Sample records for reverse genetic analyses

  1. An assessment of heavy ion irradiation mutagenesis for reverse genetics in wheat (Triticum aestivum L.).

    PubMed

    Fitzgerald, Timothy L; Powell, Jonathan J; Stiller, Jiri; Weese, Terri L; Abe, Tomoko; Zhao, Guangyao; Jia, Jizeng; McIntyre, C Lynne; Li, Zhongyi; Manners, John M; Kazan, Kemal

    2015-01-01

    Reverse genetic techniques harnessing mutational approaches are powerful tools that can provide substantial insight into gene function in plants. However, as compared to diploid species, reverse genetic analyses in polyploid plants such as bread wheat can present substantial challenges associated with high levels of sequence and functional similarity amongst homoeologous loci. We previously developed a high-throughput method to identify deletions of genes within a physically mutagenized wheat population. Here we describe our efforts to combine multiple homoeologous deletions of three candidate disease susceptibility genes (TaWRKY11, TaPFT1 and TaPLDß1). We were able to produce lines featuring homozygous deletions at two of the three homoeoloci for all genes, but this was dependent on the individual mutants used in crossing. Intriguingly, despite extensive efforts, viable lines possessing homozygous deletions at all three homoeoloci could not be produced for any of the candidate genes. To investigate deletion size as a possible reason for this phenomenon, we developed an amplicon sequencing approach based on synteny to Brachypodium distachyon to assess the size of the deletions removing one candidate gene (TaPFT1) in our mutants. These analyses revealed that genomic deletions removing the locus are relatively large, resulting in the loss of multiple additional genes. The implications of this work for the use of heavy ion mutagenesis for reverse genetic analyses in wheat are discussed.

  2. An Assessment of Heavy Ion Irradiation Mutagenesis for Reverse Genetics in Wheat (Triticum aestivum L.)

    PubMed Central

    Fitzgerald, Timothy L.; Powell, Jonathan J.; Stiller, Jiri; Weese, Terri L.; Abe, Tomoko; Zhao, Guangyao; Jia, Jizeng; McIntyre, C. Lynne; Li, Zhongyi; Manners, John M.; Kazan, Kemal

    2015-01-01

    Reverse genetic techniques harnessing mutational approaches are powerful tools that can provide substantial insight into gene function in plants. However, as compared to diploid species, reverse genetic analyses in polyploid plants such as bread wheat can present substantial challenges associated with high levels of sequence and functional similarity amongst homoeologous loci. We previously developed a high-throughput method to identify deletions of genes within a physically mutagenized wheat population. Here we describe our efforts to combine multiple homoeologous deletions of three candidate disease susceptibility genes (TaWRKY11, TaPFT1 and TaPLDß1). We were able to produce lines featuring homozygous deletions at two of the three homoeoloci for all genes, but this was dependent on the individual mutants used in crossing. Intriguingly, despite extensive efforts, viable lines possessing homozygous deletions at all three homoeoloci could not be produced for any of the candidate genes. To investigate deletion size as a possible reason for this phenomenon, we developed an amplicon sequencing approach based on synteny to Brachypodium distachyon to assess the size of the deletions removing one candidate gene (TaPFT1) in our mutants. These analyses revealed that genomic deletions removing the locus are relatively large, resulting in the loss of multiple additional genes. The implications of this work for the use of heavy ion mutagenesis for reverse genetic analyses in wheat are discussed. PMID:25719507

  3. Reinventing the ames test as a quantitative lab that connects classical and molecular genetics.

    PubMed

    Goodson-Gregg, Nathan; De Stasio, Elizabeth A

    2009-01-01

    While many institutions use a version of the Ames test in the undergraduate genetics laboratory, students typically are not exposed to techniques or procedures beyond qualitative analysis of phenotypic reversion, thereby seriously limiting the scope of learning. We have extended the Ames test to include both quantitative analysis of reversion frequency and molecular analysis of revertant gene sequences. By giving students a role in designing their quantitative methods and analyses, students practice and apply quantitative skills. To help students connect classical and molecular genetic concepts and techniques, we report here procedures for characterizing the molecular lesions that confer a revertant phenotype. We suggest undertaking reversion of both missense and frameshift mutants to allow a more sophisticated molecular genetic analysis. These modifications and additions broaden the educational content of the traditional Ames test teaching laboratory, while simultaneously enhancing students' skills in experimental design, quantitative analysis, and data interpretation.

  4. Inherited XX sex reversal originating from wild medaka populations.

    PubMed

    Shinomiya, A; Otake, H; Hamaguchi, S; Sakaizumi, M

    2010-11-01

    The teleost fish, medaka (Oryzias latipes), has an XX/XY sex-determining mechanism. A Y-linked DM domain gene, DMY, has been isolated by positional cloning as the sex-determining gene in this species. Previously, we conducted a field survey of genotypic sex and found that approximately 1% of wild medaka are sex-reversed (XX males and XY females). Here, we performed genetic analyses of nine spontaneous XX sex-reversed males to elucidate its genetic basis. In all cases, the F(1) progeny were all females, whereas XX males reappeared in the backcross (BC) progeny, suggesting that XX sex reversal is a recessive trait. Although the incidences of sex reversal in the BC progeny were mostly low, 40% were males derived from one XX male. We performed linkage analysis using 55 BC males and located a single major factor, sda-1 (sex-determining autosomal factor-1), controlling sex reversal in an autosomal linkage group. Thus, genes involved in the sex-determining pathway can be isolated from spontaneous mutants in wild populations.

  5. Rescue of a Plant Negative-Strand RNA Virus from Cloned cDNA: Insights into Enveloped Plant Virus Movement and Morphogenesis.

    PubMed

    Wang, Qiang; Ma, Xiaonan; Qian, ShaSha; Zhou, Xin; Sun, Kai; Chen, Xiaolan; Zhou, Xueping; Jackson, Andrew O; Li, Zhenghe

    2015-10-01

    Reverse genetics systems have been established for all major groups of plant DNA and positive-strand RNA viruses, and our understanding of their infection cycles and pathogenesis has benefitted enormously from use of these approaches. However, technical difficulties have heretofore hampered applications of reverse genetics to plant negative-strand RNA (NSR) viruses. Here, we report recovery of infectious virus from cloned cDNAs of a model plant NSR, Sonchus yellow net rhabdovirus (SYNV). The procedure involves Agrobacterium-mediated transcription of full-length SYNV antigenomic RNA and co-expression of the nucleoprotein (N), phosphoprotein (P), large polymerase core proteins and viral suppressors of RNA silencing in Nicotiana benthamiana plants. Optimization of core protein expression resulted in up to 26% recombinant SYNV (rSYNV) infections of agroinfiltrated plants. A reporter virus, rSYNV-GFP, engineered by inserting a green fluorescence protein (GFP) gene between the N and P genes was able to express GFP during systemic infections and after repeated plant-to-plant mechanical passages. Deletion analyses with rSYNV-GFP demonstrated that SYNV cell-to-cell movement requires the sc4 protein and suggested that uncoiled nucleocapsids are infectious movement entities. Deletion analyses also showed that the glycoprotein is not required for systemic infection, although the glycoprotein mutant was defective in virion morphogenesis. Taken together, we have developed a robust reverse genetics system for SYNV that provides key insights into morphogenesis and movement of an enveloped plant virus. Our study also provides a template for developing analogous systems for reverse genetic analysis of other plant NSR viruses.

  6. Rescue of a Plant Negative-Strand RNA Virus from Cloned cDNA: Insights into Enveloped Plant Virus Movement and Morphogenesis

    PubMed Central

    Zhou, Xin; Sun, Kai; Chen, Xiaolan; Zhou, Xueping; Jackson, Andrew O.; Li, Zhenghe

    2015-01-01

    Reverse genetics systems have been established for all major groups of plant DNA and positive-strand RNA viruses, and our understanding of their infection cycles and pathogenesis has benefitted enormously from use of these approaches. However, technical difficulties have heretofore hampered applications of reverse genetics to plant negative-strand RNA (NSR) viruses. Here, we report recovery of infectious virus from cloned cDNAs of a model plant NSR, Sonchus yellow net rhabdovirus (SYNV). The procedure involves Agrobacterium-mediated transcription of full-length SYNV antigenomic RNA and co-expression of the nucleoprotein (N), phosphoprotein (P), large polymerase core proteins and viral suppressors of RNA silencing in Nicotiana benthamiana plants. Optimization of core protein expression resulted in up to 26% recombinant SYNV (rSYNV) infections of agroinfiltrated plants. A reporter virus, rSYNV-GFP, engineered by inserting a green fluorescence protein (GFP) gene between the N and P genes was able to express GFP during systemic infections and after repeated plant-to-plant mechanical passages. Deletion analyses with rSYNV-GFP demonstrated that SYNV cell-to-cell movement requires the sc4 protein and suggested that uncoiled nucleocapsids are infectious movement entities. Deletion analyses also showed that the glycoprotein is not required for systemic infection, although the glycoprotein mutant was defective in virion morphogenesis. Taken together, we have developed a robust reverse genetics system for SYNV that provides key insights into morphogenesis and movement of an enveloped plant virus. Our study also provides a template for developing analogous systems for reverse genetic analysis of other plant NSR viruses. PMID:26484673

  7. A reverse genetics approach identifies novel mutants in light responses and anthocyanin metabolism in petunia.

    PubMed

    Berenschot, Amanda S; Quecini, Vera

    2014-01-01

    Flower color and plant architecture are important commercially valuable features for ornamental petunias (Petunia x hybrida Vilm.). Photoperception and light signaling are the major environmental factors controlling anthocyanin and chlorophyll biosynthesis and shade-avoidance responses in higher plants. The genetic regulators of these processes were investigated in petunia by in silico analyses and the sequence information was used to devise a reverse genetics approach to probe mutant populations. Petunia orthologs of photoreceptor, light-signaling components and anthocyanin metabolism genes were identified and investigated for functional conservation by phylogenetic and protein motif analyses. The expression profiles of photoreceptor gene families and of transcription factors regulating anthocyanin biosynthesis were obtained by bioinformatic tools. Two mutant populations, generated by an alkalyting agent and by gamma irradiation, were screened using a phenotype-independent, sequence-based method by high-throughput PCR-based assay. The strategy allowed the identification of novel mutant alleles for anthocyanin biosynthesis (CHALCONE SYNTHASE) and regulation (PH4), and for light signaling (CONSTANS) genes.

  8. Sex reversal triggers the rapid transition from genetic to temperature-dependent sex.

    PubMed

    Holleley, Clare E; O'Meally, Denis; Sarre, Stephen D; Marshall Graves, Jennifer A; Ezaz, Tariq; Matsubara, Kazumi; Azad, Bhumika; Zhang, Xiuwen; Georges, Arthur

    2015-07-02

    Sex determination in animals is amazingly plastic. Vertebrates display contrasting strategies ranging from complete genetic control of sex (genotypic sex determination) to environmentally determined sex (for example, temperature-dependent sex determination). Phylogenetic analyses suggest frequent evolutionary transitions between genotypic and temperature-dependent sex determination in environmentally sensitive lineages, including reptiles. These transitions are thought to involve a genotypic system becoming sensitive to temperature, with sex determined by gene-environment interactions. Most mechanistic models of transitions invoke a role for sex reversal. Sex reversal has not yet been demonstrated in nature for any amniote, although it occurs in fish and rarely in amphibians. Here we make the first report of reptile sex reversal in the wild, in the Australian bearded dragon (Pogona vitticeps), and use sex-reversed animals to experimentally induce a rapid transition from genotypic to temperature-dependent sex determination. Controlled mating of normal males to sex-reversed females produces viable and fertile offspring whose phenotypic sex is determined solely by temperature (temperature-dependent sex determination). The W sex chromosome is eliminated from this lineage in the first generation. The instantaneous creation of a lineage of ZZ temperature-sensitive animals reveals a novel, climate-induced pathway for the rapid transition between genetic and temperature-dependent sex determination, and adds to concern about adaptation to rapid global climate change.

  9. Genome-Wide Association Mapping Combined with Reverse Genetics Identifies New Effectors of Low Water Potential-Induced Proline Accumulation in Arabidopsis1[W][OPEN

    PubMed Central

    Verslues, Paul E.; Lasky, Jesse R.; Juenger, Thomas E.; Liu, Tzu-Wen; Kumar, M. Nagaraj

    2014-01-01

    Arabidopsis (Arabidopsis thaliana) exhibits natural genetic variation in drought response, including varying levels of proline (Pro) accumulation under low water potential. As Pro accumulation is potentially important for stress tolerance and cellular redox control, we conducted a genome-wide association (GWAS) study of low water potential-induced Pro accumulation using a panel of natural accessions and publicly available single-nucleotide polymorphism (SNP) data sets. Candidate genomic regions were prioritized for subsequent study using metrics considering both the strength and spatial clustering of the association signal. These analyses found many candidate regions likely containing gene(s) influencing Pro accumulation. Reverse genetic analysis of several candidates identified new Pro effector genes, including thioredoxins and several genes encoding Universal Stress Protein A domain proteins. These new Pro effector genes further link Pro accumulation to cellular redox and energy status. Additional new Pro effector genes found include the mitochondrial protease LON1, ribosomal protein RPL24A, protein phosphatase 2A subunit A3, a MADS box protein, and a nucleoside triphosphate hydrolase. Several of these new Pro effector genes were from regions with multiple SNPs, each having moderate association with Pro accumulation. This pattern supports the use of summary approaches that incorporate clusters of SNP associations in addition to consideration of individual SNP probability values. Further GWAS-guided reverse genetics promises to find additional effectors of Pro accumulation. The combination of GWAS and reverse genetics to efficiently identify new effector genes may be especially applicable for traits difficult to analyze by other genetic screening methods. PMID:24218491

  10. Population genetic structure and direct observations reveal sex-reversed patterns of dispersal in a cooperative bird.

    PubMed

    Harrison, Xavier A; York, Jennifer E; Young, Andrew J

    2014-12-01

    Sex-biased dispersal is pervasive and has diverse evolutionary implications, but the fundamental drivers of dispersal sex biases remain unresolved. This is due in part to limited diversity within taxonomic groups in the direction of dispersal sex biases, which leaves hypothesis testing critically dependent upon identifying rare reversals of taxonomic norms. Here, we use a combination of observational and genetic data to demonstrate a rare reversal of the avian sex bias in dispersal in the cooperatively breeding white-browed sparrow weaver (Plocepasser mahali). Direct observations revealed that (i) natal philopatry was rare, with both sexes typically dispersing locally to breed, and (ii), unusually for birds, males bred at significantly greater distances from their natal group than females. Population genetic analyses confirmed these patterns, as (i) corrected Assignment index (AIc), FST tests and isolation-by-distance metrics were all indicative of longer dispersal distances among males than females, and (ii) spatial autocorrelation analysis indicated stronger within-group genetic structure among females than males. Examining the spatial scale of extra-group mating highlighted that the resulting 'sperm dispersal' could have acted in concert with individual dispersal to generate these genetic patterns, but gamete dispersal alone cannot account entirely for the sex differences in genetic structure observed. That leading hypotheses for the evolution of dispersal sex biases cannot readily account for these sex-reversed patterns of dispersal in white-browed sparrow weavers highlights the continued need for attention to alternative explanations for this enigmatic phenomenon. We highlight the potential importance of sex differences in the distances over which dispersal opportunities can be detected. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  11. CRISPR: a Versatile Tool for Both Forward and Reverse Genetics Research

    PubMed Central

    Gurumurthy, Channabasavaiah B.; Grati, M'hamed; Ohtsuka, Masato; Schilit, Samantha L.P.; Quadros, Rolen M.; Liu, Xue Zhong

    2016-01-01

    Human genetics research employs the two opposing approaches of forward and reverse genetics. While forward genetics identifies and links a mutation to an observed disease etiology, reverse genetics induces mutations in model organisms to study their role in disease. In most cases, causality for mutations identified by forward genetics is confirmed by reverse genetics through the development of genetically engineered animal models and an assessment of whether the model can recapitulate the disease. While many technological advances have helped improve these approaches, some gaps still remain. CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system, which has emerged as a revolutionary genetic engineering tool, holds great promise for closing such gaps. By combining the benefits of forward and reverse genetics, it has dramatically expedited human genetics research. We provide a perspective on the power of CRISPR-based forward and reverse genetics tools in human genetics and discuss its applications using some disease examples. PMID:27384229

  12. Recent Advances in Human Genetics and Epigenetics of Adiposity: Pathway to Precision Medicine?

    PubMed

    Fall, Tove; Mendelson, Michael; Speliotes, Elizabeth K

    2017-05-01

    Obesity is a heritable trait that contributes to substantial global morbidity and mortality. Here, we summarize findings from the past decade of genetic and epigenetic research focused on unravelling the underpinnings of adiposity. More than 140 genetic regions now are known to influence adiposity traits. The genetics of general adiposity, as measured by body mass index, and that of abdominal obesity, as measured by waist-to-hip ratio, have distinct biological backgrounds. Gene expression associated with general adiposity is enriched in the nervous system. In contrast, genes associated with abdominal adiposity function in adipose tissue. Recent population-based epigenetic analyses have highlighted additional distinct loci. We discuss how associated genetic variants can lead to understanding causal mechanisms, and to disentangling reverse causation in epigenetic analyses. Discoveries emerging from population genomics are identifying new disease markers and potential novel drug targets to better define and combat obesity and related diseases. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  13. Testicular Differentiation Occurs in Absence of R-spondin1 and Sox9 in Mouse Sex Reversals

    PubMed Central

    Pauper, Eva; Gregoire, Elodie P.; Klopfenstein, Muriel; de Rooij, Dirk G.; Mark, Manuel; Schedl, Andreas; Ghyselinck, Norbert B.; Chaboissier, Marie-Christine

    2012-01-01

    In mammals, male sex determination is governed by SRY-dependent activation of Sox9, whereas female development involves R-spondin1 (RSPO1), an activator of the WNT/beta-catenin signaling pathway. Genetic analyses in mice have demonstrated Sry and Sox9 to be both required and sufficient to induce testicular development. These genes are therefore considered as master regulators of the male pathway. Indeed, female-to-male sex reversal in XX Rspo1 mutant mice correlates with Sox9 expression, suggesting that this transcription factor induces testicular differentiation in pathological conditions. Unexpectedly, here we show that testicular differentiation can occur in XX mutants lacking both Rspo1 and Sox9 (referred to as XX Rspo1KOSox9cKO ), indicating that Sry and Sox9 are dispensable to induce female-to-male sex reversal. Molecular analyses show expression of both Sox8 and Sox10, suggesting that activation of Sox genes other than Sox9 can induce male differentiation in Rspo1KOSox9cKO mice. Moreover, since testis development occurs in XY Rspo1KOSox9cKO mice, our data show that Rspo1 is the main effector for male-to-female sex reversal in XY Sox9cKO mice. Thus, Rspo1 is an essential activator of ovarian development not only in normal situations, but also in sex reversal situations. Taken together these data demonstrate that both male and female sex differentiation is induced by distinct, active, genetic pathways. The dogma that considers female differentiation as a default pathway therefore needs to be definitively revised. PMID:23300469

  14. The Tgm9-induced indexed insertional mutant collection to conduct community-based reverse genetics studies in soybean

    USDA-ARS?s Scientific Manuscript database

    Until now, functional analyses of soybean genes have been very arduous because of the lack of a rapid transformation procedure. Recently identified the active endogenous type II transposable element, Tgm9, excises from insertion sites and restores wild-type phenotypes. Thus, this element provides a ...

  15. Reverse Genetics for Mammalian Orthoreovirus.

    PubMed

    Stuart, Johnasha D; Phillips, Matthew B; Boehme, Karl W

    2017-01-01

    Reverse genetics allows introduction of specific alterations into a viral genome. Studies performed with mutant viruses generated using reverse genetics approaches have contributed immeasurably to our understanding of viral replication and pathogenesis, and also have led to development of novel vaccines and virus-based vectors. Here, we describe the reverse genetics system that allows for production and recovery of mammalian orthoreovirus, a double-stranded (ds) RNA virus, from plasmids that encode the viral genome.

  16. Gonadal sex differentiation and effects of dietary methyltestosterone treatment in sablefish (Anoplopoma fimbria).

    PubMed

    Luckenbach, J Adam; Fairgrieve, William T

    2016-02-01

    Methods for sex control are needed to establish monosex aquaculture of sablefish (Anoplopoma fimbria). Here we conducted the first characterization of sex differentiation by histology and hormonal sex reversal experiment in sablefish. Ovarian differentiation was first discernible at ~80 mm fork length (FL) and characterized by development of lamellar structures and onset of meiosis. Testes exhibited a dual-lobe appearance over much of their length and remained non-meiotic until males were ≥520 mm FL (2 years post-fertilization). Juveniles with undifferentiated gonads were provided diets containing 0 (control), 5 or 50 mg 17α-methyltestosterone (MT)/kg for 2 months. Following treatment, controls possessed either ovaries or non-meiotic testes, whereas MT-treated fish exhibited meiotic testes (60% of the fish), intersex gonads (~30%), or gonads that appeared sterile (~10%). A genetic sex marker revealed that all intersex fish were genetic females, although other females appeared to be completely sex reversed (i.e., neomales). One year after treatment, MT-treated fish possessed non-meiotic testes similar to control males or intersex gonads with reduced ovarian features, presumably due to atresia following MT withdrawal. Milt collected from neomales and genetic males 3 years post-treatment permitted sperm motility analyses; however, neomale sperm were virtually immotile. These results demonstrated that sablefish are differentiated gonochorists and that MT treatment from 76 to 196 mm FL induced permanent masculinization of a portion of the genetic females, but acquisition of sperm motility was impaired. Earlier administration of MT may be necessary to sex reverse a higher proportion of genetic females and reduce negative effects on fertility.

  17. Climate-driven shifts in adult sex ratios via sex reversals: the type of sex determination matters.

    PubMed

    Bókony, Veronika; Kövér, Szilvia; Nemesházi, Edina; Liker, András; Székely, Tamás

    2017-09-19

    Sex reversals whereby individuals of one genetic sex develop the phenotype of the opposite sex occur in ectothermic vertebrates with genetic sex-determination systems that are sensitive to extreme temperatures during sexual differentiation. Recent rises in global temperatures have led researchers to predict that sex reversals will become more common, resulting in the distortion of many populations' sex ratios. However, it is unclear whether susceptibility to climate-driven sex-ratio shifts depends on the type of sex determination that varies across species. First, we show here using individual-based theoretical models that XX/XY (male-heterogametic) and ZZ/ZW (female-heterogametic) sex-determination systems can respond differentially to temperature-induced sex reversals. Interestingly, the impacts of climate warming on adult sex ratio (ASR) depend on the effects of both genotypic and phenotypic sex on survival and reproduction. Second, we analyse the temporal changes of ASR in natural amphibian populations using data from the literature, and find that ASR shifted towards males in ZZ/ZW species over the past 60 years, but did not change significantly in XX/XY species. Our results highlight the fact that we need a better understanding of the interactions between genetic and environmental sex-determining mechanisms to predict the responses of ectotherms to climate change and the associated extinction risks.This article is part of the themed issue 'Adult sex ratios and reproductive decisions: a critical re-examination of sex differences in human and animal societies'. © 2017 The Author(s).

  18. Genetically Predicted Body Mass Index and Alzheimer’s Disease Related Phenotypes in Three Large Samples: Mendelian Randomization Analyses

    PubMed Central

    Mukherjee, Shubhabrata; Walter, Stefan; Kauwe, John S.K.; Saykin, Andrew J.; Bennett, David A.; Larson, Eric B.; Crane, Paul K.; Glymour, M. Maria

    2015-01-01

    Observational research shows that higher body mass index (BMI) increases Alzheimer’s disease (AD) risk, but it is unclear whether this association is causal. We applied genetic variants that predict BMI in Mendelian Randomization analyses, an approach that is not biased by reverse causation or confounding, to evaluate whether higher BMI increases AD risk. We evaluated individual level data from the AD Genetics Consortium (ADGC: 10,079 AD cases and 9,613 controls), the Health and Retirement Study (HRS: 8,403 participants with algorithm-predicted dementia status) and published associations from the Genetic and Environmental Risk for AD consortium (GERAD1: 3,177 AD cases and 7,277 controls). No evidence from individual SNPs or polygenic scores indicated BMI increased AD risk. Mendelian Randomization effect estimates per BMI point (95% confidence intervals) were: ADGC OR=0.95 (0.90, 1.01); HRS OR=1.00 (0.75, 1.32); GERAD1 OR=0.96 (0.87, 1.07). One subscore (cellular processes not otherwise specified) unexpectedly predicted lower AD risk. PMID:26079416

  19. An efficient and rapid influenza gene cloning strategy for reverse genetics system.

    PubMed

    Shao, Hongxia; Fan, Zhonglei; Wan, Zhimin; Tian, Xiaoyan; Chen, Hongjun; Perez, Daniel R; Qin, Aijian; Ye, Jianqiang

    2015-09-15

    Influenza reverse genetics plays vital roles in understanding influenza molecular characteristics and vaccine development. However, current influenza reverse genetics heavily depends on restriction enzyme and ligation for gene cloning. The traditional cloning process of influenza eight fragments for virus rescuing generally requires considerable work. To simplify and increase the pace of gene cloning for influenza reverse genetics system, we developed a rapid restriction enzyme-free ExnaseTM II-based in vitro recombination approach for influenza gene cloning. We used this strategy rapidly and successfully to clone influenza eight genes both from viruses PR8 and H9N2 for virus rescuing. Our data demonstrate that the strategy developed here can accelerate the process of influenza gene cloning into reverse genetics system, and shows high potential for applications in both influenza basic and applied research. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Phenotypic and Genetic Divergence among Poison Frog Populations in a Mimetic Radiation

    PubMed Central

    Twomey, Evan; Yeager, Justin; Brown, Jason Lee; Morales, Victor; Cummings, Molly; Summers, Kyle

    2013-01-01

    The evolution of Müllerian mimicry is, paradoxically, associated with high levels of diversity in color and pattern. In a mimetic radiation, different populations of a species evolve to resemble different models, which can lead to speciation. Yet there are circumstances under which initial selection for divergence under mimicry may be reversed. Here we provide evidence for the evolution of extensive phenotypic divergence in a mimetic radiation in Ranitomeya imitator, the mimic poison frog, in Peru. Analyses of color hue (spectral reflectance) and pattern reveal substantial divergence between morphs. However, we also report that there is a “transition-zone” with mixed phenotypes. Analyses of genetic structure using microsatellite variation reveals some differentiation between populations, but this does not strictly correspond to color pattern divergence. Analyses of gene flow between populations suggest that, while historical levels of gene flow were low, recent levels are high in some cases, including substantial gene flow between some color pattern morphs. We discuss possible explanations for these observations. PMID:23405150

  1. The reverse evolution from multicellularity to unicellularity during carcinogenesis.

    PubMed

    Chen, Han; Lin, Fangqin; Xing, Ke; He, Xionglei

    2015-03-09

    Theoretical reasoning suggests that cancer may result from a knockdown of the genetic constraints that evolved for the maintenance of metazoan multicellularity. By characterizing the whole-life history of a xenograft tumour, here we show that metastasis is driven by positive selection for general loss-of-function mutations on multicellularity-related genes. Expression analyses reveal mainly downregulation of multicellularity-related genes and an evolving expression profile towards that of embryonic stem cells, the cell type resembling unicellular life in its capacity of unlimited clonal proliferation. Also, the emergence of metazoan multicellularity ~600 Myr ago is accompanied by an elevated birth rate of cancer genes, and there are more loss-of-function tumour suppressors than activated oncogenes in a typical tumour. These data collectively suggest that cancer represents a loss-of-function-driven reverse evolution back to the unicellular 'ground state'. This cancer evolution model may account for inter-/intratumoural genetic heterogeneity, could explain distant-organ metastases and hold implications for cancer therapy.

  2. Generation of recombinant rotaviruses expressing fluorescent proteins using an optimized reverse genetics system.

    PubMed

    Komoto, Satoshi; Fukuda, Saori; Ide, Tomihiko; Ito, Naoto; Sugiyama, Makoto; Yoshikawa, Tetsushi; Murata, Takayuki; Taniguchi, Koki

    2018-04-18

    An entirely plasmid-based reverse genetics system for rotaviruses was established very recently. We improved the reverse genetics system to generate recombinant rotavirus by transfecting only 11 cDNA plasmids for its 11 gene segments under the condition of increasing the ratio of the cDNA plasmids for NSP2 and NSP5 genes. Utilizing this highly efficient system, we then engineered infectious recombinant rotaviruses expressing bioluminescent (NanoLuc luciferase) and fluorescent (EGFP and mCherry) reporters. These recombinant rotaviruses expressing reporters remained genetically stable during serial passages. Our reverse genetics approach and recombinant rotaviruses carrying reporter genes will be great additions to the tool kit for studying the molecular virology of rotavirus, and for developing future next-generation vaccines and expression vectors. IMPORTANCE Rotavirus is one of the most important pathogens causing severe gastroenteritis in young children worldwide. In this paper, we describe a robust and simple reverse genetics system based on only rotavirus cDNAs, and its application for engineering infectious recombinant rotaviruses harboring bioluminescent (NanoLuc) and fluorescent (EGFP and mCherry) protein genes. This highly efficient reverse genetics system and recombinant RVAs expressing reporters could be powerful tools for the study of different aspects of rotavirus replication. Furthermore, they may be useful for next-generation vaccine production for this medically important virus. Copyright © 2018 American Society for Microbiology.

  3. Reverse genetics of Newcastle disease virus

    USDA-ARS?s Scientific Manuscript database

    Reverse genetics allows the generation of recombinant viruses or vectors used in functional studies, vaccine development, and gene therapy. This technique allows genetic manipulation and cloning of viral genomes, mutation through site-directed mutagenesis, and gene insertion or deletion, among othe...

  4. RNA Virus Reverse Genetics and Vaccine Design

    PubMed Central

    Stobart, Christopher C.; Moore, Martin L.

    2014-01-01

    RNA viruses are capable of rapid spread and severe or potentially lethal disease in both animals and humans. The development of reverse genetics systems for manipulation and study of RNA virus genomes has provided platforms for designing and optimizing viral mutants for vaccine development. Here, we review the impact of RNA virus reverse genetics systems on past and current efforts to design effective and safe viral therapeutics and vaccines. PMID:24967693

  5. Cloned cDNA of A/swine/Iowa/15/1930 internal genes as a candidate backbone for reverse genetics vaccine against influenza A viruses

    PubMed Central

    Lekcharoensuk, Porntippa; Wiriyarat, Witthawat; Petcharat, Nuntawan; Lekcharoensuk, Chalermpol; Auewarakul, Prasert; Richt, Juergen A

    2012-01-01

    Reverse genetics viruses for influenza vaccine production usually utilize the internal genes of the egg-adapted A/Puerto Rico/8/34 (PR8) strain. This egg-adapted strain provides high production yield in embryonated eggs but does not necessarily give the best yield in mammalian cell culture. In order to generate a reverse genetics viral backbone that is well-adapted to high growth in mammalian cell culture, a swine influenza isolate (A/swine/Iowa/15/30 (H1N1) (rg1930) that was shown to give high yield in Madin-Darby Canine Kidney (MDCK) cells was used as the internal gene donor for reverse genetics plasmids. In this report, the internal genes from rg1930 were used for construction of reverse genetics viruses carrying a cleavage site-modified hemagglutinin (HA) gene and neuraminidase (NA) gene from a highly pathogenic H5N1 virus. The resulting virus (rg1930H5N1) was low pathogenic in vivo. Inactivated rg1930H5N1 vaccine completely protected chickens from morbidity and mortality after challenge with highly pathogenic H5N1. Protective immunity was obtained when chickens were immunized with an inactivated vaccine consisting of at least 29 HA units of the rg1930H5N1 virus. In comparison to the PR8-based reverse genetics viruses carrying the same HA and NA genes from an H5N1 virus, rg1930 based viruses yielded higher viral titers in MDCK and Vero cells. In addition, the reverse genetics derived H3N2 and H5N2 viruses with the rg1930 backbone replicated in MDCK cells better than the cognate viruses with the rgPR8 backbone. It is concluded that this newly established reverse genetics backbone system could serve as a candidate for a master donor strain for development of inactivated influenza vaccines in cell-based systems. PMID:22230579

  6. Generation of EMS-Mutagenized Populations of Arabidopsis thaliana for Polyamine Genetics.

    PubMed

    Atanasov, Kostadin E; Liu, Changxin; Tiburcio, Antonio F; Alcázar, Rubén

    2018-01-01

    In the recent years, genetic engineering of polyamine biosynthetic genes has provided evidence for their involvement in plant stress responses and different aspects of plant development. Such approaches are being complemented with the use of reverse genetics, in which mutants affected on a particular trait, tightly associated with polyamines, are isolated and the causal genes mapped. Reverse genetics enables the identification of novel genes in the polyamine pathway, which may be involved in downstream signaling, transport, homeostasis, or perception. Here, we describe a basic protocol for the generation of ethyl methanesulfonate (EMS) mutagenized populations of Arabidopsis thaliana for its use in reverse genetics applied to polyamines.

  7. Genetic mating systems and reproductive natural histories of fishes: lessons for ecology and evolution.

    PubMed

    Avise, John C; Jones, Adam G; Walker, DeEtte; DeWoody, J Andrew

    2002-01-01

    Fish species have diverse breeding behaviors that make them valuable for testing theories on genetic mating systems and reproductive tactics. Here we review genetic appraisals of paternity and maternity in wild fish populations. Behavioral phenomena quantified by genetic markers in various species include patterns of multiple mating by both sexes; frequent cuckoldry by males and rare cuckoldry by females in nest-tending species; additional routes to surrogate parentage via nest piracy and egg-thievery; egg mimicry by nest-tending males; brood parasitism by helper males in cooperative breeders; clutch mixing in oral brooders; kinship in schooling fry of broadcast spawners; sperm storage by dams in female-pregnant species; and sex-role reversal, polyandry, and strong sexual selection on females in some male-pregnant species. Additional phenomena addressed by genetic parentage analyses in fishes include clustered mutations, filial cannibalism, and local population size. All results are discussed in the context of relevant behavioral and evolutionary theory.

  8. Complex Ancient Genetic Structure and Cultural Transitions in Southern African Populations.

    PubMed

    Montinaro, Francesco; Busby, George B J; Gonzalez-Santos, Miguel; Oosthuitzen, Ockie; Oosthuitzen, Erika; Anagnostou, Paolo; Destro-Bisol, Giovanni; Pascali, Vincenzo L; Capelli, Cristian

    2017-01-01

    The characterization of the structure of southern African populations has been the subject of numerous genetic, medical, linguistic, archaeological, and anthropological investigations. Current diversity in the subcontinent is the result of complex events of genetic admixture and cultural contact between early inhabitants and migrants that arrived in the region over the last 2000 years. Here, we analyze 1856 individuals from 91 populations, comprising novel and published genotype data, to characterize the genetic ancestry profiles of 631 individuals from 51 southern African populations. Combining both local ancestry and allele frequency based analyses, we identify a tripartite, ancient, Khoesan-related genetic structure. This structure correlates neither with linguistic affiliation nor subsistence strategy, but with geography, revealing the importance of isolation-by-distance dynamics in the area. Fine-mapping of these components in southern African populations reveals admixture and cultural reversion involving several Khoesan groups, and highlights that Bantu speakers and Coloured individuals have different mixtures of these ancient ancestries. Copyright © 2017 Montinaro et al.

  9. A novel reverse genetics system for production of infectious West Nile virus using homologous recombination in mammalian cells.

    PubMed

    Kobayashi, Shintaro; Yoshii, Kentaro; Hirano, Minato; Muto, Memi; Kariwa, Hiroaki

    2017-02-01

    Reverse genetics systems facilitate investigation of many aspects of the life cycle and pathogenesis of viruses. However, genetic instability in Escherichia coli has hampered development of a reverse genetics system for West Nile virus (WNV). In this study, we developed a novel reverse genetics system for WNV based on homologous recombination in mammalian cells. Introduction of the DNA fragment coding for the WNV structural protein together with a DNA-based replicon resulted in the release of infectious WNV. The growth rate and plaque size of the recombinant virus were almost identical to those of the parent WNV. Furthermore, chimeric WNV was produced by introducing the DNA fragment coding for the structural protein and replicon plasmid derived from various strains. Here, we report development of a novel system that will facilitate research into WNV infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Analysis of heterogeneity of Copia-like retrotransposons in the genome of cassava (Manihot esculenta Crantz).

    PubMed

    Gbadegesin, Micheal A; Beeching, John R

    2011-12-20

    Retrotransposons are ubiquitous in eukaryotic genomes and now proving to be useful genetic tools for genetic diversity and phylogenetic analyses, especially in plants. In order to assess the diversity of Ty1/Copia-like retrotransposons of cassava, we used PCR primers anchored on the conserved domains of reverse transcriptases (RTs) to amplify cassava Ty1/Copia-like RT. The PCR product was cloned and sequenced. Sequences analysis of the clones revealed the presence of 69 families of Ty1/Copia-like retrotransposon in the genome of cassava. Comparative analyses of the predicted amino acid sequences of these clones with those of other plants showed that retroelements of this class are very heterogeneous in cassava. Cassava is widely grown for its edible roots in the tropical and subtropical regions of the world. Cassava roots, though poor in protein, are rich in starch (makes up about 80% of the dry matter), vitamin C, carotenes, calcium and potassium. It has a great commercial importance as a source of starch and starch based products. Realizing the importance of cassava, it stands out as a crop to benefit from biotechnology development. Heterogeneity of Mecops (Manihot esculenta copia-like Retrotransposons) showed that they may be useful for genetic diversity and phylogenetic analyses of cassava germplasm.

  11. Strains and stressors: an analysis of touchscreen learning in genetically diverse mouse strains.

    PubMed

    Graybeal, Carolyn; Bachu, Munisa; Mozhui, Khyobeni; Saksida, Lisa M; Bussey, Timothy J; Sagalyn, Erica; Williams, Robert W; Holmes, Andrew

    2014-01-01

    Touchscreen-based systems are growing in popularity as a tractable, translational approach for studying learning and cognition in rodents. However, while mouse strains are well known to differ in learning across various settings, performance variation between strains in touchscreen learning has not been well described. The selection of appropriate genetic strains and backgrounds is critical to the design of touchscreen-based studies and provides a basis for elucidating genetic factors moderating behavior. Here we provide a quantitative foundation for visual discrimination and reversal learning using touchscreen assays across a total of 35 genotypes. We found significant differences in operant performance and learning, including faster reversal learning in DBA/2J compared to C57BL/6J mice. We then assessed DBA/2J and C57BL/6J for differential sensitivity to an environmental insult by testing for alterations in reversal learning following exposure to repeated swim stress. Stress facilitated reversal learning (selectively during the late stage of reversal) in C57BL/6J, but did not affect learning in DBA/2J. To dissect genetic factors underlying these differences, we phenotyped a family of 27 BXD strains generated by crossing C57BL/6J and DBA/2J. There was marked variation in discrimination, reversal and extinction learning across the BXD strains, suggesting this task may be useful for identifying underlying genetic differences. Moreover, different measures of touchscreen learning were only modestly correlated in the BXD strains, indicating that these processes are comparatively independent at both genetic and phenotypic levels. Finally, we examined the behavioral structure of learning via principal component analysis of the current data, plus an archival dataset, totaling 765 mice. This revealed 5 independent factors suggestive of "reversal learning," "motivation-related late reversal learning," "discrimination learning," "speed to respond," and "motivation during discrimination." Together, these findings provide a valuable reference to inform the choice of strains and genetic backgrounds in future studies using touchscreen-based tasks.

  12. Manipulations in Maternal Environment Reverse Periodontitis in Genetically Predisposed Rats

    PubMed Central

    Sluyter, Frans; Breivik, Torbjørn; Cools, Alexander

    2002-01-01

    The predisposition to develop periodontitis is partly genetically determined in humans as well as in animals. Here we demonstrate, however, that early manipulations in the maternal environment of an animal (rat) model of periodontitis can fully reverse the genetic predisposition to develop periodontitis at adult age. PMID:12093700

  13. The behavioural consequences of sex reversal in dragons

    PubMed Central

    Li, Hong; Holleley, Clare E.; Elphick, Melanie; Georges, Arthur

    2016-01-01

    Sex differences in morphology, physiology, and behaviour are caused by sex-linked genes, as well as by circulating sex-steroid levels. Thus, a shift from genotypic to environmental sex determination may create an organism that exhibits a mixture of male-like and female-like traits. We studied a lizard species (Central Bearded Dragon, Pogona vitticeps), in which the high-temperature incubation of eggs transforms genetically male individuals into functional females. Although they are reproductively female, sex-reversed dragons (individuals with ZZ genotype reversed to female phenotype) resemble genetic males rather than females in morphology (relative tail length), general behaviour (boldness and activity level), and thermoregulatory tactics. Indeed, sex-reversed ‘females’ are more male-like in some behavioural traits than are genetic males. This novel phenotype may impose strong selection on the frequency of sex reversal within natural populations, facilitating rapid shifts in sex-determining systems. A single period of high incubation temperatures (generating thermally induced sex reversal) can produce functionally female individuals with male-like (or novel) traits that enhance individual fitness, allowing the new temperature-dependent sex-determining system to rapidly replace the previous genetically based one.

  14. Marburg Virus Reverse Genetics Systems

    PubMed Central

    Schmidt, Kristina Maria; Mühlberger, Elke

    2016-01-01

    The highly pathogenic Marburg virus (MARV) is a member of the Filoviridae family and belongs to the group of nonsegmented negative-strand RNA viruses. Reverse genetics systems established for MARV have been used to study various aspects of the viral replication cycle, analyze host responses, image viral infection, and screen for antivirals. This article provides an overview of the currently established MARV reverse genetic systems based on minigenomes, infectious virus-like particles and full-length clones, and the research that has been conducted using these systems. PMID:27338448

  15. Marburg Virus Reverse Genetics Systems.

    PubMed

    Schmidt, Kristina Maria; Mühlberger, Elke

    2016-06-22

    The highly pathogenic Marburg virus (MARV) is a member of the Filoviridae family and belongs to the group of nonsegmented negative-strand RNA viruses. Reverse genetics systems established for MARV have been used to study various aspects of the viral replication cycle, analyze host responses, image viral infection, and screen for antivirals. This article provides an overview of the currently established MARV reverse genetic systems based on minigenomes, infectious virus-like particles and full-length clones, and the research that has been conducted using these systems.

  16. Genome-wide Analyses of the Structural Gene Families Involved in the Legume-specific 5-Deoxyisoflavonoid Biosynthesis of Lotus japonicus

    PubMed Central

    Shimada, Norimoto; Sato, Shusei; Akashi, Tomoyoshi; Nakamura, Yasukazu; Tabata, Satoshi; Ayabe, Shin-ichi; Aoki, Toshio

    2007-01-01

    Abstract A model legume Lotus japonicus (Regel) K. Larsen is one of the subjects of genome sequencing and functional genomics programs. In the course of targeted approaches to the legume genomics, we analyzed the genes encoding enzymes involved in the biosynthesis of the legume-specific 5-deoxyisoflavonoid of L. japonicus, which produces isoflavan phytoalexins on elicitor treatment. The paralogous biosynthetic genes were assigned as comprehensively as possible by biochemical experiments, similarity searches, comparison of the gene structures, and phylogenetic analyses. Among the 10 biosynthetic genes investigated, six comprise multigene families, and in many cases they form gene clusters in the chromosomes. Semi-quantitative reverse transcriptase–PCR analyses showed coordinate up-regulation of most of the genes during phytoalexin induction and complex accumulation patterns of the transcripts in different organs. Some paralogous genes exhibited similar expression specificities, suggesting their genetic redundancy. The molecular evolution of the biosynthetic genes is discussed. The results presented here provide reliable annotations of the genes and genetic markers for comparative and functional genomics of leguminous plants. PMID:17452423

  17. Cloned cDNA of A/swine/Iowa/15/1930 internal genes as a candidate backbone for reverse genetics vaccine against influenza A viruses.

    PubMed

    Lekcharoensuk, Porntippa; Wiriyarat, Witthawat; Petcharat, Nantawan; Lekcharoensuk, Chalermpol; Auewarakul, Prasert; Richt, Juergen A

    2012-02-14

    Reverse genetics viruses for influenza vaccine production usually utilize the internal genes of the egg-adapted A/Puerto Rico/8/34 (PR8) strain. This egg-adapted strain provides high production yield in embryonated eggs but does not necessarily give the best yield in mammalian cell culture. In order to generate a reverse genetics viral backbone that is well-adapted to high growth in mammalian cell culture, a swine influenza isolate A/swine/Iowa/15/30 (H1N1) (rg1930) that was shown to give high yield in Madin-Darby canine kidney (MDCK) cells was used as the internal gene donor for reverse genetics plasmids. In this report, the internal genes from rg1930 were used for construction of reverse genetics viruses carrying a cleavage site-modified hemagglutinin (HA) gene and neuraminidase (NA) gene from a highly pathogenic H5N1 virus. The resulting virus (rg1930H5N1) was low pathogenic in vivo. Inactivated rg1930H5N1 vaccine completely protected chickens from morbidity and mortality after challenge with highly pathogenic H5N1. Protective immunity was obtained when chickens were immunized with an inactivated vaccine consisting of at least 2(9) HA units of the rg1930H5N1 virus. In comparison to the PR8-based reverse genetics viruses carrying the same HA and NA genes from an H5N1 virus, rg1930 based viruses yielded higher viral titers in MDCK and Vero cells. In addition, the reverse genetics derived H3N2 and H5N2 viruses with the rg1930 backbone replicated in MDCK cells better than the cognate viruses with the rgPR8 backbone. It is concluded that this newly established reverse genetics backbone system could serve as a candidate for a master donor strain for development of inactivated influenza vaccines in cell-based systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Genetic dissection of behavioral flexibility: reversal learning in mice.

    PubMed

    Laughlin, Rick E; Grant, Tara L; Williams, Robert W; Jentsch, J David

    2011-06-01

    Behavioral inflexibility is a feature of schizophrenia, attention-deficit/hyperactivity disorder, and behavior addictions that likely results from heritable deficits in the inhibitory control over behavior. Here, we investigate the genetic basis of individual differences in flexibility, measured using an operant reversal learning task. We quantified discrimination acquisition and subsequent reversal learning in a cohort of 51 BXD strains of mice (2-5 mice/strain, n = 176) for which we have matched data on sequence, gene expression in key central nervous system regions, and neuroreceptor levels. Strain variation in trials to criterion on acquisition and reversal was high, with moderate heritability (∼.3). Acquisition and reversal learning phenotypes did not covary at the strain level, suggesting that these traits are effectively under independent genetic control. Reversal performance did covary with dopamine D2 receptor levels in the ventral midbrain, consistent with a similar observed relationship between impulsivity and D2 receptors in humans. Reversal, but not acquisition, is linked to a locus on mouse chromosome 10 with a peak likelihood ratio statistic at 86.2 megabase (p < .05 genome-wide). Variance in messenger RNA levels of select transcripts expressed in neocortex, hippocampus, and striatum correlated with the reversal learning phenotype, including Syn3, Nt5dc3, and Hcfc2. This work demonstrates the clear trait independence between, and genetic control of, discrimination acquisition and reversal and illustrates how globally coherent data sets for a single panel of highly related strains can be interrogated and integrated to uncover genetic sources and molecular and neuropharmacological candidates of complex behavioral traits relevant to human psychopathology. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. An organelle-specific protein landscape identifies novel diseases and molecular mechanisms

    PubMed Central

    Boldt, Karsten; van Reeuwijk, Jeroen; Lu, Qianhao; Koutroumpas, Konstantinos; Nguyen, Thanh-Minh T.; Texier, Yves; van Beersum, Sylvia E. C.; Horn, Nicola; Willer, Jason R.; Mans, Dorus A.; Dougherty, Gerard; Lamers, Ideke J. C.; Coene, Karlien L. M.; Arts, Heleen H.; Betts, Matthew J.; Beyer, Tina; Bolat, Emine; Gloeckner, Christian Johannes; Haidari, Khatera; Hetterschijt, Lisette; Iaconis, Daniela; Jenkins, Dagan; Klose, Franziska; Knapp, Barbara; Latour, Brooke; Letteboer, Stef J. F.; Marcelis, Carlo L.; Mitic, Dragana; Morleo, Manuela; Oud, Machteld M.; Riemersma, Moniek; Rix, Susan; Terhal, Paulien A.; Toedt, Grischa; van Dam, Teunis J. P.; de Vrieze, Erik; Wissinger, Yasmin; Wu, Ka Man; Apic, Gordana; Beales, Philip L.; Blacque, Oliver E.; Gibson, Toby J.; Huynen, Martijn A.; Katsanis, Nicholas; Kremer, Hannie; Omran, Heymut; van Wijk, Erwin; Wolfrum, Uwe; Kepes, François; Davis, Erica E.; Franco, Brunella; Giles, Rachel H.; Ueffing, Marius; Russell, Robert B.; Roepman, Ronald; Al-Turki, Saeed; Anderson, Carl; Antony, Dinu; Barroso, Inês; Bentham, Jamie; Bhattacharya, Shoumo; Carss, Keren; Chatterjee, Krishna; Cirak, Sebahattin; Cosgrove, Catherine; Danecek, Petr; Durbin, Richard; Fitzpatrick, David; Floyd, Jamie; Reghan Foley, A.; Franklin, Chris; Futema, Marta; Humphries, Steve E.; Hurles, Matt; Joyce, Chris; McCarthy, Shane; Mitchison, Hannah M.; Muddyman, Dawn; Muntoni, Francesco; O'Rahilly, Stephen; Onoufriadis, Alexandros; Payne, Felicity; Plagnol, Vincent; Raymond, Lucy; Savage, David B.; Scambler, Peter; Schmidts, Miriam; Schoenmakers, Nadia; Semple, Robert; Serra, Eva; Stalker, Jim; van Kogelenberg, Margriet; Vijayarangakannan, Parthiban; Walter, Klaudia; Whittall, Ros; Williamson, Kathy

    2016-01-01

    Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub-complexes in exocyst and intraflagellar transport complexes, which we validate biochemically, and by probing structurally predicted, disruptive, genetic variants from ciliary disease patients. The landscape suggests other genetic diseases could be ciliary including 3M syndrome. We show that 3M genes are involved in ciliogenesis, and that patient fibroblasts lack cilia. Overall, this organelle-specific targeting strategy shows considerable promise for Systems Medicine. PMID:27173435

  20. Genetic Diversity of HIV-1 in Tunisia.

    PubMed

    El Moussi, Awatef; Thomson, Michael M; Delgado, Elena; Cuevas, María Teresa; Nasr, Majda; Abid, Salma; Ben Hadj Kacem, Mohamed Ali; Benaissa Tiouiri, Hanene; Letaief, Amel; Chakroun, Mohamed; Ben Jemaa, Mounir; Hamdouni, Hayet; Tej Dellagi, Rafla; Kheireddine, Khaled; Boutiba, Ilhem; Pérez-Álvarez, Lucía; Slim, Amine

    2017-01-01

    In this study, the genetic diversity of HIV-1 in Tunisia was analyzed. For this, 193 samples were collected in different regions of Tunisia between 2012 and 2015. A protease and reverse transcriptase fragment were amplified and sequenced. Phylogenetic analyses were performed through maximum likelihood and recombination was analyzed by bootscanning. Six HIV-1 subtypes (B, A1, G, D, C, and F2), 5 circulating recombinant forms (CRF02_AG, CRF25_cpx, CRF43_02G, CRF06_cpx, and CRF19_cpx), and 11 unique recombinant forms were identified. Subtype B (46.4%) and CRF02_AG (39.4%) were the predominant genetic forms. A group of 44 CRF02_AG sequences formed a distinct Tunisian cluster, which also included four viruses from western Europe. Nine viruses were closely related to isolates collected in other African or in European countries. In conclusion, a high HIV-1 genetic diversity is observed in Tunisia and the local spread of CRF02_AG is first documented in this country.

  1. Strains and Stressors: An Analysis of Touchscreen Learning in Genetically Diverse Mouse Strains

    PubMed Central

    Graybeal, Carolyn; Bachu, Munisa; Mozhui, Khyobeni; Saksida, Lisa M.; Bussey, Timothy J.; Sagalyn, Erica; Williams, Robert W.; Holmes, Andrew

    2014-01-01

    Touchscreen-based systems are growing in popularity as a tractable, translational approach for studying learning and cognition in rodents. However, while mouse strains are well known to differ in learning across various settings, performance variation between strains in touchscreen learning has not been well described. The selection of appropriate genetic strains and backgrounds is critical to the design of touchscreen-based studies and provides a basis for elucidating genetic factors moderating behavior. Here we provide a quantitative foundation for visual discrimination and reversal learning using touchscreen assays across a total of 35 genotypes. We found significant differences in operant performance and learning, including faster reversal learning in DBA/2J compared to C57BL/6J mice. We then assessed DBA/2J and C57BL/6J for differential sensitivity to an environmental insult by testing for alterations in reversal learning following exposure to repeated swim stress. Stress facilitated reversal learning (selectively during the late stage of reversal) in C57BL/6J, but did not affect learning in DBA/2J. To dissect genetic factors underlying these differences, we phenotyped a family of 27 BXD strains generated by crossing C57BL/6J and DBA/2J. There was marked variation in discrimination, reversal and extinction learning across the BXD strains, suggesting this task may be useful for identifying underlying genetic differences. Moreover, different measures of touchscreen learning were only modestly correlated in the BXD strains, indicating that these processes are comparatively independent at both genetic and phenotypic levels. Finally, we examined the behavioral structure of learning via principal component analysis of the current data, plus an archival dataset, totaling 765 mice. This revealed 5 independent factors suggestive of “reversal learning,” “motivation-related late reversal learning,” “discrimination learning,” “speed to respond,” and “motivation during discrimination.” Together, these findings provide a valuable reference to inform the choice of strains and genetic backgrounds in future studies using touchscreen-based tasks. PMID:24586288

  2. Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis.

    PubMed

    Dobón, Albor; Canet, Juan Vicente; García-Andrade, Javier; Angulo, Carlos; Neumetzler, Lutz; Persson, Staffan; Vera, Pablo

    2015-04-01

    Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs) from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence) factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens.

  3. The practical and pedagogical advantages of an ambigraphic nucleic acid notation.

    PubMed

    Rozak, David A

    2006-01-01

    The universally applied IUPAC notation for nucleic acids was adopted primarily to facilitate the mental association of G, A, T, C, and the related ambiguity characters with the bases they represent. However it is possible to create a notation that offers greater support for the basic manipulations and analyses to which genetic sequences frequently are subjected. By designing a nucleic acid notation around ambigrams, it is possible to simplify the frequently applied process of reverse complementation and aid the visualization of palindromes. The ambigraphic notation presented here also uses common orthographic features such as stems and loops to highlight guanine and cytosine rich regions, support the derivation of ambiguity characters, and aid educators in teaching the fundamentals of molecular genetics.

  4. The Gypsy Database (GyDB) of mobile genetic elements

    PubMed Central

    Lloréns, C.; Futami, R.; Bezemer, D.; Moya, A.

    2008-01-01

    In this article, we introduce the Gypsy Database (GyDB) of mobile genetic elements, an in-progress database devoted to the non-redundant analysis and evolutionary-based classification of mobile genetic elements. In this first version, we contemplate eukaryotic Ty3/Gypsy and Retroviridae long terminal repeats (LTR) retroelements. Phylogenetic analyses based on the gag-pro-pol internal region commonly presented by these two groups strongly support a certain number of previously described Ty3/Gypsy lineages originally reported from reverse-transcriptase (RT) analyses. Vertebrate retroviruses (Retroviridae) are also constituted in several monophyletic groups consistent with genera proposed by the ICTV nomenclature, as well as with the current tendency to classify both endogenous and exogenous retroviruses by three major classes (I, II and III). Our inference indicates that all protein domains codified by the gag-pro-pol internal region of these two groups agree in a collective presentation of a particular evolutionary history, which may be used as a main criterion to differentiate their molecular diversity in a comprehensive collection of phylogenies and non-redundant molecular profiles useful in the identification of new Ty3/Gypsy and Retroviridae species. The GyDB project is available at http://gydb.uv.es. PMID:17895280

  5. Selection Pressure in CD8+ T-cell Epitopes in the pol Gene of HIV-1 Infected Individuals in Colombia. A Bioinformatic Approach

    PubMed Central

    Acevedo-Sáenz, Liliana; Ochoa, Rodrigo; Rugeles, Maria Teresa; Olaya-García, Patricia; Velilla-Hernández, Paula Andrea; Diaz, Francisco J.

    2015-01-01

    One of the main characteristics of the human immunodeficiency virus is its genetic variability and rapid adaptation to changing environmental conditions. This variability, resulting from the lack of proofreading activity of the viral reverse transcriptase, generates mutations that could be fixed either by random genetic drift or by positive selection. Among the forces driving positive selection are antiretroviral therapy and CD8+ T-cells, the most important immune mechanism involved in viral control. Here, we describe mutations induced by these selective forces acting on the pol gene of HIV in a group of infected individuals. We used Maximum Likelihood analyses of the ratio of non-synonymous to synonymous mutations per site (dN/dS) to study the extent of positive selection in the protease and the reverse transcriptase, using 614 viral sequences from Colombian patients. We also performed computational approaches, docking and algorithmic analyses, to assess whether the positively selected mutations affected binding to the HLA molecules. We found 19 positively-selected codons in drug resistance-associated sites and 22 located within CD8+ T-cell epitopes. A high percentage of mutations in these epitopes has not been previously reported. According to the docking analyses only one of those mutations affected HLA binding. However, algorithmic methods predicted a decrease in the affinity for the HLA molecule in seven mutated peptides. The bioinformatics strategies described here are useful to identify putative positively selected mutations associated with immune escape but should be complemented with an experimental approach to define the impact of these mutations on the functional profile of the CD8+ T-cells. PMID:25803098

  6. Slowly switching between environments facilitates reverse evolution in small populations.

    PubMed

    Tan, Longzhi; Gore, Jeff

    2012-10-01

    Natural populations must constantly adapt to ever-changing environmental conditions. A particularly interesting question is whether such adaptations can be reversed by returning the population to an ancestral environment. Such evolutionary reversals have been observed in both natural and laboratory populations. However, the factors that determine the reversibility of evolution are still under debate. The time scales of environmental change vary over a wide range, but little is known about how the rate of environmental change influences the reversibility of evolution. Here, we demonstrate computationally that slowly switching between environments increases the reversibility of evolution for small populations that are subject to only modest clonal interference. For small populations, slow switching reduces the mean number of mutations acquired in a new environment and also increases the probability of reverse evolution at each of these "genetic distances." As the population size increases, slow switching no longer reduces the genetic distance, thus decreasing the evolutionary reversibility. We confirm this effect using both a phenomenological model of clonal interference and also a Wright-Fisher stochastic simulation that incorporates genetic diversity. Our results suggest that the rate of environmental change is a key determinant of the reversibility of evolution, and provides testable hypotheses for experimental evolution. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  7. Development and evaluation of a culture-independent method for source determination of fecal wastes in surface and storm waters using reverse transcriptase-PCR detection of FRNA coliphage genogroup gene sequences.

    PubMed

    Paar, Jack; Doolittle, Mark M; Varma, Manju; Siefring, Shawn; Oshima, Kevin; Haugland, Richard A

    2015-05-01

    A method, incorporating recently improved reverse transcriptase-PCR primer/probe assays and including controls for detecting interferences in RNA recovery and analysis, was developed for the direct, culture-independent detection of genetic markers from FRNA coliphage genogroups I, II & IV in water samples. Results were obtained from an initial evaluation of the performance of this method in analyses of waste water, ambient surface water and stormwater drain and outfall samples from predominantly urban locations. The evaluation also included a comparison of the occurrence of the FRNA genetic markers with genetic markers from general and human-related bacterial fecal indicators determined by current or pending EPA-validated qPCR methods. Strong associations were observed between the occurrence of the putatively human related FRNA genogroup II marker and the densities of the bacterial markers in the stormwater drain and outfall samples. However fewer samples were positive for FRNA coliphage compared to either the general bacterial fecal indicator or the human-related bacterial fecal indicator markers particularly for ambient water samples. Together, these methods show promise as complementary tools for the identification of contaminated storm water drainage systems as well as the determination of human and non-human sources of contamination. Published by Elsevier B.V.

  8. Synthetic plant defense elicitors

    PubMed Central

    Bektas, Yasemin; Eulgem, Thomas

    2015-01-01

    To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug-like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection. PMID:25674095

  9. Hepatitis B virus genetic mutations and evolution in liver diseases

    PubMed Central

    Shen, Tao; Yan, Xin-Min

    2014-01-01

    Hepatitis B virus (HBV) belongs to the genus Orthohepadnavirus of the Hepadnaviridae family and is approximately 3.2 kb in length. Owing to a lack of proofreading capacity during reverse transcription and a high replication rate, HBV exhibits as quasispecies. To detect the genetic mutations of HBV, many methods with different sensitivities and throughputs were developed. According to documentary records, HBV mutation and evolution were important vial parameters in predicting disease progression and therapeutic outcome. In this review, we separately discussed the correlation between HBV genomic mutations in four open reading frames and liver disease progression. Since some of the results were controversial from different laboratories, it remains to be seen whether functional analyses will confirm their role in modifying the course of infection. PMID:24833874

  10. Reconstructing the regulatory network controlling commitment and sporulation in Physarum polycephalum based on hierarchical Petri Net modelling and simulation.

    PubMed

    Marwan, Wolfgang; Sujatha, Arumugam; Starostzik, Christine

    2005-10-21

    We reconstruct the regulatory network controlling commitment and sporulation of Physarum polycephalum from experimental results using a hierarchical Petri Net-based modelling and simulation framework. The stochastic Petri Net consistently describes the structure and simulates the dynamics of the molecular network as analysed by genetic, biochemical and physiological experiments within a single coherent model. The Petri Net then is extended to simulate time-resolved somatic complementation experiments performed by mixing the cytoplasms of mutants altered in the sporulation response, to systematically explore the network structure and to probe its dynamics. This reverse engineering approach presumably can be employed to explore other molecular or genetic signalling systems where the activity of genes or their products can be experimentally controlled in a time-resolved manner.

  11. Peroxisome Biogenesis and Function

    PubMed Central

    Kaur, Navneet; Reumann, Sigrun; Hu, Jianping

    2009-01-01

    Peroxisomes are small and single membrane-delimited organelles that execute numerous metabolic reactions and have pivotal roles in plant growth and development. In recent years, forward and reverse genetic studies along with biochemical and cell biological analyses in Arabidopsis have enabled researchers to identify many peroxisome proteins and elucidate their functions. This review focuses on the advances in our understanding of peroxisome biogenesis and metabolism, and further explores the contribution of large-scale analysis, such as in sillco predictions and proteomics, in augmenting our knowledge of peroxisome function In Arabidopsis. PMID:22303249

  12. Breaking the rules: sex roles and genetic mating system of the pheasant coucal.

    PubMed

    Maurer, G; Double, M C; Milenkaya, O; Süsser, M; Magrath, R D

    2011-10-01

    Generally in birds, the classic sex roles of male competition and female choice result in females providing most offspring care while males face uncertain parentage. In less than 5% of species, however, reversed courtship sex roles lead to predominantly male care and low extra-pair paternity. These role-reversed species usually have reversed sexual size dimorphism and polyandry, confirming that sexual selection acts most strongly on the sex with the smaller parental investment and accordingly higher potential reproductive rate. We used parentage analyses and observations from three field seasons to establish the social and genetic mating system of pheasant coucals, Centropus phasianinus, a tropical nesting cuckoo, where males are much smaller than females and provide most parental care. Pheasant coucals are socially monogamous and in this study males produced about 80% of calls in the dawn chorus, implying greater male sexual competition. Despite the substantial male investments, extra-pair paternity was unusually high for a socially monogamous, duetting species. Using two or more mismatches to determine extra-pair parentage, we found that 11 of 59 young (18.6%) in 10 of 21 broods (47.6%) were not sired by their putative father. Male incubation, starting early in the laying sequence, may give the female opportunity and reason to seek these extra-pair copulations. Monogamy, rather than the polyandry and sex-role reversal typical of its congener, C. grillii, may be the result of the large territory size, which could prevent females from monopolising multiple males. The pheasant coucal's exceptional combination of classic sex-roles and male-biased care for extra-pair young is hard to reconcile with current sexual selection theory, but may represent an intermediate stage in the evolution of polyandry or an evolutionary remnant of polyandry.

  13. Phenome-Wide Association Studies as a Tool to Advance Precision Medicine

    PubMed Central

    Denny, Joshua C.; Bastarache, Lisa; Roden, Dan M.

