Science.gov

Sample records for reveals unexpected genetic

  1. Molecular Analyses Reveal Unexpected Genetic Structure in Iberian Ibex Populations

    PubMed Central

    Pérez, Jesús M.; Soriguer, Ramón C.; Granados, José E.

    2017-01-01

    Background Genetic differentiation in historically connected populations could be the result of genetic drift or adaptation, two processes that imply a need for differing strategies in population management. The aim of our study was to use neutral genetic markers to characterize C. pyrenaica populations genetically and examine results in terms of (i) demographic history, (ii) subspecific classification and (iii) the implications for the management of Iberian ibex. Methodology/Principal Findings We used 30 neutral microsatellite markers from 333 Iberian ibex to explore genetic diversity in the three main Iberian ibex populations in Spain corresponding to the two persisting subspecies (victoria and hispanica). Our molecular analyses detected recent genetic bottlenecks in all the studied populations, a finding that coincides with the documented demographic decline in C. pyrenaica in recent decades. Genetic divergence between the two C. pyrenaica subspecies (hispanica and victoriae) was substantial (FST between 0.39 and 0.47). Unexpectedly, we found similarly high genetic differentiation between two populations (Sierra Nevada and Maestrazgo) belonging to the subspecies hispanica. The genetic pattern identified in our study could be the result of strong genetic drift due to the severe genetic bottlenecks in the studied populations, caused in turn by the progressive destruction of natural habitat, disease epidemics and/or uncontrolled hunting. Conclusions Previous Capra pyrenaica conservation decision-making was based on the clear distinction between the two subspecies (victoriae and hispanica); yet our paper raises questions about the usefulness for conservation plans of the distinction between these subspecies. PMID:28135293

  2. Molecular Analyses Reveal Unexpected Genetic Structure in Iberian Ibex Populations.

    PubMed

    Angelone-Alasaad, Samer; Biebach, Iris; Pérez, Jesús M; Soriguer, Ramón C; Granados, José E

    2017-01-01

    Genetic differentiation in historically connected populations could be the result of genetic drift or adaptation, two processes that imply a need for differing strategies in population management. The aim of our study was to use neutral genetic markers to characterize C. pyrenaica populations genetically and examine results in terms of (i) demographic history, (ii) subspecific classification and (iii) the implications for the management of Iberian ibex. We used 30 neutral microsatellite markers from 333 Iberian ibex to explore genetic diversity in the three main Iberian ibex populations in Spain corresponding to the two persisting subspecies (victoria and hispanica). Our molecular analyses detected recent genetic bottlenecks in all the studied populations, a finding that coincides with the documented demographic decline in C. pyrenaica in recent decades. Genetic divergence between the two C. pyrenaica subspecies (hispanica and victoriae) was substantial (FST between 0.39 and 0.47). Unexpectedly, we found similarly high genetic differentiation between two populations (Sierra Nevada and Maestrazgo) belonging to the subspecies hispanica. The genetic pattern identified in our study could be the result of strong genetic drift due to the severe genetic bottlenecks in the studied populations, caused in turn by the progressive destruction of natural habitat, disease epidemics and/or uncontrolled hunting. Previous Capra pyrenaica conservation decision-making was based on the clear distinction between the two subspecies (victoriae and hispanica); yet our paper raises questions about the usefulness for conservation plans of the distinction between these subspecies.

  3. Landscape genetics and least-cost path analysis reveal unexpected dispersal routes in the California tiger salamander (Ambystoma californiense).

    PubMed

    Wang, Ian J; Savage, Wesley K; Shaffer, H Bradley

    2009-04-01

    A major goal of landscape genetics is to understand how landscapes structure genetic variation in natural populations. However, landscape genetics still lacks a framework for quantifying the effects of landscape features, such as habitat type, on realized gene flow. Here, we present a methodology for identifying the costs of dispersal through different habitats for the California tiger salamander (Ambystoma californiense), an endangered species restricted to grassland/vernal pool habitat mosaics. We sampled larvae from all 16 breeding ponds in a geographically restricted area of vernal pool habitat at the Fort Ord Natural Reserve, Monterey County, California. We estimated between-pond gene flow using 13 polymorphic microsatellite loci and constructed GIS data layers of habitat types in our study area. We then used least-cost path analysis to determine the relative costs of movement through each habitat that best match rates of gene flow measured by our genetic data. We identified four measurable rates of gene flow between pairs of ponds, with between 10.5% and 19.9% of larvae having immigrant ancestry. Although A. californiense is typically associated with breeding ponds in grassland habitat, we found that dispersal through grassland is nearly twice as costly as dispersal through chaparral and that oak woodland is by far the most costly habitat to traverse. With the increasing availability of molecular resources and GIS data, we anticipate that these methods could be applied to a broad range of study systems, particularly those with cryptic life histories that make direct observation of movement challenging.

  4. Sequence tagging reveals unexpected modifications in toxicoproteomics.

    PubMed

    Dasari, Surendra; Chambers, Matthew C; Codreanu, Simona G; Liebler, Daniel C; Collins, Ben C; Pennington, Stephen R; Gallagher, William M; Tabb, David L

    2011-02-18

    Toxicoproteomic samples are rich in posttranslational modifications (PTMs) of proteins. Identifying these modifications via standard database searching can incur significant performance penalties. Here, we describe the latest developments in TagRecon, an algorithm that leverages inferred sequence tags to identify modified peptides in toxicoproteomic data sets. TagRecon identifies known modifications more effectively than the MyriMatch database search engine. TagRecon outperformed state of the art software in recognizing unanticipated modifications from LTQ, Orbitrap, and QTOF data sets. We developed user-friendly software for detecting persistent mass shifts from samples. We follow a three-step strategy for detecting unanticipated PTMs in samples. First, we identify the proteins present in the sample with a standard database search. Next, identified proteins are interrogated for unexpected PTMs with a sequence tag-based search. Finally, additional evidence is gathered for the detected mass shifts with a refinement search. Application of this technology on toxicoproteomic data sets revealed unintended cross-reactions between proteins and sample processing reagents. Twenty-five proteins in rat liver showed signs of oxidative stress when exposed to potentially toxic drugs. These results demonstrate the value of mining toxicoproteomic data sets for modifications.

  5. Fine-scale genetic analyses reveal unexpected spatial-temporal heterogeneity in two natural populations of the commercial mushroom Agaricus bisporus.

    PubMed

    Xu, Jianping; Desmerger, Christophe; Callac, Philippe

    2002-05-01

    This study examined the fine-scale genetic variation of the commercial mushroom, Agaricus bisporus, over 2 years at two sites in France. One site was a meadow fertilized with horse manure and disturbed regularly by humans; the other was a Monterey cypress forest free of human disturbance. Altogether, 50 mushrooms were collected and analysed for mitochondrial and nuclear genetic variation marked by RFLPs and multilocus enzyme electrophoretic polymorphisms. Population samples from these two sites were genetically different and both sites contained high levels of genetic diversity. No identical genotypes were found at either site between the 2 years and there was little evidence for extensive vegetative clonality for this species. Contrary to expectations, very limited evidence of pseudohomothallic reproduction was found. Results from tests of Hardy-Weinberg equilibrium and genotypic equilibrium showed that outcrossing and recombination have played significant roles in both populations. The results demonstrated spatial-temporal genetic heterogeneity of A. bisporus in natural populations.

  6. High-Throughput Genetic and Gene Expression Analysis of the RNAPII-CTD Reveals Unexpected Connections to SRB10/CDK8

    PubMed Central

    Aristizabal, Maria J.; Negri, Gian Luca; Benschop, Joris J.; Holstege, Frank C. P.; Krogan, Nevan J.; Kobor, Michael S.

    2013-01-01

    The C-terminal domain (CTD) of RNA polymerase II (RNAPII) is composed of heptapeptide repeats, which play a key regulatory role in gene expression. Using genetic interaction, chromatin immunoprecipitation followed by microarrays (ChIP-on-chip) and mRNA expression analysis, we found that truncating the CTD resulted in distinct changes to cellular function. Truncating the CTD altered RNAPII occupancy, leading to not only decreases, but also increases in mRNA levels. The latter were largely mediated by promoter elements and in part were linked to the transcription factor Rpn4. The mediator subunit Cdk8 was enriched at promoters of these genes, and its removal not only restored normal mRNA and RNAPII occupancy levels, but also reduced the abnormally high cellular amounts of Rpn4. This suggested a positive role of Cdk8 in relationship to RNAPII, which contrasted with the observed negative role at the activated INO1 gene. Here, loss of CDK8 suppressed the reduced mRNA expression and RNAPII occupancy levels of CTD truncation mutants. PMID:24009531

  7. Complex and unexpected dynamics in simple genetic regulatory networks

    NASA Astrophysics Data System (ADS)

    Borg, Yanika; Ullner, Ekkehard; Alagha, Afnan; Alsaedi, Ahmed; Nesbeth, Darren; Zaikin, Alexey

    2014-03-01

    One aim of synthetic biology is to construct increasingly complex genetic networks from interconnected simpler ones to address challenges in medicine and biotechnology. However, as systems increase in size and complexity, emergent properties lead to unexpected and complex dynamics due to nonlinear and nonequilibrium properties from component interactions. We focus on four different studies of biological systems which exhibit complex and unexpected dynamics. Using simple synthetic genetic networks, small and large populations of phase-coupled quorum sensing repressilators, Goodwin oscillators, and bistable switches, we review how coupled and stochastic components can result in clustering, chaos, noise-induced coherence and speed-dependent decision making. A system of repressilators exhibits oscillations, limit cycles, steady states or chaos depending on the nature and strength of the coupling mechanism. In large repressilator networks, rich dynamics can also be exhibited, such as clustering and chaos. In populations of Goodwin oscillators, noise can induce coherent oscillations. In bistable systems, the speed with which incoming external signals reach steady state can bias the network towards particular attractors. These studies showcase the range of dynamical behavior that simple synthetic genetic networks can exhibit. In addition, they demonstrate the ability of mathematical modeling to analyze nonlinearity and inhomogeneity within these systems.

  8. Sudden unexpected death in epilepsy genetics: Molecular diagnostics and prevention.

    PubMed

    Goldman, Alica M; Behr, Elijah R; Semsarian, Christopher; Bagnall, Richard D; Sisodiya, Sanjay; Cooper, Paul N

    2016-01-01

    Epidemiologic studies clearly document the public health burden of sudden unexpected death in epilepsy (SUDEP). Clinical and experimental studies have uncovered dynamic cardiorespiratory dysfunction, both interictally and at the time of sudden death due to epilepsy. Genetic analyses in humans and in model systems have facilitated our current molecular understanding of SUDEP. Many discoveries have been informed by progress in the field of sudden cardiac death and sudden infant death syndrome. It is becoming apparent that SUDEP genomic complexity parallels that of sudden cardiac death, and that there is a pauci1ty of analytically useful postmortem material. Because many challenges remain, future progress in SUDEP research, molecular diagnostics, and prevention rests in international, collaborative, and transdisciplinary dialogue in human and experimental translational research of sudden death. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  9. Sudden unexpected death in epilepsy genetics: Molecular diagnostics and prevention

    PubMed Central

    Goldman, Alica M.; Behr, Elijah R.; Semsarian, Christopher; Bagnall, Richard D.; Sisodiya, Sanjay; Cooper, Paul N.

    2016-01-01

    Summary Epidemiologic studies clearly document the public health burden of sudden unexpected death in epilepsy (SUDEP). Clinical and experimental studies have uncovered dynamic cardiorespiratory dysfunction, both interictally and at the time of sudden death due to epilepsy. Genetic analyses in humans and in model systems have facilitated our current molecular understanding of SUDEP. Many discoveries have been informed by progress in the field of sudden cardiac death and sudden infant death syndrome. It is becoming apparent that SUDEP genomic complexity parallels that of sudden cardiac death, and that there is a pauci1ty of analytically useful postmortem material. Because many challenges remain, future progress in SUDEP research, molecular diagnostics, and prevention rests in international, collaborative, and transdisciplinary dialogue in human and experimental translational research of sudden death. PMID:26749013

  10. Endoscopic photoconversion reveals unexpectedly broad leukocyte trafficking to and from the gut.

    PubMed

    Morton, Angela M; Sefik, Esen; Upadhyay, Rabi; Weissleder, Ralph; Benoist, Christophe; Mathis, Diane

    2014-05-06

    Given mounting evidence of the importance of gut-microbiota/immune-cell interactions in immune homeostasis and responsiveness, surprisingly little is known about leukocyte movements to, and especially from, the gut. We address this topic in a minimally perturbant manner using Kaede transgenic mice, which universally express a photoconvertible fluorescent reporter. Transcutaneous exposure of the cervical lymph nodes to violet light permitted punctual tagging of immune cells specifically therein, and subsequent monitoring of their immigration to the intestine; endoscopic flashing of the descending colon allowed specific labeling of intestinal leukocytes and tracking of their emigration. Our data reveal an unexpectedly broad movement of leukocyte subsets to and from the gut at steady state, encompassing all lymphoid and myeloid populations examined. Nonetheless, different subsets showed different trafficking proclivities (e.g., regulatory T cells were more restrained than conventional T cells in their exodus from the cervical lymph nodes). The novel endoscopic approach enabled us to evidence gut-derived Th17 cells in the spleens of K/BxN mice at the onset of their genetically determined arthritis, thereby furnishing a critical mechanistic link between the intestinal microbiota, namely segmented filamentous bacteria, and an extraintestinal autoinflammatory disease.

  11. High unexpected genetic diversity of a narrow endemic terrestrial mollusc.

    PubMed

    Madeira, Pedro M; Chefaoui, Rosa M; Cunha, Regina L; Moreira, Francisco; Dias, Susana; Calado, Gonçalo; Castilho, Rita

    2017-01-01

    The Iberian Peninsula has an extensive record of species displaying strong genetic structure as a result of their survival in isolated pockets throughout the Pleistocene ice ages. We used mitochondrial and nuclear sequence data to analyze phylogeographic patterns in endemic land snails from a valley of central Portugal (Vale da Couda), putatively assigned to Candidula coudensis, that show an exceptionally narrow distributional range. The genetic survey presented here shows the existence of five main mitochondrial lineages in Vale da Couda that do not cluster together suggesting independent evolutionary histories. Our results also indicate a departure from the expectation that species with restricted distributions have low genetic variability. The putative past and contemporary models of geographic distribution of Vale da Couda lineages are compatible with a scenario of species co-existence in more southern locations during the last glacial maximum (LGM) followed by a post-LGM northern dispersal tracking the species optimal thermal, humidity and soil physical conditions.

  12. High unexpected genetic diversity of a narrow endemic terrestrial mollusc

    PubMed Central

    Madeira, Pedro M.; Chefaoui, Rosa M.; Cunha, Regina L.; Moreira, Francisco; Dias, Susana; Calado, Gonçalo

    2017-01-01

    The Iberian Peninsula has an extensive record of species displaying strong genetic structure as a result of their survival in isolated pockets throughout the Pleistocene ice ages. We used mitochondrial and nuclear sequence data to analyze phylogeographic patterns in endemic land snails from a valley of central Portugal (Vale da Couda), putatively assigned to Candidula coudensis, that show an exceptionally narrow distributional range. The genetic survey presented here shows the existence of five main mitochondrial lineages in Vale da Couda that do not cluster together suggesting independent evolutionary histories. Our results also indicate a departure from the expectation that species with restricted distributions have low genetic variability. The putative past and contemporary models of geographic distribution of Vale da Couda lineages are compatible with a scenario of species co-existence in more southern locations during the last glacial maximum (LGM) followed by a post-LGM northern dispersal tracking the species optimal thermal, humidity and soil physical conditions. PMID:28321363

  13. Genetics of leprosy: Expected-and unexpected-developments and perspectives.

    PubMed

    Sauer, Monica E D; Salomão, Heloisa; Ramos, Geovana B; D'Espindula, Helena R S; Rodrigues, Rafael S A; Macedo, Wilian C; Sindeaux, Renata H M; Mira, Marcelo T

    2016-01-01

    A solid body of evidence produced over decades of intense research supports the hypothesis that leprosy phenotypes are largely dependent on the genetic characteristics of the host. The early evidence of a major gene effect controlling susceptibility to leprosy came from studies of familial aggregation, twins, and complex segregation analysis. Later, linkage and association analysis, first applied to the investigation of candidate genes and chromosomal regions and more recently, to genome-wide scans, have revealed several HLA and non-HLA gene variants as risk factors for leprosy phenotypes such as disease per se, its clinical forms, and leprosy reactions. In addition, powerful, hypothesis-free strategies such as genome-wide association studies have led to an exciting, unexpected development: Leprosy susceptibility genes seem to be shared with Crohn's and Parkinson's disease. Today, a major challenge is to find the exact variants causing the biological effect underlying the genetic associations. New technologies, such as Next Generation Sequencing-that allows, for the first time, the cost- and time-effective sequencing of a complete human genome-hold the promise to reveal such variants; thus, strategies can be developed to study the functional impact of these variants in the context of infection, hopefully leading to the development of new targets for leprosy treatment and prevention.

  14. Unexpected high genetic diversity in small populations suggests maintenance by associative overdominance.

    PubMed

    Schou, Mads F; Loeschcke, Volker; Bechsgaard, Jesper; Schlötterer, Christian; Kristensen, Torsten N

    2017-07-26

    The effective population size (Ne ) is a central factor in determining maintenance of genetic variation. The neutral theory predicts that loss of variation depends on Ne , with less genetic drift in larger populations. We monitored genetic drift in 42 Drosophila melanogaster populations of different adult census population sizes (10, 50 or 500) using pooled RAD sequencing. In small populations, variation was lost at a substantially lower rate than expected. This observation was consistent across two ecological relevant thermal regimes, one stable and one with a stressful increase in temperature across generations. Estimated ratios between Ne and adult census size were consistently higher in small than in larger populations. The finding provides evidence for a slower than expected loss of genetic diversity and consequently a higher than expected long-term evolutionary potential in small fragmented populations. More genetic diversity was retained in areas of low recombination, suggesting that associative overdominance, driven by disfavoured homozygosity of recessive deleterious alleles, is responsible for the maintenance of genetic diversity in smaller populations. Consistent with this hypothesis, the X-chromosome, which is largely free of recessive deleterious alleles due to hemizygosity in males, fits neutral expectations even in small populations. Our experiments provide experimental answers to a range of unexpected patterns in natural populations, ranging from variable diversity on X-chromosomes and autosomes to surprisingly high levels of nucleotide diversity in small populations. © 2017 John Wiley & Sons Ltd.

  15. Unexpected consequences of genetic selection in broilers and turkeys: problems and solutions.

    PubMed

    Hocking, P M

    2014-02-01

    1. Genetic theory leads to the expectation that unexpected consequences of genetic selection for production traits will inevitably occur and that these changes are likely to be undesirable. 2. Both artificial selection for production efficiency and "natural" selection for adaptation to the production environment result in selection sweeps that increase the frequencies of rare recessive alleles that have a negative effect on fitness. 3. Fitness is broadly defined as any trait that affects the ability to survive, reproduce and contribute to the next generation, such as musculoskeletal disease in growing broiler chickens and multiple ovulation in adult broiler parents. 4. Welfare concerns about the negative effects of genetic selection on bird welfare are sometimes exaggerated but are nevertheless real. Breeders have paid increasing attention to these traits over several decades and have demonstrated improvement in pedigree flocks. There is an urgent need to monitor changes in commercial flocks to ensure that genetic change is accompanied by improvements in that target population. 5. New technologies for trait measurement, whole genome selection and targeted genetic modification hold out the promise of efficient and rapid improvement of welfare traits in future breeding of broiler chickens and turkeys. The potential of targeted genetic modification for enhancing welfare traits is considerable, but the goal of achieving public acceptability for the progeny of transgenic poultry will be politically challenging.

  16. Transcriptome map of plant mitochondria reveals islands of unexpected transcribed regions

    PubMed Central

    2011-01-01

    Background Plant mitochondria contain a relatively large amount of genetic information, suggesting that their functional regulation may not be as straightforward as that of metazoans. We used a genomic tiling array to draw a transcriptomic atlas of Oryza sativa japonica (rice) mitochondria, which was predicted to be approximately 490-kb long. Results Whereas statistical analysis verified the transcription of all previously known functional genes such as the ones related to oxidative phosphorylation, a similar extent of RNA expression was frequently observed in the inter-genic regions where none of the previously annotated genes are located. The newly identified open reading frames (ORFs) predicted in these transcribed inter-genic regions were generally not conserved among flowering plant species, suggesting that these ORFs did not play a role in mitochondrial principal functions. We also identified two partial fragments of retrotransposon sequences as being transcribed in rice mitochondria. Conclusion The present study indicated the previously unexpected complexity of plant mitochondrial RNA metabolism. Our transcriptomic data (Oryza sativa Mitochondrial rna Expression Server: OsMES) is publicly accessible at [http://bioinf.mind.meiji.ac.jp/cgi-bin/gbrowse/OsMes/#search]. PMID:21627843

  17. The Crystal Structures of EAP Domains from Staphylococcus aureus Reveal an Unexpected Homology to Bacterial Superantigens

    SciTech Connect

    Geisbrecht, B V; Hamaoka, B Y; Perman, B; Zemla, A; Leahy, D J

    2005-10-14

    The Eap (extracellular adherence protein) of Staphylococcus aureus functions as a secreted virulence factor by mediating interactions between the bacterial cell surface and several extracellular host proteins. Eap proteins from different Staphylococcal strains consist of four to six tandem repeats of a structurally uncharacterized domain (EAP domain). We have determined the three-dimensional structures of three different EAP domains to 1.8, 2.2, and 1.35 {angstrom} resolution, respectively. These structures reveal a core fold that is comprised of an {alpha}-helix lying diagonally across a five-stranded, mixed {beta}-sheet. Comparison of EAP domains with known structures reveals an unexpected homology with the C-terminal domain of bacterial superantigens. Examination of the structure of the superantigen SEC2 bound to the {beta}-chain of a T-cell receptor suggests a possible ligand-binding site within the EAP domain (Fields, B. A., Malchiodi, E. L., Li, H., Ysern, X., Stauffacher, C. V., Schlievert, P. M., Karjalainen, K., and Mariuzza, R. (1996) Nature 384, 188-192). These results provide the first structural characterization of EAP domains, relate EAP domains to a large class of bacterial toxins, and will guide the design of future experiments to analyze EAP domain structure/function relationships.

  18. Kinase inhibitor profiling reveals unexpected opportunities to inhibit disease-associated mutant kinases

    PubMed Central

    Duong-Ly, Krisna C.; Devarajan, Karthik; Liang, Shuguang; Horiuchi, Kurumi Y.; Wang, Yuren; Ma, Haiching; Peterson, Jeffrey R.

    2016-01-01

    Summary Small-molecule kinase inhibitors have typically been designed to inhibit wild-type kinases rather than the mutant forms that frequently arise in diseases such as cancer. Mutations can have serious clinical implications by increasing kinase catalytic activity or conferring therapeutic resistance. To identify opportunities to repurpose inhibitors against disease-associated mutant kinases, we conducted a large-scale functional screen of 183 known kinase inhibitors against 76 recombinant, mutant kinases. The results revealed lead compounds with activity against clinically important mutant kinases including ALK, LRRK2, RET, and EGFR as well as unexpected opportunities for repurposing FDA-approved kinase inhibitors as leads for additional indications. Furthermore, using T674I PDGFRα as an example, we show how single-dose screening data can provide predictive structure-activity data to guide subsequent inhibitor optimization. This study provides a resource for the development of inhibitors against numerous disease-associated mutant kinases and illustrates the potential of unbiased profiling as an approach to compound-centric inhibitor development. PMID:26776524

  19. Molecular architecture of the yeast Elongator complex reveals an unexpected asymmetric subunit arrangement.

    PubMed

    Setiaputra, Dheva T; Cheng, Derrick Th; Lu, Shan; Hansen, Jesse M; Dalwadi, Udit; Lam, Cindy Hy; To, Jeffrey L; Dong, Meng-Qiu; Yip, Calvin K

    2017-02-01

    Elongator is a ~850 kDa protein complex involved in multiple processes from transcription to tRNA modification. Conserved from yeast to humans, Elongator is assembled from two copies of six unique subunits (Elp1 to Elp6). Despite the wealth of structural data on the individual subunits, the overall architecture and subunit organization of the full Elongator and the molecular mechanisms of how it exerts its multiple activities remain unclear. Using single-particle electron microscopy (EM), we revealed that yeast Elongator adopts a bilobal architecture and an unexpected asymmetric subunit arrangement resulting from the hexameric Elp456 subassembly anchored to one of the two Elp123 lobes that form the structural scaffold. By integrating the EM data with available subunit crystal structures and restraints generated from cross-linking coupled to mass spectrometry, we constructed a multiscale molecular model that showed the two Elp3, the main catalytic subunit, are located in two distinct environments. This work provides the first structural insights into Elongator and a framework to understand the molecular basis of its multifunctionality.

  20. Unexpected differences in the population genetics of phasmavirids (Bunyavirales) from subarctic ponds

    PubMed Central

    Medeiros, Andrew S.; Qin, Jie; Taylor, Derek J.

    2017-01-01

    Abstract Little is known of the evolution of RNA viruses in aquatic systems. Here, we assess the genetic connectivity of two bunyaviruses (Kigluaik phantom orthophasmavirus or KIGV and Nome phantom orthophasmavirus or NOMV) with zooplanktonic hosts from subarctic ponds. We expected weak genetic structure among populations as the hosts (phantom midges) have a terrestrial winged dispersal stage. To test whether their respective viruses mirror this structure, we collected and analyzed population datasets from 21 subarctic freshwater ponds and obtained sequences from all four genes in the viral genomes. Prevalence averaged 66 per cent for 514 host specimens and was not significantly different between recently formed thaw ponds and glacial ponds. Unexpectedly, KIGV from older ponds showed pronounced haplotype divergence with little evidence of genetic connectivity. However, KIGV populations from recent thaw ponds appeared to be represented by a closely related haplotype group, perhaps indicating a genotypic dispersal bias. Unlike KIGV, NOMV had modest structure and diversity in recently formed thaw ponds. For each virus, we found elevated genetic diversity relative to the host, but similar population structures to the host. Our results suggest that non-random processes such as virus–host interactions, genotypic bias, and habitat effects differ among polar aquatic RNA viruses. PMID:28744370

  1. Unexpected diversity in the catfish Pseudancistrus brevispinis reveals dispersal routes in a Neotropical center of endemism: the Guyanas Region.

    PubMed

    Cardoso, Yamila P; Montoya-Burgos, Juan I

    2009-03-01

    Neotropical freshwater fishes have reached an unrivalled diversity, organized into several areas of endemism, yet the underlying processes are still largely unknown. The topographical and ecological characteristics of the Guyanas Region make it an ideal area of endemism in which to investigate the forces that have shaped this great diversity. This region is thought to be inhabited by species descending from Amazonian ancestors, which would have used two documented routes that, however, hardly explain the entrance of species adapted to running waters. Here, we investigate the evolutionary history of Pseudancistrus brevispinis, a catfish endemic to this region and exclusively found in running waters, thus making it an ideal model for investigating colonization routes and dispersal in such habitats. Our analyses, based on mitochondrial and nuclear markers, revealed an unexpected diversity consisting of six monophyletic lineages within P. brevispinis, showing a disjoint distribution pattern. The lineages endemic to Guyanas coastal rivers form a monophyletic group that originated via an ancestral colonization event from the Amazon basin. Evidence given favours a colonization pathway through river capture between an Amazonian tributary and the Upper Maroni River. Population genetic analyses of the most widespread species indicate that subsequent dispersal among Guyanas coastal rivers occurred principally by temporary connections between adjacent rivers during periods of lower sea level, yet instances of dispersal via interbasin river captures are not excluded. During high sea level intervals, the isolated populations would have diverged leading to the observed allopatric species. This evolutionary process is named the sea level fluctuation (SLF) hypothesis of diversification.

  2. Metatranscriptome Analysis of Aquifer Samples Reveals Unexpected Metabolic Lifestyles Relevant to Active Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    Beller, H. R.; Jewell, T. N. M.; Karaoz, U.; Banfield, J. F.; Brodie, E.; Williams, K. H.

    2015-12-01

    Modern molecular ecology techniques are revealing the metabolic potential of uncultivated microorganisms, but there is still much to be learned about the actual biogeochemical roles of microbes that have cultivated relatives. Here, we present metatranscriptomic and metagenomic data from a field study that provides evidence of coupled redox processes that have not been documented in cultivated relatives and, indeed, represent strains with metabolic traits that are novel with respect to closely related isolates. The data come from omics analysis of groundwater samples collected during an experiment in which nitrate (a native electron acceptor) was injected into a perennially suboxic aquifer in Rifle (CO). Transcriptional data indicated that just two groups of chemolithoautotrophic bacteria accounted for a very large portion (~80%) of overall community gene expression: (1) members of the Fe(II)-oxidizing Gallionellaceae family and (2) strains of the S-oxidizing species, Sulfurimonas denitrificans. Metabolic lifestyles for Gallionellaceae strains that were novel compared to cultivated representatives included nitrate-dependent Fe(II) oxidation and S oxidation. Evidence for these metabolisms included highly correlated temporal expression in binned data of nitrate reductase (e.g., narGHI) genes (which have never been reported in Gallionellaceae genomes) and Fe(II) oxidation genes (e.g., mtoA) or S oxidation genes (e.g., dsrE, aprA). Of the two most active strains of S. denitrificans, only one showed strong expression of S oxidation genes, whereas the other was apparently using an unexpected (as-yet unidentified) primary electron donor. Transcriptional data added considerable interpretive value to this study, as (1) metagenomic data would not have highlighted these organisms, which had a disproportionately large role in community metabolism relative to their populations, and (2) co-expression of coupled pathway genes could not be predicted based solely on metagenomic data.

  3. Phylogenomic analysis of Copepoda (Arthropoda, Crustacea) reveals unexpected similarities with earlier proposed morphological phylogenies.

    PubMed

    Eyun, Seong-Il

    2017-01-19

    Copepods play a critical role in marine ecosystems but have been poorly investigated in phylogenetic studies. Morphological evidence supports the monophyly of copepods, whereas interordinal relationships continue to be debated. In particular, the phylogenetic position of the order Harpacticoida is still ambiguous and inconsistent among studies. Until now, a small number of molecular studies have been done using only a limited number or even partial genes and thus there is so far no consensus at the order-level. This study attempted to resolve phylogenetic relationships among and within four major copepod orders including Harpacticoida and the phylogenetic position of Copepoda among five other crustacean groups (Anostraca, Cladocera, Sessilia, Amphipoda, and Decapoda) using 24 nuclear protein-coding genes. Phylogenomics has confirmed the monophyly of Copepoda and Podoplea. However, this study reveals surprising differences with the majority of the copepod phylogenies and unexpected similarities with postembryonic characters and earlier proposed morphological phylogenies; More precisely, Cyclopoida is more closely related to Siphonostomatoida than to Harpacticoida which is likely the most basally-branching group of Podoplea. Divergence time estimation suggests that the origin of Harpacticoida can be traced back to the Devonian, corresponding well with recently discovered fossil evidence. Copepoda has a close affinity to the clade of Malacostraca and Thecostraca but not to Branchiopoda. This result supports the hypothesis of the newly proposed clades, Communostraca, Multicrustacea, and Allotriocarida but further challenges the validity of Hexanauplia and Vericrustacea. The first phylogenomic study of Copepoda provides new insights into taxonomic relationships and represents a valuable resource that improves our understanding of copepod evolution and their wide range of ecological adaptations.

  4. New application of intelligent agents in sporadic amyotrophic lateral sclerosis identifies unexpected specific genetic background

    PubMed Central

    Penco, Silvana; Buscema, Massimo; Patrosso, Maria Cristina; Marocchi, Alessandro; Grossi, Enzo

    2008-01-01

    Background Few genetic factors predisposing to the sporadic form of amyotrophic lateral sclerosis (ALS) have been identified, but the pathology itself seems to be a true multifactorial disease in which complex interactions between environmental and genetic susceptibility factors take place. The purpose of this study was to approach genetic data with an innovative statistical method such as artificial neural networks to identify a possible genetic background predisposing to the disease. A DNA multiarray panel was applied to genotype more than 60 polymorphisms within 35 genes selected from pathways of lipid and homocysteine metabolism, regulation of blood pressure, coagulation, inflammation, cellular adhesion and matrix integrity, in 54 sporadic ALS patients and 208 controls. Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis Results Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis. An unexpected discovery of a strong genetic background in sporadic ALS using a DNA multiarray panel and analytical processing of the data with advanced artificial neural networks was found. The predictive accuracy obtained with Linear Discriminant Analysis and Standard Artificial Neural Networks ranged from 70% to 79% (average 75.31%) and from 69.1 to 86.2% (average 76.6%) respectively. The corresponding value obtained with Advanced Intelligent Systems reached an average of 96.0% (range 94.4 to 97.6%). This latter approach allowed the identification of seven genetic variants essential to differentiate cases from controls: apolipoprotein E arg158cys; hepatic lipase

  5. New application of intelligent agents in sporadic amyotrophic lateral sclerosis identifies unexpected specific genetic background.

    PubMed

    Penco, Silvana; Buscema, Massimo; Patrosso, Maria Cristina; Marocchi, Alessandro; Grossi, Enzo

    2008-05-30

    Few genetic factors predisposing to the sporadic form of amyotrophic lateral sclerosis (ALS) have been identified, but the pathology itself seems to be a true multifactorial disease in which complex interactions between environmental and genetic susceptibility factors take place. The purpose of this study was to approach genetic data with an innovative statistical method such as artificial neural networks to identify a possible genetic background predisposing to the disease. A DNA multiarray panel was applied to genotype more than 60 polymorphisms within 35 genes selected from pathways of lipid and homocysteine metabolism, regulation of blood pressure, coagulation, inflammation, cellular adhesion and matrix integrity, in 54 sporadic ALS patients and 208 controls. Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis. An unexpected discovery of a strong genetic background in sporadic ALS using a DNA multiarray panel and analytical processing of the data with advanced artificial neural networks was found. The predictive accuracy obtained with Linear Discriminant Analysis and Standard Artificial Neural Networks ranged from 70% to 79% (average 75.31%) and from 69.1 to 86.2% (average 76.6%) respectively. The corresponding value obtained with Advanced Intelligent Systems reached an average of 96.0% (range 94.4 to 97.6%). This latter approach allowed the identification of seven genetic variants essential to differentiate cases from controls: apolipoprotein E arg158cys; hepatic lipase -480 C/T; endothelial

  6. Proteomic and bioinformatic analysis of epithelial tight junction reveals an unexpected cluster of synaptic molecules

    PubMed Central

    Tang, Vivian W

    2006-01-01

    Golgi apparatus and associated vesicular structures. A working model of the tight junction consisting of multiple functions and sub-domains has been generated using the proteomics and structural data. Conclusion This study provides an unbiased proteomics and bioinformatics approach to elucidate novel functions of the tight junction. The approach has revealed an unexpected cluster associating with synaptic function. This surprising finding suggests that the tight junction may be a novel epithelial synapse for cell-cell communication. Reviewers This article was reviewed by Gáspár Jékely, Etienne Joly and Neil Smalheiser. PMID:17156438

  7. Pregnancy outcome after genetic counselling for prenatal diagnosis of unexpected chromosomal anomaly.

    PubMed

    Clementi, Maurizio; Di Gianantonio, Elena; Ponchia, Rossella; Petrella, Marilena; Andrisani, Alessandra; Tenconi, Romano

    2006-01-01

    Couples undergoing invasive prenatal diagnosis (PD) are informed and concerned mainly about autosomal trisomies. However, unexpected chromosomal abnormalities (UCA) are a frequent finding at PD. We have analysed the psychological and practical consequences in the couples counselled in our centre because of the identification of foetal UCA at PD. The study was carried out on a sample of 52 couples referred for genetic counselling in the period 1997-2000. The couples underwent a structured interview and two self-report instruments to measure anxiety and psychological characteristics. The couples have been divided into three groups: (1) low risk - without or with negligible risk, (2) mild risk - with mild risk or mild clinical phenotype and (3) sex chromosome anomaly. All couples received the diagnosis of chromosomal anomaly from the obstetrician without any other comments and were referred to our service for genetic counselling. Most couples felt fear (11/17 in the LR group, 5/7 in the MR group and 12/21 in the SCA group), while sadness was lower frequently felt by those parents-to-be in the LR group. Our study suggests that a specific counselling that mentions the possibility of UCA is mandatory before PD, and the cost-benefit estimate of PD should take into account the psychological implications of UCA detection.

  8. The genetic message of a sudden, unexpected death due to thoracic aortic dissection.

    PubMed

    Ripperger, Tim; Tröger, Hans Dieter; Schmidtke, Jörg

    2009-05-30

    Thoracic aortic aneurysms are associated with sudden, unexpected death due to dissection and/or rupture. In such cases, the latent, preceding state of aortic dilatation has often gone undiagnosed. As a consequence of the sudden unresolved death, medico-legal autopsy requested by a public prosecutor will be the consequence to establish the cause and manner of death. Usually, autopsy records do not include relevant information for differential diagnosis of heritable syndromic and non-syndromic diseases associated with thoracic aortic aneurysms/dissections (TAAD), including e.g. Marfan syndrome, Loeys-Dietz syndrome, and isolated thoracic aortic aneurysms/dissection. However, for at-risk relatives of the deceased, it could be of great benefit to be alerted to the potential heritable aetiology, because early diagnosis of the latent stage of the disease would allow preventive management. Such attempts, including recommendations to seek genetic counselling, are nevertheless rarely made in the context of medico-legal autopsies, in which primarily the legal aspects are considered. We report here on three cases to underline the practical relevance of (i) documentation of relevant information for differential diagnosis of TAAD-associated disorders, (ii) storage of unfixed tissue samples for subsequent molecular genetic testing, and most importantly (iii) the information of relatives at risk. In view of the general ethical principal of nonmaleficience, direct or indirect contact with family members of victims of possible heritable forms of TAAD should be established as a standard of care, also in the medico-legal setting.

  9. Deep phenotyping of 89 xeroderma pigmentosum patients reveals unexpected heterogeneity dependent on the precise molecular defect.

    PubMed

    Fassihi, Hiva; Sethi, Mieran; Fawcett, Heather; Wing, Jonathan; Chandler, Natalie; Mohammed, Shehla; Craythorne, Emma; Morley, Ana M S; Lim, Rongxuan; Turner, Sally; Henshaw, Tanya; Garrood, Isabel; Giunti, Paola; Hedderly, Tammy; Abiona, Adesoji; Naik, Harsha; Harrop, Gemma; McGibbon, David; Jaspers, Nicolaas G J; Botta, Elena; Nardo, Tiziana; Stefanini, Miria; Young, Antony R; Sarkany, Robert P E; Lehmann, Alan R

    2016-03-01

    Xeroderma pigmentosum (XP) is a rare DNA repair disorder characterized by increased susceptibility to UV radiation (UVR)-induced skin pigmentation, skin cancers, ocular surface disease, and, in some patients, sunburn and neurological degeneration. Genetically, it is assigned to eight complementation groups (XP-A to -G and variant). For the last 5 y, the UK national multidisciplinary XP service has provided follow-up for 89 XP patients, representing most of the XP patients in the United Kingdom. Causative mutations, DNA repair levels, and more than 60 clinical variables relating to dermatology, ophthalmology, and neurology have been measured, using scoring systems to categorize disease severity. This deep phenotyping has revealed unanticipated heterogeneity of clinical features, between and within complementation groups. Skin cancer is most common in XP-C, XP-E, and XP-V patients, previously considered to be the milder groups based on cellular analyses. These patients have normal sunburn reactions and are therefore diagnosed later and are less likely to adhere to UVR protection. XP-C patients are specifically hypersensitive to ocular damage, and XP-F and XP-G patients appear to be much less susceptible to skin cancer than other XP groups. Within XP groups, different mutations confer susceptibility or resistance to neurological damage. Our findings on this large cohort of XP patients under long-term follow-up reveal that XP is more heterogeneous than has previously been appreciated. Our data now enable provision of personalized prognostic information and management advice for each XP patient, as well as providing new insights into the functions of the XP proteins.

  10. Deep phenotyping of 89 xeroderma pigmentosum patients reveals unexpected heterogeneity dependent on the precise molecular defect

    PubMed Central

    Fassihi, Hiva; Sethi, Mieran; Fawcett, Heather; Wing, Jonathan; Chandler, Natalie; Mohammed, Shehla; Craythorne, Emma; Morley, Ana M. S.; Lim, Rongxuan; Turner, Sally; Henshaw, Tanya; Garrood, Isabel; Giunti, Paola; Hedderly, Tammy; Abiona, Adesoji; Naik, Harsha; Harrop, Gemma; McGibbon, David; Jaspers, Nicolaas G. J.; Botta, Elena; Nardo, Tiziana; Stefanini, Miria; Young, Antony R.; Sarkany, Robert P. E.; Lehmann, Alan R.

    2016-01-01

    Xeroderma pigmentosum (XP) is a rare DNA repair disorder characterized by increased susceptibility to UV radiation (UVR)-induced skin pigmentation, skin cancers, ocular surface disease, and, in some patients, sunburn and neurological degeneration. Genetically, it is assigned to eight complementation groups (XP-A to -G and variant). For the last 5 y, the UK national multidisciplinary XP service has provided follow-up for 89 XP patients, representing most of the XP patients in the United Kingdom. Causative mutations, DNA repair levels, and more than 60 clinical variables relating to dermatology, ophthalmology, and neurology have been measured, using scoring systems to categorize disease severity. This deep phenotyping has revealed unanticipated heterogeneity of clinical features, between and within complementation groups. Skin cancer is most common in XP-C, XP-E, and XP-V patients, previously considered to be the milder groups based on cellular analyses. These patients have normal sunburn reactions and are therefore diagnosed later and are less likely to adhere to UVR protection. XP-C patients are specifically hypersensitive to ocular damage, and XP-F and XP-G patients appear to be much less susceptible to skin cancer than other XP groups. Within XP groups, different mutations confer susceptibility or resistance to neurological damage. Our findings on this large cohort of XP patients under long-term follow-up reveal that XP is more heterogeneous than has previously been appreciated. Our data now enable provision of personalized prognostic information and management advice for each XP patient, as well as providing new insights into the functions of the XP proteins. PMID:26884178

  11. Magnetoencephalography Reveals Mismatch Field Enhancement from Unexpected Syntactic Category Errors in English Sentences.

    PubMed

    Kubota, Mikio; Ono, Yumie; Ishiyama, Atsushi; Zouridakis, George; Papanicolaou, Andrew C

    2017-08-25

    The type of syntactic operations that increase neuronal activation in humans as a result of syntactically erroneous, unexpected lexical items in hearing sentences has remained unclear. In the present study, we used recordings of magnetoencephalographic (MEG) activity to compare bare infinitive and full infinitive constructions in English. This research aims to identify the type of syntactic deviance that may trigger an early syntax-related mismatch field (MMF) component when unexpected words appear in sentences. Six speakers of English as a first language were presented with auditory stimuli of sentences or words in a passive odd-ball paradigm while watching a silent movie. The experimental protocol included four sessions, specifically investigating the sentential (structural) versions of full (with the 'to' infinitival particle) and bare infinitival structures (without the particle) and the lexical (non-structure) versions of the verb either with or without the particle to determine whether the structure processing of sentences was a more crucial factor in the detection of the MMF than the simple processing of lexical items in verb-only conditions. The amplitude analysis of the resulting evoked fields showed that the presence of the syntactic category error of bare infinitival structures against syntactic predictions evoked a significantly larger MMF activation with a peak latency of approximately 200ms in the anterior superior temporal sulci in the left hemisphere, compared with the lexical items that did not have any syntactic status. These results clearly demonstrate that syntactically unexpected, illegal input in the bare infinitival structure is likely to be noticed more robustly in the brain while processing the structural information of the entire sentence than the corresponding verb-only items. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Symbiotic conversations are revealed under genetic interrogation.

    PubMed

    Ruby, Edward G

    2008-10-01

    The recent development and application of molecular genetics to the symbionts of invertebrate animal species have advanced our knowledge of the biochemical communication that occurs between the host and its bacterial symbionts. In particular, the ability to manipulate these associations experimentally by introducing genetic variants of the symbionts into naive hosts has allowed the discovery of novel colonization mechanisms and factors. In addition, the role of the symbionts in inducing normal host development has been revealed, and its molecular basis described. In this Review, I discuss many of these developments, focusing on what has been discovered in five well-understood model systems.

  13. Symbiotic conversations are revealed under genetic interrogation

    PubMed Central

    Ruby, Edward G.

    2013-01-01

    The recent development and application of molecular genetics to the symbionts of invertebrate animal species have advanced our knowledge of the biochemical communication that occurs between the host and its bacterial symbionts. In particular, the ability to manipulate these associations experimentally by introducing genetic variants of the symbionts into naive hosts has allowed the discovery of novel colonization mechanisms and factors. In addition, the role of the symbionts in inducing normal host development has been revealed, and its molecular basis described. In this Review, I discuss many of these developments, focusing on what has been discovered in five well-understood model systems. PMID:18794913

  14. Metatranscriptomic Analysis Reveals Unexpectedly Diverse Microbial Metabolism in a Biogeochemical Hot Spot in an Alluvial Aquifer

    DOE PAGES

    Jewell, Talia N. M.; Karaoz, Ulas; Bill, Markus; ...

    2017-01-25

    Organic matter deposits in alluvial aquifers have been shown to result in the formation of naturally reduced zones (NRZs), which can modulate aquifer redox status and influence the speciation and mobility of metals, affecting groundwater geochemistry. In this study, we sought to better understand how natural organic matter fuels microbial communities within anoxic biogeochemical hot spots (NRZs) in a shallow alluvial aquifer at the Rifle (CO) site. We conducted a 20-day microcosm experiment in which NRZ sediments, which were enriched in buried woody plant material, served as the sole source of electron donors and microorganisms. The microcosms were constructed andmore » incubated under anaerobic conditions in serum bottles with an initial N2 headspace and were sampled every 5 days for metagenome and metatranscriptome profiles in combination with biogeochemical measurements. Biogeochemical data indicated that the decomposition of native organic matter occurred in different phases, beginning with mineralization of dissolved organic matter (DOM) to CO2 during the first week of incubation, followed by a pulse of acetogenesis that dominated carbon flux after 2 weeks. A pulse of methanogenesis co-occurred with acetogenesis, but only accounted for a small fraction of carbon flux. The depletion of DOM over time was strongly correlated with increases in expression of many genes associated with heterotrophy (e.g., amino acid, fatty acid, and carbohydrate metabolism) belonging to a Hydrogenophaga strain that accounted for a relatively large percentage (~8%) of the metatranscriptome. This Hydrogenophaga strain also expressed genes indicative of chemolithoautotrophy, including CO2 fixation, H2 oxidation, S-compound oxidation, and denitrification. The pulse of acetogenesis appears to have been collectively catalyzed by a number of different organisms and metabolisms, most prominently pyruvate:ferredoxin oxidoreductase. Unexpected genes were identified among the most highly

  15. Metatranscriptomic Analysis Reveals Unexpectedly Diverse Microbial Metabolism in a Biogeochemical Hot Spot in an Alluvial Aquifer

    PubMed Central

    Jewell, Talia N. M.; Karaoz, Ulas; Bill, Markus; Chakraborty, Romy; Brodie, Eoin L.; Williams, Kenneth H.; Beller, Harry R.

    2017-01-01

    Organic matter deposits in alluvial aquifers have been shown to result in the formation of naturally reduced zones (NRZs), which can modulate aquifer redox status and influence the speciation and mobility of metals, affecting groundwater geochemistry. In this study, we sought to better understand how natural organic matter fuels microbial communities within anoxic biogeochemical hot spots (NRZs) in a shallow alluvial aquifer at the Rifle (CO) site. We conducted a 20-day microcosm experiment in which NRZ sediments, which were enriched in buried woody plant material, served as the sole source of electron donors and microorganisms. The microcosms were constructed and incubated under anaerobic conditions in serum bottles with an initial N2 headspace and were sampled every 5 days for metagenome and metatranscriptome profiles in combination with biogeochemical measurements. Biogeochemical data indicated that the decomposition of native organic matter occurred in different phases, beginning with mineralization of dissolved organic matter (DOM) to CO2 during the first week of incubation, followed by a pulse of acetogenesis that dominated carbon flux after 2 weeks. A pulse of methanogenesis co-occurred with acetogenesis, but only accounted for a small fraction of carbon flux. The depletion of DOM over time was strongly correlated with increases in expression of many genes associated with heterotrophy (e.g., amino acid, fatty acid, and carbohydrate metabolism) belonging to a Hydrogenophaga strain that accounted for a relatively large percentage (~8%) of the metatranscriptome. This Hydrogenophaga strain also expressed genes indicative of chemolithoautotrophy, including CO2 fixation, H2 oxidation, S-compound oxidation, and denitrification. The pulse of acetogenesis appears to have been collectively catalyzed by a number of different organisms and metabolisms, most prominently pyruvate:ferredoxin oxidoreductase. Unexpected genes were identified among the most highly expressed

  16. Metatranscriptomic Analysis Reveals Unexpectedly Diverse Microbial Metabolism in a Biogeochemical Hot Spot in an Alluvial Aquifer.

    PubMed

    Jewell, Talia N M; Karaoz, Ulas; Bill, Markus; Chakraborty, Romy; Brodie, Eoin L; Williams, Kenneth H; Beller, Harry R

    2017-01-01

    Organic matter deposits in alluvial aquifers have been shown to result in the formation of naturally reduced zones (NRZs), which can modulate aquifer redox status and influence the speciation and mobility of metals, affecting groundwater geochemistry. In this study, we sought to better understand how natural organic matter fuels microbial communities within anoxic biogeochemical hot spots (NRZs) in a shallow alluvial aquifer at the Rifle (CO) site. We conducted a 20-day microcosm experiment in which NRZ sediments, which were enriched in buried woody plant material, served as the sole source of electron donors and microorganisms. The microcosms were constructed and incubated under anaerobic conditions in serum bottles with an initial N2 headspace and were sampled every 5 days for metagenome and metatranscriptome profiles in combination with biogeochemical measurements. Biogeochemical data indicated that the decomposition of native organic matter occurred in different phases, beginning with mineralization of dissolved organic matter (DOM) to CO2 during the first week of incubation, followed by a pulse of acetogenesis that dominated carbon flux after 2 weeks. A pulse of methanogenesis co-occurred with acetogenesis, but only accounted for a small fraction of carbon flux. The depletion of DOM over time was strongly correlated with increases in expression of many genes associated with heterotrophy (e.g., amino acid, fatty acid, and carbohydrate metabolism) belonging to a Hydrogenophaga strain that accounted for a relatively large percentage (~8%) of the metatranscriptome. This Hydrogenophaga strain also expressed genes indicative of chemolithoautotrophy, including CO2 fixation, H2 oxidation, S-compound oxidation, and denitrification. The pulse of acetogenesis appears to have been collectively catalyzed by a number of different organisms and metabolisms, most prominently pyruvate:ferredoxin oxidoreductase. Unexpected genes were identified among the most highly expressed

  17. Hydra meiosis reveals unexpected conservation of structural synaptonemal complex proteins across metazoans

    PubMed Central

    Fraune, Johanna; Alsheimer, Manfred; Volff, Jean-Nicolas; Busch, Karoline; Fraune, Sebastian; Bosch, Thomas C. G.; Benavente, Ricardo

    2012-01-01

    The synaptonemal complex (SC) is a key structure of meiosis, mediating the stable pairing (synapsis) of homologous chromosomes during prophase I. Its remarkable tripartite structure is evolutionarily well conserved and can be found in almost all sexually reproducing organisms. However, comparison of the different SC protein components in the common meiosis model organisms Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus revealed no sequence homology. This discrepancy challenged the hypothesis that the SC arose only once in evolution. To pursue this matter we focused on the evolution of SYCP1 and SYCP3, the two major structural SC proteins of mammals. Remarkably, our comparative bioinformatic and expression studies revealed that SYCP1 and SYCP3 are also components of the SC in the basal metazoan Hydra. In contrast to previous assumptions, we therefore conclude that SYCP1 and SYCP3 form monophyletic groups of orthologous proteins across metazoans. PMID:23012415

  18. Regulation of KLF4 turnover reveals an unexpected tissue specific role of pVHL in tumorigenesis

    PubMed Central

    Gamper, Armin M.; Qiao, Xinxian; Kim, Jennifer; Zhang, Liyong; DeSimone, Michelle C.; Rathmell, W. Kimryn; Wan, Yong

    2014-01-01

    SUMMARY The transcription factor Krüppel-like factor 4 (KLF4) is an important regulator of cell fate decision, including cell cycle regulation, apoptosis, and stem cell renewal, and plays an ambivalent role in tumorigenesis as a tissue specific tumor suppressor or oncogene. Here we report that the Von Hippel-Lindau gene product, pVHL, physically interacts with KLF4 and regulates its rapid turnover observed in both differentiated and stem cells. We provide mechanistic insights into KLF4 degradation and show that pVHL depletion in colorectal cancer cells leads to cell cycle arrest concomitant with increased transcription of the KLF4-dependent p21 gene. Finally, immunohistochemical staining revealed elevated pVHL and reduced KLF4 levels in colon cancer tissues. We therefore propose that unexpectedly pVHL, via the degradation of KLF4, is a facilitating factor in colorectal tumorigenesis. PMID:22284679

  19. Alternative inclusion of fibroblast growth factor receptor 2 exon IIIc in Dunning prostate tumors reveals unexpected epithelial mesenchymal plasticity.

    PubMed

    Oltean, Sebastian; Sorg, Brian S; Albrecht, Todd; Bonano, Vivian I; Brazas, Robert M; Dewhirst, Mark W; Garcia-Blanco, Mariano A

    2006-09-19

    In epithelial cells, alternative splicing of fibroblast growth factor receptor 2 (FGFR2) transcripts leads to the expression of the FGFR2(IIIb) isoform, whereas in mesenchymal cells, the same process results in the synthesis of FGFR2(IIIc). Expression of the FGFR2(IIIc) isoform during prostate tumor progression suggests a disruption of the epithelial character of these tumors. To visualize the use of FGFR2 exon IIIc in prostate AT3 tumors in syngeneic rats, we constructed minigene constructs that report on alternative splicing. Imaging these alternative splicing decisions revealed unexpected mesenchymal-epithelial transitions in these primary tumors. These transitions were observed more frequently where tumor cells were in contact with stroma. Indeed, these transitions were frequently observed among lung micrometastases in the organ parenchyma and immediately adjacent to blood vessels. Our data suggest an unforeseen relationship between epithelial mesenchymal plasticity and malignant fitness.

  20. Concise and Stereodivergent Synthesis of Carbasugars Reveals Unexpected Structure-Activity Relationship (SAR) of SGLT2 Inhibition.

    PubMed

    Ng, Wai-Lung; Li, Ho-Chuen; Lau, Kit-Man; Chan, Anthony K N; Lau, Clara Bik-San; Shing, Tony K M

    2017-07-17

    Carbasugar sodium-glucose cotransporter 2 (SGLT2) inhibitors are highly promising drug candidates for the treatment of Type 2 diabetes mellitus (T2DM). However, the clinical usage of carbasugar SGLT2 inhibitors has been underexplored, due to the lengthy synthetic routes and the lack of structure-activity relationship (SAR) studies of these compounds. Herein, we report a concise and stereodivergent synthetic route towards some novel carbasugar SGLT2 inhibitors, featuring an underexploited, regioselective, and stereospecific palladium-catalyzed allyl-aryl coupling reaction. This synthetic strategy, together with computational modeling, revealed the unexpected SAR of these carbasugar SGLT2 inhibitors, and enabled the discovery of a highly selective and potent SGLT2 inhibitor.

  1. Unexpected Regularity in Swimming Behavior of Clausocalanus furcatus Revealed by a Telecentric 3D Computer Vision System

    PubMed Central

    Bianco, Giuseppe; Botte, Vincenzo; Dubroca, Laurent; Ribera d’Alcalà, Maurizio; Mazzocchi, Maria Grazia

    2013-01-01

    Planktonic copepods display a large repertoire of motion behaviors in a three-dimensional environment. Two-dimensional video observations demonstrated that the small copepod Clausocalanus furcatus, one the most widely distributed calanoids at low to medium latitudes, presented a unique swimming behavior that was continuous and fast and followed notably convoluted trajectories. Furthermore, previous observations indicated that the motion of C. furcatus resembled a random process. We characterized the swimming behavior of this species in three-dimensional space using a video system equipped with telecentric lenses, which allow tracking of zooplankton without the distortion errors inherent in common lenses. Our observations revealed unexpected regularities in the behavior of C. furcatus that appear primarily in the horizontal plane and could not have been identified in previous observations based on lateral views. Our results indicate that the swimming behavior of C. furcatus is based on a limited repertoire of basic kinematic modules but exhibits greater plasticity than previously thought. PMID:23826331

  2. Comparative analyses of developmental transcription factor repertoires in sponges reveal unexpected complexity of the earliest animals.

    PubMed

    Fortunato, Sofia A V; Adamski, Marcin; Adamska, Maja

    2015-12-01

    Developmental transcription factors (DTFs) control development of animals by affecting expression of target genes, some of which are transcription factors themselves. In bilaterians and cnidarians, conserved DTFs are involved in homologous processes such as gastrulation or specification of neurons. The genome of Amphimedon queenslandica, the first sponge to be sequenced, revealed that only a fraction of these conserved DTF families are present in demosponges. This finding was in line with the view that morphological complexity in the animal lineage correlates with developmental toolkit complexity. However, as the phylum Porifera is very diverse, Amphimedon's genome may not be representative of all sponges. The recently sequenced genomes of calcareous sponges Sycon ciliatum and Leucosolenia complicata allowed investigations of DTFs in a sponge lineage evolutionarily distant from demosponges. Surprisingly, the phylogenetic analyses of identified DTFs revealed striking differences between the calcareous sponges and Amphimedon. As these differences appear to be a result of independent gene loss events in the two sponge lineages, the last common ancestor of sponges had to possess a much more diverse repertoire of DTFs than extant sponges. Developmental expression of sponge homologs of genes involved in specification of the Bilaterian endomesoderm and the neurosensory cells suggests that roles of many DTFs date back to the last common ancestor of all animals. Strikingly, even DTFs displaying apparent pan-metazoan conservation of sequence and function are not immune to being lost from individual species genomes. The quest for a comprehensive picture of the developmental toolkit in the last common metazoan ancestor is thus greatly benefitting from the increasing accessibility of sequencing, allowing comparisons of multiple genomes within each phylum. Copyright © 2015. Published by Elsevier B.V.

  3. Psychological distress with direct-to-consumer genetic testing: a case report of an unexpected BRCA positive test result.

    PubMed

    Dohany, Lindsay; Gustafson, Shanna; Ducaine, Whitney; Zakalik, Dana

    2012-06-01

    We report a case of a client who discovered she had a BRCA mutation following direct-to-consumer (DTC) genetic testing in the absence of genetic counseling. After testing she presented for genetic counseling with anxiety, distress, and a deficit of knowledge about what the DTC genetic testing revealed. Genetic counseling helped alleviate distress while empowering the client to apply the results of testing to improve medical management. Despite recent studies demonstrating no negative psychological impact of DTC genetic testing on the consumer, this case illustrates that significant psychological distress and confusion can occur as a result of DTC genetic testing for highly penetrant single gene disorders. Pre- and post-test genetic counseling in conjunction with DTC genetic testing may alleviate consumers' distress and empower clients to proactively utilize their result information.

  4. Expression of secreted Wnt pathway components reveals unexpected complexity of the planarian amputation response.

    PubMed

    Gurley, Kyle A; Elliott, Sarah A; Simakov, Oleg; Schmidt, Heiko A; Holstein, Thomas W; Sánchez Alvarado, Alejandro

    2010-11-01

    Regeneration is widespread throughout the animal kingdom, but our molecular understanding of this process in adult animals remains poorly understood. Wnt/β-catenin signaling plays crucial roles throughout animal life from early development to adulthood. In intact and regenerating planarians, the regulation of Wnt/β-catenin signaling functions to maintain and specify anterior/posterior (A/P) identity. Here, we explore the expression kinetics and RNAi phenotypes for secreted members of the Wnt signaling pathway in the planarian Schmidtea mediterranea. Smed-wnt and sFRP expression during regeneration is surprisingly dynamic and reveals fundamental aspects of planarian biology that have been previously unappreciated. We show that after amputation, a wounding response precedes rapid re-organization of the A/P axis. Furthermore, cells throughout the body plan can mount this response and reassess their new A/P location in the complete absence of stem cells. While initial stages of the amputation response are stem cell independent, tissue remodeling and the integration of a new A/P address with anatomy are stem cell dependent. We also show that WNT5 functions in a reciprocal manner with SLIT to pattern the planarian mediolateral axis, while WNT11-2 patterns the posterior midline. Moreover, we perform an extensive phylogenetic analysis on the Smed-wnt genes using a method that combines and integrates both sequence and structural alignments, enabling us to place all nine genes into Wnt subfamilies for the first time.

  5. Integrated Analyses Resolve Conflicts over Squamate Reptile Phylogeny and Reveal Unexpected Placements for Fossil Taxa

    PubMed Central

    Reeder, Tod W.; Townsend, Ted M.; Mulcahy, Daniel G.; Noonan, Brice P.; Wood, Perry L.; Sites, Jack W.; Wiens, John J.

    2015-01-01

    Squamate reptiles (lizards and snakes) are a pivotal group whose relationships have become increasingly controversial. Squamates include >9000 species, making them the second largest group of terrestrial vertebrates. They are important medicinally and as model systems for ecological and evolutionary research. However, studies of squamate biology are hindered by uncertainty over their relationships, and some consider squamate phylogeny unresolved, given recent conflicts between molecular and morphological results. To resolve these conflicts, we expand existing morphological and molecular datasets for squamates (691 morphological characters and 46 genes, for 161 living and 49 fossil taxa, including a new set of 81 morphological characters and adding two genes from published studies) and perform integrated analyses. Our results resolve higher-level relationships as indicated by molecular analyses, and reveal hidden morphological support for the molecular hypothesis (but not vice-versa). Furthermore, we find that integrating molecular, morphological, and paleontological data leads to surprising placements for two major fossil clades (Mosasauria and Polyglyphanodontia). These results further demonstrate the importance of combining fossil and molecular information, and the potential problems of estimating the placement of fossil taxa from morphological data alone. Thus, our results caution against estimating fossil relationships without considering relevant molecular data, and against placing fossils into molecular trees (e.g. for dating analyses) without considering the possible impact of molecular data on their placement. PMID:25803280

  6. Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa.

    PubMed

    Reeder, Tod W; Townsend, Ted M; Mulcahy, Daniel G; Noonan, Brice P; Wood, Perry L; Sites, Jack W; Wiens, John J

    2015-01-01

    Squamate reptiles (lizards and snakes) are a pivotal group whose relationships have become increasingly controversial. Squamates include >9000 species, making them the second largest group of terrestrial vertebrates. They are important medicinally and as model systems for ecological and evolutionary research. However, studies of squamate biology are hindered by uncertainty over their relationships, and some consider squamate phylogeny unresolved, given recent conflicts between molecular and morphological results. To resolve these conflicts, we expand existing morphological and molecular datasets for squamates (691 morphological characters and 46 genes, for 161 living and 49 fossil taxa, including a new set of 81 morphological characters and adding two genes from published studies) and perform integrated analyses. Our results resolve higher-level relationships as indicated by molecular analyses, and reveal hidden morphological support for the molecular hypothesis (but not vice-versa). Furthermore, we find that integrating molecular, morphological, and paleontological data leads to surprising placements for two major fossil clades (Mosasauria and Polyglyphanodontia). These results further demonstrate the importance of combining fossil and molecular information, and the potential problems of estimating the placement of fossil taxa from morphological data alone. Thus, our results caution against estimating fossil relationships without considering relevant molecular data, and against placing fossils into molecular trees (e.g. for dating analyses) without considering the possible impact of molecular data on their placement.

  7. Single molecule atomic force microscopy of aerolysin pore complexes reveals unexpected star-shaped topography.

    PubMed

    He, Jianfeng; Wang, Jiabin; Hu, Jun; Sun, Jielin; Czajkowsky, Daniel Mark; Shao, Zhifeng

    2016-04-01

    Aerolysin is the paradigmatic member of a large family of toxins that convert from a water-soluble monomer/dimer into a membrane-spanning oligomeric pore. While there is x-ray crystallographic data of its water-soluble conformation, the most recent structural model of the membrane-inserted pore is based primarily on data of water-soluble tetradecamers of mutant protein, together with computational modeling ultimately performed in vacuum. Here we examine this pore model with atomic force microscopy (AFM) of membrane-associated wild-type complexes and all-atom molecular dynamics (MD) simulations in water. In striking contrast to a disc-shaped cap region predicted by the present model, the AFM images reveal a star-shaped complex, with a central ring surrounded by seven radial projections. Further, the MD simulations suggest that the locations of the receptor-binding (D1) domains in the present model are not correct. However, a modified model in which the D1 domains, rather than localized at fixed positions, adopt a wide range of configurations through fluctuations of an intervening linker is compatible with existing data. Thus our work not only demonstrates the importance of directly resolving such complexes in their native environment but also points to a dynamic receptor binding region, which may be critical for toxin assembly on the cell surface.

  8. Unexpected acoustic stimulation during action preparation reveals gradual re-specification of movement direction.

    PubMed

    Marinovic, Welber; Tresilian, James; Chapple, Jack L; Riek, Stephan; Carroll, Timothy J

    2017-04-21

    A loud acoustic stimulus (LAS) is often used as a tool to investigate motor preparation in simple reaction time (RT) tasks, where all movement parameters are known in advance. In this report, we used a LAS to examine direction specification in simple and choice RT tasks. This allowed us to investigate how the specification of movement direction unfolds during the preparation period. In two experiments, participants responded to the appearance of an imperative stimulus (IS) with a ballistic wrist force directed toward one of two targets. In probe trials, a LAS (120dBa) was delivered around the time of IS presentation. In Experiment 1, RTs in the simple RT task were faster when the LAS was presented, but the effect on the movement kinematics was negligible. In the Choice RT task, however, movement direction variability increased when the LAS was presented. In Experiment 2, when we primed movements toward one direction, our analyses revealed that the longer participants took to start a movement, the more accurate their responses became. Our results show not only that movement direction reprogramming occurs quickly and continuously, but also that LAS can be a valuable tool to obtain meaningful readouts of the motor system's preparatory state. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Common and unexpected findings in mummies from ancient Egypt and South America as revealed by CT.

    PubMed

    Jackowski, Christian; Bolliger, Stephan; Thali, Michael J

    2008-01-01

    Computed tomography (CT) has proved to be a valuable investigative tool for mummy research and is the method of choice for examining mummies. It allows for noninvasive insight, especially with virtual endoscopy, which reveals detailed information about the mummy's sex, age, constitution, injuries, health, and mummification techniques used. CT also supplies three-dimensional information about the scanned object. Mummification processes can be summarized as "artificial," when the procedure was performed on a body with the aim of preservation, or as "natural," when the body's natural environment resulted in preservation. The purpose of artificial mummification was to preserve that person's morphologic features by delaying or arresting the decay of the body. The ancient Egyptians are most famous for this. Their use of evisceration followed by desiccation with natron (a compound of sodium salts) to halt putrefaction and prevent rehydration was so effective that their embalmed bodies have survived for nearly 4500 years. First, the body was cleaned with a natron solution; then internal organs were removed through the cribriform plate and abdomen. The most important, and probably the most lengthy, phase was desiccation. After the body was dehydrated, the body cavities were rinsed and packed to restore the body's former shape. Finally, the body was wrapped. Animals were also mummified to provide food for the deceased, to accompany the deceased as pets, because they were seen as corporal manifestations of deities, and as votive offerings. Artificial mummification was performed on every continent, especially in South and Central America.

  10. Proteomic Investigation of Aphid Honeydew Reveals an Unexpected Diversity of Proteins

    PubMed Central

    Haubruge, Eric; Hance, Thierry; Thonart, Philippe; De Pauw, Edwin; Francis, Frédéric

    2013-01-01

    Aphids feed on the phloem sap of plants, and are the most common honeydew-producing insects. While aphid honeydew is primarily considered to comprise sugars and amino acids, its protein diversity has yet to be documented. Here, we report on the investigation of the honeydew proteome from the pea aphid Acyrthosiphon pisum. Using a two-Dimensional Differential in-Gel Electrophoresis (2D-Dige) approach, more than 140 spots were isolated, demonstrating that aphid honeydew also represents a diverse source of proteins. About 66% of the isolated spots were identified through mass spectrometry analysis, revealing that the protein diversity of aphid honeydew originates from several organisms (i.e. the host aphid and its microbiota, including endosymbiotic bacteria and gut flora). Interestingly, our experiments also allowed to identify some proteins like chaperonin, GroEL and Dnak chaperones, elongation factor Tu (EF-Tu), and flagellin that might act as mediators in the plant-aphid interaction. In addition to providing the first aphid honeydew proteome analysis, we propose to reconsider the importance of this substance, mainly acknowledged to be a waste product, from the aphid ecology perspective. PMID:24086359

  11. Bridging the generation gap: flowering plant gametophytes and animal germlines reveal unexpected similarities.

    PubMed

    Dickinson, Hugh G; Grant-Downton, Robert

    2009-11-01

    Alternation of generations underpins all plant life histories and is held to possess important adaptive features. A wide range of data have accumulated over the past century which suggest that alternation from sporophyte to gametophyte in angiosperms includes a significant phase of 'informational reprogramming', leaving the founder cells of the gametophyte developmentally uncommitted. This review attempts to bring together results from these historic studies with more recent data on molecular and epigenetic events which accompany alternation, gametophyte development and gametogenesis in angiosperms. It is striking that most members of the other principal group of multicellular eukaryotes--the animals--have a completely different a life history: animals generate their gametes directly from diploid germlines, often set aside early in development. Nevertheless, a comparison between animal germlines and angiosperm gametophyte development reveals a number of surprising similarities at the cytological and molecular levels. This difference in life history but similarity in developmental process is reviewed in the context of the very different life strategies adopted by plants and animals, and particularly the fact that plants do not set aside diploid germlines early in development.

  12. Morphology and Molecules Reveal Unexpected Cryptic Diversity in the Enigmatic Genus Sinobirma Bryk, 1944 (Lepidoptera: Saturniidae)

    PubMed Central

    Rougerie, Rodolphe; Naumann, Stefan; Nässig, Wolfgang A.

    2012-01-01

    The wild silkmoth genus Sinobirma Bryk, 1944 is a poorly known monotypic taxon from the eastern end of the Himalaya Range. It was convincingly proposed to be closely related to some members of an exclusively Afro-tropical group of Saturniidae, but its biogeographical and evolutionary history remains enigmatic. After examining recently collected material from Tibet, northern India, and northeastern Myanmar, we realized that this unique species, S. malaisei Bryk, 1944 only known so far from a few specimens and from a very restricted area near the border between north-eastern Myanmar and the Yunnan province of China, may in fact belong to a group of closely related cryptic species. In this work, we combined morphological comparative study, DNA barcoding, and the sequences of a nuclear marker (D2 expansion segment of the 28S rRNA gene) to unequivocally delimit three distinct species in the genus Sinobirma, of which two are described as new to science: S. myanmarensis sp. n. and S. bouyeri sp. n. An informative DNA barcode sequence was obtained from the female holotype of S. malaisei—collected in 1934—ensuring the proper assignation of this name to the newly collected and studied specimens. Our findings represent another example of the potential of coupling traditional taxonomy and DNA barcoding for revealing and solving difficult cases of cryptic diversity. This approach is now being generalized to the world fauna of Saturniidae, with the participation of most of the taxonomists studying these moths. PMID:23028478

  13. Metagenomic investigation of the geologically unique Hellenic Volcanic Arc reveals a distinctive ecosystem with unexpected physiology.

    PubMed

    Oulas, Anastasis; Polymenakou, Paraskevi N; Seshadri, Rekha; Tripp, H James; Mandalakis, Manolis; Paez-Espino, A David; Pati, Amrita; Chain, Patrick; Nomikou, Paraskevi; Carey, Steven; Kilias, Stephanos; Christakis, Christos; Kotoulas, Georgios; Magoulas, Antonios; Ivanova, Natalia N; Kyrpides, Nikos C

    2016-04-01

    Hydrothermal vents represent a deep, hot, aphotic biosphere where chemosynthetic primary producers, fuelled by chemicals from Earth's subsurface, form the basis of life. In this study, we examined microbial mats from two distinct volcanic sites within the Hellenic Volcanic Arc (HVA). The HVA is geologically and ecologically unique, with reported emissions of CO2 -saturated fluids at temperatures up to 220°C and a notable absence of macrofauna. Metagenomic data reveals highly complex prokaryotic communities composed of chemolithoautotrophs, some methanotrophs, and to our surprise, heterotrophs capable of anaerobic degradation of aromatic hydrocarbons. Our data suggest that aromatic hydrocarbons may indeed be a significant source of carbon in these sites, and instigate additional research into the nature and origin of these compounds in the HVA. Novel physiology was assigned to several uncultured prokaryotic lineages; most notably, a SAR406 representative is attributed with a role in anaerobic hydrocarbon degradation. This dataset, the largest to date from submarine volcanic ecosystems, constitutes a significant resource of novel genes and pathways with potential biotechnological applications.

  14. Ultrastructural analysis of salivary glands in a phytophagous stink bug revealed the presence of unexpected muscles.

    PubMed

    Castellanos, Nathaly; Martínez, Luis C; Silva, Eder H; Teodoro, Adenir V; Serrão, José Eduardo; Oliveira, Eugênio E

    2017-01-01

    The exceptional abilities of stink bugs (Hemiptera: Pentatomidae) to colonize a diverse group of plants have been attributed to the feeding behaviors and the functions of the salivary complex of these insects. Here, we describe the ultrastructure of the salivary glands of the Neotropical brown stink bug, Euschistus heros, which is a major component of the pentatomid pest complex on soybeans, Glycine max, in the neotropics. Our results revealed a salivary gland complex consisting of two lobes (i.e., anterior and posterior), with a constriction between them (i.e., the hilum), in which the salivary and accessory gland ducts are inserted. The principal gland epithelium has a single layer of cells lining an enlarged lumen filled with saliva, and these cells are cuboidal, rich in rough endoplasmic reticulum and secretory vesicles, with well-developed nuclei, all of which are typical features of protein-secreting cells. We report, for the first time in insects, the presence of a layer of muscle cells surrounding the columnar hilum epithelium. The accessory salivary gland cells are cuboidal with nuclei containing condensed chromatin and cytoplasm rich in vacuoles and rough endoplasmic reticulum, indicating the potential involvement of these glands in water transport/secretion. The lumen content of each lobe of the principal gland suggests that the lobes produce different compounds. Thus, our results suggest that the E. heros salivary complex might have unconventional mechanisms to mix/release saliva, which might help explain the polyphagous abilities of these insects.

  15. Polysomnography reveals unexpectedly high rates of organic sleep disorders in patients with prediagnosed primary insomnia.

    PubMed

    Crönlein, Tatjana; Geisler, Peter; Langguth, Berthold; Eichhammer, Peter; Jara, Cecilia; Pieh, Christoph; Zulley, Jürgen; Hajak, Göran

    2012-12-01

    It is a matter of debate whether patients with primary insomnia require a polysomnographic examination in order to exclude specific sleep disorders such as sleep apnea syndrome (SAS) or periodic limb movements (PLM). Using a prospective design, we investigated the prevalence of organic sleep disorders by means of polysomnography (PSG) in a series of patients who were previously diagnosed with primary insomnia. This diagnosis was based on a clinical exam and an ambulatory monitoring device or previous PSG. Seventy-seven women and 16 men (mean age 55.12 ± 13.21 years) who were admitted for cognitive behavioral therapy for insomnia were evaluated by PSG including cardiorespiratory parameters and tibialis EMG. Among them, 50 patients had undergone a clinical exam by a sleep specialist; in 18 patients, actigraphy or portable monitoring had been performed to exclude SAS or PLM; 25 patients had undergone PSG in another sleep lab previously. In 32 patients (34% of the sample), a PSG revealed a specific sleep disorder (SAS 16; PLMD 11; both 5), resulting in therapeutic consequences for 21 patients (SAS 10; PLMD 9; both 2). SAS and PLM patients were older and SAS patients had a higher body mass index than insomnia patients without additional findings. Indications for a PSG should be handled less restrictively in the diagnostic workup of older insomnia patients since they have a higher risk of comorbid sleep disorders even in the absence of the clinical signs of SAS or PLM.

  16. Structure of human Fe-S assembly subcomplex reveals unexpected cysteine desulfurase architecture and acyl-ACP-ISD11 interactions.

    PubMed

    Cory, Seth A; Van Vranken, Jonathan G; Brignole, Edward J; Patra, Shachin; Winge, Dennis R; Drennan, Catherine L; Rutter, Jared; Barondeau, David P

    2017-07-03

    In eukaryotes, sulfur is mobilized for incorporation into multiple biosynthetic pathways by a cysteine desulfurase complex that consists of a catalytic subunit (NFS1), LYR protein (ISD11), and acyl carrier protein (ACP). This NFS1-ISD11-ACP (SDA) complex forms the core of the iron-sulfur (Fe-S) assembly complex and associates with assembly proteins ISCU2, frataxin (FXN), and ferredoxin to synthesize Fe-S clusters. Here we present crystallographic and electron microscopic structures of the SDA complex coupled to enzyme kinetic and cell-based studies to provide structure-function properties of a mitochondrial cysteine desulfurase. Unlike prokaryotic cysteine desulfurases, the SDA structure adopts an unexpected architecture in which a pair of ISD11 subunits form the dimeric core of the SDA complex, which clarifies the critical role of ISD11 in eukaryotic assemblies. The different quaternary structure results in an incompletely formed substrate channel and solvent-exposed pyridoxal 5'-phosphate cofactor and provides a rationale for the allosteric activator function of FXN in eukaryotic systems. The structure also reveals the 4'-phosphopantetheine-conjugated acyl-group of ACP occupies the hydrophobic core of ISD11, explaining the basis of ACP stabilization. The unexpected architecture for the SDA complex provides a framework for understanding interactions with acceptor proteins for sulfur-containing biosynthetic pathways, elucidating mechanistic details of eukaryotic Fe-S cluster biosynthesis, and clarifying how defects in Fe-S cluster assembly lead to diseases such as Friedreich's ataxia. Moreover, our results support a lock-and-key model in which LYR proteins associate with acyl-ACP as a mechanism for fatty acid biosynthesis to coordinate the expression, Fe-S cofactor maturation, and activity of the respiratory complexes.

