures that illuminate regulators of metastasis. We also identify multiple microRNAs whose germline variation is causally linked to tumor progression and metastasis. We employ network analysis of global gene expression profiles in tumors derived from a panel of recombinant inbred mice to identify a network of co-expressed genes centered on Cnot2 that predicts metastasis-free survival. Modulating Cnot2 expression changes tumor cell metastatic potential in vivo, supporting a functional role for Cnot2 in metastasis. Small RNA sequencing of the same tumor set revealed a negative correlation between expression of the Mir216/217 cluster and tumor progression. Expression quantitative trait locus analysis (eQTL) identified cis-eQTLs at the Mir216/217 locus, indicating that differences in expression may be inherited. Ectopic expression of Mir216/217 in tumor cells suppressed metastasis in vivo. Finally, small RNA sequencing and mRNA expression profiling data were integrated to reveal that miR-3470a/b target a high proportion of network transcripts. In vivo analysis of Mir3470a/b demonstrated that both promote metastasis. Moreover, Mir3470b is a likely regulator of the Cnot2 network as its overexpression down-regulated expression of network hub genes and enhanced metastasis in vivo, phenocopying Cnot2 knockdown. The resulting data from this strategy identify Cnot2 as a novel regulator of metastasis and demonstrate the power of our systems-level approach in identifying modifiers of metastasis. PMID:24322557

  15. Distinct genetic lineages of Bactrocera caudata (Insecta: Tephritidae) revealed by COI and 16S DNA sequences.

    PubMed

    Lim, Phaik-Eem; Tan, Ji; Suana, I Wayan; Eamsobhana, Praphathip; Yong, Hoi Sen

    2012-01-01

    The fruit fly Bactrocera caudata is a pest species of economic importance in Asia. Its larvae feed on the flowers of Cucurbitaceae such as Cucurbita moschata. To-date it is distinguished from related species based on morphological characters. Specimens of B. caudata from Peninsular Malaysia and Indonesia (Bali and Lombok) were analysed using the partial DNA sequences of cytochrome c oxidase subunit I (COI) and 16S rRNA genes. Both gene sequences revealed that B. caudata from Peninsular Malaysia was distinctly different from B. caudata of Bali and Lombok, without common haplotype between them. Phylogenetic analysis revealed two distinct clades, indicating distinct genetic lineage. The uncorrected 'p' distance for COI sequences between B. caudata of Malaysia-Thailand-China and B. caudata of Bali-Lombok was 5.65%, for 16S sequences from 2.76 to 2.99%, and for combined COI and 16S sequences 4.45 to 4.46%. The 'p' values are distinctly different from intraspecific 'p' distance (0-0.23%). Both the B. caudata lineages are distinctly separated from related species in the subgenus Zeugodacus - B. ascita, B. scutellata, B. ishigakiensis, B. diaphora, B. tau, B. cucurbitae, and B. depressa. Molecular phylogenetic analysis indicates that the B. caudata lineages are closely related to B. ascita sp. B, and form a clade with B. scutellata, B. ishigakiensis, B. diaphora and B. ascita sp. A. This study provides additional baseline for the phylogenetic relationships of Bactrocera fruit flies of the subgenus Zeugodacus. Both the COI and 16S genes could be useful markers for the molecular differentiation and phylogenetic analysis of tephritid fruit flies.

  16. Distinct genetic lineages of Bactrocera caudata (Insecta: Tephritidae) revealed by COI and 16S DNA sequences.

    PubMed

    Lim, Phaik-Eem; Tan, Ji; Suana, I Wayan; Eamsobhana, Praphathip; Yong, Hoi Sen

    2012-01-01

    The fruit fly Bactrocera caudata is a pest species of economic importance in Asia. Its larvae feed on the flowers of Cucurbitaceae such as Cucurbita moschata. To-date it is distinguished from related species based on morphological characters. Specimens of B. caudata from Peninsular Malaysia and Indonesia (Bali and Lombok) were analysed using the partial DNA sequences of cytochrome c oxidase subunit I (COI) and 16S rRNA genes. Both gene sequences revealed that B. caudata from Peninsular Malaysia was distinctly different from B. caudata of Bali and Lombok, without common haplotype between them. Phylogenetic analysis revealed two distinct clades, indicating distinct genetic lineage. The uncorrected 'p' distance for COI sequences between B. caudata of Malaysia-Thailand-China and B. caudata of Bali-Lombok was 5.65%, for 16S sequences from 2.76 to 2.99%, and for combined COI and 16S sequences 4.45 to 4.46%. The 'p' values are distinctly different from intraspecific 'p' distance (0-0.23%). Both the B. caudata lineages are distinctly separated from related species in the subgenus Zeugodacus - B. ascita, B. scutellata, B. ishigakiensis, B. diaphora, B. tau, B. cucurbitae, and B. depressa. Molecular phylogenetic analysis indicates that the B. caudata lineages are closely related to B. ascita sp. B, and form a clade with B. scutellata, B. ishigakiensis, B. diaphora and B. ascita sp. A. This study provides additional baseline for the phylogenetic relationships of Bactrocera fruit flies of the subgenus Zeugodacus. Both the COI and 16S genes could be useful markers for the molecular differentiation and phylogenetic analysis of tephritid fruit flies. PMID:22615962

  17. Distinct Genetic Lineages of Bactrocera caudata (Insecta: Tephritidae) Revealed by COI and 16S DNA Sequences

    PubMed Central

    Lim, Phaik-Eem; Tan, Ji; Suana, I. Wayan; Eamsobhana, Praphathip; Yong, Hoi Sen

    2012-01-01

    The fruit fly Bactrocera caudata is a pest species of economic importance in Asia. Its larvae feed on the flowers of Cucurbitaceae such as Cucurbita moschata. To-date it is distinguished from related species based on morphological characters. Specimens of B. caudata from Peninsular Malaysia and Indonesia (Bali and Lombok) were analysed using the partial DNA sequences of cytochrome c oxidase subunit I (COI) and 16S rRNA genes. Both gene sequences revealed that B. caudata from Peninsular Malaysia was distinctly different from B. caudata of Bali and Lombok, without common haplotype between them. Phylogenetic analysis revealed two distinct clades, indicating distinct genetic lineage. The uncorrected ‘p’ distance for COI sequences between B. caudata of Malaysia-Thailand-China and B. caudata of Bali-Lombok was 5.65%, for 16S sequences from 2.76 to 2.99%, and for combined COI and 16S sequences 4.45 to 4.46%. The ‘p’ values are distinctly different from intraspecific ‘p’ distance (0–0.23%). Both the B. caudata lineages are distinctly separated from related species in the subgenus Zeugodacus – B. ascita, B. scutellata, B. ishigakiensis, B. diaphora, B. tau, B. cucurbitae, and B. depressa. Molecular phylogenetic analysis indicates that the B. caudata lineages are closely related to B. ascita sp. B, and form a clade with B. scutellata, B. ishigakiensis, B. diaphora and B. ascita sp. A. This study provides additional baseline for the phylogenetic relationships of Bactrocera fruit flies of the subgenus Zeugodacus. Both the COI and 16S genes could be useful markers for the molecular differentiation and phylogenetic analysis of tephritid fruit flies. PMID:22615962

  18. Gene invasion in distant eukaryotic lineages: discovery of mutually exclusive genetic elements reveals marine biodiversity.

    PubMed

    Monier, Adam; Sudek, Sebastian; Fast, Naomi M; Worden, Alexandra Z

    2013-09-01

    Inteins are rare, translated genetic parasites mainly found in bacteria and archaea, while spliceosomal introns are distinctly eukaryotic features abundant in most nuclear genomes. Using targeted metagenomics, we discovered an intein in an Atlantic population of the photosynthetic eukaryote, Bathycoccus, harbored by the essential spliceosomal protein PRP8 (processing factor 8 protein). Although previously thought exclusive to fungi, we also identified PRP8 inteins in parasitic (Capsaspora) and predatory (Salpingoeca) protists. Most new PRP8 inteins were at novel insertion sites that, surprisingly, were not in the most conserved regions of the gene. Evolutionarily, Dikarya fungal inteins at PRP8 insertion site a appeared more related to the Bathycoccus intein at a unique insertion site, than to other fungal and opisthokont inteins. Strikingly, independent analyses of Pacific and Atlantic samples revealed an intron at the same codon as the Bathycoccus PRP8 intein. The two elements are mutually exclusive and neither was found in cultured Bathycoccus or other picoprasinophyte genomes. Thus, wild Bathycoccus contain one of few non-fungal eukaryotic inteins known and a rare polymorphic intron. Our data indicate at least two Bathycoccus ecotypes exist, associated respectively with oceanic or mesotrophic environments. We hypothesize that intein propagation is facilitated by marine viruses; and, while intron gain is still poorly understood, presence of a spliceosomal intron where a locus lacks an intein raises the possibility of new, intein-primed mechanisms for intron gain. The discovery of nucleus-encoded inteins and associated sequence polymorphisms in uncultivated marine eukaryotes highlights their diversity and reveals potential sexual boundaries between populations indistinguishable by common marker genes.

  19. Reveal, A General Reverse Engineering Algorithm for Inference of Genetic Network Architectures

    NASA Technical Reports Server (NTRS)

    Liang, Shoudan; Fuhrman, Stefanie; Somogyi, Roland

    1998-01-01

    Given the immanent gene expression mapping covering whole genomes during development, health and disease, we seek computational methods to maximize functional inference from such large data sets. Is it possible, in principle, to completely infer a complex regulatory network architecture from input/output patterns of its variables? We investigated this possibility using binary models of genetic networks. Trajectories, or state transition tables of Boolean nets, resemble time series of gene expression. By systematically analyzing the mutual information between input states and output states, one is able to infer the sets of input elements controlling each element or gene in the network. This process is unequivocal and exact for complete state transition tables. We implemented this REVerse Engineering ALgorithm (REVEAL) in a C program, and found the problem to be tractable within the conditions tested so far. For n = 50 (elements) and k = 3 (inputs per element), the analysis of incomplete state transition tables (100 state transition pairs out of a possible 10(exp 15)) reliably produced the original rule and wiring sets. While this study is limited to synchronous Boolean networks, the algorithm is generalizable to include multi-state models, essentially allowing direct application to realistic biological data sets. The ability to adequately solve the inverse problem may enable in-depth analysis of complex dynamic systems in biology and other fields.

  20. Genetic sequence data reveals widespread sharing of Leucocytozoon lineages in corvids.

    PubMed

    Freund, Dave; Wheeler, Sarah S; Townsend, Andrea K; Boyce, Walter M; Ernest, Holly B; Cicero, Carla; Sehgal, Ravinder N M

    2016-09-01

    Leucocytozoon, a widespread hemosporidian blood parasite that infects a broad group of avian families, has been studied in corvids (family: Corvidae) for over a century. Current taxonomic classification indicates that Leucocytozoon sakharoffi infects crows and related Corvus spp., while Leucocytozoon berestneffi infects magpies (Pica spp.) and blue jays (Cyanocitta sp.). This intrafamily host specificity was based on the experimental transmissibility of the parasites, as well as slight differences in their morphology and life cycle development. Genetic sequence data from Leucocytozoon spp. infecting corvids is scarce, and until the present study, sequence data has not been analyzed to confirm the current taxonomic distinctions. Here, we predict the phylogenetic relationships of Leucocytozoon cytochrome b lineages recovered from infected American Crows (Corvus brachyrhynchos), yellow-billed magpies (Pica nuttalli), and Steller's jays (Cyanocitta stelleri) to explore the host specificity pattern of L. sakharoffi and L. berestneffi. Phylogenetic reconstruction revealed a single large clade containing nearly every lineage recovered from the three host species, while showing no evidence of the expected distinction between L. sakharoffi and L. berestneffi. In addition, five of the detected lineages were recovered from both crows and magpies. This absence of the previously described host specificity in corvid Leucocytozoon spp. suggests that L. sakharoffi and L. berestneffi be reexamined from a taxonomic perspective.

  1. Reveal, a general reverse engineering algorithm for inference of genetic network architectures.

    PubMed

    Liang, S; Fuhrman, S; Somogyi, R

    1998-01-01

    Given the immanent gene expression mapping covering whole genomes during development, health and disease, we seek computational methods to maximize functional inference from such large data sets. Is it possible, in principle, to completely infer a complex regulatory network architecture from input/output patterns of its variables? We investigated this possibility using binary models of genetic networks. Trajectories, or state transition tables of Boolean nets, resemble time series of gene expression. By systematically analyzing the mutual information between input states and output states, one is able to infer the sets of input elements controlling each element or gene in the network. This process is unequivocal and exact for complete state transition tables. We implemented this REVerse Engineering ALgorithm (REVEAL) in a C program, and found the problem to be tractable within the conditions tested so far. For n = 50 (elements) and k = 3 (inputs per element), the analysis of incomplete state transition tables (100 state transition pairs out of a possible 10(15)) reliably produced the original rule and wiring sets. While this study is limited to synchronous Boolean networks, the algorithm is generalizable to include multi-state models, essentially allowing direct application to realistic biological data sets. The ability to adequately solve the inverse problem may enable in-depth analysis of complex dynamic systems in biology and other fields.

  2. Genetic architecture dissection by genome-wide association analysis reveals avian eggshell ultrastructure traits

    PubMed Central

    Duan, Zhongyi; Sun, Congjiao; Shen, ManMan; Wang, Kehua; Yang, Ning; Zheng, Jiangxia; Xu, Guiyun

    2016-01-01

    The ultrastructure of an eggshell is considered the major determinant of eggshell quality, which has biological and economic significance for the avian and poultry industries. However, the interrelationships and genome-wide architecture of eggshell ultrastructure remain to be elucidated. Herein, we measured eggshell thickness (EST), effective layer thickness (ET), mammillary layer thickness (MT), and mammillary density (MD) and conducted genome-wide association studies in 927 F2 hens. The SNP-based heritabilities of eggshell ultrastructure traits were estimated to be 0.39, 0.36, 0.17 and 0.19 for EST, ET, MT and MD, respectively, and a total of 719, 784, 1 and 10 genome-wide significant SNPs were associated with EST, ET, MT and MD, respectively. ABCC9, ITPR2, KCNJ8 and WNK1, which are involved in ion transport, were suggested to be the key genes regulating EST and ET. ITM2C and KNDC1 likely affect MT and MD, respectively. Additionally, there were linear relationships between the chromosome lengths and the variance explained per chromosome for EST (R2 = 0.57) and ET (R2 = 0.67). In conclusion, the interrelationships and genetic architecture of eggshell ultrastructure traits revealed in this study are valuable for our understanding of the avian eggshell and contribute to research on a variety of other calcified shells. PMID:27456605

  3. Allosteric regulation in NMDA receptors revealed by the genetically encoded photo-cross-linkers

    PubMed Central

    Tian, Meilin; Ye, Shixin

    2016-01-01

    Allostery is essential to neuronal receptor function, but its transient nature poses a challenge for characterization. The N-terminal domains (NTDs) distinct from ligand binding domains are a major locus for allosteric regulation of NMDA receptors (NMDARs), where different modulatory binding sites have been observed. The inhibitor ifenprodil, and related phenylethanoamine compounds specifically targeting GluN1/GluN2B NMDARs have neuroprotective activity. However, whether they use differential structural pathways than the endogenous inhibitor Zn2+ for regulation is unknown. We applied genetically encoded unnatural amino acids (Uaas) and monitored the functional changes in living cells with photo-cross-linkers specifically incorporated at the ifenprodil binding interface between GluN1 and GluN2B subunits. We report constraining the NTD domain movement, by a light induced crosslinking bond that introduces minimal perturbation to the ligand binding, specifically impedes the transduction of ifenprodil but not Zn2+ inhibition. Subtle distance changes reveal interfacial flexibility and NTD rearrangements in the presence of modulators. Our results present a much richer dynamic picture of allostery than conventional approaches targeting the same interface, and highlight key residues that determine functional and subtype specificity of NMDARs. The light-sensitive mutant neuronal receptors provide complementary tools to the photo-switchable ligands for opto-neuropharmacology. PMID:27713495

  4. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge.

    PubMed

    Zhang, Tong; Zhang, Xu-Xiang; Ye, Lin

    2011-01-01

    The overuse or misuse of antibiotics has accelerated antibiotic resistance, creating a major challenge for the public health in the world. Sewage treatment plants (STPs) are considered as important reservoirs for antibiotic resistance genes (ARGs) and activated sludge characterized with high microbial density and diversity facilitates ARG horizontal gene transfer (HGT) via mobile genetic elements (MGEs). However, little is known regarding the pool of ARGs and MGEs in sludge microbiome. In this study, the transposon aided capture (TRACA) system was employed to isolate novel plasmids from activated sludge of one STP in Hong Kong, China. We also used Illumina Hiseq 2000 high-throughput sequencing and metagenomics analysis to investigate the plasmid metagenome. Two novel plasmids were acquired from the sludge microbiome by using TRACA system and one novel plasmid was identified through metagenomics analysis. Our results revealed high levels of various ARGs as well as MGEs for HGT, including integrons, transposons and plasmids. The application of the TRACA system to isolate novel plasmids from the environmental metagenome, coupled with subsequent high-throughput sequencing and metagenomic analysis, highlighted the prevalence of ARGs and MGEs in microbial community of STPs.

  5. Heme dynamics and trafficking factors revealed by genetically encoded fluorescent heme sensors.

    PubMed

    Hanna, David A; Harvey, Raven M; Martinez-Guzman, Osiris; Yuan, Xiaojing; Chandrasekharan, Bindu; Raju, Gheevarghese; Outten, F Wayne; Hamza, Iqbal; Reddi, Amit R

    2016-07-01

    Heme is an essential cofactor and signaling molecule. Heme acquisition by proteins and heme signaling are ultimately reliant on the ability to mobilize labile heme (LH). However, the properties of LH pools, including concentration, oxidation state, distribution, speciation, and dynamics, are poorly understood. Herein, we elucidate the nature and dynamics of LH using genetically encoded ratiometric fluorescent heme sensors in the unicellular eukaryote Saccharomyces cerevisiae We find that the subcellular distribution of LH is heterogeneous; the cytosol maintains LH at ∼20-40 nM, whereas the mitochondria and nucleus maintain it at concentrations below 2.5 nM. Further, we find that the signaling molecule nitric oxide can initiate the rapid mobilization of heme in the cytosol and nucleus from certain thiol-containing factors. We also find that the glycolytic enzyme glyceraldehyde phosphate dehydrogenase constitutes a major cellular heme buffer, and is responsible for maintaining the activity of the heme-dependent nuclear transcription factor heme activator protein (Hap1p). Altogether, we demonstrate that the heme sensors can be used to reveal fundamental aspects of heme trafficking and dynamics and can be used across multiple organisms, including Escherichia coli, yeast, and human cell lines. PMID:27247412

  6. Genetic characterization of Amazonian bovine papillomavirus reveals the existence of four new putative types.

    PubMed

    da Silva, Flavio R C; Daudt, Cíntia; Streck, André F; Weber, Matheus N; Filho, Ronaldo V Leite; Driemeier, David; Canal, Cláudio W

    2015-08-01

    Papillomaviruses are small and complex viruses that belong to the Papillomaviridae family, which comprises 39 genera. The bovine papillomavirus (BPV) causes an infectious disease that is characterized by chronic and proliferative benign tumors that affect cattle worldwide. Different genotypes of BPVs can cause distinct skin and mucosal lesions and the immunity they raise has low cross-protection. This report aimed to genotype BPVs in cattle from Northern Brazil based on nucleotide partial sequences of the L1 ORF. Skin wart samples from 39 bovines clinically and histopathologically diagnosed as cutaneous papillomatosis from Acre and Rondônia States were analyzed. The results revealed four already reported BPV types (BPVs 1, 2, 11, and 13), nine putative new BPV subtypes and four putative new BPV types as well as two putative new BPV types that were already reported. To our knowledge, this is the first record of BPVs from the Brazilian Amazon region that identified new possible BPV types and subtypes circulating in this population. These findings point to the great genetic diversity of BPVs that are present in this region and highlight the importance of this knowledge before further studies about vaccination are attempted.

  7. Genetic characterization of Amazonian bovine papillomavirus reveals the existence of four new putative types.

    PubMed

    da Silva, Flavio R C; Daudt, Cíntia; Streck, André F; Weber, Matheus N; Filho, Ronaldo V Leite; Driemeier, David; Canal, Cláudio W

    2015-08-01

    Papillomaviruses are small and complex viruses that belong to the Papillomaviridae family, which comprises 39 genera. The bovine papillomavirus (BPV) causes an infectious disease that is characterized by chronic and proliferative benign tumors that affect cattle worldwide. Different genotypes of BPVs can cause distinct skin and mucosal lesions and the immunity they raise has low cross-protection. This report aimed to genotype BPVs in cattle from Northern Brazil based on nucleotide partial sequences of the L1 ORF. Skin wart samples from 39 bovines clinically and histopathologically diagnosed as cutaneous papillomatosis from Acre and Rondônia States were analyzed. The results revealed four already reported BPV types (BPVs 1, 2, 11, and 13), nine putative new BPV subtypes and four putative new BPV types as well as two putative new BPV types that were already reported. To our knowledge, this is the first record of BPVs from the Brazilian Amazon region that identified new possible BPV types and subtypes circulating in this population. These findings point to the great genetic diversity of BPVs that are present in this region and highlight the importance of this knowledge before further studies about vaccination are attempted. PMID:26116287

  8. Genetic architecture of trout from Albania as revealed by mtDNA control region variation

    PubMed Central

    2009-01-01

    To determine the genetic architecture of trout in Albania, 87 individuals were collected from 19 riverine and lacustrine sites in Albania, FYROM and Greece. All individuals were analyzed for sequence variation in the mtDNA control region. Among fourteen haplotypes detected, four previously unpublished haplotypes, bearing a close relationship to haplotypes of the Adriatic and marmoratus lineages of Salmo trutta, were revealed. Ten previously described haplotypes, characteristic of S. ohridanus, S. letnica and the Adriatic and Mediterranean lineages of S. trutta, were also detected. Haplotypes detected in this study were placed in a well supported branch of S. ohridanus, and a cluster of Mediterranean – Adriatic – marmoratus haplotypes, which were further delimited into three subdivisions of Mediterranean, marmoratus, and a previously non-described formation of four Adriatic haplotypes (Balkan cluster). Haplotypes of the Balkan cluster and the other Adriatic haplotypes, do not represent a contiguous haplotype lineage and appear not to be closely related, indicating independent arrivals into the Adriatic drainage and suggesting successive colonization events. Despite the presence of marmoratus haplotypes in Albania, no marbled phenotype was found, confirming previously reported findings that there is no association between this phenotype and marmoratus haplotypes. PMID:19284692

  9. Lost in translation or deliberate falsification? Genetic analyses reveal erroneous museum data for historic penguin specimens.

    PubMed

    Boessenkool, Sanne; Star, Bastiaan; Scofield, R Paul; Seddon, Philip J; Waters, Jonathan M

    2010-04-01

    Historic museum specimens are increasingly used to answer a wide variety of questions in scientific research. Nevertheless, the scientific value of these specimens depends on the authenticity of the data associated with them. Here we use individual-based genetic analyses to demonstrate erroneous locality information for archive specimens from the late nineteenth century. Specifically, using 10 microsatellite markers, we analysed 350 contemporary and 43 historic yellow-eyed penguin (Megadyptes antipodes) specimens from New Zealand's South Island and sub-Antarctic regions. Factorial correspondence analysis and an assignment test strongly suggest that eight of the historic specimens purportedly of sub-Antarctic origin were in fact collected from the South Island. Interestingly, all eight specimens were obtained by the same collector, and all are currently held in the same museum collection. Further inspection of the specimen labels and evaluation of sub-Antarctic voyages did not reveal whether the erroneous data are caused by incorrect labelling or whether deliberate falsification was at play. This study highlights a promising extension to the well-known applications of assignment tests in molecular ecology, which can complement methods that are currently being applied for error detection in specimen data. Our results also serve as a warning to all who use archive specimens to invest time in the verification of collection information.

  10. Genetic architecture dissection by genome-wide association analysis reveals avian eggshell ultrastructure traits.

    PubMed

    Duan, Zhongyi; Sun, Congjiao; Shen, ManMan; Wang, Kehua; Yang, Ning; Zheng, Jiangxia; Xu, Guiyun

    2016-01-01

    The ultrastructure of an eggshell is considered the major determinant of eggshell quality, which has biological and economic significance for the avian and poultry industries. However, the interrelationships and genome-wide architecture of eggshell ultrastructure remain to be elucidated. Herein, we measured eggshell thickness (EST), effective layer thickness (ET), mammillary layer thickness (MT), and mammillary density (MD) and conducted genome-wide association studies in 927 F2 hens. The SNP-based heritabilities of eggshell ultrastructure traits were estimated to be 0.39, 0.36, 0.17 and 0.19 for EST, ET, MT and MD, respectively, and a total of 719, 784, 1 and 10 genome-wide significant SNPs were associated with EST, ET, MT and MD, respectively. ABCC9, ITPR2, KCNJ8 and WNK1, which are involved in ion transport, were suggested to be the key genes regulating EST and ET. ITM2C and KNDC1 likely affect MT and MD, respectively. Additionally, there were linear relationships between the chromosome lengths and the variance explained per chromosome for EST (R(2) = 0.57) and ET (R(2) = 0.67). In conclusion, the interrelationships and genetic architecture of eggshell ultrastructure traits revealed in this study are valuable for our understanding of the avian eggshell and contribute to research on a variety of other calcified shells. PMID:27456605

  11. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry

    PubMed Central

    Horowitz, Amir; Strauss-Albee, Dara M.; Leipold, Michael; Kubo, Jessica; Nemat-Gorgani, Neda; Dogan, Ozge C.; Dekker, Cornelia L.; Mackey, Sally; Maecker, Holden; Swan, Gary E.; Davis, Mark M.; Norman, Paul J.; Guethlein, Lisbeth A.; Desai, Manisha; Parham, Peter; Blish, Catherine A.

    2013-01-01

    Natural Killer (NK) cells play critical roles in immune defense and reproduction, yet remain the most poorly understood major lymphocyte population. Because their activation is controlled by a variety of combinatorially expressed activating and inhibitory receptors, NK cell diversity and function are closely linked. To provide an unprecedented understanding of NK cell repertoire diversity, we used mass cytometry to simultaneously analyze 35 parameters, including 28 NK cell receptors, on peripheral blood NK cells from five sets of monozygotic twins and twelve unrelated donors of defined HLA and killer cell immunoglobulin-like receptor (KIR) genotype. This analysis revealed a remarkable degree of NK cell diversity, with an estimated 6,000-30,000 phenotypic populations within an individual and >100,000 phenotypes in this population. Genetics largely determined inhibitory receptor expression, whereas activation receptor expression was heavily environmentally influenced. Therefore, NK cells may maintain self-tolerance through strictly regulated expression of inhibitory receptors, while using adaptable expression patterns of activating and costimulatory receptors to respond to pathogens and tumors. These findings further suggest the possibility that discrete NK cell subpopulations could be harnessed for immunotherapeutic strategies in the settings of infection, reproduction, and transplantation. PMID:24154599

  12. Genetic analysis of paramyxovirus isolates from pacific salmon reveals two independently co-circulating lineages

    USGS Publications Warehouse

    Batts, W.N.; Falk, K.; Winton, J.R.

    2008-01-01

    Viruses with the morphological and biochemical characteristics of the family Paramyxoviridae (paramyxoviruses) have been isolated from adult salmon returning to rivers along the Pacific coast of North America since 1982. These Pacific salmon paramyxoviruses (PSPV), which have mainly been isolated from Chinook salmon Oncorhynchus tshawytscha, grow slowly in established fish cell lines and have not been associated with disease. Genetic analysis of a 505-base-pair region of the polymerase gene from 47 PsPV isolates produced 17 nucleotide sequence types that could be grouped into two major sublineages, designated A and B. The two independently co-circulating sublineages differed by 12.1-13.9% at the nucleotide level but by only 1.2% at the amino acid level. Isolates of PSPV from adult Pacific salmon returning to rivers from Alaska to California over a 25-year period showed little evidence of geographic or temporal grouping. Phylogenetic analyses revealed that these paramyxoviruses of Pacific salmon were most closely related to the Atlantic salmon paramyxovirus (ASPV) from Norway, having a maximum nucleotide diversity of 26.1 % and an amino acid diversity of 19.0%. When compared with homologous sequences of other paramyxoviruses, PSPV and ASPV were sufficiently distinct to suggest that they are not clearly members of any of the established genera in the family Paramyxoviridae. in the course of this study, a polymerase chain reaction assay was developed that can be used for confirmatory identification of PSPV. ?? Copyright by the American Fisheries Society 2008.

  13. Genetic architecture of trout from Albania as revealed by mtDNA control region variation.

    PubMed

    Snoj, Ales; Marić, Sasa; Berrebi, Patrick; Crivelli, Alain J; Shumka, Spase; Susnik, Simona

    2009-02-02

    To determine the genetic architecture of trout in Albania, 87 individuals were collected from 19 riverine and lacustrine sites in Albania, FYROM and Greece. All individuals were analyzed for sequence variation in the mtDNA control region. Among fourteen haplotypes detected, four previously unpublished haplotypes, bearing a close relationship to haplotypes of the Adriatic and marmoratus lineages of Salmo trutta, were revealed. Ten previously described haplotypes, characteristic of S. ohridanus, S. letnica and the Adriatic and Mediterranean lineages of S. trutta, were also detected. Haplotypes detected in this study were placed in a well supported branch of S. ohridanus, and a cluster of Mediterranean-Adriatic-marmoratus haplotypes, which were further delimited into three subdivisions of Mediterranean, marmoratus, and a previously non-described formation of four Adriatic haplotypes (Balkan cluster). Haplotypes of the Balkan cluster and the other Adriatic haplotypes, do not represent a contiguous haplotype lineage and appear not to be closely related, indicating independent arrivals into the Adriatic drainage and suggesting successive colonization events. Despite the presence of marmoratus haplotypes in Albania, no marbled phenotype was found, confirming previously reported findings that there is no association between this phenotype and marmoratus haplotypes.

  14. Genomewide mapping reveals a combination of different genetic effects causing the genetic basis of heterosis in two elite rice hybrids.

    PubMed

    Li, Lanzhi; He, Xiaohong; Zhang, Hongyan; Wang, Zhiming; Sun, Congwei; Mou, Tongmin; Li, Xinqi; Zhang, Yuanming; Hu, Zhongli

    2015-06-01

    North Carolina design III (NCIII) is one of the most powerful and widely used mating designs for understanding the genetic basis of heterosis. However, the quantitative trait mapping (QTL) conducted in previous studies with this design was mainly based on analysis of variance (ANOVA), composite interval or multiple interval mapping methods. These methodologies could not investigate all kinds of genetic effects, especially epistatic effects, simultaneously on the whole genome. In this study, with a statistical method for mapping epistatic QTL associated with heterosis using the recombinant inbred line (RIL)-based NCIII design, we conducted QTL mapping for nine agronomic traits of two elite hybrids to characterize the mode of gene action contributing to heterosis on a whole genomewide scale. In total, 23 main-effect QTL (M-QTL) and 23 digenic interactions in IJ (indica x japonica) hybrids, 11 M-QTL and 82 digenic interactions in II (indica x indica) hybrid QTLs were identified in the present study. The variation explained by individual M-QTL or interactions ranged from 2.3 to 11.0%. The number of digenic interactions and the total variation explained by interactions of each trait were larger than those of M-QTL. The augmented genetic effect ratio of most M-QTL and digenic interactions in (L1 - L2) data of two backcross populations (L1 and L2) showed complete dominance or overdominance, and in (L1 + L2) data showed an additive effect. Our results indicated that the dominance, overdominance and epistatic effect were important in conditioning the genetic basis of heterosis of the two elite hybrids. The relative contributions of the genetic components varied with traits and the genetic basis of the two hybrids was different.

  15. Unexpected light behaviour in periodic segmented waveguides

    NASA Astrophysics Data System (ADS)

    Aschiéri, Pierre; Doya, Valérie

    2011-12-01

    In this article, it is shown that multimode periodic segmented waveguides (PSW) are versatile optical systems in which properties of wave chaos can be highlighted. Numerical wave analysis reveals that structures of quantum phase space of PSW are similar to Poincaré sections which display a mixed phase space where stability islands are surrounded by a chaotic sea. Then, unexpected light behavior can occur such as, input gaussian beams do not diverge during the propagation in a highly multimode waveguide.

  16. Population genetic structure and migration patterns of Liriomyza sativae in China: moderate subdivision and no Bridgehead effect revealed by microsatellites.

    PubMed

    Tang, X-T; Ji, Y; Chang, Y-W; Shen, Y; Tian, Z-H; Gong, W-R; Du, Y-Z

    2016-02-01

    While Liriomyza sativae (Diptera: Agromyzidae), an important invasive pest of ornamentals and vegetables has been found in China for the past two decades, few studies have focused on its genetics or route of invasive. In this study, we collected 288 L. sativae individuals across 12 provinces to explore its population genetic structure and migration patterns in China using seven microsatellites. We found relatively low levels of genetic diversity but moderate population genetic structure (0.05 < F ST < 0.15) in L. sativae from China. All populations deviated significantly from the Hardy-Weinberg equilibrium due to heterozygote deficiency. Molecular variance analysis revealed that more than 89% of variation was among samples within populations. A UPGMA dendrogram revealed that SH and GXNN populations formed one cluster separate from the other populations, which is in accordance with STRUCTURE and GENELAND analyses. A Mantel test indicated that genetic distance was not correlated to geographic distance (r = -0.0814, P = 0.7610), coupled with high levels of gene flow (M = 40.1-817.7), suggesting a possible anthropogenic influence on the spread of L. sativae in China and on the effect of hosts. The trend of asymmetrical gene flow was from southern to northern populations in general and did not exhibit a Bridgehead effect during the course of invasion, as can be seen by the low genetic diversity of southern populations.