    2017-01-01

    Beginning in the early 2000s, the accumulation of biospecimens linked to electronic health records (EHRs) made possible genome-phenome studies (i.e., comparative analyses of genetic variants and phenotypes) using only data collected as a by-product of typical health care. In addition to disease and trait genetics, EHRs proved a valuable resource for analyzing pharmacogenetic traits and developing reverse genetics approaches such as phenome-wide association studies (PheWASs). PheWASs are designed to survey which of many phenotypes may be associated with a given genetic variant. PheWAS methods have been validated through replication of hundreds of known genotype-phenotype associations, and their use has differentiated between true pleiotropy and clinical comorbidity, added context to genetic discoveries, and helped define disease subtypes, and may also help repurpose medications. PheWAS methods have also proven to be useful with research-collected data. Future efforts that integrate broad, robust collection of phenotype data (e.g., EHR data) with purpose-collected research data in combination with a greater understanding of EHR data will create a rich resource for increasingly more efficient and detailed genome-phenome analysis to usher in new discoveries in precision medicine. PMID:27147087

  14. Genetic Structure and Demographic History Reveal Migration of the Diamondback Moth Plutella xylostella (Lepidoptera: Plutellidae) from the Southern to Northern Regions of China

    PubMed Central

    Wei, Shu-Jun; Shi, Bao-Cai; Gong, Ya-Jun; Jin, Gui-Hua; Chen, Xue-Xin; Meng, Xiang-Feng

    2013-01-01

    The diamondback moth Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae) is one of the most destructive insect pests of cruciferous plants worldwide. Biological, ecological and genetic studies have indicated that this moth is migratory in many regions around the world. Although outbreaks of this pest occur annually in China and cause heavy damage, little is known concerning its migration. To better understand its migration pattern, we investigated the population genetic structure and demographic history of the diamondback moth by analyzing 27 geographical populations across China using four mitochondrial genes and nine microsatellite loci. The results showed that high haplotype diversity and low nucleotide diversity occurred in the diamondback moth populations, a finding that is typical for migratory species. No genetic differentiation among all populations and no correlation between genetic and geographical distance were found. However, pairwise analysis of the mitochondrial genes has indicated that populations from the southern region were more differentiated than those from the northern region. Gene flow analysis revealed that the effective number of migrants per generation into populations of the northern region is very high, whereas that into populations of the southern region is quite low. Neutrality testing, mismatch distribution and Bayesian Skyline Plot analyses based on mitochondrial genes all revealed that deviation from Hardy-Weinberg equilibrium and sudden expansion of the effective population size were present in populations from the northern region but not in those from the southern region. In conclusion, all our analyses strongly demonstrated that the diamondback moth migrates within China from the southern to northern regions with rare effective migration in the reverse direction. Our research provides a successful example of using population genetic approaches to resolve the seasonal migration of insects. PMID:23565158

  15. Novel Disease Susceptibility Factors for Fungal Necrotrophic Pathogens in Arabidopsis

    PubMed Central

    García-Andrade, Javier; Angulo, Carlos; Neumetzler, Lutz; Persson, Staffan; Vera, Pablo

    2015-01-01

    Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs) from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence) factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens. PMID:25830627

  16. FLP-18 Functions through the G-Protein-Coupled Receptors NPR-1 and NPR-4 to Modulate Reversal Length in Caenorhabditis elegans

    PubMed Central

    Dahiya, Yogesh; Babu, Kavita

    2018-01-01

    Animal behavior is critically dependent on the activity of neuropeptides. Reversals, one of the most conspicuous behaviors in Caenorhabditis elegans, plays an important role in determining the navigation strategy of the animal. Our experiments on hermaphrodite C. elegans show the involvement of a neuropeptide FLP-18 in modulating reversal length in these hermaphrodites. We show that FLP-18 controls the reversal length by regulating the activity of AVA interneurons through the G-protein-coupled neuropeptide receptors, NPR-4 and NPR-1. We go on to show that the site of action of these receptors is the AVA interneuron for NPR-4 and the ASE sensory neurons for NPR-1. We further show that mutants in the neuropeptide, flp-18, and its receptors show increased reversal lengths. Consistent with the behavioral data, calcium levels in the AVA neuron of freely reversing C. elegans were significantly higher and persisted for longer durations in flp-18, npr-1, npr-4, and npr-1 npr-4 genetic backgrounds compared with wild-type control animals. Finally, we show that increasing FLP-18 levels through genetic and physiological manipulations causes shorter reversal lengths. Together, our analysis suggests that the FLP-18/NPR-1/NPR-4 signaling is a pivotal point in the regulation of reversal length under varied genetic and environmental conditions. PMID:29712787

  17. IDC2 and IDC3, two genes involved in cell non-autonomous signaling of fruiting body development in the model fungus Podospora anserina.

    PubMed

    Lalucque, Hervé; Malagnac, Fabienne; Green, Kimberly; Gautier, Valérie; Grognet, Pierre; Chan Ho Tong, Laetitia; Scott, Barry; Silar, Philippe

    2017-01-15

    Filamentous ascomycetes produce complex multicellular structures during sexual reproduction. Little is known about the genetic pathways enabling the construction of such structures. Here, with a combination of classical and reverse genetic methods, as well as genetic mosaic and graft analyses, we identify and provide evidence for key roles for two genes during the formation of perithecia, the sexual fruiting bodies, of the filamentous fungus Podospora anserina. Data indicate that the proteins coded by these two genes function cell-non-autonomously and that their activity depends upon conserved cysteines, making them good candidate for being involved in the transmission of a reactive oxygen species (ROS) signal generated by the PaNox1 NADPH oxidase inside the maturing fruiting body towards the PaMpk1 MAP kinase, which is located inside the underlying mycelium, in which nutrients are stored. These data provide important new insights to our understanding of how fungi build multicellular structures. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Reverse Genetics Approaches for the Development of Influenza Vaccines

    PubMed Central

    Nogales, Aitor; Martínez-Sobrido, Luis

    2016-01-01

    Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines. PMID:28025504

  19. Reverse Engineering Field Isolates of Myxoma Virus Demonstrates that Some Gene Disruptions or Losses of Function Do Not Explain Virulence Changes Observed in the Field

    PubMed Central

    Liu, June; Cattadori, Isabella M.; Sim, Derek G.; Eden, John-Sebastian; Read, Andrew F.

    2017-01-01

    ABSTRACT The coevolution of myxoma virus (MYXV) and wild European rabbits in Australia and Europe is a paradigm for the evolution of a pathogen in a new host species. Genomic analyses have identified the mutations that have characterized this evolutionary process, but defining causal mutations in the pathways from virulence to attenuation and back to virulence has not been possible. Using reverse genetics, we examined the roles of six selected mutations found in Australian field isolates of MYXV that fall in known or potential virulence genes. Several of these mutations occurred in genes previously identified as virulence genes in whole-gene knockout studies. Strikingly, no single or double mutation among the mutations tested had an appreciable impact on virulence. This suggests either that virulence evolution was defined by amino acid changes other than those analyzed here or that combinations of multiple mutations, possibly involving epistatic interactions or noncoding sequences, have been critical in the ongoing evolution of MYXV virulence. In sum, our results show that single-gene knockout studies of a progenitor virus can have little power to predict the impact of individual mutations seen in the field. The genetic determinants responsible for this canonical case of virulence evolution remain to be determined. IMPORTANCE The species jump of myxoma virus (MYXV) from the South American tapeti to the European rabbit populations of Australia and Europe is a canonical example of host-pathogen coevolution. Detailed molecular studies have identified multiple genes in MYXV that are critical for virulence, and genome sequencing has revealed the evolutionary history of MYXV in Australia and Europe. However, it has not been possible to categorically identify the key mutations responsible for the attenuation of or reversion to virulence during this evolutionary process. Here we use reverse genetics to examine the role of mutations in viruses isolated early and late in the Australian radiation of MYXV. Surprisingly, none of the candidate mutations that we identified as likely having roles in attenuation proved to be important for virulence. This indicates that considerable caution is warranted when interpreting the possible role of individual mutations during virulence evolution. PMID:28768866

  20. Contribution of domestic animals to the identification of new genes involved in sex determination.

    PubMed

    Pailhoux, E; Vigier, B; Vaiman, D; Schibler, L; Vaiman, A; Cribiu, E; Nezer, C; Georges, M; Sundström, J; Pelliniemi, L J; Fellous, M; Cotinot, C

    2001-12-01

    Among farm animals, two species present an intersex condition at a relatively high frequency: pig and goat. Both are known to contain XX sex-reversed individuals which are genetically female but with a true hermaphrodite or male phenotype. It has been clearly demonstrated that the SRY gene is not involved in these phenotypes. Consequently, autosomal or X-linked mutations in the sex-determining pathway may explain these sex-reversed phenotypes. A mutation referred to as "polled" has been characterized in goats by the suppression of horn formation and abnormal sexual differentiation. The Polled Intersex Syndrome locus (PIS) was initially located in the distal region of goat chromosome 1. The homologous human region has been precisely identified as an HSA 3q23 DNA segment containing the Blepharophimosis Ptosis Epicanthus locus (BPES), a syndrome combining Premature Ovarian Failure (POF) and an excess of epidermis of the eyelids. In order to isolate genes involved in pig intersexuality, a similar genetic approach was attempted in pigs using genome scanning of resource families. Genetic analyses suggest that pig intersexuality is controlled multigenically. Parallel to this work, gonads of fetal intersex animals have been studied during development by light and electron microscopy. The development of testicular tissue and reduction of germ cell number by apoptosis, which simultaneously occurs as soon as 50 days post coïtum, also suggests that several separate genes could be involved in pig intersexuality. Copyright 2001 Wiley-Liss, Inc.

  1. Frequent PTPRK-RSPO3 fusions and RNF43 mutations in colorectal traditional serrated adenoma.

    PubMed

    Sekine, Shigeki; Yamashita, Satoshi; Tanabe, Taro; Hashimoto, Taiki; Yoshida, Hiroshi; Taniguchi, Hirokazu; Kojima, Motohiro; Shinmura, Kazuya; Saito, Yutaka; Hiraoka, Nobuyoshi; Ushijima, Toshikazu; Ochiai, Atsushi

    2016-06-01

    The molecular mechanisms underlying the serrated pathway of colorectal tumourigenesis, particularly those related to traditional serrated adenomas (TSAs), are still poorly understood. In this study, we analysed genetic alterations in 188 colorectal polyps, including hyperplastic polyps, sessile serrated adenomas/polyps (SSA/Ps), TSAs, tubular adenomas, and tubulovillous adenomas by using targeted next-generation sequencing and reverse transcription-PCR. Our analyses showed that most TSAs (71%) contained genetic alterations in WNT pathway components. In particular, PTPRK-RSPO3 fusions (31%) and RNF43 mutations (24%) were frequently and almost exclusively observed in TSAs. Consistent with the WNT pathway activation, immunohistochemical analysis showed diffuse and focal nuclear accumulation of β-catenin in 53% and 30% of TSAs, respectively. APC mutations were observed in tubular and tubulovillous adenomas and in a subset of TSAs. BRAF mutations were exclusively and frequently encountered in serrated lesions. KRAS mutations were observed in all types of polyps, but were most commonly encountered in tubulovillous adenomas and TSAs. This study has demonstrated that TSAs frequently harbour genetic alterations that lead to WNT pathway activation, in addition to BRAF and KRAS mutations. In particular, PTPRK-RSPO3 fusions and RNF43 mutations were found to be characteristic genetic features of TSAs. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  2. Blue light- and genetically-reversed gravitropic response in protonemata of the moss Ceratodon purpureus.

    PubMed

    Lamparter, T; Hughes, J; Hartmann, E

    1998-09-01

    In darkness, protonemal filaments of Ceratodon purpureus (Brid.) grow negatively gravitropically (upwards). Red light induces a positive phototropic response mediated by the photoreceptor phytochrome. A red light treatment also has an inhibitory effect on the gravitropic response, an effect also mediated by phytochrome. In this study the effects of blue light on phototropism and on gravitropism were analysed. Unilateral blue light resulted in only a weak phototropic response, but markedly randomised growth direction. Blue light given together with a gravitropic stimulus reversed the gravitropism, changing it from negative to positive (filaments grow downward). The effect of blue light was also analysed with the mutant ptr116, which is defective in the biosynthesis of the phytochrome chromophore, and in a newly isolated mutant wwr2, which is positively gravitropic in darkness. Blue light induced the same reversal of gravitropism in ptrll6 as in the wild type, indicating that phytochrome is not involved in this process. In wwr2 the direction of gravitropism was unaltered by the blue light treatment. Light also affects chlorophyll content and the size of plastids, potential statoliths for gravitropism. Red light induced an increase in plastid size and chlorophyll content in the wild type but not in ptr116. Blue light induced a similar change in wild type plastids. It seems as though light-induced alterations of gravitropism are not simply mediated by alterations in plastid properties, and that red light and blue light evoke fundamentally different responses.

  3. Sex Reversal in Birds.

    PubMed

    Major, Andrew T; Smith, Craig A

    2016-01-01

    Sexual differentiation in birds is controlled genetically as in mammals, although the sex chromosomes are different. Males have a ZZ sex chromosome constitution, while females are ZW. Gene(s) on the sex chromosomes must initiate gonadal sex differentiation during embryonic life, inducing paired testes in ZZ individuals and unilateral ovaries in ZW individuals. The traditional view of avian sexual differentiation aligns with that expounded for other vertebrates; upon sexual differentiation, the gonads secrete sex steroid hormones that masculinise or feminise the rest of the body. However, recent studies on naturally occurring or experimentally induced avian sex reversal suggest a significant role for direct genetic factors, in addition to sex hormones, in regulating sexual differentiation of the soma in birds. This review will provide an overview of sex determination in birds and both naturally and experimentally induced sex reversal, with emphasis on the key role of oestrogen. We then consider how recent studies on sex reversal and gynandromorphic birds (half male:half female) are shaping our understanding of sexual differentiation in avians and in vertebrates more broadly. Current evidence shows that sexual differentiation in birds is a mix of direct genetic and hormonal mechanisms. Perturbation of either of these components may lead to sex reversal. © 2016 S. Karger AG, Basel.

  4. Efficient and Robust Paramyxoviridae Reverse Genetics Systems

    PubMed Central

    Beaty, Shannon M.; Won, Sohui T.; Hong, Patrick; Lyons, Michael; Vigant, Frederic; Freiberg, Alexander N.; tenOever, Benjamin R.; Duprex, W. Paul

    2017-01-01

    ABSTRACT The notoriously low efficiency of Paramyxoviridae reverse genetics systems has posed a limiting barrier to the study of viruses in this family. Previous approaches to reverse genetics have utilized a wide variety of techniques to overcome the technical hurdles. Although robustness (i.e., the number of attempts that result in successful rescue) has been improved in some systems with the use of stable cell lines, the efficiency of rescue (i.e., the proportion of transfected cells that yield at least one successful rescue event) has remained low. We have substantially increased rescue efficiency for representative viruses from all five major Paramyxoviridae genera (from ~1 in 106-107 to ~1 in 102-103 transfected cells) by the addition of a self-cleaving hammerhead ribozyme (Hh-Rbz) sequence immediately preceding the start of the recombinant viral antigenome and the use of a codon-optimized T7 polymerase (T7opt) gene to drive paramyxovirus rescue. Here, we report a strategy for robust, reliable, and high-efficiency rescue of paramyxovirus reverse genetics systems, featuring several major improvements: (i) a vaccinia virus-free method, (ii) freedom to use any transfectable cell type for viral rescue, (iii) a single-step transfection protocol, and (iv) use of the optimal T7 promoter sequence for high transcription levels from the antigenomic plasmid without incorporation of nontemplated G residues. The robustness of our T7opt-HhRbz system also allows for greater latitude in the ratios of transfected accessory plasmids used that result in successful rescue. Thus, our system may facilitate the rescue and interrogation of the increasing number of emerging paramyxoviruses. IMPORTANCE The ability to manipulate the genome of paramyxoviruses and evaluate the effects of these changes at the phenotypic level is a powerful tool for the investigation of specific aspects of the viral life cycle and viral pathogenesis. However, reverse genetics systems for paramyxoviruses are notoriously inefficient, when successful. The ability to efficiently and robustly rescue paramyxovirus reverse genetics systems can be used to answer basic questions about the biology of paramyxoviruses, as well as to facilitate the considerable translational efforts being devoted to developing live attenuated paramyxovirus vaccine vectors. PMID:28405630

  5. Evaluation of genetic and metabolic role of SKIP11 in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Hassan, Muhammad Naeem ul; Ismail, Ismanizan

    2015-09-01

    Most of the regulatory proteins are degraded by 26S proteasome complex, only when they are tagged by Ubiquitin. A complex of four proteins, SKP1-Cullin-Ring box-F box (SCF) catalyses the final step to link the Ubiquitin tag with the target proteins. SCF complex interacts with the target proteins through F-box proteins, which confer the overall substrate specificity to the complex. F-box proteins, one of the largest family of proteins in plants have an N-terminal F-box domain and variable C-terminal domains, like leucine-rich repeat, WD-40 repeat and the kelch-repeat domains. In this study, we analysed the role of SKIP11, a kelch containing F-box protein (KFB) from Arabidopsis thaliana, by using reverse genetics strategy. The results show that SKIP11 is involved in the down-regulation of oxylipin pathway, possibly through the degradation of enzymes or/ and the regulatory factors of the pathway.

  6. Lassa Virus Reverse Genetics.

    PubMed

    Martínez-Sobrido, Luis; Paessler, Slobodan; de la Torre, Juan Carlos

    2017-01-01

    The Old World (OW) arenavirus Lassa (LASV ) is estimated to infect several hundred thousand people yearly in West Africa, resulting in high numbers of Lassa fever (LF), a viral hemorrhagic fever (HF) disease associated with high morbidity and mortality. To date, no licensed vaccines are available to LASV infections, and anti-LASV drug therapy is limited to an off-label use of ribavirin (Rib) that is only partially effective. The development of reverse genetics has provided investigators with a novel and powerful approach for the investigation of the molecular, cell biology, and pathogenesis of LASV. The use of cell-based LASV minigenome (MG) systems has allowed examining the cis- and trans-acting factors involved in genome replication and gene transcription and the identification of novel drugable LASV targets. Likewise, it is now feasible to rescue infectious recombinant (r)LASV entirely from cloned cDNAs containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of pathogenesis, as well as to facilitate screens to identify antiviral drugs against LASV and the implementation of novel strategies to develop live-attenuated vaccines (LAV). In this chapter we will summarize the state-of-the-art experimental procedures for implementation of LASV reverse genetics. In addition, we will briefly discuss some significant translational research developments that have been made possible upon the development of LASV reverse genetics.

  7. Reverse genetics in high throughput: rapid generation of complete negative strand RNA virus cDNA clones and recombinant viruses thereof.

    PubMed

    Nolden, T; Pfaff, F; Nemitz, S; Freuling, C M; Höper, D; Müller, T; Finke, Stefan

    2016-04-05

    Reverse genetics approaches are indispensable tools for proof of concepts in virus replication and pathogenesis. For negative strand RNA viruses (NSVs) the limited number of infectious cDNA clones represents a bottleneck as clones are often generated from cell culture adapted or attenuated viruses, with limited potential for pathogenesis research. We developed a system in which cDNA copies of complete NSV genomes were directly cloned into reverse genetics vectors by linear-to-linear RedE/T recombination. Rapid cloning of multiple rabies virus (RABV) full length genomes and identification of clones identical to field virus consensus sequence confirmed the approache's reliability. Recombinant viruses were recovered from field virus cDNA clones. Similar growth kinetics of parental and recombinant viruses, preservation of field virus characters in cell type specific replication and virulence in the mouse model were confirmed. Reduced titers after reporter gene insertion indicated that the low level of field virus replication is affected by gene insertions. The flexibility of the strategy was demonstrated by cloning multiple copies of an orthobunyavirus L genome segment. This important step in reverse genetics technology development opens novel avenues for the analysis of virus variability combined with phenotypical characterization of recombinant viruses at a clonal level.

  8. Development of a PCR-Based Reverse Genetics System for an Attenuated Duck Tembusu Virus Strain

    PubMed Central

    Wu, Xiaogang; Shi, Ying; Yan, Dawei; Li, Xuesong; Yan, Pixi; Gao, Xuyuan; Zhang, Yuee; Yu, Lei; Ren, Chaochao; Li, Guoxin; Yan, Liping; Teng, Qiaoyang; Li, Zejun

    2016-01-01

    The infectious disease caused by the duck Tembusu virus (DTMUV) has resulted in massive economic losses to the Chinese duck industry in China since 2010. Research on the molecular basis of DTMUV pathogenicity has been hampered by the lack of a reliable reverse genetics system for this virus. Here we developed a PCR-based reverse genetics system with high fidelity for the attenuated DTMUV strain FX2010-180P. The rescued virus was characterized by using both indirect immunofluorescence assays (IFA) and whole genome sequencing. The rescued virus (rFX2010-180P) grew to similar titers as compared with the wild-type virus in DF-1 cells, and had similar replication and immunogenicity properties in ducks. To determine whether exogenous proteins could be expressed from DTMUV, both an internal ribosomal entry site (IRES) and the enhanced green fluorescent protein (eGFP) gene were introduced between the NS5 gene and the 3' non-coding sequence of FX2010-180P. A recombinant DTMUV expressing eGFP was rescued, but eGFP expression was unstable after 4 passages in DF-1 cells due to a deletion of 1,294 nucleotides. The establishment of a reliable reverse genetics system for FX2010-180P provides a foundation for future studies of DTMUV. PMID:27248497

  9. Development of a PCR-Based Reverse Genetics System for an Attenuated Duck Tembusu Virus Strain.

    PubMed

    Wu, Xiaogang; Shi, Ying; Yan, Dawei; Li, Xuesong; Yan, Pixi; Gao, Xuyuan; Zhang, Yuee; Yu, Lei; Ren, Chaochao; Li, Guoxin; Yan, Liping; Teng, Qiaoyang; Li, Zejun

    2016-01-01

    The infectious disease caused by the duck Tembusu virus (DTMUV) has resulted in massive economic losses to the Chinese duck industry in China since 2010. Research on the molecular basis of DTMUV pathogenicity has been hampered by the lack of a reliable reverse genetics system for this virus. Here we developed a PCR-based reverse genetics system with high fidelity for the attenuated DTMUV strain FX2010-180P. The rescued virus was characterized by using both indirect immunofluorescence assays (IFA) and whole genome sequencing. The rescued virus (rFX2010-180P) grew to similar titers as compared with the wild-type virus in DF-1 cells, and had similar replication and immunogenicity properties in ducks. To determine whether exogenous proteins could be expressed from DTMUV, both an internal ribosomal entry site (IRES) and the enhanced green fluorescent protein (eGFP) gene were introduced between the NS5 gene and the 3' non-coding sequence of FX2010-180P. A recombinant DTMUV expressing eGFP was rescued, but eGFP expression was unstable after 4 passages in DF-1 cells due to a deletion of 1,294 nucleotides. The establishment of a reliable reverse genetics system for FX2010-180P provides a foundation for future studies of DTMUV.

  10. Genetic screens for mutations affecting development of Xenopus tropicalis.

    PubMed

    Goda, Tadahiro; Abu-Daya, Anita; Carruthers, Samantha; Clark, Matthew D; Stemple, Derek L; Zimmerman, Lyle B

    2006-06-01

    We present here the results of forward and reverse genetic screens for chemically-induced mutations in Xenopus tropicalis. In our forward genetic screen, we have uncovered 77 candidate phenotypes in diverse organogenesis and differentiation processes. Using a gynogenetic screen design, which minimizes time and husbandry space expenditures, we find that if a phenotype is detected in the gynogenetic F2 of a given F1 female twice, it is highly likely to be a heritable abnormality (29/29 cases). We have also demonstrated the feasibility of reverse genetic approaches for obtaining carriers of mutations in specific genes, and have directly determined an induced mutation rate by sequencing specific exons from a mutagenized population. The Xenopus system, with its well-understood embryology, fate map, and gain-of-function approaches, can now be coupled with efficient loss-of-function genetic strategies for vertebrate functional genomics and developmental genetics.

  11. Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia.

    PubMed

    Vallat, Laurent; Kemper, Corey A; Jung, Nicolas; Maumy-Bertrand, Myriam; Bertrand, Frédéric; Meyer, Nicolas; Pocheville, Arnaud; Fisher, John W; Gribben, John G; Bahram, Seiamak

    2013-01-08

    Cellular behavior is sustained by genetic programs that are progressively disrupted in pathological conditions--notably, cancer. High-throughput gene expression profiling has been used to infer statistical models describing these cellular programs, and development is now needed to guide orientated modulation of these systems. Here we develop a regression-based model to reverse-engineer a temporal genetic program, based on relevant patterns of gene expression after cell stimulation. This method integrates the temporal dimension of biological rewiring of genetic programs and enables the prediction of the effect of targeted gene disruption at the system level. We tested the performance accuracy of this model on synthetic data before reverse-engineering the response of primary cancer cells to a proliferative (protumorigenic) stimulation in a multistate leukemia biological model (i.e., chronic lymphocytic leukemia). To validate the ability of our method to predict the effects of gene modulation on the global program, we performed an intervention experiment on a targeted gene. Comparison of the predicted and observed gene expression changes demonstrates the possibility of predicting the effects of a perturbation in a gene regulatory network, a first step toward an orientated intervention in a cancer cell genetic program.

  12. Reverse Genetics of Newcastle Disease Virus.

    PubMed

    Cardenas-Garcia, Stivalis; Afonso, Claudio L

    2017-01-01

    Reverse genetics allows for the generation of recombinant viruses or vectors used in functional studies, vaccine development, and gene therapy. This technique enables genetic manipulation and cloning of viral genomes, gene mutation through site-directed mutagenesis, along with gene insertion or deletion, among other studies. An in vitro infection-based system including the highly attenuated vaccinia virus Ankara strain expressing the T7 RNA polymerase from bacteriophage T7, with co-transfection of three helper plasmids and a full-length cDNA plasmid, was successfully developed to rescue genetically modified Newcastle disease viruses in 1999. In this chapter, the materials and the methods involved in rescuing Newcastle disease virus (NDV) from cDNA, utilizing site-directed mutagenesis and gene replacement techniques, are described in detail.

  13. Sensitivity of Female Inbreds of Cucumis sativus to Sex Reversion by Gibberellin.

    PubMed

    Shifriss, O; George, W L

    1964-03-27

    Two female inbred cucumbers were developed by substituting gene Acr for acr in the genetic backgrounds of the monoecious races Marketer and Tokyo, which exhibit weak and strong male tendency respectively. Marketer females are resistant and Tokyo females are sensitive to sex reversion in response to treatments with gibberellin A(3). Resistance and sensitivity of this type appear to depend upon the genetic system which controls sex tendency.

  14. Reverse Genetics for Newcastle Disease Virus as a Vaccine Vector.

    PubMed

    Kim, Shin-Hee; Samal, Siba K

    2018-02-22

    Newcastle disease virus (NDV) is an economically important pathogen in the poultry industry worldwide. Recovery of infectious NDV from cDNA using reverse genetics has made it possible to manipulate the genome of NDV. This has greatly contributed to our understanding of the molecular biology and pathogenesis of NDV. Furthermore, NDV has modular genome and accommodates insertion of a foreign gene as a transcriptional unit, thus enabling NDV as a vaccine vector against diseases of humans and animals. Avirulent NDV strains (e.g., LaSota and B1) have been commonly used as vaccine vectors. In this protocol, we have described reverse genetics of NDV to be used as a vaccine vector by exemplifying the recovery of NDV vectored avian influenza virus vaccine. Specifically, cloning and recovery of NDV expressing the hemagglutinin protein of highly pathogenic influenza virus were explained. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.

  15. Prediction of subtle left ventricular systolic dysfunction in homozygous and heterozygous familial hypercholesterolemia: Genetic analyses and speckle tracking echocardiography study.

    PubMed

    Saracoglu, Erhan; Kılıç, Salih; Vuruşkan, Ertan; Düzen, Irfan; Çekici, Yusuf; Kuzu, Zülfiye; Yıldırım, Arafat; Küçükosmanoğlu, Mehmet; Çetin, Mustafa

    2018-06-05

    Few studies have shown the direct effect of familial hypercholesterolemia (FH) on myocardial systolic function. Studies focused on heterozygote FH patients but not homozygote ones, and they did not perform genetic analyses. We aimed to evaluate all types of patients with FH using the potentially more sensitive speckle tracking echocardiography (STE) technique to identify early left ventricular (LV) dysfunction. Genetic analyses of patients with FH were conducted for LDL-receptor, PCSK9, and ApoB100. Nine homozygote, two compound heterozygote, and 82 heterozygote FH patients and 85 healthy subjects were prospectively studied. Longitudinal and circumferential strain measurements and conventional echocardiography findings were obtained. LV ejection fractions were similar for all (homozygote, heterozygote, and control) groups. The LV average longitudinal strain (aLS) and average circumferential strain (aCS) levels were significantly reduced in the homozygote and heterozygote groups when compared with the controls (for aLS, P = .008 (<.001); for aCS, P =< .001). A significant inverse correlation was found between LDL-C levels and LS (P < .001, r = .728) and CS (P < .001, r = .642) for all FH patients. This study demonstrates the potential of using systolic strain values obtained using 2D STE for determining lipotoxicity in the myocardium owing to hypercholesterolemia. Our study found that cardiac functions of homozygote patients who had the highest cholesterol levels were disrupted at very early ages. Therefore, starting lipid reduction treatment and early reverse LV remodelling therapy at early ages may be beneficial for high-risk patients. © 2018 Wiley Periodicals, Inc.

  16. Generation of recombinant European bat lyssavirus type 1 and inter-genotypic compatibility of lyssavirus genotype 1 and 5 antigenome promoters.

    PubMed

    Orbanz, Jeannette; Finke, Stefan

    2010-10-01

    Bat lyssaviruses (Fam. Rhabdoviridae) represent a source for the infection of terrestial mammals and the development of rabies disease. Molecular differences in the replication of bat and non-bat lyssaviruses and their contribution to pathogenicity, however, are unknown. One reason for this is the lack of reverse genetics systems for bat-restricted lyssaviruses. To investigate bat lyssavirus replication and host adaptation, we developed a reverse genetics system for European bat lyssavirus type 1 (EBLV-1; genotype 5). This was achieved by co-transfection of HEK-293T cells with a full-length EBLV-1 genome cDNA and expression plasmids for EBLV-1 proteins, resulting in recombinant EBLV-1 (rEBLV-1). Replication of rEBLV-1 was comparable to that of parental virus, showing that rEBLV-1 is a valid tool to investigate EBLV-1 replication functions. In a first approach, we tested whether the terminal promoter sequences of EBLV-1 are genotype-specific. Although genotype 1 (rabies virus) minigenomes were successfully amplified by EBLV-1 helper virus, in the context of the complete virus, only the antigenome promoter (AGP) sequence of EBLV-1 was replaceable, as indicated by comparable replication of rEBLV-1 and the chimeric virus. These analyses demonstrate that the terminal AGPs of genotype 1 and genotype 5 lyssaviruses are compatible with those of the heterologous genotype.

  17. Telomerase reverse transcriptase (TERT) promoter mutation analysis of benign, malignant and reactive urothelial lesions reveals a subpopulation of inverted papilloma with immortalizing genetic change.

    PubMed

    Cheng, Liang; Davidson, Darrell D; Wang, Mingsheng; Lopez-Beltran, Antonio; Montironi, Rodolfo; Wang, Lisha; Tan, Puay-Hoon; MacLennan, Gregory T; Williamson, Sean R; Zhang, Shaobo

    2016-07-01

    To understand more clearly the genetic ontogeny of inverted papilloma of urinary bladder, we analysed telomerase reverse transcriptase (TERT) promoter mutation status in a group of 26 inverted papillomas in comparison with the mutation status of urothelial carcinoma with inverted growth (26 cases), conventional urothelial carcinoma (36 Ta non-invasive urothelial carcinoma, 35 T2 invasive urothelial carcinoma) and cystitis glandularis (25 cases). TERT promoter mutations in inverted papilloma, urothelial carcinoma with inverted growth, urothelial carcinoma and cystitis glandularis were found in 15% (four of 26), 58% (15 of 26), 63% (45 of 71) and 0% (none of 25), respectively. C228T mutations were the predominant mutations (97%) found in bladder tumours, while C250T aberrations occurred in approximately 3% of bladder tumours. In the inverted papilloma group, TERT mutation occurred predominantly in female patients (P = 0.006). Among urothelial carcinomas, TERT promoter mutation status did not correlate with gender, histological grade or pathological stage. TERT promoter mutations were found in 15% of inverted papillomas. Our data suggest that there is a subpopulation of inverted papilloma that shares a carcinogenetic pathway with urothelial carcinoma with inverted growth and conventional urothelial carcinomas. Caution is warranted in exploring TERT promoter mutation status as a screening or adjunct diagnostic test for bladder cancer. © 2015 John Wiley & Sons Ltd.

  18. Forward and reverse mutagenesis in C. elegans

    PubMed Central

    Kutscher, Lena M.; Shaham, Shai

    2014-01-01

    Mutagenesis drives natural selection. In the lab, mutations allow gene function to be deciphered. C. elegans is highly amendable to functional genetics because of its short generation time, ease of use, and wealth of available gene-alteration techniques. Here we provide an overview of historical and contemporary methods for mutagenesis in C. elegans, and discuss principles and strategies for forward (genome-wide mutagenesis) and reverse (target-selected and gene-specific mutagenesis) genetic studies in this animal. PMID:24449699

  19. Biological, serological and molecular typing of potato virus Y (PVY) isolates from Tunisia.

    PubMed

    Tayahi, M; Gharsallah, C; Khamassy, N; Fakhfakh, H; Djilani-Khouadja, F

    2016-10-17

    In Tunisia, potato virus Y (PVY) currently presents a significant threat to potato production, reducing tuber yield and quality. Three hundred and eighty-five potato samples (six different cultivars) collected in autumn 2007 from nine regions in Tunisia were tested for PVY infection by DAS-ELISA. The virus was detected in all regions surveyed, with an average incidence of 80.26%. Subsequently, a panel of 82 Tunisian PVY isolates (PVY-TN) was subjected to systematic biological, serological and molecular typing using immunocapture reverse-transcription polymerase chain reaction and a series of PVY OC - and PVY N -specific monoclonal antibodies. Combined analyses revealed ~67% of PVY NTN variants of which 17 were sequenced in the 5'NTR-P1 region to assess the genetic diversity and phylogenetic relationship of PVY-TN against other worldwide PVY isolates. To investigate whether selective constraints could act on viral genomic RNA, synonymous and non-synonymous substitution rates and their ratio were analyzed. Averages of all pairwise comparisons obtained in the 5'NTR-P1 region allowed more synonymous changes, suggesting selective constraint acting in this region. Selective neutrality test was significantly negative, suggesting a rapid expansion of PVY isolates. Pairwise mismatch distribution gave a bimodal pattern and pointed to an eventually early evolution characterizing these sequences. Genetic haplotype network topology provided evidence of the existence of a distinct geographical structure. This is the first report of such genetic analyses conducted on PVY isolates from Tunisia.

  20. Recovery of infectious classical swine fever virus (CSFV) from full-length genomic cDNA clones by a swine kidney cell line expressing bacteriophage T7 RNA polymerase.

    PubMed

    van Gennip, H G; van Rijn, P A; Widjojoatmodjo, M N; Moormann, R J

    1999-03-01

    A new method for the recovery of infectious classical swine fever virus (CSFV) from full-length genomic cDNA clones of the C-strain was developed. Classical reverse genetics is based on transfection of in vitro transcribed RNA to target cells to recover RNA viruses. However, the specific infectivity of such in vitro transcribed RNA in swine kidney cells is usually low. To improve reverse genetics for CSFV, a stable swine kidney cell line was established that expresses cytoplasmic bacteriophage T7 RNA polymerase (SK6.T7). A 200-fold increased virus titre was obtained from SK6.T7 cells transfected with linearized full-length cDNA compared to in vitro transcribed RNA, whereas transfection of circular full-length cDNA resulted in 20-fold increased virus titres. Viruses generated on the SK6.T7 cells are indistinguishable from the viruses generated by the classical reverse genetic procedures. These results show the improved recovery of infectious CSFV directly from full-length cDNAs. Furthermore, the reverse genetic procedures are simplified to a faster, one step protocol. We conclude that the SK6.T7 cell line will be a valuable tool for recovering mutant CSFV and will contribute to future pestivirus research.

  1. Adrenal Insufficiency, Sex Reversal, and Angelman Syndrome due to Uniparental Disomy Unmasking a Mutation in CYP11A1.

    PubMed

    Kim, Ahlee; Fujimoto, Masanobu; Hwa, Vivian; Backeljauw, Philippe; Dauber, Andrew

    2018-01-01

    Cholesterol side-chain cleavage enzyme (P450scc) deficiency is a rare genetic disorder causing primary adrenal insufficiency with or without a 46,XY disorder of sexual development (DSD). Herein, we report a case of the combination of primary adrenal insufficiency, a DSD (testes with female external genitalia in a setting of a 47,XXY karyotype), and Angelman syndrome. Comprehensive genetic analyses were performed, including a single nucleotide polymorphism microarray and whole-exome sequencing. In vitro studies were performed to evaluate the pathogenicity of the novel mutation that was identified by whole-exome sequencing. The patient was found to have segmental uniparental disomy (UPD) of chromosome 15 explaining her diagnosis of Angelman syndrome. Whole-exome sequencing further revealed a novel homozygous intronic variant in CYP11A1, the gene encoding P450scc, found within the region of UPD. In vitro studies confirmed that this variant led to decreased efficiency of CYP11A1 splicing. We report the first case of the combination of 2 rare genetic disorders, Angelman syndrome, and P450scc deficiency. After 20 years of diagnostic efforts, significant advances in genetic diagnostic technology allowed us to determine that these 2 disorders originate from a unified genetic etiology, segmental UPD unmasking a novel recessive mutation in CYP11A1. © 2018 S. Karger AG, Basel.

  2. A reverse engineering algorithm for neural networks, applied to the subthalamopallidal network of basal ganglia.

    PubMed

    Floares, Alexandru George

    2008-01-01

    Modeling neural networks with ordinary differential equations systems is a sensible approach, but also very difficult. This paper describes a new algorithm based on linear genetic programming which can be used to reverse engineer neural networks. The RODES algorithm automatically discovers the structure of the network, including neural connections, their signs and strengths, estimates its parameters, and can even be used to identify the biophysical mechanisms involved. The algorithm is tested on simulated time series data, generated using a realistic model of the subthalamopallidal network of basal ganglia. The resulting ODE system is highly accurate, and results are obtained in a matter of minutes. This is because the problem of reverse engineering a system of coupled differential equations is reduced to one of reverse engineering individual algebraic equations. The algorithm allows the incorporation of common domain knowledge to restrict the solution space. To our knowledge, this is the first time a realistic reverse engineering algorithm based on linear genetic programming has been applied to neural networks.

  3. Vestigialization of an Allosteric Switch: Genetic and Structural Mechanisms for the Evolution of Constitutive Activity in a Steroid Hormone Receptor

    PubMed Central

    Bridgham, Jamie T.; Keay, June; Ortlund, Eric A.; Thornton, Joseph W.

    2014-01-01

    An important goal in molecular evolution is to understand the genetic and physical mechanisms by which protein functions evolve and, in turn, to characterize how a protein's physical architecture influences its evolution. Here we dissect the mechanisms for an evolutionary shift in function in the mollusk ortholog of the steroid hormone receptors (SRs), a family of biologically essential transcription factors. In vertebrates, the activity of SRs allosterically depends on binding a hormonal ligand; in mollusks, however, the SR ortholog (called ER, because of high sequence similarity to vertebrate estrogen receptors) activates transcription in the absence of ligand and does not respond to steroid hormones. To understand how this shift in regulation evolved, we combined evolutionary, structural, and functional analyses. We first determined the X-ray crystal structure of the ER of the Pacific oyster Crassostrea gigas (CgER), and found that its ligand pocket is filled with bulky residues that prevent ligand occupancy. To understand the genetic basis for the evolution of mollusk ERs' unique functions, we resurrected an ancient SR progenitor and characterized the effect of historical amino acid replacements on its functions. We found that reintroducing just two ancient replacements from the lineage leading to mollusk ERs recapitulates the evolution of full constitutive activity and the loss of ligand activation. These substitutions stabilize interactions among key helices, causing the allosteric switch to become “stuck” in the active conformation and making activation independent of ligand binding. Subsequent changes filled the ligand pocket without further affecting activity; by degrading the allosteric switch, these substitutions vestigialized elements of the protein's architecture required for ligand regulation and made reversal to the ancestral function more complex. These findings show how the physical architecture of allostery enabled a few large-effect mutations to trigger a profound evolutionary change in the protein's function and shaped the genetics of evolutionary reversibility. PMID:24415950

  4. A universal TagModule collection for parallel genetic analysis of microorganisms

    PubMed Central

    Oh, Julia; Fung, Eula; Price, Morgan N.; Dehal, Paramvir S.; Davis, Ronald W.; Giaever, Guri; Nislow, Corey; Arkin, Adam P.; Deutschbauer, Adam

    2010-01-01

    Systems-level analyses of non-model microorganisms are limited by the existence of numerous uncharacterized genes and a corresponding over-reliance on automated computational annotations. One solution to this challenge is to disrupt gene function using DNA tag technology, which has been highly successful in parallelizing reverse genetics in Saccharomyces cerevisiae and has led to discoveries in gene function, genetic interactions and drug mechanism of action. To extend the yeast DNA tag methodology to a wide variety of microorganisms and applications, we have created a universal, sequence-verified TagModule collection. A hallmark of the 4280 TagModules is that they are cloned into a Gateway entry vector, thus facilitating rapid transfer to any compatible genetic system. Here, we describe the application of the TagModules to rapidly generate tagged mutants by transposon mutagenesis in the metal-reducing bacterium Shewanella oneidensis MR-1 and the pathogenic yeast Candida albicans. Our results demonstrate the optimal hybridization properties of the TagModule collection, the flexibility in applying the strategy to diverse microorganisms and the biological insights that can be gained from fitness profiling tagged mutant collections. The publicly available TagModule collection is a platform-independent resource for the functional genomics of a wide range of microbial systems in the post-genome era. PMID:20494978

  5. The art and design of genetic screens: maize

    USDA-ARS?s Scientific Manuscript database

    Maize (Zea mays) is an excellent model for basic research. Genetic screens have informed our understanding of developmental processes, meiosis, epigenetics and biochemical pathways--not only in maize but also in other cereal crops. We discuss the forward and reverse genetic screens that are possible...

  6. Non-stereoselective reversal of neuropathic pain by naloxone and naltrexone

    PubMed Central

    Hutchinson, Mark R.; Zhang, Yingning; Brown, Kimberley; Coats, Benjamen D.; Shridhar, Mitesh; Sholar, Paige W.; Patel, Sonica J.; Crysdale, Nicole Y.; Harrison, Jacqueline A.; Maier, Steven F.; Rice, Kenner C.; Watkins, Linda R.

    2008-01-01

    Although activated spinal cord glia contribute importantly to neuropathic pain, how nerve injury activates glia remains controversial. It has recently been proposed, on the basis of genetic approaches, that toll-like receptor 4 (TLR4) may be a key receptor for initiating microglial activation following L5 spinal nerve injury. The present studies extend this idea pharmacologically by showing that TLR4 is key for maintaining neuropathic pain following sciatic nerve chronic constriction injury (CCI). Established neuropathic pain was reversed by intrathecally delivered TLR4 receptor antagonists derived from lipopolysaccharide. Additionally, (+)-naltrexone, (+)-naloxone, and (-))-naloxone, which we show here to be TLR4 antagonists in vitro on both stably transfected HEK293-TLR4 and microglial cell lines, suppressed neuropathic pain with complete reversal upon chronic infusion. Immunohistochemical analyses of spinal cords following chronic infusion revealed suppression of CCI-induced microglial activation by (+)-naloxone and (-))-naloxone, paralleling reversal of neuropathic pain. Together, these CCI data support the conclusion that neuron-to-glia signaling through TLR4 is important not only for initiating neuropathic pain, as suggested previously, but also for maintaining established neuropathic pain. Furthermore, these studies suggest that the novel TLR4 antagonists (+)-naloxone and (-))-naloxone can each fully reverse established neuropathic pain upon multi-day administration. This finding with (+)-naloxone is of potential clinical relevance. This is because (+)-naloxone is an antagonist that is inactive at the (-))-opioid selective receptors on neurons that produce analgesia. Thus, these data suggest that (+)-opioid antagonists such as (+)-naloxone may be useful clinically to suppress glial activation, yet (-))-opioid agonists suppress pain. PMID:18662331

  7. The Effects of Meiosis/Genetics Integration and Instructional Sequence on College Biology Student Achievement in Genetics.

    ERIC Educational Resources Information Center

    Browning, Mark

    The purpose of the research was to manipulate two aspects of genetics instruction in order to measure their effects on college, introductory biology students' achievement in genetics. One instructional sequence that was used dealt first with monohybrid autosomal inheritance patterns, then sex-linkage. The alternate sequence was the reverse.…

  8. Reverse genetics: Its origins and prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, P.

    1991-04-01

    The nucleotide sequence of a gene and its flanking segments alone will not tell us how its expression is regulated during development and differentiation, or in response to environmental changes. To comprehend the physiological significance of the molecular details requires biological analysis. Recombinant DNA techniques provide a powerful experimental approach. A strategy termed reverse genetics' utilizes the analysis of the activities of mutant and normal genes and experimentally constructed mutants to explore the relationship between gene structure and function thereby helping elucidate the relationship between genotype and phenotype.

  9. Genetic diversity and investigation of polledness in divergent goat populations using 52 088 SNPs.

    PubMed

    Kijas, James W; Ortiz, Judit S; McCulloch, Russell; James, Andrew; Brice, Blair; Swain, Ben; Tosser-Klopp, Gwenola

    2013-06-01

    The recent availability of a genome-wide SNP array for the goat genome dramatically increases the power to investigate aspects of genetic diversity and to conduct genome-wide association studies in this important domestic species. We collected and analysed genotypes from 52 088 SNPs in Boer, Cashmere and Rangeland goats that had both polled and horned individuals. Principal components analysis revealed a clear genetic division between animals for each population, and model-based clustering successfully detected evidence of admixture that matched aspects of their recorded history. For example, shared co-ancestry was detected, suggesting Boer goats have been introgressed into the Rangeland population. Further, allele frequency data successfully tracked the altered genetic profile that has taken place after 40 years of breeding Australian Cashmere goats using the Rangeland animals as the founding population. Genome-wide association mapping of the POLL locus revealed a strong signal on goat chromosome 1. The 769-kb critical interval contained the polled intersex syndrome locus, confirming the genetic basis in non-European animals is the same as identified previously in Saanen goats. Interestingly, analysis of the haplotypes carried by a small set of sex-reversed animals, known to be associated with polledness, revealed some animals carried the wild-type chromosome associated with the presence of horns. This suggests a more complex basis for the relationship between polledness and the intersex condition than initially thought while validating the application of the goat SNP50 BeadChip for fine-mapping traits in goat. © The Author(s) and Commonwealth of Australia. Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.

  10. Insights into population ecology and sexual selection in snakes through the application of DNA-based genetic markers.

    PubMed

    Gibbs, H L; Weatherhead, P J

    2001-01-01

    Hypervariable genetic markers have revolutionized studies of kinship, behavioral ecology, and population biology in vertebrate groups such as birds, but their use in snakes remains limited. To illustrate the value of such markers in snakes, we review studies that have used microsatellite DNA loci to analyze local population differentiation and parentage in snakes. Four ecologically distinct species of snakes all show evidence for differentiation at small spatial scales (2-15 km), but with substantial differences among species. This result highlights how genetic analysis can reveal hidden aspects of the natural history of difficult-to-observe taxa, and it raises important questions about the ecological factors that may contribute to restricted gene flow. A 3-year study of genetic parentage in marked populations of the northern water snake showed that (1) participation in mating aggregations was a poor predictor of genetic-based measures of reproductive success; (2) multiple paternity was high, yet there was no detectable fitness advantage to multiple mating by females; and (3) the opportunity for selection was far higher in males than in females due to a larger variance in male reproductive success, and yet this resulted in no detectable selection on morphological variation in males. Thus genetic markers have provided accurate measures of individual reproductive success in this species, an important step toward resolving the adaptive significance of key features including multiple paternity and reversed sexual size dimorphism. Overall these studies illustrate how genetic analyses of snakes provide previously unobtainable information of long-standing interest to behavioral ecologists.

  11. Genetics Home Reference: nephronophthisis

    MedlinePlus

    ... which can include liver fibrosis, heart abnormalities, or mirror image reversal of the position of one or ... Information from MedlinePlus (5 links) Diagnostic Tests Drug Therapy Genetic Counseling Palliative Care Surgery and Rehabilitation Related ...

  12. Speciation reversal and biodiversity dynamics with hybridization in changing environments.

    PubMed

    Seehausen, Ole; Takimoto, Gaku; Roy, Denis; Jokela, Jukka

    2008-01-01

    A considerable fraction of the world's biodiversity is of recent evolutionary origin and has evolved as a by-product of, and is maintained by, divergent adaptation in heterogeneous environments. Conservationists have paid attention to genetic homogenization caused by human-induced translocations (e.g. biological invasions and stocking), and to the importance of environmental heterogeneity for the ecological coexistence of species. However, far less attention has been paid to the consequences of loss of environmental heterogeneity to the genetic coexistence of sympatric species. Our review of empirical observations and our theoretical considerations on the causes and consequences of interspecific hybridization suggest that a loss of environmental heterogeneity causes a loss of biodiversity through increased genetic admixture, effectively reversing speciation. Loss of heterogeneity relaxes divergent selection and removes ecological barriers to gene flow between divergently adapted species, promoting interspecific introgressive hybridization. Since heterogeneity of natural environments is rapidly deteriorating in most biomes, the evolutionary ecology of speciation reversal ought to be fully integrated into conservation biology.

  13. Evolutionary history of Lissotriton helveticus: multilocus assessment of ancestral vs. recent colonization of the Iberian Peninsula.

    PubMed

    Recuero, Ernesto; García-París, Mario

    2011-07-01

    The Pleistocene was characterized by climatic changes that greatly altered the distribution of organisms. Population extinctions, bottlenecks, isolation, range expansions and contractions were often associated with glaciations, leaving signatures in the spatial patterns of genetic diversity across species. Lissotriton helveticus belongs to a Pan-European lineage of newts that were strongly affected by glaciations and represent an excellent model to analyse the effect of generalized climatic changes in phylogeographic patterns. We studied the genetic diversity of the species using data from two mitochondrial and three nuclear genes analyzed in a Bayesian phylogenetic framework to investigate the historical processes shaping spatial patterns of genetic diversity. Mitochondrial haplotypes cluster in four different groups present in the Iberian Peninsula and of Pleistocene origin, probably by allopatric fragmentation. Nuclear genes present no obvious geographic structure patterns, suggesting gene flow and generalized incomplete lineage sorting. Populations north of the Pyrenees are closely related to those from northeastern Iberia, suggesting recent range expansion from this region. Historical demographic analyses indicate a demographic expansion starting about 100,000years ago and more recent population declines. Compared to other Lissotriton species, L. helveticus includes only relatively young genetic lineages, suggesting a Central European pre-Pleistocene distribution followed by complete extirpation of the species during glaciations in that area. Historical demographic trends in the Iberian Peninsula are reversed with respect to the more Mediterranean species Lissotriton boscai, indicating different responses of both species to climate changes. Diversity patterns among Lissotriton species seem to be defined by four main factors: ancestral distributions, colonization capabilities, interactions with other species and effective population sizes. Differences in these factors define two types of species, referred to as "R" (refugia) and "S" (sanctuaries) that explain part of the diversity in patterns of genetic diversity created by glaciations in Western Europe. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. FLP-18 Functions through the G-Protein-Coupled Receptors NPR-1 and NPR-4 to Modulate Reversal Length in Caenorhabditis elegans.

    PubMed

    Bhardwaj, Ashwani; Thapliyal, Saurabh; Dahiya, Yogesh; Babu, Kavita

    2018-05-16

    Animal behavior is critically dependent on the activity of neuropeptides. Reversals, one of the most conspicuous behaviors in Caenorhabditis elegans , plays an important role in determining the navigation strategy of the animal. Our experiments on hermaphrodite C. elegans show the involvement of a neuropeptide FLP-18 in modulating reversal length in these hermaphrodites. We show that FLP-18 controls the reversal length by regulating the activity of AVA interneurons through the G-protein-coupled neuropeptide receptors, NPR-4 and NPR-1. We go on to show that the site of action of these receptors is the AVA interneuron for NPR-4 and the ASE sensory neurons for NPR-1. We further show that mutants in the neuropeptide, flp-18 , and its receptors show increased reversal lengths. Consistent with the behavioral data, calcium levels in the AVA neuron of freely reversing C. elegans were significantly higher and persisted for longer durations in flp-18 , npr-1 , npr-4 , and npr-1 npr-4 genetic backgrounds compared with wild-type control animals. Finally, we show that increasing FLP-18 levels through genetic and physiological manipulations causes shorter reversal lengths. Together, our analysis suggests that the FLP-18/NPR-1/NPR-4 signaling is a pivotal point in the regulation of reversal length under varied genetic and environmental conditions. SIGNIFICANCE STATEMENT In this study, we elucidate the circuit and molecular machinery required for normal reversal behavior in hermaphrodite Caenorhabditis elegans We delineate the circuit and the neuropeptide receptors required for maintaining reversal length in C. elegans Our work sheds light on the importance of a single neuropeptide, FLP-18, and how change in levels in this one peptide could allow the animal to change the length of its reversal, thereby modulating how the C. elegans explores its environment. We also go on to show that FLP-18 functions to maintain reversal length through the neuropeptide receptors NPR-4 and NPR-1. Our study will allow for a better understanding of the complete repertoire of behaviors shown by freely moving animals as they explore their environment. Copyright © 2018 the authors 0270-6474/18/384641-14$15.00/0.

  15. Hybrid algorithms for fuzzy reverse supply chain network design.

    PubMed

    Che, Z H; Chiang, Tzu-An; Kuo, Y C; Cui, Zhihua

    2014-01-01

    In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods.

  16. Hybrid Algorithms for Fuzzy Reverse Supply Chain Network Design

    PubMed Central

    Che, Z. H.; Chiang, Tzu-An; Kuo, Y. C.

    2014-01-01

    In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods. PMID:24892057

  17. The strains recommended for use in the bacterial reverse mutation test (OECD guideline 471) can be certified as non-genetically modified organisms.

    PubMed

    Sugiyama, Kei-Ichi; Yamada, Masami; Awogi, Takumi; Hakura, Atsushi

    2016-01-01

    The bacterial reverse mutation test, commonly called Ames test, is used worldwide. In Japan, the genetically modified organisms (GMOs) are regulated under the Cartagena Domestic Law, and organisms obtained by self-cloning and/or natural occurrence would be exempted from the law case by case. The strains of Salmonella typhimurium and Escherichia coli recommended for use in the bacterial reverse mutation test (OECD guideline 471), have been considered as non-GMOs because they can be constructed by self-cloning or naturally occurring bacterial strains, or do not disturb the biological diversity. The present article explains the reasons why these tester strains should be classified as non-GMOs.

  18. The effects of reduced dopamine transporter function and chronic lithium on motivation, probabilistic learning, and neurochemistry in mice: Modeling bipolar mania.

    PubMed

    Milienne-Petiot, Morgane; Kesby, James P; Graves, Mary; van Enkhuizen, Jordy; Semenova, Svetlana; Minassian, Arpi; Markou, Athina; Geyer, Mark A; Young, Jared W

    2017-02-01

    Bipolar disorder (BD) mania patients exhibit poor cognition and reward-seeking/hypermotivation, negatively impacting a patient's quality of life. Current treatments (e.g., lithium), do not treat such deficits. Treatment development has been limited due to a poor understanding of the neural mechanisms underlying these behaviors. Here, we investigated putative mechanisms underlying cognition and reward-seeking/motivational changes relevant to BD mania patients using two validated mouse models and neurochemical analyses. The effects of reducing dopamine transporter (DAT) functioning via genetic (knockdown vs. wild-type littermates), or pharmacological (GBR12909- vs. vehicle-treated C57BL/6J mice) means were assessed in the probabilistic reversal learning task (PRLT), and progressive ratio breakpoint (PRB) test, during either water or chronic lithium treatment. These tasks quantify reward learning and effortful motivation, respectively. Neurochemistry was performed on brain samples of DAT mutants ± chronic lithium using high performance liquid chromatography. Reduced DAT functioning increased reversals in the PRLT, an effect partially attenuated by chronic lithium. Chronic lithium alone slowed PRLT acquisition. Reduced DAT functioning increased motivation (PRB), an effect attenuated by lithium in GBR12909-treated mice. Neurochemical analyses revealed that DAT knockdown mice exhibited elevated homovanillic acid levels, but that lithium had no effect on these elevated levels. Reducing DAT functioning recreates many aspects of BD mania including hypermotivation and improved reversal learning (switching), as well as elevated homovanillic acid levels. Chronic lithium only exerted main effects, impairing learning and elevating norepinephrine and serotonin levels of mice, not specifically treating the underlying mechanisms identified in these models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A HIV-1 heterosexual transmission chain in Guangzhou, China: a molecular epidemiological study.

    PubMed

    Han, Zhigang; Leung, Tommy W C; Zhao, Jinkou; Wang, Ming; Fan, Lirui; Li, Kai; Pang, Xinli; Liang, Zhenbo; Lim, Wilina W L; Xu, Huifang

    2009-09-25

    We conducted molecular analyses to confirm four clustering HIV-1 infections (Patient A, B, C & D) in Guangzhou, China. These cases were identified by epidemiological investigation and suspected to acquire the infection through a common heterosexual transmission chain. Env C2V3V4 region, gag p17/p24 junction and partial pol gene of HIV-1 genome from serum specimens of these infected cases were amplified by reverse transcription polymerase chain reaction (RT-PCR) and nucleotide sequenced. Phylogenetic analyses indicated that their viral nucleotide sequences were significantly clustered together (bootstrap value is 99%, 98% and 100% in env, gag and pol tree respectively). Evolutionary distance analysis indicated that their genetic diversities of env, gag and pol genes were significantly lower than non-clustered controls, as measured by unpaired t-test (env gene comparison: p < 0.005; gag gene comparison: p < 0.005; pol gene comparison: p < 0.005). Epidemiological results and molecular analyses consistently illustrated these four cases represented a transmission chain which dispersed in the locality through heterosexual contact involving commercial sex worker.

  20. Genome-wide evidence of Austronesian-Bantu admixture and cultural reversion in a hunter-gatherer group of Madagascar.

    PubMed

    Pierron, Denis; Razafindrazaka, Harilanto; Pagani, Luca; Ricaut, François-Xavier; Antao, Tiago; Capredon, Mélanie; Sambo, Clément; Radimilahy, Chantal; Rakotoarisoa, Jean-Aimé; Blench, Roger M; Letellier, Thierry; Kivisild, Toomas

    2014-01-21

    Linguistic and cultural evidence suggest that Madagascar was the final point of two major dispersals of Austronesian- and Bantu-speaking populations. Today, the Mikea are described as the last-known Malagasy population reported to be still practicing a hunter-gatherer lifestyle. It is unclear, however, whether the Mikea descend from a remnant population that existed before the arrival of Austronesian and Bantu agriculturalists or whether it is only their lifestyle that separates them from the other contemporary populations of South Madagascar. To address these questions we have performed a genome-wide analysis of >700,000 SNP markers on 21 Mikea, 24 Vezo, and 24 Temoro individuals, together with 50 individuals from Bajo and Lebbo populations from Indonesia. Our analyses of these data in the context of data available from other Southeast Asian and African populations reveal that all three Malagasy populations are derived from the same admixture event involving Austronesian and Bantu sources. In contrast to the fact that most of the vocabulary of the Malagasy speakers is derived from the Barito group of the Austronesian language family, we observe that only one-third of their genetic ancestry is related to the populations of the Java-Kalimantan-Sulawesi area. Because no additional ancestry components distinctive for the Mikea were found, it is likely that they have adopted their hunter-gatherer way of life through cultural reversion, and selection signals suggest a genetic adaptation to their new lifestyle.

  1. Genome-wide evidence of Austronesian–Bantu admixture and cultural reversion in a hunter-gatherer group of Madagascar

    PubMed Central

    Pierron, Denis; Razafindrazaka, Harilanto; Pagani, Luca; Ricaut, François-Xavier; Antao, Tiago; Capredon, Mélanie; Sambo, Clément; Radimilahy, Chantal; Rakotoarisoa, Jean-Aimé; Blench, Roger M.; Letellier, Thierry; Kivisild, Toomas

    2014-01-01

    Linguistic and cultural evidence suggest that Madagascar was the final point of two major dispersals of Austronesian- and Bantu-speaking populations. Today, the Mikea are described as the last-known Malagasy population reported to be still practicing a hunter-gatherer lifestyle. It is unclear, however, whether the Mikea descend from a remnant population that existed before the arrival of Austronesian and Bantu agriculturalists or whether it is only their lifestyle that separates them from the other contemporary populations of South Madagascar. To address these questions we have performed a genome-wide analysis of >700,000 SNP markers on 21 Mikea, 24 Vezo, and 24 Temoro individuals, together with 50 individuals from Bajo and Lebbo populations from Indonesia. Our analyses of these data in the context of data available from other Southeast Asian and African populations reveal that all three Malagasy populations are derived from the same admixture event involving Austronesian and Bantu sources. In contrast to the fact that most of the vocabulary of the Malagasy speakers is derived from the Barito group of the Austronesian language family, we observe that only one-third of their genetic ancestry is related to the populations of the Java-Kalimantan-Sulawesi area. Because no additional ancestry components distinctive for the Mikea were found, it is likely that they have adopted their hunter-gatherer way of life through cultural reversion, and selection signals suggest a genetic adaptation to their new lifestyle. PMID:24395773

  2. Genetic correlations and the evolution of photoperiodic time measurement within a local population of the pitcher-plant mosquito, Wyeomyia smithii

    PubMed Central

    Bradshaw, W E; Emerson, K J; Holzapfel, C M

    2012-01-01

    The genetic relationship between the daily circadian clock and the seasonal photoperiodic timer remains a subject of intense controversy. In Wyeomyia smithii, the critical photoperiod (an overt expression of the photoperiodic timer) evolves independently of the rhythmic response to the Nanda–Hamner protocol (an overt expression of the daily circadian clock) over a wide geographical range in North America. Herein, we focus on these two processes within a single local population in which there is a negative genetic correlation between them. We show that antagonistic selection against this genetic correlation rapidly breaks it down and, in fact, reverses its sign, showing that the genetic correlation is due primarily to linkage and not to pleiotropy. This rapid reversal of the genetic correlation within a small, single population means that it is difficult to argue that circadian rhythmicity forms the necessary, causal basis for the adaptive divergence of photoperiodic time measurement within populations or for the evolution of photoperiodic time measurement among populations over a broad geographical gradient of seasonal selection. PMID:22072069

  3. Evidence for the involvement of genetic variation in the oxytocin receptor gene (OXTR) in the etiology of autistic disorders on high-functioning level.

    PubMed

    Wermter, Anne-Kathrin; Kamp-Becker, Inge; Hesse, Philipp; Schulte-Körne, Gerd; Strauch, Konstantin; Remschmidt, Helmut

    2010-03-05

    An increasing number of animal studies advert to a substantial role of the neuropeptide oxytocin in the regulation of social attachment and affiliation. Furthermore, animal studies showed anxiety and stress-reduced effects of oxytocin. First human studies confirm these findings in animal studies and implicate a crucial role of oxytocin in human social attachment behavior and in social interactions. Thus, the oxytocin system might be involved in the impairment of social interaction and attachment in autism spectrum disorders (ASD). The human oxytocin receptor gene (OXTR) represents a plausible candidate gene for the etiology of ASD. To analyze whether genetic variants in the OXTR gene are associated with ASD we performed family-based single-marker and haplotype association analyses with 22 single nucleotide polymorphisms (SNPs) in the OXTR and its 5' region in 100 families with autistic disorders on high-functioning level (Asperger syndrome (AS), high-functioning autism (HFA), and atypical autism (AA)). Single-marker and haplotype association analyses revealed nominally significant associations of one single SNP and one haplotype with autism, respectively. Furthermore, employing a "reverse phenotyping" approach, patients carrying the haplotype associated with autism showed nominally significant impairments in comparison to noncarriers of the haplotype in items of the Autism Diagnostic Interview-Revised algorithm describing aspects of social interaction and communication. In conclusion, our results implicate that genetic variation in the OXTR gene might be relevant in the etiology of autism on high-functioning level. (c) 2009 Wiley-Liss, Inc.