  17. Unexpected genetic heterogeneity in a large consanguineous Brazilian pedigree presenting deafness.

    PubMed

    Lezirovitz, Karina; Pardono, Eliete; de Mello Auricchio, Maria T B; de Carvalho E Silva, Fernando L; Lopes, Juliana J; Abreu-Silva, Ronaldo S; Romanos, Jihane; Batissoco, Ana C; Mingroni-Netto, Regina C

    2008-01-01

    Nonsyndromic autosomal recessive deafness accounts for 80% of hereditary deafness. To date, 52 loci responsible for autosomal recessive deafness have been mapped and 24 genes identified. Here, we report a large inbred Brazilian pedigree with 26 subjects affected by prelingual deafness. Given the extensive consanguinity found in this pedigree, the most probable pattern of inheritance is autosomal recessive. However, our linkage and mutational analysis revealed, instead of an expected homozygous mutation in a single gene, two different mutant alleles and a possible third undetected mutant allele in the MYO15A gene (DFNB3 locus), as well as evidence for other causes for deafness in the same pedigree. Among the 26 affected subjects, 15 were homozygous for the novel c.10573delA mutation in the MYO15A gene, 5 were compound heterozygous for the mutation c.10573delA and the novel deletion c.9957_9960delTGAC and one inherited only a single c.10573delA mutant allele, while the other one could not be identified. Given the extensive consanguinity of the pedigree, there might be at least one more deafness locus segregating to explain the condition in some of the subjects whose deafness is not clearly associated with MYO15A mutations, although overlooked environmental causes could not be ruled out. Our findings illustrate a high level of etiological heterogeneity for deafness in the family and highlight some of the pitfalls of genetic analysis of large genes in extended pedigrees, when homozygosity for a single mutant allele is expected.

  18. Lineage analysis of basal epithelial cells reveals their unexpected plasticity and supports a cell of origin model for prostate cancer heterogeneity

    PubMed Central

    Wang, Zhu A.; Mitrofanova, Antonina; Bergren, Sarah K.; Abate-Shen, Cory; Cardiff, Robert D.; Califano, Andrea; Shen, Michael M.

    2013-01-01

    A key issue in cancer biology is whether oncogenic transformation of different cell types of origin within an adult tissue gives rise to distinct tumor subtypes that differ in their prognosis and/or treatment response. We now show that initiation of prostate tumors in basal or luminal epithelial cells in mouse models results in tumors with distinct molecular signatures that are predictive of human patient outcomes. Furthermore, our analysis of untransformed basal cells reveals an unexpected assay-dependence of their stem cell properties in sphere formation and transplantation assays versus genetic lineage-tracing during prostate regeneration and adult tissue homeostasis. Although oncogenic transformation of basal cells gives rise to tumors with luminal phenotypes, cross-species bioinformatic analyses indicate that luminal origin tumors are more aggressive than basal origin tumors, and identify a molecular signature associated with patient outcome. Our results reveal the inherent plasticity of basal cells, and support a model in which different cells of origin generate distinct molecular subtypes of prostate cancer. PMID:23434823

  19. Lineage analysis of basal epithelial cells reveals their unexpected plasticity and supports a cell-of-origin model for prostate cancer heterogeneity.

    PubMed

    Wang, Zhu A; Mitrofanova, Antonina; Bergren, Sarah K; Abate-Shen, Cory; Cardiff, Robert D; Califano, Andrea; Shen, Michael M

    2013-03-01

    A key issue in cancer biology is whether oncogenic transformation of different cell types of origin within an adult tissue gives rise to distinct tumour subtypes that differ in their prognosis and/or treatment response. We now show that initiation of prostate tumours in basal or luminal epithelial cells in mouse models results in tumours with distinct molecular signatures that are predictive of human patient outcomes. Furthermore, our analysis of untransformed basal cells reveals an unexpected assay dependence of their stem cell properties in sphere formation and transplantation assays versus genetic lineage tracing during prostate regeneration and adult tissue homeostasis. Although oncogenic transformation of basal cells gives rise to tumours with luminal phenotypes, cross-species bioinformatic analyses indicate that tumours of luminal origin are more aggressive than tumours of basal origin, and identify a molecular signature associated with patient outcome. Our results reveal the inherent plasticity of basal cells, and support a model in which different cells of origin generate distinct molecular subtypes of prostate cancer.

  20. Genetic diversity revealed in human faces.

    PubMed

    Lie, Hanne C; Rhodes, Gillian; Simmons, Leigh W

    2008-10-01

    From an evolutionary perspective, human facial attractiveness is proposed to signal mate quality. Using a novel approach to the study of the genetic basis of human preferences for facial features, we investigated whether attractiveness signals mate quality in terms of genetic diversity. Genetic diversity in general has been linked to fitness and reproductive success, and genetic diversity within the major histocompatibility complex (MHC) has been linked to immunocompetence and mate preferences. We asked whether any preference for genetic diversity is specific to MHC diversity or reflects a more general preference for overall genetic diversity. We photographed and genotyped 160 participants using microsatellite markers situated within and outside the MHC, and calculated two measures of genetic diversity: mean heterozygosity and standardized mean d(2). Our results suggest a special role for the MHC in female preferences for male faces. MHC heterozygosity positively predicted male attractiveness, and specifically facial averageness, with averageness mediating the MHC-attractiveness relationship. For females, standardized mean d(2) at non-MHC loci predicted facial symmetry. Thus, attractive facial characteristics appear to provide visual cues to genetic quality in both males and females, supporting the view that face preferences have been shaped by selection pressures to identify high-quality mates.

  1. The structure of the harmonin/sans complex reveals an unexpected interaction mode of the two Usher syndrome proteins

    PubMed Central

    Yan, Jing; Pan, Lifeng; Chen, Xiuye; Wu, Lin; Zhang, Mingjie

    2010-01-01

    The hereditary hearing-vision loss disease, Usher syndrome I (USH1), is caused by defects in several proteins that can interact with each other in vitro. Defects in USH1 proteins are thought to be responsible for the developmental and functional impairments of sensory cells in the retina and inner ear. Harmonin/USH1C and Sans/USH1G are two of the USH1 proteins that interact with each other. Harmonin also binds to other USH1 proteins such as cadherin 23 (CDH23) and protocadherin 15 (PCDH15). However, the molecular basis governing the harmonin and Sans interaction is largely unknown. Here, we report an unexpected assembly mode between harmonin and Sans. We demonstrate that the N-terminal domain and the first PDZ domain of harmonin are tethered by a small-domain C-terminal to PDZ1 to form a structural and functional supramodule responsible for binding to Sans. We discover that the SAM domain of Sans, specifically, binds to the PDZ domain of harmonin, revealing previously unknown interaction modes for both PDZ and SAM domains. We further show that the synergistic PDZ1/SAM and PDZ1/carboxyl PDZ binding-motif interactions, between harmonin and Sans, lock the two scaffold proteins into a highly stable complex. Mutations in harmonin and Sans found in USH1 patients are shown to destabilize the complex formation of the two proteins. PMID:20142502

  2. Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis

    PubMed Central

    2012-01-01

    Background Filamentous fungi are potent biomass degraders due to their ability to thrive in ligno(hemi)cellulose-rich environments. During the last decade, fungal genome sequencing initiatives have yielded abundant information on the genes that are putatively involved in lignocellulose degradation. At present, additional experimental studies are essential to provide insights into the fungal secreted enzymatic pools involved in lignocellulose degradation. Results In this study, we performed a wide analysis of 20 filamentous fungi for which genomic data are available to investigate their biomass-hydrolysis potential. A comparison of fungal genomes and secretomes using enzyme activity profiling revealed discrepancies in carbohydrate active enzymes (CAZymes) sets dedicated to plant cell wall. Investigation of the contribution made by each secretome to the saccharification of wheat straw demonstrated that most of them individually supplemented the industrial Trichoderma reesei CL847 enzymatic cocktail. Unexpectedly, the most striking effect was obtained with the phytopathogen Ustilago maydis that improved the release of total sugars by 57% and of glucose by 22%. Proteomic analyses of the best-performing secretomes indicated a specific enzymatic mechanism of U. maydis that is likely to involve oxido-reductases and hemicellulases. Conclusion This study provides insight into the lignocellulose-degradation mechanisms by filamentous fungi and allows for the identification of a number of enzymes that are potentially useful to further improve the industrial lignocellulose bioconversion process. PMID:22300648

  3. High-throughput sequencing-based analysis of endogenetic fungal communities inhabiting the Chinese Cordyceps reveals unexpectedly high fungal diversity

    PubMed Central

    Xia, Fei; Chen, Xin; Guo, Meng-Yuan; Bai, Xiao-Hui; Liu, Yan; Shen, Guang-Rong; Li, Yu-Ling; Lin, Juan; Zhou, Xuan-Wei

    2016-01-01

    Chinese Cordyceps, known in Chinese as “DongChong XiaCao”, is a parasitic complex of a fungus (Ophiocordyceps sinensis) and a caterpillar. The current study explored the endogenetic fungal communities inhabiting Chinese Cordyceps. Samples were collected from five different geographical regions of Qinghai and Tibet, and the nuclear ribosomal internal transcribed spacer-1 sequences from each sample were obtained using Illumina high-throughput sequencing. The results showed that Ascomycota was the dominant fungal phylum in Chinese Cordyceps and its soil microhabitat from different sampling regions. Among the Ascomycota, 65 genera were identified, and the abundant operational taxonomic units showed the strongest sequence similarity to Ophiocordyceps, Verticillium, Pseudallescheria, Candida and Ilyonectria Not surprisingly, the genus Ophiocordyceps was the largest among the fungal communities identified in the fruiting bodies and external mycelial cortices of Chinese Cordyceps. In addition, fungal communities in the soil microhabitats were clustered separately from the external mycelial cortices and fruiting bodies of Chinese Cordyceps from different sampling regions. There was no significant structural difference in the fungal communities between the fruiting bodies and external mycelial cortices of Chinese Cordyceps. This study revealed an unexpectedly high diversity of fungal communities inhabiting the Chinese Cordyceps and its microhabitats. PMID:27625176

  4. High-throughput sequencing-based analysis of endogenetic fungal communities inhabiting the Chinese Cordyceps reveals unexpectedly high fungal diversity.

    PubMed

    Xia, Fei; Chen, Xin; Guo, Meng-Yuan; Bai, Xiao-Hui; Liu, Yan; Shen, Guang-Rong; Li, Yu-Ling; Lin, Juan; Zhou, Xuan-Wei

    2016-09-14

    Chinese Cordyceps, known in Chinese as "DongChong XiaCao", is a parasitic complex of a fungus (Ophiocordyceps sinensis) and a caterpillar. The current study explored the endogenetic fungal communities inhabiting Chinese Cordyceps. Samples were collected from five different geographical regions of Qinghai and Tibet, and the nuclear ribosomal internal transcribed spacer-1 sequences from each sample were obtained using Illumina high-throughput sequencing. The results showed that Ascomycota was the dominant fungal phylum in Chinese Cordyceps and its soil microhabitat from different sampling regions. Among the Ascomycota, 65 genera were identified, and the abundant operational taxonomic units showed the strongest sequence similarity to Ophiocordyceps, Verticillium, Pseudallescheria, Candida and Ilyonectria Not surprisingly, the genus Ophiocordyceps was the largest among the fungal communities identified in the fruiting bodies and external mycelial cortices of Chinese Cordyceps. In addition, fungal communities in the soil microhabitats were clustered separately from the external mycelial cortices and fruiting bodies of Chinese Cordyceps from different sampling regions. There was no significant structural difference in the fungal communities between the fruiting bodies and external mycelial cortices of Chinese Cordyceps. This study revealed an unexpectedly high diversity of fungal communities inhabiting the Chinese Cordyceps and its microhabitats.

  5. Analysis of a TIR-less Splice Variant of TRIF Reveals an Unexpected Mechanism of TLR3-mediated Signaling*

    PubMed Central

    Han, Ke-Jun; Yang, Yan; Xu, Liang-Guo; Shu, Hong-Bing

    2010-01-01

    Recognition of viral RNA by Toll-like receptor 3 (TLR3) triggers activation of the transcription factors NF-κB and IRF3 and induction of type I interferons. TRIF is a Toll-interleukin 1 receptor (TIR) domain-containing adapter protein critically involved in TLR3-mediated signaling. It has been shown that TRIF interacts with TLR3 through their respective TIR domains. In this study, we identified a splice variant of TRIF lacking the TIR domain, which is designated as TRIS. Overexpression of TRIS activates NF-κB, interferon-stimulated response element (ISRE), and the interferon-β promoter, whereas knockdown of TRIS inhibited TLR3-mediated signaling, suggesting that TRIS is involved in TLR3-mediated signaling. Furthermore, we identified an N-terminal TBK1-binding motif of TRIS or TRIF that was important for its interaction with TBK1 and ability to activate ISRE. Activation of ISRE by TRIS also needs its dimerization or oligomerization mediated by its C-terminal RIP homotypic interaction motif. Finally, we demonstrated that TRIS was associated with TRIF upon TLR3 activation by poly(I-C). These findings reveal an unexpected mechanism of TLR3-mediated signaling. PMID:20200155

  6. Structure of a truncated form of leucine zipper II of JIP3 reveals an unexpected antiparallel coiled-coil arrangement.

    PubMed

    Llinas, Paola; Chenon, Mélanie; Nguyen, T Quyen; Moreira, Catia; de Régibus, Annélie; Coquard, Aline; Ramos, Maria J; Guérois, Raphaël; Fernandes, Pedro A; Ménétrey, Julie

    2016-03-01

    JIP3 and JIP4, two highly related scaffolding proteins for MAP kinases, are binding partners for two molecular motors as well as for the small G protein ARF6. The leucine zipper II (LZII) region of JIP3/4 is the binding site for these three partners. Previously, the crystal structure of ARF6 bound to JIP4 revealed LZII in a parallel coiled-coil arrangement. Here, the crystal structure of an N-terminally truncated form of LZII of JIP3 alone shows an unexpected antiparallel arrangement. Using molecular dynamics and modelling, the stability of this antiparallel LZII arrangement, as well as its specificity for ARF6, were investigated. This study highlights that N-terminal truncation of LZII can change its coiled-coil orientation without affecting its overall stability. Further, a conserved buried asparagine residue was pinpointed as a possible structural determinant for this dramatic structural rearrangement. Thus, LZII of JIP3/4 is a versatile structural motif, modifications of which can impact partner recognition and thus biological function.

  7. Unexpected pattern of pearl millet genetic diversity among ethno-linguistic groups in the Lake Chad Basin.

    PubMed

    Naino Jika, A K; Dussert, Y; Raimond, C; Garine, E; Luxereau, A; Takvorian, N; Djermakoye, R S; Adam, T; Robert, T

    2017-01-25

    Despite of a growing interest in considering the role of sociological factors in seed exchanges and their consequences on the evolutionary dynamics of agro-biodiversity, very few studies assessed the link between ethno-linguistic diversity and genetic diversity patterns in small-holder farming systems. This is key for optimal improvement and conservation of crop genetic resources. Here, we investigated genetic diversity at 17 SSR markers of pearl millet landraces (varieties named by farmers) in the Lake Chad Basin. 69 pearl millet populations, representing 27 landraces collected in eight ethno-linguistic farmer groups, were analyzed. We found that the farmers' local taxonomy was not a good proxy for population's genetic differentiation as previously shown at smaller scales. Our results show the existence of a genetic structure of pearl millet mainly associated with ethno-linguistic diversity in the western side of the lake Chad. It suggests there is a limit to gene flow between landraces grown by different ethno-linguistic groups. This result was rather unexpected, because of the highly outcrossing mating system of pearl millet, the high density of pearl millet fields all along the green belt of this Sahelian area and the fact that seed exchanges among ethno-linguistic groups are known to occur. In the eastern side of the Lake, the pattern of genetic diversity suggests a larger efficient circulation of pearl millet genes between ethno-linguistic groups that are less numerous, spatially intermixed and, for some of them, more prone to exogamy. Finally, other historical and environmental factors which may contribute to the observed diversity patterns are discussed.Heredity advance online publication, 25 January 2017; doi:10.1038/hdy.2016.128.

  8. Unexpected pattern of pearl millet genetic diversity among ethno-linguistic groups in the Lake Chad Basin

    PubMed Central

    Naino Jika, A K; Dussert, Y; Raimond, C; Garine, E; Luxereau, A; Takvorian, N; Djermakoye, R S; Adam, T; Robert, T

    2017-01-01

    Despite of a growing interest in considering the role of sociological factors in seed exchanges and their consequences on the evolutionary dynamics of agro-biodiversity, very few studies assessed the link between ethno-linguistic diversity and genetic diversity patterns in small-holder farming systems. This is key for optimal improvement and conservation of crop genetic resources. Here, we investigated genetic diversity at 17 SSR markers of pearl millet landraces (varieties named by farmers) in the Lake Chad Basin. 69 pearl millet populations, representing 27 landraces collected in eight ethno-linguistic farmer groups, were analyzed. We found that the farmers’ local taxonomy was not a good proxy for population’s genetic differentiation as previously shown at smaller scales. Our results show the existence of a genetic structure of pearl millet mainly associated with ethno-linguistic diversity in the western side of the lake Chad. It suggests there is a limit to gene flow between landraces grown by different ethno-linguistic groups. This result was rather unexpected, because of the highly outcrossing mating system of pearl millet, the high density of pearl millet fields all along the green belt of this Sahelian area and the fact that seed exchanges among ethno-linguistic groups are known to occur. In the eastern side of the Lake, the pattern of genetic diversity suggests a larger efficient circulation of pearl millet genes between ethno-linguistic groups that are less numerous, spatially intermixed and, for some of them, more prone to exogamy. Finally, other historical and environmental factors which may contribute to the observed diversity patterns are discussed. PMID:28121310

  9. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae

    PubMed Central

    Tremaine, Mary; Hebert, Alexander S.; Myers, Kevin S.; Sardi, Maria; Dickinson, Quinn; Reed, Jennifer L.; Zhang, Yaoping; Coon, Joshua J.; Hittinger, Chris Todd; Gasch, Audrey P.; Landick, Robert

    2016-01-01

    The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactions among genes encoding a xylose reductase (GRE3), a component of MAP Kinase (MAPK) signaling (HOG1), a regulator of Protein Kinase A (PKA) signaling (IRA2), and a scaffolding protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis (ISU1). Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism. PMID:27741250

  10. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae.

    PubMed

    Sato, Trey K; Tremaine, Mary; Parreiras, Lucas S; Hebert, Alexander S; Myers, Kevin S; Higbee, Alan J; Sardi, Maria; McIlwain, Sean J; Ong, Irene M; Breuer, Rebecca J; Avanasi Narasimhan, Ragothaman; McGee, Mick A; Dickinson, Quinn; La Reau, Alex; Xie, Dan; Tian, Mingyuan; Reed, Jennifer L; Zhang, Yaoping; Coon, Joshua J; Hittinger, Chris Todd; Gasch, Audrey P; Landick, Robert

    2016-10-01

    The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactions among genes encoding a xylose reductase (GRE3), a component of MAP Kinase (MAPK) signaling (HOG1), a regulator of Protein Kinase A (PKA) signaling (IRA2), and a scaffolding protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis (ISU1). Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism.

  11. Novel and Unexpected Microbial Diversity in Acid Mine Drainage in Svalbard (78° N), Revealed by Culture-Independent Approaches

    PubMed Central

    García-Moyano, Antonio; Austnes, Andreas Erling; Lanzén, Anders; González-Toril, Elena; Aguilera, Ángeles; Øvreås, Lise

    2015-01-01

    Svalbard, situated in the high Arctic, is an important past and present coal mining area. Dozens of abandoned waste rock piles can be found in the proximity of Longyearbyen. This environment offers a unique opportunity for studying the biological control over the weathering of sulphide rocks at low temperatures. Although the extension and impact of acid mine drainage (AMD) in this area is known, the native microbial communities involved in this process are still scarcely studied and uncharacterized. Several abandoned mining areas were explored in the search for active AMD and a culture-independent approach was applied with samples from two different runoffs for the identification and quantification of the native microbial communities. The results obtained revealed two distinct microbial communities. One of the runoffs was more extreme with regards to pH and higher concentration of soluble iron and heavy metals. These conditions favored the development of algal-dominated microbial mats. Typical AMD microorganisms related to known iron-oxidizing bacteria (Acidithiobacillus ferrivorans, Acidobacteria and Actinobacteria) dominated the bacterial community although some unexpected populations related to Chloroflexi were also significant. No microbial mats were found in the second area. The geochemistry here showed less extreme drainage, most likely in direct contact with the ore under the waste pile. Large deposits of secondary minerals were found and the presence of iron stalks was revealed by microscopy analysis. Although typical AMD microorganisms were also detected here, the microbial community was dominated by other populations, some of them new to this type of system (Saccharibacteria, Gallionellaceae). These were absent or lowered in numbers the farther from the spring source and they could represent native populations involved in the oxidation of sulphide rocks within the waste rock pile. This environment appears thus as a highly interesting field of potential

  12. Novel and Unexpected Microbial Diversity in Acid Mine Drainage in Svalbard (78° N), Revealed by Culture-Independent Approaches.

    PubMed

    García-Moyano, Antonio; Austnes, Andreas Erling; Lanzén, Anders; González-Toril, Elena; Aguilera, Ángeles; Øvreås, Lise

    2015-10-13

    Svalbard, situated in the high Arctic, is an important past and present coal mining area. Dozens of abandoned waste rock piles can be found in the proximity of Longyearbyen. This environment offers a unique opportunity for studying the biological control over the weathering of sulphide rocks at low temperatures. Although the extension and impact of acid mine drainage (AMD) in this area is known, the native microbial communities involved in this process are still scarcely studied and uncharacterized. Several abandoned mining areas were explored in the search for active AMD and a culture-independent approach was applied with samples from two different runoffs for the identification and quantification of the native microbial communities. The results obtained revealed two distinct microbial communities. One of the runoffs was more extreme with regards to pH and higher concentration of soluble iron and heavy metals. These conditions favored the development of algal-dominated microbial mats. Typical AMD microorganisms related to known iron-oxidizing bacteria (Acidithiobacillus ferrivorans, Acidobacteria and Actinobacteria) dominated the bacterial community although some unexpected populations related to Chloroflexi were also significant. No microbial mats were found in the second area. The geochemistry here showed less extreme drainage, most likely in direct contact with the ore under the waste pile. Large deposits of secondary minerals were found and the presence of iron stalks was revealed by microscopy analysis. Although typical AMD microorganisms were also detected here, the microbial community was dominated by other populations, some of them new to this type of system (Saccharibacteria, Gallionellaceae). These were absent or lowered in numbers the farther from the spring source and they could represent native populations involved in the oxidation of sulphide rocks within the waste rock pile. This environment appears thus as a highly interesting field of potential

  13. Directed evolution reveals unexpected epistatic interactions that alter metabolic regulation and enable anaerobic xylose use by Saccharomyces cerevisiae

    DOE PAGES

    Sato, Trey K.; Tremaine, Mary; Parreiras, Lucas S.; ...

    2016-10-14

    The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactionsmore » among genes encoding a xylose reductase (GRE3), a component of MAP Kinase (MAPK) signaling (HOG1), a regulator of Protein Kinase A (PKA) signaling (IRA2), and a scaffolding protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis (ISU1). Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Lastly, our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism.« less

  14. Metatranscriptomic analysis of a high-sulfide aquatic spring reveals insights into sulfur cycling and unexpected aerobic metabolism.

    PubMed

    Spain, Anne M; Elshahed, Mostafa S; Najar, Fares Z; Krumholz, Lee R

    2015-01-01

    Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring's source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM) of oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons.

  15. Unexpected patterns of genetic structuring among locations but not colour morphs in Acropora nasuta (Cnidaria; Scleractinia).

    PubMed

    Mackenzie, J B; Munday, P L; Willis, B L; Miller, D J; van Oppen, M J H

    2004-01-01

    Symbiotic relationships have contributed greatly to the evolution and maintenance of biological diversity. On the Great Barrier Reef, species of obligate coral-dwelling fishes (genus Gobiodon) coexist by selectively recruiting to colonies of Acropora nasuta that differ in branch-tip colour. In this study, we investigate genetic variability among sympatric populations of two colour morphs of A. nasuta ('blue-tip' and 'brown-tip') living in symbiosis with two fish species, Gobiodon histrio and G. quinquestrigatus, respectively, to determine whether gobies are selecting between intraspecific colour polymorphisms or cryptic coral species. We also examine genetic differentiation among coral populations containing both these colour morphs that are separated by metres between local sites, tens of kilometres across the continental shelf and hundreds of kilometres along the Great Barrier Reef. We use three nuclear DNA loci, two of which we present here for the first time for Acropora. No significant genetic differentiation was detected between sympatric colour morphs at these three loci. Hence, symbiotic gobies are selecting among colour morphs of A. nasuta, rather than cryptic species. Significant genetic geographical structuring was observed among populations, independent of colour, at regional (i.e. latitudinal separation by < 500 km) and cross-shelf (< 50 km) scales, alongside relative homogeneity between local populations on within reef scales (< 5 km). This contrasts with the reported absence of large-scale genetic structuring in A. valida, which is a member of the same species group as A. nasuta. Apparent differences in biogeographical structuring between species within the A. nasuta group emphasize the need for comparative sampling across both spatial (i.e. within reefs, between reefs and between regions) and taxonomic scales (i.e. within and between closely related species).

  16. Culture-independent genome sequencing of clinical samples reveals an unexpected heterogeneity of infections by Chlamydia pecorum.

    PubMed

    Bachmann, Nathan L; Sullivan, Mitchell J; Jelocnik, Martina; Myers, Garry S A; Timms, Peter; Polkinghorne, Adam

    2015-05-01

    Chlamydia pecorum is an important global pathogen of livestock, and it is also a significant threat to the long-term survival of Australia's koala populations. This study employed a culture-independent DNA capture approach to sequence C. pecorum genomes directly from clinical swab samples collected from koalas with chlamydial disease as well as from sheep with arthritis and conjunctivitis. Investigations into single-nucleotide polymorphisms within each of the swab samples revealed that a portion of the reads in each sample belonged to separate C. pecorum strains, suggesting that all of the clinical samples analyzed contained mixed populations of genetically distinct C. pecorum isolates. This observation was independent of the anatomical site sampled and the host species. Using the genomes of strains identified in each of these samples, whole-genome phylogenetic analysis revealed that a clade containing a bovine and a koala isolate is distinct from other clades comprised of livestock or koala C. pecorum strains. Providing additional evidence to support exposure of koalas to Australian livestock strains, two minor strains assembled from the koala swab samples clustered with livestock strains rather than koala strains. Culture-independent probe-based genome capture and sequencing of clinical samples provides the strongest evidence yet to suggest that naturally occurring chlamydial infections are comprised of multiple genetically distinct strains. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Genetic code ambiguity: an unexpected source of proteome innovation and phenotypic diversity.

    PubMed

    Moura, Gabriela R; Carreto, Laura C; Santos, Manuel A S

    2009-12-01

    Translation of the genome into the proteome is a highly accurate biological process. However, the molecular mechanisms involved in protein synthesis are not error free and downstream protein quality control systems are needed to counteract the negative effects of translational errors (mistranslation) on proteome and cell homeostasis. This plus human and mice diseases caused by translational error generalized the idea that codon ambiguity is detrimental to life. Here we depart from this classical view of deleterious translational error and highlight how codon ambiguity can play important roles in the evolution of novel proteins. We also explain how tRNA mischarging can be relevant for the synthesis of functional proteomes, how codon ambiguity generates phenotypic and genetic diversity and how advantageous phenotypes can be selected, fixed, and inherited. A brief introduction to the molecular nature of translational error is provided; however, detailed information on the mechanistic aspects of mistranslation or comprehensive literature reviews of this topic should be obtained elsewhere.

  18. Unexpected high genetic diversity at the extreme northern geographic limit of Taurulus bubalis (Euphrasen, 1786).

    PubMed

    Almada, Vítor C; Almada, Frederico; Francisco, Sara M; Castilho, Rita; Robalo, Joana I

    2012-01-01

    The longspined bullhead (Taurulus bubalis, Euphrasen 1786) belongs to the family Cottidae and is a rocky shore species that inhabits the intertidal zones of the Eastern Atlantic since Iceland, southward to Portugal and also the North Sea and Baltic, northward to the Gulf of Finland, with some occurrences in the northern Mediterranean coasts eastward to the Gulf of Genoa. We analysed the phylogeographic patterns of this species using mitochondrial and nuclear markers in populations throughout most of its distributional range in west Europe. We found that T. bubalis has a relatively shallow genealogy with some differentiation between Atlantic and North Sea. Genetic diversity was homogeneous across all populations studied. The possibility of a glacial refugium near the North Sea is discussed. In many, but not all, marine temperate organisms, patterns of diversity are similar across the species range. If this phenomenon proves to be most common in cold adapted species, it may reflect the availability of glacial refugia not far from their present-day northern limits.

  19. Unexpected absence of genetic separation of a highly diverse population of hookworms from geographically isolated hosts.

    PubMed

    Haynes, Benjamin T; Marcus, Alan D; Higgins, Damien P; Gongora, Jaime; Gray, Rachael; Šlapeta, Jan

    2014-12-01

    The high natal site fidelity of endangered Australian sea lions (Neophoca cinerea) along the southern Australian coast suggests that their maternally transmitted parasitic species, such as hookworms, will have restricted potential for dispersal. If this is the case, we would expect to find a hookworm haplotype structure corresponding to that of the host mtDNA haplotype structure; that is, restricted among geographically separated colonies. In this study, we used a fragment of the cytochrome c oxidase I mitochondrial DNA (mtDNA) gene to investigate the diversity of hookworms (Uncinaria sanguinis) in N. cinerea to assess the importance of host distribution and ecology on the evolutionary history of the parasite. High haplotype (h=0.986) and nucleotide diversity (π=0.013) were seen, with 45 unique hookworm mtDNA haplotypes across N. cinerea colonies; with most of the variation (78%) arising from variability within hookworms from individual colonies. This is supported by the low genetic differentiation co-efficient (GST=0.007) and a high gene flow (Nm=35.25) indicating a high migration rate between the populations of hookworms. The haplotype network demonstrated no clear distribution and delineation of haplotypes according to geographical location. Our data rejects the vicariance hypothesis; that female host natal site fidelity and the transmammary route of infection restrict hookworm gene flow between N. cinerea populations and highlights the value of studies of parasite diversity and dispersal to challenge our understanding of parasite and host ecology.

  20. Genetic testing in familial isolated hyperparathyroidism: unexpected results and their implications

    PubMed Central

    Warner, J; Epstein, M; Sweet, A; Singh, D; Burgess, J; Stranks, S; Hill, P; Perry-Keene, D; Learoyd, D; Robinson, B; Birdsey, P; Mackenzie, E; Teh, B; Prins, J; Cardinal, J

    2004-01-01

    Familial hyperparathyroidism is not uncommon in clinical endocrine practice. It encompasses a spectrum of disorders including multiple endocrine neoplasia types 1 (MEN1) and 2A, hyperparathyroidism-jaw tumour syndrome (HPT-JT), familial hypocalciuric hypercalcaemia (FHH), and familial isolated hyperparathyroidism (FIHP). Distinguishing among the five syndromes is often difficult but has profound implications for the management of patient and family. The availability of specific genetic testing for four of the syndromes has improved diagnostic accuracy and simplified family monitoring in many cases but its current cost and limited accessibility require rationalisation of its use. No gene has yet been associated exclusively with FIHP. FIHP phenotypes have been associated with mutant MEN1 and calcium-sensing receptor (CASR) genotypes and, very recently, with mutation in the newly identified HRPT2 gene. The relative proportions of these are not yet clear. We report results of MEN1, CASR, and HRPT2 genotyping of 22 unrelated subjects with FIHP phenotypes. We found 5 (23%) with MEN1 mutations, four (18%) with CASR mutations, and none with an HRPT2 mutation. All those with mutations had multiglandular hyperparathyroidism. Of the subjects with CASR mutations, none were of the typical FHH phenotype. These findings strongly favour a recommendation for MEN1 and CASR genotyping of patients with multiglandular FIHP, irrespective of urinary calcium excretion. However, it appears that HRPT2 genotyping should be reserved for cases in which other features of the HPT-JT phenotype have occurred in the kindred. Also apparent is the need for further investigation to identify additional genes associated with FIHP. PMID:14985373

  1. Genetic analysis reveals promiscuity among female cheetahs.

    PubMed

    Gottelli, Dada; Wang, Jinliang; Bashir, Sultana; Durant, Sarah M

    2007-08-22

    Cheetahs (Acinonyx jubatus) have a combination of ranging patterns and social system that is unique in mammals, whereby male coalitions occupy small territories less than 10% of the home range of solitary females. This study uses non-invasive genetic sampling of a long-term study population of cheetah in the Serengeti National Park in Tanzania to infer the mating system. Individual cheetah genotypes at up to 13 microsatellite loci were obtained from 171 faecal samples. A statistical method was adapted to partition the cubs within each litter (n=47) into full-sibling clusters and to infer the father of each cluster using these loci. Our data showed a high rate of multiple paternity in the population; 43% of litters with more than one cub were fathered by more than one male. The results also demonstrated that female fidelity was low, and provided some evidence that females chose to mate with unrelated males within an oestrus cycle. The low rate of paternity assignments indicated that males living outside the study area contributed substantially to the reproduction of the cheetah population.

  2. Extensive Variation in the O-Antigen Gene Cluster within One Salmonella enterica Serogroup Reveals an Unexpected Complex History

    PubMed Central

    Wang, Lei; Andrianopoulos, Kanella; Liu, Dan; Popoff, Michel Y.; Reeves, Peter R.

    2002-01-01

    The 46 serogroups of Salmonella enterica have different O-antigens, and each is thought to have a specific form of the O-antigen cluster. Comparison of the 145 serovars of serogroup B revealed much more intraserogroup genetic diversity than expected. The O27 factor, due to an α 1-6 linkage between O units in place of the more common α 1-2 linkage and previously thought to be due to a converting bacteriophage, is now shown to be due to a wzyα(1-6) gene located within the major gene cluster. Surprisingly a remnant of this gene in all O27− serovars shows that the ancestor was O27+. There are six distinct gene cluster forms, five apparently derived by a series of deletions and one by an insertion from an ancestral O27+ form present in 57 serovars. The history of the gene cluster and movement between subspecies I and II can be traced. Two of the derivative forms still have a functional wzyα(1-6) gene, while in three it has been inactivated by deletion or insertion. Two of the forms lacking a functional wzyα(1-6) gene have the wzyα(1-2) gene first described for strain LT2 as rfc, whereas for the third the wzy gene has not been located. PMID:11872718

  3. The electrocardiographic abnormalities in highly trained athletes compared to the genetic study related to causes of unexpected sudden cardiac death

    PubMed Central

    Macarie, C; Dermengiu, D; Barbarii, L; Tepes Piser, I; Chioncel, O; Carp, A; Stoian, I

    2009-01-01

    Background: Electrocardiograms in elite endurance athletes sometimes show bizarre patterns suggestive of inherited channelopathies (Brugada syndrome, long QTc, catecholaminergic polymorphic ventricular tachycardia) and cardiomyopathies (arrhythmogenic right ventricular cardiomyopathy, hypertrophic cardiomyopathy) responsible for unexpected sudden cardiac death. Among other methods, genetic analyses are required for correct diagnosis. Objective: To correlate 12– lead electrocardiographic patterns suggestive of inherited channelopathies and cardiomyopathies to specific genetic analyses. Design: Prospective study (2004–2007) of screening 12–lead ECG tracings in standard position and higher intercostal spaces V1 to V3 precordial leads, performed in athletes and normal sedentary subjects aged match. Genetic analyses of subjects with ECG abnormalities suggested inherited channelopathies and cardiomyopathies. Setting: All cardiologic exams and electrocardiograms were performed at ‘Prof. Dr. C.C. Iliescu’ National Institute of Cardiovascular Diseases (Bucharest, Romania). The genetic studies were done at ‘Mina Minovici’ National Institute of Forensic Medicine (Bucharest, Romania). Participants: 347 elite endurance athletes (seniors–190, juniors–157), mean age of 20; 200 subjects mean age of 21, belonging to the control group of 505 normal sedentary population. Results: Seniors. RSR' (V1 to V3) pattern, in 45 cases (23.68%), 5 of them with questionable Brugada sign (elevated J wave and ‘coved’ ST segment,< 2mm in one lead, V1. Typically, Brugada 1 sign was found in one case (0.52%) with no SCN5A abnormalities. One athlete (0.52%) had normal ECG and exon1 SCN5A duplication. MRI confirmed three arrhythmic right ventricular cardiomypathy epsilon waves (1.57%), in one case. ST–segment elevation myocardial injury like in V1–V3 precordial leads in 34 athletes (17.89%).Genetic analyses–no gene mutations. Juniors Upright J wave was found in 43 cases (27

  4. Unexpected Response.

    DTIC Science & Technology

    2014-09-26

    different course of action--its "Unexpected Response." The conclusion is that conventional forces are the essential deterrent given strategic parity . Then...different course of action--its "Unexpected Response. The conclusion is that conventional forces are the essential deterrent given strategic parity . Then...limited response, superiority, parity , etc. The tentative steps along the lines of a strategic defense are one more variation on the theme of deterrence

  5. A new fossil from the mid-Paleocene of New Zealand reveals an unexpected diversity of world's oldest penguins.

    PubMed

    Mayr, Gerald; De Pietri, Vanesa L; Paul Scofield, R

    2017-04-01

    We describe leg bones of a giant penguin from the mid-Paleocene Waipara Greensand of New Zealand. The specimens were found at the type locality of Waimanu manneringi and together with this species they constitute the oldest penguin fossils known to date. Tarsometatarsus dimensions indicate a species that reached the size of Anthropornis nordenskjoeldi, one of the largest known penguin species. Stem group penguins therefore attained a giant size very early in their evolution, with this gigantism existing for more than 30 million years. The new fossils are from a species that is phylogenetically more derived than Waimanu, and the unexpected coexistence of Waimanu with more derived stem group Sphenisciformes documents a previously unknown diversity amongst the world's oldest penguins. The characteristic tarsometatarsus shape of penguins evolved early on, and the significant morphological disparity between Waimanu and the new fossil conflicts with recent Paleocene divergence estimates for penguins, suggesting an older, Late Cretaceous, origin.

  6. A new fossil from the mid-Paleocene of New Zealand reveals an unexpected diversity of world's oldest penguins

    NASA Astrophysics Data System (ADS)

    Mayr, Gerald; De Pietri, Vanesa L.; Paul Scofield, R.

    2017-04-01

    We describe leg bones of a giant penguin from the mid-Paleocene Waipara Greensand of New Zealand. The specimens were found at the type locality of Waimanu manneringi and together with this species they constitute the oldest penguin fossils known to date. Tarsometatarsus dimensions indicate a species that reached the size of Anthropornis nordenskjoeldi, one of the largest known penguin species. Stem group penguins therefore attained a giant size very early in their evolution, with this gigantism existing for more than 30 million years. The new fossils are from a species that is phylogenetically more derived than Waimanu, and the unexpected coexistence of Waimanu with more derived stem group Sphenisciformes documents a previously unknown diversity amongst the world's oldest penguins. The characteristic tarsometatarsus shape of penguins evolved early on, and the significant morphological disparity between Waimanu and the new fossil conflicts with recent Paleocene divergence estimates for penguins, suggesting an older, Late Cretaceous, origin.

  7. Mitogenome revealed multiple postdomestication genetic mixtures of West African sheep.

    PubMed

    Brahi, O H D; Xiang, H; Chen, X; Farougou, S; Zhao, X

    2015-10-01

    Notable diversity observed within African ovine breeds makes them of great interests, but limited studies on genetic origins and domestications remain poorly understood. Here, we investigate the evolutionary status of West African native breeds, Djallonke and Sahelian sheep using mitogenome sequencing. Compared with other ovine mitogenome sequences, West African sheep were revealed a Eurasian origin, and the initially tamed sheep breeds in West Africa have been genetically mixed with each other and mixed with European breeds. Worldwide domestic sheep is deemed the Eurasian origin and migrated west to Europe and Africa and east to the Far East, in which dispersed and received selection for acclimation to autochthonic environment independently and ultimately evolved into different native breeds, respectively. Our results contribute to the comprehensive understanding of the domestic sheep origin and reveal multiple postdomestication genetic amelioration processes.

  8. Strain-resolved Metatranscriptomic Analysis Reveals Unexpectedly Diverse Heterotrophic and Lithoautotrophic Microbial Metabolism in Naturally Reduced Aquifer Sediments

    NASA Astrophysics Data System (ADS)

    Beller, H. R.; Jewell, T. N. M.; Karaoz, U.; Bill, M.; Chakraborty, R.; Brodie, E.; Williams, K. H.

    2016-12-01

    In this study, we sought to better understand how natural organic matter fuels microbial communities in the anoxic subsurface at the Rifle (CO) site. We conducted a 20-day microcosm experiment with naturally reduced zone (NRZ) sediments and collected samples every 5 days for omics (metagenome and metatranscriptome) and geochemical measurements. No electron donors were added other than the NRZ sediment, which is enriched in buried woody plant material. The microcosms were constructed and incubated under anaerobic conditions in serum bottles with a N2 headspace. Biogeochemical measurements indicated that the decomposition of native organic matter occurred in different phases, including mineralization of dissolved organic carbon (DOC) to CO2 during the first week of incubation, followed by a pulse of acetogenesis that dominated carbon flux after 2 weeks. The depletion of DOC over time was strongly correlated with increases in expression of many genes associated with heterotrophy (e.g., amino acid, fatty acid, and carbohydrate metabolism) belonging to a Hydrogenophaga strain that accounted for a relatively large percentage ( 8%) of the metatranscriptome. This Hydrogenophaga strain also expressed genes indicative of chemolithoautotrophy, including CO2 fixation (RubisCO), H2 oxidation, S-compound oxidation, and denitrification. The pulse of acetogenesis appears to have been collectively catalyzed by a number of different organisms and metabolisms, most prominently pyruvate:ferredoxin oxidoreductase. Unexpected genes were identified among the most highly expressed (>98th percentile) transcripts, including acetone carboxylase and cell wall-associated hydrolases, some of which are known to act on peptidoglycan. Many of the most highly expressed hydrolases belonged to a Ca. Bathyarchaeota strain and may have been associated with scavenging of bacterial biomass. Overall, observed metabolism ranged far beyond the expected fermentation of plant-derived organic matter.

  9. A chicken model of pharmacologically-induced Hirschsprung disease reveals an unexpected role of glucocorticoids in enteric aganglionosis

    PubMed Central

    Gasc, Jean-Marie; Clemessy, Maud; Corvol, Pierre; Kempf, Hervé

    2015-01-01

    The enteric nervous system originates from neural crest cells that migrate in chains as they colonize the embryonic gut, eventually forming the myenteric and submucosal plexus. Failure of the neural crest cells to colonize the gut leads to aganglionosis in the terminal gut, a pathological condition called Hirschsprung disease (HSCR) in humans, also known as congenital megacolon or intestinal aganglionosis. One of the characteristics of the human HSCR is its variable penetrance, which may be attributable to the interaction between genetic factors, such as the endothelin-3/endothelin receptor B pathway, and non-genetic modulators, although the role of the latter has not well been established. We have created a novel HSCR model in the chick embryo allowing to test the ability of non-genetic modifiers to alter the HSCR phenotype. Chick embryos treated by phosphoramidon, which blocks the generation of endothelin-3, failed to develop enteric ganglia in the very distal bowel, characteristic of an HSCR-like phenotype. Administration of dexamethasone influenced the phenotype, suggesting that glucocorticoids may be environmental modulators of the penetrance of the aganglionosis in HSCR disease. PMID:25836673

  10. Genetic structure of the Kuwaiti population revealed by paternal lineages.

    PubMed

    Triki-Fendri, Soumaya; Sánchez-Diz, Paula; Rey-González, Danel; Alfadhli, Suad; Ayadi, Imen; Ben Marzoug, Riadh; Carracedo, Ángel; Rebai, Ahmed

    2016-01-01

    We analyzed the Y-chromosome haplogroup diversity in the Kuwaiti population to gain a more complete overview of its genetic landscape. A sample of 117 males from the Kuwaiti population was studied through the analysis of 22 Y-SNPs. The results were then interpreted in conjunction with those of other populations from the Middle East, South Asia, North and East Africa, and East Europe. The analyzed markers allowed the discrimination of 19 different haplogroups with a diversity of 0.7713. J-M304 was the most frequent haplogroup in the Kuwaiti population (55.5%) followed by E-M96 (18%). They revealed a genetic homogeneity between the Kuwaiti population and those of the Middle East (FST  = 6.1%, P-value < 0.0001), although a significant correlation between genetic and geographic distances was found (r = 0.41, P-value = 0.009). Moreover, the nonsignificant pairwise FST genetic distances between the Kuwait population on the one hand and the Arabs of Iran and those of Sudan on the other, corroborate the hypothesis of bidirectional gene flow between Arabia and both Iran and Sudan. Overall, we have revealed that the Kuwaiti population has experienced significant gene flow from neighboring populations like Saudi Arabia, Iran, and East Africa. Therefore, we have confirmed that the population of Kuwait is genetically coextensive with those of the Middle East. © 2015 Wiley Periodicals, Inc.

  11. Global Population Genetic Structure of Caenorhabditis remanei Reveals Incipient Speciation

    PubMed Central

    Dey, Alivia; Jeon, Yong; Wang, Guo-Xiu; Cutter, Asher D.

    2012-01-01

    Mating system transitions dramatically alter the evolutionary trajectories of genomes that can be revealed by contrasts of species with disparate modes of reproduction. For such transitions in Caenorhabditis nematodes, some major causes of genome variation in selfing species have been discerned. And yet, we have only limited understanding of species-wide population genetic processes for their outcrossing relatives, which represent the reproductive state of the progenitors of selfing species. Multilocus–multipopulation sequence polymorphism data provide a powerful means to uncover the historical demography and evolutionary processes that shape genomes. Here we survey nucleotide polymorphism across the X chromosome for three populations of the outcrossing nematode Caenorhabditis remanei and demonstrate its divergence from a fourth population describing a closely related new species from China, C. sp. 23. We find high genetic variation globally and within each local population sample. Despite geographic barriers and moderate genetic differentiation between Europe and North America, considerable gene flow connects C. remanei populations. We discovered C. sp. 23 while investigating C. remanei, observing strong genetic differentiation characteristic of reproductive isolation that was confirmed by substantial F2 hybrid breakdown in interspecific crosses. That C. sp. 23 represents a distinct biological species provides a cautionary example of how standard practice can fail for mating tests of species identity in this group. This species pair permits full application of divergence population genetic methods to obligately outcrossing species of Caenorhabditis and also presents a new focus for interrogation of the genetics and evolution of speciation with the Caenorhabditis model system. PMID:22649079

  12. Fine-scaled human genetic structure revealed by SNP microarrays.

    PubMed

    Xing, Jinchuan; Watkins, W Scott; Witherspoon, David J; Zhang, Yuhua; Guthery, Stephen L; Thara, Rangaswamy; Mowry, Bryan J; Bulayeva, Kazima; Weiss, Robert B; Jorde, Lynn B

    2009-05-01

    We report an analysis of more than 240,000 loci genotyped using the Affymetrix SNP microarray in 554 individuals from 27 worldwide populations in Africa, Asia, and Europe. To provide a more extensive and complete sampling of human genetic variation, we have included caste and tribal samples from two states in South India, Daghestanis from eastern Europe, and the Iban from Malaysia. Consistent with observations made by Charles Darwin, our results highlight shared variation among human populations and demonstrate that much genetic variation is geographically continuous. At the same time, principal components analyses reveal discernible genetic differentiation among almost all identified populations in our sample, and in most cases, individuals can be clearly assigned to defined populations on the basis of SNP genotypes. All individuals are accurately classified into continental groups using a model-based clustering algorithm, but between closely related populations, genetic and self-classifications conflict for some individuals. The 250K data permitted high-level resolution of genetic variation among Indian caste and tribal populations and between highland and lowland Daghestani populations. In particular, upper-caste individuals from Tamil Nadu and Andhra Pradesh form one defined group, lower-caste individuals from these two states form another, and the tribal Irula samples form a third. Our results emphasize the correlation of genetic and geographic distances and highlight other elements, including social factors that have contributed to population structure.

  13. Second generation sequencing and morphological faecal analysis reveal unexpected foraging behaviour by Myotis nattereri (Chiroptera, Vespertilionidae) in winter

    PubMed Central

    2014-01-01

    Background Temperate winters produce extreme energetic challenges for small insectivorous mammals. Some bat species inhabiting locations with mild temperate winters forage during brief inter-torpor normothermic periods of activity. However, the winter diet of bats in mild temperate locations is studied infrequently. Although microscopic analyses of faeces have traditionally been used to characterise bat diet, recently the coupling of PCR with second generation sequencing has offered the potential to further advance our understanding of animal dietary composition and foraging behaviour by allowing identification of a much greater proportion of prey items often with increased taxonomic resolution. We used morphological analysis and Illumina-based second generation sequencing to study the winter diet of Natterer’s bat (Myotis nattereri) and compared the results obtained from these two approaches. For the first time, we demonstrate the applicability of the Illumina MiSeq platform as a data generation source for bat dietary analyses. Results Faecal pellets collected from a hibernation site in southern England during two winters (December-March 2009–10 and 2010–11), indicated that M. nattereri forages throughout winter at least in a location with a mild winter climate. Through morphological analysis, arthropod fragments from seven taxonomic orders were identified. A high proportion of these was non-volant (67.9% of faecal pellets) and unexpectedly included many lepidopteran larvae. Molecular analysis identified 43 prey species from six taxonomic orders and confirmed the frequent presence of lepidopteran species that overwinter as larvae. Conclusions The winter diet of M. nattereri is substantially different from other times of the year confirming that this species has a wide and adaptable dietary niche. Comparison of DNA derived from the prey to an extensive reference dataset of potential prey barcode sequences permitted fine scale taxonomic resolution of prey

  14. Unique Mixed Phenotype and Unexpected Functional Effect Revealed by Novel Compound Heterozygosity Mutations Involving SCN5A

    PubMed Central

    Medeiros-Domingo, Argelia; Tan, Bi-Hua; Torres, Pedro Iturralde; Tester, David J.; Luna, Teresa Tusié; Makielski, Jonathan C.; Ackerman, Michael J.

    2011-01-01

    Background Functional characterization of mutations involving the SCN5A-encoded cardiac sodium channel has established the pathogenic mechanisms for type 3 long QT syndrome (LQT3) and type 1 Brugada syndrome and has provided key insights into the physiological importance of essential structure-function domains. Objective To present the clinical and biophysical phenotypes discerned from compound heterozygosity mutations in SCN5A on different alleles in a toddler diagnosed with QT prolongation and fever induced ventricular arrhythmias. Methods A 22-month-old male presented emergently with fever and refractory ventricular tachycardia. Despite restoration of sinus rhythm, the infant sustained profound neurological injury and died. Using PCR, DHPLC, and direct DNA sequencing, comprehensive open reading frame/splice mutational analysis of the 12 known LQTS-susceptibility genes was performed. Results The infant had two SCN5A mutations: a maternally inherited N-terminal frameshift/deletion (R34fs/60) and a paternally inherited missense mutation, R1195H. The mutations were engineered by site-directed mutagenesis and heterologously expressed transiently in HEK293 cells. As expected, the frame-shifted and prematurely truncated peptide, SCN5A-R34fs/60, showed no current. SCN5A-R1195H had normal peak and late current but abnormal voltage-dependent gating parameters. Surprisingly, co-expression of SCN5A-R34fs/60 with SCN5A-R1195H elicited a significant increase in late sodium current, while co-expression of SCN5A-WT with SCN5A-R34fs/60 did not. Conclusions A severe clinical phenotype characterized by fever-induced monomorphic ventricular tachycardia and QT interval prolongation emerged in a toddler with compound heterozygosity involving SCN5A: R34fs/60, and R1195H. Unexpectedly, the 94-aminoacid “fusion” peptide derived from the R34fs/60 mutation accentuated the late sodium current of R1195H-containing NaV1.5 channels in vitro. PMID:19632629

  15. High-content behavioral profiling reveals neuronal genetic network modulating Drosophila larval locomotor program.

    PubMed

    Aleman-Meza, Boanerges; Loeza-Cabrera, Mario; Peña-Ramos, Omar; Stern, Michael; Zhong, Weiwei

    2017-05-12

    Two key questions in understanding the genetic control of behaviors are: what genes are involved and how these genes interact. To answer these questions at a systems level, we conducted high-content profiling of Drosophila larval locomotor behaviors for over 100 genotypes. We studied 69 genes whose C. elegans orthologs were neuronal signalling genes with significant locomotor phenotypes, and conducted RNAi with ubiquitous, pan-neuronal, or motor-neuronal Gal4 drivers. Inactivation of 42 genes, including the nicotinic acetylcholine receptors nAChRα1 and nAChRα3, in the neurons caused significant movement defects. Bioinformatic analysis suggested 81 interactions among these genes based on phenotypic pattern similarities. Comparing the worm and fly data sets, we found that these genes were highly conserved in having neuronal expressions and locomotor phenotypes. However, the genetic interactions were not conserved for ubiquitous profiles, and may be mildly conserved for the neuronal profiles. Unexpectedly, our data also revealed a possible motor-neuronal control of body size, because inactivation of Rdl and Gαo in the motor neurons reduced the larval body size. Overall, these data established a framework for further exploring the genetic control of Drosophila larval locomotion. High content, quantitative phenotyping of larval locomotor behaviours provides a framework for system-level understanding of the gene networks underlying such behaviours.

  16. Elucidating the native sources of an invasive tree species, Acacia pycnantha, reveals unexpected native range diversity and structure

    PubMed Central

    Ndlovu, Joice; Richardson, David M.; Wilson, John R. U.; O'Leary, Martin; Le Roux, Johannes J.

    2013-01-01

    Background and Aims Understanding the introduction history of invasive plant species is important for their management and identifying effective host-specific biological control agents. However, uncertain taxonomy, intra- and interspecific hybridization, and cryptic speciation may obscure introduction histories, making it difficult to identify native regions to explore for host-specific agents. The overall aim of this study was to identify the native source populations of Acacia pycnantha, a tree native to south-eastern Australia and invasive in South Africa, Western Australia and Portugal. Using a phylogeographical approach also allowed an exploration of the historical processes that have shaped the genetic structure of A. pycnantha in its native range. Methods Nuclear (nDNA) and plastid DNA sequence data were used in network and tree-building analyses to reconstruct phylogeographical relationships between native and invasive A. pycnantha populations. In addition, mismatch distributions, relative rates and Bayesian analyses were used to infer recent demographic processes and timing of events in Australia that led to population structure and diversification. Key Results The plastid network indicated that Australian populations of A. pycnantha are geographically structured into two informally recognized lineages, the wetland and dryland forms, whereas the nuclear phylogeny showed little geographical structure between these two forms. Moreover, the dryland form of A. pycnantha showed close genetic similarity to the wetland form based on nDNA sequence data. Hybrid zones may explain these findings, supported here by incongruent phylogenetic placement of some of these taxa between nuclear and plastid genealogies. Conclusions It is hypothesized that habitat fragmentation due to cycles of aridity inter-dispersed with periods of abundant rainfall during the Pleistocene (approx. 100 kya) probably gave rise to native dryland and wetland forms of A. pycnantha. Although the

  17. Bio-mimicking of proline-rich motif applied to carbon nanotube reveals unexpected subtleties underlying nanoparticle functionalization.

    PubMed

    Zhang, Yuanzhao; Jimenez-Cruz, Camilo A; Wang, Jian; Zhou, Bo; Yang, Zaixing; Zhou, Ruhong

    2014-11-27

    Here, we report computational studies of the SH3 protein domain interacting with various single-walled carbon nanotubes (SWCNT) either bare or functionalized by mimicking the proline-rich motif (PRM) ligand (PPPVPPRR) and compare it to the SH3-PRM complex binding. With prolines or a single arginine attached, the SWCNT gained slightly on specificity when compared with the bare control, whereas with multi-arginine systems the specificity dropped dramatically to our surprise. Although the electrostatic interaction provided by arginines is crucial in the recognition between PRM and SH3 domain, our results suggest that attaching multiple arginines to the SWCNT has a detrimental effect on the binding affinity. Detailed analysis of the MD trajectories found two main factors that modulate the specificity of the binding: the existence of competing acidic patches at the surface of SH3 that leads to "trapping and clamping" by the arginines, and the rigidity of the SWCNT introducing entropic penalties in the proper binding. Further investigation revealed that the same "clamping" phenomenon exits in the PRM-SH3 system, which has not been reported in previous literature. The competing effects between nanoparticle and its functionalization components revealed by our model system should be of value to current and future nanomedicine designs.

  18. Bio-mimicking of Proline-Rich Motif Applied to Carbon Nanotube Reveals Unexpected Subtleties Underlying Nanoparticle Functionalization

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanzhao; Jimenez-Cruz, Camilo A.; Wang, Jian; Zhou, Bo; Yang, Zaixing; Zhou, Ruhong

    2014-11-01

    Here, we report computational studies of the SH3 protein domain interacting with various single-walled carbon nanotubes (SWCNT) either bare or functionalized by mimicking the proline-rich motif (PRM) ligand (PPPVPPRR) and compare it to the SH3-PRM complex binding. With prolines or a single arginine attached, the SWCNT gained slightly on specificity when compared with the bare control, whereas with multi-arginine systems the specificity dropped dramatically to our surprise. Although the electrostatic interaction provided by arginines is crucial in the recognition between PRM and SH3 domain, our results suggest that attaching multiple arginines to the SWCNT has a detrimental effect on the binding affinity. Detailed analysis of the MD trajectories found two main factors that modulate the specificity of the binding: the existence of competing acidic patches at the surface of SH3 that leads to ``trapping and clamping'' by the arginines, and the rigidity of the SWCNT introducing entropic penalties in the proper binding. Further investigation revealed that the same ``clamping'' phenomenon exits in the PRM-SH3 system, which has not been reported in previous literature. The competing effects between nanoparticle and its functionalization components revealed by our model system should be of value to current and future nanomedicine designs.

  19. Characterization of the secretome of chickpea suspension culture reveals pathway abundance and the expected and unexpected secreted proteins.

    PubMed

    Gupta, Sonika; Wardhan, Vijay; Verma, Shikha; Gayali, Saurabh; Rajamani, Uma; Datta, Asis; Chakraborty, Subhra; Chakraborty, Niranjan

    2011-11-04

    The secretome of an organism is defined as a set of secreted proteins that encompasses all proteins exported to the extracellular space. To better understand the chickpea secretome, we used callus culture to isolate and identify secreted proteins as a step toward determining their functions. Proteins in the extracellular media of the suspension culture were examined using SDS-PAGE and mass spectrometry (LC-MS/MS). Proteomic analysis led to the identification of 773 proteins, presumably involved in a variety of functions including metabolism, signal transduction, transport, and cell defense, in addition to maintaining redox status of extracellular space. Bioinformatic analysis confirmed 724 proteins, accounting for 94% of the identified proteins, as constituents of the secretome. Analysis of the secretome revealed the presence of several proteins of unknown function and a large number of classical and nonclassical secreted proteins. This represents the first comprehensive secretome of a legume genome, which is yet to be sequenced. Comparative analysis of the chickpea secretome with those of Medicago, Arabidopsis, and rice revealed that the majority of identified proteins are seemingly species-specific. This study demonstrates that characterization of the chickpea secretome in vitro can be used to identify secreted proteins, which has implications for systems biology research.

  20. Screening the Expression of ABCB6 in Erythrocytes Reveals an Unexpectedly High Frequency of Lan Mutations in Healthy Individuals

    PubMed Central

    Kiss, Katalin; Varady, Gyorgy; Gera, Melinda; Antalffy, Geza; Andrikovics, Hajnalka; Tordai, Attila; Studzian, Maciej; Strapagiel, Dominik; Pulaski, Lukasz; Tani, Yoshihiko; Sarkadi, Balazs; Szakacs, Gergely

    2014-01-01

    Lan is a high-incidence blood group antigen expressed in more than 99.9% of the population. Identification of the human ABC transporter ABCB6 as the molecular basis of Lan has opened the way for studies assessing the relation of ABCB6 function and expression to health and disease. To date, 34 ABCB6 sequence variants have been described in association with reduced ABCB6 expression based on the genotyping of stored blood showing weak or no reactivity with anti-Lan antibodies. In the present study we examined the red blood cell (RBC) surface expression of ABCB6 by quantitative flow cytometry in a cohort of 47 healthy individuals. Sequencing of the entire coding region of the ABCB6 gene in low RBC ABCB6 expressors identified a new allele (IVS9+1G>A, affecting a putative splice site at the boundary of exon 9) and two nonsynonymous SNPs listed in the SNP database (R192Q (rs150221689) and G588 S (rs145526996)). The R192Q mutation showed co-segregation with reduced RBC ABCB6 expression in a family, and we found the G588 S mutation in a compound heterozygous individual with undetectable ABCB6 expression, suggesting that both mutations result in weak or no expression of ABCB6 on RBCs. Analysis of the intracellular expression pattern in HeLa cells by confocal microscopy indicated that these mutations do not compromise overall expression or the endolysosomal localization of ABCB6. Genotyping of two large cohorts, containing 235 and 1039 unrelated volunteers, confirmed the high allele frequency of Lan-mutations. Our results suggest that genetic variants linked to lower or absent cell surface expression of ABCB6/Langereis may be more common than previously thought. PMID:25360778

  1. Screening the expression of ABCB6 in erythrocytes reveals an unexpectedly high frequency of Lan mutations in healthy individuals.

    PubMed

    Koszarska, Magdalena; Kucsma, Nora; Kiss, Katalin; Varady, Gyorgy; Gera, Melinda; Antalffy, Geza; Andrikovics, Hajnalka; Tordai, Attila; Studzian, Maciej; Strapagiel, Dominik; Pulaski, Lukasz; Tani, Yoshihiko; Sarkadi, Balazs; Szakacs, Gergely

    2014-01-01

    Lan is a high-incidence blood group antigen expressed in more than 99.9% of the population. Identification of the human ABC transporter ABCB6 as the molecular basis of Lan has opened the way for studies assessing the relation of ABCB6 function and expression to health and disease. To date, 34 ABCB6 sequence variants have been described in association with reduced ABCB6 expression based on the genotyping of stored blood showing weak or no reactivity with anti-Lan antibodies. In the present study we examined the red blood cell (RBC) surface expression of ABCB6 by quantitative flow cytometry in a cohort of 47 healthy individuals. Sequencing of the entire coding region of the ABCB6 gene in low RBC ABCB6 expressors identified a new allele (IVS9+1G>A, affecting a putative splice site at the boundary of exon 9) and two nonsynonymous SNPs listed in the SNP database (R192Q (rs150221689) and G588 S (rs145526996)). The R192Q mutation showed co-segregation with reduced RBC ABCB6 expression in a family, and we found the G588 S mutation in a compound heterozygous individual with undetectable ABCB6 expression, suggesting that both mutations result in weak or no expression of ABCB6 on RBCs. Analysis of the intracellular expression pattern in HeLa cells by confocal microscopy indicated that these mutations do not compromise overall expression or the endolysosomal localization of ABCB6. Genotyping of two large cohorts, containing 235 and 1039 unrelated volunteers, confirmed the high allele frequency of Lan-mutations. Our results suggest that genetic variants linked to lower or absent cell surface expression of ABCB6/Langereis may be more common than previously thought.

  2. Expression profiling reveals an unexpected growth-stimulating effect of surplus iron on the yeast Saccharomyces cerevisiae.

    PubMed

    Du, Yang; Cheng, Wang; Li, Wei-Fang

    2012-08-01

    Iron homeostasis plays a crucial role in growth and division of cells in all kingdoms of life. Although yeast iron metabolism has been extensively studied, little is known about the molecular mechanism of response to surplus iron. In this study, expression profiling of Saccharomyces cerevisiae in the presence of surplus iron revealed a dual effect at 1 and 4 h. A cluster of stress-responsive genes was upregulated via activation of the stress-resistance transcription factor Msn4, which indicated the stress effect of surplus iron on yeast metabolism. Genes involved in aerobic metabolism and several anabolic pathways are also upregulated in iron-surplus conditions, which could significantly accelerate yeast growth. This dual effect suggested that surplus iron might participate in a more complex metabolic network, in addition to serving as a stress inducer. These findings contribute to our understanding of the global response of yeast to the fluctuating availability of iron in the environment.

  3. Expression Profiling Reveals an Unexpected Growth-Stimulating Effect of Surplus Iron on the Yeast Saccharomyces cerevisiae

    PubMed Central

    Du, Yang; Cheng, Wang; Li, Wei-Fang

    2012-01-01

    Iron homeostasis plays a crucial role in growth and division of cells in all kingdoms of life. Although yeast iron metabolism has been extensively studied, little is known about the molecular mechanism of response to surplus iron. In this study, expression profiling of Saccharomyces cerevisiae in the presence of surplus iron revealed a dual effect at 1 and 4 h. A cluster of stress-responsive genes was upregulated via activation of the stress-resistance transcription factor Msn4, which indicated the stress effect of surplus iron on yeast metabolism. Genes involved in aerobic metabolism and several anabolic pathways are also upregulated in iron-surplus conditions, which could significantly accelerate yeast growth. This dual effect suggested that surplus iron might participate in a more complex metabolic network, in addition to serving as a stress inducer. These findings contribute to our understanding of the global response of yeast to the fluctuating availability of iron in the environment. PMID:22907175

  4. Genome-wide profiling of untranslated regions by paired-end ditag sequencing reveals unexpected transcriptome complexity in yeast.

    PubMed

    Kang, Ya-Ni; Lai, Deng-Pan; Ooi, Hong Sain; Shen, Ting-Ting; Kou, Yao; Tian, Jing; Czajkowsky, Daniel M; Shao, Zhifeng; Zhao, Xiaodong

    2015-02-01

    The identification of structural and functional elements encoded in a genome is a challenging task. Although the transcriptome of budding yeast has been extensively analyzed, the boundaries and untranslated regions of yeast genes remain elusive. To address this least-explored field of yeast genomics, we performed a transcript profiling analysis through paired-end ditag (PET) approach coupled with deep sequencing. With 562,133 PET sequences we accurately defined the boundaries and untranslated regions of 3,409 ORFs, suggesting many yeast genes have multiple transcription start sites (TSSs). We also identified 85 previously uncharacterized transcripts either in intergenic regions or from the opposite strand of reported genomic features. Furthermore, our data revealed the extensive 3' end heterogeneity of yeast genes and identified a novel putative motif for polyadenylation. Our results indicate the yeast transcriptome is more complex than expected. This study would serve as an invaluable resource for elucidating the regulation and evolution of yeast genes.

  5. Behavioral idiosyncrasy reveals genetic control of phenotypic variability

    PubMed Central

    Ayroles, Julien F.; Buchanan, Sean M.; O’Leary, Chelsea; Skutt-Kakaria, Kyobi; Grenier, Jennifer K.; Clark, Andrew G.; Hartl, Daniel L.; de Bivort, Benjamin L.

    2015-01-01

    Quantitative genetics has primarily focused on describing genetic effects on trait means and largely ignored the effect of alternative alleles on trait variability, potentially missing an important axis of genetic variation contributing to phenotypic differences among individuals. To study the genetic effects on individual-to-individual phenotypic variability (or intragenotypic variability), we used Drosophila inbred lines and measured the spontaneous locomotor behavior of flies walking individually in Y-shaped mazes, focusing on variability in locomotor handedness, an assay optimized to measure variability. We discovered that some lines had consistently high levels of intragenotypic variability among individuals, whereas lines with low variability behaved as although they tossed a coin at each left/right turn decision. We demonstrate that the degree of variability is itself heritable. Using a genome-wide association study (GWAS) for the degree of intragenotypic variability as the phenotype across lines, we identified several genes expressed in the brain that affect variability in handedness without affecting the mean. One of these genes, Ten-a, implicates a neuropil in the central complex of the fly brain as influencing the magnitude of behavioral variability, a brain region involved in sensory integration and locomotor coordination. We validated these results using genetic deficiencies, null alleles, and inducible RNAi transgenes. Our study reveals the constellation of phenotypes that can arise from a single genotype and shows that different genetic backgrounds differ dramatically in their propensity for phenotypic variabililty. Because traditional mean-focused GWASs ignore the contribution of variability to overall phenotypic variation, current methods may miss important links between genotype and phenotype. PMID:25953335

  6. Phylogeography and historical demography of the Lusitanian snail Elona quimperiana reveal survival in unexpected separate glacial refugia

    PubMed Central

    2008-01-01

    Background Present day distributions of Palearctic taxa in northern latitudes mainly result from populations having survived in local patches during the Late Pleistocene and/or from recolonizing populations from southern temperate refugia. If well-studied Mediterranean and eastern European refugia are widely accepted, some recent biogeographical assumptions still remain unclear, such as the occurrence of multiple glacial refugia in Iberia and cryptic refugia in northern Europe during the last glaciations. The Lusitanian snail Elona quimperiana has a remarkably disjunct distribution, limited to northwestern France (Brittany), northwestern Spain and the Basque Country. By describing the phylogeographical structure of this species across its entire range, the present study attempts to identify refugia and subsequent recolonization routes. Results Results based on 16S and COI gene sequences showed that the low genetic diversity observed in the Brittany populations should be associated with a recent demographic expansion. By contrast, populations from Spain exhibit several differentiated lineages and are characterized by demographic equilibrium, while the Basque populations are the only ones harboring typical distinct haplotypes. The center of the star-like networks of both gene sequences is occupied by a common ancestral-like haplotype found in Brittany and Spain, which might have originated from the middle of Northern Spain (i.e. Asturias, eastern Lugo and western Cantabria). Estimates of the divergence time between the Spain-Brittany and Basque lineages strongly suggest that E. quimperiana survived the Pleistocene glaciations in distinct refugia on the Iberian Peninsula, one of which is situated in Picos de Europa, and the other in the Basque Country. The occurrence of a northern refugium in France cannot be rejected as of yet. Conclusion Present results confirm the Iberian origin of the land snail E. quimperiana and strongly support the emerging phylogeographic

  7. Micro-CT scan reveals an unexpected high-volume and interconnected pore network in a Cretaceous Sanagasta dinosaur eggshell.

    PubMed

    Hechenleitner, E Martín; Grellet-Tinner, Gerald; Foley, Matthew; Fiorelli, Lucas E; Thompson, Michael B

    2016-03-01

    The Cretaceous Sanagasta neosauropod nesting site (La Rioja, Argentina) was the first confirmed instance of extinct dinosaurs using geothermal-generated heat to incubate their eggs. The nesting strategy and hydrothermal activities at this site led to the conclusion that the surprisingly 7 mm thick-shelled eggs were adapted to harsh hydrothermal microenvironments. We used micro-CT scans in this study to obtain the first three-dimensional microcharacterization of these eggshells. Micro-CT-based analyses provide a robust assessment of gas conductance in fossil dinosaur eggshells with complex pore canal systems, allowing calculation, for the first time, of the shell conductance through its thickness. This novel approach suggests that the shell conductance could have risen during incubation to seven times more than previously estimated as the eggshell erodes. In addition, micro-CT observations reveal that the constant widening and branching of pore canals form a complex funnel-like pore canal system. Furthermore, the high density of pore canals and the presence of a lateral canal network in the shell reduce the risks of pore obstruction during the extended incubation of these eggs in a relatively highly humid and muddy nesting environment.

  8. The substrate degradome of meprin metalloproteases reveals an unexpected proteolytic link between meprin β and ADAM10.

    PubMed

    Jefferson, Tamara; Auf dem Keller, Ulrich; Bellac, Caroline; Metz, Verena V; Broder, Claudia; Hedrich, Jana; Ohler, Anke; Maier, Wladislaw; Magdolen, Viktor; Sterchi, Erwin; Bond, Judith S; Jayakumar, Arumugam; Traupe, Heiko; Chalaris, Athena; Rose-John, Stefan; Pietrzik, Claus U; Postina, Rolf; Overall, Christopher M; Becker-Pauly, Christoph

    2013-01-01

    The in vivo roles of meprin metalloproteases in pathophysiological conditions remain elusive. Substrates define protease roles. Therefore, to identify natural substrates for human meprin α and β we employed TAILS (terminal amine isotopic labeling of substrates), a proteomics approach that enriches for N-terminal peptides of proteins and cleavage fragments. Of the 151 new extracellular substrates we identified, it was notable that ADAM10 (a disintegrin and metalloprotease domain-containing protein 10)-the constitutive α-secretase-is activated by meprin β through cleavage of the propeptide. To validate this cleavage event, we expressed recombinant proADAM10 and after preincubation with meprin β, this resulted in significantly elevated ADAM10 activity. Cellular expression in murine primary fibroblasts confirmed activation. Other novel substrates including extracellular matrix proteins, growth factors and inhibitors were validated by western analyses and enzyme activity assays with Edman sequencing confirming the exact cleavage sites identified by TAILS. Cleavages in vivo were confirmed by comparing wild-type and meprin(-/-) mice. Our finding of cystatin C, elafin and fetuin-A as substrates and natural inhibitors for meprins reveal new mechanisms in the regulation of protease activity important for understanding pathophysiological processes.

  9. Micro-CT scan reveals an unexpected high-volume and interconnected pore network in a Cretaceous Sanagasta dinosaur eggshell

    PubMed Central

    Grellet-Tinner, Gerald; Foley, Matthew; Thompson, Michael B.

    2016-01-01

    The Cretaceous Sanagasta neosauropod nesting site (La Rioja, Argentina) was the first confirmed instance of extinct dinosaurs using geothermal-generated heat to incubate their eggs. The nesting strategy and hydrothermal activities at this site led to the conclusion that the surprisingly 7 mm thick-shelled eggs were adapted to harsh hydrothermal microenvironments. We used micro-CT scans in this study to obtain the first three-dimensional microcharacterization of these eggshells. Micro-CT-based analyses provide a robust assessment of gas conductance in fossil dinosaur eggshells with complex pore canal systems, allowing calculation, for the first time, of the shell conductance through its thickness. This novel approach suggests that the shell conductance could have risen during incubation to seven times more than previously estimated as the eggshell erodes. In addition, micro-CT observations reveal that the constant widening and branching of pore canals form a complex funnel-like pore canal system. Furthermore, the high density of pore canals and the presence of a lateral canal network in the shell reduce the risks of pore obstruction during the extended incubation of these eggs in a relatively highly humid and muddy nesting environment. PMID:27009182

  10. High-resolution geophysics revealing an unexpected post-Pannonian uplift structure: Schützen continued (Northern Burgenland, Austria)

    NASA Astrophysics Data System (ADS)

    Scheibz, Jürgen; Häusler, Hermann; Kardeis, Gerald

    2010-05-01

    The village Schützen am Gebirge is situated between the Leithagebirge and the Rust Range in the northern Burgenland. The pre-Miocene basement of both ridges is partly covered by marine limestone and clastic sediments of Badenian to Sarmatian age, followed up by Pannonian lacustrine silt- and claystone. First geophysical investigations revealed folding structures in this area (Kollmann et al., 1990). The complex tectonic structure was investigated in a northwest trending section by Scheibz (2006) who clearly demonstrated that the Badenian limestone of the Kalkofen quarry north of Schützen is a horst structure within a pronounced antiform. Whereas an extensional regime prevailed during the Pannonian, local post-Pannonian compression was postulated forming the syn- and anticline structures north of Schützen (Häusler et al., 2007; Häusler et al., 2010). In order to study the surroundings of the "Kalkofen-anticline", additional investigations were conducted. Four 2D electrical resistivity tomography (ERT) profiles, each 1000 - 2000 meters long, allowed for subsurface mapping the Kalkofen-structure as a very narrow zone. Furthermore two sites in the center of the anticline structure were investigated by a raster of fifteen high-resolution 2D-ERT sections ("Kalkofen" site and "sports field" site, situated about 400 southwest of the Kalkofen site). Six profiles at the Kalkofen site revealed a northeast trending lens-shaped high-resistivity zone consisting of (Badenian) limestone down to a depth of approximately ten meters, which is underlain by low resistivity beds (of Pannonian age) down to thirty meters. Nine shallow high-resolution profiles at the sports field site show resistivity patterns matching the Leithakalk-limestone down to a depth of only five meters. Additionally a high-resolution 3D ERT block, about 8.600 m2 in size, was measured in the center of the sports field site. Again, high-resistivity beds interpreted as Miocene limestone down to a depth of 25

  11. Multilocus phylogenetic analyses reveal unexpected abundant diversity and significant disjunct distribution pattern of the Hedgehog Mushrooms (Hydnum L.).

    PubMed

    Feng, Bang; Wang, Xiang-Hua; Ratkowsky, David; Gates, Genevieve; Lee, Su See; Grebenc, Tine; Yang, Zhu L

    2016-05-06

    Hydnum is a fungal genus proposed by Linnaeus in the early time of modern taxonomy. It contains several ectomycorrhizal species which are commonly consumed worldwide. However, Hydnum is one of the most understudied fungal genera, especially from a molecular phylogenetic view. In this study, we extensively gathered specimens of Hydnum from Asia, Europe, America and Australasia, and analyzed them by using sequences of four gene fragments (ITS, nrLSU, tef1α and rpb1). Our phylogenetic analyses recognized at least 31 phylogenetic species within Hydnum, 15 of which were reported for the first time. Most Australasian species were recognized as strongly divergent old relics, but recent migration between Australasia and the Northern Hemisphere was also detected. Within the Northern Hemisphere, frequent historical biota exchanges between the Old World and the New World via both the North Atlantic Land Bridge and the Bering Land Bridge could be elucidated. Our study also revealed that most Hydnum species found in subalpine areas of the Hengduan Mountains in southwestern China occur in northeastern/northern China and Europe, indicating that the composition of the mycobiota in the Hengduan Mountains reigion is more complicated than what we have known before.

  12. Multilocus phylogenetic analyses reveal unexpected abundant diversity and significant disjunct distribution pattern of the Hedgehog Mushrooms (Hydnum L.)