  17. High level of genetic diversity among spelt germplasm revealed by microsatellite markers.

    PubMed

    Bertin, P; Grégoire, D; Massart, S; de Froidmont, D

    2004-12-01

    The genetic diversity of spelt (Triticum aestivum (L.) Thell. subsp. spelta (L.) Thell.) cultivated presently is very narrow. Although the germplasm collections of spelt are extensive, the related genetic knowledge is often lacking and makes their use for genetic improvement difficult. The genetic diversity and structure of the spelt gene pool held in gene banks was determined using 19 simple sequence repeat (SSR) markers applied to 170 spelt accessions collected from 27 countries and 4 continents. The genetic distances (1 - proportion of shared alleles) were calculated and an unweighted pair-group method with arithmetic averaging (UPGMA)-based dendrogram was generated. The genetic diversity was high: 259 alleles were found and the mean interaccession genetic distance was 0.782 +/- 0.141. The dendrogram demonstrated the much higher genetic diversity of spelt held in germplasm collections than in the currently used genotypes. Accessions with the same geographical origin often tended to cluster together. Those from the Middle East were isolated first. All but one of the Spanish accessions were found in a unique subcluster. Most accessions from eastern Europe clustered together, while those from northwestern Europe were divided into two subclusters. The accessions from Africa and North America were not separated from the European ones. This analysis demonstrates the extent of genetic diversity of spelts held in germplasm collections and should help to widen the genetic basis of cultivated spelt in future breeding programs.

  18. Genetic characterization of Hawaiian isolates of Plasmodium relictum reveals mixed-genotype infections

    USGS Publications Warehouse

    Jarvi, S.I.; Farias, M.E.M.; Atkinson, C.T.

    2008-01-01

    Background: The relatively recent introduction of a highly efficient mosquito vector and an avian pathogen (Plasmodium relictum) to an isolated island ecosystem with nai??ve, highly susceptible avian hosts provides a unique opportunity to investigate evolution of virulence in a natural system. Mixed infections can significantly contribute to the uncertainty in host-pathogen dynamics with direct impacts on virulence. Toward further understanding of how host-parasite and parasite-parasite relationships may impact virulence, this study characterizes within-host diversity of malaria parasite populations based on genetic analysis of the trap (thrombospondin-related anonymous protein) gene in isolates originating from Hawaii, Maui and Kauai Islands. Methods: A total of 397 clones were produced by nested PCR amplification and cloning of a 1664 bp fragment of the trap gene from two malarial isolates, K1 (Kauai) and KV115 (Hawaii) that have been used for experimental studies, and from additional isolates from wild birds on Kauai, Maui and Hawaii Islands. Diversity of clones was evaluated initially by RFLP-based screening, followed by complete sequencing of 33 selected clones. Results: RFLP analysis of trap revealed a minimum of 28 distinct RFLP haplotypes among the 397 clones from 18 birds. Multiple trap haplotypes were detected in every bird evaluated, with an average of 5.9 haplotypes per bird. Overall diversity did not differ between the experimental isolates, however, a greater number of unique haplotypes were detected in K1 than in KV115. We detected high levels of clonal diversity with clear delineation between isolates K1 and KV115 in a haplotype network. The patterns of within-host haplotype clustering are consistent with the possibility of a clonal genetic structure and rapid within-host mutation after infection. Conclusion: Avian malaria (P. relictum) and Avipoxvirus are the significant infectious diseases currently affecting the native Hawaiian avifauna. This

  19. Divergence genetics analysis reveals historical population genetic processes leading to contrasting phylogeographic patterns in co-distributed species.

    PubMed

    McGovern, Tamara M; Keever, Carson C; Saski, Christopher A; Hart, Michael W; Marko, Peter B

    2010-11-01

    Coalescent samplers are computational time machines for inferring the historical demographic genetic processes that have given rise to observable patterns of spatial genetic variation among contemporary populations. We have used traditional characterizations of population structure and coalescent-based inferences about demographic processes to reconstruct the population histories of two co-distributed marine species, the frilled dog whelk, Nucella lamellosa, and the bat star, Patiria miniata. Analyses of population structure were consistent with previous work in both species except that additional samples of N. lamellosa showed a larger regional genetic break on Vancouver Island (VI) rather than between the southern Alexander Archipelago as in P. miniata. Our understanding of the causes, rather than just the patterns, of spatial genetic variation was dramatically improved by coalescent analyses that emphasized variation in population divergence times. Overall, gene flow was greater in bat stars (planktonic development) than snails (benthic development) but spatially homogeneous within species. In both species, these large phylogeographic breaks corresponded to relatively ancient divergence times between populations rather than regionally restricted gene flow. Although only N. lamellosa shows a large break on VI, population separation times on VI are congruent between species, suggesting a similar response to late Pleistocene ice sheet expansion. The absence of a phylogeographic break in P. miniata on VI can be attributed to greater gene flow and larger effective population size in this species. Such insights put the relative significance of gene flow into a more comprehensive historical biogeographic context and have important implications for conservation and landscape genetic studies that emphasize the role of contemporary gene flow and connectivity in shaping patterns of population differentiation. PMID:21040048

  20. Genetic erosion in northern marginal population of the common wild rice Oryza rufipogon Griff. and its conservation, revealed by the change of population genetic structure.

    PubMed

    Gao, L; Chen, W; Jiang, W; Ge, S; Hong, D; Wang, X

    2000-01-01

    In order to monitor genetic erosion within the northern marginal population of common wild rice Oryza rufipogon Griff. from Dongxiang, Jiangxi Province, China, allozyme diversity encoded by 22 loci was analyzed electrophoretically from all the existing subpopulations in 1980, 1985 and 1994. The sample collected from the nine large subpopulations in 1980 showed the highest levels of genetic diversity (A = 1.27, P = 18.20%, Ho = 0.042 and He = 0.049) and a slight deviation from Hardy-Weinberg expectation (F = 0.143), the sample from five moderate ones in 1985 displayed medium levels of genetic diversity (A = 1.14, P = 13.60%, Ho = 0.008 and He = 0.049) and a great deviation from Hardy-Weinberg expectation (F = 0.837), and the sample from two small ones in 1994 demonstrated the lowest levels of genetic diversity (A = 1.09, P = 9.10%, Ho = 0.000 and He = 0.043) and the largest deviation from Hardy-Weinberg expectation (F = 1.000). The results not only documented the genetic erosion stemmed from the extinction of the subpopulations, but also revealed the drastic change of the population genetic structure due to the reduction of the population. Finally, some conservation strategies for the population are proposed.

  1. Fine-Scale Genetic Structure and Cryptic Associations Reveal Evidence of Kin-Based Sociality in the African Forest Elephant

    PubMed Central

    Schuttler, Stephanie G.; Philbrick, Jessica A.; Jeffery, Kathryn J.; Eggert, Lori S.

    2014-01-01

    Spatial patterns of relatedness within animal populations are important in the evolution of mating and social systems, and have the potential to reveal information on species that are difficult to observe in the wild. This study examines the fine-scale genetic structure and connectivity of groups within African forest elephants, Loxodonta cyclotis, which are often difficult to observe due to forest habitat. We tested the hypothesis that genetic similarity will decline with increasing geographic distance, as we expect kin to be in closer proximity, using spatial autocorrelation analyses and Tau Kr tests. Associations between individuals were investigated through a non-invasive genetic capture-recapture approach using network models, and were predicted to be more extensive than the small groups found in observational studies, similar to fission-fusion sociality found in African savanna (Loxodonta africana) and Asian (Elephas maximus) species. Dung samples were collected in Lopé National Park, Gabon in 2008 and 2010 and genotyped at 10 microsatellite loci, genetically sexed, and sequenced at the mitochondrial DNA control region. We conducted analyses on samples collected at three different temporal scales: a day, within six-day sampling sessions, and within each year. Spatial autocorrelation and Tau Kr tests revealed genetic structure, but results were weak and inconsistent between sampling sessions. Positive spatial autocorrelation was found in distance classes of 0–5 km, and was strongest for the single day session. Despite weak genetic structure, individuals within groups were significantly more related to each other than to individuals between groups. Social networks revealed some components to have large, extensive groups of up to 22 individuals, and most groups were composed of individuals of the same matriline. Although fine-scale population genetic structure was weak, forest elephants are typically found in groups consisting of kin and based on matrilines

  2. Fine-scale genetic structure and cryptic associations reveal evidence of kin-based sociality in the African forest elephant.

    PubMed

    Schuttler, Stephanie G; Philbrick, Jessica A; Jeffery, Kathryn J; Eggert, Lori S

    2014-01-01

    Spatial patterns of relatedness within animal populations are important in the evolution of mating and social systems, and have the potential to reveal information on species that are difficult to observe in the wild. This study examines the fine-scale genetic structure and connectivity of groups within African forest elephants, Loxodonta cyclotis, which are often difficult to observe due to forest habitat. We tested the hypothesis that genetic similarity will decline with increasing geographic distance, as we expect kin to be in closer proximity, using spatial autocorrelation analyses and Tau K(r) tests. Associations between individuals were investigated through a non-invasive genetic capture-recapture approach using network models, and were predicted to be more extensive than the small groups found in observational studies, similar to fission-fusion sociality found in African savanna (Loxodonta africana) and Asian (Elephas maximus) species. Dung samples were collected in Lopé National Park, Gabon in 2008 and 2010 and genotyped at 10 microsatellite loci, genetically sexed, and sequenced at the mitochondrial DNA control region. We conducted analyses on samples collected at three different temporal scales: a day, within six-day sampling sessions, and within each year. Spatial autocorrelation and Tau K(r) tests revealed genetic structure, but results were weak and inconsistent between sampling sessions. Positive spatial autocorrelation was found in distance classes of 0-5 km, and was strongest for the single day session. Despite weak genetic structure, individuals within groups were significantly more related to each other than to individuals between groups. Social networks revealed some components to have large, extensive groups of up to 22 individuals, and most groups were composed of individuals of the same matriline. Although fine-scale population genetic structure was weak, forest elephants are typically found in groups consisting of kin and based on matrilines

  3. Genetic variation in wild populations of the tuber crop Amorphophallus konjac (Araceae) in central China as revealed by AFLP markers.

    PubMed

    Pan, C; Gichira, A W; Chen, J M

    2015-01-01

    Amorphophallus konjac is an economically important crop. In order to provide baseline information for sustainable development and conservation of the wild plant resources of A. konjac, we studied the genetic diversity and population structure of this species using amplified fragment length polymorphism (AFLP) molecular markers. We sampled 139 individuals from 10 wild populations of A. konjac in central China. Using five AFLP primer combinations, we scored a total of 270 DNA fragments, most of which were polymorphic (98.2%). Percentage of polymorphic loci, Nei's genetic diversity index, and Shannon's information index showed high levels of genetic variation within A. konjac populations. Analysis of molecular variance indicated that most of the variance (68%) resided within populations. The coefficient of genetic differentiation between populations was 0.348 and the estimated gene flow was 0.469, indicating that there was limited gene flow among the populations. Unweighted pair group method with arithmetic mean cluster analysis and principal coordinates analysis indicated that geographically close populations were more likely to cluster together. The Mantel test revealed a significant correlation between geographic and genetic distances (R2 = 0.2521, P < 0.05). The special insect-pollination system of A. konjac and the complex geography of central China are likely to have contributed to the current pattern of genetic variation of this species. In the present study, we provide several suggestions on the future protection of the wild plant genetic resources of A. konjac. PMID:26782525

  4. High Resolution Genomic Scans Reveal Genetic Architecture Controlling Alcohol Preference in Bidirectionally Selected Rat Model.

    PubMed

    Lo, Chiao-Ling; Lossie, Amy C; Liang, Tiebing; Liu, Yunlong; Xuei, Xiaoling; Lumeng, Lawrence; Zhou, Feng C; Muir, William M

    2016-08-01

    Investigations on the influence of nature vs. nurture on Alcoholism (Alcohol Use Disorder) in human have yet to provide a clear view on potential genomic etiologies. To address this issue, we sequenced a replicated animal model system bidirectionally-selected for alcohol preference (AP). This model is uniquely suited to map genetic effects with high reproducibility, and resolution. The origin of the rat lines (an 8-way cross) resulted in small haplotype blocks (HB) with a corresponding high level of resolution. We sequenced DNAs from 40 samples (10 per line of each replicate) to determine allele frequencies and HB. We achieved ~46X coverage per line and replicate. Excessive differentiation in the genomic architecture between lines, across replicates, termed signatures of selection (SS), were classified according to gene and region. We identified SS in 930 genes associated with AP. The majority (50%) of the SS were confined to single gene regions, the greatest numbers of which were in promoters (284) and intronic regions (169) with the least in exon's (4), suggesting that differences in AP were primarily due to alterations in regulatory regions. We confirmed previously identified genes and found many new genes associated with AP. Of those newly identified genes, several demonstrated neuronal function involved in synaptic memory and reward behavior, e.g. ion channels (Kcnf1, Kcnn3, Scn5a), excitatory receptors (Grin2a, Gria3, Grip1), neurotransmitters (Pomc), and synapses (Snap29). This study not only reveals the polygenic architecture of AP, but also emphasizes the importance of regulatory elements, consistent with other complex traits. PMID:27490364

  5. High Resolution Genomic Scans Reveal Genetic Architecture Controlling Alcohol Preference in Bidirectionally Selected Rat Model

    PubMed Central

    Lo, Chiao-Ling; Liang, Tiebing; Liu, Yunlong; Lumeng, Lawrence; Zhou, Feng C.; Muir, William M.

    2016-01-01

    Investigations on the influence of nature vs. nurture on Alcoholism (Alcohol Use Disorder) in human have yet to provide a clear view on potential genomic etiologies. To address this issue, we sequenced a replicated animal model system bidirectionally-selected for alcohol preference (AP). This model is uniquely suited to map genetic effects with high reproducibility, and resolution. The origin of the rat lines (an 8-way cross) resulted in small haplotype blocks (HB) with a corresponding high level of resolution. We sequenced DNAs from 40 samples (10 per line of each replicate) to determine allele frequencies and HB. We achieved ~46X coverage per line and replicate. Excessive differentiation in the genomic architecture between lines, across replicates, termed signatures of selection (SS), were classified according to gene and region. We identified SS in 930 genes associated with AP. The majority (50%) of the SS were confined to single gene regions, the greatest numbers of which were in promoters (284) and intronic regions (169) with the least in exon's (4), suggesting that differences in AP were primarily due to alterations in regulatory regions. We confirmed previously identified genes and found many new genes associated with AP. Of those newly identified genes, several demonstrated neuronal function involved in synaptic memory and reward behavior, e.g. ion channels (Kcnf1, Kcnn3, Scn5a), excitatory receptors (Grin2a, Gria3, Grip1), neurotransmitters (Pomc), and synapses (Snap29). This study not only reveals the polygenic architecture of AP, but also emphasizes the importance of regulatory elements, consistent with other complex traits. PMID:27490364

  6. High Resolution Genomic Scans Reveal Genetic Architecture Controlling Alcohol Preference in Bidirectionally Selected Rat Model.

    PubMed

    Lo, Chiao-Ling; Lossie, Amy C; Liang, Tiebing; Liu, Yunlong; Xuei, Xiaoling; Lumeng, Lawrence; Zhou, Feng C; Muir, William M

    2016-08-01

    Investigations on the influence of nature vs. nurture on Alcoholism (Alcohol Use Disorder) in human have yet to provide a clear view on potential genomic etiologies. To address this issue, we sequenced a replicated animal model system bidirectionally-selected for alcohol preference (AP). This model is uniquely suited to map genetic effects with high reproducibility, and resolution. The origin of the rat lines (an 8-way cross) resulted in small haplotype blocks (HB) with a corresponding high level of resolution. We sequenced DNAs from 40 samples (10 per line of each replicate) to determine allele frequencies and HB. We achieved ~46X coverage per line and replicate. Excessive differentiation in the genomic architecture between lines, across replicates, termed signatures of selection (SS), were classified according to gene and region. We identified SS in 930 genes associated with AP. The majority (50%) of the SS were confined to single gene regions, the greatest numbers of which were in promoters (284) and intronic regions (169) with the least in exon's (4), suggesting that differences in AP were primarily due to alterations in regulatory regions. We confirmed previously identified genes and found many new genes associated with AP. Of those newly identified genes, several demonstrated neuronal function involved in synaptic memory and reward behavior, e.g. ion channels (Kcnf1, Kcnn3, Scn5a), excitatory receptors (Grin2a, Gria3, Grip1), neurotransmitters (Pomc), and synapses (Snap29). This study not only reveals the polygenic architecture of AP, but also emphasizes the importance of regulatory elements, consistent with other complex traits.

  7. Genetic and Ultrastructural Analysis Reveals the Key Players and Initial Steps of Bacterial Magnetosome Membrane Biogenesis

    PubMed Central

    Kolinko, Isabel; Uebe, René; Schüler, Dirk

    2016-01-01

    Magnetosomes of magnetotactic bacteria contain well-ordered nanocrystals for magnetic navigation and have recently emerged as the most sophisticated model system to study the formation of membrane bounded organelles in prokaryotes. Magnetosome biosynthesis is thought to begin with the formation of a dedicated compartment, the magnetosome membrane (MM), in which the biosynthesis of a magnetic mineral is strictly controlled. While the biomineralization of magnetosomes and their subsequent assembly into linear chains recently have become increasingly well studied, the molecular mechanisms and early stages involved in MM formation remained poorly understood. In the Alphaproteobacterium Magnetospirillum gryphiswaldense, approximately 30 genes were found to control magnetosome biosynthesis. By cryo-electron tomography of several key mutant strains we identified the gene complement controlling MM formation in this model organism. Whereas the putative magnetosomal iron transporter MamB was most crucial for the process and caused the most severe MM phenotype upon elimination, MamM, MamQ and MamL were also required for the formation of wild-type-like MMs. A subset of seven genes (mamLQBIEMO) combined within a synthetic operon was sufficient to restore the formation of intracellular membranes in the absence of other genes from the key mamAB operon. Tracking of de novo magnetosome membrane formation by genetic induction revealed that magnetosomes originate from unspecific cytoplasmic membrane locations before alignment into coherent chains. Our results indicate that no single factor alone is essential for MM formation, which instead is orchestrated by the cumulative action of several magnetosome proteins. PMID:27286560

  8. Genetic diversity and domestication origin of tea plant Camellia taliensis (Theaceae) as revealed by microsatellite markers

    PubMed Central

    2014-01-01

    Background Tea is one of the most popular beverages in the world. Many species in the Thea section of the Camellia genus can be processed for drinking and have been domesticated. However, few investigations have focused on the genetic consequence of domestication and geographic origin of landraces on tea plants using credible wild and planted populations of a single species. Here, C. taliensis provides us with a unique opportunity to explore these issues. Results Fourteen nuclear microsatellite loci were employed to determine the genetic diversity and domestication origin of C. taliensis, which were represented by 587 individuals from 25 wild, planted and recently domesticated populations. C. taliensis showed a moderate high level of overall genetic diversity. The greater reduction of genetic diversity and stronger genetic drift were detected in the wild group than in the recently domesticated group, indicating the loss of genetic diversity of wild populations due to overexploitation and habitat fragmentation. Instead of the endangered wild trees, recently domesticated individuals were used to compare with the planted trees for detecting the genetic consequence of domestication. A little and non-significant reduction in genetic diversity was found during domestication. The long life cycle, selection for leaf traits and gene flow between populations will delay the emergence of bottleneck in planted trees. Both phylogenetic and assignment analyses suggested that planted trees may have been domesticated from the adjacent central forest of western Yunnan and dispersed artificially to distant places. Conclusions This study contributes to the knowledge about levels and distribution of genetic diversity of C. taliensis and provides new insights into genetic consequence of domestication and geographic origin of planted trees of this species. As an endemic tea source plant, wild, planted and recently domesticated C. taliensis trees should all be protected for their unique

  9. Genotyping by sequencing reveals the genetic diversity of the USDA pisum diversity collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA expanded Pisum Single Plant (PSP) core collection is a unique resource that represents the breadth of the genetic diversity of the genus in an inbred format that facilitates genetic study. The collection includes inbred accessions from the refined pea core collection, parent lines of USDA r...

  10. Approximate Bayesian computation reveals the factors that influence genetic diversity and population structure of foxsnakes.

    PubMed

    Row, J R; Brooks, R J; MacKinnon, C A; Lawson, A; Crother, B I; White, M; Lougheed, S C

    2011-11-01

    Contemporary geographical range and patterns of genetic diversity within species reflect complex interactions between multiple factors acting across spatial and temporal scales, and it is notoriously difficult to disentangle causation. Here, we quantify patterns of genetic diversity and genetic population structure using mitochondrial DNA sequences (101 individuals, cytochrome b) and microsatellites (816 individuals, 12 loci) and use Approximate Bayesian computation methods to test competing models of the demographic history of eastern and western foxsnakes. Our analyses indicate that post-glacial colonization and past population declines, probably caused by the infilling of deciduous forest and cooler temperatures since the mid-Holocene, largely underpin large-scale genetic patterns for foxsnakes. At finer geographical scales, our results point to more recent anthropogenic habitat loss as having accentuated genetic population structure by causing further declines and fragmentation.

  11. Genome-wide view of genetic diversity reveals paths of selection and cultivar differentiation in peach domestication

    PubMed Central

    Akagi, Takashi; Hanada, Toshio; Yaegaki, Hideaki; Gradziel, Thomas M.; Tao, Ryutaro

    2016-01-01

    Domestication and cultivar differentiation are requisite processes for establishing cultivated crops. These processes inherently involve substantial changes in population structure, including those from artificial selection of key genes. In this study, accessions of peach (Prunus persica) and its wild relatives were analysed genome-wide to identify changes in genetic structures and gene selections associated with their differentiation. Analysis of genome-wide informative single-nucleotide polymorphism loci revealed distinct changes in genetic structures and delineations among domesticated peach and its wild relatives and among peach landraces and modern fruit (F) and modern ornamental (O-A) cultivars. Indications of distinct changes in linkage disequilibrium extension/decay and of strong population bottlenecks or inbreeding were identified. Site frequency spectrum- and extended haplotype homozygosity-based evaluation of genome-wide genetic diversities supported selective sweeps distinguishing the domesticated peach from its wild relatives and each F/O-A cluster from the landrace clusters. The regions with strong selective sweeps harboured promising candidates for genes subjected to selection. Further sequence-based evaluation further defined the candidates and revealed their characteristics. All results suggest opportunities for identifying critical genes associated with each differentiation by analysing genome-wide genetic diversity in currently established populations. This approach obviates the special development of genetic populations, which is particularly difficult for long-lived tree crops. PMID:27085183

  12. A Genome-Wide Association Analysis Reveals Epistatic Cancellation of Additive Genetic Variance for Root Length in Arabidopsis thaliana.

    PubMed

    Lachowiec, Jennifer; Shen, Xia; Queitsch, Christine; Carlborg, Örjan

    2015-01-01

    Efforts to identify loci underlying complex traits generally assume that most genetic variance is additive. Here, we examined the genetics of Arabidopsis thaliana root length and found that the genomic narrow-sense heritability for this trait in the examined population was statistically zero. The low amount of additive genetic variance that could be captured by the genome-wide genotypes likely explains why no associations to root length could be found using standard additive-model-based genome-wide association (GWA) approaches. However, as the broad-sense heritability for root length was significantly larger, and primarily due to epistasis, we also performed an epistatic GWA analysis to map loci contributing to the epistatic genetic variance. Four interacting pairs of loci were revealed, involving seven chromosomal loci that passed a standard multiple-testing corrected significance threshold. The genotype-phenotype maps for these pairs revealed epistasis that cancelled out the additive genetic variance, explaining why these loci were not detected in the additive GWA analysis. Small population sizes, such as in our experiment, increase the risk of identifying false epistatic interactions due to testing for associations with very large numbers of multi-marker genotypes in few phenotyped individuals. Therefore, we estimated the false-positive risk using a new statistical approach that suggested half of the associated pairs to be true positive associations. Our experimental evaluation of candidate genes within the seven associated loci suggests that this estimate is conservative; we identified functional candidate genes that affected root development in four loci that were part of three of the pairs. The statistical epistatic analyses were thus indispensable for confirming known, and identifying new, candidate genes for root length in this population of wild-collected A. thaliana accessions. We also illustrate how epistatic cancellation of the additive genetic variance

  13. A Genome-Wide Association Analysis Reveals Epistatic Cancellation of Additive Genetic Variance for Root Length in Arabidopsis thaliana

    PubMed Central

    Lachowiec, Jennifer; Shen, Xia; Queitsch, Christine; Carlborg, Örjan

    2015-01-01

    Efforts to identify loci underlying complex traits generally assume that most genetic variance is additive. Here, we examined the genetics of Arabidopsis thaliana root length and found that the genomic narrow-sense heritability for this trait in the examined population was statistically zero. The low amount of additive genetic variance that could be captured by the genome-wide genotypes likely explains why no associations to root length could be found using standard additive-model-based genome-wide association (GWA) approaches. However, as the broad-sense heritability for root length was significantly larger, and primarily due to epistasis, we also performed an epistatic GWA analysis to map loci contributing to the epistatic genetic variance. Four interacting pairs of loci were revealed, involving seven chromosomal loci that passed a standard multiple-testing corrected significance threshold. The genotype-phenotype maps for these pairs revealed epistasis that cancelled out the additive genetic variance, explaining why these loci were not detected in the additive GWA analysis. Small population sizes, such as in our experiment, increase the risk of identifying false epistatic interactions due to testing for associations with very large numbers of multi-marker genotypes in few phenotyped individuals. Therefore, we estimated the false-positive risk using a new statistical approach that suggested half of the associated pairs to be true positive associations. Our experimental evaluation of candidate genes within the seven associated loci suggests that this estimate is conservative; we identified functional candidate genes that affected root development in four loci that were part of three of the pairs. The statistical epistatic analyses were thus indispensable for confirming known, and identifying new, candidate genes for root length in this population of wild-collected A. thaliana accessions. We also illustrate how epistatic cancellation of the additive genetic variance

  14. Statistical inference on genetic data reveals the complex demographic history of human populations in central Asia.

    PubMed

    Palstra, Friso P; Heyer, Evelyne; Austerlitz, Frédéric

    2015-06-01

    The demographic history of modern humans constitutes a combination of expansions, colonizations, contractions, and remigrations. The advent of large scale genetic data combined with statistically refined methods facilitates inference of this complex history. Here we study the demographic history of two genetically admixed ethnic groups in Central Asia, an area characterized by high levels of genetic diversity and a history of recurrent immigration. Using Approximate Bayesian Computation, we infer that the timing of admixture markedly differs between the two groups. Admixture in the traditionally agricultural Tajiks could be dated back to the onset of the Neolithic transition in the region, whereas admixture in Kyrgyz is more recent, and may have involved the westward movement of Turkic peoples. These results are confirmed by a coalescent method that fits an isolation-with-migration model to the genetic data, with both Central Asian groups having received gene flow from the extremities of Eurasia. Interestingly, our analyses also uncover signatures of gene flow from Eastern to Western Eurasia during Paleolithic times. In conclusion, the high genetic diversity currently observed in these two Central Asian peoples most likely reflects the effects of recurrent immigration that likely started before historical times. Conversely, conquests during historical times may have had a relatively limited genetic impact. These results emphasize the need for a better understanding of the genetic consequences of transmission of culture and technological innovations, as well as those of invasions and conquests.

  15. Genetic differentiation and genetic diversity of Castanopsis (Fagaceae), the dominant tree species in Japanese broadleaved evergreen forests, revealed by analysis of EST-associated microsatellites.

    PubMed

    Aoki, Kyoko; Ueno, Saneyoshi; Kamijo, Takashi; Setoguchi, Hiroaki; Murakami, Noriaki; Kato, Makoto; Tsumura, Yoshihiko

    2014-01-01

    The broadleaved evergreen forests of the East Asian warm temperate zone are characterised by their high biodiversity and endemism, and there is therefore a need to extend our understanding of its genetic diversity and phylogeographic patterns. Castanopsis (Fagaceae) is one of the dominant tree species in the broadleaved evergreen forests of Japan. In this study we investigate the genetic diversity, genetic structure and leaf epidermal morphology of 63 natural populations of C. sieboldii and C. cuspidata, using 32 Expressed Sequence Tag associated microsatellites. The overall genetic differentiation between populations was low (GST = 0.069 in C. sieboldii and GST = 0.057 in C. cuspidata). Neighbor-joining tree and Bayesian clustering analyses revealed that the populations of C. sieboldii and C. cuspidata were genetically clearly differentiated, a result which is consistent with the morphology of their epidermal cell layers. This suggests that C. sieboldii and C. cuspidata should be treated as independent species, although intermediate morphologies are often observed, especially at sites where the two species coexist. The higher level of genetic diversity observed in the Kyushu region (for both species) and the Ryukyu Islands (for C. sieboldii) is consistent with the available fossil pollen data for Castanopsis-type broadleaved evergreen trees during the Last Glacial Maximum and suggests the existence of refugia for Castanopsis forests in southern Japan. Within the C. sieboldii populations, Bayesian clustering analyses detected three clusters, in the western and eastern parts of the main islands and in the Ryukyu Islands. The west-east genetic differentiation observed for this species in the main islands, a pattern which is also found in several plant and animal species inhabiting Castanopsis forests in Japan, suggests that they have been isolated from each other in the western and eastern populations for an extended period of time, and may imply the

  16. Genetic Differentiation and Genetic Diversity of Castanopsis (Fagaceae), the Dominant Tree Species in Japanese Broadleaved Evergreen Forests, Revealed by Analysis of EST-Associated Microsatellites

    PubMed Central

    Aoki, Kyoko; Ueno, Saneyoshi; Kamijo, Takashi; Setoguchi, Hiroaki; Murakami, Noriaki; Kato, Makoto; Tsumura, Yoshihiko

    2014-01-01

    The broadleaved evergreen forests of the East Asian warm temperate zone are characterised by their high biodiversity and endemism, and there is therefore a need to extend our understanding of its genetic diversity and phylogeographic patterns. Castanopsis (Fagaceae) is one of the dominant tree species in the broadleaved evergreen forests of Japan. In this study we investigate the genetic diversity, genetic structure and leaf epidermal morphology of 63 natural populations of C. sieboldii and C. cuspidata, using 32 Expressed Sequence Tag associated microsatellites. The overall genetic differentiation between populations was low (GST = 0.069 in C. sieboldii and GST = 0.057 in C. cuspidata). Neighbor-joining tree and Bayesian clustering analyses revealed that the populations of C. sieboldii and C. cuspidata were genetically clearly differentiated, a result which is consistent with the morphology of their epidermal cell layers. This suggests that C. sieboldii and C. cuspidata should be treated as independent species, although intermediate morphologies are often observed, especially at sites where the two species coexist. The higher level of genetic diversity observed in the Kyushu region (for both species) and the Ryukyu Islands (for C. sieboldii) is consistent with the available fossil pollen data for Castanopsis-type broadleaved evergreen trees during the Last Glacial Maximum and suggests the existence of refugia for Castanopsis forests in southern Japan. Within the C. sieboldii populations, Bayesian clustering analyses detected three clusters, in the western and eastern parts of the main islands and in the Ryukyu Islands. The west-east genetic differentiation observed for this species in the main islands, a pattern which is also found in several plant and animal species inhabiting Castanopsis forests in Japan, suggests that they have been isolated from each other in the western and eastern populations for an extended period of time, and may imply the

  17. Fine-Scale Analysis Reveals Cryptic Landscape Genetic Structure in Desert Tortoises

    PubMed Central

    Latch, Emily K.; Boarman, William I.; Walde, Andrew; Fleischer, Robert C.

    2011-01-01

    Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be

  18. Principal component analysis reveals the 1000 Genomes Project does not sufficiently cover the human genetic diversity in Asia.

    PubMed

    Lu, Dongsheng; Xu, Shuhua

    2013-01-01

    The 1000 Genomes Project (1KG) aims to provide a comprehensive resource on human genetic variations. With an effort of sequencing 2,500 individuals, 1KG is expected to cover the majority of the human genetic diversities worldwide. In this study, using analysis of population structure based on genome-wide single nucleotide polymorphisms (SNPs) data, we examined and evaluated the coverage of genetic diversity of 1KG samples with the available genome-wide SNP data of 3,831 individuals representing 140 population samples worldwide. We developed a method to quantitatively measure and evaluate the genetic diversity revealed by population structure analysis. Our results showed that the 1KG does not have sufficient coverage of the human genetic diversity in Asia, especially in Southeast Asia. We suggested a good coverage of Southeast Asian populations be considered in 1KG or a regional effort be initialized to provide a more comprehensive characterization of the human genetic diversity in Asia, which is important for both evolutionary and medical studies in the future.

  19. Genetic relationship of 32 cell lines of Euplotes octocarinatus species complex revealed by random amplified polymorphic DNA (RAPD) fingerprinting.

    PubMed

    Möllenbeck, M

    1999-12-01

    Random amplified polymorphic DNA (RAPD) fingerprinting was used in this study to determine the genetic relationship of different cell lines of the hypotrichous ciliate Euplotes octocarinatus. Stocks isolated from different habitats in the USA, and from a group of genetically recombined laboratory strains, were characterized. Band-sharing indices (D) for all possible pairwise comparisons revealed a remarkable genetic diversity between the different cell lines. Investigation of the genetic structure in natural populations found diversity--although to a different extent--in all populations investigated. No clonal structure could be observed, as proposed for several protozoa and recently shown for E. daidaleos. These findings suggest frequent conjugation in the population of E. octocarinatus. No correlation between the genetic relationship of cell lines from different habitats and the distance between the corresponding sampling locations was found. Once separated geographically, the exchange of genetic material between populations appears to be nearly impossible. Therefore, these groups tend to separate into sibling species. The data generally support the occurrence of different syngens in the E. octocarinatus species complex. This finding is in accordance with our observation that the morphological 'species' of E. octocarinatus consists of several syngens or sibling species, similar to findings for the Paramecium aurelia-, Tetrahymena pyriformis- and E. vannus- species complexes. PMID:10722304

  20. The genetic structure of Oreochromis spp. (Tilapia) populations in Malaysia as revealed by microsatellite DNA analysis.