  4. Genetic resources for maize cell wall biology.

    PubMed

    Penning, Bryan W; Hunter, Charles T; Tayengwa, Reuben; Eveland, Andrea L; Dugard, Christopher K; Olek, Anna T; Vermerris, Wilfred; Koch, Karen E; McCarty, Donald R; Davis, Mark F; Thomas, Steven R; McCann, Maureen C; Carpita, Nicholas C

    2009-12-01

    Grass species represent a major source of food, feed, and fiber crops and potential feedstocks for biofuel production. Most of the biomass is contributed by cell walls that are distinct in composition from all other flowering plants. Identifying cell wall-related genes and their functions underpins a fundamental understanding of growth and development in these species. Toward this goal, we are building a knowledge base of the maize (Zea mays) genes involved in cell wall biology, their expression profiles, and the phenotypic consequences of mutation. Over 750 maize genes were annotated and assembled into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) sequences reveal differences in gene family structure between grass species and a reference eudicot species. Analysis of transcript profile data for cell wall genes in developing maize ovaries revealed that expression within families differed by up to 100-fold. When transcriptional analyses of developing ovaries before pollination from Arabidopsis, rice, and maize were contrasted, distinct sets of cell wall genes were expressed in grasses. These differences in gene family structure and expression between Arabidopsis and the grasses underscore the requirement for a grass-specific genetic model for functional analyses. A UniformMu population proved to be an important resource in both forward- and reverse-genetics approaches to identify hundreds of mutants in cell wall genes. A forward screen of field-grown lines by near-infrared spectroscopic screen of mature leaves yielded several dozen lines with heritable spectroscopic phenotypes. Pyrolysis-molecular beam mass spectrometry confirmed that several nir mutants had altered carbohydrate-lignin compositions.

  5. A PATO-compliant zebrafish screening database (MODB): management of morpholino knockdown screen information.

    PubMed

    Knowlton, Michelle N; Li, Tongbin; Ren, Yongliang; Bill, Brent R; Ellis, Lynda Bm; Ekker, Stephen C

    2008-01-07

    The zebrafish is a powerful model vertebrate amenable to high throughput in vivo genetic analyses. Examples include reverse genetic screens using morpholino knockdown, expression-based screening using enhancer trapping and forward genetic screening using transposon insertional mutagenesis. We have created a database to facilitate web-based distribution of data from such genetic studies. The MOrpholino DataBase is a MySQL relational database with an online, PHP interface. Multiple quality control levels allow differential access to data in raw and finished formats. MODBv1 includes sequence information relating to almost 800 morpholinos and their targets and phenotypic data regarding the dose effect of each morpholino (mortality, toxicity and defects). To improve the searchability of this database, we have incorporated a fixed-vocabulary defect ontology that allows for the organization of morpholino affects based on anatomical structure affected and defect produced. This also allows comparison between species utilizing Phenotypic Attribute Trait Ontology (PATO) designated terminology. MODB is also cross-linked with ZFIN, allowing full searches between the two databases. MODB offers users the ability to retrieve morpholino data by sequence of morpholino or target, name of target, anatomical structure affected and defect produced. MODB data can be used for functional genomic analysis of morpholino design to maximize efficacy and minimize toxicity. MODB also serves as a template for future sequence-based functional genetic screen databases, and it is currently being used as a model for the creation of a mutagenic insertional transposon database.

  6. A genome-wide association study points out the causal implication of SOX9 in the sex-reversal phenotype in XX pigs.

    PubMed

    Rousseau, Sarah; Iannuccelli, Nathalie; Mercat, Marie-José; Naylies, Claire; Thouly, Jean-Claude; Servin, Bertrand; Milan, Denis; Pailhoux, Eric; Riquet, Juliette

    2013-01-01

    Among farm animals, pigs are known to show XX sex-reversal. In such cases the individuals are genetically female but exhibit a hermaphroditism, or a male phenotype. While the frequency of this congenital disease is quite low (less than 1%), the economic losses are significant for pig breeders. These losses result from sterility, urogenital infections and the carcasses being downgraded because of the risk of boar taint. It has been clearly demonstrated that the SRY gene is not involved in most cases of sex-reversal in pigs, and that autosomal recessive mutations remain to be discovered. A whole-genome scan analysis was performed in the French Large-White population to identify candidate genes: 38 families comprising the two non-affected parents and 1 to 11 sex-reversed full-sib piglets were genotyped with the PorcineSNP60 BeadChip. A Transmission Disequilibrium Test revealed a highly significant candidate region on SSC12 (most significant p-value<4.65.10(-10)) containing the SOX9 gene. SOX9, one of the master genes involved in testis differentiation, was sequenced together with one of its main regulatory region Tesco. However, no causal mutations could be identified in either of the two sequenced regions. Further haplotype analyses did not identify a shared homozygous segment between the affected pigs, suggesting either a lack of power due to the SNP properties of the chip, or a second causative locus. Together with information from humans and mice, this study in pigs adds to the field of knowledge, which will lead to characterization of novel molecular mechanisms regulating sexual differentiation and dysregulation in cases of sex reversal.

  7. A Genome-Wide Association Study Points out the Causal Implication of SOX9 in the Sex-Reversal Phenotype in XX Pigs

    PubMed Central

    Rousseau, Sarah; Iannuccelli, Nathalie; Mercat, Marie-José; Naylies, Claire; Thouly, Jean-Claude; Servin, Bertrand; Milan, Denis; Pailhoux, Eric; Riquet, Juliette

    2013-01-01

    Among farm animals, pigs are known to show XX sex-reversal. In such cases the individuals are genetically female but exhibit a hermaphroditism, or a male phenotype. While the frequency of this congenital disease is quite low (less than 1%), the economic losses are significant for pig breeders. These losses result from sterility, urogenital infections and the carcasses being downgraded because of the risk of boar taint. It has been clearly demonstrated that the SRY gene is not involved in most cases of sex-reversal in pigs, and that autosomal recessive mutations remain to be discovered. A whole-genome scan analysis was performed in the French Large-White population to identify candidate genes: 38 families comprising the two non-affected parents and 1 to 11 sex-reversed full-sib piglets were genotyped with the PorcineSNP60 BeadChip. A Transmission Disequilibrium Test revealed a highly significant candidate region on SSC12 (most significant p-value<4.65.10-10) containing the SOX9 gene. SOX9, one of the master genes involved in testis differentiation, was sequenced together with one of its main regulatory region Tesco. However, no causal mutations could be identified in either of the two sequenced regions. Further haplotype analyses did not identify a shared homozygous segment between the affected pigs, suggesting either a lack of power due to the SNP properties of the chip, or a second causative locus. Together with information from humans and mice, this study in pigs adds to the field of knowledge, which will lead to characterization of novel molecular mechanisms regulating sexual differentiation and dysregulation in cases of sex reversal. PMID:24223201

  8. Intermediate-type vancomycin resistance (VISA) in genetically-distinct Staphylococcus aureus isolates is linked to specific, reversible metabolic alterations.

    PubMed

    Alexander, Elizabeth L; Gardete, Susana; Bar, Haim Y; Wells, Martin T; Tomasz, Alexander; Rhee, Kyu Y

    2014-01-01

    Intermediate (VISA-type) vancomycin resistance in Staphylococcus aureus has been associated with a range of physiologic and genetic alterations. Previous work described the emergence of VISA-type resistance in two clonally-distinct series of isolates. In both series (the first belonging to MRSA clone ST8-USA300, and the second to ST5-USA100), resistance was conferred by a single mutation in yvqF (a negative regulator of the vraSR two-component system associated with vancomycin resistance). In the USA300 series, resistance was reversed by a secondary mutation in vraSR. In this study, we combined systems-level metabolomic profiling with statistical modeling techniques to discover specific, reversible metabolic alterations associated with the VISA phenotype.

  9. [Genetically modified organisms: a new threat to food safety].

    PubMed

    Spendeler, Liliane

    2005-01-01

    This article analyzes all of the food safety-related aspects related to the use of genetically modified organisms into agriculture and food. A discussion is provided as to the uncertainties related to the insertion of foreign genes into organisms, providing examples of unforeseen, undesirable effects and of instabilities of the organisms thus artificially fabricated. Data is then provided from both official agencies as well as existing literature questioning the accuracy and reliability of the risk analyses as to these organisms being harmless to health and discusses the almost total lack of scientific studies analyzing the health safety/dangerousness of transgenic foods. Given all these unknowns, other factors must be taken into account, particularly genetic contamination of the non-genetically modified crops, which is now starting to become widespread in some parts of the world. Not being able of reversing the situation in the even of problems is irresponsible. Other major aspects are the impacts on the environment (such as insects building up resistances, the loss of biodiversity, the increase in chemical products employed) with indirect repercussions on health and/or future food production. Lastly, thoughts for discussion are added concerning food safety in terms of food availability and food sovereignty, given that the transgenic seed and related agrochemicals market is currently cornered by five large-scale transnational companies. The conclusion entails an analysis of biotechnological agriculture's contribution to sustainability.

  10. Perivascular Epithelioid Cell Tumor of Gastrointestinal Tract

    PubMed Central

    Lu, Biyan; Wang, Chenliang; Zhang, Junxiao; Kuiper, Roland P.; Song, Minmin; Zhang, Xiaoli; Song, Shunxin; van Kessel, Ad Geurts; Iwamoto, Aikichi; Wang, Jianping; Liu, Huanliang

    2015-01-01

    Perivascular epithelioid cell tumors of gastrointestinal tract (GI PEComas) are exceedingly rare, with only a limited number of published reports worldwide. Given the scarcity of GI PEComas and their relatively short follow-up periods, our current knowledge of their biologic behavior, molecular genetic alterations, diagnostic criteria, and prognostic factors continues to be very limited. We present 2 cases of GI PEComas, one of which showed an aggressive histologic behavior that underwent multiple combined chemotherapies. We also review the available English-language medical literature on GI PEComas-not otherwise specified (PEComas-NOS) and discuss their clinicopathological and molecular genetic features. Pathologic analyses including histomorphologic, immunohistochemical, and ultrastructural studies were performed to evaluate the clinicopathological features of GI PEComas, their diagnosis, and differential diagnosis. Immunohistochemistry, semiquantitative reverse transcriptase polymerase chain reaction, and DNA sequencing assays were carried out to detect the potential molecular genetic alterations in our cases Microscopically, the tumors showed distinctive histologic features of PEComas-NOS, including fascicular or nested architecture, epithelioid or spindled cell type, and clear to eosinophilic cytoplasm. The tumor cells were immunohistochemically positive for melanocytic markers. Molecular pathological assays confirmed a PSF-TFE3 gene fusion in one of our cases. Furthermore, in this case microphthalmia-associated transcription factor and its downstream genes were found to exhibit elevated transcript levels. Knowledge about the molecular genetic alterations in GI PEComas is still limited and warrants further study. PMID:25621681

  11. Development of a reverse genetics system to generate a recombinant Ebola virus Makona expressing a green fluorescent protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albariño, César G., E-mail: calbarino@cdc.gov; Wiggleton Guerrero, Lisa; Lo, Michael K.

    Previous studies have demonstrated the potential application of reverse genetics technology in studying a broad range of aspects of viral biology, including gene regulation, protein function, cell entry, and pathogenesis. Here, we describe a highly efficient reverse genetics system used to generate recombinant Ebola virus (EBOV) based on a recent isolate from a human patient infected during the 2014–2015 outbreak in Western Africa. We also rescued a recombinant EBOV expressing a fluorescent reporter protein from a cleaved VP40 protein fusion. Using this virus and an inexpensive method to quantitate the expression of the foreign gene, we demonstrate its potential usefulnessmore » as a tool for screening antiviral compounds and measuring neutralizing antibodies. - Highlights: • Recombinant Ebola virus (EBOV) derived from Makona variant was rescued. • New protocol for viral rescue allows 100% efficiency. • Modified EBOV expresses a green fluorescent protein from a VP40-fused protein. • Modified EBOV was tested as tool to screen antiviral compounds and measure neutralizing antibodies.« less

  12. Building of Reusable Reverse Logistics Model and its Optimization Considering the Decision of Backorder or Next Arrival of Goods

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Eun; Gen, Mitsuo; Rhee, Kyong-Gu; Lee, Hee-Hyol

    This paper deals with the building of the reusable reverse logistics model considering the decision of the backorder or the next arrival of goods. The optimization method to minimize the transportation cost and to minimize the volume of the backorder or the next arrival of goods occurred by the Just in Time delivery of the final delivery stage between the manufacturer and the processing center is proposed. Through the optimization algorithms using the priority-based genetic algorithm and the hybrid genetic algorithm, the sub-optimal delivery routes are determined. Based on the case study of a distilling and sale company in Busan in Korea, the new model of the reusable reverse logistics of empty bottles is built and the effectiveness of the proposed method is verified.

  13. copia-like retrotransposons are ubiquitous among plants.

    PubMed Central

    Voytas, D F; Cummings, M P; Koniczny, A; Ausubel, F M; Rodermel, S R

    1992-01-01

    Transposable genetic elements are assumed to be a feature of all eukaryotic genomes. Their identification, however, has largely been haphazard, limited principally to organisms subjected to molecular or genetic scrutiny. We assessed the phylogenetic distribution of copia-like retrotransposons, a class of transposable element that proliferates by reverse transcription, using a polymerase chain reaction assay designed to detect copia-like element reverse transcriptase sequences. copia-like retrotransposons were identified in 64 plant species as well as the photosynthetic protist Volvox carteri. The plant species included representatives from 9 of 10 plant divisions, including bryophytes, lycopods, ferns, gymnosperms, and angiosperms. DNA sequence analysis of 29 cloned PCR products and of a maize retrotransposon cDNA confirmed the identity of these sequences as copia-like reverse transcriptase sequences, thereby demonstrating that this class of retrotransposons is a ubiquitous component of plant genomes. Images PMID:1379734

  14. Effects of a fruit-vegetable dietary pattern on oxidative stress and genetic damage in coke oven workers: a cross-sectional study.

    PubMed

    Xie, Zheng; Lin, Haijiang; Fang, Renfei; Shen, Weiwei; Li, Shuguang; Chen, Bo

    2015-05-06

    Coke oven workers (COWs) are exposed to high level of genotoxic chemicals that induce oxidative stress and genetic damage. The dietary intake of certain types of foods may reverse these effects. We conducted a cross-sectional study with 51 topside COWs, 79 other COWs, and 67 controls, to assess the effects of dietary patterns on oxidative stress and genetic damage. Compared to the controls, both topside and other COWs had significantly higher urinary 1-hydroxypyrene levels, serum oxidant levels [malondialdehyde, (MDA)], and genetic damage [micronucleus (MN) frequency & 8-oxo-2'-deoxyguanosine (8-OH-dG)], but lower antioxidant levels [superoxide dismutase (SOD) and glutathione peroxidase, (GPx)]. The fruit-vegetable (FV) dietary pattern was positively correlated with serum SOD levels and negative correlated with serum MDA, MN frequency, and urinary 8-OH-dG. COWs with an FV patter in the highest quartile (Q4) had significantly increased antioxidant levels (SOD and GPx) and decreased oxidant levels (MDA) and genetic damage (MN frequency and 8-OH-dG) than those with an FV pattern in the lowest quartile (Q1). Compared to control subjects, COWs had increased oxidative stress and genetic damage. A FV dietary pattern may reverse oxidative stress and genetic damage in COWs.

  15. Virus fitness differences observed between two naturally occurring isolates of Ebola virus Makona variant using a reverse genetics approach.

    PubMed

    Albariño, César G; Guerrero, Lisa Wiggleton; Chakrabarti, Ayan K; Kainulainen, Markus H; Whitmer, Shannon L M; Welch, Stephen R; Nichol, Stuart T

    2016-09-01

    During the large outbreak of Ebola virus disease that occurred in Western Africa from late 2013 to early 2016, several hundred Ebola virus (EBOV) genomes have been sequenced and the virus genetic drift analyzed. In a previous report, we described an efficient reverse genetics system designed to generate recombinant EBOV based on a Makona variant isolate obtained in 2014. Using this system, we characterized the replication and fitness of 2 isolates of the Makona variant. These virus isolates are nearly identical at the genetic level, but have single amino acid differences in the VP30 and L proteins. The potential effects of these differences were tested using minigenomes and recombinant viruses. The results obtained with this approach are consistent with the role of VP30 and L as components of the EBOV RNA replication machinery. Moreover, the 2 isolates exhibited clear fitness differences in competitive growth assays. Published by Elsevier Inc.

  16. Genetic typing of feline rabies virus isolated in greater Bangkok, Thailand.

    PubMed

    Kasempimolporn, Songsri; Saengseesom, Wachiraporn; Tirawatnapong, Thaweesak; Puempumpanich, Sununta; Sitprija, Visith

    2004-01-01

    To study the molecular epidemiology of rabies virus that is prevalent among cats in greater Bangkok, Thailand, a total of 17 rabies virus isolates from cats were characterized and compared with 120 rabies virus isolates from dogs. Analyses were performed on the genetic polymorphism in the rabies virus nucleoprotein (N) gene. Rabies virus N gene of isolates was amplified by reverse transcriptionpolymerase chain reaction. The diversity of N gene was revealed by the restriction fragment length polymorphism (RFLP) method. The rabies virus isolates from cats could be classified into 5 types, designated as Dd I-Hf I, Dd II-Hf II, Dd III-Hf I, Dd IV-Hf I, and Dd IV-Hf III. Type Dd I-Hf I was encountered more frequently than the others. It was apparent that no less than five rabies virus types presented in the areas of Bangkok. Moreover, all five RFLP patterns were typical of those which had been observed in dogs. Our findings suggest that there had been viral transmission between the dogs and the cats.

  17. Quantitative proteomic analysis of human breast epithelial cells with differential telomere length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Li-Rong; Chan, King C.; Tahara, Hidetoshi

    Telomeres play important functional roles in cell proliferation, cell cycle regulation, and genetic stability, in which telomere length is critical. In this study, quantitative proteome comparisons for the human breast epithelial cells with short and long telomeres (184-hTERT{sub L} vs. 184-hTERT{sub S} and 90P-hTERT{sub L} vs. 90P-hTERT{sub S}), resulting from transfection of the human telomerase reverse transcriptase (hTERT) gene, were performed using cleavable isotope-coded affinity tags. More than 2000 proteins were quantified in each comparative experiment, with approximately 77% of the proteins identified in both analyses. In the cells with long telomeres, significant and consistent alterations were observed in metabolismmore » (amino acid, nucleotide, and lipid metabolism), genetic information transmission (transcription and translation regulation, spliceosome and ribosome complexes), and cell signaling. Interestingly, the DNA excision repair pathway is enhanced, while integrin and its ligands are downregulated in the cells with long telomeres. These results may provide valuable information related to telomere functions.« less

  18. Cytogenic and molecular analyses of 46,XX male syndrome with clinical comparison to other groups with testicular azoospermia of genetic origin.

    PubMed

    Chiang, Han-Sun; Wu, Yi-No; Wu, Chien-Chih; Hwang, Jiann-Loung

    2013-02-01

    XX male is a rare sex chromosomal disorder in infertile men. The purpose of this study was to distinguish the clinical and genetic features of the 46,XX male syndrome from other more frequent, testicular-origin azoospermic causes of male infertility. To study 46,XX male syndrome, we compared clinical and endocrinological parameters to other groups with testicular-origin azoospermia, and to an age-matched group of healthy males and females as normal control. Fluorescent in situ hybridization for detection and localization of the sex-determining region of the Y gene (SRY), array-based comparative genomic hybridization screening, and real-time qualitative polymerase chain reaction of FGF9, WT1, NR5A1, and SPRY2 genes were performed in this genetic investigation. Our three patients with 46,XX male syndrome had a much higher follicular-stimulating hormone level, lower body height, lower testosterone level, and ambiguous external genitalia. One of the three patients with 46,XX male syndrome was SRY-negative. A further genetic study, including a comparative genomic hybridization array and real-time polymerase chain reaction, showed a gain of FGF9 copy numbers only in the SRY-negative 46,XX male. The genetic copy number of the FGF9 gene was duplicated in that case compared to the normal female control and was significantly lower than that of the normal male control. No such genomic gain was observed in the case of the two SRY-positive 46,XX males. Similar to clinical manifestations of 46,XX male syndrome, genetic evidence in this study suggests that FGF9 may contribute to sex reversal, but additional confirmation with more cases is still needed. Copyright © 2012. Published by Elsevier B.V.

  19. A Korean boy with 46,XX testicular disorder of sex development caused by SOX9 duplication.

    PubMed

    Lee, Gyung Min; Ko, Jung Min; Shin, Choong Ho; Yang, Sei Won

    2014-06-01

    The 46,XX testicular disorder of sex development (DSD), also known as 46,XX male syndrome, is a rare form of DSD and clinical phenotype shows complete sex reversal from female to male. The sex-determining region Y (SRY) gene can be identified in most 46,XX testicular DSD patients; however, approximately 20% of patients with 46,XX testicular DSD are SRY-negative. The SRY-box 9 (SOX9) gene has several important functions during testis development and differentiation in males, and overexpression of SOX9 leads to the male development of 46,XX gonads in the absence of SRY. In addition, SOX9 duplication has been found to be a rare cause of 46,XX testicular DSD in humans. Here, we report a 4.2-year-old SRY-negative 46,XX boy with complete sex reversal caused by SOX9 duplication for the first time in Korea. He showed normal external and internal male genitalia except for small testes. Fluorescence in situ hybridization and polymerase chain reaction (PCR) analyses failed to detect the presence of SRY, and SOX9 intragenic mutation was not identified by direct sequencing analysis. Therefore, we performed real-time PCR analyses with specific primer pairs, and duplication of the SOX9 gene was revealed. Although SRY-negative 46,XX testicular DSD is a rare condition, an effort to make an accurate diagnosis is important for the provision of proper genetic counseling and for guiding patients in their long-term management.

  20. Interactions of OsMADS1 with Floral Homeotic Genes in Rice Flower Development.

    PubMed

    Hu, Yun; Liang, Wanqi; Yin, Changsong; Yang, Xuelian; Ping, Baozhe; Li, Anxue; Jia, Ru; Chen, Mingjiao; Luo, Zhijing; Cai, Qiang; Zhao, Xiangxiang; Zhang, Dabing; Yuan, Zheng

    2015-09-01

    During reproductive development, rice plants develop unique flower organs which determine the final grain yield. OsMADS1, one of SEPALLATA-like MADS-box genes, has been unraveled to play critical roles in rice floral organ identity specification and floral meristem determinacy. However, the molecular mechanisms underlying interactions of OsMADS1 with other floral homeotic genes in regulating flower development remains largely elusive. In this work, we studied the genetic interactions of OsMADS1 with B-, C-, and D-class genes along with physical interactions among their proteins. We show that the physical and genetic interactions between OsMADS1 and OsMADS3 are essential for floral meristem activity maintenance and organ identity specification; while OsMADS1 physically and genetically interacts with OsMADS58 in regulating floral meristem determinacy and suppressing spikelet meristem reversion. We provided important genetic evidence to support the neofunctionalization of two rice C-class genes (OsMADS3 and OsMADS58) during flower development. Gene expression profiling and quantitative RT-PCR analyses further revealed that OsMADS1 affects the expression of many genes involved in floral identity and hormone signaling, and chromatin immunoprecipitation (ChIP)-PCR assay further demonstrated that OsMADS17 is a direct target gene of OsMADS1. Taken together, these results reveal that OsMADS1 has diversified regulatory functions in specifying rice floral organ and meristem identity, probably through its genetic and physical interactions with different floral homeotic regulators. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  1. Long-range dispersal moved Francisella tularensis into Western Europe from the East.

    PubMed

    Dwibedi, Chinmay; Birdsell, Dawn; Lärkeryd, Adrian; Myrtennäs, Kerstin; Öhrman, Caroline; Nilsson, Elin; Karlsson, Edvin; Hochhalter, Christian; Rivera, Andrew; Maltinsky, Sara; Bayer, Brittany; Keim, Paul; Scholz, Holger C; Tomaso, Herbert; Wittwer, Matthias; Beuret, Christian; Schuerch, Nadia; Pilo, Paola; Hernández Pérez, Marta; Rodriguez-Lazaro, David; Escudero, Raquel; Anda, Pedro; Forsman, Mats; Wagner, David M; Larsson, Pär; Johansson, Anders

    2016-12-01

    For many infections transmitting to humans from reservoirs in nature, disease dispersal patterns over space and time are largely unknown. Here, a reversed genomics approach helped us understand disease dispersal and yielded insight into evolution and biological properties of Francisella tularensis , the bacterium causing tularemia. We whole-genome sequenced 67 strains and characterized by single-nucleotide polymorphism assays 138 strains, collected from individuals infected 1947-2012 across Western Europe. We used the data for phylogenetic, population genetic and geographical network analyses. All strains ( n =205) belonged to a monophyletic population of recent ancestry not found outside Western Europe. Most strains ( n =195) throughout the study area were assigned to a star-like phylogenetic pattern indicating that colonization of Western Europe occurred via clonal expansion. In the East of the study area, strains were more diverse, consistent with a founder population spreading from east to west. The relationship of genetic and geographic distance within the F. tularensis population was complex and indicated multiple long-distance dispersal events. Mutation rate estimates based on year of isolation indicated null rates; in outbreak hotspots only, there was a rate of 0.4 mutations/genome/year. Patterns of nucleotide substitution showed marked AT mutational bias suggestive of genetic drift. These results demonstrate that tularemia has moved from east to west in Europe and that F. tularensis has a biology characterized by long-range geographical dispersal events and mostly slow, but variable, replication rates. The results indicate that mutation-driven evolution, a resting survival phase, genetic drift and long-distance geographical dispersal events have interacted to generate genetic diversity within this species.

  2. [Genetic Diversity and Evolution of the M Gene of Human Influenza A Viruses from 2009 to 2013 in Hangzhou, China].

    PubMed

    Shao, Tiejuan; Li, Jun; Pu, Xiaoying; Yu, Xinfen; Kou, Yu; Zhou, Yinyan; Qian, Xin

    2015-03-01

    We investigated the genetic diversity and evolution of the M gene of human influenza A viruses in Hangzhou (Zhejiang province, China) from 2009 to 2013, including subtypes of A(H1N1) pdm09 strains and seasonal A(H3N2) strains. Subtypes of analyzed viruses were identified by cell culture and real-time reverse transcription-polymerase chain reaction, followed by cloning, sequencing and phylogenetic analyses of the M gene. Assessment of 5675 throat swabs revealed a positive rate for the influenza virus of 20.46%, and 827 cases were diagnosed as. infections due to influenza A viruses. Seventy-six influenza-A strains were selected randomly from nine stages during six phases of a virus epidemic. Sequences of the M gene showed high homology among six epidemics with identities of amino-acid sequences of 98.98-100%. All strains contained the adamantine-resistant mutation S31N in its M2 protein. Two of the A(H1N1)pdm09 strains had double mutants of V27A/S31N or V271/S31N. One of the seasonal A(H3N2) viruses had another form of double-mutant R45H/S31N. Evolutionary rate of the M gene was much lower than that of the HA gene and NA gene. Compared with A(H3N2) strains, higher positive pressure on the M1 and M2 proteins of A(H1N1) pdm09 viruses was observed. Separate analyses of M1 and M2 proteins revealed very different selection pressures. Knowledge of the genetic diversity and evolution of the M gene of human influenza-A viruses will be valuable for the control and prevention of diseases.

  3. Genetic Resources for Maize Cell Wall Biology1[C][W][OA

    PubMed Central

    Penning, Bryan W.; Hunter, Charles T.; Tayengwa, Reuben; Eveland, Andrea L.; Dugard, Christopher K.; Olek, Anna T.; Vermerris, Wilfred; Koch, Karen E.; McCarty, Donald R.; Davis, Mark F.; Thomas, Steven R.; McCann, Maureen C.; Carpita, Nicholas C.

    2009-01-01

    Grass species represent a major source of food, feed, and fiber crops and potential feedstocks for biofuel production. Most of the biomass is contributed by cell walls that are distinct in composition from all other flowering plants. Identifying cell wall-related genes and their functions underpins a fundamental understanding of growth and development in these species. Toward this goal, we are building a knowledge base of the maize (Zea mays) genes involved in cell wall biology, their expression profiles, and the phenotypic consequences of mutation. Over 750 maize genes were annotated and assembled into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) sequences reveal differences in gene family structure between grass species and a reference eudicot species. Analysis of transcript profile data for cell wall genes in developing maize ovaries revealed that expression within families differed by up to 100-fold. When transcriptional analyses of developing ovaries before pollination from Arabidopsis, rice, and maize were contrasted, distinct sets of cell wall genes were expressed in grasses. These differences in gene family structure and expression between Arabidopsis and the grasses underscore the requirement for a grass-specific genetic model for functional analyses. A UniformMu population proved to be an important resource in both forward- and reverse-genetics approaches to identify hundreds of mutants in cell wall genes. A forward screen of field-grown lines by near-infrared spectroscopic screen of mature leaves yielded several dozen lines with heritable spectroscopic phenotypes. Pyrolysis-molecular beam mass spectrometry confirmed that several nir mutants had altered carbohydrate-lignin compositions. PMID:19926802

  4. A Multi-Stage Reverse Logistics Network Problem by Using Hybrid Priority-Based Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Eun; Gen, Mitsuo; Rhee, Kyong-Gu

    Today remanufacturing problem is one of the most important problems regarding to the environmental aspects of the recovery of used products and materials. Therefore, the reverse logistics is gaining become power and great potential for winning consumers in a more competitive context in the future. This paper considers the multi-stage reverse Logistics Network Problem (m-rLNP) while minimizing the total cost, which involves reverse logistics shipping cost and fixed cost of opening the disassembly centers and processing centers. In this study, we first formulate the m-rLNP model as a three-stage logistics network model. Following for solving this problem, we propose a Genetic Algorithm pri (GA) with priority-based encoding method consisting of two stages, and introduce a new crossover operator called Weight Mapping Crossover (WMX). Additionally also a heuristic approach is applied in the 3rd stage to ship of materials from processing center to manufacturer. Finally numerical experiments with various scales of the m-rLNP models demonstrate the effectiveness and efficiency of our approach by comparing with the recent researches.

  5. Novel norovirus in dogs with diarrhea.

    PubMed

    Mesquita, João Rodrigo; Barclay, Leslie; Nascimento, Maria São José; Vinjé, Jan

    2010-06-01

    To identify the prevalence and genetic variability of noroviruses in dogs, we tested fecal samples by using reverse transcription-PCR. We found canine norovirus in 40% and 9% of dogs with and without diarrhea, respectively. The virus was genetically unrelated to other noroviruses and constitutes a tentative new genogroup.

  6. Reverse hybrid total hip arthroplasty.

    PubMed

    Wangen, Helge; Havelin, Leif I; Fenstad, Anne M; Hallan, Geir; Furnes, Ove; Pedersen, Alma B; Overgaard, Søren; Kärrholm, Johan; Garellick, Göran; Mäkelä, Keijo; Eskelinen, Antti; Nordsletten, Lars

    2017-06-01

    Background and purpose - The use of a cemented cup together with an uncemented stem in total hip arthroplasty (THA) has become popular in Norway and Sweden during the last decade. The results of this prosthetic concept, reverse hybrid THA, have been sparsely described. The Nordic Arthroplasty Register Association (NARA) has already published 2 papers describing results of reverse hybrid THAs in different age groups. Based on data collected over 2 additional years, we wanted to perform in depth analyses of not only the reverse hybrid concept but also of the different cup/stem combinations used. Patients and methods - From the NARA, we extracted data on reverse hybrid THAs from January 1, 2000 until December 31, 2013. 38,415 such hips were studied and compared with cemented THAs. The Kaplan-Meier method and Cox regression analyses were used to estimate the prosthesis survival and the relative risk of revision. The main endpoint was revision for any reason. We also performed specific analyses regarding the different reasons for revision and analyses regarding the cup/stem combinations used in more than 500 cases. Results - We found a higher rate of revision for reverse hybrids than for cemented THAs, with an adjusted relative risk of revision (RR) of 1.4 (95% CI: 1.3-1.5). At 10 years, the survival rate was 94% (CI: 94-95) for cemented THAs and 92% (95% CI: 92-93) for reverse hybrids. The results for the reverse hybrid THAs were inferior to those for cemented THAs in patients aged 55 years or more (RR =1.1, CI: 1.0-1.3; p < 0.05). We found a higher rate of early revision due to periprosthetic femoral fracture for reverse hybrids than for cemented THAs in patients aged 55 years or more (RR =3.1, CI: 2.2-4.5; p < 0.001). Interpretation - Reverse hybrid THAs had a slightly higher rate of revision than cemented THAs in patients aged 55 or more. The difference in survival was mainly caused by a higher incidence of early revision due to periprosthetic femoral fracture in the reversed hybrid THAs.

  7. African Swine Fever Virus NP868R Capping Enzyme Promotes Reovirus Rescue during Reverse Genetics by Promoting Reovirus Protein Expression, Virion Assembly, and RNA Incorporation into Infectious Virions

    PubMed Central

    Eaton, Heather E.; Kobayashi, Takeshi; Dermody, Terence S.; Johnston, Randal N.

    2017-01-01

    ABSTRACT Reoviruses, like many eukaryotic viruses, contain an inverted 7-methylguanosine (m7G) cap linked to the 5′ nucleotide of mRNA. The traditional functions of capping are to promote mRNA stability, protein translation, and concealment from cellular proteins that recognize foreign RNA. To address the role of mRNA capping during reovirus replication, we assessed the benefits of adding the African swine fever virus NP868R capping enzyme during reovirus rescue. C3P3, a fusion protein containing T7 RNA polymerase and NP868R, was found to increase protein expression 5- to 10-fold compared to T7 RNA polymerase alone while enhancing reovirus rescue from the current reverse genetics system by 100-fold. Surprisingly, RNA stability was not increased by C3P3, suggesting a direct effect on protein translation. A time course analysis revealed that C3P3 increased protein synthesis within the first 2 days of a reverse genetics transfection. This analysis also revealed that C3P3 enhanced processing of outer capsid μ1 protein to μ1C, a previously described hallmark of reovirus assembly. Finally, to determine the rate of infectious-RNA incorporation into new virions, we developed a new recombinant reovirus S1 gene that expressed the fluorescent protein UnaG. Following transfection of cells with UnaG and infection with wild-type virus, passage of UnaG through progeny was significantly enhanced by C3P3. These data suggest that capping provides nontraditional functions to reovirus, such as promoting assembly and infectious-RNA incorporation. IMPORTANCE Our findings expand our understanding of how viruses utilize capping, suggesting that capping provides nontraditional functions to reovirus, such as promoting assembly and infectious-RNA incorporation, in addition to enhancing protein translation. Beyond providing mechanistic insight into reovirus replication, our findings also show that reovirus reverse genetics rescue is enhanced 100-fold by the NP868R capping enzyme. Since reovirus shows promise as a cancer therapy, efficient reovirus reverse genetics rescue will accelerate production of recombinant reoviruses as candidates to enhance therapeutic potency. NP868R-assisted reovirus rescue will also expedite production of recombinant reovirus for mechanistic insights into reovirus protein function and structure. PMID:28298603

  8. Tyrosine 110 in the measles virus phosphoprotein is required to block STAT1 phosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devaux, Patricia; Messling, Veronika von; Songsungthong, Warangkhana

    2007-03-30

    The measles virus (MV) P gene encodes three proteins: P, an essential polymerase cofactor, and C and V, which have multiple functions including immune evasion. We show here that the MV P protein also contributes to immune evasion, and that tyrosine 110 is required to block nuclear translocation of the signal transducer and activator of transcription factors (STAT) after interferon type I treatment. In particular, MV P inhibits STAT1 phosphorylation. This is shown not only by transient expression but also by reverse genetic analyses based on a new functional infectious cDNA derived from a MV vaccine vial (Moraten strain). Ourmore » study also identifies a conserved sequence around P protein tyrosine 110 as a candidate interaction site with a cellular protein.« less

  9. Ligand interaction scan: a general method for engineering ligand-sensitive protein alleles.

    PubMed

    Erster, Oran; Eisenstein, Miriam; Liscovitch, Mordechai

    2007-05-01

    The ligand interaction scan (LIScan) method is a general procedure for engineering small molecule ligand-regulated forms of a protein that is complementary to other 'reverse' genetic and chemical-genetic methods for drug-target validation. It involves insertional mutagenesis by a chemical-genetic 'switch', comprising a genetically encoded peptide module that binds with high affinity to a small-molecule ligand. We demonstrated the method with TEM-1 beta-lactamase, using a tetracysteine hexapeptide insert and a biarsenical fluorescein ligand (FlAsH).

  10. Sex Reversal in Reptiles: Reproductive Oddity or Powerful Driver of Evolutionary Change?

    PubMed

    Holleley, Clare E; Sarre, Stephen D; O'Meally, Denis; Georges, Arthur

    2016-01-01

    Is sex a product of genes, the environment, or both? In this review, we describe the diversity of sex-determining mechanisms in reptiles, with a focus on systems that display gene-environment interactions. We summarise the field and laboratory-based evidence for the occurrence of environmental sex reversal in reptiles and ask whether this is a widespread evolutionary mechanism affecting the evolution of sex chromosomes and speciation in vertebrates. Sex determination systems exist across a continuum of genetic and environmental influences, blurring the lines between what was once considered a strict dichotomy between genetic sex determination and temperature-dependent sex determination. Across this spectrum, we identify the potential for sex reversal in species with clearly differentiated heteromorphic sex chromosomes (Pogona vitticeps, Bassiana duperreyi, Eremias multiocellata, Gekko japonicus), weakly differentiated homomorphic sex chromosomes (Niveoscincus ocellatus), and species with only a weak heritable predisposition for sex (Emys orbicularis, Trachemys scripta). We argue that sex reversal is widespread in reptiles (Testudines, Lacertidae, Agamidae, Scincidae, Gekkonidae) and has the potential to have an impact on individual fitness, resulting in reproductively, morphologically, and behaviourally unique phenotypes. Sex reversal is likely to be a powerful evolutionary force responsible for generating and maintaining lability and diversity in reptile sex-determining modes. © 2016 S. Karger AG, Basel.

  11. Identification of floral genes for sex determination in Calamus palustris Griff. by using suppression subtractive hybridization.

    PubMed

    Ng, C Y; Wickneswari, R; Choong, C Y

    2014-08-07

    Calamus palustris Griff. is an economically important dioecious rattan species in Southeast Asia. However, dioecy and onset of flowering at 3-4 years old render uncertainties in desired female:male seedling ratios to establish a productive seed orchard for this rattan species. We constructed a subtractive library for male floral tissue to understand the genetic mechanism for gender determination in C. palustris. The subtractive library produced 1536 clones with 1419 clones of high quality. Reverse Northern screening showed 313 clones with differential expression, and sequence analyses clustered them into 205 unigenes, including 32 contigs and 173 singletons. The subtractive library was further validated with reverse transcription-quantitative polymerase chain reaction analysis. Homology identification classified the unigenes into 12 putative functional proteins with 83% unigenes showing significant match to proteins in databases. Functional annotations of these unigenes revealed genes involved in male flower development, including MADS-box genes, pollen-related genes, phytohormones for flower development, and male flower organ development. Our results showed that the male floral genes may play a vital role in sex determination in C. palustris. The identified genes can be exploited to understand the molecular basis of sex determination in C. palustris.

  12. Functional Analysis Identified Habit Reversal Components for the Treatment of Motor Tics

    ERIC Educational Resources Information Center

    Dufrene, Brad A.; Harpole, Lauren Lestremau; Sterling, Heather E.; Perry, Erin J.; Burton, Britney; Zoder-Martell, Kimberly

    2013-01-01

    This study included brief functional analyses and treatment for motor tics exhibited by two children with Tourette Syndrome. Brief functional analyses were conducted in an outpatient treatment center and results were used to develop individualized habit reversal procedures. Treatment data were collected in clinic for one child and in clinic and…

  13. 50 CFR 224.101 - Enumeration of endangered marine and anadromous species.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... institutions) and which are identified as fish belonging to the NYB DPS based on genetics analyses, previously... genetics analyses, previously applied tags, previously applied marks, or documentation to verify that the... Carolina DPS based on genetics analyses, previously applied tags, previously applied marks, or...

  14. 50 CFR 224.101 - Enumeration of endangered marine and anadromous species.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... institutions) and which are identified as fish belonging to the NYB DPS based on genetics analyses, previously... genetics analyses, previously applied tags, previously applied marks, or documentation to verify that the... Carolina DPS based on genetics analyses, previously applied tags, previously applied marks, or...

  15. Immersion of fry in 17-Alpha Methyltestosterone can be highly effective for sex reversal in rainbow trout

    USDA-ARS?s Scientific Manuscript database

    17-alpha methyltestosterone (MT) is currently used to sex reverse genetic female rainbow trout into phenotypic males, commonly referred to as neomales. Neomales are primarily generated to propagate all-female lines. The MT is most commonly administered orally, fed during the first 6-9 weeks after sw...

  16. Novel Structure of Ty3 Reverse Transcriptase | Center for Cancer Research

    Cancer.gov

    Retrotransposons are mobile genetic elements that self amplify via a single-stranded RNA intermediate, which is converted to double-stranded DNA by an encoded reverse transcriptase (RT) with both DNA polymerase (pol) and ribonuclease H (RNase) activities. Categorized by whether they contain flanking long terminal repeat (LTR) sequences, retrotransposons play a critical role in

  17. Sexual and somatic development of wood frog tadpoles along a thermal gradient.

    PubMed

    Lambert, Max R; Smylie, Meredith S; Roman, Amber J; Freidenburg, L Kealoha; Skelly, David K

    2018-02-01

    All amphibian species are known to have genetic sex determination. However, a variety of environmental conditions can moderate sexual differentiation, in some cases leading to sex reversal and skewed sex ratios. While there has been a recent focus on chemically-induced sex reversal in amphibians, temperature can also influence sexual differentiation. Building upon a classic 1929 study by Emil Witschi, we assessed temperature-mediated sex reversal. Witschi found that the wood frog sex ratio is 100% male at a high temperature (32°C) compared to a 50:50 sex ratio at 20°C. This pattern is consistent with multiple models of environmentally mediated sexual differentiation in vertebrates. To better understand thermally mediated sex reversal, we raised wood frogs at temperature increments of ∼1°C between 19 and 34°C. Mirroring earlier findings, wood frog metamorph sex ratios are indistinguishable from 50:50 at the lowest temperature and entirely male at the highest temperatures. In between, sex ratios become increasingly male-dominated as temperatures increase, implying a steadily increasing tendency toward female-to-male sex reversal in warmer environments. There was no evidence of a threshold temperature effect on reversal patterns. We also show that, compared to males, females metamorphose larger and later in cooler conditions but earlier and smaller under warmer conditions. While the ecological relevance in this species is unknown, these results conform to the Charnov-Bull model of sex determination (in which female-to-male sex reversal can increase fitness to genetic females at higher temperatures), suggesting the system would reward further study. © 2018 Wiley Periodicals, Inc.

  18. Polygenic risk and the development and course of asthma: Evidence from a 4-decade longitudinal study

    PubMed Central

    Belsky, DW; Sears, MR; Hancox, RJ; Harrington, HL; Houts, R; Moffitt, TE; Sugden, K; Williams, B; Poulton, R; Caspi, A

    2013-01-01

    BACKGROUND Genome-wide association studies (GWAS) have discovered loci that predispose to asthma. To integrate these new discoveries with emerging models of asthma pathobiology, research is needed to test how genetic discoveries relate to developmental and biological characteristics of asthma. METHODS We derived a multi-locus profile of genetic risk from published GWAS of asthma case status. We then tested associations between this “genetic risk score” and developmental and biological characteristics of asthma in a population-based long-running birth cohort, the Dunedin Longitudinal Study (n=1,037). We evaluated asthma onset, persistence, atopy, airway hyperresponsiveness, incompletely reversible airflow obstruction, and asthma-related school and work absenteeism and hospitalization during 9 prospective assessments spanning ages 9–38 years, when 95% of surviving cohort members were seen. INTERPRETATION Cohort members at higher genetic risk experienced asthma onset earlier in life (HR=1.12 [1.01–1.26]). Childhood-onset asthma cases at higher genetic risk were more likely to become life-course-persistent asthma cases (RR=1.36 [1.14–1.63]). Asthma cases at higher genetic risk more often manifested atopy (RR=1.07 [1.01–1.14]), airway hyperresponsiveness (RR=1.16 [1.03–1.32]), and incompletely reversible airflow obstruction (RR=1.28 [1.04–1.57]). They were also more likely to miss school or work due to asthma (IRR=1.38 [1.02–1.86]) and to be hospitalized with breathing problems (HR=1.38 [1.07–1.79]). Genotypic information about asthma risk was independent of and additive to information derived from cohort members’ family histories of asthma. CONCLUSIONS Findings from this population study confirm that GWAS-discoveries for asthma associate with a childhood-onset phenotype and advance asthma genetics beyond the original GWAS-discoveries in three ways: (1) We show that genetic risks predict which childhood-onset asthma cases remit and which become life-course-persistent cases, although these predictions are not sufficiently sensitive or specific to support immediate clinical translation; (2) We elucidate a biological profile of the asthma that arises from these genetic risks: asthma characterized by atopy and airway hyperresponsiveness and leading to incompletely reversible airflow obstruction; and (3) We describe the real-life impact of GWAS-discoveries by quantifying genetic associations with missed school and work and hospitalization. PMID:24429243

  19. Isolation of mtpim Proves Tnt1 a Useful Reverse Genetics Tool in Medicago truncatula and Uncovers New Aspects of AP1-Like Functions in Legumes1

    PubMed Central

    Benlloch, Reyes; d'Erfurth, Isabelle; Ferrandiz, Cristina; Cosson, Viviane; Beltrán, José Pío; Cañas, Luis Antonio; Kondorosi, Adam; Madueño, Francisco; Ratet, Pascal

    2006-01-01

    Comparative studies help shed light on how the huge diversity in plant forms found in nature has been produced. We use legume species to study developmental differences in inflorescence architecture and flower ontogeny with classical models such as Arabidopsis thaliana or Antirrhinum majus. Whereas genetic control of these processes has been analyzed mostly in pea (Pisum sativum), Medicago truncatula is emerging as a promising alternative system for these studies due to the availability of a range of genetic tools. To assess the use of the retrotransposon Tnt1 for reverse genetics in M. truncatula, we screened a small Tnt1-mutagenized population using degenerate primers for MADS-box genes, known controllers of plant development. We describe here the characterization of mtpim, a new mutant caused by the insertion of Tnt1 in a homolog to the PROLIFERATING INFLORESCENCE MERISTEM (PIM)/APETALA1 (AP1)/SQUAMOSA genes. mtpim shows flower-to-inflorescence conversion and altered flowers with sepals transformed into leaves, indicating that MtPIM controls floral meristem identity and flower development. Although more extreme, this phenotype resembles the pea pim mutants, supporting the idea that M. truncatula could be used to complement analysis of reproductive development already initiated in pea. In fact, our study reveals aspects not shown by analysis of pea mutants: that the mutation in the AP1 homolog interferes with the specification of floral organs from common primordia and causes conversion of sepals into leaves, in addition to true conversion of flowers into inflorescences. The isolation of mtpim represents a proof of concept demonstrating that Tnt1 populations can be efficiently used in reverse genetics screenings in M. truncatula. PMID:16963524

  20. Reverse genetics of measles virus and resulting multivalent recombinant vaccines: applications of recombinant measles viruses.

    PubMed

    Billeter, M A; Naim, H Y; Udem, S A

    2009-01-01

    An overview is given on the development of technologies to allow reverse genetics of RNA viruses, i.e., the rescue of viruses from cDNA, with emphasis on nonsegmented negative-strand RNA viruses (Mononegavirales), as exemplified for measles virus (MV). Primarily, these technologies allowed site-directed mutagenesis, enabling important insights into a variety of aspects of the biology of these viruses. Concomitantly, foreign coding sequences were inserted to (a) allow localization of virus replication in vivo through marker gene expression, (b) develop candidate multivalent vaccines against measles and other pathogens, and (c) create candidate oncolytic viruses. The vector use of these viruses was experimentally encouraged by the pronounced genetic stability of the recombinants unexpected for RNA viruses, and by the high load of insertable genetic material, in excess of 6 kb. The known assets, such as the small genome size of the vector in comparison to DNA viruses proposed as vectors, the extensive clinical experience of attenuated MV as vaccine with a proven record of high safety and efficacy, and the low production cost per vaccination dose are thus favorably complemented.

  1. Genetic-epidemiological evidence on genes associated with HDL cholesterol levels: A systematic in-depth review

    PubMed Central

    Boes, Eva; Coassin, Stefan; Kollerits, Barbara; Heid, Iris M.; Kronenberg, Florian

    2009-01-01

    High-density lipoprotein (HDL) particles exhibit multiple antiatherogenic effects. They are key players in the reverse cholesterol transport which shuttles cholesterol from peripheral cells (e.g. macrophages) to the liver or other tissues. This complex process is thought to represent the basis for the antiatherogenic properties of HDL particles. The amount of cholesterol transported in HDL particles is measured as HDL cholesterol (HDLC) and is inversely correlated with the risk for coronary artery disease: an increase of 1 mg/dL of HDLC levels is associated with a 2% and 3% decrease of the risk for coronary artery disease in men and women, respectively. Genetically determined conditions with high HDLC levels (e.g. familial hyperalphalipoproteinemia) often coexist with longevity, and higher HDLC levels were found among healthy elderly individuals. HDLC levels are under considerable genetic control with heritability estimates of up to 80%. The identification and characterization of genetic variants associated with HDLC concentrations can provide new insights into the background of longevity. This review provides an extended overview on the current genetic-epidemiological evidence from association studies on genes involved in HDLC metabolism. It provides a path through the jungle of association studies which are sometimes confusing due to the varying and sometimes erroneous names of genetic variants, positions and directions of associations. Furthermore, it reviews the recent findings from genome-wide association studies which have identified new genes influencing HDLC levels. The yet identified genes together explain only a small amount of less than 10% of the HDLC variance, which leaves an enormous room for further yet to be identified genetic variants. This might be accomplished by large population-based genome-wide meta-analyses and by deep-sequencing approaches on the identified genes. The resulting findings will probably result in a re-drawing and extension of the involved metabolic pathways of HDLC metabolism. PMID:19041386

  2. Long-range dispersal moved Francisella tularensis into Western Europe from the East

    PubMed Central

    Dwibedi, Chinmay; Birdsell, Dawn; Lärkeryd, Adrian; Myrtennäs, Kerstin; Öhrman, Caroline; Nilsson, Elin; Karlsson, Edvin; Hochhalter, Christian; Rivera, Andrew; Maltinsky, Sara; Bayer, Brittany; Keim, Paul; Scholz, Holger C.; Tomaso, Herbert; Wittwer, Matthias; Beuret, Christian; Schuerch, Nadia; Pilo, Paola; Hernández Pérez, Marta; Rodriguez-Lazaro, David; Escudero, Raquel; Anda, Pedro; Forsman, Mats; Wagner, David M.; Larsson, Pär

    2016-01-01

    For many infections transmitting to humans from reservoirs in nature, disease dispersal patterns over space and time are largely unknown. Here, a reversed genomics approach helped us understand disease dispersal and yielded insight into evolution and biological properties of Francisella tularensis, the bacterium causing tularemia. We whole-genome sequenced 67 strains and characterized by single-nucleotide polymorphism assays 138 strains, collected from individuals infected 1947-2012 across Western Europe. We used the data for phylogenetic, population genetic and geographical network analyses. All strains (n=205) belonged to a monophyletic population of recent ancestry not found outside Western Europe. Most strains (n=195) throughout the study area were assigned to a star-like phylogenetic pattern indicating that colonization of Western Europe occurred via clonal expansion. In the East of the study area, strains were more diverse, consistent with a founder population spreading from east to west. The relationship of genetic and geographic distance within the F. tularensis population was complex and indicated multiple long-distance dispersal events. Mutation rate estimates based on year of isolation indicated null rates; in outbreak hotspots only, there was a rate of 0.4 mutations/genome/year. Patterns of nucleotide substitution showed marked AT mutational bias suggestive of genetic drift. These results demonstrate that tularemia has moved from east to west in Europe and that F. tularensis has a biology characterized by long-range geographical dispersal events and mostly slow, but variable, replication rates. The results indicate that mutation-driven evolution, a resting survival phase, genetic drift and long-distance geographical dispersal events have interacted to generate genetic diversity within this species. PMID:28348839

  3. A Food Chain Algorithm for Capacitated Vehicle Routing Problem with Recycling in Reverse Logistics

    NASA Astrophysics Data System (ADS)

    Song, Qiang; Gao, Xuexia; Santos, Emmanuel T.

    2015-12-01

    This paper introduces the capacitated vehicle routing problem with recycling in reverse logistics, and designs a food chain algorithm for it. Some illustrative examples are selected to conduct simulation and comparison. Numerical results show that the performance of the food chain algorithm is better than the genetic algorithm, particle swarm optimization as well as quantum evolutionary algorithm.

  4. Autosomal recessive Noonan syndrome associated with biallelic LZTR1 variants.

    PubMed

    Johnston, Jennifer J; van der Smagt, Jasper J; Rosenfeld, Jill A; Pagnamenta, Alistair T; Alswaid, Abdulrahman; Baker, Eva H; Blair, Edward; Borck, Guntram; Brinkmann, Julia; Craigen, William; Dung, Vu Chi; Emrick, Lisa; Everman, David B; van Gassen, Koen L; Gulsuner, Suleyman; Harr, Margaret H; Jain, Mahim; Kuechler, Alma; Leppig, Kathleen A; McDonald-McGinn, Donna M; Can, Ngoc Thi Bich; Peleg, Amir; Roeder, Elizabeth R; Rogers, R Curtis; Sagi-Dain, Lena; Sapp, Julie C; Schäffer, Alejandro A; Schanze, Denny; Stewart, Helen; Taylor, Jenny C; Verbeek, Nienke E; Walkiewicz, Magdalena A; Zackai, Elaine H; Zweier, Christiane; Zenker, Martin; Lee, Brendan; Biesecker, Leslie G

    2018-02-22

    PurposeTo characterize the molecular genetics of autosomal recessive Noonan syndrome.MethodsFamilies underwent phenotyping for features of Noonan syndrome in children and their parents. Two multiplex families underwent linkage analysis. Exome, genome, or multigene panel sequencing was used to identify variants. The molecular consequences of observed splice variants were evaluated by reverse-transcription polymerase chain reaction.ResultsTwelve families with a total of 23 affected children with features of Noonan syndrome were evaluated. The phenotypic range included mildly affected patients, but it was lethal in some, with cardiac disease and leukemia. All of the parents were unaffected. Linkage analysis using a recessive model supported a candidate region in chromosome 22q11, which includes LZTR1, previously shown to harbor mutations in patients with Noonan syndrome inherited in a dominant pattern. Sequencing analyses of 21 live-born patients and a stillbirth identified biallelic pathogenic variants in LZTR1, including putative loss-of-function, missense, and canonical and noncanonical splicing variants in the affected children, with heterozygous, clinically unaffected parents and heterozygous or normal genotypes in unaffected siblings.ConclusionThese clinical and genetic data confirm the existence of a form of Noonan syndrome that is inherited in an autosomal recessive pattern and identify biallelic mutations in LZTR1.Genet Med advance online publication, 22 February 2018; doi:10.1038/gim.2017.249.

  5. An Integrated Systems Biology Approach Identifies TRIM25 as a Key Determinant of Breast Cancer Metastasis.

    PubMed

    Walsh, Logan A; Alvarez, Mariano J; Sabio, Erich Y; Reyngold, Marsha; Makarov, Vladimir; Mukherjee, Suranjit; Lee, Ken-Wing; Desrichard, Alexis; Turcan, Şevin; Dalin, Martin G; Rajasekhar, Vinagolu K; Chen, Shuibing; Vahdat, Linda T; Califano, Andrea; Chan, Timothy A

    2017-08-15

    At the root of most fatal malignancies are aberrantly activated transcriptional networks that drive metastatic dissemination. Although individual metastasis-associated genes have been described, the complex regulatory networks presiding over the initiation and maintenance of metastatic tumors are still poorly understood. There is untapped value in identifying therapeutic targets that broadly govern coordinated transcriptional modules dictating metastatic progression. Here, we reverse engineered and interrogated a breast cancer-specific transcriptional interaction network (interactome) to define transcriptional control structures causally responsible for regulating genetic programs underlying breast cancer metastasis in individual patients. Our analyses confirmed established pro-metastatic transcription factors, and they uncovered TRIM25 as a key regulator of metastasis-related transcriptional programs. Further, in vivo analyses established TRIM25 as a potent regulator of metastatic disease and poor survival outcome. Our findings suggest that identifying and targeting keystone proteins, like TRIM25, can effectively collapse transcriptional hierarchies necessary for metastasis formation, thus representing an innovative cancer intervention strategy. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. A reverse genetics system for enterovirus D68 using human RNA polymerase I.

    PubMed

    Pan, Minglei; Gao, Shuai; Zhou, Zhenwei; Zhang, Keke; Liu, Sihua; Wang, Zhiyun; Wang, Tao

    2018-05-17

    Human enterovirus D68 (EV-D68) is a highly contagious virus, which causes respiratory tract infections. However, no effective vaccines are currently available for controlling EV-D68 infection. Here, we developed a reverse genetics system to recover EV-D68 minireplicons and infectious EV-D68 from transfected plasmids using the RNA polymerase I (Pol I) promoter. The EV-D68 minireplicons contained the luciferase reporter gene, which flanked by the non-coding regions of the EV-D68 RNA. The luciferase signals could be detected in cells after transfection and Pol I promoter-mediated luciferase signal was significantly stronger than that mediated by the T7 promoter. Furthermore, recombinant viruses were generated by transfecting plasmids that contained the genomic RNA segments of EV-D68, under the control of Pol I promoter into 293T cells or RD cells. On plaque morphology and growth kinetics, the rescued virus and parental virus were indistinguishable. In addition, we showed that the G394C mutation disrupts the viral 5'-UTR structure and suppresses the viral cap-independent translation. This reverse genetics system for EV-D68 recovery can greatly facilitate research into EV-D68 biology. Moreover, this system could accelerate the development of EV-D68 vaccines and anti-EV-D68 drugs.

  7. Arenavirus reverse genetics for vaccine development

    PubMed Central

    Ortiz-Riaño, Emilio; Cheng, Benson Yee Hin; Carlos de la Torre, Juan

    2013-01-01

    Arenaviruses are important human pathogens with no Food and Drug Administration (FDA)-licensed vaccines available and current antiviral therapy being limited to an off-label use of the nucleoside analogue ribavirin of limited prophylactic efficacy. The development of reverse genetics systems represented a major breakthrough in arenavirus research. However, rescue of recombinant arenaviruses using current reverse genetics systems has been restricted to rodent cells. In this study, we describe the rescue of recombinant arenaviruses from human 293T cells and Vero cells, an FDA-approved line for vaccine development. We also describe the generation of novel vectors that mediate synthesis of both negative-sense genome RNA and positive-sense mRNA species of lymphocytic choriomeningitis virus (LCMV) directed by the human RNA polymerases I and II, respectively, within the same plasmid. This approach reduces by half the number of vectors required for arenavirus rescue, which could facilitate virus rescue in cell lines approved for human vaccine production but that cannot be transfected at high efficiencies. We have shown the feasibility of this approach by rescuing both the Old World prototypic arenavirus LCMV and the live-attenuated vaccine Candid#1 strain of the New World arenavirus Junín. Moreover, we show the feasibility of using these novel strategies for efficient rescue of recombinant tri-segmented both LCMV and Candid#1. PMID:23364194

  8. MINIGENOMES, TRANSCRIPTION AND REPLICATION COMPETENT VIRUS-LIKE PARTICLES AND BEYOND: REVERSE GENETICS SYSTEMS FOR FILOVIRUSES AND OTHER NEGATIVE STRANDED HEMORRHAGIC FEVER VIRUSES

    PubMed Central

    Hoenen, Thomas; Groseth, Allison; de Kok-Mercado, Fabian; Kuhn, Jens H.; Wahl-Jensen, Victoria

    2012-01-01

    Reverse-genetics systems are powerful tools enabling researchers to study the replication cycle of RNA viruses, including filoviruses and other hemorrhagic fever viruses, as well as to discover new antivirals. They include full-length clone systems as well as a number of life cycle modeling systems. Full-length clone systems allow for the generation of infectious, recombinant viruses, and thus are an important tool for studying the virus replication cycle in its entirety. In contrast, life cycle modeling systems such as minigenome and transcription and replication competent virus-like particle systems can be used to simulate and dissect parts of the virus life cycle outside of containment facilities. Minigenome systems are used to model viral genome replication and transcription, whereas transcription and replication competent virus-like particle systems also model morphogenesis and budding as well as infection of target cells. As such, these modeling systems have tremendous potential to further the discovery and screening of new antivirals targeting hemorrhagic fever viruses. This review provides an overview of currently established reverse genetics systems for hemorrhagic fever-causing negative-sense RNA viruses, with a particular emphasis on filoviruses, and the potential application of these systems for antiviral research. PMID:21699921

  9. [Genetic Characteristics of Type 2 Vaccine-derived Poliovirus in Shanxi Province (China) in 2014].

    PubMed

    Yan, Dongrei; Li, Xiaolei; Zhang, Yong; Yang, Jianfang; Zhu, Shuangli; Wang, Dongyan; Zhang, Chuangye; Zhu, Hui; Xu, Wenbo

    2015-03-01

    The World Health Organization redefined the type 2 vaccine-derived poliovirus (VDPV) in 2010. To study the genetic characteristics and evolution of type 2 VDPV under this new definition, we conducted genome sequencing and analyses of type 2 VDPVs isolated from one patient with acute flaccid paralysis in Shanxi province (China) in 2014. Nucleotide sequencing revealed that the full-length of type 2 VDPV is 7439 bases encoding 2207 amino acids with no insertion or deletion of nucleotides compared with Sabin2. One nucleotide substitution identified as a key determinant of the attenuated phenotype of the Sabin 2 strain (A-G reversion at nucleotide nt 481 in the 5-end of the untranslated region) had reverted in the Shanxi type 2 VDPV. The other known key determinant of the attenuated phenotype of the Sabin 2 strain (U-->C reversion at nt2909 in the VP1 coding region that caused a Ile143Thr substitution in VP1) had not reverted in the Shanxi VDPV. The Shanxi type 2 VDPV was S2/S1 recombinant, the crossover site of which mapped to the 3-end of the 3D region (between nt 6247 and nt 6281). A phylogentic tree based on the VP1 coding region showed that evolution of the Shanxi type 2 VDPV was independent of other type 2 VDPVs detected worldwide. We estimated that the strain circulated for approximately = 11 months in the population according to the known evolution rate. The present study confirmed that the Chinese Polio Laboratory Network could discover the VDPV promptly and that it played an important part in maintenance of a polio-free China.

  10. New Subtypes and Genetic Recombination in HIV Type 1-Infecting Patients with Highly Active Antiretroviral Therapy in Peru (2008–2010)

    PubMed Central

    Acuña, Maribel; Gazzo, Cecilia; Salinas, Gabriela; Cárdenas, Fanny; Valverde, Ada; Romero, Soledad

    2012-01-01

    Abstract HIV-1 subtype B is the most frequent strain in Peru. However, there is no available data about the genetic diversity of HIV-infected patients receiving highly active antiretroviral therapy (HAART) here. A group of 267 patients in the Peruvian National Treatment Program with virologic failure were tested for genotypic evidence of HIV drug resistance at the Instituto Nacional de Salud (INS) of Peru between March 2008 and December 2010. Viral RNA was extracted from plasma and the segments of the protease (PR) and reverse transcriptase (RT) genes were amplified by reverse transcriptase polymerase chain reaction (RT-PCR), purified, and fully sequenced. Consensus sequences were submitted to the HIVdb Genotypic Resistance Interpretation Algorithm Database from Stanford University, and then aligned using Clustal X v.2.0 to generate a phylogenetic tree using the maximum likelihood method. Intrasubtype and intersubtype recombination analyses were performed using the SCUEAL program (Subtype Classification by Evolutionary ALgo-rithms). A total of 245 samples (91%) were successfully genotyped. The analysis obtained from the HIVdb program showed 81.5% resistance cases (n=198). The phylogenetic analysis revealed that subtype B was predominant in the population (98.8%), except for new cases of A, C, and H subtypes (n=4). Of these cases, only subtype C was imported. Likewise, recombination analysis revealed nine intersubtype and 20 intrasubtype recombinant cases. This is the first report of the presence of HIV-1 subtypes C and H in Peru. The introduction of new subtypes and circulating recombinants forms can make it difficult to distinguish resistance profiles in patients and consequently affect future treatment strategies against HIV in this country. PMID:22559065

  11. New subtypes and genetic recombination in HIV type 1-infecting patients with highly active antiretroviral therapy in Peru (2008-2010).