    PubMed Central

    Feng, Bang; Wang, Xiang-Hua; Ratkowsky, David; Gates, Genevieve; Lee, Su See; Grebenc, Tine; Yang, Zhu L.

    2016-01-01

    Hydnum is a fungal genus proposed by Linnaeus in the early time of modern taxonomy. It contains several ectomycorrhizal species which are commonly consumed worldwide. However, Hydnum is one of the most understudied fungal genera, especially from a molecular phylogenetic view. In this study, we extensively gathered specimens of Hydnum from Asia, Europe, America and Australasia, and analyzed them by using sequences of four gene fragments (ITS, nrLSU, tef1α and rpb1). Our phylogenetic analyses recognized at least 31 phylogenetic species within Hydnum, 15 of which were reported for the first time. Most Australasian species were recognized as strongly divergent old relics, but recent migration between Australasia and the Northern Hemisphere was also detected. Within the Northern Hemisphere, frequent historical biota exchanges between the Old World and the New World via both the North Atlantic Land Bridge and the Bering Land Bridge could be elucidated. Our study also revealed that most Hydnum species found in subalpine areas of the Hengduan Mountains in southwestern China occur in northeastern/northern China and Europe, indicating that the composition of the mycobiota in the Hengduan Mountains reigion is more complicated than what we have known before. PMID:27151256

  13. Morphology informed by phylogeny reveals unexpected patterns of species differentiation in the aquatic moss Rhynchostegium riparioides s.l.

    PubMed

    Hutsemékers, Virginie; Vieira, Cristiana C; Ros, Rosa María; Huttunen, Sanna; Vanderpoorten, Alain

    2012-02-01

    Bryophyte floras typically exhibit extremely low levels of endemism. The interpretation, that this might reflect taxonomic shortcomings, is tested here for the Macaronesian flora, using the moss species complex of Rhynchostegium riparioides as a model. The deep polyphyly of R. riparioides across its distribution range reveals active differentiation that better corresponds to geographic than morphological differences. Morphometric analyses are, in fact, blurred by a size gradient that accounts for 80% of the variation observed among gametophytic traits. The lack of endemic diversification observed in R. riparioides in Macaronesia weakens the idea that the low rates of endemism observed in the Macaronesian bryophyte flora might solely be explained by taxonomic shortcomings. To the reverse, the striking polyphyly of North American and European lineages of R. riparioides suggests that the similarity between the floras of these continents has been over-emphasized. Discriminant analyses point to the existence of morphological discontinuities among the lineages resolved by the molecular phylogeny. The global rate of error associated to species identification based on morphology (0.23) indicates, however, that intergradation of shape and size characters among species in the group challenges their identification.

  14. The first characterisation of the overall variability of repetitive units in a species reveals unexpected features of satellite DNA.

    PubMed

    Feliciello, Isidoro; Picariello, Orfeo; Chinali, Gianni

    2005-04-11

    We investigated the overall variability of the S1a satellite DNA repeats in ten European populations of Rana temporaria by a new procedure that determines the average sequence of the repeats in a genome. The average genomic sequences show that only 17% of the S1a repeat sequence (494 bp) is variable. The variable positions contain the same major and minor bases in all or many of the population samples tested, but the percentages of these bases can greatly vary among populations. This indicates the presence in the species of an enormous number of repeats having a different distribution of bases in these variable positions. Individual genomes contain thousands of repeat variants, but these mixtures have very similar characteristics in all populations because they present the same type of restricted and species-specific variability. Southern blots analyses and sequences of cloned S1a repeats fully support this conclusion. The S1 satellite DNA of other European brown frog species also presents properties indicating the same type of variability. This first characterisation of the overall repeat variability of a satellite DNA in a species has revealed features that cannot be determined by gene conversion and crossing over. Our results suggest that a specific directional process based on rolling circle amplification should play a relevant role in the evolution of satellite DNA.

  15. Characterization of C-type lectins reveals an unexpectedly limited interaction between Cryptococcus neoformans spores and Dectin-1.

    PubMed

    Walsh, Naomi M; Wuthrich, Marcel; Wang, Huafeng; Klein, Bruce; Hull, Christina M

    2017-01-01

    Phagocytosis by innate immune cells is an important process for protection against multiple pathologies and is particularly important for resistance to infection. However, phagocytosis has also been implicated in the progression of some diseases, including the dissemination of the human fungal pathogen, Cryptococcus neoformans. Previously, we identified Dectin-1 as a likely phagocytic receptor for C. neoformans spores through the use of soluble components in receptor-ligand blocking experiments. In this study, we used gain-of-function and loss-of-function assays with intact cells to evaluate the in vivo role of Dectin-1 and other C-type lectins in interactions with C. neoformans spores and discovered stark differences in outcome when compared with previous assays. First, we found that non-phagocytic cells expressing Dectin-1 were unable to bind spores and that highly sensitive reporter cells expressing Dectin-1 were not stimulated by spores. Second, we determined that some phagocytes from Dectin-1-/- mice interacted with spores differently than wild type (WT) cells, but the effects varied among assays and were modest overall. Third, while we detected small but statistically significant reductions in phagocytosis by primary alveolar macrophages from Dectin-1-/- mice compared to WT, we found no differences in survival between WT and Dectin-1-/- mice challenged with spores. Further analyses to assess the roles of other C-type lectins and their adapters revealed very weak stimulation of Dectin-2 reporter cells by spores and modest differences in binding and phagocytosis by Dectin-2-/- bone marrow-derived phagocytes. There were no discernable defects in binding or phagocytosis by phagocytes lacking Mannose Receptor, Mincle, Card-9, or FcRγ. Taken together, these results lead to the conclusion that Dectin-1 and other C-type lectins do not individually play a major roles in phagocytosis and innate defense by phagocytes against C. neoformans spores and highlight

  16. Intensive trapping of blood-fed Anopheles darlingi in Amazonian Peru reveals unexpectedly high proportions of avian blood-meals.

    PubMed

    Moreno, Marta; Saavedra, Marlon P; Bickersmith, Sara A; Prussing, Catharine; Michalski, Adrian; Tong Rios, Carlos; Vinetz, Joseph M; Conn, Jan E

    2017-02-01

    Anopheles darlingi, the main malaria vector in the Neotropics, has been considered to be highly anthropophilic. However, many behavioral aspects of this species remain unknown, such as the range of blood-meal sources. Barrier screens were used to collect resting Anopheles darlingi mosquitoes from 2013 to 2015 in three riverine localities (Lupuna, Cahuide and Santa Emilia) in Amazonian Peru. Overall, the Human Blood Index (HBI) ranged from 0.58-0.87, with no significant variation among years or sites. Blood-meal analysis revealed that humans are the most common blood source, followed by avian hosts (Galliformes-chickens and turkeys), and human/Galliforme mixed-meals. The Forage Ratio and Selection Index both show a strong preference for Galliformes over humans in blood-fed mosquitoes. Our data show that 30% of An. darlingi fed on more than one host, including combinations of dogs, pigs, goats and rats. There appears to be a pattern of host choice in An. darlingi, with varying proportions of mosquitoes feeding only on humans, only on Galliformes and some taking mixed-meals of blood (human plus Galliforme), which was detected in the three sites in different years, indicating that there could be a structure to these populations based on blood-feeding preferences. Mosquito age, estimated in two localities, Lupuna and Cahuide, ranged widely between sites and years. This variation may reflect the range of local environmental factors that influence longevity or possibly potential changes in the ability of the mosquito to transmit the parasite. Of 6,204 resting An. darlingi tested for Plasmodium infection, 0.42% were infected with P. vivax. This study provides evidence for the first time of the usefulness of barrier screens for the collection of blood-fed resting mosquitoes to calculate the Human Blood Index (HBI) and other blood-meal sources in a neotropical malaria endemic setting.

  17. Intensive trapping of blood-fed Anopheles darlingi in Amazonian Peru reveals unexpectedly high proportions of avian blood-meals

    PubMed Central

    Saavedra, Marlon P.; Bickersmith, Sara A.; Prussing, Catharine; Michalski, Adrian; Tong Rios, Carlos; Vinetz, Joseph M.; Conn, Jan E.

    2017-01-01

    Anopheles darlingi, the main malaria vector in the Neotropics, has been considered to be highly anthropophilic. However, many behavioral aspects of this species remain unknown, such as the range of blood-meal sources. Barrier screens were used to collect resting Anopheles darlingi mosquitoes from 2013 to 2015 in three riverine localities (Lupuna, Cahuide and Santa Emilia) in Amazonian Peru. Overall, the Human Blood Index (HBI) ranged from 0.58–0.87, with no significant variation among years or sites. Blood-meal analysis revealed that humans are the most common blood source, followed by avian hosts (Galliformes-chickens and turkeys), and human/Galliforme mixed-meals. The Forage Ratio and Selection Index both show a strong preference for Galliformes over humans in blood-fed mosquitoes. Our data show that 30% of An. darlingi fed on more than one host, including combinations of dogs, pigs, goats and rats. There appears to be a pattern of host choice in An. darlingi, with varying proportions of mosquitoes feeding only on humans, only on Galliformes and some taking mixed-meals of blood (human plus Galliforme), which was detected in the three sites in different years, indicating that there could be a structure to these populations based on blood-feeding preferences. Mosquito age, estimated in two localities, Lupuna and Cahuide, ranged widely between sites and years. This variation may reflect the range of local environmental factors that influence longevity or possibly potential changes in the ability of the mosquito to transmit the parasite. Of 6,204 resting An. darlingi tested for Plasmodium infection, 0.42% were infected with P. vivax. This study provides evidence for the first time of the usefulness of barrier screens for the collection of blood-fed resting mosquitoes to calculate the Human Blood Index (HBI) and other blood-meal sources in a neotropical malaria endemic setting. PMID:28231248

  18. Characterization of C-type lectins reveals an unexpectedly limited interaction between Cryptococcus neoformans spores and Dectin-1

    PubMed Central

    Walsh, Naomi M.; Wuthrich, Marcel; Wang, Huafeng; Klein, Bruce; Hull, Christina M.

    2017-01-01

    Phagocytosis by innate immune cells is an important process for protection against multiple pathologies and is particularly important for resistance to infection. However, phagocytosis has also been implicated in the progression of some diseases, including the dissemination of the human fungal pathogen, Cryptococcus neoformans. Previously, we identified Dectin-1 as a likely phagocytic receptor for C. neoformans spores through the use of soluble components in receptor-ligand blocking experiments. In this study, we used gain-of-function and loss-of-function assays with intact cells to evaluate the in vivo role of Dectin-1 and other C-type lectins in interactions with C. neoformans spores and discovered stark differences in outcome when compared with previous assays. First, we found that non-phagocytic cells expressing Dectin-1 were unable to bind spores and that highly sensitive reporter cells expressing Dectin-1 were not stimulated by spores. Second, we determined that some phagocytes from Dectin-1-/- mice interacted with spores differently than wild type (WT) cells, but the effects varied among assays and were modest overall. Third, while we detected small but statistically significant reductions in phagocytosis by primary alveolar macrophages from Dectin-1-/- mice compared to WT, we found no differences in survival between WT and Dectin-1-/- mice challenged with spores. Further analyses to assess the roles of other C-type lectins and their adapters revealed very weak stimulation of Dectin-2 reporter cells by spores and modest differences in binding and phagocytosis by Dectin-2-/- bone marrow-derived phagocytes. There were no discernable defects in binding or phagocytosis by phagocytes lacking Mannose Receptor, Mincle, Card-9, or FcRγ. Taken together, these results lead to the conclusion that Dectin-1 and other C-type lectins do not individually play a major roles in phagocytosis and innate defense by phagocytes against C. neoformans spores and highlight

  19. Analysis of Two Putative Candida albicans Phosphopantothenoylcysteine Decarboxylase / Protein Phosphatase Z Regulatory Subunits Reveals an Unexpected Distribution of Functional Roles

    PubMed Central

    Petrényi, Katalin; Molero, Cristina; Kónya, Zoltán; Erdődi, Ferenc; Ariño, Joaquin; Dombrádi, Viktor

    2016-01-01

    Protein phosphatase Z (Ppz) is a fungus specific enzyme that regulates cell wall integrity, cation homeostasis and oxidative stress response. Work on Saccharomyces cerevisiae has shown that the enzyme is inhibited by Hal3/Vhs3 moonlighting proteins that together with Cab3 constitute the essential phosphopantothenoylcysteine decarboxylase (PPCDC) enzyme. In Candida albicans CaPpz1 is also involved in the morphological changes and infectiveness of this opportunistic human pathogen. To reveal the CaPpz1 regulatory context we searched the C. albicans database and identified two genes that, based on the structure of their S. cerevisiae counterparts, were termed CaHal3 and CaCab3. By pull down analysis and phosphatase assays we demonstrated that both of the bacterially expressed recombinant proteins were able to bind and inhibit CaPpz1 as well as its C-terminal catalytic domain (CaPpz1-Cter) with comparable efficiency. The binding and inhibition were always more pronounced with CaPpz1-Cter, indicating a protective effect against inhibition by the N-terminal domain in the full length protein. The functions of the C. albicans proteins were tested by their overexpression in S. cerevisiae. Contrary to expectations we found that only CaCab3 and not CaHal3 rescued the phenotypic traits that are related to phosphatase inhibition by ScHal3, such as tolerance to LiCl or hygromycin B, requirement for external K+ concentrations, or growth in a MAP kinase deficient slt2 background. On the other hand, both of the Candida proteins turned out to be essential PPCDC components and behaved as their S. cerevisiae counterparts: expression of CaCab3 and CaHal3 rescued the cab3 and hal3 vhs3 S. cerevisiae mutations, respectively. Thus, both CaHal3 and CaCab3 retained the PPCDC related functions and have the potential for CaPpz1 inhibition in vitro. The fact that only CaCab3 exhibits its phosphatase regulatory potential in vivo suggests that in C. albicans CaCab3, but not CaHal3, acts as a

  20. A fifth major genetic group among honeybees revealed in Syria

    PubMed Central

    2013-01-01

    Background Apiculture has been practiced in North Africa and the Middle-East from antiquity. Several thousand years of selective breeding have left a mosaic of Apis mellifera subspecies in the Middle-East, many uniquely adapted and survived to local environmental conditions. In this study we explore the genetic diversity of A. mellifera from Syria (n = 1258), Lebanon (n = 169) and Iraq (n = 35) based on 14 short tandem repeat (STR) loci in the context of reference populations from throughout the Old World (n = 732). Results Our data suggest that the Syrian honeybee Apis mellifera syriaca occurs in both Syrian and Lebanese territories, with no significant genetic variability between respective populations from Syria and Lebanon. All studied populations clustered within a new fifth independent nuclear cluster, congruent with an mtDNA Z haplotype identified in a previous study. Syrian honeybee populations are not associated with Oriental lineage O, except for sporadic introgression into some populations close to the Turkish and Iraqi borders. Southern Syrian and Lebanese populations demonstrated high levels of genetic diversity compared to the northern populations. Conclusion This study revealed the effects of foreign queen importations on Syrian bee populations, especially for the region of Tartus, where extensive introgression of A. m. anatolica and/or A. m. caucasica alleles were identified. The policy of creating genetic conservation centers for the Syrian subspecies should take into consideration the influence of the oriental lineage O from the northern Syrian border and the large population of genetically divergent indigenous honeybees located in southern Syria. PMID:24314104

  1. Comparative RNA sequencing reveals substantial genetic variation in endangered primates.

    PubMed

    Perry, George H; Melsted, Páll; Marioni, John C; Wang, Ying; Bainer, Russell; Pickrell, Joseph K; Michelini, Katelyn; Zehr, Sarah; Yoder, Anne D; Stephens, Matthew; Pritchard, Jonathan K; Gilad, Yoav

    2012-04-01

    Comparative genomic studies in primates have yielded important insights into the evolutionary forces that shape genetic diversity and revealed the likely genetic basis for certain species-specific adaptations. To date, however, these studies have focused on only a small number of species. For the majority of nonhuman primates, including some of the most critically endangered, genome-level data are not yet available. In this study, we have taken the first steps toward addressing this gap by sequencing RNA from the livers of multiple individuals from each of 16 mammalian species, including humans and 11 nonhuman primates. Of the nonhuman primate species, five are lemurs and two are lorisoids, for which little or no genomic data were previously available. To analyze these data, we developed a method for de novo assembly and alignment of orthologous gene sequences across species. We assembled an average of 5721 gene sequences per species and characterized diversity and divergence of both gene sequences and gene expression levels. We identified patterns of variation that are consistent with the action of positive or directional selection, including an 18-fold enrichment of peroxisomal genes among genes whose regulation likely evolved under directional selection in the ancestral primate lineage. Importantly, we found no relationship between genetic diversity and endangered status, with the two most endangered species in our study, the black and white ruffed lemur and the Coquerel's sifaka, having the highest genetic diversity among all primates. Our observations imply that many endangered lemur populations still harbor considerable genetic variation. Timely efforts to conserve these species alongside their habitats have, therefore, strong potential to achieve long-term success.

  2. Comparative RNA sequencing reveals substantial genetic variation in endangered primates

    PubMed Central

    Perry, George H.; Melsted, Páll; Marioni, John C.; Wang, Ying; Bainer, Russell; Pickrell, Joseph K.; Michelini, Katelyn; Zehr, Sarah; Yoder, Anne D.; Stephens, Matthew; Pritchard, Jonathan K.; Gilad, Yoav

    2012-01-01

    Comparative genomic studies in primates have yielded important insights into the evolutionary forces that shape genetic diversity and revealed the likely genetic basis for certain species-specific adaptations. To date, however, these studies have focused on only a small number of species. For the majority of nonhuman primates, including some of the most critically endangered, genome-level data are not yet available. In this study, we have taken the first steps toward addressing this gap by sequencing RNA from the livers of multiple individuals from each of 16 mammalian species, including humans and 11 nonhuman primates. Of the nonhuman primate species, five are lemurs and two are lorisoids, for which little or no genomic data were previously available. To analyze these data, we developed a method for de novo assembly and alignment of orthologous gene sequences across species. We assembled an average of 5721 gene sequences per species and characterized diversity and divergence of both gene sequences and gene expression levels. We identified patterns of variation that are consistent with the action of positive or directional selection, including an 18-fold enrichment of peroxisomal genes among genes whose regulation likely evolved under directional selection in the ancestral primate lineage. Importantly, we found no relationship between genetic diversity and endangered status, with the two most endangered species in our study, the black and white ruffed lemur and the Coquerel's sifaka, having the highest genetic diversity among all primates. Our observations imply that many endangered lemur populations still harbor considerable genetic variation. Timely efforts to conserve these species alongside their habitats have, therefore, strong potential to achieve long-term success. PMID:22207615

  3. Genetic Substructure of Kuwaiti Population Reveals Migration History

    PubMed Central

    Alsmadi, Osama; Thareja, Gaurav; Alkayal, Fadi; Rajagopalan, Ramakrishnan; John, Sumi Elsa; Hebbar, Prashantha; Behbehani, Kazem; Thanaraj, Thangavel Alphonse

    2013-01-01

    The State of Kuwait is characterized by settlers from Saudi Arabia, Iran, and other regions of the Arabian Peninsula. The settlements and subsequent admixtures have shaped the genetics of Kuwait. High prevalence of recessive disorders and metabolic syndromes (that increase risk of diabetes) is seen in the peninsula. Understanding the genetic structure of its population will aid studies designed to decipher the underlying causes of these disorders. In this study, we analyzed 572,366 SNP markers from 273 Kuwaiti natives genotyped using the illumina HumanOmniExpress BeadChip. Model-based clustering identified three genetic subgroups with different levels of admixture. A high level of concordance (Mantel test, p=0.0001 for 9999 repeats) was observed between the derived genetic clusters and the surname-based ancestries. Use of Human Genome Diversity Project (HGDP) data to understand admixtures in each group reveals the following: the first group (Kuwait P) is largely of West Asian ancestry, representing Persians with European admixture; the second group (Kuwait S) is predominantly of city-dwelling Saudi Arabian tribe ancestry, and the third group (Kuwait B) includes most of the tent-dwelling Bedouin surnames and is characterized by the presence of 17% African ancestry. Identity by Descent and Homozygosity analyses find Kuwait’s population to be heterogeneous (placed between populations that have large amount of ROH and the ones with low ROH) with Kuwait S as highly endogamous, and Kuwait B as diverse. Population differentiation FST estimates place Kuwait P near Asian populations, Kuwait S near Negev Bedouin tribes, and Kuwait B near the Mozabite population. FST distances between the groups are in the range of 0.005 to 0.008; distances of this magnitude are known to cause false positives in disease association studies. Results of analysis for genetic features such as linkage disequilibrium decay patterns conform to Kuwait’s geographical location at the nexus of

  4. Unexpected cryptic species diversity in the widespread coral Seriatopora hystrix masks spatial-genetic patterns of connectivity.

    PubMed

    Warner, Patricia A; van Oppen, Madeleine J H; Willis, Bette L

    2015-06-01

    Mounting evidence of cryptic species in a wide range of taxa highlights the need for careful analyses of population genetic data sets to unravel within-species diversity from potential interspecies relationships. Here, we use microsatellite loci and hierarchical clustering analysis to investigate cryptic diversity in sympatric and allopatric (separated by 450 km) populations of the widespread coral Seriatopora hystrix on the Great Barrier Reef. Structure analyses delimited unique genetic clusters that were confirmed by phylogenetic and extensive population-level analyses. Each of four sympatric yet distinct genetic clusters detected within S. hystrix demonstrated greater genetic cohesion across regional scales than between genetic clusters within regions (<10 km). Moreover, the magnitude of genetic differentiation between different clusters (>0.620 G"ST ) was similar to the difference between S. hystrix clusters and the congener S. caliendrum (mean G"ST 0.720). Multiple lines of evidence, including differences in habitat specificity, mitochondrial identity, Symbiodinium associations and morphology, corroborate the nuclear genetic evidence that these distinct clusters constitute different species. Hierarchical clustering analysis combined with more traditional population genetic methods provides a powerful approach for delimiting species and should be regularly applied to ensure that ecological and evolutionary patterns interpreted for single species are not confounded by the presence of cryptic species.

  5. Genetic structure of Tunisian ethnic groups revealed by paternal lineages.

    PubMed

    Fadhlaoui-Zid, Karima; Martinez-Cruz, Begoña; Khodjet-el-khil, Houssein; Mendizabal, Isabel; Benammar-Elgaaied, Amel; Comas, David

    2011-10-01

    Tunisia has experienced a variety of human migrations that have modeled the myriad cultural groups inhabiting the area. Both Arabic and Berber-speaking populations live in Tunisia. Berbers are commonly considered as in situ descendants of peoples who settled roughly in Palaeolithic times, and posterior demographic events such as the arrival of the Neolithic, the Arab migrations, and the expulsion of the "Moors" from Spain, had a strong cultural influence. Nonetheless, the genetic structure and the population relationships of the ethnic groups living in Tunisia have been poorly assessed. In order to gain insight into the paternal genetic landscape and population structure, more than 40 Y-chromosome single nucleotide polymorphisms and 17 short tandem repeats were analyzed in five Tunisian ethnic groups (three Berber-speaking isolates, one Andalusian, and one Cosmopolitan Arab). The most common lineage was the North African haplogroup E-M81 (71%), being fixed in two Berber samples (Chenini-Douiret and Jradou), suggesting isolation and genetic drift. Differential levels of paternal gene flow from the Near East were detected in the Tunisian samples (J-M267 lineage over 30%); however, no major sub-Saharan African or European influence was found. This result contrasts with the high amount of sub-Saharan and Eurasian maternal lineages previously described in Tunisia. Overall, our results reveal a certain genetic inter-population diversity, especially among Berber groups, and sexual asymmetry, paternal lineages being mostly of autochthonous origin. In addition, Andalusians, who are supposed to be migrants from southern Spain, do not exhibit any substantial contribution of European lineages, suggesting a North African origin for this ethnic group. Copyright © 2011 Wiley-Liss, Inc.

  6. Genetic diversity of coastal bottlenose dolphins revealed by structurally and functionally diverse hemoglobins.

    PubMed

    Remington, Nicole; Stevens, Robert D; Wells, Randall S; Holn, Aleta; Dhungana, Suraj; Taboy, Celine H; Crumbliss, Alvin L; Henkens, Robert; Bonaventura, Celia

    2007-08-15

    Studies of structure-function relationships in the respiratory proteins of marine mammals revealed unexpected variations in the number and types of hemoglobins (Hbs) present in coastal bottlenose dolphins, Tursiops truncatus. We obtained blood samples from free-ranging coastal bottlenose dolphins as a component of capture-release studies. We found that the oxygen-binding functions of bottlenose dolphin blood are poised between effector-saturated and unsaturated levels, enabling exercise-dependent shifts in oxygen transfer functions. Isolated bottlenose dolphin Hbs showed elevated pH sensitivities (Bohr effects) and appreciably lower oxygen affinities than adult human Hb in the absence of allosteric effectors. These properties may be an adaptive modification that enhances oxygen delivery during diving episodes when oxygen tensions and effector levels are low. The Hbs of individual dolphins showed similar oxygen affinities, responses to effectors, and expression of heme-heme interaction in oxygen binding, but differed in their redox potentials and rates of autoxidation. The heterogeneity suggested by these functional variations in Hbs of individual dolphins was born out by variations in the molecular weights and numbers of their alpha and beta globin chains. Although coastal bottlenose dolphins were expected to have a single type of Hb, the mass differences observed revealed considerable genetic diversity. There were multiple Hb forms in some individuals and differences in Hb patterns among individuals within the same community.

  7. Hybridization Leads to Loss of Genetic Integrity in Shortleaf Pine: Unexpected Consequences of Pine Management and Fire Suppression

    Treesearch

    Charles G. Tauer; John F. Stewart; Rodney E. Will; Curtis J. Lilly; James M. Guldin; C. Dana Nelson

    2012-01-01

    Hybridization between shortleaf pine and loblolly pine is causing loss of genetic integrity (the tendency of a population to maintain its genotypes over generations) in shortleaf pine, a species already exhibiting dramatic declines due to land-use changes. Recent findings indicate hybridization has increased in shortleaf pine stands from 3% during the 1950s to 45% for...

  8. Widespread inbreeding and unexpected geographic patterns of genetic variation in eastern hemlock (Tsuga canadensis), an imperiled North American conifer

    Treesearch

    Kevin M. Potter; Robert M. Jetton; William S. Dvorak; Valerie D. Hipkins; Rusty Rhea; W. Andrew Whittier

    2012-01-01

    Eastern hemlock (Tsuga canadensis [L.] Carr.) is an ecologically important tree species experiencing severe mortality across much of its eastern North American distribution, caused by infestation of the exotic hemlock woolly adelgid (Adelges tsugae Annand). To guide gene conservation strategies for this imperiled conifer, we conducted a range-wide genetic variation...

  9. Unexpected effects of different genetic backgrounds on identification of genomic rearrangements via whole-genome next generation sequencing.

    PubMed

    Chen, Zhangguo; Gowan, Katherine; Leach, Sonia M; Viboolsittiseri, Sawanee S; Mishra, Ameet K; Kadoishi, Tanya; Diener, Katrina; Gao, Bifeng; Jones, Kenneth; Wang, Jing H

    2016-10-21

    Whole genome next generation sequencing (NGS) is increasingly employed to detect genomic rearrangements in cancer genomes, especially in lymphoid malignancies. We recently established a unique mouse model by specifically deleting a key non-homologous end-joining DNA repair gene, Xrcc4, and a cell cycle checkpoint gene, Trp53, in germinal center B cells. This mouse model spontaneously develops mature B cell lymphomas (termed G1XP lymphomas). Here, we attempt to employ whole genome NGS to identify novel structural rearrangements, in particular inter-chromosomal translocations (CTXs), in these G1XP lymphomas. We sequenced six lymphoma samples, aligned our NGS data with mouse reference genome (in C57BL/6J (B6) background) and identified CTXs using CREST algorithm. Surprisingly, we detected widespread CTXs in both lymphomas and wildtype control samples, majority of which were false positive and attributable to different genetic backgrounds. In addition, we validated our NGS pipeline by sequencing multiple control samples from distinct tissues of different genetic backgrounds of mouse (B6 vs non-B6). Lastly, our studies showed that widespread false positive CTXs can be generated by simply aligning sequences from different genetic backgrounds of mouse. We conclude that mapping and alignment with reference genome might not be a preferred method for analyzing whole-genome NGS data obtained from a genetic background different from reference genome. Given the complex genetic background of different mouse strains or the heterogeneity of cancer genomes in human patients, in order to minimize such systematic artifacts and uncover novel CTXs, a preferred method might be de novo assembly of personalized normal control genome and cancer cell genome, instead of mapping and aligning NGS data to mouse or human reference genome. Thus, our studies have critical impact on the manner of data analysis for cancer genomics.

  10. Individual olfactory perception reveals meaningful nonolfactory genetic information

    PubMed Central

    Secundo, Lavi; Snitz, Kobi; Weissler, Kineret; Pinchover, Liron; Shoenfeld, Yehuda; Loewenthal, Ron; Agmon-Levin, Nancy; Frumin, Idan; Bar-Zvi, Dana; Shushan, Sagit; Sobel, Noam

    2015-01-01

    Each person expresses a potentially unique subset of ∼400 different olfactory receptor subtypes. Given that the receptors we express partially determine the odors we smell, it follows that each person may have a unique nose; to capture this, we devised a sensitive test of olfactory perception we termed the “olfactory fingerprint.” Olfactory fingerprints relied on matrices of perceived odorant similarity derived from descriptors applied to the odorants. We initially fingerprinted 89 individuals using 28 odors and 54 descriptors. We found that each person had a unique olfactory fingerprint (P < 10−10), which was odor specific but descriptor independent. We could identify individuals from this pool using randomly selected sets of 7 odors and 11 descriptors alone. Extrapolating from this data, we determined that using 34 odors and 35 descriptors we could individually identify each of the 7 billion people on earth. Olfactory perception, however, fluctuates over time, calling into question our proposed perceptual readout of presumably stable genetic makeup. To test whether fingerprints remain informative despite this temporal fluctuation, building on the linkage between olfactory receptors and HLA, we hypothesized that olfactory perception may relate to HLA. We obtained olfactory fingerprints and HLA typing for 130 individuals, and found that olfactory fingerprint matching using only four odorants was significantly related to HLA matching (P < 10−4), such that olfactory fingerprints can save 32% of HLA tests in a population screen (P < 10−6). In conclusion, a precise measure of olfactory perception reveals meaningful nonolfactory genetic information. PMID:26100865

  11. Individual olfactory perception reveals meaningful nonolfactory genetic information.

    PubMed

    Secundo, Lavi; Snitz, Kobi; Weissler, Kineret; Pinchover, Liron; Shoenfeld, Yehuda; Loewenthal, Ron; Agmon-Levin, Nancy; Frumin, Idan; Bar-Zvi, Dana; Shushan, Sagit; Sobel, Noam

    2015-07-14

    Each person expresses a potentially unique subset of ∼ 400 different olfactory receptor subtypes. Given that the receptors we express partially determine the odors we smell, it follows that each person may have a unique nose; to capture this, we devised a sensitive test of olfactory perception we termed the "olfactory fingerprint." Olfactory fingerprints relied on matrices of perceived odorant similarity derived from descriptors applied to the odorants. We initially fingerprinted 89 individuals using 28 odors and 54 descriptors. We found that each person had a unique olfactory fingerprint (P < 10(-10)), which was odor specific but descriptor independent. We could identify individuals from this pool using randomly selected sets of 7 odors and 11 descriptors alone. Extrapolating from this data, we determined that using 34 odors and 35 descriptors we could individually identify each of the 7 billion people on earth. Olfactory perception, however, fluctuates over time, calling into question our proposed perceptual readout of presumably stable genetic makeup. To test whether fingerprints remain informative despite this temporal fluctuation, building on the linkage between olfactory receptors and HLA, we hypothesized that olfactory perception may relate to HLA. We obtained olfactory fingerprints and HLA typing for 130 individuals, and found that olfactory fingerprint matching using only four odorants was significantly related to HLA matching (P < 10(-4)), such that olfactory fingerprints can save 32% of HLA tests in a population screen (P < 10(-6)). In conclusion, a precise measure of olfactory perception reveals meaningful nonolfactory genetic information.

  12. Mice with an adipocyte-specific lipin 1 separation-of-function allele reveal unexpected roles for phosphatidic acid in metabolic regulation.

    PubMed

    Mitra, Mayurranjan S; Chen, Zhouji; Ren, Hongmei; Harris, Thurl E; Chambers, Kari T; Hall, Angela M; Nadra, Karim; Klein, Samuel; Chrast, Roman; Su, Xiong; Morris, Andrew J; Finck, Brian N

    2013-01-08

    Lipin 1 is a coregulator of DNA-bound transcription factors and a phosphatidic acid (PA) phosphatase (PAP) enzyme that catalyzes a critical step in the synthesis of glycerophospholipids. Lipin 1 is highly expressed in adipocytes, and constitutive loss of lipin 1 blocks adipocyte differentiation; however, the effects of Lpin1 deficiency in differentiated adipocytes are unknown. Here we report that adipocyte-specific Lpin1 gene recombination unexpectedly resulted in expression of a truncated lipin 1 protein lacking PAP activity but retaining transcriptional regulatory function. Loss of lipin 1-mediated PAP activity in adipocytes led to reduced glyceride synthesis and increased PA content. Characterization of the deficient mice also revealed that lipin 1 normally modulates cAMP-dependent signaling through protein kinase A to control lipolysis by metabolizing PA, which is an allosteric activator of phosphodiesterase 4 and the molecular target of rapamycin. Consistent with these findings, lipin 1 expression was significantly related to adipose tissue lipolytic rates and protein kinase A signaling in adipose tissue of obese human subjects. Taken together, our findings identify lipin 1 as a reciprocal regulator of triglyceride synthesis and hydrolysis in adipocytes, and suggest that regulation of lipolysis by lipin 1 is mediated by PA-dependent modulation of phosphodiesterase 4.

  13. A study on the biosynthesis of hygrophorone B(12) in the mushroom Hygrophorus abieticola reveals an unexpected labelling pattern in the cyclopentenone moiety.

    PubMed

    Otto, Alexander; Porzel, Andrea; Schmidt, Jürgen; Wessjohann, Ludger; Arnold, Norbert

    2015-10-01

    The hitherto unknown natural formation of hygrophorones, antibacterial and antifungal cyclopentenone derivatives from mushrooms, was investigated for hygrophorone B(12) in Hygrophorus abieticola Krieglst. ex Gröger & Bresinsky by feeding experiments in the field using (13)C labelled samples of D-glucose and sodium acetate. The incorporation of (13)C isotopes was extensively studied using 1D and 2D NMR spectroscopy as well as ESI-HRMS analyses. In the experiment with [U-(13)C6]-glucose, six different (13)C2 labelled isotopomers were observed in the 2D INADEQUATE spectrum due to incorporation of [1,2-(13)C2]-acetyl-CoA. This labelling pattern demonstrated that hygrophorone B(12) is derived from a fatty acid-polyketide route instead of a 1,4-α-D-glucan derived anhydrofructose pathway. The experiment with [2-(13)C]-acetate revealed an unexpected incorporation pattern in the cyclopentenone functionality of hygrophorone B(12). Four single-labelled isotopomers, in particular [1-(13)C]-, [2-(13)C]-, [3-(13)C]-, and [4-(13)C]-hygrophorone B(12), were detected that showed only half enrichment in comparison to the respective labelled alkyl side chain carbons. This labelling pattern indicates the formation of a symmetrical intermediate during hygrophorone B(12) biosynthesis. Based on these observations, a biogenetic route via a 4-oxo fatty acid and a chrysotrione B homologue is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Molecular investigation by whole exome sequencing revealed a high proportion of pathogenic variants among Thai victims of sudden unexpected death syndrome

    PubMed Central

    Suktitipat, Bhoom; Sathirareuangchai, Sakda; Roothumnong, Ekkapong; Thongnoppakhun, Wanna; Wangkiratikant, Purin; Vorasan, Nutchavadee; Krittayaphong, Rungroj; Pithukpakorn, Manop

    2017-01-01

    Introduction Sudden unexpected death syndrome (SUDS) is an important cause of death in young healthy adults with a high incident rate in Southeast Asia; however, there are no molecular autopsy reports about these victims. We performed a combination of both a detailed autopsy and a molecular autopsy by whole exome sequencing (WES) to investigate the cause of SUDS in Thai sudden death victims. Materials and methods A detailed forensic autopsy was performed to identify the cause of death, followed by a molecular autopsy, in 42 sudden death victims who died between January 2015 and August 2015. The coding sequences of 98 SUDS-related genes were sequenced using WES. Potentially causative variants were filtered based on the variant functions annotated in the dbNSFP database. Variants with inconclusive clinical significance evidence in ClinVar were resolved with a variant prediction algorithm, metaSVM, and the frequency data of the variants found in public databases, such as the 1000 Genome Project, ESP6500 project, and the Exome Aggregation Consortium (ExAc) project. Results Combining both autopsy and molecular autopsy enabled the potential identification of cause of death in 81% of the cases. Among the 25 victims with WES data, 72% (18/25) were found to have potentially causative SUDS mutations. The majority of the victims had at a mutation in the TTN gene (8/18 = 44%), and only one victim had an SCN5A mutation. Conclusions WES can help to identify the genetic causes in victims of SUDS and may help to further guide investigations into their relatives to prevent additional SUDS victims. PMID:28704380

  15. Molecular investigation by whole exome sequencing revealed a high proportion of pathogenic variants among Thai victims of sudden unexpected death syndrome.

    PubMed

    Suktitipat, Bhoom; Sathirareuangchai, Sakda; Roothumnong, Ekkapong; Thongnoppakhun, Wanna; Wangkiratikant, Purin; Vorasan, Nutchavadee; Krittayaphong, Rungroj; Pithukpakorn, Manop; Boonyapisit, Warangkna

    2017-01-01

    Sudden unexpected death syndrome (SUDS) is an important cause of death in young healthy adults with a high incident rate in Southeast Asia; however, there are no molecular autopsy reports about these victims. We performed a combination of both a detailed autopsy and a molecular autopsy by whole exome sequencing (WES) to investigate the cause of SUDS in Thai sudden death victims. A detailed forensic autopsy was performed to identify the cause of death, followed by a molecular autopsy, in 42 sudden death victims who died between January 2015 and August 2015. The coding sequences of 98 SUDS-related genes were sequenced using WES. Potentially causative variants were filtered based on the variant functions annotated in the dbNSFP database. Variants with inconclusive clinical significance evidence in ClinVar were resolved with a variant prediction algorithm, metaSVM, and the frequency data of the variants found in public databases, such as the 1000 Genome Project, ESP6500 project, and the Exome Aggregation Consortium (ExAc) project. Combining both autopsy and molecular autopsy enabled the potential identification of cause of death in 81% of the cases. Among the 25 victims with WES data, 72% (18/25) were found to have potentially causative SUDS mutations. The majority of the victims had at a mutation in the TTN gene (8/18 = 44%), and only one victim had an SCN5A mutation. WES can help to identify the genetic causes in victims of SUDS and may help to further guide investigations into their relatives to prevent additional SUDS victims.

  16. Multilocus genotypic data reveal high genetic diversity and low population genetic structure of Iranian indigenous sheep.

    PubMed

    Vahidi, S M F; Faruque, M O; Falahati Anbaran, M; Afraz, F; Mousavi, S M; Boettcher, P; Joost, S; Han, J L; Colli, L; Periasamy, K; Negrini, R; Ajmone-Marsan, P

    2016-08-01

    Iranian livestock diversity is still largely unexplored, in spite of the interest in the populations historically reared in this country located near the Fertile Crescent, a major livestock domestication centre. In this investigation, the genetic diversity and differentiation of 10 Iranian indigenous fat-tailed sheep breeds were investigated using 18 microsatellite markers. Iranian breeds were found to host a high level of diversity. This conclusion is substantiated by the large number of alleles observed across loci (average 13.83, range 7-22) and by the high within-breed expected heterozygosity (average 0.75, range 0.72-0.76). Iranian sheep have a low level of genetic differentiation, as indicated by the analysis of molecular variance, which allocated a very small proportion (1.67%) of total variation to the between-population component, and by the small fixation index (FST  = 0.02). Both Bayesian clustering and principal coordinates analysis revealed the absence of a detectable genetic structure. Also, no isolation by distance was observed through comparison of genetic and geographical distances. In spite of high within-breed variation, signatures of inbreeding were detected by the FIS indices, which were positive in all and statistically significant in three breeds. Possible factors explaining the patterns observed, such as considerable gene flow and inbreeding probably due to anthropogenic activities in the light of population management and conservation programmes, are discussed. © 2016 Stichting International Foundation for Animal Genetics.

  17. Unexpected genetic differentiation between recently recolonized populations of a long-lived and highly vagile marine mammal

    PubMed Central

    Bonin, Carolina A; Goebel, Michael E; Forcada, Jaume; Burton, Ronald S; Hoffman, Joseph I

    2013-01-01

    Many species have been heavily exploited by man leading to local extirpations, yet few studies have attempted to unravel subsequent recolonization histories. This has led to a significant gap in our knowledge of the long-term effects of exploitation on the amount and structure of contemporary genetic variation, with important implications for conservation. The Antarctic fur seal provides an interesting case in point, having been virtually exterminated in the nineteenth century but subsequently staged a dramatic recovery to recolonize much of its original range. Consequently, we evaluated the hypothesis that South Georgia (SG), where a few million seals currently breed, was the main source of immigrants to other locations including Livingston Island (LI), by genotyping 366 individuals from these two populations at 17 microsatellite loci and sequencing a 263 bp fragment of the mitochondrial hypervariable region 1. Contrary to expectations, we found highly significant genetic differences at both types of marker, with 51% of LI individuals carrying haplotypes that were not observed in 246 animals from SG. Moreover, the youngest of three sequentially founded colonies at LI showed greater similarity to SG at mitochondrial DNA than microsatellites, implying temporal and sex-specific variation in recolonization. Our findings emphasize the importance of relict populations and provide insights into the mechanisms by which severely depleted populations can recover while maintaining surprisingly high levels of genetic diversity. PMID:24198934

  18. Gender and population history: sex bias revealed by studying genetic admixture of Ngazidja population (Comoro Archipelago).

    PubMed

    Gourjon, Géraud; Boëtsch, Gilles; Degioanni, Anna

    2011-04-01

    The peopling of Comoro Archipelago is defined by successive waves of migration from three main areas: the East African Coast (Bantu-speaking populations), the Persia and Arabian Peninsula, and Southeast Asia (especially Indonesia). It follows an apparent classic trihybrid admixture model. To better understand the Comorian population admixture dynamics, we analyzed the contributions of these three historical parental components to its genetic pool. To enhance accuracy and reliability, we used both classical and molecular markers. Samples consist of published data: blood group frequencies, 14 KIR genes, 19 mitochondrial DNA SNPs (to highlight female migrations), 14 Y chromosome SNPs (male migrations). We revealed distinct admixture patterns for autosomal and uniparental markers. KIR gene frequencies had never been used to estimate admixture rates, this being a first assessment of their informative power in admixture studies. To avoid major methodological and statistical bias, we determined admixture coefficients through nine well-tried estimators and their associated software programs (ADMIX95, ADMIX, admix 2.0, LEA, LEADMIX, and Mistura). Results from mtDNA and Y chromosome markers point to an important sex-bias in the admixture event. The original Bantu gene pool received a predominant male-mediated contribution from the Arabian Peninsula and Persia, and a female-mediated contribution from Southeast Asia. Admixture rates estimated from autosomal KIR gene markers point also to an unexpected elevated Austronesian contribution.

  19. Genetic variability of Paecilomyces fumosoroseus isolates revealed by molecular markers.

    PubMed

    Tigano-Milani, M S; Honeycutt, R J; Lacey, L A; Assis, R; McClelland, M; Sobral, B W

    1995-05-01

    Paecilomyces fumosoroseus (Deuteromycotina:Hyphomycetes) is a fungus that is potentially useful for the bio-control of economically important agricultural pests, such as whitefly (Bemisia tabaci). Arbitrarily primed PCR and PCR with tRNA consensus primers were used to analyze genetic variability among 27 P. fumosoroseus isolates, 15 of which came from the same host, B. tabaci, one P. lilacinus isolate, used as an outgroup, 9 previously unidentified Paecilomyces isolates. Fifteen 10-mer oligonucleotide primers of arbitrary sequence revealed 322 scorable binary characters. Principal coordinates and cluster analysis of characters showed that most of the P. fumosoroseus and Paecilomyces sp. isolates were in three phenetic groups with > 65% internal similarity. Two of the three arbitrary phenetic groups were closely related (76% similarity) with the third group quite different (only 14% similarity) from the first two. The phenetic groups did not correlate with geographical origin or host species. Genetic variability of isolates infecting whitefly in Florida was detected. Isolates from B. tabaci were represented in two of the three groups, and different genotypes were identified even when they were isolated from an epizootic population in India and Pakistan. There was no evidence of host-specific selection of genotypes, as has been shown in other entomopathogenic fungi. Three isolates morphologically classified as P. fumosoroseus were clustered in a phenetic group which displayed only 14% similarity to the other isolates of this species. Seven isolated that presented problems for morphological classification were found to be similar or, in three cases, identical to other P. fumosoroseus isolates that dit not present problems for morphological classification.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. A new kymogram-based method reveals unexpected effects of marker protein expression and spatial anisotropy of cytoskeletal dynamics in plant cell cortex.

    PubMed

    Cvrčková, Fatima; Oulehlová, Denisa

    2017-01-01

    Cytoskeleton can be observed in live plant cells in situ with high spatial and temporal resolution using a combination of specific fluorescent protein tag expression and advanced microscopy methods such as spinning disc confocal microscopy (SDCM) or variable angle epifluorescence microscopy (VAEM). Existing methods for quantifying cytoskeletal dynamics are often either based on laborious manual structure tracking, or depend on costly commercial software. Current automated methods also do not readily allow separate measurements of structure lifetime, lateral mobility, and spatial anisotropy of these parameters. We developed a new freeware-based, operational system-independent semi-manual technique for analyzing VAEM or SDCM data, QuACK (Quantitative Analysis of Cytoskeletal Kymograms), and validated it on data from Arabidopsis thaliana fh1 formin mutants, previously shown by conventional methods to exhibit altered actin and microtubule dynamics compared to the wild type. Besides of confirming the published mutant phenotype, QuACK was used to characterize surprising differential effects of various fluorescent protein tags fused to the Lifeact actin probe on actin dynamics in A. thaliana cotyledon epidermis. In particular, Lifeact-YFP slowed down actin dynamics compared to Lifeact-GFP at marker expression levels causing no macroscopically noticeable phenotypic alterations, although the two fluorophores are nearly identical. We could also demonstrate the expected, but previously undocumented, anisotropy of cytoskeletal dynamics in elongated epidermal cells of A. thaliana petioles and hypocotyls. Our new method for evaluating plant cytoskeletal dynamics has several advantages over existing techniques. It is intuitive, rapid compared to fully manual approaches, based on the free ImageJ software (including macros we provide here for download), and allows measurement of multiple parameters. Our approach was already used to document unexpected differences in actin

  1. Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus

    PubMed Central

    Azuma, Yoshinao; Hosoyama, Akira; Matsutani, Minenosuke; Furuya, Naoko; Horikawa, Hiroshi; Harada, Takeshi; Hirakawa, Hideki; Kuhara, Satoru; Matsushita, Kazunobu; Fujita, Nobuyuki; Shirai, Mutsunori

    2009-01-01

    Acetobacter species have been used for brewing traditional vinegar and are known to have genetic instability. To clarify the mutability, Acetobacter pasteurianus NBRC 3283, which forms a multi-phenotype cell complex, was subjected to genome DNA sequencing. The genome analysis revealed that there are more than 280 transposons and five genes with hyper-mutable tandem repeats as common features in the genome consisting of a 2.9-Mb chromosome and six plasmids. There were three single nucleotide mutations and five transposon insertions in 32 isolates from the cell complex. The A. pasteurianus hyper-mutability was applied for breeding a temperature-resistant strain grown at an unviable high-temperature (42°C). The genomic DNA sequence of a heritable mutant showing temperature resistance was analyzed by mutation mapping, illustrating that a 92-kb deletion and three single nucleotide mutations occurred in the genome during the adaptation. Alpha-proteobacteria including A. pasteurianus consists of many intracellular symbionts and parasites, and their genomes show increased evolution rates and intensive genome reduction. However, A. pasteurianus is assumed to be a free-living bacterium, it may have the potentiality to evolve to fit in natural niches of seasonal fruits and flowers with other organisms, such as yeasts and lactic acid bacteria. PMID:19638423

  2. Genetically engineered immunoglobulins reveal structural features controlling segmental flexibility.

    PubMed

    Schneider, W P; Wensel, T G; Stryer, L; Oi, V T

    1988-04-01

    We have carried out nanosecond fluorescence polarization studies of genetically engineered immunoglobulins to determine the structural features controlling their segmental flexibility. The proteins studied were hybrids of a relatively rigid isotype (mouse IgG1) and a relatively flexible one (mouse IgG2a). They have identical light chains and heavy chain variable regions and have the same combining sites for epsilon-dansyl-L-lysine, a fluorescent hapten. The fluorescence of the bound dansyl chromophore was excited at 348 nm with subnanosecond laser pulses, and the emission in the nanosecond time range was measured with a single-photon-counting apparatus. The emission anisotropy kinetics of the hybrid antibodies revealed that segmental flexibility is controlled by the heavy chain constant region 1 (CH1) as well as by the hinge. In contrast, the CH2 and CH3 domains did not influence segmental flexibility. The hinge and CH1 domains must be properly matched to allow facile movement of the Fab units. Studies of hybrids of IgG1 and IgG2a within CH1 showed that the loop formed by residues 131-139 is important in controlling segmental flexibility. X-ray crystallographic studies by others of human IgG1 have shown that this loop makes several van der Waals contacts with the hinge.

  3. Quantitative Genetic Analysis Reveals Potential to Genetically Improve Fruit Yield and Drought Resistance Simultaneously in Coriander

    PubMed Central

    Khodadadi, Mostafa; Dehghani, Hamid; Jalali Javaran, Mokhtar

    2017-01-01

    Enhancing water use efficiency of coriander (Coriandrum sativum L.) is a major focus for coriander breeding to cope with drought stress. The purpose of this study was; (a) to identify the predominant mechanism(s) of drought resistance in coriander and (b) to evaluate the genetic control mechanism(s) of traits associated with drought resistance and higher fruit yield. To reach this purpose, 15 half-diallel hybrids of coriander and their six parents were evaluated under well-watered and water deficit stressed (WDS) in both glasshouse lysimetric and field conditions. The parents were selected for their different response to water deficit stress following preliminary experiments. Results revealed that the genetic control mechanism of fruit yield is complex, variable and highly affected by environment. The mode of inheritance and nature of gene action for percent assimilate partitioned to fruits were similar to those for flowering time in both well-watered and WDS conditions. A significant negative genetic linkage was found between fruit yield and percent assimilate partitioned to root, percent assimilate partitioned to shoot, root number, root diameter, root dry mass, root volume, and early flowering. Thus, to improve fruit yield under water deficit stress, selection of low values of these traits could be used. In contrast, a significant positive genetic linkage between fruit yield and percent assimilate partitioned to fruits, leaf relative water content and chlorophyll content indicate selection for high values of these traits. These secondary or surrogate traits could be selected during early segregating generations. The early ripening parent (P1; TN-59-230) contained effective genes involved in preferred percent assimilate partitioning to fruit and drought stress resistance. In conclusion, genetic improvement of fruit yield and drought resistance could be simultaneously gained in coriander when breeding for drought resistance. PMID:28473836

  4. Quantitative Genetic Analysis Reveals Potential to Genetically Improve Fruit Yield and Drought Resistance Simultaneously in Coriander.

    PubMed

    Khodadadi, Mostafa; Dehghani, Hamid; Jalali Javaran, Mokhtar

    2017-01-01

    Enhancing water use efficiency of coriander (Coriandrum sativum L.) is a major focus for coriander breeding to cope with drought stress. The purpose of this study was; (a) to identify the predominant mechanism(s) of drought resistance in coriander and (b) to evaluate the genetic control mechanism(s) of traits associated with drought resistance and higher fruit yield. To reach this purpose, 15 half-diallel hybrids of coriander and their six parents were evaluated under well-watered and water deficit stressed (WDS) in both glasshouse lysimetric and field conditions. The parents were selected for their different response to water deficit stress following preliminary experiments. Results revealed that the genetic control mechanism of fruit yield is complex, variable and highly affected by environment. The mode of inheritance and nature of gene action for percent assimilate partitioned to fruits were similar to those for flowering time in both well-watered and WDS conditions. A significant negative genetic linkage was found between fruit yield and percent assimilate partitioned to root, percent assimilate partitioned to shoot, root number, root diameter, root dry mass, root volume, and early flowering. Thus, to improve fruit yield under water deficit stress, selection of low values of these traits could be used. In contrast, a significant positive genetic linkage between fruit yield and percent assimilate partitioned to fruits, leaf relative water content and chlorophyll content indicate selection for high values of these traits. These secondary or surrogate traits could be selected during early segregating generations. The early ripening parent (P1; TN-59-230) contained effective genes involved in preferred percent assimilate partitioning to fruit and drought stress resistance. In conclusion, genetic improvement of fruit yield and drought resistance could be simultaneously gained in coriander when breeding for drought resistance.

  5. Unexpected diversity of feral genetically modified oilseed rape (Brassica napus L.) despite a cultivation and import ban in Switzerland.

    PubMed

    Schulze, Juerg; Frauenknecht, Tina; Brodmann, Peter; Bagutti, Claudia

    2014-01-01

    Despite cultivation and seed import bans of genetically modified (GM) oilseed rape (Brassica napus L.), feral GM plants were found growing along railway lines and in port areas at four sites in Switzerland in 2011 and 2012. All GM plants were identified as glyphosate-resistant GM event GT73 (Roundup Ready, Monsanto). The most affected sites were the Rhine port of Basel and the St. Johann freight railway station in Basel. To assess the distribution and intra- and interspecific outcrossing of GM oilseed rape in more detail, we monitored these two sites in 2013. Leaves and seed pods of feral oilseed rape plants, their possible hybridization partners and putative hybrid plants were sampled in monthly intervals and analysed for the presence of transgenes by real-time PCR. Using flow cytometry, we measured DNA contents of cell nuclei to confirm putative hybrids. In total, 2787 plants were sampled. The presence of GT73 oilseed rape could be confirmed at all previously documented sampling locations and was additionally detected at one new sampling location within the Rhine port. Furthermore, we found the glufosinate-resistant GM events MS8xRF3, MS8 and RF3 (all traded as InVigor, Bayer) at five sampling locations in the Rhine port. To our knowledge, this is the first time that feral MS8xRF3, MS8 or RF3 plants were detected in Europe. Real-time PCR analyses of seeds showed outcrossing of GT73 into two non-GM oilseed rape plants, but no outcrossing of transgenes into related wild species was observed. We found no hybrids between oilseed rape and related species. GM plants most frequently occurred at unloading sites for ships, indicating that ship cargo traffic is the main entry pathway for GM oilseed rape. In the future, it will be of major interest to determine the source of GM oilseed rape seeds.

  6. Unexpected Diversity of Feral Genetically Modified Oilseed Rape (Brassica napus L.) Despite a Cultivation and Import Ban in Switzerland

    PubMed Central

    Schulze, Juerg; Frauenknecht, Tina; Brodmann, Peter; Bagutti, Claudia

    2014-01-01

    Despite cultivation and seed import bans of genetically modified (GM) oilseed rape (Brassica napus L.), feral GM plants were found growing along railway lines and in port areas at four sites in Switzerland in 2011 and 2012. All GM plants were identified as glyphosate-resistant GM event GT73 (Roundup Ready, Monsanto). The most affected sites were the Rhine port of Basel and the St. Johann freight railway station in Basel. To assess the distribution and intra- and interspecific outcrossing of GM oilseed rape in more detail, we monitored these two sites in 2013. Leaves and seed pods of feral oilseed rape plants, their possible hybridization partners and putative hybrid plants were sampled in monthly intervals and analysed for the presence of transgenes by real-time PCR. Using flow cytometry, we measured DNA contents of cell nuclei to confirm putative hybrids. In total, 2787 plants were sampled. The presence of GT73 oilseed rape could be confirmed at all previously documented sampling locations and was additionally detected at one new sampling location within the Rhine port. Furthermore, we found the glufosinate-resistant GM events MS8xRF3, MS8 and RF3 (all traded as InVigor, Bayer) at five sampling locations in the Rhine port. To our knowledge, this is the first time that feral MS8xRF3, MS8 or RF3 plants were detected in Europe. Real-time PCR analyses of seeds showed outcrossing of GT73 into two non-GM oilseed rape plants, but no outcrossing of transgenes into related wild species was observed. We found no hybrids between oilseed rape and related species. GM plants most frequently occurred at unloading sites for ships, indicating that ship cargo traffic is the main entry pathway for GM oilseed rape. In the future, it will be of major interest to determine the source of GM oilseed rape seeds. PMID:25464509

  7. Newcastle Disease Viruses Causing Recent Outbreaks Worldwide Show Unexpectedly High Genetic Similarity to Historical Virulent Isolates from the 1940s.

    PubMed

    Dimitrov, Kiril M; Lee, Dong-Hun; Williams-Coplin, Dawn; Olivier, Timothy L; Miller, Patti J; Afonso, Claudio L

    2016-05-01

    Virulent strains of Newcastle disease virus (NDV) cause Newcastle disease (ND), a devastating disease of poultry and wild birds. Phylogenetic analyses clearly distinguish historical isolates (obtained prior to 1960) from currently circulating viruses of class II genotypes V, VI, VII, and XII through XVIII. Here, partial and complete genomic sequences of recent virulent isolates of genotypes II and IX from China, Egypt, and India were found to be nearly identical to those of historical viruses isolated in the 1940s. Phylogenetic analysis, nucleotide distances, and rates of change demonstrate that these recent isolates have not evolved significantly from the most closely related ancestors from the 1940s. The low rates of change for these virulent viruses (7.05 × 10(-5) and 2.05 × 10(-5) per year, respectively) and the minimal genetic distances existing between these and historical viruses (0.3 to 1.2%) of the same genotypes indicate an unnatural origin. As with any other RNA virus, Newcastle disease virus is expected to evolve naturally; thus, these findings suggest that some recent field isolates should be excluded from evolutionary studies. Furthermore, phylogenetic analyses show that these recent virulent isolates are more closely related to virulent strains isolated during the 1940s, which have been and continue to be used in laboratory and experimental challenge studies. Since the preservation of viable viruses in the environment for over 6 decades is highly unlikely, it is possible that the source of some of the recent virulent viruses isolated from poultry and wild birds might be laboratory viruses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Newcastle Disease Viruses Causing Recent Outbreaks Worldwide Show Unexpectedly High Genetic Similarity to Historical Virulent Isolates from the 1940s

    PubMed Central

    Dimitrov, Kiril M.; Lee, Dong-Hun; Williams-Coplin, Dawn; Olivier, Timothy L.; Miller, Patti J.

    2016-01-01

    Virulent strains of Newcastle disease virus (NDV) cause Newcastle disease (ND), a devastating disease of poultry and wild birds. Phylogenetic analyses clearly distinguish historical isolates (obtained prior to 1960) from currently circulating viruses of class II genotypes V, VI, VII, and XII through XVIII. Here, partial and complete genomic sequences of recent virulent isolates of genotypes II and IX from China, Egypt, and India were found to be nearly identical to those of historical viruses isolated in the 1940s. Phylogenetic analysis, nucleotide distances, and rates of change demonstrate that these recent isolates have not evolved significantly from the most closely related ancestors from the 1940s. The low rates of change for these virulent viruses (7.05 × 10−5 and 2.05 × 10−5 per year, respectively) and the minimal genetic distances existing between these and historical viruses (0.3 to 1.2%) of the same genotypes indicate an unnatural origin. As with any other RNA virus, Newcastle disease virus is expected to evolve naturally; thus, these findings suggest that some recent field isolates should be excluded from evolutionary studies. Furthermore, phylogenetic analyses show that these recent virulent isolates are more closely related to virulent strains isolated during the 1940s, which have been and continue to be used in laboratory and experimental challenge studies. Since the preservation of viable viruses in the environment for over 6 decades is highly unlikely, it is possible that the source of some of the recent virulent viruses isolated from poultry and wild birds might be laboratory viruses. PMID:26888902

  9. Molecular phylogenetic study on few morphotypes of a patellogastropod Cellana karachiensis from northern Arabian Sea reveals unexpected genetic diversity.

    PubMed

    Joseph, Sneha; Vakani, Bhavik; Kundu, Rahul

    2016-12-26

    A group of limpets, Cellana karachiensis, exhibiting phenotypic plasticity were examined from Gujarat coastline India, using molecular phylogeny. Previous examination of the COI genes established the presence of three different haplotypes X, Y and Z, while present study showed three more haplotypes X1, X2 and Z1. Thus, a total of six COI gene haplotypes, having 99.23% to 99.85% sequence similarity, were observed with variations at six sites. Bayesian phylogenetic analysis shows divergence of lineages X-Y, X1-X2 and Z-Z1. Careful observation of nucleotide alterations showed a nonrandom mutation with more A↔G and C↔T transitions between closely related species of the genus Cellana. A stretch of 17 base pair, within COI region, was marked as region with high degree of variability between species of Cellana. Results suggest that this could be the beginning of speciation, with partial or complete reproductive barrier or these are already distinct species in different stages of evolution.

  10. A Genetic Screen Reveals an Unexpected Role for Yorkie Signaling in JAK/STAT-Dependent Hematopoietic Malignancies in Drosophila melanogaster

    PubMed Central

    Anderson, Abigail M.; Bailetti, Alessandro A.; Rodkin, Elizabeth; De, Atish; Bach, Erika A.

    2017-01-01

    A gain-of-function mutation in the tyrosine kinase JAK2 (JAK2V617F) causes human myeloproliferative neoplasms (MPNs). These patients present with high numbers of myeloid lineage cells and have numerous complications. Since current MPN therapies are not curative, there is a need to find new regulators and targets of Janus kinase/Signal transducer and activator of transcription (JAK/STAT) signaling that may represent additional clinical interventions . Drosophila melanogaster offers a low complexity model to study MPNs as JAK/STAT signaling is simplified with only one JAK [Hopscotch (Hop)] and one STAT (Stat92E). hopTumorous-lethal (Tum-l) is a gain-of-function mutation that causes dramatic expansion of myeloid cells, which then form lethal melanotic tumors. Through an F1 deficiency (Df) screen, we identified 11 suppressors and 35 enhancers of melanotic tumors in hopTum-l animals. Dfs that uncover the Hippo (Hpo) pathway genes expanded (ex) and warts (wts) strongly enhanced the hopTum-l tumor burden, as did mutations in ex, wts, and other Hpo pathway genes. Target genes of the Hpo pathway effector Yorkie (Yki) were significantly upregulated in hopTum-l blood cells, indicating that Yki signaling was increased. Ectopic hematopoietic activation of Yki in otherwise wild-type animals increased hemocyte proliferation but did not induce melanotic tumors. However, hematopoietic depletion of Yki significantly reduced the hopTum-l tumor burden, demonstrating that Yki is required for melanotic tumors in this background. These results support a model in which elevated Yki signaling increases the number of hemocytes, which become melanotic tumors as a result of elevated JAK/STAT signaling. PMID:28620086

  11. Species history masks the effects of human-induced range loss--unexpected genetic diversity in the endangered giant mayfly Palingenia longicauda.

    PubMed

    Bálint, Miklós; Málnás, Kristóf; Nowak, Carsten; Geismar, Jutta; Váncsa, Eva; Polyák, László; Lengyel, Szabolcs; Haase, Peter

    2012-01-01

    Freshwater biodiversity has declined dramatically in Europe in recent decades. Because of massive habitat pollution and morphological degradation of water bodies, many once widespread species persist in small fractions of their original range. These range contractions are generally believed to be accompanied by loss of intraspecific genetic diversity, due to the reduction of effective population sizes and the extinction of regional genetic lineages. We aimed to assess the loss of genetic diversity and its significance for future potential reintroduction of the long-tailed mayfly Palingenia longicauda (Olivier), which experienced approximately 98% range loss during the past century. Analysis of 936 bp of mitochondrial DNA of 245 extant specimens across the current range revealed a surprisingly large number of haplotypes (87), and a high level of haplotype diversity (Hd = 0.875). In contrast, historic specimens (6) from the lost range (Rhine catchment) were not differentiated from the extant Rába population (F(ST) = 0.02, p = 0.61), despite considerable geographic distance separating the two rivers. These observations can be explained by an overlap of the current with the historic (Pleistocene) refugia of the species. Most likely, the massive recent range loss mainly affected the range which was occupied by rapid post-glacial dispersal. We conclude that massive range losses do not necessarily coincide with genetic impoverishment and that a species' history must be considered when estimating loss of genetic diversity. The assessment of spatial genetic structures and prior phylogeographic information seems essential to conserve once widespread species.

  12. Artificial neural networks reveal efficiency in genetic value prediction.

    PubMed

    Peixoto, L A; Bhering, L L; Cruz, C D

    2015-06-18

    The objective of this study was to evaluate the efficiency of artificial neural networks (ANNs) for predicting genetic value in experiments carried out in randomized blocks. Sixteen scenarios were simulated with different values of heritability (10, 20, 30, and 40%), coefficient of variation (5 and 10%), and the number of genotypes per block (150 and 200 for validation, and 5000 for neural network training). One hundred validation populations were used in each scenario. Accuracy of ANNs was evaluated by comparing the correlation of network value with genetic value, and of phenotypic value with genetic value. Neural networks were efficient in predicting genetic value with a 0.64 to 10.3% gain compared to the phenotypic value, regardless the simulated population size, heritability, or coefficient of variation. Thus, the artificial neural network is a promising technique for predicting genetic value in balanced experiments.

  13. Next generation sequencing reveals genetic landscape of hepatocellular carcinomas.

    PubMed

    Li, Shuyu; Mao, Mao

    2013-11-01

    Liver cancer is one of most deadly cancers worldwide. Hepatocellular carcinoma (HCC) represents a major histological subtype of liver cancers. As cancer is a genetic disease, genetic lesions play a major role in HCC tumorigenesis and progression. Although significant progress has been made to uncover genetic alterations in HCCs, our understanding of genetics involved in the initiation and progression of HCC is far from complete. Next generation sequencing (NGS) has provided a new paradigm in biomedical research to delineate the genetic basis of human diseases. While identification of cancer somatic mutations has been serendipitous, genome sequencing has provided an unbiased approach to systematically catalog somatic mutations and elucidate the mechanisms of tumourigenesis. A number of recently published NGS studies on HCCs have not only confirmed previously known mutations in CTNNB1 and TP53 in HCC, but also identified novel genetic alterations in HCC including mutations in genes involved in epigenetic regulation. WNT, cell cycle and chromatin remodeling pathways have emerged as key oncogenic drivers in HCCs. The frequently altered genes and pathways in HCC reflect classical cancer hallmarks. These findings have started to depict a genetic landscape in HCC and will facilitate development of novel therapeutics for the treatment of this deadly disease. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Genome-wide expression profiling in the Drosophila eye reveals unexpected repression of Notch signaling by the JAK/STAT pathway

    PubMed Central

    Flaherty, Maria Sol; Zavadil, Jiri; Ekas, Laura A.; Bach, Erika A.

    2010-01-01

    Although the JAK/STAT pathway regulates numerous processes in vertebrates and invertebrates through modulating transcription, its functionally-relevant transcriptional targets remain largely unknown. With one jak and one stat (stat92E), Drosophila provides a powerful system for finding new JAK/STAT target genes. Genome-wide expression profiling on eye discs in which Stat92E is hyperactivated, revealed 584 differentially-regulated genes, including known targets domeless, socs36E and wingless. Other differentially-regulated genes (chinmo, lama, Mo25, Imp-L2, Serrate, Delta) were validated and may represent new Stat92E targets. Genetic experiments revealed that Stat92E cell-autonomously represses Serrate, which encodes a Notch ligand. Loss of Stat92E led to de-repression of Serrate in the dorsal eye, resulting in ectopic Notch signaling and aberrant eye growth there. Thus, our micro-array documents a new Stat92E target gene and a previously-unidentified inhibitory action of Stat92E on Notch signaling. These data suggest that this study will be a useful resource for the identification of additional Stat92E targets. PMID:19504457

  15. Alu polymorphic insertions reveal genetic structure of north Indian populations.

    PubMed

    Tripathi, Manorama; Tripathi, Piyush; Chauhan, Ugam Kumari; Herrera, Rene J; Agrawal, Suraksha

    2008-10-01

    The Indian subcontinent is characterized by the ancestral and cultural diversity of its people. Genetic input from several unique source populations and from the unique social architecture provided by the caste system has shaped the current genetic landscape of India. In the present study 200 individuals each from three upper-caste and four middle-caste Hindu groups and from two Muslim populations in North India were examined for 10 polymorphic Alu insertions (PAIs). The investigated PAIs exhibit high levels of polymorphism and average heterozygosity. Limited interpopulation variance and genetic flow in the present study suggest admixture. The results of this study demonstrate that, contrary to common belief, the caste system has not provided an impermeable barrier to genetic exchange among Indian groups.

  16. Population genetics of the deep-sea bluntnose sixgill shark, Hexanchus griseus, revealing spatial genetic heterogeneity.

    PubMed

    Vella, Noel; Vella, Adriana

    2017-06-08

    Hexanchus griseus is a globally distributed deep-water shark species. It inhabits tropical and temperate waters throughout the world, including the Mediterranean Sea where it is by-caught by small-scale fisheries in the region. In this study, we analysed the genetic variation of H. griseus specimens collected from different areas within and outside the Mediterranean region, to assess its genetic connectivity. The mitochondrial DNA (mtDNA) sequence analysed in this study ranged from cytochrome b to 16S rRNA genes including the control region, the 12S rRNA gene and the interspersed tRNA genes in the region, covering a total of 3731 to 3914 nucleotides. Results have shown that this species exhibits geographically distinct maternal lineages, indicating population structure along geographical ranges. These findings reveal population subdivisions not only between the Pacific Ocean and the Atlantic Ocean, but also within the oceans and on a smaller scale within the Mediterranean Sea. This highlights the need to consider each population subdivision separately when designing management plans for the conservation of this species. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Genetic map of the human pseudoautosomal region reveals a high rate of recombination in female meiosis at the Xp telomere

    SciTech Connect

    Henke, A.; Fischer, C.; Rappold, G.A. )

    1993-12-01

    This paper describes the genetic map of the pseudoautosomal region bounded by the telomere of the short arms of the X and Y chromosomes. In males, meiotic exchange on Xp/Yp is confined to this region, leading to highly elevated recombination rates. The map was constructed using 11 pseudoautosomal probes (six of which are new) and typing individuals from 38 CEPH families. All markers have been physically mapped, thus providing the opportunity to compare genetic distance to physical distance through all intervals of the map. This comparison reveals an unexpected high rate of recombination in female meiosis between loci DXYS20 and DXYS78, within 20-80 kb from the telomere. Within this telemore-adjacent region no differences in male and female recombination rates are seen. Furthermore, data from this genetic map support the hypothesis of a linear gradient of recombination across most of the region in male meiosis and provide densely spaced anchor points for linkage studies especially in the telomeric portion of the pseudoautosomal region. 34 refs., 4 figs., 4 tabs.

  18. Differential Network Analysis Reveals Genetic Effects on Catalepsy Modules

    PubMed Central

    Iancu, Ovidiu D.; Oberbeck, Denesa; Darakjian, Priscila; Kawane, Sunita; Erk, Jason; McWeeney, Shannon; Hitzemann, Robert

    2013-01-01

    We performed short-term bi-directional selective breeding for haloperidol-induced catalepsy, starting from three mouse populations of increasingly complex genetic structure: an F2 intercross, a heterogeneous stock (HS) formed by crossing four inbred strains (HS4) and a heterogeneous stock (HS-CC) formed from the inbred strain founders of the Collaborative Cross (CC). All three selections were successful, with large differences in haloperidol response emerging within three generations. Using a custom differential network analysis procedure, we found that gene coexpression patterns changed significantly; importantly, a number of these changes were concordant across genetic backgrounds. In contrast, absolute gene-expression changes were modest and not concordant across genetic backgrounds, in spite of the large and similar phenotypic differences. By inferring strain contributions from the parental lines, we are able to identify significant differences in allelic content between the selected lines concurrent with large changes in transcript connectivity. Importantly, this observation implies that genetic polymorphisms can affect transcript and module connectivity without large changes in absolute expression levels. We conclude that, in this case, selective breeding acts at the subnetwork level, with the same modules but not the same transcripts affected across the three selections. PMID:23555609

  19. Unintended effects in genetically modified crops: revealed by metabolomics?

    PubMed

    Rischer, Heiko; Oksman-Caldentey, Kirsi-Marja

    2006-03-01

    In Europe the commercialization of food derived from genetically modified plants has been slow because of the complex regulatory process and the concerns of consumers. Risk assessment is focused on potential adverse effects on humans and the environment, which could result from unintended effects of genetic modifications: unintended effects are connected to changes in metabolite levels in the plants. One of the major challenges is how to analyze the overall metabolite composition of GM plants in comparison to conventional cultivars, and one possible solution is offered by metabolomics. The ultimate aim of metabolomics is the identification and quantification of all small molecules in an organism; however, a single method enabling complete metabolome analysis does not exist. Given a comprehensive extraction method, a hierarchical strategy--starting with global fingerprinting and followed by complementary profiling attempts--is the most logical and economic approach to detect unintended effects in GM crops.

  20. Quantitative Genetic Interactions Reveal Layers of Biological Modularity

    PubMed Central

    Beltrao, Pedro; Cagney, Gerard; Krogan, Nevan J.

    2010-01-01

    In the past, biomedical research has embraced a reductionist approach, primarily focused on characterizing the individual components that comprise a system of interest. Recent technical developments have significantly increased the size and scope of data describing biological systems. At the same time, advances in the field of systems biology have evoked a broader view of how the underlying components are interconnected. In this essay, we discuss how quantitative genetic interaction mapping has enhanced our view of biological systems, allowing a deeper functional interrogation at different biological scales. PMID:20510918

  1. The human splicing code reveals new insights into the genetic determinants of disease

    PubMed Central

    Xiong, Hui Y.; Alipanahi, Babak; Lee, Leo J.; Bretschneider, Hannes; Merico, Daniele; Yuen, Ryan K.C.; Hua, Yimin; Gueroussov, Serge; Najafabadi, Hamed S.; Hughes, Timothy R.; Morris, Quaid; Barash, Yoseph; Krainer, Adrian R.; Jojic, Nebojsa; Scherer, Stephen W.; Blencowe, Benjamin J.; Frey, Brendan J.

    2015-01-01

    Introduction Advancing whole-genome precision medicine requires understanding how gene expression is altered by genetic variants, especially those that are outside of protein-coding regions. We developed a computational technique that scores how strongly genetic variants alter RNA splicing, a critical step in gene expression whose disruption contributes to many diseases, including cancers and neurological disorders. A genome-wide analysis reveals tens of thousands of variants that alter splicing and are enriched with a wide range of known diseases. Our results provide insight into the genetic basis of spinal muscular atrophy, hereditary nonpolyposis colorectal cancer and autism spectrum disorder. Methods We used machine learning to derive a computational model that takes as input DNA sequences and applies general rules to predict splicing in human tissues. Given a test variant, our model computes a score that predicts how much the variant disrupts splicing. The model was derived in such a way that it can be used to study diverse diseases and disorders, and to determine the consequences of common, rare, and even spontaneous variants. Results Our technique is able to accurately classify disease-causing variants and provides insights into the role of aberrant splicing in disease. We scored over 650,000 DNA variants and found that disease-causing variants have higher scores than common variants and even those associated with disease in genome-wide association studies. Our model predicts substantial and unexpected aberrant splicing due to variants within introns and exons, including those far from the splice site. For example, among intronic variants that are more than 30 nucleotides away from a splice site, known disease variants alter splicing nine times more often than common variants; among missense exonic disease variants, those that least impact protein function are over five times more likely to alter splicing than other variants. Autism has been associated with

  2. Musa genetic diversity revealed by SRAP and AFLP.

    PubMed

    Youssef, Muhammad; James, Andrew C; Rivera-Madrid, Renata; Ortiz, Rodomiro; Escobedo-GraciaMedrano, Rosa María

    2011-03-01

    The sequence-related amplified polymorphism (SRAP) technique, aimed for the amplification of open reading frames (ORFs), vis-â-vis that of the amplified fragment length polymorphisms (AFLP) were used to analyze the genetic variation and relationships among forty Musa accessions; which include commercial cultivars and wild species of interest for the genetic enhancement of Musa. A total of 403 SRAP and 837 AFLP amplicons were generated by 10 SRAP and 15 AFLP primer combinations, of which 353 and 787 bands were polymorphic, respectively. Both cluster analysis of unweighted pair-grouping method with arithmetic averages (UPGMA) and principal coordinate (PCO) analysis separated the forty accessions into their recognized sections (Eumusa, Australimusa, Callimusa and Rhodochlamys) and species. The percentage of polymorphism amongst sections and species and the relationships within Eumusa species and subspecies varied between the two marker systems. In addition to its practical simplicity, SRAP exhibited approximately threefold more specific and unique bands than AFLP, 37 and 13%, respectively. SRAP markers are demonstrated here to be proficient tools for discriminating amongst M. acuminata, M. balbisiana and M. schizocarpa in the Eumusa section, as well as between plantains and cooking bananas within triploid cultivars.

  3. The loss of genetic diversity in Sichuan taimen as revealed by DNA fingerprinting.

    PubMed

    Wu, Xue-Chang

    2006-06-01

    Species endangerment often derives from the "endangerment" of genetic diversity, thus loss of genetic diversity is an important cause of species extinction. Since historical specimens were unavailable, previous studies mainly described the genetic diversity status in the current population rather than the loss of genetic variation over time. In this study, we collected samples during 1998-1999 and obtained historical specimens from 1957 to 1958. Based on the two sets of fish, we determined the changes in genetic diversity of Sichuan taimen using DNA fingerprinting. The differences in genetic parameters between the present samples and historical taimens revealed their loss of genetic variation. As a result, the existing populations have lower viability, and proper management has to be implemented to preserve genetic diversity.