    PubMed

    Bhassu, S; Yusoff, K; Panandam, J M; Embong, W K; Oyyan, S; Tan, S G

    2004-08-01

    The genetic make-up of five populations of Oreochromis spp. was examined by microsatellite analysis. Eleven polymorphic microsatellite loci showed significant departures from the Hardy-Weinberg equilibrium. The mean heterozygosity ranged from 0.6280 to 0.7040 for each population. The genetic distance values showed a clear separation between O. niloticus and O. mossambicus. The differentiation of the O. niloticus populations was then tested with various genetic measures, which are based on both the Infinite Allele and the Stepwise Mutation models. All these measures grouped the populations similarly. PMID:15487586

  1. Population genetic structure and historical demography of Oratosquilla oratoria revealed by mitochondrial DNA sequences.

    PubMed

    Zhang, D; Ding, Ge; Ge, B; Zhang, H; Tang, B

    2012-12-01

    Genetic diversity, population genetic structure and molecular phylogeographic pattern of mantis shrimp Oratosquilla oratoria in Bohai Sea and South China Sea were analyzed by mitochondrial DNA sequences. Nucleotide and haplotype diversities were 0.00409-0.00669 and 0.894-0.953 respectively. Neighbor-Joining phylogenetic tree clustered two distinct lineages. Both phylogenetic tree and median-joining network showed the consistent genetic structure corresponding to geographical distribution. Mismatch distributions, negative neutral test and "star-like" network supported a sudden population expansion event. And the time was estimated about 44000 and 50000 years ago. PMID:23516902

  2. Population genetic structure and historical demography of Oratosquilla oratoria revealed by mitochondrial DNA sequences.

    PubMed

    Zhang, D; Ding, Ge; Ge, B; Zhang, H; Tang, B

    2012-12-01

    Genetic diversity, population genetic structure and molecular phylogeographic pattern of mantis shrimp Oratosquilla oratoria in Bohai Sea and South China Sea were analyzed by mitochondrial DNA sequences. Nucleotide and haplotype diversities were 0.00409-0.00669 and 0.894-0.953 respectively. Neighbor-Joining phylogenetic tree clustered two distinct lineages. Both phylogenetic tree and median-joining network showed the consistent genetic structure corresponding to geographical distribution. Mismatch distributions, negative neutral test and "star-like" network supported a sudden population expansion event. And the time was estimated about 44000 and 50000 years ago.

  3. Unexpected molecular weight effect in polymer nanocomposites

    DOE PAGESBeta

    Cheng, Shiwang; Holt, Adam P.; Wang, Huiqun; Fan, Fei; Bocharova, Vera; Martin, Halie J.; Etampawala, Thusitha N.; White, Benjamin Tyler; Saito, Tomonori; Kang, Nam -Goo; et al

    2016-01-22

    Here, the properties of the interfacial layer between the polymer matrix and nanoparticles largely determine the macroscopic properties of polymer nanocomposites (PNCs). Although the static thickness of the interfacial layer was found to increase with the molecular weight (MW), the influence of MW on segmental relaxation and the glass transition in this layer remains to be explored. In this Letter, we show an unexpected MW dependence of the interfacial properties in PNC with attractive polymer-nanoparticle interactions: the thickness of the interfacial layer with hindered segmental relaxation decreases as MW increases, in sharp constrast to theoretical predictions. Further analyses reveal amore » reduction in mass density of the interfacial layer with increasing MW, which can explain these unexpected dynamic effects. Our observations call for a significant revision of the current understandings of PNCs and suggest interesting ways to tailor their properties.« less

  4. Plant Genetic Archaeology: Whole-Genome Sequencing Reveals the Pedigree of a Classical Trisomic Line

    PubMed Central

    Salomé, Patrice A.; Weigel, Detlef

    2014-01-01

    The circadian oscillator is astonishingly robust to changes in the environment but also to genomic changes that alter the copy number of its components through genome duplication, gene duplication, and homeologous gene loss. While studying the potential effect of aneuploidy on the Arabidopsis thaliana circadian clock, we discovered that a line thought to be trisomic for chromosome 3 also bears the gi-1 mutation, resulting in a short period and late flowering. With the help of whole-genome sequencing, we uncovered the unexpected complexity of this trisomic stock’s history, as its genome shows evidence of past outcrossing with another A. thaliana accession. Our study indicates that although historical aneuploidy lines exist and are available, it might be safer to generate new individuals and confirm their genomes and karyotypes by sequencing. PMID:25524155

  5. Population expansions shared among coexisting bacterial lineages are revealed by genetic evidence

    PubMed Central

    Avitia, Morena; Escalante, Ana E.; Rebollar, Eria A.; Moreno-Letelier, Alejandra; Eguiarte, Luis E.

    2014-01-01

    Comparative population studies can help elucidate the influence of historical events upon current patterns of biodiversity among taxa that coexist in a given geographic area. In particular, comparative assessments derived from population genetics and coalescent theory have been used to investigate population dynamics of bacterial pathogens in order to understand disease epidemics. In contrast, and despite the ecological relevance of non-host associated and naturally occurring bacteria, there is little understanding of the processes determining their diversity. Here we analyzed the patterns of genetic diversity in coexisting populations of three genera of bacteria (Bacillus, Exiguobacterium, and Pseudomonas) that are abundant in the aquatic systems of the Cuatro Cienegas Basin, Mexico. We tested the hypothesis that a common habitat leaves a signature upon the genetic variation present in bacterial populations, independent of phylogenetic relationships. We used multilocus markers to assess genetic diversity and (1) performed comparative phylogenetic analyses, (2) described the genetic structure of bacterial populations, (3) calculated descriptive parameters of genetic diversity, (4) performed neutrality tests, and (5) conducted coalescent-based historical reconstructions. Our results show a trend of synchronic expansions across most populations independent of both lineage and sampling site. Thus, we provide empirical evidence supporting the analysis of coexisting bacterial lineages in natural environments to advance our understanding of bacterial evolution beyond medical or health-related microbes. PMID:25548732

  6. Microsatellite Loci Analysis Reveals Post-bottleneck Recovery of Genetic Diversity in the Tibetan Antelope

    PubMed Central

    Du, Yurong; Zou, Xiaoyan; Xu, Yongtao; Guo, Xinyi; Li, Shuang; Zhang, Xuze; Su, Mengyu; Ma, Jianbin; Guo, Songchang

    2016-01-01

    The Tibetan antelope (chiru, Pantholops hodgsoni) is one of the most endangered mammals native to the Qinghai-Tibetan Plateau. The population size has rapidly declined over the last century due to illegal hunting and habitat damage. In the past 10 years, the population has reportedly been expanding due to conservation efforts. Several lines of evidence suggest that the Tibetan antelope has undergone a demographic bottleneck. However, the consequences of the bottleneck on genetic diversity and the post-bottleneck genetic recovery remain unknown. In this study, we investigate the genetic variation of 15 microsatellite loci from two Tibetan antelope populations sampled in 2003 (Pop2003) and 2013 (Pop2013). A higher level of genetic diversity (NA, 13.286; He, 0.840; PIC, 0.813; I, 2.114) was detected in Pop2013, compared to Pop2003 (NA, 12.929; He, 0.818; PIC, 0.789; I, 2.033). We observe that despite passing through the bottleneck, the Tibetan antelope retains high levels of genetic diversity. Furthermore, our results show significant or near significant increases in genetic diversity (He, PIC and I) in Pop2013 compared with Pop2003, which suggests that protection efforts did not arrive too late for the Tibetan antelope. PMID:27739522

  7. Genetic diversity and differentiation of the Ryukyu endemic frog Babina holsti as revealed by mitochondrial DNA.

    PubMed

    Tominaga, Atsushi; Matsui, Masafumi; Nakata, Katsushi

    2014-02-01

    We surveyed the genetic diversity and genetic differentiation of an endangered frog, Babina holsti, endemic to Okinawajima and Tokashikijima Islands of the Ryukyus, to elucidate its divergence history and obtain basic data for its conservation. Genetic differentiation between the two island lineages is moderate (3.1% p-distance in the cyt b gene). This result suggests that the two island lineages have been isolated between the late Pliocene and the middle Pleistocene and have never migrated between the current northern part of Okinawajima and Tokashikijima Islands, which were once connected in the late Pleistocene glacial age. On Okinawajima Island, the southernmost sample was constituted by a unique haplotype, without considerable genetic distance from haplotypes detected from northern samples. This unique haplotype composition in the southernmost sample would have resulted from the restricted gene flow between the southernmost population and the other populations in Okinawajima Island. Furthermore, the absence of genetic diversity within the southernmost sample indicates that this population has recently experienced population size reduction, possibly by predation pressure from an introduced mongoose, which is more abundant in the southern part than in the northern part of the island. Lower genetic diversity in the Tokashikijima sample implies a small effective population size for mitochondrial DNA (mtDNA) in B. holsti on the island. Immediate conservation measures should be taken for the populations from the southernmost range in Okinawajima and Tokashikijima. PMID:24521314

  8. Population expansions shared among coexisting bacterial lineages are revealed by genetic evidence.

    PubMed

    Avitia, Morena; Escalante, Ana E; Rebollar, Eria A; Moreno-Letelier, Alejandra; Eguiarte, Luis E; Souza, Valeria

    2014-01-01

    Comparative population studies can help elucidate the influence of historical events upon current patterns of biodiversity among taxa that coexist in a given geographic area. In particular, comparative assessments derived from population genetics and coalescent theory have been used to investigate population dynamics of bacterial pathogens in order to understand disease epidemics. In contrast, and despite the ecological relevance of non-host associated and naturally occurring bacteria, there is little understanding of the processes determining their diversity. Here we analyzed the patterns of genetic diversity in coexisting populations of three genera of bacteria (Bacillus, Exiguobacterium, and Pseudomonas) that are abundant in the aquatic systems of the Cuatro Cienegas Basin, Mexico. We tested the hypothesis that a common habitat leaves a signature upon the genetic variation present in bacterial populations, independent of phylogenetic relationships. We used multilocus markers to assess genetic diversity and (1) performed comparative phylogenetic analyses, (2) described the genetic structure of bacterial populations, (3) calculated descriptive parameters of genetic diversity, (4) performed neutrality tests, and (5) conducted coalescent-based historical reconstructions. Our results show a trend of synchronic expansions across most populations independent of both lineage and sampling site. Thus, we provide empirical evidence supporting the analysis of coexisting bacterial lineages in natural environments to advance our understanding of bacterial evolution beyond medical or health-related microbes. PMID:25548732

  9. A study of lactose metabolism in Lactococcus garvieae reveals a genetic marker for distinguishing between dairy and fish biotypes.

    PubMed

    Fortina, Maria Grazia; Ricci, Giovanni; Borgo, Francesca

    2009-06-01

    Dairy and fish isolates of Lactococcus garvieae were tested for their ability to utilize lactose and to grow in milk. Fish isolates were unable to assimilate lactose, but unexpectedly, they possessed the ability to grow in milk. Genetic studies, carried out constructing different vectorette libraries, provided evidence that in fish isolates, no genes involved in lactose utilization were present. For L. garvieae dairy isolates, a single system for the catabolism of lactose was found. It consists of a lactose transport and hydrolysis depending on a phosphoenolpyruvate-dependent phosphotransferase system combined with a phospho-beta-galactosidase. The genes involved were highly similar at the nucleotide sequence level to their counterparts in Lactococcus lactis; however, while in many L. lactis strains these genes are plasmid encoded, in L. garvieae they are chromosomally located. Thus, in the species L. garvieae, the phospho-beta-galactosidase gene, detectable in all strains of dairy origin but lacking in fish isolates, can be considered a reliable genetic marker for distinguishing biotypes in the two diverse ecological niches. Moreover, we obtained information regarding the complete nucleotide sequence of the gal operon in L. garvieae, consisting of a galactose permease and the Leloir pathway enzymes. This is one of the first reports concerning the determination of the nucleotide sequences of genes (other than the 16S rDNA gene) in L. garvieae and should be considered a step in a continuous effort to explore the genome of this species, with the aim of determining the real relationship between the presence of L. garvieae in dairy products and food safety. PMID:19610335

  10. Microsatellite Markers Reveal Strong Genetic Structure in the Endemic Chilean Dolphin

    PubMed Central

    Pérez-Alvarez, María José; Olavarría, Carlos; Moraga, Rodrigo; Baker, C. Scott; Hamner, Rebecca M.; Poulin, Elie

    2015-01-01

    Understanding genetic differentiation and speciation processes in marine species with high dispersal capabilities is challenging. The Chilean dolphin, Cephalorhynchus eutropia, is the only endemic cetacean of Chile and is found in two different coastal habitats: a northern habitat with exposed coastlines, bays and estuaries from Valparaíso (33°02′S) to Chiloé (42°00′S), and a southern habitat with highly fragmented inshore coastline, channels and fjords between Chiloé and Navarino Island (55°14′S). With the aim of evaluating the potential existence of conservation units for this species, we analyzed the genetic diversity and population structure of the Chilean dolphin along its entire range. We genotyped 21 dinucleotide microsatellites for 53 skin samples collected between 1998 and 2012 (swab: n = 8, biopsy: n = 38, entanglement n = 7). Bayesian clustering and spatial model analyses identified two genetically distinct populations corresponding to the northern and southern habitats. Genetic diversity levels were similar in the two populations (He: 0.42 v/s 0.45 for southern and northern populations, respectively), while effective size population was higher in the southern area (Ne: 101 v/s 39). Genetic differentiation between these two populations was high and significant (FST = 0.15 and RST = 0.19), indicating little or no current gene flow. Because of the absence of evident geographical barriers between the northern and southern populations, we propose that genetic differentiation may reflect ecological adaptation to the different habitat conditions and resource uses. Therefore, the two genetic populations of this endemic and Near Threatened species should be considered as different conservation units with independent management strategies. PMID:25898340

  11. Rock outcrop orchids reveal the genetic connectivity and diversity of inselbergs of northeastern Brazil

    PubMed Central

    2014-01-01

    Background Because of their fragmented nature, inselberg species are interesting biological models for studying the genetic consequences of disjoint populations. Inselbergs are commonly compared with oceanic islands, as most of them display a marked ecological isolation from the surrounding area. The isolation of these rock outcrops is reflected in the high number of recorded endemic species and the strong floristic differences between individual inselbergs and adjacent habitats. We examined the genetic connectivity of orchids Epidendrum cinnabarinum and E. secundum adapted to Neotropical inselbergs of northeastern Brazil. Our goals were to identify major genetic divergences or disjunctions across the range of the species and to investigate potential demographic and evolutionary mechanisms leading to lineage divergence in Neotropical mountain ecosystems. Results Based on plastid markers, high genetic differentiation was found for E. cinnabarinum (FST = 0.644) and E. secundum (FST = 0.636). Haplotypes were not geographically structured in either taxon, suggesting that restricted gene flow and genetic drift may be significant factors influencing the diversification of these inselberg populations. Moreover, strong differentiation was found between populations over short spatial scales, indicating substantial periods of isolation among populations. For E. secundum, nuclear markers indicated higher gene flow by pollen than by seeds. Conclusions The comparative approach adopted in this study contributed to the elucidation of patterns in both species. Our results confirm the ancient and highly isolated nature of inselberg populations. Both species showed similar patterns of genetic diversity and structure, highlighting the importance of seed-restricted gene flow and genetic drift as drivers of plant diversification in terrestrial islands such as inselbergs. PMID:24629134

  12. Patterns of genetic diversity and population structure of the threatened Houbara and Macqueen's bustards as revealed by microsatellite markers.

    PubMed

    Korrida, A; Jadallah, S; Chbel, F; Amin-Alami, A; Ahra, M; Aggrey, S

    2012-01-01

    The Houbara bustard (Chlamydotis undulata) is a threatened avian species that is rapidly declining throughout its range, especially in North Africa, Asia and the Canary Islands. We examined the population structure and genetic variation for the three Houbara subspecies C. undulata undulata, C. u. fuertaventurae and C. u. macqueenii. A total of 266 birds from 10 populations were genotyped using seven polymorphic microsatellite markers. The analysis of microsatellite loci generated 1821 genotypes and 55 different alleles. Estimates of observed and expected heterozygosities were relatively high and ranged from 0.371 to 0.687 and from 0.326 to 0.729, respectively. For the first time, significant phylogeographic structure among Asian Houbara populations was found using neutral nuclear markers. Analysis of molecular variance revealed 12.03% population variability among the subspecies. Population structure and assignment tests inferred using a Bayesian approach revealed two distinct clusters with more than 90% likelihood, one Asian and one North African. A positive correlation between genetic distance and geographic distance was detected among populations (r(2) = 0.302). For conservation purposes, this genetic information will help understand the current genetic status improving management strategies for Houbara bustard breeds and populations. PMID:23079815

  13. AFLPs Reveal Different Population Genetic Structure under Contrasting Environments in the Marine Snail Nucella lapillus L.

    PubMed Central

    Carro, Belén; Quintela, María; Ruiz, José Miguel; Barreiro, Rodolfo

    2012-01-01

    Dispersal has received growing attention in marine ecology, particularly since evidence obtained with up-to-date techniques challenged the traditional view. The dogwhelk Nucella lapillus L., a sedentary gastropod with direct development, is a good example: dispersal was traditionally assumed to be limited until studies with microsatellites disputed this idea. To shed some light on this controversy, the genetic structure of dogwhelk populations in northwest Spain was investigated with highly polymorphic AFLP markers giving special attention to the influence of hydrodynamic stress. In agreement with the expectations for a poor disperser, our results show a significant genetic structure at regional (<200 km) and areal scales (<15 km). However, the spatial genetic structure varied with wave-exposure in the present case study: IBD was evident under sheltered conditions but absent from the exposed area where genetic differentiation was stronger. Our results provide evidence that differences in wave-exposure can exert a detectable influence on the genetic structure of coastal organisms, even in species without a planktonic larva. PMID:23185435

  14. Microsatellite genotyping reveals end-Pleistocene decline in mammoth autosomal genetic variation.

    PubMed

    Nyström, Veronica; Humphrey, Joanne; Skoglund, Pontus; McKeown, Niall J; Vartanyan, Sergey; Shaw, Paul W; Lidén, Kerstin; Jakobsson, Mattias; Barnes, Ian; Angerbjörn, Anders; Lister, Adrian; Dalén, Love

    2012-07-01

    The last glaciation was a dynamic period with strong impact on the demography of many species and populations. In recent years, mitochondrial DNA sequences retrieved from radiocarbon-dated remains have provided novel insights into the history of Late Pleistocene populations. However, genotyping of loci from the nuclear genome may provide enhanced resolution of population-level changes. Here, we use four autosomal microsatellite DNA markers to investigate the demographic history of woolly mammoths (Mammuthus primigenius) in north-eastern Siberia from before 60 000 years ago up until the species' final disappearance c.4000 years ago. We identified two genetic groups, implying a marked temporal genetic differentiation between samples with radiocarbon ages older than 12 thousand radiocarbon years before present (ka) and those younger than 9ka. Simulation-based analysis indicates that this dramatic change in genetic composition, which included a decrease in individual heterozygosity of approximately 30%, was due to a multifold reduction in effective population size. A corresponding reduction in genetic variation was also detected in the mitochondrial DNA, where about 65% of the diversity was lost. We observed no further loss in genetic variation during the Holocene, which suggests a rapid final extinction event.

  15. Disentangling prenatal and postnatal maternal genetic effects reveals persistent prenatal effects on offspring growth in mice.

    PubMed

    Wolf, Jason B; Leamy, Larry J; Roseman, Charles C; Cheverud, James M

    2011-11-01

    Mothers are often the most important determinant of traits expressed by their offspring. These "maternal effects" (MEs) are especially crucial in early development, but can also persist into adulthood. They have been shown to play a role in a diversity of evolutionary and ecological processes, especially when genetically based. Although the importance of MEs is becoming widely appreciated, we know little about their underlying genetic basis. We address the dearth of genetic data by providing a simple approach, using combined genotype information from parents and offspring, to identify "maternal genetic effects" (MGEs) contributing to natural variation in complex traits. Combined with experimental cross-fostering, our approach also allows for the separation of pre- and postnatal MGEs, providing rare insights into prenatal effects. Applying this approach to an experimental mouse population, we identified 13 ME loci affecting body weight, most of which (12/13) exhibited prenatal effects, and nearly half (6/13) exhibiting postnatal effects. MGEs contributed more to variation in body weight than the direct effects of the offsprings' own genotypes until mice reached adulthood, but continued to represent a major component of variation through adulthood. Prenatal effects always contributed more variation than postnatal effects, especially for those effects that persisted into adulthood. These results suggest that MGEs may be an important component of genetic architecture that is generally overlooked in studies focused on direct mapping from genotype to phenotype. Our approach can be used in both experimental and natural populations, providing a widely practicable means of expanding our understanding of MGEs.

  16. Microsatellite genotyping reveals end-Pleistocene decline in mammoth autosomal genetic variation.

    PubMed

    Nyström, Veronica; Humphrey, Joanne; Skoglund, Pontus; McKeown, Niall J; Vartanyan, Sergey; Shaw, Paul W; Lidén, Kerstin; Jakobsson, Mattias; Barnes, Ian; Angerbjörn, Anders; Lister, Adrian; Dalén, Love

    2012-07-01

    The last glaciation was a dynamic period with strong impact on the demography of many species and populations. In recent years, mitochondrial DNA sequences retrieved from radiocarbon-dated remains have provided novel insights into the history of Late Pleistocene populations. However, genotyping of loci from the nuclear genome may provide enhanced resolution of population-level changes. Here, we use four autosomal microsatellite DNA markers to investigate the demographic history of woolly mammoths (Mammuthus primigenius) in north-eastern Siberia from before 60 000 years ago up until the species' final disappearance c.4000 years ago. We identified two genetic groups, implying a marked temporal genetic differentiation between samples with radiocarbon ages older than 12 thousand radiocarbon years before present (ka) and those younger than 9ka. Simulation-based analysis indicates that this dramatic change in genetic composition, which included a decrease in individual heterozygosity of approximately 30%, was due to a multifold reduction in effective population size. A corresponding reduction in genetic variation was also detected in the mitochondrial DNA, where about 65% of the diversity was lost. We observed no further loss in genetic variation during the Holocene, which suggests a rapid final extinction event. PMID:22443459

  17. Genetic Diversity in Lens Species Revealed by EST and Genomic Simple Sequence Repeat Analysis

    PubMed Central

    Dikshit, Harsh Kumar; Singh, Akanksha; Singh, Dharmendra; Aski, Muraleedhar Sidaram; Prakash, Prapti; Jain, Neelu; Meena, Suresh; Kumar, Shiv; Sarker, Ashutosh

    2015-01-01

    Low productivity of pilosae type lentils grown in South Asia is attributed to narrow genetic base of the released cultivars which results in susceptibility to biotic and abiotic stresses. For enhancement of productivity and production, broadening of genetic base is essentially required. The genetic base of released cultivars can be broadened by using diverse types including bold seeded and early maturing lentils from Mediterranean region and related wild species. Genetic diversity in eighty six accessions of three species of genus Lens was assessed based on twelve genomic and thirty one EST-SSR markers. The evaluated set of genotypes included diverse lentil varieties and advanced breeding lines from Indian programme, two early maturing ICARDA lines and five related wild subspecies/species endemic to the Mediterranean region. Genomic SSRs exhibited higher polymorphism in comparison to EST SSRs. GLLC 598 produced 5 alleles with highest gene diversity value of 0.80. Among the studied subspecies/species 43 SSRs detected maximum number of alleles in L. orientalis. Based on Nei’s genetic distance cultivated lentil L. culinaris subsp. culinaris was found to be close to its wild progenitor L. culinaris subsp. orientalis. The Prichard’s structure of 86 genotypes distinguished different subspecies/species. Higher variability was recorded among individuals within population than among populations. PMID:26381889

  18. Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci

    PubMed Central

    Thompson, Wesley K.; McEvoy, Linda K.; Schork, Andrew J.; Zuber, Verena; LeBlanc, Marissa; Bettella, Francesco; Mills, Ian G.; Desikan, Rahul S.; Djurovic, Srdjan; Gautvik, Kaare M.; Dale, Anders M.; Andreassen, Ole A.

    2015-01-01

    Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity. PMID:26695485

  19. Regional patterns of genetic diversity in Pinus flexilis (Pinaceae) reveal complex species history.

    PubMed

    Jørgensen, Stacy; Hamrick, J L; Wells, P V

    2002-05-01

    Pinus flexilis (limber pine) is patchily distributed within its large geographic range; it is mainly restricted to high elevations in the Rocky Mountains and the Basin and Range region of western North America. We examined patterns of allozyme diversity in 30 populations from throughout the species' range. Overall genetic diversity (H(e) = 0.186) was high compared with that of most other pine species but was similar to that of other pines widespread in western North America. The proportion of genetic diversity occurring among populations (G(ST) = 0.101) was also high relative to that for other pines. Observed heterozygosity was less than expected in 28 of the 30 populations. When populations were grouped by region, there were notable differences. Those in the Basin and Range region had more genetic diversity within populations, a higher proportion of genetic diversity among populations, and higher levels of inbreeding within populations than populations from either the Northern or Utah Rocky Mountain regions. Patterns of genetic diversity in P. flexilis have likely resulted from a complex distribution of Pleistocene populations and subsequent gene flow via pollen and seed dispersal. PMID:21665679

  20. Genetic homogeneity in the commercial pink shrimp Farfantepenaeus paulensis revealed by COI barcoding gene

    NASA Astrophysics Data System (ADS)

    Teodoro, S. S. A.; Terossi, M.; Costa, R. C.; Mantelatto, F. L.

    2015-12-01

    The pink shrimp Farfantepenaeus paulensis is one of the most commercially exploited species in Brazil's South and Southeastern regions. Specific information about the status of its genetic variation is necessary to promote more effective management procedures. The genetic variation of the population of F. paulensis was investigated in five localities along southern and southeastern coast of Brazil. Sampling was performed with a commercial fishing boat. Total genomic DNA was extracted from abdominal muscle tissues and was used to DNA amplification by PCR. The COI gene was used as a DNA barcoding marker. The 570 bp COI gene sequences were obtained from all 45 individuals. The haplotype network showed no genetic variability among the population stocks, which was confirmed by Molecular Variance Analysis. The final alignment showed that inside species there is haplotype sharing among the sampled localities, since one haplotype is shared by 38 individuals belonging to all the five sampled regions, with no biogeographic pattern. This result is reasonable since there are no geographical barriers or habitat disjunction that might serve as a barrier to gene flow among the sampled localities. Possible reasons and consequences of the genetic homogeneity found are discussed. The results complement ecological studies concerning the offseason: since it is a single stock, the same protection strategy can be applied. However, the genetic homogeneity found in this study combined with the intensive fishery effort and the species biology can result in severe consequences for the F. paulensis.

  1. Genome-wide Association Study of Dermatomyositis Reveals Genetic Overlap with other Autoimmune Disorders

    PubMed Central

    Miller, Frederick W.; Cooper, Robert G.; Vencovsky, Jiri; Rider, Lisa G.; Danko, Katalin; Wedderburn, Lucy R.; Lundberg, Ingrid E.; Pachman, Lauren M.; Reed, Ann M.; Ytterberg, Steven R.; Padyukov, Leonid; Selva-O’Callaghan, Albert; Radstake, Timothy; Isenberg, David A.; Chinoy, Hector; Ollier, William E. R.; O’Hanlon, Terrance P.; Peng, Bo; Lee, Annette; Lamb, Janine A.; Chen, Wei; Amos, Christopher I.; Gregersen, Peter K.

    2014-01-01

    Objective To identify new genetic associations with juvenile and adult dermatomyositis (DM). Methods We performed a genome-wide association study (GWAS) of adult and juvenile DM patients of European ancestry (n = 1178) and controls (n = 4724). To assess genetic overlap with other autoimmune disorders, we examined whether 141 single nucleotide polymorphisms (SNPs) outside the major histocompatibility complex (MHC) locus, and previously associated with autoimmune diseases, predispose to DM. Results Compared to controls, patients with DM had a strong signal in the MHC region consisting of GWAS-level significance (P < 5x10−8) at 80 genotyped SNPs. An analysis of 141 non-MHC SNPs previously associated with autoimmune diseases showed that three SNPs linked with three genes were associated with DM, with a false discovery rate (FDR) < 0.05. These genes were phospholipase C like 1 (PLCL1, rs6738825, FDR=0.00089), B lymphoid tyrosine kinase (BLK, rs2736340, FDR=0.00031), and chemokine (C-C motif) ligand 21 (CCL21, rs951005, FDR=0.0076). None of these genes was previously reported to be associated with DM. Conclusion Our findings confirm the MHC as the major genetic region associated with DM and indicate that DM shares non-MHC genetic features with other autoimmune diseases, suggesting the presence of additional novel risk loci. This first identification of autoimmune disease genetic predispositions shared with DM may lead to enhanced understanding of pathogenesis and novel diagnostic and therapeutic approaches. PMID:23983088

  2. Genetic Diversity in Lens Species Revealed by EST and Genomic Simple Sequence Repeat Analysis.

    PubMed

    Dikshit, Harsh Kumar; Singh, Akanksha; Singh, Dharmendra; Aski, Muraleedhar Sidaram; Prakash, Prapti; Jain, Neelu; Meena, Suresh; Kumar, Shiv; Sarker, Ashutosh

    2015-01-01

    Low productivity of pilosae type lentils grown in South Asia is attributed to narrow genetic base of the released cultivars which results in susceptibility to biotic and abiotic stresses. For enhancement of productivity and production, broadening of genetic base is essentially required. The genetic base of released cultivars can be broadened by using diverse types including bold seeded and early maturing lentils from Mediterranean region and related wild species. Genetic diversity in eighty six accessions of three species of genus Lens was assessed based on twelve genomic and thirty one EST-SSR markers. The evaluated set of genotypes included diverse lentil varieties and advanced breeding lines from Indian programme, two early maturing ICARDA lines and five related wild subspecies/species endemic to the Mediterranean region. Genomic SSRs exhibited higher polymorphism in comparison to EST SSRs. GLLC 598 produced 5 alleles with highest gene diversity value of 0.80. Among the studied subspecies/species 43 SSRs detected maximum number of alleles in L. orientalis. Based on Nei's genetic distance cultivated lentil L. culinaris subsp. culinaris was found to be close to its wild progenitor L. culinaris subsp. orientalis. The Prichard's structure of 86 genotypes distinguished different subspecies/species. Higher variability was recorded among individuals within population than among populations.

  3. Genetic Diversity in Lens Species Revealed by EST and Genomic Simple Sequence Repeat Analysis.

    PubMed

    Dikshit, Harsh Kumar; Singh, Akanksha; Singh, Dharmendra; Aski, Muraleedhar Sidaram; Prakash, Prapti; Jain, Neelu; Meena, Suresh; Kumar, Shiv; Sarker, Ashutosh

    2015-01-01

    Low productivity of pilosae type lentils grown in South Asia is attributed to narrow genetic base of the released cultivars which results in susceptibility to biotic and abiotic stresses. For enhancement of productivity and production, broadening of genetic base is essentially required. The genetic base of released cultivars can be broadened by using diverse types including bold seeded and early maturing lentils from Mediterranean region and related wild species. Genetic diversity in eighty six accessions of three species of genus Lens was assessed based on twelve genomic and thirty one EST-SSR markers. The evaluated set of genotypes included diverse lentil varieties and advanced breeding lines from Indian programme, two early maturing ICARDA lines and five related wild subspecies/species endemic to the Mediterranean region. Genomic SSRs exhibited higher polymorphism in comparison to EST SSRs. GLLC 598 produced 5 alleles with highest gene diversity value of 0.80. Among the studied subspecies/species 43 SSRs detected maximum number of alleles in L. orientalis. Based on Nei's genetic distance cultivated lentil L. culinaris subsp. culinaris was found to be close to its wild progenitor L. culinaris subsp. orientalis. The Prichard's structure of 86 genotypes distinguished different subspecies/species. Higher variability was recorded among individuals within population than among populations. PMID:26381889

  4. Exonic versus intronic SNPs: contrasting roles in revealing the population genetic differentiation of a widespread bird species

    PubMed Central

    Zhan, X; Dixon, A; Batbayar, N; Bragin, E; Ayas, Z; Deutschova, L; Chavko, J; Domashevsky, S; Dorosencu, A; Bagyura, J; Gombobaatar, S; Grlica, I D; Levin, A; Milobog, Y; Ming, M; Prommer, M; Purev-Ochir, G; Ragyov, D; Tsurkanu, V; Vetrov, V; Zubkov, N; Bruford, M W

    2015-01-01

    Recent years have seen considerable progress in applying single nucleotide polymorphisms (SNPs) to population genetics studies. However, relatively few have attempted to use them to study the genetic differentiation of wild bird populations and none have examined possible differences of exonic and intronic SNPs in these studies. Here, using 144 SNPs, we examined population genetic differentiation in the saker falcon (Falco cherrug) across Eurasia. The position of each SNP was verified using the recently sequenced saker genome with 108 SNPs positioned within the introns of 10 fragments and 36 SNPs in the exons of six genes, comprising MHC, MC1R and four others. In contrast to intronic SNPs, both Bayesian clustering and principal component analyses using exonic SNPs consistently revealed two genetic clusters, within which the least admixed individuals were found in Europe/central Asia and Qinghai (China), respectively. Pairwise D analysis for exonic SNPs showed that the two populations were significantly differentiated and between the two clusters the frequencies of five SNP markers were inferred to be influenced by selection. Central Eurasian populations clustered in as intermediate between the two main groups, consistent with their geographic position. But the westernmost populations of central Europe showed evidence of demographic isolation. Our work highlights the importance of functional exonic SNPs for studying population genetic pattern in a widespread avian species. PMID:25074575

  5. Exonic versus intronic SNPs: contrasting roles in revealing the population genetic differentiation of a widespread bird species.