    PubMed

    Yabar, Carlos Augusto; Acuña, Maribel; Gazzo, Cecilia; Salinas, Gabriela; Cárdenas, Fanny; Valverde, Ada; Romero, Soledad

    2012-12-01

    HIV-1 subtype B is the most frequent strain in Peru. However, there is no available data about the genetic diversity of HIV-infected patients receiving highly active antiretroviral therapy (HAART) here. A group of 267 patients in the Peruvian National Treatment Program with virologic failure were tested for genotypic evidence of HIV drug resistance at the Instituto Nacional de Salud (INS) of Peru between March 2008 and December 2010. Viral RNA was extracted from plasma and the segments of the protease (PR) and reverse transcriptase (RT) genes were amplified by reverse transcriptase polymerase chain reaction (RT-PCR), purified, and fully sequenced. Consensus sequences were submitted to the HIVdb Genotypic Resistance Interpretation Algorithm Database from Stanford University, and then aligned using Clustal X v.2.0 to generate a phylogenetic tree using the maximum likelihood method. Intrasubtype and intersubtype recombination analyses were performed using the SCUEAL program (Subtype Classification by Evolutionary ALgo-rithms). A total of 245 samples (91%) were successfully genotyped. The analysis obtained from the HIVdb program showed 81.5% resistance cases (n=198). The phylogenetic analysis revealed that subtype B was predominant in the population (98.8%), except for new cases of A, C, and H subtypes (n=4). Of these cases, only subtype C was imported. Likewise, recombination analysis revealed nine intersubtype and 20 intrasubtype recombinant cases. This is the first report of the presence of HIV-1 subtypes C and H in Peru. The introduction of new subtypes and circulating recombinants forms can make it difficult to distinguish resistance profiles in patients and consequently affect future treatment strategies against HIV in this country.

  12. Reverse Genetics System Demonstrates that Rotavirus Nonstructural Protein NSP6 Is Not Essential for Viral Replication in Cell Culture.

    PubMed

    Komoto, Satoshi; Kanai, Yuta; Fukuda, Saori; Kugita, Masanori; Kawagishi, Takahiro; Ito, Naoto; Sugiyama, Makoto; Matsuura, Yoshiharu; Kobayashi, Takeshi; Taniguchi, Koki

    2017-11-01

    The use of overlapping open reading frames (ORFs) to synthesize more than one unique protein from a single mRNA has been described for several viruses. Segment 11 of the rotavirus genome encodes two nonstructural proteins, NSP5 and NSP6. The NSP6 ORF is present in the vast majority of rotavirus strains, and therefore the NSP6 protein would be expected to have a function in viral replication. However, there is no direct evidence of its function or requirement in the viral replication cycle yet. Here, taking advantage of a recently established plasmid-only-based reverse genetics system that allows rescue of recombinant rotaviruses entirely from cloned cDNAs, we generated NSP6-deficient viruses to directly address its significance in the viral replication cycle. Viable recombinant NSP6-deficient viruses could be engineered. Single-step growth curves and plaque formation of the NSP6-deficient viruses confirmed that NSP6 expression is of limited significance for RVA replication in cell culture, although the NSP6 protein seemed to promote efficient virus growth. IMPORTANCE Rotavirus is one of the most important pathogens of severe diarrhea in young children worldwide. The rotavirus genome, consisting of 11 segments of double-stranded RNA, encodes six structural proteins (VP1 to VP4, VP6, and VP7) and six nonstructural proteins (NSP1 to NSP6). Although specific functions have been ascribed to each of the 12 viral proteins, the role of NSP6 in the viral replication cycle remains unknown. In this study, we demonstrated that the NSP6 protein is not essential for viral replication in cell culture by using a recently developed plasmid-only-based reverse genetics system. This reverse genetics approach will be successfully applied to answer questions of great interest regarding the roles of rotaviral proteins in replication and pathogenicity, which can hardly be addressed by conventional approaches. Copyright © 2017 American Society for Microbiology.

  13. Plastid, nuclear and reverse transcriptase sequences in the mitochondrial genome of Oenothera: is genetic information transferred between organelles via RNA?

    PubMed Central

    Schuster, W; Brennicke, A

    1987-01-01

    We describe an open reading frame (ORF) with high homology to reverse transcriptase in the mitochondrial genome of Oenothera. This ORF displays all the characteristics of an active plant mitochondrial gene with a possible ribosome binding site and 39% T in the third codon position. It is located between a sequence fragment from the plastid genome and one of nuclear origin downstream from the gene encoding subunit 5 of the NADH dehydrogenase. The nuclear derived sequence consists of 528 nucleotides from the small ribosomal RNA and contains an expansion segment unique to nuclear rRNAs. The plastid sequence contains part of the ribosomal protein S4 and the complete tRNA(Ser). The observation that only transcribed sequences have been found i more than one subcellular compartment in higher plants suggests that interorganellar transfer of genetic information may occur via RNA and subsequent local reverse transcription and genomic integration. PMID:14650433

  14. Reverse transcription-polymerase chain reaction molecular testing of cytology specimens: Pre-analytic and analytic factors.

    PubMed

    Bridge, Julia A

    2017-01-01

    The introduction of molecular testing into cytopathology laboratory practice has expanded the types of samples considered feasible for identifying genetic alterations that play an essential role in cancer diagnosis and treatment. Reverse transcription-polymerase chain reaction (RT-PCR), a sensitive and specific technical approach for amplifying a defined segment of RNA after it has been reverse-transcribed into its DNA complement, is commonly used in clinical practice for the identification of recurrent or tumor-specific fusion gene events. Real-time RT-PCR (quantitative RT-PCR), a technical variation, also permits the quantitation of products generated during each cycle of the polymerase chain reaction process. This review addresses qualitative and quantitative pre-analytic and analytic considerations of RT-PCR as they relate to various cytologic specimens. An understanding of these aspects of genetic testing is central to attaining optimal results in the face of the challenges that cytology specimens may present. Cancer Cytopathol 2017;125:11-19. © 2016 American Cancer Society. © 2016 American Cancer Society.

  15. Evaluation of a reverse-hybridization StripAssay for the detection of genetic polymorphisms leading to acenocoumarol sensitivity.

    PubMed

    Gialeraki, Argyri; Markatos, Christos; Grouzi, Elisabeth; Merkouri, Efrosyni; Travlou, Anthi; Politou, Marianna

    2010-04-01

    Acenocoumarol is mainly catabolized by CYP2C9 isoform of cytochrome P450 (CYP) liver complex and exerts its anticoagulant effect through the inhibition of Vitamin K Epoxide Reductase (VKOR). The most important genetic polymorphisms which lead to an impaired enzymatic activity and therefore predispose to acenocoumarol sensitivity, are considered to be CYP2C9*2 (Arg144Cys), CYP2C9*3 (Ile359Leu) and VKORC1-1639G>A, respectively. In this study we compared the results of the PGXThrombo StripAssay kit (ViennaLab Diagnostics,Vienna, Austria) with direct DNA sequencing and in house Restriction Fragment Length Polymorphisms (RFLP) for the detection of the aforementioned Single Nucleotide Polymorphisms (SNPs). The reverse hybridization StripAssay was found to be equally effective with RFLP and direct DNA sequencing for the detection of CYP2C9*2 and CYP2C9*3 polymorphisms, respectively. The comparison of the RFLP reference method with the reverse hybridization StripAssay for the detection of VKORC1-1639 G>A polymorphism showed that the reverse hybridization StripAsssay might misclassify some A/A homozygotes as heterozygotes. Optimization of the hybridization procedures may eliminate the extra low signal band observed in some samples at the reverse hybridization StripAssay and improve its diagnostic value.

  16. Genetic and epigenetic differences associated with environmental gradients in replicate populations of two salt marsh perennials.

    PubMed

    Foust, C M; Preite, V; Schrey, A W; Alvarez, M; Robertson, M H; Verhoeven, K J F; Richards, C L

    2016-04-01

    While traits and trait plasticity are partly genetically based, investigating epigenetic mechanisms may provide more nuanced understanding of the mechanisms underlying response to environment. Using AFLP and methylation-sensitive AFLP, we tested the hypothesis that differentiation to habitats along natural salt marsh environmental gradients occurs at epigenetic, but not genetic loci in two salt marsh perennials. We detected significant genetic and epigenetic structure among populations and among subpopulations, but we found multilocus patterns of differentiation to habitat type only in epigenetic variation for both species. In addition, more epigenetic than genetic loci were correlated with habitat in both species. When we analysed genetic and epigenetic variation simultaneously with partial Mantel, we found no correlation between genetic variation and habitat and a significant correlation between epigenetic variation and habitat in Spartina alterniflora. In Borrichia frutescens, we found significant correlations between epigenetic and/or genetic variation and habitat in four of five populations when populations were analysed individually, but there was no significant correlation between genetic or epigenetic variation and habitat when analysed jointly across the five populations. These analyses suggest that epigenetic mechanisms are involved in the response to salt marsh habitats, but also that the relationships among genetic and epigenetic variation and habitat vary by species. Site-specific conditions may also cloud our ability to detect response in replicate populations with similar environmental gradients. Future studies analysing sequence data and the correlation between genetic variation and DNA methylation will be powerful to identify the contributions of genetic and epigenetic response to environmental gradients. © 2016 John Wiley & Sons Ltd.

  17. MONITORING MYCOTOXIN PRODUCTION AT THE GENETIC LEVEL ON VARIOUS GROWTH SUBSTRATES USING QUANTITATIVE REVERSE TRANSCRIPTION POLYMERASE CHAIN REACTION?EXPERIMENT DESIGN

    EPA Science Inventory

    The paper describes a method of analyzing the production of mycotoxins at the genetic level by monitoring the intracellular levels of messenger RNA (mRNA). Initial work will focus on threshing out the mycotoxin gene clusters in Stachybotrys chartarum followed by analysis of toxin...

  18. Are we there yet? Tracking the development of new model systems

    Treesearch

    A. Abzhanov; C. Extavour; A. Groover; S. Hodges; H. Hoekstra; E. Kramer; A. Monteiro

    2008-01-01

    It is increasingly clear that additional ‘model’ systems are needed to elucidate the genetic and developmental basis of organismal diversity. Whereas model system development previously required enormous investment, recent advances including the decreasing cost of DNA sequencing and the power of reverse genetics to study gene function are greatly facilitating...

  19. COTIP: Cotton TILLING Platform, a Resource for Plant Improvement and Reverse Genetic Studies

    PubMed Central

    Aslam, Usman; Cheema, Hafiza M. N.; Ahmad, Sheraz; Khan, Iqrar A.; Malik, Waqas; Khan, Asif A.

    2016-01-01

    Cotton is cultivated worldwide for its white fiber, of which around 90% is tetraploid upland cotton (Gossypium hirsutum L.) carrying both A and D genome. Since centuries, yield increasing efforts for the cotton crop by conventional breeding approaches have caused an extensive erosion of natural genetic variability. Mutation based improvement strategies provide an effective way of creating new allelic variations. Targeting Induced Local Lesions IN Genomes (TILLING) provides a mutation based reverse genetic strategy to create and evaluate induced genetic variability at DNA level. Here, we report development and testing of TILLING populations of allotetraploid cotton (G. hirsutum) for functional genomic studies and mutation based enrichment of cotton genetic resources. Seed of two cotton cultivars “PB-899 and PB-900” were mutagenized with 0.3 and 0.2% (v/v) ethyl methanesulfonate, respectively. The phenotyping of M1 and M2 populations presented numerous mutants regarding the branching pattern, leaf morphology, disease resistance, photosynthetic lesions and flower sterility. Molecular screening for point mutations was performed by TILLING PCR aided CEL1 mismatch cleavage. To estimate the mutation frequency in the mutant genomes, five gene classes were TILLed in 8000 M2 plants of each var. “PB-899” and “PB-900.” These include actin (GhACT), Pectin Methyl Esterase (GhPME), sucrose synthase (GhSUS), resistance gene analog, and defense response gene (DRGs). The var. PB-899 was harboring 47% higher mutation induction rate than PB-900. The highest rate of mutation frequency was identified for NAC-TF5 (EU706348) of DRGs class, ranging from 1/58 kb in PB-899 to 1/105 kb in PB-900. The mutation screening assay revealed the presence of significant proportion of induced mutations in cotton TILLING populations such as 1/153 kb and 1/326 kb in var. “PB-899” and “PB-900,” respectively. The establishment of a cotton TILLING platform (COTIP) and data obtained from the resource TILLING population suggest its effectiveness in widening the genetic bases of cotton for improvement and utilizing it for subsequent reverse genetic studies of various genes. PMID:28082993

  20. Genetic Instability at the Agouti Locus of the Mouse (Mus Musculus). I. Increased Reverse Mutation Frequency to the A(w) Allele in a/a Heterozygotes

    PubMed Central

    Sandulache, R.; Neuhauser-Klaus, A.; Favor, J.

    1994-01-01

    We have compiled the reverse mutation rate data to the white bellied agouti (A(w)) allele in heterozygous A/a mice and shown it to be increased by a factor of at least 350 in comparison to the reverse mutation rate in homozygous a/a mice. Employing tightly linked flanking restriction fragment length polymorphism DNA markers, we have shown that reversion to A(w) is associated with crossing over in the vicinity of the agouti locus. The non-agouti (a) allele has been recently shown to contain an 11-kb insert within the first intron of the agouti gene. Together with our present results, these observations suggest possible mechanisms to explain the reversion events. PMID:7982562

  1. Mutation-based learning to improve student autonomy and scientific inquiry skills in a large genetics laboratory course.

    PubMed

    Wu, Jinlu

    2013-01-01

    Laboratory education can play a vital role in developing a learner's autonomy and scientific inquiry skills. In an innovative, mutation-based learning (MBL) approach, students were instructed to redesign a teacher-designed standard experimental protocol by a "mutation" method in a molecular genetics laboratory course. Students could choose to delete, add, reverse, or replace certain steps of the standard protocol to explore questions of interest to them in a given experimental scenario. They wrote experimental proposals to address their rationales and hypotheses for the "mutations"; conducted experiments in parallel, according to both standard and mutated protocols; and then compared and analyzed results to write individual lab reports. Various autonomy-supportive measures were provided in the entire experimental process. Analyses of student work and feedback suggest that students using the MBL approach 1) spend more time discussing experiments, 2) use more scientific inquiry skills, and 3) find the increased autonomy afforded by MBL more enjoyable than do students following regimented instructions in a conventional "cookbook"-style laboratory. Furthermore, the MBL approach does not incur an obvious increase in labor and financial costs, which makes it feasible for easy adaptation and implementation in a large class.

  2. Salt tolerance research in date palm tree (Phoenix dactylifera L.), past, present, and future perspectives.

    PubMed

    Yaish, Mahmoud W; Kumar, Prakash P

    2015-01-01

    The date palm can adapt to extreme drought, to heat, and to relatively high levels of soil salinity. However, excessive amounts of salt due to irrigation with brackish water lead to a significant reduction in the productivity of the fruits as well as marked decrease in the viable numbers of the date palm trees. It is imperative that the nature of the existing salt-adaptation mechanism be understood in order to develop future date palm varieties that can tolerate excessive soil salinity. In this perspective article, several research strategies, obstacles, and precautions are discussed in light of recent advancements accomplished in this field and the properties of this species. In addition to a physiological characterization, we propose the use of a full range of OMICS technologies, coupled with reverse genetics approaches, aimed toward understanding the salt-adaption mechanism in the date palm. Information generated by these analyses should highlight transcriptional and posttranscriptional modifications controlling the salt-adaptation mechanisms. As an extremophile with a natural tolerance for a wide range of abiotic stresses, the date palm may represent a treasure trove of novel genetic resources for salinity tolerance.

  3. An Efficient and Versatile System for Visualization and Genetic Modification of Dopaminergic Neurons in Transgenic Mice

    PubMed Central

    Kramer, Edgar R.

    2015-01-01

    Background & Aims The brain dopaminergic (DA) system is involved in fine tuning many behaviors and several human diseases are associated with pathological alterations of the DA system such as Parkinson’s disease (PD) and drug addiction. Because of its complex network integration, detailed analyses of physiological and pathophysiological conditions are only possible in a whole organism with a sophisticated tool box for visualization and functional modification. Methods & Results Here, we have generated transgenic mice expressing the tetracycline-regulated transactivator (tTA) or the reverse tetracycline-regulated transactivator (rtTA) under control of the tyrosine hydroxylase (TH) promoter, TH-tTA (tet-OFF) and TH-rtTA (tet-ON) mice, to visualize and genetically modify DA neurons. We show their tight regulation and efficient use to overexpress proteins under the control of tet-responsive elements or to delete genes of interest with tet-responsive Cre. In combination with mice encoding tet-responsive luciferase, we visualized the DA system in living mice progressively over time. Conclusion These experiments establish TH-tTA and TH-rtTA mice as a powerful tool to generate and monitor mouse models for DA system diseases. PMID:26291828

  4. Actin Interacting Protein1 and Actin Depolymerizing Factor Drive Rapid Actin Dynamics in Physcomitrella patens[W

    PubMed Central

    Augustine, Robert C.; Pattavina, Kelli A.; Tüzel, Erkan; Vidali, Luis; Bezanilla, Magdalena

    2011-01-01

    The remodeling of actin networks is required for a variety of cellular processes in eukaryotes. In plants, several actin binding proteins have been implicated in remodeling cortical actin filaments (F-actin). However, the extent to which these proteins support F-actin dynamics in planta has not been tested. Using reverse genetics, complementation analyses, and cell biological approaches, we assessed the in vivo function of two actin turnover proteins: actin interacting protein1 (AIP1) and actin depolymerizing factor (ADF). We report that AIP1 is a single-copy gene in the moss Physcomitrella patens. AIP1 knockout plants are viable but have reduced expansion of tip-growing cells. AIP1 is diffusely cytosolic and functions in a common genetic pathway with ADF to promote tip growth. Specifically, ADF can partially compensate for loss of AIP1, and AIP1 requires ADF for function. Consistent with a role in actin remodeling, AIP1 knockout lines accumulate F-actin bundles, have fewer dynamic ends, and have reduced severing frequency. Importantly, we demonstrate that AIP1 promotes and ADF is essential for cortical F-actin dynamics. PMID:22003077

  5. Identification of Arabidopsis mutants with altered freezing tolerance.

    PubMed

    Perea-Resa, Carlos; Salinas, Julio

    2014-01-01

    Low temperature is an important determinant in the configuration of natural plant communities and defines the range of distribution and growth of important crops. Some plants, including Arabidopsis, have evolved sophisticated adaptive mechanisms to tolerate low and freezing temperatures. Central to this adaptation is the process of cold acclimation. By means of this process, many plants from temperate regions are able to develop or increase their freezing tolerance in response to low, nonfreezing temperatures. The identification and characterization of factors involved in freezing tolerance are crucial to understand the molecular mechanisms underlying the cold acclimation response and have a potential interest to improve crop tolerance to freezing temperatures. Many genes implicated in cold acclimation have been identified in numerous plant species by using molecular approaches followed by reverse genetic analysis. Remarkably, however, direct genetic analyses have not been conveniently exploited in their capacity for identifying genes with pivotal roles in that adaptive response. In this chapter, we describe a protocol for evaluating the freezing tolerance of both non-acclimated and cold-acclimated Arabidopsis plants. This protocol allows the accurate and simple screening of mutant collections for the identification of novel factors involved in freezing tolerance and cold acclimation.

  6. Differential effects of common variants in SCN2A on general cognitive ability, brain physiology, and messenger RNA expression in schizophrenia cases and control individuals.

    PubMed

    Dickinson, Dwight; Straub, Richard E; Trampush, Joey W; Gao, Yuan; Feng, Ningping; Xie, Bin; Shin, Joo Heon; Lim, Hun Ki; Ursini, Gianluca; Bigos, Kristin L; Kolachana, Bhaskar; Hashimoto, Ryota; Takeda, Masatoshi; Baum, Graham L; Rujescu, Dan; Callicott, Joseph H; Hyde, Thomas M; Berman, Karen F; Kleinman, Joel E; Weinberger, Daniel R

    2014-06-01

    One approach to understanding the genetic complexity of schizophrenia is to study associated behavioral and biological phenotypes that may be more directly linked to genetic variation. To identify single-nucleotide polymorphisms associated with general cognitive ability (g) in people with schizophrenia and control individuals. Genomewide association study, followed by analyses in unaffected siblings and independent schizophrenia samples, functional magnetic resonance imaging studies of brain physiology in vivo, and RNA sequencing in postmortem brain samples. The discovery cohort and unaffected siblings were participants in the National Institute of Mental Health Clinical Brain Disorders Branch schizophrenia genetics studies. Additional schizophrenia cohorts were from psychiatric treatment settings in the United States, Japan, and Germany. The discovery cohort comprised 339 with schizophrenia and 363 community control participants. Follow-up analyses studied 147 unaffected siblings of the schizophrenia cases and independent schizophrenia samples including a total of an additional 668 participants. Imaging analyses included 87 schizophrenia cases and 397 control individuals. Brain tissue samples were available for 64 cases and 61 control individuals. We studied genomewide association with g, by group, in the discovery cohort. We used selected genotypes to test specific associations in unaffected siblings and independent schizophrenia samples. Imaging analyses focused on activation in the prefrontal cortex during working memory. Brain tissue studies yielded messenger RNA expression levels for RefSeq transcripts. The schizophrenia discovery cohort showed genomewide-significant association of g with polymorphisms in sodium channel gene SCN2A, accounting for 10.4% of g variance (rs10174400, P = 9.27 × 10(-10)). Control individuals showed a trend for g/genotype association with reversed allelic directionality. The genotype-by-group interaction was also genomewide significant (P = 1.75 × 10(-9)). Siblings showed a genotype association with g parallel to the schizophrenia group and the same interaction pattern. Parallel, but weaker, associations with cognition were found in independent schizophrenia samples. Imaging analyses showed a similar pattern of genotype associations by group and genotype-by-group interaction. Sequencing of RNA in brain revealed reduced expression in 2 of 3 SCN2A alternative transcripts in the patient group, with genotype-by-group interaction, that again paralleled the cognition effects. The findings implicate SCN2A and sodium channel biology in cognitive impairment in schizophrenia cases and unaffected relatives and may facilitate development of cognition-enhancing treatments.

  7. The impact of sex-role reversal on the diversity of the major histocompatibility complex: insights from the seahorse (Hippocampus abdominalis).

    PubMed

    Bahr, Angela; Wilson, Anthony B

    2011-05-10

    Both natural and sexual selection are thought to influence genetic diversity, but the study of the relative importance of these two factors on ecologically-relevant traits has traditionally focused on species with conventional sex-roles, with male-male competition and female-based mate choice. With its high variability and significance in both immune function and olfactory-mediated mate choice, the major histocompatibility complex (MHC/MH) is an ideal system in which to evaluate the relative contributions of these two selective forces to genetic diversity. Intrasexual competition and mate choice are both reversed in sex-role reversed species, and sex-related differences in the detection and use of MH-odor cues are expected to influence the intensity of sexual selection in such species. The seahorse, Hippocampus abdominalis, has an exceptionally highly developed form of male parental care, with female-female competition and male mate choice. Here, we demonstrate that the sex-role reversed seahorse has a single MH class II beta-chain gene and that the diversity of the seahorse MHIIβ locus and its pattern of variation are comparable to those detected in species with conventional sex roles. Despite the presence of only a single gene copy, intralocus MHIIβ allelic diversity in this species exceeds that observed in species with multiple copies of this locus. The MHIIβ locus of the seahorse exhibits a novel expression domain in the male brood pouch. The high variation found at the seahorse MHIIβ gene indicates that sex-role reversed species are capable of maintaining the high MHC diversity typical in most vertebrates.Whether such species have evolved the capacity to use MH-odor cues during mate choice is presently being investigated using mate choice experiments. If this possibility can be rejected, such systems would offer an exceptional opportunity to study the effects of natural selection in isolation, providing powerful comparative models for understanding the relative importance of selective factors in shaping patterns of genetic variation.

  8. Evidence for an Ancestral Association of Human Coronavirus 229E with Bats

    PubMed Central

    Corman, Victor Max; Baldwin, Heather J.; Tateno, Adriana Fumie; Zerbinati, Rodrigo Melim; Annan, Augustina; Owusu, Michael; Nkrumah, Evans Ewald; Maganga, Gael Darren; Oppong, Samuel; Adu-Sarkodie, Yaw; Vallo, Peter; da Silva Filho, Luiz Vicente Ribeiro Ferreira; Leroy, Eric M.; Thiel, Volker; van der Hoek, Lia; Poon, Leo L. M.; Tschapka, Marco

    2015-01-01

    ABSTRACT We previously showed that close relatives of human coronavirus 229E (HCoV-229E) exist in African bats. The small sample and limited genomic characterizations have prevented further analyses so far. Here, we tested 2,087 fecal specimens from 11 bat species sampled in Ghana for HCoV-229E-related viruses by reverse transcription-PCR (RT-PCR). Only hipposiderid bats tested positive. To compare the genetic diversity of bat viruses and HCoV-229E, we tested historical isolates and diagnostic specimens sampled globally over 10 years. Bat viruses were 5- and 6-fold more diversified than HCoV-229E in the RNA-dependent RNA polymerase (RdRp) and spike genes. In phylogenetic analyses, HCoV-229E strains were monophyletic and not intermixed with animal viruses. Bat viruses formed three large clades in close and more distant sister relationships. A recently described 229E-related alpaca virus occupied an intermediate phylogenetic position between bat and human viruses. According to taxonomic criteria, human, alpaca, and bat viruses form a single CoV species showing evidence for multiple recombination events. HCoV-229E and the alpaca virus showed a major deletion in the spike S1 region compared to all bat viruses. Analyses of four full genomes from 229E-related bat CoVs revealed an eighth open reading frame (ORF8) located at the genomic 3′ end. ORF8 also existed in the 229E-related alpaca virus. Reanalysis of HCoV-229E sequences showed a conserved transcription regulatory sequence preceding remnants of this ORF, suggesting its loss after acquisition of a 229E-related CoV by humans. These data suggested an evolutionary origin of 229E-related CoVs in hipposiderid bats, hypothetically with camelids as intermediate hosts preceding the establishment of HCoV-229E. IMPORTANCE The ancestral origins of major human coronaviruses (HCoVs) likely involve bat hosts. Here, we provide conclusive genetic evidence for an evolutionary origin of the common cold virus HCoV-229E in hipposiderid bats by analyzing a large sample of African bats and characterizing several bat viruses on a full-genome level. Our evolutionary analyses show that animal and human viruses are genetically closely related, can exchange genetic material, and form a single viral species. We show that the putative host switches leading to the formation of HCoV-229E were accompanied by major genomic changes, including deletions in the viral spike glycoprotein gene and loss of an open reading frame. We reanalyze a previously described genetically related alpaca virus and discuss the role of camelids as potential intermediate hosts between bat and human viruses. The evolutionary history of HCoV-229E likely shares important characteristics with that of the recently emerged highly pathogenic Middle East respiratory syndrome (MERS) coronavirus. PMID:26378164

  9. Reverse Genetics and High Throughput Sequencing Methodologies for Plant Functional Genomics

    PubMed Central

    Ben-Amar, Anis; Daldoul, Samia; Reustle, Götz M.; Krczal, Gabriele; Mliki, Ahmed

    2016-01-01

    In the post-genomic era, increasingly sophisticated genetic tools are being developed with the long-term goal of understanding how the coordinated activity of genes gives rise to a complex organism. With the advent of the next generation sequencing associated with effective computational approaches, wide variety of plant species have been fully sequenced giving a wealth of data sequence information on structure and organization of plant genomes. Since thousands of gene sequences are already known, recently developed functional genomics approaches provide powerful tools to analyze plant gene functions through various gene manipulation technologies. Integration of different omics platforms along with gene annotation and computational analysis may elucidate a complete view in a system biology level. Extensive investigations on reverse genetics methodologies were deployed for assigning biological function to a specific gene or gene product. We provide here an updated overview of these high throughout strategies highlighting recent advances in the knowledge of functional genomics in plants. PMID:28217003

  10. The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo

    PubMed Central

    Meerbrey, Kristen L.; Hu, Guang; Kessler, Jessica D.; Roarty, Kevin; Fang, Justin E.; Herschkowitz, Jason I.; Burrows, Anna E.; Ciccia, Alberto; Sun, Tingting; Schmitt, Earlene M.; Bernardi, Ronald J.; Fu, Xiaoyong; Bland, Christopher S.; Cooper, Thomas A.; Schiff, Rachel; Rosen, Jeffrey M.; Westbrook, Thomas F.; Elledge, Stephen J.

    2011-01-01

    The discovery of RNAi has revolutionized loss-of-function genetic studies in mammalian systems. However, significant challenges still remain to fully exploit RNAi for mammalian genetics. For instance, genetic screens and in vivo studies could be broadly improved by methods that allow inducible and uniform gene expression control. To achieve this, we built the lentiviral pINDUCER series of expression vehicles for inducible RNAi in vivo. Using a multicistronic design, pINDUCER vehicles enable tracking of viral transduction and shRNA or cDNA induction in a broad spectrum of mammalian cell types in vivo. They achieve this uniform temporal, dose-dependent, and reversible control of gene expression across heterogenous cell populations via fluorescence-based quantification of reverse tet-transactivator expression. This feature allows isolation of cell populations that exhibit a potent, inducible target knockdown in vitro and in vivo that can be used in human xenotransplantation models to examine cancer drug targets. PMID:21307310

  11. DNA-launched live-attenuated vaccines for biodefense applications

    PubMed Central

    Pushko, Peter; Lukashevich, Igor S.; Weaver, Scott C.; Tretyakova, Irina

    2016-01-01

    Summary A novel vaccine platform uses DNA immunization to launch live-attenuated virus vaccines in vivo. This technology has been applied for vaccine development against positive-strand RNA viruses with global public health impact including alphaviruses and flaviviruses. The DNA-launched vaccine represents the recombinant plasmid that encodes the full-length genomic RNA of live-attenuated virus downstream from a eukaryotic promoter. When administered in vivo, the genomic RNA of live-attenuated virus is transcribed. The RNA initiates limited replication of a genetically defined, live-attenuated vaccine virus in the tissues of the vaccine recipient, thereby inducing a protective immune response. This platform combines the strengths of reverse genetics, DNA immunization and the advantages of live-attenuated vaccines, resulting in a reduced chance of genetic reversions, increased safety, and improved immunization. With this vaccine technology, the field of DNA vaccines is expanded from those that express subunit antigens to include a novel type of DNA vaccines that launch live-attenuated viruses. PMID:27055100

  12. Viral metagenomics, protein structure, and reverse genetics: Key strategies for investigating coronaviruses.

    PubMed

    Johnson, Bryan A; Graham, Rachel L; Menachery, Vineet D

    2018-04-01

    Viral metagenomics, modeling of protein structure, and manipulation of viral genetics are key approaches that have laid the foundations of our understanding of coronavirus biology. In this review, we discuss the major advances each method has provided and discuss how future studies should leverage these strategies synergistically to answer novel questions. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Genetic Detection and Isolation of Crimean-Congo hemorrhagic fever virus, Kosovo, Yugoslavia

    PubMed Central

    Boźović, Bojana; Pavlidou, Vassiliki; Papadimitriou, Evangelia; Pelemis, Mijomir; Antoniadis, Aantonis

    2002-01-01

    Crimean-Congo hemorrhagic fever virus (C-CHFV) strains were isolated from a fatal case and the attending physician in Kosovo, Yugoslavia. Early, rapid diagnosis of the disease was achieved by reverse transcription-polymerase chain reaction. The physician was successfully treated with oral ribavirin. These cases yielded the first genetically studied C-CHFV human isolates in the Balkans. PMID:12141973

  14. An Integrated Systems Genetics and Omics Toolkit to Probe Gene Function.

    PubMed

    Li, Hao; Wang, Xu; Rukina, Daria; Huang, Qingyao; Lin, Tao; Sorrentino, Vincenzo; Zhang, Hongbo; Bou Sleiman, Maroun; Arends, Danny; McDaid, Aaron; Luan, Peiling; Ziari, Naveed; Velázquez-Villegas, Laura A; Gariani, Karim; Kutalik, Zoltan; Schoonjans, Kristina; Radcliffe, Richard A; Prins, Pjotr; Morgenthaler, Stephan; Williams, Robert W; Auwerx, Johan

    2018-01-24

    Identifying genetic and environmental factors that impact complex traits and common diseases is a high biomedical priority. Here, we developed, validated, and implemented a series of multi-layered systems approaches, including (expression-based) phenome-wide association, transcriptome-/proteome-wide association, and (reverse-) mediation analysis, in an open-access web server (systems-genetics.org) to expedite the systems dissection of gene function. We applied these approaches to multi-omics datasets from the BXD mouse genetic reference population, and identified and validated associations between genes and clinical and molecular phenotypes, including previously unreported links between Rpl26 and body weight, and Cpt1a and lipid metabolism. Furthermore, through mediation and reverse-mediation analysis we established regulatory relations between genes, such as the co-regulation of BCKDHA and BCKDHB protein levels, and identified targets of transcription factors E2F6, ZFP277, and ZKSCAN1. Our multifaceted toolkit enabled the identification of gene-gene and gene-phenotype links that are robust and that translate well across populations and species, and can be universally applied to any populations with multi-omics datasets. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Genetically attenuated Trypanosoma cruzi parasites as a potential vaccination tool

    PubMed Central

    Brandan, Cecilia Pérez; Basombrío, Miguel Ángel

    2012-01-01

    Chagas disease is the clinical manifestation of the infection produced by the parasite Trypanosoma cruzi. Currently there is no vaccine to prevent this disease and the protection attained with vaccines containing non-replicating parasites is limited. Genetically attenuated trypanosomatid parasites can be obtained by deletion of selected genes. Gene deletion takes advantage of the fact that this parasite can undergo homologous recombination between endogenous and foreign DNA sequences artificially introduced in the cells. This approach facilitated the discovery of several unknown gene functions, as well as allowing us to speculate about the potential for genetically attenuated live organisms as experimental immunogens. Vaccination with live attenuated parasites has been used effectively in mice to reduce parasitemia and histological damage, and in dogs, to prevent vector-delivered infection in the field. However, the use of live parasites as immunogens is controversial due to the risk of reversion to a virulent phenotype. Herein, we present our results from experiments on genetic manipulation of two T. cruzi strains to produce parasites with impaired replication and infectivity, and using the mutation of the dhfr-ts gene as a safety device against reversion to virulence. PMID:22705838

  16. A Novel ‘Gene Insertion/Marker Out’ (GIMO) Method for Transgene Expression and Gene Complementation in Rodent Malaria Parasites

    PubMed Central

    Sajid, Mohammed; Chevalley-Maurel, Séverine; Ramesar, Jai; Klop, Onny; Franke-Fayard, Blandine M. D.; Janse, Chris J.; Khan, Shahid M.

    2011-01-01

    Research on the biology of malaria parasites has greatly benefited from the application of reverse genetic technologies, in particular through the analysis of gene deletion mutants and studies on transgenic parasites that express heterologous or mutated proteins. However, transfection in Plasmodium is limited by the paucity of drug-selectable markers that hampers subsequent genetic modification of the same mutant. We report the development of a novel ‘gene insertion/marker out’ (GIMO) method for two rodent malaria parasites, which uses negative selection to rapidly generate transgenic mutants ready for subsequent modifications. We have created reference mother lines for both P. berghei ANKA and P. yoelii 17XNL that serve as recipient parasites for GIMO-transfection. Compared to existing protocols GIMO-transfection greatly simplifies and speeds up the generation of mutants expressing heterologous proteins, free of drug-resistance genes, and requires far fewer laboratory animals. In addition we demonstrate that GIMO-transfection is also a simple and fast method for genetic complementation of mutants with a gene deletion or mutation. The implementation of GIMO-transfection procedures should greatly enhance Plasmodium reverse-genetic research. PMID:22216235

  17. Time Reversal Method for Pipe Inspection with Guided Wave

    NASA Astrophysics Data System (ADS)

    Deng, Fei; He, Cunfu; Wu, Bin

    2008-02-01

    The temporal-spatial focusing effect of the time reversal method on the guided wave inspection in pipes is investigated. A steel pipe model with outer diameter of 70 mm and wall thickness of 3.5 mm is numerically built to analyse the reflection coefficient of L(0,2) mode when the time reversal method is applied in the model. According to the calculated results, it is shown that a synthetic time reversal array method is effective to improve the signal-to-noise ratio of a guided wave inspection system. As an intercepting window is widened, more energy can be included in a re-emitted signal, which leads to a large reflection coefficient of L(0,2) mode. It is also shown that when a time reversed signal is reapplied in the pipe model, by analysing the motion of the time reversed wave propagating along the pipe model, a defect can be identified. Therefore, it is demonstrated that the time reversal method can be used to locate the circumferential position of a defect in a pipe. Finally, through an experiment corresponding with the pipe model, the experimental result shows that the above-mentioned method can be valid in the inspection of a pipe.

  18. A population genetics analysis in clinical isolates of Sporothrix schenckii based on calmodulin and calcium/calmodulin-dependent kinase partial gene sequences.

    PubMed

    Rangel-Gamboa, Lucia; Martinez-Hernandez, Fernando; Maravilla, Pablo; Flisser, Ana

    2018-02-02

    Sporotrichosis is a subcutaneous mycosis that is caused by diverse species of Sporothrix. High levels of genetic diversity in Sporothrix isolates have been reported, but few population genetics analyses have been documented. To analyse the genetic variability and population genetics relations of Sporothrix schenckii Mexican clinical isolates and to compare them with other reported isolates. We studied the partial sequences of calmodulin and calcium/calmodulin-dependent kinase genes in 24 isolates; 22 from Mexico, one from Colombia, and one ATCC ® 6331™; the latter was used as a positive control. In total, 24 isolates were analysed. Phylogenetic, haplotype and population genetic analyses were performed with 24 sequences obtained by us and 345 sequences obtained from GenBank. The frequency of S. schenckii sensu stricto was 81% in the 22 Mexican isolates, while the remaining 19% were Sporothrix globosa. Mexican S. schenckii sensu stricto had high genetic diversity and was related to isolates from South America. In contrast, S. globosa showed one haplotype related to isolates from Asia, Brazil, Spain and the USA. In S. schenckii sensu stricto, S. brasiliensis and S. globosa, haplotype polymorphism (θ) values were higher than the nucleotide diversity data (π). In addition, Tajima's D plus Fu and Li's tests analyses displayed negative values, suggesting directional selection and arguing against the model of neutral evolution in these populations. In addition, analyses showed that calcium/calmodulin-dependent kinase was a suitable genetic marker to discriminate between common Sporothrix species. © 2018 Blackwell Verlag GmbH.

  19. The Gene Cluster for para-Nitrophenol Catabolism Is Responsible for 2-Chloro-4-Nitrophenol Degradation in Burkholderia sp. Strain SJ98

    PubMed Central

    Min, Jun; Zhang, Jun-Jie

    2014-01-01

    Burkholderia sp. strain SJ98 (DSM 23195) utilizes 2-chloro-4-nitrophenol (2C4NP) or para-nitrophenol (PNP) as a sole source of carbon and energy. Here, by genetic and biochemical analyses, a 2C4NP catabolic pathway different from those of all other 2C4NP utilizers was identified with chloro-1,4-benzoquinone (CBQ) as an intermediate. Reverse transcription-PCR analysis showed that all of the pnp genes in the pnpABA1CDEF cluster were located in a single operon, which is significantly different from the genetic organization of all other previously reported PNP degradation gene clusters, in which the structural genes were located in three different operons. All of the Pnp proteins were purified to homogeneity as His-tagged proteins. PnpA, a PNP 4-monooxygenase, was found to be able to catalyze the monooxygenation of 2C4NP to CBQ. PnpB, a 1,4-benzoquinone reductase, has the ability to catalyze the reduction of CBQ to chlorohydroquinone. Moreover, PnpB is also able to enhance PnpA activity in vitro in the conversion of 2C4NP to CBQ. Genetic analyses indicated that pnpA plays an essential role in the degradation of both 2C4NP and PNP by gene knockout and complementation. In addition to being responsible for the lower pathway of PNP catabolism, PnpCD, PnpE, and PnpF were also found to be likely involved in that of 2C4NP catabolism. These results indicated that the catabolism of 2C4NP and that of PNP share the same gene cluster in strain SJ98. These findings fill a gap in our understanding of the microbial degradation of 2C4NP at the molecular and biochemical levels. PMID:25085488

  20. Dynamic HIV-1 genetic recombination and genotypic drug resistance among treatment-experienced adults in northern Ghana.

    PubMed

    Nii-Trebi, Nicholas Israel; Brandful, James Ashun Mensah; Ibe, Shiro; Sugiura, Wataru; Barnor, Jacob Samson; Bampoh, Patrick Owiredu; Yamaoka, Shoji; Matano, Tetsuro; Yoshimura, Kazuhisa; Ishikawa, Koichi; Ampofo, William Kwabena

    2017-11-01

    There have been hardly any reports on the human immunodeficiency virus type 1 (HIV-1) drug-resistance profile from northern Ghana since antiretroviral therapy (ART) was introduced over a decade ago. This study investigated prevailing HIV-1 subtypes and examined the occurrence of drug resistance in ART-experienced patients in Tamale, the capital of the Northern Region of Ghana. A cross-sectional study was carried out on HIV-infected adult patients receiving first-line ART. HIV viral load (VL) and CD4 + T-cell counts were measured. The pol gene sequences were analysed for genotypic resistance by an in-house HIV-1 drug-resistance test; the prevailing HIV-1 subtypes were analysed in detail.Results/Key findings. A total of 33 subjects were studied. Participants comprised 11 males (33.3 %) and 22 (66.7 %) females, with a median age of 34.5 years [interquartile range (IQR) 30.0-40.3]. The median duration on ART was 12 months (IQR 8.0-24). Of the 24 subjects successfully genotyped, 10 (41.7 %) viruses possessed at least one mutation conferring resistance to nucleoside or non-nucleoside reverse-transcriptase inhibitors (NRTIs/NNRTIs). Two-class drug resistance to NRTI and NNRTI was mostly detected (25 %, 6/24). The most frequent mutations were lamivudine-resistance M184V and efavirenz/nevirapine-resistance K103N. HIV-1 subtype CRF02_AG was predominant (79.2 %). Other HIV-1 subtypes detected were G (8.3 %), A3 (4.2 %) and importantly two (8.3 %) unique HIV-1 recombinant forms with CRF02_AG/A3 mosaic. HIV-1 shows high genetic diversity and on-going viral genetic recombination in the study region. Nearly 42 % of the patients studied harboured a drug-resistant virus. The study underscores the need for continued surveillance of HIV-1 subtype diversity; and of drug-resistance patterns to guide selection of second-line regimens in northern Ghana.

  1. Forensic molecular pathology of violent deaths.

    PubMed

    Maeda, Hitoshi; Zhu, Bao-li; Ishikawa, Takaki; Michiue, Tomomi

    2010-12-15

    In forensic pathology, while classical morphology remains a core procedure to investigate deaths, a spectrum of ancillary procedures has been developed and incorporated to detail the pathology. Among them, postmortem biochemistry is important to investigate the systemic pathophysiological changes involved in the dying process that cannot be detected by morphology. In addition, recent advances in molecular biology have provided a procedure to investigate genetic bases of diseases that might present with sudden death, which is called 'molecular autopsy'. Meanwhile, the practical application of RNA analyses to postmortem investigation has not been accepted due to rapid decay after death; however, recent experimental and practical studies using real-time reverse transcription-PCR have suggested that the relative quantification of mRNA transcripts can be applied in molecular pathology for postmortem investigation of deaths, which may be called 'advanced molecular autopsy'. In a broad sense, forensic molecular pathology implies applied medical sciences to investigate the genetic basis of diseases, and the pathophysiology of diseases and traumas leading to death at a biological molecular level in the context of forensic pathology. The possible applications include analyses of local pathology, including tissue injury, ischemia/hypoxia and inflammation at the site of insult or specific tissue damage from intoxication, systemic responses to violence or environmental hazards, disorders due to intoxication, and systemic pathophysiology of fatal process involving major life-support organs. A review of previous studies suggests that systematic postmortem quantitative analysis of mRNA transcripts can be established from multi-faceted aspects of molecular biology and incorporated into death investigations in forensic pathology, to support and reinforce morphological evidence. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Molecular mechanisms underlying variations in lung function: a systems genetics analysis

    PubMed Central

    Obeidat, Ma’en; Hao, Ke; Bossé, Yohan; Nickle, David C; Nie, Yunlong; Postma, Dirkje S; Laviolette, Michel; Sandford, Andrew J; Daley, Denise D; Hogg, James C; Elliott, W Mark; Fishbane, Nick; Timens, Wim; Hysi, Pirro G; Kaprio, Jaakko; Wilson, James F; Hui, Jennie; Rawal, Rajesh; Schulz, Holger; Stubbe, Beate; Hayward, Caroline; Polasek, Ozren; Järvelin, Marjo-Riitta; Zhao, Jing Hua; Jarvis, Deborah; Kähönen, Mika; Franceschini, Nora; North, Kari E; Loth, Daan W; Brusselle, Guy G; Smith, Albert Vernon; Gudnason, Vilmundur; Bartz, Traci M; Wilk, Jemma B; O’Connor, George T; Cassano, Patricia A; Tang, Wenbo; Wain, Louise V; Artigas, María Soler; Gharib, Sina A; Strachan, David P; Sin, Don D; Tobin, Martin D; London, Stephanie J; Hall, Ian P; Paré, Peter D

    2016-01-01

    Summary Background Lung function measures reflect the physiological state of the lung, and are essential to the diagnosis of chronic obstructive pulmonary disease (COPD). The SpiroMeta-CHARGE consortium undertook the largest genome-wide association study (GWAS) so far (n=48 201) for forced expiratory volume in 1 s (FEV1) and the ratio of FEV1 to forced vital capacity (FEV1/FVC) in the general population. The lung expression quantitative trait loci (eQTLs) study mapped the genetic architecture of gene expression in lung tissue from 1111 individuals. We used a systems genetics approach to identify single nucleotide polymorphisms (SNPs) associated with lung function that act as eQTLs and change the level of expression of their target genes in lung tissue; termed eSNPs. Methods The SpiroMeta-CHARGE GWAS results were integrated with lung eQTLs to map eSNPs and the genes and pathways underlying the associations in lung tissue. For comparison, a similar analysis was done in peripheral blood. The lung mRNA expression levels of the eSNP-regulated genes were tested for associations with lung function measures in 727 individuals. Additional analyses identified the pleiotropic effects of eSNPs from the published GWAS catalogue, and mapped enrichment in regulatory regions from the ENCODE project. Finally, the Connectivity Map database was used to identify potential therapeutics in silico that could reverse the COPD lung tissue gene signature. Findings SNPs associated with lung function measures were more likely to be eQTLs and vice versa. The integration mapped the specific genes underlying the GWAS signals in lung tissue. The eSNP-regulated genes were enriched for developmental and inflammatory pathways; by comparison, SNPs associated with lung function that were eQTLs in blood, but not in lung, were only involved in inflammatory pathways. Lung function eSNPs were enriched for regulatory elements and were over-represented among genes showing differential expression during fetal lung development. An mRNA gene expression signature for COPD was identified in lung tissue and compared with the Connectivity Map. This in-silico drug repurposing approach suggested several compounds that reverse the COPD gene expression signature, including a nicotine receptor antagonist. These findings represent novel therapeutic pathways for COPD. Interpretation The system genetics approach identified lung tissue genes driving the variation in lung function and susceptibility to COPD. The identification of these genes and the pathways in which they are enriched is essential to understand the pathophysiology of airway obstruction and to identify novel therapeutic targets and biomarkers for COPD, including drugs that reverse the COPD gene signature in silico. Funding The research reported in this article was not specifically funded by any agency. See Acknowledgments for a full list of funders of the lung eQTL study and the Spiro-Meta CHARGE GWAS. PMID:26404118

  3. Stoma reversal after surgery for complicated acute diverticulitis: A multicentre retrospective study.

    PubMed

    Roig, José Vicente; Salvador, Antonio; Frasson, Matteo; García-Mayor, Lucas; Espinosa, Javier; Roselló, Vicente; Hernandis, Juan; Ruiz-Carmona, María Dolores; Uribe, Natalia; García-Calvo, Rafael; Bernal, Juan Carlos; García-Armengol, Juan; García-Granero, Eduardo

    2018-03-09

    INTRODUCTION THE AIM: was to analyse the stoma reversal rate after surgery for complicated acute diverticulitis (CAD), and more specifically the end-stoma-reversal, as well as the delay, feasibility, complications and risk factors for stoma maintenance. A multicentre retrospective study of patients who had undergone urgent surgery for CAD with stoma formation in ten hospitals during a period of 6 years. The frequency of reversal over time and the factors affecting the decision for reversal were analysed. Out of 385 patients operated for CAD, 312 underwent stoma creation: 292 end colostomies and 20 diverting stomas. During follow-up, stoma reversal surgery was performed in 161 patients (51.6%) after a median of 9 months. The main causes for not performing stoma reversal were comorbidities and the death of the patient. Advanced age was an adverse factor in the multivariate analysis, and the actuarial rate of reversal was higher in men and in patients with no previous Hartmann's operation. Stoma reversal surgery was completed in all but one patient, and a loop ileostomy was associated in four. Morbidity and mortality rates were 35.7% and 1.9%, respectively. A total of 8.4% of patients underwent re-operation, and 6% experienced an anastomotic leak. Twelve patients remained with a stoma after the attempted reconstruction surgery. Surgery for CAD is frequently associated with an end stoma, which will ultimately not be reversed in almost 50% of patients. Moreover, reversal surgery is frequently delayed and is associated with significant morbidity and mortality. Copyright © 2018 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Phenotypes on demand via switchable target protein degradation in multicellular organisms

    PubMed Central

    Faden, Frederik; Ramezani, Thomas; Mielke, Stefan; Almudi, Isabel; Nairz, Knud; Froehlich, Marceli S.; Höckendorff, Jörg; Brandt, Wolfgang; Hoehenwarter, Wolfgang; Dohmen, R. Jürgen; Schnittger, Arp; Dissmeyer, Nico

    2016-01-01

    Phenotypes on-demand generated by controlling activation and accumulation of proteins of interest are invaluable tools to analyse and engineer biological processes. While temperature-sensitive alleles are frequently used as conditional mutants in microorganisms, they are usually difficult to identify in multicellular species. Here we present a versatile and transferable, genetically stable system based on a low-temperature-controlled N-terminal degradation signal (lt-degron) that allows reversible and switch-like tuning of protein levels under physiological conditions in vivo. Thereby, developmental effects can be triggered and phenotypes on demand generated. The lt-degron was established to produce conditional and cell-type-specific phenotypes and is generally applicable in a wide range of organisms, from eukaryotic microorganisms to plants and poikilothermic animals. We have successfully applied this system to control the abundance and function of transcription factors and different enzymes by tunable protein accumulation. PMID:27447739

  5. From sexless to sexy: Why it is time for human genetics to consider and report analyses of sex.

    PubMed

    Powers, Matthew S; Smith, Phillip H; McKee, Sherry A; Ehringer, Marissa A

    2017-01-01

    Science has come a long way with regard to the consideration of sex differences in clinical and preclinical research, but one field remains behind the curve: human statistical genetics. The goal of this commentary is to raise awareness and discussion about how to best consider and evaluate possible sex effects in the context of large-scale human genetic studies. Over the course of this commentary, we reinforce the importance of interpreting genetic results in the context of biological sex, establish evidence that sex differences are not being considered in human statistical genetics, and discuss how best to conduct and report such analyses. Our recommendation is to run stratified analyses by sex no matter the sample size or the result and report the findings. Summary statistics from stratified analyses are helpful for meta-analyses, and patterns of sex-dependent associations may be hidden in a combined dataset. In the age of declining sequencing costs, large consortia efforts, and a number of useful control samples, it is now time for the field of human genetics to appropriately include sex in the design, analysis, and reporting of results.

  6. The Application of a Homologous Recombination Assay Revealed Amino Acid Residues in an LTR-Retrotransposon That Were Critical for Integration

    PubMed Central

    Atwood, Angela; Choi, Jeannie; Levin, Henry L.

    1998-01-01

    Retroviruses and their relatives, the LTR-retrotransposons, possess an integrase protein (IN) that is required for the insertion of reverse transcripts into the genome of host cells. Schizosaccharomyces pombe is the host of Tf1, an LTR-retrotransposon with integration activity that can be studied by using techniques of yeast genetics. In this study, we sought to identify amino acid substitutions in Tf1 that specifically affected the integration step of transposition. In addition to seeking amino acid substitutions in IN, we also explored the possibility that other Tf1 proteins contributed to integration. By comparing the results of genetic assays that monitored both transposition and reverse transcription, we were able to seek point mutations throughout Tf1 that blocked transposition but not the synthesis of reverse transcripts. These mutant versions of Tf1 were candidates of elements that possessed defects in the integration step of transposition. Five mutations in Tf1 that resulted in low levels of integration were found to be located in the IN protein: two substitutions in the N-terminal Zn domain, two in the catalytic core, and one in the C-terminal domain. These results suggested that each of the three IN domains was required for Tf1 transposition. The potential role of these five amino acid residues in the function of IN is discussed. Two of the mutations that reduced integration mapped to the RNase H (RH) domain of Tf1 reverse transcriptase. The Tf1 elements with the RH mutations produced high levels of reverse transcripts, as determined by recombination and DNA blot analysis. These results indicated that the RH of Tf1 possesses a function critical for transposition that is independent of the accumulation of reverse transcripts. PMID:9445033

  7. Atypical Genetic Locus Associated with Constitutive Production of Enterocin B by Enterococcus faecium BFE 900

    PubMed Central

    Franz, Charles M. A. P.; Worobo, Randy W.; Quadri, Luis E. N.; Schillinger, Ulrich; Holzapfel, Wilhelm H.; Vederas, John C.; Stiles, Michael E.

    1999-01-01

    A purified bacteriocin produced by Enterococcus faecium BFE 900 isolated from black olives was shown by Edman degradation and mass spectrometric analyses to be identical to enterocin B produced by E. faecium T136 from meat (P. Casaus, T. Nilsen, L. M. Cintas, I. F. Nes, P. E. Hernández, and H. Holo, Microbiology 143:2287–2294, 1997). The structural gene was located on a 2.2-kb HindIII fragment and a 12.0-kb EcoRI chromosomal fragment. The genetic characteristics and production of EntB by E. faecium BFE 900 differed from that described so far by the presence of a conserved sequence like a regulatory box upstream of the EntB gene, and its production was constitutive and not regulated. The 2.2-kb chromosomal fragment contained the hitherto undetected immunity gene for EntB in an atypical orientation that is the reverse of that of the structural gene. Typical transport and other genes associated with bacteriocin production were not detected on the 12.0-kb chromosomal fragment containing the EntB structural gene. This makes the EntB genetic system different from most other bacteriocin systems, where transport and possible regulatory genes are clustered. EntB was subcloned and expressed by the dedicated secretion machinery of Carnobacterium piscicola LV17A. The structural gene was amplified by PCR, fused to the divergicin A signal peptide, and expressed by the general secretory pathway in Enterococcus faecalis ATCC 19433. PMID:10224016

  8. Adaptation Genomics of a Small-Colony Variant in a Pseudomonas chlororaphis 30-84 Biofilm

    PubMed Central

    Dorosky, Robert J.; Han, Cliff S.; Lo, Chien-chi; Dichosa, Armand E. K.; Chain, Patrick S.; Yu, Jun Myoung; Pierson, Leland S.

    2014-01-01

    The rhizosphere-colonizing bacterium Pseudomonas chlororaphis 30-84 is an effective biological control agent against take-all disease of wheat. In this study, we characterize a small-colony variant (SCV) isolated from a P. chlororaphis 30-84 biofilm. The SCV exhibited pleiotropic phenotypes, including small cell size, slow growth and motility, low levels of phenazine production, and increased biofilm formation and resistance to antimicrobials. To better understand the genetic alterations underlying these phenotypes, RNA and whole-genome sequencing analyses were conducted comparing an SCV to the wild-type strain. Of the genome's 5,971 genes, transcriptomic profiling indicated that 1,098 (18.4%) have undergone substantial reprograming of gene expression in the SCV. Whole-genome sequence analysis revealed multiple alterations in the SCV, including mutations in yfiR (cyclic-di-GMP production), fusA (elongation factor), and cyoE (heme synthesis) and a 70-kb deletion. Genetic analysis revealed that the yfiR locus plays a major role in controlling SCV phenotypes, including colony size, growth, motility, and biofilm formation. Moreover, a point mutation in the fusA gene contributed to kanamycin resistance. Interestingly, the SCV can partially switch back to wild-type morphologies under specific conditions. Our data also support the idea that phenotypic switching in P. chlororaphis is not due to simple genetic reversions but may involve multiple secondary mutations. The emergence of these highly adherent and antibiotic-resistant SCVs within the biofilm might play key roles in P. chlororaphis natural persistence. PMID:25416762

  9. Reversal of Gender Differences in Educational Attainment: An Historical Analysis of the West German Case

    ERIC Educational Resources Information Center

    Becker, Rolf

    2014-01-01

    Background information: During the late 1970s and the early 1980s, West Germany witnessed a reversal of gender differences in educational attainment, as females began to outperform males. Purpose: The main objective was to analyse which processes were behind the reversal of gender differences in educational attainment after 1945. The theoretical…

  10. Arc is a flexible modular protein capable of reversible self-oligomerization

    PubMed Central

    Myrum, Craig; Baumann, Anne; Bustad, Helene J.; Flydal, Marte Innselset; Mariaule, Vincent; Alvira, Sara; Cuéllar, Jorge; Haavik, Jan; Soulé, Jonathan; Valpuesta, José Maria; Márquez, José Antonio; Martinez, Aurora; Bramham, Clive R.

    2015-01-01

    The immediate early gene product Arc (activity-regulated cytoskeleton-associated protein) is posited as a master regulator of long-term synaptic plasticity and memory. However, the physicochemical and structural properties of Arc have not been elucidated. In the present study, we expressed and purified recombinant human Arc (hArc) and performed the first biochemical and biophysical analysis of hArc's structure and stability. Limited proteolysis assays and MS analysis indicate that hArc has two major domains on either side of a central more disordered linker region, consistent with in silico structure predictions. hArc's secondary structure was estimated using CD, and stability was analysed by CD-monitored thermal denaturation and differential scanning fluorimetry (DSF). Oligomerization states under different conditions were studied by dynamic light scattering (DLS) and visualized by AFM and EM. Biophysical analyses show that hArc is a modular protein with defined secondary structure and loose tertiary structure. hArc appears to be pyramid-shaped as a monomer and is capable of reversible self-association, forming large soluble oligomers. The N-terminal domain of hArc is highly basic, which may promote interaction with cytoskeletal structures or other polyanionic surfaces, whereas the C-terminal domain is acidic and stabilized by ionic conditions that promote oligomerization. Upon binding of presenilin-1 (PS1) peptide, hArc undergoes a large structural change. A non-synonymous genetic variant of hArc (V231G) showed properties similar to the wild-type (WT) protein. We conclude that hArc is a flexible multi-domain protein that exists in monomeric and oligomeric forms, compatible with a diverse, hub-like role in plasticity-related processes. PMID:25748042

  11. Developing educational resources for population genetics in R: An open and collaborative approach

    USDA-ARS?s Scientific Manuscript database

    The R computing and statistical language community has developed a myriad of resources for conducting populations genetic analyses. However, resources for learning how to carry out population genetic analyses in R are scattered and often incomplete, which can make acquiring this skill unnecessarily ...

  12. Novel Structure of Ty3 Reverse Transcriptase | Center for Cancer Research

    Cancer.gov

    Retrotransposons are mobile genetic elements that self amplify via a single-stranded RNA intermediate, which is converted to double-stranded DNA by an encoded reverse transcriptase (RT) with both DNA polymerase (pol) and ribonuclease H (RNase) activities. Categorized by whether they contain flanking long terminal repeat (LTR) sequences, retrotransposons play a critical role in the architecture of eukaryotic genomes and are the evolutionary origin of retroviruses, including human immunodeficiency virus (HIV).

  13. Mechanism-based strategies for protein thermostabilization.

    PubMed

    Mozhaev, V V

    1993-03-01

    Strategies for stabilizing enzymes can be derived from a two-step model of irreversible inactivation that involves preliminary reversible unfolding, followed by an irreversible step. Reversible unfolding is best prevented by covalent immobilization, whereas methods such as covalent modification of amino acid residues or 'medium engineering' (by the addition of low-molecular-weight compounds) are effective against irreversible 'incorrect' refolding. Genetic modification of the protein sequence is the most effective approach for preventing chemical deterioration.

  14. Genetic and Genomic Toolbox of Zea mays

    PubMed Central

    Nannas, Natalie J.; Dawe, R. Kelly

    2015-01-01

    Maize has a long history of genetic and genomic tool development and is considered one of the most accessible higher plant systems. With a fully sequenced genome, a suite of cytogenetic tools, methods for both forward and reverse genetics, and characterized phenotype markers, maize is amenable to studying questions beyond plant biology. Major discoveries in the areas of transposons, imprinting, and chromosome biology came from work in maize. Moving forward in the post-genomic era, this classic model system will continue to be at the forefront of basic biological study. In this review, we outline the basics of working with maize and describe its rich genetic toolbox. PMID:25740912

  15. Genetic analyses reveal unusually high diversity of infectious haematopoietic necrosis virus in rainbow trout aquaculture

    USGS Publications Warehouse

    Troyer, Ryan M.; LaPatra, Scott E.; Kurath, Gael

    2000-01-01

    Infectious haematopoietic necrosis virus (IHNV) is the most significant virus pathogen of salmon and trout in North America. Previous studies have shown relatively low genetic diversity of IHNV within large geographical regions. In this study, the genetic heterogeneity of 84 IHNV isolates sampled from rainbow trout (Oncorhynchus mykiss) over a 20 year period at four aquaculture facilities within a 12 mile stretch of the Snake River in Idaho, USA was investigated. The virus isolates were characterized using an RNase protection assay (RPA) and nucleotide sequence analyses. Among the 84 isolates analysed, 46 RPA haplotypes were found and analyses revealed a high level of genetic heterogeneity relative to that detected in other regions. Sequence analyses revealed up to 7·6% nucleotide divergence, which is the highest level of diversity reported for IHNV to date. Phylogenetic analyses identified four distinct monophyletic clades representing four virus lineages. These lineages were distributed across facilities, and individual facilities contained multiple lineages. These results suggest that co-circulating IHNV lineages of relatively high genetic diversity are present in the IHNV populations in this rainbow trout culture study site. Three of the four lineages exhibited temporal trends consistent with rapid evolution.

  16. Characterisation of genetic structure of the Mayan population in Guatemala by autosomal STR analysis.

    PubMed

    Martinez-Gonzalez, L J; Alvarez-Cubero, M J; Saiz, M; Alvarez, J C; Martinez-Labarga, C; Lorente, J A

    2016-09-01

    Currently, the Guatemalan population comprises genetically isolated groups due to geographic, linguistic and cultural factors. For example, Mayan groups within the Guatemala population have preserved their own language, culture and religion. These practices have limited genetic admixture and have maintained the genetic identity of Mayan populations. This study is designed to define the genetic structure of the Mayan-Guatemalan groups Kaqchiquel, K'iche', Mam and Q'eqchi' through autosomal short tandem repeat (STR) polymorphisms and to analyse the genetic relationships between them and with other Mayan groups. Fifteen STR polymorphisms were analysed in 200 unrelated donors belonging to the Kaqchiquel (n = 50), K'iche' (n = 50), Mam (n = 50) and Q'eqchi' (n = 50) groups living in Guatemala. Genetic distance, non-metric MDS and AMOVA were used to analyse the genetic relationships between population groups. Within the Mayan population, the STRs D18S51 and FGA were the most informative markers and TH01 was the least informative. AMOVA and genetic distance analyses showed that the Guatemalan-Native American populations are highly similar to Mayan populations living in Mexico. The Mayan populations from Guatemala and other Native American groups display high genetic homogeneity. Genetic relationships between these groups are more affected by cultural and linguistic factors than geographical and local flow. This study represents one of the first steps in understanding Mayan-Guatemalan populations, the associations between their sub-populations and differences in gene diversity with other populations. This article also demonstrates that the Mestizo population shares most of its ancestral genetic components with the Guatemala Mayan populations.

  17. Phenological shifts in North American red squirrels: disentangling the roles of phenotypic plasticity and microevolution.

    PubMed

    Lane, Jeffrey E; McAdam, Andrew G; McFarlane, S Eryn; Williams, Cory T; Humphries, Murray M; Coltman, David W; Gorrell, Jamieson C; Boutin, Stan

    2018-06-01

    Phenological shifts are the most widely reported ecological responses to climate change, but the requirements to distinguish their causes (i.e. phenotypic plasticity vs. microevolution) are rarely met. To do so, we analysed almost two decades of parturition data from a wild population of North American red squirrels (Tamiasciurus hudsonicus). Although an observed advance in parturition date during the first decade provided putative support for climate change-driven microevolution, a closer look revealed a more complex pattern. Parturition date was heritable [h 2  = 0.14 (0.07-0.21 (HPD interval)] and under phenotypic selection [β = -0.14 ± 0.06 (SE)] across the full study duration. However, the early advance reversed in the second decade. Further, selection did not act on the genetic contribution to variation in parturition date, and observed changes in predicted breeding values did not exceed those expected due to genetic drift. Instead, individuals responded plastically to environmental variation, and high food [white spruce (Picea glauca) seed] production in the first decade appears to have produced a plastic advance. In addition, there was little evidence of climate change affecting the advance, as there was neither a significant influence of spring temperature on parturition date or evidence of a change in spring temperatures across the study duration. Heritable traits not responding to selection in accordance with quantitative genetic predictions have long presented a puzzle to evolutionary ecologists. Our results on red squirrels provide empirical support for one potential solution: phenotypic selection arising from an environmental, as opposed to genetic, covariance between the phenotypic trait and annual fitness. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  18. Genetic variations in regions of bovine and bovine-like enteroviral 5'UTR from cattle, Indian bison and goat feces.