  4. Genetic correlations reveal the shared genetic architecture of transcription in human peripheral blood.

    PubMed

    Lukowski, Samuel W; Lloyd-Jones, Luke R; Holloway, Alexander; Kirsten, Holger; Hemani, Gibran; Yang, Jian; Small, Kerrin; Zhao, Jing; Metspalu, Andres; Dermitzakis, Emmanouil T; Gibson, Greg; Spector, Timothy D; Thiery, Joachim; Scholz, Markus; Montgomery, Grant W; Esko, Tonu; Visscher, Peter M; Powell, Joseph E

    2017-09-07

    Transcript co-expression is regulated by a combination of shared genetic and environmental factors. Here, we estimate the proportion of co-expression that is due to shared genetic variance. To do so, we estimated the genetic correlations between each pairwise combination of 2469 transcripts that are highly heritable and expressed in whole blood in 1748 unrelated individuals of European ancestry. We identify 556 pairs with a significant genetic correlation of which 77% are located on different chromosomes, and report 934 expression quantitative trait loci, identified in an independent cohort, with significant effects on both transcripts in a genetically correlated pair. We show significant enrichment for transcription factor control and physical proximity through chromatin interactions as possible mechanisms of shared genetic control. Finally, we construct networks of interconnected transcripts and identify their underlying biological functions. Using genetic correlations to investigate transcriptional co-regulation provides valuable insight into the nature of the underlying genetic architecture of gene regulation.Covariance of gene expression pairs is due to a combination of shared genetic and environmental factors. Here the authors estimate the genetic correlation between highly heritable pairs and identify transcription factor control and chromatin interactions as possible mechanisms of correlation.

  5. Comparative riverscape genetics reveals reservoirs of genetic diversity for conservation and restoration of Great Plains fishes

    PubMed Central

    Osborne, Megan J; Perkin, Joshuah S.; Gido, Keith B.; Turner, Thomas F.

    2014-01-01

    We used comparative landscape genetics to examine the relative roles of historical events, intrinsic traits, and landscape factors in determining the distribution of genetic diversity of river fishes across the North American Great Plains. Spatial patterns of diversity were overlaid on a patch-based graphical model, and then compared within and among three species that co-occurred across five Great Plains watersheds. Species differing in reproductive strategy (benthic vs. pelagic spawning) were hypothesized to have different patterns of genetic diversity, but the overriding factor shaping contemporary patterns of diversity was the signature of past climates and geological history. Allelic diversity was significantly higher at southern latitudes for Cyprinella lutrensis and Hybognathus placitus, consistent with northward expansion from southern Pleistocene refugia. Within the historical context, all species exhibited lowered occupancy and abundance in heavily fragmented and drier upstream reaches, particularly H. placitus; a pelagic-spawning species, suggesting rates of extirpation have outpaced losses of genetic diversity in this species. Within most basins, genetically diverse populations of each species persisted. Hence, reconnecting genetically diverse populations with those characterized by reduced diversity (regardless of their position within the riverine network) would provide populations with greater genetic and demographic resilience. We discuss cases where cross-basin transfer may be appropriate to enhance genetic diversity and mitigate negative effects of climate change. Overall, striking similarities in genetic patterns and response to fragmentation and dewatering suggest a common strategy for genetic resource management in this unique riverine fish assemblage. PMID:25327780

  6. Comparative riverscape genetics reveals reservoirs of genetic diversity for conservation and restoration of Great Plains fishes.

    PubMed

    Osborne, Megan J; Perkin, Joshuah S; Gido, Keith B; Turner, Thomas F

    2014-12-01

    We used comparative landscape genetics to examine the relative roles of historical events, intrinsic traits and landscape factors in determining the distribution of genetic diversity of river fishes across the North American Great Plains. Spatial patterns of diversity were overlaid on a patch-based graphical model and then compared within and among three species that co-occurred across five Great Plains watersheds. Species differing in reproductive strategy (benthic vs. pelagic-spawning) were hypothesized to have different patterns of genetic diversity, but the overriding factor shaping contemporary patterns of diversity was the signature of past climates and geological history. Allelic diversity was significantly higher at southern latitudes for Cyprinella lutrensis and Hybognathus placitus, consistent with northward expansion from southern Pleistocene refugia. Within the historical context, all species exhibited lowered occupancy and abundance in heavily fragmented and drier upstream reaches, particularly H. placitus; a pelagic-spawning species, suggesting rates of extirpation have outpaced losses of genetic diversity in this species. Within most tributary basins, genetically diverse populations of each species persisted. Hence, reconnecting genetically diverse populations with those characterized by reduced diversity (regardless of their position within the riverine network) would provide populations with greater genetic and demographic resilience. We discuss cases where cross-basin transfer may be appropriate to enhance genetic diversity and mitigate negative effects of climate change. Overall, striking similarities in genetic patterns and in response to fragmentation and dewatering suggest a common strategy for genetic resource management in this unique riverine fish assemblage. © 2014 John Wiley & Sons Ltd.

  7. Transcriptome profiling of degU expression reveals unexpected regulatory patterns in Bacillus megaterium and discloses new targets for optimizing expression.

    PubMed

    Borgmeier, Claudia; Biedendieck, Rebekka; Hoffmann, Kristina; Jahn, Dieter; Meinhardt, Friedhelm

    2011-11-01

    The first whole transcriptome assessment of a Bacillus megaterium strain provides unanticipated insights into the degSU regulon considered to be of central importance for exo-enzyme production. Regulatory patterns as well as the transcription of degSU itself deviate from the model organism Bacillus subtilis; the number of DegU-regulated secretory enzymes is rather small. Targets for productivity optimization, besides degSU itself, arise from the unexpected DegU-dependent induction of the transition-state regulator AbrB during exponential growth. Induction of secretion-assisting factors, such as the translocase subunit SecY or the signal peptidase SipM, promote hypersecretion. B. megaterium DegSU transcriptional control is advantageous for production purposes, since the degU32 constitutively active mutant conferred hypersecretion of a heterologous Bacillus amyloliquefaciens amylase without the detrimental rise, as for B. subtilis and Bacillus licheniformis, in extracellular proteolytic activities.

  8. Epistatic study reveals two genetic interactions in blood pressure regulation

    PubMed Central

    2013-01-01

    Background Although numerous candidate gene and genome-wide association studies have been performed on blood pressure, a small number of regulating genetic variants having a limited effect have been identified. This phenomenon can partially be explained by possible gene-gene/epistasis interactions that were little investigated so far. Methods We performed a pre-planned two-phase investigation: in phase 1, one hundred single nucleotide polymorphisms (SNPs) in 65 candidate genes were genotyped in 1,912 French unrelated adults in order to study their two-locus combined effects on blood pressure (BP) levels. In phase 2, the significant epistatic interactions observed in phase 1 were tested in an independent population gathering 1,755 unrelated European adults. Results Among the 9 genetic variants significantly associated with systolic and diastolic BP in phase 1, some may act through altering the corresponding protein levels: SNPs rs5742910 (Padjusted≤0.03) and rs6046 (Padjusted =0.044) in F7 and rs1800469 (Padjusted ≤0.036) in TGFB1; whereas some may be functional through altering the corresponding protein structure: rs1800590 (Padjusted =0.028, SE=0.088) in LPL and rs2228570 (Padjusted ≤9.48×10-4) in VDR. The two epistatic interactions found for systolic and diastolic BP in the discovery phase: VCAM1 (rs1041163) * APOB (rs1367117), and SCGB1A1 (rs3741240) * LPL (rs1800590), were tested in the replication population and we observed significant interactions on DBP. In silico analyses yielded putative functional properties of the SNPs involved in these epistatic interactions trough the alteration of corresponding protein structures. Conclusions These findings support the hypothesis that different pathways and then different genes may act synergistically in order to modify BP. This could highlight novel pathophysiologic mechanisms underlying hypertension. PMID:23298194

  9. Genetic algorithm reveals energy-efficient waveforms for neural stimulation.

    PubMed

    Wongsarnpigoon, Amorn; Grill, Warren M

    2009-01-01

    Energy consumption is an important consideration for battery-powered implantable stimulators. We used a genetic algorithm (GA) that mimics biological evolution to determine the energy-optimal waveform shape for neural stimulation. The GA was coupled to NEURON using a model of extracellular stimulation of a mammalian myelinated axon. Stimulation waveforms represented the organisms of a population, and each waveform's shape was encoded into genes. The fitness of each waveform was based on its energy efficiency and ability to elicit an action potential. After each generation of the GA, waveforms mated to produce offspring waveforms, and a new population was formed consisting of the offspring and the fittest waveforms of the previous generation. Over the course of the GA, waveforms became increasingly energy-efficient and converged upon a highly energy-efficient shape. The resulting waveforms resembled truncated normal curves or sinusoids and were 3-74% more energy-efficient than several waveform shapes commonly used in neural stimulation. If implemented in implantable neural stimulators, the GA optimized waveforms could prolong battery life, thereby reducing the costs and risks of battery-replacement surgery.

  10. Genetic Algorithm Reveals Energy-Efficient Waveforms for Neural Stimulation

    PubMed Central

    Wongsarnpigoon, Amorn; Grill, Warren M.

    2013-01-01

    Energy consumption is an important consideration for battery-powered implantable stimulators. We used a genetic algorithm (GA) that mimics biological evolution to determine the energy-optimal waveform shape for neural stimulation. The GA was coupled to NEURON using a model of extracellular stimulation of a mammalian myelinated axon. Stimulation waveforms represented the organisms of a population, and each waveform’s shape was encoded into genes. The fitness of each waveform was based on its energy efficiency and ability to elicit an action potential. After each generation of the GA, waveforms mated to produce offspring waveforms, and a new population was formed consisting of the offspring and the fittest waveforms of the previous generation. Over the course of the GA, waveforms became increasingly energy-efficient and converged upon a highly energy-efficient shape. The resulting waveforms resembled truncated normal curves or sinusoids and were 3–74% more energy-efficient than several waveform shapes commonly used in neural stimulation. If implemented in implantable neural stimulators, the GA optimized waveforms could prolong battery life, thereby reducing the costs and risks of battery-replacement surgery. PMID:19964233

  11. Genotyping of ancient Mycobacterium tuberculosis strains reveals historic genetic diversity

    PubMed Central

    Müller, Romy; Roberts, Charlotte A.; Brown, Terence A.

    2014-01-01

    The evolutionary history of the Mycobacterium tuberculosis complex (MTBC) has previously been studied by analysis of sequence diversity in extant strains, but not addressed by direct examination of strain genotypes in archaeological remains. Here, we use ancient DNA sequencing to type 11 single nucleotide polymorphisms and two large sequence polymorphisms in the MTBC strains present in 10 archaeological samples from skeletons from Britain and Europe dating to the second–nineteenth centuries AD. The results enable us to assign the strains to groupings and lineages recognized in the extant MTBC. We show that at least during the eighteenth–nineteenth centuries AD, strains of M. tuberculosis belonging to different genetic groups were present in Britain at the same time, possibly even at a single location, and we present evidence for a mixed infection in at least one individual. Our study shows that ancient DNA typing applied to multiple samples can provide sufficiently detailed information to contribute to both archaeological and evolutionary knowledge of the history of tuberculosis. PMID:24573854

  12. Genome sequencing of Ewing sarcoma patients reveals genetic predisposition | Center for Cancer Research

    Cancer.gov

    The largest and most comprehensive genomic analysis of individuals with Ewing sarcoma performed to date reveals that some patients are genetically predisposed to developing the cancer.  Learn more...

  13. The integration of quantitative genetics, paleontology, and neontology reveals genetic underpinnings of primate dental evolution

    PubMed Central

    Hlusko, Leslea J.; Schmitt, Christopher A.; Monson, Tesla A.; Brasil, Marianne F.; Mahaney, Michael C.

    2016-01-01

    Developmental genetics research on mice provides a relatively sound understanding of the genes necessary and sufficient to make mammalian teeth. However, mouse dentitions are highly derived compared with human dentitions, complicating the application of these insights to human biology. We used quantitative genetic analyses of data from living nonhuman primates and extensive osteological and paleontological collections to refine our assessment of dental phenotypes so that they better represent how the underlying genetic mechanisms actually influence anatomical variation. We identify ratios that better characterize the output of two dental genetic patterning mechanisms for primate dentitions. These two newly defined phenotypes are heritable with no measurable pleiotropic effects. When we consider how these two phenotypes vary across neontological and paleontological datasets, we find that the major Middle Miocene taxonomic shift in primate diversity is characterized by a shift in these two genetic outputs. Our results build on the mouse model by combining quantitative genetics and paleontology, and thereby elucidate how genetic mechanisms likely underlie major events in primate evolution. PMID:27402751

  14. Screening of Random Peptide Library of Hemagglutinin from Pandemic 2009 A(H1N1) Influenza Virus Reveals Unexpected Antigenically Important Regions

    PubMed Central

    Xu, Wanghui; Han, Lu; Lin, Zhanglin

    2011-01-01

    The antigenic structure of the membrane protein hemagglutinin (HA) from the 2009 A(H1N1) influenza virus was dissected with a high-throughput screening method using complex antisera. The approach involves generating yeast cell libraries displaying a pool of random peptides of controllable lengths on the cell surface, followed by one round of fluorescence-activated cell sorting (FACS) against antisera from mouse, goat and human, respectively. The amino acid residue frequency appearing in the antigenic peptides at both the primary sequence and structural level was determined and used to identify “hot spots” or antigenically important regions. Unexpectedly, different antigenic structures were seen for different antisera. Moreover, five antigenic regions were identified, of which all but one are located in the conserved HA stem region that is responsible for membrane fusion. Our findings are corroborated by several recent studies on cross-neutralizing H1 subtype antibodies that recognize the HA stem region. The antigenic peptides identified may provide clues for creating peptide vaccines with better accessibility to memory B cells and better induction of cross-neutralizing antibodies than the whole HA protein. The scheme used in this study enables a direct mapping of the antigenic regions of viral proteins recognized by antisera, and may be useful for dissecting the antigenic structures of other viral proteins. PMID:21437206

  15. Unexpected A-form formation of 4′-thioDNA in solution, revealed by NMR, and the implications as to the mechanism of nuclease resistance

    PubMed Central

    Matsugami, Akimasa; Ohyama, Takako; Inada, Masashi; Inoue, Naonori; Minakawa, Noriaki; Matsuda, Akira; Katahira, Masato

    2008-01-01

    Fully modified 4′-thioDNA, an oligonucleotide only comprising 2′-deoxy-4′-thionucleosides, exhibited resistance to an endonuclease, in addition to preferable hybridization with RNA. Therefore, 4′-thioDNA is promising for application as a functional oligonucleotide. Fully modified 4′-thioDNA was found to behave like an RNA molecule, but no details of its structure beyond the results of circular dichroism analysis are available. Here, we have determined the structure of fully modified 4′-thioDNA with the sequence of d(CGCGAATTCGCG) by NMR. Most sugars take on the C3′-endo conformation. The major groove is narrow and deep, while the minor groove is wide and shallow. Thus, fully modified 4′-thioDNA takes on the A-form characteristic of RNA, both locally and globally. The only structure reported for 4′-thioDNA showed that partially modified 4′-thioDNA that contained some 2′-deoxy-4′-thionucleosides took on the B-form in the crystalline form. We have determined the structure of 4′-thioDNA in solution for the first time, and demonstrated unexpected differences between the two structures. The origin of the formation of the A-form is discussed. The remarkable biochemical properties reported for fully modified 4′-thioDNA, including nuclease-resistance, are rationalized in the light of the elucidated structure. PMID:18252770

  16. Structural analysis of MED-1 reveals unexpected diversity in the mechanism of DNA recognition by GATA-type zinc finger domains.

    PubMed

    Lowry, Jason A; Gamsjaeger, Roland; Thong, Sock Yue; Hung, Wendy; Kwan, Ann H; Broitman-Maduro, Gina; Matthews, Jacqueline M; Maduro, Morris; Mackay, Joel P

    2009-02-27

    MED-1 is a member of a group of divergent GATA-type zinc finger proteins recently identified in several species of Caenorhabditis. The med genes are transcriptional regulators that are involved in the specification of the mesoderm and endoderm precursor cells in nematodes. Unlike other GATA-type zinc fingers that recognize the consensus sequence (A/C/T)GATA(A/G), the MED-1 zinc finger (MED1zf) binds the larger and atypical site GTATACT(T/C)(3). We have examined the basis for this unusual DNA specificity using a range of biochemical and biophysical approaches. Most strikingly, we show that although the core of the MED1zf structure is similar to that of GATA-1, the basic tail C-terminal to the zinc finger unexpectedly adopts an alpha-helical structure upon binding DNA. This additional helix appears to contact the major groove of the DNA, making contacts that explain the extended DNA consensus sequence observed for MED1zf. Our data expand the versatility of DNA recognition by GATA-type zinc fingers and perhaps shed new light on the DNA-binding properties of mammalian GATA factors.

  17. Genetics of the Pig Tapeworm in Madagascar Reveal a History of Human Dispersal and Colonization

    PubMed Central

    Yanagida, Tetsuya; Carod, Jean-François; Sako, Yasuhito; Nakao, Minoru; Hoberg, Eric P.; Ito, Akira

    2014-01-01

    An intricate history of human dispersal and geographic colonization has strongly affected the distribution of human pathogens. The pig tapeworm Taenia solium occurs throughout the world as the causative agent of cysticercosis, one of the most serious neglected tropical diseases. Discrete genetic lineages of T. solium in Asia and Africa/Latin America are geographically disjunct; only in Madagascar are they sympatric. Linguistic, archaeological and genetic evidence has indicated that the people in Madagascar have mixed ancestry from Island Southeast Asia and East Africa. Hence, anthropogenic introduction of the tapeworm from Southeast Asia and Africa had been postulated. This study shows that the major mitochondrial haplotype of T. solium in Madagascar is closely related to those from the Indian Subcontinent. Parasitological evidence presented here, and human genetics previously reported, support the hypothesis of an Indian influence on Malagasy culture coinciding with periods of early human migration onto the island. We also found evidence of nuclear-mitochondrial discordance in single tapeworms, indicating unexpected cross-fertilization between the two lineages of T. solium. Analyses of genetic and geographic populations of T. solium in Madagascar will shed light on apparently rapid evolution of this organism driven by recent (<2,000 yr) human migrations, following tens of thousands of years of geographic isolation. PMID:25329310

  18. Genetics of the pig tapeworm in madagascar reveal a history of human dispersal and colonization.

    PubMed

    Yanagida, Tetsuya; Carod, Jean-François; Sako, Yasuhito; Nakao, Minoru; Hoberg, Eric P; Ito, Akira

    2014-01-01

    An intricate history of human dispersal and geographic colonization has strongly affected the distribution of human pathogens. The pig tapeworm Taenia solium occurs throughout the world as the causative agent of cysticercosis, one of the most serious neglected tropical diseases. Discrete genetic lineages of T. solium in Asia and Africa/Latin America are geographically disjunct; only in Madagascar are they sympatric. Linguistic, archaeological and genetic evidence has indicated that the people in Madagascar have mixed ancestry from Island Southeast Asia and East Africa. Hence, anthropogenic introduction of the tapeworm from Southeast Asia and Africa had been postulated. This study shows that the major mitochondrial haplotype of T. solium in Madagascar is closely related to those from the Indian Subcontinent. Parasitological evidence presented here, and human genetics previously reported, support the hypothesis of an Indian influence on Malagasy culture coinciding with periods of early human migration onto the island. We also found evidence of nuclear-mitochondrial discordance in single tapeworms, indicating unexpected cross-fertilization between the two lineages of T. solium. Analyses of genetic and geographic populations of T. solium in Madagascar will shed light on apparently rapid evolution of this organism driven by recent (<2,000 yr) human migrations, following tens of thousands of years of geographic isolation.

  19. Marine viruses, a genetic reservoir revealed by targeted viromics.

    PubMed

    Martínez Martínez, Joaquín; Swan, Brandon K; Wilson, William H

    2014-05-01

    Metagenomics has opened new windows on investigating viral diversity and functions. Viromic studies typically require large sample volumes and filtration through 0.2 μm pore-size filters, consequently excluding or under-sampling tailed and very large viruses. We have optimized a targeted viromic approach that employs fluorescence-activated sorting and whole genome amplification to produce dsDNA-enriched libraries from discrete viral populations from a 1-ml water sample. Using this approach on an environmental sample from the Patagonian Shelf, we produced three distinct libraries. One of the virus libraries was dominated (79.65% of sequences with known viral homology) by giant viruses from the Mimiviridae and Phycodnaviridae families, while the two other viromes were dominated by smaller phycodnaviruses, cyanophages and other bacteriophages. The estimated genotypic richness and diversity in our sorted viromes, with 52-163 estimated genotypes, was much lower than in previous virome reports. Fragment recruitment of metagenome reads to selected reference viral genomes yields high genome coverage, suggesting little amplification and sequencing bias against some genomic regions. These results underscore the value of our approach as an effective way to target and investigate specific virus groups. In particular, it will help reveal the diversity and abundance of giant viruses in marine ecosystems.

  20. Marine viruses, a genetic reservoir revealed by targeted viromics

    PubMed Central

    Martínez, Joaquín Martínez; Swan, Brandon K; Wilson, William H

    2014-01-01

    Metagenomics has opened new windows on investigating viral diversity and functions. Viromic studies typically require large sample volumes and filtration through 0.2 μm pore-size filters, consequently excluding or under-sampling tailed and very large viruses. We have optimized a targeted viromic approach that employs fluorescence-activated sorting and whole genome amplification to produce dsDNA-enriched libraries from discrete viral populations from a 1-ml water sample. Using this approach on an environmental sample from the Patagonian Shelf, we produced three distinct libraries. One of the virus libraries was dominated (79.65% of sequences with known viral homology) by giant viruses from the Mimiviridae and Phycodnaviridae families, while the two other viromes were dominated by smaller phycodnaviruses, cyanophages and other bacteriophages. The estimated genotypic richness and diversity in our sorted viromes, with 52–163 estimated genotypes, was much lower than in previous virome reports. Fragment recruitment of metagenome reads to selected reference viral genomes yields high genome coverage, suggesting little amplification and sequencing bias against some genomic regions. These results underscore the value of our approach as an effective way to target and investigate specific virus groups. In particular, it will help reveal the diversity and abundance of giant viruses in marine ecosystems. PMID:24304671

  1. Demographic and genetic estimates of effective population size (Ne) reveals genetic compensation in steelhead trout.

    PubMed

    Ardren, William R; Kapuscinski, Anne R

    2003-01-01

    Estimates of effective population size (Ne) are required to predict the impacts of genetic drift and inbreeding on the evolutionary dynamics of populations. How the ratio of Ne to the number of sexually mature adults (N) varies in natural vertebrate populations has not been addressed. We examined the sensitivity of Ne/N to fluctuations of N and determined the major variables responsible for changing the ratio over a period of 17 years in a population of steelhead trout (Oncorhynchus mykiss) from Washington State. Demographic and genetic methods were used to estimate Ne. Genetic estimates of Ne were gained via temporal and linkage disequilibrium methods using data from eight microsatellite loci. DNA for genetic analysis was amplified from archived smolt scales. The Ne/N from 1977 to 1994, estimated using the temporal method, was 0.73 and the comprehensive demographic estimate of Ne/N over the same time period was 0.53. Demographic estimates of Ne indicated that variance in reproductive success had the most substantial impact on reducing Ne in this population, followed by fluctuations in population size. We found increased Ne/N ratios at low N, which we identified as genetic compensation. Combining the information from the demographic and genetic methods of estimating Ne allowed us to determine that a reduction in variance in reproductive success must be responsible for this compensation effect. Understanding genetic compensation in natural populations will be valuable for predicting the effects of changes in N (i.e. periods of high population density and bottlenecks) on the fitness and genetic variation of natural populations.

  2. The solution structure of the MANEC-type domain from hepatocyte growth factor activator inhibitor-1 reveals an unexpected PAN/apple domain-type fold.

    PubMed

    Hong, Zebin; Nowakowski, Michal; Spronk, Chris; Petersen, Steen V; Andreasen, Peter A; Koźmiński, Wiktor; Mulder, Frans A A; Jensen, Jan K

    2015-03-01

    A decade ago, motif at N-terminus with eight-cysteines (MANEC) was defined as a new protein domain family. This domain is found exclusively at the N-terminus of >400 multi-domain type-1 transmembrane proteins from animals. Despite the large number of MANEC-containing proteins, only one has been characterized at the protein level: hepatocyte growth factor activator inhibitor-1 (HAI-1). HAI-1 is an essential protein, as knockout mice die in utero due to placental defects. HAI-1 is an inhibitor of matriptase, hepsin and hepatocyte growth factor (HGF) activator, all serine proteases with important roles in epithelial development, cell growth and homoeostasis. Dysregulation of these proteases has been causatively implicated in pathological conditions such as skin diseases and cancer. Detailed functional understanding of HAI-1 and other MANEC-containing proteins is hampered by the lack of structural information on MANEC. Although many MANEC sequences exist, sequence-based database searches fail to predict structural homology. In the present paper, we present the NMR solution structure of the MANEC domain from HAI-1, the first three-dimensional (3D) structure from the MANEC domain family. Unexpectedly, MANEC is a new subclass of the PAN/apple domain family, with its own unifying features, such as two additional disulfide bonds, two extended loop regions and additional α-helical elements. As shown for other PAN/apple domain-containing proteins, we propose a similar active role of the MANEC domain in intramolecular and intermolecular interactions. The structure provides a tool for the further elucidation of HAI-1 function as well as a reference for the study of other MANEC-containing proteins.

  3. A genomic and evolutionary approach reveals non-genetic drug resistance in malaria.

    PubMed

    Herman, Jonathan D; Rice, Daniel P; Ribacke, Ulf; Silterra, Jacob; Deik, Amy A; Moss, Eli L; Broadbent, Kate M; Neafsey, Daniel E; Desai, Michael M; Clish, Clary B; Mazitschek, Ralph; Wirth, Dyann F

    2014-01-01

    Drug resistance remains a major public health challenge for malaria treatment and eradication. Individual loci associated with drug resistance to many antimalarials have been identified, but their epistasis with other resistance mechanisms has not yet been elucidated. We previously described two mutations in the cytoplasmic prolyl-tRNA synthetase (cPRS) gene that confer resistance to halofuginone. We describe here the evolutionary trajectory of halofuginone resistance of two independent drug resistance selections in Plasmodium falciparum. Using this novel methodology, we discover an unexpected non-genetic drug resistance mechanism that P. falciparum utilizes before genetic modification of the cPRS. P. falciparum first upregulates its proline amino acid homeostasis in response to halofuginone pressure. We show that this non-genetic adaptation to halofuginone is not likely mediated by differential RNA expression and precedes mutation or amplification of the cPRS gene. By tracking the evolution of the two drug resistance selections with whole genome sequencing, we further demonstrate that the cPRS locus accounts for the majority of genetic adaptation to halofuginone in P. falciparum. We further validate that copy-number variations at the cPRS locus also contribute to halofuginone resistance. We provide a three-step model for multi-locus evolution of halofuginone drug resistance in P. falciparum. Informed by genomic approaches, our results provide the first comprehensive view of the evolutionary trajectory malaria parasites take to achieve drug resistance. Our understanding of the multiple genetic and non-genetic mechanisms of drug resistance informs how we will design and pair future anti-malarials for clinical use.

  4. The intergenerational correlation in weight: How genetic resemblance reveals the social role of families*

    PubMed Central

    Martin, Molly A.

    2009-01-01

    According to behavioral genetics research, the intergenerational correlation in weight derives solely from shared genetic predispositions, but complete genetic determinism contradicts the scientific consensus that social and behavioral change underlies the modern obesity epidemic. To address this conundrum, this article utilizes sibling data from the National Longitudinal Study of Adolescent Health and extends structural equation sibling models to incorporate siblings’ genetic relationships to explore the role of families’ social characteristics for adolescent weight. The article is the first to demonstrate that the association between parents’ obesity and adolescent weight is both social and genetic. Furthermore, by incorporating genetic information, the shared and social origins of the correlation between inactivity and weight are better revealed. PMID:19569401

  5. The genetic basis for ecological adaptation of the Atlantic herring revealed by genome sequencing

    PubMed Central

    Martinez Barrio, Alvaro; Lamichhaney, Sangeet; Fan, Guangyi; Rafati, Nima; Pettersson, Mats; Zhang, He; Dainat, Jacques; Ekman, Diana; Höppner, Marc; Jern, Patric; Martin, Marcel; Nystedt, Björn; Liu, Xin; Chen, Wenbin; Liang, Xinming; Shi, Chengcheng; Fu, Yuanyuan; Ma, Kailong; Zhan, Xiao; Feng, Chungang; Gustafson, Ulla; Rubin, Carl-Johan; Sällman Almén, Markus; Blass, Martina; Casini, Michele; Folkvord, Arild; Laikre, Linda; Ryman, Nils; Ming-Yuen Lee, Simon; Xu, Xun; Andersson, Leif

    2016-01-01

    Ecological adaptation is of major relevance to speciation and sustainable population management, but the underlying genetic factors are typically hard to study in natural populations due to genetic differentiation caused by natural selection being confounded with genetic drift in subdivided populations. Here, we use whole genome population sequencing of Atlantic and Baltic herring to reveal the underlying genetic architecture at an unprecedented detailed resolution for both adaptation to a new niche environment and timing of reproduction. We identify almost 500 independent loci associated with a recent niche expansion from marine (Atlantic Ocean) to brackish waters (Baltic Sea), and more than 100 independent loci showing genetic differentiation between spring- and autumn-spawning populations irrespective of geographic origin. Our results show that both coding and non-coding changes contribute to adaptation. Haplotype blocks, often spanning multiple genes and maintained by selection, are associated with genetic differentiation. DOI: http://dx.doi.org/10.7554/eLife.12081.001 PMID:27138043

  6. Genetic analysis of Apuleia leiocarpa as revealed by random amplified polymorphic DNA markers: prospects for population genetic studies.

    PubMed

    Lencina, K H; Konzen, E R; Tsai, S M; Bisognin, D A

    2016-12-19

    Apuleia leiocarpa (Vogel) J.F. MacBride is a hardwood species native to South America, which is at serious risk of extinction. Therefore, it is of prime importance to examine the genetic diversity of this species, information required for developing conservation, sustainable management, and breeding strategies. Although scarcely used in recent years, random amplified polymorphic DNA markers are useful resources for the analysis of genetic diversity and structure of tree species. This study represents the first genetic analysis based on DNA markers in A. leiocarpa that aimed to investigate the levels of polymorphism and to select markers for the precise characterization of its genetic structure. We adapted the original DNA extraction protocol based on cetyltrimethyl ammonium bromide, and describe a simple procedure that can be used to obtain high-quality samples from leaf tissues of this tree. Eighteen primers were selected, revealing 92 bands, from which 75 were polymorphic and 61 were sufficient to represent the overall genetic structure of the population without compromising the precision of the analysis. Some fragments were conserved among individuals, which can be sequenced and used to analyze nucleotide diversity parameters through a wider set of A. leiocarpa individuals and populations. The individuals were separated into 11 distinct groups with variable levels of genetic diversity, which is important for selecting desirable genotypes and for the development of a conservation and sustainable management program. Our results are of prime importance for further investigations concerning the genetic characterization of this important, but vulnerable species.

  7. The solution structure of the periplasmic domain of the TonB system ExbD protein reveals an unexpected structural homology with siderophore-binding proteins.

    PubMed

    Garcia-Herrero, Alicia; Peacock, R Sean; Howard, S Peter; Vogel, Hans J

    2007-11-01

    The transport of iron complexes through outer membrane transporters from Gram-negative bacteria is highly dependent on the TonB system. Together, the three components of the system, TonB, ExbB and ExbD, energize the transport of iron complexes through the outer membrane by utilizing the proton motive force across the cytoplasmic membrane. The three-dimensional (3D) structure of the periplasmic domain of TonB has previously been determined. However, no detailed structural information for the other two components of the TonB system is currently available and their role in the iron-uptake process is not yet clearly understood. ExbD from Escherichia coli contains 141 residues distributed in three domains: a small N-terminal cytoplasmic region, a single transmembrane helix and a C-terminal periplasmic domain. Here we describe the first well-defined solution structure of the periplasmic domain of ExbD (residues 44-141) solved by multidimensional nuclear magnetic resonance (NMR) spectroscopy. The monomeric structure presents three clearly distinct regions: an N-terminal flexible tail (residues 44-63), a well-defined folded region (residues 64-133) followed by a small C-terminal flexible region (residues 134-141). The folded region is formed by two alpha-helices that are located on one side of a single beta-sheet. The central beta-sheet is composed of five beta-strands, with a mixed parallel and antiparallel arrangement. Unexpectedly, this fold closely resembles that found in the C-terminal lobe of the siderophore-binding proteins FhuD and CeuE. The ExbD periplasmic domain has a strong tendency to aggregate in vitro and 3D-TROSY (transverse relaxation optimized spectroscopy) NMR experiments of the deuterated protein indicate that the multimeric protein has nearly identical secondary structure to that of the monomeric form. Chemical shift perturbation studies suggest that the Glu-Pro region (residues 70-83) of TonB can bind weakly to the surface and the flexible C

  8. Analysis of genetic diversity in red clover (Trifolium pratense L.) breeding populations as revealed by RAPD genetic markers.

    PubMed

    Ulloa, Odeth; Ortega, Fernando; Campos, Hugo

    2003-08-01

    Red clover is an important forage legume species for temperate regions and very little is known about the genetic organization of its breeding populations. We used random amplified polymorphic DNA (RAPD) genetic markers to address the genetic diversity and the distribution of variation in 20 breeding populations and cultivars from Chile, Argentina, Uruguay, and Switzerland. Genetic distances were calculated for all possible pairwise combinations. A high level of polymorphism was found and the proportion of polymorphic loci across populations was 74.2%. A population derived from a non-certified seedlot displayed a higher proportion of polymorphic loci than its respective certified seedlot. Gene diversity values and population genetics parameters suggest that the populations analyzed are diverse. An analysis of molecular variance (AMOVA) revealed that the largest proportion of variation (80.4%) resides at the within population level. RAPD markers are a useful tool for red clover breeding programs. A dendrogram based on genetic distances divided the breeding populations analyzed into three distinct groups. The amount and partition of diversity observed can be of value in identifying the populations that parents of synthetic cultivars are derived from and to exploit the variation available in the populations analyzed.

  9. Genetic signature of histiocytic sarcoma revealed by a sleeping beauty transposon genetic screen in mice.

    PubMed

    Been, Raha A; Linden, Michael A; Hager, Courtney J; DeCoursin, Krista J; Abrahante, Juan E; Landman, Sean R; Steinbach, Michael; Sarver, Aaron L; Largaespada, David A; Starr, Timothy K

    2014-01-01

    Histiocytic sarcoma is a rare, aggressive neoplasm that responds poorly to therapy. Histiocytic sarcoma is thought to arise from macrophage precursor cells via genetic changes that are largely undefined. To improve our understanding of the etiology of histiocytic sarcoma we conducted a forward genetic screen in mice using the Sleeping Beauty transposon as a mutagen to identify genetic drivers of histiocytic sarcoma. Sleeping Beauty mutagenesis was targeted to myeloid lineage cells using the Lysozyme2 promoter. Mice with activated Sleeping Beauty mutagenesis had significantly shortened lifespan and the majority of these mice developed tumors resembling human histiocytic sarcoma. Analysis of transposon insertions identified 27 common insertion sites containing 28 candidate cancer genes. Several of these genes are known drivers of hematological neoplasms, like Raf1, Fli1, and Mitf, while others are well-known cancer genes, including Nf1, Myc, Jak2, and Pten. Importantly, several new potential drivers of histiocytic sarcoma were identified and could serve as targets for therapy for histiocytic sarcoma patients.

  10. Genetic Signature of Histiocytic Sarcoma Revealed by a Sleeping Beauty Transposon Genetic Screen in Mice

    PubMed Central

    Been, Raha A.; Linden, Michael A.; Hager, Courtney J.; DeCoursin, Krista J.; Abrahante, Juan E.; Landman, Sean R.; Steinbach, Michael; Sarver, Aaron L.; Largaespada, David A.; Starr, Timothy K.

    2014-01-01

    Histiocytic sarcoma is a rare, aggressive neoplasm that responds poorly to therapy. Histiocytic sarcoma is thought to arise from macrophage precursor cells via genetic changes that are largely undefined. To improve our understanding of the etiology of histiocytic sarcoma we conducted a forward genetic screen in mice using the Sleeping Beauty transposon as a mutagen to identify genetic drivers of histiocytic sarcoma. Sleeping Beauty mutagenesis was targeted to myeloid lineage cells using the Lysozyme2 promoter. Mice with activated Sleeping Beauty mutagenesis had significantly shortened lifespan and the majority of these mice developed tumors resembling human histiocytic sarcoma. Analysis of transposon insertions identified 27 common insertion sites containing 28 candidate cancer genes. Several of these genes are known drivers of hematological neoplasms, like Raf1, Fli1, and Mitf, while others are well-known cancer genes, including Nf1, Myc, Jak2, and Pten. Importantly, several new potential drivers of histiocytic sarcoma were identified and could serve as targets for therapy for histiocytic sarcoma patients. PMID:24827933

  11. Essay Contest Reveals Misconceptions of High School Students in Genetics Content

    PubMed Central

    Mills Shaw, Kenna R.; Van Horne, Katie; Zhang, Hubert; Boughman, Joann

    2008-01-01

    National educational organizations have called upon scientists to become involved in K–12 education reform. From sporadic interaction with students to more sustained partnerships with teachers, the engagement of scientists takes many forms. In this case, scientists from the American Society of Human Genetics (ASHG), the Genetics Society of America (GSA), and the National Society of Genetic Counselors (NSGC) have partnered to organize an essay contest for high school students as part of the activities surrounding National DNA Day. We describe a systematic analysis of 500 of 2443 total essays submitted in response to this contest over 2 years. Our analysis reveals the nature of student misconceptions in genetics, the possible sources of these misconceptions, and potential ways to galvanize genetics education. PMID:18245328

  12. Essay contest reveals misconceptions of high school students in genetics content.

    PubMed

    Mills Shaw, Kenna R; Van Horne, Katie; Zhang, Hubert; Boughman, Joann

    2008-03-01

    National educational organizations have called upon scientists to become involved in K-12 education reform. From sporadic interaction with students to more sustained partnerships with teachers, the engagement of scientists takes many forms. In this case, scientists from the American Society of Human Genetics (ASHG), the Genetics Society of America (GSA), and the National Society of Genetic Counselors (NSGC) have partnered to organize an essay contest for high school students as part of the activities surrounding National DNA Day. We describe a systematic analysis of 500 of 2443 total essays submitted in response to this contest over 2 years. Our analysis reveals the nature of student misconceptions in genetics, the possible sources of these misconceptions, and potential ways to galvanize genetics education.

  13. From Amazonia to the Atlantic forest: molecular phylogeny of Phyzelaphryninae frogs reveals unexpected diversity and a striking biogeographic pattern emphasizing conservation challenges.

    PubMed

    Fouquet, Antoine; Loebmann, Daniel; Castroviejo-Fisher, Santiago; Padial, José M; Orrico, Victor G D; Lyra, Mariana L; Roberto, Igor Joventino; Kok, Philippe J R; Haddad, Célio F B; Rodrigues, Miguel T

    2012-11-01

    Documenting the Neotropical amphibian diversity has become a major challenge facing the threat of global climate change and the pace of environmental alteration. Recent molecular phylogenetic studies have revealed that the actual number of species in South American tropical forests is largely underestimated, but also that many lineages are millions of years old. The genera Phyzelaphryne (1 sp.) and Adelophryne (6 spp.), which compose the subfamily Phyzelaphryninae, include poorly documented, secretive, and minute frogs with an unusual distribution pattern that encompasses the biotic disjunction between Amazonia and the Atlantic forest. We generated >5.8 kb sequence data from six markers for all seven nominal species of the subfamily as well as for newly discovered populations in order to (1) test the monophyly of Phyzelaphryninae, Adelophryne and Phyzelaphryne, (2) estimate species diversity within the subfamily, and (3) investigate their historical biogeography and diversification. Phylogenetic reconstruction confirmed the monophyly of each group and revealed deep subdivisions within Adelophryne and Phyzelaphryne, with three major clades in Adelophryne located in northern Amazonia, northern Atlantic forest and southern Atlantic forest. Our results suggest that the actual number of species in Phyzelaphryninae is, at least, twice the currently recognized species diversity, with almost every geographically isolated population representing an anciently divergent candidate species. Such results highlight the challenges for conservation, especially in the northern Atlantic forest where it is still degraded at a fast pace. Molecular dating revealed that Phyzelaphryninae originated in Amazonia and dispersed during early Miocene to the Atlantic forest. The two Atlantic forest clades of Adelophryne started to diversify some 7 Ma minimum, while the northern Amazonian Adelophryne diversified much earlier, some 13 Ma minimum. This striking biogeographic pattern coincides with

  14. A Glimpse into the World of Integrative and Mobilizable Elements in Streptococci Reveals an Unexpected Diversity and Novel Families of Mobilization Proteins

    PubMed Central

    Coluzzi, Charles; Guédon, Gérard; Devignes, Marie-Dominique; Ambroset, Chloé; Loux, Valentin; Lacroix, Thomas; Payot, Sophie; Leblond-Bourget, Nathalie

    2017-01-01

    Recent analyses of bacterial genomes have shown that integrated elements that transfer by conjugation play an essential role in horizontal gene transfer. Among these elements, the integrative and mobilizable elements (IMEs) are known to encode their own excision and integration machinery, and to carry all the sequences or genes necessary to hijack the mating pore of a conjugative element for their own transfer. However, knowledge of their prevalence and diversity is still severely lacking. In this work, an extensive analysis of 124 genomes from 27 species of Streptococcus reveals 144 IMEs. These IMEs encode either tyrosine or serine integrases. The identification of IME boundaries shows that 141 are specifically integrated in 17 target sites. The IME-encoded relaxases belong to nine superfamilies, among which four are previously unknown in any mobilizable or conjugative element. A total of 118 IMEs are found to encode a non-canonical relaxase related to rolling circle replication initiators (belonging to the four novel families or to MobT). Surprisingly, among these, 83 encode a TcpA protein (i.e., a non-canonical coupling protein (CP) that is more closely related to FtsK than VirD4) that was not previously known to be encoded by mobilizable elements. Phylogenetic analyses reveal not only many integration/excision module replacements but also losses, acquisitions or replacements of TcpA genes between IMEs. This glimpse into the still poorly known world of IMEs reveals that mobilizable elements have a very high prevalence. Their diversity is even greater than expected, with most encoding a CP and/or a non-canonical relaxase. PMID:28373865

  15. A Glimpse into the World of Integrative and Mobilizable Elements in Streptococci Reveals an Unexpected Diversity and Novel Families of Mobilization Proteins.

    PubMed

    Coluzzi, Charles; Guédon, Gérard; Devignes, Marie-Dominique; Ambroset, Chloé; Loux, Valentin; Lacroix, Thomas; Payot, Sophie; Leblond-Bourget, Nathalie

    2017-01-01

    Recent analyses of bacterial genomes have shown that integrated elements that transfer by conjugation play an essential role in horizontal gene transfer. Among these elements, the integrative and mobilizable elements (IMEs) are known to encode their own excision and integration machinery, and to carry all the sequences or genes necessary to hijack the mating pore of a conjugative element for their own transfer. However, knowledge of their prevalence and diversity is still severely lacking. In this work, an extensive analysis of 124 genomes from 27 species of Streptococcus reveals 144 IMEs. These IMEs encode either tyrosine or serine integrases. The identification of IME boundaries shows that 141 are specifically integrated in 17 target sites. The IME-encoded relaxases belong to nine superfamilies, among which four are previously unknown in any mobilizable or conjugative element. A total of 118 IMEs are found to encode a non-canonical relaxase related to rolling circle replication initiators (belonging to the four novel families or to MobT). Surprisingly, among these, 83 encode a TcpA protein (i.e., a non-canonical coupling protein (CP) that is more closely related to FtsK than VirD4) that was not previously known to be encoded by mobilizable elements. Phylogenetic analyses reveal not only many integration/excision module replacements but also losses, acquisitions or replacements of TcpA genes between IMEs. This glimpse into the still poorly known world of IMEs reveals that mobilizable elements have a very high prevalence. Their diversity is even greater than expected, with most encoding a CP and/or a non-canonical relaxase.

  16. In vivo intracellular pH measurements in tobacco and Arabidopsis reveal an unexpected pH gradient in the endomembrane system.

    PubMed

    Martinière, Alexandre; Bassil, Elias; Jublanc, Elodie; Alcon, Carine; Reguera, Maria; Sentenac, Hervé; Blumwald, Eduardo; Paris, Nadine

    2013-10-01

    The pH homeostasis of endomembranes is essential for cellular functions. In order to provide direct pH measurements in the endomembrane system lumen, we targeted genetically encoded ratiometric pH sensors to the cytosol, the endoplasmic reticulum, and the trans-Golgi, or the compartments labeled by the vacuolar sorting receptor (VSR), which includes the trans-Golgi network and prevacuoles. Using noninvasive live-cell imaging to measure pH, we show that a gradual acidification from the endoplasmic reticulum to the lytic vacuole exists, in both tobacco (Nicotiana tabacum) epidermal (ΔpH -1.5) and Arabidopsis thaliana root cells (ΔpH -2.1). The average pH in VSR compartments was intermediate between that of the trans-Golgi and the vacuole. Combining pH measurements with in vivo colocalization experiments, we found that the trans-Golgi network had an acidic pH of 6.1, while the prevacuole and late prevacuole were both more alkaline, with pH of 6.6 and 7.1, respectively. We also showed that endosomal pH, and subsequently vacuolar trafficking of soluble proteins, requires both vacuolar-type H(+) ATPase-dependent acidification as well as proton efflux mediated at least by the activity of endosomal sodium/proton NHX-type antiporters.

  17. Mitochondrial genome of the homoscleromorph Oscarella carmela (Porifera, Demospongiae) reveals unexpected complexity in the common ancestor of sponges and other animals.

    PubMed

    Wang, Xiujuan; Lavrov, Dennis V

    2007-02-01

    Homoscleromorpha is a small group in the phylum Porifera (Sponges) characterized by several morphological features (basement membrane, acrosomes in spermatozoa, and cross-striated rootlets of the flagellar basal apparatus) shared with eumetazoan animals but not found in most other sponges. To clarify the phylogenetic position of this group, we determined and analyzed the complete mitochondrial DNA (mtDNA) sequence of the homoscleromorph sponge Oscarella carmela (Porifera, Demospongiae). O. carmela mtDNA is 20,327 bp and contains the largest complement of genes reported for animal mtDNA, including a putative gene for the C subunit of the twin-arginine translocase (tatC) that has never been found in animal mtDNA. The genes in O. carmela mtDNA are arranged in 2 clusters with opposite transcriptional orientations, a gene arrangement reminiscent of those in several cnidarian mtDNAs but unlike those reported in sponges. At the same time, phylogenetic analyses based on concatenated amino acid sequences from 12 mitochondrial (mt) protein genes strongly support the phylogenetic affinity between the Homoscleromorpha and other demosponges. Altogether, our data suggest that homoscleromorphs are demosponges that have retained ancestral features in both mt genome and morphological organization lost in other taxa and that the most recent common ancestor of sponges and other animals was morphologically and genetically more complex than previously thought.

  18. In Vivo Intracellular pH Measurements in Tobacco and Arabidopsis Reveal an Unexpected pH Gradient in the Endomembrane System[W

    PubMed Central

    Martinière, Alexandre; Bassil, Elias; Jublanc, Elodie; Alcon, Carine; Reguera, Maria; Sentenac, Hervé; Blumwald, Eduardo; Paris, Nadine

    2013-01-01

    The pH homeostasis of endomembranes is essential for cellular functions. In order to provide direct pH measurements in the endomembrane system lumen, we targeted genetically encoded ratiometric pH sensors to the cytosol, the endoplasmic reticulum, and the trans-Golgi, or the compartments labeled by the vacuolar sorting receptor (VSR), which includes the trans-Golgi network and prevacuoles. Using noninvasive live-cell imaging to measure pH, we show that a gradual acidification from the endoplasmic reticulum to the lytic vacuole exists, in both tobacco (Nicotiana tabacum) epidermal (ΔpH −1.5) and Arabidopsis thaliana root cells (ΔpH −2.1). The average pH in VSR compartments was intermediate between that of the trans-Golgi and the vacuole. Combining pH measurements with in vivo colocalization experiments, we found that the trans-Golgi network had an acidic pH of 6.1, while the prevacuole and late prevacuole were both more alkaline, with pH of 6.6 and 7.1, respectively. We also showed that endosomal pH, and subsequently vacuolar trafficking of soluble proteins, requires both vacuolar-type H+ ATPase–dependent acidification as well as proton efflux mediated at least by the activity of endosomal sodium/proton NHX-type antiporters. PMID:24104564

  19. Genetic diversity and population structure of endangered Aquilaria malaccensis revealed potential for future conservation.

    PubMed

    Singh, Pradeep; Nag, Akshay; Parmar, Rajni; Ghosh, Sneha; Bhau, Brijmohan Singh; Sharma, Ram Kumar

    2015-12-01

    The endangered Aquilaria malaccensis,is an important plant with high economic values. Characterization of genetic diversity and population structure is receiving tremendous attention for effective conservation of genetic resources. Considering important repositories of biological diversity, the genetic relationships of 127 A. malaccensis accessions from 10 home gardens of three states of northeast India were assessed using amplified fragment length polymorphism (AFLP). Of the 1153 fragments amplified with four AFLP primer combinations, 916 (79.4%) were found to be polymorphic. Polymorphic information content (PIC) and marker index (MI) of each primer combination correlate significantly with the number of genotypes resolved. Overall, a high genetic diversity (avg. 71.85%) was recorded. Further, high gene flow (Nm: 3.37), low genetic differentiation (FST: 0.069) and high within population genetic variation (93%) suggests that most of the genetic diversity is restricted within population. Neighbour joining (NJ), principal coordinate analysis (PCoA) and Bayesian-based STRUCTURE grouped all the accessions in two clusters with significant intermixing between populations, therefore, revealed that two genetically distinct gene pools are operating in the A. malaccensis populations cultivated in home gardens. Based on the various diversity inferences, five diverse populations (JOH, FN, HLF, DHM and ITN) were identified, which can be potentially exploited to develop conservation strategies for A. malaccensis.

  20. Unexpected consequences of administering bacteriocinogenic probiotic strains for Salmonella populations, revealed by an in vitro colonic model of the child gut.

    PubMed

    Zihler, Annina; Gagnon, Mélanie; Chassard, Christophe; Hegland, Anita; Stevens, Marc J A; Braegger, Christian P; Lacroix, Christophe

    2010-11-01

    New biological strategies for the treatment of Salmonella infection are needed in response to the increase in antibiotic-resistant strains. Escherichia coli L1000 and Bifidobacterium thermophilum RBL67 were previously shown to produce antimicrobial proteinaceous compounds (microcin B17 and thermophilicin B67, respectively) active in vitro against a panel of Salmonella strains recently isolated from clinical cases in Switzerland. In this study, two three-stage intestinal continuous fermentation models of Salmonella colonization inoculated with immobilized faeces of a two-year-old child were implemented to study the effects of the two bacteriocinogenic strains compared with a bacteriocin-negative mutant of strain L1000 on Salmonella growth, as well as gut microbiota composition and metabolic activity. Immobilized E. coli L1000 added to the proximal colon reactor showed a low colonization, and developed preferentially in the distal colon reactor independent of the presence of genetic determinants for microcin B17 production. Surprisingly, E. coli L1000 addition strongly stimulated Salmonella growth in all three reactors. In contrast, B. thermophilum RBL67 added in a second phase stabilized at high levels in all reactors, but could not inhibit Salmonella already present at a high level (>10(7) c.f.u. ml(-1)) when the probiotic was added. Inulin added at the end of fermentation induced a strong bifidogenic effect in all three colon reactors and a significant increase of Salmonella counts in the distal colon reactor. Our data show that under the simulated child colonic conditions, the microcin B17 production phenotype does not correlate with inhibition of Salmonella but leads to a better colonization of E. coli L1000 in the distal colon reactor. We conclude that in vitro models with complex and complete gut microbiota are required to accurately assess the potential and efficacy of probiotics with respect to Salmonella colonization in the gut.

  1. Proteoform Profile Mapping of the Human Serum Complement Component C9 Revealing Unexpected New Features of N-, O-, and C-Glycosylation

    PubMed Central

    2017-01-01

    The human complement C9 protein (∼65 kDa) is a member of the complement pathway. It plays an essential role in the membrane attack complex (MAC), which forms a lethal pore on the cellular surface of pathogenic bacteria. Here, we charted in detail the structural microheterogeneity of C9 purified from human blood serum, using an integrative workflow combining high-resolution native mass spectrometry and (glyco)peptide-centric proteomics. The proteoform profile of C9 was acquired by high-resolution native mass spectrometry, which revealed the co-occurrence of ∼50 distinct mass spectrometry (MS) signals. Subsequent peptide-centric analysis, through proteolytic digestion of C9 and liquid chromatography (LC)-tandem mass spectrometry (MS/MS) measurements of the resulting peptide mixtures, provided site-specific quantitative profiles of three different types of C9 glycosylation and validation of the native MS data. Our study provides a detailed specification, validation, and quantification of 15 co-occurring C9 proteoforms and the first direct experimental evidence of O-linked glycans in the N-terminal region. Additionally, next to the two known glycosylation sites, a third novel, albeit low abundant, N-glycosylation site on C9 is identified, which surprisingly does not possess the canonical N-glycosylation sequence N-X-S/T. Our data also reveal a binding of up to two Ca2+ ions to C9. Mapping all detected and validated sites of modifications on a structural model of C9, as present in the MAC, hints at their putative roles in pore formation or receptor interactions. The applied methods herein represent a powerful tool for the unbiased in-depth analysis of plasma proteins and may advance biomarker discovery, as aberrant glycosylation profiles may be indicative of the pathophysiological state of the patients. PMID:28221766

  2. Genetic characterization of Toxoplasma gondii isolates from Portugal, Austria and Israel reveals higher genetic variability within the type II lineage.

    PubMed

    Verma, S K; Ajzenberg, D; Rivera-Sanchez, A; Su, C; Dubey, J P

    2015-06-01

    This study compared genetic diversity of Toxoplasma gondii isolates from Portugal, Austria and Israel. For this, we genotyped 90 T. gondii isolates (16 from Portugal, 67 from Austria and 7 from Israel) using 10 nested PCR-restriction length polymorphism (RFLP) genetic markers and 15 microsatellite (MS) markers. By PCR-RFLP typing, 7 isolates from Portugal chickens were identified as type II (ToxoDB #1 or #3), 4 were type III (ToxoDB #2) and the remaining 4 isolates have unique genotype pattern were designated as ToxoDB #254. One mouse virulent isolate from a bovine fetus (Bos taurus) in Portugal was type I (ToxoDB #10) at all loci and designated as TgCowPr1. All 67 isolates from Austria and 7 from Israel were type II (ToxoDB #1 or #3). By MS typing, many additional genetic variations were revealed among the type II and type III isolates. Phylogenetic analysis showed that isolates from the same geographical locations tend to cluster together, and there is little overlapping of genotypes among different locations. This study demonstrated that the MS markers can provide higher discriminatory power to reveal association of genotypes with geographical locations. Future studies of the type II strains in Europe by these MS markers will be useful to reveal transmission patterns of the parasite.

  3. High Genetic Diversity vs. Low Genetic Differentiation in Nouelia insignis (Asteraceae), a Narrowly Distributed and Endemic Species in China, Revealed by ISSR Fingerprinting

    PubMed Central

    LUAN, SHANSHAN; CHIANG, TZEN-YUH; GONG, XUN

    2006-01-01

    • Background and Aims Nouelia insignis Franch., a monotypic genus of the Asteraceae, is an endangered species endemic in Yunnan and Sichuan Provinces of China. Most of the populations are seriously threatened. Some of them are even at the brink of extinction. In this study, the genetic diversity and differentiation between populations of this species were examined in two drainage areas. • Methods DNA fingerprinting based on inter-simple sequence repeat polymorphisms was employed to detect the genetic variation and population structure in the species. • Key Results Genetic diversity at species level was high with P = 65·05 % (percentage of polymorphic loci) and Ht = 0·2248 (total genetic diversity). The coefficient of genetic differentiation among populations, Gst, which was estimated by partitioning the total gene diversity, was 0·2529; whereas, the genetic differentiation between populations in the Jinsha and Nanpan drainage areas was unexpectedly low (Gst = 0·0702). • Conclusions Based on the genetic analyses of the DNA fingerprinting, recent habitat fragmentation may not have led to genetic differentiation or the loss of genetic diversity in the rare species. Spatial apportionment of fingerprinting polymorphisms provides a footprint of historical migration across geographical barriers. The high diversity detected in this study holds promise for conservation and restoration efforts to save the endangered species from extinction. PMID:16807255

  4. Thermodynamic and Kinetic Characterization of the Protein Z-dependent Protease Inhibitor (ZPI)-Protein Z Interaction Reveals an Unexpected Role for ZPI Lys-239*

    PubMed Central

    Huang, Xin; Zhou, Jian; Zhou, Aiwu; Olson, Steven T.

    2015-01-01

    The anticoagulant serpin, protein Z-dependent protease inhibitor (ZPI), circulates in blood as a tight complex with its cofactor, protein Z (PZ), enabling it to function as a rapid inhibitor of membrane-associated factor Xa. Here, we show that N,N′-dimethyl-N-(acetyl)-N′-(7-nitrobenz-3-oxa-1,3-diazol-4-yl)ethylenediamine (NBD)-fluorophore-labeled K239C ZPI is a sensitive, moderately perturbing reporter of the ZPI-PZ interaction and utilize the labeled ZPI to characterize in-depth the thermodynamics and kinetics of wild-type and variant ZPI-PZ interactions. NBD-labeled K239C ZPI bound PZ with ∼3 nm KD and ∼400% fluorescence enhancement at physiologic pH and ionic strength. The NBD-ZPI-PZ interaction was markedly sensitive to ionic strength and pH but minimally affected by temperature, consistent with the importance of charged interactions. NBD-ZPI-PZ affinity was reduced ∼5-fold by physiologic calcium levels to resemble NBD-ZPI affinity for γ-carboxyglutamic acid/EGF1-domainless PZ. Competitive binding studies with ZPI variants revealed that in addition to previously identified Asp-293 and Tyr-240 hot spot residues, Met-71, Asp-74, and Asp-238 made significant contributions to PZ binding, whereas Lys-239 antagonized binding. Rapid kinetic studies indicated a multistep binding mechanism with diffusion-limited association and slow complex dissociation. ZPI complexation with factor Xa or cleavage decreased ZPI-PZ affinity 2–7-fold by increasing the rate of PZ dissociation. A catalytic role for PZ was supported by the correlation between a decreased rate of PZ dissociation from the K239A ZPI-PZ complex and an impaired ability of PZ to catalyze the K239A ZPI-factor Xa reaction. Together, these results reveal the energetic basis of the ZPI-PZ interaction and suggest an important role for ZPI Lys-239 in PZ catalytic action. PMID:25713144

  5. Thermodynamic and kinetic characterization of the protein Z-dependent protease inhibitor (ZPI)-protein Z interaction reveals an unexpected role for ZPI Lys-239.

    PubMed

    Huang, Xin; Zhou, Jian; Zhou, Aiwu; Olson, Steven T

    2015-04-10

    The anticoagulant serpin, protein Z-dependent protease inhibitor (ZPI), circulates in blood as a tight complex with its cofactor, protein Z (PZ), enabling it to function as a rapid inhibitor of membrane-associated factor Xa. Here, we show that N,N'-dimethyl-N-(acetyl)-N'-(7-nitrobenz-3-oxa-1,3-diazol-4-yl)ethylenediamine (NBD)-fluorophore-labeled K239C ZPI is a sensitive, moderately perturbing reporter of the ZPI-PZ interaction and utilize the labeled ZPI to characterize in-depth the thermodynamics and kinetics of wild-type and variant ZPI-PZ interactions. NBD-labeled K239C ZPI bound PZ with ∼3 nM KD and ∼400% fluorescence enhancement at physiologic pH and ionic strength. The NBD-ZPI-PZ interaction was markedly sensitive to ionic strength and pH but minimally affected by temperature, consistent with the importance of charged interactions. NBD-ZPI-PZ affinity was reduced ∼5-fold by physiologic calcium levels to resemble NBD-ZPI affinity for γ-carboxyglutamic acid/EGF1-domainless PZ. Competitive binding studies with ZPI variants revealed that in addition to previously identified Asp-293 and Tyr-240 hot spot residues, Met-71, Asp-74, and Asp-238 made significant contributions to PZ binding, whereas Lys-239 antagonized binding. Rapid kinetic studies indicated a multistep binding mechanism with diffusion-limited association and slow complex dissociation. ZPI complexation with factor Xa or cleavage decreased ZPI-PZ affinity 2-7-fold by increasing the rate of PZ dissociation. A catalytic role for PZ was supported by the correlation between a decreased rate of PZ dissociation from the K239A ZPI-PZ complex and an impaired ability of PZ to catalyze the K239A ZPI-factor Xa reaction. Together, these results reveal the energetic basis of the ZPI-PZ interaction and suggest an important role for ZPI Lys-239 in PZ catalytic action. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Severe Left Ventricular Hypertrophy, Small Pericardial Effusion, and Diffuse Late Gadolinium Enhancement by Cardiac Magnetic Resonance Suspecting Cardiac Amyloidosis: Endomyocardial Biopsy Reveals an Unexpected Diagnosis

    PubMed Central

    Hofmann, Nina P.; Giusca, Sorin; Klingel, Karin; Nunninger, Peter; Korosoglou, Grigorios

    2016-01-01

    Left ventricular (LV) hypertrophy can be related to a multitude of cardiac disorders, such as hypertrophic cardiomyopathy (HCM), cardiac amyloidosis, and hypertensive heart disease. Although the presence of LV hypertrophy is generally associated with poorer cardiac outcomes, the early differentiation between these pathologies is crucial due to the presence of specific treatment options. The diagnostic process with LV hypertrophy requires the integration of clinical evaluation, electrocardiography (ECG), echocardiography, biochemical markers, and if required CMR and endomyocardial biopsy in order to reach the correct diagnosis. Here, we present a case of a patient with severe LV hypertrophy (septal wall thickness of 23 mm, LV mass of 264 g, and LV mass index of 147 g/m2), severely impaired longitudinal function, and preserved radial contractility (ejection fraction = 55%), accompanied by small pericardial effusion and diffuse late gadolinium enhancement (LGE) by cardiac magnetic resonance (CMR). Due to the imaging findings, an infiltrative cardiomyopathy, such as cardiac amyloidosis, was suspected. However, amyloid accumulation was excluded by endomyocardial biopsy, which revealed the presence of diffuse myocardial fibrosis in an advanced hypertensive heart disease. PMID:27247807

  7. Gene targeting study reveals unexpected expression of brain-expressed X-linked 2 in endocrine and tissue stem/progenitor cells in mice.

    PubMed

    Ito, Keiichi; Yamazaki, Satoshi; Yamamoto, Ryo; Tajima, Yoko; Yanagida, Ayaka; Kobayashi, Toshihiro; Kato-Itoh, Megumi; Kakuta, Shigeru; Iwakura, Yoichiro; Nakauchi, Hiromitsu; Kamiya, Akihide

    2014-10-24

    Identification of genes specifically expressed in stem/progenitor cells is an important issue in developmental and stem cell biology. Genome-wide gene expression analyses in liver cells performed in this study have revealed a strong expression of X-linked genes that include members of the brain-expressed X-linked (Bex) gene family in stem/progenitor cells. Bex family genes are expressed abundantly in the neural cells and have been suggested to play important roles in the development of nervous tissues. However, the physiological role of its individual members and the precise expression pattern outside the nervous system remain largely unknown. Here, we focused on Bex2 and examined its role and expression pattern by generating knock-in mice; the enhanced green fluorescence protein (EGFP) was inserted into the Bex2 locus. Bex2-deficient mice were viable and fertile under laboratory growth conditions showing no obvious phenotypic abnormalities. Through an immunohistochemical analysis and flow cytometry-based approach, we observed unique EGFP reporter expression patterns in endocrine and stem/progenitor cells of the liver, pyloric stomach, and hematopoietic system. Although Bex2 seems to play redundant roles in vivo, these results suggest the significance and potential applications of Bex2 in studies of endocrine and stem/progenitor cells. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Metagenomic investigation of the geologically unique Hellenic Volcanic Arc reveals a distinctive ecosystem with unexpected physiology: Metagenomic investigation of the Hellenic Volcanic Arc

    DOE PAGES

    Oulas, Anastasis; Polymenakou, Paraskevi N.; Seshadri, Rekha; ...

    2015-12-21

    Hydrothermal vents represent a deep, hot, aphotic biosphere where chemosynthetic primary producers, fuelled by chemicals from Earth's subsurface, form the basis of life. In this study, we examined microbial mats from two distinct volcanic sites within the Hellenic Volcanic Arc (HVA). The HVA is geologically and ecologically unique, with reported emissions of CO2-saturated fluids at temperatures up to 220°C and a notable absence of macrofauna. Metagenomic data reveals highly complex prokaryotic communities composed of chemolithoautotrophs, some methanotrophs, and to our surprise, heterotrophs capable of anaerobic degradation of aromatic hydrocarbons. Our data suggest that aromatic hydrocarbons may indeed be a significantmore » source of carbon in these sites, and instigate additional research into the nature and origin of these compounds in the HVA. Novel physiology was assigned to several uncultured prokaryotic lineages; most notably, a SAR406 representative is attributed with a role in anaerobic hydrocarbon degradation. This dataset, the largest to date from submarine volcanic ecosystems, constitutes a significant resource of novel genes and pathways with potential biotechnological applications.« less

  9. Metagenomic investigation of the geologically unique Hellenic Volcanic Arc reveals a distinctive ecosystem with unexpected physiology: Metagenomic investigation of the Hellenic Volcanic Arc

    SciTech Connect

    Oulas, Anastasis; Polymenakou, Paraskevi N.; Seshadri, Rekha; Tripp, H. James; Mandalakis, Manolis; Paez-Espino, A. David; Pati, Amrita; Chain, Patrick; Nomikou, Paraskevi; Carey, Steven; Kilias, Stephanos; Christakis, Christos; Kotoulas, Georgios; Magoulas, Antonios; Ivanova, Natalia N.; Kyrpides, Nikos C.

    2015-12-21

    Hydrothermal vents represent a deep, hot, aphotic biosphere where chemosynthetic primary producers, fuelled by chemicals from Earth's subsurface, form the basis of life. In this study, we examined microbial mats from two distinct volcanic sites within the Hellenic Volcanic Arc (HVA). The HVA is geologically and ecologically unique, with reported emissions of CO2-saturated fluids at temperatures up to 220°C and a notable absence of macrofauna. Metagenomic data reveals highly complex prokaryotic communities composed of chemolithoautotrophs, some methanotrophs, and to our surprise, heterotrophs capable of anaerobic degradation of aromatic hydrocarbons. Our data suggest that aromatic hydrocarbons may indeed be a significant source of carbon in these sites, and instigate additional research into the nature and origin of these compounds in the HVA. Novel physiology was assigned to several uncultured prokaryotic lineages; most notably, a SAR406 representative is attributed with a role in anaerobic hydrocarbon degradation. This dataset, the largest to date from submarine volcanic ecosystems, constitutes a significant resource of novel genes and pathways with potential biotechnological applications.

  10. Unexpected patterns of Epstein-Barr virus transcription revealed by a high throughput PCR array for absolute quantification of viral mRNA.

    PubMed

    Tierney, Rosemary J; Shannon-Lowe, Claire D; Fitzsimmons, Leah; Bell, Andrew I; Rowe, Martin

    2015-01-01

    We have validated a flexible, high-throughput and relatively inexpensive RT-QPCR array platform for absolute quantification of Epstein-Barr virus transcripts in different latent and lytic infection states. Several novel observations are reported. First, during infection of normal B cells, Wp-initiated latent gene transcripts remain far more abundant following activation of the Cp promoter than was hitherto suspected. Second, EBNA1 transcript levels are remarkably low in all forms of latency, typically ranging from 1 to 10 transcripts per cell. EBNA3A, -3B and -3C transcripts are likewise very low in Latency III, typically at levels similar to or less than EBNA1 transcripts. Thirdly, a subset of lytic gene transcripts is detectable in Burkitt lymphoma lines at low levels, including: BILF1, which has oncogenic properties, and the poorly characterized LF1, LF2 and LF3 genes. Analysis of seven African BL biopsies confirmed this transcription profile but additionally revealed significant expression of LMP2 transcripts.

  11. Unexpected primary reactions for thermolysis of 1,1-diamino-2,2-dinitroethylene (FOX-7) revealed by ab initio calculations.

    PubMed

    Kiselev, Vitaly G; Gritsan, Nina P

    2014-09-11

    The primary thermolysis reactions of a promising insensitive explosive 1,1-diamino-2,2-dinitroethylene (DADNE, FOX-7) have been studied in the gas phase at a high level of theory (CCSD(T)-F12/aVTZ). Our calculations revealed that none of the conventional reactions (C-NO2 bond fission, nitro-nitrite and nitro-aci-nitro rearrangements) dominate thermolysis of FOX-7. On the contrary, two new decomposition pathways specific for this particular species that commenced with enamino-imino isomerization and intramolecular cyclization were found instead to be more feasible energetically. The activation barriers of these primary isomerization reactions were calculated to be 48.4 and 28.8 kcal/mol, while the activation energies of the overall decomposition pathways are predicted to be ∼49 and ∼56 kcal/mol, respectively. The new pathways can also be relevant for a wide series of unsaturated hydrocarbons substituted with both nitro- and amino-groups (e.g., triaminotrinitrobenzene, TATB).

  12. Gustatory neural pathways revealed by genetic tracing from taste receptor cells.

    PubMed

    Matsumoto, Ichiro

    2013-01-01

    Taste receptor cells encounter chemicals in foods and transmit this information to the gustatory neurons, which convey it further to the gustatory relay nuclei in the lower brainstem. Characterizing neurons involved in the transmission of gustatory information in the peripheral and central nervous systems helps us better understand how we perceive and discriminate tastes. However, it is difficult to anatomically identify them. Using cell-type-specific promoters/enhancers and a transneuronal tracer, we generated transgenic mice to visualize neurons in the gustatory neural pathways. We observed the tracer in the neurons of cranial sensory ganglia and the nucleus of the solitary tract in the medulla where gustatory neurons project. The tracer was also distributed in the reticular formation and several motor nuclei in the medulla that have not been recognized as gustatory ascending pathways. These transgenic mice revealed gustatory relay neurons in the known gustatory ascending pathway and an unexpected, thus presumably novel, neural circuit of gustatory system.

  13. Gustatory Neural Pathways Revealed by Genetic Tracing from Taste Receptor Cells

    PubMed Central

    Matsumoto, Ichiro

    2013-01-01

    Taste receptor cells encounter chemicals in foods and transmit this information to the gustatory neurons, which convey it further to the gustatory relay nuclei in the lower brainstem. Characterizing neurons involved in the transmission of gustatory information in the peripheral and central nervous systems helps us better understand how we perceive and discriminate tastes. However, it is difficult to anatomically identify them. Using cell-type-specific promoters/enhancers and a transneuronal tracer, we generated transgenic mice to visualize neurons in the gustatory neural pathways. We observed the tracer in the neurons of cranial sensory ganglia and the nucleus of the solitary tract in the medulla where gustatory neurons project. The tracer was also distributed in the reticular formation and several motor nuclei in the medulla that have not been recognized as gustatory ascending pathways. These transgenic mice revealed gustatory relay neurons in the known gustatory ascending pathway and an unexpected, thus presumably novel, neural circuit of gustatory system. PMID:23832339

  14. Complex within a Complex: Integrative Taxonomy Reveals Hidden Diversity in Cicadetta brevipennis (Hemiptera: Cicadidae) and Unexpected Relationships with a Song Divergent Relative

    PubMed Central

    Hertach, Thomas; Puissant, Stéphane; Gogala, Matija; Trilar, Tomi; Hagmann, Reto; Baur, Hannes; Kunz, Gernot; Wade, Elizabeth J.; Loader, Simon P.; Simon, Chris; Nagel, Peter

    2016-01-01

    Multiple sources of data in combination are essential for species delimitation and classification of difficult taxonomic groups. Here we investigate a cicada taxon with unusual cryptic diversity and we attempt to resolve seemingly contradictory data sets. Cicada songs act as species-specific premating barriers and have been used extensively to reveal hidden taxonomic diversity in morphologically similar species. The Palaearctic Cicadetta montana species complex is an excellent example where distinct song patterns have disclosed multiple recently described species. Indeed, two taxa turned out to be especially diverse in that they form a “complex within the complex”: the Cicadetta cerdaniensis song group (four species studied previously) and Cicadetta brevipennis (examined in details here). Based on acoustic, morphological, molecular, ecological and spatial data sampled throughout their broad European distribution, we find that Cicadetta brevipennis s. l. comprises five lineages. The most distinct lineage is identified as Cicadetta petryi Schumacher, 1924, which we re-assign to the species level. Cicadetta brevipennis litoralis Puissant & Hertach ssp. n. and Cicadetta brevipennis hippolaidica Hertach ssp. n. are new to science. The latter hybridizes with Cicadetta brevipennis brevipennis Fieber, 1876 at a zone inferred from intermediate song patterns. The fifth lineage requires additional investigation. The C. cerdaniensis and the C. brevipennis song groups exhibit characteristic, clearly distinct basic song patterns that act as reproductive barriers. However, they remain completely intermixed in the Bayesian and maximum likelihood COI and COII mitochondrial DNA phylogenies. The closest relative of each of the four cerdaniensis group species is a brevipennis group taxon. In our favoured scenario the phylogenetic pairs originated in common Pleistocene glacial refuges where the taxa speciated and experienced sporadic inter-group hybridization leading to extensive

  15. The 2.15 A crystal structure of Mycobacterium tuberculosis chorismate mutase reveals an unexpected gene duplication and suggests a role in host-pathogen interactions.

    PubMed

    Qamra, Rohini; Prakash, Prachee; Aruna, Bandi; Hasnain, Seyed E; Mande, Shekhar C

    2006-06-13

    Chorismate mutase catalyzes the first committed step toward the biosynthesis of the aromatic amino acids, phenylalanine and tyrosine. While this biosynthetic pathway exists exclusively in the cell cytoplasm, the Mycobacterium tuberculosis enzyme has been shown to be secreted into the extracellular medium. The secretory nature of the enzyme and its existence in M. tuberculosis as a duplicated gene are suggestive of its role in host-pathogen interactions. We report here the crystal structure of homodimeric chorismate mutase (Rv1885c) from M. tuberculosis determined at 2.15 A resolution. The structure suggests possible gene duplication within each subunit of the dimer (residues 35-119 and 130-199) and reveals an interesting proline-rich region on the protein surface (residues 119-130), which might act as a recognition site for protein-protein interactions. The structure also offers an explanation for its regulation by small ligands, such as tryptophan, a feature previously unknown in the prototypical Escherichia coli chorismate mutase. The tryptophan ligand is found to be sandwiched between the two monomers in a dimer contacting residues 66-68. The active site in the "gene-duplicated" monomer is occupied by a sulfate ion and is located in the first half of the polypeptide, unlike in the Saccharomyces cerevisiae (yeast) enzyme, where it is located in the later half. We hypothesize that the M. tuberculosis chorismate mutase might have a role to play in host-pathogen interactions, making it an important target for designing inhibitor molecules against the deadly pathogen.

  16. Complex within a Complex: Integrative Taxonomy Reveals Hidden Diversity in Cicadetta brevipennis (Hemiptera: Cicadidae) and Unexpected Relationships with a Song Divergent Relative.

    PubMed

    Hertach, Thomas; Puissant, Stéphane; Gogala, Matija; Trilar, Tomi; Hagmann, Reto; Baur, Hannes; Kunz, Gernot; Wade, Elizabeth J; Loader, Simon P; Simon, Chris; Nagel, Peter

    2016-01-01

    Multiple sources of data in combination are essential for species delimitation and classification of difficult taxonomic groups. Here we investigate a cicada taxon with unusual cryptic diversity and we attempt to resolve seemingly contradictory data sets. Cicada songs act as species-specific premating barriers and have been used extensively to reveal hidden taxonomic diversity in morphologically similar species. The Palaearctic Cicadetta montana species complex is an excellent example where distinct song patterns have disclosed multiple recently described species. Indeed, two taxa turned out to be especially diverse in that they form a "complex within the complex": the Cicadetta cerdaniensis song group (four species studied previously) and Cicadetta brevipennis (examined in details here). Based on acoustic, morphological, molecular, ecological and spatial data sampled throughout their broad European distribution, we find that Cicadetta brevipennis s. l. comprises five lineages. The most distinct lineage is identified as Cicadetta petryi Schumacher, 1924, which we re-assign to the species level. Cicadetta brevipennis litoralis Puissant & Hertach ssp. n. and Cicadetta brevipennis hippolaidica Hertach ssp. n. are new to science. The latter hybridizes with Cicadetta brevipennis brevipennis Fieber, 1876 at a zone inferred from intermediate song patterns. The fifth lineage requires additional investigation. The C. cerdaniensis and the C. brevipennis song groups exhibit characteristic, clearly distinct basic song patterns that act as reproductive barriers. However, they remain completely intermixed in the Bayesian and maximum likelihood COI and COII mitochondrial DNA phylogenies. The closest relative of each of the four cerdaniensis group species is a brevipennis group taxon. In our favoured scenario the phylogenetic pairs originated in common Pleistocene glacial refuges where the taxa speciated and experienced sporadic inter-group hybridization leading to extensive

  17. Mitochondrial DNA analyses reveal low genetic diversity in Culex quinquefasciatus from residential areas in Malaysia.