    PubMed

    Zhan, X; Dixon, A; Batbayar, N; Bragin, E; Ayas, Z; Deutschova, L; Chavko, J; Domashevsky, S; Dorosencu, A; Bagyura, J; Gombobaatar, S; Grlica, I D; Levin, A; Milobog, Y; Ming, M; Prommer, M; Purev-Ochir, G; Ragyov, D; Tsurkanu, V; Vetrov, V; Zubkov, N; Bruford, M W

    2015-01-01

    Recent years have seen considerable progress in applying single nucleotide polymorphisms (SNPs) to population genetics studies. However, relatively few have attempted to use them to study the genetic differentiation of wild bird populations and none have examined possible differences of exonic and intronic SNPs in these studies. Here, using 144 SNPs, we examined population genetic differentiation in the saker falcon (Falco cherrug) across Eurasia. The position of each SNP was verified using the recently sequenced saker genome with 108 SNPs positioned within the introns of 10 fragments and 36 SNPs in the exons of six genes, comprising MHC, MC1R and four others. In contrast to intronic SNPs, both Bayesian clustering and principal component analyses using exonic SNPs consistently revealed two genetic clusters, within which the least admixed individuals were found in Europe/central Asia and Qinghai (China), respectively. Pairwise D analysis for exonic SNPs showed that the two populations were significantly differentiated and between the two clusters the frequencies of five SNP markers were inferred to be influenced by selection. Central Eurasian populations clustered in as intermediate between the two main groups, consistent with their geographic position. But the westernmost populations of central Europe showed evidence of demographic isolation. Our work highlights the importance of functional exonic SNPs for studying population genetic pattern in a widespread avian species. PMID:25074575

  6. Conditional Genetic Interactions of RTT107, SLX4, and HRQ1 Reveal Dynamic Networks upon DNA Damage in S. cerevisiae

    PubMed Central

    Leung, Grace P.; Aristizabal, Maria J.; Krogan, Nevan J.; Kobor, Michael S.

    2014-01-01

    The DNA damage response (DDR) is a dynamic process that is crucial for protecting the cell from challenges to genome integrity. Although many genome-wide studies in Saccharomyces cerevisiae have identified genes that contribute to resistance to DNA-damaging agents, more work is needed to elucidate the changes in genetic interaction networks in response to DNA lesions. Here we used conditional epistatic miniarray profiling to analyze the genetic interaction networks of the DDR genes RTT107, SLX4, and HRQ1 under three DNA-damaging conditions: camptothecin, hydroxyurea, and methyl methanesulfonate. Rtt107 and its interaction partner Slx4 are targets of the checkpoint kinase Mec1, which is central to the DDR-signaling cascades. Hrq1 recently was identified as a novel member of the RecQ helicase family in S. cerevisiae but is still poorly characterized. The conditional genetic networks that we generated revealed functional insights into all three genes and showed that there were varied responses to different DNA damaging agents. We observed that RTT107 had more genetic interactions under camptothecin conditions than SLX4 or HRQ1, suggesting that Rtt107 has an important role in response to this type of DNA lesion. Although RTT107 and SLX4 function together, they also had many distinct genetic interactions. In particular, RTT107 and SLX4 showed contrasting genetic interactions for a few genes, which we validated with independently constructed strains. Interestingly, HRQ1 had a genetic interaction profile that correlated with that of SLX4 and both were enriched for very similar gene ontology terms, suggesting that they function together in the DDR. PMID:24700328

  7. Ladakh, India: the land of high passes and genetic heterogeneity reveals a confluence of migrations.

    PubMed

    Rowold, Diane J; Perez Benedico, David; Garcia-Bertrand, Ralph; Chennakrishnaiah, Shilpa; Alfonso-Sanchez, Miguel A; Gayden, Tenzin; Herrera, Rene J

    2016-03-01

    Owing to its geographic location near the longitudinal center of Asia, Ladakh, the land of high passes, has witnessed numerous demographic movements during the past millenniums of occupation. In an effort to view Ladakh's multicultural history from a paternal genetic perspective, we performed a high-resolution Y-chromosomal survey of Ladakh, within the context of Y haplogroup and haplotype distributions of 41 Asian reference populations. The results of this investigation highlight the rich ethnic and genetic diversity of Ladkah which includes genetic contributions from disparate regions of the continent including, West, East, South and Central Asia. The phylogenetic signals from Ladakh are consistent with the Indo-Aryans' occupation during the Neolithic age and its historic connection with Tibet, as well as the East-West gene flow associated with the Silk Road.

  8. Precision phenotyping of biomass accumulation in triticale reveals temporal genetic patterns of regulation

    NASA Astrophysics Data System (ADS)

    Busemeyer, Lucas; Ruckelshausen, Arno; Möller, Kim; Melchinger, Albrecht E.; Alheit, Katharina V.; Maurer, Hans Peter; Hahn, Volker; Weissmann, Elmar A.; Reif, Jochen C.; Würschum, Tobias

    2013-08-01

    To extend agricultural productivity by knowledge-based breeding and tailor varieties adapted to specific environmental conditions, it is imperative to improve our ability to assess the dynamic changes of the phenome of crops under field conditions. To this end, we have developed a precision phenotyping platform that combines various sensors for a non-invasive, high-throughput and high-dimensional phenotyping of small grain cereals. This platform yielded high prediction accuracies and heritabilities for biomass of triticale. Genetic variation for biomass accumulation was dissected with 647 doubled haploid lines derived from four families. Employing a genome-wide association mapping approach, two major quantitative trait loci (QTL) for biomass were identified and the genetic architecture of biomass accumulation was found to be characterized by dynamic temporal patterns. Our findings highlight the potential of precision phenotyping to assess the dynamic genetics of complex traits, especially those not amenable to traditional phenotyping.

  9. Genetic analysis reveals multiple parentage in captive reared eastern hellbender salamanders (Cryptobranchus alleganiensis).

    PubMed

    Unger, Shem D; Williams, Rod N

    2015-11-01

    Information on the parentage of captive reared clutches is vital for conservation head-starting programs. Molecular methods, such as genotyping individuals with hyper-variable markers, can elucidate the genealogical contribution of captive-reared, reintroduced individuals to native populations. In this study, we used 12 polymorphic microsatellite loci to infer parentage of a clutch of 18 eastern hellbenders collected from a single nest from Buffalo Creek, West Virginia, subsequently reared in captivity, and used for translocations in Indiana. Collectively, these markers successfully detected the presence of multiple parentage for this species of conservation concern presently used in captive management programs in zoos across many states. This study highlights the need for genetic analysis of captive reared clutches used in translocations to minimize the loss of genetic diversity and potential for genetic swamping at release sites. PMID:26301598

  10. Genetic analysis reveals multiple parentage in captive reared eastern hellbender salamanders (Cryptobranchus alleganiensis).

    PubMed

    Unger, Shem D; Williams, Rod N

    2015-11-01

    Information on the parentage of captive reared clutches is vital for conservation head-starting programs. Molecular methods, such as genotyping individuals with hyper-variable markers, can elucidate the genealogical contribution of captive-reared, reintroduced individuals to native populations. In this study, we used 12 polymorphic microsatellite loci to infer parentage of a clutch of 18 eastern hellbenders collected from a single nest from Buffalo Creek, West Virginia, subsequently reared in captivity, and used for translocations in Indiana. Collectively, these markers successfully detected the presence of multiple parentage for this species of conservation concern presently used in captive management programs in zoos across many states. This study highlights the need for genetic analysis of captive reared clutches used in translocations to minimize the loss of genetic diversity and potential for genetic swamping at release sites.

  11. Genetic characterization of Greek population isolates reveals strong genetic drift at missense and trait-associated variants.

    PubMed

    Panoutsopoulou, Kalliope; Hatzikotoulas, Konstantinos; Xifara, Dionysia Kiara; Colonna, Vincenza; Farmaki, Aliki-Eleni; Ritchie, Graham R S; Southam, Lorraine; Gilly, Arthur; Tachmazidou, Ioanna; Fatumo, Segun; Matchan, Angela; Rayner, Nigel W; Ntalla, Ioanna; Mezzavilla, Massimo; Chen, Yuan; Kiagiadaki, Chrysoula; Zengini, Eleni; Mamakou, Vasiliki; Athanasiadis, Antonis; Giannakopoulou, Margarita; Kariakli, Vassiliki-Eirini; Nsubuga, Rebecca N; Karabarinde, Alex; Sandhu, Manjinder; McVean, Gil; Tyler-Smith, Chris; Tsafantakis, Emmanouil; Karaleftheri, Maria; Xue, Yali; Dedoussis, George; Zeggini, Eleftheria

    2014-11-06

    Isolated populations are emerging as a powerful study design in the search for low-frequency and rare variant associations with complex phenotypes. Here we genotype 2,296 samples from two isolated Greek populations, the Pomak villages (HELIC-Pomak) in the North of Greece and the Mylopotamos villages (HELIC-MANOLIS) in Crete. We compare their genomic characteristics to the general Greek population and establish them as genetic isolates. In the MANOLIS cohort, we observe an enrichment of missense variants among the variants that have drifted up in frequency by more than fivefold. In the Pomak cohort, we find novel associations at variants on chr11p15.4 showing large allele frequency increases (from 0.2% in the general Greek population to 4.6% in the isolate) with haematological traits, for example, with mean corpuscular volume (rs7116019, P=2.3 × 10(-26)). We replicate this association in a second set of Pomak samples (combined P=2.0 × 10(-36)). We demonstrate significant power gains in detecting medical trait associations.

  12. Genetic markers of white matter integrity in schizophrenia revealed by parallel ICA

    PubMed Central

    Gupta, Cota Navin; Chen, Jiayu; Liu, Jingyu; Damaraju, Eswar; Wright, Carrie; Perrone-Bizzozero, Nora I.; Pearlson, Godfrey; Luo, Li; Michael, Andrew M.; Turner, Jessica A.; Calhoun, Vince D.

    2015-01-01

    It is becoming a consensus that white matter integrity is compromised in schizophrenia (SZ), however the underlying genetics remains elusive. Evidence suggests a polygenic basis of the disorder, which involves various genetic variants with modest individual effect sizes. In this work, we used a multivariate approach, parallel independent component analysis (P-ICA), to explore the genetic underpinnings of white matter abnormalities in SZ. A pre-filtering step was first applied to locate 6527 single nucleotide polymorphisms (SNPs) discriminating patients from controls with a nominal uncorrected p-value of 0.01. These potential susceptibility loci were then investigated for associations with fractional anisotropy (FA) images in a cohort consisting of 73 SZ patients and 87 healthy controls (HC). A significant correlation (r = −0.37, p = 1.25 × 10−6) was identified between one genetic factor and one FA component after controlling for scanning site, ethnicity, age, and sex. The identified FA-SNP association remained stable in a 10-fold validation. A 5000-run permutation test yielded a p-value of 2.00 × 10−4. The FA component reflected decreased white matter integrity in the forceps major for SZ patients. The SNP component was overrepresented in genes whose products are involved in corpus callosum morphology (e.g., CNTNAP2, NPAS3, and NFIB) as well as canonical pathways of synaptic long term depression and protein kinase A signaling. Taken together, our finding delineates a part of genetic architecture underlying SZ-related FA reduction, emphasizing the important role of genetic variants involved in neural development. PMID:25784871

  13. Boomerang Returns Unexpectedly

    NASA Astrophysics Data System (ADS)

    White, Martin; Scott, Douglas; Pierpaoli, Elena

    2000-12-01

    Experimental study of the anisotropy in the cosmic microwave background (CMB) is gathering momentum. The eagerly awaited Boomerang results have lived up to expectations. They provide convincing evidence in favor of the standard paradigm: the universe is close to flat and with primordial fluctuations that are redolent of inflation. Further scrutiny reveals something even more exciting, however-two hints that there may be some unforeseen physical effects. First, the primary acoustic peak appears at slightly larger scales than expected. Although this may be explicable through a combination of mundane effects, we suggest that it is also prudent to consider the possibility that the universe might be marginally closed. The other hint is provided by a second peak, which appears less prominent than expected. This may indicate one of a number of possibilities, including increased damping length or tilted initial conditions, but also breaking of coherence or features in the initial power spectrum. Further data should test whether the current concordance model needs only to be tweaked, or to be enhanced in some fundamental way. A paper about a boomerang by an Australian and his mates.

  14. RNA-seq analysis reveals genetic response and tolerance mechanisms to ozone exposure in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidative stress caused by ground level ozone is a major contributor to yield loss in a number of important crop plants. Soybean (Glycine max) is especially ozone sensitive, and research into its response to oxidative stress is limited. To better understand the genetic response in soybean to oxida...

  15. Subtle genetic structure reveals restricted connectivity among populations of a coral reef fish inhabiting remote atolls.

    PubMed

    Underwood, Jim N; Travers, Michael J; Gilmour, James P

    2012-03-01

    We utilized a spatial and temporal analyses of genetic structure, supplemented with ecological and oceanographic analysis, to assess patterns of population connectivity in a coral reef fish Chromis margaritifer among the unique and remote atolls in the eastern Indian Ocean. A subtle, but significant genetic discontinuity at 10 microsatellite DNA loci was detected between atoll systems corresponding with a low (≤ 1%) probability of advection across the hundreds of kilometers of open ocean that separates them. Thus, although genetic connections between systems are likely maintained by occasional long-distance dispersal of C. margaritifer larvae, ecological population connectivity at this spatial scale appears to be restricted. Further, within one of these atoll systems, significant spatial differentiation among samples was accompanied by a lack of temporal pairwise differentiation between recruit and adult samples, indicating that restrictions to connectivity also occur at a local scale (tens of kilometers). In contrast, a signal of panmixia was detected at the other atoll system studied. Lastly, greater relatedness and reduced genetic diversity within recruit samples was associated with relatively large differences among them, indicating the presence of sweepstakes reproduction whereby a small proportion of adults contributes to recruitment in the next generation. These results are congruent with earlier work on hard corals, suggesting that local production of larvae drives population replenishment in these atoll systems for a range of coral reef species. PMID:22822442

  16. NextGen sequencing reveals short double crossovers contribute disproportionately to genetic diversity in Toxoplasma gondii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toxoplasma gondii is a widespread protozoan parasite of animals that causes zoonotic disease in humans. Three clonal variants predominate in North America and Europe, while South American strains are genetically diverse, and undergo more frequent recombination. All three northern clonal variants s...

  17. Genetic Structures of Copy Number Variants Revealed by Genotyping Single Sperm

    PubMed Central

    Luo, Minjie; Cui, Xiangfeng; Fredman, David; Brookes, Anthony J.; Azaro, Marco A.; Greenawalt, Danielle M.; Hu, Guohong; Wang, Hui-Yun; Tereshchenko, Irina V.; Lin, Yong; Shentu, Yue; Gao, Richeng; Shen, Li; Li, Honghua

    2009-01-01

    Background Copy number variants (CNVs) occupy a significant portion of the human genome and may have important roles in meiotic recombination, human genome evolution and gene expression. Many genetic diseases may be underlain by CNVs. However, because of the presence of their multiple copies, variability in copy numbers and the diploidy of the human genome, detailed genetic structure of CNVs cannot be readily studied by available techniques. Methodology/Principal Findings Single sperm samples were used as the primary subjects for the study so that CNV haplotypes in the sperm donors could be studied individually. Forty-eight CNVs characterized in a previous study were analyzed using a microarray-based high-throughput genotyping method after multiplex amplification. Seventeen single nucleotide polymorphisms (SNPs) were also included as controls. Two single-base variants, either allelic or paralogous, could be discriminated for all markers. Microarray data were used to resolve SNP alleles and CNV haplotypes, to quantitatively assess the numbers and compositions of the paralogous segments in each CNV haplotype. Conclusions/Significance This is the first study of the genetic structure of CNVs on a large scale. Resulting information may help understand evolution of the human genome, gain insight into many genetic processes, and discriminate between CNVs and SNPs. The highly sensitive high-throughput experimental system with haploid sperm samples as subjects may be used to facilitate detailed large-scale CNV analysis. PMID:19384415

  18. Subtle genetic structure reveals restricted connectivity among populations of a coral reef fish inhabiting remote atolls.

    PubMed

    Underwood, Jim N; Travers, Michael J; Gilmour, James P

    2012-03-01

    We utilized a spatial and temporal analyses of genetic structure, supplemented with ecological and oceanographic analysis, to assess patterns of population connectivity in a coral reef fish Chromis margaritifer among the unique and remote atolls in the eastern Indian Ocean. A subtle, but significant genetic discontinuity at 10 microsatellite DNA loci was detected between atoll systems corresponding with a low (≤ 1%) probability of advection across the hundreds of kilometers of open ocean that separates them. Thus, although genetic connections between systems are likely maintained by occasional long-distance dispersal of C. margaritifer larvae, ecological population connectivity at this spatial scale appears to be restricted. Further, within one of these atoll systems, significant spatial differentiation among samples was accompanied by a lack of temporal pairwise differentiation between recruit and adult samples, indicating that restrictions to connectivity also occur at a local scale (tens of kilometers). In contrast, a signal of panmixia was detected at the other atoll system studied. Lastly, greater relatedness and reduced genetic diversity within recruit samples was associated with relatively large differences among them, indicating the presence of sweepstakes reproduction whereby a small proportion of adults contributes to recruitment in the next generation. These results are congruent with earlier work on hard corals, suggesting that local production of larvae drives population replenishment in these atoll systems for a range of coral reef species.

  19. Geographical patterns of Toxoplasma gondii genetic diversity revealed by multilocus PCR-RFLP genotyping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, an extensive collection of Toxoplasma gondii samples have been typed by the multilocus PCR-RFLP method using a standardized set of 10 genetic markers. Here we summarize the data reported until the end of 2012. A total of 1457 samples were typed into 189 genotypes. Overall, only a fe...

  20. Environmentally induced changes in correlated responses to selection reveal variable pleiotropy across a complex genetic network.

    PubMed

    Sikkink, Kristin L; Reynolds, Rose M; Cresko, William A; Phillips, Patrick C

    2015-05-01

    Selection in novel environments can lead to a coordinated evolutionary response across a suite of characters. Environmental conditions can also potentially induce changes in the genetic architecture of complex traits, which in turn could alter the pattern of the multivariate response to selection. We describe a factorial selection experiment using the nematode Caenorhabditis remanei in which two different stress-related phenotypes (heat and oxidative stress resistance) were selected under three different environmental conditions. The pattern of covariation in the evolutionary response between phenotypes or across environments differed depending on the environment in which selection occurred, including asymmetrical responses to selection in some cases. These results indicate that variation in pleiotropy across the stress response network is highly sensitive to the external environment. Our findings highlight the complexity of the interaction between genes and environment that influences the ability of organisms to acclimate to novel environments. They also make clear the need to identify the underlying genetic basis of genetic correlations in order understand how patterns of pleiotropy are distributed across complex genetic networks.

  1. Candidate loci reveal genetic differentiation between temporally divergent migratory runs of Chinook salmon (Oncorhynchus tshawytscha)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Local adaptation is a dynamic process driven by selection that can vary both in space and time. One important temporal adaptation for migratory animals is the timing of migration and breeding within a reproductive season. Anadromous salmon are excellent subjects for studying the genetic basis of t...

  2. Genetic and ecological data reveal species boundaries between viviparous and oviparous lizard lineages.

    PubMed

    Cornetti, L; Ficetola, G F; Hoban, S; Vernesi, C

    2015-12-01

    Identification of cryptic species is an essential aim for conservation biologists to avoid premature extinctions of 'unrecognized' species. Integrating different types of data can undoubtedly aid in resolving the issue of species delimitation. We studied here two lineages of the common lizard Zootoca vivipara that display different reproductive mode (the viviparous Z. v. vivipara and the oviparous Z. v. carniolica) and that overlap their distributional ranges in the European Alps. With the purpose of delimiting species' boundaries, we analyzed their ecological, genetic and natural history features. More than 300 samples were collected and analyzed at cytochrome b and 11 microsatellites loci for investigating genetic variation, population structure, individual relatedness and evolutionary histories of the two lineages. Additionally, we compared their ecological niches using eight ecological variables. Genetic data showed contrasting patterns of genetic structure between the two lineages, different demographic dynamics and no hybridization events. Also strong ecological differences (such as temperature) emerged between the two lineages, and niche overlap was limited. Taken together, these results indicate that Z. v. vivipara and Z. v. carniolica should be recognized as two separate species, and particular conservation consideration should be given to the oviparous lineage that tends to live in areas threatened by increasing impact of human activities. However, recent and rapid climate warming might determine an increasing risk for the persistence of the viviparous lineage, being adapted to cold environments.

  3. Molecular genetic diversity of Punica granatum L. (pomegranate) as revealed by microsatellite DNA markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pomegranate (Punica granatum L.) is one of the oldest known edible fruits and more and more it arouse interest of scientific community given its numerous biological activities. However, information about its genetic resources and characterization using reliable molecular markers are still scarce. In...

  4. Modifying Behavioral Phenotypes in Fmr1 KO Mice: Genetic Background Differences Reveal Autistic-Like Responses

    PubMed Central

    Spencer, Corinne M.; Alekseyenko, Olga; Hamilton, Shannon M.; Thomas, Alexia M.; Serysheva, Ekaterina; Yuva-Paylor, Lisa A.; Paylor, Richard

    2010-01-01

    Scientific Abstract Fragile X syndrome (FXS) is the most common inherited form of intellectual disability in humans. In addition to cognitive impairment, patients may exhibit hyperactivity, attention deficits, social difficulties and anxiety, and autistic-like behaviors. The degree to which patients display these behaviors varies considerably and is influenced by family history, suggesting that genetic modifiers play a role in the expression of behaviors in FXS. Several studies have examined behavior in a mouse model of FXS in which the Fmr1 gene has been ablated. Most of those studies were done in Fmr1 knockout mice on a pure C57BL/6 or FVB strain background. To gain a better understanding of the effects of genetic background on behaviors resulting from the loss of Fmr1 gene expression, we generated F1 hybrid lines from female Fmr1 heterozygous mice on a pure C57BL/6J background bred with male Fmr1 wild-type mice of various background strains (A/J, DBA/2J, FVB/NJ, 129S1/SvImJ and CD-1). Male Fmr1 knockout and wild-type littermates from each line were examined in an extensive behavioral test battery. Results clearly indicate that multiple behavioral responses are dependent on genetic background, including autistic-like traits that are present on limited genetic backgrounds. This approach has allowed us to identify improved models for different behavioral symptoms present in FXS including autistic-like traits. PMID:21268289

  5. New inducible genetic method reveals critical roles of GABA in the control of feeding and metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently available inducibleCre/loxPsystems, despite their considerable utility in gene manipulation, have pitfalls in certain scenarios, such as unsatisfactory recombination rates and deleterious effects on physiology and behavior. To overcome these limitations, we designed a new, inducible gene-t...

  6. Deep History of East Asian Populations Revealed Through Genetic Analysis of the Ainu.

    PubMed

    Jeong, Choongwon; Nakagome, Shigeki; Di Rienzo, Anna

    2016-01-01

    Despite recent advances in population genomics, much remains to be elucidated with regard to East Asian population history. The Ainu, a hunter-gatherer population of northern Japan and Sakhalin island of Russia, are thought to be key to elucidating the prehistory of Japan and the peopling of East Asia. Here, we study the genetic relationship of the Ainu with other East Asian and Siberian populations outside the Japanese archipelago using genome-wide genotyping data. We find that the Ainu represent a deep branch of East Asian diversity more basal than all present-day East Asian farmers. However, we did not find a genetic connection between the Ainu and populations of the Tibetan plateau, rejecting their long-held hypothetical connection based on Y chromosome data. Unlike all other East Asian populations investigated, the Ainu have a closer genetic relationship with northeast Siberians than with central Siberians, suggesting ancient connections among populations around the Sea of Okhotsk. We also detect a recent genetic contribution of the Ainu to nearby populations, but no evidence for reciprocal recent gene flow is observed. Whole genome sequencing of contemporary and ancient Ainu individuals will be helpful to understand the details of the deep history of East Asians.

  7. Studies on nonsense mediated decay reveal novel therapeutic options for genetic diseases.

    PubMed

    Bashyam, Murali D

    2009-01-01

    Scientific breakthroughs have often led to commercially viable patents mainly in the field of engineering. Commercialization in the field of medicine has been restricted mostly to machinery and engineering on the one hand and therapeutic drugs for common chronic ailments such as cough, cold, headache, etc, on the other. Sequencing of the human genome has attracted the attention of pharmaceutical companies and now biotechnology has become a goldmine for commercialization of products and processes. Recent advances in our understanding of basic biological processes have resulted in the opening of new avenues for treatment of human genetic diseases, especially single gene disorders. A significant proportion of human genetic disorders have been shown to be caused due to degradation of transcripts for specific genes through a process called nonsense mediated decay (NMD). The modulation of NMD provides a viable therapeutic option for treatment of several genetic disorders and therefore has been a good prospect for patenting and commercialization. In this review the molecular basis for NMD and attempts to treat genetic diseases which result from NMD are discussed.

  8. Next-generation sequencing reveals substantial genetic contribution to dementia with Lewy bodies.

    PubMed

    Geiger, Joshua T; Ding, Jinhui; Crain, Barbara; Pletnikova, Olga; Letson, Christopher; Dawson, Ted M; Rosenthal, Liana S; Pantelyat, Alexander; Gibbs, J Raphael; Albert, Marilyn S; Hernandez, Dena G; Hillis, Argye E; Stone, David J; Singleton, Andrew B; Hardy, John A; Troncoso, Juan C; Scholz, Sonja W

    2016-10-01

    Dementia with Lewy bodies (DLB) is the second most common neurodegenerative dementia after Alzheimer's disease. Although an increasing number of genetic factors have been connected to this debilitating condition, the proportion of cases that can be attributed to distinct genetic defects is unknown. To provide a comprehensive analysis of the frequency and spectrum of pathogenic missense mutations and coding risk variants in nine genes previously implicated in DLB, we performed exome sequencing in 111 pathologically confirmed DLB patients. All patients were Caucasian individuals from North America. Allele frequencies of identified missense mutations were compared to 222 control exomes. Remarkably, ~25% of cases were found to carry a pathogenic mutation or risk variant in APP, GBA or PSEN1, highlighting that genetic defects play a central role in the pathogenesis of this common neurodegenerative disorder. In total, 13% of our cohort carried a pathogenic mutation in GBA, 10% of cases carried a risk variant or mutation in PSEN1, and 2% were found to carry an APP mutation. The APOE ε4 risk allele was significantly overrepresented in DLB patients (p-value <0.001). Our results conclusively show that mutations in GBA, PSEN1, and APP are common in DLB and consideration should be given to offer genetic testing to patients diagnosed with Lewy body dementia. PMID:27312774

  9. Genetic Variability and Selection Criteria in Rice Mutant Lines as Revealed by Quantitative Traits

    PubMed Central

    Oladosu, Yusuff; Rafii, M. Y.; Abdullah, Norhani; Abdul Malek, Mohammad; Rahim, H. A.; Hussin, Ghazali; Abdul Latif, Mohammad; Kareem, Isiaka

    2014-01-01

    Genetic based knowledge of different vegetative and yield traits play a major role in varietal improvement of rice. Genetic variation gives room for recombinants which are essential for the development of a new variety in any crop. Based on this background, this work was carried out to evaluate genetic diversity of derived mutant lines and establish relationships between their yield and yield components using multivariate analysis. To achieve this objective, two field trials were carried out on 45 mutant rice genotypes to evaluate their growth and yield traits. Data were taken on vegetative traits and yield and its components, while genotypic and phenotypic coefficients, variance components, expected genetic advance, and heritability were calculated. All the genotypes showed variations for vegetative traits and yield and its components. Also, there was positive relationship between the quantitative traits and the final yield with the exception of number of tillers. Finally, the evaluated genotypes were grouped into five major clusters based on the assessed traits with the aid of UPGMA dendrogram. So hybridization of group I with group V or group VI could be used to attain higher heterosis or vigour among the genotypes. Also, this evaluation could be useful in developing reliable selection indices for important agronomic traits in rice. PMID:25431777

  10. Subtle genetic structure reveals restricted connectivity among populations of a coral reef fish inhabiting remote atolls

    PubMed Central

    Underwood, Jim N; Travers, Michael J; Gilmour, James P

    2012-01-01

    We utilized a spatial and temporal analyses of genetic structure, supplemented with ecological and oceanographic analysis, to assess patterns of population connectivity in a coral reef fish Chromis margaritifer among the unique and remote atolls in the eastern Indian Ocean. A subtle, but significant genetic discontinuity at 10 microsatellite DNA loci was detected between atoll systems corresponding with a low (≤ 1%) probability of advection across the hundreds of kilometers of open ocean that separates them. Thus, although genetic connections between systems are likely maintained by occasional long-distance dispersal of C. margaritifer larvae, ecological population connectivity at this spatial scale appears to be restricted. Further, within one of these atoll systems, significant spatial differentiation among samples was accompanied by a lack of temporal pairwise differentiation between recruit and adult samples, indicating that restrictions to connectivity also occur at a local scale (tens of kilometers). In contrast, a signal of panmixia was detected at the other atoll system studied. Lastly, greater relatedness and reduced genetic diversity within recruit samples was associated with relatively large differences among them, indicating the presence of sweepstakes reproduction whereby a small proportion of adults contributes to recruitment in the next generation. These results are congruent with earlier work on hard corals, suggesting that local production of larvae drives population replenishment in these atoll systems for a range of coral reef species. PMID:22822442

  11. The genome of a Mongolian individual reveals the genetic imprints of Mongolians on modern human populations.

    PubMed

    Bai, Haihua; Guo, Xiaosen; Zhang, Dong; Narisu, Narisu; Bu, Junjie; Jirimutu, Jirimutu; Liang, Fan; Zhao, Xiang; Xing, Yanping; Wang, Dingzhu; Li, Tongda; Zhang, Yanru; Guan, Baozhu; Yang, Xukui; Yang, Zili; Shuangshan, Shuangshan; Su, Zhe; Wu, Huiguang; Li, Wenjing; Chen, Ming; Zhu, Shilin; Bayinnamula, Bayinnamula; Chang, Yuqi; Gao, Ying; Lan, Tianming; Suyalatu, Suyalatu; Huang, Hui; Su, Yan; Chen, Yujie; Li, Wenqi; Yang, Xu; Feng, Qiang; Wang, Jian; Yang, Huanming; Wang, Jun; Wu, Qizhu; Yin, Ye; Zhou, Huanmin

    2014-11-05

    Mongolians have played a significant role in modern human evolution, especially after the rise of Genghis Khan (1162[?]-1227). Although the social cultural impacts of Genghis Khan and the Mongolian population have been well documented, explorations of their genome structure and genetic imprints on other human populations have been lacking. We here present the genome of a Mongolian male individual. The genome was de novo assembled using a total of 130.8-fold genomic data produced from massively parallel whole-genome sequencing. We identified high-confidence variation sets, including 3.7 million single nucleotide polymorphisms (SNPs) and 756,234 short insertions and deletions. Functional SNP analysis predicted that the individual has a pathogenic risk for carnitine deficiency. We located the patrilineal inheritance of the Mongolian genome to the lineage D3a through Y haplogroup analysis and inferred that the individual has a common patrilineal ancestor with Tibeto-Burman populations and is likely to be the progeny of the earliest settlers in East Asia. We finally investigated the genetic imprints of Mongolians on other human populations using different approaches. We found varying degrees of gene flows between Mongolians and populations living in Europe, South/Central Asia, and the Indian subcontinent. The analyses demonstrate that the genetic impacts of Mongolians likely resulted from the expansion of the Mongolian Empire in the 13th century. The genome will be of great help in further explorations of modern human evolution and genetic causes of diseases/traits specific to Mongolians.

  12. Microsatellite analyses reveal fine-scale genetic structure in grey mouse lemurs (Microcebus murinus).

    PubMed

    Fredsted, T; Pertoldi, C; Schierup, M H; Kappeler, P M

    2005-07-01

    Information on genetic structure can be used to complement direct inferences on social systems and behaviour. We studied the genetic structure of the solitary grey mouse lemur (Microcebus murinus), a small, nocturnal primate endemic to western Madagascar, with the aim of getting further insight on its breeding structure. Tissue samples from 167 grey mouse lemurs in an area covering 12.3 km2 in Kirindy Forest were obtained from trapping. The capture data indicated a noncontinuous distribution of individuals in the study area. Using 10 microsatellite markers, significant genetic differentiation in the study area was demonstrated and dispersal was found to be significantly male biased. Furthermore, we observed an overall excess of homozygotes in the total population (F(IT) = 0.131), which we interpret as caused by fine-scale structure with breeding occurring in small units. Evidence for a clumped distribution of identical homozygotes was found, supporting the notion that dispersal distance for breeding was shorter than that for foraging, i.e. the breeding neighbourhood size is smaller than the foraging neighbourhood size. In conclusion, we found a more complex population structure than what has been previously reported in studies performed on smaller spatial scales. The noncontinuous distribution of individuals and the effects of social variables on the genetic structure have implications for the interpretation of social organization and the planning of conservation activities that may apply to other solitary and endangered mammals as well.

  13. Prehistoric genomes reveal the genetic foundation and cost of horse domestication.

    PubMed

    Schubert, Mikkel; Jónsson, Hákon; Chang, Dan; Der Sarkissian, Clio; Ermini, Luca; Ginolhac, Aurélien; Albrechtsen, Anders; Dupanloup, Isabelle; Foucal, Adrien; Petersen, Bent; Fumagalli, Matteo; Raghavan, Maanasa; Seguin-Orlando, Andaine; Korneliussen, Thorfinn S; Velazquez, Amhed M V; Stenderup, Jesper; Hoover, Cindi A; Rubin, Carl-Johan; Alfarhan, Ahmed H; Alquraishi, Saleh A; Al-Rasheid, Khaled A S; MacHugh, David E; Kalbfleisch, Ted; MacLeod, James N; Rubin, Edward M; Sicheritz-Ponten, Thomas; Andersson, Leif; Hofreiter, Michael; Marques-Bonet, Tomas; Gilbert, M Thomas P; Nielsen, Rasmus; Excoffier, Laurent; Willerslev, Eske; Shapiro, Beth; Orlando, Ludovic

    2014-12-30

    The domestication of the horse ∼ 5.5 kya and the emergence of mounted riding, chariotry, and cavalry dramatically transformed human civilization. However, the genetics underlying horse domestication are difficult to reconstruct, given the near extinction of wild horses. We therefore sequenced two ancient horse genomes from Taymyr, Russia (at 7.4- and 24.3-fold coverage), both predating the earliest archeological evidence of domestication. We compared these genomes with genomes of domesticated horses and the wild Przewalski's horse and found genetic structure within Eurasia in the Late Pleistocene, with the ancient population contributing significantly to the genetic variation of domesticated breeds. We furthermore identified a conservative set of 125 potential domestication targets using four complementary scans for genes that have undergone positive selection. One group of genes is involved in muscular and limb development, articular junctions, and the cardiac system, and may represent physiological adaptations to human utilization. A second group consists of genes with cognitive functions, including social behavior, learning capabilities, fear response, and agreeableness, which may have been key for taming horses. We also found that domestication is associated with inbreeding and an excess of deleterious mutations. This genetic load is in line with the "cost of domestication" hypothesis also reported for rice, tomatoes, and dogs, and it is generally attributed to the relaxation of purifying selection resulting from the strong demographic bottlenecks accompanying domestication. Our work demonstrates the power of ancient genomes to reconstruct the complex genetic changes that transformed wild animals into their domesticated forms, and the population context in which this process took place.