    PubMed

    Kosoltanapiwat, Nathamon; Yindee, Marnoch; Chavez, Irwin Fernandez; Leaungwutiwong, Pornsawan; Adisakwattana, Poom; Singhasivanon, Pratap; Thawornkuno, Charin; Thippornchai, Narin; Rungruengkitkun, Amporn; Soontorn, Juthamas; Pearsiriwuttipong, Sasipan

    2016-01-25

    Bovine enteroviruses (BEV) are members of the genus Enterovirus in the family Picornaviridae. They are predominantly isolated from cattle feces, but also are detected in feces of other animals, including goats and deer. These viruses are found in apparently healthy animals, as well as in animals with clinical signs and several studies reported recently suggest a potential role of BEV in causing disease in animals. In this study, we surveyed the presence of BEV in domestic and wild animals in Thailand, and assessed their genetic variability. Viral RNA was extracted from fecal samples of cattle, domestic goats, Indian bison (gaurs), and deer. The 5' untranslated region (5'UTR) was amplified by nested reverse transcription-polymerase chain reaction (RT-PCR) with primers specific to BEV 5'UTR. PCR products were sequenced and analyzed phylogenetically using the neighbor-joining algorithm to observe genetic variations in regions of the bovine and bovine-like enteroviral 5'UTR found in this study. BEV and BEV-like sequences were detected in the fecal samples of cattle (40/60, 67 %), gaurs (3/30, 10 %), and goats (11/46, 24 %). Phylogenetic analyses of the partial 5'UTR sequences indicated that different BEV variants (both EV-E and EV-F species) co-circulated in the domestic cattle, whereas the sequences from gaurs and goats clustered according to the animal species, suggesting that these viruses are host species-specific. Varieties of BEV and BEV-like 5'UTR sequences were detected in fecal samples from both domestic and wild animals. To our knowledge, this is the first report of the genetic variability of BEV in Thailand.

  19. Production of infectious dromedary camel hepatitis E virus by a reverse genetic system: Potential for zoonotic infection.

    PubMed

    Li, Tian-Cheng; Zhou, Xianfeng; Yoshizaki, Sayaka; Ami, Yasushi; Suzaki, Yuriko; Nakamura, Tomofumi; Takeda, Naokazu; Wakita, Takaji

    2016-12-01

    The pathogenicity, epidemiology and replication mechanism of dromedary camel hepatitis E virus (DcHEV), a novel hepatitis E virus (HEV), has been unclear. Here we used a reverse genetic system to produce DcHEV and examined the possibility of zoonotic infection. Capped genomic RNA derived from a synthetic DcHEV cDNA was transfected into human hepatocarcinoma cells PLC/PRF/5. The DcHEV capsid protein and RNA were detected by an enzyme-linked immunosorbent assay (ELISA) or RT-qPCR. A neutralization test for DcHEV was carried out by using antisera against HEV-like particles. DcHEV was used to inoculate two cynomolgus monkeys to examine the potential for cross-species infection. The transfection of PLC/PRF/5 cells with capped DcHEV RNA resulted in the production of infectious DcHEV. The genome sequence analysis demonstrated that both nucleotide and amino acid changes accumulated during the passages in PLC/PRF/5 cells. The cynomolgus monkeys showed serological signs of infection when DcHEV was intravenously inoculated. DcHEV was neutralized by not only anti-DcHEV-LPs antibody, but also anti-genotype 1 (G1), G3 and G4 HEV-LPs antibodies. Moreover, the monkeys immunized with DcHEV escaped the G3 HEV challenge, indicating that the serotype of DcHEV is similar to those of other human HEVs. Infectious DcHEV was produced using a reverse genetic system and propagated in PLC/PRF/5 cells. The antigenicity and immunogenicity of DcHEV are similar to those of G1, G3 and G4 HEV. DcHEV was experimentally transmitted to primates, demonstrating the possibility of a zoonotic infection by DcHEV. Dromedary camel hepatitis E virus (DcHEV) was produced by a reverse genetic system and grows well in PLC/PRF/5 cells. Cynomolgus monkeys experimentally infected with DcHEV indicated serological signs of infection, suggesting that DcHEV has the potential to cause zoonotic HEV infection. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  20. Reverse cascade screening of newborns for hereditary haemochromatosis: a model for other late onset diseases?

    PubMed

    Cadet, E; Capron, D; Gallet, M; Omanga-Léké, M-L; Boutignon, H; Julier, C; Robson, K J H; Rochette, J

    2005-05-01

    Genetic testing can determine those at risk for hereditary haemochromatosis (HH) caused by HFE mutations before the onset of symptoms. However, there is no optimum screening strategy, mainly owing to the variable penetrance in those who are homozygous for the HFE Cys282Tyr (C282Y) mutation. The objective of this study was to identify the majority of individuals at serious risk of developing HFE haemochromatosis before they developed life threatening complications. We first estimated the therapeutic penetrance of the C282Y mutation in people living in la Somme, France, using genetic, demographic, biochemical, and follow up data. We examined the benefits of neonatal screening on the basis of increased risk to relatives of newborns carrying one or two copies of the C282Y mutation. Between 1999 and 2002, we screened 7038 newborns from two maternity hospitals in the north of France for the C282Y and His63Asp (H63D) mutations in the HFE gene, using bloodspots collected on Guthrie cards. Family studies and genetic counselling were undertaken, based on the results of the baby's genotype. In la Somme, we found that 24% of the adults homozygous for the C282Y mutation required at least 5 g iron to be removed to restore normal iron parameters (that is, the therapeutic penetrance). In the reverse cascade screening study, we identified 19 C282Y homozygotes (1/370), 491 heterozygotes (1/14) and 166 compound heterozygotes (1/42) in 7038 newborns tested. The reverse cascade screening strategy resulted in 80 adults being screened for both mutations. We identified 10 previously unknown C282Y homozygotes of whom six (four men and two women) required venesection. Acceptance of neonatal screening was high; parents understood the risks of having HH and the benefits of early detection, but a number of parents were reluctant to take the test themselves. Neonatal screening for HH is straightforward. Reverse cascade screening increased the efficiency of detecting affected adults with undiagnosed haemochromatosis. This strategy allows almost complete coverage for HH and could be a model for efficient screening for other late onset genetic diseases.

  1. Genetic thinking in the study of social relationships: Five points of entry

    PubMed Central

    Reiss, David

    2014-01-01

    For nearly a generation, researchers studying human behavioral development have combined genetically informed research designs with careful measures of social relationships: parenting, sibling relationships, peer relationships, marital processes, social class stratifications and patterns of social engagement in the elderly. In what way have these genetically informed studies altered the construction and testing of social theories of human development? We consider five points where genetic thinking is taking hold. First, genetic findings suggest an alternative scenario for explaining social data. Associations between measures of the social environment and human development may be due to genes that influence both. Second, genetic studies add to other prompts to study the early developmental origins of current social phenomena in mid-life and beyond. Third, genetic analyses promise to bring to the surface understudied social systems, such as sibling relationships, that have an impact on human development independent of genotype. Fourth, genetic analyses anchor in neurobiology individual differences in resilience and sensitivity to both adverse and favorable social environments. Finally, genetic analyses increase the utility of laboratory simulations of human social processes and of animal models. PMID:25419225

  2. Genetic parameter estimation for pre- and post-weaning traits in Brahman cattle in Brazil.

    PubMed

    Vargas, Giovana; Buzanskas, Marcos Eli; Guidolin, Diego Gomes Freire; Grossi, Daniela do Amaral; Bonifácio, Alexandre da Silva; Lôbo, Raysildo Barbosa; da Fonseca, Ricardo; Oliveira, João Ademir de; Munari, Danísio Prado

    2014-10-01

    Beef cattle producers in Brazil use body weight traits as breeding program selection criteria due to their great economic importance. The objectives of this study were to evaluate different animal models, estimate genetic parameters, and define the most fitting model for Brahman cattle body weight standardized at 120 (BW120), 210 (BW210), 365 (BW365), 450 (BW450), and 550 (BW550) days of age. To estimate genetic parameters, single-, two-, and multi-trait analyses were performed using the animal model. The likelihood ratio test was verified between all models. For BW120 and BW210, additive direct genetic, maternal genetic, maternal permanent environment, and residual effects were considered, while for BW365 and BW450, additive direct genetic, maternal genetic, and residual effects were considered. Finally, for BW550, additive direct genetic and residual effects were considered. Estimates of direct heritability for BW120 were similar in all analyses; however, for the other traits, multi-trait analysis resulted in higher estimates. The maternal heritability and proportion of maternal permanent environmental variance to total variance were minimal in multi-trait analyses. Genetic, environmental, and phenotypic correlations were of high magnitude between all traits. Multi-trait analyses would aid in the parameter estimation for body weight at older ages because they are usually affected by a lower number of animals with phenotypic information due to culling and mortality.

  3. Genomic Insight into Mechanisms of Reversion of Antibiotic Resistance in Multidrug Resistant Mycobacterium tuberculosis Induced by a Nanomolecular Iodine-Containing Complex FS-1.

    PubMed

    Ilin, Aleksandr I; Kulmanov, Murat E; Korotetskiy, Ilya S; Islamov, Rinat A; Akhmetova, Gulshara K; Lankina, Marina V; Reva, Oleg N

    2017-01-01

    Drug induced reversion of antibiotic resistance is a promising way to combat multidrug resistant infections. However, lacking knowledge of mechanisms of drug resistance reversion impedes employing this approach in medicinal therapies. Induction of antibiotic resistance reversion by a new anti-tuberculosis drug FS-1 has been reported. FS-1 was used in this work in combination with standard anti-tuberculosis antibiotics in an experiment on laboratory guinea pigs infected with an extensively drug resistant (XDR) strain Mycobacterium tuberculosis SCAID 187.0. During the experimental trial, genetic changes in the population were analyzed by sequencing of M. tuberculosis isolates followed by variant calling. In total 11 isolates obtained from different groups of infected animals at different stages of disease development and treatment were sequenced. It was found that despite the selective pressure of antibiotics, FS-1 caused a counter-selection of drug resistant variants that speeded up the recovery of the infected animals from XDR tuberculosis. Drug resistance mutations reported in the genome of the initial strain remained intact in more sensitive isolates obtained in this experiment. Variant calling in the sequenced genomes revealed that the drug resistance reversion could be associated with a general increase in genetic heterogeneity of the population of M. tuberculosis . Accumulation of mutations in PpsA and PpsE subunits of phenolpthiocerol polyketide synthase was observed in the isolates treated with FS-1 that may indicate an increase of persisting variants in the population. It was hypothesized that FS-1 caused an active counter-selection of drug resistant variants from the population by aggravating the cumulated fitness cost of the drug resistance mutations. Action of FS-1 on drug resistant bacteria exemplified the theoretically predicted induced synergy mechanism of drug resistance reversion. An experimental model to study the drug resistance reversion phenomenon is hereby introduced.

  4. Whole-genome analysis of genetic recombination of hepatitis delta virus: molecular domain in delta antigen determining trans-activating efficiency.

    PubMed

    Chao, Mei; Lin, Chia-Chi; Lin, Feng-Ming; Li, Hsin-Pai; Iang, Shan-Bei

    2015-12-01

    Hepatitis delta virus (HDV) is the only animal RNA virus that has an unbranched rod-like genome with ribozyme activity and is replicated by host RNA polymerase. HDV RNA recombination was previously demonstrated in patients and in cultured cells by analysis of a region corresponding to the C terminus of the delta antigen (HDAg), the only viral-encoded protein. Here, a whole-genome recombination map of HDV was constructed using an experimental system in which two HDV-1 sequences were co-transfected into cultured cells and the recombinants were analysed by sequencing of cloned reverse transcription-PCR products. Fifty homologous recombinants with 60 crossovers mapping to 22 junctions were identified from 200 analysed clones. Small HDAg chimeras harbouring a junction newly detected in the recombination map were then constructed. The results further indicated that the genome-replication level of HDV was sensitive to the sixth amino acid within the N-terminal 22 aa of HDAg. Therefore, the recombination map established in this study provided a tool for not only understanding HDV RNA recombination, but also elucidating the related mechanisms, such as molecular elements responsible for the trans-activation levels of the small HDAg.

  5. Insights from human genetic studies of lung and organ fibrosis.

    PubMed

    Garcia, Christine Kim

    2018-01-02

    Genetic investigations of fibrotic diseases, including those of late onset, often yield unanticipated insights into disease pathogenesis. This Review focuses on pathways underlying lung fibrosis that are generalizable to other organs. Herein, we discuss genetic variants subdivided into those that shorten telomeres, activate the DNA damage response, change resident protein expression or function, or affect organelle activity. Genetic studies provide a window into the downstream cascade of maladaptive responses and pathways that lead to tissue fibrosis. In addition, these studies reveal interactions between genetic variants, environmental factors, and age that influence the phenotypic spectrum of disease. The discovery of forces counterbalancing inherited risk alleles identifies potential therapeutic targets, thus providing hope for future prevention or reversal of fibrosis.

  6. Toward understanding of the role of reversibility of phenotypic switching in the evolution of resistance to therapy

    NASA Astrophysics Data System (ADS)

    Horvath, D.; Brutovsky, B.

    2018-06-01

    Reversibility of state transitions is intensively studied topic in many scientific disciplines over many years. In cell biology, it plays an important role in epigenetic variation of phenotypes, known as phenotypic plasticity. More interestingly, the cell state reversibility is probably crucial in the adaptation of population phenotypic heterogeneity to environmental fluctuations by evolving bet-hedging strategy, which might confer to cancer cells resistance to therapy. In this article, we propose a formalization of the evolution of highly reversible states in the environments of periodic variability. Two interrelated models of heterogeneous cell populations are proposed and their behavior is studied. The first model captures selection dynamics of the cell clones for the respective levels of phenotypic reversibility. The second model focuses on the interplay between reversibility and drug resistance in the particular case of cancer. Overall, our results show that the threshold dependencies are emergent features of the investigated model with eventual therapeutic relevance. Presented examples demonstrate importance of taking into account cell to cell heterogeneity within a system of clones with different reversibility quantified by appropriately chosen genetic and epigenetic entropy measures.

  7. Partition of genetic trends by origin in Landrace and Large-White pigs.

    PubMed

    Škorput, D; Gorjanc, G; Kasap, A; Luković, Z

    2015-10-01

    The objective of this study was to analyse the effectiveness of genetic improvement via domestic selection and import for backfat thickness and time on test in a conventional pig breeding programme for Landrace (L) and Large-White (LW) breeds. Phenotype data was available for 25 553 L and 10 432 LW pigs born between 2002 and 2012 from four large-scale farms and 72 family farms. Pedigree information indicated whether each animal was born and registered within the domestic breeding programme or has been imported. This information was used for defining the genetic groups of unknown parents in a pedigree and the partitioning analysis. Breeding values were estimated using a Bayesian analysis of an animal model with and without genetic groups. Such analysis enabled full Bayesian inference of the genetic trends and their partitioning by the origin of germplasm. Estimates of genetic group indicated that imported germplasm was overall better than domestic and substantial changes in estimates of breeding values was observed when genetic group were fitted. The estimated genetic trends in L were favourable and significantly different from zero by the end of the analysed period. Overall, the genetic trends in LW were not different from zero. The relative contribution of imported germplasm to genetic trends was large, especially towards the end of analysed period with 78% and 67% in L and from 50% to 67% in LW. The analyses suggest that domestic breeding activities and sources of imported animals need to be re-evaluated, in particular in LW breed.

  8. Genetic and Environmental Influences on Inattention, Hyperactivity-Impulsivity, and Reading: Kindergarten to Grade 2

    ERIC Educational Resources Information Center

    Ebejer, Jane L.; Coventry, William L.; Byrne, Brian; Willcutt, Erik G.; Olson, Richard K.; Corley, Robin; Samuelsson, Stefan

    2010-01-01

    Twin children from Australia, Scandinavia, and the United States were assessed for inattention, hyperactivity-impulsivity, and reading across the first 3 school years. Univariate behavior-genetic analyses indicated substantial heritability for all three variables in all years. Longitudinal analyses showed one genetic source operating across the…

  9. EPI-743 reverses the progression of the pediatric mitochondrial disease--genetically defined Leigh Syndrome.

    PubMed

    Martinelli, Diego; Catteruccia, Michela; Piemonte, Fiorella; Pastore, Anna; Tozzi, Giulia; Dionisi-Vici, Carlo; Pontrelli, Giuseppe; Corsetti, Tiziana; Livadiotti, Susanna; Kheifets, Viktoria; Hinman, Andrew; Shrader, William D; Thoolen, Martin; Klein, Matthew B; Bertini, Enrico; Miller, Guy

    2012-11-01

    Genetically defined Leigh syndrome is a rare, fatal inherited neurodegenerative disorder that predominantly affects children. No treatment is available. EPI-743 is a novel small molecule developed for the treatment of Leigh syndrome and other inherited mitochondrial diseases. In compassionate use cases and in an FDA Expanded Access protocol, children with Leigh syndrome treated with EPI-743 demonstrated objective signs of neurologic and neuromuscular improvement. To confirm these initial findings, a phase 2A open label trial of EPI-743 for children with genetically-confirmed Leigh syndrome was conducted and herein we report the results. A single arm clinical trial was performed in children with genetically defined Leigh syndrome. Subjects were treated for 6 months with EPI-743 three times daily and all were eligible for a treatment extension phase. The primary objective of the trial was to arrest disease progression as assessed by neuromuscular and quality of life metrics. Results were compared to the reported natural history of the disease. Ten consecutive children, ages 1-13 years, were enrolled; they possessed seven different genetic defects. All children exhibited reversal of disease progression regardless of genetic determinant or disease severity. The primary endpoints--Newcastle Pediatric Mitochondrial Disease Scale, the Gross Motor Function Measure, and PedsQL Neuromuscular Module--demonstrated statistically significant improvement (p<0.05). In addition, all children had an improvement of one class on the Movement Disorder-Childhood Rating Scale. No significant drug-related adverse events were recorded. In comparison to the natural history of Leigh syndrome, EPI-743 improves clinical outcomes in children with genetically confirmed Leigh syndrome. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Efficient assembly of full-length infectious clone of Brazilian IBDV isolate by homologous recombination in yeast

    PubMed Central

    Silva, J.V.J.; Arenhart, S.; Santos, H.F.; Almeida-Queiroz, S.R.; Silva, A.N.M.R.; Trevisol, I.M.; Bertani, G.R.; Gil, L.H.V.G.

    2014-01-01

    The Infectious Bursal Disease Virus (IBDV) causes immunosuppression in young chickens. Advances in molecular virology and vaccines for IBDV have been achieved by viral reverse genetics (VRG). VRG for IBDV has undergone changes over time, however all strategies used to generate particles of IBDV involves multiple rounds of amplification and need of in vitro ligation and restriction sites. The aim of this research was to build the world’s first VRG for IBDV by yeast-based homologous recombination; a more efficient, robust and simple process than cloning by in vitro ligation. The wild type IBDV (Wt-IBDV-Br) was isolated in Brazil and had its genome cloned in pJG-CMV-HDR vector by yeast-based homologous recombination. The clones were transfected into chicken embryo fibroblasts and the recovered virus (IC-IBDV-Br) showed genetic stability and similar phenotype to Wt-IBDV-Br, which were observed by nucleotide sequence, focus size/morphology and replication kinetics, respectively. Thus, IBDV reverse genetics by yeast-based homologous recombination provides tools to IBDV understanding and vaccines/viral vectors development. PMID:25763067

  11. Epigenetic understanding of gene-environment interactions in psychiatric disorders: a new concept of clinical genetics

    PubMed Central

    2012-01-01

    Epigenetics is a mechanism that regulates gene expression independently of the underlying DNA sequence, relying instead on the chemical modification of DNA and histone proteins. Although environmental and genetic factors were thought to be independently associated with disorders, several recent lines of evidence suggest that epigenetics bridges these two factors. Epigenetic gene regulation is essential for normal development, thus defects in epigenetics cause various rare congenital diseases. Because epigenetics is a reversible system that can be affected by various environmental factors, such as drugs, nutrition, and mental stress, the epigenetic disorders also include common diseases induced by environmental factors. In this review, we discuss the nature of epigenetic disorders, particularly psychiatric disorders, on the basis of recent findings: 1) susceptibility of the conditions to environmental factors, 2) treatment by taking advantage of their reversible nature, and 3) transgenerational inheritance of epigenetic changes, that is, acquired adaptive epigenetic changes that are passed on to offspring. These recently discovered aspects of epigenetics provide a new concept of clinical genetics. PMID:22414323

  12. [Biosafety issues and public concerns on recombinant influenza viruses generated in the laboratories].

    PubMed

    Jia, Xiaojuan; Huang, Liqin; Liu, Wenjun

    2013-12-01

    Understanding inter-species transmission of influenza viruses is an important research topic. Scientists try to identify and evaluate the functional factors determining the host range of influenza viruses by generating the recombinant viruses through reverse genetics in laboratories, which reveals the viruses' molecular mechanisms of infection and transmission in different species. Therefore, the reverse genetic method is a very important tool for further understanding the biology of influenza viruses and will provide the insight for the prevention and treatment of infections and transmission. However, these recombinant influenza viruses generated in laboratories will become the potential threat to the public health and the environment. In this paper, we discussed the biological safety issues of recombinant influenza viruses and suggested we should set up protocols for risk management on research activities related to recombinant highly pathogenic influenza viruses.

  13. Generation of Recombinant Ebola Viruses Using Reverse Genetics.

    PubMed

    Groseth, Allison

    2017-01-01

    Reverse genetics systems encompass a wide array of tools aimed at recapitulating some or all of the virus life cycle. In their most complete form, full-length clone systems allow us to use plasmid-encoded versions of the ribonucleoprotein (RNP) components to initiate the transcription and replication of a plasmid-encoded version of the complete viral genome, thereby initiating the complete virus life cycle and resulting in infectious virus. As such this approach is ideal for the generation of tailor-made recombinant filoviruses, which can be used to study virus biology. In addition, the generation of tagged and particularly fluorescent or luminescent viruses can be applied as tools for both diagnostic applications and for screening to identify novel countermeasures. Here we describe the generation and basic characterization of recombinant Ebola viruses rescued from cloned cDNA using a T7-driven system.

  14. Association between subjective memory complaints and depressive symptoms after adjustment for genetic and family environmental factors in a Japanese twin study.

    PubMed

    Tanaka, Haruka; Ogata, Soshiro; Omura, Kayoko; Honda, Chika; Kamide, Kei; Hayakawa, Kazuo

    2016-03-01

    The aim of this study was to investigate the association between subjective memory complaints (SMCs) and depressive symptoms, with and without adjustment for genetic and family environmental factors. We conducted a cross-sectional study using twins and measured SMCs and depressive symptoms as outcomes and explanatory variables, respectively. First, we performed regression analyses using generalized estimating equations to investigate the associations between SMCs and depressive symptoms without adjustment for genetic and family environmental factors (individual-level analyses). We then performed regression analyses for within-pair differences using monozygotic (MZ) and dizygotic (DZ) twin pairs and MZ twin pairs to investigate these associations with adjustment for genetic and family environmental factors by subtracting the values of one twin from those of co-twin variables (within-pair level analyses). Therefore, differences between the associations at individual- and within-pair level analyses suggested confounding by genetic factors. We included 556 twins aged ≥ 20 years. In the individual-level analyses, SMCs were significantly associated with depressive symptoms in both males and females [standardized coefficients: males, 0.23 (95% CI 0.08-0.38); females, 0.35 (95% CI 0.23-0.46)]. In the within-pair level analyses using MZ and same-sex DZ twin pairs, SMCs were significantly associated with depressive symptoms. In the within-pair level analyses using the MZ twin pairs, SMCs were significantly associated with depressive symptoms [standardized coefficients: males, 0.32 (95% CI 0.08-0.56); females, 0.24 (95% CI 0.13-0.42)]. This study suggested that SMCs were significantly associated with depressive symptoms after adjustment for genetic and family environmental factors.

  15. Marital assortment for genetic similarity.

    PubMed

    Eckman, Ronael E; Williams, Robert; Nagoshi, Craig

    2002-10-01

    The present study involved analyses of a Caucasian American sample (n=949) and a Japanese American sample (n=400) for factors supporting Genetic Similarity Theory (GST). The analyses found no evidence for the presence of genetic similarity between spouses in either sample for the blood group analyses of nine loci. All results indicated random mating for blood group genes. The results did not provide consistent substantial support to show that spousal similarity is correlated with the degree of genetic component of a trait for a set of seventeen individual differences variables, with only the Caucasian sample yielding significant correlations for this analysis. A third analysis examining the correlation between presence of spousal genetic similarity and spousal similarity on observable traits was not performed because spousal genetic similarity was not observed in either sample. The overall implication of the study is that GST is not supported as an explanation for spousal similarity in humans.

  16. The Unicellular Green Alga Chlamydomonas reinhardtii as an Experimental System to Study Chloroplast RNA Metabolism

    NASA Astrophysics Data System (ADS)

    Nickelsen, J.; Kück, U.

    Chloroplasts are typical organelles of photoautotrophic eukaryotic cells which drive a variety of functions, including photosynthesis. For many years the unicellular green alga Chlamydomonas reinhardtii has served as an experimental organism for studying photosynthetic processes. The recent development of molecular tools for this organism together with efficient methods of genetic analysis and the availability of many photosynthesis mutants has now made this alga a powerful model system for the analysis of chloroplast biogenesis. For example, techniques have been developed to transfer recombinant DNA into both the nuclear and the chloroplast genome. This allows both complementation tests and analyses of gene functions in vivo. Moreover, site-specific DNA recombinations in the chloroplast allow targeted gene disruption experiments which enable a "reverse genetics" to be performed. The potential of the algal system for the study of chloroplast biogenesis is illustrated in this review by the description of regulatory systems of gene expression involved in organelle biogenesis. One example concerns the regulation of trans-splicing of chloroplast mRNAs, a process which is controlled by both multiple nuclear- and chloroplast-encoded factors. The second example involves the stabilization of chloroplast mRNAs. The available data lead us predict distinct RNA elements, which interact with trans-acting factors to protect the RNA against nucleolytic attacks.

  17. Mutation-Based Learning to Improve Student Autonomy and Scientific Inquiry Skills in a Large Genetics Laboratory Course

    PubMed Central

    Wu, Jinlu

    2013-01-01

    Laboratory education can play a vital role in developing a learner's autonomy and scientific inquiry skills. In an innovative, mutation-based learning (MBL) approach, students were instructed to redesign a teacher-designed standard experimental protocol by a “mutation” method in a molecular genetics laboratory course. Students could choose to delete, add, reverse, or replace certain steps of the standard protocol to explore questions of interest to them in a given experimental scenario. They wrote experimental proposals to address their rationales and hypotheses for the “mutations”; conducted experiments in parallel, according to both standard and mutated protocols; and then compared and analyzed results to write individual lab reports. Various autonomy-supportive measures were provided in the entire experimental process. Analyses of student work and feedback suggest that students using the MBL approach 1) spend more time discussing experiments, 2) use more scientific inquiry skills, and 3) find the increased autonomy afforded by MBL more enjoyable than do students following regimented instructions in a conventional “cookbook”-style laboratory. Furthermore, the MBL approach does not incur an obvious increase in labor and financial costs, which makes it feasible for easy adaptation and implementation in a large class. PMID:24006394

  18. Heterozygous RTEL1 mutations are associated with familial pulmonary fibrosis.

    PubMed

    Kannengiesser, Caroline; Borie, Raphael; Ménard, Christelle; Réocreux, Marion; Nitschké, Patrick; Gazal, Steven; Mal, Hervé; Taillé, Camille; Cadranel, Jacques; Nunes, Hilario; Valeyre, Dominique; Cordier, Jean François; Callebaut, Isabelle; Boileau, Catherine; Cottin, Vincent; Grandchamp, Bernard; Revy, Patrick; Crestani, Bruno

    2015-08-01

    Pulmonary fibrosis is a fatal disease with progressive loss of respiratory function. Defective telomere maintenance leading to telomere shortening is a cause of pulmonary fibrosis, as mutations in the telomerase component genes TERT (reverse transcriptase) and TERC (RNA component) are found in 15% of familial pulmonary fibrosis (FPF) cases. However, so far, about 85% of FPF remain genetically uncharacterised.Here, in order to identify new genetic causes of FPF, we performed whole-exome sequencing, with a candidate-gene approach, of 47 affected subjects from 35 families with FPF without TERT and TERC mutations.We identified heterozygous mutations in regulator of telomere elongation helicase 1 (RTEL1) in four families. RTEL1 is a DNA helicase with roles in DNA replication, genome stability, DNA repair and telomere maintenance. The heterozygous RTEL1 mutations segregated as an autosomal dominant trait in FPF, and were predicted by structural analyses to severely affect the function and/or stability of RTEL1. In agreement with this, RTEL1-mutated patients exhibited short telomeres in comparison with age-matched controls.Our results provide evidence that heterozygous RTEL1 mutations are responsible for FPF and, thereby, extend the clinical spectrum of RTEL1 deficiency. Thus, RTEL1 enlarges the number of telomere-associated genes implicated in FPF. Copyright ©ERS 2015.

  19. Fifteen new earthworm mitogenomes shed new light on phylogeny within the Pheretima complex

    PubMed Central

    Zhang, Liangliang; Sechi, Pierfrancesco; Yuan, Minglong; Jiang, Jibao; Dong, Yan; Qiu, Jiangping

    2016-01-01

    The Pheretima complex within the Megascolecidae family is a major earthworm group. Recently, the systematic status of the Pheretima complex based on morphology was challenged by molecular studies. In this study, we carry out the first comparative mitogenomic study in oligochaetes. The mitogenomes of 15 earthworm species were sequenced and compared with other 9 available earthworm mitogenomes, with the main aim to explore their phylogenetic relationships and test different analytical approaches on phylogeny reconstruction. The general earthworm mitogenomic features revealed to be conservative: all genes encoded on the same strand, all the protein coding loci shared the same initiation codon (ATG), and tRNA genes showed conserved structures. The Drawida japonica mitogenome displayed the highest A + T content, reversed AT/GC-skews and the highest genetic diversity. Genetic distances among protein coding genes displayed their maximum and minimum interspecific values in the ATP8 and CO1 genes, respectively. The 22 tRNAs showed variable substitution patterns between the considered earthworm mitogenomes. The inclusion of rRNAs positively increased phylogenetic support. Furthermore, we tested different trimming tools for alignment improvement. Our analyses rejected reciprocal monophyly among Amynthas and Metaphire and indicated that the two genera should be systematically classified into one. PMID:26833286

  20. The impact of sex-role reversal on the diversity of the major histocompatibility complex: Insights from the seahorse (Hippocampus abdominalis)

    PubMed Central

    2011-01-01

    Background Both natural and sexual selection are thought to influence genetic diversity, but the study of the relative importance of these two factors on ecologically-relevant traits has traditionally focused on species with conventional sex-roles, with male-male competition and female-based mate choice. With its high variability and significance in both immune function and olfactory-mediated mate choice, the major histocompatibility complex (MHC/MH) is an ideal system in which to evaluate the relative contributions of these two selective forces to genetic diversity. Intrasexual competition and mate choice are both reversed in sex-role reversed species, and sex-related differences in the detection and use of MH-odor cues are expected to influence the intensity of sexual selection in such species. The seahorse, Hippocampus abdominalis, has an exceptionally highly developed form of male parental care, with female-female competition and male mate choice. Results Here, we demonstrate that the sex-role reversed seahorse has a single MH class II beta-chain gene and that the diversity of the seahorse MHIIβ locus and its pattern of variation are comparable to those detected in species with conventional sex roles. Despite the presence of only a single gene copy, intralocus MHIIβ allelic diversity in this species exceeds that observed in species with multiple copies of this locus. The MHIIβ locus of the seahorse exhibits a novel expression domain in the male brood pouch. Conclusions The high variation found at the seahorse MHIIβ gene indicates that sex-role reversed species are capable of maintaining the high MHC diversity typical in most vertebrates. Whether such species have evolved the capacity to use MH-odor cues during mate choice is presently being investigated using mate choice experiments. If this possibility can be rejected, such systems would offer an exceptional opportunity to study the effects of natural selection in isolation, providing powerful comparative models for understanding the relative importance of selective factors in shaping patterns of genetic variation. PMID:21569286

  1. Genetic Based Plant Resistance and Susceptibility Traits to Herbivory Influence Needle and Root Litter Nutrient Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Classen, Aimee T; Chapman, Samantha K.; Whitham, Thomas G

    2007-01-01

    It is generally assumed that leaf and root litter decomposition have similar drivers and that nutrient release from these substrates is synchronized. Few studies have examined these assumptions, and none has examined how plant genetics (i.e., plant susceptibility to herbivory) could affect these relationships. Here we examine the effects of herbivore susceptibility and resistance on needle and fine root litter decomposition of pi on pine, Pinus edulis. The study population consists of individual trees that are either susceptible or resistant to herbivory by the pi on needle scale, Matsucoccus acalyptus, or the stem-boring moth, Dioryctria albovittella. Genetic analyses and experimentalmore » removals and additions of these insects have identified trees that are naturally resistant and susceptible to these insects. These herbivores increase the chemical quality of litter inputs and alter soil microclimate, both of which are important decomposition drivers. Our research leads to four major conclusions: Herbivore susceptibility and resistance effects on 1) needle litter mass loss and phosphorus (P) retention in moth susceptible and resistant litter are governed by microclimate, 2) root litter nitrogen (N) and P retention, and needle litter N retention are governed by litter chemical quality, 3) net nutrient release from litter can reverse over time, 4) root and needle litter mass loss and nutrient release are determined by location (above- vs. belowground), suggesting that the regulators of needle and root decomposition differ at the local scale. Understanding of decomposition and nutrient retention in ecosystems requires consideration of herbivore effects on above- and belowground processes and how these effects may be governed by plant genotype. Because an underlying genetic component to herbivory is common to most ecosystems of the world and herbivory may increase in climatic change scenarios, it is important to evaluate the role of plant genetics in affecting carbon and nutrient fluxes.« less

  2. Acute effects of cocaine and cannabis on reversal learning as a function of COMT and DRD2 genotype.

    PubMed

    Spronk, Desirée B; Van der Schaaf, Marieke E; Cools, Roshan; De Bruijn, Ellen R A; Franke, Barbara; van Wel, Janelle H P; Ramaekers, Johannes G; Verkes, Robbert J

    2016-01-01

    Long-term cannabis and cocaine use has been associated with impairments in reversal learning. However, how acute cannabis and cocaine administration affect reversal learning in humans is not known. In this study, we aimed to establish the acute effects of administration of cannabis and cocaine on valence-dependent reversal learning as a function of DRD2 Taq1A (rs1800497) and COMT Val108/158Met (rs4680) genotype. A double-blind placebo-controlled randomized 3-way crossover design was used. Sixty-one regular poly-drug users completed a deterministic reversal learning task under the influence of cocaine, cannabis, and placebo that enabled assessment of both reward- and punishment-based reversal learning. Proportion correct on the reversal learning task was increased by cocaine, but decreased by cannabis. Effects of cocaine depended on the DRD2 genotype, as increases in proportion correct were seen only in the A1 carriers, and not in the A2/A2 homozygotes. COMT genotype did not modulate drug-induced effects on reversal learning. These data indicate that acute administration of cannabis and cocaine has opposite effects on reversal learning. The effects of cocaine, but not cannabis, depend on interindividual genetic differences in the dopamine D2 receptor gene.

  3. GeNets: a unified web platform for network-based genomic analyses.

    PubMed

    Li, Taibo; Kim, April; Rosenbluh, Joseph; Horn, Heiko; Greenfeld, Liraz; An, David; Zimmer, Andrew; Liberzon, Arthur; Bistline, Jon; Natoli, Ted; Li, Yang; Tsherniak, Aviad; Narayan, Rajiv; Subramanian, Aravind; Liefeld, Ted; Wong, Bang; Thompson, Dawn; Calvo, Sarah; Carr, Steve; Boehm, Jesse; Jaffe, Jake; Mesirov, Jill; Hacohen, Nir; Regev, Aviv; Lage, Kasper

    2018-06-18

    Functional genomics networks are widely used to identify unexpected pathway relationships in large genomic datasets. However, it is challenging to compare the signal-to-noise ratios of different networks and to identify the optimal network with which to interpret a particular genetic dataset. We present GeNets, a platform in which users can train a machine-learning model (Quack) to carry out these comparisons and execute, store, and share analyses of genetic and RNA-sequencing datasets.

  4. Genetic Thinking in the Study of Social Relationships: Five Points of Entry.

    PubMed

    Reiss, David

    2010-09-01

    For nearly a generation, researchers studying human behavioral development have combined genetically informed research designs with careful measures of social relationships such as parenting, sibling relationships, peer relationships, marital processes, social class stratifications, and patterns of social engagement in the elderly. In what way have these genetically informed studies altered the construction and testing of social theories of human development? We consider five points of entry where genetic thinking is taking hold. First, genetic findings suggest an alternative scenario for explaining social data. Associations between measures of the social environment and human development may be due to genes that influence both. Second, genetic studies add to other prompts to study the early developmental origins of current social phenomena in midlife and beyond. Third, genetic analyses promise to shed light on understudied social systems, such as sibling relationships, that have an impact on human development independent of genotype. Fourth, genetic analyses anchor in neurobiology individual differences in resilience and sensitivity to both adverse and favorable social environments. Finally, genetic analyses increase the utility of laboratory simulations of human social processes and of animal models. © The Author(s) 2010.

  5. Demographic and genetic consequences of disturbed sex determination.

    PubMed

    Wedekind, Claus

    2017-09-19

    During sex determination, genetic and/or environmental factors determine the cascade of processes of gonad development. Many organisms, therefore, have a developmental window in which their sex determination can be sensitive to, for example, unusual temperatures or chemical pollutants. Disturbed environments can distort population sex ratios and may even cause sex reversal in species with genetic sex determination. The resulting genotype-phenotype mismatches can have long-lasting effects on population demography and genetics. I review the theoretical and empirical work in this context and explore in a simple population model the role of the fitness v yy of chromosomally aberrant YY genotypes that are a consequence of environmentally induced feminization. Low v yy is mostly beneficial for population growth. During feminization, low v yy reduces the proportion of genetic males and hence accelerates population growth, especially at low rates of feminization and at high fitness costs of the feminization itself (i.e. when feminization would otherwise not affect population dynamics much). When sex reversal ceases, low v yy mitigates the negative effects of feminization and can even prevent population extinction. Little is known about v yy in natural populations. The available models now need to be parametrized in order to better predict the long-term consequences of disturbed sex determination.This article is part of the themed issue 'Adult sex ratios and reproductive decisions: a critical re-examination of sex differences in human and animal societies'. © 2017 The Author(s).

  6. Genetics Home Reference: core binding factor acute myeloid leukemia

    MedlinePlus

    ... the CBFB gene. One such rearrangement, called an inversion , involves breakage of a chromosome in two places; ... is reversed and reinserted into the chromosome. The inversion involved in CBF-AML (written as inv(16)) ...

  7. Exploring a post-traumatic stress disorder paradigm in Flinders sensitive line rats to model treatment-resistant depression I: bio-behavioural validation and response to imipramine.

    PubMed

    Brand, Sarel Jacobus; Harvey, Brian Herbert

    2017-08-01

    Co-morbid depression with post-traumatic stress disorder (PTSD) is often treatment resistant. In developing a preclinical model of treatment-resistant depression (TRD), we combined animal models of depression and PTSD to produce an animal with more severe as well as treatment-resistant depressive-like behaviours. Male Flinders sensitive line (FSL) rats, a genetic animal model of depression, were exposed to a stress re-stress model of PTSD [time-dependent sensitisation (TDS)] and compared with stress-naive controls. Seven days after TDS stress, depressive-like and coping behaviours as well as hippocampal and cortical noradrenaline (NA) and 5-hydroxyindoleacetic acid (5HIAA) levels were analysed. Response to sub-chronic imipramine treatment (IMI; 10 mg/kg s.c.×7 days) was subsequently studied. FSL rats demonstrated bio-behavioural characteristics of depression. Exposure to TDS stress in FSL rats correlated negatively with weight gain, while demonstrating reduced swimming behaviour and increased immobility versus unstressed FSL rats. IMI significantly reversed depressive-like (immobility) behaviour and enhanced active coping behaviour (swimming and climbing) in FSL rats. The latter was significantly attenuated in FSL rats exposed to TDS versus unstressed FSL rats. IMI reversed reduced 5HIAA levels in unstressed FSL rats, whereas exposure to TDS negated this effect. Lowered NA levels in FSL rats were sustained after TDS with IMI significantly reversing this in the hippocampus. Combining a gene-X-environment model of depression with a PTSD paradigm produces exaggerated depressive-like symptoms that display an attenuated response to antidepressant treatment. This work confirms combining FSL rats with TDS exposure as a putative animal model of TRD.

  8. The near demise and subsequent revival of classical genetics for investigating Caenorhabditis elegans embryogenesis: RNAi meets next-generation DNA sequencing.

    PubMed

    Bowerman, Bruce

    2011-10-01

    Molecular genetic investigation of the early Caenorhabditis elegans embryo has contributed substantially to the discovery and general understanding of the genes, pathways, and mechanisms that regulate and execute developmental and cell biological processes. Initially, worm geneticists relied exclusively on a classical genetics approach, isolating mutants with interesting phenotypes after mutagenesis and then determining the identity of the affected genes. Subsequently, the discovery of RNA interference (RNAi) led to a much greater reliance on a reverse genetics approach: reducing the function of known genes with RNAi and then observing the phenotypic consequences. Now the advent of next-generation DNA sequencing technologies and the ensuing ease and affordability of whole-genome sequencing are reviving the use of classical genetics to investigate early C. elegans embryogenesis.

  9. A unifying theory for genetic epidemiological analysis of binary disease data

    PubMed Central

    2014-01-01

    Background Genetic selection for host resistance offers a desirable complement to chemical treatment to control infectious disease in livestock. Quantitative genetics disease data frequently originate from field studies and are often binary. However, current methods to analyse binary disease data fail to take infection dynamics into account. Moreover, genetic analyses tend to focus on host susceptibility, ignoring potential variation in infectiousness, i.e. the ability of a host to transmit the infection. This stands in contrast to epidemiological studies, which reveal that variation in infectiousness plays an important role in the progression and severity of epidemics. In this study, we aim at filling this gap by deriving an expression for the probability of becoming infected that incorporates infection dynamics and is an explicit function of both host susceptibility and infectiousness. We then validate this expression according to epidemiological theory and by simulating epidemiological scenarios, and explore implications of integrating this expression into genetic analyses. Results Our simulations show that the derived expression is valid for a range of stochastic genetic-epidemiological scenarios. In the particular case of variation in susceptibility only, the expression can be incorporated into conventional quantitative genetic analyses using a complementary log-log link function (rather than probit or logit). Similarly, if there is moderate variation in both susceptibility and infectiousness, it is possible to use a logarithmic link function, combined with an indirect genetic effects model. However, in the presence of highly infectious individuals, i.e. super-spreaders, the use of any model that is linear in susceptibility and infectiousness causes biased estimates. Thus, in order to identify super-spreaders, novel analytical methods using our derived expression are required. Conclusions We have derived a genetic-epidemiological function for quantitative genetic analyses of binary infectious disease data, which, unlike current approaches, takes infection dynamics into account and allows for variation in host susceptibility and infectiousness. PMID:24552188

  10. A unifying theory for genetic epidemiological analysis of binary disease data.

    PubMed

    Lipschutz-Powell, Debby; Woolliams, John A; Doeschl-Wilson, Andrea B

    2014-02-19

    Genetic selection for host resistance offers a desirable complement to chemical treatment to control infectious disease in livestock. Quantitative genetics disease data frequently originate from field studies and are often binary. However, current methods to analyse binary disease data fail to take infection dynamics into account. Moreover, genetic analyses tend to focus on host susceptibility, ignoring potential variation in infectiousness, i.e. the ability of a host to transmit the infection. This stands in contrast to epidemiological studies, which reveal that variation in infectiousness plays an important role in the progression and severity of epidemics. In this study, we aim at filling this gap by deriving an expression for the probability of becoming infected that incorporates infection dynamics and is an explicit function of both host susceptibility and infectiousness. We then validate this expression according to epidemiological theory and by simulating epidemiological scenarios, and explore implications of integrating this expression into genetic analyses. Our simulations show that the derived expression is valid for a range of stochastic genetic-epidemiological scenarios. In the particular case of variation in susceptibility only, the expression can be incorporated into conventional quantitative genetic analyses using a complementary log-log link function (rather than probit or logit). Similarly, if there is moderate variation in both susceptibility and infectiousness, it is possible to use a logarithmic link function, combined with an indirect genetic effects model. However, in the presence of highly infectious individuals, i.e. super-spreaders, the use of any model that is linear in susceptibility and infectiousness causes biased estimates. Thus, in order to identify super-spreaders, novel analytical methods using our derived expression are required. We have derived a genetic-epidemiological function for quantitative genetic analyses of binary infectious disease data, which, unlike current approaches, takes infection dynamics into account and allows for variation in host susceptibility and infectiousness.

  11. Tissue-Engineered Skeletal Muscle Organoids for Reversible Gene Therapy

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman; DelTatto, Michael; Shansky, Janet; Lemaire, Julie; Chang, Albert; Payumo, Francis; Lee, Peter; Goodyear, Amy; Raven, Latasha

    1996-01-01

    Genetically modified murine skeletal myoblasts were tissue engineered in vitro into organ-like structures (organoids) containing only postmitotic myoribers secreting pharmacological levels of recombinant human growth hormone (rhGH). Subcutaneous organoid implantation under tension led to the rapid and stable appearance of physiological sera levels of rhGH for up to 12 weeks, whereas surgical removal led to its rapid disappearance. Reversible delivery of bioactive compounds from postmitotic cells in tissue engineered organs has several advantages over other forms of muscle gene therapy.

  12. Tissue-Engineered Skeletal Muscle Organoids for Reversible Gene Therapy

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman; DelTatto, Michael; Shansky, Janet; Lemaire, Julie; Chang, Albert; Payumo, Francis; Lee, Peter; Goodyear, Amy; Raven, Latasha

    1996-01-01

    Genetically modified murine skeletal myoblasts were tissue engineered in vitro into organ-like structures (organoids) containing only postmitotic myofibers secreting pharmacological levels of recombinant human growth hormone (rhGH). Subcutaneous organoid Implantation under tension led to the rapid and stable appearance of physiological sera levels of rhGH for up to 12 weeks, whereas surgical removal led to its rapid disappearance. Reversible delivery of bioactive compounds from postimtotic cells in tissue engineered organs has several advantages over other forms of muscle gene therapy.

  13. Genetic diversity and structure related to expansion history and habitat isolation: stone marten populating rural-urban habitats.

    PubMed

    Wereszczuk, Anna; Leblois, Raphaël; Zalewski, Andrzej

    2017-12-22

    Population genetic diversity and structure are determined by past and current evolutionary processes, among which spatially limited dispersal, genetic drift, and shifts in species distribution boundaries have major effects. In most wildlife species, environmental modifications by humans often lead to contraction of species' ranges and/or limit their dispersal by acting as environmental barriers. However, in species well adapted to anthropogenic habitat or open landscapes, human induced environmental changes may facilitate dispersal and range expansions. In this study, we analysed whether isolation by distance and deforestation, among other environmental features, promotes or restricts dispersal and expansion in stone marten (Martes foina) populations. We genotyped 298 martens from eight sites at twenty-two microsatellite loci to characterize the genetic variability, population structure and demographic history of stone martens in Poland. At the landscape scale, limited genetic differentiation between sites in a mosaic of urban, rural and forest habitats was mostly influenced by isolation by distance. Statistical clustering and multivariate analyses showed weak genetic structuring with two to four clusters and a high rate of gene flow between them. Stronger genetic differentiation was detected for one stone marten population (NE1) located inside a large forest complex. Genetic differentiation between this site and all others was 20% higher than between other sites separated by similar distances. The genetic uniqueness index of NE1 was also twofold higher than in other sites. Past demographic history analyses showed recent expansion of this species in north-eastern Poland. A decrease in genetic diversity from south to north, and MIGRAINE analyses indicated the direction of expansion of stone marten. Our results showed that two processes, changes in species distribution boundaries and limited dispersal associated with landscape barriers, affect genetic diversity and structure in stone marten. Analysis of local barriers that reduced dispersal and large scale analyses of genetic structure and demographic history highlight the importance of isolation by distance and forest cover for the past colonization of central Europe by stone marten. This confirmed the hypothesis that human-landscape changes (deforestation) accelerated stone marten expansion, to which climate warming probably has also been contributing over the last few decades.

  14. Germ cells in the teleost fish medaka have an inherent feminizing effect

    PubMed Central

    Nishimura, Toshiya; Yamada, Kazuki; Fujimori, Chika; Kikuchi, Mariko; Kawasaki, Toshihiro; Siegfried, Kellee R.; Sakai, Noriyoshi

    2018-01-01

    Germ cells give rise to eggs or sperm. However, recent analyses in medaka (Oryzias latipes) showed that germ cells are also important for feminization of gonads, although this novel role of germ cells has not been characterized in detail. Here, we show that the feminizing effect is inherent to germ cells and is not affected by gametogenic stages or the sexual fate of germ cells. Three medaka mutants were generated to demonstrate this effect: figlα mutants, in which follicle formation is disrupted; meioC mutants, in which germ cells are unable to commit to gametogenesis and meiosis; and dazl mutants, in which germ cells do not develop into gonocytes. All these different stages of germ cells in XX mutants have an ability to feminize the gonads, resulting in the formation of gonads with ovarian structures. In addition to normal ovarian development, we also suggest that the increased number of gonocytes is sufficient for male to female sex reversal in XY medaka. These results may genetically demonstrate that the mechanism underlying the feminizing effect of germ cells is activated before the sexual fate decision of germ cells and meiosis, probably by the time of gonocyte formation in medaka. Author summary Germ cells are the only cells that can transfer genetic materials to the next generation via the sperm or egg. However, recent analyses in teleosts revealed another essential role of germ cells: feminizing the gonads. In our study, medaka mutants in which gametogenesis was blocked at specific stages provides the novel view that the feminizing effect of germ cells occurs in parallel with other reproductive elements, such as meiosis, the sexual fate decision of germ cells, and gametogenesis. Germ cells in medaka may have a potential to feminize gonads at the moment they have developed. PMID:29596424

  15. Purification of mutacin III from group III Streptococcus mutans UA787 and genetic analyses of mutacin III biosynthesis genes.

    PubMed

    Qi, F; Chen, P; Caufield, P W

    1999-09-01

    Previously, members of our group reported the isolation and characterization of mutacin II from Streptococcus mutans T8 and the genetic analyses of the mutacin II biosynthesis genes (J. Novak, P. W. Caufield, and E. J. Miller, J. Bacteriol. 176:4316-4320, 1994; F. Qi, P. Chen, and P. W. Caufield, Appl. Environ. Microbiol. 65:652-658, 1999; P. Chen, F. Qi, J. Novak, and P. W. Caufield, Appl. Environ. Microbiol. 65:1356-1360, 1999). In this study, we cloned and sequenced the mutacin III biosynthesis gene locus from a group III strain of S. mutans, UA787. DNA sequence analysis revealed eight open reading frames, which we designated mutR, -A, -A', -B, -C, -D, -P, and -T. MutR bears strong homology with MutR of mutacin II, while MutA, -B, -C, -D, -P, and -T are counterparts of proteins in the lantibiotic epidermin group. MutA' has 60% amino acid identity with MutA and therefore appears to be a duplicate of MutA. Insertional inactivation demonstrated that mutA is an essential gene for mutacin III production, while mutA' is not required. Mutacin III was purified to homogeneity by using reverse-phase high-pressure liquid chromatography. N-terminal peptide sequencing of the purified mutacin III determined mutA to be the structural gene for prepromutacin III. The molecular mass of the purified peptide was measured by laser disorption mass spectrophotometry and found to be 2,266.43 Da, consistent with our supposition that mutacin III has posttranslational modifications similar to those of the lantibiotic epidermin.

  16. Genetic characterization of a novel astrovirus in Pekin ducks.

    PubMed

    Liao, Qinfeng; Liu, Ning; Wang, Xiaoyan; Wang, Fumin; Zhang, Dabing

    2015-06-01

    Three divergent groups of duck astroviruses (DAstVs), namely DAstV-1, DAstV-2 (formerly duck hepatitis virus type 3) and DAstV-3 (isolate CPH), and other avastroviruses are known to infect domestic ducks. To provide more data regarding the molecular epidemiology of astroviruses in domestic ducks, we examined the prevalence of astroviruses in 136 domestic duck samples collected from four different provinces of China. Nineteen goose samples were also included. Using an astrovirus-specific reverse transcription-PCR assay, two groups of astroviruses were detected from our samples. A group of astroviruses detected from Pekin ducks, Shaoxing ducks and Landes geese were highly similar to the newly discovered DAstV-3. More interestingly, a novel group of avastroviruses, which we named DAstV-4, was detected in Pekin ducks. Following full-length sequencing and sequence analysis, the variation between DAstV-4 and other avastroviruses in terms of lengths of genome and internal component was highlighted. Sequence identity and phylogenetic analyses based on the amino acid sequences of the three open reading frames (ORFs) clearly demonstrated that DAstV-4 was highly divergent from all other avastroviruses. Further analyses showed that DAstV-4 shared low levels of genome identities (50-58%) and high levels of mean amino acid genetic distances in the ORF2 sequences (0.520-0.801) with other avastroviruses, suggesting DAstV-4 may represent an additional avastrovirus species although the taxonomic relationship of DAstV-4 to DAstV-3 remains to be resolved. The present works contribute to the understanding of epidemiology, ecology and taxonomy of astroviruses in ducks. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Dual Combined Real-Time Reverse Transcription Polymerase Chain Reaction Assay for the Diagnosis of Lyssavirus Infection.

    PubMed

    Dacheux, Laurent; Larrous, Florence; Lavenir, Rachel; Lepelletier, Anthony; Faouzi, Abdellah; Troupin, Cécile; Nourlil, Jalal; Buchy, Philippe; Bourhy, Herve

    2016-07-01

    The definitive diagnosis of lyssavirus infection (including rabies) in animals and humans is based on laboratory confirmation. The reference techniques for post-mortem rabies diagnosis are still based on direct immunofluorescence and virus isolation, but molecular techniques, such as polymerase chain reaction (PCR) based methods, are increasingly being used and now constitute the principal tools for diagnosing rabies in humans and for epidemiological analyses. However, it remains a key challenge to obtain relevant specificity and sensitivity with these techniques while ensuring that the genetic diversity of lyssaviruses does not compromise detection. We developed a dual combined real-time reverse transcription polymerase chain reaction (combo RT-qPCR) method for pan-lyssavirus detection. This method is based on two complementary technologies: a probe-based (TaqMan) RT-qPCR for detecting the RABV species (pan-RABV RT-qPCR) and a second reaction using an intercalating dye (SYBR Green) to detect other lyssavirus species (pan-lyssa RT-qPCR). The performance parameters of this combined assay were evaluated with a large panel of primary animal samples covering almost all the genetic variability encountered at the viral species level, and they extended to almost all lyssavirus species characterized to date. This method was also evaluated for the diagnosis of human rabies on 211 biological samples (positive n = 76 and negative n = 135) including saliva, skin and brain biopsies. It detected all 41 human cases of rabies tested and confirmed the sensitivity and the interest of skin biopsy (91.5%) and saliva (54%) samples for intra-vitam diagnosis of human rabies. Finally, this method was successfully implemented in two rabies reference laboratories in enzootic countries (Cambodia and Morocco). This combined RT-qPCR method constitutes a relevant, useful, validated tool for the diagnosis of rabies in both humans and animals, and represents a promising tool for lyssavirus surveillance.

  18. Dual Combined Real-Time Reverse Transcription Polymerase Chain Reaction Assay for the Diagnosis of Lyssavirus Infection

    PubMed Central

    Lavenir, Rachel; Lepelletier, Anthony; Faouzi, Abdellah; Troupin, Cécile; Nourlil, Jalal; Buchy, Philippe; Bourhy, Herve

    2016-01-01

    The definitive diagnosis of lyssavirus infection (including rabies) in animals and humans is based on laboratory confirmation. The reference techniques for post-mortem rabies diagnosis are still based on direct immunofluorescence and virus isolation, but molecular techniques, such as polymerase chain reaction (PCR) based methods, are increasingly being used and now constitute the principal tools for diagnosing rabies in humans and for epidemiological analyses. However, it remains a key challenge to obtain relevant specificity and sensitivity with these techniques while ensuring that the genetic diversity of lyssaviruses does not compromise detection. We developed a dual combined real-time reverse transcription polymerase chain reaction (combo RT-qPCR) method for pan-lyssavirus detection. This method is based on two complementary technologies: a probe-based (TaqMan) RT-qPCR for detecting the RABV species (pan-RABV RT-qPCR) and a second reaction using an intercalating dye (SYBR Green) to detect other lyssavirus species (pan-lyssa RT-qPCR). The performance parameters of this combined assay were evaluated with a large panel of primary animal samples covering almost all the genetic variability encountered at the viral species level, and they extended to almost all lyssavirus species characterized to date. This method was also evaluated for the diagnosis of human rabies on 211 biological samples (positive n = 76 and negative n = 135) including saliva, skin and brain biopsies. It detected all 41 human cases of rabies tested and confirmed the sensitivity and the interest of skin biopsy (91.5%) and saliva (54%) samples for intra-vitam diagnosis of human rabies. Finally, this method was successfully implemented in two rabies reference laboratories in enzootic countries (Cambodia and Morocco). This combined RT-qPCR method constitutes a relevant, useful, validated tool for the diagnosis of rabies in both humans and animals, and represents a promising tool for lyssavirus surveillance. PMID:27380028

  19. Dissecting the genetics of complex traits using summary association statistics.

    PubMed

    Pasaniuc, Bogdan; Price, Alkes L

    2017-02-01

    During the past decade, genome-wide association studies (GWAS) have been used to successfully identify tens of thousands of genetic variants associated with complex traits and diseases. These studies have produced extensive repositories of genetic variation and trait measurements across large numbers of individuals, providing tremendous opportunities for further analyses. However, privacy concerns and other logistical considerations often limit access to individual-level genetic data, motivating the development of methods that analyse summary association statistics. Here, we review recent progress on statistical methods that leverage summary association data to gain insights into the genetic basis of complex traits and diseases.

  20. The peopling of Greenland: further insights from the analysis of genetic diversity using autosomal and X-chromosomal markers

    PubMed Central

    Pereira, Vania; Tomas, Carmen; Sanchez, Juan J; Syndercombe-Court, Denise; Amorim, António; Gusmão, Leonor; Prata, Maria João; Morling, Niels

    2015-01-01

    The peopling of Greenland has a complex history shaped by population migrations, isolation and genetic drift. The Greenlanders present a genetic heritage with components of European and Inuit groups; previous studies using uniparentally inherited markers in Greenlanders have reported evidence of a sex-biased, admixed genetic background. This work further explores the genetics of the Greenlanders by analysing autosomal and X-chromosomal data to obtain deeper insights into the factors that shaped the genetic diversity in Greenlanders. Fourteen Greenlandic subsamples from multiple geographical settlements were compared to assess the level of genetic substructure in the Greenlandic population. The results showed low levels of genetic diversity in all sets of the genetic markers studied, together with an increased number of X-chromosomal loci in linkage disequilibrium in relation to the Danish population. In the broader context of worldwide populations, Greenlanders are remarkably different from most populations, but they are genetically closer to some Inuit groups from Alaska. Admixture analyses identified an Inuit component in the Greenlandic population of approximately 80%. The sub-populations of Ammassalik and Nanortalik are the least diverse, presenting the lowest levels of European admixture. Isolation-by-distance analyses showed that only 16% of the genetic substructure of Greenlanders is most likely to be explained by geographic barriers. We suggest that genetic drift and a differentiated settlement history around the island explain most of the genetic substructure of the population in Greenland. PMID:24801759

  1. The peopling of Greenland: further insights from the analysis of genetic diversity using autosomal and X-chromosomal markers.

    PubMed

    Pereira, Vania; Tomas, Carmen; Sanchez, Juan J; Syndercombe-Court, Denise; Amorim, António; Gusmão, Leonor; Prata, Maria João; Morling, Niels

    2015-02-01

    The peopling of Greenland has a complex history shaped by population migrations, isolation and genetic drift. The Greenlanders present a genetic heritage with components of European and Inuit groups; previous studies using uniparentally inherited markers in Greenlanders have reported evidence of a sex-biased, admixed genetic background. This work further explores the genetics of the Greenlanders by analysing autosomal and X-chromosomal data to obtain deeper insights into the factors that shaped the genetic diversity in Greenlanders. Fourteen Greenlandic subsamples from multiple geographical settlements were compared to assess the level of genetic substructure in the Greenlandic population. The results showed low levels of genetic diversity in all sets of the genetic markers studied, together with an increased number of X-chromosomal loci in linkage disequilibrium in relation to the Danish population. In the broader context of worldwide populations, Greenlanders are remarkably different from most populations, but they are genetically closer to some Inuit groups from Alaska. Admixture analyses identified an Inuit component in the Greenlandic population of approximately 80%. The sub-populations of Ammassalik and Nanortalik are the least diverse, presenting the lowest levels of European admixture. Isolation-by-distance analyses showed that only 16% of the genetic substructure of Greenlanders is most likely to be explained by geographic barriers. We suggest that genetic drift and a differentiated settlement history around the island explain most of the genetic substructure of the population in Greenland.

  2. Mendelian randomization in nutritional epidemiology

    PubMed Central

    Qi, Lu

    2013-01-01

    Nutritional epidemiology aims to identify dietary and lifestyle causes for human diseases. Causality inference in nutritional epidemiology is largely based on evidence from studies of observational design, and may be distorted by unmeasured or residual confounding and reverse causation. Mendelian randomization is a recently developed methodology that combines genetic and classical epidemiological analysis to infer causality for environmental exposures, based on the principle of Mendel’s law of independent assortment. Mendelian randomization uses genetic variants as proxiesforenvironmentalexposuresofinterest.AssociationsderivedfromMendelian randomization analysis are less likely to be affected by confounding and reverse causation. During the past 5 years, a body of studies examined the causal effects of diet/lifestyle factors and biomarkers on a variety of diseases. The Mendelian randomization approach also holds considerable promise in the study of intrauterine influences on offspring health outcomes. However, the application of Mendelian randomization in nutritional epidemiology has some limitations. PMID:19674341

  3. Transposable elements in sexual and ancient asexual taxa

    PubMed Central

    Arkhipova, Irina; Meselson, Matthew

    2000-01-01

    Sexual reproduction allows deleterious transposable elements to proliferate in populations, whereas the loss of sex, by preventing their spread, has been predicted eventually to result in a population free of such elements [Hickey, D. A. (1982) Genetics 101, 519–531]. We tested this expectation by screening representatives of a majority of animal phyla for LINE-like and gypsy-like reverse transcriptases and mariner/Tc1-like transposases. All species tested positive for reverse transcriptases except rotifers of the class Bdelloidea, the largest eukaryotic taxon in which males, hermaphrodites, and meiosis are unknown and for which ancient asexuality is supported by molecular genetic evidence. Mariner-like transposases are distributed sporadically among species and are present in bdelloid rotifers. The remarkable lack of LINE-like and gypsy-like retrotransposons in bdelloids and their ubiquitous presence in other taxa support the view that eukaryotic retrotransposons are sexually transmitted nuclear parasites and that bdelloid rotifers evolved asexually. PMID:11121049

  4. Highly divergent hepaciviruses from African cattle.

    PubMed

    Corman, Victor Max; Grundhoff, Adam; Baechlein, Christine; Fischer, Nicole; Gmyl, Anatoly; Wollny, Robert; Dei, Dickson; Ritz, Daniel; Binger, Tabea; Adankwah, Ernest; Marfo, Kwadwo Sarfo; Annison, Lawrence; Annan, Augustina; Adu-Sarkodie, Yaw; Oppong, Samuel; Becher, Paul; Drosten, Christian; Drexler, Jan Felix

    2015-06-01

    The hepatitis C virus (HCV; genus Hepacivirus) is a highly relevant human pathogen. Unique hepaciviruses (HV) were discovered recently in animal hosts. The direct ancestor of HCV has not been found, but the genetically most closely related animal HVs exist in horses. To investigate whether other peridomestic animals also carry HVs, we analyzed sera from Ghanaian cattle for HVs by reverse transcription-PCR (RT-PCR). Nine of 106 specimens from different sampling sites contained HV RNA (8.5%) at median viral loads of 1.6 × 10(5) copies/ml. Infection seemed unrelated to cattle age and gender. Near-full-genome sequencing of five representative viruses confirmed taxonomic classifications. Cattle HVs formed two distinct phylogenetic lineages that differed by up to 17.7% on the nucleotide level in the polyprotein-encoding region, suggesting cocirculation of different virus subtypes. A conserved microRNA122-binding site in the 5' internal ribosomal entry site suggested liver tropism of cattle HVs. Phylogenetic analyses suggested the circulation of HVs in cattle for several centuries. Cattle HVs were genetically highly divergent from all other HVs, including HCV. HVs from genetically related equine and bovine hosts were not monophyletic, corroborating host shifts during the evolution of the genus Hepacivirus. Similar to equine HVs, the genetic diversity of cattle HVs was low compared to that of HCV genotypes. This suggests an influence of the human-modified ecology of peridomestic animals on virus diversity. Further studies should investigate the occurrence of cattle HVs in other geographic areas and breeds, virus pathogenicity in cattle, and the potential exposure of human risk groups, such as farmers, butchers, and abattoir workers. HCV (genus Hepacivirus) is a major human pathogen, causing liver failure and cancer. Unique hepaciviruses (HVs) were discovered over the last few years in animals, but the direct ancestor of HCV has not been found. The animal HV most closely related to HCV so far originated from horses, suggesting that other livestock animals also harbor HVs. Therefore, we investigated African cattle and discovered previously unknown HVs at high prevalence and viral loads. Because of the agricultural importance of cattle, it may be relevant to investigate HV pathogenicity. The frequent exposure of humans to cattle also may warrant investigations of the zoonotic potential of these viruses. Evolutionary analyses suggested that cattle HVs have existed for centuries. Despite the genetic relatedness of their animal hosts, HVs from cattle and horses were not phylogenetically related, corroborating frequent host shifts during the evolution of the genus Hepacivirus. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Serum total bilirubin levels and coronary heart disease--Causal association or epiphenomenon?