    PubMed

    Low, V L; Lim, P E; Chen, C D; Lim, Y A L; Tan, T K; Norma-Rashid, Y; Lee, H L; Sofian-Azirun, M

    2014-06-01

    The present study explored the intraspecific genetic diversity, dispersal patterns and phylogeographic relationships of Culex quinquefasciatus Say (Diptera: Culicidae) in Malaysia using reference data available in GenBank in order to reveal this species' phylogenetic relationships. A statistical parsimony network of 70 taxa aligned as 624 characters of the cytochrome c oxidase subunit I (COI) gene and 685 characters of the cytochrome c oxidase subunit II (COII) gene revealed three haplotypes (A1-A3) and four haplotypes (B1-B4), respectively. The concatenated sequences of both COI and COII genes with a total of 1309 characters revealed seven haplotypes (AB1-AB7). Analysis using tcs indicated that haplotype AB1 was the common ancestor and the most widespread haplotype in Malaysia. The genetic distance based on concatenated sequences of both COI and COII genes ranged from 0.00076 to 0.00229. Sequence alignment of Cx. quinquefasciatus from Malaysia and other countries revealed four haplotypes (AA1-AA4) by the COI gene and nine haplotypes (BB1-BB9) by the COII gene. Phylogenetic analyses demonstrated that Malaysian Cx. quinquefasciatus share the same genetic lineage as East African and Asian Cx. quinquefasciatus. This study has inferred the genetic lineages, dispersal patterns and hypothetical ancestral genotypes of Cx. quinquefasciatus. © 2013 The Royal Entomological Society.

  18. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity.

    PubMed

    Pope, Welkin H; Bowman, Charles A; Russell, Daniel A; Jacobs-Sera, Deborah; Asai, David J; Cresawn, Steven G; Jacobs, William R; Hendrix, Roger W; Lawrence, Jeffrey G; Hatfull, Graham F

    2015-04-28

    The bacteriophage population is large, dynamic, ancient, and genetically diverse. Limited genomic information shows that phage genomes are mosaic, and the genetic architecture of phage populations remains ill-defined. To understand the population structure of phages infecting a single host strain, we isolated, sequenced, and compared 627 phages of Mycobacterium smegmatis. Their genetic diversity is considerable, and there are 28 distinct genomic types (clusters) with related nucleotide sequences. However, amino acid sequence comparisons show pervasive genomic mosaicism, and quantification of inter-cluster and intra-cluster relatedness reveals a continuum of genetic diversity, albeit with uneven representation of different phages. Furthermore, rarefaction analysis shows that the mycobacteriophage population is not closed, and there is a constant influx of genes from other sources. Phage isolation and analysis was performed by a large consortium of academic institutions, illustrating the substantial benefits of a disseminated, structured program involving large numbers of freshman undergraduates in scientific discovery.

  19. Genome evolution predicts genetic interactions in protein complexes and reveals cancer drug targets

    PubMed Central

    Lu, Xiaowen; Kensche, Philip R.; Huynen, Martijn A.; Notebaart, Richard A.

    2013-01-01

    Genetic interactions reveal insights into cellular function and can be used to identify drug targets. Here we construct a new model to predict negative genetic interactions in protein complexes by exploiting the evolutionary history of genes in parallel converging pathways in metabolism. We evaluate our model with protein complexes of Saccharomyces cerevisiae and show that the predicted protein pairs more frequently have a negative genetic interaction than random proteins from the same complex. Furthermore, we apply our model to human protein complexes to predict novel cancer drug targets, and identify 20 candidate targets with empirical support and 10 novel targets amenable to further experimental validation. Our study illustrates that negative genetic interactions can be predicted by systematically exploring genome evolution, and that this is useful to identify novel anti-cancer drug targets. PMID:23851603

  20. Genetic structure of Tibetan populations in Gansu revealed by forensic STR loci.

    PubMed

    Yao, Hong-Bing; Wang, Chuan-Chao; Wang, Jiang; Tao, Xiaolan; Shang, Lei; Wen, Shao-Qing; Du, Qiajun; Deng, Qiongying; Xu, Bingying; Huang, Ying; Wang, Hong-Dan; Li, Shujin; Bin Cong; Ma, Liying; Jin, Li; Krause, Johannes; Li, Hui

    2017-01-23

    The origin and diversification of Sino-Tibetan speaking populations have been long-standing hot debates. However, the limited genetic information of Tibetan populations keeps this topic far from clear. In the present study, we genotyped 15 forensic autosomal short tandem repeats (STRs) from 803 unrelated Tibetan individuals from Gansu Province (635 from Gannan and 168 from Tianzhu) in northwest China. We combined these data with published dataset to infer a detailed population affinities and genetic substructure of Sino-Tibetan populations. Our results revealed Tibetan populations in Gannan and Tianzhu are genetically very similar with Tibetans from other regions. The Tibetans in Tianzhu have received more genetic influence from surrounding lowland populations. The genetic structure of Sino-Tibetan populations was strongly correlated with linguistic affiliations. Although the among-population variances are relatively small, the genetic components for Tibetan, Lolo-Burmese, and Han Chinese were quite distinctive, especially for the Deng, Nu, and Derung of Lolo-Burmese. Han Chinese but not Tibetans are suggested to share substantial genetic component with southern natives, such as Tai-Kadai and Hmong-Mien speaking populations, and with other lowland East Asian populations, which implies there might be extensive gene flow between those lowland groups and Han Chinese after Han Chinese were separated from Tibetans. The dataset generated in present study is also valuable for forensic identification and paternity tests in China.

  1. Genetic structure of Tibetan populations in Gansu revealed by forensic STR loci

    PubMed Central

    Yao, Hong-Bing; Wang, Chuan-Chao; Wang, Jiang; Tao, Xiaolan; Shang, Lei; Wen, Shao-Qing; Du, Qiajun; Deng, Qiongying; Xu, Bingying; Huang, Ying; Wang, Hong-Dan; Li, Shujin; Bin Cong; Ma, Liying; Jin, Li; Krause, Johannes; Li, Hui

    2017-01-01

    The origin and diversification of Sino-Tibetan speaking populations have been long-standing hot debates. However, the limited genetic information of Tibetan populations keeps this topic far from clear. In the present study, we genotyped 15 forensic autosomal short tandem repeats (STRs) from 803 unrelated Tibetan individuals from Gansu Province (635 from Gannan and 168 from Tianzhu) in northwest China. We combined these data with published dataset to infer a detailed population affinities and genetic substructure of Sino-Tibetan populations. Our results revealed Tibetan populations in Gannan and Tianzhu are genetically very similar with Tibetans from other regions. The Tibetans in Tianzhu have received more genetic influence from surrounding lowland populations. The genetic structure of Sino-Tibetan populations was strongly correlated with linguistic affiliations. Although the among-population variances are relatively small, the genetic components for Tibetan, Lolo-Burmese, and Han Chinese were quite distinctive, especially for the Deng, Nu, and Derung of Lolo-Burmese. Han Chinese but not Tibetans are suggested to share substantial genetic component with southern natives, such as Tai-Kadai and Hmong-Mien speaking populations, and with other lowland East Asian populations, which implies there might be extensive gene flow between those lowland groups and Han Chinese after Han Chinese were separated from Tibetans. The dataset generated in present study is also valuable for forensic identification and paternity tests in China. PMID:28112227

  2. Analysis of Dengue Virus Genetic Diversity during Human and Mosquito Infection Reveals Genetic Constraints.

    PubMed

    Sessions, October M; Wilm, Andreas; Kamaraj, Uma Sangumathi; Choy, Milly M; Chow, Angelia; Chong, Yuwen; Ong, Xin Mei; Nagarajan, Niranjan; Cook, Alex R; Ooi, Eng Eong

    2015-01-01

    Dengue viruses (DENV) cause debilitating and potentially life-threatening acute disease throughout the tropical world. While drug development efforts are underway, there are concerns that resistant strains will emerge rapidly. Indeed, antiviral drugs that target even conserved regions in other RNA viruses lose efficacy over time as the virus mutates. Here, we sought to determine if there are regions in the DENV genome that are not only evolutionarily conserved but genetically constrained in their ability to mutate and could hence serve as better antiviral targets. High-throughput sequencing of DENV-1 genome directly from twelve, paired dengue patients' sera and then passaging these sera into the two primary mosquito vectors showed consistent and distinct sequence changes during infection. In particular, two residues in the NS5 protein coding sequence appear to be specifically acquired during infection in Ae. aegypti but not Ae. albopictus. Importantly, we identified a region within the NS3 protein coding sequence that is refractory to mutation during human and mosquito infection. Collectively, these findings provide fresh insights into antiviral targets and could serve as an approach to defining evolutionarily constrained regions for therapeutic targeting in other RNA viruses.

  3. Analysis of Dengue Virus Genetic Diversity during Human and Mosquito Infection Reveals Genetic Constraints

    PubMed Central

    Sessions, October M.; Wilm, Andreas; Kamaraj, Uma Sangumathi; Choy, Milly M.; Chow, Angelia; Chong, Yuwen; Ong, Xin Mei; Nagarajan, Niranjan; Cook, Alex R.; Ooi, Eng Eong

    2015-01-01

    Dengue viruses (DENV) cause debilitating and potentially life-threatening acute disease throughout the tropical world. While drug development efforts are underway, there are concerns that resistant strains will emerge rapidly. Indeed, antiviral drugs that target even conserved regions in other RNA viruses lose efficacy over time as the virus mutates. Here, we sought to determine if there are regions in the DENV genome that are not only evolutionarily conserved but genetically constrained in their ability to mutate and could hence serve as better antiviral targets. High-throughput sequencing of DENV-1 genome directly from twelve, paired dengue patients’ sera and then passaging these sera into the two primary mosquito vectors showed consistent and distinct sequence changes during infection. In particular, two residues in the NS5 protein coding sequence appear to be specifically acquired during infection in Ae. aegypti but not Ae. albopictus. Importantly, we identified a region within the NS3 protein coding sequence that is refractory to mutation during human and mosquito infection. Collectively, these findings provide fresh insights into antiviral targets and could serve as an approach to defining evolutionarily constrained regions for therapeutic targeting in other RNA viruses. PMID:26327586

  4. Microgeographic socio-genetic structure of an African cooperative breeding passerine revealed: integrating behavioural and genetic data.

    PubMed

    Ribeiro, A M; Lloyd, P; Feldheim, K A; Bowie, Rauri C K

    2012-02-01

    Dispersal can be motivated by multiple factors including sociality. Dispersal behaviour affects population genetic structure that in turn reinforces social organization. We combined observational information with individual-based genetic data in the Karoo scrub-robin, a facultative cooperatively breeding bird, to understand how social bonds within familial groups affect mating patterns, cause sex asymmetry in dispersal behaviour and ultimately influence the evolution of dispersal. Our results revealed that males and females do not have symmetrical roles in structuring the population. Males are extremely philopatric and tend to delay dispersal until they gain a breeding position within a radius of two territories around the natal site. By contrast, females dispersed over larger distances, as soon as they reach independence. This resulted in male neighbourhoods characterized by high genetic relatedness. The long-distance dispersal strategy of females ensured that Karoo scrub-robins do not pair with relatives thereby compensating for male philopatry caused by cooperation. The observed female-biased strategy seems to be the most prominent mechanism to reduce the risk of inbreeding that characterizes social breeding system. This study demonstrates that tying together ecological data, such as breeding status, determining social relationships with genetic data, such as kinship, provides valuable insights into the proximate causes of dispersal, which are central to any evolutionary interpretation. © 2011 Blackwell Publishing Ltd.

  5. Phylogeographic analysis reveals significant spatial genetic structure of Incarvillea sinensis as a product of mountain building

    PubMed Central

    2012-01-01

    Background Incarvillea sinensis is widely distributed from Southwest China to Northeast China and in the Russian Far East. The distribution of this species was thought to be influenced by the uplift of the Qinghai-Tibet Plateau and Quaternary glaciation. To reveal the imprints of geological events on the spatial genetic structure of Incarvillea sinensis, we examined two cpDNA segments ( trnH- psbA and trnS- trnfM) in 705 individuals from 47 localities. Results A total of 16 haplotypes was identified, and significant genetic differentiation was revealed (GST =0.843, NST = 0.975, P < 0.05). The survey detected two highly divergent cpDNA lineages connected by a deep gap with allopatric distributions: the southern lineage with higher genetic diversity and differentiation in the eastern Qinghai-Tibet Plateau, and the northern lineage in the region outside the Qinghai-Tibet Plateau. The divergence between these two lineages was estimated at 4.4 MYA. A correlation between the genetic and the geographic distances indicates that genetic drift was more influential than gene flow in the northern clade with lower diversity and divergence. However, a scenario of regional equilibrium between gene flow and drift was shown for the southern clade. The feature of spatial distribution of the genetic diversity of the southern lineage possibly indicated that allopatric fragmentation was dominant in the collections from the eastern Qinghai-Tibet Plateau. Conclusions The results revealed that the uplift of the Qinghai-Tibet Plateau likely resulted in the significant divergence between the lineage in the eastern Qinghai-Tibet Plateau and the other one outside this area. The diverse niches in the eastern Qinghai-Tibet Plateau created a wide spectrum of habitats to accumulate and accommodate new mutations. The features of genetic diversity of populations outside the eastern Qinghai-Tibet Plateau seemed to reveal the imprints of extinction during the Glacial and the interglacial and

  6. Geographical gradients in selection can reveal genetic constraints for evolutionary responses to ocean acidification.

    PubMed

    Gaitán-Espitia, Juan Diego; Marshall, Dustin; Dupont, Sam; Bacigalupe, Leonardo D; Bodrossy, Levente; Hobday, Alistair J

    2017-02-01

    Geographical gradients in selection can shape different genetic architectures in natural populations, reflecting potential genetic constraints for adaptive evolution under climate change. Investigation of natural pH/pCO2 variation in upwelling regions reveals different spatio-temporal patterns of natural selection, generating genetic and phenotypic clines in populations, and potentially leading to local adaptation, relevant to understanding effects of ocean acidification (OA). Strong directional selection, associated with intense and continuous upwellings, may have depleted genetic variation in populations within these upwelling regions, favouring increased tolerances to low pH but with an associated cost in other traits. In contrast, diversifying or weak directional selection in populations with seasonal upwellings or outside major upwelling regions may have resulted in higher genetic variances and the lack of genetic correlations among traits. Testing this hypothesis in geographical regions with similar environmental conditions to those predicted under climate change will build insights into how selection may act in the future and how populations may respond to stressors such as OA.

  7. Lack of Genetic Variation of Bursaphelenchus xylophilus in Portugal Revealed by RAPD-PCR Analyses

    PubMed Central

    Vieira, Paulo; Burgermeister, Wolfgang; Mota, Manuel; Metge, Kai; Silva, Gonçalo

    2007-01-01

    Random Amplified Polymorphic DNA (RAPD-PCR) technique was used to assess the level of genetic variability and genetic relationships among 24 Portuguese isolates of pinewood nematode, Bursaphelenchus xylophilus. The isolates represent the main infested areas of Portugal. Two additional isolates of B. xylophilus representing North America and East Asia were included, and B. mucronatus was used as out-group. Twenty-eight random primers generated a total of 640 DNA fragments. The Nei and Li similarity index revealed a high genetic similarity among the Portuguese isolates (above 90%). Hierarchical cluster analysis was performed to illustrate the relatedness among the isolates. No indication for separate groups among the Portuguese isolates was obtained, and the low level of genetic diversity strongly suggests that they were dispersed recently from a single introduction. The lack of apparent relationship between the genetic and the geographic matrices of the Portuguese isolates limits the use of this technique for following recent pathways of distribution. Genetic distance of the Portuguese isolates towards an isolate from China was much lower as compared to an isolate from the USA. This confirmed previous results suggesting an East Asian origin of the Portuguese B. xylophilus. PMID:19259480

  8. Modeling development and quantitative trait mapping reveal independent genetic modules for leaf size and shape.

    PubMed

    Baker, Robert L; Leong, Wen Fung; Brock, Marcus T; Markelz, R J Cody; Covington, Michael F; Devisetty, Upendra K; Edwards, Christine E; Maloof, Julin; Welch, Stephen; Weinig, Cynthia

    2015-10-01

    Improved predictions of fitness and yield may be obtained by characterizing the genetic controls and environmental dependencies of organismal ontogeny. Elucidating the shape of growth curves may reveal novel genetic controls that single-time-point (STP) analyses do not because, in theory, infinite numbers of growth curves can result in the same final measurement. We measured leaf lengths and widths in Brassica rapa recombinant inbred lines (RILs) throughout ontogeny. We modeled leaf growth and allometry as function valued traits (FVT), and examined genetic correlations between these traits and aspects of phenology, physiology, circadian rhythms and fitness. We used RNA-seq to construct a SNP linkage map and mapped trait quantitative trait loci (QTL). We found genetic trade-offs between leaf size and growth rate FVT and uncovered differences in genotypic and QTL correlations involving FVT vs STPs. We identified leaf shape (allometry) as a genetic module independent of length and width and identified selection on FVT parameters of development. Leaf shape is associated with venation features that affect desiccation resistance. The genetic independence of leaf shape from other leaf traits may therefore enable crop optimization in leaf shape without negative effects on traits such as size, growth rate, duration or gas exchange.

  9. Genetic affinities within the herring gull Larus argentatus assemblage revealed by AFLP genotyping.

    PubMed

    de Knijff P; Denkers, F; van Swelm, N D; Kuiper, M

    2001-01-01

    To date, the taxonomic status of circumpolar breeding populations of the Herring Gull Larus argentatus, the Lesser Black-backed Gull Larus fuscus, and the closely related Yellow-legged Gull Larus cachinnans has been based on differences or similarities in phenotype, morphology, and feeding and premating behavior. To shed some new light on the many taxonomic uncertainties surrounding these taxa, we describe the results of a large DNA study based on comparing the distribution of 209 biallelic markers among 109 gulls, representing 11 gull taxa of the Herring Gull assemblage and the Common Gull Larus canus. A detailed phylogenetic analysis failed to show clustering of individuals into groups representing either geographic origin or phenotype. Alternatively, birds were grouped into taxa defined on the basis of phenotype and geographic origin or phenotype alone. Genetic analyses revealed significantly different genetic distances between all pairs of taxa. However, based on these genetic distances, again no consistent phylogenetic tree could be constructed. Analysis of molecular variance indicated that about 77% of the total genetic variability among these gulls could be explained by within-taxon differences. Only 23% of the total genetic variability was due to genetic differences between taxa, irrespective of their species or subspecies status. Although this seems to challenge the current taxonomic treatment of the herring gull assemblage, our results are too premature and too incomplete to recommend a drastic change.

  10. Market organization and animal genetic resource management: a revealed preference analysis of sheep pricing.

    PubMed

    Tindano, K; Moula, N; Leroy, P; Traoré, A; Antoine-Moussiaux, N

    2017-03-15

    Farm animal genetic resources are threatened worldwide. Participation in markets, while representing a crucial way out of poverty for many smallholders, affects genetic management choices with associated sustainability concerns. This paper proposes a contextualized study of the interactions between markets and animal genetic resources management, in the case of sheep markets in Ouagadougou, Burkina Faso. It focusses on the organization of marketing chains and the valuation of genetic characteristics by value chain actors. Marketing chain characterization was tackled through semi-structured interviews with 25 exporters and 15 butchers, both specialized in sheep. Moreover, revealed preference methods were applied to analyse the impact of animals' attributes on market pricing. Data were collected from 338 transactions during three different periods: Eid al-Adha, Christmas and New Year period, and a neutral period. The neutral period is understood as a period not close to any event likely to influence the demand for sheep. The results show that physical characteristics such as live weight, height at withers and coat colour have a strong influence on the animals' prices. Live weight has also had an increasing marginal impact on price. The different markets (local butcher, feasts, export market, sacrifices) represent distinct demands for genetic characteristics, entailing interesting consequences for animal genetic resource management. Any breeding programme should therefore take this diversity into account to allow this sector to contribute better to a sustainable development of the country.

  11. Temporal analysis of mtDNA variation reveals decreased genetic diversity in least terns

    USGS Publications Warehouse

    Draheim, Hope M.; Baird, Patricia; Haig, Susan M.

    2012-01-01

    The Least Tern (Sternula antillarum) has undergone large population declines over the last century as a result of direct and indirect anthropogenic factors. The genetic implications of these declines are unknown. We used historical museum specimens (pre-1960) and contemporary (2001–2005) samples to examine range-wide phylogeographic patterns and investigate potential loss in the species' genetic variation. We obtained sequences (522 bp) of the mitochondrial gene for NADH dehydrogenase subunit 6 (ND6) from 268 individuals from across the species' range. Phylogeographic analysis revealed no association with geography or traditional subspecies designations. However, we detected potential reductions in genetic diversity in contemporary samples from California and the Atlantic coast Least Tern from that in historical samples, suggesting that current genetic diversity in Least Tern populations is lower than in their pre-1960 counterparts. Our results offer unique insights into changes in the Least Tern's genetic diversity over the past century and highlight the importance and utility of museum specimens in studies of conservation genetics.

  12. Genetic variability and differentiation of Caragana microphylla populations as revealed by RAPD markers.

    PubMed

    Chen, X H; Gao, Y B

    2011-09-01

    Genetic variability in random amplified polymorphic DNA (RAPD) was studied in 90 individuals of Caragana microphylla, an outcrossing perennial shrub species, from five natural populations sampled in Inner Mongolia steppe of China on a small scale. Nineteen selected primers were used to amplify DNA samples, and totally 225 bands were detected. The percentage of polymorphic bands within populations ranged form 58.22% to 63.56%, with an average of 60% at the population level and 71.11% at the species level, indicating relatively high genetic variations in C. microphylla species. Shannon's information index (I) and Nei's gene diversity (h) showed the similar trend with each other. According to the analysis of Nei's gene diversity, the percentage of genetic variation among populations was 7.13%, indicating a low level of genetic differentiation among populations. There existed a strong gene flow (Nm = 3.26) among populations. Although AMOVA analysis also revealed most variation was within populations (phi(ST) = 4.1%), a significant proportion was observed among populations (P<0.001) in the present study, suggesting genetic differentiation occurred among populations at a certain extent. Based on Mantel's tests and the results of previous studies, the genetic structure pattern of C. microphylla accorded with the isolation-by-distance model on a very large scale, however, on a small scale, the significant genetic differentiation among populations might be enhanced by the micro-environmental divergence among the sampling sites, rather than by geographic factors. Analysis of the genetic variations of C. microphylla populations provided useful information for the adaptive strategy of Caragana species.

  13. High-Throughput Phenotyping and QTL Mapping Reveals the Genetic Architecture of Maize Plant Growth.

    PubMed

    Zhang, Xuehai; Huang, Chenglong; Wu, Di; Qiao, Feng; Li, Wenqiang; Duan, Lingfeng; Wang, Ke; Xiao, Yingjie; Chen, Guoxing; Liu, Qian; Xiong, Lizhong; Yang, Wanneng; Yan, Jianbing

    2017-03-01

    With increasing demand for novel traits in crop breeding, the plant research community faces the challenge of quantitatively analyzing the structure and function of large numbers of plants. A clear goal of high-throughput phenotyping is to bridge the gap between genomics and phenomics. In this study, we quantified 106 traits from a maize (Zea mays) recombinant inbred line population (n = 167) across 16 developmental stages using the automatic phenotyping platform. Quantitative trait locus (QTL) mapping with a high-density genetic linkage map, including 2,496 recombinant bins, was used to uncover the genetic basis of these complex agronomic traits, and 988 QTLs have been identified for all investigated traits, including three QTL hotspots. Biomass accumulation and final yield were predicted using a combination of dissected traits in the early growth stage. These results reveal the dynamic genetic architecture of maize plant growth and enhance ideotype-based maize breeding and prediction.

  14. Genetic diversity of worldwide Jerusalem artichoke (Helianthus tuberosus) germplasm as revealed by RAPD markers.

    PubMed

    Wangsomnuk, P P; Khampa, S; Wangsomnuk, P; Jogloy, S; Mornkham, T; Ruttawat, B; Patanothai, A; Fu, Y B

    2011-12-12

    Jerusalem artichoke (Helianthus tuberosus) is a wild relative of the cultivated sunflower (H. annuus); it is an old tuber crop that has recently received renewed interest. We used RAPD markers to characterize 147 Jerusalem artichoke accessions from nine countries. Thirty RAPD primers were screened; 13 of them detected 357 reproducible RAPD bands, of which 337 were polymorphic. Various diversity analyses revealed several different patterns of RAPD variation. More than 93% of the RAPD variation was found within accessions of a country. Weak genetic differentiation was observed between wild and cultivated accessions. Six groups were detected in this germplasm set. Four ancestral groups were found for the Canadian germplasm. The most genetically distinct accessions were identified. These findings provide useful diversity information for understanding the Jerusalem artichoke gene pool, for conserving Jerusalem artichoke germplasm, and for choosing germplasm for genetic improvement.

  15. Genetic Code Evolution Reveals the Neutral Emergence of Mutational Robustness, and Information as an Evolutionary Constraint

    PubMed Central

    Massey, Steven E.

    2015-01-01

    The standard genetic code (SGC) is central to molecular biology and its origin and evolution is a fundamental problem in evolutionary biology, the elucidation of which promises to reveal much about the origins of life. In addition, we propose that study of its origin can also reveal some fundamental and generalizable insights into mechanisms of molecular evolution, utilizing concepts from complexity theory. The first is that beneficial traits may arise by non-adaptive processes, via a process of “neutral emergence”. The structure of the SGC is optimized for the property of error minimization, which reduces the deleterious impact of point mutations. Via simulation, it can be shown that genetic codes with error minimization superior to the SGC can emerge in a neutral fashion simply by a process of genetic code expansion via tRNA and aminoacyl-tRNA synthetase duplication, whereby similar amino acids are added to codons related to that of the parent amino acid. This process of neutral emergence has implications beyond that of the genetic code, as it suggests that not all beneficial traits have arisen by the direct action of natural selection; we term these “pseudaptations”, and discuss a range of potential examples. Secondly, consideration of genetic code deviations (codon reassignments) reveals that these are mostly associated with a reduction in proteome size. This code malleability implies the existence of a proteomic constraint on the genetic code, proportional to the size of the proteome (P), and that its reduction in size leads to an “unfreezing” of the codon – amino acid mapping that defines the genetic code, consistent with Crick’s Frozen Accident theory. The concept of a proteomic constraint may be extended to propose a general informational constraint on genetic fidelity, which may be used to explain variously, differences in mutation rates in genomes with differing proteome sizes, differences in DNA repair capacity and genome GC content

  16. Genetic code evolution reveals the neutral emergence of mutational robustness, and information as an evolutionary constraint.

    PubMed

    Massey, Steven E

    2015-04-24

    The standard genetic code (SGC) is central to molecular biology and its origin and evolution is a fundamental problem in evolutionary biology, the elucidation of which promises to reveal much about the origins of life. In addition, we propose that study of its origin can also reveal some fundamental and generalizable insights into mechanisms of molecular evolution, utilizing concepts from complexity theory. The first is that beneficial traits may arise by non-adaptive processes, via a process of "neutral emergence". The structure of the SGC is optimized for the property of error minimization, which reduces the deleterious impact of point mutations. Via simulation, it can be shown that genetic codes with error minimization superior to the SGC can emerge in a neutral fashion simply by a process of genetic code expansion via tRNA and aminoacyl-tRNA synthetase duplication, whereby similar amino acids are added to codons related to that of the parent amino acid. This process of neutral emergence has implications beyond that of the genetic code, as it suggests that not all beneficial traits have arisen by the direct action of natural selection; we term these "pseudaptations", and discuss a range of potential examples. Secondly, consideration of genetic code deviations (codon reassignments) reveals that these are mostly associated with a reduction in proteome size. This code malleability implies the existence of a proteomic constraint on the genetic code, proportional to the size of the proteome (P), and that its reduction in size leads to an "unfreezing" of the codon - amino acid mapping that defines the genetic code, consistent with Crick's Frozen Accident theory. The concept of a proteomic constraint may be extended to propose a general informational constraint on genetic fidelity, which may be used to explain variously, differences in mutation rates in genomes with differing proteome sizes, differences in DNA repair capacity and genome GC content between organisms, a

  17. Comparing GWAS Results of Complex Traits Using Full Genetic Model and Additive Models for Revealing Genetic Architecture

    PubMed Central

    Monir, Md. Mamun; Zhu, Jun

    2017-01-01

    Most of the genome-wide association studies (GWASs) for human complex diseases have ignored dominance, epistasis and ethnic interactions. We conducted comparative GWASs for total cholesterol using full model and additive models, which illustrate the impacts of the ignoring genetic variants on analysis results and demonstrate how genetic effects of multiple loci could differ across different ethnic groups. There were 15 quantitative trait loci with 13 individual loci and 3 pairs of epistasis loci identified by full model, whereas only 14 loci (9 common loci and 5 different loci) identified by multi-loci additive model. Again, 4 full model detected loci were not detected using multi-loci additive model. PLINK-analysis identified two loci and GCTA-analysis detected only one locus with genome-wide significance. Full model identified three previously reported genes as well as several new genes. Bioinformatics analysis showed some new genes are related with cholesterol related chemicals and/or diseases. Analyses of cholesterol data and simulation studies revealed that the full model performs were better than the additive-model performs in terms of detecting power and unbiased estimations of genetic variants of complex traits. PMID:28079101

  18. Genetic analyses reveal unusually high diversity of infectious haematopoietic necrosis virus in rainbow trout aquaculture.

    PubMed

    Troyer, R M; LaPatra, S E; Kurath, G

    2000-12-01

    Infectious haematopoietic necrosis virus (IHNV) is the most significant virus pathogen of salmon and trout in North America. Previous studies have shown relatively low genetic diversity of IHNV within large geographical regions. In this study, the genetic heterogeneity of 84 IHNV isolates sampled from rainbow trout (Oncorhynchus mykiss) over a 20 year period at four aquaculture facilities within a 12 mile stretch of the Snake River in Idaho, USA was investigated. The virus isolates were characterized using an RNase protection assay (RPA) and nucleotide sequence analyses. Among the 84 isolates analysed, 46 RPA haplotypes were found and analyses revealed a high level of genetic heterogeneity relative to that detected in other regions. Sequence analyses revealed up to 7.6% nucleotide divergence, which is the highest level of diversity reported for IHNV to date. Phylogenetic analyses identified four distinct monophyletic clades representing four virus lineages. These lineages were distributed across facilities, and individual facilities contained multiple lineages. These results suggest that co-circulating IHNV lineages of relatively high genetic diversity are present in the IHNV populations in this rainbow trout culture study site. Three of the four lineages exhibited temporal trends consistent with rapid evolution.

  19. Genetic analyses reveal unusually high diversity of infectious haematopoietic necrosis virus in rainbow trout aquaculture

    USGS Publications Warehouse

    Troyer, Ryan M.; LaPatra, Scott E.; Kurath, Gael

    2000-01-01

    Infectious haematopoietic necrosis virus (IHNV) is the most significant virus pathogen of salmon and trout in North America. Previous studies have shown relatively low genetic diversity of IHNV within large geographical regions. In this study, the genetic heterogeneity of 84 IHNV isolates sampled from rainbow trout (Oncorhynchus mykiss) over a 20 year period at four aquaculture facilities within a 12 mile stretch of the Snake River in Idaho, USA was investigated. The virus isolates were characterized using an RNase protection assay (RPA) and nucleotide sequence analyses. Among the 84 isolates analysed, 46 RPA haplotypes were found and analyses revealed a high level of genetic heterogeneity relative to that detected in other regions. Sequence analyses revealed up to 7·6% nucleotide divergence, which is the highest level of diversity reported for IHNV to date. Phylogenetic analyses identified four distinct monophyletic clades representing four virus lineages. These lineages were distributed across facilities, and individual facilities contained multiple lineages. These results suggest that co-circulating IHNV lineages of relatively high genetic diversity are present in the IHNV populations in this rainbow trout culture study site. Three of the four lineages exhibited temporal trends consistent with rapid evolution.

  20. A genetic strategy to measure circulating Drosophila insulin reveals genes regulating insulin production and secretion.

    PubMed

    Park, Sangbin; Alfa, Ronald W; Topper, Sydni M; Kim, Grace E S; Kockel, Lutz; Kim, Seung K

    2014-08-01

    Insulin is a major regulator of metabolism in metazoans, including the fruit fly Drosophila melanogaster. Genome-wide association studies (GWAS) suggest a genetic basis for reductions of both insulin sensitivity and insulin secretion, phenotypes commonly observed in humans with type 2 diabetes mellitus (T2DM). To identify molecular functions of genes linked to T2DM risk, we developed a genetic tool to measure insulin-like peptide 2 (Ilp2) levels in Drosophila, a model organism with superb experimental genetics. Our system permitted sensitive quantification of circulating Ilp2, including measures of Ilp2 dynamics during fasting and re-feeding, and demonstration of adaptive Ilp2 secretion in response to insulin receptor haploinsufficiency. Tissue specific dissection of this reduced insulin signaling phenotype revealed a critical role for insulin signaling in specific peripheral tissues. Knockdown of the Drosophila orthologues of human T2DM risk genes, including GLIS3 and BCL11A, revealed roles of these Drosophila genes in Ilp2 production or secretion. Discovery of Drosophila mechanisms and regulators controlling in vivo insulin dynamics should accelerate functional dissection of diabetes genetics.

  1. Health trajectories reveal the dynamic contributions of host genetic resistance and tolerance to infection outcome

    PubMed Central

    Lough, Graham; Kyriazakis, Ilias; Bergmann, Silke; Lengeling, Andreas; Doeschl-Wilson, Andrea B.

    2015-01-01

    Resistance and tolerance are two alternative strategies hosts can adopt to survive infections. Both strategies may be genetically controlled. To date, the relative contribution of resistance and tolerance to infection outcome is poorly understood. Here, we use a bioluminescent Listeria monocytogenes (Lm) infection challenge model to study the genetic determination and dynamic contributions of host resistance and tolerance to listeriosis in four genetically diverse mouse strains. Using conventional statistical analyses, we detect significant genetic variation in both resistance and tolerance, but cannot capture the time-dependent relative importance of either host strategy. We overcome these limitations through the development of novel statistical tools to analyse individual infection trajectories portraying simultaneous changes in infection severity and health. Based on these tools, early expression of resistance followed by expression of tolerance emerge as important hallmarks for surviving Lm infections. Our trajectory analysis further reveals that survivors and non-survivors follow distinct infection paths (which are also genetically determined) and provides new survival thresholds as objective endpoints in infection experiments. Future studies may use trajectories as novel traits for mapping and identifying genes that control infection dynamics and outcome. A Matlab script for user-friendly trajectory analysis is provided. PMID:26582028

  2. Tracing the genetic origin of Europe's first farmers reveals insights into their social organization

    PubMed Central

    Szécsényi-Nagy, Anna; Brandt, Guido; Haak, Wolfgang; Keerl, Victoria; Jakucs, János; Möller-Rieker, Sabine; Köhler, Kitti; Mende, Balázs Gusztáv; Oross, Krisztián; Marton, Tibor; Osztás, Anett; Kiss, Viktória; Fecher, Marc; Pálfi, György; Molnár, Erika; Sebők, Katalin; Czene, András; Paluch, Tibor; Šlaus, Mario; Novak, Mario; Pećina-Šlaus, Nives; Ősz, Brigitta; Voicsek, Vanda; Somogyi, Krisztina; Tóth, Gábor; Kromer, Bernd; Bánffy, Eszter; Alt, Kurt W.

    2015-01-01

    Farming was established in Central Europe by the Linearbandkeramik culture (LBK), a well-investigated archaeological horizon, which emerged in the Carpathian Basin, in today's Hungary. However, the genetic background of the LBK genesis is yet unclear. Here we present 9 Y chromosomal and 84 mitochondrial DNA profiles from Mesolithic, Neolithic Starčevo and LBK sites (seventh/sixth millennia BC) from the Carpathian Basin and southeastern Europe. We detect genetic continuity of both maternal and paternal elements during the initial spread of agriculture, and confirm the substantial genetic impact of early southeastern European and Carpathian Basin farming cultures on Central European populations of the sixth–fourth millennia BC. Comprehensive Y chromosomal and mitochondrial DNA population genetic analyses demonstrate a clear affinity of the early farmers to the modern Near East and Caucasus, tracing the expansion from that region through southeastern Europe and the Carpathian Basin into Central Europe. However, our results also reveal contrasting patterns for male and female genetic diversity in the European Neolithic, suggesting a system of patrilineal descent and patrilocal residential rules among the early farmers. PMID:25808890

  3. Tracing the genetic origin of Europe's first farmers reveals insights into their social organization.

    PubMed

    Szécsényi-Nagy, Anna; Brandt, Guido; Haak, Wolfgang; Keerl, Victoria; Jakucs, János; Möller-Rieker, Sabine; Köhler, Kitti; Mende, Balázs Gusztáv; Oross, Krisztián; Marton, Tibor; Osztás, Anett; Kiss, Viktória; Fecher, Marc; Pálfi, György; Molnár, Erika; Sebők, Katalin; Czene, András; Paluch, Tibor; Šlaus, Mario; Novak, Mario; Pećina-Šlaus, Nives; Ősz, Brigitta; Voicsek, Vanda; Somogyi, Krisztina; Tóth, Gábor; Kromer, Bernd; Bánffy, Eszter; Alt, Kurt W

    2015-04-22

    Farming was established in Central Europe by the Linearbandkeramik culture (LBK), a well-investigated archaeological horizon, which emerged in the Carpathian Basin, in today's Hungary. However, the genetic background of the LBK genesis is yet unclear. Here we present 9 Y chromosomal and 84 mitochondrial DNA profiles from Mesolithic, Neolithic Starčevo and LBK sites (seventh/sixth millennia BC) from the Carpathian Basin and southeastern Europe. We detect genetic continuity of both maternal and paternal elements during the initial spread of agriculture, and confirm the substantial genetic impact of early southeastern European and Carpathian Basin farming cultures on Central European populations of the sixth-fourth millennia BC. Comprehensive Y chromosomal and mitochondrial DNA population genetic analyses demonstrate a clear affinity of the early farmers to the modern Near East and Caucasus, tracing the expansion from that region through southeastern Europe and the Carpathian Basin into Central Europe. However, our results also reveal contrasting patterns for male and female genetic diversity in the European Neolithic, suggesting a system of patrilineal descent and patrilocal residential rules among the early farmers.

  4. Genetic diversity of Cosmos species revealed by RAPD and ISSR markers.

    PubMed

    Rodríguez-Bernal, A; Piña-Escutia, J L; Vázquez-García, L M; Arzate-Fernández, A M

    2013-12-04

    The genus Cosmos is native of America and is constituted by 34 species; 28 of them are endemic of Mexico. The cosmos are used as a nematicide, antimalarial, and antioxidative agent. The aim of this study was to estimate the genetic diversity among 7 cosmos species based on random amplified polymorphic DNA (RAPD) and inter-simple sequences repeats (ISSR) markers. With RAPD markers, the obtained polymorphism was 91.7 % and the genetic diversity was 0.33, whereas these values were 65.6%, and 0.22 from ISSR markers, respectively, indicating the presence of high genetic diversity among the Cosmos species that were analyzed. The unweighted pair group method with arithmetic mean dendrograms that were obtained with both markers were notably similar, revealing 2 clusters and indicating a clear genetic differentiation among the Cosmos species that were assessed. The first cluster comprised the species Cosmos sulphureus, Cosmos pacificus, and Cosmos diversifolius, while the second cluster included the species Cosmos purpureus, Cosmos crithmifolius, Cosmos bipinnatus, and Cosmos parviflorus. Besides this, the Cosmos species were clustered according to their collection sites. The Mantel test corroborates the correlation between the genetic distance and the geographic altitude of each Cosmos species. The results suggest that it is necessary to preserve the Cosmos species in their natural habitat in addition to the germoplasm collection for ex situ conservation.

  5. Mitochondrial DNA analysis of Tunisians reveals a mosaic genetic structure with recent population expansion.

    PubMed

    Frigi, S; Mota-Vieira, L; Cherni, L; van Oven, M; Pires, R; Boussetta, S; El-Gaaied, A Ben Ammar

    2017-05-19

    Tunisia is a country of great interest for human population genetics due to its strategic geographic position and rich human settlement history. These factors significantly contributed to the genetic makeup of present-day Tunisians harbouring components of diverse geographic origins. Here, we investigated the genetic structure of Tunisians by performing a mitochondrial DNA (mtDNA) comparison of 15 Tunisian population groups, in order to explore their complex genetic landscape. All Tunisian data were also analysed against 40 worldwide populations. Statistical results (Tajima's D and Fu's FS tests) suggested recent population expansion for the majority of studied populations, as well as showed (AMOVA test) that all populations were significantly different from each other, which is evidence of population structure even if it is not guided by geographic and ethnic effects. Gene flow analysis revealed the assignment of Tunisians to multiple ancestries, which agrees with their genetic heterogeneity. The resulting picture for the mtDNA pool confirms the evidence of a recent expansion of the Tunisian population and is in accordance with a mosaic structure, composed by North African, Middle Easterner, European and Sub-Saharan lineages, resulting from a complex settlement history. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Dent and Flint maize diversity panels reveal important genetic potential for increasing biomass production.

    PubMed

    Rincent, R; Nicolas, S; Bouchet, S; Altmann, T; Brunel, D; Revilla, P; Malvar, R A; Moreno-Gonzalez, J; Campo, L; Melchinger, A E; Schipprack, W; Bauer, E; Schoen, C-C; Meyer, N; Ouzunova, M; Dubreuil, P; Giauffret, C; Madur, D; Combes, V; Dumas, F; Bauland, C; Jamin, P; Laborde, J; Flament, P; Moreau, L; Charcosset, A

    2014-11-01

    Genetic and phenotypic analysis of two complementary maize panels revealed an important variation for biomass yield. Flowering and biomass QTL were discovered by association mapping in both panels. The high whole plant biomass productivity of maize makes it a potential source of energy in animal feeding and biofuel production. The variability and the genetic determinism of traits related to biomass are poorly known. We analyzed two highly diverse panels of Dent and Flint lines representing complementary heterotic groups for Northern Europe. They were genotyped with the 50 k SNP-array and phenotyped as hybrids (crossed to a tester of the complementary pool) in a western European field trial network for traits related to flowering time, plant height, and biomass. The molecular information revealed to be a powerful tool for discovering different levels of structure and relatedness in both panels. This study revealed important variation and potential genetic progress for biomass production, even at constant precocity. Association mapping was run by combining genotypes and phenotypes in a mixed model with a random polygenic effect. This permitted the detection of significant associations, confirming height and flowering time quantitative trait loci (QTL) found in literature. Biomass yield QTL were detected in both panels but were unstable across the environments. Alternative kinship estimator only based on markers unlinked to the tested SNP increased the number of significant associations by around 40% with a satisfying control of the false positive rate. This study gave insights into the variability and the genetic architectures of biomass-related traits in Flint and Dent lines and suggests important potential of these two pools for breeding high biomass yielding hybrid varieties.

  7. Population genetics of Sargassum horneri (Fucales, Phaeophyta) in China revealed by ISSR and SRAP markers

    NASA Astrophysics Data System (ADS)

    Yu, Shenhui; Chong, Zhuo; Zhao, Fengjuan; Yao, Jianting; Duan, Delin

    2013-05-01

    Sargassum horneri is a common brown macro-alga that is found in the inter-tidal ecosystems of China. To investigate the current status of seaweed resources and provide basic data for its sustainable development, ISSR (inter simple sequence repeat) and SRAP (sequence related amplified polymorphism) markers were used to analyze the population genetics among nine natural populations of S. horneri. The nine studied populations were distributed over 2 000 km from northeast to south China. The percentage of polymorphic loci P % (ISSR, 99.44%; SRAP, 100.00%), Nei's genetic diversity H (ISSR, 0.107-0.199; SRAP, 0.100-0.153), and Shannon's information index I (ISSR, 0.157-0.291; SRAP, 0.148-0.219) indicated a fair amount of genetic variability among the nine populations. Moreover, the high degree of gene differentiation G st (ISSR, 0.654; SRAP, 0.718) and low gene flow N m (ISSR, 0.265; SRAP, 0.196) implied that there was significant among-population differentiation, possibly as a result of habitat fragmentation. The matrices of genetic distances and fixation indices ( F st) among the populations correlated well with their geographical distribution (Mantel test R =0.541 5, 0.541 8; P =0.005 0, 0.002 0 and R =0.728 6, 0.641 2; P =0.001 0, 0.001 0, respectively); the Rongcheng population in the Shandong peninsula was the only exception. Overall, the genetic differentiation agreed with the geographic isolation. The fair amount of genetic diversity that was revealed in the S. horneri populations in China indicated that the seaweed resources had not been seriously affected by external factors.

  8. Bcl-2 family genetic profiling reveals microenvironment-specific determinants of chemotherapeutic response.

    PubMed

    Pritchard, Justin R; Gilbert, Luke A; Meacham, Corbin E; Ricks, Jennifer L; Jiang, Hai; Lauffenburger, Douglas A; Hemann, Michael T

    2011-09-01

    The Bcl-2 family encompasses a diverse set of apoptotic regulators that are dynamically activated in response to various cell-intrinsic and -extrinsic stimuli. An extensive variety of cell culture experiments have identified effects of growth factors, cytokines, and drugs on Bcl-2 family functions, but in vivo studies have tended to focus on the role of one or two particular members in development and organ homeostasis. Thus, the ability of physiologically relevant contexts to modulate canonical dependencies that are likely to be more complex has yet to be investigated systematically. In this study, we report findings derived from a pool-based shRNA assay that systematically and comprehensively interrogated the functional dependence of leukemia and lymphoma cells upon various Bcl-2 family members across many diverse in vitro and in vivo settings. This approach permitted us to report the first in vivo loss of function screen for modifiers of the response to a front-line chemotherapeutic agent. Notably, our results reveal an unexpected role for the extrinsic death pathway as a tissue-specific modifier of therapeutic response. In particular, our findings show that particular tissue sites of tumor dissemination play critical roles in demarcating the nature and extent of cancer cell vulnerabilities and mechanisms of chemoresistance. ©2011 AACR.

  9. Genetic mapping of sulfur assimilation genes reveals a QTL for onion bulb pungency.

    PubMed

    McCallum, John; Pither-Joyce, Meeghan; Shaw, Martin; Kenel, Fernand; Davis, Sheree; Butler, Ruth; Scheffer, John; Jakse, Jernej; Havey, Michael J

    2007-03-01

    Onion exhibits wide genetic and environmental variation in bioactive organosulfur compounds that impart pungency and health benefits. A PCR-based molecular marker map that included candidate genes for sulfur assimilation was used to identify genomic regions affecting pungency in the cross 'W202A' x 'Texas Grano 438'. Linkage mapping revealed that genes encoding plastidic ferredoxin-sulfite reductase (SiR) and plastidic ATP sulfurylase (ATPS) are closely linked (1-2 cM) on chromosome 3. Inbred F(3) families derived from the F(2 )population used to construct the genetic map were grown in replicated trials in two environments and bulb pungency was evaluated as pyruvic acid or lachrymatory factor. Broad-sense heritability of pungency was estimated to be 0.78-0.80. QTL analysis revealed significant associations of both pungency and bulb soluble solids content with marker intervals on chromosomes 3 and 5, which have previously been reported to condition pleiotropic effects on bulb carbohydrate composition. Highly significant associations (LOD 3.7-8.7) were observed between ATPS and SiR Loci and bulb pungency but not with bulb solids content. This association was confirmed in two larger, independently derived F(2) families from the same cross. Single-locus models suggested that the partially dominant locus associated with these candidate genes controls 30-50% of genetic variation in pungency in these pedigrees. These markers may provide a practical means to select for lower pungency without correlated selection for lowered solids.

  10. Clinical and genetic analyses reveal novel pathogenic ABCA4 mutations in Stargardt disease families

    PubMed Central

    Lin, Bing; Cai, Xue-Bi; Zheng, Zhi-Li; Huang, Xiu-Feng; Liu, Xiao-Ling; Qu, Jia; Jin, Zi-Bing

    2016-01-01

    Stargardt disease (STGD1) is a juvenile macular degeneration predominantly inherited in an autosomal recessive pattern, characterized by decreased central vision in the first 2 decades of life. The condition has a genetic basis due to mutation in the ABCA4 gene, and arises from the deposition of lipofuscin-like substance in the retinal pigmented epithelium (RPE) with secondary photoreceptor cell death. In this study, we describe the clinical and genetic features of Stargardt patients from four unrelated Chinese cohorts. The targeted exome sequencing (TES) was carried out in four clinically confirmed patients and their family members using a gene panel comprising 164 known causative inherited retinal dystrophy (IRD) genes. Genetic analysis revealed eight ABCA4 mutations in all of the four pedigrees, including six mutations in coding exons and two mutations in adjacent intronic areas. All the affected individuals showed typical manifestations consistent with the disease phenotype. We disclose two novel ABCA4 mutations in Chinese patients with STGD disease, which will expand the existing spectrum of disease-causing variants and will further aid in the future mutation screening and genetic counseling, as well as in the understanding of phenotypic and genotypic correlations. PMID:27739528

  11. High temperatures reveal cryptic genetic variation in a polymorphic female sperm storage organ.

    PubMed

    Berger, David; Bauerfeind, Stephanie Sandra; Blanckenhorn, Wolf Ulrich; Schäfer, Martin Andreas

    2011-10-01

    Variation in female reproductive morphology may play a decisive role in reproductive isolation by affecting the relative fertilization success of alternative male phenotypes. Yet, knowledge of how environmental variation may influence the development of the female reproductive tract and thus alter the arena of postcopulatory sexual selection is limited. Yellow dung fly females possess either three or four sperm storage compartments, a polymorphism with documented influence on sperm precedence. We performed a quantitative genetics study including 12 populations reared at three developmental temperatures complemented by extensive field data to show that warm developmental temperatures increase the frequency of females with four compartments, revealing striking hidden genetic variation for the polymorphism. Systematic genetic differentiation in growth rate and spermathecal number along latitude, and phenotypic covariance between the traits across temperature treatments suggest that the genetic architecture underlying the polymorphism is shaped by selection on metabolic rate. Our findings illustrate how temperature can modulate the preconditions for sexual selection by differentially exposing novel variation in reproductive morphology. This implies that environmental change may substantially alter the dynamics of sexual selection. We further discuss how temperature-dependent developmental plasticity may have contributed to observed rapid evolutionary transitions in spermathecal morphology.

  12. Turkish Population Structure and Genetic Ancestry Reveal Relatedness among Eurasian Populations

    PubMed Central

    Hodoğlugil, Uğur; Mahley, Robert W.

    2013-01-01

    Summary Turkey connects the Middle East, Europe, and Asia and has experienced major population movements. We examined the population structure and genetic relatedness of samples from three regions of Turkey using over 500,000 SNP genotypes. The data were analyzed together with Human Genome Diversity Panel data. To obtain a more representative sampling from Central Asia, Kyrgyz samples (Bishkek, Kyrgyzstan) were genotyped and analyzed. Principal component (PC) analysis reveals a significant overlap between Turks and Middle Easterners and a relationship with Europeans and South and Central Asians; however, the Turkish genetic structure is unique. FRAPPE, STRUCTURE, and phylogenetic analyses support the PC analysis depending upon the number of parental ancestry components chosen. For example, supervised STRUCTURE (K = 3) illustrates a genetic ancestry for the Turks of 45% Middle Eastern (95% CI, 42–49), 40% European (95% CI, 36–44), and 15% Central Asian (95% CI, 13–16), whereas at K = 4 the genetic ancestry of the Turks was 38% European (95% CI, 35–42), 35% Middle Eastern (95% CI, 33–38), 18% South Asian (95% CI, 16–19), and 9% Central Asian (95% CI, 7–11). PC analysis and FRAPPE/STRUCTURE results from three regions in Turkey (Aydin, Istanbul, and Kayseri) were superimposed, without clear subpopulation structure, suggesting the selected samples were rather homogeneous. Thus, this study demonstrates admixture of Turkish people reflecting the population migration patterns. PMID:22332727

  13. Turkish population structure and genetic ancestry reveal relatedness among Eurasian populations.

    PubMed

    Hodoğlugil, Uğur; Mahley, Robert W

    2012-03-01

    Turkey has experienced major population movements. Population structure and genetic relatedness of samples from three regions of Turkey, using over 500,000 SNP genotypes, were compared together with Human Genome Diversity Panel (HGDP) data. To obtain a more representative sampling from Central Asia, Kyrgyz samples (Bishkek, Kyrgyzstan) were genotyped and analysed. Principal component (PC) analysis reveals a significant overlap between Turks and Middle Easterners and a relationship with Europeans and South and Central Asians; however, the Turkish genetic structure is unique. FRAPPE, STRUCTURE, and phylogenetic analyses support the PC analysis depending upon the number of parental ancestry components chosen. For example, supervised STRUCTURE (K=3) illustrates a genetic ancestry for the Turks of 45% Middle Eastern (95% CI, 42-49), 40% European (95% CI, 36-44) and 15% Central Asian (95% CI, 13-16), whereas at K=4 the genetic ancestry of the Turks was 38% European (95% CI, 35-42), 35% Middle Eastern (95% CI, 33-38), 18% South Asian (95% CI, 16-19) and 9% Central Asian (95% CI, 7-11). PC analysis and FRAPPE/STRUCTURE results from three regions in Turkey (Aydin, Istanbul and Kayseri) were superimposed, without clear subpopulation structure, suggesting sample homogeneity. Thus, this study demonstrates admixture of Turkish people reflecting the population migration patterns.

  14. Genetic variation architecture of mitochondrial genome reveals the differentiation in Korean landrace and weedy rice

    PubMed Central

    Tong, Wei; He, Qiang; Park, Yong-Jin

    2017-01-01

    Mitochondrial genome variations have been detected despite the overall conservation of this gene content, which has been valuable for plant population genetics and evolutionary studies. Here, we describe mitochondrial variation architecture and our performance of a phylogenetic dissection of Korean landrace and weedy rice. A total of 4,717 variations across the mitochondrial genome were identified adjunct with 10 wild rice. Genetic diversity assessment revealed that wild rice has higher nucleotide diversity than landrace and/or weedy, and landrace rice has higher diversity than weedy rice. Genetic distance was suggestive of a high level of breeding between landrace and weedy rice, and the landrace showing a closer association with wild rice than weedy rice. Population structure and principal component analyses showed no obvious difference in the genetic backgrounds of landrace and weedy rice in mitochondrial genome level. Phylogenetic, population split, and haplotype network evaluations were suggestive of independent origins of the indica and japonica varieties. The origin of weedy rice is supposed to be more likely from cultivated rice rather than from wild rice in mitochondrial genome level. PMID:28256554

  15. Mixing of porpoise ecotypes in southwestern UK waters revealed by genetic profiling

    PubMed Central

    Thatcher, Oliver; Ray, Nicolas; Piry, Sylvain; Brownlow, Andrew; Davison, Nicholas J.; Jepson, Paul; Deaville, Rob; Goodman, Simon J.

    2017-01-01

    Contact zones between ecotypes are windows for understanding how species may react to climate changes. Here, we analysed the fine-scale genetic and morphological variation in harbour porpoises (Phocoena phocoena) around the UK by genotyping 591 stranded animals at nine microsatellite loci. The data were integrated with a prior study to map at high resolution the contact zone between two previously identified ecotypes meeting in the northern Bay of Biscay. Clustering and spatial analyses revealed that UK porpoises are derived from two genetic pools with porpoises from the southwestern UK being genetically differentiated, and having larger body sizes compared to those of other UK areas. Southwestern UK porpoises showed admixed ancestry between southern and northern ecotypes with a contact zone extending from the northern Bay of Biscay to the Celtic Sea and Channel. Around the UK, ancestry blends from one genetic group to the other along a southwest--northeast axis, correlating with body size variation, consistent with previously reported morphological differences between the two ecotypes. We also detected isolation by distance among juveniles but not in adults, suggesting that stranded juveniles display reduced intergenerational dispersal. The fine-scale structure of this admixture zone raises the question of how it will respond to future climate change and provides a reference point for further study. PMID:28405389

  16. Genetic variation architecture of mitochondrial genome reveals the differentiation in Korean landrace and weedy rice.

    PubMed

    Tong, Wei; He, Qiang; Park, Yong-Jin

    2017-03-03

    Mitochondrial genome variations have been detected despite the overall conservation of this gene content, which has been valuable for plant population genetics and evolutionary studies. Here, we describe mitochondrial variation architecture and our performance of a phylogenetic dissection of Korean landrace and weedy rice. A total of 4,717 variations across the mitochondrial genome were identified adjunct with 10 wild rice. Genetic diversity assessment revealed that wild rice has higher nucleotide diversity than landrace and/or weedy, and landrace rice has higher diversity than weedy rice. Genetic distance was suggestive of a high level of breeding between landrace and weedy rice, and the landrace showing a closer association with wild rice than weedy rice. Population structure and principal component analyses showed no obvious difference in the genetic backgrounds of landrace and weedy rice in mitochondrial genome level. Phylogenetic, population split, and haplotype network evaluations were suggestive of independent origins of the indica and japonica varieties. The origin of weedy rice is supposed to be more likely from cultivated rice rather than from wild rice in mitochondrial genome level.

  17. Molecular genetic diversity of Punica granatum L. (pomegranate) as revealed by microsatellite DNA markers (SSR).

    PubMed

    Hasnaoui, Nejib; Buonamici, Anna; Sebastiani, Federico; Mars, Messaoud; Zhang, Dapeng; Vendramin, Giovanni G

    2012-02-01

    Pomegranate (Punica granatum L.) is one of the oldest known edible fruits and more and more it arouse interest of scientific community given its numerous biological activities. However, information about its genetic resources and characterization using reliable molecular markers are still scarce. In the present study, we report the development of 4 new polymorphic SSR markers. They have been used in addition to 11 SSRs previously published to investigate molecular diversity of 33 P. granatum ecotypes. Based on the multi-locus profiles, twenty-two distinctive genotypes were identified. Globally, quite low genetic diversity has been revealed, as measured by allele richness (2.83 per locus) and heterozygosity (He=0.245; Ho=0.243), reflecting the narrow genetic background of the plant material. Four synonymous groups could be detected involving 15 accessions. Results of ordination and cluster analysis suggested that almost all the Tunisian cultivars share similar genetic background, and are likely derived from a small number of introductions in ancient times. Results issued from this study provide essential information to project a pomegranate core-collection without plant material duplication and for sustainable management of pomegranate landraces at national and international level. Furthermore, these SSR markers are powerful tool for marker assisted selection (MAS) program and for QTL studies.

  18. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity

    PubMed Central

    Pope, Welkin H; Bowman, Charles A; Russell, Daniel A; Jacobs-Sera, Deborah; Asai, David J; Cresawn, Steven G; Jacobs, William R; Hendrix, Roger W; Lawrence, Jeffrey G; Hatfull, Graham F; Abbazia, Patrick; Ababio, Amma; Adam, Naazneen

    2015-01-01

    The bacteriophage population is large, dynamic, ancient, and genetically diverse. Limited genomic information shows that phage genomes are mosaic, and the genetic architecture of phage populations remains ill-defined. To understand the population structure of phages infecting a single host strain, we isolated, sequenced, and compared 627 phages of Mycobacterium smegmatis. Their genetic diversity is considerable, and there are 28 distinct genomic types (clusters) with related nucleotide sequences. However, amino acid sequence comparisons show pervasive genomic mosaicism, and quantification of inter-cluster and intra-cluster relatedness reveals a continuum of genetic diversity, albeit with uneven representation of different phages. Furthermore, rarefaction analysis shows that the mycobacteriophage population is not closed, and there is a constant influx of genes from other sources. Phage isolation and analysis was performed by a large consortium of academic institutions, illustrating the substantial benefits of a disseminated, structured program involving large numbers of freshman undergraduates in scientific discovery. DOI: http://dx.doi.org/10.7554/eLife.06416.001 PMID:25919952

  19. The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges.

    PubMed

    Riesgo, Ana; Farrar, Nathan; Windsor, Pamela J; Giribet, Gonzalo; Leys, Sally P

    2014-05-01

    Sponges (Porifera) are among the earliest evolving metazoans. Their filter-feeding body plan based on choanocyte chambers organized into a complex aquiferous system is so unique among metazoans that it either reflects an early divergence from other animals prior to the evolution of features such as muscles and nerves, or that sponges lost these characters. Analyses of the Amphimedon and Oscarella genomes support this view of uniqueness-many key metazoan genes are absent in these sponges-but whether this is generally true of other sponges remains unknown. We studied the transcriptomes of eight sponge species in four classes (Hexactinellida, Demospongiae, Homoscleromorpha, and Calcarea) specifically seeking genes and pathways considered to be involved in animal complexity. For reference, we also sought these genes in transcriptomes and genomes of three unicellular opisthokonts, two sponges (A. queenslandica and O. carmela), and two bilaterian taxa. Our analyses showed that all sponge classes share an unexpectedly large complement of genes with other metazoans. Interestingly, hexactinellid, calcareous, and homoscleromorph sponges share more genes with bilaterians than with nonbilaterian metazoans. We were surprised to find representatives of most molecules involved in cell-cell communication, signaling, complex epithelia, immune recognition, and germ-lineage/sex, with only a few, but potentially key, absences. A noteworthy finding was that some important genes were absent from all demosponges (transcriptomes and the Amphimedon genome), which might reflect divergence from main-stem lineages including hexactinellids, calcareous sponges, and homoscleromorphs. Our results suggest that genetic complexity arose early in evolution as shown by the presence of these genes in most of the animal lineages, which suggests sponges either possess cryptic physiological and morphological complexity and/or have lost ancestral cell types or physiological processes.

  20. Yeast genetic analysis reveals the involvement of chromatin reassembly factors in repressing HIV-1 basal transcription.

    PubMed

    Vanti, Manuela; Gallastegui, Edurne; Respaldiza, Iñaki; Rodríguez-Gil, Alfonso; Gómez-Herreros, Fernando; Jimeno-González, Silvia; Jordan, Albert; Chávez, Sebastián

    2009-01-01

    Rebound of HIV viremia after interruption of anti-retroviral therapy is due to the small population of CD4+ T cells that remain latently infected. HIV-1 transcription is the main process controlling post-integration latency. Regulation of HIV-1 transcription takes place at both initiation and elongation levels. Pausing of RNA polymerase II at the 5' end of HIV-1 transcribed region (5'HIV-TR), which is immediately downstream of the transcription start site, plays an important role in the regulation of viral expression. The activation of HIV-1 transcription correlates with the rearrangement of a positioned nucleosome located at this region. These two facts suggest that the 5'HIV-TR contributes to inhibit basal transcription of those HIV-1 proviruses that remain latently inactive. However, little is known about the cell elements mediating the repressive role of the 5'HIV-TR. We performed a genetic analysis of this phenomenon in Saccharomyces cerevisiae after reconstructing a minimal HIV-1 transcriptional system in this yeast. Unexpectedly, we found that the critical role played by the 5'HIV-TR in maintaining low levels of basal transcription in yeast is mediated by FACT, Spt6, and Chd1, proteins so far associated with chromatin assembly and disassembly during ongoing transcription. We confirmed that this group of factors plays a role in HIV-1 postintegration latency in human cells by depleting the corresponding human orthologs with shRNAs, both in HIV latently infected cell populations and in particular single-integration clones, including a latent clone with a provirus integrated in a highly transcribed gene. Our results indicate that chromatin reassembly factors participate in the establishment of the equilibrium between activation and repression of HIV-1 when it integrates into the human genome, and they open the possibility of considering these factors as therapeutic targets of HIV-1 latency.

  1. Ancient DNA reveals key stages in the formation of Central European mitochondrial genetic diversity

    PubMed Central

    Brandt, Guido; Haak, Wolfgang; Adler, Christina J.; Roth, Christina; Szécsényi-Nagy, Anna; Karimnia, Sarah; Möller-Rieker, Sabine; Meller, Harald; Ganslmeier, Robert; Friederich, Susanne; Dresely, Veit; Nicklisch, Nicole; Pickrell, Joseph K.; Sirocko, Frank; Reich, David; Cooper, Alan; Alt, Kurt W.

    2014-01-01

    The processes which shaped modern European mitochondrial DNA (mtDNA) variation remain unclear. The initial peopling by Palaeolithic hunter-gatherers ~42kyrs ago and the immigration of Neolithic farmers into Europe ~8kyrs ago appear to have played important roles, but do not explain present-day mtDNA diversity. We generated mtDNA profiles of 364 individuals from prehistoric cultures in Central Europe to perform a chronological study, spanning the Early Neolithic to the Early Bronze Age (5,500–1,550 cal BC). We use this transect through time to identify four marked shifts in genetic composition during the Neolithic period, revealing a key role for Late Neolithic cultures in shaping modern Central European genetic diversity. PMID:24115443

  2. Ancient DNA reveals key stages in the formation of central European mitochondrial genetic diversity.

    PubMed

    Brandt, Guido; Haak, Wolfgang; Adler, Christina J; Roth, Christina; Szécsényi-Nagy, Anna; Karimnia, Sarah; Möller-Rieker, Sabine; Meller, Harald; Ganslmeier, Robert; Friederich, Susanne; Dresely, Veit; Nicklisch, Nicole; Pickrell, Joseph K; Sirocko, Frank; Reich, David; Cooper, Alan; Alt, Kurt W

    2013-10-11

    The processes that shaped modern European mitochondrial DNA (mtDNA) variation remain unclear. The initial peopling by Palaeolithic hunter-gatherers ~42,000 years ago and the immigration of Neolithic farmers into Europe ~8000 years ago appear to have played important roles but do not explain present-day mtDNA diversity. We generated mtDNA profiles of 364 individuals from prehistoric cultures in Central Europe to perform a chronological study, spanning the Early Neolithic to the Early Bronze Age (5500 to 1550 calibrated years before the common era). We used this transect through time to identify four marked shifts in genetic composition during the Neolithic period, revealing a key role for Late Neolithic cultures in shaping modern Central European genetic diversity.

  3. Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning.

    PubMed

    Frank, Michael J; Moustafa, Ahmed A; Haughey, Heather M; Curran, Tim; Hutchison, Kent E

    2007-10-09

    What are the genetic and neural components that support adaptive learning from positive and negative outcomes? Here, we show with genetic analyses that three independent dopaminergic mechanisms contribute to reward and avoidance learning in humans. A polymorphism in the DARPP-32 gene, associated with striatal dopamine function, predicted relatively better probabilistic reward learning. Conversely, the C957T polymorphism of the DRD2 gene, associated with striatal D2 receptor function, predicted the degree to which participants learned to avoid choices that had been probabilistically associated with negative outcomes. The Val/Met polymorphism of the COMT gene, associated with prefrontal cortical dopamine function, predicted participants' ability to rapidly adapt behavior on a trial-to-trial basis. These findings support a neurocomputational dissociation between striatal and prefrontal dopaminergic mechanisms in reinforcement learning. Computational maximum likelihood analyses reveal independent gene effects on three reinforcement learning parameters that can explain the observed dissociations.

  4. Facultative cheater mutants reveal the genetic complexity of cooperation in social amoebae.

    PubMed

    Santorelli, Lorenzo A; Thompson, Christopher R L; Villegas, Elizabeth; Svetz, Jessica; Dinh, Christopher; Parikh, Anup; Sucgang, Richard; Kuspa, Adam; Strassmann, Joan E; Queller, David C; Shaulsky, Gad

    2008-02-28

    Cooperation is central to many major transitions in evolution, including the emergence of eukaryotic cells, multicellularity and eusociality. Cooperation can be destroyed by the spread of cheater mutants that do not cooperate but gain the benefits of cooperation from others. However, cooperation can be preserved if cheaters are facultative, cheating others but cooperating among themselves. Several cheater mutants have been studied before, but no study has attempted a genome-scale investigation of the genetic opportunities for cheating. Here we describe such a screen in a social amoeba and show that cheating is multifaceted by revealing cheater mutations in well over 100 genes of diverse types. Many of these mutants cheat facultatively, producing more than their fair share of spores in chimaeras, but cooperating normally when clonal. These findings indicate that phenotypically stable cooperative systems may nevertheless harbour genetic conflicts. The opportunities for evolutionary moves and countermoves in such conflicts may select for the involvement of multiple pathways and numerous genes.

  5. Genetic diversity and structure in Leishmania infantum populations from southeastern Europe revealed by microsatellite analysis

    PubMed Central

    2013-01-01

    Background The dynamic re-emergence of visceral leishmaniasis (VL) in south Europe and the northward shift to Leishmania-free European countries are well-documented. However, the epidemiology of VL due to Leishmania infantum in southeastern (SE) Europe and the Balkans is inadequately examined. Herein, we aim to re-evaluate and compare the population structure of L. infantum in SE and southwestern (SW) Europe. Methods Leishmania strains collected from humans and canines in Turkey, Cyprus, Bulgaria, Greece, Albania and Croatia, were characterized by the K26-PCR assay and multilocus enzyme electrophoresis (MLEE). Genetic diversity was assessed by multilocus microsatellite typing (MLMT) and MLM Types were analyzed by model- and distance- based algorithms to infer the population structure of 128 L. infantum strains. Results L. infantum MON-1 was found predominant in SE Europe, whilst 16.8% of strains were MON-98. Distinct genetic populations revealed clear differentiation between SE and SW European strains. Interestingly, Cypriot canine isolates were genetically isolated and formed a monophyletic group, suggesting the constitution of a clonal MON-1 population circulating among dogs. In contrast, two highly heterogeneous populations enclosed all MON-1 and MON-98 strains from the other SE European countries. Structure sub-clustering, phylogenetic and Splitstree analysis also revealed two distinct Croatian subpopulations. A mosaic of evolutionary effects resulted in consecutive sub-structuring, which indicated substantial differentiation and gene flow among strains of both zymodemes. Conclusions This is the first population genetic study of L. infantum in SE Europe and the Balkans. Our findings demonstrate the differentiation between SE and SW European strains; revealing the partition of Croatian strains between these populations and the genetic isolation of Cypriot strains. This mirrors the geographic position of Croatia located in central Europe and the natural

  6. Genetic variation in horizontally transmitted fungal endophytes of pine needles reveals population structure in cryptic species.

    PubMed

    Oono, Ryoko; Lutzoni, François; Arnold, A Elizabeth; Kaye, Laurel; U'Ren, Jana M; May, Georgiana; Carbone, Ignazio

    2014-08-01

    • Fungal endophytes comprise one of the most ubiquitous groups of plant symbionts, inhabiting healthy leaves and stems of all major lineages of plants. Together, they comprise immense species richness, but little is known about the fundamental processes that generate their diversity. Exploration of their population structure is needed, especially with regard to geographic distributions and host affiliations.• We take a multilocus approach to examine genetic variation within and among populations of Lophodermium australe, an endophytic fungus commonly associated with healthy foliage of pines in the southeastern United States. Sampling focused on two pine species ranging from montane to coastal regions of North Carolina and Virginia.• Our sampling revealed two genetically distinct groups within Lophodermium australe. Our analysis detected less than one migrant per generation between them, indicating that they are distinct species. The species comprising the majority of isolates (major species) demonstrated a panmictic structure, whereas the species comprising the minority of isolates (cryptic species) demonstrated isolation by distance. Distantly related pine species hosted the same Lophodermium species, and host species did not influence genetic structure.• We present the first evidence for isolation by distance in a foliar fungal endophyte that is horizontally transmitted. Cryptic species may be common among microbial symbionts and are important to delimit when exploring their genetic structure and microevolutionary processes. The hyperdiversity of endophytic fungi may be explained in part by cryptic species without apparent ecological and morphological differences as well as genetic diversification within rare fungal species across large spatial scales. © 2014 Botanical Society of America, Inc.

  7. The Nature of Genetic Variation for Complex Traits Revealed by GWAS and Regional Heritability Mapping Analyses

    PubMed Central

    Caballero, Armando; Tenesa, Albert; Keightley, Peter D.

    2015-01-01

    We use computer simulations to investigate the amount of genetic variation for complex traits that can be revealed by single-SNP genome-wide association studies (GWAS) or regional heritability mapping (RHM) analyses based on full genome sequence data or SNP chips. We model a large population subject to mutation, recombination, selection, and drift, assuming a pleiotropic model of mutations sampled from a bivariate distribution of effects of mutations on a quantitative trait and fitness. The pleiotropic model investigated, in contrast to previous models, implies that common mutations of large effect are responsible for most of the genetic variation for quantitative traits, except when the trait is fitness itself. We show that GWAS applied to the full sequence increases the number of QTL detected by as much as 50% compared to the number found with SNP chips but only modestly increases the amount of additive genetic variance explained. Even with full sequence data, the total amount of additive variance explained is generally below 50%. Using RHM on the full sequence data, a slightly larger number of QTL are detected than by GWAS if the same probability threshold is assumed, but these QTL explain a slightly smaller amount of genetic variance. Our results also suggest that most of the missing heritability is due to the inability to detect variants of moderate effect (∼0.03–0.3 phenotypic SDs) segregating at substantial frequencies. Very rare variants, which are more difficult to detect by GWAS, are expected to contribute little genetic variation, so their eventual detection is less relevant for resolving the missing heritability problem. PMID:26482794

  8. Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring

    PubMed Central

    Lamichhaney, Sangeet; Barrio, Alvaro Martinez; Rafati, Nima; Sundström, Görel; Rubin, Carl-Johan; Gilbert, Elizabeth R.; Berglund, Jonas; Wetterbom, Anna; Laikre, Linda; Webster, Matthew T.; Grabherr, Manfred; Ryman, Nils; Andersson, Leif

    2012-01-01

    The Atlantic herring (Clupea harengus), one of the most abundant marine fishes in the world, has historically been a critical food source in Northern Europe. It is one of the few marine species that can reproduce throughout the brackish salinity gradient of the Baltic Sea. Previous studies based on few genetic markers have revealed a conspicuous lack of genetic differentiation between geographic regions, consistent with huge population sizes and minute genetic drift. Here, we present a cost-effective genome-wide study in a species that lacks a genome sequence. We first assembled a muscle transcriptome and then aligned genomic reads to the transcripts, creating an “exome assembly,” capturing both exons and flanking sequences. We then resequenced pools of fish from a wide geographic range, including the Northeast Atlantic, as well as different regions in the Baltic Sea, aligned the reads to the exome assembly, and identified 440,817 SNPs. The great majority of SNPs showed no appreciable differences in allele frequency among populations; however, several thousand SNPs showed striking differences, some approaching fixation for different alleles. The contrast between low genetic differentiation at most loci and striking differences at others implies that the latter category primarily reflects natural selection. A simulation study confirmed that the distribution of the fixation index FST deviated significantly from expectation for selectively neutral loci. This study provides insights concerning the population structure of an important marine fish and establishes the Atlantic herring as a model for population genetic studies of adaptation and natural selection. PMID:23134729

  9. Disease-aging network reveals significant roles of aging genes in connecting genetic diseases.

    PubMed

    Wang, Jiguang; Zhang, Shihua; Wang, Yong; Chen, Luonan; Zhang, Xiang-Sun

    2009-09-01

    One of the challenging problems in biology and medicine is exploring the underlying mechanisms of genetic diseases. Recent studies suggest that the relationship between genetic diseases and the aging process is important in understanding the molecular mechanisms of complex diseases. Although some intricate associations have been investigated for a long time, the studies are still in their early stages. In this paper, we construct a human disease-aging network to study the relationship among aging genes and genetic disease genes. Specifically, we integrate human protein-protein interactions (PPIs), disease-gene associations, aging-gene associations, and physiological system-based genetic disease classification information in a single graph-theoretic framework and find that (1) human disease genes are much closer to aging genes than expected by chance; and (2) diseases can be categorized into two types according to their relationships with aging. Type I diseases have their genes significantly close to aging genes, while type II diseases do not. Furthermore, we examine the topological characters of the disease-aging network from a systems perspective. Theoretical results reveal that the genes of type I diseases are in a central position of a PPI network while type II are not; (3) more importantly, we define an asymmetric closeness based on the PPI network to describe relationships between diseases, and find that aging genes make a significant contribution to associations among diseases, especially among type I diseases. In conclusion, the network-based study provides not only evidence for the intricate relationship between the aging process and genetic diseases, but also biological implications for prying into the nature of human diseases.

  10. Comparative sequence and genetic analyses of asparagus BACs reveal no microsynteny with onion or rice.

    PubMed

    Jakse, Jernej; Telgmann, Alexa; Jung, Christian; Khar, Anil; Melgar, Sergio; Cheung, Foo; Town, Christopher D; Havey, Michael J

    2006-12-01

    The Poales (includes the grasses) and Asparagales [includes onion (Allium cepa L.) and asparagus (Asparagus officinalis L.)] are the two most economically important monocot orders. The Poales are a member of the commelinoid monocots, a group of orders sister to the Asparagales. Comparative genomic analyses have revealed a high degree of synteny among the grasses; however, it is not known if this synteny extends to other major monocot groups such as the Asparagales. Although we previously reported no evidence for synteny at the recombinational level between onion and rice, microsynteny may exist across shorter genomic regions in the grasses and Asparagales. We sequenced nine asparagus BACs to reveal physically linked genic-like sequences and determined their most similar positions in the onion and rice genomes. Four of the asparagus BACs were selected using molecular markers tightly linked to the sex-determining M locus on chromosome 5 of asparagus. These BACs possessed only two putative coding regions and had long tracts of degenerated retroviral elements and transposons. Five asparagus BACs were selected after hybridization of three onion cDNAs that mapped to three different onion chromosomes. Genic-like sequences that were physically linked on the cDNA-selected BACs or genetically linked on the M-linked BACs showed significant similarities (e < -20) to expressed sequences on different rice chromosomes, revealing no evidence for microsynteny between asparagus and rice across these regions. Genic-like sequences that were linked in asparagus were used to identify highly similar (e < -20) expressed sequence tags (ESTs) of onion. These onion ESTs mapped to different onion chromosomes and no relationship was observed between physical or genetic linkages in asparagus and genetic linkages in onion. These results further indicate that synteny among grass genomes does not extend to a sister order in the monocots and that asparagus may not be an appropriate smaller genome

  11. Globalization’s unexpected impact on soybean production in South America: linkages between preferences for non-genetically modified crops, eco-certifications, and land use

    NASA Astrophysics Data System (ADS)

    Garrett, Rachael D.; Rueda, Ximena; Lambin, Eric F.