  14. Novel Polymorphic Microsatellite Markers Reveal Genetic Differentiation between Two Sympatric Types of Galaxea fascicularis

    PubMed Central

    Nakajima, Yuichi; Shinzato, Chuya; Satoh, Noriyuki; Mitarai, Satoshi

    2015-01-01

    The reef-building, scleractinian coral, Galaxea fascicularis, is classified into soft and hard types, based on nematocyst morphology. This character is correlated with the length of the mitochondrial non-coding region (mt-Long: soft colony type, and nematocysts with wide capsules and long shafts; mt-Short: hard colony type, and nematocysts with thin capsules and short shafts). We isolated and characterized novel polymorphic microsatellite markers for G. fascicularis using next-generation sequencing. Based upon the mitochondrial non-coding region, 53 of the 97 colonies collected were mt-Long (mt-L) and 44 were mt-Short (mt-S). Among the 53 mt-L colonies, 27 loci were identified as amplifiable, polymorphic microsatellite loci, devoid of somatic mutations and free of scoring errors. Eleven of those 27 loci were also amplifiable and polymorphic in the 44 mt-S colonies; these 11 are cross-type microsatellite loci. The other 16 loci were considered useful only for mt-L colonies. These 27 loci identified 10 multilocus lineages (MLLs) among the 53 mt-L colonies (NMLL/N = 0.189), and the 11 cross-type loci identified 7 MLLs in 44 mt-S colonies (NMLL/N = 0.159). Significant genetic differentiation between the two types was detected based on the genetic differentiation index (FST = 0.080, P = 0.001). Bayesian clustering also indicated that these two types are genetically isolated. While nuclear microsatellite genotypes also showed genetic differentiation between mitochondrial types, the mechanism of divergence is not yet clear. These markers will be useful to estimate genetic diversity, differentiation, and connectivity among populations, and to understand evolutionary processes, including divergence of types in G. fascicularis. PMID:26147677

  15. Disentangling Prenatal and Postnatal Maternal Genetic Effects Reveals Persistent Prenatal Effects on Offspring Growth in Mice

    PubMed Central

    Wolf, Jason B.; Leamy, Larry J.; Roseman, Charles C.; Cheverud, James M.

    2011-01-01

    Mothers are often the most important determinant of traits expressed by their offspring. These “maternal effects” (MEs) are especially crucial in early development, but can also persist into adulthood. They have been shown to play a role in a diversity of evolutionary and ecological processes, especially when genetically based. Although the importance of MEs is becoming widely appreciated, we know little about their underlying genetic basis. We address the dearth of genetic data by providing a simple approach, using combined genotype information from parents and offspring, to identify “maternal genetic effects” (MGEs) contributing to natural variation in complex traits. Combined with experimental cross-fostering, our approach also allows for the separation of pre- and postnatal MGEs, providing rare insights into prenatal effects. Applying this approach to an experimental mouse population, we identified 13 ME loci affecting body weight, most of which (12/13) exhibited prenatal effects, and nearly half (6/13) exhibiting postnatal effects. MGEs contributed more to variation in body weight than the direct effects of the offsprings’ own genotypes until mice reached adulthood, but continued to represent a major component of variation through adulthood. Prenatal effects always contributed more variation than postnatal effects, especially for those effects that persisted into adulthood. These results suggest that MGEs may be an important component of genetic architecture that is generally overlooked in studies focused on direct mapping from genotype to phenotype. Our approach can be used in both experimental and natural populations, providing a widely practicable means of expanding our understanding of MGEs. PMID:21890739

  16. Large-scale SNP analysis reveals clustered and continuous patterns of human genetic variation

    PubMed Central

    2005-01-01

    Understanding the distribution of human genetic variation is an important foundation for research into the genetics of common diseases. Some of the alleles that modify common disease risk are themselves likely to be common and, thus, amenable to identification using gene-association methods. A problem with this approach is that the large sample sizes required for sufficient statistical power to detect alleles with moderate effect make gene-association studies susceptible to false-positive findings as the result of population stratification [1,2]. Such type I errors can be eliminated by using either family-based association tests or methods that sufficiently adjust for population stratification [3-5]. These methods require the availability of genetic markers that can detect and, thus, control for sources of genetic stratification among populations. In an effort to investigate population stratification and identify appropriate marker panels, we have analysed 11,555 single nucleotide polymorphisms in 203 individuals from 12 diverse human populations. Individuals in each population cluster to the exclusion of individuals from other populations using two clustering methods. Higher-order branching and clustering of the populations are consistent with the geographic origins of populations and with previously published genetic analyses. These data provide a valuable resource for the definition of marker panels to detect and control for population stratification in population-based gene identification studies. Using three US resident populations (European-American, African-American and Puerto Rican), we demonstrate how such studies can proceed, quantifying proportional ancestry levels and detecting significant admixture structure in each of these populations. PMID:16004724

  17. The Genetics of Bene Israel from India Reveals Both Substantial Jewish and Indian Ancestry.

    PubMed

    Waldman, Yedael Y; Biddanda, Arjun; Davidson, Natalie R; Billing-Ross, Paul; Dubrovsky, Maya; Campbell, Christopher L; Oddoux, Carole; Friedman, Eitan; Atzmon, Gil; Halperin, Eran; Ostrer, Harry; Keinan, Alon

    2016-01-01

    The Bene Israel Jewish community from West India is a unique population whose history before the 18th century remains largely unknown. Bene Israel members consider themselves as descendants of Jews, yet the identity of Jewish ancestors and their arrival time to India are unknown, with speculations on arrival time varying between the 8th century BCE and the 6th century CE. Here, we characterize the genetic history of Bene Israel by collecting and genotyping 18 Bene Israel individuals. Combining with 486 individuals from 41 other Jewish, Indian and Pakistani populations, and additional individuals from worldwide populations, we conducted comprehensive genome-wide analyses based on FST, principal component analysis, ADMIXTURE, identity-by-descent sharing, admixture linkage disequilibrium decay, haplotype sharing and allele sharing autocorrelation decay, as well as contrasted patterns between the X chromosome and the autosomes. The genetics of Bene Israel individuals resemble local Indian populations, while at the same time constituting a clearly separated and unique population in India. They are unique among Indian and Pakistani populations we analyzed in sharing considerable genetic ancestry with other Jewish populations. Putting together the results from all analyses point to Bene Israel being an admixed population with both Jewish and Indian ancestry, with the genetic contribution of each of these ancestral populations being substantial. The admixture took place in the last millennium, about 19-33 generations ago. It involved Middle-Eastern Jews and was sex-biased, with more male Jewish and local female contribution. It was followed by a population bottleneck and high endogamy, which can lead to increased prevalence of recessive diseases in this population. This study provides an example of how genetic analysis advances our knowledge of human history in cases where other disciplines lack the relevant data to do so.

  18. The Genetics of Bene Israel from India Reveals Both Substantial Jewish and Indian Ancestry.

    PubMed

    Waldman, Yedael Y; Biddanda, Arjun; Davidson, Natalie R; Billing-Ross, Paul; Dubrovsky, Maya; Campbell, Christopher L; Oddoux, Carole; Friedman, Eitan; Atzmon, Gil; Halperin, Eran; Ostrer, Harry; Keinan, Alon

    2016-01-01

    The Bene Israel Jewish community from West India is a unique population whose history before the 18th century remains largely unknown. Bene Israel members consider themselves as descendants of Jews, yet the identity of Jewish ancestors and their arrival time to India are unknown, with speculations on arrival time varying between the 8th century BCE and the 6th century CE. Here, we characterize the genetic history of Bene Israel by collecting and genotyping 18 Bene Israel individuals. Combining with 486 individuals from 41 other Jewish, Indian and Pakistani populations, and additional individuals from worldwide populations, we conducted comprehensive genome-wide analyses based on FST, principal component analysis, ADMIXTURE, identity-by-descent sharing, admixture linkage disequilibrium decay, haplotype sharing and allele sharing autocorrelation decay, as well as contrasted patterns between the X chromosome and the autosomes. The genetics of Bene Israel individuals resemble local Indian populations, while at the same time constituting a clearly separated and unique population in India. They are unique among Indian and Pakistani populations we analyzed in sharing considerable genetic ancestry with other Jewish populations. Putting together the results from all analyses point to Bene Israel being an admixed population with both Jewish and Indian ancestry, with the genetic contribution of each of these ancestral populations being substantial. The admixture took place in the last millennium, about 19-33 generations ago. It involved Middle-Eastern Jews and was sex-biased, with more male Jewish and local female contribution. It was followed by a population bottleneck and high endogamy, which can lead to increased prevalence of recessive diseases in this population. This study provides an example of how genetic analysis advances our knowledge of human history in cases where other disciplines lack the relevant data to do so. PMID:27010569

  19. Genetic ablation of NMDA receptor subunit NR3B in mouse reveals motoneuronal and nonmotoneuronal phenotypes.

    PubMed

    Niemann, Stephan; Kanki, Hiroaki; Fukui, Yasuyuki; Takao, Keizo; Fukaya, Masahiro; Hynynen, Meri N; Churchill, Michael J; Shefner, Jeremy M; Bronson, Roderick T; Brown, Robert H; Watanabe, Masahiko; Miyakawa, Tsuyoshi; Itohara, Shigeyoshi; Hayashi, Yasunori

    2007-09-01

    NR3B is a modulatory subunit of the NMDA receptor, abundantly expressed in both cranial and spinal somatic motoneurons and at lower levels in other regions of the brain as well. Recently, we found the human NR3B gene (GRIN3B) to be highly genetically heterogeneous, and that approximately 10% of the normal European-American population lacks NR3B due to homozygous occurrence of a null allele in the gene. Therefore, it is especially important to understand the phenotypic consequences of the genetic loss of NR3B in both humans and animal models. We here provide results of behavioral analysis of mice genetically lacking NR3B, which is an ideal animal model due to homogeneity in genetic and environmental background. The NR3B(-/-) mice are viable and fertile. Consistent with the expression of NR3B in somatic motoneurons, the NR3B(-/-) mice showed a moderate but significant impairment in motor learning or coordination, and decreased activity in their home cages. Remarkably, the NR3B(-/-) mice showed a highly increased social interaction with their familiar cage mates in their home cage but moderately increased anxiety-like behaviour and decreased social interaction in a novel environment, consistent with the inhibitory role of NR3B on the functions of NMDA receptors. This work is the first reporting of the functional significance of NR3B in vivo and may give insight into the contribution of genetic variability of NR3B in the phenotypic heterogeneity among human population.

  20. Genetic structure of pike (Esox lucius) reveals a complex and previously unrecognized colonization history of Ireland

    PubMed Central

    Pedreschi, Debbi; Kelly-Quinn, Mary; Caffrey, Joe; O’Grady, Martin; Mariani, Stefano; Phillimore, Albert

    2014-01-01

    Aim We investigated genetic variation of Irish pike populations and their relationship with European outgroups, in order to elucidate the origin of this species to the island, which is largely assumed to have occurred as a human-mediated introduction over the past few hundred years. We aimed thereby to provide new insights into population structure to improve fisheries and biodiversity management in Irish freshwaters. Location Ireland, Britain and continental Europe. Methods A total of 752 pike (Esox lucius) were sampled from 15 locations around Ireland, and 9 continental European sites, and genotyped at six polymorphic microsatellite loci. Patterns and mechanisms of population genetic structure were assessed through a diverse array of methods, including Bayesian clustering, hierarchical analysis of molecular variance, and approximate Bayesian computation. Results Varying levels of genetic diversity and a high degree of population genetic differentiation were detected. Clear substructure within Ireland was identified, with two main groups being evident. One of the Irish populations showed high similarity with British populations. The other, more widespread, Irish strain did not group with any European population examined. Approximate Bayesian computation suggested that this widespread Irish strain is older, and may have colonized Ireland independently of humans. Main conclusions Population genetic substructure in Irish pike is high and comparable to the levels observed elsewhere in Europe. A comparison of evolutionary scenarios upholds the possibility that pike may have colonized Ireland in two ‘waves’, the first of which, being independent of human colonization, would represent the first evidence for natural colonization of a non-anadromous freshwater fish to the island of Ireland. Although further investigations using comprehensive genomic techniques will be necessary to confirm this, the present results warrant a reappraisal of current management strategies

  1. Prehistoric genomes reveal the genetic foundation and cost of horse domestication.

    PubMed

    Schubert, Mikkel; Jónsson, Hákon; Chang, Dan; Der Sarkissian, Clio; Ermini, Luca; Ginolhac, Aurélien; Albrechtsen, Anders; Dupanloup, Isabelle; Foucal, Adrien; Petersen, Bent; Fumagalli, Matteo; Raghavan, Maanasa; Seguin-Orlando, Andaine; Korneliussen, Thorfinn S; Velazquez, Amhed M V; Stenderup, Jesper; Hoover, Cindi A; Rubin, Carl-Johan; Alfarhan, Ahmed H; Alquraishi, Saleh A; Al-Rasheid, Khaled A S; MacHugh, David E; Kalbfleisch, Ted; MacLeod, James N; Rubin, Edward M; Sicheritz-Ponten, Thomas; Andersson, Leif; Hofreiter, Michael; Marques-Bonet, Tomas; Gilbert, M Thomas P; Nielsen, Rasmus; Excoffier, Laurent; Willerslev, Eske; Shapiro, Beth; Orlando, Ludovic

    2014-12-30

    The domestication of the horse ∼ 5.5 kya and the emergence of mounted riding, chariotry, and cavalry dramatically transformed human civilization. However, the genetics underlying horse domestication are difficult to reconstruct, given the near extinction of wild horses. We therefore sequenced two ancient horse genomes from Taymyr, Russia (at 7.4- and 24.3-fold coverage), both predating the earliest archeological evidence of domestication. We compared these genomes with genomes of domesticated horses and the wild Przewalski's horse and found genetic structure within Eurasia in the Late Pleistocene, with the ancient population contributing significantly to the genetic variation of domesticated breeds. We furthermore identified a conservative set of 125 potential domestication targets using four complementary scans for genes that have undergone positive selection. One group of genes is involved in muscular and limb development, articular junctions, and the cardiac system, and may represent physiological adaptations to human utilization. A second group consists of genes with cognitive functions, including social behavior, learning capabilities, fear response, and agreeableness, which may have been key for taming horses. We also found that domestication is associated with inbreeding and an excess of deleterious mutations. This genetic load is in line with the "cost of domestication" hypothesis also reported for rice, tomatoes, and dogs, and it is generally attributed to the relaxation of purifying selection resulting from the strong demographic bottlenecks accompanying domestication. Our work demonstrates the power of ancient genomes to reconstruct the complex genetic changes that transformed wild animals into their domesticated forms, and the population context in which this process took place. PMID:25512547

  2. The Genetics of Bene Israel from India Reveals Both Substantial Jewish and Indian Ancestry

    PubMed Central

    Davidson, Natalie R.; Billing-Ross, Paul; Dubrovsky, Maya; Campbell, Christopher L.; Oddoux, Carole; Friedman, Eitan; Atzmon, Gil; Halperin, Eran; Ostrer, Harry; Keinan, Alon

    2016-01-01

    The Bene Israel Jewish community from West India is a unique population whose history before the 18th century remains largely unknown. Bene Israel members consider themselves as descendants of Jews, yet the identity of Jewish ancestors and their arrival time to India are unknown, with speculations on arrival time varying between the 8th century BCE and the 6th century CE. Here, we characterize the genetic history of Bene Israel by collecting and genotyping 18 Bene Israel individuals. Combining with 486 individuals from 41 other Jewish, Indian and Pakistani populations, and additional individuals from worldwide populations, we conducted comprehensive genome-wide analyses based on FST, principal component analysis, ADMIXTURE, identity-by-descent sharing, admixture linkage disequilibrium decay, haplotype sharing and allele sharing autocorrelation decay, as well as contrasted patterns between the X chromosome and the autosomes. The genetics of Bene Israel individuals resemble local Indian populations, while at the same time constituting a clearly separated and unique population in India. They are unique among Indian and Pakistani populations we analyzed in sharing considerable genetic ancestry with other Jewish populations. Putting together the results from all analyses point to Bene Israel being an admixed population with both Jewish and Indian ancestry, with the genetic contribution of each of these ancestral populations being substantial. The admixture took place in the last millennium, about 19–33 generations ago. It involved Middle-Eastern Jews and was sex-biased, with more male Jewish and local female contribution. It was followed by a population bottleneck and high endogamy, which can lead to increased prevalence of recessive diseases in this population. This study provides an example of how genetic analysis advances our knowledge of human history in cases where other disciplines lack the relevant data to do so. PMID:27010569

  3. Genetic structure of Pyrenophora teres net and spot populations as revealed by microsatellite analysis.

    PubMed

    Leišová-Svobodová, Leona; Minaříková, Věra; Matušinsky, Pavel; Hudcovicová, Martina; Ondreičková, Katarína; Gubiš, Jozef

    2014-02-01

    The population structure of the fungal pathogen Pyrenophora teres, collected mainly from different regions of the Czech and Slovak Republics, was examined using a microsatellite analyses (SSR). Among 305 P. teres f. teres (PTT) and 82 P. teres f. maculata (PTM) isolates that were collected, the overall gene diversity was similar (ĥ = 0.12 and ĥ = 0.13, respectively). A high level of genetic differentiation (FST = 0.46; P < 0.001) indicated the existence of population structure. Nine clusters that were found using a Bayesian approach represent the genetic structure of the studied P. teres populations. Two clusters consisted of PTM populations; PTT populations formed another seven clusters. An exact test of population differentiation confirmed the results that were generated by Structure. There was no difference between naturally infected populations over time, and genetic distance did not correlate with geographical distance. The facts that all individuals had unique multilocus genotypes and that the hypothesis of random mating could not be rejected in several populations or subpopulations serve as evidence that a mixed mating system plays a role in the P. teres life cycle. Despite the fact that the genetic differentiation value between PTT and PTM (FST = 0.30; P < 0.001) is lower than it is between the populations within each form (FST = 0.40 (PTT); FST = 0.35 (PTM); P < 0.001) and that individuals with mixed PTT and PTM genomes were found, the two forms of P. teres form genetically separate populations. Therefore, it can be assumed that these populations have most likely undergone speciation.

  4. Genetic structure of Pyrenophora teres net and spot populations as revealed by microsatellite analysis.

    PubMed

    Leišová-Svobodová, Leona; Minaříková, Věra; Matušinsky, Pavel; Hudcovicová, Martina; Ondreičková, Katarína; Gubiš, Jozef

    2014-02-01

    The population structure of the fungal pathogen Pyrenophora teres, collected mainly from different regions of the Czech and Slovak Republics, was examined using a microsatellite analyses (SSR). Among 305 P. teres f. teres (PTT) and 82 P. teres f. maculata (PTM) isolates that were collected, the overall gene diversity was similar (ĥ = 0.12 and ĥ = 0.13, respectively). A high level of genetic differentiation (FST = 0.46; P < 0.001) indicated the existence of population structure. Nine clusters that were found using a Bayesian approach represent the genetic structure of the studied P. teres populations. Two clusters consisted of PTM populations; PTT populations formed another seven clusters. An exact test of population differentiation confirmed the results that were generated by Structure. There was no difference between naturally infected populations over time, and genetic distance did not correlate with geographical distance. The facts that all individuals had unique multilocus genotypes and that the hypothesis of random mating could not be rejected in several populations or subpopulations serve as evidence that a mixed mating system plays a role in the P. teres life cycle. Despite the fact that the genetic differentiation value between PTT and PTM (FST = 0.30; P < 0.001) is lower than it is between the populations within each form (FST = 0.40 (PTT); FST = 0.35 (PTM); P < 0.001) and that individuals with mixed PTT and PTM genomes were found, the two forms of P. teres form genetically separate populations. Therefore, it can be assumed that these populations have most likely undergone speciation. PMID:24528640

  5. Loss of Genetic Variation in Laboratory Colonies of Chilo suppressalis (Lepidoptera: Crambidae) Revealed by Mitochondrial and Microsatellite DNA Markers.

    PubMed

    Liu, Yudi; Han, Lanzhi; Hou, Maolin

    2015-02-01

    The Asiatic rice borer, Chilo suppressalis (Walker), is an important insect pest of rice in China. The genetic variation of a set of laboratory colonies of C. suppressalis was compared with their source populations in the wild (laboratory colonies BJCK, BJ1AB, and BJ1AC versus wild population BJW; laboratory colonies FZCK and FZ1CA versus wild population FZW) and was analyzed using eight microsatellite markers and two partial mitochondrial DNA (mtDNA) regions (COI and COII). Results from both analyses revealed similar patterns. Microsatellite DNA analysis showed that the two wild populations (BJW and FZW) harbored more private alleles and had higher levels of gene diversity, and observed and expected heterozygosity, compared with the laboratory colonies. Mitochondrial DNA analysis revealed that the two wild populations (BJW and FZW) had higher numbers of haplotypes compared with the five laboratory colonies. The three Beijing laboratory-reared colonies (BJ1CK, BJ1AB, and BJ1AC) had one fixed haplotype (H04). Most of the pairwise FST values based on mtDNA were high and all pairwise FST comparisons based on microsatellite DNA were significant, which indicated that the significant differences between these colonies and populations. Genetic drift caused by several factors, such as founder effect, small effective population size, rearing protocols, and inbreeding, can contribute to the rapid loss of genetic variation and affect the distribution of alleles and haplotypes. Therefore, it is necessary to increase the sample size of source populations to prevent the loss of genetic variation and genetic differentiation between different colonies. PMID:26308808

  6. Single primer amplification reaction (SPAR) reveals inter- and intra-specific natural genetic variation in five species of Cymbidium (Orchidaceae).

    PubMed

    Sharma, Santosh Kumar; Kumaria, Suman; Tandon, Pramod; Rao, Satyawada Rama

    2011-09-01

    A total of 53 primers belonging to three SPAR methods, viz. RAPD, ISSR and DAMD, collectively produced 456 polymorphic amplicons with 96.6% polymorphism at inter-specific level in five species of Cymbidium, viz. C. aloifolium, C. mastersii, C. elegans, C. eburneum and C. tigrinum, whereas at intra-specific level, the observed polymorphism ranged from 51.2% to 77.1% among them. Three SPARs collectively revealed 25 unique species-specific amplicons; most of them were amplified with RAPD and DAMD primers besides few bands which were either missed (absent) or lost (heterozygosity). UPGMA clustering evidently distinguished the representatives of C. aloifolium and C. tigrinum, with distinct genetic distance, which may be due to their entirely different habitats as well as discrete morphological characteristics. Upon analysis of the data generated, all the three SPAR methods, either independently and/or in combination, revealed wide range of genetic variation between and within five species of Cymbidium. Comparison of matrix of individual SPAR method revealed that analysis of natural genetic variation using combination of SPAR methods, rather than an isolated approach, is highly effective. The critical analyses of the amplicon data are indicative of DAMD as the most powerful SPAR method by showing highest resolving power (Rp) followed by ISSR and RAPD. Alternatively, the total polymorphic information content was highest in case of RAPD followed by other two SPAR methods. Thus, the present investigation for the first time provides a valuable baseline data for genetic variation at inter- and intra-specific levels in horticultural Cymbidiums and also addresses conservation concerns.

  7. Genetic diversity of the black gram [Vigna mungo (L.) Hepper] gene pool as revealed by SSR markers.

    PubMed

    Kaewwongwal, Anochar; Kongjaimun, Alisa; Somta, Prakit; Chankaew, Sompong; Yimram, Tarikar; Srinives, Peerasak

    2015-03-01

    In this study, 520 cultivated and 14 wild accessions of black gram (Vigna mungo (L.) Hepper) were assessed for diversity using 22 SSR markers. Totally, 199 alleles were detected with a mean of 9.05 alleles per locus. Wild black gram showed higher gene diversity than cultivated black gram. Gene diversity of cultivated accessions among regions was comparable, while allelic richness of South Asia was higher than that of other regions. 78.67% of the wild gene diversity presented in cultivated accessions, indicating that the domestication bottleneck effect in black gram is relatively low. Genetic distance analysis revealed that cultivated black gram was more closely related to wild black gram from South Asia than that from Southeast Asia. STRUCTURE, principal coordinate and neighbor-joining analyses consistently revealed that 534 black gram accessions were grouped into three major subpopulations. The analyses also revealed that cultivated black gram from South Asia was genetically distinct from that from West Asia. Comparison by SSR analysis with other closely related Vigna species, including mungbean, azuki bean, and rice bean, revealed that level of gene diversity of black gram is comparable to that of mungbean and rice bean but lower than that of azuki bean.

  8. Genetic diversity of the black gram [Vigna mungo (L.) Hepper] gene pool as revealed by SSR markers

    PubMed Central

    Kaewwongwal, Anochar; Kongjaimun, Alisa; Somta, Prakit; Chankaew, Sompong; Yimram, Tarikar; Srinives, Peerasak

    2015-01-01

    In this study, 520 cultivated and 14 wild accessions of black gram (Vigna mungo (L.) Hepper) were assessed for diversity using 22 SSR markers. Totally, 199 alleles were detected with a mean of 9.05 alleles per locus. Wild black gram showed higher gene diversity than cultivated black gram. Gene diversity of cultivated accessions among regions was comparable, while allelic richness of South Asia was higher than that of other regions. 78.67% of the wild gene diversity presented in cultivated accessions, indicating that the domestication bottleneck effect in black gram is relatively low. Genetic distance analysis revealed that cultivated black gram was more closely related to wild black gram from South Asia than that from Southeast Asia. STRUCTURE, principal coordinate and neighbor-joining analyses consistently revealed that 534 black gram accessions were grouped into three major subpopulations. The analyses also revealed that cultivated black gram from South Asia was genetically distinct from that from West Asia. Comparison by SSR analysis with other closely related Vigna species, including mungbean, azuki bean, and rice bean, revealed that level of gene diversity of black gram is comparable to that of mungbean and rice bean but lower than that of azuki bean. PMID:26069442

  9. Tantalizing Thanatos: unexpected links in death pathways.

    PubMed

    Cohen, Isabelle; Castedo, Maria; Kroemer, Guido

    2002-07-01

    Cell death is most frequently the result of apoptosis, an event that is often controlled by mitochondrial membrane permeabilization (MMP). Recent data reveal unexpected functional links between apoptosis and autophagic cell death, in the sense that MMP can trigger autophagy of damaged mitochondria. Conversely, one of the major signal-transducing molecules involved in the activation of autophagy during apoptosis--the so-called DAP kinase--can induce cell death through MMP. Connections are also emerging between apoptosis, autophagy, replicative senescence and cancer-specific metabolic changes. PMID:12185842

  10. Low genetic differentiation among seasonal cohorts in Senecio vulgaris as revealed by amplified fragment length polymorphism analysis.

    PubMed

    Haldimann, P; Steinger, T; Müller-Schärer, H

    2003-10-01

    Common groundsel, Senecio vulgaris (Asteraceae), is a highly selfing semelparous ephemeral weed that belongs to the few plant species in central Europe capable of growing, flowering and fruiting all year round. In temperate climates, flowering S. vulgaris cohorts were found to appear up to three times per year. Using amplified fragment length polymorphism (AFLP) molecular markers we examined temporal genetic differentiation among spring, summer and autumn cohorts at each of seven sites located in two regions in Switzerland. Strong genetic differentiation among cohorts may indicate the existence of seasonal races of S. vulgaris, reproductively isolated by nonoverlapping flowering phenologies. Analysis of molecular variance (amova) revealed that < 2.5% of the AFLP variation resided among cohorts within sites, whereas there was significant genetic differentiation among plants from different sites (15.6%) and among individuals within cohorts (81.9%). Significant genetic differentiation was also observed between the two regions. Isolation-by-distance was found on a regional scale, but not on a local scale. Gene flow was estimated to be approximately 15-fold higher among cohorts within sites than among sites. We further found, on average, similar levels of genetic diversity within the three seasonal cohorts. The results of this study demonstrate that season of growth represents a weak barrier for genetic exchange among S. vulgaris populations and does not affect molecular variance. Therefore, there is no evidence for the existence of seasonally specialized races of S. vulgaris. We discuss some implications of the results for the biological control of S. vulgaris using a native rust fungus.

  11. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa

    PubMed Central

    Zhao, Keyan; Tung, Chih-Wei; Eizenga, Georgia C.; Wright, Mark H.; Ali, M. Liakat; Price, Adam H.; Norton, Gareth J.; Islam, M. Rafiqul; Reynolds, Andy; Mezey, Jason; McClung, Anna M.; Bustamante, Carlos D.; McCouch, Susan R.

    2011-01-01

    Asian rice, Oryza sativa is a cultivated, inbreeding species that feeds over half of the world's population. Understanding the genetic basis of diverse physiological, developmental, and morphological traits provides the basis for improving yield, quality and sustainability of rice. Here we show the results of a genome-wide association study based on genotyping 44,100 SNP variants across 413 diverse accessions of O. sativa collected from 82 countries that were systematically phenotyped for 34 traits. Using cross-population-based mapping strategies, we identified dozens of common variants influencing numerous complex traits. Significant heterogeneity was observed in the genetic architecture associated with subpopulation structure and response to environment. This work establishes an open-source translational research platform for genome-wide association studies in rice that directly links molecular variation in genes and metabolic pathways with the germplasm resources needed to accelerate varietal development and crop improvement. PMID:21915109

  12. New discoveries in schizophrenia genetics reveal neurobiological pathways: A review of recent findings.

    PubMed

    Kotlar, Alex V; Mercer, Kristina B; Zwick, Michael E; Mulle, Jennifer G

    2015-12-01

    Schizophrenia research has undergone a recent transformation. By leveraging large sample sizes, genome-wide association studies of common genetic variants have approximately tripled the number of candidate genetic loci. Rare variant studies have identified copy number variants that are schizophrenia risk loci. Among these, the 3q29 microdeletion is now known to be the single largest schizophrenia risk factor. Next-generation sequencing studies are increasingly used for rare variant association testing, and have already facilitated identification of large effect alleles. Collectively, recent findings implicate voltage-gated calcium channel and cytoskeletal pathways in the pathogenesis of schizophrenia. Taken together, these results suggest the possibility of imminent breakthroughs in the molecular understanding of schizophrenia.

  13. Genetic diversity in wild sweet cherries (Prunus avium) in Turkey revealed by SSR markers.

    PubMed

    Ercisli, S; Agar, G; Yildirim, N; Duralija, B; Vokurka, A; Karlidag, H

    2011-06-21

    Wild sweet cherry (Prunus avium) trees are abundant in the northern part of Turkey, including the Coruh Valley. We analyzed 18 wild sweet cherry genotypes collected from diverse environments in the upper Coruh Valley in Turkey to determine genetic variation, using 10 SSR primers. These SSR primers generated 46 alleles; the number of alleles per primer ranged from 3 to 7, with a mean of 4.6. The primer PS12A02 gave the highest number of polymorphic bands (N = 7), while CPSCT010, UDAp-401 and UDAp-404 gave the lowest number (N = 3). Seven groups were separated in the dendrogram, although most of the genotypes did not cluster according to phenological and morphological traits. This level of genetic diversity in these wild sweet cherry genotypes is very high and therefore these trees would be useful as breeders for crosses between cultivated sweet cherry and wild genotypes.

  14. Multilocus analysis reveals large genetic diversity in Kluyveromyces marxianus strains isolated from Parmigiano Reggiano and Pecorino di Farindola cheeses.

    PubMed

    Fasoli, Giuseppe; Barrio, Eladio; Tofalo, Rosanna; Suzzi, Giovanna; Belloch, Carmela

    2016-09-16

    In the present study, we have analysed the genetic diversity in Kluyveromyces marxianus isolated from Parmigiano Reggiano and Pecorino di Farindola cheesemaking environment. Molecular typing methods inter-RTL fingerprint and mtDNA RFLPs, as well as, sequence diversity and heterozygosity in the intergenic region between KmSSB1 and KmRIO2 genes and analysis of the mating locus were applied to 54 K. marxianus strains. Inter-RTL fingerprint revealed a large degree of genetic heterogeneity and clustering allowed differentiation of K. marxianus strains from different geographical origins. In general, inter-LTR profiles were more discriminating than RFLPs of mtDNA; however our results also indicate that both techniques could be complementary unveiling different degrees of genetic diversity. Sequence analysis of the intergenic region between KmSSB1 and KmRIO2 genes revealed 26 variable positions in which a double peak could be observed in the sequence chromatogram. Further analysis revealed the presence of heterozygous strains in the K. marxianus population isolated from Parmigiano Reggiano. On the other hand, all strains isolated from Pecorino di Farindola were homozygous. Two very different groups of haplotypes could be observed as well as mixtures between them. Phylogenetic reconstruction divided K. marxianus dairy strains into two separate populations. A few heterozygous strains in an intermediate position between them could also be observed. Mating type locus analysis revealed a large population of diploid strains containing both MATa and MATα alleles and few haploid strains, most of them presenting the MATα allele. Different scenarios explaining the presence and maintaining of homozygous and heterozygous diploids as well as hybrids between them in the Parmigiano Reggiano K. marxianus population are proposed. A principal component analysis supported the large differences between K. marxianus isolated from Parmigiano Reggiano and Pecorino di Farindola. PMID:27294555

  15. Isolates of Cryptococcus neoformans from infected animals reveal genetic exchange in unisexual, alpha mating type populations.