    PubMed

    Kunutsor, Setor K

    2015-12-01

    Observational epidemiological evidence supports a linear inverse and independent association between serum total bilirubin levels and coronary heart disease (CHD) risk, but whether this association is causal remains to be ascertained. A Mendelian randomization approach was employed to test whether serum total bilirubin is causally linked to CHD. The genetic variant rs6742078--well known to specifically modify levels of serum total bilirubin and accounting for up to 20% of the variance in circulating serum total bilirubin levels--was used as an instrumental variable. In pooled analysis of estimates reported from published genome-wide association studies, every copy of the T allele of rs6742078 was associated with 0.42 standard deviation (SD) higher levels of serum total bilirubin (95% confidence interval, 0.40 to 0.43). Based on combined data from the Coronary Artery Disease Genome wide Replication and Meta-analyses and the Coronary Artery Disease (C4D) Genetics Consortium involving a total of 36,763 CHD cases and 76,997 controls, the odds ratio for CHD per copy of the T allele was 1.01 (95% confidence interval, 0.99 to 1.04). The odds ratio of CHD for a 1 SD genetically elevated serum total bilirubin level was 1.03 (95% confidence interval, 0.98 to 1.09). The current findings casts doubt on a strong causal association of serum total bilirubin levels with CHD. The inverse associations demonstrated in observational studies may be driven by biases such as unmeasured confounding and/or reverse causation. However, further research in large-scale consortia is needed. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Non-aflatoxigenicity of commercial Aspergillus oryzae strains due to genetic defects compared to aflatoxigenic Aspergillus flavus.

    PubMed

    Tao, Lin; Chung, Soo Hyun

    2014-08-01

    Aspergillus oryzae is generally recognized as safe, but it is closely related to A. flavus in morphology and genetic characteristics. In this study, we tested the aflatoxigenicity and genetic analysis of nine commercial A. oryzae strains that were used in Korean soybean fermented products. Cultural and HPLC analyses showed that none of the commercial strains produced detectable amount of aflatoxins. According to the molecular analysis of 17 genes in the aflatoxin (AF) biosynthetic pathway, the commercial strains could be classified into three groups. The group I strains contained all the 17 AF biosynthetic genes tested in this study; the group II strains deleted nine AF biosynthetic genes and possessed eight genes, including aflG, aflI, aflK, aflL, aflM, aflO, aflP, and aflQ; the group III strains only had six AF biosynthetic genes, including aflG, aflI, aflK, aflO, aflP, and aflQ. With the reverse transcription polymerase chain reaction, the group I A. oryzae strains showed no expression of aflG, aflQ and/or aflM genes, which resulted in the lack of AF-producing ability. Group II and group III strains could not produce AF owing to the deletion of more than half of the AF biosynthetic genes. In addition, the sequence data of polyketide synthase A (pksA) of group I strains of A. oryzae showed that there were three point mutations (two silent mutations and one missense mutation) compared with aflatoxigenic A. flavus used as the positive control in this study.

  7. Sexual reproduction, sporophyte development and molecular variation in the model moss Physcomitrella patens: introducing the ecotype Reute.

    PubMed

    Hiss, Manuel; Meyberg, Rabea; Westermann, Jens; Haas, Fabian B; Schneider, Lucas; Schallenberg-Rüdinger, Mareike; Ullrich, Kristian K; Rensing, Stefan A

    2017-05-01

    Rich ecotype collections are used for several plant models to unravel the molecular causes of phenotypic differences, and to investigate the effects of environmental adaption and acclimation. For the model moss Physcomitrella patens collections of accessions are available, and have been used for phylogenetic and taxonomic studies, for example, but few have been investigated further for phenotypic differences. Here, we focus on the Reute accession and provide expression profiling and comparative developmental data for several stages of sporophyte development, as well as information on genetic variation via genomic sequencing. We analysed cross-technology and cross-laboratory data to define a confident set of 15 mature sporophyte-specific genes. We find that the standard laboratory strain Gransden produces fewer sporophytes than Reute or Villersexel, although gametangia develop with the same time course and do not show evident morphological differences. Reute exhibits less genetic variation relative to Gransden than Villersexel, yet we found variation between Gransden and Reute in the expression profiles of several genes, as well as variation hot spots and genes that appear to evolve under positive Darwinian selection. We analyzed expression differences between the ecotypes for selected candidate genes in the GRAS transcription factor family, the chalcone synthase family and in genes involved in cell wall modification that are potentially related to phenotypic differences. We confirm that Reute is a P. patens ecotype, and suggest its use for reverse-genetics studies that involve progression through the life cycle and multiple generations. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  8. The association of the blood lead level and serum lipid concentrations may be modified by the genetic combination of the metallothionein 2A polymorphisms rs10636 GC and rs28366003 AA.

    PubMed

    Yang, Chen-Cheng; Chuang, Chih-Shien; Lin, Chia-I; Wang, Chao-Ling; Huang, Yung-Cheng; Chuang, Hung-Yi

    Lead in blood can stimulate lipid oxidation in phosphatidylcholine and increase peroxidation in lipids. Metallothionein (MT) is a cysteine-rich protein that can influence the detoxification of heavy metals and scavenge oxidative stress for free radicals. One of the most expressive functional genes in humans is the MT2A gene. This study aims to determine if the association of the blood lead level and lipid biomarkers was influenced by MT2A polymorphisms. We recruited 677 participants after informed consent was obtained. All the samples collected were analyzed for lipid biomarkers and blood lead levels and were genotyped for MT2A polymorphisms by reverse transcription polymerase chain reaction. A short questionnaire collected the medical history and alcohol and cigarette consumption information. The data were used for descriptive analyses and linear regression models. The investigation revealed that lead elevated concentration increased low-density lipoprotein cholesterol and decreased high-density lipoprotein cholesterol (HDL-C) by multiple linear models. The carriers of the rs10636 GC-rs28366003 AA genetic combination may be less susceptive to lead elevated concentration on HDL-C than other types. In conclusion, the association of the blood lead level and HDL-C may be modified by the MT2A genetic combination: the rs10636 GC-rs28366003 AA genotype could play a protective role in lead elevated concentration on HDL-C in humans. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  9. Regulation of Sex Determination in Mice by a Non-coding Genomic Region

    PubMed Central

    Arboleda, Valerie A.; Fleming, Alice; Barseghyan, Hayk; Délot, Emmanuèle; Sinsheimer, Janet S.; Vilain, Eric

    2014-01-01

    To identify novel genomic regions that regulate sex determination, we utilized the powerful C57BL/6J-YPOS (B6-YPOS) model of XY sex reversal where mice with autosomes from the B6 strain and a Y chromosome from a wild-derived strain, Mus domesticus poschiavinus (YPOS), show complete sex reversal. In B6-YPOS, the presence of a 55-Mb congenic region on chromosome 11 protects from sex reversal in a dose-dependent manner. Using mouse genetic backcross designs and high-density SNP arrays, we narrowed the congenic region to a 1.62-Mb genomic region on chromosome 11 that confers 80% protection from B6-YPOS sex reversal when one copy is present and complete protection when two copies are present. It was previously believed that the protective congenic region originated from the 129S1/SviMJ (129) strain. However, genomic analysis revealed that this region is not derived from 129 and most likely is derived from the semi-inbred strain POSA. We show that the small 1.62-Mb congenic region that protects against B6-YPOS sex reversal is located within the Sox9 promoter and promotes the expression of Sox9, thereby driving testis development within the B6-YPOS background. Through 30 years of backcrossing, this congenic region was maintained, as it promoted male sex determination and fertility despite the female-promoting B6-YPOS genetic background. Our findings demonstrate that long-range enhancer regions are critical to developmental processes and can be used to identify the complex interplay between genome variants, epigenetics, and developmental gene regulation. PMID:24793290

  10. Genetic manipulation of STEP reverses behavioral abnormalities in a fragile X syndrome mouse model.

    PubMed

    Goebel-Goody, S M; Wilson-Wallis, E D; Royston, S; Tagliatela, S M; Naegele, J R; Lombroso, P J

    2012-07-01

    Fragile X syndrome (FXS), the most common inherited form of intellectual disability and prevailing known genetic basis of autism, is caused by an expansion in the Fmr1 gene that prevents transcription and translation of fragile X mental retardation protein (FMRP). FMRP binds to and controls translation of mRNAs downstream of metabotropic glutamate receptor (mGluR) activation. Recent work shows that FMRP interacts with the transcript encoding striatal-enriched protein tyrosine phosphatase (STEP; Ptpn5). STEP opposes synaptic strengthening and promotes synaptic weakening by dephosphorylating its substrates, including ERK1/2, p38, Fyn and Pyk2, and subunits of N-methyl-d-aspartate (NMDA) and AMPA receptors. Here, we show that basal levels of STEP are elevated and mGluR-dependent STEP synthesis is absent in Fmr1(KO) mice. We hypothesized that the weakened synaptic strength and behavioral abnormalities reported in FXS may be linked to excess levels of STEP. To test this hypothesis, we reduced or eliminated STEP genetically in Fmr1(KO) mice and assessed mice in a battery of behavioral tests. In addition to attenuating audiogenic seizures and seizure-induced c-Fos activation in the periaqueductal gray, genetically reducing STEP in Fmr1(KO) mice reversed characteristic social abnormalities, including approach, investigation and anxiety. Loss of STEP also corrected select nonsocial anxiety-related behaviors in Fmr1(KO) mice, such as light-side exploration in the light/dark box. Our findings indicate that genetically reducing STEP significantly diminishes seizures and restores select social and nonsocial anxiety-related behaviors in Fmr1(KO) mice, suggesting that strategies to inhibit STEP activity may be effective for treating patients with FXS. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  11. Distinct virulence of Rift Valley fever phlebovirus strains from different genetic lineages in a mouse model.

    PubMed

    Ikegami, Tetsuro; Balogh, Aaron; Nishiyama, Shoko; Lokugamage, Nandadeva; Saito, Tais B; Morrill, John C; Shivanna, Vinay; Indran, Sabarish V; Zhang, Lihong; Smith, Jennifer K; Perez, David; Juelich, Terry L; Morozov, Igor; Wilson, William C; Freiberg, Alexander N; Richt, Juergen A

    2017-01-01

    Rift Valley fever phlebovirus (RVFV) causes high rates of abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or blindness in humans. Viral transmission occurs via mosquito vectors in endemic areas, which necessitates regular vaccination of susceptible livestock animals to prevent the RVF outbreaks. Although ZH501 strain has been used as a challenge strain for past vaccine efficacy studies, further characterization of other RVFV strains is important to optimize ruminant and nonhuman primate RVFV challenge models. This study aimed to characterize the virulence of wild-type RVFV strains belonging to different genetic lineages in outbred CD1 mice. Mice were intraperitoneally infected with 1x103 PFU of wild-type ZH501, Kenya 9800523, Kenya 90058, Saudi Arabia 200010911, OS1, OS7, SA75, Entebbe, or SA51 strains. Among them, mice infected with SA51, Entebbe, or OS7 strain showed rapid dissemination of virus in livers and peracute necrotic hepatitis at 2-3 dpi. Recombinant SA51 (rSA51) and Zinga (rZinga) strains were recovered by reverse genetics, and their virulence was also tested in CD1 mice. The rSA51 strain reproduced peracute RVF disease in mice, whereas the rZinga strain showed a similar virulence with that of rZH501 strain. This study showed that RVFV strains in different genetic lineages display distinct virulence in outbred mice. Importantly, since wild-type RVFV strains contain defective-interfering RNA or various genetic subpopulations during passage from original viral isolations, recombinant RVFV strains generated by reverse genetics will be better suitable for reproducible challenge studies for vaccine development as well as pathological studies.

  12. Distinct virulence of Rift Valley fever phlebovirus strains from different genetic lineages in a mouse model

    PubMed Central

    Balogh, Aaron; Nishiyama, Shoko; Lokugamage, Nandadeva; Saito, Tais B.; Morrill, John C.; Shivanna, Vinay; Indran, Sabarish V.; Zhang, Lihong; Smith, Jennifer K.; Perez, David; Juelich, Terry L.; Morozov, Igor; Wilson, William C.; Freiberg, Alexander N.; Richt, Juergen A.

    2017-01-01

    Rift Valley fever phlebovirus (RVFV) causes high rates of abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or blindness in humans. Viral transmission occurs via mosquito vectors in endemic areas, which necessitates regular vaccination of susceptible livestock animals to prevent the RVF outbreaks. Although ZH501 strain has been used as a challenge strain for past vaccine efficacy studies, further characterization of other RVFV strains is important to optimize ruminant and nonhuman primate RVFV challenge models. This study aimed to characterize the virulence of wild-type RVFV strains belonging to different genetic lineages in outbred CD1 mice. Mice were intraperitoneally infected with 1x103 PFU of wild-type ZH501, Kenya 9800523, Kenya 90058, Saudi Arabia 200010911, OS1, OS7, SA75, Entebbe, or SA51 strains. Among them, mice infected with SA51, Entebbe, or OS7 strain showed rapid dissemination of virus in livers and peracute necrotic hepatitis at 2–3 dpi. Recombinant SA51 (rSA51) and Zinga (rZinga) strains were recovered by reverse genetics, and their virulence was also tested in CD1 mice. The rSA51 strain reproduced peracute RVF disease in mice, whereas the rZinga strain showed a similar virulence with that of rZH501 strain. This study showed that RVFV strains in different genetic lineages display distinct virulence in outbred mice. Importantly, since wild-type RVFV strains contain defective-interfering RNA or various genetic subpopulations during passage from original viral isolations, recombinant RVFV strains generated by reverse genetics will be better suitable for reproducible challenge studies for vaccine development as well as pathological studies. PMID:29267298

  13. The remarkable frequency of human immunodeficiency virus type 1 genetic recombination.

    PubMed

    Onafuwa-Nuga, Adewunmi; Telesnitsky, Alice

    2009-09-01

    The genetic diversity of human immunodeficiency virus type 1 (HIV-1) results from a combination of point mutations and genetic recombination, and rates of both processes are unusually high. This review focuses on the mechanisms and outcomes of HIV-1 genetic recombination and on the parameters that make recombination so remarkably frequent. Experimental work has demonstrated that the process that leads to recombination--a copy choice mechanism involving the migration of reverse transcriptase between viral RNA templates--occurs several times on average during every round of HIV-1 DNA synthesis. Key biological factors that lead to high recombination rates for all retroviruses are the recombination-prone nature of their reverse transcription machinery and their pseudodiploid RNA genomes. However, HIV-1 genes recombine even more frequently than do those of many other retroviruses. This reflects the way in which HIV-1 selects genomic RNAs for coencapsidation as well as cell-to-cell transmission properties that lead to unusually frequent associations between distinct viral genotypes. HIV-1 faces strong and changeable selective conditions during replication within patients. The mode of HIV-1 persistence as integrated proviruses and strong selection for defective proviruses in vivo provide conditions for archiving alleles, which can be resuscitated years after initial provirus establishment. Recombination can facilitate drug resistance and may allow superinfecting HIV-1 strains to evade preexisting immune responses, thus adding to challenges in vaccine development. These properties converge to provide HIV-1 with the means, motive, and opportunity to recombine its genetic material at an unprecedented high rate and to allow genetic recombination to serve as one of the highest barriers to HIV-1 eradication.

  14. Mendelian randomization study of adiposity-related traits and risk of breast, ovarian, prostate, lung and colorectal cancer.

    PubMed

    Gao, Chi; Patel, Chirag J; Michailidou, Kyriaki; Peters, Ulrike; Gong, Jian; Schildkraut, Joellen; Schumacher, Fredrick R; Zheng, Wei; Boffetta, Paolo; Stucker, Isabelle; Willett, Walter; Gruber, Stephen; Easton, Douglas F; Hunter, David J; Sellers, Thomas A; Haiman, Christopher; Henderson, Brian E; Hung, Rayjean J; Amos, Christopher; Pierce, Brandon L; Lindström, Sara; Kraft, Peter

    2016-06-01

    Adiposity traits have been associated with risk of many cancers in observational studies, but whether these associations are causal is unclear. Mendelian randomization (MR) uses genetic predictors of risk factors as instrumental variables to eliminate reverse causation and reduce confounding bias. We performed MR analyses to assess the possible causal relationship of birthweight, childhood and adult body mass index (BMI), and waist-hip ratio (WHR) on the risks of breast, ovarian, prostate, colorectal and lung cancers. We tested the association between genetic risk scores and each trait using summary statistics from published genome-wide association studies (GWAS) and from 51 537 cancer cases and 61 600 controls in the Genetic Associations and Mechanisms in Oncology (GAME-ON) Consortium. We found an inverse association between the genetic score for childhood BMI and risk of breast cancer [odds ratio (OR) = 0.71 per standard deviation (s.d.) increase in childhood BMI; 95% confidence interval (CI): 0.60, 0.80; P = 6.5 × 10(-5)). We also found the genetic score for adult BMI to be inversely associated with breast cancer risk (OR = 0.66 per s.d. increase in BMI; 95% CI: 0.57, 0.77; P = 2.5 × 10(-7)), and positively associated with ovarian cancer (OR = 1.35; 95% CI: 1.05, 1.72; P = 0.017), lung cancer (OR = 1.27; 95% CI: 1.09, 1.49; P = 2.9 × 10(-3)) and colorectal cancer (OR = 1.39; 95% CI: 1.06, 1.82, P = 0.016). The inverse association between genetically predicted adult BMI and breast cancer risk remained even after adjusting for directional pleiotropy via MR-Egger regression. Findings from this study provide additional understandings of the complex relationship between adiposity and cancer risks. Our results for breast and lung cancer are particularly interesting, given previous reports of effect heterogeneity by menopausal status and smoking status. © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.

  15. Effects of historical climate change, habitat connectivity, and vicariance on genetic structure and diversity across the range of the Red Tree Vole (Phenacomys longicaudus) in the Pacific Northwest United States

    USGS Publications Warehouse

    Miller, Mark P.; Bellinger, R.M.; Forsman, E.D.; Haig, Susan M.

    2006-01-01

    Phylogeographical analyses conducted in the Pacific Northwestern United States have often revealed concordant patterns of genetic diversity among taxa. These studies demonstrate distinct North/South genetic discontinuities that have been attributed to Pleistocene glaciation. We examined phylogeographical patterns of red tree voles (Phenacomys longicaudus) in western Oregon by analysing mitochondrial control region sequences for 169 individuals from 18 areas across the species' range. Cytochrome b sequences were also analysed from a subset of our samples to confirm the presence of major haplotype groups. Phylogenetic network analyses suggested the presence of two haplotype groups corresponding to northern and southern regions of P. longicaudus' range. Spatial genetic analyses (samova and Genetic Landscape Shapes) of control region sequences demonstrated a primary genetic discontinuity separating northern and southern sampling areas, while a secondary discontinuity separated northern sampling areas into eastern and western groups divided by the Willamette Valley. The North/South discontinuity likely corresponds to a region of secondary contact between lineages rather than an overt barrier. Although the Cordilleran ice sheet (maximum a??12 000 years ago) did not move southward to directly affect the region occupied by P. longicaudus, climate change during glaciation fragmented the forest landscape that it inhabits. Signatures of historical fragmentation were reflected by positive associations between latitude and variables such as Tajima's D and patterns associated with location-specific alleles. Genetic distances between southern sampling areas were smaller, suggesting that forest fragmentation was reduced in southern vs. northern regions.

  16. Tumoural specimens for forensic purposes: comparison of genetic alterations in frozen and formalin-fixed paraffin-embedded tissues.

    PubMed

    Ananian, Viviana; Tozzo, Pamela; Ponzano, Elena; Nitti, Donato; Rodriguez, Daniele; Caenazzo, Luciana

    2011-05-01

    In certain circumstances, tumour tissue specimens are the only DNA resource available for forensic DNA analysis. However, cancer tissues can show microsatellite instability and loss of heterozygosity which, if concerning the short tandem repeats (STRs) used in the forensic field, can cause misinterpretation of the results. Moreover, though formalin-fixed paraffin-embedded tissues (FFPET) represent a large resource for these analyses, the quality of the DNA obtained from this kind of specimen can be an important limit. In this study, we evaluated the use of tumoural tissue as biological material for the determination of genetic profiles in the forensic field, highlighting which STR polymorphisms are more susceptible to tumour genetic alterations and which of the analysed tumours show a higher genetic variability. The analyses were conducted on samples of the same tissues conserved in different storage conditions, to compare genetic profiles obtained by frozen tissues and formalin-fixed paraffin-embedded tissues. The importance of this study is due to the large number of specimens analysed (122), the large number of polymorphisms analysed for each specimen (39), and the possibility to compare, many years after storage, the same tissue frozen and formalin-fixed paraffin-embedded. In the comparison between the genetic profiles of frozen tumour tissues and FFPET, the same genetic alterations have been reported in both kinds of specimens. However, FFPET showed new alterations. We conclude that the use of FFPET requires greater attention than frozen tissues in the results interpretation and great care in both pre-extraction and extraction processes.

  17. Social Science Methods for Twins Data: Integrating Causality, Endowments and Heritability

    PubMed Central

    Kohler, Hans-Peter; Behrman, Jere R.; Schnittker, Jason

    2011-01-01

    Twins have been extensively used in economics, sociology and behavioral genetics to investigate the role of genetic endowments on a broad range of social, demographic and economic outcomes. However, the focus in these literatures has been distinct: the economic literature has been primarily concerned with the need to control for unobserved endowments—including as an important subset, genetic endowments—in analyses that attempt to establish the impact of one variable, often schooling, on a variety of economic, demographic and health outcomes. Behavioral genetic analyses have mostly been concerned with decomposing the variation in the outcomes of interest into genetic, shared environmental and non-shared environmental components, with recent multivariate analyses investigating the contributions of genes and the environment to the correlation and causation between variables. Despite the fact that twins studies and the recognition of the role of endowments are central to both of these literatures, they have mostly evolved independently. In this paper we develop formally the relationship between the economic and behavioral genetic approaches to the analyses of twins, and we develop an integrative approach that combines the identification of causal effects, which dominates the economic literature, with the decomposition of variances and covariances into genetic and environmental factors that is the primary goal of behavioral genetic approaches. We apply this integrative ACE-β approach to an illustrative investigation of the impact of schooling on several demographic outcomes such as fertility and nuptiality and health. PMID:21845929

  18. Multi-locus Analyses Reveal Four Giraffe Species Instead of One.

    PubMed

    Fennessy, Julian; Bidon, Tobias; Reuss, Friederike; Kumar, Vikas; Elkan, Paul; Nilsson, Maria A; Vamberger, Melita; Fritz, Uwe; Janke, Axel

    2016-09-26

    Traditionally, one giraffe species and up to eleven subspecies have been recognized [1]; however, nine subspecies are commonly accepted [2]. Even after a century of research, the distinctness of each giraffe subspecies remains unclear, and the genetic variation across their distribution range has been incompletely explored. Recent genetic studies on mtDNA have shown reciprocal monophyly of the matrilines among seven of the nine assumed subspecies [3, 4]. Moreover, until now, genetic analyses have not been applied to biparentally inherited sequence data and did not include data from all nine giraffe subspecies. We sampled natural giraffe populations from across their range in Africa, and for the first time individuals from the nominate subspecies, the Nubian giraffe, Giraffa camelopardalis camelopardalis Linnaeus 1758 [5], were included in a genetic analysis. Coalescence-based multi-locus and population genetic analyses identify at least four separate and monophyletic clades, which should be recognized as four distinct giraffe species under the genetic isolation criterion. Analyses of 190 individuals from maternal and biparental markers support these findings and further suggest subsuming Rothschild's giraffe into the Nubian giraffe, as well as Thornicroft's giraffe into the Masai giraffe [6]. A giraffe survey genome produced valuable data from microsatellites, mobile genetic elements, and accurate divergence time estimates. Our findings provide the most inclusive analysis of giraffe relationships to date and show that their genetic complexity has been underestimated, highlighting the need for greater conservation efforts for the world's tallest mammal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A nationwide genetic testing survey in Italy, year 2007.

    PubMed

    Dallapiccola, Bruno; Torrente, Isabella; Agolini, Emanuele; Morena, Arnaldo; Mingarelli, Rita

    2010-02-01

    The aim of this study was to collect the practices of cytogenetic and molecular genetic testing and genetic counseling activities in Italy in the year 2007 and provide guidance to the national and regional health systems to improve the organization of genetic services. A web-based survey was carried out to assess the total number and the type of analyses, the number and type of genetic counseling sessions, and the personnel attending these activities. The quality management system of the responding structures, in terms of certification and accreditation standards, was also investigated. The appropriateness of requests for genetic testing was evaluated for six disorders. Data were collected from 278 responding centers, half of which were located in the northern regions of the country. Twenty-eight percent of the total were certified according to quality standards. A total of 217 molecular genetic and 171 cytogenetic laboratories, and 102 clinical genetic services were surveyed. About 560,000 genetic tests, including 311,069 cytogenetic and 248,691 molecular genetic analyses of 556 genes, were recorded. The fetal karyotype was examined on either trophoblast or amniocytes in about one of every 4.4 pregnancies. Only 11.5% of cytogenetic analyses and 13.5% of molecular tests were accompanied by genetic counseling. Concerning the appropriateness of a request for genetic testing, a low congruity was found between the clinical diagnosis and the laboratory results. This study highlights the need for reorganizing the genetic structure network in Italy, which at present is oversized, improving the quality management systems, expanding the availability of testing for rare disease genes, and improving access to pretest and posttest genetic counseling.

  20. An in vitro recombination-based reverse genetic system for rapid mutagenesis of structural genes of the Japanese encephalitis virus.

    PubMed

    Du, Ruikun; Wang, Manli; Hu, Zhihong; Wang, Hualin; Deng, Fei

    2015-10-01

    Japanese encephalitis virus (JEV) is one of the most common pathogens of severe viral encephalitis, which is a severe threat to human health. Despite instability of the JEV genome in bacteria, many strategies have been developed to establish molecular clone systems of JEV, providing convenient tools for studying the virus life cycle and virus-host interactions. In this study, we adapted an In-Fusion enzyme-based in vitro recombination method to construct a reverse genetic system of JEV, thereby providing a rapid approach to introduce mutations into the structural genes. A truncated genome without the structural genes was constructed as the backbone, and the complementary segment containing the structural genes was recombined in vitro, which was then transfected directly into virus-permissive cells. The progeny of the infectious virus was successfully detected in the supernatant of the transfected cells, and showed an identical phenotype to its parental virus. To provide a proof-of-principle, the 12 conserved cysteine residues in the envelope (E) protein of JEV were respectively mutated using this approach, and all mutations resulted in a complete failure to generate infectious virus. However, a leucine-tophenylanine mutation at amino acid 107 of the E protein did not interfere with the production of the infectious virus. These results suggested that all 12 cysteines in the E protein are essential for the JEV life cycle. In summary, a novel reverse genetic system of JEV was established for rapidly introducing mutations into structural genes, which will serve as a useful tool for functional studies.

  1. Epigenetics meets endocrinology

    PubMed Central

    Zhang, Xiang; Ho, Shuk-Mei

    2014-01-01

    Although genetics determines endocrine phenotypes, it cannot fully explain the great variability and reversibility of the system in response to environmental changes. Evidence now suggests that epigenetics, i.e. heritable but reversible changes in gene function without changes in nucleotide sequence, links genetics and environment in shaping endocrine function. Epigenetic mechanisms, including DNA methylation, histone modification, and microRNA, partition the genome into active and inactive domains based on endogenous and exogenous environmental changes and developmental stages, creating phenotype plasticity that can explain interindividual and population endocrine variability. We will review the current understanding of epigenetics in endocrinology, specifically, the regulation by epigenetics of the three levels of hormone action (synthesis and release, circulating and target tissue levels, and target-organ responsiveness) and the epigenetic action of endocrine disruptors. We will also discuss the impacts of hormones on epigenetics. We propose a three-dimensional model (genetics, environment, and developmental stage) to explain the phenomena related to progressive changes in endocrine functions with age, the early origin of endocrine disorders, phenotype discordance between monozygotic twins, rapid shifts in disease patterns among populations experiencing major lifestyle changes such as immigration, and the many endocrine disruptions in contemporary life. We emphasize that the key for understanding epigenetics in endocrinology is the identification, through advanced high-throughput screening technologies, of plasticity genes or loci that respond directly to a specific environmental stimulus. Investigations to determine whether epigenetic changes induced by today's lifestyles or environmental `exposures' can be inherited and are reversible should open doors for applying epigenetics to the prevention and treatment of endocrine disorders. PMID:21322125

  2. Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next-generation human artificial chromosomes for Duchenne muscular dystrophy.

    PubMed

    Benedetti, Sara; Uno, Narumi; Hoshiya, Hidetoshi; Ragazzi, Martina; Ferrari, Giulia; Kazuki, Yasuhiro; Moyle, Louise Anne; Tonlorenzi, Rossana; Lombardo, Angelo; Chaouch, Soraya; Mouly, Vincent; Moore, Marc; Popplewell, Linda; Kazuki, Kanako; Katoh, Motonobu; Naldini, Luigi; Dickson, George; Messina, Graziella; Oshimura, Mitsuo; Cossu, Giulio; Tedesco, Francesco Saverio

    2018-02-01

    Transferring large or multiple genes into primary human stem/progenitor cells is challenged by restrictions in vector capacity, and this hurdle limits the success of gene therapy. A paradigm is Duchenne muscular dystrophy (DMD), an incurable disorder caused by mutations in the largest human gene: dystrophin. The combination of large-capacity vectors, such as human artificial chromosomes (HACs), with stem/progenitor cells may overcome this limitation. We previously reported amelioration of the dystrophic phenotype in mice transplanted with murine muscle progenitors containing a HAC with the entire dystrophin locus (DYS-HAC). However, translation of this strategy to human muscle progenitors requires extension of their proliferative potential to withstand clonal cell expansion after HAC transfer. Here, we show that reversible cell immortalisation mediated by lentivirally delivered excisable hTERT and Bmi1 transgenes extended cell proliferation, enabling transfer of a novel DYS-HAC into DMD satellite cell-derived myoblasts and perivascular cell-derived mesoangioblasts. Genetically corrected cells maintained a stable karyotype, did not undergo tumorigenic transformation and retained their migration ability. Cells remained myogenic in vitro (spontaneously or upon MyoD induction) and engrafted murine skeletal muscle upon transplantation. Finally, we combined the aforementioned functions into a next-generation HAC capable of delivering reversible immortalisation, complete genetic correction, additional dystrophin expression, inducible differentiation and controllable cell death. This work establishes a novel platform for complex gene transfer into clinically relevant human muscle progenitors for DMD gene therapy. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  3. Exploring how symptoms of attention-deficit/hyperactivity disorder are related to reading and mathematics performance: general genes, general environments.

    PubMed

    Hart, Sara A; Petrill, Stephen A; Willcutt, Erik; Thompson, Lee A; Schatschneider, Christopher; Deater-Deckard, Kirby; Cutting, Laurie E

    2010-11-01

    Children with attention-deficit/hyperactivity disorder (ADHD) tend to perform more poorly on tests of reading and mathematical performance than their typical peers. Quantitative genetic analyses allow for a better understanding of the etiology of ADHD and reading and mathematics outcomes, by examining their common and unique genetic and environmental influences. Analyses were conducted on a sample 271 pairs of 10-year-old monozygotic and dizygotic twins drawn from the Western Reserve Reading and Mathematics Project. In general, the results suggested that the associations among ADHD symptoms, reading outcomes, and math outcomes were influenced by both general genetic and general shared-environment factors. The analyses also suggested significant independent genetic effects for ADHD symptoms. The results imply that differing etiological factors underlie the relationships among ADHD and reading and mathematics performance. It appears that both genetic and common family or school environments link ADHD with academic performance.

  4. Environmental risk factors and Parkinson's disease: An umbrella review of meta-analyses.

    PubMed

    Bellou, Vanesa; Belbasis, Lazaros; Tzoulaki, Ioanna; Evangelou, Evangelos; Ioannidis, John P A

    2016-02-01

    Parkinson's disease is a neurological disorder with complex pathogenesis implicating both environmental and genetic factors. We aimed to summarise the environmental risk factors that have been studied for potential association with Parkinson's disease, assess the presence of diverse biases, and identify the risk factors with the strongest support. We searched PubMed from inception to September 18, 2015, to identify systematic reviews and meta-analyses of observational studies that examined associations between environmental factors and Parkinson's disease. For each meta-analysis we estimated the summary effect size by random-effects and fixed-effects models, the 95% confidence interval and the 95% prediction interval. We estimated the between-study heterogeneity expressed by I(2), evidence of small-study effects and evidence of excess significance bias. Overall, 75 unique meta-analyses on different risk factors for Parkinson's disease were examined, covering diverse biomarkers, dietary factors, drugs, medical history or comorbid diseases, exposure to toxic environmental agents and habits. 21 of 75 meta-analyses had results that were significant at p < 0.001 by random-effects. Evidence for an association was convincing (more than 1000 cases, p < 10(-6) by random-effects, not large heterogeneity, 95% prediction interval excluding the null value and absence of hints for small-study effects and excess significance bias) for constipation, and physical activity. Many environmental factors have substantial evidence of association with Parkinson's disease, but several, perhaps most, of them may reflect reverse causation, residual confounding, information bias, sponsor conflicts or other caveats. Copyright © 2016. Published by Elsevier Ltd.

  5. The Role of Drosophila Merlin in the Control of Mitosis Exit and Development

    DTIC Science & Technology

    2006-07-01

    schwannomas and is associated with mutations in the tumor suppressor gene called the neurofibromatosis type 2 (NF2) gene (Chang et al., 2005; Neff...been shown to associate with endocytic compartments and because mutations in the genes , such as clathrin and ff16, that are known to be important... mutations in the Drosophila homologues of the human Neurofibromatosis 2 and yeast CDC42 genes using a simple and efficient reverse-genetic method. Genetics

  6. Practical aspects of mutagenicity testing strategy: an industrial perspective.

    PubMed

    Gollapudi, B B; Krishna, G

    2000-11-20

    Genetic toxicology studies play a central role in the development and marketing of new chemicals for pharmaceutical, agricultural, industrial, and consumer use. During the discovery phase of product development, rapid screening tests that require minimal amounts of test materials are used to assist in the design and prioritization of new molecules. At this stage, a modified Salmonella reverse mutation assay and an in vitro micronucleus test with mammalian cell culture are frequently used for screening. Regulatory genetic toxicology studies are conducted with a short list of compounds using protocols that conform to various international guidelines. A set of four assays usually constitutes the minimum test battery that satisfies global requirements. This set includes a bacterial reverse mutation assay, an in vitro cytogenetic test with mammalian cell culture, an in vitro gene mutation assay in mammalian cell cultures, and an in vivo rodent bone marrow micronucleus test. Supplementary studies are conducted in certain instances either as a follow-up to the findings from this initial testing battery and/or to satisfy a regulatory requirement. Currently available genetic toxicology assays have helped the scientific and industrial community over the past several decades in evaluating the mutagenic potential of chemical agents. The emerging field of toxicogenomics has the potential to redefine our ability to study the response of cells to genetic damage and hence our ability to study threshold phenomenon.

  7. Next-generation AAV vectors for clinical use: an ever-accelerating race.

    PubMed

    Weinmann, Jonas; Grimm, Dirk

    2017-10-01

    During the past five decades, it has become evident that Adeno-associated virus (AAV) represents one of the most potent, most versatile, and thus most auspicious platforms available for gene delivery into cells, animals and, ultimately, humans. Particularly attractive is the ease with which the viral capsid-the major determinant of virus-host interaction including cell specificity and antibody recognition-can be modified and optimized at will. This has motivated countless researchers to develop high-throughput technologies in which genetically engineered AAV capsid libraries are subjected to a vastly hastened emulation of natural evolution, with the aim to enrich novel synthetic AAV capsids displaying superior features for clinical application. While the power and potential of these forward genetics approaches is undisputed, they are also inherently challenging as success depends on a combination of library quality, fidelity, and complexity. Here, we will describe and discuss two original, very exciting strategies that have emerged over the last three years and that promise to alleviate at least some of these concerns, namely, (i) a reverse genetics approach termed "ancestral AAV sequence reconstruction," and (ii) AAV genome barcoding as a technology that can advance both, forward and reverse genetics stratagems. Notably, despite the conceptual differences of these two technologies, they pursue the same goal which is tailored acceleration of AAV evolution and thus winning the race for the next-generation AAV vectors for clinical use.

  8. Analysis and visualization of Arabidopsis thaliana GWAS using web 2.0 technologies.

    PubMed

    Huang, Yu S; Horton, Matthew; Vilhjálmsson, Bjarni J; Seren, Umit; Meng, Dazhe; Meyer, Christopher; Ali Amer, Muhammad; Borevitz, Justin O; Bergelson, Joy; Nordborg, Magnus

    2011-01-01

    With large-scale genomic data becoming the norm in biological studies, the storing, integrating, viewing and searching of such data have become a major challenge. In this article, we describe the development of an Arabidopsis thaliana database that hosts the geographic information and genetic polymorphism data for over 6000 accessions and genome-wide association study (GWAS) results for 107 phenotypes representing the largest collection of Arabidopsis polymorphism data and GWAS results to date. Taking advantage of a series of the latest web 2.0 technologies, such as Ajax (Asynchronous JavaScript and XML), GWT (Google-Web-Toolkit), MVC (Model-View-Controller) web framework and Object Relationship Mapper, we have created a web-based application (web app) for the database, that offers an integrated and dynamic view of geographic information, genetic polymorphism and GWAS results. Essential search functionalities are incorporated into the web app to aid reverse genetics research. The database and its web app have proven to be a valuable resource to the Arabidopsis community. The whole framework serves as an example of how biological data, especially GWAS, can be presented and accessed through the web. In the end, we illustrate the potential to gain new insights through the web app by two examples, showcasing how it can be used to facilitate forward and reverse genetics research. Database URL: http://arabidopsis.usc.edu/

  9. Integration of maternal genome into the neonate genome through breast milk mRNA transcripts and reverse transcriptase.

    PubMed

    Irmak, M Kemal; Oztas, Yesim; Oztas, Emin

    2012-06-07

    Human milk samples contain microvesicles similar to the retroviruses. These microvesicles contain mRNA transcripts and possess reverse transcriptase activity. They contain about 14,000 transcripts representing the milk transcriptome. Microvesicles are also enriched with proteins related to "caveolar-mediated endocytosis signaling" pathway. It has recently been reported that microvesicles could be transferred to other cells by endocytosis and their RNA content can be translated and be functional in their new location. A significant percentage of the mammalian genome appears to be the product of reverse transcription, containing sequences whose characteristics point to RNA as a template precursor. These are mobile elements that move by way of transposition and are called retrotransposons. We thought that retrotransposons may stem from about 14,000 transcriptome of breast milk microvesicles, and reviewed the literature.The enhanced acceptance of maternal allografts in children who were breast-fed and tolerance to the maternal MHC antigens after breastfeeding may stem from RNAs of the breast milk microvesicles that can be taken up by the breastfed infant and receiving maternal genomic information. We conclude that milk microvesicles may transfer genetic signals from mother to neonate during breastfeeding. Moreover, transfer of wild type RNA from a healthy wet-nurse to the suckling neonate through the milk microvesicles and its subsequent reverse transcription and integration into the neonate genome could result in permanent correction of the clinical manifestations in genetic diseases.

  10. Integration of maternal genome into the neonate genome through breast milk mRNA transcripts and reverse transcriptase

    PubMed Central

    2012-01-01

    Human milk samples contain microvesicles similar to the retroviruses. These microvesicles contain mRNA transcripts and possess reverse transcriptase activity. They contain about 14,000 transcripts representing the milk transcriptome. Microvesicles are also enriched with proteins related to “caveolar-mediated endocytosis signaling” pathway. It has recently been reported that microvesicles could be transferred to other cells by endocytosis and their RNA content can be translated and be functional in their new location. A significant percentage of the mammalian genome appears to be the product of reverse transcription, containing sequences whose characteristics point to RNA as a template precursor. These are mobile elements that move by way of transposition and are called retrotransposons. We thought that retrotransposons may stem from about 14,000 transcriptome of breast milk microvesicles, and reviewed the literature. The enhanced acceptance of maternal allografts in children who were breast-fed and tolerance to the maternal MHC antigens after breastfeeding may stem from RNAs of the breast milk microvesicles that can be taken up by the breastfed infant and receiving maternal genomic information. We conclude that milk microvesicles may transfer genetic signals from mother to neonate during breastfeeding. Moreover, transfer of wild type RNA from a healthy wet-nurse to the suckling neonate through the milk microvesicles and its subsequent reverse transcription and integration into the neonate genome could result in permanent correction of the clinical manifestations in genetic diseases. PMID:22676860

  11. Genomic data reveal a loss of diversity in two species of tuco-tucos (genus Ctenomys) following a volcanic eruption.

    PubMed

    Hsu, Jeremy L; Crawford, Jeremy Chase; Tammone, Mauro N; Ramakrishnan, Uma; Lacey, Eileen A; Hadly, Elizabeth A

    2017-11-24

    Marked reductions in population size can trigger corresponding declines in genetic variation. Understanding the precise genetic consequences of such reductions, however, is often challenging due to the absence of robust pre- and post-reduction datasets. Here, we use heterochronous genomic data from samples obtained before and immediately after the 2011 eruption of the Puyehue-Cordón Caulle volcanic complex in Patagonia to explore the genetic impacts of this event on two parapatric species of rodents, the colonial tuco-tuco (Ctenomys sociabilis) and the Patagonian tuco-tuco (C. haigi). Previous analyses using microsatellites revealed no post-eruption changes in genetic variation in C. haigi, but an unexpected increase in variation in C. sociabilis. To explore this outcome further, we used targeted gene capture to sequence over 2,000 putatively neutral regions for both species. Our data revealed that, contrary to the microsatellite analyses, the eruption was associated with a small but significant decrease in genetic variation in both species. We suggest that genome-level analyses provide greater power than traditional molecular markers to detect the genetic consequences of population size changes, particularly changes that are recent, short-term, or modest in size. Consequently, genomic analyses promise to generate important new insights into the effects of specific environmental events on demography and genetic variation.

  12. Solving TSP problem with improved genetic algorithm

    NASA Astrophysics Data System (ADS)

    Fu, Chunhua; Zhang, Lijun; Wang, Xiaojing; Qiao, Liying

    2018-05-01

    The TSP is a typical NP problem. The optimization of vehicle routing problem (VRP) and city pipeline optimization can use TSP to solve; therefore it is very important to the optimization for solving TSP problem. The genetic algorithm (GA) is one of ideal methods in solving it. The standard genetic algorithm has some limitations. Improving the selection operator of genetic algorithm, and importing elite retention strategy can ensure the select operation of quality, In mutation operation, using the adaptive algorithm selection can improve the quality of search results and variation, after the chromosome evolved one-way evolution reverse operation is added which can make the offspring inherit gene of parental quality improvement opportunities, and improve the ability of searching the optimal solution algorithm.

  13. Genetic diversity and population structure of Prunus mira (Koehne) from the Tibet plateau in China and recommended conservation strategies

    PubMed Central

    Bao, Wenquan; Li, Tiezhu; Liu, Huimin; Jiang, Zhongmao; Zhu, Xuchun; Du, Hongyan; Bai, Yu-e

    2017-01-01

    Prunus mira Koehne, an important economic fruit crop with high breeding and medicinal values, and an ancestral species of many cultivated peach species, has recently been declared an endangered species. However, basic information about genetic diversity, population structure, and morphological variation is still limited for this species. In this study, we sampled 420 P. mira individuals from 21 wild populations in the Tibet plateau to conduct a comprehensive analysis of genetic and morphological characteristics. The results of molecular analyses based on simple sequence repeat (SSR) markers indicated moderate genetic diversity and inbreeding (A = 3.8, Ae = 2.5, He = 0.52, Ho = 0.44, I = 0.95, FIS = 0.17) within P. mira populations. STRUCTURE, GENELAND, and phylogenetic analyses assigned the 21 populations to three genetic clusters that were moderately correlated with geographic altitudes, and this may have resulted from significantly different climatic and environmental factors at different altitudinal ranges. Significant isolation-by-distance was detected across the entire distribution of P. mira populations, but geographic altitude might have more significant effects on genetic structure than geographic distance in partial small-scale areas. Furthermore, clear genetic structure, high genetic differentiation, and restricted gene flow were detected between pairwise populations from different geographic groups, indicating that geographic barriers and genetic drift have significant effects on P. mira populations. Analyses of molecular variance based on the SSR markers indicated high variation (83.7% and 81.7%), whereas morphological analyses revealed low variation (1.30%–36.17%) within the populations. Large and heavy fruits were better adapted than light fruits and nutlets to poor climate and environmental conditions at high altitudes. Based on the results of molecular and morphological analyses, we classified the area into three conservation units and proposed several conservation strategies for wild P. mira populations in the Tibet plateau. PMID:29186199

  14. Genetic diversity and population structure of Prunus mira (Koehne) from the Tibet plateau in China and recommended conservation strategies.

    PubMed

    Bao, Wenquan; Wuyun, Tana; Li, Tiezhu; Liu, Huimin; Jiang, Zhongmao; Zhu, Xuchun; Du, Hongyan; Bai, Yu-E

    2017-01-01

    Prunus mira Koehne, an important economic fruit crop with high breeding and medicinal values, and an ancestral species of many cultivated peach species, has recently been declared an endangered species. However, basic information about genetic diversity, population structure, and morphological variation is still limited for this species. In this study, we sampled 420 P. mira individuals from 21 wild populations in the Tibet plateau to conduct a comprehensive analysis of genetic and morphological characteristics. The results of molecular analyses based on simple sequence repeat (SSR) markers indicated moderate genetic diversity and inbreeding (A = 3.8, Ae = 2.5, He = 0.52, Ho = 0.44, I = 0.95, FIS = 0.17) within P. mira populations. STRUCTURE, GENELAND, and phylogenetic analyses assigned the 21 populations to three genetic clusters that were moderately correlated with geographic altitudes, and this may have resulted from significantly different climatic and environmental factors at different altitudinal ranges. Significant isolation-by-distance was detected across the entire distribution of P. mira populations, but geographic altitude might have more significant effects on genetic structure than geographic distance in partial small-scale areas. Furthermore, clear genetic structure, high genetic differentiation, and restricted gene flow were detected between pairwise populations from different geographic groups, indicating that geographic barriers and genetic drift have significant effects on P. mira populations. Analyses of molecular variance based on the SSR markers indicated high variation (83.7% and 81.7%), whereas morphological analyses revealed low variation (1.30%-36.17%) within the populations. Large and heavy fruits were better adapted than light fruits and nutlets to poor climate and environmental conditions at high altitudes. Based on the results of molecular and morphological analyses, we classified the area into three conservation units and proposed several conservation strategies for wild P. mira populations in the Tibet plateau.

  15. Soul on Silicon.

    ERIC Educational Resources Information Center

    Kurzweil, Raymond C.

    1994-01-01

    Summarizes recent advances in computer simulation and "reverse engineering" technologies, highlighting the Human Genome Project to scan the human genetic code; artificial retina chips to copy the human retina's neural organization; high-speed, high-resolution Magnetic Resonance Imaging scanners; and the virtual book. Discusses…

  16. Crime and Child-Rearing.

    ERIC Educational Resources Information Center

    Roth, Byron M.

    1996-01-01

    Examines the notion that heredity plays a powerful role in criminal behavior, including genetic evidence that can allow for antisocial behavior. Reviews suggestions for reversing rising crime rates in light of the hereditary connection, policy development, family cohesion, and child raising. (GR)

  17. Universal Influenza B Virus Genomic Amplification Facilitates Sequencing, Diagnostics, and Reverse Genetics

    PubMed Central

    Zhou, Bin; Lin, Xudong; Wang, Wei; Halpin, Rebecca A.; Bera, Jayati; Stockwell, Timothy B.; Barr, Ian G.

    2014-01-01

    Although human influenza B virus (IBV) is a significant human pathogen, its great genetic diversity has limited our ability to universally amplify the entire genome for subsequent sequencing or vaccine production. The generation of sequence data via next-generation approaches and the rapid cloning of viral genes are critical for basic research, diagnostics, antiviral drugs, and vaccines to combat IBV. To overcome the difficulty of amplifying the diverse and ever-changing IBV genome, we developed and optimized techniques that amplify the complete segmented negative-sense RNA genome from any IBV strain in a single tube/well (IBV genomic amplification [IBV-GA]). Amplicons for >1,000 diverse IBV genomes from different sample types (e.g., clinical specimens) were generated and sequenced using this robust technology. These approaches are sensitive, robust, and sequence independent (i.e., universally amplify past, present, and future IBVs), which facilitates next-generation sequencing and advanced genomic diagnostics. Importantly, special terminal sequences engineered into the optimized IBV-GA2 products also enable ligation-free cloning to rapidly generate reverse-genetics plasmids, which can be used for the rescue of recombinant viruses and/or the creation of vaccine seed stock. PMID:24501036

  18. Updating the Micro-Tom TILLING platform.

    PubMed

    Okabe, Yoshihiro; Ariizumi, Tohru; Ezura, Hiroshi

    2013-03-01

    The dwarf tomato variety Micro-Tom is regarded as a model system for functional genomics studies in tomato. Various tomato genomic tools in the genetic background of Micro-Tom have been established, such as mutant collections, genome information and a metabolomic database. Recent advances in tomato genome sequencing have brought about a significant need for reverse genetics tools that are accessible to the larger community, because a great number of gene sequences have become available from public databases. To meet the requests from the tomato research community, we have developed the Micro-Tom Targeting-Induced Local Lesions IN Genomes (TILLING) platform, which is comprised of more than 5000 EMS-mutagenized lines. The platform serves as a reverse genetics tool for efficiently identifying mutant alleles in parallel with the development of Micro-Tom mutant collections. The combination of Micro-Tom mutant libraries and the TILLING approach enables researchers to accelerate the isolation of desirable mutants for unraveling gene function or breeding. To upgrade the genomic tool of Micro-Tom, the development of a new mutagenized population is underway. In this paper, the current status of the Micro-Tom TILLING platform and its future prospects are described.

  19. Molecular Genetic Analysis of Chlamydia Species.

    PubMed

    Sixt, Barbara S; Valdivia, Raphael H

    2016-09-08

    Species of Chlamydia are the etiologic agent of endemic blinding trachoma, the leading cause of bacterial sexually transmitted diseases, significant respiratory pathogens, and a zoonotic threat. Their dependence on an intracellular growth niche and their peculiar developmental cycle are major challenges to elucidating their biology and virulence traits. The last decade has seen tremendous advances in our ability to perform a molecular genetic analysis of Chlamydia species. Major achievements include the generation of large collections of mutant strains, now available for forward- and reverse-genetic applications, and the introduction of a system for plasmid-based transformation enabling complementation of mutations; expression of foreign, modified, or reporter genes; and even targeted gene disruptions. This review summarizes the current status of the molecular genetic toolbox for Chlamydia species and highlights new insights into their biology and new challenges in the nascent field of Chlamydia genetics.

  20. A novel bioinformatics pipeline to discover genes related to arbuscular mycorrhizal symbiosis based on their evolutionary conservation pattern among higher plants.

    PubMed

    Favre, Patrick; Bapaume, Laure; Bossolini, Eligio; Delorenzi, Mauro; Falquet, Laurent; Reinhardt, Didier

    2014-12-03

    Genes involved in arbuscular mycorrhizal (AM) symbiosis have been identified primarily by mutant screens, followed by identification of the mutated genes (forward genetics). In addition, a number of AM-related genes has been identified by their AM-related expression patterns, and their function has subsequently been elucidated by knock-down or knock-out approaches (reverse genetics). However, genes that are members of functionally redundant gene families, or genes that have a vital function and therefore result in lethal mutant phenotypes, are difficult to identify. If such genes are constitutively expressed and therefore escape differential expression analyses, they remain elusive. The goal of this study was to systematically search for AM-related genes with a bioinformatics strategy that is insensitive to these problems. The central element of our approach is based on the fact that many AM-related genes are conserved only among AM-competent species. Our approach involves genome-wide comparisons at the proteome level of AM-competent host species with non-mycorrhizal species. Using a clustering method we first established orthologous/paralogous relationships and subsequently identified protein clusters that contain members only of the AM-competent species. Proteins of these clusters were then analyzed in an extended set of 16 plant species and ranked based on their relatedness among AM-competent monocot and dicot species, relative to non-mycorrhizal species. In addition, we combined the information on the protein-coding sequence with gene expression data and with promoter analysis. As a result we present a list of yet uncharacterized proteins that show a strongly AM-related pattern of sequence conservation, indicating that the respective genes may have been under selection for a function in AM. Among the top candidates are three genes that encode a small family of similar receptor-like kinases that are related to the S-locus receptor kinases involved in sporophytic self-incompatibility. We present a new systematic strategy of gene discovery based on conservation of the protein-coding sequence that complements classical forward and reverse genetics. This strategy can be applied to diverse other biological phenomena if species with established genome sequences fall into distinguished groups that differ in a defined functional trait of interest.

  1. Behavioral, Neurophysiological, and Synaptic Impairment in a Transgenic Neuregulin1 (NRG1-IV) Murine Schizophrenia Model

    PubMed Central

    Papaleo, Francesco; Yang, Feng; Paterson, Clare; Palumbo, Sara; Carr, Gregory V.; Wang, Yanhong; Floyd, Kirsten; Huang, Wenwei; Thomas, Craig J.; Chen, Jingshan; Weinberger, Daniel R.

    2016-01-01

    Schizophrenia is a chronic, disabling neuropsychiatric disorder with complex genetic origins. The development of strategies for genome manipulation in rodents provides a platform for understanding the pathogenic role of genes and for testing novel therapeutic agents. Neuregulin 1 (NRG1), a critical developmental neurotrophin, is associated with schizophrenia. The NRG1 gene undergoes extensive alternative splicing and, to date, little is known about the neurobiology of a novel NRG1 isoform, NRG1-IV, which is increased in the brains of individuals with schizophrenia and associated with genetic risk variation. Here, we developed a transgenic mouse model (NRG1-IV/NSE-tTA) in which human NRG1-IV is selectively overexpressed in a neuronal specific manner. Using a combination of molecular, biochemical, electrophysiological, and behavioral analyses, we demonstrate that NRG1-IV/NSE-tTA mice exhibit abnormal behaviors relevant to schizophrenia, including impaired sensorimotor gating, discrimination memory, and social behaviors. These neurobehavioral phenotypes are accompanied by increases in cortical expression of the NRG1 receptor, ErbB4 and the downstream signaling target, PIK3-p110δ, along with disrupted dendritic development, synaptic pathology, and altered prefrontal cortical excitatory–inhibitory balance. Pharmacological inhibition of p110δ reversed sensorimotor gating and cognitive deficits. These data demonstrate a novel role for NRG1-IV in learning, memory, and neural circuit formation and a potential neurobiological mechanism for schizophrenia risk; show that deficits are pharmacologically reversible in adulthood; and further highlight p110δ as a target for antipsychotic drug development. SIGNIFICANCE STATEMENT Schizophrenia is a disabling psychiatric disorder with neurodevelopmental origins. Genes that increase risk for schizophrenia have been identified. Understanding how these genes affect brain development and function is necessary. This work is the first report of a newly generated humanized transgenic mouse model engineered to express human NRG1-IV, an isoform of the NRG1 (Neuregulin 1) gene that is increased in the brains of patients with schizophrenia in association with genetic risk. Using behavioral neuroscience, molecular biology, electrophysiology, and pharmacology, we identify a role for NRG1-IV in learning, memory, and cognition and determine that this relates to brain excitatory–inhibitory balance and changes in ErbB4/PI3K/AKT signaling. Moreover, the study further highlights the potential of targeting the PI3K pathway for the treatment of schizophrenia. PMID:27122041

  2. Applying molecular genetic tools to the conservation and action plan for the critically endangered Far Eastern leopard (Panthera pardus orientalis).

    PubMed

    Uphyrkina, Olga; O'Brien, Stephen J

    2003-08-01

    A role for molecular genetic approaches in conservation of endangered taxa is now commonly recognized. Because conservation genetic analyses provide essential insights on taxonomic status, recent evolutionary history and current health of endangered taxa, they are considered in nearly all conservation programs. Genetic analyses of the critically endangered Far Eastern, or Amur leopard, Panthera pardus orientalis, have been done recently to address all of these questions and develop strategies for survival of the leopard in the wild. The genetic status and implication for conservation management of the Far Eastern leopard subspecies are discussed.

  3. The group II intron maturase: a reverse transcriptase and splicing factor go hand in hand.

    PubMed

    Zhao, Chen; Pyle, Anna Marie

    2017-12-01

    The splicing of group II introns in vivo requires the assistance of a multifunctional intron encoded protein (IEP, or maturase). Each IEP is also a reverse-transcriptase enzyme that enables group II introns to behave as mobile genetic elements. During splicing or retro-transposition, each group II intron forms a tight, specific complex with its own encoded IEP, resulting in a highly reactive holoenzyme. This review focuses on the structural basis for IEP function, as revealed by recent crystal structures of an IEP reverse transcriptase domain and cryo-EM structures of an IEP-intron complex. These structures explain how the same IEP scaffold is utilized for intron recognition, splicing and reverse transcription, while providing a physical basis for understanding the evolutionary transformation of the IEP into the eukaryotic splicing factor Prp8. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Integrated analyses for genetic markers of polycystic ovary syndrome with 9 case-control studies of gene expression profiles.

    PubMed

    Lu, Chenqi; Liu, Xiaoqin; Wang, Lin; Jiang, Ning; Yu, Jun; Zhao, Xiaobo; Hu, Hairong; Zheng, Saihua; Li, Xuelian; Wang, Guiying

    2017-01-10

    Due to genetic heterogeneity and variable diagnostic criteria, genetic studies of polycystic ovary syndrome are particularly challenging. Furthermore, lack of sufficiently large cohorts limits the identification of susceptibility genes contributing to polycystic ovary syndrome. Here, we carried out a systematic search of studies deposited in the Gene Expression Omnibus database through August 31, 2016. The present analyses included studies with: 1) patients with polycystic ovary syndrome and normal controls, 2) gene expression profiling of messenger RNA, and 3) sufficient data for our analysis. Ultimately, a total of 9 studies with 13 datasets met the inclusion criteria and were performed for the subsequent integrated analyses. Through comprehensive analyses, there were 13 genetic factors overlapped in all datasets and identified as significant specific genes for polycystic ovary syndrome. After quality control assessment, there were six datasets remained. Further gene ontology enrichment and pathway analyses suggested that differentially expressed genes mainly enriched in oocyte pathways. These findings provide potential molecular markers for diagnosis and prognosis of polycystic ovary syndrome, and need in-depth studies on the exact function and mechanism in polycystic ovary syndrome.

  5. The role of conduct disorder in the relationship between alcohol, nicotine and cannabis use disorders.

    PubMed

    Grant, J D; Lynskey, M T; Madden, P A F; Nelson, E C; Few, L R; Bucholz, K K; Statham, D J; Martin, N G; Heath, A C; Agrawal, A

    2015-12-01

    Genetic influences contribute significantly to co-morbidity between conduct disorder and substance use disorders. Estimating the extent of overlap can assist in the development of phenotypes for genomic analyses. Multivariate quantitative genetic analyses were conducted using data from 9577 individuals, including 3982 complete twin pairs and 1613 individuals whose co-twin was not interviewed (aged 24-37 years) from two Australian twin samples. Analyses examined the genetic correlation between alcohol dependence, nicotine dependence and cannabis abuse/dependence and the extent to which the correlations were attributable to genetic influences shared with conduct disorder. Additive genetic (a(2) = 0.48-0.65) and non-shared environmental factors explained variance in substance use disorders. Familial effects on conduct disorder were due to additive genetic (a(2) = 0.39) and shared environmental (c(2) = 0.15) factors. All substance use disorders were influenced by shared genetic factors (rg = 0.38-0.56), with all genetic overlap between substances attributable to genetic influences shared with conduct disorder. Genes influencing individual substance use disorders were also significant, explaining 40-73% of the genetic variance per substance. Among substance users in this sample, the well-documented clinical co-morbidity between conduct disorder and substance use disorders is primarily attributable to shared genetic liability. Interventions targeted at generally reducing deviant behaviors may address the risk posed by this shared genetic liability. However, there is also evidence for genetic and environmental influences specific to each substance. The identification of these substance-specific risk factors (as well as potential protective factors) is critical to the future development of targeted treatment protocols.

  6. Genetic manipulation for inherited neurodegenerative diseases: myth or reality?

    PubMed Central

    Yu-Wai-Man, Patrick

    2016-01-01

    Rare genetic diseases affect about 7% of the general population and over 7000 distinct clinical syndromes have been described with the majority being due to single gene defects. This review will provide a critical overview of genetic strategies that are being pioneered to halt or reverse disease progression in inherited neurodegenerative diseases. This field of research covers a vast area and only the most promising treatment paradigms will be discussed with a particular focus on inherited eye diseases, which have paved the way for innovative gene therapy paradigms, and mitochondrial diseases, which are currently generating a lot of debate centred on the bioethics of germline manipulation. PMID:27002113

  7. Discordant genetic diversity and geographic patterns between Crassicutis cichlasomae (Digenea: Apocreadiidae) and its cichlid host, "Cichlasoma" urophthalmus (Osteichthyes: Cichlidae), in Middle-America.

    PubMed

    Razo-Mendivil, Ulises; Vázquez-Domínguez, Ella; de León, Gerardo Pérez-Ponce

    2013-12-01

    Genetic analyses of hosts and their parasites are key to understand the evolutionary patterns and processes that have shaped host-parasite associations. We evaluated the genetic structure of the digenean Crassicutis cichlasomae and its most common host, the Mayan cichlid "Cichlasoma" urophthalmus, encompassing most of their geographical range in Middle-America (river basins in southeastern Mexico, Belize, and Guatemala together with the Yucatan Peninsula). Genetic diversity and structure analyses were done based on 167 cytochrome c oxidase subunit 1 sequences (330 bp) for C. cichlasomae from 21 populations and 161 cytochrome b sequences (599 bp) for "C." urophthalmus from 26 populations. Analyses performed included phylogenetic tree estimation under Bayesian inference and maximum likelihood analysis, genetic diversity, distance and structure estimates, haplotype networks, and demographic evaluations. Crassicutis cichlasomae showed high genetic diversity values and genetic structuring, corresponding with 4 groups clearly differentiated and highly divergent. Conversely, "C." urophthalmus showed low levels of genetic diversity and genetic differentiation, defined as 2 groups with low divergence and with no correspondence with geographical distribution. Our results show that species of cichlids parasitized by C. cichlasomae other than "C." urophthalmus, along with multiple colonization events and subsequent isolation in different basins, are likely factors that shaped the genetic structure of the parasite. Meanwhile, historical long-distance dispersal and drought periods during the Holocene, with significant population size reductions and fragmentations, are factors that could have shaped the genetic structure of the Mayan cichlid.