    2013-12-01

    The land use impacts of globalization and of increasing global food and fuel demand depend on the trade relationships that emerge between consuming and producing countries. In the case of soybean production, increasing trade between South American farmers and consumers in Asia and Europe has facilitated soybean expansion in the Amazon, Chaco, and Cerrado biomes. While these telecouplings have been well documented, there is little understanding of how quality preferences influence trade patterns and supply chains, incentivizing or discouraging particular land use practices. In this study we provide empirical evidence that Brazil’s continued production of non-genetically modified (GM) soybeans has increased its competitive advantage in European countries with preferences against GM foods. Brazil’s strong trade relationship with European consumers has facilitated an upgrading of the soybean supply chain. Upgraded soybean supply chains create new conservation opportunities by allowing farmers to differentiate their products based on environmental quality in order to access premiums in niche markets in Europe. These interactions between GM preferences, trade flows, and supply chain structure help to explain why Brazilian soybean farmers have adopted environmental certification programs on a larger scale than Argentinian, Bolivian, Paraguayan, and Uruguayan soybean producers.

  12. Genetic differentiation within Eriochoir sinensis (milne, edwards) revealed by allozyme and RAPD

    NASA Astrophysics Data System (ADS)

    Cui, Zhao-Xia; Xiang, Jian-Hai; Song, Lin-Sheng; Zhou, Ling-Hua; Shi, Wei-Liang

    2000-09-01

    We analyzed 17 allozymes, and 20 primers in order to detect the genetic differentiation between commercial populations (Changjiang River, Liaohe River) of Eriochoir sinensis. Ten allozymes (LDH, MDH, ME, IDH, EST, ALP, AAT, CTL, POD, SOD) showed 21 loci by vertically discontinuos buffer system polyacrylamide gel electrophoresis. RAPD profiles generated by 12 ten-base primers showed 63 loci. The percentage of polymorphic loci and the expected heterozygosity obtained by using allozyme analysis were lower than those obtained by RAPD. The index of similarity between these two populations were 0.955 and 0.932 as revealed by allozyme analysis and RAPD technology. There was gene flow between the above populations.

  13. Unexpected population genetic structure of European roe deer in Poland: an invasion of the mtDNA genome from Siberian roe deer.

    PubMed

    Matosiuk, Maciej; Borkowska, Anetta; Świsłocka, Magdalena; Mirski, Paweł; Borowski, Zbigniew; Krysiuk, Kamil; Danilkin, Aleksey A; Zvychaynaya, Elena Y; Saveljev, Alexander P; Ratkiewicz, Mirosław

    2014-05-01

    Introgressive hybridization is a widespread evolutionary phenomenon which may lead to increased allelic variation at selective neutral loci and to transfer of fitness-related traits to introgressed lineages. We inferred the population genetic structure of the European roe deer (Capreolus capreolus) in Poland from mitochondrial (CR and cyt b) and sex-linked markers (ZFX, SRY, DBY4 and DBY8). Analyses of CR mtDNA sequences from 452 individuals indicated widespread introgression of Siberian roe deer (C. pygargus) mtDNA in the European roe deer genome, 2000 km from the current distribution range of C. pygargus. Introgressed individuals constituted 16.6% of the deer studied. Nearly 75% of them possessed haplotypes belonging to the group which arose 23 kyr ago and have not been detected within the natural range of Siberian roe deer, indicating that majority of present introgression has ancient origin. Unlike the mtDNA results, sex-specific markers did not show signs of introgression. Species distribution modelling analyses suggested that C. pygargus could have extended its range as far west as Central Europe after last glacial maximum. The main hybridization event was probably associated with range expansion of the most abundant European roe deer lineage from western refugia and took place in Central Europe after the Younger Dryas (10.8-10.0 ka BP). Initially, introgressed mtDNA variants could have spread out on the wave of expansion through the mechanism of gene surfing, reaching high frequencies in European roe deer populations and leading to observed asymmetrical gene flow. Human-mediated introductions of C. pygargus had minimal effect on the extent of mtDNA introgression.

  14. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease.

    PubMed

    Xiong, Hui Y; Alipanahi, Babak; Lee, Leo J; Bretschneider, Hannes; Merico, Daniele; Yuen, Ryan K C; Hua, Yimin; Gueroussov, Serge; Najafabadi, Hamed S; Hughes, Timothy R; Morris, Quaid; Barash, Yoseph; Krainer, Adrian R; Jojic, Nebojsa; Scherer, Stephen W; Blencowe, Benjamin J; Frey, Brendan J

    2015-01-09

    To facilitate precision medicine and whole-genome annotation, we developed a machine-learning technique that scores how strongly genetic variants affect RNA splicing, whose alteration contributes to many diseases. Analysis of more than 650,000 intronic and exonic variants revealed widespread patterns of mutation-driven aberrant splicing. Intronic disease mutations that are more than 30 nucleotides from any splice site alter splicing nine times as often as common variants, and missense exonic disease mutations that have the least impact on protein function are five times as likely as others to alter splicing. We detected tens of thousands of disease-causing mutations, including those involved in cancers and spinal muscular atrophy. Examination of intronic and exonic variants found using whole-genome sequencing of individuals with autism revealed misspliced genes with neurodevelopmental phenotypes. Our approach provides evidence for causal variants and should enable new discoveries in precision medicine.

  15. Unexpected Angiography Findings and Effects on Management

    PubMed Central

    Neill, Matthew; Charles, Hearns W; Gross, Jonathan S; Farquharson, Sean; Deipolyi, Amy R

    2016-01-01

    Despite progress in noninvasive imaging with computed tomography and magnetic resonance imaging, conventional angiography still contributes to the diagnostic workup of oncologic and other diseases. Arteriography can reveal tumors not evident on cross-sectional imaging, in addition to defining aberrant or unexpected arterial supply to targeted lesions. This additional and potentially unanticipated information can alter management decisions during interventional procedures. PMID:27688932

  16. Mitochondrial DNA Reveals Genetic Structuring of Pinna nobilis across the Mediterranean Sea

    PubMed Central

    Sanna, Daria; Cossu, Piero; Dedola, Gian Luca; Scarpa, Fabio; Maltagliati, Ferruccio; Castelli, Alberto; Franzoi, Piero; Lai, Tiziana; Cristo, Benedetto; Curini-Galletti, Marco; Francalacci, Paolo; Casu, Marco

    2013-01-01

    Pinna nobilis is the largest endemic Mediterranean marine bivalve. During past centuries, various human activities have promoted the regression of its populations. As a consequence of stringent standards of protection, demographic expansions are currently reported in many sites. The aim of this study was to provide the first large broad-scale insight into the genetic variability of P. nobilis in the area that encompasses the western Mediterranean, Ionian Sea, and Adriatic Sea marine ecoregions. To accomplish this objective twenty-five populations from this area were surveyed using two mitochondrial DNA markers (COI and 16S). Our dataset was then merged with those obtained in other studies for the Aegean and Tunisian populations (eastern Mediterranean), and statistical analyses (Bayesian model-based clustering, median-joining network, AMOVA, mismatch distribution, Tajima’s and Fu’s neutrality tests and Bayesian skyline plots) were performed. The results revealed genetic divergence among three distinguishable areas: (1) western Mediterranean and Ionian Sea; (2) Adriatic Sea; and (3) Aegean Sea and Tunisian coastal areas. From a conservational point of view, populations from the three genetically divergent groups found may be considered as different management units. PMID:23840684

  17. Whole-Genome Sequencing Reveals Genetic Variation in the Asian House Rat

    PubMed Central

    Teng, Huajing; Zhang, Yaohua; Shi, Chengmin; Mao, Fengbiao; Hou, Lingling; Guo, Hongling; Sun, Zhongsheng; Zhang, Jianxu

    2016-01-01

    Whole-genome sequencing of wild-derived rat species can provide novel genomic resources, which may help decipher the genetics underlying complex phenotypes. As a notorious pest, reservoir of human pathogens, and colonizer, the Asian house rat, Rattus tanezumi, is successfully adapted to its habitat. However, little is known regarding genetic variation in this species. In this study, we identified over 41,000,000 single-nucleotide polymorphisms, plus insertions and deletions, through whole-genome sequencing and bioinformatics analyses. Moreover, we identified over 12,000 structural variants, including 143 chromosomal inversions. Further functional analyses revealed several fixed nonsense mutations associated with infection and immunity-related adaptations, and a number of fixed missense mutations that may be related to anticoagulant resistance. A genome-wide scan for loci under selection identified various genes related to neural activity. Our whole-genome sequencing data provide a genomic resource for future genetic studies of the Asian house rat species and have the potential to facilitate understanding of the molecular adaptations of rats to their ecological niches. PMID:27172215

  18. A Comprehensive Genomic Analysis Reveals the Genetic Landscape of Mitochondrial Respiratory Chain Complex Deficiencies

    PubMed Central

    Nyuzuki, Hiromi; Moriyama, Yohsuke; Mizuno, Yosuke; Hirata, Tomoko; Yatsuka, Yukiko; Yamashita-Sugahara, Yzumi; Nakachi, Yutaka; Kato, Hidemasa; Okuda, Akihiko; Tamaru, Shunsuke; Borna, Nurun Nahar; Banshoya, Kengo; Aigaki, Toshiro; Sato-Miyata, Yukiko; Ohnuma, Kohei; Suzuki, Tsutomu; Nagao, Asuteka; Maehata, Hazuki; Matsuda, Fumihiko; Higasa, Koichiro; Nagasaki, Masao; Yasuda, Jun; Yamamoto, Masayuki; Fushimi, Takuya; Shimura, Masaru; Kaiho-Ichimoto, Keiko; Harashima, Hiroko; Yamazaki, Taro; Mori, Masato; Murayama, Kei; Ohtake, Akira; Okazaki, Yasushi

    2016-01-01

    Mitochondrial disorders have the highest incidence among congenital metabolic disorders characterized by biochemical respiratory chain complex deficiencies. It occurs at a rate of 1 in 5,000 births, and has phenotypic and genetic heterogeneity. Mutations in about 1,500 nuclear encoded mitochondrial proteins may cause mitochondrial dysfunction of energy production and mitochondrial disorders. More than 250 genes that cause mitochondrial disorders have been reported to date. However exact genetic diagnosis for patients still remained largely unknown. To reveal this heterogeneity, we performed comprehensive genomic analyses for 142 patients with childhood-onset mitochondrial respiratory chain complex deficiencies. The approach includes whole mtDNA and exome analyses using high-throughput sequencing, and chromosomal aberration analyses using high-density oligonucleotide arrays. We identified 37 novel mutations in known mitochondrial disease genes and 3 mitochondria-related genes (MRPS23, QRSL1, and PNPLA4) as novel causative genes. We also identified 2 genes known to cause monogenic diseases (MECP2 and TNNI3) and 3 chromosomal aberrations (6q24.3-q25.1, 17p12, and 22q11.21) as causes in this cohort. Our approaches enhance the ability to identify pathogenic gene mutations in patients with biochemically defined mitochondrial respiratory chain complex deficiencies in clinical settings. They also underscore clinical and genetic heterogeneity and will improve patient care of this complex disorder. PMID:26741492

  19. Genetic diversity of grasspea and its relative species revealed by SSR markers.

    PubMed

    Wang, Fang; Yang, Tao; Burlyaeva, Marina; Li, Ling; Jiang, Junye; Fang, Li; Redden, Robert; Zong, Xuxiao

    2015-01-01

    The study of genetic diversity between Lathyrus sativus L. and its relative species may yield fundamental insights into evolutionary history and provide options to meet the challenge of climate changes. 30 SSR loci were employed to assess the genetic diversity and population structure of 283 individuals from wild and domesticated populations from Africa, Europe, Asia and ICARDA. The allele number per loci ranged from 3 to 14. The average gene diversity index and average polymorphism information content (PIC) was 0.5340 and 0.4817, respectively. A model based population structure analysis divided the germplasm resources into three subgroups: the relative species, the grasspea from Asia, and the grasspea from Europe and Africa. The UPGMA dendrogram and PCA cluster also demonstrated that Asian group was convincingly separated from the other group. The AMOVA result showed that the cultivated species was quite distinct from its relative species, however a low level of differentiation was revealed among their geographic origins. In all, these results provided a molecular basis for understanding genetic diversity of L. sativus and its relatives.

  20. Ethiopian genetic diversity reveals linguistic stratification and complex influences on the Ethiopian gene pool.

    PubMed

    Pagani, Luca; Kivisild, Toomas; Tarekegn, Ayele; Ekong, Rosemary; Plaster, Chris; Gallego Romero, Irene; Ayub, Qasim; Mehdi, S Qasim; Thomas, Mark G; Luiselli, Donata; Bekele, Endashaw; Bradman, Neil; Balding, David J; Tyler-Smith, Chris

    2012-07-13

    Humans and their ancestors have traversed the Ethiopian landscape for millions of years, and present-day Ethiopians show great cultural, linguistic, and historical diversity, which makes them essential for understanding African variability and human origins. We genotyped 235 individuals from ten Ethiopian and two neighboring (South Sudanese and Somali) populations on an Illumina Omni 1M chip. Genotypes were compared with published data from several African and non-African populations. Principal-component and STRUCTURE-like analyses confirmed substantial genetic diversity both within and between populations, and revealed a match between genetic data and linguistic affiliation. Using comparisons with African and non-African reference samples in 40-SNP genomic windows, we identified "African" and "non-African" haplotypic components for each Ethiopian individual. The non-African component, which includes the SLC24A5 allele associated with light skin pigmentation in Europeans, may represent gene flow into Africa, which we estimate to have occurred ~3 thousand years ago (kya). The non-African component was found to be more similar to populations inhabiting the Levant rather than the Arabian Peninsula, but the principal route for the expansion out of Africa ~60 kya remains unresolved. Linkage-disequilibrium decay with genomic distance was less rapid in both the whole genome and the African component than in southern African samples, suggesting a less ancient history for Ethiopian populations. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  1. Experimental evolution for generalists and specialists reveals multivariate genetic constraints on thermal reaction norms.

    PubMed

    Berger, D; Walters, R J; Blanckenhorn, W U

    2014-09-01

    Theory predicts the emergence of generalists in variable environments and antagonistic pleiotropy to favour specialists in constant environments, but empirical data seldom support such generalist-specialist trade-offs. We selected for generalists and specialists in the dung fly Sepsis punctum (Diptera: Sepsidae) under conditions that we predicted would reveal antagonistic pleiotropy and multivariate trade-offs underlying thermal reaction norms for juvenile development. We performed replicated laboratory evolution using four treatments: adaptation at a hot (31 °C) or a cold (15 °C) temperature, or under regimes fluctuating between these temperatures, either within or between generations. After 20 generations, we assessed parental effects and genetic responses of thermal reaction norms for three correlated life-history traits: size at maturity, juvenile growth rate and juvenile survival. We find evidence for antagonistic pleiotropy for performance at hot and cold temperatures, and a temperature-mediated trade-off between juvenile survival and size at maturity, suggesting that trade-offs associated with environmental tolerance can arise via intensified evolutionary compromises between genetically correlated traits. However, despite this antagonistic pleiotropy, we found no support for the evolution of increased thermal tolerance breadth at the expense of reduced maximal performance, suggesting low genetic variance in the generalist-specialist dimension.

  2. Mitochondrial DNA reveals genetic structuring of Pinna nobilis across the Mediterranean Sea.

    PubMed

    Sanna, Daria; Cossu, Piero; Dedola, Gian Luca; Scarpa, Fabio; Maltagliati, Ferruccio; Castelli, Alberto; Franzoi, Piero; Lai, Tiziana; Cristo, Benedetto; Curini-Galletti, Marco; Francalacci, Paolo; Casu, Marco

    2013-01-01

    Pinna nobilis is the largest endemic Mediterranean marine bivalve. During past centuries, various human activities have promoted the regression of its populations. As a consequence of stringent standards of protection, demographic expansions are currently reported in many sites. The aim of this study was to provide the first large broad-scale insight into the genetic variability of P. nobilis in the area that encompasses the western Mediterranean, Ionian Sea, and Adriatic Sea marine ecoregions. To accomplish this objective twenty-five populations from this area were surveyed using two mitochondrial DNA markers (COI and 16S). Our dataset was then merged with those obtained in other studies for the Aegean and Tunisian populations (eastern Mediterranean), and statistical analyses (Bayesian model-based clustering, median-joining network, AMOVA, mismatch distribution, Tajima's and Fu's neutrality tests and Bayesian skyline plots) were performed. The results revealed genetic divergence among three distinguishable areas: (1) western Mediterranean and Ionian Sea; (2) Adriatic Sea; and (3) Aegean Sea and Tunisian coastal areas. From a conservational point of view, populations from the three genetically divergent groups found may be considered as different management units.

  3. Genomic View of Bipolar Disorder Revealed by Whole Genome Sequencing in a Genetic Isolate

    PubMed Central

    Georgi, Benjamin; Craig, David; Kember, Rachel L.; Liu, Wencheng; Lindquist, Ingrid; Nasser, Sara; Brown, Christopher; Egeland, Janice A.; Paul, Steven M.; Bućan, Maja

    2014-01-01

    Bipolar disorder is a common, heritable mental illness characterized by recurrent episodes of mania and depression. Despite considerable effort to elucidate the genetic underpinnings of bipolar disorder, causative genetic risk factors remain elusive. We conducted a comprehensive genomic analysis of bipolar disorder in a large Old Order Amish pedigree. Microsatellite genotypes and high-density SNP-array genotypes of 388 family members were combined with whole genome sequence data for 50 of these subjects, comprising 18 parent-child trios. This study design permitted evaluation of candidate variants within the context of haplotype structure by resolving the phase in sequenced parent-child trios and by imputation of variants into multiple unsequenced siblings. Non-parametric and parametric linkage analysis of the entire pedigree as well as on smaller clusters of families identified several nominally significant linkage peaks, each of which included dozens of predicted deleterious variants. Close inspection of exonic and regulatory variants in genes under the linkage peaks using family-based association tests revealed additional credible candidate genes for functional studies and further replication in population-based cohorts. However, despite the in-depth genomic characterization of this unique, large and multigenerational pedigree from a genetic isolate, there was no convergence of evidence implicating a particular set of risk loci or common pathways. The striking haplotype and locus heterogeneity we observed has profound implications for the design of studies of bipolar and other related disorders. PMID:24625924

  4. Mitochondrial DNA analyses revealed low genetic diversity in the endangered Indian wild ass Equus hemionus khur.

    PubMed

    Khaire, Devendra; Atkulwar, Ashwin; Farah, Sameera; Baig, Mumtaz

    2017-09-01

    The Indian wild ass Equus hemionus khur, belonging to ass-like equid branch, inhabits the dry and arid desert of the Little Rann of Kutch, Gujarat. The E. h. khur is the sole survivor of Asiatic wild ass species/subspecies in South Asia. To provide first ever insights into the genetic diversity, phylogeny, and demography of the endangered Indian wild ass, we sampled 52 free-ranging individuals from the Little Rann of Kutch by using a non-invasive methodology. The sequencing of 230 bp in cytochrome b (Cyt b) and displacement loop (D-loop) region revealed that current ∼4000 extant population of Indian wild ass harbours low genetic diversity. Phylogenetic analyses confirmed that E. h. khur, E. h. onager, and E. h. kulan belong to a single strict monophyletic clade. Therefore, we suggest the delimitation of the five E. hemionus subspecies in vogue to a single species E. hemionus. The application of molecular clock confirmed that the Asiatic wild ass had undergone diversification 0.65 Million years ago. Demographic measurements assessed using a Bayesian skyline plot demonstrated decline in the maternal effective population size of the Indian wild ass during different periods; these periods coincided with the origin and rise of the Indus civilization in the northwest of the Indian subcontinent during the Neolithic. In conclusion, maintaining high genetic diversity in the existing isolated population of 4000 Indian wild asses inhabiting the wild ass sanctuary is important compared with subspecies preservation alone.

  5. Genetic Architecture of Charcoal Rot (Macrophomina phaseolina) Resistance in Soybean Revealed Using a Diverse Panel

    PubMed Central

    Coser, Sara M.; Chowda Reddy, R. V.; Zhang, Jiaoping; Mueller, Daren S.; Mengistu, Alemu; Wise, Kiersten A.; Allen, Tom W.; Singh, Arti; Singh, Asheesh K.

    2017-01-01

    Charcoal rot (CR) disease caused by Macrophomina phaseolina is responsible for significant yield losses in soybean production. Among the methods available for controlling this disease, breeding for resistance is the most promising. Progress in breeding efforts has been slow due to the insufficient information available on the genetic mechanisms related to resistance. Genome-wide association studies (GWAS) enable unraveling the genetic architecture of resistance and identification of causal genes. The aims of this study were to identify new sources of resistance to CR in a collection of 459 diverse plant introductions from the USDA Soybean Germplasm Core Collection using field and greenhouse screenings, and to conduct GWAS to identify candidate genes and associated molecular markers. New sources for CR resistance were identified from both field and greenhouse screening from maturity groups I, II, and III. Five significant single nucleotide polymorphism (SNP) and putative candidate genes related to abiotic and biotic stress responses are reported from the field screening; while greenhouse screening revealed eight loci associated with eight candidate gene families, all associated with functions controlling plant defense response. No overlap of markers or genes was observed between field and greenhouse screenings suggesting a complex molecular mechanism underlying resistance to CR in soybean with varied response to different environments; but our findings provide useful information for advancing breeding for CR resistance as well as the genetic mechanism of resistance. PMID:28983305

  6. Newly developed SSR markers reveal genetic diversity and geographical clustering in spinach (Spinacia oleracea).

    PubMed

    Göl, Şurhan; Göktay, Mehmet; Allmer, Jens; Doğanlar, Sami; Frary, Anne

    2017-08-01

    Spinach is a popular leafy green vegetable due to its nutritional composition. It contains high concentrations of vitamins A, E, C, and K, and folic acid. Development of genetic markers for spinach is important for diversity and breeding studies. In this work, Next Generation Sequencing (NGS) technology was used to develop genomic simple sequence repeat (SSR) markers. After cleaning and contig assembly, the sequence encompassed 2.5% of the 980 Mb spinach genome. The contigs were mined for SSRs. A total of 3852 SSRs were detected. Of these, 100 primer pairs were tested and 85% were found to yield clear, reproducible amplicons. These 85 markers were then applied to 48 spinach accessions from worldwide origins, resulting in 389 alleles with 89% polymorphism. The average gene diversity (GD) value of the markers (based on a GD calculation that ranges from 0 to 0.5) was 0.25. Our results demonstrated that the newly developed SSR markers are suitable for assessing genetic diversity and population structure of spinach germplasm. The markers also revealed clustering of the accessions based on geographical origin with clear separation of Far Eastern accessions which had the overall highest genetic diversity when compared with accessions from Persia, Turkey, Europe, and the USA. Thus, the SSR markers have good potential to provide valuable information for spinach breeding and germplasm management. Also they will be helpful for genome mapping and core collection establishment.

  7. Genetic Diversity of Grasspea and Its Relative Species Revealed by SSR Markers

    PubMed Central

    Wang, Fang; Yang, Tao; Burlyaeva, Marina; Li, Ling; Jiang, Junye; Fang, Li; Redden, Robert; Zong, Xuxiao

    2015-01-01

    The study of genetic diversity between Lathyrus sativus L. and its relative species may yield fundamental insights into evolutionary history and provide options to meet the challenge of climate changes. 30 SSR loci were employed to assess the genetic diversity and population structure of 283 individuals from wild and domesticated populations from Africa, Europe, Asia and ICARDA. The allele number per loci ranged from 3 to 14. The average gene diversity index and average polymorphism information content (PIC) was 0.5340 and 0.4817, respectively. A model based population structure analysis divided the germplasm resources into three subgroups: the relative species, the grasspea from Asia, and the grasspea from Europe and Africa. The UPGMA dendrogram and PCA cluster also demonstrated that Asian group was convincingly separated from the other group. The AMOVA result showed that the cultivated species was quite distinct from its relative species, however a low level of differentiation was revealed among their geographic origins. In all, these results provided a molecular basis for understanding genetic diversity of L. sativus and its relatives. PMID:25793712

  8. Time-series analysis reveals genetic responses to intensive management of razorback sucker (Xyrauchen texanus)

    PubMed Central

    Dowling, Thomas E; Turner, Thomas F; Carson, Evan W; Saltzgiver, Melody J; Adams, Deborah; Kesner, Brian; Marsh, Paul C

    2014-01-01

    Time-series analysis is used widely in ecology to study complex phenomena and may have considerable potential to clarify relationships of genetic and demographic processes in natural and exploited populations. We explored the utility of this approach to evaluate population responses to management in razorback sucker, a long-lived and fecund, but declining freshwater fish species. A core population in Lake Mohave (Arizona-Nevada, USA) has experienced no natural recruitment for decades and is maintained by harvesting naturally produced larvae from the lake, rearing them in protective custody, and repatriating them at sizes less vulnerable to predation. Analyses of mtDNA and 15 microsatellites characterized for sequential larval cohorts collected over a 15-year time series revealed no changes in geographic structuring but indicated significant increase in mtDNA diversity for the entire population over time. Likewise, ratios of annual effective breeders to annual census size (Nb/Na) increased significantly despite sevenfold reduction of Na. These results indicated that conservation actions diminished near-term extinction risk due to genetic factors and should now focus on increasing numbers of fish in Lake Mohave to ameliorate longer-term risks. More generally, time-series analysis permitted robust testing of trends in genetic diversity, despite low precision of some metrics. PMID:24665337

  9. A Comprehensive Genomic Analysis Reveals the Genetic Landscape of Mitochondrial Respiratory Chain Complex Deficiencies.

    PubMed

    Kohda, Masakazu; Tokuzawa, Yoshimi; Kishita, Yoshihito; Nyuzuki, Hiromi; Moriyama, Yohsuke; Mizuno, Yosuke; Hirata, Tomoko; Yatsuka, Yukiko; Yamashita-Sugahara, Yzumi; Nakachi, Yutaka; Kato, Hidemasa; Okuda, Akihiko; Tamaru, Shunsuke; Borna, Nurun Nahar; Banshoya, Kengo; Aigaki, Toshiro; Sato-Miyata, Yukiko; Ohnuma, Kohei; Suzuki, Tsutomu; Nagao, Asuteka; Maehata, Hazuki; Matsuda, Fumihiko; Higasa, Koichiro; Nagasaki, Masao; Yasuda, Jun; Yamamoto, Masayuki; Fushimi, Takuya; Shimura, Masaru; Kaiho-Ichimoto, Keiko; Harashima, Hiroko; Yamazaki, Taro; Mori, Masato; Murayama, Kei; Ohtake, Akira; Okazaki, Yasushi

    2016-01-01

    Mitochondrial disorders have the highest incidence among congenital metabolic disorders characterized by biochemical respiratory chain complex deficiencies. It occurs at a rate of 1 in 5,000 births, and has phenotypic and genetic heterogeneity. Mutations in about 1,500 nuclear encoded mitochondrial proteins may cause mitochondrial dysfunction of energy production and mitochondrial disorders. More than 250 genes that cause mitochondrial disorders have been reported to date. However exact genetic diagnosis for patients still remained largely unknown. To reveal this heterogeneity, we performed comprehensive genomic analyses for 142 patients with childhood-onset mitochondrial respiratory chain complex deficiencies. The approach includes whole mtDNA and exome analyses using high-throughput sequencing, and chromosomal aberration analyses using high-density oligonucleotide arrays. We identified 37 novel mutations in known mitochondrial disease genes and 3 mitochondria-related genes (MRPS23, QRSL1, and PNPLA4) as novel causative genes. We also identified 2 genes known to cause monogenic diseases (MECP2 and TNNI3) and 3 chromosomal aberrations (6q24.3-q25.1, 17p12, and 22q11.21) as causes in this cohort. Our approaches enhance the ability to identify pathogenic gene mutations in patients with biochemically defined mitochondrial respiratory chain complex deficiencies in clinical settings. They also underscore clinical and genetic heterogeneity and will improve patient care of this complex disorder.

  10. Genetic structure along an elevational gradient in Hawaiian honeycreepers reveals contrasting evolutionary responses to avian malaria

    PubMed Central

    2008-01-01

    Background The Hawaiian honeycreepers (Drepanidinae) are one of the best-known examples of an adaptive radiation, but their persistence today is threatened by the introduction of exotic pathogens and their vector, the mosquito Culex quinquefasciatus. Historically, species such as the amakihi (Hemignathus virens), the apapane (Himatione sanguinea), and the iiwi (Vestiaria coccinea) were found from the coastal lowlands to the high elevation forests, but by the late 1800's they had become extremely rare in habitats below 900 m. Recently, however, populations of amakihi and apapane have been observed in low elevation habitats. We used twelve polymorphic microsatellite loci to investigate patterns of genetic structure, and to infer responses of these species to introduced avian malaria along an elevational gradient on the eastern flanks of Mauna Loa and Kilauea volcanoes on the island of Hawaii. Results Our results indicate that amakihi have genetically distinct, spatially structured populations that correspond with altitude. We detected very few apapane and no iiwi in low-elevation habitats, and genetic results reveal only minimal differentiation between populations at different altitudes in either of these species. Conclusion Our results suggest that amakihi populations in low elevation habitats have not been recolonized by individuals from mid or high elevation refuges. After generations of strong selection for pathogen resistance, these populations have rebounded and amakihi have become common in regions in which they were previously rare or absent. PMID:19014596

  11. Genetic structure along an elevational gradient in Hawaiian honeycreepers reveals contrasting evolutionary responses to avian malaria

    USGS Publications Warehouse

    Eggert, L.S.; Terwilliger, L.A.; Woodworth, B.L.; Hart, P.J.; Palmer, D.; Fleischer, R.C.

    2008-01-01

    Background. The Hawaiian honeycreepers (Drepanidinae) are one of the best-known examples of an adaptive radiation, but their persistence today is threatened by the introduction of exotic pathogens and their vector, the mosquito Culex quinquefasciatus. Historically, species such as the amakihi (Hemignathus virens), the apapane (Himatione sanguinea), and the iiwi (Vestiaria coccinea) were found from the coastal lowlands to the high elevation forests, but by the late 1800's they had become extremely rare in habitats below 900 m. Recently, however, populations of amakihi and apapane have been observed in low elevation habitats. We used twelve polymorphic microsatellite loci to investigate patterns of genetic structure, and to infer responses of these species to introduced avian malaria along an elevational gradient on the eastern flanks of Mauna Loa and Kilauea volcanoes on the island of Hawaii. Results. Our results indicate that amakihi have genetically distinct, spatially structured populations that correspond with altitude. We detected very few apapane and no iiwi in low-elevation habitats, and genetic results reveal only minimal differentiation between populations at different altitudes in either of these species. Conclusion. Our results suggest that amakihi populations in low elevation habitats have not been recolonized by individuals from mid or high elevation refuges. After generations of strong selection for pathogen resistance, these populations have rebounded and amakihi have become common in regions in which they were previously rare or absent. ?? 2008 Eggert et al; licensee BioMed Central Ltd.

  12. Genomic analysis of clonal eosinophils by CGH arrays reveals new genetic regions involved in chronic eosinophilia.

    PubMed

    Arefi, Maryam; Robledo, Cristina; Peñarrubia, María J; García de Coca, Alfonso; Cordero, Miguel; Hernández-Rivas, Jesús M; García, Juan Luis

    2014-11-01

    To assess the presence of genetic imbalances in patients with myeloproliferative neoplasms (MPNs), 38 patients with chronic eosinophilia were studied by array comparative genomic hybridization (aCGH): seven had chronic myelogenous leukaemia (CML), BCR-ABL1 positive, nine patients had myeloproliferative neoplasia Ph- (MPN-Ph-), three had a myeloid neoplasm associated with a PDGFRA rearrangement, and the remaining two cases were Lymphoproliferative T neoplasms associated with eosinophilia. In addition, 17 patients had a secondary eosinophilia and were used as controls. Eosinophilic enrichment was carried out in all cases. Genomic imbalances were found in 76% of all MPN patients. Losses on 20q were the most frequent genetic abnormality in MPNs (32%), affected the three types of MPN studied. This study also found losses at 11q13.3 in 26% of patients with MPN-Ph- and in 19p13.11 in two of the three patients with an MPN associated with a PDGFRA rearrangement. In addition, 29% of patients with CML had losses on 8q24. In summary, aCGH revealed clonality in eosinophils in most MPNs, suggesting that it could be a useful technique for defining clonality in these diseases. The presence of genetic losses in new regions could provide new insights into the knowledge of these MPN associated with eosinophilia. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity.

    PubMed

    Jones, Michelle R; Brower, Meredith A; Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I; Taylor, Kent D; Azziz, Ricardo; Goodarzi, Mark O

    2015-08-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS.

  14. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity

    PubMed Central

    Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I.; Taylor, Kent D.; Azziz, Ricardo; Goodarzi, Mark O.

    2015-01-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS. PMID:26305227

  15. Genetic diversity and population structure of Sepia officinalis from the Tunisian cost revealed by mitochondrial COI sequences.

    PubMed

    Meriam, Tir; Wafa, Tombari; Khawla, Telahigue; Tarek, Hajji; Abdeljelil, Ghram; Mhamed, Elcafsi

    2015-01-01

    Population substructure of Sepia officinalis sampled along the Tunisian coastline was studied. We have scored the genetic variation of the mitochondrial gene cytochrome oxidase 1. A total of 20 specimens from four sampling sites were analysed and revealed 12 different haplotypes. Haplotype diversity showed a decreasing north to south gradient which may be explained by the hydrogeography of the study area. The overall estimate of genetic divergence (FST) revealed significant genetic differentiation between the pair-wise population comparisons supported by the AMOVA analysis which reveals significant genetic divergence. Finally, populations showed an excess of rare haplotypes. The mismatch distribution and several population genetic statistics indicate that the excess of rare variants is due to a recent expansion for Djerba and Kelibia populations. For Rades and Bizerte populations a constant population size was detected. These findings are important for fisheries management to preserve this marine resource for long-term utilization.

  16. Analyses of mitochondrial genes reveal two sympatric but genetically divergent lineages of Rhipicephalus appendiculatus in Kenya.

    PubMed

    Kanduma, Esther G; Mwacharo, Joram M; Githaka, Naftaly W; Kinyanjui, Peter W; Njuguna, Joyce N; Kamau, Lucy M; Kariuki, Edward; Mwaura, Stephen; Skilton, Robert A; Bishop, Richard P

    2016-06-22

    The ixodid tick Rhipicephalus appendiculatus transmits the apicomplexan protozoan parasite Theileria parva, which causes East coast fever (ECF), the most economically important cattle disease in eastern and southern Africa. Recent analysis of micro- and minisatellite markers showed an absence of geographical and host-associated genetic sub-structuring amongst field populations of R. appendiculatus in Kenya. To assess further the phylogenetic relationships between field and laboratory R. appendiculatus tick isolates, this study examined sequence variations at two mitochondrial genes, cytochrome c oxidase subunit I (COI) and 12S ribosomal RNA (rRNA), and the nuclear encoded ribosomal internal transcribed spacer 2 (ITS2) of the rRNA gene, respectively. The analysis of 332 COI sequences revealed 30 polymorphic sites, which defined 28 haplotypes that were separated into two distinct haplogroups (A and B). Inclusion of previously published haplotypes in our analysis revealed a high degree of phylogenetic complexity never reported before in haplogroup A. Neither haplogroup however, showed any clustering pattern related to either the geographical sampling location, the type of tick sampled (laboratory stocks vs field populations) or the mammalian host species. This finding was supported by the results obtained from the analysis of 12S rDNA sequences. Analysis of molecular variance (AMOVA) indicated that 90.8 % of the total genetic variation was explained by the two haplogroups, providing further support for their genetic divergence. These results were, however, not replicated by the nuclear transcribed ITS2 sequences likely because of recombination between the nuclear genomes maintaining a high level of genetic sequence conservation. COI and 12S rDNA are better markers than ITS2 for studying intraspecific diversity. Based on these genes, two major genetic groups of R. appendiculatus that have gone through a demographic expansion exist in Kenya. The two groups show no

  17. Comparison of a Modern and Fossil Pithovirus Reveals Its Genetic Conservation and Evolution

    PubMed Central

    Levasseur, Anthony; Andreani, Julien; Delerce, Jeremy; Bou Khalil, Jacques; Robert, Catherine; La Scola, Bernard; Raoult, Didier

    2016-01-01

    Most theories on viral evolution are speculative and lack fossil comparison. Here, we isolated a modern Pithovirus-like virus from sewage samples. This giant virus, named Pithovirus massiliensis, was compared with its prehistoric counterpart, Pithovirus sibericum, found in Siberian permafrost. Our analysis revealed near-complete gene repertoire conservation, including horizontal gene transfer and ORFans. Furthermore, all orthologous genes evolved under strong purifying selection with a non-synonymous and synonymous ratio in the same range as the ratio found in the prokaryotic world. The comparison between fossil and modern Pithovirus species provided an estimation of the cadence of the molecular clock, reaching up to 3 × 10−6 mutations/site/year. In addition, the strict conservation of HGTs and ORFans in P. massiliensis revealed the stable genetic mosaicism in giant viruses and excludes the concept of a bag of genes. The genetic stability for 30,000 years of P. massiliensis demonstrates that giant viruses evolve similarly to prokaryotes by classical mechanisms of evolution, including selection and fixation of genes, followed by selective constraints. PMID:27389688

  18. Comparison of a Modern and Fossil Pithovirus Reveals Its Genetic Conservation and Evolution.

    PubMed

    Levasseur, Anthony; Andreani, Julien; Delerce, Jeremy; Bou Khalil, Jacques; Robert, Catherine; La Scola, Bernard; Raoult, Didier

    2016-08-25

    Most theories on viral evolution are speculative and lack fossil comparison. Here, we isolated a modern Pithovirus-like virus from sewage samples. This giant virus, named Pithovirus massiliensis, was compared with its prehistoric counterpart, Pithovirus sibericum, found in Siberian permafrost. Our analysis revealed near-complete gene repertoire conservation, including horizontal gene transfer and ORFans. Furthermore, all orthologous genes evolved under strong purifying selection with a non-synonymous and synonymous ratio in the same range as the ratio found in the prokaryotic world. The comparison between fossil and modern Pithovirus species provided an estimation of the cadence of the molecular clock, reaching up to 3 × 10(-6) mutations/site/year. In addition, the strict conservation of HGTs and ORFans in P. massiliensis revealed the stable genetic mosaicism in giant viruses and excludes the concept of a bag of genes. The genetic stability for 30,000 years of P. massiliensis demonstrates that giant viruses evolve similarly to prokaryotes by classical mechanisms of evolution, including selection and fixation of genes, followed by selective constraints.

  19. Genetic relationships of the Japanese persimmon Diospyros kaki (Ebenaceae) and related species revealed by SSR analysis.

    PubMed

    Guo, D L; Luo, Z R

    2011-06-07

    Simple sequence repeat (SSR) molecular markers based on 18 primers were employed to study the genetic relationship of Japanese persimmon (Diospyros kaki) specimens. Two hundred and sixty-two bands were detected in 30 Japanese persimmon samples, including 14 Japanese and 10 Chinese genotypes of Japanese persimmon (Diospyros kaki) and six related species, D. lotus, D. glaucifolia, D. oleifera, D. rhombifolia, D. virginiana, and Jinzaoshi (unclassified - previously indicated to be D. kaki). All SSR primers developed from D. kaki were successfully employed to reveal the polymorphism in other species of Diospyros. Most of the primers were highly polymorphic, with a degree of polymorphism equal to or higher than 0.66. The results from the neighbor-joining dendrogram and the principal coordinate analysis diagram were the same; i.e., the Chinese and Japanese genotypes and related species were separated and the relationships revealed were consistent with the known pedigrees. We also concluded that 'Xiangxitianshi' from Xiangxi municipality, Hunan Province, China, is actually a sport or somaclonal variant of 'Maekawa-Jirou', and that 'Jinzaoshi' should be classified as a distinct species of Diospyros. We found that SSR markers are a valuable tool for the estimation of genetic diversity and divergence in Diospyros.

  20. Outlier SNP markers reveal fine-scale genetic structuring across European hake populations (Merluccius merluccius).

    PubMed

    Milano, Ilaria; Babbucci, Massimiliano; Cariani, Alessia; Atanassova, Miroslava; Bekkevold, Dorte; Carvalho, Gary R; Espiñeira, Montserrat; Fiorentino, Fabio; Garofalo, Germana; Geffen, Audrey J; Hansen, Jakob H; Helyar, Sarah J; Nielsen, Einar E; Ogden, Rob; Patarnello, Tomaso; Stagioni, Marco; Tinti, Fausto; Bargelloni, Luca

    2014-01-01

    Shallow population structure is generally reported for most marine fish and explained as a consequence of high dispersal, connectivity and large population size. Targeted gene analyses and more recently genome-wide studies have challenged such view, suggesting that adaptive divergence might occur even when neutral markers provide genetic homogeneity across populations. Here, 381 SNPs located in transcribed regions were used to assess large- and fine-scale population structure in the European hake (Merluccius merluccius), a widely distributed demersal species of high priority for the European fishery. Analysis of 850 individuals from 19 locations across the entire distribution range showed evidence for several outlier loci, with significantly higher resolving power. While 299 putatively neutral SNPs confirmed the genetic break between basins (F(CT) = 0.016) and weak differentiation within basins, outlier loci revealed a dramatic divergence between Atlantic and Mediterranean populations (F(CT) range 0.275-0.705) and fine-scale significant population structure. Outlier loci separated North Sea and Northern Portugal populations from all other Atlantic samples and revealed a strong differentiation among Western, Central and Eastern Mediterranean geographical samples. Significant correlation of allele frequencies at outlier loci with seawater surface temperature and salinity supported the hypothesis that populations might be adapted to local conditions. Such evidence highlights the importance of integrating information from neutral and adaptive evolutionary patterns towards a better assessment of genetic diversity. Accordingly, the generated outlier SNP data could be used for tackling illegal practices in hake fishing and commercialization as well as to develop explicit spatial models for defining management units and stock boundaries. © 2013 John Wiley & Sons Ltd.

  1. The Genetic Relationship between Leishmania aethiopica and Leishmania tropica Revealed by Comparing Microsatellite Profiles.

    PubMed

    Krayter, Lena; Schnur, Lionel F; Schönian, Gabriele

    2015-01-01

    Leishmania (Leishmania) aethiopica and L. (L.) tropica cause cutaneous leishmaniases and appear to be related. L. aethiopica is geographically restricted to Ethiopia and Kenya; L. tropica is widely dispersed from the Eastern Mediterranean, through the Middle East into eastern India and in north, east and south Africa. Their phylogenetic inter-relationship is only partially revealed. Some studies indicate a close relationship. Here, eight strains of L. aethiopica were characterized genetically and compared with 156 strains of L. tropica from most of the latter species' geographical range to discern the closeness. Twelve unlinked microsatellite markers previously used to genotype strains of L. tropica were successfully applied to the eight strains of L. aethiopica and their microsatellite profiles were compared to those of 156 strains of L. tropica from various geographical locations that were isolated from human cases of cutaneous and visceral leishmaniasis, hyraxes and sand fly vectors. All the microsatellite profiles were subjected to various analytical algorithms: Bayesian statistics, distance-based and factorial correspondence analysis, revealing: (i) the species L. aethiopica, though geographically restricted, is genetically very heterogeneous; (ii) the strains of L. aethiopica formed a distinct genetic cluster; and (iii) strains of L. aethiopica are closely related to strains of L. tropica and more so to the African ones, although, by factorial correspondence analysis, clearly separate from them. The successful application of the 12 microsatellite markers, originally considered species-specific for the species L. tropica, to strains of L. aethiopica confirmed the close relationship between these two species. The Bayesian and distance-based methods clustered the strains of L. aethiopica among African strains of L. tropica, while the factorial correspondence analysis indicated a clear separation between the two species. There was no correlation between

  2. Partitioning the Heritability of Tourette Syndrome and Obsessive Compulsive Disorder Reveals Differences in Genetic Architecture

    PubMed Central

    Davis, Lea K.; Yu, Dongmei; Keenan, Clare L.; Gamazon, Eric R.; Konkashbaev, Anuar I.; Derks, Eske M.; Neale, Benjamin M.; Yang, Jian; Lee, S. Hong; Evans, Patrick; Barr, Cathy L.; Bellodi, Laura; Benarroch, Fortu; Berrio, Gabriel Bedoya; Bienvenu, Oscar J.; Bloch, Michael H.; Blom, Rianne M.; Bruun, Ruth D.; Budman, Cathy L.; Camarena, Beatriz; Campbell, Desmond; Cappi, Carolina; Cardona Silgado, Julio C.; Cath, Danielle C.; Cavallini, Maria C.; Chavira, Denise A.; Chouinard, Sylvain; Conti, David V.; Cook, Edwin H.; Coric, Vladimir; Cullen, Bernadette A.; Deforce, Dieter; Delorme, Richard; Dion, Yves; Edlund, Christopher K.; Egberts, Karin; Falkai, Peter; Fernandez, Thomas V.; Gallagher, Patience J.; Garrido, Helena; Geller, Daniel; Girard, Simon L.; Grabe, Hans J.; Grados, Marco A.; Greenberg, Benjamin D.; Gross-Tsur, Varda; Haddad, Stephen; Heiman, Gary A.; Hemmings, Sian M. J.; Hounie, Ana G.; Illmann, Cornelia; Jankovic, Joseph; Jenike, Michael A.; Kennedy, James L.; King, Robert A.; Kremeyer, Barbara; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F.; Lennertz, Leonhard; Liu, Chunyu; Lochner, Christine; Lowe, Thomas L.; Macciardi, Fabio; McCracken, James T.; McGrath, Lauren M.; Mesa Restrepo, Sandra C.; Moessner, Rainald; Morgan, Jubel; Muller, Heike; Murphy, Dennis L.; Naarden, Allan L.; Ochoa, William Cornejo; Ophoff, Roel A.; Osiecki, Lisa; Pakstis, Andrew J.; Pato, Michele T.; Pato, Carlos N.; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Rauch, Scott L.; Renner, Tobias J.; Reus, Victor I.; Richter, Margaret A.; Riddle, Mark A.; Robertson, Mary M.; Romero, Roxana; Rosàrio, Maria C.; Rosenberg, David; Rouleau, Guy A.; Ruhrmann, Stephan; Ruiz-Linares, Andres; Sampaio, Aline S.; Samuels, Jack; Sandor, Paul; Sheppard, Brooke; Singer, Harvey S.; Smit, Jan H.; Stein, Dan J.; Strengman, E.; Tischfield, Jay A.; Valencia Duarte, Ana V.; Vallada, Homero; Van Nieuwerburgh, Filip; Veenstra-VanderWeele, Jeremy; Walitza, Susanne; Wang, Ying; Wendland, Jens R.; Westenberg, Herman G. M.; Shugart, Yin Yao; Miguel, Euripedes C.; McMahon, William; Wagner, Michael; Nicolini, Humberto; Posthuma, Danielle; Hanna, Gregory L.; Heutink, Peter; Denys, Damiaan; Arnold, Paul D.; Oostra, Ben A.; Nestadt, Gerald; Freimer, Nelson B.; Pauls, David L.; Wray, Naomi R.

    2013-01-01

    The direct estimation of heritability from genome-wide common variant data as implemented in the program Genome-wide Complex Trait Analysis (GCTA) has provided a means to quantify heritability attributable to all interrogated variants. We have quantified the variance in liability to disease explained by all SNPs for two phenotypically-related neurobehavioral disorders, obsessive-compulsive disorder (OCD) and Tourette Syndrome (TS), using GCTA. Our analysis yielded a heritability point estimate of 0.58 (se = 0.09, p = 5.64e-12) for TS, and 0.37 (se = 0.07, p = 1.5e-07) for OCD. In addition, we conducted multiple genomic partitioning analyses to identify genomic elements that concentrate this heritability. We examined genomic architectures of TS and OCD by chromosome, MAF bin, and functional annotations. In addition, we assessed heritability for early onset and adult onset OCD. Among other notable results, we found that SNPs with a minor allele frequency of less than 5% accounted for 21% of the TS heritability and 0% of the OCD heritability. Additionally, we identified a significant contribution to TS and OCD heritability by variants significantly associated with gene expression in two regions of the brain (parietal cortex and cerebellum) for which we had available expression quantitative trait loci (eQTLs). Finally we analyzed the genetic correlation between TS and OCD, revealing a genetic correlation of 0.41 (se = 0.15, p = 0.002). These results are very close to previous heritability estimates for TS and OCD based on twin and family studies, suggesting that very little, if any, heritability is truly missing (i.e., unassayed) from TS and OCD GWAS studies of common variation. The results also indicate that there is some genetic overlap between these two phenotypically-related neuropsychiatric disorders, but suggest that the two disorders have distinct genetic architectures. PMID:24204291

  3. Rangewide genetic analysis of Lesser Prairie-Chicken reveals population structure, range expansion, and possible introgression

    USGS Publications Warehouse

    Oyler-McCance, Sara J.; DeYoung, Randall W; Fike, Jennifer; Hagen, Christian A.; Johnson, Jeff A.; Larsson, Lena C; Patten, Michael

    2016-01-01

    The distribution of the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) has been markedly reduced due to loss and fragmentation of habitat. Portions of the historical range, however, have been recolonized and even expanded due to planting of conservation reserve program (CRP) fields that provide favorable vegetation structure for Lesser Prairie-Chickens. The source population(s) feeding the range expansion is unknown, yet has resulted in overlap between Lesser and Greater Prairie-Chickens (T. cupido) increasing the potential for hybridization. Our objectives were to characterize connectivity and genetic diversity among populations, identify source population(s) of recent range expansion, and examine hybridization with the Greater Prairie-Chicken. We analyzed 640 samples from across the range using 13 microsatellites. We identified three to four populations corresponding largely to ecoregions. The Shinnery Oak Prairie and Sand Sagebrush Prairie represented genetically distinct populations (F ST > 0.034 and F ST > 0.023 respectively). The Shortgrass/CRP Mosaic and Mixed Grass ecoregions appeared admixed (F ST = 0.009). Genetic diversity was similar among ecoregions and N e ranged from 142 (95 % CI 99–236) for the Shortgrass/CRP Mosaic to 296 (95 % CI 233–396) in the Mixed Grass Prairie. No recent migration was detected among ecoregions, except asymmetric dispersal from both the Mixed Grass Prairie and to a lesser extent the Sand Sagebrush Prairie north into adjacent Shortgrass/CRP Mosaic (m = 0.207, 95 % CI 0.116–0.298, m = 0.097, 95 % CI 0.010–0.183, respectively). Indices investigating potential hybridization in the Shortgrass/CRP Mosaic revealed that six of the 13 individuals with hybrid phenotypes were significantly admixed suggesting hybridization. Continued monitoring of diversity within and among ecoregions is warranted as are actions promoting genetic connectivity and range expansion.

  4. Y-chromosome diversity in Native Mexicans reveals continental transition of genetic structure in the Americas.

    PubMed

    Sandoval, Karla; Moreno-Estrada, Andres; Mendizabal, Isabel; Underhill, Peter A; Lopez-Valenzuela, Maria; Peñaloza-Espinosa, Rosenda; Lopez-Lopez, Marisol; Buentello-Malo, Leonor; Avelino, Heriberto; Calafell, Francesc; Comas, David

    2012-07-01

    The genetic characterization of Native Mexicans is important to understand multiethnic based features influencing the medical genetics of present Mexican populations, as well as to the reconstruct the peopling of the Americas. We describe the Y-chromosome genetic diversity of 197 Native Mexicans from 11 populations and 1,044 individuals from 44 Native American populations after combining with publicly available data. We found extensive heterogeneity among Native Mexican populations and ample segregation of Q-M242* (46%) and Q-M3 (54%) haplogroups within Mexico. The northernmost sampled populations falling outside Mesoamerica (Pima and Tarahumara) showed a clear differentiation with respect to the other populations, which is in agreement with previous results from mtDNA lineages. However, our results point toward a complex genetic makeup of Native Mexicans whose maternal and paternal lineages reveal different narratives of their population history, with sex-biased continental contributions and different admixture proportions. At a continental scale, we found that Arctic populations and the northernmost groups from North America cluster together, but we did not find a clear differentiation within Mesoamerica and the rest of the continent, which coupled with the fact that the majority of individuals from Central and South American samples are restricted to the Q-M3 branch, supports the notion that most Native Americans from Mesoamerica southwards are descendants from a single wave of migration. This observation is compatible with the idea that present day Mexico might have constituted an area of transition in the diversification of paternal lineages during the colonization of the Americas. Copyright © 2012 Wiley Periodicals, Inc.

  5. Partitioning the heritability of Tourette syndrome and obsessive compulsive disorder reveals differences in genetic architecture.

    PubMed

    Davis, Lea K; Yu, Dongmei; Keenan, Clare L; Gamazon, Eric R; Konkashbaev, Anuar I; Derks, Eske M; Neale, Benjamin M; Yang, Jian; Lee, S Hong; Evans, Patrick; Barr, Cathy L; Bellodi, Laura; Benarroch, Fortu; Berrio, Gabriel Bedoya; Bienvenu, Oscar J; Bloch, Michael H; Blom, Rianne M; Bruun, Ruth D; Budman, Cathy L; Camarena, Beatriz; Campbell, Desmond; Cappi, Carolina; Cardona Silgado, Julio C; Cath, Danielle C; Cavallini, Maria C; Chavira, Denise A; Chouinard, Sylvain; Conti, David V; Cook, Edwin H; Coric, Vladimir; Cullen, Bernadette A; Deforce, Dieter; Delorme, Richard; Dion, Yves; Edlund, Christopher K; Egberts, Karin; Falkai, Peter; Fernandez, Thomas V; Gallagher, Patience J; Garrido, Helena; Geller, Daniel; Girard, Simon L; Grabe, Hans J; Grados, Marco A; Greenberg, Benjamin D; Gross-Tsur, Varda; Haddad, Stephen; Heiman, Gary A; Hemmings, Sian M J; Hounie, Ana G; Illmann, Cornelia; Jankovic, Joseph; Jenike, Michael A; Kennedy, James L; King, Robert A; Kremeyer, Barbara; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F; Lennertz, Leonhard; Liu, Chunyu; Lochner, Christine; Lowe, Thomas L; Macciardi, Fabio; McCracken, James T; McGrath, Lauren M; Mesa Restrepo, Sandra C; Moessner, Rainald; Morgan, Jubel; Muller, Heike; Murphy, Dennis L; Naarden, Allan L; Ochoa, William Cornejo; Ophoff, Roel A; Osiecki, Lisa; Pakstis, Andrew J; Pato, Michele T; Pato, Carlos N; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Rauch, Scott L; Renner, Tobias J; Reus, Victor I; Richter, Margaret A; Riddle, Mark A; Robertson, Mary M; Romero, Roxana; Rosàrio, Maria C; Rosenberg, David; Rouleau, Guy A; Ruhrmann, Stephan; Ruiz-Linares, Andres; Sampaio, Aline S; Samuels, Jack; Sandor, Paul; Sheppard, Brooke; Singer, Harvey S; Smit, Jan H; Stein, Dan J; Strengman, E; Tischfield, Jay A; Valencia Duarte, Ana V; Vallada, Homero; Van Nieuwerburgh, Filip; Veenstra-Vanderweele, Jeremy; Walitza, Susanne; Wang, Ying; Wendland, Jens R; Westenberg, Herman G M; Shugart, Yin Yao; Miguel, Euripedes C; McMahon, William; Wagner, Michael; Nicolini, Humberto; Posthuma, Danielle; Hanna, Gregory L; Heutink, Peter; Denys, Damiaan; Arnold, Paul D; Oostra, Ben A; Nestadt, Gerald; Freimer, Nelson B; Pauls, David L; Wray, Naomi R; Stewart, S Evelyn; Mathews, Carol A; Knowles, James A; Cox, Nancy J; Scharf, Jeremiah M

    2013-10-01

    The direct estimation of heritability from genome-wide common variant data as implemented in the program Genome-wide Complex Trait Analysis (GCTA) has provided a means to quantify heritability attributable to all interrogated variants. We have quantified the variance in liability to disease explained by all SNPs for two phenotypically-related neurobehavioral disorders, obsessive-compulsive disorder (OCD) and Tourette Syndrome (TS), using GCTA. Our analysis yielded a heritability point estimate of 0.58 (se = 0.09, p = 5.64e-12) for TS, and 0.37 (se = 0.07, p = 1.5e-07) for OCD. In addition, we conducted multiple genomic partitioning analyses to identify genomic elements that concentrate this heritability. We examined genomic architectures of TS and OCD by chromosome, MAF bin, and functional annotations. In addition, we assessed heritability for early onset and adult onset OCD. Among other notable results, we found that SNPs with a minor allele frequency of less than 5% accounted for 21% of the TS heritability and 0% of the OCD heritability. Additionally, we identified a significant contribution to TS and OCD heritability by variants significantly associated with gene expression in two regions of the brain (parietal cortex and cerebellum) for which we had available expression quantitative trait loci (eQTLs). Finally we analyzed the genetic correlation between TS and OCD, revealing a genetic correlation of 0.41 (se = 0.15, p = 0.002). These results are very close to previous heritability estimates for TS and OCD based on twin and family studies, suggesting that very little, if any, heritability is truly missing (i.e., unassayed) from TS and OCD GWAS studies of common variation. The results also indicate that there is some genetic overlap between these two phenotypically-related neuropsychiatric disorders, but suggest that the two disorders have distinct genetic architectures.

  6. A Genome Wide Survey of SNP Variation Reveals the Genetic Structure of Sheep Breeds

    USDA-ARS?s Scientific Manuscript database

    The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identi...

  7. Analysis of mice deficient in both REV1 catalytic activity and POLH reveals an unexpected role for POLH in the generation of C to G and G to C transversions during Ig gene hypermutation.

    PubMed

    Kano, Chie; Hanaoka, Fumio; Wang, Ji-Yang

    2012-03-01

    Multiple DNA polymerases are involved in the generation of somatic mutations during Ig gene hypermutation. Mice expressing a catalytically inactive REV1 (REV1AA) exhibit reduction of both C to G and G to C transversions and moderate decrease of A/T mutations, whereas DNA polymerase η (POLH) deficiency causes greatly reduced A/T mutations. To investigate whether REV1 and POLH interact genetically and functionally during Ig gene hypermutation, we established REV1AA Polh(-/-) mice and analyzed Ig gene hypermutation in the germinal center (GC) B cells. REV1AA Polh(-/-) mice were born at the expected ratio and developed normally with no apparent gross abnormalities. B-cell development, maturation, Ig gene class switch and the GC B-cell expansion were not affected in these mice. REV1AA Polh(-/-) B cells also exhibited relatively normal sensitivity to etoposide and ionizing radiation. Analysis of somatic mutations in the J(H)4 intronic region revealed that REV1AA Polh(-/-) mice had a further decrease of overall mutation frequency compared with REV1AA or Polh(-/-) mice, indicating that the double deficiency additively affected the generation of mutations. Remarkably, REV1AA Polh(-/-) mice had nearly absent C to G and G to C transversions, suggesting that POLH is essential for the generation of residual C to G and G to C transversions observed in REV1AA mice. These results reveal genetic interactions between REV1 catalytic activity and POLH and identify an alternative pathway, mediated by non-catalytic REV1 and POLH, in the generation of C to G and G to C transversions.

  8. The genome of Romanomermis culicivorax: revealing fundamental changes in the core developmental genetic toolkit in Nematoda

    PubMed Central

    2013-01-01

    Background The genetics of development in the nematode Caenorhabditis elegans has been described in exquisite detail. The phylum Nematoda has two classes: Chromadorea (which includes C. elegans) and the Enoplea. While the development of many chromadorean species resembles closely that of C. elegans, enoplean nematodes show markedly different patterns of early cell division and cell fate assignment. Embryogenesis of the enoplean Romanomermis culicivorax has been studied in detail, but the genetic circuitry underpinning development in this species has not been explored. Results We generated a draft genome for R. culicivorax and compared its gene content with that of C. elegans, a second enoplean, the vertebrate parasite Trichinella spiralis, and a representative arthropod, Tribolium castaneum. This comparison revealed that R. culicivorax has retained components of the conserved ecdysozoan developmental gene toolkit lost in C. elegans. T. spiralis has independently lost even more of this toolkit than has C. elegans. However, the C. elegans toolkit is not simply depauperate, as many novel genes essential for embryogenesis in C. elegans are not found in, or have only extremely divergent homologues in R. culicivorax and T. spiralis. Our data imply fundamental differences in the genetic programmes not only for early cell specification but also others such as vulva formation and sex determination. Conclusions Despite the apparent morphological conservatism, major differences in the molecular logic of development have evolved within the phylum Nematoda. R. culicivorax serves as a tractable system to contrast C. elegans and understand how divergent genomic and thus regulatory backgrounds nevertheless generate a conserved phenotype. The R. culicivorax draft genome will promote use of this species as a research model. PMID:24373391

  9. Demographic costs of inbreeding revealed by sex-specific genetic rescue effects

    PubMed Central

    2009-01-01

    Background Inbreeding can slow population growth and elevate extinction risk. A small number of unrelated immigrants to an inbred population can substantially reduce inbreeding and improve fitness, but little attention has been paid to the sex-specific effects of immigrants on such "genetic rescue". We conducted two subsequent experiments to investigate demographic consequences of inbreeding and genetic rescue in guppies. Results Populations established from pairs of full siblings that were descended either from two generations of full-sibling inbreeding or unrelated outbred guppies did not grow at different rates initially, but when the first generation offspring started breeding, outbred-founded populations grew more slowly than inbred-founded populations. In a second experiment, adding two outbred males to the inbred populations resulted in significantly faster population growth than in control populations where no immigrants were added. Adding females resulted in growth at a rate intermediate to the control and male-immigrant treatments. Conclusion The slower growth of the outbred-founded than inbred-founded populations is the opposite of what would be expected under inbreeding depression unless many deleterious recessive alleles had already been selectively purged in the inbreeding that preceded the start of the experiment, and that significant inbreeding depression occurred when the first generation offspring in outbred-founded populations started to inbreed. The second experiment revealed strong inbreeding depression in the inbred founded populations, despite the apparent lack thereof in these populations earlier on. Moreover, the fact that the addition of male immigrants resulted in the highest levels of population growth suggests that sex-specific genetic rescue may occur in promiscuous species, with male rescue resulting in higher levels of outbreeding than female rescue. PMID:20003302

  10. RAPD analysis reveals low genetic variability in the endangered light-footed clapper rail.

    PubMed

    Nusser, J A; Goto, R M; Ledig, D B; Fleischer, R C; Miller, M M

    1996-08-01

    Numbers of light-footed clapper rails Rallus longirostris levipes, an endangered bird inhabiting southern California salt marshes, have substantially declined from historic levels. RAPD (randomly amplified polymorphic DNA) analysis was employed to assess the genetic variability within and among four of the largest remaining light-footed clapper rail populations. A single, larger population of the endangered Yuma clapper rail Rallus longirostris yumanensis was used for comparison. A total of 325 RAPD primers were tested on DNA from a subset of five clapper rails composed of a single representative for each of the four light-footed clapper rail populations and a representative for the single Yuma clapper rail population. Of the 1338 amplified bands (loci) surveyed in these five representative birds, approximately 1% were polymorphic, indicating the level of differentiation across all loci is quite low. Nine primers yielding these 16 polymorphic bands were used to analyse 48 individuals from five populations. Five of these bands were polymorphic in both subspecies, six were polymorphic only within the light-footed clapper rails, and five were polymorphic only within the Yuma clapper rail samples. Considering the few bands that were polymorphic among the light-footed clapper rail populations, a surprisingly high level of population differentiation (GST = 0.28) was found. This is in accord with the results of AMOVA analyses which show that a fairly high percentage of the limited variability among the rails is due to either differences between subspecies or differences between the light-footed rail populations. Because inbreeding depression is suspected and overall genetic distances between populations are low, movement of light-footed clapper rails from larger populations into smaller ones might be considered as a management strategy. Employing RAPDs as one of a series of assays is useful in revealing the population structure of genetically depauperate species.

  11. Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth

    PubMed Central

    Palkopoulou, Eleftheria; Mallick, Swapan; Skoglund, Pontus; Enk, Jacob; Rohland, Nadin; Li, Heng; Omrak, Ayça; Vartanyan, Sergey; Poinar, Hendrik; Götherström, Anders; Reich, David; Dalén, Love

    2015-01-01

    Summary The processes leading up to species extinctions are typically characterized by prolonged declines in population size and geographic distribution, followed by a phase in which populations are very small and may be subject to intrinsic threats, including loss of genetic diversity and inbreeding [1]. However, whether such genetic factors have had an impact on species prior to their extinction is unclear [2, 3]; examining this would require a detailed reconstruction of a species’ demographic history as well as changes in genome-wide diversity leading up to its extinction. Here, we present high-quality complete genome sequences from two woolly mammoths (Mammuthus primigenius). The first mammoth was sequenced at 17.1-fold coverage, and dates to ~4,300 years before present, constituting one of the last surviving individuals on Wrangel Island. The second mammoth, sequenced at 11.2-fold coverage, was obtained from a ~44,800 year old specimen from the Late Pleistocene population in northeastern Siberia. The demographic trajectories inferred from the two genomes are qualitatively similar and reveal a population bottleneck during the Middle or Early Pleistocene, and a more recent severe decline in the ancestors of the Wrangel mammoth at the end of the last glaciation. A comparison of the two genomes shows that the Wrangel mammoth has a 20% reduction in heterozygosity as well as a 28-fold increase in the fraction of the genome that is comprised of runs of homozygosity. We conclude that the population on Wrangel Island, which was the last surviving woolly mammoth population, was subject to reduced genetic diversity shortly before it became extinct. PMID:25913407

  12. Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth.

    PubMed

    Palkopoulou, Eleftheria; Mallick, Swapan; Skoglund, Pontus; Enk, Jacob; Rohland, Nadin; Li, Heng; Omrak, Ayça; Vartanyan, Sergey; Poinar, Hendrik; Götherström, Anders; Reich, David; Dalén, Love

    2015-05-18

    The processes leading up to species extinctions are typically characterized by prolonged declines in population size and geographic distribution, followed by a phase in which populations are very small and may be subject to intrinsic threats, including loss of genetic diversity and inbreeding. However, whether such genetic factors have had an impact on species prior to their extinction is unclear; examining this would require a detailed reconstruction of a species' demographic history as well as changes in genome-wide diversity leading up to its extinction. Here, we present high-quality complete genome sequences from two woolly mammoths (Mammuthus primigenius). The first mammoth was sequenced at 17.1-fold coverage and dates to ∼4,300 years before present, representing one of the last surviving individuals on Wrangel Island. The second mammoth, sequenced at 11.2-fold coverage, was obtained from an ∼44,800-year-old specimen from the Late Pleistocene population in northeastern Siberia. The demographic trajectories inferred from the two genomes are qualitatively similar and reveal a population bottleneck during the Middle or Early Pleistocene, and a more recent severe decline in the ancestors of the Wrangel mammoth at the end of the last glaciation. A comparison of the two genomes shows that the Wrangel mammoth has a 20% reduction in heterozygosity as well as a 28-fold increase in the fraction of the genome that comprises runs of homozygosity. We conclude that the population on Wrangel Island, which was the last surviving woolly mammoth population, was subject to reduced genetic diversity shortly before it became extinct. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Association Mapping Reveals Genetic Loci Associated with Important Agronomic Traits in Lentinula edodes, Shiitake Mushroom

    PubMed Central

    Li, Chuang; Gong, Wenbing; Zhang, Lin; Yang, Zhiquan; Nong, Wenyan; Bian, Yinbing; Kwan, Hoi-Shan; Cheung, Man-Kit; Xiao, Yang

    2017-01-01

    Association mapping is a robust approach for the detection of quantitative trait loci (QTLs). Here, by genotyping 297 genome-wide molecular markers of 89 Lentinula edodes cultivars in China, the genetic diversity, population structure and genetic loci associated with 11 agronomic traits were examined. A total of 873 alleles were detected in the tested strains with a mean of 2.939 alleles per locus, and the Shannon's information index was 0.734. Population structure analysis revealed two robustly differentiated groups among the Chinese L. edodes cultivars (FST = 0.247). Using the mixed linear model, a total of 43 markers were detected to be significantly associated with four traits. The number of markers associated with traits ranged from 9 to 26, and the phenotypic variations explained by each marker varied from 12.07% to 31.32%. Apart from five previously reported markers, the remaining 38 markers were newly reported here. Twenty-one markers were identified as simultaneously linked to two to four traits, and five markers were associated with the same traits in cultivation tests performed in two consecutive years. The 43 traits-associated markers were related to 97 genes, and 24 of them were related to 10 traits-associated markers detected in both years or identified previously, 13 of which had a >2-fold expression change between the mycelium and primordium stages. Our study has provided candidate markers for marker-assisted selection (MAS) and useful clues for understanding the genetic architecture of agronomic traits in the shiitake mushroom. PMID:28261189

  14. Genetic Interaction Landscape Reveals Critical Requirements for Schizosaccharomyces pombe Brc1 in DNA Damage Response Mutants

    PubMed Central

    Sánchez, Arancha; Roguev, Assen; Krogan, Nevan J.; Russell, Paul

    2015-01-01

    Brc1, which was first identified as a high-copy, allele-specific suppressor of a mutation impairing the Smc5-Smc6 holocomplex in Schizosaccharomyces pombe, protects genome integrity during normal DNA replication and when cells are exposed to toxic compounds that stall or collapse replication forks. The C-terminal tandem BRCT (BRCA1 C-terminus) domain of fission yeast Brc1 docks with phosphorylated histone H2A (γH2A)-marked chromatin formed by ATR/Rad3 checkpoint kinase at arrested and damaged replication forks; however, how Brc1 functions in relation to other genome protection modules remains unclear. Here, an epistatic mini-array profile reveals critical requirements for Brc1 in mutants that are defective in multiple DNA damage response pathways, including checkpoint signaling by Rad3-Rad26/ATR-ATRIP kinase, DNA repair by Smc5-Smc6 holocomplex, replication fork stabilization by Mrc1/claspin and Swi1-Swi3/Timeless-Tipin, and control of ubiquitin-regulated proteolysis by the COP9 signalosome (CSN). Exogenous genotoxins enhance these negative genetic interactions. Rad52 and RPA foci are increased in CSN-defective cells, and loss of γH2A increases genotoxin sensitivity, indicating a critical role for the γH2A-Brc1 module in stabilizing replication forks in CSN-defective cells. A negative genetic interaction with the Nse6 subunit of Smc5-Smc6 holocomplex indicates that the DNA repair functions of Brc1 and Smc5-Smc6 holocomplex are at least partially independent. Rtt107, the Brc1 homolog in Saccharomyces cerevisiae, has a very different pattern of genetic interactions, indicating evolutionary divergence of functions and DNA damage responses. PMID:25795664

  15. Genetic Patterns in European Geometrid Moths Revealed by the Barcode Index Number (BIN) System

    PubMed Central

    Hausmann, Axel; Godfray, H. Charles J.; Huemer, Peter; Mutanen, Marko; Rougerie, Rodolphe; van Nieukerken, Erik J.; Ratnasingham, Sujeevan; Hebert, Paul D. N.

    2013-01-01

    Background The geometrid moths of Europe are one of the best investigated insect groups in traditional taxonomy making them an ideal model group to test the accuracy of the Barcode Index Number (BIN) system of BOLD (Barcode of Life Datasystems), a method that supports automated, rapid species delineation and identification. Methodology/Principal Findings This study provides a DNA barcode library for 219 of the 249 European geometrid moth species (88%) in five selected subfamilies. The data set includes COI sequences for 2130 specimens. Most species (93%) were found to possess diagnostic barcode sequences at the European level while only three species pairs (3%) were genetically indistinguishable in areas of sympatry. As a consequence, 97% of the European species we examined were unequivocally discriminated by barcodes within their natural areas of distribution. We found a 1:1 correspondence between BINs and traditionally recognized species for 67% of these species. Another 17% of the species (15 pairs, three triads) shared BINs, while specimens from the remaining species (18%) were divided among two or more BINs. Five of these species are mixtures, both sharing and splitting BINs. For 82% of the species with two or more BINs, the genetic splits involved allopatric populations, many of which have previously been hypothesized to represent distinct species or subspecies. Conclusions/Significance This study confirms the effectiveness of DNA barcoding as a tool for species identification and illustrates the potential of the BIN system to characterize formal genetic units independently of an existing classification. This suggests the system can be used to efficiently assess the biodiversity of large, poorly known assemblages of organisms. For the moths examined in this study, cases of discordance between traditionally recognized species and BINs arose from several causes including overlooked species, synonymy, and cases where DNA barcodes revealed regional variation of

  16. The genome of Romanomermis culicivorax: revealing fundamental changes in the core developmental genetic toolkit in Nematoda.

    PubMed

    Schiffer, Philipp H; Kroiher, Michael; Kraus, Christopher; Koutsovoulos, Georgios D; Kumar, Sujai; Camps, Julia I R; Nsah, Ndifon A; Stappert, Dominik; Morris, Krystalynne; Heger, Peter; Altmüller, Janine; Frommolt, Peter; Nürnberg, Peter; Thomas, W Kelley; Blaxter, Mark L; Schierenberg, Einhard

    2013-12-27

    The genetics of development in the nematode Caenorhabditis elegans has been described in exquisite detail. The phylum Nematoda has two classes: Chromadorea (which includes C. elegans) and the Enoplea. While the development of many chromadorean species resembles closely that of C. elegans, enoplean nematodes show markedly different patterns of early cell division and cell fate assignment. Embryogenesis of the enoplean Romanomermis culicivorax has been studied in detail, but the genetic circuitry underpinning development in this species has not been explored. We generated a draft genome for R. culicivorax and compared its gene content with that of C. elegans, a second enoplean, the vertebrate parasite Trichinella spiralis, and a representative arthropod, Tribolium castaneum. This comparison revealed that R. culicivorax has retained components of the conserved ecdysozoan developmental gene toolkit lost in C. elegans. T. spiralis has independently lost even more of this toolkit than has C. elegans. However, the C. elegans toolkit is not simply depauperate, as many novel genes essential for embryogenesis in C. elegans are not found in, or have only extremely divergent homologues in R. culicivorax and T. spiralis. Our data imply fundamental differences in the genetic programmes not only for early cell specification but also others such as vulva formation and sex determination. Despite the apparent morphological conservatism, major differences in the molecular logic of development have evolved within the phylum Nematoda. R. culicivorax serves as a tractable system to contrast C. elegans and understand how divergent genomic and thus regulatory backgrounds nevertheless generate a conserved phenotype. The R. culicivorax draft genome will promote use of this species as a research model.

  17. Moderate Genetic Diversity and Genetic Differentiation in the Relict Tree Liquidambar formosana Hance Revealed by Genic Simple Sequence Repeat Markers

    PubMed Central

    Sun, Rongxi; Lin, Furong; Huang, Ping; Zheng, Yongqi

    2016-01-01

    Chinese sweetgum (Liquidambar formosana) is a relatively fast-growing ecological pioneer species. It is widely used for multiple purposes. To assess the genetic diversity and genetic differentiation of the species, genic SSR markers were mined from transcriptome data for subsequent analysis of the genetic diversity and population structure of natural populations. A total of 10645 potential genic SSR loci were identified in 80482 unigenes. The average frequency was one SSR per 5.12 kb, and the dinucleotide unit was the most abundant motif. A total of 67 alleles were found, with a mean of 6.091 alleles per locus and a mean polymorphism information content of 0.390. Moreover, the species exhibited a relatively moderate level of genetic diversity (He = 0.399), with the highest was found in population XY (He = 0.469). At the regional level, the southwestern region displayed the highest genetic diversity (He = 0.435) and the largest number of private alleles (n = 5), which indicated that the Southwestern region may be the diversity hot spot of L. formosana. The AMOVA results showed that variation within populations (94.02%) was significantly higher than among populations (5.98%), which was in agreement with the coefficient of genetic differentiation (Fst = 0.076). According to the UPGMA analysis and principal coordinate analysis and confirmed by the assignment test, 25 populations could be divided into three groups, and there were different degrees of introgression among populations. No correlation was found between genetic distance and geographic distance (P > 0.05). These results provided further evidence that geographic isolation was not the primary factor leading to the moderate genetic differentiation of L. formosana. As most of the genetic diversity of L. formosana exists among individuals within a population, individual plant selection would be an effective way to use natural variation in genetic improvement programs. This would be helpful to not only protect the

  18. Moderate Genetic Diversity and Genetic Differentiation in the Relict Tree Liquidambar formosana Hance Revealed by Genic Simple Sequence Repeat Markers.

    PubMed

    Sun, Rongxi; Lin, Furong; Huang, Ping; Zheng, Yongqi

    2016-01-01

    Chinese sweetgum (Liquidambar formosana) is a relatively fast-growing ecological pioneer species. It is widely used for multiple purposes. To assess the genetic diversity and genetic differentiation of the species, genic SSR markers were mined from transcriptome data for subsequent analysis of the genetic diversity and population structure of natural populations. A total of 10645 potential genic SSR loci were identified in 80482 unigenes. The average frequency was one SSR per 5.12 kb, and the dinucleotide unit was the most abundant motif. A total of 67 alleles were found, with a mean of 6.091 alleles per locus and a mean polymorphism information content of 0.390. Moreover, the species exhibited a relatively moderate level of genetic diversity (He = 0.399), with the highest was found in population XY (He = 0.469). At the regional level, the southwestern region displayed the highest genetic diversity (He = 0.435) and the largest number of private alleles (n = 5), which indicated that the Southwestern region may be the diversity hot spot of L. formosana. The AMOVA results showed that variation within populations (94.02%) was significantly higher than among populations (5.98%), which was in agreement with the coefficient of genetic differentiation (Fst = 0.076). According to the UPGMA analysis and principal coordinate analysis and confirmed by the assignment test, 25 populations could be divided into three groups, and there were different degrees of introgression among populations. No correlation was found between genetic distance and geographic distance (P > 0.05). These results provided further evidence that geographic isolation was not the primary factor leading to the moderate genetic differentiation of L. formosana. As most of the genetic diversity of L. formosana exists among individuals within a population, individual plant selection would be an effective way to use natural variation in genetic improvement programs. This would be helpful to not only protect the

  19. Genetic diversity of Clavispora lusitaniae isolated from Agave fourcroydes Lem, as revealed by DNA fingerprinting.

    PubMed

    Pérez-Brito, Daisy; Magaña-Alvarez, Anuar; Lappe-Oliveras, Patricia; Cortes-Velazquez, Alberto; Torres-Calzada, Claudia; Herrera-Suarez, Teófilo; Larqué-Saavedra, Alfonso; Tapia-Tussell, Raul

    2015-01-01

    This study characterized Clavispora lusitaniae strains isolated from different stages of the processing and early fermentation of a henequen (Agave fourcroydes) spirit produced in Yucatan, Mexico using a molecular technique. Sixteen strains identified based on morphological features, obtained from different substrates, were typed molecularly. Nine different versions of the divergent D1/D2 domain of the large-subunit ribosomal DNA sequence were identified among the C. lusitaniae strains. The greatest degree of polymorphism was found in the 90-bp structural motif of the D2 domain. The MSP-PCR technique was able to differentiate 100% of the isolates. This study provides significant insight into the genetic diversity of the mycobiota present during the henequen fermentation process, especially that of C. lusitaniae, for which only a few studies in plants have been published. The applied MSP-PCR markers were very efficient in revealing olymorphisms between isolates of this species.