    PubMed

    Bui, Tien; Lin, Xiaorong; Malik, Richard; Heitman, Joseph; Carter, Dee

    2008-10-01

    Sexual reproduction and genetic exchange are important for the evolution of fungal pathogens and for producing potentially infective spores. Studies to determine whether sex occurs in the pathogenic yeast Cryptococcus neoformans var. grubii have produced enigmatic results, however: basidiospores are the most likely infective propagules, and clinical isolates are fertile and genetically diverse, consistent with a sexual species, but almost all populations examined consist of a single mating type and have little evidence for genetic recombination. The choice of population is critical when looking for recombination, particularly when significant asexual propagation is likely and when latency may complicate assessing the origin of an isolate. We therefore selected isolates from infected animals living in the region of Sydney, Australia, with the assumption that the relatively short life spans and limited travels of the animal hosts would provide a very defined population. All isolates were mating type alpha and were of molecular genotype VNI or VNII. A lack of linkage disequilibrium among loci suggested that genetic exchange occurred within both genotype groups. Four diploid VNII isolates that produced filaments and basidium-like structures when cultured in proximity to an a mating type strain were found. Recent studies suggest that compatible alpha-alpha unions can occur in C. neoformans var. neoformans populations and in populations of the sibling species Cryptococcus gattii. As a mating type strains of C. neoformans var. grubii have never been found in Australia, or in the VNII molecular type globally, the potential for alpha-alpha unions is evidence that alpha-alpha unisexual mating maintains sexual recombination and diversity in this pathogen and may produce infectious propagules.

  16. Investigating arsenic susceptibility from a genetic perspective in Drosophila reveals a key role for glutathione synthetase.

    PubMed

    Ortiz, Jorge G Muñiz; Opoka, Robert; Kane, Daniel; Cartwright, Iain L

    2009-02-01

    Chronic exposure to arsenic-contaminated drinking water can lead to a variety of serious pathological outcomes. However, differential responsiveness within human populations suggests that interindividual genetic variation plays an important role. We are using Drosophila to study toxic metal response pathways because of unrivalled access to varied genetic approaches and significant demonstrable overlap with many aspects of mammalian physiology and disease phenotypes. Genetic analysis (via chromosomal segregation and microsatellite marker-based recombination) of various wild-type strains exhibiting relative susceptibility or tolerance to the lethal toxic effects of arsenite identified a limited X-chromosomal region (16D-F) able to confer a differential response phenotype. Using an FRT-based recombination approach, we created lines harboring small, overlapping deficiencies within this region and found that relative arsenite sensitivity arose when the dose of the glutathione synthetase (GS) gene (located at 16F1) was reduced by half. Knockdown of GS expression by RNA interference (RNAi) in cultured S2 cells led to enhanced arsenite sensitivity, while GS RNAi applied to intact organisms dramatically reduced the concentration of food-borne arsenite compatible with successful growth and development. Our analyses, initially guided by observations on naturally occurring variants, provide genetic proof that an optimally functioning two-step glutathione (GSH) biosynthetic pathway is required in vivo for a robust defense against arsenite; the enzymatic implications of this are discussed in the context of GSH supply and demand under arsenite-induced stress. Given an identical pathway for human GSH biosynthesis, we suggest that polymorphisms in GSH biosynthetic genes may be an important contributor to differential arsenic sensitivity and exposure risk in human populations.

  17. Genetic Diversity within Schistosoma haematobium: DNA Barcoding Reveals Two Distinct Groups

    PubMed Central

    Webster, Bonnie L.; Emery, Aiden M.; Webster, Joanne P.; Gouvras, Anouk; Garba, Amadou; Diaw, Oumar; Seye, Mohmoudane M.; Tchuente, Louis Albert Tchuem; Simoonga, Christopher; Mwanga, Joseph; Lange, Charles; Kariuki, Curtis; Mohammed, Khalfan A.; Stothard, J. Russell; Rollinson, David

    2012-01-01

    Background Schistosomiasis in one of the most prevalent parasitic diseases, affecting millions of people and animals in developing countries. Amongst the human-infective species S. haematobium is one of the most widespread causing urogenital schistosomiasis, a major human health problem across Africa, however in terms of research this human pathogen has been severely neglected. Methodology/Principal Findings To elucidate the genetic diversity of Schistosoma haematobium, a DNA ‘barcoding’ study was performed on parasite material collected from 41 localities representing 18 countries across Africa and the Indian Ocean Islands. Surprisingly low sequence variation was found within the mitochondrial cytochrome oxidase subunit I (cox1) and the NADH-dehydrogenase subunit 1 snad1). The 61 haplotypes found within 1978 individual samples split into two distinct groups; one (Group 1) that is predominately made up of parasites from the African mainland and the other (Group 2) that is made up of samples exclusively from the Indian Ocean Islands and the neighbouring African coastal regions. Within Group 1 there was a dominance of one particular haplotype (H1) representing 1574 (80%) of the samples analyzed. Population genetic diversity increased in samples collected from the East African coastal regions and the data suggest that there has been movement of parasites between these areas and the Indian Ocean Islands. Conclusions/Significance The high occurrence of the haplotype (H1) suggests that at some point in the recent evolutionary history of S. haematobium in Africa the population may have passed through a genetic ‘bottleneck’ followed by a population expansion. This study provides novel and extremely interesting insights into the population genetics of S. haematobium on a large geographic scale, which may have consequence for control and monitoring of urogenital schistosomiasis. PMID:23145200

  18. Human demographic processes and genetic variation as revealed by mtDNA simulations.

    PubMed

    Miró-Herrans, Aida T; Mulligan, Connie J

    2013-02-01

    Humans' ability for rapid dispersal and adaptation has allowed us to colonize diverse geographic and climatic regions of the planet, creating a complex evolutionary history. This complexity can be understood, at least partially, by modeling the underlying demographic parameters in the evolutionary process. In this study, we analyze a model of human evolution in which population size, gene flow (GF), and time are varied. Specifically, we simulate mitochondrial DNA for 42 demographic scenarios, represented by 42 parameter combinations, to describe the initial dispersal of modern humans out of Africa. The analyses include three values for colonization size (CS; 1%, 10%, and 30% of the African population), seven values for rate of GF (10(-6)-0.5), and two values for time of colonization (50,000 and 100,000 years ago). We then estimate summary statistics for the simulated data sets to calculate the percent of explained variation by each parameter and to identify which parameter combinations generate distinct differences in genetic variation, that is, which demographic scenarios can be distinguished from each other. On the basis of these results, we make recommendations about which summary statistics to use according to the parameter of interest. Our results show that CS, GF, and their interaction have the largest effect on genetic variation under our model of human evolution. Comparison with empirical data suggests that 1% of the existing African mitochondrial genetic variation left and colonized the rest of the world (i.e., CS = 1%) and bidirectional GF continued at a level of ∼10 individuals per generation (i.e., GF = 10(-3)) after the initial colonization. Our study serves as a model to bridge the gap between the use of simulations for theoretical population genetics and empirical data analysis such as approximate bayesian computation approaches and is, thus, applicable to the study of molecular evolution in any organism.

  19. Genetic and genomic dissection of Prolactin revealed potential association with milk production traits in riverine buffalo.

    PubMed

    Nadeem, A; Maryam, J

    2016-08-01

    Milk yield and quality has been a major selection criterion for genetic improvement in livestock species. Role of Prolactin gene in determining milk quality in terms of protein profile, lactose, lipids and other imperative macromolecules is very important. In this context, genetic profiling of Prolactin gene in riverine buffalo of Pakistan was performed and potential genetic markers were identified illustrating worth of this gene in marker-assisted selection of superior dairy buffaloes. Series of wet and dry lab experimentation was performed starting with genomic DNA isolation from true to breed representatives of indigenous river buffalo (Nili-Ravi). After amplification of coding regions of Prolactin gene, products were eluted and sequenced by Sanger's chain termination method and aligned to get variations in genomic region. A total of 15 novel variations were identified and analyzed statistically for their significance at population level, haplotypes were constructed, and association was estimated. Phylogenetic analysis was performed to evaluate the rate of evolution for Prolactin gene in various mammalian species. Lastly, biological networking for this molecule was predicted to get the bigger pictorial of its functional machinery. Pathway analysis was performed to find its physiological mode of action in milk synthesis. This is a first report toward complete genetic screening of Prolactin gene in Pakistani buffaloes. Results of this study not only provide an insight for potential role of Prolactin gene in milk-producing abilities of buffalo but also suggest new directions for exploration of more genes that may have promising role to enhance future milk production capabilities of river buffalo breeds of Asian region through marker-assisted selection. PMID:27240674

  20. The Genome of a Mongolian Individual Reveals the Genetic Imprints of Mongolians on Modern Human Populations

    PubMed Central

    Wu, Qizhu; Yin, Ye; Zhou, Huanmin

    2014-01-01

    Mongolians have played a significant role in modern human evolution, especially after the rise of Genghis Khan (1162[?]–1227). Although the social cultural impacts of Genghis Khan and the Mongolian population have been well documented, explorations of their genome structure and genetic imprints on other human populations have been lacking. We here present the genome of a Mongolian male individual. The genome was de novo assembled using a total of 130.8-fold genomic data produced from massively parallel whole-genome sequencing. We identified high-confidence variation sets, including 3.7 million single nucleotide polymorphisms (SNPs) and 756,234 short insertions and deletions. Functional SNP analysis predicted that the individual has a pathogenic risk for carnitine deficiency. We located the patrilineal inheritance of the Mongolian genome to the lineage D3a through Y haplogroup analysis and inferred that the individual has a common patrilineal ancestor with Tibeto-Burman populations and is likely to be the progeny of the earliest settlers in East Asia. We finally investigated the genetic imprints of Mongolians on other human populations using different approaches. We found varying degrees of gene flows between Mongolians and populations living in Europe, South/Central Asia, and the Indian subcontinent. The analyses demonstrate that the genetic impacts of Mongolians likely resulted from the expansion of the Mongolian Empire in the 13th century. The genome will be of great help in further explorations of modern human evolution and genetic causes of diseases/traits specific to Mongolians. PMID:25377941

  1. The genome of a Mongolian individual reveals the genetic imprints of Mongolians on modern human populations.

    PubMed

    Bai, Haihua; Guo, Xiaosen; Zhang, Dong; Narisu, Narisu; Bu, Junjie; Jirimutu, Jirimutu; Liang, Fan; Zhao, Xiang; Xing, Yanping; Wang, Dingzhu; Li, Tongda; Zhang, Yanru; Guan, Baozhu; Yang, Xukui; Yang, Zili; Shuangshan, Shuangshan; Su, Zhe; Wu, Huiguang; Li, Wenjing; Chen, Ming; Zhu, Shilin; Bayinnamula, Bayinnamula; Chang, Yuqi; Gao, Ying; Lan, Tianming; Suyalatu, Suyalatu; Huang, Hui; Su, Yan; Chen, Yujie; Li, Wenqi; Yang, Xu; Feng, Qiang; Wang, Jian; Yang, Huanming; Wang, Jun; Wu, Qizhu; Yin, Ye; Zhou, Huanmin

    2014-12-01

    Mongolians have played a significant role in modern human evolution, especially after the rise of Genghis Khan (1162[?]-1227). Although the social cultural impacts of Genghis Khan and the Mongolian population have been well documented, explorations of their genome structure and genetic imprints on other human populations have been lacking. We here present the genome of a Mongolian male individual. The genome was de novo assembled using a total of 130.8-fold genomic data produced from massively parallel whole-genome sequencing. We identified high-confidence variation sets, including 3.7 million single nucleotide polymorphisms (SNPs) and 756,234 short insertions and deletions. Functional SNP analysis predicted that the individual has a pathogenic risk for carnitine deficiency. We located the patrilineal inheritance of the Mongolian genome to the lineage D3a through Y haplogroup analysis and inferred that the individual has a common patrilineal ancestor with Tibeto-Burman populations and is likely to be the progeny of the earliest settlers in East Asia. We finally investigated the genetic imprints of Mongolians on other human populations using different approaches. We found varying degrees of gene flows between Mongolians and populations living in Europe, South/Central Asia, and the Indian subcontinent. The analyses demonstrate that the genetic impacts of Mongolians likely resulted from the expansion of the Mongolian Empire in the 13th century. The genome will be of great help in further explorations of modern human evolution and genetic causes of diseases/traits specific to Mongolians. PMID:25377941

  2. Joint assembly and genetic mapping of the Atlantic horseshoe crab genome reveals ancient whole genome duplication

    PubMed Central

    2014-01-01

    Background Horseshoe crabs are marine arthropods with a fossil record extending back approximately 450 million years. They exhibit remarkable morphological stability over their long evolutionary history, retaining a number of ancestral arthropod traits, and are often cited as examples of “living fossils.” As arthropods, they belong to the Ecdysozoa, an ancient super-phylum whose sequenced genomes (including insects and nematodes) have thus far shown more divergence from the ancestral pattern of eumetazoan genome organization than cnidarians, deuterostomes and lophotrochozoans. However, much of ecdysozoan diversity remains unrepresented in comparative genomic analyses. Results Here we apply a new strategy of combined de novo assembly and genetic mapping to examine the chromosome-scale genome organization of the Atlantic horseshoe crab, Limulus polyphemus. We constructed a genetic linkage map of this 2.7 Gbp genome by sequencing the nuclear DNA of 34 wild-collected, full-sibling embryos and their parents at a mean redundancy of 1.1x per sample. The map includes 84,307 sequence markers grouped into 1,876 distinct genetic intervals and 5,775 candidate conserved protein coding genes. Conclusions Comparison with other metazoan genomes shows that the L. polyphemus genome preserves ancestral bilaterian linkage groups, and that a common ancestor of modern horseshoe crabs underwent one or more ancient whole genome duplications 300 million years ago, followed by extensive chromosome fusion. These results provide a counter-example to the often noted correlation between whole genome duplication and evolutionary radiations. The new, low-cost genetic mapping method for obtaining a chromosome-scale view of non-model organism genomes that we demonstrate here does not require laboratory culture, and is potentially applicable to a broad range of other species. PMID:24987520

  3. Genetic diversity revealed by morphological traits and ISSR markers in 48 Okras (Abelmoschus escullentus L.).

    PubMed

    Yuan, Cong-Ying; Wang, Ping; Chen, Pang-Pang; Xiao, Wen-Jun; Zhang, Cheng; Hu, Shuai; Zhou, Ping; Chang, Hong-Ping; He, Zhuang; Hu, Rong; Lu, Xiu-Tao; Ye, Jia-Zhuo; Guo, Xin-Hong

    2015-07-01

    Okra is a widely distributed crop in the tropics, subtropics, and warmer areas of the temperate zones. Its major potential uses as a vegetable, oil and protein source, and source of paper pulp and fuel, or biomass are compatible. It is expected to have high value of exploitation and application. Due to the limited number of molecular studies focused on okras, the methods of morphological and ISSR markers were used to analysis the genetic diversity of 48 okras in the present study. The 22 primers were picked for ISSR-PCR, and a total of 154 fragments were amplified with an overall average polymorphism of 54.55 %. We used the 154 markers to construct the dendrogram based on the unweighted pair group method with arithmetic means (UPGMA). A high level of genetic diversity was found among 48 individuals. The 48 Okras was divided into four clusters at Dice's coefficient of 0.19 with clustering analysis. Based on these data of the genetic diversity, it will be possible to exploit the available resources of okra in more valuable ways.

  4. Environmental sampling reveals that Pythium insidiosum is ubiquitous and genetically diverse in North Central Florida.

    PubMed

    Presser, Jackson W; Goss, Erica M

    2015-09-01

    Pythiosis is a deadly disease of horses, dogs, and other mammals, including humans, in tropical and subtropical regions. In the United States, the disease has been reported in the Southeast as well as in the temperate North and the dry Southwest. The causal agent of pythiosis is Pythium insidiosum, one of few mammalian pathogens in the fungus-like Oomycetes. P. insidiosum has not been studied in the environment in the United States. Given anecdotal reports of pythiosis in Gainesville, Florida dogs, we hypothesized that warm standing water in lakes and ponds in North Central Florida is suitable habitat for P. insidiosum. We sampled 19 lakes or ponds to examine the environmental distribution of P. insidiosum and to determine which of the three previously described genetic clusters of P. insidiosum are present. We found P. insidiosum in 11 of the sampled lakes and ponds. Sequencing of the ITS region separated isolates into three genetic clusters, including a distinct group previously represented by a single isolate from South Carolina. AFLP genotyping of isolates showed genetic variation in Cluster I, which is the group associated with the majority of characterized clinical isolates from the Americas. Our results indicate that animal exposure to P. insidiosum in North Central Florida is common. This study provides the first evidence that P. insidiosum may be more widely distributed in freshwater lakes and ponds in the Southeastern United States than previously appreciated. PMID:26229152

  5. Cells deficient in base-excision repair reveal cancer hallmarks originating from adjustments to genetic instability

    PubMed Central

    Markkanen, Enni; Fischer, Roman; Ledentcova, Marina; Kessler, Benedikt M.; Dianov, Grigory L.

    2015-01-01

    Genetic instability, provoked by exogenous mutagens, is well linked to initiation of cancer. However, even in unstressed cells, DNA undergoes a plethora of spontaneous alterations provoked by its inherent chemical instability and the intracellular milieu. Base excision repair (BER) is the major cellular pathway responsible for repair of these lesions, and as deficiency in BER activity results in DNA damage it has been proposed that it may trigger the development of sporadic cancers. Nevertheless, experimental evidence for this model remains inconsistent and elusive. Here, we performed a proteomic analysis of BER deficient human cells using stable isotope labelling with amino acids in cell culture (SILAC), and demonstrate that BER deficiency, which induces genetic instability, results in dramatic changes in gene expression, resembling changes found in many cancers. We observed profound alterations in tissue homeostasis, serine biosynthesis, and one-carbon- and amino acid metabolism, all of which have been identified as cancer cell ‘hallmarks’. For the first time, this study describes gene expression changes characteristic for cells deficient in repair of endogenous DNA lesions by BER. These expression changes resemble those observed in cancer cells, suggesting that genetically unstable BER deficient cells may be a source of pre-cancerous cells. PMID:25800737

  6. Artificial Selection Reveals High Genetic Variation in Phenology at the Trailing Edge of a Species Range.

    PubMed

    Sheth, Seema Nayan; Angert, Amy Lauren

    2016-02-01

    Species responses to climate change depend on the interplay of migration and adaptation, yet we know relatively little about the potential for adaptation. Genetic adaptations to climate change often involve shifts in the timing of phenological events, such as flowering. If populations at the edge of a species range have lower genetic variation in phenological traits than central populations, then their persistence under climate change could be threatened. To test this hypothesis, we performed artificial selection experiments using the scarlet monkeyflower (Mimulus cardinalis) and compared genetic variation in flowering time among populations at the latitudinal center, northern edge, and southern edge of the species range. We also assessed whether selection on flowering time yielded correlated responses in functional traits, potentially representing a cost associated with early or late flowering. Contrary to prediction, southern populations exhibited greater responses to selection on flowering time than central or northern populations. Further, selection for early flowering resulted in correlated increases in specific leaf area and leaf nitrogen, whereas selection for late flowering led to decreases in these traits. These results provide critical insights about how spatial variation in the potential for adaptation may affect population persistence under changing climates. PMID:26807746

  7. Genetic and epigenetic factors affecting meiosis induction in eukaryotes revealed in paramecium research.

    PubMed

    Prajer, Małgorzata

    2008-01-01

    This review presents studies of the induction of meiosis undertaken on the ciliate Paramecium, a unicellular model eukaryotic organism. Meiosis in Paramecium, preceding the process of fertilization, appears in starved cells after passing a defined number of divisions (cell generations), starting from the last fertilization. Investigations were performed on clones of cells entering autogamy, a self-fertilization process. Genetic as well as epigenetic factors, i.e. endo- and exogenous factors, affecting the induction ofmeiosis and changing the duration of the interautogamous interval (IAI), were analyzed. The results show that: (1) Meiosis induction is controlled genetically by the somatic macronucleus. However, besides the nuclear factors, the cytoplasmic protein immaturin also affects this process (Haga & Hiwatashi 1981); (2) Epigenetic factors, such as non-genetically disturbed cytoskeleton structures and changes in the cell architecture observed in doublet Paramecium cells, exert internal mechanical stress (Ingber 2003), which constitutes the endogenous impulse accelerating meiosis; (3) Mild osmotic stress, acting as an exogenous factor, can initiate the specific MAP kinases signaling pathway resulting in earlier meiosis induction, as in other unicellular eukaryotes (Seet & Pawson 2004).

  8. Genetic diversity revealed by morphological traits and ISSR markers in 48 Okras (Abelmoschus escullentus L.).

    PubMed

    Yuan, Cong-Ying; Wang, Ping; Chen, Pang-Pang; Xiao, Wen-Jun; Zhang, Cheng; Hu, Shuai; Zhou, Ping; Chang, Hong-Ping; He, Zhuang; Hu, Rong; Lu, Xiu-Tao; Ye, Jia-Zhuo; Guo, Xin-Hong

    2015-07-01

    Okra is a widely distributed crop in the tropics, subtropics, and warmer areas of the temperate zones. Its major potential uses as a vegetable, oil and protein source, and source of paper pulp and fuel, or biomass are compatible. It is expected to have high value of exploitation and application. Due to the limited number of molecular studies focused on okras, the methods of morphological and ISSR markers were used to analysis the genetic diversity of 48 okras in the present study. The 22 primers were picked for ISSR-PCR, and a total of 154 fragments were amplified with an overall average polymorphism of 54.55 %. We used the 154 markers to construct the dendrogram based on the unweighted pair group method with arithmetic means (UPGMA). A high level of genetic diversity was found among 48 individuals. The 48 Okras was divided into four clusters at Dice's coefficient of 0.19 with clustering analysis. Based on these data of the genetic diversity, it will be possible to exploit the available resources of okra in more valuable ways. PMID:26261400

  9. New inducible genetic method reveals critical roles of GABA in the control of feeding and metabolism

    PubMed Central

    Meng, Fantao; Han, Yong; Srisai, Dollada; Belakhov, Valery; Farias, Monica; Xu, Yong; Palmiter, Richard D.; Baasov, Timor; Wu, Qi

    2016-01-01

    Currently available inducible Cre/loxP systems, despite their considerable utility in gene manipulation, have pitfalls in certain scenarios, such as unsatisfactory recombination rates and deleterious effects on physiology and behavior. To overcome these limitations, we designed a new, inducible gene-targeting system by introducing an in-frame nonsense mutation into the coding sequence of Cre recombinase (nsCre). Mutant mRNAs transcribed from nsCre transgene can be efficiently translated into full-length, functional Cre recombinase in the presence of nonsense suppressors such as aminoglycosides. In a proof-of-concept model, GABA signaling from hypothalamic neurons expressing agouti-related peptide (AgRP) was genetically inactivated within 4 d after treatment with a synthetic aminoglycoside. Disruption of GABA synthesis in AgRP neurons in young adult mice led to a dramatic loss of body weight due to reduced food intake and elevated energy expenditure; they also manifested glucose intolerance. In contrast, older mice with genetic inactivation of GABA signaling by AgRP neurons had only transient reduction of feeding and body weight; their energy expenditure and glucose tolerance were unaffected. These results indicate that GABAergic signaling from AgRP neurons plays a key role in the control of feeding and metabolism through an age-dependent mechanism. This new genetic technique will augment current tools used to elucidate mechanisms underlying many physiological and neurological processes. PMID:26976589

  10. Genetic and epigenetic factors affecting meiosis induction in eukaryotes revealed in paramecium research.

    PubMed

    Prajer, Małgorzata

    2008-01-01

    This review presents studies of the induction of meiosis undertaken on the ciliate Paramecium, a unicellular model eukaryotic organism. Meiosis in Paramecium, preceding the process of fertilization, appears in starved cells after passing a defined number of divisions (cell generations), starting from the last fertilization. Investigations were performed on clones of cells entering autogamy, a self-fertilization process. Genetic as well as epigenetic factors, i.e. endo- and exogenous factors, affecting the induction ofmeiosis and changing the duration of the interautogamous interval (IAI), were analyzed. The results show that: (1) Meiosis induction is controlled genetically by the somatic macronucleus. However, besides the nuclear factors, the cytoplasmic protein immaturin also affects this process (Haga & Hiwatashi 1981); (2) Epigenetic factors, such as non-genetically disturbed cytoskeleton structures and changes in the cell architecture observed in doublet Paramecium cells, exert internal mechanical stress (Ingber 2003), which constitutes the endogenous impulse accelerating meiosis; (3) Mild osmotic stress, acting as an exogenous factor, can initiate the specific MAP kinases signaling pathway resulting in earlier meiosis induction, as in other unicellular eukaryotes (Seet & Pawson 2004). PMID:19055018

  11. Forward Genetics by Genome Sequencing Reveals That Rapid Cyanide Release Deters Insect Herbivory of Sorghum bicolor

    PubMed Central

    Krothapalli, Kartikeya; Buescher, Elizabeth M.; Li, Xu; Brown, Elliot; Chapple, Clint; Dilkes, Brian P.; Tuinstra, Mitchell R.

    2013-01-01

    Whole genome sequencing has allowed rapid progress in the application of forward genetics in model species. In this study, we demonstrated an application of next-generation sequencing for forward genetics in a complex crop genome. We sequenced an ethyl methanesulfonate-induced mutant of Sorghum bicolor defective in hydrogen cyanide release and identified the causal mutation. A workflow identified the causal polymorphism relative to the reference BTx623 genome by integrating data from single nucleotide polymorphism identification, prior information about candidate gene(s) implicated in cyanogenesis, mutation spectra, and polymorphisms likely to affect phenotypic changes. A point mutation resulting in a premature stop codon in the coding sequence of dhurrinase2, which encodes a protein involved in the dhurrin catabolic pathway, was responsible for the acyanogenic phenotype. Cyanogenic glucosides are not cyanogenic compounds but their cyanohydrins derivatives do release cyanide. The mutant accumulated the glucoside, dhurrin, but failed to efficiently release cyanide upon tissue disruption. Thus, we tested the effects of cyanide release on insect herbivory in a genetic background in which accumulation of cyanogenic glucoside is unchanged. Insect preference choice experiments and herbivory measurements demonstrate a deterrent effect of cyanide release capacity, even in the presence of wild-type levels of cyanogenic glucoside accumulation. Our gene cloning method substantiates the value of (1) a sequenced genome, (2) a strongly penetrant and easily measurable phenotype, and (3) a workflow to pinpoint a causal mutation in crop genomes and accelerate in the discovery of gene function in the postgenomic era. PMID:23893483

  12. Allele Mining in Barley Genetic Resources Reveals Genes of Race-Non-Specific Powdery Mildew Resistance

    PubMed Central

    Spies, Annika; Korzun, Viktor; Bayles, Rosemary; Rajaraman, Jeyaraman; Himmelbach, Axel; Hedley, Pete E.; Schweizer, Patrick

    2012-01-01

    Race-non-specific, or quantitative, pathogen resistance is of high importance to plant breeders due to its expected durability. However, it is usually controlled by multiple quantitative trait loci (QTL) and therefore difficult to handle in practice. Knowing the genes that underlie race-non-specific resistance (NR) would allow its exploitation in a more targeted manner. Here, we performed an association-genetic study in a customized worldwide collection of spring barley accessions for candidate genes of race-NR to the powdery mildew fungus Blumeria graminis f. sp. hordei (Bgh) and combined data with results from QTL mapping as well as functional-genomics approaches. This led to the identification of 11 associated genes with converging evidence for an important role in race-NR in the presence of the Mlo gene for basal susceptibility. Outstanding in this respect was the gene encoding the transcription factor WRKY2. The results suggest that unlocking plant genetic resources and integrating functional-genomic with genetic approaches can accelerate the discovery of genes underlying race-NR in barley and other crop plants. PMID:22629270

  13. Ecological and Genetic Differences between Cacopsylla melanoneura (Hemiptera, Psyllidae) Populations Reveal Species Host Plant Preference

    PubMed Central

    Malagnini, Valeria; Pedrazzoli, Federico; Papetti, Chiara; Cainelli, Christian; Zasso, Rosaly; Gualandri, Valeria; Pozzebon, Alberto; Ioriatti, Claudio

    2013-01-01

    The psyllid Cacopsylla melanoneura is considered one of the vectors of ‘Candidatus Phytoplasma mali’, the causal agent of apple proliferation disease. In Northern Italy, overwintered C. melanoneura adults reach apple and hawthorn around the end of January. Nymph development takes place between March and the end of April. The new generation adults migrate onto conifers around mid-June and come back to the host plant species after overwintering. In this study we investigated behavioural differences, genetic differentiation and gene flow between samples of C. melanoneura collected from the two different host plants. Further analyses were performed on some samples collected from conifers. To assess the ecological differences, host-switching experiments were conducted on C. melanoneura samples collected from apple and hawthorn. Furthermore, the genetic structure of the samples was studied by genotyping microsatellite markers. The examined C. melanoneura samples performed better on their native host plant species. This was verified in terms of oviposition and development of the offspring. Data resulting from microsatellite analysis indicated a low, but statistically significant difference between collected-from-apple and hawthorn samples. In conclusion, both ecological and genetic results indicate a differentiation between C. melanoneura samples associated with the two host plants. PMID:23874980

  14. Colony genetic organization and colony fusion in the termite Reticulitermes flavipes as revealed by foraging patterns over time and space.

    PubMed

    Deheer, Christopher J; Vargo, Edward L

    2004-02-01

    Temporal and spatial analyses are seldom utilized in the study of colony genetic structure, but they are potentially powerful methods which can yield novel insights into the mechanisms underlying variation in breeding systems. Here we present the results of a study which incorporated both of these dimensions in an examination of genetic structure of subterranean termites in the genus Reticulitermes (primarily R. flavipes). Most colonies of this species (70%) were simple families apparently headed by outbred primary reproductives, while most of the remaining (27% of the total) colonies contained low effective numbers of moderately inbred reproductives. Mapping the spatial distribution of colony foraging sites over time revealed that despite the high colony density, the absolute foraging boundaries of most R. flavipes colonies were persistent and exclusive of other conspecific colonies, which suggests that this species is more territorial than has been implied by laboratory studies of intraspecific aggression. Nevertheless, we found a single colony (3% of all colonies) which contained the offspring of more than two unrelated reproductives. Although other studies have also described subterranean termite colonies with a similarly complex genetic composition, we demonstrate here that such colonies can form under natural conditions via the fusion of whole colonies. This study underscores how repeated sampling from individual colonies over time and space can yield information about colony spatial and genetic structure that cannot be obtained from conventional analyses or sampling methods. PMID:14717897

  15. Pronounced genetic differentiation and recent secondary contact in the mangrove tree Lumnitzera racemosa revealed by population genomic analyses

    PubMed Central

    Li, Jianfang; Yang, Yuchen; Chen, Qipian; Fang, Lu; He, Ziwen; Guo, Wuxia; Qiao, Sitan; Wang, Zhengzhen; Guo, Miaomiao; Zhong, Cairong; Zhou, Renchao; Shi, Suhua

    2016-01-01

    Systematically investigating the impacts of Pleistocene sea-level fluctuations on mangrove plants may provide a better understanding of their demographic history and useful information for their conservation. Therefore, we conducted population genomic analyses of 88 nuclear genes to explore the population dynamics of a mangrove tree Lumnitzera racemosa across the Indo-West Pacific region. Our results revealed pronounced genetic differentiation in this species between the populations from the Indian Ocean and the Pacific Ocean, which may be attributable to the long-term isolation between the western and eastern coasts of the Malay Peninsula during sea-level drops in the Pleistocene glacial periods. The mixing of haplotypes from the two highly divergent groups was identified in a Cambodian population at almost all 88 nuclear genes, suggesting genetic admixture of the two lineages at the boundary region. Similar genetic admixture was also found in other populations from Southeast Asia based on the Bayesian clustering analysis of six nuclear genes, which suggests extensive and recent secondary contact of the two divergent lineages in Southeast Asia. Computer simulations indicated substantial migration from the Indian Ocean towards the South China Sea, which likely results in the genetic admixture in Southeast Asia. PMID:27380895

  16. The genetic regulatory network centered on Pto-Wuschela and its targets involved in wood formation revealed by association studies.

    PubMed

    Yang, Xiaohui; Wei, Zunzheng; Du, Qingzhang; Chen, Jinhui; Wang, Qingshi; Quan, Mingyang; Song, Yuepeng; Xie, Jianbo; Zhang, Deqiang

    2015-11-09

    Transcription factors (TFs) regulate gene expression and can strongly affect phenotypes. However, few studies have examined TF variants and TF interactions with their targets in plants. Here, we used genetic association in 435 unrelated individuals of Populus tomentosa to explore the variants in Pto-Wuschela and its targets to decipher the genetic regulatory network of Pto-Wuschela. Our bioinformatics and co-expression analysis identified 53 genes with the motif TCACGTGA as putative targets of Pto-Wuschela. Single-marker association analysis showed that Pto-Wuschela was associated with wood properties, which is in agreement with the observation that it has higher expression in stem vascular tissues in Populus. Also, SNPs in the 53 targets were associated with growth or wood properties under additive or dominance effects, suggesting these genes and Pto-Wuschela may act in the same genetic pathways that affect variation in these quantitative traits. Epistasis analysis indicated that 75.5% of these genes directly or indirectly interacted Pto-Wuschela, revealing the coordinated genetic regulatory network formed by Pto-Wuschela and its targets. Thus, our study provides an alternative method for dissection of the interactions between a TF and its targets, which will strength our understanding of the regulatory roles of TFs in complex traits in plants.

  17. The genetic regulatory network centered on Pto-Wuschela and its targets involved in wood formation revealed by association studies

    PubMed Central

    Yang, Xiaohui; Wei, Zunzheng; Du, Qingzhang; Chen, Jinhui; Wang, Qingshi; Quan, Mingyang; Song, Yuepeng; Xie, Jianbo; Zhang, Deqiang

    2015-01-01

    Transcription factors (TFs) regulate gene expression and can strongly affect phenotypes. However, few studies have examined TF variants and TF interactions with their targets in plants. Here, we used genetic association in 435 unrelated individuals of Populus tomentosa to explore the variants in Pto-Wuschela and its targets to decipher the genetic regulatory network of Pto-Wuschela. Our bioinformatics and co-expression analysis identified 53 genes with the motif TCACGTGA as putative targets of Pto-Wuschela. Single-marker association analysis showed that Pto-Wuschela was associated with wood properties, which is in agreement with the observation that it has higher expression in stem vascular tissues in Populus. Also, SNPs in the 53 targets were associated with growth or wood properties under additive or dominance effects, suggesting these genes and Pto-Wuschela may act in the same genetic pathways that affect variation in these quantitative traits. Epistasis analysis indicated that 75.5% of these genes directly or indirectly interacted Pto-Wuschela, revealing the coordinated genetic regulatory network formed by Pto-Wuschela and its targets. Thus, our study provides an alternative method for dissection of the interactions between a TF and its targets, which will strength our understanding of the regulatory roles of TFs in complex traits in plants. PMID:26549216

  18. Pronounced genetic differentiation and recent secondary contact in the mangrove tree Lumnitzera racemosa revealed by population genomic analyses.