  8. The genetic structure of Arabidopsis thaliana in the south-western Mediterranean range reveals a shared history between North Africa and southern Europe

    PubMed Central

    2014-01-01

    Background Deciphering the genetic structure of Arabidopsis thaliana diversity across its geographic range provides the bases for elucidating the demographic history of this model plant. Despite the unique A. thaliana genomic resources currently available, its history in North Africa, the extreme southern limit in the biodiversity hotspot of the Mediterranean Basin, remains virtually unknown. Results To approach A. thaliana evolutionary history in North Africa, we have analysed the genetic diversity and structure of 151 individuals collected from 20 populations distributed across Morocco. Genotyping of 249 genome-wide SNPs indicated that Morocco contains substantially lower diversity than most analyzed world regions. However, IBD, STRUCTURE and PCA clustering analyses showed that genetic variation is strongly geographically structured. We also determined the genetic relationships between Morocco and the closest European region, the Iberian Peninsula, by analyses of 201 populations from both regions genotyped with the same SNPs. These analyses detected four genetic groups, but all Moroccan accessions belonged to a common Iberian/Moroccan cluster that appeared highly differentiated from the remaining groups. Thus, we identified a genetic lineage with an isolated demographic history in the south-western Mediterranean region. The existence of this lineage was further supported by the study of several flowering genes and traits, which also found Moroccan accessions similar to the same Iberian group. Nevertheless, genetic diversity for neutral SNPs and flowering genes was higher in Moroccan than in Iberian populations of this lineage. Furthermore, we analyzed the genetic relationships between Morocco and other world regions by joint analyses of a worldwide collection of 337 accessions, which detected an additional weak relationship between North Africa and Asia. Conclusions The patterns of genetic diversity and structure of A. thaliana in Morocco show that North Africa is part of the species native range and support the occurrence of a glacial refugium in the Atlas Mountains. In addition, the identification of a genetic lineage specific of Morocco and the Iberian Peninsula indicates that the Strait of Gibraltar has been an A. thaliana migration route between Europe and Africa. Finally, the genetic relationship between Morocco and Asia suggests another migration route connecting north-western Africa and Asia. PMID:24411008

  9. How Genes Modulate Patterns of Aging-Related Changes on the Way to 100: Biodemographic Models and Methods in Genetic Analyses of Longitudinal Data

    PubMed Central

    Yashin, Anatoliy I.; Arbeev, Konstantin G.; Wu, Deqing; Arbeeva, Liubov; Kulminski, Alexander; Kulminskaya, Irina; Akushevich, Igor; Ukraintseva, Svetlana V.

    2016-01-01

    Background and Objective To clarify mechanisms of genetic regulation of human aging and longevity traits, a number of genome-wide association studies (GWAS) of these traits have been performed. However, the results of these analyses did not meet expectations of the researchers. Most detected genetic associations have not reached a genome-wide level of statistical significance, and suffered from the lack of replication in the studies of independent populations. The reasons for slow progress in this research area include low efficiency of statistical methods used in data analyses, genetic heterogeneity of aging and longevity related traits, possibility of pleiotropic (e.g., age dependent) effects of genetic variants on such traits, underestimation of the effects of (i) mortality selection in genetically heterogeneous cohorts, (ii) external factors and differences in genetic backgrounds of individuals in the populations under study, the weakness of conceptual biological framework that does not fully account for above mentioned factors. One more limitation of conducted studies is that they did not fully realize the potential of longitudinal data that allow for evaluating how genetic influences on life span are mediated by physiological variables and other biomarkers during the life course. The objective of this paper is to address these issues. Data and Methods We performed GWAS of human life span using different subsets of data from the original Framingham Heart Study cohort corresponding to different quality control (QC) procedures and used one subset of selected genetic variants for further analyses. We used simulation study to show that approach to combining data improves the quality of GWAS. We used FHS longitudinal data to compare average age trajectories of physiological variables in carriers and non-carriers of selected genetic variants. We used stochastic process model of human mortality and aging to investigate genetic influence on hidden biomarkers of aging and on dynamic interaction between aging and longevity. We investigated properties of genes related to selected variants and their roles in signaling and metabolic pathways. Results We showed that the use of different QC procedures results in different sets of genetic variants associated with life span. We selected 24 genetic variants negatively associated with life span. We showed that the joint analyses of genetic data at the time of bio-specimen collection and follow up data substantially improved significance of associations of selected 24 SNPs with life span. We also showed that aging related changes in physiological variables and in hidden biomarkers of aging differ for the groups of carriers and non-carriers of selected variants. Conclusions . The results of these analyses demonstrated benefits of using biodemographic models and methods in genetic association studies of these traits. Our findings showed that the absence of a large number of genetic variants with deleterious effects may make substantial contribution to exceptional longevity. These effects are dynamically mediated by a number of physiological variables and hidden biomarkers of aging. The results of these research demonstrated benefits of using integrative statistical models of mortality risks in genetic studies of human aging and longevity. PMID:27773987

  10. Active Surveillance for Avian Influenza Virus, Egypt, 2010–2012

    PubMed Central

    Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S.; Gomaa, Mokhtar M.; Maatouq, Asmaa M.; Shehata, Mahmoud M.; Moatasim, Yassmin; Bagato, Ola; Cai, Zhipeng; Rubrum, Adam; Kutkat, Mohamed A.; McKenzie, Pamela P.; Webster, Robert G.; Webby, Richard J.; Ali, Mohamed A.

    2014-01-01

    Continuous circulation of influenza A(H5N1) virus among poultry in Egypt has created an epicenter in which the viruses evolve into newer subclades and continue to cause disease in humans. To detect influenza viruses in Egypt, since 2009 we have actively surveyed various regions and poultry production sectors. From August 2010 through January 2013, >11,000 swab samples were collected; 10% were positive by matrix gene reverse transcription PCR. During this period, subtype H9N2 viruses emerged, cocirculated with subtype H5N1 viruses, and frequently co-infected the same avian host. Genetic and antigenic analyses of viruses revealed that influenza A(H5N1) clade 2.2.1 viruses are dominant and that all subtype H9N2 viruses are G1-like. Cocirculation of different subtypes poses concern for potential reassortment. Avian influenza continues to threaten public and animal health in Egypt, and continuous surveillance for avian influenza virus is needed. PMID:24655395

  11. Surveying the repair of ancient DNA from bones via high-throughput sequencing.

    PubMed

    Mouttham, Nathalie; Klunk, Jennifer; Kuch, Melanie; Fourney, Ron; Poinar, Hendrik

    2015-07-01

    DNA damage in the form of abasic sites, chemically altered nucleotides, and strand fragmentation is the foremost limitation in obtaining genetic information from many ancient samples. Upon cell death, DNA continues to endure various chemical attacks such as hydrolysis and oxidation, but repair pathways found in vivo no longer operate. By incubating degraded DNA with specific enzyme combinations adopted from these pathways, it is possible to reverse some of the post-mortem nucleic acid damage prior to downstream analyses such as library preparation, targeted enrichment, and high-throughput sequencing. Here, we evaluate the performance of two available repair protocols on previously characterized DNA extracts from four mammoths. Both methods use endonucleases and glycosylases along with a DNA polymerase-ligase combination. PreCR Repair Mix increases the number of molecules converted to sequencing libraries, leading to an increase in endogenous content and a decrease in cytosine-to-thymine transitions due to cytosine deamination. However, the effects of Nelson Repair Mix on repair of DNA damage remain inconclusive.

  12. Acylphloroglucinol biosynthesis in strawberry fruit

    USDA-ARS?s Scientific Manuscript database

    Phenolics have health-promoting properties and are a major group of metabolites in fruit crops. Through reverse genetic analysis of the functions of four ripening-related genes in the octoploid strawberry, Fragaria ×ananassa, we discovered four acylphloroglucinol (APG)-glucosides as native strawberr...

  13. Reinventing potato at the diploid level

    USDA-ARS?s Scientific Manuscript database

    The outcrossing polyploidy nature of cultivated potato has hindered the use of genomics resources to dissect the genetic basis of agronomically important traits. Reversion to the diploid level allows us to apply powerful tools toward this effort. Parthenogenesis generates diploid cultivated potato, ...

  14. Multi-gene panel testing in Korean patients with common genetic generalized epilepsy syndromes.

    PubMed

    Lee, Cha Gon; Lee, Jeehun; Lee, Munhyang

    2018-01-01

    Genetic heterogeneity of common genetic generalized epilepsy syndromes is frequently considered. The present study conducted a focused analysis of potential candidate or susceptibility genes for common genetic generalized epilepsy syndromes using multi-gene panel testing with next-generation sequencing. This study included patients with juvenile myoclonic epilepsy, juvenile absence epilepsy, and epilepsy with generalized tonic-clonic seizures alone. We identified pathogenic variants according to the American College of Medical Genetics and Genomics guidelines and identified susceptibility variants using case-control association analyses and family analyses for familial cases. A total of 57 patients were enrolled, including 51 sporadic cases and 6 familial cases. Twenty-two pathogenic and likely pathogenic variants of 16 different genes were identified. CACNA1H was the most frequently observed single gene. Variants of voltage-gated Ca2+ channel genes, including CACNA1A, CACNA1G, and CACNA1H were observed in 32% of variants (n = 7/22). Analyses to identify susceptibility variants using case-control association analysis indicated that KCNMA1 c.400G>C was associated with common genetic generalized epilepsy syndromes. Only 1 family (family A) exhibited a candidate pathogenic variant p.(Arg788His) on CACNA1H, as determined via family analyses. This study identified candidate genetic variants in about a quarter of patients (n = 16/57) and an average of 2.8 variants was identified in each patient. The results reinforced the polygenic disorder with very high locus and allelic heterogeneity of common GGE syndromes. Further, voltage-gated Ca2+ channels are suggested as important contributors to common genetic generalized epilepsy syndromes. This study extends our comprehensive understanding of common genetic generalized epilepsy syndromes.

  15. VIPER: a visualisation tool for exploring inheritance inconsistencies in genotyped pedigrees

    PubMed Central

    2012-01-01

    Background Pedigree genotype datasets are used for analysing genetic inheritance and to map genetic markers and traits. Such datasets consist of hundreds of related animals genotyped for thousands of genetic markers and invariably contain multiple errors in both the pedigree structure and in the associated individual genotype data. These errors manifest as apparent inheritance inconsistencies in the pedigree, and invalidate analyses of marker inheritance patterns across the dataset. Cleaning raw datasets of bad data points (incorrect pedigree relationships, unreliable marker assays, suspect samples, bad genotype results etc.) requires expert exploration of the patterns of exposed inconsistencies in the context of the inheritance pedigree. In order to assist this process we are developing VIPER (Visual Pedigree Explorer), a software tool that integrates an inheritance-checking algorithm with a novel space-efficient pedigree visualisation, so that reported inheritance inconsistencies are overlaid on an interactive, navigable representation of the pedigree structure. Methods and results This paper describes an evaluation of how VIPER displays the different scales and types of dataset that occur experimentally, with a description of how VIPER's display interface and functionality meet the challenges presented by such data. We examine a range of possible error types found in real and simulated pedigree genotype datasets, demonstrating how these errors are exposed and explored using the VIPER interface and we evaluate the utility and usability of the interface to the domain expert. Evaluation was performed as a two stage process with the assistance of domain experts (geneticists). The initial evaluation drove the iterative implementation of further features in the software prototype, as required by the users, prior to a final functional evaluation of the pedigree display for exploring the various error types, data scales and structures. Conclusions The VIPER display was shown to effectively expose the range of errors found in experimental genotyped pedigrees, allowing users to explore the underlying causes of reported inheritance inconsistencies. This interface will provide the basis for a full data cleaning tool that will allow the user to remove isolated bad data points, and reversibly test the effect of removing suspect genotypes and pedigree relationships. PMID:22607476

  16. Prevalence of Tobacco mosaic virus in Iran and Evolutionary Analyses of the Coat Protein Gene

    PubMed Central

    Alishiri, Athar; Rakhshandehroo, Farshad; Zamanizadeh, Hamid-Reza; Palukaitis, Peter

    2013-01-01

    The incidence and distribution of Tobacco mosaic virus (TMV) and related tobamoviruses was determined using an enzyme-linked immunosorbent assay on 1,926 symptomatic horticultural crops and 107 asymptomatic weed samples collected from 78 highly infected fields in the major horticultural crop-producing areas in 17 provinces throughout Iran. The results were confirmed by host range studies and reverse transcription-polymerase chain reaction. The overall incidence of infection by these viruses in symptomatic plants was 11.3%. The coat protein (CP) gene sequences of a number of isolates were determined and disclosed to be a high identity (up to 100%) among the Iranian isolates. Phylogenetic analysis of all known TMV CP genes showed three clades on the basis of nucleotide sequences with all Iranian isolates distinctly clustered in clade II. Analysis using the complete CP amino acid sequence showed one clade with two subgroups, IA and IB, with Iranian isolates in both subgroups. The nucleotide diversity within each sub-group was very low, but higher between the two clades. No correlation was found between genetic distance and geographical origin or host species of isolation. Statistical analyses suggested a negative selection and demonstrated the occurrence of gene flow from the isolates in other clades to the Iranian population. PMID:25288953

  17. A substitution in the transmembrane region of the glycoprotein leads to an unstable attenuation of Machupo virus.

    PubMed

    Patterson, Michael; Koma, Takaaki; Seregin, Alexey; Huang, Cheng; Miller, Milagros; Smith, Jennifer; Yun, Nadezhda; Smith, Jeanon; Paessler, Slobodan

    2014-09-01

    Machupo virus (MACV) is the etiologic agent of Bolivian hemorrhagic fever (BHF). Utilizing a reverse-genetics system recently developed, we report the rescue of a rationally modified recombinant MACV containing a single mutation in the transmembrane region of the glycoprotein. Following challenge of susceptible mice, we identified a significant reduction in virulence in the novel virus. We also identified an instability leading to reversion of the single mutation to a wild-type genotype. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. A rapid method for establishment of a reverse genetics system for canine parvovirus.

    PubMed

    Yu, Yongle; Su, Jun; Wang, Jigui; Xi, Ji; Mao, Yaping; Hou, Qiang; Zhang, Xiaomei; Liu, Weiquan

    2017-12-01

    Canine parvovirus (CPV) is an important and highly prevalent pathogen of dogs that causes acute hemorrhagic enteritis disease. Here, we describe a rapid method for the construction and characterization of a full-length infectious clone (rCPV) of CPV. Feline kidney (F81) cells were transfected with rCPV incorporating an engineered EcoR I site that served as a genetic marker. The rescued virus was indistinguishable from that of wild-type virus in its biological properties.

  19. Intracolonial genetic variation in the scleractinian coral Seriatopora hystrix

    NASA Astrophysics Data System (ADS)

    Maier, E.; Buckenmaier, A.; Tollrian, R.; Nürnberger, B.

    2012-06-01

    In recent years, increasing numbers of studies revealed intraorganismal genetic variation, primarily in modular organisms like plants or colonial marine invertebrates. Two underlying mechanisms are distinguished: Mosaicism is caused by somatic mutation, whereas chimerism originates from allogeneic fusion. We investigated the occurrence of intracolonial genetic variation at microsatellite loci in five natural populations of the scleractinian coral Seriatopora hystrix on the Great Barrier Reef. This coral is a widely distributed, brooding species that is at present a target of intensive population genetic research on reproduction and dispersal patterns. From each of 155 S. hystrix colonies, either two or three samples were genotyped at five or six loci. Twenty-seven (~17%) genetically heterogeneous colonies were found. Statistical analyses indicated the occurrence of both mosaicism and chimerism. In most cases, intracolonial variation was found only at a single allele. Our analyses suggest that somatic mutations present a major source of genetic heterogeneity within a single colony. Moreover, we observed large, apparently stable chimeric colonies that harbored clearly distinct genotypes and contrast these findings with the patterns typically observed in laboratory-based experiments. We discuss the error that mosaicism and chimerism introduce into population genetic analyses.

  20. Sex Reversal in C57BL/6J XY Mice Caused by Increased Expression of Ovarian Genes and Insufficient Activation of the Testis Determining Pathway

    PubMed Central

    Correa, Stephanie M.; Washburn, Linda L.; Kahlon, Ravi S.; Musson, Michelle C.; Bouma, Gerrit J.; Eicher, Eva M.; Albrecht, Kenneth H.

    2012-01-01

    Sex reversal can occur in XY humans with only a single functional WT1 or SF1 allele or a duplication of the chromosome region containing WNT4. In contrast, XY mice with only a single functional Wt1, Sf1, or Wnt4 allele, or mice that over-express Wnt4 from a transgene, reportedly are not sex-reversed. Because genetic background plays a critical role in testis differentiation, particularly in C57BL/6J (B6) mice, we tested the hypothesis that Wt1, Sf1, and Wnt4 are dosage sensitive in B6 XY mice. We found that reduced Wt1 or Sf1 dosage in B6 XYB6 mice impaired testis differentiation, but no ovarian tissue developed. If, however, a YAKR chromosome replaced the YB6 chromosome, these otherwise genetically identical B6 XY mice developed ovarian tissue. In contrast, reduced Wnt4 dosage increased the amount of testicular tissue present in Sf1+/− B6 XYAKR, Wt1+/− B6 XYAKR, B6 XYPOS, and B6 XYAKR fetuses. We propose that Wt1B6 and Sf1B6 are hypomorphic alleles of testis-determining pathway genes and that Wnt4B6 is a hypermorphic allele of an ovary-determining pathway gene. The latter hypothesis is supported by the finding that expression of Wnt4 and four other genes in the ovary-determining pathway are elevated in normal B6 XX E12.5 ovaries. We propose that B6 mice are sensitive to XY sex reversal, at least in part, because they carry Wt1B6 and/or Sf1B6 alleles that compromise testis differentiation and a Wnt4B6 allele that promotes ovary differentiation and thereby antagonizes testis differentiation. Addition of a “weak” Sry allele, such as the one on the YPOS chromosome, to the sensitized B6 background results in inappropriate development of ovarian tissue. We conclude that Wt1, Sf1, and Wnt4 are dosage-sensitive in mice, this dosage-sensitivity is genetic background-dependant, and the mouse strains described here are good models for the investigation of human dosage-sensitive XY sex reversal. PMID:22496664

  1. Genetic homogeneity of the invasive lionfish across the Northwestern Atlantic and the Gulf of Mexico based on Single Nucleotide Polymorphisms.

    PubMed

    Pérez-Portela, R; Bumford, A; Coffman, B; Wedelich, S; Davenport, M; Fogg, A; Swenarton, M K; Coleman, F; Johnston, M A; Crawford, D L; Oleksiak, M F

    2018-03-22

    Despite the devastating impact of the lionfish (Pterois volitans) invasion on NW Atlantic ecosystems, little genetic information about the invasion process is available. We applied Genotyping by Sequencing techniques to identify 1,220 single nucleotide polymorphic sites (SNPs) from 162 lionfish samples collected between 2013 and 2015 from two areas chronologically identified as the first and last invaded areas in US waters: the east coast of Florida and the Gulf of Mexico. We used population genomic analyses, including phylogenetic reconstruction, Bayesian clustering, genetic distances, Discriminant Analyses of Principal Components, and coalescence simulations for detection of outlier SNPs, to understand genetic trends relevant to the lionfish's long-term persistence. We found no significant differences in genetic structure or diversity between the two areas (F ST p-values > 0.01, and t-test p-values > 0.05). In fact, our genomic analyses showed genetic homogeneity, with enough gene flow between the east coast of Florida and Gulf of Mexico to erase previous signals of genetic divergence detected between these areas, secondary spreading, and bottlenecks in the Gulf of Mexico. These findings suggest rapid genetic changes over space and time during the invasion, resulting in one panmictic population with no signs of divergence between areas due to local adaptation.

  2. Genetic signatures of natural selection in a model invasive ascidian

    NASA Astrophysics Data System (ADS)

    Lin, Yaping; Chen, Yiyong; Yi, Changho; Fong, Jonathan J.; Kim, Won; Rius, Marc; Zhan, Aibin

    2017-03-01

    Invasive species represent promising models to study species’ responses to rapidly changing environments. Although local adaptation frequently occurs during contemporary range expansion, the associated genetic signatures at both population and genomic levels remain largely unknown. Here, we use genome-wide gene-associated microsatellites to investigate genetic signatures of natural selection in a model invasive ascidian, Ciona robusta. Population genetic analyses of 150 individuals sampled in Korea, New Zealand, South Africa and Spain showed significant genetic differentiation among populations. Based on outlier tests, we found high incidence of signatures of directional selection at 19 loci. Hitchhiking mapping analyses identified 12 directional selective sweep regions, and all selective sweep windows on chromosomes were narrow (~8.9 kb). Further analyses indentified 132 candidate genes under selection. When we compared our genetic data and six crucial environmental variables, 16 putatively selected loci showed significant correlation with these environmental variables. This suggests that the local environmental conditions have left significant signatures of selection at both population and genomic levels. Finally, we identified “plastic” genomic regions and genes that are promising regions to investigate evolutionary responses to rapid environmental change in C. robusta.

  3. Independent origins and incipient speciation among host-associated populations of Thielaviopsis ethacetica in Cameroon.

    PubMed

    Mbenoun, Michael; Wingfield, Michael J; Letsoalo, Teboho; Bihon, Wubetu; Wingfield, Brenda D; Roux, Jolanda

    2015-11-01

    Thielaviopsis ethacetica was recently reinstated as a distinct taxon using DNA phylogenies. It is widespread affecting several crop plants of global economic importance. In this study, microsatellite markers were developed and used in conjunction with sequence data to investigate the genetic diversity and structure of Th. ethacetica in Cameroon. A collection of 71 isolates from cacao, oil palm, and pineapple, supplemented with nine isolates from other countries were analysed. Four genetic groups were identified. Two of these were associated with oil palm in Cameroon and showed high genetic diversity, suggesting that they might represent an indigenous population of the pathogen. In contrast, the remaining two groups, associated with cacao and pineapple, had low genetic diversity and, most likely, represent introduced populations. There was no evidence of gene flow between these groups. Phylogenetic analyses based on sequences of the tef1-α as well as the combined flanking regions of six microsatellite loci were consistent with population genetic analyses and suggested that Th. ethacetica is comprised of two divergent genetic lineages. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  4. The Sensitivity of Genetic Connectivity Measures to Unsampled and Under-Sampled Sites

    PubMed Central

    Koen, Erin L.; Bowman, Jeff; Garroway, Colin J.; Wilson, Paul J.

    2013-01-01

    Landscape genetic analyses assess the influence of landscape structure on genetic differentiation. It is rarely possible to collect genetic samples from all individuals on the landscape and thus it is important to assess the sensitivity of landscape genetic analyses to the effects of unsampled and under-sampled sites. Network-based measures of genetic distance, such as conditional genetic distance (cGD), might be particularly sensitive to sampling intensity because pairwise estimates are relative to the entire network. We addressed this question by subsampling microsatellite data from two empirical datasets. We found that pairwise estimates of cGD were sensitive to both unsampled and under-sampled sites, and FST, Dest, and deucl were more sensitive to under-sampled than unsampled sites. We found that the rank order of cGD was also sensitive to unsampled and under-sampled sites, but not enough to affect the outcome of Mantel tests for isolation by distance. We simulated isolation by resistance and found that although cGD estimates were sensitive to unsampled sites, by increasing the number of sites sampled the accuracy of conclusions drawn from landscape genetic analyses increased, a feature that is not possible with pairwise estimates of genetic differentiation such as FST, Dest, and deucl. We suggest that users of cGD assess the sensitivity of this measure by subsampling within their own network and use caution when making extrapolations beyond their sampled network. PMID:23409155

  5. 46,XX males: a case series based on clinical and genetics evaluation.

    PubMed

    Mohammadpour Lashkari, F; Totonchi, M; Zamanian, M R; Mansouri, Z; Sadighi Gilani, M A; Sabbaghian, M; Mohseni Meybodi, A

    2017-09-01

    46,XX male sex reversal syndrome is one of the rarest sex chromosomal aberrations. The presence of SRY gene on one of the X chromosomes is the most frequent cause of this syndrome. Based on Y chromosome profile, there are SRY-positive and SRY-negative forms. The purpose of our study was to report first case series of Iranian patients and describe the different clinical appearances based on their genetic component. From the 8,114 azoospermic and severe oligozoospermic patients referred to Royan institute, we diagnosed 57 cases as sex reversal patients. Based on the endocrinological history, we performed karyotyping, SRY and AZF microdeletion screening. Patients had a female karyotype. According to available hormonal reports of 37 patients, 16 cases had low levels of testosterone (43.2%). On the other hand, 15 males were SRY positive (90.2%), while they lacked the spermatogenic factors encoding genes on Yq. Commencing the testicular differentiation in males, the SRY gene is considered to be very important in this process. Due to homogeneous results of karyotyping and AZF deletion, there are both positive and negative SRY cases that show similar sex reversal phenotypes. Evidences show that there could be diverse phenotypic differences that could be raised from various reasons. © 2016 Blackwell Verlag GmbH.

  6. Shared Genetic Control of Brain Activity During Sleep and Insulin Secretion: A Laboratory-Based Family Study.

    PubMed

    Morselli, Lisa L; Gamazon, Eric R; Tasali, Esra; Cox, Nancy J; Van Cauter, Eve; Davis, Lea K

    2018-01-01

    Over the past 20 years, a large body of experimental and epidemiologic evidence has linked sleep duration and quality to glucose homeostasis, although the mechanistic pathways remain unclear. The aim of the current study was to determine whether genetic variation influencing both sleep and glucose regulation could underlie their functional relationship. We hypothesized that the genetic regulation of electroencephalographic (EEG) activity during non-rapid eye movement sleep, a highly heritable trait with fingerprint reproducibility, is correlated with the genetic control of metabolic traits including insulin sensitivity and β-cell function. We tested our hypotheses through univariate and bivariate heritability analyses in a three-generation pedigree with in-depth phenotyping of both sleep EEG and metabolic traits in 48 family members. Our analyses accounted for age, sex, adiposity, and the use of psychoactive medications. In univariate analyses, we found significant heritability for measures of fasting insulin sensitivity and β-cell function, for time spent in slow-wave sleep, and for EEG spectral power in the delta, theta, and sigma ranges. Bivariate heritability analyses provided the first evidence for a shared genetic control of brain activity during deep sleep and fasting insulin secretion rate. © 2017 by the American Diabetes Association.

  7. Autosomal recessive POLR1D mutation with decrease of TCOF1 mRNA is responsible for Treacher Collins syndrome.

    PubMed

    Schaefer, Elise; Collet, Corinne; Genevieve, David; Vincent, Marie; Lohmann, Dietmar R; Sanchez, Elodie; Bolender, Chantal; Eliot, Marie-Madeleine; Nürnberg, Gudrun; Passos-Bueno, Maria-Rita; Wieczorek, Dagmar; van Maldergem, Lionel; Doray, Bérénice

    2014-09-01

    Treacher Collins syndrome is a mandibulofacial dysostosis caused by mutations in genes involved in ribosome biogenesis and synthesis. TCOF1 mutations are observed in ~80% of the patients and are inherited in an autosomal dominant manner. Recently, two other genes have been reported in <2% of patients--POLR1D in patients with autosomal dominant inheritance, and POLR1C in patients with autosomal recessive inheritance. We performed direct sequencing of TCOF1, POLR1C, and POLR1D in two unrelated consanguineous families. The four affected children shared the same homozygous mutation in POLR1D (c.163C>G, p.Leu55Val). This mutation is localized in a region encoding the dimerization domain of the RNA polymerase. It is supposed that this mutation impairs RNA polymerase, resulting in a lower amount of mature dimeric ribosomes. A functional analysis of the transcripts of TCOF1 by real-time quantitative reverse transcription-polymerase chain reaction was performed in the first family, demonstrating a 50% reduction in the index case, compatible with this hypothesis. This is the first report of POLR1D mutation being responsible for an autosomal recessive inherited Treacher Collins syndrome. These results reinforce the concept of genetic heterogeneity of Treacher Collins syndrome and underline the importance of combining clinical expertise and familial molecular analyses for appropriate genetic counseling.

  8. Replication enhancer elements within the open reading frame of tick-borne encephalitis virus and their evolution within the Flavivirus genus

    PubMed Central

    Tuplin, A.; Evans, D. J.; Buckley, A.; Jones, I. M.; Gould, E. A.; Gritsun, T. S.

    2011-01-01

    We provide experimental evidence of a replication enhancer element (REE) within the capsid gene of tick-borne encephalitis virus (TBEV, genus Flavivirus). Thermodynamic and phylogenetic analyses predicted that the REE folds as a long stable stem–loop (designated SL6), conserved among all tick-borne flaviviruses (TBFV). Homologous sequences and potential base pairing were found in the corresponding regions of mosquito-borne flaviviruses, but not in more genetically distant flaviviruses. To investigate the role of SL6, nucleotide substitutions were introduced which changed a conserved hexanucleotide motif, the conformation of the terminal loop and the base-paired dsRNA stacking. Substitutions were made within a TBEV reverse genetic system and recovered mutants were compared for plaque morphology, single-step replication kinetics and cytopathic effect. The greatest phenotypic changes were observed in mutants with a destabilized stem. Point mutations in the conserved hexanucleotide motif of the terminal loop caused moderate virus attenuation. However, all mutants eventually reached the titre of wild-type virus late post-infection. Thus, although not essential for growth in tissue culture, the SL6 REE acts to up-regulate virus replication. We hypothesize that this modulatory role may be important for TBEV survival in nature, where the virus circulates by non-viraemic transmission between infected and non-infected ticks, during co-feeding on local rodents. PMID:21622960

  9. Genetic determinants restricting the reassortment of heterologous NSP2 genes into the simian rotavirus SA11 genome.

    PubMed

    Mingo, Rebecca; Zhang, Shu; Long, Courtney P; LaConte, Leslie E W; McDonald, Sarah M

    2017-08-24

    Rotaviruses (RVs) can evolve through the process of reassortment, whereby the 11 double-stranded RNA genome segments are exchanged among strains during co-infection. However, reassortment is limited in cases where the genes or encoded proteins of co-infecting strains are functionally incompatible. In this study, we employed a helper virus-based reverse genetics system to identify NSP2 gene regions that correlate with restricted reassortment into simian RV strain SA11. We show that SA11 reassortants with NSP2 genes from human RV strains Wa or DS-1 were efficiently rescued and exhibit no detectable replication defects. However, we could not rescue an SA11 reassortant with a human RV strain AU-1 NSP2 gene, which differs from that of SA11 by 186 nucleotides (36 amino acids). To map restriction determinants, we engineered viruses to contain chimeric NSP2 genes in which specific regions of AU-1 sequence were substituted with SA11 sequence. We show that a region spanning AU-1 NSP2 gene nucleotides 784-820 is critical for the observed restriction; yet additional determinants reside in other gene regions. In silico and in vitro analyses were used to predict how the 784-820 region may impact NSP2 gene/protein function, thereby informing an understanding of the reassortment restriction mechanism.

  10. Whole-gene CFTR sequencing combined with digital RT-PCR improves genetic diagnosis of cystic fibrosis.

    PubMed

    Straniero, Letizia; Soldà, Giulia; Costantino, Lucy; Seia, Manuela; Melotti, Paola; Colombo, Carla; Asselta, Rosanna; Duga, Stefano

    2016-12-01

    Despite extensive screening, 1-5% of cystic fibrosis (CF) patients lack a definite molecular diagnosis. Next-generation sequencing (NGS) is making affordable genetic testing based on the identification of variants in extended genomic regions. In this frame, we analyzed 23 CF patients and one carrier by whole-gene CFTR resequencing: 4 were previously characterized and served as controls; 17 were cases lacking a complete diagnosis after a full conventional CFTR screening; 3 were consecutive subjects referring to our centers, not previously submitted to any screening. We also included in the custom NGS design the coding portions of the SCNN1A, SCNN1B and SCNN1G genes, encoding the subunits of the sodium channel ENaC, which were found to be mutated in CF-like patients. Besides 2 novel SCNN1B missense mutations, we identified 22 previously-known CFTR mutations, including 2 large deletions (whose breakpoints were precisely mapped), and novel deep-intronic variants, whose role on splicing was excluded by ex-vivo analyses. Finally, for 2 patients, compound heterozygotes for a CFTR mutation and the intron-9c.1210-34TG [11-12] T 5 allele-known to be associated with decreased CFTR mRNA levels-the molecular diagnosis was implemented by measuring the residual level of wild-type transcript by digital reverse transcription polymerase chain reaction performed on RNA extracted from nasal brushing.

  11. Contribution of genetics to ecological restoration.

    PubMed

    Mijangos, Jose Luis; Pacioni, Carlo; Spencer, Peter B S; Craig, Michael D

    2015-01-01

    Ecological restoration of degraded ecosystems has emerged as a critical tool in the fight to reverse and ameliorate the current loss of biodiversity and ecosystem services. Approaches derived from different genetic disciplines are extending the theoretical and applied frameworks on which ecological restoration is based. We performed a search of scientific articles and identified 160 articles that employed a genetic approach within a restoration context to shed light on the links between genetics and restoration. These articles were then classified on whether they examined association between genetics and fitness or the application of genetics in demographic studies, and on the way the studies informed restoration practice. Although genetic research in restoration is rapidly growing, we found that studies could make better use of the extensive toolbox developed by applied fields in genetics. Overall, 41% of reviewed studies used genetic information to evaluate or monitor restoration, and 59% provided genetic information to guide prerestoration decision-making processes. Reviewed studies suggest that restoration practitioners often overlook the importance of including genetic aspects within their restoration goals. Even though there is a genetic basis influencing the provision of ecosystem services, few studies explored this relationship. We provide a view of research gaps, future directions and challenges in the genetics of restoration. © 2014 John Wiley & Sons Ltd.

  12. Vitamin C reverses hypogonadal bone loss

    USDA-ARS?s Scientific Manuscript database

    Epidemiologic studies correlate low vitamin C intake with bone loss. The genetic deletion of enzymes involved in de novo vitamin C synthesis in mice, likewise, causes severe osteoporosis. However, very few studies have evaluated a protective role of this dietary supplement on the skeleton. Here, ...

  13. Reversal learning as a measure of impulsive and compulsive behavior in addictions.

    PubMed

    Izquierdo, Alicia; Jentsch, J David

    2012-01-01

    Our ability to measure the cognitive components of complex decision-making across species has greatly facilitated our understanding of its neurobiological mechanisms. One task in particular, reversal learning, has proven valuable in assessing the inhibitory processes that are central to executive control. Reversal learning measures the ability to actively suppress reward-related responding and to disengage from ongoing behavior, phenomena that are biologically and descriptively related to impulsivity and compulsivity. Consequently, reversal learning could index vulnerability for disorders characterized by impulsivity such as proclivity for initial substance abuse as well as the compulsive aspects of dependence. Though we describe common variants and similar tasks, we pay particular attention to discrimination reversal learning, its supporting neural circuitry, neuropharmacology and genetic determinants. We also review the utility of this task in measuring impulsivity and compulsivity in addictions. We restrict our review to instrumental, reward-related reversal learning studies as they are most germane to addiction. The research reviewed here suggests that discrimination reversal learning may be used as a diagnostic tool for investigating the neural mechanisms that mediate impulsive and compulsive aspects of pathological reward-seeking and -taking behaviors. Two interrelated mechanisms are posited for the neuroadaptations in addiction that often translate to poor reversal learning: frontocorticostriatal circuitry dysregulation and poor dopamine (D2 receptor) modulation of this circuitry. These data suggest new approaches to targeting inhibitory control mechanisms in addictions.

  14. The genetic rescue of two bottlenecked South Island robin populations using translocations of inbred donors.

    PubMed

    Heber, S; Varsani, A; Kuhn, S; Girg, A; Kempenaers, B; Briskie, J

    2013-02-07

    Populations forced through bottlenecks typically lose genetic variation and exhibit inbreeding depression. 'Genetic rescue' techniques that introduce individuals from outbred populations can be highly effective in reversing the deleterious effects of inbreeding, but have limited application for the majority of endangered species, which survive only in a few bottlenecked populations. We tested the effectiveness of using highly inbred populations as donors to rescue two isolated and bottlenecked populations of the South Island robin (Petroica australis). Reciprocal translocations significantly increased heterozygosity and allelic diversity. Increased genetic diversity was accompanied by increased juvenile survival and recruitment, sperm quality, and immunocompetence of hybrid individuals (crosses between the two populations) compared with inbred control individuals (crosses within each population). Our results confirm that the implementation of 'genetic rescue' using bottlenecked populations as donors provides a way of preserving endangered species and restoring their viability when outbred donor populations no longer exist.

  15. Technical approaches for mouse models of human disease.

    PubMed

    Justice, Monica J; Siracusa, Linda D; Stewart, A Francis

    2011-05-01

    The mouse is the leading organism for disease research. A rich resource of genetic variation occurs naturally in inbred and special strains owing to spontaneous mutations. However, one can also obtain desired gene mutations by using the following processes: targeted mutations that eliminate function in the whole organism or in a specific tissue; forward genetic screens using chemicals or transposons; or the introduction of exogenous transgenes as DNAs, bacterial artificial chromosomes (BACs) or reporter constructs. The mouse is the only mammal that provides such a rich resource of genetic diversity coupled with the potential for extensive genome manipulation, and is therefore a powerful application for modeling human disease. This poster review outlines the major genome manipulations available in the mouse that are used to understand human disease: natural variation, reverse genetics, forward genetics, transgenics and transposons. Each of these applications will be essential for understanding the diversity that is being discovered within the human population.

  16. Preimplantation genetic diagnosis (PGD) according to medical ethics and medical law

    PubMed Central

    Lutz, Emine Elif Vatanoğlu

    2012-01-01

    Assisted reproductive techniques not only nourish great and sometimes illusive hopes of couples who yearn for babies, but also spark new debates by reversing opinions, beliefs and values. Applications made to infertility clinics are increasing due to the influences such as broadcasts made by the media concerning assisted reproductive techniques and other infertility treatments, increase in the knowledge that people have about these problems, late marriages and postponement of childbearing age owing to sociological changes. Pre-implantation genetic diagnosis (PGD) is a technique applied to couples who are known to carry genetic diseases or who have children with genetic diseases. This technique is conducted by doctors in Turkey for its important contribution to decreasing the risk of genetic diseases and in order to raise healthy generations. In this paper, the general ethical debates and the legal situation in Turkey will be discussed. PMID:24627675

  17. Comparison of the effectiveness of ISJ and SSR markers and detection of outlier loci in conservation genetics of Pulsatilla patens populations

    PubMed Central

    Szczecińska, Monika

    2016-01-01

    Background Research into the protection of rare and endangered plant species involves genetic analyses to determine their genetic variation and genetic structure. Various categories of genetic markers are used for this purpose. Microsatellites, also known as simple sequence repeats (SSR), are the most popular category of markers in population genetics research. In most cases, microsatellites account for a large part of the noncoding DNA and exert a neutral effect on the genome. Neutrality is a desirable feature in evaluations of genetic differences between populations, but it does not support analyses of a population’s ability to adapt to a given environment or its evolutionary potential. Despite the numerous advantages of microsatellites, non-neutral markers may supply important information in conservation genetics research. They are used to evaluate adaptation to specific environmental conditions and a population’s adaptive potential. The aim of this study was to compare the level of genetic variation in Pulsatilla patens populations revealed by neutral SSR markers and putatively adaptive ISJ markers (intron-exon splice junction). Methods The experiment was conducted on 14 Polish populations of P. patens and three P. patens populations from the nearby region of Vitebsk in Belarus. A total of 345 individuals were examined. Analyses were performed with the use of eight SSR primers specific to P. patens and three ISJ primers. Results SSR markers revealed a higher level of genetic variation than ISJ markers (He = 0.609, He = 0.145, respectively). An analysis of molecular variance (AMOVA) revealed that, the overall genetic diversity between the analyzed populations defined by parameters FST and ΦPT for SSR (20%) and ΦPT for ISJ (21%) markers was similar. Analysis conducted in the Structure program divided analyzed populations into two groups (SSR loci) and three groups (ISJ markers). Mantel test revealed correlations between the geographic distance and genetic diversity of Polish populations of P. patens for ISJ markers, but not for SSR markers. Conclusions The results of the present study suggest that ISJ markers can complement the analyses based on SSRs. However, neutral and adaptive markers should not be alternatively applied. Neutral microsatellite markers cannot depict the full range of genetic variation in a population because they do not enable to analyze functional variation. Although ISJ markers are less polymorphic, they can contribute to the reliability of analyses based on SSRs. PMID:27833793

  18. Exploring How Symptoms of Attention-Deficit/Hyperactivity Disorder Are Related to Reading and Mathematics Performance: General Genes, General Environments

    PubMed Central

    Hart, Sara A.; Petrill, Stephen A.; Willcutt, Erik; Thompson, Lee A.; Schatschneider, Christopher; Deater-Deckard, Kirby; Cutting, Laurie E.

    2013-01-01

    Children with attention-deficit/hyperactivity disorder (ADHD) tend to perform more poorly on tests of reading and mathematical performance than their typical peers. Quantitative genetic analyses allow for a better understanding of the etiology of ADHD and reading and mathematics outcomes, by examining their common and unique genetic and environmental influences. Analyses were conducted on a sample 271 pairs of 10-year-old monozygotic and dizygotic twins drawn from the Western Reserve Reading and Mathematics Project. In general, the results suggested that the associations among ADHD symptoms, reading outcomes, and math outcomes were influenced by both general genetic and general shared-environment factors. The analyses also suggested significant independent genetic effects for ADHD symptoms. The results imply that differing etiological factors underlie the relationships among ADHD and reading and mathematics performance. It appears that both genetic and common family or school environments link ADHD with academic performance. PMID:20966487

  19. Enterovirus A71 DNA-Launched Infectious Clone as a Robust Reverse Genetic Tool

    PubMed Central

    Tan, Chee Wah; Tee, Han Kang; Lee, Michelle Hui Pheng; Sam, I-Ching; Chan, Yoke Fun

    2016-01-01

    Enterovirus A71 (EV-A71) causes major outbreaks of hand, foot and mouth disease, and is occasionally associated with neurological complications and death in children. Reverse genetics is widely used in the field of virology for functional study of viral genes. For EV-A71, such tools are limited to clones that are transcriptionally controlled by T7/SP6 bacteriophage promoter. This is often time-consuming and expensive. Here, we describe the development of infectious plasmid DNA-based EV-A71 clones, for which EV-A71 genome expression is under transcriptional control by the CMV-intermediate early promoter and SV40 transcriptional-termination signal. Transfection of this EV-A71 infectious DNA produces good virus yield similar to in vitro-transcribed EV-A71 infectious RNA, 6.4 and 5.8 log10PFU/ml, respectively. Infectious plasmid with enhanced green fluorescence protein and Nano luciferase reporter genes also produced good virus titers, with 4.3 and 5.0 log10 PFU/ml, respectively. Another infectious plasmid with both CMV and T7 promoters was also developed for easy manipulation of in vitro transcription or direct plasmid transfection. Transfection with either dual-promoter infectious plasmid DNA or infectious RNA derived from this dual-promoter clone produced infectious viral particles. Incorporation of hepatitis delta virus ribozyme, which yields precise 3’ ends of the DNA-launched EV-A71 genomic transcripts, increased infectious viral production. In contrast, the incorporation of hammerhead ribozyme in the DNA-launched EV-A71 resulted in lower virus yield, but improved the virus titers for T7 promoter-derived infectious RNA. This study describes rapid and robust reverse genetic tools for EV-A71. PMID:27617744

  20. A Point Mutation in the Rhesus Rotavirus VP4 Protein Generated through a Rotavirus Reverse Genetics System Attenuates Biliary Atresia in the Murine Model.

    PubMed

    Mohanty, Sujit K; Donnelly, Bryan; Dupree, Phylicia; Lobeck, Inna; Mowery, Sarah; Meller, Jaroslaw; McNeal, Monica; Tiao, Greg

    2017-08-01

    Rotavirus infection is one of the most common causes of diarrheal illness in humans. In neonatal mice, rhesus rotavirus (RRV) can induce biliary atresia (BA), a disease resulting in inflammatory obstruction of the extrahepatic biliary tract and intrahepatic bile ducts. We previously showed that the amino acid arginine (R) within the sequence SRL (amino acids 445 to 447) in the RRV VP4 protein is required for viral binding and entry into biliary epithelial cells. To determine if this single amino acid (R) influences the pathogenicity of the virus, we generated a recombinant virus with a single amino acid mutation at this site through a reverse genetics system. We demonstrated that the RRV mutant (RRV VP4-R446G ) produced less symptomatology and replicated to lower titers both in vivo and in vitro than those seen with wild-type RRV, with reduced binding in cholangiocytes. Our results demonstrate that a single amino acid change in the RRV VP4 gene influences cholangiocyte tropism and reduces pathogenicity in mice. IMPORTANCE Rotavirus is the leading cause of diarrhea in humans. Rhesus rotavirus (RRV) can also lead to biliary atresia (a neonatal human disease) in mice. We developed a reverse genetics system to create a mutant of RRV (RRV VP4-R446G ) with a single amino acid change in the VP4 protein compared to that of wild-type RRV. In vitro , the mutant virus had reduced binding and infectivity in cholangiocytes. In vivo , it produced fewer symptoms and lower mortality in neonatal mice, resulting in an attenuated form of biliary atresia. Copyright © 2017 American Society for Microbiology.

  1. Development of a Reverse Genetic System for Infectious Salmon Anemia Virus: Rescue of Recombinant Fluorescent Virus by Using Salmon Internal Transcribed Spacer Region 1 as a Novel Promoter

    PubMed Central

    Toro-Ascuy, Daniela; Tambley, Carolina; Beltran, Carolina; Mascayano, Carolina; Sandoval, Nicolas; Olivares, Eduardo; Medina, Rafael A.; Spencer, Eugenio

    2014-01-01

    Infectious salmon anemia (ISA) is a serious disease of marine-farmed Atlantic salmon (Salmo salar) caused by ISA virus (ISAV), belonging to the genus Isavirus, family Orthomyxoviridae. There is an urgent need to understand the virulence factors and pathogenic mechanisms of ISAV and to develop new vaccine approaches. Using a recombinant molecular biology approach, we report the development of a plasmid-based reverse genetic system for ISAV, which includes the use of a novel fish promoter, the Atlantic salmon internal transcribed spacer region 1 (ITS-1). Salmon cells cotransfected with pSS-URG-based vectors expressing the eight viral RNA segments and four cytomegalovirus (CMV)-based vectors that express the four proteins of the ISAV ribonucleoprotein complex allowed the generation of infectious recombinant ISAV (rISAV). We generated three recombinant viruses, wild-type rISAV901_09 and rISAVrS6-NotI-HPR containing a NotI restriction site and rISAVS6/EGFP-HPR harboring the open reading frame of enhanced green fluorescent protein (EGFP), both within the highly polymorphic region (HPR) of segment 6. All rescued viruses showed replication activity and cytopathic effect in Atlantic salmon kidney-infected cells. The fluorescent recombinant viruses also showed a characteristic cytopathic effect in salmon cells, and the viruses replicated to a titer of 6.5 × 105 PFU/ml, similar to that of the wild-type virus. This novel reverse genetics system offers a powerful tool to study the molecular biology of ISAV and to develop a new generation of ISAV vaccines to prevent and mitigate ISAV infection, which has had a profound effect on the salmon industry. PMID:25480750

  2. Reverse Engineering Course at Philadelphia University in Jordan

    ERIC Educational Resources Information Center

    Younis, M. Bani; Tutunji, T.

    2012-01-01

    Reverse engineering (RE) is the process of testing and analysing a system or a device in order to identify, understand and document its functionality. RE is an efficient tool in industrial benchmarking where competitors' products are dissected and evaluated for performance and costs. RE can play an important role in the re-configuration and…

  3. Hammett analyses of halocarbene-halocarbanion equilibria.

    PubMed

    Wang, Lei; Moss, Robert A; Krogh-Jespersen, Karsten

    2013-04-19

    Substituted arylchlorocarbenes (X = H, p-Cl, p-CF3, p-F, m-Cl) reacted reversibly with Cl(-) in dichloroethane to form the corresponding aryldichloromethide carbanions. Equilibrium constants and rate constants for the forward and reverse reactions were correlated by the Hammett equation. DFT methods were used to compute equilibrium constants and electronic absorption spectra.

  4. The reverse of social anxiety is not always the opposite: the reverse-scored items of the social interaction anxiety scale do not belong.

    PubMed

    Rodebaugh, Thomas L; Woods, Carol M; Heimberg, Richard G

    2007-06-01

    Although well-used and empirically supported, the Social Interaction Anxiety Scale (SIAS) has a questionable factor structure and includes reverse-scored items with questionable utility. Here, using samples of undergraduates and a sample of clients with social anxiety disorder, we extend previous work that opened the question of whether the reverse-scored items belong on the scale. First, we successfully confirmed the factor structure obtained in previous samples. Second, we found the reverse-scored items to show consistently weaker relationships with a variety of comparison measures. Third, we demonstrated that removing the reverse-scored questions generally helps rather than hinders the psychometric performance of the SIAS total score. Fourth, we found that the reverse-scored items show a strong relationship with the normal personality characteristic of extraversion, suggesting that the reverse-scored items may primarily assess extraversion. Given the above results, we suggest investigators consider performing data analyses using only the straightforwardly worded items of the SIAS.

  5. Ancient DNA reveals that the genetic structure of the northern Han Chinese was shaped prior to 3,000 years ago.

    PubMed

    Zhao, Yong-Bin; Zhang, Ye; Zhang, Quan-Chao; Li, Hong-Jie; Cui, Ying-Qiu; Xu, Zhi; Jin, Li; Zhou, Hui; Zhu, Hong

    2015-01-01

    The Han Chinese are the largest ethnic group in the world, and their origins, development, and expansion are complex. Many genetic studies have shown that Han Chinese can be divided into two distinct groups: northern Han Chinese and southern Han Chinese. The genetic history of the southern Han Chinese has been well studied. However, the genetic history of the northern Han Chinese is still obscure. In order to gain insight into the genetic history of the northern Han Chinese, 89 human remains were sampled from the Hengbei site which is located in the Central Plain and dates back to a key transitional period during the rise of the Han Chinese (approximately 3,000 years ago). We used 64 authentic mtDNA data obtained in this study, 27 Y chromosome SNP data profiles from previously studied Hengbei samples, and genetic datasets of the current Chinese populations and two ancient northern Chinese populations to analyze the relationship between the ancient people of Hengbei and present-day northern Han Chinese. We used a wide range of population genetic analyses, including principal component analyses, shared mtDNA haplotype analyses, and geographic mapping of maternal genetic distances. The results show that the ancient people of Hengbei bore a strong genetic resemblance to present-day northern Han Chinese and were genetically distinct from other present-day Chinese populations and two ancient populations. These findings suggest that the genetic structure of northern Han Chinese was already shaped 3,000 years ago in the Central Plain area.

  6. Ancient DNA Reveals That the Genetic Structure of the Northern Han Chinese Was Shaped Prior to 3,000 Years Ago

    PubMed Central

    Zhang, Quan-Chao; Li, Hong-Jie; Cui, Ying-Qiu; Xu, Zhi; Jin, Li; Zhou, Hui; Zhu, Hong

    2015-01-01

    The Han Chinese are the largest ethnic group in the world, and their origins, development, and expansion are complex. Many genetic studies have shown that Han Chinese can be divided into two distinct groups: northern Han Chinese and southern Han Chinese. The genetic history of the southern Han Chinese has been well studied. However, the genetic history of the northern Han Chinese is still obscure. In order to gain insight into the genetic history of the northern Han Chinese, 89 human remains were sampled from the Hengbei site which is located in the Central Plain and dates back to a key transitional period during the rise of the Han Chinese (approximately 3,000 years ago). We used 64 authentic mtDNA data obtained in this study, 27 Y chromosome SNP data profiles from previously studied Hengbei samples, and genetic datasets of the current Chinese populations and two ancient northern Chinese populations to analyze the relationship between the ancient people of Hengbei and present-day northern Han Chinese. We used a wide range of population genetic analyses, including principal component analyses, shared mtDNA haplotype analyses, and geographic mapping of maternal genetic distances. The results show that the ancient people of Hengbei bore a strong genetic resemblance to present-day northern Han Chinese and were genetically distinct from other present-day Chinese populations and two ancient populations. These findings suggest that the genetic structure of northern Han Chinese was already shaped 3,000 years ago in the Central Plain area. PMID:25938511

  7. Enzyme engineering through evolution: thermostable recombinant group II intron reverse transcriptases provide new tools for RNA research and biotechnology.

    PubMed

    Collins, Kathleen; Nilsen, Timothy W

    2013-08-01

    Current investigation of RNA transcriptomes relies heavily on the use of retroviral reverse transcriptases. It is well known that these enzymes have many limitations because of their intrinsic properties. This commentary highlights the recent biochemical characterization of a new family of reverse transcriptases, those encoded by group II intron retrohoming elements. The novel properties of these enzymes endow them with the potential to revolutionize how we approach RNA analyses.

  8. Identification and validation of quantitative real-time reverse transcription PCR reference genes for gene expression analysis in teak (Tectona grandis L.f.)

    PubMed Central

    2014-01-01

    Background Teak (Tectona grandis L.f.) is currently the preferred choice of the timber trade for fabrication of woody products due to its extraordinary qualities and is widely grown around the world. Gene expression studies are essential to explore wood formation of vascular plants, and quantitative real-time reverse transcription PCR (qRT-PCR) is a sensitive technique employed for quantifying gene expression levels. One or more appropriate reference genes are crucial to accurately compare mRNA transcripts through different tissues/organs and experimental conditions. Despite being the focus of some genetic studies, a lack of molecular information has hindered genetic exploration of teak. To date, qRT-PCR reference genes have not been identified and validated for teak. Results Identification and cloning of nine commonly used qRT-PCR reference genes from teak, including ribosomal protein 60s (rp60s), clathrin adaptor complexes medium subunit family (Cac), actin (Act), histone 3 (His3), sand family (Sand), β-Tubulin (Β-Tub), ubiquitin (Ubq), elongation factor 1-α (Ef-1α), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Expression profiles of these genes were evaluated by qRT-PCR in six tissue and organ samples (leaf, flower, seedling, root, stem and branch secondary xylem) of teak. Appropriate gene cloning and sequencing, primer specificity and amplification efficiency was verified for each gene. Their stability as reference genes was validated by NormFinder, BestKeeper, geNorm and Delta Ct programs. Results obtained from all programs showed that TgUbq and TgEf-1α are the most stable genes to use as qRT-PCR reference genes and TgAct is the most unstable gene in teak. The relative expression of the teak cinnamyl alcohol dehydrogenase (TgCAD) gene in lignified tissues at different ages was assessed by qRT-PCR, using TgUbq and TgEf-1α as internal controls. These analyses exposed a consistent expression pattern with both reference genes. Conclusion This study proposes a first broad collection of teak tissue and organ mRNA expression data for nine selected candidate qRT-PCR reference genes. NormFinder, Bestkeeper, geNorm and Delta Ct analyses suggested that TgUbq and TgEf-1α have the highest expression stability and provided similar results when evaluating TgCAD gene expression, while the commonly used Act should be avoided. PMID:25048176

  9. Ecogeographic Genetic Epidemiology

    PubMed Central

    Sloan, Chantel D.; Duell, Eric J.; Shi, Xun; Irwin, Rebecca; Andrew, Angeline S.; Williams, Scott M.; Moore, Jason H.

    2009-01-01

    Complex diseases such as cancer and heart disease result from interactions between an individual's genetics and environment, i.e. their human ecology. Rates of complex diseases have consistently demonstrated geographic patterns of incidence, or spatial “clusters” of increased incidence relative to the general population. Likewise, genetic subpopulations and environmental influences are not evenly distributed across space. Merging appropriate methods from genetic epidemiology, ecology and geography will provide a more complete understanding of the spatial interactions between genetics and environment that result in spatial patterning of disease rates. Geographic Information Systems (GIS), which are tools designed specifically for dealing with geographic data and performing spatial analyses to determine their relationship, are key to this kind of data integration. Here the authors introduce a new interdisciplinary paradigm, ecogeographic genetic epidemiology, which uses GIS and spatial statistical analyses to layer genetic subpopulation and environmental data with disease rates and thereby discern the complex gene-environment interactions which result in spatial patterns of incidence. PMID:19025788

  10. Bone mineral density and risk of type 2 diabetes and coronary heart disease: A Mendelian randomization study.

    PubMed

    Gan, Wei; Clarke, Robert J; Mahajan, Anubha; Kulohoma, Benard; Kitajima, Hidetoshi; Robertson, Neil R; Rayner, N William; Walters, Robin G; Holmes, Michael V; Chen, Zhengming; McCarthy, Mark I

    2017-01-01

    Background: Observational studies have demonstrated that increased bone mineral density is associated with a higher risk of type 2 diabetes (T2D), but the relationship with risk of coronary heart disease (CHD) is less clear. Moreover, substantial uncertainty remains about the causal relevance of increased bone mineral density for T2D and CHD, which can be assessed by Mendelian randomisation studies.  Methods: We identified 235 independent single nucleotide polymorphisms (SNPs) associated at p <5×10 -8 with estimated heel bone mineral density (eBMD) in 116,501 individuals from the UK Biobank study, accounting for 13.9% of eBMD variance. For each eBMD-associated SNP, we extracted effect estimates from the largest available GWAS studies for T2D (DIAGRAM: n=26,676 T2D cases and 132,532 controls) and CHD (CARDIoGRAMplusC4D: n=60,801 CHD cases and 123,504 controls). A two-sample design using several Mendelian randomization approaches was used to investigate the causal relevance of eBMD for risk of T2D and CHD. In addition, we explored the relationship of eBMD, instrumented by the 235 SNPs, on 12 cardiovascular and metabolic risk factors. Finally, we conducted Mendelian randomization analysis in the reverse direction to investigate reverse causality. Results: Each one standard deviation increase in genetically instrumented eBMD (equivalent to 0.14 g/cm 2 ) was associated with an 8% higher risk of T2D (odds ratio [OR] 1.08; 95% confidence interval [CI]: 1.02 to 1.14; p =0.012) and 5% higher risk of CHD (OR 1.05; 95%CI: 1.00 to 1.10; p =0.034). Consistent results were obtained in sensitivity analyses using several different Mendelian randomization approaches. Equivalent increases in eBMD were also associated with lower plasma levels of HDL-cholesterol and increased insulin resistance. Mendelian randomization in the reverse direction using 94 T2D SNPs or 52 CHD SNPs showed no evidence of reverse causality with eBMD. Conclusions: These findings suggest a causal relationship between elevated bone mineral density with risks of both T2D and CHD.

  11. Ensemble of hybrid genetic algorithm for two-dimensional phase unwrapping

    NASA Astrophysics Data System (ADS)

    Balakrishnan, D.; Quan, C.; Tay, C. J.

    2013-06-01

    The phase unwrapping is the final and trickiest step in any phase retrieval technique. Phase unwrapping by artificial intelligence methods (optimization algorithms) such as hybrid genetic algorithm, reverse simulated annealing, particle swarm optimization, minimum cost matching showed better results than conventional phase unwrapping methods. In this paper, Ensemble of hybrid genetic algorithm with parallel populations is proposed to solve the branch-cut phase unwrapping problem. In a single populated hybrid genetic algorithm, the selection, cross-over and mutation operators are applied to obtain new population in every generation. The parameters and choice of operators will affect the performance of the hybrid genetic algorithm. The ensemble of hybrid genetic algorithm will facilitate to have different parameters set and different choice of operators simultaneously. Each population will use different set of parameters and the offspring of each population will compete against the offspring of all other populations, which use different set of parameters. The effectiveness of proposed algorithm is demonstrated by phase unwrapping examples and advantages of the proposed method are discussed.

  12. Molecular Population Genetic Structure in the Piping Plover

    USGS Publications Warehouse

    Miller, Mark P.; Haig, Susan M.; Gratto-Trevor, Cheri L.; Mullins, Thomas D.

    2009-01-01

    The Piping Plover (Charadrius melodus) is a migratory shorebird currently listed as Endangered in Canada and the U.S. Great Lakes, and threatened throughout the remainder of its U.S. breeding and winter range. In this study, we undertook the first comprehensive molecular genetic-based investigation of Piping Plovers. Our primary goals were to (1) address higher level subspecific taxonomic issues, (2) characterize population genetic structure, and (3) make inferences regarding past bottlenecks or population expansions that have occurred within this species. Our analyses included samples of individuals from 23 U.S. States and Canadian Provinces, and were based on mitochondrial DNA sequences (580 bp, n = 245 individuals) and eight nuclear microsatellite loci (n = 229 individuals). Our findings illustrate strong support for separate Atlantic and Interior Piping Plover subspecies (C. m. melodus and C. m. circumcinctus, respectively). Birds from the Great Lakes region were allied with the Interior subspecies group and should be taxonomically referred to as C. m. circumcinctus. Population genetic analyses suggested that genetic structure was stronger among Atlantic birds relative to the Interior group. This pattern indicates that natal and breeding site fidelity may be reduced among Interior birds. Furthermore, analyses suggested that Interior birds have previously experienced genetic bottlenecks, whereas no evidence for such patterns existed among the Atlantic subspecies. Likewise, genetic analyses indicated that the Great Lakes region has experienced a population expansion. This finding may be interpreted as population growth following a previous bottleneck event. No genetic evidence for population expansions was found for Atlantic, Prairie Canada, or U.S. Northern Great Plains individuals. We interpret our population history insights in light of 25 years of Piping Plover census data. Overall, differences observed between Interior and Atlantic birds may reflect differences in spatiotemporal stability of Piping Plover nesting habitat between regions.

  13. Quantitative genetic tools for insecticide resistance risk assessment: estimating the heritability of resistance

    Treesearch

    Michael J. Firko; Jane Leslie Hayes

    1990-01-01

    Quantitative genetic studies of resistance can provide estimates of genetic parameters not available with other types of genetic analyses. Three methods are discussed for estimating the amount of additive genetic variation in resistance to individual insecticides and subsequent estimation of heritability (h2) of resistance. Sibling analysis and...

  14. Genetic Diseases and Genetic Determinism Models in French Secondary School Biology Textbooks

    ERIC Educational Resources Information Center

    Castera, Jeremy; Bruguiere, Catherine; Clement, Pierre

    2008-01-01

    The presentation of genetic diseases in French secondary school biology textbooks is analysed to determine the major conceptions taught in the field of human genetics. References to genetic diseases, and the processes by which they are explained (monogeny, polygeny, chromosomal anomaly and environmental influence) are studied in recent French…

  15. 46,XY female sex reversal syndrome with bilateral gonadoblastoma and dysgerminoma.

    PubMed

    DU, Xue; Zhang, Xuhong; Li, Yongmei; Han, Yukun

    2014-10-01

    Sex reversal syndrome is a rare congenital condition of complete or disordered gonadal development leading to discordance between the genetic, gonadal and phenotypic sexes, including 46,XX and 46,XY. The gonadoblastoma on the Y-chromosome (GBY) region is associated with an increased risk of developing type II germ cell tumors/cancer. The present study reports a unique case of a phenotypically normal female (age 17 years), presenting with primary amenorrhea and later diagnosed with 46,XY female sex reversal syndrome. Following bilateral gonadectomy, bilateral gonadoblastoma and dysgerminoma were diagnosed. Thus, estrogen replacement therapy was administered periodically to promote the development of secondary sexual characteristics and menstruation, and to prevent osteoporosis. A four year follow-up showed no tumor recurrence and a regular menstrual cycle in this patient.

  16. Exploiting the Brachypodium Tool Box in cereal and grass research

    USDA-ARS?s Scientific Manuscript database

    It is now a decade since Brachypodium distachyon was suggested as a model species for temperate grasses and cereals. Since then transformation protocols, large expressed sequence tag (EST) populations, tools for forward and reverse genetic screens, highly refined cytogenetic probes, germplasm coll...

  17. Determining mutation density using Restriction Enzyme Sequence Comparative Analysis (RESCAN)

    USDA-ARS?s Scientific Manuscript database

    The average mutation density of a mutant population is a major consideration when developing resources for the efficient, cost-effective implementation of reverse genetics methods such as Targeting of Induced Local Lesions in Genomes (TILLING). Reliable estimates of mutation density can be achieved ...

  18. Virus-induced gene silencing (VIGS) in barley seedling leaves

    USDA-ARS?s Scientific Manuscript database

    Virus-induced gene silencing (VIGS) is one of the most potent reverse genetics technologies for gene functional characterization. This method exploits a dsRNA-mediated antiviral defense mechanism in plants. Using this method allows researchers to generate rapid phenotypic data in a relatively rapid ...

  19. Expressing foreign genes by Newcastle disease virus for cancer therapy

    USDA-ARS?s Scientific Manuscript database

    An interesting aspect of Newcastle disease virus (NDV) is the ability to selectively replicate in tumor cells. Recently, using reverse genetics technology to enhance the oncolytic properties and therapeutic potential of NDV for tumor therapy has become popular in immunocompetent carcinoma tumor mod...