  20. Genome of the pitcher plant Cephalotus reveals genetic changes associated with carnivory.

    PubMed

    Fukushima, Kenji; Fang, Xiaodong; Alvarez-Ponce, David; Cai, Huimin; Carretero-Paulet, Lorenzo; Chen, Cui; Chang, Tien-Hao; Farr, Kimberly M; Fujita, Tomomichi; Hiwatashi, Yuji; Hoshi, Yoshikazu; Imai, Takamasa; Kasahara, Masahiro; Librado, Pablo; Mao, Likai; Mori, Hitoshi; Nishiyama, Tomoaki; Nozawa, Masafumi; Pálfalvi, Gergő; Pollard, Stephen T; Rozas, Julio; Sánchez-Gracia, Alejandro; Sankoff, David; Shibata, Tomoko F; Shigenobu, Shuji; Sumikawa, Naomi; Uzawa, Taketoshi; Xie, Meiying; Zheng, Chunfang; Pollock, David D; Albert, Victor A; Li, Shuaicheng; Hasebe, Mitsuyasu

    2017-02-06

    Carnivorous plants exploit animals as a nutritional source and have inspired long-standing questions about the origin and evolution of carnivory-related traits. To investigate the molecular bases of carnivory, we sequenced the genome of the heterophyllous pitcher plant Cephalotus follicularis, in which we succeeded in regulating the developmental switch between carnivorous and non-carnivorous leaves. Transcriptome comparison of the two leaf types and gene repertoire analysis identified genetic changes associated with prey attraction, capture, digestion and nutrient absorption. Analysis of digestive fluid proteins from C. follicularis and three other carnivorous plants with independent carnivorous origins revealed repeated co-options of stress-responsive protein lineages coupled with convergent amino acid substitutions to acquire digestive physiology. These results imply constraints on the available routes to evolve plant carnivory.

  1. Uniparental Markers in Italy Reveal a Sex-Biased Genetic Structure and Different Historical Strata

    PubMed Central

    Sarno, Stefania; Harmant, Christine; Useli, Antonella; Sanz, Paula; Yang-Yao, Daniele; Manry, Jeremy; Ciani, Graziella; Luiselli, Donata; Quintana-Murci, Lluis; Comas, David; Pettener, Davide

    2013-01-01

    Located in the center of the Mediterranean landscape and with an extensive coastal line, the territory of what is today Italy has played an important role in the history of human settlements and movements of Southern Europe and the Mediterranean Basin. Populated since Paleolithic times, the complexity of human movements during the Neolithic, the Metal Ages and the most recent history of the two last millennia (involving the overlapping of different cultural and demic strata) has shaped the pattern of the modern Italian genetic structure. With the aim of disentangling this pattern and understanding which processes more importantly shaped the distribution of diversity, we have analyzed the uniparentally-inherited markers in ∼900 individuals from an extensive sampling across the Italian peninsula, Sardinia and Sicily. Spatial PCAs and DAPCs revealed a sex-biased pattern indicating different demographic histories for males and females. Besides the genetic outlier position of Sardinians, a North West–South East Y-chromosome structure is found in continental Italy. Such structure is in agreement with recent archeological syntheses indicating two independent and parallel processes of Neolithisation. In addition, date estimates pinpoint the importance of the cultural and demographic events during the late Neolithic and Metal Ages. On the other hand, mitochondrial diversity is distributed more homogeneously in agreement with older population events that might be related to the presence of an Italian Refugium during the last glacial period in Europe. PMID:23734255

  2. Genetic characterization of Toxoplasma gondii from Brazilian wildlife revealed abundant new genotypes

    PubMed Central

    Vitaliano, S.N.; Soares, H.S.; Minervino, A.H.H.; Santos, A.L.Q.; Werther, K.; Marvulo, M.F.V.; Siqueira, D.B.; Pena, H.F.J.; Soares, R.M.; Su, C.; Gennari, S.M.

    2014-01-01

    This study aimed to isolate and genotype T. gondii from Brazilian wildlife. For this purpose, 226 samples were submitted to mice bioassay and screened by PCR based on 18S rRNA sequences. A total of 15 T. gondii isolates were obtained, including samples from four armadillos (three Dasypus novemcinctus, one Euphractus sexcinctus), three collared anteaters (Tamandua tetradactyla), three whited-lipped peccaries (Tayassu pecari), one spotted paca (Cuniculus paca), one oncilla (Leopardus tigrinus), one hoary fox (Pseudalopex vetulus), one lineated woodpecker (Dryocopus lineatus) and one maned wolf (Chrysocyon brachyurus). DNA from the isolates, originated from mice bioassay, and from the tissues of the wild animal, designated as “primary samples”, were genotyped by PCR–restriction fragment length polymorphism (PCR/RFLP), using 12 genetic markers (SAG1, SAG2, alt.SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L258, PK1, CS3 and Apico). A total of 17 genotypes were identified, with 13 identified for the first time and four already reported in published literature. Results herein obtained corroborate previous studies in Brazil, confirming high diversity and revealing unique genotypes in this region. Given most of genotypes here identified are different from previous studies in domestic animals, future studies on T. gondii from wildlife is of interest to understand population genetics and structure of this parasite. PMID:25426424

  3. Computational dissection of human episodic memory reveals mental process-specific genetic profiles.

    PubMed

    Luksys, Gediminas; Fastenrath, Matthias; Coynel, David; Freytag, Virginie; Gschwind, Leo; Heck, Angela; Jessen, Frank; Maier, Wolfgang; Milnik, Annette; Riedel-Heller, Steffi G; Scherer, Martin; Spalek, Klara; Vogler, Christian; Wagner, Michael; Wolfsgruber, Steffen; Papassotiropoulos, Andreas; de Quervain, Dominique J-F

    2015-09-01

    Episodic memory performance is the result of distinct mental processes, such as learning, memory maintenance, and emotional modulation of memory strength. Such processes can be effectively dissociated using computational models. Here we performed gene set enrichment analyses of model parameters estimated from the episodic memory performance of 1,765 healthy young adults. We report robust and replicated associations of the amine compound SLC (solute-carrier) transporters gene set with the learning rate, of the collagen formation and transmembrane receptor protein tyrosine kinase activity gene sets with the modulation of memory strength by negative emotional arousal, and of the L1 cell adhesion molecule (L1CAM) interactions gene set with the repetition-based memory improvement. Furthermore, in a large functional MRI sample of 795 subjects we found that the association between L1CAM interactions and memory maintenance revealed large clusters of differences in brain activity in frontal cortical areas. Our findings provide converging evidence that distinct genetic profiles underlie specific mental processes of human episodic memory. They also provide empirical support to previous theoretical and neurobiological studies linking specific neuromodulators to the learning rate and linking neural cell adhesion molecules to memory maintenance. Furthermore, our study suggests additional memory-related genetic pathways, which may contribute to a better understanding of the neurobiology of human memory.

  4. Genetically encoding a light switch in an ionotropic glutamate receptor reveals subunit-specific interfaces

    PubMed Central

    Zhu, Shujia; Riou, Morgane; Yao, C. Andrea; Carvalho, Stéphanie; Rodriguez, Pamela C.; Bensaude, Olivier; Paoletti, Pierre; Ye, Shixin

    2014-01-01

    Reprogramming receptors to artificially respond to light has strong potential for molecular studies and interrogation of biological functions. Here, we design a light-controlled ionotropic glutamate receptor by genetically encoding a photoreactive unnatural amino acid (UAA). The photo–cross-linker p-azido-l-phenylalanine (AzF) was encoded in NMDA receptors (NMDARs), a class of glutamate-gated ion channels that play key roles in neuronal development and plasticity. AzF incorporation in the obligatory GluN1 subunit at the GluN1/GluN2B N-terminal domain (NTD) upper lobe dimer interface leads to an irreversible allosteric inhibition of channel activity upon UV illumination. In contrast, when pairing the UAA-containing GluN1 subunit with the GluN2A subunit, light-dependent inactivation is completely absent. By combining electrophysiological and biochemical analyses, we identify subunit-specific structural determinants at the GluN1/GluN2 NTD dimer interfaces that critically dictate UV-controlled inactivation. Our work reveals that the two major NMDAR subtypes differ in their ectodomain-subunit interactions, in particular their electrostatic contacts, resulting in GluN1 NTD coupling more tightly to the GluN2B NTD than to the GluN2A NTD. It also paves the way for engineering light-sensitive ligand-gated ion channels with subtype specificity through the genetic code expansion. PMID:24715733

  5. Multilocus sequence analysis reveals high genetic diversity in clinical isolates of Burkholderia cepacia complex from India

    PubMed Central

    Gautam, Vikas; Patil, Prashant P.; Kumar, Sunil; Midha, Samriti; Kaur, Mandeep; Kaur, Satinder; Singh, Meenu; Mali, Swapna; Shastri, Jayanthi; Arora, Anita; Ray, Pallab; Patil, Prabhu B.

    2016-01-01

    Burkholderia cepacia complex (Bcc) is a complex group of bacteria causing opportunistic infections in immunocompromised and cystic fibrosis (CF) patients. Herein, we report multilocus sequence typing and analysis of the 57 clinical isolates of Bcc collected over the period of seven years (2005–2012) from several hospitals across India. A total of 21 sequence types (ST) including two STs from cystic fibrosis patient’s isolates and twelve novel STs were identified in the population reflecting the extent of genetic diversity. Multilocus sequence analysis revealed two lineages in population, a major lineage belonging to B. cenocepacia and a minor lineage belonging to B. cepacia. Split-decomposition analysis suggests absence of interspecies recombination and intraspecies recombination contributed in generating genotypic diversity amongst isolates. Further linkage disequilibrium analysis indicates that recombination takes place at a low frequency, which is not sufficient to break down the clonal relationship. This knowledge of the genetic structure of Bcc population from a rapidly developing country will be invaluable in the epidemiology, surveillance and understanding global diversity of this group of a pathogen. PMID:27767197

  6. Genetic analysis reveals the wild ancestors of the llama and the alpaca.

    PubMed Central

    Kadwell, M.; Fernandez, M.; Stanley, H. F.; Baldi, R.; Wheeler, J. C.; Rosadio, R.; Bruford, M. W.

    2001-01-01

    The origins of South America's domestic alpaca and llama remain controversial due to hybridization, near extirpation during the Spanish conquest and difficulties in archaeological interpretation. Traditionally, the ancestry of both forms is attributed to the guanaco, while the vicuña is assumed never to have been domesticated. Recent research has, however, linked the alpaca to the vicuña, dating domestication to 6000-7000 years before present in the Peruvian Andes. Here, we examine in detail the genetic relationships between the South American camelids in order to determine the origins of the domestic forms, using mitochondrial (mt) and microsatellite DNA. MtDNA analysis places 80% of llama and alpaca sequences in the guanaco lineage, with those possessing vicuña mtDNA being nearly all alpaca or alpaca-vicuña hybrids. We also examined four microsatellites in wild known-provenance vicuña and guanaco, including two loci with non-overlapping allele size ranges in the wild species. In contrast to the mtDNA, these markers show high genetic similarity between alpaca and vicuña, and between llama and guanaco, although bidirectional hybridization is also revealed. Finally, combined marker analysis on a subset of samples confirms the microsatellite interpretation and suggests that the alpaca is descended from the vicuña, and should be reclassified as Vicugna pacos. This result has major implications for the future management of wild and domestic camelids in South America. PMID:11749713

  7. Uniparental markers in Italy reveal a sex-biased genetic structure and different historical strata.

    PubMed

    Boattini, Alessio; Martinez-Cruz, Begoña; Sarno, Stefania; Harmant, Christine; Useli, Antonella; Sanz, Paula; Yang-Yao, Daniele; Manry, Jeremy; Ciani, Graziella; Luiselli, Donata; Quintana-Murci, Lluis; Comas, David; Pettener, Davide

    2013-01-01

    Located in the center of the Mediterranean landscape and with an extensive coastal line, the territory of what is today Italy has played an important role in the history of human settlements and movements of Southern Europe and the Mediterranean Basin. Populated since Paleolithic times, the complexity of human movements during the Neolithic, the Metal Ages and the most recent history of the two last millennia (involving the overlapping of different cultural and demic strata) has shaped the pattern of the modern Italian genetic structure. With the aim of disentangling this pattern and understanding which processes more importantly shaped the distribution of diversity, we have analyzed the uniparentally-inherited markers in ∼900 individuals from an extensive sampling across the Italian peninsula, Sardinia and Sicily. Spatial PCAs and DAPCs revealed a sex-biased pattern indicating different demographic histories for males and females. Besides the genetic outlier position of Sardinians, a North West-South East Y-chromosome structure is found in continental Italy. Such structure is in agreement with recent archeological syntheses indicating two independent and parallel processes of Neolithisation. In addition, date estimates pinpoint the importance of the cultural and demographic events during the late Neolithic and Metal Ages. On the other hand, mitochondrial diversity is distributed more homogeneously in agreement with older population events that might be related to the presence of an Italian Refugium during the last glacial period in Europe.

  8. Computational dissection of human episodic memory reveals mental process-specific genetic profiles

    PubMed Central

    Luksys, Gediminas; Fastenrath, Matthias; Coynel, David; Freytag, Virginie; Gschwind, Leo; Heck, Angela; Jessen, Frank; Maier, Wolfgang; Milnik, Annette; Riedel-Heller, Steffi G.; Scherer, Martin; Spalek, Klara; Vogler, Christian; Wagner, Michael; Wolfsgruber, Steffen; Papassotiropoulos, Andreas; de Quervain, Dominique J.-F.

    2015-01-01

    Episodic memory performance is the result of distinct mental processes, such as learning, memory maintenance, and emotional modulation of memory strength. Such processes can be effectively dissociated using computational models. Here we performed gene set enrichment analyses of model parameters estimated from the episodic memory performance of 1,765 healthy young adults. We report robust and replicated associations of the amine compound SLC (solute-carrier) transporters gene set with the learning rate, of the collagen formation and transmembrane receptor protein tyrosine kinase activity gene sets with the modulation of memory strength by negative emotional arousal, and of the L1 cell adhesion molecule (L1CAM) interactions gene set with the repetition-based memory improvement. Furthermore, in a large functional MRI sample of 795 subjects we found that the association between L1CAM interactions and memory maintenance revealed large clusters of differences in brain activity in frontal cortical areas. Our findings provide converging evidence that distinct genetic profiles underlie specific mental processes of human episodic memory. They also provide empirical support to previous theoretical and neurobiological studies linking specific neuromodulators to the learning rate and linking neural cell adhesion molecules to memory maintenance. Furthermore, our study suggests additional memory-related genetic pathways, which may contribute to a better understanding of the neurobiology of human memory. PMID:26261317

  9. Multilocus sequence analysis reveals high genetic diversity in clinical isolates of Burkholderia cepacia complex from India.

    PubMed

    Gautam, Vikas; Patil, Prashant P; Kumar, Sunil; Midha, Samriti; Kaur, Mandeep; Kaur, Satinder; Singh, Meenu; Mali, Swapna; Shastri, Jayanthi; Arora, Anita; Ray, Pallab; Patil, Prabhu B

    2016-10-21

    Burkholderia cepacia complex (Bcc) is a complex group of bacteria causing opportunistic infections in immunocompromised and cystic fibrosis (CF) patients. Herein, we report multilocus sequence typing and analysis of the 57 clinical isolates of Bcc collected over the period of seven years (2005-2012) from several hospitals across India. A total of 21 sequence types (ST) including two STs from cystic fibrosis patient's isolates and twelve novel STs were identified in the population reflecting the extent of genetic diversity. Multilocus sequence analysis revealed two lineages in population, a major lineage belonging to B. cenocepacia and a minor lineage belonging to B. cepacia. Split-decomposition analysis suggests absence of interspecies recombination and intraspecies recombination contributed in generating genotypic diversity amongst isolates. Further linkage disequilibrium analysis indicates that recombination takes place at a low frequency, which is not sufficient to break down the clonal relationship. This knowledge of the genetic structure of Bcc population from a rapidly developing country will be invaluable in the epidemiology, surveillance and understanding global diversity of this group of a pathogen.

  10. A forward genetic screen reveals essential and non-essential RNAi factors in Paramecium tetraurelia

    PubMed Central

    Marker, Simone; Carradec, Quentin; Tanty, Véronique; Arnaiz, Olivier; Meyer, Eric

    2014-01-01

    In most eukaryotes, small RNA-mediated gene silencing pathways form complex interacting networks. In the ciliate Paramecium tetraurelia, at least two RNA interference (RNAi) mechanisms coexist, involving distinct but overlapping sets of protein factors and producing different types of short interfering RNAs (siRNAs). One is specifically triggered by high-copy transgenes, and the other by feeding cells with double-stranded RNA (dsRNA)-producing bacteria. In this study, we designed a forward genetic screen for mutants deficient in dsRNA-induced silencing, and a powerful method to identify the relevant mutations by whole-genome sequencing. We present a set of 47 mutant alleles for five genes, revealing two previously unknown RNAi factors: a novel Paramecium-specific protein (Pds1) and a Cid1-like nucleotidyl transferase. Analyses of allelic diversity distinguish non-essential and essential genes and suggest that the screen is saturated for non-essential, single-copy genes. We show that non-essential genes are specifically involved in dsRNA-induced RNAi while essential ones are also involved in transgene-induced RNAi. One of the latter, the RNA-dependent RNA polymerase RDR2, is further shown to be required for all known types of siRNAs, as well as for sexual reproduction. These results open the way for the dissection of the genetic complexity, interconnection, mechanisms and natural functions of RNAi pathways in P. tetraurelia. PMID:24860163

  11. Ethiopian Genetic Diversity Reveals Linguistic Stratification and Complex Influences on the Ethiopian Gene Pool

    PubMed Central

    Pagani, Luca; Kivisild, Toomas; Tarekegn, Ayele; Ekong, Rosemary; Plaster, Chris; Gallego Romero, Irene; Ayub, Qasim; Mehdi, S. Qasim; Thomas, Mark G.; Luiselli, Donata; Bekele, Endashaw; Bradman, Neil; Balding, David J.; Tyler-Smith, Chris

    2012-01-01

    Humans and their ancestors have traversed the Ethiopian landscape for millions of years, and present-day Ethiopians show great cultural, linguistic, and historical diversity, which makes them essential for understanding African variability and human origins. We genotyped 235 individuals from ten Ethiopian and two neighboring (South Sudanese and Somali) populations on an Illumina Omni 1M chip. Genotypes were compared with published data from several African and non-African populations. Principal-component and STRUCTURE-like analyses confirmed substantial genetic diversity both within and between populations, and revealed a match between genetic data and linguistic affiliation. Using comparisons with African and non-African reference samples in 40-SNP genomic windows, we identified “African” and “non-African” haplotypic components for each Ethiopian individual. The non-African component, which includes the SLC24A5 allele associated with light skin pigmentation in Europeans, may represent gene flow into Africa, which we estimate to have occurred ∼3 thousand years ago (kya). The non-African component was found to be more similar to populations inhabiting the Levant rather than the Arabian Peninsula, but the principal route for the expansion out of Africa ∼60 kya remains unresolved. Linkage-disequilibrium decay with genomic distance was less rapid in both the whole genome and the African component than in southern African samples, suggesting a less ancient history for Ethiopian populations. PMID:22726845

  12. Genetic examination of the putative skull of Jan Kochanowski reveals its female sex.

    PubMed

    Kupiec, Tomasz; Branicki, Wojciech

    2011-06-01

    We report the results of genetic examination of the putative skull of Jan Kochanowski (1530-1584), a great Polish renaissance poet. The skull was retrieved in 1791 by historian Tadeusz Czacki from the Kochanowski family tomb and became the property of the Czartoryskis Museum in Krakow. An anthropological study in 1926 questioned its male origin, which raised doubts about its authenticity. Our report presents genetic evidence that resolves this dispute. From the sole tooth we obtained a sufficient amount of DNA to perform the analysis of nuclear markers. The analysis of the sex-informative part of intron 1 in amelogenin, genotyped using AmpFiSTR® NGM PCR Amplification Kit and Powerplex® ESI17 Kit human identification systems, revealed the female origin of the tooth. The female origin was further confirmed by the analysis of a portion of amelogenin intron 2, a microsatellite marker located on the X chromosome, as well as by a lack of signal from Y chromosomal microsatellite markers and the sex-determining region Y marker. Data obtained for two hypervariable regions, HVI and HVII, in mitochondrial DNA showed that mtDNA haplotype was relatively frequent among contemporary Europeans. The analysis of a set of single nucleotide polymorphisms relevant for prediction of the iris color indicated an 87% probability that the woman had hazel or brown eye color.

  13. A pangenomic analysis of the Nannochloropsis organellar genomes reveals novel genetic variations in key metabolic genes

    PubMed Central

    2014-01-01

    Background Microalgae in the genus Nannochloropsis are photosynthetic marine Eustigmatophytes of significant interest to the bioenergy and aquaculture sectors due to their ability to efficiently accumulate biomass and lipids for utilization in renewable transportation fuels, aquaculture feed, and other useful bioproducts. To better understand the genetic complement that drives the metabolic processes of these organisms, we present the assembly and comparative pangenomic analysis of the chloroplast and mitochondrial genomes from Nannochloropsis salina CCMP1776. Results The chloroplast and mitochondrial genomes of N. salina are 98.4% and 97% identical to their counterparts in Nannochloropsis gaditana. Comparison of the Nannochloropsis pangenome to other algae within and outside of the same phyla revealed regions of significant genetic divergence in key genes that encode proteins needed for regulation of branched chain amino synthesis (acetohydroxyacid synthase), carbon fixation (RuBisCO activase), energy conservation (ATP synthase), protein synthesis and homeostasis (Clp protease, ribosome). Conclusions Many organellar gene modifications in Nannochloropsis are unique and deviate from conserved orthologs found across the tree of life. Implementation of secondary and tertiary structure prediction was crucial to functionally characterize many proteins and therefore should be implemented in automated annotation pipelines. The exceptional similarity of the N. salina and N. gaditana organellar genomes suggests that N. gaditana be reclassified as a strain of N. salina. PMID:24646409

  14. Genetics, morphology and ecology reveal a cryptic pika lineage in the Sikkim Himalaya.

    PubMed

    Dahal, Nishma; Lissovsky, Andrey A; Lin, Zhenzhen; Solari, Katherine; Hadly, Elizabeth A; Zhan, Xiangjiang; Ramakrishnan, Uma

    2017-01-01

    Asian pika species are morphologically ∼similar and have overlapping ranges. This leads to uncertainty and species misidentification in the field. Phylogenetic analyses of such misidentified samples leads to taxonomic ambiguity. The ecology of many pika species remains understudied, particularly in the Himalaya, where sympatric species could be separated by elevation and/or substrate. We sampled, measured, and acquired genetic data from pikas in the Sikkim Himalaya. Our analyses revealed a cryptic lineage, Ochotona sikimaria, previously reported as a subspecies of O. thibetana. The results support the elevation of this lineage to the species level, as it is genetically divergent from O. thibetana, as well as sister species, O. cansus (endemic to central China) and O. curzoniae (endemic to the Tibetan plateau). The Sikkim lineage diverged from its sister species' about 1.7-0.8myrago, coincident with uplift events in the Himalaya. Our results add to the recent spate of cryptic diversity identified from the eastern Himalaya and highlight the need for further study within the Ochotonidae. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Genetic examination of the putative skull of Jan Kochanowski reveals its female sex

    PubMed Central

    Kupiec, Tomasz; Branicki, Wojciech

    2011-01-01

    We report the results of genetic examination of the putative skull of Jan Kochanowski (1530-1584), a great Polish renaissance poet. The skull was retrieved in 1791 by historian Tadeusz Czacki from the Kochanowski family tomb and became the property of the Czartoryskis Museum in Krakow. An anthropological study in 1926 questioned its male origin, which raised doubts about its authenticity. Our report presents genetic evidence that resolves this dispute. From the sole tooth we obtained a sufficient amount of DNA to perform the analysis of nuclear markers. The analysis of the sex-informative part of intron 1 in amelogenin, genotyped using AmpFiSTR® NGM PCR Amplification Kit and Powerplex® ESI17 Kit human identification systems, revealed the female origin of the tooth. The female origin was further confirmed by the analysis of a portion of amelogenin intron 2, a microsatellite marker located on the X chromosome, as well as by a lack of signal from Y chromosomal microsatellite markers and the sex-determining region Y marker. Data obtained for two hypervariable regions, HVI and HVII, in mitochondrial DNA showed that mtDNA haplotype was relatively frequent among contemporary Europeans. The analysis of a set of single nucleotide polymorphisms relevant for prediction of the iris color indicated an 87% probability that the woman had hazel or brown eye color. PMID:21674838

  16. Genetic characterization of Toxoplasma gondii from Brazilian wildlife revealed abundant new genotypes.

    PubMed

    Vitaliano, S N; Soares, H S; Minervino, A H H; Santos, A L Q; Werther, K; Marvulo, M F V; Siqueira, D B; Pena, H F J; Soares, R M; Su, C; Gennari, S M

    2014-12-01

    This study aimed to isolate and genotype T. gondii from Brazilian wildlife. For this purpose, 226 samples were submitted to mice bioassay and screened by PCR based on 18S rRNA sequences. A total of 15 T. gondii isolates were obtained, including samples from four armadillos (three Dasypus novemcinctus, one Euphractus sexcinctus), three collared anteaters (Tamandua tetradactyla), three whited-lipped peccaries (Tayassu pecari), one spotted paca (Cuniculus paca), one oncilla (Leopardus tigrinus), one hoary fox (Pseudalopex vetulus), one lineated woodpecker (Dryocopus lineatus) and one maned wolf (Chrysocyon brachyurus). DNA from the isolates, originated from mice bioassay, and from the tissues of the wild animal, designated as "primary samples", were genotyped by PCR-restriction fragment length polymorphism (PCR/RFLP), using 12 genetic markers (SAG1, SAG2, alt.SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L258, PK1, CS3 and Apico). A total of 17 genotypes were identified, with 13 identified for the first time and four already reported in published literature. Results herein obtained corroborate previous studies in Brazil, confirming high diversity and revealing unique genotypes in this region. Given most of genotypes here identified are different from previous studies in domestic animals, future studies on T. gondii from wildlife is of interest to understand population genetics and structure of this parasite.

  17. Congenic mice reveal genetic epistasis and overlapping disease loci for autoimmune diabetes and listeriosis.

    PubMed

    Wang, Nancy; Elso, Colleen M; Mackin, Leanne; Mannering, Stuart I; Strugnell, Richard A; Wijburg, Odilia L; Brodnicki, Thomas C

    2014-08-01

    The nonobese diabetic (NOD) mouse strain serves as a genomic standard for assessing how allelic variation for insulin-dependent diabetes (Idd) loci affects the development of autoimmune diabetes. We previously demonstrated that C57BL/6 (B6) mice harbor a more diabetogenic allele than NOD mice for the Idd14 locus when introduced onto the NOD genetic background. New congenic NOD mouse strains, harboring smaller B6-derived intervals on chromosome 13, now localize Idd14 to an ~18-Mb interval and reveal a new locus, Idd31. Notably, the B6 allele for Idd31 confers protection against diabetes, but only in the absence of the diabetogenic B6 allele for Idd14, indicating genetic epistasis between these two loci. Moreover, congenic mice that are more susceptible to diabetes are more resistant to Listeria monocytogenes infection. This result co-localizes Idd14 and Listr2, a resistance locus for listeriosis, to the same genomic interval and indicates that congenic NOD mice may also be useful for localizing resistance loci for infectious disease.

  18. Genetic variation in the popular lab worm Lumbriculus variegatus (Annelida: Clitellata: Lumbriculidae) reveals cryptic speciation.

    PubMed

    Gustafsson, Daniel R; Price, David A; Erséus, Christer

    2009-05-01

    Genetic variation in the freshwater oligochaete Lumbriculus variegatus from Europe, North America and Japan was studied by sequencing and analysing the mitochondrial 16S and COI genes, and the nuclear ITS region. What hitherto has been regarded as L. variegatus was found to consist of at least two distinct clades (I and II), both of which occur in Europe as well as North America (clade I also in Japan). Specimens from a single locality in Sierra Nevada, California, also morphologically identified as L. variegatus, represent a third clade, which appears to be more closely related to clade II than to clade I, based on 16S data only. Average COI genetic distances were 17.7% between clades I and II, 0.6% within clade I, and 1.3% within clade II. Further, for these two clades, the mitochondrial (16S and COI) gene trees, which consider only the maternal lineages, are congruent with the ITS gene tree, which is the result of recombinations of paternal as well as maternal genomes. Finally, chromosome counts revealed clade I specimens to be highly polyploid, and clade II specimens to be diploid. We therefore conclude that clades I-II are separately evolving lineages, and that they should be regarded as separate species. This will have to be taken into account in the continued use of L. variegatus as a model organism in biological sciences.

  19. Transcriptional role of cyclin D1 in development revealed by a “genetic-proteomic” screen

    PubMed Central

    Bienvenu, Frédéric; Jirawatnotai, Siwanon; Elias, Joshua E.; Meyer, Clifford A.; Mizeracka, Karolina; Marson, Alexander; Frampton, Garrett M.; Cole, Megan F.; Odom, Duncan T.; Odajima, Junko; Geng, Yan; Zagozdzon, Agnieszka; Jecrois, Marie; Young, Richard A.; Liu, X. Shirley; Cepko, Constance L.; Gygi, Steven P.; Sicinski, Piotr

    2010-01-01

    Cyclin D1 belongs to the core cell cycle machinery, and it is frequently overexpressed in human cancers1,2. The full repertoire of cyclin D1 functions in normal development and in oncogenesis is currently unclear. Here we developed FLAG- and HA-tagged cyclin D1 knock-in mouse strains that allowed high-throughput mass spectrometry approach to search for cyclin D1-binding proteins in different mouse organs. In addition to cell cycle partners, we observed several proteins involved in transcription. Genome-wide location (ChIP-chip) analyses revealed that during mouse development cyclin D1 occupies promoters of abundantly expressed genes. In particular, we found that in developing mouse retinas – an organ that critically requires cyclin D1 function3,4 – cyclin D1 binds the upstream regulatory region of the Notch1 gene where it serves to recruit CBP histone acetyltransferase. Genetic ablation of cyclin D1 resulted in decreased CBP recruitment, decreased histone acetylation of the Notch1 promoter region, and led to decreased levels of the Notch transcript and protein in cyclin D1-null retinas. Transduction of an activated allele of Notch1 into cyclin D1−/− retinas increased proliferation of retinal progenitor cells, indicating that upregulating Notch1 signaling alleviates the phenotype of cyclin D1-deficiency. These studies reveal that in addition to its well-established cell cycle roles, cyclin D1 plays an in vivo transcriptional function in mouse development. Our approach, which we term “genetic-proteomic” can be used to study the in vivo function of essentially any protein. PMID:20090754

  20. Spatial genetic analysis reveals high connectivity of tiger (Panthera tigris) populations in the Satpura–Maikal landscape of Central India

    PubMed Central

    Sharma, Sandeep; Dutta, Trishna; Maldonado, Jesús E; Wood, Thomas C; Panwar, Hemendra Singh; Seidensticker, John

    2013-01-01

    We investigated the spatial genetic structure of the tiger meta-population in the Satpura–Maikal landscape of central India using population- and individual-based genetic clustering methods on multilocus genotypic data from 273 individuals. The Satpura–Maikal landscape is classified as a global-priority Tiger Conservation Landscape (TCL) due to its potential for providing sufficient habitat that will allow the long-term persistence of tigers. We found that the tiger meta-population in the Satpura–Maikal landscape has high genetic variation and very low genetic subdivision. Individual-based Bayesian clustering algorithms reveal two highly admixed genetic populations. We attribute this to forest connectivity and high gene flow in this landscape. However, deforestation, road widening, and mining may sever this connectivity, impede gene exchange, and further exacerbate the genetic division of tigers in central India. PMID:23403813

  1. Twin and family studies reveal strong environmental and weaker genetic cues explaining heritability of eosinophilic esophagitis.

    PubMed

    Alexander, Eileen S; Martin, Lisa J; Collins, Margaret H; Kottyan, Leah C; Sucharew, Heidi; He, Hua; Mukkada, Vincent A; Succop, Paul A; Abonia, J Pablo; Foote, Heather; Eby, Michael D; Grotjan, Tommie M; Greenler, Alexandria J; Dellon, Evan S; Demain, Jeffrey G; Furuta, Glenn T; Gurian, Larry E; Harley, John B; Hopp, Russell J; Kagalwalla, Amir; Kaul, Ajay; Nadeau, Kari C; Noel, Richard J; Putnam, Philip E; von Tiehl, Karl F; Rothenberg, Marc E

    2014-11-01

    Eosinophilic esophagitis (EoE) is a chronic antigen-driven allergic inflammatory disease, likely involving the interplay of genetic and environmental factors, yet their respective contributions to heritability are unknown. To quantify the risk associated with genes and environment on familial clustering of EoE. Family history was obtained from a hospital-based cohort of 914 EoE probands (n = 2192 first-degree "Nuclear-Family" relatives) and an international registry of monozygotic and dizygotic twins/triplets (n = 63 EoE "Twins" probands). Frequencies, recurrence risk ratios (RRRs), heritability, and twin concordance were estimated. Environmental exposures were preliminarily examined. Analysis of the Nuclear-Family-based cohort revealed that the rate of EoE, in first-degree relatives of a proband, was 1.8% (unadjusted) and 2.3% (sex-adjusted). RRRs ranged from 10 to 64, depending on the family relationship, and were higher in brothers (64.0; P = .04), fathers (42.9; P = .004), and males (50.7; P < .001) than in sisters, mothers, and females, respectively. The risk of EoE for other siblings was 2.4%. In the Nuclear-Family cohort, combined gene and common environment heritability was 72.0% ± 2.7% (P < .001). In the Twins cohort, genetic heritability was 14.5% ± 4.0% (P < .001), and common family environment contributed 81.0% ± 4% (P < .001) to phenotypic variance. Probandwise concordance in monozygotic co-twins was 57.9% ± 9.5% compared with 36.4% ± 9.3% in dizygotic co-twins (P = .11). Greater birth weight difference between twins (P = .01), breast-feeding (P = .15), and fall birth season (P = .02) were associated with twin discordance in disease status. EoE RRRs are increased 10- to 64-fold compared with the general population. EoE in relatives is 1.8% to 2.4%, depending on relationship and sex. Nuclear-Family heritability appeared to be high (72.0%). However, the Twins cohort analysis revealed a powerful role for common environment (81.0%) compared with

  2. Genetic characterization of Toxoplasma gondii isolates from Portugal, Austria, and Israel reveals higher genetic variability within the type II lineage

    USDA-ARS?s Scientific Manuscript database

    This study compared genetic diversity of Toxoplasma gondii isolates from Portugal, Austria and Israel. For this, we genotyped 90 T. gondii isolates (16 from Portugal, 67 from Austria and 7 from Israel) using 10 nested PCR-restriction length polymorphism (RFLP) genetic markers and 15 microsatellite (...

  3. High-dimensional variance partitioning reveals the modular genetic basis of adaptive divergence in gene expression during reproductive character displacement.

    PubMed

    McGraw, Elizabeth A; Ye, Yixin H; Foley, Brad; Chenoweth, Stephen F; Higgie, Megan; Hine, Emma; Blows, Mark W

    2011-11-01

    Although adaptive change is usually associated with complex changes in phenotype, few genetic investigations have been conducted on adaptations that involve sets of high-dimensional traits. Microarrays have supplied high-dimensional descriptions of gene expression, and phenotypic change resulting from adaptation often results in large-scale changes in gene expression. We demonstrate how genetic analysis of large-scale changes in gene expression generated during adaptation can be accomplished by determining high-dimensional variance partitioning within classical genetic experimental designs. A microarray experiment conducted on a panel of recombinant inbred lines (RILs) generated from two populations of Drosophila serrata that have diverged in response to natural selection, revealed genetic divergence in 10.6% of 3762 gene products examined. Over 97% of the genetic divergence in transcript abundance was explained by only 12 genetic modules. The two most important modules, explaining 50% of the genetic variance in transcript abundance, were genetically correlated with the morphological traits that are known to be under selection. The expression of three candidate genes from these two important genetic modules was assessed in an independent experiment using qRT-PCR on 430 individuals from the panel of RILs, and confirmed the genetic association between transcript abundance and morphological traits under selection.

  4. Genetic analysis reveals candidate species in the Scinax catharinae clade (Amphibia: Anura) from Central Brazil.

    PubMed

    Nogueira, Lídia; Solé, Mirco; Siqueira, Sérgio; Affonso, Paulo Roberto Antunes de Mello; Strüssmann, Christine; Sampaio, Iracilda

    2016-03-01

    Scinax (Anura: Hylidae) is a species-rich genus of amphibians (113 spp.), divided into five species groups by morphological features. Cladistic analyses however revealed only two monophyletic clades in these groups: Scinax catharinae and Scinax ruber. Most species from the S. catharinae clade are found in Atlantic rainforest, except for Scinax canastrensis,S. centralis, S. luizotavioi, S. machadoi,S. pombali and S. skaios. In the present work, specimens of Scinax collected in Chapada dos Guimarães, central Brazil, were morphologically compatible with species from theS. catharinae group. On the other hand, genetic analysis based on mitochondrial (16S and 12S) and nuclear (rhodopsin) sequences revealed a nucleotide divergence of 6 to 20% between Scinax sp. and other congeners from the Brazilian savannah (Cerrado). Accordingly, Bayesian inference placed Scinax sp. in the S. catharinae clade with high support values. Hence, these findings strongly indicate the presence of a new species in the S. catharinae clade from the southwestern portion of the Brazilian savannah. To be properly validated as a novel species, detailed comparative morphological and bioacustic studies with other taxa from Brazil such asS. canastrensis, S. centralis, S. luizotavioi, S. machadoi, S. pombali and S. skaios are required.

  5. Genetic analysis reveals candidate species in the Scinax catharinae clade (Amphibia: Anura) from Central Brazil

    PubMed Central

    Nogueira, Lídia; Solé, Mirco; Siqueira, Sérgio; Affonso, Paulo Roberto Antunes de Mello; Strüssmann, Christine; Sampaio, Iracilda

    2016-01-01

    Abstract Scinax (Anura: Hylidae) is a species-rich genus of amphibians (113 spp.), divided into five species groups by morphological features. Cladistic analyses however revealed only two monophyletic clades in these groups: Scinax catharinae and Scinax ruber. Most species from the S. catharinae clade are found in Atlantic rainforest, except for Scinax canastrensis,S. centralis, S. luizotavioi, S. machadoi,S. pombali and S. skaios. In the present work, specimens of Scinax collected in Chapada dos Guimarães, central Brazil, were morphologically compatible with species from theS. catharinae group. On the other hand, genetic analysis based on mitochondrial (16S and 12S) and nuclear (rhodopsin) sequences revealed a nucleotide divergence of 6 to 20% between Scinax sp. and other congeners from the Brazilian savannah (Cerrado). Accordingly, Bayesian inference placed Scinax sp. in the S. catharinae clade with high support values. Hence, these findings strongly indicate the presence of a new species in the S. catharinae clade from the southwestern portion of the Brazilian savannah. To be properly validated as a novel species, detailed comparative morphological and bioacustic studies with other taxa from Brazil such asS. canastrensis, S. centralis, S. luizotavioi, S. machadoi, S. pombali and S. skaios are required. PMID:27007898

  6. Genetic Modifier Screens Reveal New Components that Interact with the Drosophila Dystroglycan-Dystrophin Complex

    PubMed Central

    Yatsenko, Andriy S.; Shcherbata, Halyna R.; Fischer, Karin A.; Maksymiv, Dariya V.; Chernyk, Yaroslava I.; Ruohola-Baker, Hannele

    2008-01-01

    The Dystroglycan-Dystrophin (Dg-Dys) complex has a capacity to transmit information from the extracellular matrix to the cytoskeleton inside the cell. It is proposed that this interaction is under tight regulation; however the signaling/regulatory components of Dg-Dys complex remain elusive. Understanding the regulation of the complex is critical since defects in this complex cause muscular dystrophy in humans. To reveal new regulators of the Dg-Dys complex, we used a model organism Drosophila melanogaster and performed genetic interaction screens to identify modifiers of Dg and Dys mutants in Drosophila wing veins. These mutant screens revealed that the Dg-Dys complex interacts with genes involved in muscle function and components of Notch, TGF-β and EGFR signaling pathways. In addition, components of pathways that are required for cellular and/or axonal migration through cytoskeletal regulation, such as Semaphorin-Plexin, Frazzled-Netrin and Slit-Robo pathways show interactions with Dys and/or Dg. These data suggest that the Dg-Dys complex and the other pathways regulating extracellular information transfer to the cytoskeletal dynamics are more intercalated than previously thought. PMID:18545683

  7. Phenotypic categorization of genetic skin diseases reveals new relations between phenotypes, genes and pathways

    PubMed Central

    Sadreyev, Ruslan I.; Feramisco, Jamison D.; Tsao, Hensin; Grishin, Nick V.

    2009-01-01

    Motivation: Systematic analysis of connection between proteins, their cellular function and phenotypic manifestations in disease is a central problem of biological and clinical research. The solution to this problem requires the development of new approaches to link the rapidly growing dataset of gene–disease associations with the many complex and overlapping phenotypes of human disease. Results: We analyze genetic skin disorders and suggest a manually designed set of elementary phenotypes whose combinations define diseases as points in a multidimensional space, providing a basis for phenotypic disease clustering. Placing the known gene–disease associations in the context of this space reveals new patterns that suggest previously unknown functional links between proteins, signaling pathways and disease phenotypes. For example, analysis of telangiectasias (spider vein diseases) reveals a previously unrecognized interplay between the TGF-β signaling pathway and pentose phosphate pathway. This interaction may mediate glucose-dependent regulation of TGF-β signaling, providing a clue to the known association between angiopathies and diabetes and implying new gene candidates for mutational analysis and drug targeting. Contact: grishin@chop.swmed.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19744994

  8. SNP typing reveals similarity in Mycobacterium tuberculosis genetic diversity between Portugal and Northeast Brazil.

    PubMed

    Lopes, Joao S; Marques, Isabel; Soares, Patricia; Nebenzahl-Guimaraes, Hanna; Costa, Joao; Miranda, Anabela; Duarte, Raquel; Alves, Adriana; Macedo, Rita; Duarte, Tonya A; Barbosa, Theolis; Oliveira, Martha; Nery, Joilda S; Boechat, Neio; Pereira, Susan M; Barreto, Mauricio L; Pereira-Leal, Jose; Gomes, Maria Gabriela Miranda; Penha-Goncalves, Carlos

    2013-08-01

    Human tuberculosis is an infectious disease caused by bacteria from the Mycobacterium tuberculosis complex (MTBC). Although spoligotyping and MIRU-VNTR are standard methodologies in MTBC genetic epidemiology, recent studies suggest that Single Nucleotide Polymorphisms (SNP) are advantageous in phylogenetics and strain group/lineages identification. In this work we use a set of 79 SNPs to characterize 1987 MTBC isolates from Portugal and 141 from Northeast Brazil. All Brazilian samples were further characterized using spolygotyping. Phylogenetic analysis against a reference set revealed that about 95% of the isolates in both populations are singly attributed to bacterial lineage 4. Within this lineage, the most frequent strain groups in both Portugal and Brazil are LAM, followed by Haarlem and X. Contrary to these groups, strain group T showed a very different prevalence between Portugal (10%) and Brazil (1.5%). Spoligotype identification shows about 10% of mis-matches compared to the use of SNPs and a little more than 1% of strains unidentifiability. The mis-matches are observed in the most represented groups of our sample set (i.e., LAM and Haarlem) in almost the same proportion. Besides being more accurate in identifying strain groups/lineages, SNP-typing can also provide phylogenetic relationships between strain groups/lineages and, thus, indicate cases showing phylogenetic incongruence. Overall, the use of SNP-typing revealed striking similarities between MTBC populations from Portugal and Brazil.

  9. Transcription closed and open complex dynamics studies reveal balance between genetic determinants and co-factors

    NASA Astrophysics Data System (ADS)

    Sala, Adrien; Shoaib, Muhammad; Anufrieva, Olga; Mutharasu, Gnanavel; Jahan Hoque, Rawnak; Yli-Harja, Olli; Kandhavelu, Meenakshisundaram

    2015-05-01

    In E. coli, promoter closed and open complexes are key steps in transcription initiation, where magnesium-dependent RNA polymerase catalyzes RNA synthesis. However, the exact mechanism of initiation remains to be fully elucidated. Here, using single mRNA detection and dual reporter studies, we show that increased intracellular magnesium concentration affects Plac initiation complex formation resulting in a highly dynamic process over the cell growth phases. Mg2+ regulates transcription transition, which modulates bimodality of mRNA distribution in the exponential phase. We reveal that Mg2+ regulates the size and frequency of the mRNA burst by changing the open complex duration. Moreover, increasing magnesium concentration leads to higher intrinsic and extrinsic noise in the exponential phase. RNAP-Mg2+ interaction simulation reveals critical movements creating a shorter contact distance between aspartic acid residues and Nucleotide Triphosphate residues and increasing electrostatic charges in the active site. Our findings provide unique biophysical insights into the balanced mechanism of genetic determinants and magnesium ion in transcription initiation regulation during cell growth.

  10. Transcription closed and open complex dynamics studies reveal balance between genetic determinants and co-factors.

    PubMed

    Sala, Adrien; Shoaib, Muhammad; Anufrieva, Olga; Mutharasu, Gnanavel; Jahan Hoque, Rawnak; Yli-Harja, Olli; Kandhavelu, Meenakshisundaram

    2015-05-19

    In E. coli, promoter closed and open complexes are key steps in transcription initiation, where magnesium-dependent RNA polymerase catalyzes RNA synthesis. However, the exact mechanism of initiation remains to be fully elucidated. Here, using single mRNA detection and dual reporter studies, we show that increased intracellular magnesium concentration affects Plac initiation complex formation resulting in a highly dynamic process over the cell growth phases. Mg2+ regulates transcription transition, which modulates bimodality of mRNA distribution in the exponential phase. We reveal that Mg2+ regulates the size and frequency of the mRNA burst by changing the open complex duration. Moreover, increasing magnesium concentration leads to higher intrinsic and extrinsic noise in the exponential phase. RNAP-Mg2+ interaction simulation reveals critical movements creating a shorter contact distance between aspartic acid residues and Nucleotide Triphosphate residues and increasing electrostatic charges in the active site. Our findings provide unique biophysical insights into the balanced mechanism of genetic determinants and magnesium ion in transcription initiation regulation during cell growth.

  11. An integrative systems genetics approach reveals potential causal genes and pathways related to obesity.

    PubMed

    Kogelman, Lisette J A; Zhernakova, Daria V; Westra, Harm-Jan; Cirera, Susanna; Fredholm, Merete; Franke, Lude; Kadarmideen, Haja N

    2015-10-20

    Obesity is a multi-factorial health problem in which genetic factors play an important role. Limited results have been obtained in single-gene studies using either genomic or transcriptomic data. RNA sequencing technology has shown its potential in gaining accurate knowledge about the transcriptome, and may reveal novel genes affecting complex diseases. Integration of genomic and transcriptomic variation (expression quantitative trait loci [eQTL] mapping) has identified causal variants that affect complex diseases. We integrated transcriptomic data from adipose tissue and genomic data from a porcine model to investigate the mechanisms involved in obesity using a systems genetics approach. Using a selective gene expression profiling approach, we selected 36 animals based on a previously created genomic Obesity Index for RNA sequencing of subcutaneous adipose tissue. Differential expression analysis was performed using the Obesity Index as a continuous variable in a linear model. eQTL mapping was then performed to integrate 60 K porcine SNP chip data with the RNA sequencing data. Results were restricted based on genome-wide significant single nucleotide polymorphisms, detected differentially expressed genes, and previously detected co-expressed gene modules. Further data integration was performed by detecting co-expression patterns among eQTLs and integration with protein data. Differential expression analysis of RNA sequencing data revealed 458 differentially expressed genes. The eQTL mapping resulted in 987 cis-eQTLs and 73 trans-eQTLs (false discovery rate < 0.05), of which the cis-eQTLs were associated with metabolic pathways. We reduced the eQTL search space by focusing on differentially expressed and co-expressed genes and disease-associated single nucleotide polymorphisms to detect obesity-related genes and pathways. Building a co-expression network using eQTLs resulted in the detection of a module strongly associated with lipid pathways. Furthermore, we

  12. Genetic diversity of the endangered Chinese endemic herb Primulina tabacum (Gesneriaceae) revealed by amplified fragment length polymorphism (AFLP).

    PubMed

    Ni, Xiaowei; Huang, Yelin; Wu, Lin; Zhou, Renchao; Deng, Shulin; Wu, Darong; Wang, Bosun; Su, Guohua; Tang, Tian; Shi, Suhua

    2006-05-01

    Primulina tabacum Hance, is a critically endangered perennial endemic to limestone area in South China. Genetic variability within and among four extant populations of this species was assessed using AFLP markers. We expected a low genetic diversity level of this narrowly distributed species, but our results revealed that a high level of genetic diversity remains, both at population level (55.5% of markers polymorphic, H (E) = 0.220, I (S) = 0.321), and at species level (P = 85.6% of markers polymorphic, H (E) = 0.339, I (S) = 0.495), probably resulting from its refugial history and/or breeding system. High levels of genetic differentiation among populations was apparent based on Nei's genetic diversity analysis (G (st)=0.350). The restricted gene flow between populations is a potential reason for the high genetic differentiation. The population genetic diversity of P. tabacum revealed here has clear implications for conservation and management. To maintain present levels of genetic diversity, in situ conservation of all populations is necessary.

  13. Genetic variability of mutans streptococci revealed by wide whole-genome sequencing

    PubMed Central

    2013-01-01

    Background Mutans streptococci are a group of bacteria significantly contributing to tooth decay. Their genetic variability is however still not well understood. Results Genomes of 6 clinical S. mutans isolates of different origins, one isolate of S. sobrinus (DSM 20742) and one isolate of S. ratti (DSM 20564) were sequenced and comparatively analyzed. Genome alignment revealed a mosaic-like structure of genome arrangement. Genes related to pathogenicity are found to have high variations among the strains, whereas genes for oxidative stress resistance are well conserved, indicating the importance of this trait in the dental biofilm community. Analysis of genome-scale metabolic networks revealed significant differences in 42 pathways. A striking dissimilarity is the unique presence of two lactate oxidases in S. sobrinus DSM 20742, probably indicating an unusual capability of this strain in producing H2O2 and expanding its ecological niche. In addition, lactate oxidases may form with other enzymes a novel energetic pathway in S. sobrinus DSM 20742 that can remedy its deficiency in citrate utilization pathway. Using 67 S. mutans genomes currently available including the strains sequenced in this study, we estimates the theoretical core genome size of S. mutans, and performed modeling of S. mutans pan-genome by applying different fitting models. An “open” pan-genome was inferred. Conclusions The comparative genome analyses revealed diversities in the mutans streptococci group, especially with respect to the virulence related genes and metabolic pathways. The results are helpful for better understanding the evolution and adaptive mechanisms of these oral pathogen microorganisms and for combating them. PMID:23805886

  14. Stretched peer-review on unexpected results (GMOs).

    PubMed

    Myhr, A I

    2005-01-01

    Science is the basis for governance of risk from genetically modified organisms (GMO), and it is also a primary source of legitimacy for policy decision. However, recently the publication of unexpected results has caused controversies and challenged the way in which science should be performed, be published in scientific journals, and how preliminary results should be communicated. These studies have subsequently, after being accepted for publication within the peer-review process of leading scientific journals, been thoroughly re-examined by many actors active within the GMO debate and thereby drawn extensive media coverage. The publicized charges that the research involved does not constitute significant evidence or represent bad science have in fact deflected attention away from the important questions related to ecological and health risks raised by the research. In this paper, I will argue that unexpected findings may represent "early warnings." Although early warnings may not represent reality, such reports are necessary to inform other scientists and regulators, and should be followed up by further research to reveal the validity of the warnings. Furthermore, science that embraces robust, participatory and transparent approaches will be imperative in the future to reduce the present controversy surrounding GMO use and release.

  15. Molecular genetic analysis of ABO blood group variations reveals 29 novel ABO subgroup alleles.

    PubMed

    Cai, Xiaohong; Jin, Sha; Liu, Xi; Fan, Liangfeng; Lu, Qiong; Wang, Jianlian; Shen, Wei; Gong, Songsong; Qiu, Li; Xiang, Dong

    2013-11-01

    Identifying genetic variants of the ABO gene may reveal new biologic mechanisms underlying variant phenotypes of the ABO blood group. We report the molecular genetic analysis of 322 apparently unrelated ABO subgroup individuals in an estimated 2.1 million donors. We performed phenotype investigations by serology studies, analyzed the DNA sequence of the ABO gene by direct sequencing or sequencing after cloning, and evaluated promoter activity by reporter assays. In 62 rare ABO alleles, we identified 29 novel ABO subgroup alleles in 43 apparently unrelated subgroup individuals and their four available pedigrees. Of these alleles, one was a deletion-mutation allele, four were hybrid alleles, and 24 were point-mutation alleles. Most of the point mutations were detected in Exons 6 to 7, while several others were also detected in Exons 1 to 5 or splicing regions. One ABO promoter mutation, -35 to -18 del, was found and verified to reduce promoter activity, as determined by dual luciferase assays. Two mutations, 7G>T and 52C>T, carrying the premature terminal codons E3X and R18X in the 5'-region, were found to be associated with the very weak ABO subgroups "Ael" and "Bel." Twenty-nine ABO subgroup alleles were newly linked to different kinds of ABO variations. We provide the first evidence that promoter abnormality is involved in the formation of weak ABO phenotypes. We also described the first naturally occurring ABO alleles with premature terminal codons in the 5'-region that led to Ael and Bel phenotypes. © 2013 American Association of Blood Banks.

  16. Genetic Analysis Reveals a Longevity-Associated Protein Modulating Endothelial Function and Angiogenesis.

    PubMed

    Villa, Francesco; Carrizzo, Albino; Spinelli, Chiara C; Ferrario, Anna; Malovini, Alberto; Maciąg, Anna; Damato, Antonio; Auricchio, Alberto; Spinetti, Gaia; Sangalli, Elena; Dang, Zexu; Madonna, Michele; Ambrosio, Mariateresa; Sitia, Leopoldo; Bigini, Paolo; Calì, Gaetano; Schreiber, Stefan; Perls, Thomas; Fucile, Sergio; Mulas, Francesca; Nebel, Almut; Bellazzi, Riccardo; Madeddu, Paolo; Vecchione, Carmine; Puca, Annibale A

    2015-07-31

    Long living individuals show delay of aging, which is characterized by the progressive loss of cardiovascular homeostasis, along with reduced endothelial nitric oxide synthase activity, endothelial dysfunction, and impairment of tissue repair after ischemic injury. Exploit genetic analysis of long living individuals to reveal master molecular regulators of physiological aging and new targets for treatment of cardiovascular disease. We show that the polymorphic variant rs2070325 (Ile229Val) in bactericidal/permeability-increasing fold-containing-family-B-member-4 (BPIFB4) associates with exceptional longevity, under a recessive genetic model, in 3 independent populations. Moreover, the expression of BPIFB4 is instrumental to maintenance of cellular and vascular homeostasis through regulation of protein synthesis. BPIFB4 phosphorylation/activation by protein-kinase-R-like endoplasmic reticulum kinase induces its complexing with 14-3-3 and heat shock protein 90, which is facilitated by the longevity-associated variant. In isolated vessels, BPIFB4 is upregulated by mechanical stress, and its knock-down inhibits endothelium-dependent vasorelaxation. In hypertensive rats and old mice, gene transfer of longevity-associated variant-BPIFB4 restores endothelial nitric oxide synthase signaling, rescues endothelial dysfunction, and reduces blood pressure levels. Furthermore, BPIFB4 is implicated in vascular repair. BPIFB4 is abundantly expressed in circulating CD34(+) cells of long living individuals, and its knock-down in endothelial progenitor cells precludes their capacity to migrate toward the chemoattractant SDF-1. In a murine model of peripheral ischemia, systemic gene therapy with longevity-associated variant-BPIFB4 promotes the recruitment of hematopoietic stem cells, reparative vascularization, and reperfusion of the ischemic muscle. Longevity-associated variant-BPIFB4 may represent a novel therapeutic tool to fight endothelial dysfunction and promote vascular

  17. Genetic Networks of Liver Metabolism Revealed by Integration of Metabolic and Transcriptional Profiling

    PubMed Central

    Ferrara, Christine T.; Wang, Ping; Neto, Elias Chaibub; Stevens, Robert D.; Bain, James R.; Wenner, Brett R.; Ilkayeva, Olga R.; Keller, Mark P.; Blasiole, Daniel A.; Kendziorski, Christina; Yandell, Brian S.; Newgard, Christopher B.; Attie, Alan D.

    2008-01-01

    Although numerous quantitative trait loci (QTL) influencing disease-related phenotypes have been detected through gene mapping and positional cloning, identification of the individual gene(s) and molecular pathways leading to those phenotypes is often elusive. One way to improve understanding of genetic architecture is to classify phenotypes in greater depth by including transcriptional and metabolic profiling. In the current study, we have generated and analyzed mRNA expression and metabolic profiles in liver samples obtained in an F2 intercross between the diabetes-resistant C57BL/6 leptinob/ob and the diabetes-susceptible BTBR leptinob/ob mouse strains. This cross, which segregates for genotype and physiological traits, was previously used to identify several diabetes-related QTL. Our current investigation includes microarray analysis of over 40,000 probe sets, plus quantitative mass spectrometry-based measurements of sixty-seven intermediary metabolites in three different classes (amino acids, organic acids, and acyl-carnitines). We show that liver metabolites map to distinct genetic regions, thereby indicating that tissue metabolites are heritable. We also demonstrate that genomic analysis can be integrated with liver mRNA expression and metabolite profiling data to construct causal networks for control of specific metabolic processes in liver. As a proof of principle of the practical significance of this integrative approach, we illustrate the construction of a specific causal network that links gene expression and metabolic changes in the context of glutamate metabolism, and demonstrate its validity by showing that genes in the network respond to changes in glutamine and glutamate availability. Thus, the methods described here have the potential to reveal regulatory networks that contribute to chronic, complex, and highly prevalent diseases and conditions such as obesity and diabetes. PMID:18369453

  18. A forward genetic screen reveals essential and non-essential RNAi factors in Paramecium tetraurelia.

    PubMed

    Marker, Simone; Carradec, Quentin; Tanty, Véronique; Arnaiz, Olivier; Meyer, Eric

    2014-06-01

    In most eukaryotes, small RNA-mediated gene silencing pathways form complex interacting networks. In the ciliate Paramecium tetraurelia, at least two RNA interference (RNAi) mechanisms coexist, involving distinct but overlapping sets of protein factors and producing different types of short interfering RNAs (siRNAs). One is specifically triggered by high-copy transgenes, and the other by feeding cells with double-stranded RNA (dsRNA)-producing bacteria. In this study, we designed a forward genetic screen for mutants deficient in dsRNA-induced silencing, and a powerful method to identify the relevant mutations by whole-genome sequencing. We present a set of 47 mutant alleles for five genes, revealing two previously unknown RNAi factors: a novel Paramecium-specific protein (Pds1) and a Cid1-like nucleotidyl transferase. Analyses of allelic diversity distinguish non-essential and essential genes and suggest that the screen is saturated for non-essential, single-copy genes. We show that non-essential genes are specifically involved in dsRNA-induced RNAi while essential ones are also involved in transgene-induced RNAi. One of the latter, the RNA-dependent RNA polymerase RDR2, is further shown to be required for all known types of siRNAs, as well as for sexual reproduction. These results open the way for the dissection of the genetic complexity, interconnection, mechanisms and natural functions of RNAi pathways in P. tetraurelia. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Landscape genetic analyses reveal fine-scale effects of forest fragmentation in an insular tropical bird.

    PubMed

    Khimoun, Aurélie; Peterman, William; Eraud, Cyril; Faivre, Bruno; Navarro, Nicolas; Garnier, Stéphane

    2017-07-20

    Within the framework of landscape genetics, resistance surface modelling is particularly relevant to explicitly test competing hypotheses about landscape effects on gene flow. To investigate how fragmentation of tropical forest affects population connectivity in a forest specialist bird species, we optimized resistance surfaces without a priori specification, using least-cost (LCP) or resistance (IBR) distances. We implemented a two-step procedure in order (i) to objectively define the landscape thematic resolution (level of detail in classification scheme to describe landscape variables) and spatial extent (area within the landscape boundaries) and then (ii) to test the relative role of several landscape features (elevation, roads, land cover) in genetic differentiation in the Plumbeous Warbler (Setophaga plumbea). We detected a small-scale reduction of gene flow mainly driven by land cover, with a negative impact of the nonforest matrix on landscape functional connectivity. However, matrix components did not equally constrain gene flow, as their conductivity increased with increasing structural similarity with forest habitat: urban areas and meadows had the highest resistance values whereas agricultural areas had intermediate resistance values. Our results revealed a higher performance of IBR compared to LCP in explaining gene flow, reflecting suboptimal movements across this human-modified landscape, challenging the common use of LCP to design habitat corridors and advocating for a broader use of circuit theory modelling. Finally, our results emphasize the need for an objective definition of landscape scales (landscape extent and thematic resolution) and highlight potential pitfalls associated with parameterization of resistance surfaces. © 2017 John Wiley & Sons Ltd.

  20. Genetic signatures of adaptation revealed from transcriptome sequencing of Arctic and red foxes.

    PubMed

    Kumar, Vikas; Kutschera, Verena E; Nilsson, Maria A; Janke, Axel

    2015-08-07

    The genus Vulpes (true foxes) comprises numerous species that inhabit a wide range of habitats and climatic conditions, including one species, the Arctic fox (Vulpes lagopus) which is adapted to the arctic region. A close relative to the Arctic fox, the red fox (Vulpes vulpes), occurs in subarctic to subtropical habitats. To study the genetic basis of their adaptations to different environments, transcriptome sequences from two Arctic foxes and one red fox individual were generated and analyzed for signatures of positive selection. In addition, the data allowed for a phylogenetic analysis and divergence time estimate between the two fox species. The de novo assembly of reads resulted in more than 160,000 contigs/transcripts per individual. Approximately 17,000 homologous genes were identified using human and the non-redundant databases. Positive selection analyses revealed several genes involved in various metabolic and molecular processes such as energy metabolism, cardiac gene regulation, apoptosis and blood coagulation to be under positive selection in foxes. Branch site tests identified four genes to be under positive selection in the Arctic fox transcriptome, two of which are fat metabolism genes. In the red fox transcriptome eight genes are under positive selection, including molecular process genes, notably genes involved in ATP metabolism. Analysis of the three transcriptomes and five Sanger re-sequenced genes in additional individuals identified a lower genetic variability within Arctic foxes compared to red foxes, which is consistent with distribution range differences and demographic responses to past climatic fluctuations. A phylogenomic analysis estimated that the Arctic and red fox lineages diverged about three million years ago. Transcriptome data are an economic way to generate genomic resources for evolutionary studies. Despite not representing an entire genome, this transcriptome analysis identified numerous genes that are relevant to arctic

  1. A Genetic Screen for Sleep and Circadian Mutants Reveals Mechanisms Underlying Regulation of Sleep in Drosophila

    PubMed Central

    Wu, Mark N.; Koh, Kyunghee; Yue, Zhifeng; Joiner, William J.; Sehgal, Amita

    2008-01-01

    Study Objectives: In order to characterize the genetic mechanisms underlying sleep, we have carried out a large-scale screen in Drosophila to identify short-sleeping mutants. The objectives of this study were as follows: (1) characterize the phenotypes of the shortest-sleeping mutants; (2) examine whether changes in arousal threshold or sleep homeostasis underlie short-sleeping phenotypes; (3) clone a gene affected in one of the shortest sleepers; and (4) investigate whether circadian mutants can be identified using light:dark (L:D) locomotor data obtained for studying sleep behavior. Design: Locomotor activity was measured using the Drosophila Activity Monitoring System in a 12:12 L:D cycle. Setting: Drosophila research laboratory. Participants: Adult flies from the 2nd chromosome Zuker collection, which contain mutations in most of the nonessential genes on the Drosophila 2nd chromosome. Measurements and Results: Our analysis of sleep characteristics suggests that daily activity (but not waking activity) correlates with daily sleep time and that defects in sleep maintenance are more common than defects in sleep initiation. Our shortest sleepers have intact or increased sleep rebound following sleep deprivation but show reduced thresholds for arousal. Molecular analysis of one of the short-sleeping lines indicates that it is a novel allele of a dopamine transporter (DAT). Finally, we describe a novel approach for identifying circadian mutants using L:D data. Conclusions: Our data suggest that most short-sleeping mutant phenotypes in Drosophila are characterized by an inability to stay asleep, most likely because of a reduced arousal threshold. Citation: Wu MN; Koh K; Yue Z; Joiner WJ; Sehgal A. A genetic screen for sleep and circadian mutants reveals mechanisms underlying regulation of sleep in Drosophila. SLEEP 2008;31(4):465-472. PMID:18457233

  2. Genetic analysis reveals population structuring and a bottleneck in the black-faced lion tamarin (Leontopithecus caissara).

    PubMed

    Martins, M M; Nascimento, A T A; Nali, C; Velastin, G O; Mangini, P B; Valladares-Padua, C B; Galetti, P M

    2011-01-01

    The ability of a population to evolve in a changing environment may be compromised by human-imposed barriers to gene flow. We investigated the population structure and the possible occurrence of a genetic bottleneck in two isolated populations of the black-faced lion tamarin (Leontopithecus caissara), a species with very reduced numbers (less than 400) in a very restricted range in the Atlantic Forest of southeast Brazil. We determined the genotypes of 52 individuals across 9 microsatellite loci. We found genetic divergence between the populations, each exhibiting low genetic diversity. Analysis revealed broad- and fine-scale population structuring. Both populations have evidently experienced population reduction and a genetic bottleneck without presenting any apparent detrimental effect. Anyway, measures should be taken to effectively protect the forests where L. caissara occurs in order to allow its populations to increase and counteract the eventual effects of genetic impoverishment. Copyright © 2012 S. Karger AG, Basel.

  3. Genetic diversity and phylogenetic relationships of two closely related northeast China Vicia species revealed with RAPD and ISSR markers.

    PubMed

    Han, Ying; Wang, Hao-You

    2010-06-01

    RAPD and ISSR analyses revealed genetic diversity and relationships among 11 populations of two closely related northeast China Vicia species, Vicia ramuliflora and V. unijuga. Both methods yielded similar and complementary results, showing high genetic diversity. Vicia ramuliflora had 100% polymorphic loci in both RAPD and ISSR, and V. unijuga had 100% polymorphic loci for RAPD and 98.96% for ISSR. Genetic differentiation was moderate among populations of each species. Genetic variation was distributed mainly within populations for the two species. The high level of gene flow was important for the allocation of genetic variation. The UPGMA dendrogram and principal coordinates analysis at the level of individuals and populations showed that V. ramuliflora and V. unijuga were more closely related than either of them was to the outgroup species, V. cracca. The small molecular variance of V. ramuliflora and V. unijuga supports the conclusion that these two species had a common ancestor.

  4. Mitochondrial DNA markers reveal high genetic diversity and strong genetic differentiation in populations of Dendrolimus kikuchii Matsumura (Lepidoptera: Lasiocampidae).

    PubMed

    Men, Qiulei; Xue, Guoxi; Mu, Dan; Hu, Qingling; Huang, Minyi

    2017-01-01

    Dendrolimus kikuchii Matsumura, 1927 is a serious forest pest causing great damage to coniferous trees in China. Despite its economic importance, the population genetics of this pest are poorly known. We used three mitochondrial genes (COI, COII and Cytb) to investigate the genetic diversity and genetic differentiation of 15 populations collected from the main distribution regions of D. kikuchii in China. Populations show high haplotype and nucleotide diversity. Haplotype network and phylogenetic analysis divides the populations into three major clades, the central and southeastern China (CC+SEC) clade, the eastern China (EC) clade, and the southwestern China (SWC) clade. Populations collected from adjacent localities share the same clade, which is consistent with the strong relationship of isolation by distance (r = 0.74824, P = 0.00001). AMOVA analysis indicated that the major portion of this molecular genetic variation is found among the three groups of CC+SEC, EC and SWC (61.26%). Of 105 pairwise FST comparisons, 93 show high genetic differentiation. Populations of Puer (PE), Yangshuo (YS) and Leishan (LS) are separated from other populations by a larger genetic distance. Distributions of pairwise differences obtained with single and combined gene data from the overall populations are multimodal, suggesting these populations had no prior population expansion in southern China. The nonsignificant neutral test on the basis of Tajima' D and Fu's Fs, and the lack of a star-shaped haplotype network together with the multiple haplotypes support this hypothesis. Pleistocene climatic fluctuations, combined with the host specificity to Pinus species, made these regions of south China into a refuge for D. kikuchii. The high level of population genetic structuring is related to their weak flight capacity, their variations of life history and the geographic distance among populations.

  5. Mitochondrial DNA Markers Reveal High Genetic Diversity but Low Genetic Differentiation in the Black Fly Simulium tani Takaoka & Davies along an Elevational Gradient in Malaysia

    PubMed Central

    Low, Van Lun; Adler, Peter H.; Takaoka, Hiroyuki; Ya’cob, Zubaidah; Lim, Phaik Eem; Tan, Tiong Kai; Lim, Yvonne A. L.; Chen, Chee Dhang; Norma-Rashid, Yusoff; Sofian-Azirun, Mohd

    2014-01-01

    The population genetic structure of Simulium tani was inferred from mitochondria-encoded sequences of cytochrome c oxidase subunits I (COI) and II (COII) along an elevational gradient in Cameron Highlands, Malaysia. A statistical parsimony network of 71 individuals revealed 71 haplotypes in the COI gene and 43 haplotypes in the COII gene; the concatenated sequences of the COI and COII genes revealed 71 haplotypes. High levels of genetic diversity but low levels of genetic differentiation were observed among populations of S. tani at five elevations. The degree of genetic diversity, however, was not in accordance with an altitudinal gradient, and a Mantel test indicated that elevation did not have a limiting effect on gene flow. No ancestral haplotype of S. tani was found among the populations. Pupae with unique structural characters at the highest elevation showed a tendency to form their own haplotype cluster, as revealed by the COII gene. Tajima’s D, Fu’s Fs, and mismatch distribution tests revealed population expansion of S. tani in Cameron Highlands. A strong correlation was found between nucleotide diversity and the levels of dissolved oxygen in the streams where S. tani was collected. PMID:24941043

  6. Mitochondrial DNA markers reveal high genetic diversity but low genetic differentiation in the black fly Simulium tani Takaoka & Davies along an elevational gradient in Malaysia.

    PubMed

    Low, Van Lun; Adler, Peter H; Takaoka, Hiroyuki; Ya'cob, Zubaidah; Lim, Phaik Eem; Tan, Tiong Kai; Lim, Yvonne A L; Chen, Chee Dhang; Norma-Rashid, Yusoff; Sofian-Azirun, Mohd

    2014-01-01

    The population genetic structure of Simulium tani was inferred from mitochondria-encoded sequences of cytochrome c oxidase subunits I (COI) and II (COII) along an elevational gradient in Cameron Highlands, Malaysia. A statistical parsimony network of 71 individuals revealed 71 haplotypes in the COI gene and 43 haplotypes in the COII gene; the concatenated sequences of the COI and COII genes revealed 71 haplotypes. High levels of genetic diversity but low levels of genetic differentiation were observed among populations of S. tani at five elevations. The degree of genetic diversity, however, was not in accordance with an altitudinal gradient, and a Mantel test indicated that elevation did not have a limiting effect on gene flow. No ancestral haplotype of S. tani was found among the populations. Pupae with unique structural characters at the highest elevation showed a tendency to form their own haplotype cluster, as revealed by the COII gene. Tajima's D, Fu's Fs, and mismatch distribution tests revealed population expansion of S. tani in Cameron Highlands. A strong correlation was found between nucleotide diversity and the levels of dissolved oxygen in the streams where S. tani was collected.

  7. Crossing the uncrossable: novel trans-valley biogeographic patterns revealed in the genetic history of low-dispersal mygalomorph spiders (Antrodiaetidae, Antrodiaetus) from California.

    PubMed

    Hedin, Marshal; Starrett, James; Hayashi, Cheryl

    2013-01-01

    Antrodiaetus riversi is a dispersal-limited, habitat-specialized mygalomorph spider species endemic to mesic woodlands of northern and central California. Here, we build upon prior phylogeographic research using a much larger geographic sample and include additional nuclear genes, providing more detailed biogeographic insights throughout the range of this complex. Of particular interest is the uncovering of unexpected and replicated trans-valley biogeographic patterns, where in two separate genetic clades western haplotypes in the California south Coast Ranges are phylogenetically closely related to eastern haplotypes from central and northern Sierran foothills. In both instances, these trans-valley phylogenetic patterns are strongly supported by multiple genes. These western and eastern populations are currently separated by the Central Valley, a well-recognized modern-day and historical biogeographic barrier in California. For one clade, the directionality is clearly northeast to southwest, and all available evidence is consistent with a jump dispersal event estimated at 1.2-1.3 Ma. During this time period, paleogeographic data indicate that northern Sierran rivers emptied to the ocean in the south Coast Ranges, rather than at the San Francisco Bay. For the other trans-valley clade genetic evidence is less conclusive regarding the mechanism and directionality of biogeographic exchange, although the estimated timeframe is similar (approximately 1.8 Ma). Despite the large number of biogeographic studies previously conducted in central California, to the best of our knowledge no prior studies have discussed or revealed a northern Sierran to south Coast Range biogeographic connection. This uniqueness may reflect the low-dispersal biology of mygalomorph spiders, where 'post-event' gene exchange rarely erases historical biogeographic signal. © 2012 Blackwell Publishing Ltd.

  8. Distinct Genetic Lineages of Bactrocera caudata (Insecta: Tephritidae) Revealed by COI and 16S DNA Sequences

    PubMed Central

    Lim, Phaik-Eem; Tan, Ji; Suana, I. Wayan; Eamsobhana, Praphathip; Yong, Hoi Sen

    2012-01-01

    The fruit fly Bactrocera caudata is a pest species of economic importance in Asia. Its larvae feed on the flowers of Cucurbitaceae such as Cucurbita moschata. To-date it is distinguished from related species based on morphological characters. Specimens of B. caudata from Peninsular Malaysia and Indonesia (Bali and Lombok) were analysed using the partial DNA sequences of cytochrome c oxidase subunit I (COI) and 16S rRNA genes. Both gene sequences revealed that B. caudata from Peninsular Malaysia was distinctly different from B. caudata of Bali and Lombok, without common haplotype between them. Phylogenetic analysis revealed two distinct clades, indicating distinct genetic lineage. The uncorrected ‘p’ distance for COI sequences between B. caudata of Malaysia-Thailand-China and B. caudata of Bali-Lombok was 5.65%, for 16S sequences from 2.76 to 2.99%, and for combined COI and 16S sequences 4.45 to 4.46%. The ‘p’ values are distinctly different from intraspecific ‘p’ distance (0–0.23%). Both the B. caudata lineages are distinctly separated from related species in the subgenus Zeugodacus – B. ascita, B. scutellata, B. ishigakiensis, B. diaphora, B. tau, B. cucurbitae, and B. depressa. Molecular phylogenetic analysis indicates that the B. caudata lineages are closely related to B. ascita sp. B, and form a clade with B. scutellata, B. ishigakiensis, B. diaphora and B. ascita sp. A. This study provides additional baseline for the phylogenetic relationships of Bactrocera fruit flies of the subgenus Zeugodacus. Both the COI and 16S genes could be useful markers for the molecular differentiation and phylogenetic analysis of tephritid fruit flies. PMID:22615962

  9. An integrated systems genetics screen reveals the transcriptional structure of inherited predisposition to metastatic disease.

    PubMed

    Faraji, Farhoud; Hu, Ying; Wu, Gang; Goldberger, Natalie E; Walker, Renard C; Zhang, Jinghui; Hunter, Kent W

    2014-02-01

    Metastasis is the result of stochastic genomic and epigenetic events leading to gene expression profiles that drive tumor dissemination. Here we exploit the principle that metastatic propensity is modified by the genetic background to generate prognostic gene expression signatures that illuminate regulators of metastasis. We also identify multiple microRNAs whose germline variation is causally linked to tumor progression and metastasis. We employ network analysis of global gene expression profiles in tumors derived from a panel of recombinant inbred mice to identify a network of co-expressed genes centered on Cnot2 that predicts metastasis-free survival. Modulating Cnot2 expression changes tumor cell metastatic potential in vivo, supporting a functional role for Cnot2 in metastasis. Small RNA sequencing of the same tumor set revealed a negative correlation between expression of the Mir216/217 cluster and tumor progression. Expression quantitative trait locus analysis (eQTL) identified cis-eQTLs at the Mir216/217 locus, indicating that differences in expression may be inherited. Ectopic expression of Mir216/217 in tumor cells suppressed metastasis in vivo. Finally, small RNA sequencing and mRNA expression profiling data were integrated to reveal that miR-3470a/b target a high proportion of network transcripts. In vivo analysis of Mir3470a/b demonstrated that both promote metastasis. Moreover, Mir3470b is a likely regulator of the Cnot2 network as its overexpression down-regulated expression of network hub genes and enhanced metastasis in vivo, phenocopying Cnot2 knockdown. The resulting data from this strategy identify Cnot2 as a novel regulator of metastasis and demonstrate the power of our systems-level approach in identifying modifiers of metastasis.