    PubMed

    Li, Jianfang; Yang, Yuchen; Chen, Qipian; Fang, Lu; He, Ziwen; Guo, Wuxia; Qiao, Sitan; Wang, Zhengzhen; Guo, Miaomiao; Zhong, Cairong; Zhou, Renchao; Shi, Suhua

    2016-01-01

    Systematically investigating the impacts of Pleistocene sea-level fluctuations on mangrove plants may provide a better understanding of their demographic history and useful information for their conservation. Therefore, we conducted population genomic analyses of 88 nuclear genes to explore the population dynamics of a mangrove tree Lumnitzera racemosa across the Indo-West Pacific region. Our results revealed pronounced genetic differentiation in this species between the populations from the Indian Ocean and the Pacific Ocean, which may be attributable to the long-term isolation between the western and eastern coasts of the Malay Peninsula during sea-level drops in the Pleistocene glacial periods. The mixing of haplotypes from the two highly divergent groups was identified in a Cambodian population at almost all 88 nuclear genes, suggesting genetic admixture of the two lineages at the boundary region. Similar genetic admixture was also found in other populations from Southeast Asia based on the Bayesian clustering analysis of six nuclear genes, which suggests extensive and recent secondary contact of the two divergent lineages in Southeast Asia. Computer simulations indicated substantial migration from the Indian Ocean towards the South China Sea, which likely results in the genetic admixture in Southeast Asia. PMID:27380895

  19. Pronounced genetic differentiation and recent secondary contact in the mangrove tree Lumnitzera racemosa revealed by population genomic analyses.

    PubMed

    Li, Jianfang; Yang, Yuchen; Chen, Qipian; Fang, Lu; He, Ziwen; Guo, Wuxia; Qiao, Sitan; Wang, Zhengzhen; Guo, Miaomiao; Zhong, Cairong; Zhou, Renchao; Shi, Suhua

    2016-01-01

    Systematically investigating the impacts of Pleistocene sea-level fluctuations on mangrove plants may provide a better understanding of their demographic history and useful information for their conservation. Therefore, we conducted population genomic analyses of 88 nuclear genes to explore the population dynamics of a mangrove tree Lumnitzera racemosa across the Indo-West Pacific region. Our results revealed pronounced genetic differentiation in this species between the populations from the Indian Ocean and the Pacific Ocean, which may be attributable to the long-term isolation between the western and eastern coasts of the Malay Peninsula during sea-level drops in the Pleistocene glacial periods. The mixing of haplotypes from the two highly divergent groups was identified in a Cambodian population at almost all 88 nuclear genes, suggesting genetic admixture of the two lineages at the boundary region. Similar genetic admixture was also found in other populations from Southeast Asia based on the Bayesian clustering analysis of six nuclear genes, which suggests extensive and recent secondary contact of the two divergent lineages in Southeast Asia. Computer simulations indicated substantial migration from the Indian Ocean towards the South China Sea, which likely results in the genetic admixture in Southeast Asia.

  20. Wilderness Emergency: Surviving the Unexpected.

    ERIC Educational Resources Information Center

    Fear, Gene

    In any unexpected survival experience, one must accept the situation with just what one has at the moment it happens, where it happens, and how it happens. Problem solving must be based on known body enemies that threaten life, their priority of influence, and their severity of threat to life. Solutions will depend on the body's energy supply,…

  1. Unexpected Outcomes from Teachers' TV

    ERIC Educational Resources Information Center

    Tanner, Ruth

    2006-01-01

    In this article, the author explains why she has unexpectedly become a fan of Teacher's TV. It started when she was asked to show some clips from Teachers' TV as part of a workshop she was leading. She dutifully accepted a CD containing three downloaded programmes about using ICT to teach mathematics and put it into her laptop. Within a few…

  2. Genetics

    MedlinePlus

    ... Inheritance; Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... The chromosomes are made up of strands of genetic information called DNA. Each chromosome contains sections of ...

  3. Transcriptome sequencing reveals the virulence and environmental genetic programs of Vibrio vulnificus exposed to host and estuarine conditions.

    PubMed

    Williams, Tiffany C; Blackman, Elliot R; Morrison, Shatavia S; Gibas, Cynthia J; Oliver, James D

    2014-01-01

    Vibrio vulnificus is a natural inhabitant of estuarine waters worldwide and is of medical relevance due to its ability to cause grievous wound infections and/or fatal septicemia. Genetic polymorphisms within the virulence-correlated gene (vcg) serve as a primary feature to distinguish clinical (C-) genotypes from environmental (E-) genotypes. C-genotypes demonstrate superior survival in human serum relative to E-genotypes, and genome comparisons have allowed for the identification of several putative virulence factors that could potentially aid C-genotypes in disease progression. We used RNA sequencing to analyze the transcriptome of C-genotypes exposed to human serum relative to seawater, which revealed two divergent genetic programs under these two conditions. In human serum, cells displayed a distinct "virulence profile" in which a number of putative virulence factors were upregulated, including genes involved in intracellular signaling, substrate binding and transport, toxin and exoenzyme production, and the heat shock response. Conversely, the "environmental profile" exhibited by cells in seawater revealed upregulation of transcription factors such as rpoS, rpoN, and iscR, as well as genes involved in intracellular signaling, chemotaxis, adherence, and biofilm formation. This dichotomous genetic switch appears to be largely governed by cyclic-di-GMP signaling, and remarkably resembles the dual life-style of V. cholerae as it transitions from host to environment. Furthermore, we found a "general stress response" module, known as the stressosome, to be upregulated in seawater. This signaling system has been well characterized in Gram-positive bacteria, however its role in V. vulnificus is not clear. We examined temporal gene expression patterns of the stressosome and found it to be upregulated in natural estuarine waters indicating that this system plays a role in sensing and responding to the environment. This study advances our understanding of gene regulation

  4. Complete mitochondrial genome reveals genetic diversity of Angiostrongylus cantonensis (Nematoda: Angiostrongylidae).

    PubMed

    Yong, Hoi-Sen; Song, Sze-Looi; Eamsobhana, Praphathip; Goh, Share-Yuan; Lim, Phaik-Eem

    2015-12-01

    Angiostrongylus cantonensis is a zoonotic parasite that causes eosinophilic meningitis in humans. Earlier work on its mitochondrial genome was based on long polymerase chain reaction method. To date, only the mitogenome of the isolates from China has been studied. We report here the complete mitogenome of the Thailand isolate based on next generation sequencing and compare the genetic diversity with other isolates. The mitogenome of the Thailand isolate (13,519bp) is longer than those of the China isolates (13,497-13,502bp). Five protein-coding genes (atp6, cox1, cox2, cob, nad2) show variations in length among the isolates. The stop codon of the Thailand isolate differs from the China and Taiwan isolates in 4 genes (atp6, cob, nad2, nad6). Additionally, the Thailand isolate has 4 incomplete T stop codon compared to 3 in the China and Taiwan isolates. The control region is longer in the Thailand isolate (258bp) than the China (230-236bp) and Taiwan (237bp) isolates. The intergenic sequence between nad4 and cox1 genes in the Thailand isolate lacks 2bp (indels) at the 5'-end of the sequence as well as differs at 7 other sites compared to the China and Taiwan isolates. In the Thailand isolate, 18 tRNAs lack the entire TΨC-arm, compared to 17 in the China isolate and 16 in the Taiwan isolate. Phylogenetic analyses based on 36 mt-genes, 12 PCGs, 2 rRNA genes, 22 tRNA genes and control region all indicate closer genetic affinity between the China and Taiwan isolates compared to the Thailand isolate. Based on 36 mt-genes, the inter-isolate genetic distance varies from p=3.2% between China and Taiwan isolates to p=11.6% between Thailand and China isolates. The mitogenome will be useful for population, phylogenetics and phylogeography studies.

  5. Complete mitochondrial genome reveals genetic diversity of Angiostrongylus cantonensis (Nematoda: Angiostrongylidae).

    PubMed

    Yong, Hoi-Sen; Song, Sze-Looi; Eamsobhana, Praphathip; Goh, Share-Yuan; Lim, Phaik-Eem

    2015-12-01

    Angiostrongylus cantonensis is a zoonotic parasite that causes eosinophilic meningitis in humans. Earlier work on its mitochondrial genome was based on long polymerase chain reaction method. To date, only the mitogenome of the isolates from China has been studied. We report here the complete mitogenome of the Thailand isolate based on next generation sequencing and compare the genetic diversity with other isolates. The mitogenome of the Thailand isolate (13,519bp) is longer than those of the China isolates (13,497-13,502bp). Five protein-coding genes (atp6, cox1, cox2, cob, nad2) show variations in length among the isolates. The stop codon of the Thailand isolate differs from the China and Taiwan isolates in 4 genes (atp6, cob, nad2, nad6). Additionally, the Thailand isolate has 4 incomplete T stop codon compared to 3 in the China and Taiwan isolates. The control region is longer in the Thailand isolate (258bp) than the China (230-236bp) and Taiwan (237bp) isolates. The intergenic sequence between nad4 and cox1 genes in the Thailand isolate lacks 2bp (indels) at the 5'-end of the sequence as well as differs at 7 other sites compared to the China and Taiwan isolates. In the Thailand isolate, 18 tRNAs lack the entire TΨC-arm, compared to 17 in the China isolate and 16 in the Taiwan isolate. Phylogenetic analyses based on 36 mt-genes, 12 PCGs, 2 rRNA genes, 22 tRNA genes and control region all indicate closer genetic affinity between the China and Taiwan isolates compared to the Thailand isolate. Based on 36 mt-genes, the inter-isolate genetic distance varies from p=3.2% between China and Taiwan isolates to p=11.6% between Thailand and China isolates. The mitogenome will be useful for population, phylogenetics and phylogeography studies. PMID:26348256

  6. Multilocus microsatellite typing reveals a genetic relationship but, also, genetic differences between Indian strains of Leishmania tropica causing cutaneous leishmaniasis and those causing visceral leishmaniasis

    PubMed Central

    2014-01-01

    Background Leishmaniases are divided into cutaneous (CL) and visceral leishmaniasis (VL). In the Old World, CL is caused by Leishmania (L.) major, L. tropica and L. aethiopica. L. tropica can also visceralize and cause VL. In India, the large epidemics of VL are caused by L. donovani and cases of CL are caused by L. major and L. tropica. However, strains of L. tropica have also been isolated from Indian cases of VL. This study was done to see if Indian strains of L. tropica isolated from human cases of CL are genetically identical to or different from Indian strains of L. tropica isolated from human cases of VL and to see if any genetic differences found correlated with clinical outcome presenting as either CL or VL. Methods Multilocus microsatellite typing (MLMT), employing 12 independent genetic markers specific to L. tropica, was used to characterize and identify eight strains of L. tropica isolated from human cases of CL examined in clinics in Bikaner City, Rajasthan State, north-west India. Their microsatellite profiles were compared to those of 156 previously typed strains of L. tropica from various geographical locations that were isolated from human cases of CL and VL, hyraxes and sand fly vectors. Results Bayesian, distance-based and factorial correspondence analyses revealed two confirmed populations: India/Asia and Israel/Palestine that subdivided, respectively, into two and three subpopulations. A third population, Africa/Galilee, as proposed by Bayesian analysis was not supported by the other applied methods. The strains of L. tropica from Bikaner isolated from human cases of CL fell into one of the subpopulations in the population India/Asia together with strains from other Asian foci. Indian strains isolated from human cases of VL fell into the same sub-population but were not genetically identical to the Bikaner strains of L. tropica. Conclusions It seems that the genetic diversity encountered between the two groups of Indian strains is mainly owing

  7. CONSERVATION. Genetic assignment of large seizures of elephant ivory reveals Africa's major poaching hotspots.

    PubMed

    Wasser, S K; Brown, L; Mailand, C; Mondol, S; Clark, W; Laurie, C; Weir, B S

    2015-07-01

    Poaching of elephants is now occurring at rates that threaten African populations with extinction. Identifying the number and location of Africa's major poaching hotspots may assist efforts to end poaching and facilitate recovery of elephant populations. We genetically assign origin to 28 large ivory seizures (≥0.5 metric tons) made between 1996 and 2014, also testing assignment accuracy. Results suggest that the major poaching hotspots in Africa may be currently concentrated in as few as two areas. Increasing law enforcement in these two hotspots could help curtail future elephant losses across Africa and disrupt this organized transnational crime. PMID:26089357

  8. CONSERVATION. Genetic assignment of large seizures of elephant ivory reveals Africa's major poaching hotspots.

    PubMed

    Wasser, S K; Brown, L; Mailand, C; Mondol, S; Clark, W; Laurie, C; Weir, B S

    2015-07-01

    Poaching of elephants is now occurring at rates that threaten African populations with extinction. Identifying the number and location of Africa's major poaching hotspots may assist efforts to end poaching and facilitate recovery of elephant populations. We genetically assign origin to 28 large ivory seizures (≥0.5 metric tons) made between 1996 and 2014, also testing assignment accuracy. Results suggest that the major poaching hotspots in Africa may be currently concentrated in as few as two areas. Increasing law enforcement in these two hotspots could help curtail future elephant losses across Africa and disrupt this organized transnational crime.

  9. Genetic relationships of Asians and Northern Europeans, revealed by Y-chromosomal DNA analysis.

    PubMed Central

    Zerjal, T; Dashnyam, B; Pandya, A; Kayser, M; Roewer, L; Santos, F R; Schiefenhövel, W; Fretwell, N; Jobling, M A; Harihara, S; Shimizu, K; Semjidmaa, D; Sajantila, A; Salo, P; Crawford, M H; Ginter, E K; Evgrafov, O V; Tyler-Smith, C

    1997-01-01

    We have identified a new T-->C transition on the human Y chromosome. C-allele chromosomes have been found only in a subset of the populations from Asia and northern Europe and reach their highest frequencies in Yakut, Buryats, and Finns. Examination of the microsatellite haplotypes of the C-allele chromosomes suggests that the mutation occurred recently in Asia. The Y chromosome thus provides both information about population relationships in Asia and evidence for a substantial paternal genetic contribution of Asians to northern European populations such as the Finns. Images Figure 1 Figure 3 Figure 4 PMID:9150165

  10. What do consumer surveys and experiments reveal and conceal about consumer preferences for genetically modified foods?

    PubMed

    Colson, Gregory; Rousu, Matthew C

    2013-01-01

    Assessing consumer perceptions and willingness to pay for genetically modified (GM) foods has been one of the most active areas of empirical research in agricultural economics. Researchers over the past 15 years have delivered well over 100 estimates of consumers' willingness to pay for GM foods using surveys and experimental methods. In this review, we explore a number of unresolved issues related to three questions that are critical when considering the sum of the individual contributions that constitute the evidence on consumer preferences for GM foods.

  11. Genetic variation and population differentiation in a medical herb Houttuynia cordata in China revealed by inter-simple sequence repeats (ISSRs).

    PubMed

    Wei, Lin; Wu, Xian-Jin

    2012-01-01

    Houttuynia cordata is an important traditional Chinese herb with unresolved genetics and taxonomy, which lead to potential problems in the conservation and utilization of the resource. Inter-simple sequence repeat (ISSR) markers were used to assess the level and distribution of genetic diversity in 226 individuals from 15 populations of H. cordata in China. ISSR analysis revealed low genetic variations within populations but high genetic differentiations among populations. This genetic structure probably mainly reflects the historical association among populations. Genetic cluster analysis showed that the basal clade is composed of populations from Southwest China, and the other populations have continuous and eastward distributions. The structure of genetic diversity in H. cordata demonstrated that this species might have survived in Southwest China during the glacial age, and subsequently experienced an eastern postglacial expansion. Based on the results of genetic analysis, it was proposed that as many as possible targeted populations for conservation be included. PMID:22942696

  12. Population genetic structure and direct observations reveal sex-reversed patterns of dispersal in a cooperative bird

    PubMed Central

    Harrison, Xavier A; York, Jennifer E; Young, Andrew J

    2014-01-01

    Sex-biased dispersal is pervasive and has diverse evolutionary implications, but the fundamental drivers of dispersal sex biases remain unresolved. This is due in part to limited diversity within taxonomic groups in the direction of dispersal sex biases, which leaves hypothesis testing critically dependent upon identifying rare reversals of taxonomic norms. Here, we use a combination of observational and genetic data to demonstrate a rare reversal of the avian sex bias in dispersal in the cooperatively breeding white-browed sparrow weaver (Plocepasser mahali). Direct observations revealed that (i) natal philopatry was rare, with both sexes typically dispersing locally to breed, and (ii), unusually for birds, males bred at significantly greater distances from their natal group than females. Population genetic analyses confirmed these patterns, as (i) corrected Assignment index (AIc), FST tests and isolation-by-distance metrics were all indicative of longer dispersal distances among males than females, and (ii) spatial autocorrelation analysis indicated stronger within-group genetic structure among females than males. Examining the spatial scale of extra-group mating highlighted that the resulting ‘sperm dispersal’ could have acted in concert with individual dispersal to generate these genetic patterns, but gamete dispersal alone cannot account entirely for the sex differences in genetic structure observed. That leading hypotheses for the evolution of dispersal sex biases cannot readily account for these sex-reversed patterns of dispersal in white-browed sparrow weavers highlights the continued need for attention to alternative explanations for this enigmatic phenomenon. We highlight the potential importance of sex differences in the distances over which dispersal opportunities can be detected. PMID:25346189

  13. Genetic variation in Rhodomyrtus tomentosa (Kemunting) populations from Malaysia as revealed by inter-simple sequence repeat markers.

    PubMed

    Hue, T S; Abdullah, T L; Abdullah, N A P; Sinniah, U R

    2015-01-01

    Kemunting (Rhodomyrtus tomentosa) from the Myrtaceae family, is native to Malaysia. It is widely used in traditional medicine to treat various illnesses and possesses significant antibacterial properties. In addition, it has great potential as ornamental in landscape design. Genetic variability studies are important for the rational management and conservation of genetic material. In the present study, inter-simple sequence repeat markers were used to assess the genetic diversity of 18 R. tomentosa populations collected from ten states of Peninsular Malaysia. The 11 primers selected generated 173 bands that ranged in size from 1.6 kb to 130 bp, which corresponded to an average of 15.73 bands per primer. Of these bands, 97.69% (169 in total) were polymorphic. High genetic diversity was documented at the species level (H(T) = 0.2705; I = 0.3973; PPB = 97.69%) but there was a low diversity at population level (H(S) = 0.0073; I = 0 .1085; PPB = 20.14%). The high level of genetic differentiation revealed by G(ST) (73%) and analysis of molecular variance (63%), together with the limited gene flow among population (N(m) = 0.1851), suggests that the populations examined are isolated. Results from an unweighted pair group method with arithmetic mean dendrogram and principal coordinate analysis clearly grouped the populations into two geographic groups. This clear grouping can also be demonstrated by the significant Mantel test (r = 0.581, P = 0.001). We recommend that all the R. tomentosa populations be preserved in conservation program. PMID:26681029

  14. Meta-analysis of genome-wide association studies reveals genetic overlap between Hodgkin lymphoma and multiple sclerosis

    PubMed Central

    Khankhanian, Pouya; Cozen, Wendy; Himmelstein, Daniel S; Madireddy, Lohith; Din, Lennox; van den Berg, Anke; Matsushita, Takuya; Glaser, Sally L; Moré, Jayaji M; Smedby, Karin E.; Baranzini, Sergio E; Mack, Thomas M; Lizée, Antoine; de Sanjosé, Silvia; Gourraud, Pierre-Antoine; Nieters, Alexandra; Hauser, Stephen L; Cocco, Pierluigi; Maynadié, Marc; Foretová, Lenka; Staines, Anthony; Delahaye-Sourdeix, Manon; Li, Dalin; Bhatia, Smita; Melbye, Mads; Onel, Kenan; Jarrett, Ruth; McKay, James D; Oksenberg, Jorge R; Hjalgrim, Henrik

    2016-01-01

    Background: Based on epidemiological commonalities, multiple sclerosis (MS) and Hodgkin lymphoma (HL), two clinically distinct conditions, have long been suspected to be aetiologically related. MS and HL occur in roughly the same age groups, both are associated with Epstein-Barr virus infection and ultraviolet (UV) light exposure, and they cluster mutually in families (though not in individuals). We speculated if in addition to sharing environmental risk factors, MS and HL were also genetically related. Using data from genome-wide association studies (GWAS) of 1816 HL patients, 9772 MS patients and 25 255 controls, we therefore investigated the genetic overlap between the two diseases. Methods: From among a common denominator of 404 K single nucleotide polymorphisms (SNPs) studied, we identified SNPs and human leukocyte antigen (HLA) alleles independently associated with both diseases. Next, we assessed the cumulative genome-wide effect of MS-associated SNPs on HL and of HL-associated SNPs on MS. To provide an interpretational frame of reference, we used data from published GWAS to create a genetic network of diseases within which we analysed proximity of HL and MS to autoimmune diseases and haematological and non-haematological malignancies. Results: SNP analyses revealed genome-wide overlap between HL and MS, most prominently in the HLA region. Polygenic HL risk scores explained 4.44% of HL risk (Nagelkerke R2), but also 2.36% of MS risk. Conversely, polygenic MS risk scores explained 8.08% of MS risk and 1.94% of HL risk. In the genetic disease network, HL was closer to autoimmune diseases than to solid cancers. Conclusions: HL displays considerable genetic overlap with MS and other autoimmune diseases. PMID:26971321

  15. Genetic variation between Schistosoma japonicum lineages from lake and mountainous regions in China revealed by resequencing whole genomes.

    PubMed

    Yin, Mingbo; Liu, Xiao; Xu, Bin; Huang, Jian; Zheng, Qi; Yang, Zhong; Feng, Zheng; Han, Ze-Guang; Hu, Wei

    2016-09-01

    Schistosoma infection is a major cause of morbidity and mortality worldwide. Schistosomiasis japonica is endemic in mainland China along the Yangtze River, typically distributed in two geographical categories of lake and mountainous regions. Study on schistosome genetic diversity is of interest in respect of understanding parasite biology and transmission, and formulating control strategy. Certain genetic variations may be associated with adaptations to different ecological habitats. The aim of this study is to gain insight into Schistosoma japonicum genetic variation, evolutionary origin and associated causes of different geographic lineages through examining homozygous Single Nucleotide Polymorphisms (SNPs) based on resequenced genome data. We collected S. japonicum samples from four sites, three in the lake regions (LR) of mid-east (Guichi and Tonglin in Anhui province, Laogang in Hunan province) and one in mountainous region (MR) (Xichang in Sichuan province) of south-west of China, resequenced their genomes using Next Generation Sequencing (NGS) technology, and made use of the available database of S. japonicum draft genomic sequence as a reference in genome mapping. A total of 14,575 SNPs from 2059 genes were identified in the four lineages. Phylogenetic analysis confirmed significant genetic variation exhibited between the different geographical lineages, and further revealed that the MR Xichang lineage is phylogenetically closer to LR Guich lineage than to other two LR lineages, and the MR lineage might be evolved from LR lineages. More than two thirds of detected SNPs were nonsynonymous; functional annotation of the SNP-containing genes showed that they are involved mainly in biological processes such as signaling and response to stimuli. Notably, unique nonsynonymous SNP variations were detected in 66 genes of MR lineage, inferring possible genetic adaption to mountainous ecological condition. PMID:27207135

  16. Inheritance in turnip of variable-number tandem-repeat genetic markers revealed with synthetic repetitive DNA probes.

    PubMed

    Rogstad, S H

    1994-12-01

    Oligomers (16-26 mers) composed of short, tandemly repeated DNA sequences (3-10 bases) were used individually with their complementary oligomer in separate polymerase chain reactions (PCRs) that extended the number of repeats to make 15 different PCR synthetic tandem-repeat (STR) probes. These PCR-STR probes were used to examine the inheritance of variable-number tandem-repeat (VNTR) genetic markers from two parent plants of turnip (Brassica rapa L.) to 20 offspring. Following HinfI digestion and PCR-STR probing of Southern blots, interpretable variable parental and offspring band profiles were found with 9 of the 15 probes used. Each of these nine probes produced a unique set of fragments, and no cases of different probes revealing the same fragment were detected. Seventy-nine parental fragments were found and, of these, 65% (51) appeared to be heterozygous in one or both parents, with 52% (41) appearing to be heterozygous in one of the parents exclusively. That these fragments are transmitted as though heterozygous in the parents implies that they are derived from the nuclear complement of the genome. Chi-square analyses of the transmission of markers are, in general, consistent with Mendelian expectations, although three non-parental bands were found accounting for approximately 0.5% of these transmitted bands. For the fragments heterozygous in one of the parents exclusively, seven alleles exhibited complete linkage in three groups, 12 alleles were incompletely linked in six groups, and four allelic groups involving 11 alleles were identified. PCR-STR probes are relatively rapid to generate and apply (no cloning, clone screening, or sequencing steps are required), and have been shown to reveal VNTR genetic markers in a wide variety of plant species. These results add to the list of studies showing that VNTR genetic markers (and in this case, markers revealed by PCR-STR probes) are transmitted for the greater part in a Mendelian fashion.

  17. Genetic diversity in the blackberry rust pathogen, Phragmidium violaceum, in Europe and Australasia as revealed by analysis of SAMPL.

    PubMed

    Gomez, Don R; Evans, Katherine J; Harvey, Paul R; Baker, Jeanine; Barton, Jane; Jourdan, Mireille; Morin, Louise; Pennycook, Shaun R; Scott, Eileen S

    2006-04-01

    Indigenous to Europe, the blackberry rust fungus Phragmidium violaceum was introduced to Australia and subsequently appeared in New Zealand, with the most recent authorised introductions to Australia specifically for the biological control of European blackberry. Markers for 'selective amplification of microsatellite polymorphic loci' (SAMPL) were developed for studying the population genetics of P. violaceum. Modification of one of the two SAMPL primers with a HaeIII adapter (H) revealed significantly greater levels of genetic variation than primers used to generate AFLPs, the latter revealing little or no variation among 25 Australasian and 19 European isolates of P. violaceum. SAMPL was used to describe genetic variation among these 44 isolates of P. violaceum from 51 loci generated using primer pairs (GACA)4 +H-G and R1+H-G. The European isolates were more diverse than Australasian isolates, with 37 and 22 % polymorphic loci, respectively. Cluster analysis revealed geographic clades, with Australasian isolates forming one cluster separated from two clusters comprising the European isolates. However, low bootstrap support at these clades suggested that Australian isolates had not differentiated significantly from European isolates since the first record of P. violaceum in Australia in 1984. In general, the results support two hypotheses. First, that the population of P. violaceum in Australia was founded from a subset of individuals originating from Europe. Second, that P. violaceum in New Zealand originated from the Australian population of P. violaceum, probably by wind dispersal of urediniospores across the Tasman Sea. The application of SAMPL markers to the current biological control programme for European blackberry is discussed. PMID:16431094

  18. Genetic diversity in the blackberry rust pathogen, Phragmidium violaceum, in Europe and Australasia as revealed by analysis of SAMPL.

    PubMed

    Gomez, Don R; Evans, Katherine J; Harvey, Paul R; Baker, Jeanine; Barton, Jane; Jourdan, Mireille; Morin, Louise; Pennycook, Shaun R; Scott, Eileen S

    2006-04-01

    Indigenous to Europe, the blackberry rust fungus Phragmidium violaceum was introduced to Australia and subsequently appeared in New Zealand, with the most recent authorised introductions to Australia specifically for the biological control of European blackberry. Markers for 'selective amplification of microsatellite polymorphic loci' (SAMPL) were developed for studying the population genetics of P. violaceum. Modification of one of the two SAMPL primers with a HaeIII adapter (H) revealed significantly greater levels of genetic variation than primers used to generate AFLPs, the latter revealing little or no variation among 25 Australasian and 19 European isolates of P. violaceum. SAMPL was used to describe genetic variation among these 44 isolates of P. violaceum from 51 loci generated using primer pairs (GACA)4 +H-G and R1+H-G. The European isolates were more diverse than Australasian isolates, with 37 and 22 % polymorphic loci, respectively. Cluster analysis revealed geographic clades, with Australasian isolates forming one cluster separated from two clusters comprising the European isolates. However, low bootstrap support at these clades suggested that Australian isolates had not differentiated significantly from European isolates since the first record of P. violaceum in Australia in 1984. In general, the results support two hypotheses. First, that the population of P. violaceum in Australia was founded from a subset of individuals originating from Europe. Second, that P. violaceum in New Zealand originated from the Australian population of P. violaceum, probably by wind dispersal of urediniospores across the Tasman Sea. The application of SAMPL markers to the current biological control programme for European blackberry is discussed.

  19. Population genetic analysis reveals cryptic sex in the phytopathogenic fungus Alternaria alternata.

    PubMed

    Meng, Jing-Wen; Zhu, Wen; He, Meng-Han; Wu, E-Jiao; Duan, Guo-Hua; Xie, Ye-Kun; Jin, Yu-Jia; Yang, Li-Na; Shang, Li-Ping; Zhan, Jiasui

    2015-12-15

    Reproductive mode can impact population genetic dynamics and evolutionary landscape of plant pathogens as well as on disease epidemiology and management. In this study, we monitored the spatial dynamics and mating type idiomorphs in ~700 Alternaria alternata isolates sampled from the main potato production areas in China to infer the mating system of potato early blight. Consistent with the expectation of asexual species, identical genotypes were recovered from different locations separated by hundreds of kilometers of geographic distance and spanned across many years. However, high genotype diversity, equal MAT1-1 and MAT1-2 frequencies within and among populations, no genetic differentiation and phylogenetic association between two mating types, combined with random association amongst neutral markers in some field populations, suggested that sexual reproduction may also play an important role in the epidemics and evolution of the pathogen in at least half of the populations assayed despite the fact that no teleomorphs have been observed yet naturally or artificially. Our results indicated that A. alternata may adopt an epidemic mode of reproduction by combining many cycles of asexual propagation with fewer cycles of sexual reproduction, facilitating its adaptation to changing environments and making the disease management on potato fields even more difficult.

  20. Population genetic analysis reveals cryptic sex in the phytopathogenic fungus Alternaria alternata

    PubMed Central

    Meng, Jing-Wen; Zhu, Wen; He, Meng-Han; Wu, E-Jiao; Duan, Guo-Hua; Xie, Ye-Kun; Jin, Yu-Jia; Yang, Li-Na; Shang, Li-Ping; Zhan, Jiasui

    2015-01-01

    Reproductive mode can impact population genetic dynamics and evolutionary landscape of plant pathogens as well as on disease epidemiology and management. In this study, we monitored the spatial dynamics and mating type idiomorphs in ~700 Alternaria alternata isolates sampled from the main potato production areas in China to infer the mating system of potato early blight. Consistent with the expectation of asexual species, identical genotypes were recovered from different locations separated by hundreds of kilometers of geographic distance and spanned across many years. However, high genotype diversity, equal MAT1-1 and MAT1-2 frequencies within and among populations, no genetic differentiation and phylogenetic association between two mating types, combined with random association amongst neutral markers in some field populations, suggested that sexual reproduction may also play an important role in the epidemics and evolution of the pathogen in at least half of the populations assayed despite the fact that no teleomorphs have been observed yet naturally or artificially. Our results indicated that A. alternata may adopt an epidemic mode of reproduction by combining many cycles of asexual propagation with fewer cycles of sexual reproduction, facilitating its adaptation to changing environments and making the disease management on potato fields even more difficult. PMID:26666175

  1. Mammalian Reverse Genetics without Crossing Reveals Nr3a as a Short-Sleeper Gene.

    PubMed

    Sunagawa, Genshiro A; Sumiyama, Kenta; Ukai-Tadenuma, Maki; Perrin, Dimitri; Fujishima, Hiroshi; Ukai, Hideki; Nishimura, Osamu; Shi, Shoi; Ohno, Rei-ichiro; Narumi, Ryohei; Shimizu, Yoshihiro; Tone, Daisuke; Ode, Koji L; Kuraku, Shigehiro; Ueda, Hiroki R

    2016-01-26

    The identification of molecular networks at the system level in mammals is accelerated by next-generation mammalian genetics without crossing, which requires both the efficient production of whole-body biallelic knockout (KO) mice in a single generation and high-performance phenotype analyses. Here, we show that the triple targeting of a single gene using the CRISPR/Cas9 system achieves almost perfect KO efficiency (96%-100%). In addition, we developed a respiration-based fully automated non-invasive sleep phenotyping system, the Snappy Sleep Stager (SSS), for high-performance (95.3% accuracy) sleep/wake staging. Using the triple-target CRISPR and SSS in tandem, we reliably obtained sleep/wake phenotypes, even in double-KO mice. By using this system to comprehensively analyze all of the N-methyl-D-aspartate (NMDA) receptor family members, we found Nr3a as a short-sleeper gene, which is verified by an independent set of triple-target CRISPR. These results demonstrate the application of mammalian reverse genetics without crossing to organism-level systems biology in sleep research. PMID:26774482

  2. Phylogeographic and population genetic analyses reveal multiple species of Boa and independent origins of insular dwarfism.