  10. Distinct genetic lineages of Bactrocera caudata (Insecta: Tephritidae) revealed by COI and 16S DNA sequences.

    PubMed

    Lim, Phaik-Eem; Tan, Ji; Suana, I Wayan; Eamsobhana, Praphathip; Yong, Hoi Sen

    2012-01-01

    The fruit fly Bactrocera caudata is a pest species of economic importance in Asia. Its larvae feed on the flowers of Cucurbitaceae such as Cucurbita moschata. To-date it is distinguished from related species based on morphological characters. Specimens of B. caudata from Peninsular Malaysia and Indonesia (Bali and Lombok) were analysed using the partial DNA sequences of cytochrome c oxidase subunit I (COI) and 16S rRNA genes. Both gene sequences revealed that B. caudata from Peninsular Malaysia was distinctly different from B. caudata of Bali and Lombok, without common haplotype between them. Phylogenetic analysis revealed two distinct clades, indicating distinct genetic lineage. The uncorrected 'p' distance for COI sequences between B. caudata of Malaysia-Thailand-China and B. caudata of Bali-Lombok was 5.65%, for 16S sequences from 2.76 to 2.99%, and for combined COI and 16S sequences 4.45 to 4.46%. The 'p' values are distinctly different from intraspecific 'p' distance (0-0.23%). Both the B. caudata lineages are distinctly separated from related species in the subgenus Zeugodacus - B. ascita, B. scutellata, B. ishigakiensis, B. diaphora, B. tau, B. cucurbitae, and B. depressa. Molecular phylogenetic analysis indicates that the B. caudata lineages are closely related to B. ascita sp. B, and form a clade with B. scutellata, B. ishigakiensis, B. diaphora and B. ascita sp. A. This study provides additional baseline for the phylogenetic relationships of Bactrocera fruit flies of the subgenus Zeugodacus. Both the COI and 16S genes could be useful markers for the molecular differentiation and phylogenetic analysis of tephritid fruit flies.

  11. An integrated systems genetics screen reveals the transcriptional structure of inherited predisposition to metastatic disease

    PubMed Central

    Faraji, Farhoud; Hu, Ying; Wu, Gang; Goldberger, Natalie E.; Walker, Renard C.; Zhang, Jinghui; Hunter, Kent W.

    2014-01-01

    Metastasis is the result of stochastic genomic and epigenetic events leading to gene expression profiles that drive tumor dissemination. Here we exploit the principle that metastatic propensity is modified by the genetic background to generate prognostic gene expression signatures that illuminate regulators of metastasis. We also identify multiple microRNAs whose germline variation is causally linked to tumor progression and metastasis. We employ network analysis of global gene expression profiles in tumors derived from a panel of recombinant inbred mice to identify a network of co-expressed genes centered on Cnot2 that predicts metastasis-free survival. Modulating Cnot2 expression changes tumor cell metastatic potential in vivo, supporting a functional role for Cnot2 in metastasis. Small RNA sequencing of the same tumor set revealed a negative correlation between expression of the Mir216/217 cluster and tumor progression. Expression quantitative trait locus analysis (eQTL) identified cis-eQTLs at the Mir216/217 locus, indicating that differences in expression may be inherited. Ectopic expression of Mir216/217 in tumor cells suppressed metastasis in vivo. Finally, small RNA sequencing and mRNA expression profiling data were integrated to reveal that miR-3470a/b target a high proportion of network transcripts. In vivo analysis of Mir3470a/b demonstrated that both promote metastasis. Moreover, Mir3470b is a likely regulator of the Cnot2 network as its overexpression down-regulated expression of network hub genes and enhanced metastasis in vivo, phenocopying Cnot2 knockdown. The resulting data from this strategy identify Cnot2 as a novel regulator of metastasis and demonstrate the power of our systems-level approach in identifying modifiers of metastasis. PMID:24322557

  12. Admixture and the organization of genetic diversity in a butterfly species complex revealed through common and rare genetic variants.

    PubMed

    Gompert, Zachariah; Lucas, Lauren K; Buerkle, C Alex; Forister, Matthew L; Fordyce, James A; Nice, Chris C

    2014-09-01

    Detailed information about the geographic distribution of genetic and genomic variation is necessary to better understand the organization and structure of biological diversity. In particular, spatial isolation within species and hybridization between them can blur species boundaries and create evolutionary relationships that are inconsistent with a strictly bifurcating tree model. Here, we analyse genome-wide DNA sequence and genetic ancestry variation in Lycaeides butterflies to quantify the effects of admixture and spatial isolation on how biological diversity is organized in this group. We document geographically widespread and pervasive historical admixture, with more restricted recent hybridization. This includes evidence supporting previously known and unknown instances of admixture. The genome composition of admixed individuals varies much more among than within populations, and tree- and genetic ancestry-based analyses indicate that multiple distinct admixed lineages or populations exist. We find that most genetic variants in Lycaeides are rare (minor allele frequency <0.5%). Because the spatial and taxonomic distributions of alleles reflect demographic and selective processes since mutation, rare alleles, which are presumably younger than common alleles, were spatially and taxonomically restricted compared with common variants. Thus, we show patterns of genetic variation in this group are multifaceted, and we argue that this complexity challenges simplistic notions concerning the organization of biological diversity into discrete, easily delineated and hierarchically structured entities.

  13. Genetic analysis of clinical VZV isolates collected in China reveals a more homologous profile.

    PubMed

    Jiang, Longfeng; Gan, Lin; Chen, Jason; Wang, Mingli

    2013-01-01

    Forty-four varicella-zoster virus (VZV) isolates from China were genotyped by using a scattered single nucleotide polymorphism (SNP) method, including open reading frames (ORFs) 1, 22, 31, 37, 60, 62, 67, and 68. Based on the analysis of the polymorphic markers in the 8 ORFs, all of the 44 isolates can be placed in genotype J defined by the SNP profiles in ORF22 or clade B defined by the SNP profiles in ORFs 31, 37, 60, 62, 67, and 68. The three consecutive nucleotide (CGG) in-frame insertions in ORF 1 were found in 8 (18.2%) isolates, which has not been described in VZV strains from any other part of the world. A novel synonymous A>G substitution in ORF60 was revealed in 4 (9.1%) of the isolates. In addition, a previously described three consecutive nucleotide (ATC) insertion in ORF 60 was found in all the Chinese isolates but not in the US isolate MLS. The results showed all the 44 strains that belong to genotype J/clade B with significantly high homogeneity, and phylogenetic analysis suggested that the 44 Chinese isolates consist of 4 clusters, but interstrain variations also exist. Overall, VZV isolates obtained in China showed significantly higher genetic homogeneity than isolates reported from other countries.

  14. Production of individualized V gene databases reveals high levels of immunoglobulin genetic diversity

    NASA Astrophysics Data System (ADS)

    Corcoran, Martin M.; Phad, Ganesh E.; Bernat, Néstor Vázquez; Stahl-Hennig, Christiane; Sumida, Noriyuki; Persson, Mats A. A.; Martin, Marcel; Hedestam, Gunilla B. Karlsson

    2016-12-01

    Comprehensive knowledge of immunoglobulin genetics is required to advance our understanding of B cell biology. Validated immunoglobulin variable (V) gene databases are close to completion only for human and mouse. We present a novel computational approach, IgDiscover, that identifies germline V genes from expressed repertoires to a specificity of 100%. IgDiscover uses a cluster identification process to produce candidate sequences that, once filtered, results in individualized germline V gene databases. IgDiscover was tested in multiple species, validated by genomic cloning and cross library comparisons and produces comprehensive gene databases even where limited genomic sequence is available. IgDiscover analysis of the allelic content of the Indian and Chinese-origin rhesus macaques reveals high levels of immunoglobulin gene diversity in this species. Further, we describe a novel human IGHV3-21 allele and confirm significant gene differences between Balb/c and C57BL6 mouse strains, demonstrating the power of IgDiscover as a germline V gene discovery tool.

  15. Reveal, A General Reverse Engineering Algorithm for Inference of Genetic Network Architectures

    NASA Technical Reports Server (NTRS)

    Liang, Shoudan; Fuhrman, Stefanie; Somogyi, Roland

    1998-01-01

    Given the immanent gene expression mapping covering whole genomes during development, health and disease, we seek computational methods to maximize functional inference from such large data sets. Is it possible, in principle, to completely infer a complex regulatory network architecture from input/output patterns of its variables? We investigated this possibility using binary models of genetic networks. Trajectories, or state transition tables of Boolean nets, resemble time series of gene expression. By systematically analyzing the mutual information between input states and output states, one is able to infer the sets of input elements controlling each element or gene in the network. This process is unequivocal and exact for complete state transition tables. We implemented this REVerse Engineering ALgorithm (REVEAL) in a C program, and found the problem to be tractable within the conditions tested so far. For n = 50 (elements) and k = 3 (inputs per element), the analysis of incomplete state transition tables (100 state transition pairs out of a possible 10(exp 15)) reliably produced the original rule and wiring sets. While this study is limited to synchronous Boolean networks, the algorithm is generalizable to include multi-state models, essentially allowing direct application to realistic biological data sets. The ability to adequately solve the inverse problem may enable in-depth analysis of complex dynamic systems in biology and other fields.

  16. Genetic Analysis of Clinical VZV Isolates Collected in China Reveals a More Homologous Profile

    PubMed Central

    Jiang, Longfeng; Gan, Lin; Wang, Mingli

    2013-01-01

    Forty-four varicella-zoster virus (VZV) isolates from China were genotyped by using a scattered single nucleotide polymorphism (SNP) method, including open reading frames (ORFs) 1, 22, 31, 37, 60, 62, 67, and 68. Based on the analysis of the polymorphic markers in the 8 ORFs, all of the 44 isolates can be placed in genotype J defined by the SNP profiles in ORF22 or clade B defined by the SNP profiles in ORFs 31, 37, 60, 62, 67, and 68. The three consecutive nucleotide (CGG) in-frame insertions in ORF 1 were found in 8 (18.2%) isolates, which has not been described in VZV strains from any other part of the world. A novel synonymous A>G substitution in ORF60 was revealed in 4 (9.1%) of the isolates. In addition, a previously described three consecutive nucleotide (ATC) insertion in ORF 60 was found in all the Chinese isolates but not in the US isolate MLS. The results showed all the 44 strains that belong to genotype J/clade B with significantly high homogeneity, and phylogenetic analysis suggested that the 44 Chinese isolates consist of 4 clusters, but interstrain variations also exist. Overall, VZV isolates obtained in China showed significantly higher genetic homogeneity than isolates reported from other countries. PMID:23781507

  17. Lost in translation or deliberate falsification? Genetic analyses reveal erroneous museum data for historic penguin specimens

    PubMed Central

    Boessenkool, Sanne; Star, Bastiaan; Scofield, R. Paul; Seddon, Philip J.; Waters, Jonathan M.

    2010-01-01

    Historic museum specimens are increasingly used to answer a wide variety of questions in scientific research. Nevertheless, the scientific value of these specimens depends on the authenticity of the data associated with them. Here we use individual-based genetic analyses to demonstrate erroneous locality information for archive specimens from the late nineteenth century. Specifically, using 10 microsatellite markers, we analysed 350 contemporary and 43 historic yellow-eyed penguin (Megadyptes antipodes) specimens from New Zealand's South Island and sub-Antarctic regions. Factorial correspondence analysis and an assignment test strongly suggest that eight of the historic specimens purportedly of sub-Antarctic origin were in fact collected from the South Island. Interestingly, all eight specimens were obtained by the same collector, and all are currently held in the same museum collection. Further inspection of the specimen labels and evaluation of sub-Antarctic voyages did not reveal whether the erroneous data are caused by incorrect labelling or whether deliberate falsification was at play. This study highlights a promising extension to the well-known applications of assignment tests in molecular ecology, which can complement methods that are currently being applied for error detection in specimen data. Our results also serve as a warning to all who use archive specimens to invest time in the verification of collection information. PMID:20007185

  18. Production of individualized V gene databases reveals high levels of immunoglobulin genetic diversity

    PubMed Central

    Corcoran, Martin M.; Phad, Ganesh E.; Bernat, Néstor Vázquez; Stahl-Hennig, Christiane; Sumida, Noriyuki; Persson, Mats A.A.; Martin, Marcel; Hedestam, Gunilla B. Karlsson

    2016-01-01

    Comprehensive knowledge of immunoglobulin genetics is required to advance our understanding of B cell biology. Validated immunoglobulin variable (V) gene databases are close to completion only for human and mouse. We present a novel computational approach, IgDiscover, that identifies germline V genes from expressed repertoires to a specificity of 100%. IgDiscover uses a cluster identification process to produce candidate sequences that, once filtered, results in individualized germline V gene databases. IgDiscover was tested in multiple species, validated by genomic cloning and cross library comparisons and produces comprehensive gene databases even where limited genomic sequence is available. IgDiscover analysis of the allelic content of the Indian and Chinese-origin rhesus macaques reveals high levels of immunoglobulin gene diversity in this species. Further, we describe a novel human IGHV3-21 allele and confirm significant gene differences between Balb/c and C57BL6 mouse strains, demonstrating the power of IgDiscover as a germline V gene discovery tool. PMID:27995928

  19. Molecular Genetics Reveal That Silvatic Rhodnius prolixus Do Colonise Rural Houses

    PubMed Central

    Fitzpatrick, Sinead; Feliciangeli, Maria Dora; Sanchez-Martin, Maria J.; Monteiro, Fernando A.; Miles, Michael A.

    2008-01-01

    Background Rhodnius prolixus is the main vector of Chagas disease in Venezuela. Here, domestic infestations of poor quality rural housing have persisted despite four decades of vector control. This is in contrast to the Southern Cone region of South America, where the main vector, Triatoma infestans, has been eliminated over large areas. The repeated colonisation of houses by silvatic populations of R. prolixus potentially explains the control difficulties. However, controversy surrounds the existence of silvatic R. prolixus: it has been suggested that all silvatic populations are in fact Rhodnius robustus, a related species of minor epidemiological importance. Here we investigate, by direct sequencing (mtcytb, D2) and by microsatellite analysis, 1) the identity of silvatic Rhodnius and 2) whether silvatic populations of Rhodnius are isolated from domestic populations. Methods and Findings Direct sequencing confirmed the presence of R. prolixus in palms and that silvatic bugs can colonise houses, with house and palm specimens sharing seven cytb haplotypes. Additionally, mitochondrial introgression was detected between R. robustus and R. prolixus, indicating a previous hybridisation event. The use of ten polymorphic microsatellite loci revealed a lack of genetic structure between silvatic and domestic ecotopes (non-significant FST values), which is indicative of unrestricted gene flow. Conclusions Our analyses demonstrate that silvatic R. prolixus presents an unquestionable threat to the control of Chagas disease in Venezuela. The design of improved control strategies is essential for successful long term control and could include modified spraying and surveillance practices, together with housing improvements. PMID:18382605

  20. Genetic sequence data reveals widespread sharing of Leucocytozoon lineages in corvids.

    PubMed

    Freund, Dave; Wheeler, Sarah S; Townsend, Andrea K; Boyce, Walter M; Ernest, Holly B; Cicero, Carla; Sehgal, Ravinder N M

    2016-09-01

    Leucocytozoon, a widespread hemosporidian blood parasite that infects a broad group of avian families, has been studied in corvids (family: Corvidae) for over a century. Current taxonomic classification indicates that Leucocytozoon sakharoffi infects crows and related Corvus spp., while Leucocytozoon berestneffi infects magpies (Pica spp.) and blue jays (Cyanocitta sp.). This intrafamily host specificity was based on the experimental transmissibility of the parasites, as well as slight differences in their morphology and life cycle development. Genetic sequence data from Leucocytozoon spp. infecting corvids is scarce, and until the present study, sequence data has not been analyzed to confirm the current taxonomic distinctions. Here, we predict the phylogenetic relationships of Leucocytozoon cytochrome b lineages recovered from infected American Crows (Corvus brachyrhynchos), yellow-billed magpies (Pica nuttalli), and Steller's jays (Cyanocitta stelleri) to explore the host specificity pattern of L. sakharoffi and L. berestneffi. Phylogenetic reconstruction revealed a single large clade containing nearly every lineage recovered from the three host species, while showing no evidence of the expected distinction between L. sakharoffi and L. berestneffi. In addition, five of the detected lineages were recovered from both crows and magpies. This absence of the previously described host specificity in corvid Leucocytozoon spp. suggests that L. sakharoffi and L. berestneffi be reexamined from a taxonomic perspective.

  1. Genetic architecture dissection by genome-wide association analysis reveals avian eggshell ultrastructure traits

    PubMed Central

    Duan, Zhongyi; Sun, Congjiao; Shen, ManMan; Wang, Kehua; Yang, Ning; Zheng, Jiangxia; Xu, Guiyun

    2016-01-01

    The ultrastructure of an eggshell is considered the major determinant of eggshell quality, which has biological and economic significance for the avian and poultry industries. However, the interrelationships and genome-wide architecture of eggshell ultrastructure remain to be elucidated. Herein, we measured eggshell thickness (EST), effective layer thickness (ET), mammillary layer thickness (MT), and mammillary density (MD) and conducted genome-wide association studies in 927 F2 hens. The SNP-based heritabilities of eggshell ultrastructure traits were estimated to be 0.39, 0.36, 0.17 and 0.19 for EST, ET, MT and MD, respectively, and a total of 719, 784, 1 and 10 genome-wide significant SNPs were associated with EST, ET, MT and MD, respectively. ABCC9, ITPR2, KCNJ8 and WNK1, which are involved in ion transport, were suggested to be the key genes regulating EST and ET. ITM2C and KNDC1 likely affect MT and MD, respectively. Additionally, there were linear relationships between the chromosome lengths and the variance explained per chromosome for EST (R2 = 0.57) and ET (R2 = 0.67). In conclusion, the interrelationships and genetic architecture of eggshell ultrastructure traits revealed in this study are valuable for our understanding of the avian eggshell and contribute to research on a variety of other calcified shells. PMID:27456605

  2. Genetically Engineered Mouse Models Reveal the Importance of Proteases as Drug Targets in Osteoarthritis

    PubMed Central

    Miller, Rachel E.; Lu, Yongzhi; Tortorella, Micky D.; Malfait, Anne-Marie

    2014-01-01

    More than two decades of research has revealed a network of proteases that orchestrates cartilage degradation in osteoarthritis. This network includes not only metalloproteinases that degrade the major macromolecules in cartilage, aggrecan and type II collagen, but also serine proteases and cysteine proteases, such as cathepsin K. The current review summarizes the role of proteases in osteoarthritis progression, based on studies in genetically engineered mouse models. In addition, a brief overview of the biochemical characteristics and features of several key proteases in this network is provided, with the aim of increasing our understanding of how they function. Collectively, based on the data published to date, it can be concluded that at least three enzymes stand out as major targets for osteoarthritis drug development: ADAMTS-5, MMP-13, and cathepsin K. Mice that lack these enzymes are protected from cartilage damage and, to a varying degree, from bone changes in surgical models of osteoarthritis. In vivo studies with selective small molecule inhibitors targeting these proteases have been performed in various animal models. Going forward, mouse models will provide a tremendous opportunity for testing the therapeutic effects of protease inhibitors, not just on progression of structural damage to the joint, but also on associated pain. PMID:23926636

  3. Genetic analysis of paramyxovirus isolates from pacific salmon reveals two independently co-circulating lineages

    USGS Publications Warehouse

    Batts, W.N.; Falk, K.; Winton, J.R.

    2008-01-01

    Viruses with the morphological and biochemical characteristics of the family Paramyxoviridae (paramyxoviruses) have been isolated from adult salmon returning to rivers along the Pacific coast of North America since 1982. These Pacific salmon paramyxoviruses (PSPV), which have mainly been isolated from Chinook salmon Oncorhynchus tshawytscha, grow slowly in established fish cell lines and have not been associated with disease. Genetic analysis of a 505-base-pair region of the polymerase gene from 47 PsPV isolates produced 17 nucleotide sequence types that could be grouped into two major sublineages, designated A and B. The two independently co-circulating sublineages differed by 12.1-13.9% at the nucleotide level but by only 1.2% at the amino acid level. Isolates of PSPV from adult Pacific salmon returning to rivers from Alaska to California over a 25-year period showed little evidence of geographic or temporal grouping. Phylogenetic analyses revealed that these paramyxoviruses of Pacific salmon were most closely related to the Atlantic salmon paramyxovirus (ASPV) from Norway, having a maximum nucleotide diversity of 26.1 % and an amino acid diversity of 19.0%. When compared with homologous sequences of other paramyxoviruses, PSPV and ASPV were sufficiently distinct to suggest that they are not clearly members of any of the established genera in the family Paramyxoviridae. in the course of this study, a polymerase chain reaction assay was developed that can be used for confirmatory identification of PSPV. ?? Copyright by the American Fisheries Society 2008.

  4. Genetic Diversity Revealed by Single Nucleotide Polymorphism Markers in a Worldwide Germplasm Collection of Durum Wheat

    PubMed Central

    Ren, Jing; Sun, Daokun; Chen, Liang; You, Frank M.; Wang, Jirui; Peng, Yunliang; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua

    2013-01-01

    Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP) markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity. PMID:23538839

  5. Genomewide mapping reveals a combination of different genetic effects causing the genetic basis of heterosis in two elite rice hybrids.

    PubMed

    Li, Lanzhi; He, Xiaohong; Zhang, Hongyan; Wang, Zhiming; Sun, Congwei; Mou, Tongmin; Li, Xinqi; Zhang, Yuanming; Hu, Zhongli

    2015-06-01

    North Carolina design III (NCIII) is one of the most powerful and widely used mating designs for understanding the genetic basis of heterosis. However, the quantitative trait mapping (QTL) conducted in previous studies with this design was mainly based on analysis of variance (ANOVA), composite interval or multiple interval mapping methods. These methodologies could not investigate all kinds of genetic effects, especially epistatic effects, simultaneously on the whole genome. In this study, with a statistical method for mapping epistatic QTL associated with heterosis using the recombinant inbred line (RIL)-based NCIII design, we conducted QTL mapping for nine agronomic traits of two elite hybrids to characterize the mode of gene action contributing to heterosis on a whole genomewide scale. In total, 23 main-effect QTL (M-QTL) and 23 digenic interactions in IJ (indica x japonica) hybrids, 11 M-QTL and 82 digenic interactions in II (indica x indica) hybrid QTLs were identified in the present study. The variation explained by individual M-QTL or interactions ranged from 2.3 to 11.0%. The number of digenic interactions and the total variation explained by interactions of each trait were larger than those of M-QTL. The augmented genetic effect ratio of most M-QTL and digenic interactions in (L1 - L2) data of two backcross populations (L1 and L2) showed complete dominance or overdominance, and in (L1 + L2) data showed an additive effect. Our results indicated that the dominance, overdominance and epistatic effect were important in conditioning the genetic basis of heterosis of the two elite hybrids. The relative contributions of the genetic components varied with traits and the genetic basis of the two hybrids was different.

  6. Natural Genetic Variation of Xanthomonas campestris pv. campestris Pathogenicity on Arabidopsis Revealed by Association and Reverse Genetics

    PubMed Central

    Guy, Endrick; Genissel, Anne; Hajri, Ahmed; Chabannes, Matthieu; David, Perrine; Carrere, Sébastien; Lautier, Martine; Roux, Brice; Boureau, Tristan; Arlat, Matthieu; Poussier, Stéphane; Noël, Laurent D.

    2013-01-01

    ABSTRACT The pathogenic bacterium Xanthomonas campestris pv. campestris, the causal agent of black rot of Brassicaceae, manipulates the physiology and the innate immunity of its hosts. Association genetic and reverse-genetic analyses of a world panel of 45 X. campestris pv. campestris strains were used to gain understanding of the genetic basis of the bacterium’s pathogenicity to Arabidopsis thaliana. We found that the compositions of the minimal predicted type III secretome varied extensively, with 18 to 28 proteins per strain. There were clear differences in aggressiveness of those X. campestris pv. campestris strains on two Arabidopsis natural accessions. We identified 3 effector genes (xopAC, xopJ5, and xopAL2) and 67 amplified fragment length polymorphism (AFLP) markers that were associated with variations in disease symptoms. The nature and distribution of the AFLP markers remain to be determined, but we observed a low linkage disequilibrium level between predicted effectors and other significant markers, suggesting that additional genetic factors make a meaningful contribution to pathogenicity. Mutagenesis of type III effectors in X. campestris pv. campestris confirmed that xopAC functions as both a virulence and an avirulence gene in Arabidopsis and that xopAM functions as a second avirulence gene on plants of the Col-0 ecotype. However, we did not detect the effect of any other effector in the X. campestris pv. campestris 8004 strain, likely due to other genetic background effects. These results highlight the complex genetic basis of pathogenicity at the pathovar level and encourage us to challenge the agronomical relevance of some virulence determinants identified solely in model strains. PMID:23736288

  7. Natural genetic variation of Xanthomonas campestris pv. campestris pathogenicity on arabidopsis revealed by association and reverse genetics.

    PubMed

    Guy, Endrick; Genissel, Anne; Hajri, Ahmed; Chabannes, Matthieu; David, Perrine; Carrere, Sébastien; Lautier, Martine; Roux, Brice; Boureau, Tristan; Arlat, Matthieu; Poussier, Stéphane; Noël, Laurent D

    2013-06-04

    ABSTRACT The pathogenic bacterium Xanthomonas campestris pv. campestris, the causal agent of black rot of Brassicaceae, manipulates the physiology and the innate immunity of its hosts. Association genetic and reverse-genetic analyses of a world panel of 45 X. campestris pv. campestris strains were used to gain understanding of the genetic basis of the bacterium's pathogenicity to Arabidopsis thaliana. We found that the compositions of the minimal predicted type III secretome varied extensively, with 18 to 28 proteins per strain. There were clear differences in aggressiveness of those X. campestris pv. campestris strains on two Arabidopsis natural accessions. We identified 3 effector genes (xopAC, xopJ5, and xopAL2) and 67 amplified fragment length polymorphism (AFLP) markers that were associated with variations in disease symptoms. The nature and distribution of the AFLP markers remain to be determined, but we observed a low linkage disequilibrium level between predicted effectors and other significant markers, suggesting that additional genetic factors make a meaningful contribution to pathogenicity. Mutagenesis of type III effectors in X. campestris pv. campestris confirmed that xopAC functions as both a virulence and an avirulence gene in Arabidopsis and that xopAM functions as a second avirulence gene on plants of the Col-0 ecotype. However, we did not detect the effect of any other effector in the X. campestris pv. campestris 8004 strain, likely due to other genetic background effects. These results highlight the complex genetic basis of pathogenicity at the pathovar level and encourage us to challenge the agronomical relevance of some virulence determinants identified solely in model strains. IMPORTANCE The identification and understanding of the genetic determinants of bacterial virulence are essential to be able to design efficient protection strategies for infected plants. The recent availability of genomic resources for a limited number of pathogen

  8. Are Rogue Waves Really Unexpected?

    NASA Astrophysics Data System (ADS)

    Fedele, Francesco

    2016-05-01

    An unexpected wave is defined by Gemmrich & Garrett (2008) as a wave that is much taller than a set of neighboring waves. Their definition of "unexpected" refers to a wave that is not anticipated by a casual observer. Clearly, unexpected waves defined in this way are predictable in a statistical sense. They can occur relatively often with a small or moderate crest height, but large unexpected waves that are rogue are rare. Here, this concept is elaborated and statistically described based on a third-order nonlinear model. In particular, the conditional return period of an unexpected wave whose crest exceeds a given threshold is developed. This definition leads to greater return periods or on average less frequent occurrences of unexpected waves than those implied by the conventional return periods not conditioned on a reference threshold. Ultimately, it appears that a rogue wave that is also unexpected would have a lower occurrence frequency than that of a usual rogue wave. As specific applications, the Andrea and WACSIS rogue wave events are examined in detail. Both waves appeared without warning and their crests were nearly $2$-times larger than the surrounding $O(10)$ wave crests, and thus unexpected. The two crest heights are nearly the same as the threshold~$h_{0.3\\cdot10^{6}}\\sim1.6H_{s}$ exceeded on average once every~$0.3\\cdot 10^{6}$ waves, where $H_s$ is the significant wave height. In contrast, the Andrea and WACSIS events, as both rogue and unexpected, would occur slightly less often and on average once every~$3\\cdot10^{6}$ and~$0.6\\cdot10^6$ waves respectively.

  9. Genetic diversity and structure of Brazilian ginger germplasm (Zingiber officinale) revealed by AFLP markers.

    PubMed

    Blanco, Eleonora Zambrano; Bajay, Miklos Maximiliano; Siqueira, Marcos Vinícius Bohrer Monteiro; Zucchi, Maria Imaculada; Pinheiro, José Baldin

    2016-12-01

    Ginger is a vegetable with medicinal and culinary properties widely cultivated in the Southern and Southeastern Brazil. The knowledge of ginger species' genetic variability is essential to direct correctly future studies of conservation and genetic improvement, but in Brazil, little is known about this species' genetic variability. In this study, we analyzed the genetic diversity and structure of 55 Brazilian accessions and 6 Colombian accessions of ginger, using AFLP (Amplified Fragment Length Polymorphism) molecular markers. The molecular characterization was based on 13 primers combinations, which generated an average of 113.5 polymorphic loci. The genetic diversity estimates of Nei (Hj), Shannon-Weiner index (I) and an effective number of alleles (n e ) were greater in the Colombian accessions in relation to the Brazilian accessions. The analysis of molecular variance showed that most of the genetic variation occurred between the two countries while in the Brazilian populations there is no genetic structure and probably each region harbors 100 % of genetic variation found in the samples. The bayesian model-based clustering and the dendrogram using the dissimilarity's coefficient of Jaccard were congruent with each other and showed that the Brazilian accessions are highly similar between themselves, regardless of the geographic region of origin. We suggested that the exploration of the interspecific variability and the introduction of new varieties of Z.officinale are viable alternatives for generating diversity in breeding programs in Brazil. The introduction of new genetic materials will certainly contribute to a higher genetic basis of such crop.

  10. High level of genetic diversity among spelt germplasm revealed by microsatellite markers.

    PubMed

    Bertin, P; Grégoire, D; Massart, S; de Froidmont, D

    2004-12-01

    The genetic diversity of spelt (Triticum aestivum (L.) Thell. subsp. spelta (L.) Thell.) cultivated presently is very narrow. Although the germplasm collections of spelt are extensive, the related genetic knowledge is often lacking and makes their use for genetic improvement difficult. The genetic diversity and structure of the spelt gene pool held in gene banks was determined using 19 simple sequence repeat (SSR) markers applied to 170 spelt accessions collected from 27 countries and 4 continents. The genetic distances (1 - proportion of shared alleles) were calculated and an unweighted pair-group method with arithmetic averaging (UPGMA)-based dendrogram was generated. The genetic diversity was high: 259 alleles were found and the mean interaccession genetic distance was 0.782 +/- 0.141. The dendrogram demonstrated the much higher genetic diversity of spelt held in germplasm collections than in the currently used genotypes. Accessions with the same geographical origin often tended to cluster together. Those from the Middle East were isolated first. All but one of the Spanish accessions were found in a unique subcluster. Most accessions from eastern Europe clustered together, while those from northwestern Europe were divided into two subclusters. The accessions from Africa and North America were not separated from the European ones. This analysis demonstrates the extent of genetic diversity of spelts held in germplasm collections and should help to widen the genetic basis of cultivated spelt in future breeding programs.

  11. Genetic characterization of Hawaiian isolates of Plasmodium relictum reveals mixed-genotype infections

    USGS Publications Warehouse

    Jarvi, S.I.; Farias, M.E.M.; Atkinson, C.T.

    2008-01-01

    Background: The relatively recent introduction of a highly efficient mosquito vector and an avian pathogen (Plasmodium relictum) to an isolated island ecosystem with nai??ve, highly susceptible avian hosts provides a unique opportunity to investigate evolution of virulence in a natural system. Mixed infections can significantly contribute to the uncertainty in host-pathogen dynamics with direct impacts on virulence. Toward further understanding of how host-parasite and parasite-parasite relationships may impact virulence, this study characterizes within-host diversity of malaria parasite populations based on genetic analysis of the trap (thrombospondin-related anonymous protein) gene in isolates originating from Hawaii, Maui and Kauai Islands. Methods: A total of 397 clones were produced by nested PCR amplification and cloning of a 1664 bp fragment of the trap gene from two malarial isolates, K1 (Kauai) and KV115 (Hawaii) that have been used for experimental studies, and from additional isolates from wild birds on Kauai, Maui and Hawaii Islands. Diversity of clones was evaluated initially by RFLP-based screening, followed by complete sequencing of 33 selected clones. Results: RFLP analysis of trap revealed a minimum of 28 distinct RFLP haplotypes among the 397 clones from 18 birds. Multiple trap haplotypes were detected in every bird evaluated, with an average of 5.9 haplotypes per bird. Overall diversity did not differ between the experimental isolates, however, a greater number of unique haplotypes were detected in K1 than in KV115. We detected high levels of clonal diversity with clear delineation between isolates K1 and KV115 in a haplotype network. The patterns of within-host haplotype clustering are consistent with the possibility of a clonal genetic structure and rapid within-host mutation after infection. Conclusion: Avian malaria (P. relictum) and Avipoxvirus are the significant infectious diseases currently affecting the native Hawaiian avifauna. This

  12. Genetic characterization of Hawaiian isolates of Plasmodium relictum reveals mixed-genotype infections

    PubMed Central

    Jarvi, Susan I; Farias, Margaret EM; Atkinson, Carter T

    2008-01-01

    Background The relatively recent introduction of a highly efficient mosquito vector and an avian pathogen (Plasmodium relictum) to an isolated island ecosystem with naïve, highly susceptible avian hosts provides a unique opportunity to investigate evolution of virulence in a natural system. Mixed infections can significantly contribute to the uncertainty in host-pathogen dynamics with direct impacts on virulence. Toward further understanding of how host-parasite and parasite-parasite relationships may impact virulence, this study characterizes within-host diversity of malaria parasite populations based on genetic analysis of the trap (thrombospondin-related anonymous protein) gene in isolates originating from Hawaii, Maui and Kauai Islands. Methods A total of 397 clones were produced by nested PCR amplification and cloning of a 1664 bp fragment of the trap gene from two malarial isolates, K1 (Kauai) and KV115 (Hawaii) that have been used for experimental studies, and from additional isolates from wild birds on Kauai, Maui and Hawaii Islands. Diversity of clones was evaluated initially by RFLP-based screening, followed by complete sequencing of 33 selected clones. Results RFLP analysis of trap revealed a minimum of 28 distinct RFLP haplotypes among the 397 clones from 18 birds. Multiple trap haplotypes were detected in every bird evaluated, with an average of 5.9 haplotypes per bird. Overall diversity did not differ between the experimental isolates, however, a greater number of unique haplotypes were detected in K1 than in KV115. We detected high levels of clonal diversity with clear delineation between isolates K1 and KV115 in a haplotype network. The patterns of within-host haplotype clustering are consistent with the possibility of a clonal genetic structure and rapid within-host mutation after infection. Conclusion Avian malaria (P. relictum) and Avipoxvirus are the significant infectious diseases currently affecting the native Hawaiian avifauna. This study

  13. Genetic characterization of Hawaiian isolates of Plasmodium relictum reveals mixed-genotype infections.

    PubMed

    Jarvi, Susan I; Farias, Margaret E M; Atkinson, Carter T

    2008-06-25

    The relatively recent introduction of a highly efficient mosquito vector and an avian pathogen (Plasmodium relictum) to an isolated island ecosystem with naïve, highly susceptible avian hosts provides a unique opportunity to investigate evolution of virulence in a natural system. Mixed infections can significantly contribute to the uncertainty in host-pathogen dynamics with direct impacts on virulence. Toward further understanding of how host-parasite and parasite-parasite relationships may impact virulence, this study characterizes within-host diversity of malaria parasite populations based on genetic analysis of the trap (thrombospondin-related anonymous protein) gene in isolates originating from Hawaii, Maui and Kauai Islands. A total of 397 clones were produced by nested PCR amplification and cloning of a 1664 bp fragment of the trap gene from two malarial isolates, K1 (Kauai) and KV115 (Hawaii) that have been used for experimental studies, and from additional isolates from wild birds on Kauai, Maui and Hawaii Islands. Diversity of clones was evaluated initially by RFLP-based screening, followed by complete sequencing of 33 selected clones. RFLP analysis of trap revealed a minimum of 28 distinct RFLP haplotypes among the 397 clones from 18 birds. Multiple trap haplotypes were detected in every bird evaluated, with an average of 5.9 haplotypes per bird. Overall diversity did not differ between the experimental isolates, however, a greater number of unique haplotypes were detected in K1 than in KV115. We detected high levels of clonal diversity with clear delineation between isolates K1 and KV115 in a haplotype network. The patterns of within-host haplotype clustering are consistent with the possibility of a clonal genetic structure and rapid within-host mutation after infection. Avian malaria (P. relictum) and Avipoxvirus are the significant infectious diseases currently affecting the native Hawaiian avifauna. This study shows that clonal diversity of Hawaiian

  14. Genetic Diversity among Rhizobium leguminosarum bv. Trifolii Strains Revealed by Allozyme and Restriction Fragment Length Polymorphism Analyses

    PubMed Central

    Demezas, David H.; Reardon, Terry B.; Watson, John M.; Gibson, Alan H.

    1991-01-01

    Allozyme electrophoresis and restriction fragment length polymorphism (RFLP) analyses were used to examine the genetic diversity of a collection of 18 Rhizobium leguminosarum bv. trifolii, 1 R. leguminosarum bv. viciae, and 2 R. meliloti strains. Allozyme analysis at 28 loci revealed 16 electrophoretic types. The mean genetic distance between electrophoretic types of R. leguminosarum and R. meliloti was 0.83. Within R. leguminosarum, the single strain of bv. viciae differed at an average of 0.65 from strains of bv. trifolii, while electrophoretic types of bv. trifolii differed at a range of 0.23 to 0.62. Analysis of RFLPs around two chromosomal DNA probes also delineated 16 unique RFLP patterns and yielded genetic diversity similar to that revealed by the allozyme data. Analysis of RFLPs around three Sym (symbiotic) plasmid-derived probes demonstrated that the Sym plasmids reflect genetic divergence similar to that of their bacterial hosts. The large genetic distances between many strains precluded reliable estimates of their genetic relationships. PMID:16348600

  15. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse, human glioblastomas in the mouse brain in vivo

    PubMed Central

    Marin-Valencia, Isaac; Yang, Chendong; Mashimo, Tomoyuki; Cho, Steve; Baek, Hyeonman; Yang, Xiao-Li; Rajagopalan, Kartik N.; Maddie, Melissa; Vemireddy, Vamsidhara; Zhao, Zhenze; Cai, Ling; Good, Levi; Tu, Benjamin P.; Hatanpaa, Kimmo J.; Mickey, Bruce E.; Matés, José M.; Pascual, Juan M.; Maher, Elizabeth A.; Malloy, Craig R.; DeBerardinis, Ralph J.; Bachoo, Robert M.

    2012-01-01

    SUMMARY Dysregulated metabolism is a hallmark of cancer cell lines, but little is known about the fate of glucose and other nutrients in tumors growing in their native microenvironment. To study tumor metabolism in vivo, we used an orthotopic mouse model of primary human glioblastoma (GBM). We infused 13C-labeled nutrients into mice bearing three independent GBM lines, each with a distinct set of mutations. All three lines displayed glycolysis, as expected for aggressive tumors. They also displayed unexpected metabolic complexity, oxidizing glucose via pyruvate dehydrogenase and the citric acid cycle, and using glucose to supply anaplerosis and other biosynthetic activities. Comparing the tumors to surrounding brain revealed obvious metabolic differences, notably the accumulation of a large glutamine pool within the tumors. Many of these same activities were conserved in cells cultured ex vivo from the tumors. Thus GBM cells utilize mitochondrial glucose oxidation during aggressive tumor growth in vivo. PMID:22682223

  16. RAPID-COMMUNICATION Genetic diversity and differentiation in natural populations of Arapaima gigas from lower Amazon revealed by microsatellites.

    PubMed

    Fazzi-Gomes, P F; Melo, N; Palheta, G; Guerreiro, S; Amador, M; Ribeiro-Dos-Santos, A K; Santos, S; Hamoy, I

    2017-02-08

    Genetic variability is one of the important criteria for species conservation decisions. This study aimed to analyze the genetic diversity and the population differentiation of two natural populations of Arapaima gigas, a species with a long history of being commercially exploited. We collected 87 samples of A. gigas from Grande Curuai Lake and Paru Lake, located in the Lower Amazon region of Amazônia, Brazil, and genotyped these samples using a multiplex panel of microsatellite markers. Our results showed that the populations of A. gigas analyzed had high levels of genetic variability, which were similar to those described in previous studies. These two populations had a significant population differentiation supported by the estimates of FST and RST (0.06), by Bayesian analysis (K = 2), and by population assignment tests, which revealed a moderate genetic distance.

  17. Fine-scale genetic structure and cryptic associations reveal evidence of kin-based sociality in the African forest elephant.

    PubMed

    Schuttler, Stephanie G; Philbrick, Jessica A; Jeffery, Kathryn J; Eggert, Lori S

    2014-01-01

    Spatial patterns of relatedness within animal populations are important in the evolution of mating and social systems, and have the potential to reveal information on species that are difficult to observe in the wild. This study examines the fine-scale genetic structure and connectivity of groups within African forest elephants, Loxodonta cyclotis, which are often difficult to observe due to forest habitat. We tested the hypothesis that genetic similarity will decline with increasing geographic distance, as we expect kin to be in closer proximity, using spatial autocorrelation analyses and Tau K(r) tests. Associations between individuals were investigated through a non-invasive genetic capture-recapture approach using network models, and were predicted to be more extensive than the small groups found in observational studies, similar to fission-fusion sociality found in African savanna (Loxodonta africana) and Asian (Elephas maximus) species. Dung samples were collected in Lopé National Park, Gabon in 2008 and 2010 and genotyped at 10 microsatellite loci, genetically sexed, and sequenced at the mitochondrial DNA control region. We conducted analyses on samples collected at three different temporal scales: a day, within six-day sampling sessions, and within each year. Spatial autocorrelation and Tau K(r) tests revealed genetic structure, but results were weak and inconsistent between sampling sessions. Positive spatial autocorrelation was found in distance classes of 0-5 km, and was strongest for the single day session. Despite weak genetic structure, individuals within groups were significantly more related to each other than to individuals between groups. Social networks revealed some components to have large, extensive groups of up to 22 individuals, and most groups were composed of individuals of the same matriline. Although fine-scale population genetic structure was weak, forest elephants are typically found in groups consisting of kin and based on matrilines

  18. Fine-Scale Genetic Structure and Cryptic Associations Reveal Evidence of Kin-Based Sociality in the African Forest Elephant

    PubMed Central

    Schuttler, Stephanie G.; Philbrick, Jessica A.; Jeffery, Kathryn J.; Eggert, Lori S.

    2014-01-01

    Spatial patterns of relatedness within animal populations are important in the evolution of mating and social systems, and have the potential to reveal information on species that are difficult to observe in the wild. This study examines the fine-scale genetic structure and connectivity of groups within African forest elephants, Loxodonta cyclotis, which are often difficult to observe due to forest habitat. We tested the hypothesis that genetic similarity will decline with increasing geographic distance, as we expect kin to be in closer proximity, using spatial autocorrelation analyses and Tau Kr tests. Associations between individuals were investigated through a non-invasive genetic capture-recapture approach using network models, and were predicted to be more extensive than the small groups found in observational studies, similar to fission-fusion sociality found in African savanna (Loxodonta africana) and Asian (Elephas maximus) species. Dung samples were collected in Lopé National Park, Gabon in 2008 and 2010 and genotyped at 10 microsatellite loci, genetically sexed, and sequenced at the mitochondrial DNA control region. We conducted analyses on samples collected at three different temporal scales: a day, within six-day sampling sessions, and within each year. Spatial autocorrelation and Tau Kr tests revealed genetic structure, but results were weak and inconsistent between sampling sessions. Positive spatial autocorrelation was found in distance classes of 0–5 km, and was strongest for the single day session. Despite weak genetic structure, individuals within groups were significantly more related to each other than to individuals between groups. Social networks revealed some components to have large, extensive groups of up to 22 individuals, and most groups were composed of individuals of the same matriline. Although fine-scale population genetic structure was weak, forest elephants are typically found in groups consisting of kin and based on matrilines

  19. Genetic variation in wild populations of the tuber crop Amorphophallus konjac (Araceae) in central China as revealed by AFLP markers.

    PubMed

    Pan, C; Gichira, A W; Chen, J M

    2015-12-29

    Amorphophallus konjac is an economically important crop. In order to provide baseline information for sustainable development and conservation of the wild plant resources of A. konjac, we studied the genetic diversity and population structure of this species using amplified fragment length polymorphism (AFLP) molecular markers. We sampled 139 individuals from 10 wild populations of A. konjac in central China. Using five AFLP primer combinations, we scored a total of 270 DNA fragments, most of which were polymorphic (98.2%). Percentage of polymorphic loci, Nei's genetic diversity index, and Shannon's information index showed high levels of genetic variation within A. konjac populations. Analysis of molecular variance indicated that most of the variance (68%) resided within populations. The coefficient of genetic differentiation between populations was 0.348 and the estimated gene flow was 0.469, indicating that there was limited gene flow among the populations. Unweighted pair group method with arithmetic mean cluster analysis and principal coordinates analysis indicated that geographically close populations were more likely to cluster together. The Mantel test revealed a significant correlation between geographic and genetic distances (R2 = 0.2521, P < 0.05). The special insect-pollination system of A. konjac and the complex geography of central China are likely to have contributed to the current pattern of genetic variation of this species. In the present study, we provide several suggestions on the future protection of the wild plant genetic resources of A. konjac.

  20. Genome-wide association study reveals genetic architecture of coleoptile length in wheat.

    PubMed

    Li, Genqiao; Bai, Guihua; Carver, Brett F; Elliott, Norman C; Bennett, Rebecca S; Wu, Yanqi; Hunger, Robert; Bonman, J Michael; Xu, Xiangyang

    2017-02-01

    Eight QTL for coleoptile length were identified in a genome-wide association study on a set of 893 wheat accessions, four of which are novel loci. Wheat cultivars with long coleoptiles are preferred in wheat-growing regions where deep planting is practiced. However, the wide use of gibberellic acid (GA)-insensitive dwarfing genes, Rht-B1b and Rht-D1b, makes it challenging to breed dwarf wheat cultivars with long coleoptiles. To understand the genetic basis of coleoptile length, we performed a genome-wide association study on a set of 893 landraces and historical cultivars using 5011 single nucleotide polymorphism (SNP) markers. Structure analysis revealed four subgroups in the association panel. Association analysis results suggested that Rht-B1b and Rht-D1b genes significantly reduced coleoptile length, and eight additional quantitative trait loci (QTL) for coleoptile length were also identified. These QTL explained 1.45-3.18 and 1.36-3.11% of the phenotypic variation in 2015 and 2016, respectively, and their allelic substitution effects ranged from 0.31 to 1.75 cm in 2015, and 0.63-1.55 cm in 2016. Of the eight QTL, QCL.stars-1BS1, QCL.stars-2DS1, QCL.stars-4BS2, and QCL.stars-5BL1 are likely novel loci for coleoptile length. The favorable alleles in each accession ranged from two to eight with an average of 5.8 at eight loci in the panel, and more favorable alleles were significantly associated with longer coleoptile, suggesting that QTL pyramiding is an effective approach to increase wheat coleoptile length.

  1. Analysis of Genome Sequences from Plant Pathogenic Rhodococcus Reveals Genetic Novelties in Virulence Loci

    PubMed Central

    Davis, Edward W.; Putnam, Melodie L.; Hu, Erdong; Swader-Hines, David; Mol, Adeline; Baucher, Marie; Prinsen, Els; Zdanowska, Magdalena; Givan, Scott A.; Jaziri, Mondher El; Loper, Joyce E.; Mahmud, Taifo; Chang, Jeff H.

    2014-01-01

    Members of Gram-positive Actinobacteria cause economically important diseases to plants. Within the Rhodococcus genus, some members can cause growth deformities and persist as pathogens on a wide range of host plants. The current model predicts that phytopathogenic isolates require a cluster of three loci present on a linear plasmid, with the fas operon central to virulence. The Fas proteins synthesize, modify, and activate a mixture of growth regulating cytokinins, which cause a hormonal imbalance in plants, resulting in abnormal growth. We sequenced and compared the genomes of 20 isolates of Rhodococcus to gain insights into the mechanisms and evolution of virulence in these bacteria. Horizontal gene transfer was identified as critical but limited in the scale of virulence evolution, as few loci are conserved and exclusive to phytopathogenic isolates. Although the fas operon is present in most phytopathogenic isolates, it is absent from phytopathogenic isolate A21d2. Instead, this isolate has a horizontally acquired gene chimera that encodes a novel fusion protein with isopentyltransferase and phosphoribohydrolase domains, predicted to be capable of catalyzing and activating cytokinins, respectively. Cytokinin profiling of the archetypal D188 isolate revealed only one activate cytokinin type that was specifically synthesized in a fas-dependent manner. These results suggest that only the isopentenyladenine cytokinin type is synthesized and necessary for Rhodococcus phytopathogenicity, which is not consistent with the extant model stating that a mixture of cytokinins is necessary for Rhodococcus to cause leafy gall symptoms. In all, data indicate that only four horizontally acquired functions are sufficient to confer the trait of phytopathogenicity to members of the genetically diverse clade of Rhodococcus. PMID:25010934

  2. Genetic and Ultrastructural Analysis Reveals the Key Players and Initial Steps of Bacterial Magnetosome Membrane Biogenesis

    PubMed Central

    Kolinko, Isabel; Uebe, René; Schüler, Dirk

    2016-01-01

    Magnetosomes of magnetotactic bacteria contain well-ordered nanocrystals for magnetic navigation and have recently emerged as the most sophisticated model system to study the formation of membrane bounded organelles in prokaryotes. Magnetosome biosynthesis is thought to begin with the formation of a dedicated compartment, the magnetosome membrane (MM), in which the biosynthesis of a magnetic mineral is strictly controlled. While the biomineralization of magnetosomes and their subsequent assembly into linear chains recently have become increasingly well studied, the molecular mechanisms and early stages involved in MM formation remained poorly understood. In the Alphaproteobacterium Magnetospirillum gryphiswaldense, approximately 30 genes were found to control magnetosome biosynthesis. By cryo-electron tomography of several key mutant strains we identified the gene complement controlling MM formation in this model organism. Whereas the putative magnetosomal iron transporter MamB was most crucial for the process and caused the most severe MM phenotype upon elimination, MamM, MamQ and MamL were also required for the formation of wild-type-like MMs. A subset of seven genes (mamLQBIEMO) combined within a synthetic operon was sufficient to restore the formation of intracellular membranes in the absence of other genes from the key mamAB operon. Tracking of de novo magnetosome membrane formation by genetic induction revealed that magnetosomes originate from unspecific cytoplasmic membrane locations before alignment into coherent chains. Our results indicate that no single factor alone is essential for MM formation, which instead is orchestrated by the cumulative action of several magnetosome proteins. PMID:27286560

  3. High Resolution Genomic Scans Reveal Genetic Architecture Controlling Alcohol Preference in Bidirectionally Selected Rat Model.

    PubMed

    Lo, Chiao-Ling; Lossie, Amy C; Liang, Tiebing; Liu, Yunlong; Xuei, Xiaoling; Lumeng, Lawrence; Zhou, Feng C; Muir, William M

    2016-08-01

    Investigations on the influence of nature vs. nurture on Alcoholism (Alcohol Use Disorder) in human have yet to provide a clear view on potential genomic etiologies. To address this issue, we sequenced a replicated animal model system bidirectionally-selected for alcohol preference (AP). This model is uniquely suited to map genetic effects with high reproducibility, and resolution. The origin of the rat lines (an 8-way cross) resulted in small haplotype blocks (HB) with a corresponding high level of resolution. We sequenced DNAs from 40 samples (10 per line of each replicate) to determine allele frequencies and HB. We achieved ~46X coverage per line and replicate. Excessive differentiation in the genomic architecture between lines, across replicates, termed signatures of selection (SS), were classified according to gene and region. We identified SS in 930 genes associated with AP. The majority (50%) of the SS were confined to single gene regions, the greatest numbers of which were in promoters (284) and intronic regions (169) with the least in exon's (4), suggesting that differences in AP were primarily due to alterations in regulatory regions. We confirmed previously identified genes and found many new genes associated with AP. Of those newly identified genes, several demonstrated neuronal function involved in synaptic memory and reward behavior, e.g. ion channels (Kcnf1, Kcnn3, Scn5a), excitatory receptors (Grin2a, Gria3, Grip1), neurotransmitters (Pomc), and synapses (Snap29). This study not only reveals the polygenic architecture of AP, but also emphasizes the importance of regulatory elements, consistent with other complex traits.

  4. Review of Croatian genetic heritage as revealed by mitochondrial DNA and Y chromosomal lineages.

    PubMed

    Pericić, Marijana; Barać Lauc, Lovorka; Martinović Klarić, Irena; Janićijević, Branka; Rudan, Pavao

    2005-08-01

    The aim of this review is to summarize the existing data collected in high-resolution phylogenetic studies of mitochondrial DNA and Y chromosome variation in mainland and insular Croatian populations. Mitochondrial DNA polymorphisms were explored in 721 individuals by sequencing mtDNA HVS-1 region and screening a selection of 24 restriction fragment length polymorphisms (RFLPs), diagnostic for main Eurasian mtDNA haplogroups. Whereas Y chromosome variation was analyzed in 451 men by using 19 single nucleotide polymorphism (SNP)/indel and 8 short tandem repeat (STR) loci. The phylogeography of mtDNA and Y chromosome variants of Croatians can be adequately explained within typical European maternal and paternal genetic landscape, with the exception of mtDNA haplogroup F and Y-chromosomal haplogroup P* which indicate a connection to Asian populations. Similar to other European and Near Eastern populations, the most frequent mtDNA haplogroups in Croatians were H (41.1%), U5 (10.3%), and J (9.7%). The most frequent Y chromosomal haplogroups in Croatians, I-P37 (41.7%) and R1a-SRY1532 (25%), as well as the observed structuring of Y chromosomal variance reveal a clearly evident Slavic component in the paternal gene pool of contemporary Croatian men. Even though each population and groups of populations are well characterized by maternal and paternal haplogroup distribution, it is important to keep in mind that linking phylogeography of various haplogroups with known historic and prehistoric scenarios should be cautiously performed.

  5. Analysis of the Dendrobium officinale transcriptome reveals putative alkaloid biosynthetic genes and genetic markers.

    PubMed

    Guo, Xu; Li, Ying; Li, Chunfang; Luo, Hongmei; Wang, Lizhi; Qian, Jun; Luo, Xiang; Xiang, Li; Song, Jingyuan; Sun, Chao; Xu, Haibin; Yao, Hui; Chen, Shilin

    2013-09-15

    Dendrobium officinale Kimura et Migo (Orchidaceae) is a traditional Chinese medicinal plant. The stem contains an alkaloid that is the primary bioactive component. However, the details of alkaloid biosynthesis have not been effectively explored because of the limited number of expressed sequence tags (ESTs) available in GenBank. In this study, we analyzed RNA isolated from the stem of D. officinale using a single half-run on the Roche 454 GS FLX Titanium platform to generate 553,084 ESTs with an average length of 417 bases. The ESTs were assembled into 36,407 unique putative transcripts. A total of 69.97% of the unique sequences were annotated, and a detailed view of alkaloid biosynthesis was obtained. Functional assignment based on Kyoto Encyclopedia of Genes and Genomes (KEGG) terms revealed 69 unique sequences representing 25 genes involved in alkaloid backbone biosynthesis. A series of qRT-PCR experiments confirmed that the expression levels of 5 key enzyme-encoding genes involved in alkaloid biosynthesis are greater in the leaves of D. officinale than in the stems. Cytochrome P450s, aminotransferases, methyltransferases, multidrug resistance protein (MDR) transporters and transcription factors were screened for possible involvement in alkaloid biosynthesis. Furthermore, a total of 1061 simple sequence repeat motifs (SSR) were detected from 36,407 unigenes. Dinucleotide repeats were the most abundant repeat type. Of these, 179 genes were associated with a metabolic pathway in KEGG. This study is the first to produce a large volume of transcriptome data from D. officinale. It extends the foundation to facilitate gene discovery in D. officinale and provides an important resource for the molecular genetic and functional genomic studies in this species. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. NGS population genetics analyses reveal divergent evolution of a Lyme Borreliosis agent in Europe and Asia.

    PubMed

    Gatzmann, Fanny; Metzler, Dirk; Krebs, Stefan; Blum, Helmut; Sing, Andreas; Takano, Ai; Kawabata, Hiroki; Fingerle, Volker; Margos, Gabriele; Becker, Noémie S

    2015-04-01

    Borrelia bavariensis is a recently described agent of Lyme disease within the B. burgdorferi sensu lato species complex and exhibits a strong capacity for human pathogenicity. B. bavariensis strains are widely distributed in Eurasia spanning the distribution range of the tick vectors Ixodes persulcatus and I. ricinus. It has been suggested that B. bavariensis forms two populations, one of which arose through vector adaptation and geographic expansion. We have performed phylogenetic and population genetic analyses with next-generation sequencing data of 26 strains of B. bavariensis targeting the main linear chromosome and two plasmids (lp54, cp26). A very low number of single nucleotide polymorphisms (SNPs) was found in the European population and a deep branching pattern between European and Asian B. bavariensis was observed in all phylogenies. The results confirm the population structure of B. bavariensis and strongly support the hypothesis of clonal expansion of the European population of B. bavariensis. In addition, signals of positive selection identified in the populations further support the hypothesis that the European population of B. bavariensis likely underwent vector adaptation in its recent evolutionary history. Identified genes represent promising candidates for experimental vector adaptation studies. Thus, this species forms a very good model to study vector adaptation, which is known to play an important role in the geographic distribution of B. burgdorferi. Analysis of well known virulence determinants that are attributed to severity of clinical manifestation in B. burgdorferi s.s. revealed no variation within the European population of B. bavariensis, underlining the importance of including various Borrelia species into investigations that aim to understand the pathogenesis of Lyme disease agents. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Evolutionary history of barley cultivation in Europe revealed by genetic analysis of extant landraces

    PubMed Central

    2011-01-01

    Background Understanding the evolution of cultivated barley is important for two reasons. First, the evolutionary relationships between different landraces might provide information on the spread and subsequent development of barley cultivation, including the adaptation of the crop to new environments and its response to human selection. Second, evolutionary information would enable landraces with similar traits but different genetic backgrounds to be identified, providing alternative strategies for the introduction of these traits into modern germplasm. Results The evolutionary relationships between 651 barley landraces were inferred from the genotypes for 24 microsatellites. The landraces could be divided into nine populations, each with a different geographical distribution. Comparisons with ear row number, caryopsis structure, seasonal growth habit and flowering time revealed a degree of association between population structure and phenotype, and analysis of climate variables indicated that the landraces are adapted, at least to some extent, to their environment. Human selection and/or environmental adaptation may therefore have played a role in the origin and/or maintenance of one or more of the barley landrace populations. There was also evidence that at least some of the population structure derived from geographical partitioning set up during the initial spread of barley cultivation into Europe, or reflected the later introduction of novel varieties. In particular, three closely-related populations were made up almost entirely of plants with the daylength nonresponsive version of the photoperiod response gene PPD-H1, conferring adaptation to the long annual growth season of northern Europe. These three populations probably originated in the eastern Fertile Crescent and entered Europe after the initial spread of agriculture. Conclusions The discovery of population structure, combined with knowledge of associated phenotypes and environmental adaptations

  8. Awakening of a Dormant Cyanobacterium from Nitrogen Chlorosis Reveals a Genetically Determined Program.

    PubMed

    Klotz, Alexander; Georg, Jens; Bučinská, Lenka; Watanabe, Satoru; Reimann, Viktoria; Januszewski, Witold; Sobotka, Roman; Jendrossek, Dieter; Hess, Wolfgang R; Forchhammer, Karl

    2016-11-07

    The molecular and physiological mechanisms involved in the transition of microbial cells from a resting state to the active vegetative state are critically relevant for solving problems in fields ranging from microbial ecology to infection microbiology. Cyanobacteria that cannot fix nitrogen are able to survive prolonged periods of nitrogen starvation as chlorotic cells in a dormant state. When provided with a usable nitrogen source, these cells re-green within 48 hr and return to vegetative growth. Here we investigated the resuscitation of chlorotic Synechocystis sp. PCC 6803 cells at the physiological and molecular levels with the aim of understanding the awakening process of a dormant bacterium. Almost immediately upon nitrate addition, the cells initiated a highly organized resuscitation program. In the first phase, they suppressed any residual photosynthetic activity and activated respiration to gain energy from glycogen catabolism. Concomitantly, they restored the entire translational apparatus, ATP synthesis, and nitrate assimilation. After only 12-16 hr, the cells re-activated the synthesis of the photosynthetic apparatus and prepared for metabolic re-wiring toward photosynthesis. When the cells reached full photosynthetic capacity after ∼48 hr, they resumed cell division and entered the vegetative cell cycle. An analysis of the transcriptional dynamics during the resuscitation process revealed a perfect match to the observed physiological processes, and it suggested that non-coding RNAs play a major regulatory role during the lifestyle switch in awakening cells. This genetically encoded program ensures rapid colonization of habitats in which nitrogen starvation imposes a recurring growth limitation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. High Resolution Genomic Scans Reveal Genetic Architecture Controlling Alcohol Preference in Bidirectionally Selected Rat Model

    PubMed Central

    Lo, Chiao-Ling; Liang, Tiebing; Liu, Yunlong; Lumeng, Lawrence; Zhou, Feng C.; Muir, William M.

    2016-01-01

    Investigations on the influence of nature vs. nurture on Alcoholism (Alcohol Use Disorder) in human have yet to provide a clear view on potential genomic etiologies. To address this issue, we sequenced a replicated animal model system bidirectionally-selected for alcohol preference (AP). This model is uniquely suited to map genetic effects with high reproducibility, and resolution. The origin of the rat lines (an 8-way cross) resulted in small haplotype blocks (HB) with a corresponding high level of resolution. We sequenced DNAs from 40 samples (10 per line of each replicate) to determine allele frequencies and HB. We achieved ~46X coverage per line and replicate. Excessive differentiation in the genomic architecture between lines, across replicates, termed signatures of selection (SS), were classified according to gene and region. We identified SS in 930 genes associated with AP. The majority (50%) of the SS were confined to single gene regions, the greatest numbers of which were in promoters (284) and intronic regions (169) with the least in exon's (4), suggesting that differences in AP were primarily due to alterations in regulatory regions. We confirmed previously identified genes and found many new genes associated with AP. Of those newly identified genes, several demonstrated neuronal function involved in synaptic memory and reward behavior, e.g. ion channels (Kcnf1, Kcnn3, Scn5a), excitatory receptors (Grin2a, Gria3, Grip1), neurotransmitters (Pomc), and synapses (Snap29). This study not only reveals the polygenic architecture of AP, but also emphasizes the importance of regulatory elements, consistent with other complex traits. PMID:27490364

  10. Genetic Networking of the Bemisia tabaci Cryptic Species Complex Reveals Pattern of Biological Invasions

    PubMed Central

    De Barro, Paul; Ahmed, Muhammad Z.

    2011-01-01

    Background A challenge within the context of cryptic species is the delimitation of individual species within the complex. Statistical parsimony network analytics offers the opportunity to explore limits in situations where there are insufficient species-specific morphological characters to separate taxa. The results also enable us to explore the spread in taxa that have invaded globally. Methodology/Principal Findings Using a 657 bp portion of mitochondrial cytochrome oxidase 1 from 352 unique haplotypes belonging to the Bemisia tabaci cryptic species complex, the analysis revealed 28 networks plus 7 unconnected individual haplotypes. Of the networks, 24 corresponded to the putative species identified using the rule set devised by Dinsdale et al. (2010). Only two species proposed in Dinsdale et al. (2010) departed substantially from the structure suggested by the analysis. The analysis of the two invasive members of the complex, Mediterranean (MED) and Middle East – Asia Minor 1 (MEAM1), showed that in both cases only a small number of haplotypes represent the majority that have spread beyond the home range; one MEAM1 and three MED haplotypes account for >80% of the GenBank records. Israel is a possible source of the globally invasive MEAM1 whereas MED has two possible sources. The first is the eastern Mediterranean which has invaded only the USA, primarily Florida and to a lesser extent California. The second are western Mediterranean haplotypes that have spread to the USA, Asia and South America. The structure for MED supports two home range distributions, a Sub-Saharan range and a Mediterranean range. The MEAM1 network supports the Middle East - Asia Minor region. Conclusion/Significance The network analyses show a high level of congruence with the species identified in a previous phylogenetic analysis. The analysis of the two globally invasive members of the complex support the view that global invasion often involve very small portions of the available

  11. Genetic diversity and domestication origin of tea plant Camellia taliensis (Theaceae) as revealed by microsatellite markers

    PubMed Central

    2014-01-01

    Background Tea is one of the most popular beverages in the world. Many species in the Thea section of the Camellia genus can be processed for drinking and have been domesticated. However, few investigations have focused on the genetic consequence of domestication and geographic origin of landraces on tea plants using credible wild and planted populations of a single species. Here, C. taliensis provides us with a unique opportunity to explore these issues. Results Fourteen nuclear microsatellite loci were employed to determine the genetic diversity and domestication origin of C. taliensis, which were represented by 587 individuals from 25 wild, planted and recently domesticated populations. C. taliensis showed a moderate high level of overall genetic diversity. The greater reduction of genetic diversity and stronger genetic drift were detected in the wild group than in the recently domesticated group, indicating the loss of genetic diversity of wild populations due to overexploitation and habitat fragmentation. Instead of the endangered wild trees, recently domesticated individuals were used to compare with the planted trees for detecting the genetic consequence of domestication. A little and non-significant reduction in genetic diversity was found during domestication. The long life cycle, selection for leaf traits and gene flow between populations will delay the emergence of bottleneck in planted trees. Both phylogenetic and assignment analyses suggested that planted trees may have been domesticated from the adjacent central forest of western Yunnan and dispersed artificially to distant places. Conclusions This study contributes to the knowledge about levels and distribution of genetic diversity of C. taliensis and provides new insights into genetic consequence of domestication and geographic origin of planted trees of this species. As an endemic tea source plant, wild, planted and recently domesticated C. taliensis trees should all be protected for their unique

  12. Unexpected molecular weight effect in polymer nanocomposites

    SciTech Connect

    Cheng, Shiwang; Holt, Adam P.; Wang, Huiqun; Fan, Fei; Bocharova, Vera; Martin, Halie J.; Etampawala, Thusitha N.; White, Benjamin Tyler; Saito, Tomonori; Kang, Nam -Goo; Dadmun, Mark D.; Mays, Jimmy W.; Sokolov, Alexei P.

    2016-01-22

    Here, the properties of the interfacial layer between the polymer matrix and nanoparticles largely determine the macroscopic properties of polymer nanocomposites (PNCs). Although the static thickness of the interfacial layer was found to increase with the molecular weight (MW), the influence of MW on segmental relaxation and the glass transition in this layer remains to be explored. In this Letter, we show an unexpected MW dependence of the interfacial properties in PNC with attractive polymer-nanoparticle interactions: the thickness of the interfacial layer with hindered segmental relaxation decreases as MW increases, in sharp constrast to theoretical predictions. Further analyses reveal a reduction in mass density of the interfacial layer with increasing MW, which can explain these unexpected dynamic effects. Our observations call for a significant revision of the current understandings of PNCs and suggest interesting ways to tailor their properties.

  13. Unexpected molecular weight effect in polymer nanocomposites

    DOE PAGES

    Cheng, Shiwang; Holt, Adam P.; Wang, Huiqun; ...

    2016-01-22

    Here, the properties of the interfacial layer between the polymer matrix and nanoparticles largely determine the macroscopic properties of polymer nanocomposites (PNCs). Although the static thickness of the interfacial layer was found to increase with the molecular weight (MW), the influence of MW on segmental relaxation and the glass transition in this layer remains to be explored. In this Letter, we show an unexpected MW dependence of the interfacial properties in PNC with attractive polymer-nanoparticle interactions: the thickness of the interfacial layer with hindered segmental relaxation decreases as MW increases, in sharp constrast to theoretical predictions. Further analyses reveal amore » reduction in mass density of the interfacial layer with increasing MW, which can explain these unexpected dynamic effects. Our observations call for a significant revision of the current understandings of PNCs and suggest interesting ways to tailor their properties.« less

  14. Genetic diversity of carrot (Daucus carota L.) cultivars revealed by analysis of SSR loci

    USDA-ARS?s Scientific Manuscript database

    In this work we evaluate a collection of 88 carrot cultivars and landraces for polymorphisms at SSR loci and use the obtained markers to assess the genetic diversity, and we show molecular evidence for divergence between Asiatic and Western carrot genetic pools. The use of primer pairs flanking repe...

  15. New Genetic Susceptibility Factors for Sjögren's Syndrome Revealed

    MedlinePlus

    ... Sjögren’s syndrome. The findings, published in the journal Nature Genetics, could help researchers develop new strategies to ... Adaptive Immune Responses Are Associated With Sjögren’s Syndrome. Nature Genetics 2013 Nov; 45(11):1284-92. doi: ...

  16. Patterns of genetic variation and covariation in ejaculate traits reveal potential evolutionary constraints in guppies.

    PubMed

    Evans, J P

    2011-05-01

    Ejaculates comprise multiple and potentially interacting traits that determine male fertility and sperm competitiveness. Consequently, selection on these traits is likely to be intense, but the efficacy of selection will depend critically on patterns of genetic variation and covariation underlying their expression. In this study, I provide a prospective quantitative genetic analysis of ejaculate traits in the guppy Poecilia reticulata, a highly promiscuous live-bearing fish. I used a standard paternal half-sibling breeding design to characterize patterns of genetic (co)variation in components of sperm length and in vitro sperm performance. All traits exhibited high levels of phenotypic and additive genetic variation, and in several cases, patterns of genetic variation was consistent with Y-linkage. There were also highly significant negative genetic correlations between the various measures of sperm length and sperm performance. In particular, the length of the sperm's midpiece was strongly, negatively and genetically correlated with sperm's swimming velocity-an important determinant of sperm competitiveness in this and other species. Other components of sperm length, including the flagellum and head, were independently and negatively genetically correlated with the proportion of live sperm in the ejaculate (sperm viability). Whether these relationships represent evolutionary trade-offs depends on the precise relationships between these traits and competitive fertilization rates, which have yet to be fully resolved in this (and indeed most) species. Nevertheless, these prospective analyses point to potential constraints on ejaculate evolution and may explain the high level of phenotypic variability in ejaculate traits in this species.

  17. Genotyping by sequencing reveals the genetic diversity of the USDA pisum diversity collection

    USDA-ARS?s Scientific Manuscript database

    The USDA expanded Pisum Single Plant (PSP) core collection is a unique resource that represents the breadth of the genetic diversity of the genus in an inbred format that facilitates genetic study. The collection includes inbred accessions from the refined pea core collection, parent lines of USDA r...

  18. Molecular genetic variation in cultivated peanut cultivars and breeding lines revealed by highly informative SSR markers

    USDA-ARS?s Scientific Manuscript database

    Groundnut or peanut (Arachis hypogaea L.) is an economically important crop worldwide as a source of protein and cooking oil, particularly in developing countries. Because of its narrow genetic background and shortage of polymorphic genetic markers, molecular characterization of cultivated peanuts e...

  19. Genetic diversity and population structure of Celosia argentea and related species revealed by SRAP.

    PubMed

    Feng, Na; Xue, Qie; Guo, Qinghua; Zhao, Ru; Guo, Meili

    2009-08-01

    Genetic diversity of 16 populations of Celosia argentea L. and 6 populations of Celosia cristata L. in China was investigated using sequence-related amplified polymorphism (SRAP). Ten SRAP primer combinations generated 507 scorable amplification bands ranging from 50 to 2000 bp, among which 274 were polymorphic, with an average of 54 polymorphic bands per primer combination. The unweighted pair group method of arithmetic averages (UPGMA) cluster analysis enabled construction of a phylogenetic tree for estimating genetic distance among populations, which agreed well with the geographic origin information. Twenty-two populations were distinctly separated into two major genetic groups. One typical representative fragment, M1E6 in C. argentea, provided an alternative approach to distinguish C. argentea from C. cristata. Also, great genetic diversity found in C. argentea populations by significant geographic difference was confirmed by a high level of population genetics parameters. The information may be beneficial to future breeding selection and conservation management for populations of C. argentea.

  20. Unexpected angular or rotational deformity after corrective osteotomy

    PubMed Central

    2014-01-01

    Background Codman’s paradox reveals a misunderstanding of geometry in orthopedic practice. Physicians often encounter situations that cannot be understood intuitively during orthopedic interventions such as corrective osteotomy. Occasionally, unexpected angular or rotational deformity occurs during surgery. This study aimed to draw the attention of orthopedic surgeons toward the concepts of orientation and rotation and demonstrate the potential for unexpected deformity after orthopedic interventions. This study focused on three situations: shoulder arthrodesis, femoral varization derotational osteotomy, and femoral derotation osteotomy. Methods First, a shoulder model was generated to calculate unexpected rotational deformity to demonstrate Codman’s paradox. Second, femoral varization derotational osteotomy was simulated using a cylinder model. Third, a reconstructed femoral model was used to calculate unexpected angular or rotational deformity during femoral derotation osteotomy. Results Unexpected external rotation was found after forward elevation and abduction of the shoulder joint. In the varization and derotation model, closed-wedge osteotomy and additional derotation resulted in an unexpected extension and valgus deformity, namely, under-correction of coxa valga. After femoral derotational osteotomy, varization and extension of the distal fragment occurred, although the extension was negligible. Conclusions Surgeons should be aware of unexpected angular deformity after surgical procedure involving bony areas. The degree of deformity differs depending on the context of the surgical procedure. However, this study reveals that notable deformities can be expected during orthopedic procedures such as femoral varization derotational osteotomy. PMID:24886469

  1. Genome-wide view of genetic diversity reveals paths of selection and cultivar differentiation in peach domestication

    PubMed Central

    Akagi, Takashi; Hanada, Toshio; Yaegaki, Hideaki; Gradziel, Thomas M.; Tao, Ryutaro

    2016-01-01

    Domestication and cultivar differentiation are requisite processes for establishing cultivated crops. These processes inherently involve substantial changes in population structure, including those from artificial selection of key genes. In this study, accessions of peach (Prunus persica) and its wild relatives were analysed genome-wide to identify changes in genetic structures and gene selections associated with their differentiation. Analysis of genome-wide informative single-nucleotide polymorphism loci revealed distinct changes in genetic structures and delineations among domesticated peach and its wild relatives and among peach landraces and modern fruit (F) and modern ornamental (O-A) cultivars. Indications of distinct changes in linkage disequilibrium extension/decay and of strong population bottlenecks or inbreeding were identified. Site frequency spectrum- and extended haplotype homozygosity-based evaluation of genome-wide genetic diversities supported selective sweeps distinguishing the domesticated peach from its wild relatives and each F/O-A cluster from the landrace clusters. The regions with strong selective sweeps harboured promising candidates for genes subjected to selection. Further sequence-based evaluation further defined the candidates and revealed their characteristics. All results suggest opportunities for identifying critical genes associated with each differentiation by analysing genome-wide genetic diversity in currently established populations. This approach obviates the special development of genetic populations, which is particularly difficult for long-lived tree crops. PMID:27085183

  2. Genome-wide view of genetic diversity reveals paths of selection and cultivar differentiation in peach domestication.

    PubMed

    Akagi, Takashi; Hanada, Toshio; Yaegaki, Hideaki; Gradziel, Thomas M; Tao, Ryutaro

    2016-06-01

    Domestication and cultivar differentiation are requisite processes for establishing cultivated crops. These processes inherently involve substantial changes in population structure, including those from artificial selection of key genes. In this study, accessions of peach (Prunus persica) and its wild relatives were analysed genome-wide to identify changes in genetic structures and gene selections associated with their differentiation. Analysis of genome-wide informative single-nucleotide polymorphism loci revealed distinct changes in genetic structures and delineations among domesticated peach and its wild relatives and among peach landraces and modern fruit (F) and modern ornamental (O-A) cultivars. Indications of distinct changes in linkage disequilibrium extension/decay and of strong population bottlenecks or inbreeding were identified. Site frequency spectrum- and extended haplotype homozygosity-based evaluation of genome-wide genetic diversities supported selective sweeps distinguishing the domesticated peach from its wild relatives and each F/O-A cluster from the landrace clusters. The regions with strong selective sweeps harboured promising candidates for genes subjected to selection. Further sequence-based evaluation further defined the candidates and revealed their characteristics. All results suggest opportunities for identifying critical genes associated with each differentiation by analysing genome-wide genetic diversity in currently established populations. This approach obviates the special development of genetic populations, which is particularly difficult for long-lived tree crops.

  3. Statistical inference on genetic data reveals the complex demographic history of human populations in central Asia.

    PubMed

    Palstra, Friso P; Heyer, Evelyne; Austerlitz, Frédéric

    2015-06-01

    The demographic history of modern humans constitutes a combination of expansions, colonizations, contractions, and remigrations. The advent of large scale genetic data combined with statistically refined methods facilitates inference of this complex history. Here we study the demographic history of two genetically admixed ethnic groups in Central Asia, an area characterized by high levels of genetic diversity and a history of recurrent immigration. Using Approximate Bayesian Computation, we infer that the timing of admixture markedly differs between the two groups. Admixture in the traditionally agricultural Tajiks could be dated back to the onset of the Neolithic transition in the region, whereas admixture in Kyrgyz is more recent, and may have involved the westward movement of Turkic peoples. These results are confirmed by a coalescent method that fits an isolation-with-migration model to the genetic data, with both Central Asian groups having received gene flow from the extremities of Eurasia. Interestingly, our analyses also uncover signatures of gene flow from Eastern to Western Eurasia during Paleolithic times. In conclusion, the high genetic diversity currently observed in these two Central Asian peoples most likely reflects the effects of recurrent immigration that likely started before historical times. Conversely, conquests during historical times may have had a relatively limited genetic impact. These results emphasize the need for a better understanding of the genetic consequences of transmission of culture and technological innovations, as well as those of invasions and conquests.