    PubMed

    Card, Daren C; Schield, Drew R; Adams, Richard H; Corbin, Andrew B; Perry, Blair W; Andrew, Audra L; Pasquesi, Giulia I M; Smith, Eric N; Jezkova, Tereza; Boback, Scott M; Booth, Warren; Castoe, Todd A

    2016-09-01

    Boa is a Neotropical genus of snakes historically recognized as monotypic despite its expansive distribution. The distinct morphological traits and color patterns exhibited by these snakes, together with the wide diversity of ecosystems they inhabit, collectively suggest that the genus may represent multiple species. Morphological variation within Boa also includes instances of dwarfism observed in multiple offshore island populations. Despite this substantial diversity, the systematics of the genus Boa has received little attention until very recently. In this study we examined the genetic structure and phylogenetic relationships of Boa populations using mitochondrial sequences and genome-wide SNP data obtained from RADseq. We analyzed these data at multiple geographic scales using a combination of phylogenetic inference (including coalescent-based species delimitation) and population genetic analyses. We identified extensive population structure across the range of the genus Boa and multiple lines of evidence for three widely-distributed clades roughly corresponding with the three primary land masses of the Western Hemisphere. We also find both mitochondrial and nuclear support for independent origins and parallel evolution of dwarfism on offshore island clusters in Belize and Cayos Cochinos Menor, Honduras.

  3. Genetic diversity and phylogenetic relationships in Vigna Savi germplasm revealed by DNA amplification fingerprinting.

    PubMed

    Simon, M V; Benko-Iseppon, A-M; Resende, L V; Winter, P; Kahl, G

    2007-06-01

    The pantropical genus Vigna (Leguminosae) comprises 7 cultivated species that are adapted to a wide range of extreme agroclimatic conditions. Few data are available on the relationships among these cultivated species or on their importance as sources of resistance against biotic and abiotic stresses. Therefore, we optimized DNA amplification fingerprinting (DAF) to estimate the genetic diversity within, and genetic relationships among, a representative core collection of cowpea, as compared with 16 accessions representing cultivars from 6 Vigna species. A set of 26 primers was selected from 262 tested random primers and used for the characterization of 85 Vigna accessions (6 V. angularis, 4 each of V. mungo and V. radiata, 2 V. umbellata, 1 V. aconitifolia, and 68 V. unguiculata), with Phaseolus vulgaris subsp. vulgaris as outgroup. A total of 212 polymorphic bands were used for maximum parsimony analysis. Our results clearly distinguished Brazilian from African V. unguiculata genotypes. At the species level, V. angularis was the most related and V. radiata the most divergent species relative to V. unguiculata. DAF markers were also informative at the intraspecific level, detecting a large diversity between cowpea cultivars. The implications of the presented results for cowpea breeding programs are discussed.

  4. Genetic diversity of Pleurotus pulmonarius revealed by RAPD, ISSR, and SRAP fingerprinting.

    PubMed

    Yin, Yonggang; Liu, Yu; Li, Huamin; Zhao, Shuang; Wang, Shouxian; Liu, Ying; Wu, Di; Xu, Feng

    2014-03-01

    Pleurotus pulmonarius is one of the most widely cultivated and popular edible fungi in the genus Pleurotus. Three molecular markers were used to analyze the genetic diversity of 15 Chinese P. pulmonarius cultivars. In total, 21 random amplified polymorphic DNA (RAPD), 20 inter-simple sequence repeat (ISSR), and 20 sequence-related amplified polymorphism (SRAP) primers or primer pairs were selected for generating data based on their clear banding profiles produced. With the use of these RAPD, ISSR, and SRAP primers or primer pairs, a total of 361 RAPD, 283 ISSR, and 131 SRAP fragments were detected, of which 287 (79.5 %) RAPD, 211 (74.6 %) ISSR, and 98 (74.8 %) SRAP fragments were polymorphic. Unweighted Pair-Group Method with Arithmetic Mean (UPGMA) trees of these three methods were structured similarly, grouping the 15 tested strains into four clades. Subsequently, visual DNA fingerprinting and cluster analysis were performed to evaluate the resolving power of the combined RAPD, ISSR, and SRAP markers in the differentiation among these strains. The results of this study demonstrated that each method above could efficiently differentiate P. pulmonarius cultivars and could thus be considered an efficient tool for surveying genetic diversity of P. pulmonarius.

  5. Novel skin phenotypes revealed by a genome-wide mouse reverse genetic screen

    PubMed Central

    Liakath-Ali, Kifayathullah; Vancollie, Valerie E.; Heath, Emma; Smedley, Damian P.; Estabel, Jeanne; Sunter, David; DiTommaso, Tia; White, Jacqueline K.; Ramirez-Solis, Ramiro; Smyth, Ian; Steel, Karen P.; Watt, Fiona M.

    2014-01-01

    Permanent stop-and-shop large-scale mouse mutant resources provide an excellent platform to decipher tissue phenogenomics. Here we analyse skin from 538 knockout mouse mutants generated by the Sanger Institute Mouse Genetics Project. We optimize immunolabelling of tail epidermal wholemounts to allow systematic annotation of hair follicle, sebaceous gland and interfollicular epidermal abnormalities using ontology terms from the Mammalian Phenotype Ontology. Of the 50 mutants with an epidermal phenotype, 9 map to human genetic conditions with skin abnormalities. Some mutant genes are expressed in the skin, whereas others are not, indicating systemic effects. One phenotype is affected by diet and several are incompletely penetrant. In-depth analysis of three mutants, Krt76, Myo5a (a model of human Griscelli syndrome) and Mysm1, provides validation of the screen. Our study is the first large-scale genome-wide tissue phenotype screen from the International Knockout Mouse Consortium and provides an open access resource for the scientific community. PMID:24721909

  6. Population genetic analysis reveals cryptic sex in the phytopathogenic fungus Alternaria alternata.

    PubMed

    Meng, Jing-Wen; Zhu, Wen; He, Meng-Han; Wu, E-Jiao; Duan, Guo-Hua; Xie, Ye-Kun; Jin, Yu-Jia; Yang, Li-Na; Shang, Li-Ping; Zhan, Jiasui

    2015-01-01

    Reproductive mode can impact population genetic dynamics and evolutionary landscape of plant pathogens as well as on disease epidemiology and management. In this study, we monitored the spatial dynamics and mating type idiomorphs in ~700 Alternaria alternata isolates sampled from the main potato production areas in China to infer the mating system of potato early blight. Consistent with the expectation of asexual species, identical genotypes were recovered from different locations separated by hundreds of kilometers of geographic distance and spanned across many years. However, high genotype diversity, equal MAT1-1 and MAT1-2 frequencies within and among populations, no genetic differentiation and phylogenetic association between two mating types, combined with random association amongst neutral markers in some field populations, suggested that sexual reproduction may also play an important role in the epidemics and evolution of the pathogen in at least half of the populations assayed despite the fact that no teleomorphs have been observed yet naturally or artificially. Our results indicated that A. alternata may adopt an epidemic mode of reproduction by combining many cycles of asexual propagation with fewer cycles of sexual reproduction, facilitating its adaptation to changing environments and making the disease management on potato fields even more difficult. PMID:26666175

  7. Whole Genome Sequencing of Field Isolates Reveals Extensive Genetic Diversity in Plasmodium vivax from Colombia

    PubMed Central

    Winter, David J.; Pacheco, M. Andreína; Vallejo, Andres F.; Schwartz, Rachel S.; Arevalo-Herrera, Myriam; Herrera, Socrates

    2015-01-01

    Plasmodium vivax is the most prevalent malarial species in South America and exerts a substantial burden on the populations it affects. The control and eventual elimination of P. vivax are global health priorities. Genomic research contributes to this objective by improving our understanding of the biology of P. vivax and through the development of new genetic markers that can be used to monitor efforts to reduce malaria transmission. Here we analyze whole-genome data from eight field samples from a region in Cordóba, Colombia where malaria is endemic. We find considerable genetic diversity within this population, a result that contrasts with earlier studies suggesting that P. vivax had limited diversity in the Americas. We also identify a selective sweep around a substitution known to confer resistance to sulphadoxine-pyrimethamine (SP). This is the first observation of a selective sweep for SP resistance in this species. These results indicate that P. vivax has been exposed to SP pressure even when the drug is not in use as a first line treatment for patients afflicted by this parasite. We identify multiple non-synonymous substitutions in three other genes known to be involved with drug resistance in Plasmodium species. Finally, we found extensive microsatellite polymorphisms. Using this information we developed 18 polymorphic and easy to score microsatellite loci that can be used in epidemiological investigations in South America. PMID:26709695

  8. Population genetics reveals origin and number of founders in a biological invasion.

    PubMed

    Ficetola, Gentile Francesco; Bonin, Aurelie; Miaud, Claude

    2008-02-01

    Propagule pressure is considered the main determinant of success of biological invasions: when a large number of individuals are introduced into an area, the species is more likely to establish and become invasive. Nevertheless, precise data on propagule pressure exist only for a small sample of invasive species, usually voluntarily introduced. We studied the invasion of the American bullfrog, Rana catesbeiana, into Europe, a species that is considered a major cause of decline for native amphibians. For this major invader with scarce historical data, we used population genetics data (a partial sequence of the mitochondrial cytochrome b gene) to infer the invasion history and to estimate the number of founders of non-native populations. Based on differences between populations, at least six independent introductions from the native range occurred in Europe, followed by secondary translocations. Genetic diversity was strongly reduced in non-native populations, indicating a very strong bottleneck during colonization. We used simulations to estimate the precise number of founders and found that most non-native populations derive from less than six females. This capability of invasion from a very small number of propagules challenges usual management strategies; species with such ability should be identified at an early stage of introduction. PMID:18194168

  9. Phylogeographic and population genetic analyses reveal multiple species of Boa and independent origins of insular dwarfism.

    PubMed

    Card, Daren C; Schield, Drew R; Adams, Richard H; Corbin, Andrew B; Perry, Blair W; Andrew, Audra L; Pasquesi, Giulia I M; Smith, Eric N; Jezkova, Tereza; Boback, Scott M; Booth, Warren; Castoe, Todd A

    2016-09-01

    Boa is a Neotropical genus of snakes historically recognized as monotypic despite its expansive distribution. The distinct morphological traits and color patterns exhibited by these snakes, together with the wide diversity of ecosystems they inhabit, collectively suggest that the genus may represent multiple species. Morphological variation within Boa also includes instances of dwarfism observed in multiple offshore island populations. Despite this substantial diversity, the systematics of the genus Boa has received little attention until very recently. In this study we examined the genetic structure and phylogenetic relationships of Boa populations using mitochondrial sequences and genome-wide SNP data obtained from RADseq. We analyzed these data at multiple geographic scales using a combination of phylogenetic inference (including coalescent-based species delimitation) and population genetic analyses. We identified extensive population structure across the range of the genus Boa and multiple lines of evidence for three widely-distributed clades roughly corresponding with the three primary land masses of the Western Hemisphere. We also find both mitochondrial and nuclear support for independent origins and parallel evolution of dwarfism on offshore island clusters in Belize and Cayos Cochinos Menor, Honduras. PMID:27241629

  10. Mark-recapture using tetracycline and genetics reveal record-high bear density

    USGS Publications Warehouse

    Peacock, E.; Titus, K.; Garshelis, D.L.; Peacock, M.M.; Kuc, M.

    2011-01-01

    We used tetracycline biomarking, augmented with genetic methods to estimate the size of an American black bear (Ursus americanus) population on an island in Southeast Alaska. We marked 132 and 189 bears that consumed remote, tetracycline-laced baits in 2 different years, respectively, and observed 39 marks in 692 bone samples subsequently collected from hunters. We genetically analyzed hair samples from bait sites to determine the sex of marked bears, facilitating derivation of sex-specific population estimates. We obtained harvest samples from beyond the study area to correct for emigration. We estimated a density of 155 independent bears/100 km2, which is equivalent to the highest recorded for this species. This high density appears to be maintained by abundant, accessible natural food. Our population estimate (approx. 1,000 bears) could be used as a baseline and to set hunting quotas. The refined biomarking method for abundance estimation is a useful alternative where physical captures or DNA-based estimates are precluded by cost or logistics. Copyright ?? 2011 The Wildlife Society.

  11. Genetic structure in village dogs reveals a Central Asian domestication origin.

    PubMed

    Shannon, Laura M; Boyko, Ryan H; Castelhano, Marta; Corey, Elizabeth; Hayward, Jessica J; McLean, Corin; White, Michelle E; Abi Said, Mounir; Anita, Baddley A; Bondjengo, Nono Ikombe; Calero, Jorge; Galov, Ana; Hedimbi, Marius; Imam, Bulu; Khalap, Rajashree; Lally, Douglas; Masta, Andrew; Oliveira, Kyle C; Pérez, Lucía; Randall, Julia; Tam, Nguyen Minh; Trujillo-Cornejo, Francisco J; Valeriano, Carlos; Sutter, Nathan B; Todhunter, Rory J; Bustamante, Carlos D; Boyko, Adam R

    2015-11-01

    Dogs were the first domesticated species, originating at least 15,000 y ago from Eurasian gray wolves. Dogs today consist primarily of two specialized groups--a diverse set of nearly 400 pure breeds and a far more populous group of free-ranging animals adapted to a human commensal lifestyle (village dogs). Village dogs are more genetically diverse and geographically widespread than purebred dogs making them vital for unraveling dog population history. Using a semicustom 185,805-marker genotyping array, we conducted a large-scale survey of autosomal, mitochondrial, and Y chromosome diversity in 4,676 purebred dogs from 161 breeds and 549 village dogs from 38 countries. Geographic structure shows both isolation and gene flow have shaped genetic diversity in village dog populations. Some populations (notably those in the Neotropics and the South Pacific) are almost completely derived from European stock, whereas others are clearly admixed between indigenous and European dogs. Importantly, many populations--including those of Vietnam, India, and Egypt-show minimal evidence of European admixture. These populations exhibit a clear gradient of short--range linkage disequilibrium consistent with a Central Asian domestication origin.

  12. Trends in flower symmetry evolution revealed through phylogenetic and developmental genetic advances.

    PubMed

    Hileman, Lena C

    2014-08-01

    A striking aspect of flowering plant (angiosperm) diversity is variation in flower symmetry. From an ancestral form of radial symmetry (polysymmetry, actinomorphy), multiple evolutionary transitions have contributed to instances of non-radial forms, including bilateral symmetry (monosymmetry, zygomorphy) and asymmetry. Advances in flowering plant molecular phylogenetic research and studies of character evolution as well as detailed flower developmental genetic studies in a few model species (e.g. Antirrhinum majus, snapdragon) have provided a foundation for deep insights into flower symmetry evolution. From phylogenetic studies, we have a better understanding of where during flowering plant diversification transitions from radial to bilateral flower symmetry (and back to radial symmetry) have occurred. From developmental studies, we know that a genetic programme largely dependent on the functional action of the CYCLOIDEA gene is necessary for differentiation along the snapdragon dorsoventral flower axis. Bringing these two lines of inquiry together has provided surprising insights into both the parallel recruitment of a CYC-dependent developmental programme during independent transitions to bilateral flower symmetry, and the modifications to this programme in transitions back to radial flower symmetry, during flowering plant evolution.

  13. Population Genomics Reveals Low Genetic Diversity and Adaptation to Hypoxia in Snub-Nosed Monkeys.

    PubMed

    Zhou, Xuming; Meng, Xuehong; Liu, Zhijin; Chang, Jiang; Wang, Boshi; Li, Mingzhou; Wengel, Pablo Orozco-Ter; Tian, Shilin; Wen, Changlong; Wang, Ziming; Garber, Paul A; Pan, Huijuan; Ye, Xinping; Xiang, Zuofu; Bruford, Michael W; Edwards, Scott V; Cao, Yinchuan; Yu, Shuancang; Gao, Lianju; Cao, Zhisheng; Liu, Guangjian; Ren, Baoping; Shi, Fanglei; Peterfi, Zalan; Li, Dayong; Li, Baoguo; Jiang, Zhi; Li, Junsheng; Gladyshev, Vadim N; Li, Ruiqiang; Li, Ming

    2016-10-01

    Snub-nosed monkeys (genus Rhinopithecus) are a group of endangered colobines endemic to South Asia. Here, we re-sequenced the whole genomes of 38 snub-nosed monkeys representing four species within this genus. By conducting population genomic analyses, we observed a similar load of deleterious variation in snub-nosed monkeys living in both smaller and larger populations and found that genomic diversity was lower than that reported in other primates. Reconstruction of Rhinopithecus evolutionary history suggested that episodes of climatic variation over the past 2 million years, associated with glacial advances and retreats and population isolation, have shaped snub-nosed monkey demography and evolution. We further identified several hypoxia-related genes under selection in R. bieti (black snub-nosed monkey), a species that exploits habitats higher than any other nonhuman primate. These results provide the first detailed and comprehensive genomic insights into genetic diversity, demography, genetic burden, and adaptation in this radiation of endangered primates. PMID:27555581

  14. Comparative phylogeography and population genetics within Buteo lineatus reveals evidence of distinct evolutionary lineages

    USGS Publications Warehouse

    Hull, J.M.; Strobel, Bradley N.; Boal, C.W.; Hull, A.C.; Dykstra, C.R.; Irish, A.M.; Fish, A.M.; Ernest, H.B.

    2008-01-01

    Traditional subspecies classifications may suggest phylogenetic relationships that are discordant with evolutionary history and mislead evolutionary inference. To more accurately describe evolutionary relationships and inform conservation efforts, we investigated the genetic relationships and demographic histories of Buteo lineatus subspecies in eastern and western North America using 21 nuclear microsatellite loci and 375-base pairs of mitochondrial control region sequence. Frequency based analyses of mitochondrial sequence data support significant population distinction between eastern (B. l. lineatus/alleni/texanus) and western (B. l. elegans) subspecies of B. lineatus. This distinction was further supported by frequency and Bayesian analyses of the microsatellite data. We found evidence of differing demographic histories between regions; among eastern sites, mitochondrial data suggested that rapid population expansion occurred following the end of the last glacial maximum, with B. l. texanus population expansion preceding that of B. l. lineatus/alleni. No evidence of post-glacial population expansion was detected among western samples (B. l. elegans). Rather, microsatellite data suggest that the western population has experienced a recent bottleneck, presumably associated with extensive anthropogenic habitat loss during the 19th and 20th centuries. Our data indicate that eastern and western populations of B. lineatus are genetically distinct lineages, have experienced very different demographic histories, and suggest management as separate conservation units may be warranted. ?? 2008 Elsevier Inc. All rights reserved.

  15. Revealing the amino acid composition of proteins within an expanded genetic code

    PubMed Central

    Aerni, Hans R.; Shifman, Mark A.; Rogulina, Svetlana; O'Donoghue, Patrick; Rinehart, Jesse

    2015-01-01

    The genetic code can be manipulated to reassign codons for the incorporation of non-standard amino acids (NSAA). Deletion of release factor 1 in Escherichia coli enhances translation of UAG (Stop) codons, yet may also extended protein synthesis at natural UAG terminated messenger RNAs. The fidelity of protein synthesis at reassigned UAG codons and the purity of the NSAA containing proteins produced require careful examination. Proteomics would be an ideal tool for these tasks, but conventional proteomic analyses cannot readily identify the extended proteins and accurately discover multiple amino acid (AA) insertions at a single UAG. To address these challenges, we created a new proteomic workflow that enabled the detection of UAG readthrough in native proteins in E. coli strains in which UAG was reassigned to encode phosphoserine. The method also enabled quantitation of NSAA and natural AA incorporation at UAG in a recombinant reporter protein. As a proof-of-principle, we measured the fidelity and purity of the phosphoserine orthogonal translation system (OTS) and used this information to improve its performance. Our results show a surprising diversity of natural AAs at reassigned stop codons. Our method can be used to improve OTSs and to quantify amino acid purity at reassigned codons in organisms with expanded genetic codes. PMID:25378305

  16. High-resolution mapping reveals hundreds of genetic incompatibilities in hybridizing fish species

    PubMed Central

    Schumer, Molly; Cui, Rongfeng; Powell, Daniel L; Dresner, Rebecca; Rosenthal, Gil G; Andolfatto, Peter

    2014-01-01

    Hybridization is increasingly being recognized as a common process in both animal and plant species. Negative epistatic interactions between genes from different parental genomes decrease the fitness of hybrids and can limit gene flow between species. However, little is known about the number and genome-wide distribution of genetic incompatibilities separating species. To detect interacting genes, we perform a high-resolution genome scan for linkage disequilibrium between unlinked genomic regions in naturally occurring hybrid populations of swordtail fish. We estimate that hundreds of pairs of genomic regions contribute to reproductive isolation between these species, despite them being recently diverged. Many of these incompatibilities are likely the result of natural or sexual selection on hybrids, since intrinsic isolation is known to be weak. Patterns of genomic divergence at these regions imply that genetic incompatibilities play a significant role in limiting gene flow even in young species. DOI: http://dx.doi.org/10.7554/eLife.02535.001 PMID:24898754

  17. Genetic structure in village dogs reveals a Central Asian domestication origin

    PubMed Central

    Shannon, Laura M.; Boyko, Ryan H.; Castelhano, Marta; Corey, Elizabeth; Hayward, Jessica J.; McLean, Corin; White, Michelle E.; Abi Said, Mounir; Anita, Baddley A.; Bondjengo, Nono Ikombe; Calero, Jorge; Galov, Ana; Hedimbi, Marius; Imam, Bulu; Khalap, Rajashree; Lally, Douglas; Masta, Andrew; Oliveira, Kyle C.; Pérez, Lucía; Randall, Julia; Tam, Nguyen Minh; Trujillo-Cornejo, Francisco J.; Valeriano, Carlos; Sutter, Nathan B.; Todhunter, Rory J.; Bustamante, Carlos D.; Boyko, Adam R.

    2015-01-01

    Dogs were the first domesticated species, originating at least 15,000 y ago from Eurasian gray wolves. Dogs today consist primarily of two specialized groups—a diverse set of nearly 400 pure breeds and a far more populous group of free-ranging animals adapted to a human commensal lifestyle (village dogs). Village dogs are more genetically diverse and geographically widespread than purebred dogs making them vital for unraveling dog population history. Using a semicustom 185,805-marker genotyping array, we conducted a large-scale survey of autosomal, mitochondrial, and Y chromosome diversity in 4,676 purebred dogs from 161 breeds and 549 village dogs from 38 countries. Geographic structure shows both isolation and gene flow have shaped genetic diversity in village dog populations. Some populations (notably those in the Neotropics and the South Pacific) are almost completely derived from European stock, whereas others are clearly admixed between indigenous and European dogs. Importantly, many populations—including those of Vietnam, India, and Egypt—show minimal evidence of European admixture. These populations exhibit a clear gradient of short-range linkage disequilibrium consistent with a Central Asian domestication origin. PMID:26483491

  18. Genetic Dissection Reveals Two Separate Pathways for Rod and Cone Regeneration in the Teleost Retina

    PubMed Central

    Morris, Ann C.; Scholz, Tamera L.; Brockerhoff, Susan E.; Fadool, James M.

    2009-01-01

    Development of therapies to treat visual system dystrophies resulting from the degeneration of rod and cone photoreceptors may directly benefit from studies of animal models, such as the zebrafish, that display continuous retinal neurogenesis and the capacity for injury-induced regeneration. Previous studies of retinal regeneration in fish have been conducted on adult animals and have relied on methods that cause acute damage to both rods and cones, as well as other retinal cell types. We report here the use of a genetic approach to study progenitor cell responses to photoreceptor degeneration in the larval and adult zebrafish retina. We have compared the responses to selective rod or cone degeneration using, respectively, the XOPS-mCFP transgenic line and zebrafish with a null mutation in the pde6c gene. Notably, rod degeneration induces increased proliferation of progenitors in the outer nuclear layer (ONL) and is not associated with proliferation or reactive gliosis in the inner nuclear layer (INL). Molecular characterization of the rod progenitor cells demonstrated that they are committed to the rod photoreceptor fate while they are still mitotic. In contrast, cone degeneration induces both Müller cell proliferation and reactive gliosis, with little change in proliferation in the ONL. We found that in both lines, proliferative responses to photoreceptor degeneration can be observed as 7 days post fertilization (dpf). These two genetic models therefore offer new opportunities for investigating the molecular mechanisms of selective degeneration and regeneration of rods and cones. PMID:18265406

  19. Whole Genome Sequencing and Complete Genetic Analysis Reveals Novel Pathways to Glycopeptide Resistance in Staphylococcus aureus

    PubMed Central

    Renzoni, Adriana; Andrey, Diego O.; Jousselin, Ambre; Barras, Christine; Monod, Antoinette; Vaudaux, Pierre; Lew, Daniel; Kelley, William L.

    2011-01-01

    The precise mechanisms leading to the emergence of low-level glycopeptide resistance in Staphylococcus aureus are poorly understood. In this study, we used whole genome deep sequencing to detect differences between two isogenic strains: a parental strain and a stable derivative selected stepwise for survival on 4 µg/ml teicoplanin, but which grows at higher drug concentrations (MIC 8 µg/ml). We uncovered only three single nucleotide changes in the selected strain. Nonsense mutations occurred in stp1, encoding a serine/threonine phosphatase, and in yjbH, encoding a post-transcriptional negative regulator of the redox/thiol stress sensor and global transcriptional regulator, Spx. A missense mutation (G45R) occurred in the histidine kinase sensor of cell wall stress, VraS. Using genetic methods, all single, pairwise combinations, and a fully reconstructed triple mutant were evaluated for their contribution to low-level glycopeptide resistance. We found a synergistic cooperation between dual phospho-signalling systems and a subtle contribution from YjbH, suggesting the activation of oxidative stress defences via Spx. To our knowledge, this is the first genetic demonstration of multiple sensor and stress pathways contributing simultaneously to glycopeptide resistance development. The multifactorial nature of glycopeptide resistance in this strain suggests a complex reprogramming of cell physiology to survive in the face of drug challenge. PMID:21738716

  20. Genetics Reveal the Origin and Timing of a Cryptic Insular Introduction of Muskrats in North America

    PubMed Central

    Mychajliw, Alexis M.; Harrison, Richard G.

    2014-01-01

    The muskrat, Ondatra zibethicus, is a semiaquatic rodent native to North America that has become a highly successful invader across Europe, Asia, and South America. It can inflict ecological and economic damage on wetland systems outside of its native range. Anecdotal evidence suggests that, in the early 1900s, a population of muskrats was introduced to the Isles of Shoals archipelago, located within the Gulf of Maine, for the purposes of fur harvest. However, because muskrats are native to the northeastern coast of North America, their presence on the Isles of Shoals could be interpreted as part of the native range of the species, potentially obscuring management planning and biogeographic inferences. To investigate their introduced status and identify a historic source population, muskrats from Appledore Island of the Isles of Shoals, and from the adjacent mainland of Maine and New Hampshire, were compared for mitochondrial cytochrome b sequences and allele frequencies at eight microsatellite loci. Appledore Island muskrats consistently exhibited reduced genetic diversity compared with mainland populations, and displayed signatures of a historic bottleneck. The distribution of mitochondrial haplotypes is suggestive of a New Hampshire source population. The data presented here are consistent with a human-mediated introduction that took place in the early 1900s. This scenario is further supported by the zooarchaeological record and island biogeographic patterns. This is the first genetic study of an introduced muskrat population within US borders and of any island muskrat population, and provides an important contrast with other studies of introduced muskrat populations worldwide. PMID:25360617

  1. Transcriptome comparison reveals a genetic network regulating the lower temperature limit in fish.

    PubMed

    Hu, Peng; Liu, Mingli; Liu, Yimeng; Wang, Jinfeng; Zhang, Dong; Niu, Hongbo; Jiang, Shouwen; Wang, Jian; Zhang, Dongsheng; Han, Bingshe; Xu, Qianghua; Chen, Liangbiao

    2016-01-01

    Transcriptional plasticity is a major driver of phenotypic differences between species. The lower temperature limit (LTL), namely the lower end of survival temperature, is an important trait delimiting the geographical distribution of a species, however, the genetic mechanisms are poorly understood. We investigated the inter-species transcriptional diversification in cold responses between zebrafish Danio rerio and tilapia Oreochromis niloticus, which were reared at a common temperature (28 °C) but have distinct LTLs. We identified significant expressional divergence between the two species in the orthologous genes from gills when the temperature cooled to the LTL of tilapia (8 °C). Five KEGG pathways were found sequentially over-represented in the zebrafish/tilapia divergently expressed genes in the duration (12 hour) of 8 °C exposure, forming a signaling cascade from metabolic regulation to apoptosis via FoxO signaling. Consistently, we found differential progression of apoptosis in the gills of the two species in which zebrafish manifested a delayed and milder apoptotic phenotype than tilapia, corresponding with a lower LTL of zebrafish. We identified diverged expression in 25 apoptosis-related transcription factors between the two species which forms an interacting network with diverged factors involving the FoxO signaling and metabolic regulation. We propose a genetic network which regulates LTL in fishes. PMID:27356472

  2. Genetic analysis reveals demographic fragmentation of grizzly bears yielding vulnerably small populations

    PubMed Central

    Proctor, Michael F; McLellan, Bruce N; Strobeck, Curtis; Barclay, Robert M.R

    2005-01-01

    Ecosystem conservation requires the presence of native carnivores, yet in North America, the distributions of many larger carnivores have contracted. Large carnivores live at low densities and require large areas to thrive at the population level. Therefore, if human-dominated landscapes fragment remaining carnivore populations, small and demographically vulnerable populations may result. Grizzly bear range contraction in the conterminous USA has left four fragmented populations, three of which remain along the Canada–USA border. A tenet of grizzly bear conservation is that the viability of these populations requires demographic linkage (i.e. inter-population movement of both sexes) to Canadian bears. Using individual-based genetic analysis, our results suggest this demographic connection has been severed across their entire range in southern Canada by a highway and associated settlements, limiting female and reducing male movement. Two resulting populations are vulnerably small (≤100 animals) and one of these is completely isolated. Our results suggest that these trans-border bear populations may be more threatened than previously thought and that conservation efforts must expand to include international connectivity management. They also demonstrate the ability of genetic analysis to detect gender-specific demographic population fragmentation in recently disturbed systems, a traditionally intractable yet increasingly important ecological measurement worldwide. PMID:16243699

  3. Trends in flower symmetry evolution revealed through phylogenetic and developmental genetic advances

    PubMed Central

    Hileman, Lena C.

    2014-01-01

    A striking aspect of flowering plant (angiosperm) diversity is variation in flower symmetry. From an ancestral form of radial symmetry (polysymmetry, actinomorphy), multiple evolutionary transitions have contributed to instances of non-radial forms, including bilateral symmetry (monosymmetry, zygomorphy) and asymmetry. Advances in flowering plant molecular phylogenetic research and studies of character evolution as well as detailed flower developmental genetic studies in a few model species (e.g. Antirrhinum majus, snapdragon) have provided a foundation for deep insights into flower symmetry evolution. From phylogenetic studies, we have a better understanding of where during flowering plant diversification transitions from radial to bilateral flower symmetry (and back to radial symmetry) have occurred. From developmental studies, we know that a genetic programme largely dependent on the functional action of the CYCLOIDEA gene is necessary for differentiation along the snapdragon dorsoventral flower axis. Bringing these two lines of inquiry together has provided surprising insights into both the parallel recruitment of a CYC-dependent developmental programme during independent transitions to bilateral flower symmetry, and the modifications to this programme in transitions back to radial flower symmetry, during flowering plant evolution. PMID:24958922

  4. Mammalian Reverse Genetics without Crossing Reveals Nr3a as a Short-Sleeper Gene.

    PubMed

    Sunagawa, Genshiro A; Sumiyama, Kenta; Ukai-Tadenuma, Maki; Perrin, Dimitri; Fujishima, Hiroshi; Ukai, Hideki; Nishimura, Osamu; Shi, Shoi; Ohno, Rei-ichiro; Narumi, Ryohei; Shimizu, Yoshihiro; Tone, Daisuke; Ode, Koji L; Kuraku, Shigehiro; Ueda, Hiroki R

    2016-01-26

    The identification of molecular networks at the system level in mammals is accelerated by next-generation mammalian genetics without crossing, which requires both the efficient production of whole-body biallelic knockout (KO) mice in a single generation and high-performance phenotype analyses. Here, we show that the triple targeting of a single gene using the CRISPR/Cas9 system achieves almost perfect KO efficiency (96%-100%). In addition, we developed a respiration-based fully automated non-invasive sleep phenotyping system, the Snappy Sleep Stager (SSS), for high-performance (95.3% accuracy) sleep/wake staging. Using the triple-target CRISPR and SSS in tandem, we reliably obtained sleep/wake phenotypes, even in double-KO mice. By using this system to comprehensively analyze all of the N-methyl-D-aspartate (NMDA) receptor family members, we found Nr3a as a short-sleeper gene, which is verified by an independent set of triple-target CRISPR. These results demonstrate the application of mammalian reverse genetics without crossing to organism-level systems biology in sleep research.

  5. A Forward Genetic Screen Reveals that Calcium-dependent Protein Kinase 3 Regulates Egress in Toxoplasma

    PubMed Central

    Ehret, Emma; Butz, Heidi; Garbuz, Tamila; Oswald, Benji P.; Settles, Matt; Boothroyd, John; Arrizabalaga, Gustavo

    2012-01-01

    Egress from the host cell is a crucial and highly regulated step in the biology of the obligate intracellular parasite, Toxoplasma gondii. Active egress depends on calcium fluxes and appears to be a crucial step in escaping the attack from the immune system and, potentially, in enabling the parasites to shuttle into appropriate cells for entry into the brain of the host. Previous genetic screens have yielded mutants defective in both ionophore-induced egress and ionophore-induced death. Using whole genome sequencing of one mutant and subsequent analysis of all mutants from these screens, we find that, remarkably, four independent mutants harbor a mis-sense mutation in the same gene, TgCDPK3, encoding a calcium-dependent protein kinase. All four mutations are predicted to alter key regions of TgCDPK3 and this is confirmed by biochemical studies of recombinant forms of each. By complementation we confirm a crucial role for TgCDPK3 in the rapid induction of parasite egress and we establish that TgCDPK3 is critical for formation of latent stages in the brains of mice. Genetic knockout of TgCDPK3 confirms a crucial role for this kinase in parasite egress and a non-essential role for it in the lytic cycle. PMID:23209419

  6. Whole Genome Sequencing of Field Isolates Reveals Extensive Genetic Diversity in Plasmodium vivax from Colombia.

    PubMed

    Winter, David J; Pacheco, M Andreína; Vallejo, Andres F; Schwartz, Rachel S; Arevalo-Herrera, Myriam; Herrera, Socrates; Cartwright, Reed A; Escalante, Ananias A

    2015-12-01

    Plasmodium vivax is the most prevalent malarial species in South America and exerts a substantial burden on the popu