  20. Naturally selecting solutions: the use of genetic algorithms in bioinformatics.

    PubMed

    Manning, Timmy; Sleator, Roy D; Walsh, Paul

    2013-01-01

    For decades, computer scientists have looked to nature for biologically inspired solutions to computational problems; ranging from robotic control to scheduling optimization. Paradoxically, as we move deeper into the post-genomics era, the reverse is occurring, as biologists and bioinformaticians look to computational techniques, to solve a variety of biological problems. One of the most common biologically inspired techniques are genetic algorithms (GAs), which take the Darwinian concept of natural selection as the driving force behind systems for solving real world problems, including those in the bioinformatics domain. Herein, we provide an overview of genetic algorithms and survey some of the most recent applications of this approach to bioinformatics based problems.

  1. High genetic compatibility and increased pathogenicity of reassortants derived from avian H9N2 and pandemic H1N1/2009 influenza viruses

    PubMed Central

    Sun, Yipeng; Qin, Kun; Wang, Jingjing; Pu, Juan; Tang, Qingdong; Hu, Yanxin; Bi, Yuhai; Zhao, Xueli; Yang, Hanchun; Shu, Yuelong; Liu, Jinhua

    2011-01-01

    H9N2 influenza viruses have been circulating worldwide in multiple avian species and repeatedly infecting mammals, including pigs and humans, posing a significant threat to public health. The coexistence of H9N2 and pandemic influenza H1N1/2009 viruses in pigs and humans provides an opportunity for these viruses to reassort. To evaluate the potential public risk of the reassortant viruses derived from these viruses, we used reverse genetics to generate 127 H9 reassortants derived from an avian H9N2 and a pandemic H1N1 virus, and evaluated their compatibility, replication ability, and virulence in mice. These hybrid viruses showed high genetic compatibility and more than half replicated to a high titer in vitro. In vivo studies of 73 of 127 reassortants revealed that all viruses were able to infect mice without prior adaptation and 8 reassortants exhibited higher pathogenicity than both parental viruses. All reassortants with higher virulence than parental viruses contained the PA gene from the 2009 pandemic virus, revealing the important role of the PA gene from the H1N1/2009 virus in generating a reassortant virus with high public health risk. Analyses of the polymerase activity of the 16 ribonucleoprotein combinations in vitro suggested that the PA of H1N1/2009 origin also enhanced polymerase activity. Our results indicate that some avian H9-pandemic reassortants could emerge with a potentially higher threat for humans and also highlight the importance of monitoring the H9-pandemic reassortant viruses that may arise, especially those that possess the PA gene of H1N1/2009 origin. PMID:21368167

  2. Genetically decreased vitamin D and risk of Alzheimer disease.

    PubMed

    Mokry, Lauren E; Ross, Stephanie; Morris, John A; Manousaki, Despoina; Forgetta, Vincenzo; Richards, J Brent

    2016-12-13

    To test whether genetically decreased vitamin D levels are associated with Alzheimer disease (AD) using mendelian randomization (MR), a method that minimizes bias due to confounding or reverse causation. We selected single nucleotide polymorphisms (SNPs) that are strongly associated with 25-hydroxyvitamin D (25OHD) levels (p < 5 × 10 -8 ) from the Study of Underlying Genetic Determinants of Vitamin D and Highly Related Traits (SUNLIGHT) Consortium (N = 33,996) to act as instrumental variables for the MR study. We measured the effect of each of these SNPs on 25OHD levels in the Canadian Multicentre Osteoporosis Study (CaMos; N = 2,347) and obtained the corresponding effect estimates for each SNP on AD risk from the International Genomics of Alzheimer's Project (N = 17,008 AD cases and 37,154 controls). To produce MR estimates, we weighted the effect of each SNP on AD by its effect on 25OHD and meta-analyzed these estimates using a fixed-effects model to provide a summary effect estimate. The SUNLIGHT Consortium identified 4 SNPs to be genome-wide significant for 25OHD, which described 2.44% of the variance in 25OHD in CaMos. All 4 SNPs map to genes within the vitamin D metabolic pathway. MR analyses demonstrated that a 1-SD decrease in natural log-transformed 25OHD increased AD risk by 25% (odds ratio 1.25, 95% confidence interval 1.03-1.51, p = 0.021). After sensitivity analysis in which we removed SNPs possibly influenced by pleiotropy and population stratification, the results were largely unchanged. Our results provide evidence supporting 25OHD as a causal risk factor for AD. These findings provide further rationale to understand the effect of vitamin D supplementation on cognition and AD risk in randomized controlled trials. © 2016 American Academy of Neurology.

  3. Plasmids of Carotenoid-Producing Paracoccus spp. (Alphaproteobacteria) - Structure, Diversity and Evolution

    PubMed Central

    Maj, Anna; Dziewit, Lukasz; Czarnecki, Jakub; Wlodarczyk, Miroslawa; Baj, Jadwiga; Skrzypczyk, Grazyna; Giersz, Dorota; Bartosik, Dariusz

    2013-01-01

    Plasmids are components of many bacterial genomes. They enable the spread of a large pool of genetic information via lateral gene transfer. Many bacterial strains contain mega-sized replicons and these are particularly common in Alphaproteobacteria. Considerably less is known about smaller alphaproteobacterial plasmids. We analyzed the genomes of 14 such plasmids residing in 4 multireplicon carotenoid-producing strains of the genus Paracoccus (Alphaproteobacteria): P. aestuarii DSM 19484, P. haeundaensis LG P-21903, P. marcusii DSM 11574 and P. marcusii OS22. Comparative analyses revealed mosaic structures of the plasmids and recombinational shuffling of diverse genetic modules involved in (i) plasmid replication, (ii) stabilization (including toxin-antitoxin systems of the relBE/parDE, tad-ata, higBA, mazEF and toxBA families) and (iii) mobilization for conjugal transfer (encoding relaxases of the MobQ, MobP or MobV families). A common feature of the majority of the plasmids is the presence of AT-rich sequence islets (located downstream of exc1-like genes) containing genes, whose homologs are conserved in the chromosomes of many bacteria (encoding e.g. RelA/SpoT, SMC-like proteins and a retron-type reverse transcriptase). The results of this study have provided insight into the diversity and plasticity of plasmids of Paracoccus spp., and of the entire Alphaproteobacteria. Some of the identified plasmids contain replication systems not described previously in this class of bacteria. The composition of the plasmid genomes revealed frequent transfer of chromosomal genes into plasmids, which significantly enriches the pool of mobile DNA that can participate in lateral transfer. Many strains of Paracoccus spp. have great biotechnological potential, and the plasmid vectors constructed in this study will facilitate genetic studies of these bacteria. PMID:24260361

  4. Novel chromosomal rearrangements and break points at the t(6;9) in salivary adenoid cystic carcinoma: association with MYB-NFIB chimeric fusion, MYB expression, and clinical outcome.

    PubMed

    Mitani, Yoshitsugu; Rao, Pulivarthi H; Futreal, P Andrew; Roberts, Dianna B; Stephens, Philip J; Zhao, Yi-Jue; Zhang, Li; Mitani, Mutsumi; Weber, Randal S; Lippman, Scott M; Caulin, Carlos; El-Naggar, Adel K

    2011-11-15

    To investigate the molecular genetic heterogeneity associated with the t(6:9) in adenoid cystic carcinoma (ACC) and correlate the findings with patient clinical outcome. Multimolecular and genetic techniques complemented with massive pair-ended sequencing and single-nucleotide polymorphism array analyses were used on tumor specimens from 30 new and 52 previously analyzed fusion transcript-negative ACCs by reverse transcriptase PCR (RT-PCR). MYB mRNA expression level was determined by quantitative RT-PCR. The results of 102 tumors (30 new and 72 previously reported cases) were correlated with the clinicopathologic factors and patients' survival. The FISH analysis showed 34 of 82 (41.5%) fusion-positive tumors and molecular techniques identified fusion transcripts in 21 of the 82 (25.6%) tumors. Detailed FISH analysis of 11 out the 15 tumors with gene fusion without transcript formation showed translocation of NFIB sequences to proximal or distal sites of the MYB gene. Massive pair-end sequencing of a subset of tumors confirmed the proximal translocation to an NFIB sequence and led to the identification of a new fusion gene (NFIB-AIG1) in one of the tumors. Overall, MYB-NFIB gene fusion rate by FISH was in 52.9% whereas fusion transcript forming incidence was 38.2%. Significant statistical association between the 5' MYB transcript expression and patient survival was found. We conclude that: (i) t(6;9) results in complex genetic and molecular alterations in ACC, (ii) MYB-NFIB gene fusion may not always be associated with chimeric transcript formation, (iii) noncanonical MYB-NFIB gene fusions occur in a subset of tumors, (iv) high MYB expression correlates with worse patient survival.

  5. The biological characteristics of predominant strains of HIV-1 genotype: modeling of HIV-1 infection among men who have sex with men.

    PubMed

    Dai, Di; Shang, Hong; Han, Xiao-Xu; Zhao, Bin; Liu, Jing; Ding, Hai-Bo; Xu, Jun-Jie; Chu, Zhen-Xing

    2015-04-01

    To investigate the molecular subtypes of prevalent HIV-1 strains and characterize the genetics of dominant strains among men who have sex with men. Molecular epidemiology surveys in this study concentrated on the prevalent HIV-1 strains in Liaoning province by year. 229 adult patients infected with HIV-1 and part of a high-risk group of men who have sex with men were recruited. Reverse transcription and nested PCR amplification were performed. Sequencing reactions were conducted and edited, followed by codon-based alignment. NJ phylogenetic tree analyses detected two distinct CRF01_AE phylogenetic clusters, designated clusters 1 and 2. Clusters 1 and 2 accounted for 12.8% and 84.2% of sequences in the pol gene and 17.6% and 73.1% of sequences in the env gene, respectively. Another six samples were distributed on other phylogenetic clusters. Cluster 1 increased significantly from 5.6% to 20.0%, but cluster 2 decreased from 87.5% to 80.0%. Genetic distance analysis indicated that CRF01_AE cluster 1 in Liaoning was homologous to epidemic CRF01_AE strains, but CRF01_AE cluster 2 was different from other scattered strains. Additionally, significant differences were found in tetra-peptide motifs at the tip of V3 loop between cluster 1 and 2; however, differences in coreceptor usage were not detected. This study shows that subtype CRF01_AE strain may be the most prevalent epidemic strain in the men who have sex with men. Genetic characteristics of the subtype CRF01_AE cluster strain in Liaoning showed homology to the prevalent strains of men who have sex with men in other parts of China. © 2015 Wiley Periodicals, Inc.

  6. Reverse genetics of Mononegavirales: How they work, new vaccines, and new cancer therapeutics

    PubMed Central

    Pfaller, Christian K.; Cattaneo, Roberto; Schnell, Matthias J.

    2015-01-01

    The order Mononegavirales includes five families: Bornaviridae, Filoviridae, Nyamaviridae, Paramyxoviridae, and Rhabdoviridae. The genome of these viruses is one molecule of negative-sense single strand RNA coding for five to ten genes in a conserved order. The RNA is not infectious until packaged by the nucleocapsid protein and transcribed by the polymerase and co-factors. Reverse genetics approaches have answered fundamental questions about the biology of Mononegavirales. The lack of icosahedral symmetry and modular organization in the genome of these viruses has facilitated engineering of viruses expressing fluorescent proteins, and these fluorescent proteins have provided important insights about the molecular and cellular basis of tissue tropism and pathogenesis. Studies have assessed the relevance for virulence of different receptors and the interactions with cellular proteins governing the innate immune responses. Research has also analyzed the mechanisms of attenuation. Based on these findings, ongoing clinical trials are exploring new live attenuated vaccines and the use of viruses re-engineered as cancer therapeutics. PMID:25702088

  7. Utilisation of ISA Reverse Genetics and Large-Scale Random Codon Re-Encoding to Produce Attenuated Strains of Tick-Borne Encephalitis Virus within Days.

    PubMed

    de Fabritus, Lauriane; Nougairède, Antoine; Aubry, Fabien; Gould, Ernest A; de Lamballerie, Xavier

    2016-01-01

    Large-scale codon re-encoding is a new method of attenuating RNA viruses. However, the use of infectious clones to generate attenuated viruses has inherent technical problems. We previously developed a bacterium-free reverse genetics protocol, designated ISA, and now combined it with large-scale random codon-re-encoding method to produce attenuated tick-borne encephalitis virus (TBEV), a pathogenic flavivirus which causes febrile illness and encephalitis in humans. We produced wild-type (WT) and two re-encoded TBEVs, containing 273 or 273+284 synonymous mutations in the NS5 and NS5+NS3 coding regions respectively. Both re-encoded viruses were attenuated when compared with WT virus using a laboratory mouse model and the relative level of attenuation increased with the degree of re-encoding. Moreover, all infected animals produced neutralizing antibodies. This novel, rapid and efficient approach to engineering attenuated viruses could potentially expedite the development of safe and effective new-generation live attenuated vaccines.

  8. Conservation of social effects (Ψ) between two species of Drosophila despite reversal of sexual dimorphism.

    PubMed

    Signor, Sarah A; Abbasi, Mohammad; Marjoram, Paul; Nuzhdin, Sergey V

    2017-12-01

    Indirect genetic effects (IGEs) describe the effect of the genes of social partners on the phenotype of a focal individual. Here, we measure indirect genetic effects using the "coefficient of interaction" (Ψ) to test whether Ψ evolved between Drosophila melanogaster and D. simulans . We compare Ψ for locomotion between ethanol and nonethanol environments in both species, but only D. melanogaster utilizes ethanol ecologically. We find that while sexual dimorphism for locomotion has been reversed in D. simulans , there has been no evolution of social effects between these two species. What did evolve was the interaction between genotype-specific Ψ and the environment, as D. melanogaster  varies unpredictably between environments and D. simulans  does not. In this system, this suggests evolutionary lability of sexual dimorphism but a conservation of social effects, which brings forth interesting questions about the role of the social environment in sexual selection.

  9. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast

    PubMed Central

    Oud, Bart; Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-01-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. PMID:22152095

  10. Genetic Network Inference: From Co-Expression Clustering to Reverse Engineering

    NASA Technical Reports Server (NTRS)

    Dhaeseleer, Patrik; Liang, Shoudan; Somogyi, Roland

    2000-01-01

    Advances in molecular biological, analytical, and computational technologies are enabling us to systematically investigate the complex molecular processes underlying biological systems. In particular, using high-throughput gene expression assays, we are able to measure the output of the gene regulatory network. We aim here to review datamining and modeling approaches for conceptualizing and unraveling the functional relationships implicit in these datasets. Clustering of co-expression profiles allows us to infer shared regulatory inputs and functional pathways. We discuss various aspects of clustering, ranging from distance measures to clustering algorithms and multiple-duster memberships. More advanced analysis aims to infer causal connections between genes directly, i.e., who is regulating whom and how. We discuss several approaches to the problem of reverse engineering of genetic networks, from discrete Boolean networks, to continuous linear and non-linear models. We conclude that the combination of predictive modeling with systematic experimental verification will be required to gain a deeper insight into living organisms, therapeutic targeting, and bioengineering.

  11. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast.

    PubMed

    Oud, Bart; van Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-03-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. An analysis of mobile genetic elements in three Plasmodium species and their potential impact on the nucleotide composition of the P. falciparum genome.

    PubMed

    Durand, Pierre M; Oelofse, Andries J; Coetzer, Theresa L

    2006-11-04

    The completed genome sequences of the malaria parasites P. falciparum, P. y. yoelii and P. vivax have revealed some unusual features. P. falciparum contains the most AT rich genome sequenced so far--over 90% in some regions. In comparison, P. y. yoelii is approximately 77% and P. vivax is approximately 55% AT rich. The evolutionary reasons for these findings are unknown. Mobile genetic elements have a considerable impact on genome evolution but a thorough investigation of these elements in Plasmodium has not been undertaken. We therefore performed a comprehensive genome analysis of these elements and their derivatives in the three Plasmodium species. Whole genome analysis was performed using bioinformatic methods. Forty potential protein encoding sequences with features of transposable elements were identified in P. vivax, eight in P. y. yoelii and only six in P. falciparum. Further investigation of the six open reading frames in P. falciparum revealed that only one is potentially an active mobile genetic element. Most of the open reading frames identified in all three species are hypothetical proteins. Some represent annotated host proteins such as the putative telomerase reverse transcriptase genes in P. y. yoelii and P. falciparum. One of the P. vivax open reading frames identified in this study demonstrates similarity to telomerase reverse transcriptase and we conclude it to be the orthologue of this gene. There is a divergence in the frequencies of mobile genetic elements in the three Plasmodium species investigated. Despite the limitations of whole genome analytical methods, it is tempting to speculate that mobile genetic elements might have been a driving force behind the compositional bias of the P. falciparum genome.

  13. Statistics for Learning Genetics

    ERIC Educational Resources Information Center

    Charles, Abigail Sheena

    2012-01-01

    This study investigated the knowledge and skills that biology students may need to help them understand statistics/mathematics as it applies to genetics. The data are based on analyses of current representative genetics texts, practicing genetics professors' perspectives, and more directly, students' perceptions of, and performance in, doing…

  14. The behavioral genetics of nonhuman primates: Status and prospects.

    PubMed

    Rogers, Jeffrey

    2018-01-01

    The complexity and diversity of primate behavior have long attracted the attention of ethologists, psychologists, behavioral ecologists, and neuroscientists. Recent studies have advanced our understanding of the nature of genetic influences on differences in behavior among individuals within species. A number of analyses have focused on the genetic analysis of behavioral reactions to specific experimental tests, providing estimates of the degree of genetic control over reactivity, and beginning to identify the genes involved. Substantial progress is also being made in identifying genetic factors that influence the structure and function of the primate brain. Most of the published studies on these topics have examined either cercopithecines or chimpanzees, though a few studies have addressed these questions in other primate species. One potentially important line of research is beginning to identify the epigenetic processes that influence primate behavior, thus revealing specific cellular and molecular mechanisms by which environmental experiences can influence gene expression or gene function relevant to behavior. This review summarizes many of these studies of non-human primate behavioral genetics. The primary focus is on analyses that address the nature of the genes and genetic processes that affect differences in behavior among individuals within non-human primate species. Analyses of between species differences and potential avenues for future research are also discussed. © 2018 American Association of Physical Anthropologists.

  15. Multivariate analysis in a genetic divergence study of Psidium guajava.

    PubMed

    Nogueira, A M; Ferreira, M F S; Guilhen, J H S; Ferreira, A

    2014-12-18

    The family Myrtaceae is widespread in the Atlantic Forest and is well-represented in the Espírito Santo State in Brazil. In the genus Psidium of this family, guava (Psidium guajava L.) is the most economically important species. Guava is widely cultivated in tropical and subtropical countries; however, the widespread cultivation of only a small number of guava tree cultivars may cause the genetic vulnerability of this crop, making the search for promising genotypes in natural populations important for breeding programs and conservation. In this study, the genetic diversity of 66 guava trees sampled in the southern region of Espírito Santo and in Caparaó, MG, Brazil were evaluated. A total of 28 morphological descriptors (11 quantitative and 17 multicategorical) and 18 microsatellite markers were used. Principal component, discriminant and cluster analyses, descriptive analyses, and genetic diversity analyses using simple sequence repeats were performed. Discrimination of accessions using molecular markers resulted in clustering of genotypes of the same origin, which was not observed using morphological data. Genetic diversity was detected between and within the localities evaluated, regardless of the methodology used. Genetic differentiation among the populations using morphological and molecular data indicated the importance of the study area for species conservation, genetic erosion estimation, and exploitation in breeding programs.

  16. Local adaptation and oceanographic connectivity patterns explain genetic differentiation of a marine diatom across the North Sea–Baltic Sea salinity gradient

    PubMed Central

    Sjöqvist, C; Godhe, A; Jonsson, P R; Sundqvist, L; Kremp, A

    2015-01-01

    Drivers of population genetic structure are still poorly understood in marine micro-organisms. We exploited the North Sea–Baltic Sea transition for investigating the seascape genetics of a marine diatom, Skeletonema marinoi. Eight polymorphic microsatellite loci were analysed in 354 individuals from ten locations to analyse population structure of the species along a 1500-km-long salinity gradient ranging from 3 to 30 psu. To test for salinity adaptation, salinity reaction norms were determined for sets of strains originating from three different salinity regimes of the gradient. Modelled oceanographic connectivity was compared to directional relative migration by correlation analyses to examine oceanographic drivers. Population genetic analyses showed distinct genetic divergence of a low-salinity Baltic Sea population and a high-salinity North Sea population, coinciding with the most evident physical dispersal barrier in the area, the Danish Straits. Baltic Sea populations displayed reduced genetic diversity compared to North Sea populations. Growth optima of low salinity isolates were significantly lower than those of strains from higher native salinities, indicating local salinity adaptation. Although the North Sea–Baltic Sea transition was identified as a barrier to gene flow, migration between Baltic Sea and North Sea populations occurred. However, the presence of differentiated neutral markers on each side of the transition zone suggests that migrants are maladapted. It is concluded that local salinity adaptation, supported by oceanographic connectivity patterns creating an asymmetric migration pattern between the Baltic Sea and the North Sea, determines genetic differentiation patterns in the transition zone. PMID:25892181

  17. Ecological transition predictably associated with gene degeneration.

    PubMed

    Wessinger, Carolyn A; Rausher, Mark D

    2015-02-01

    Gene degeneration or loss can significantly contribute to phenotypic diversification, but may generate genetic constraints on future evolutionary trajectories, potentially restricting phenotypic reversal. Such constraints may manifest as directional evolutionary trends when parallel phenotypic shifts consistently involve gene degeneration or loss. Here, we demonstrate that widespread parallel evolution in Penstemon from blue to red flowers predictably involves the functional inactivation and degeneration of the enzyme flavonoid 3',5'-hydroxylase (F3'5'H), an anthocyanin pathway enzyme required for the production of blue floral pigments. Other types of genetic mutations do not consistently accompany this phenotypic shift. This pattern may be driven by the relatively large mutational target size of degenerative mutations to this locus and the apparent lack of associated pleiotropic effects. The consistent degeneration of F3'5'H may provide a mechanistic explanation for the observed asymmetry in the direction of flower color evolution in Penstemon: Blue to red transitions are common, but reverse transitions have not been observed. Although phenotypic shifts in this system are likely driven by natural selection, internal constraints may generate predictable genetic outcomes and may restrict future evolutionary trajectories. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Genetic Code Optimization for Cotranslational Protein Folding: Codon Directional Asymmetry Correlates with Antiparallel Betasheets, tRNA Synthetase Classes.

    PubMed

    Seligmann, Hervé; Warthi, Ganesh

    2017-01-01

    A new codon property, codon directional asymmetry in nucleotide content (CDA), reveals a biologically meaningful genetic code dimension: palindromic codons (first and last nucleotides identical, codon structure XZX) are symmetric (CDA = 0), codons with structures ZXX/XXZ are 5'/3' asymmetric (CDA = - 1/1; CDA = - 0.5/0.5 if Z and X are both purines or both pyrimidines, assigning negative/positive (-/+) signs is an arbitrary convention). Negative/positive CDAs associate with (a) Fujimoto's tetrahedral codon stereo-table; (b) tRNA synthetase class I/II (aminoacylate the 2'/3' hydroxyl group of the tRNA's last ribose, respectively); and (c) high/low antiparallel (not parallel) betasheet conformation parameters. Preliminary results suggest CDA-whole organism associations (body temperature, developmental stability, lifespan). Presumably, CDA impacts spatial kinetics of codon-anticodon interactions, affecting cotranslational protein folding. Some synonymous codons have opposite CDA sign (alanine, leucine, serine, and valine), putatively explaining how synonymous mutations sometimes affect protein function. Correlations between CDA and tRNA synthetase classes are weaker than between CDA and antiparallel betasheet conformation parameters. This effect is stronger for mitochondrial genetic codes, and potentially drives mitochondrial codon-amino acid reassignments. CDA reveals information ruling nucleotide-protein relations embedded in reversed (not reverse-complement) sequences (5'-ZXX-3'/5'-XXZ-3').

  19. New Generation Live Vaccines against Human Respiratory Syncytial Virus Designed by Reverse Genetics

    PubMed Central

    Collins, Peter L.; Murphy, Brian R.

    2005-01-01

    Development of a live pediatric vaccine against human respiratory syncytial virus (RSV) is complicated by the need to immunize young infants and the difficulty in balancing attenuation and immunogenicity. The ability to introduce desired mutations into infectious virus by reverse genetics provides a method for identifying and designing highly defined attenuating mutations. These can be introduced in combinations as desired to achieve gradations of attenuation. Attenuation is based on several strategies: multiple independent temperature-sensitive point mutations in the polymerase, a temperature-sensitive point mutation in a transcription signal, a set of non–temperature-sensitive mutations involving several genes, deletion of a viral RNA synthesis regulatory protein, and deletion of viral IFN α/β antagonists. The genetic stability of the live vaccine can be increased by judicious choice of mutations. The virus also can be engineered to increase the level of expression of the protective antigens. Protective antigens from antigenically distinct RSV strains can be added or swapped to increase the breadth of coverage. Alternatively, the major RSV protective antigens can be expressed from transcription units added to an attenuated parainfluenza vaccine virus, making a bivalent vaccine. This would obviate the difficulties inherent in the fragility and inefficient in vitro growth of RSV, simplifying vaccine design and use. PMID:16113487

  20. The SI strain of measles virus derived from a patient with subacute sclerosing panencephalitis possesses typical genome alterations and unique amino acid changes that modulate receptor specificity and reduce membrane fusion activity.

    PubMed

    Seki, Fumio; Yamada, Kentaro; Nakatsu, Yuichiro; Okamura, Koji; Yanagi, Yusuke; Nakayama, Tetsuo; Komase, Katsuhiro; Takeda, Makoto

    2011-11-01

    Subacute sclerosing panencephalitis (SSPE) is a fatal sequela associated with measles and is caused by persistent infection of the brain with measles virus (MV). The SI strain was isolated in 1976 from a patient with SSPE and shows neurovirulence in animals. Genome nucleotide sequence analyses showed that the SI strain genome possesses typical genome alterations for SSPE-derived strains, namely, accumulated amino acid substitutions in the M protein and cytoplasmic tail truncation of the F protein. Through the establishment of an efficient reverse genetics system, a recombinant SI strain expressing a green fluorescent protein (rSI-AcGFP) was generated. The infection of various cell types with rSI-AcGFP was evaluated by fluorescence microscopy. rSI-AcGFP exhibited limited syncytium-forming activity and spread poorly in cells. Analyses using a recombinant MV possessing a chimeric genome between those of the SI strain and a wild-type MV strain indicated that the membrane-associated protein genes (M, F, and H) were responsible for the altered growth phenotype of the SI strain. Functional analyses of viral glycoproteins showed that the F protein of the SI strain exhibited reduced fusion activity because of an E300G substitution and that the H protein of the SI strain used CD46 efficiently but used the original MV receptors on immune and epithelial cells poorly because of L482F, S546G, and F555L substitutions. The data obtained in the present study provide a new platform for analyses of SSPE-derived strains as well as a clear example of an SSPE-derived strain that exhibits altered receptor specificity and limited fusion activity.

  1. The SI Strain of Measles Virus Derived from a Patient with Subacute Sclerosing Panencephalitis Possesses Typical Genome Alterations and Unique Amino Acid Changes That Modulate Receptor Specificity and Reduce Membrane Fusion Activity ▿ ‡

    PubMed Central

    Seki, Fumio; Yamada, Kentaro; Nakatsu, Yuichiro; Okamura, Koji; Yanagi, Yusuke; Nakayama, Tetsuo; Komase, Katsuhiro; Takeda, Makoto

    2011-01-01

    Subacute sclerosing panencephalitis (SSPE) is a fatal sequela associated with measles and is caused by persistent infection of the brain with measles virus (MV). The SI strain was isolated in 1976 from a patient with SSPE and shows neurovirulence in animals. Genome nucleotide sequence analyses showed that the SI strain genome possesses typical genome alterations for SSPE-derived strains, namely, accumulated amino acid substitutions in the M protein and cytoplasmic tail truncation of the F protein. Through the establishment of an efficient reverse genetics system, a recombinant SI strain expressing a green fluorescent protein (rSI-AcGFP) was generated. The infection of various cell types with rSI-AcGFP was evaluated by fluorescence microscopy. rSI-AcGFP exhibited limited syncytium-forming activity and spread poorly in cells. Analyses using a recombinant MV possessing a chimeric genome between those of the SI strain and a wild-type MV strain indicated that the membrane-associated protein genes (M, F, and H) were responsible for the altered growth phenotype of the SI strain. Functional analyses of viral glycoproteins showed that the F protein of the SI strain exhibited reduced fusion activity because of an E300G substitution and that the H protein of the SI strain used CD46 efficiently but used the original MV receptors on immune and epithelial cells poorly because of L482F, S546G, and F555L substitutions. The data obtained in the present study provide a new platform for analyses of SSPE-derived strains as well as a clear example of an SSPE-derived strain that exhibits altered receptor specificity and limited fusion activity. PMID:21917959

  2. Genetic Variants Related to Longer Telomere Length are Associated with Increased Risk of Renal Cell Carcinoma.

    PubMed

    Machiela, Mitchell J; Hofmann, Jonathan N; Carreras-Torres, Robert; Brown, Kevin M; Johansson, Mattias; Wang, Zhaoming; Foll, Matthieu; Li, Peng; Rothman, Nathaniel; Savage, Sharon A; Gaborieau, Valerie; McKay, James D; Ye, Yuanqing; Henrion, Marc; Bruinsma, Fiona; Jordan, Susan; Severi, Gianluca; Hveem, Kristian; Vatten, Lars J; Fletcher, Tony; Koppova, Kvetoslava; Larsson, Susanna C; Wolk, Alicja; Banks, Rosamonde E; Selby, Peter J; Easton, Douglas F; Pharoah, Paul; Andreotti, Gabriella; Freeman, Laura E Beane; Koutros, Stella; Albanes, Demetrius; Mannisto, Satu; Weinstein, Stephanie; Clark, Peter E; Edwards, Todd E; Lipworth, Loren; Gapstur, Susan M; Stevens, Victoria L; Carol, Hallie; Freedman, Matthew L; Pomerantz, Mark M; Cho, Eunyoung; Kraft, Peter; Preston, Mark A; Wilson, Kathryn M; Gaziano, J Michael; Sesso, Howard S; Black, Amanda; Freedman, Neal D; Huang, Wen-Yi; Anema, John G; Kahnoski, Richard J; Lane, Brian R; Noyes, Sabrina L; Petillo, David; Colli, Leandro M; Sampson, Joshua N; Besse, Celine; Blanche, Helene; Boland, Anne; Burdette, Laurie; Prokhortchouk, Egor; Skryabin, Konstantin G; Yeager, Meredith; Mijuskovic, Mirjana; Ognjanovic, Miodrag; Foretova, Lenka; Holcatova, Ivana; Janout, Vladimir; Mates, Dana; Mukeriya, Anush; Rascu, Stefan; Zaridze, David; Bencko, Vladimir; Cybulski, Cezary; Fabianova, Eleonora; Jinga, Viorel; Lissowska, Jolanta; Lubinski, Jan; Navratilova, Marie; Rudnai, Peter; Szeszenia-Dabrowska, Neonila; Benhamou, Simone; Cancel-Tassin, Geraldine; Cussenot, Olivier; Bueno-de-Mesquita, H Bas; Canzian, Federico; Duell, Eric J; Ljungberg, Börje; Sitaram, Raviprakash T; Peters, Ulrike; White, Emily; Anderson, Garnet L; Johnson, Lisa; Luo, Juhua; Buring, Julie; Lee, I-Min; Chow, Wong-Ho; Moore, Lee E; Wood, Christopher; Eisen, Timothy; Larkin, James; Choueiri, Toni K; Lathrop, G Mark; Teh, Bin Tean; Deleuze, Jean-Francois; Wu, Xifeng; Houlston, Richard S; Brennan, Paul; Chanock, Stephen J; Scelo, Ghislaine; Purdue, Mark P

    2017-11-01

    Relative telomere length in peripheral blood leukocytes has been evaluated as a potential biomarker for renal cell carcinoma (RCC) risk in several studies, with conflicting findings. We performed an analysis of genetic variants associated with leukocyte telomere length to assess the relationship between telomere length and RCC risk using Mendelian randomization, an approach unaffected by biases from temporal variability and reverse causation that might have affected earlier investigations. Genotypes from nine telomere length-associated variants for 10 784 cases and 20 406 cancer-free controls from six genome-wide association studies (GWAS) of RCC were aggregated into a weighted genetic risk score (GRS) predictive of leukocyte telomere length. Odds ratios (ORs) relating the GRS and RCC risk were computed in individual GWAS datasets and combined by meta-analysis. Longer genetically inferred telomere length was associated with an increased risk of RCC (OR=2.07 per predicted kilobase increase, 95% confidence interval [CI]:=1.70-2.53, p<0.0001). As a sensitivity analysis, we excluded two telomere length variants in linkage disequilibrium (R 2 >0.5) with GWAS-identified RCC risk variants (rs10936599 and rs9420907) from the telomere length GRS; despite this exclusion, a statistically significant association between the GRS and RCC risk persisted (OR=1.73, 95% CI=1.36-2.21, p<0.0001). Exploratory analyses for individual histologic subtypes suggested comparable associations with the telomere length GRS for clear cell (N=5573, OR=1.93, 95% CI=1.50-2.49, p<0.0001), papillary (N=573, OR=1.96, 95% CI=1.01-3.81, p=0.046), and chromophobe RCC (N=203, OR=2.37, 95% CI=0.78-7.17, p=0.13). Our investigation adds to the growing body of evidence indicating some aspect of longer telomere length is important for RCC risk. Telomeres are segments of DNA at chromosome ends that maintain chromosomal stability. Our study investigated the relationship between genetic variants associated with telomere length and renal cell carcinoma risk. We found evidence suggesting individuals with inherited predisposition to longer telomere length are at increased risk of developing renal cell carcinoma. Published by Elsevier B.V.

  3. The importance of molecular analyses for understanding the genetic diversity of Histoplasma capsulatum: an overview.

    PubMed

    Vite-Garín, Tania; Estrada-Bárcenas, Daniel Alfonso; Cifuentes, Joaquín; Taylor, Maria Lucia

    2014-01-01

    Advances in the classification of the human pathogen Histoplasma capsulatum (H. capsulatum) (ascomycete) are sustained by the results of several genetic analyses that support the high diversity of this dimorphic fungus. The present mini-review highlights the great genetic plasticity of H. capsulatum. Important records with different molecular tools, mainly single- or multi-locus sequence analyses developed with this fungus, are discussed. Recent phylogenetic data with a multi-locus sequence analysis using 5 polymorphic loci support a new clade and/or phylogenetic species of H. capsulatum for the Americas, which was associated with fungal isolates obtained from the migratory bat Tadarida brasiliensis. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  4. Integrative Approaches to Understanding the Pathogenic Role of Genetic Variation in Rheumatic Diseases.

    PubMed

    Laufer, Vincent A; Chen, Jake Y; Langefeld, Carl D; Bridges, S Louis

    2017-08-01

    The use of high-throughput omics may help to understand the contribution of genetic variants to the pathogenesis of rheumatic diseases. We discuss the concept of missing heritability: that genetic variants do not explain the heritability of rheumatoid arthritis and related rheumatologic conditions. In addition to an overview of how integrative data analysis can lead to novel insights into mechanisms of rheumatic diseases, we describe statistical approaches to prioritizing genetic variants for future functional analyses. We illustrate how analyses of large datasets provide hope for improved approaches to the diagnosis, treatment, and prevention of rheumatic diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Genetic, morphological, and acoustic evidence reveals lack of diversification in the colonization process in an island bird.

    PubMed

    Illera, Juan Carlos; Palmero, Ana M; Laiolo, Paola; Rodríguez, Felipe; Moreno, Ángel C; Navascués, Miguel

    2014-08-01

    Songbirds with recently (i.e., early Holocene) founded populations are suitable models for studying incipient differentiation in oceanic islands. On such systems each colonization event represents a different evolutionary episode that can be studied by addressing sets of diverging phenotypic and genetic traits. We investigate the process of early differentiation in the spectacled warbler (Sylvia conspicillata) in 14 populations separated by sea barriers from three Atlantic archipelagos and from continental regions spanning from tropical to temperate latitudes. Our approach involved the study of sexual acoustic signals, morphology, and genetic data. Mitochondrial DNA did not provide clear population structure. However, microsatellites analyses consistently identified two genetic groups, albeit without correspondence to subspecies classification and little correspondence to geography. Coalescent analyses showed significant evidence for gene flow between the two genetic groups. Discriminant analyses could not correctly assign morphological or acoustic traits to source populations. Therefore, although theory predicting that in isolated populations genetic, morphological, or acoustic traits can lead to radiation, we have strikingly failed to document differentiation on these attributes in a resident passerine throughout three oceanic archipelagos. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  6. Genetic signatures of natural selection in a model invasive ascidian

    PubMed Central

    Lin, Yaping; Chen, Yiyong; Yi, Changho; Fong, Jonathan J.; Kim, Won; Rius, Marc; Zhan, Aibin

    2017-01-01

    Invasive species represent promising models to study species’ responses to rapidly changing environments. Although local adaptation frequently occurs during contemporary range expansion, the associated genetic signatures at both population and genomic levels remain largely unknown. Here, we use genome-wide gene-associated microsatellites to investigate genetic signatures of natural selection in a model invasive ascidian, Ciona robusta. Population genetic analyses of 150 individuals sampled in Korea, New Zealand, South Africa and Spain showed significant genetic differentiation among populations. Based on outlier tests, we found high incidence of signatures of directional selection at 19 loci. Hitchhiking mapping analyses identified 12 directional selective sweep regions, and all selective sweep windows on chromosomes were narrow (~8.9 kb). Further analyses indentified 132 candidate genes under selection. When we compared our genetic data and six crucial environmental variables, 16 putatively selected loci showed significant correlation with these environmental variables. This suggests that the local environmental conditions have left significant signatures of selection at both population and genomic levels. Finally, we identified “plastic” genomic regions and genes that are promising regions to investigate evolutionary responses to rapid environmental change in C. robusta. PMID:28266616

  7. Population-genetic comparison of the Sorbian isolate population in Germany with the German KORA population using genome-wide SNP arrays

    PubMed Central

    2011-01-01

    Background The Sorbs are an ethnic minority in Germany with putative genetic isolation, making the population interesting for disease mapping. A sample of N = 977 Sorbs is currently analysed in several genome-wide meta-analyses. Since genetic differences between populations are a major confounding factor in genetic meta-analyses, we compare the Sorbs with the German outbred population of the KORA F3 study (N = 1644) and other publically available European HapMap populations by population genetic means. We also aim to separate effects of over-sampling of families in the Sorbs sample from effects of genetic isolation and compare the power of genetic association studies between the samples. Results The degree of relatedness was significantly higher in the Sorbs. Principal components analysis revealed a west to east clustering of KORA individuals born in Germany, KORA individuals born in Poland or Czech Republic, Half-Sorbs (less than four Sorbian grandparents) and Full-Sorbs. The Sorbs cluster is nearest to the cluster of KORA individuals born in Poland. The number of rare SNPs is significantly higher in the Sorbs sample. FST between KORA and Sorbs is an order of magnitude higher than between different regions in Germany. Compared to the other populations, Sorbs show a higher proportion of individuals with runs of homozygosity between 2.5 Mb and 5 Mb. Linkage disequilibrium (LD) at longer range is also slightly increased but this has no effect on the power of association studies. Oversampling of families in the Sorbs sample causes detectable bias regarding higher FST values and higher LD but the effect is an order of magnitude smaller than the observed differences between KORA and Sorbs. Relatedness in the Sorbs also influenced the power of uncorrected association analyses. Conclusions Sorbs show signs of genetic isolation which cannot be explained by over-sampling of relatives, but the effects are moderate in size. The Slavonic origin of the Sorbs is still genetically detectable. Regarding LD structure, a clear advantage for genome-wide association studies cannot be deduced. The significant amount of cryptic relatedness in the Sorbs sample results in inflated variances of Beta-estimators which should be considered in genetic association analyses. PMID:21798003

  8. Association between Adult Height and Risk of Colorectal, Lung, and Prostate Cancer: Results from Meta-analyses of Prospective Studies and Mendelian Randomization Analyses.

    PubMed

    Khankari, Nikhil K; Shu, Xiao-Ou; Wen, Wanqing; Kraft, Peter; Lindström, Sara; Peters, Ulrike; Schildkraut, Joellen; Schumacher, Fredrick; Bofetta, Paolo; Risch, Angela; Bickeböller, Heike; Amos, Christopher I; Easton, Douglas; Eeles, Rosalind A; Gruber, Stephen B; Haiman, Christopher A; Hunter, David J; Chanock, Stephen J; Pierce, Brandon L; Zheng, Wei

    2016-09-01

    Observational studies examining associations between adult height and risk of colorectal, prostate, and lung cancers have generated mixed results. We conducted meta-analyses using data from prospective cohort studies and further carried out Mendelian randomization analyses, using height-associated genetic variants identified in a genome-wide association study (GWAS), to evaluate the association of adult height with these cancers. A systematic review of prospective studies was conducted using the PubMed, Embase, and Web of Science databases. Using meta-analyses, results obtained from 62 studies were summarized for the association of a 10-cm increase in height with cancer risk. Mendelian randomization analyses were conducted using summary statistics obtained for 423 genetic variants identified from a recent GWAS of adult height and from a cancer genetics consortium study of multiple cancers that included 47,800 cases and 81,353 controls. For a 10-cm increase in height, the summary relative risks derived from the meta-analyses of prospective studies were 1.12 (95% CI 1.10, 1.15), 1.07 (95% CI 1.05, 1.10), and 1.06 (95% CI 1.02, 1.11) for colorectal, prostate, and lung cancers, respectively. Mendelian randomization analyses showed increased risks of colorectal (odds ratio [OR] = 1.58, 95% CI 1.14, 2.18) and lung cancer (OR = 1.10, 95% CI 1.00, 1.22) associated with each 10-cm increase in genetically predicted height. No association was observed for prostate cancer (OR = 1.03, 95% CI 0.92, 1.15). Our meta-analysis was limited to published studies. The sample size for the Mendelian randomization analysis of colorectal cancer was relatively small, thus affecting the precision of the point estimate. Our study provides evidence for a potential causal association of adult height with the risk of colorectal and lung cancers and suggests that certain genetic factors and biological pathways affecting adult height may also affect the risk of these cancers.

  9. Movement behavior explains genetic differentiation in American black bears

    Treesearch

    Samuel A Cushman; Jesse S. Lewis

    2010-01-01

    Individual-based landscape genetic analyses provide empirically based models of gene flow. It would be valuable to verify the predictions of these models using independent data of a different type. Analyses using different data sources that produce consistent results provide strong support for the generality of the findings. Mating and dispersal movements are the...

  10. Pulmonary arterial hypertension associated to systemic erythematous lupus: molecular characterization of 3 cases.

    PubMed

    Pousada, Guillermo; Lago-Docampo, Mauro; Baloira, Adolfo; Valverde, Diana

    2018-03-08

    Pulmonary arterial hypertension associated with systemic lupus erythematosus (PAH-SLE) is a rare disease with a low incidence rate. In this study, PAH related genes and genetic modifiers were characterised molecularly in patients with PAH-SLE. Three patients diagnosed with PAH-SLE and 100 control individuals were analysed after signing an informed consent. Two out of the three analysed patients with PAH-SLE were carriers of pathogenic mutations in the genes BMPR2 and ENG. After an in silico analysis, pathogenic mutations were searched for in control individuals and different databases, with negative results, and they were thus functionally analysed. The third patients only showed polymorphisms in the genes BMPR2, ACVRL1 and ENG. Several genetic variants and genetic modifiers were identified in the three analysed patients. These modifiers, along with the pathogenic mutations, could lead to a more severe clinical course in patients with PAH. We present, for the first time, patients with PAH-SLE carrying pathogenic mutations in the main genes related to PAH and alterations in the genetic modifiers. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  11. Critical Contribution of Tyr15 in the HIV-1 Integrase (IN) in Facilitating IN Assembly and Nonenzymatic Function through the IN Precursor Form with Reverse Transcriptase.

    PubMed

    Takahata, Tatsuro; Takeda, Eri; Tobiume, Minoru; Tokunaga, Kenzo; Yokoyama, Masaru; Huang, Yu-Lun; Hasegawa, Atsuhiko; Shioda, Tatsuo; Sato, Hironori; Kannagi, Mari; Masuda, Takao

    2017-01-01

    Nonenzymatic roles for HIV-1 integrase (IN) at steps prior to the enzymatic integration step have been reported. To obtain structural and functional insights into the nonenzymatic roles of IN, we performed genetic analyses of HIV-1 IN, focusing on a highly conserved Tyr15 in the N-terminal domain (NTD), which has previously been shown to regulate an equilibrium state between two NTD dimer conformations. Replacement of Tyr15 with alanine, histidine, or tryptophan prevented HIV-1 infection and caused severe impairment of reverse transcription without apparent defects in reverse transcriptase (RT) or in capsid disassembly kinetics after entry into cells. Cross-link analyses of recombinant IN proteins demonstrated that lethal mutations of Tyr15 severely impaired IN structure for assembly. Notably, replacement of Tyr15 with phenylalanine was tolerated for all IN functions, demonstrating that a benzene ring of the aromatic side chain is a key moiety for IN assembly and functions. Additional mutagenic analyses based on previously proposed tetramer models for IN assembly suggested a key role of Tyr15 in facilitating the hydrophobic interaction among IN subunits, together with other proximal residues within the subunit interface. A rescue experiment with a mutated HIV-1 with RT and IN deleted (ΔRT ΔIN) and IN and RT supplied in trans revealed that the nonenzymatic IN function might be exerted through the IN precursor conjugated with RT (RT-IN). Importantly, the lethal mutations of Tyr15 significantly reduced the RT-IN function and assembly. Taken together, Tyr15 seems to play a key role in facilitating the proper assembly of IN and RT on viral RNA through the RT-IN precursor form. Inhibitors of the IN enzymatic strand transfer function (INSTI) have been applied in combination antiretroviral therapies to treat HIV-1-infected patients. Recently, allosteric IN inhibitors (ALLINIs) that interact with HIV-1 IN residues, the locations of which are distinct from the catalytic sites targeted by INSTI, have been discovered. Importantly, ALLINIs affect the nonenzymatic role(s) of HIV-1 IN, providing a rationale for the development of next-generation IN inhibitors with a mechanism that is distinct from that of INSTI. Here, we demonstrate that Tyr15 in the HIV-1 IN NTD plays a critical role during IN assembly by facilitating the hydrophobic interaction of the NTD with the other domains of IN. Importantly, we found that the functional assembly of IN through its fusion form with RT is critical for IN to exert its nonenzymatic function. Our results provide a novel mechanistic insight into the nonenzymatic function of HIV-1 IN and its prevention. Copyright © 2016 American Society for Microbiology.

  12. Genetic co-structuring in host-parasite systems: Empirical data from raccoons and raccoon ticks

    DOE PAGES

    Dharmarajan, Guha; Beasley, James C.; Beatty, William S.; ...

    2016-03-31

    Many aspects of parasite biology critically depend on their hosts, and understanding how host-parasite populations are co-structured can help improve our understanding of the ecology of parasites, their hosts, and host-parasite interactions. Here, this study utilized genetic data collected from raccoons (Procyon lotor), and a specialist parasite, the raccoon tick (Ixodes texanus), to test for genetic co-structuring of host-parasite populations at both landscape and host scales. At the landscape scale, our analyses revealed a significant correlation between genetic and geographic distance matrices (i.e., isolation by distance) in ticks, but not their hosts. While there are several mechanisms that could leadmore » to a stronger pattern of isolation by distance in tick vs. raccoon datasets, our analyses suggest that at least one reason for the above pattern is the substantial increase in statistical power (due to the ≈8-fold increase in sample size) afforded by sampling parasites. Host-scale analyses indicated higher relatedness between ticks sampled from related vs. unrelated raccoons trapped within the same habitat patch, a pattern likely driven by increased contact rates between related hosts. Lastly, by utilizing fine-scale genetic data from both parasites and hosts, our analyses help improve our understanding of epidemiology and host ecology.« less

  13. Reversing Language Shift: Theoretical and Empirical Foundations of Assistance to Threatened Languages. Multilingual Matters 76.

    ERIC Educational Resources Information Center

    Fishman, Joshua A.

    On the basis of detailed analyses of 10 threatened language-in-society constellations and three formerly endangered but now secure constellations, this book develops a closely argued theory of worldwide efforts on behalf of reversing language shift (RLS). It also applies this same line of reasoning to the problems of maintaining the…

  14. The Use of Reverse Engineering to Analyse Student Computer Programs.

    ERIC Educational Resources Information Center

    Vanneste, Philip; And Others

    1996-01-01

    Discusses how the reverse engineering approach can generate feedback on computer programs without the user having any prior knowledge of what the program was designed to do. This approach uses the cognitive model of programming knowledge to interpret both context independent and dependent errors in the same words and concepts as human programmers.…

  15. When an Adiabatic Irreversible Expansion or Compression Becomes Reversible

    ERIC Educational Resources Information Center

    Anacleto, Joaquim; Ferreira, J. M.; Soares, A. A.

    2009-01-01

    This paper aims to contribute to a better understanding of the concepts of a "reversible process" and "entropy". For this purpose, an adiabatic irreversible expansion or compression is analysed, by considering that an ideal gas is expanded (compressed), from an initial pressure P[subscript i] to a final pressure P[subscript f], by being placed in…

  16. Genetic diversity, linkage disequilibrium, and association mapping analyses of gossypium barbadense l. germplasm and cultivars

    USDA-ARS?s Scientific Manuscript database

    Limited polymorphism and narrow genetic base, due to genetic bottleneck through historic domestication, highlight a need for comprehensive characterization and utilization of existing genetic diversity in cotton germplasm collections. In this study, 288 worldwide Gossypium barbadense L. cotton germ...

  17. RNAi Screening in Spodoptera frugiperda.

    PubMed

    Ghosh, Subhanita; Singh, Gatikrushna; Sachdev, Bindiya; Kumar, Ajit; Malhotra, Pawan; Mukherjee, Sunil K; Bhatnagar, Raj K

    2016-01-01

    RNA interference is a potent and precise reverse genetic approach to carryout large-scale functional genomic studies in a given organism. During the past decade, RNAi has also emerged as an important investigative tool to understand the process of viral pathogenesis. Our laboratory has successfully generated transgenic reporter and RNAi sensor line of Spodoptera frugiperda (Sf21) cells and developed a reversal of silencing assay via siRNA or shRNA guided screening to investigate RNAi factors or viral pathogenic factors with extraordinary fidelity. Here we describe empirical approaches and conceptual understanding to execute successful RNAi screening in Spodoptera frugiperda 21-cell line.

  18. 40 CFR 798.5265 - The salmonella typhimurium reverse mutation assay.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., exogenous glucose 6-phosphate dehydrogenase, NADH and excess of glucose-6-phosphate. (5) Control groups—(i... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798... number of spontaneous revertants in an untreated and/or vehicle control culture. (2) Description. Several...

  19. 40 CFR 798.5265 - The salmonella typhimurium reverse mutation assay.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., exogenous glucose 6-phosphate dehydrogenase, NADH and excess of glucose-6-phosphate. (5) Control groups—(i... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798... number of spontaneous revertants in an untreated and/or vehicle control culture. (2) Description. Several...

  20. 40 CFR 798.5265 - The salmonella typhimurium reverse mutation assay.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., exogenous glucose 6-phosphate dehydrogenase, NADH and excess of glucose-6-phosphate. (5) Control groups—(i... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798... number of spontaneous revertants in an untreated and/or vehicle control culture. (2) Description. Several...

  1. 40 CFR 798.5265 - The salmonella typhimurium reverse mutation assay.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., exogenous glucose 6-phosphate dehydrogenase, NADH and excess of glucose-6-phosphate. (5) Control groups—(i... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798... number of spontaneous revertants in an untreated and/or vehicle control culture. (2) Description. Several...

  2. 40 CFR 798.5265 - The salmonella typhimurium reverse mutation assay.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., exogenous glucose 6-phosphate dehydrogenase, NADH and excess of glucose-6-phosphate. (5) Control groups—(i... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798... number of spontaneous revertants in an untreated and/or vehicle control culture. (2) Description. Several...

  3. Mycobacterium tuberculosis in Wild Asian Elephants, Southern India.

    PubMed

    Zachariah, Arun; Pandiyan, Jeganathan; Madhavilatha, G K; Mundayoor, Sathish; Chandramohan, Bathrachalam; Sajesh, P K; Santhosh, Sam; Mikota, Susan K

    2017-03-01

    We tested 3 ild Asian elephants (Elephas maximus) in southern India and confirmed infection in 3 animals with Mycobacterium tuberculosis, an obligate human pathogen, by PCR and genetic sequencing. Our results indicate that tuberculosis may be spilling over from humans (reverse zoonosis) and emerging in wild elephants.

  4. Next-generation sequencing for targeted discovery of rare mutations in rice

    USDA-ARS?s Scientific Manuscript database

    Advances in DNA sequencing (i.e., next-generation sequencing, NGS) have greatly increased the power and efficiency of detecting rare mutations in large mutant populations. Targeting Induced Local Lesions in Genomes (TILLING) is a reverse genetics approach for identifying gene mutations resulting fro...

  5. Characterization of cis-Acting RNA Elements of Zika Virus by Using a Self-Splicing Ribozyme-Dependent Infectious Clone.

    PubMed

    Liu, Zhong-Yu; Yu, Jiu-Yang; Huang, Xing-Yao; Fan, Hang; Li, Xiao-Feng; Deng, Yong-Qiang; Ji, Xue; Cheng, Meng-Li; Ye, Qing; Zhao, Hui; Han, Jian-Feng; An, Xiao-Ping; Jiang, Tao; Zhang, Bo; Tong, Yi-Gang; Qin, Cheng-Feng

    2017-11-01

    Zika virus (ZIKV) has caused significant outbreaks and epidemics in the Americas recently, raising global concern due to its ability to cause microcephaly and other neurological complications. A stable and efficient infectious clone of ZIKV is urgently needed. However, the instability and toxicity of flavivirus cDNA clones in Escherichia coli hosts has hindered the development of ZIKV infectious clones. Here, using a novel self-splicing ribozyme-based strategy, we generated a stable infectious cDNA clone of a contemporary ZIKV strain imported from Venezuela to China in 2016. The constructed clone contained a modified version of the group II self-splicing intron P.li.LSUI2 near the junction between the E and NS1 genes, which were removed from the RNA transcripts by an easy-to-establish in vitro splicing reaction. Transfection of the spliced RNAs into BHK-21 cells led to the production of infectious progeny virus that resembled the parental virus. Finally, potential cis -acting RNA elements in ZIKV genomic RNA were identified based on this novel reverse genetics system, and the critical role of 5'-SLA promoter and 5'-3' cyclization sequences were characterized by a combination of different assays. Our results provide another stable and reliable reverse genetics system for ZIKV that will help study ZIKV infection and pathogenesis, and the novel self-splicing intron-based strategy could be further expanded for the construction of infectious clones from other emerging and reemerging flaviviruses. IMPORTANCE The ongoing Zika virus (ZIKV) outbreaks have drawn global concern due to the unexpected causal link to fetus microcephaly and other severe neurological complications. The infectious cDNA clones of ZIKV are critical for the research community to study the virus, understand the disease, and inform vaccine design and antiviral screening. A panel of existing technologies have been utilized to develop ZIKV infectious clones. Here, we successfully generated a stable infectious clone of a 2016 ZIKV strain using a novel self-splicing ribozyme-based technology that abolished the potential toxicity of ZIKV cDNA clones to the E. coli host. Moreover, two crucial cis -acting replication elements (5'-SLA and 5'-CS) of ZIKV were first identified using this novel reverse genetics system. This novel self-splicing ribozyme-based reverse genetics platform will be widely utilized in future ZIKV studies and provide insight for the development of infectious clones of other emerging viruses. Copyright © 2017 American Society for Microbiology.

  6. Characterization of cis-Acting RNA Elements of Zika Virus by Using a Self-Splicing Ribozyme-Dependent Infectious Clone

    PubMed Central

    Liu, Zhong-Yu; Yu, Jiu-Yang; Huang, Xing-Yao; Fan, Hang; Li, Xiao-Feng; Deng, Yong-Qiang; Ji, Xue; Cheng, Meng-Li; Ye, Qing; Zhao, Hui; Han, Jian-Feng; An, Xiao-Ping; Jiang, Tao; Zhang, Bo; Tong, Yi-Gang

    2017-01-01

    ABSTRACT Zika virus (ZIKV) has caused significant outbreaks and epidemics in the Americas recently, raising global concern due to its ability to cause microcephaly and other neurological complications. A stable and efficient infectious clone of ZIKV is urgently needed. However, the instability and toxicity of flavivirus cDNA clones in Escherichia coli hosts has hindered the development of ZIKV infectious clones. Here, using a novel self-splicing ribozyme-based strategy, we generated a stable infectious cDNA clone of a contemporary ZIKV strain imported from Venezuela to China in 2016. The constructed clone contained a modified version of the group II self-splicing intron P.li.LSUI2 near the junction between the E and NS1 genes, which were removed from the RNA transcripts by an easy-to-establish in vitro splicing reaction. Transfection of the spliced RNAs into BHK-21 cells led to the production of infectious progeny virus that resembled the parental virus. Finally, potential cis-acting RNA elements in ZIKV genomic RNA were identified based on this novel reverse genetics system, and the critical role of 5′-SLA promoter and 5′-3′ cyclization sequences were characterized by a combination of different assays. Our results provide another stable and reliable reverse genetics system for ZIKV that will help study ZIKV infection and pathogenesis, and the novel self-splicing intron-based strategy could be further expanded for the construction of infectious clones from other emerging and reemerging flaviviruses. IMPORTANCE The ongoing Zika virus (ZIKV) outbreaks have drawn global concern due to the unexpected causal link to fetus microcephaly and other severe neurological complications. The infectious cDNA clones of ZIKV are critical for the research community to study the virus, understand the disease, and inform vaccine design and antiviral screening. A panel of existing technologies have been utilized to develop ZIKV infectious clones. Here, we successfully generated a stable infectious clone of a 2016 ZIKV strain using a novel self-splicing ribozyme-based technology that abolished the potential toxicity of ZIKV cDNA clones to the E. coli host. Moreover, two crucial cis-acting replication elements (5′-SLA and 5′-CS) of ZIKV were first identified using this novel reverse genetics system. This novel self-splicing ribozyme-based reverse genetics platform will be widely utilized in future ZIKV studies and provide insight for the development of infectious clones of other emerging viruses. PMID:28814522

  7. PT-Flax (phenotyping and TILLinG of flax): development of a flax (Linum usitatissimum L.) mutant population and TILLinG platform for forward and reverse genetics.

    PubMed

    Chantreau, Maxime; Grec, Sébastien; Gutierrez, Laurent; Dalmais, Marion; Pineau, Christophe; Demailly, Hervé; Paysant-Leroux, Christine; Tavernier, Reynald; Trouvé, Jean-Paul; Chatterjee, Manash; Guillot, Xavier; Brunaud, Véronique; Chabbert, Brigitte; van Wuytswinkel, Olivier; Bendahmane, Abdelhafid; Thomasset, Brigitte; Hawkins, Simon

    2013-10-15

    Flax (Linum usitatissimum L.) is an economically important fiber and oil crop that has been grown for thousands of years. The genome has been recently sequenced and transcriptomics are providing information on candidate genes potentially related to agronomically-important traits. In order to accelerate functional characterization of these genes we have generated a flax EMS mutant population that can be used as a TILLinG (Targeting Induced Local Lesions in Genomes) platform for forward and reverse genetics. A population of 4,894 M2 mutant seed families was generated using 3 different EMS concentrations (0.3%, 0.6% and 0.75%) and used to produce M2 plants for subsequent phenotyping and DNA extraction. 10,839 viable M2 plants (4,033 families) were obtained and 1,552 families (38.5%) showed a visual developmental phenotype (stem size and diameter, plant architecture, flower-related). The majority of these families showed more than one phenotype. Mutant phenotype data are organised in a database and can be accessed and searched at UTILLdb (http://urgv.evry.inra.fr/UTILLdb). Preliminary screens were also performed for atypical fiber and seed phenotypes. Genomic DNA was extracted from 3,515 M2 families and eight-fold pooled for subsequent mutant detection by ENDO1 nuclease mis-match cleavage. In order to validate the collection for reverse genetics, DNA pools were screened for two genes coding enzymes of the lignin biosynthesis pathway: Coumarate-3-Hydroxylase (C3H) and Cinnamyl Alcohol Dehydrogenase (CAD). We identified 79 and 76 mutations in the C3H and CAD genes, respectively. The average mutation rate was calculated as 1/41 Kb giving rise to approximately 9,000 mutations per genome. Thirty-five out of the 52 flax cad mutant families containing missense or codon stop mutations showed the typical orange-brown xylem phenotype observed in CAD down-regulated/mutant plants in other species. We have developed a flax mutant population that can be used as an efficient forward and reverse genetics tool. The collection has an extremely high mutation rate that enables the detection of large numbers of independant mutant families by screening a comparatively low number of M2 families. The population will prove to be a valuable resource for both fundamental research and the identification of agronomically-important genes for crop improvement in flax.

  8. PT-Flax (phenotyping and TILLinG of flax): development of a flax (Linum usitatissimum L.) mutant population and TILLinG platform for forward and reverse genetics

    PubMed Central

    2013-01-01

    Background Flax (Linum usitatissimum L.) is an economically important fiber and oil crop that has been grown for thousands of years. The genome has been recently sequenced and transcriptomics are providing information on candidate genes potentially related to agronomically-important traits. In order to accelerate functional characterization of these genes we have generated a flax EMS mutant population that can be used as a TILLinG (Targeting Induced Local Lesions in Genomes) platform for forward and reverse genetics. Results A population of 4,894 M2 mutant seed families was generated using 3 different EMS concentrations (0.3%, 0.6% and 0.75%) and used to produce M2 plants for subsequent phenotyping and DNA extraction. 10,839 viable M2 plants (4,033 families) were obtained and 1,552 families (38.5%) showed a visual developmental phenotype (stem size and diameter, plant architecture, flower-related). The majority of these families showed more than one phenotype. Mutant phenotype data are organised in a database and can be accessed and searched at UTILLdb (http://urgv.evry.inra.fr/UTILLdb). Preliminary screens were also performed for atypical fiber and seed phenotypes. Genomic DNA was extracted from 3,515 M2 families and eight-fold pooled for subsequent mutant detection by ENDO1 nuclease mis-match cleavage. In order to validate the collection for reverse genetics, DNA pools were screened for two genes coding enzymes of the lignin biosynthesis pathway: Coumarate-3-Hydroxylase (C3H) and Cinnamyl Alcohol Dehydrogenase (CAD). We identified 79 and 76 mutations in the C3H and CAD genes, respectively. The average mutation rate was calculated as 1/41 Kb giving rise to approximately 9,000 mutations per genome. Thirty-five out of the 52 flax cad mutant families containing missense or codon stop mutations showed the typical orange-brown xylem phenotype observed in CAD down-regulated/mutant plants in other species. Conclusions We have developed a flax mutant population that can be used as an efficient forward and reverse genetics tool. The collection has an extremely high mutation rate that enables the detection of large numbers of independant mutant families by screening a comparatively low number of M2 families. The population will prove to be a valuable resource for both fundamental research and the identification of agronomically-important genes for crop improvement in flax. PMID:24128060

  9. Identification and applications of the Petunia class II Act1/dTph1 transposable element system.

    PubMed

    Gerats, Tom; Zethof, Jan; Vandenbussche, Michiel

    2013-01-01

    Transposable genetic elements are considered to be ubiquitous. Despite this, their mutagenic capacity has been exploited in only a few species. The main plant species are maize, Antirrhinum, and Petunia. Representatives of all three major groups of class II elements, viz., hAT-, CACTA- and Mutator-like elements, have been identified in Petunia. Here we focus on the research "history" of the Petunia two-element Act1-dTph1 system and the development of its application in forward- and reverse-genetics studies.

  10. Systems genetics of obesity in an F2 pig model by genome-wide association, genetic network, and pathway analyses

    PubMed Central

    Kogelman, Lisette J. A.; Pant, Sameer D.; Fredholm, Merete; Kadarmideen, Haja N.

    2014-01-01

    Obesity is a complex condition with world-wide exponentially rising prevalence rates, linked with severe diseases like Type 2 Diabetes. Economic and welfare consequences have led to a raised interest in a better understanding of the biological and genetic background. To date, whole genome investigations focusing on single genetic variants have achieved limited success, and the importance of including genetic interactions is becoming evident. Here, the aim was to perform an integrative genomic analysis in an F2 pig resource population that was constructed with an aim to maximize genetic variation of obesity-related phenotypes and genotyped using the 60K SNP chip. Firstly, Genome Wide Association (GWA) analysis was performed on the Obesity Index to locate candidate genomic regions that were further validated using combined Linkage Disequilibrium Linkage Analysis and investigated by evaluation of haplotype blocks. We built Weighted Interaction SNP Hub (WISH) and differentially wired (DW) networks using genotypic correlations amongst obesity-associated SNPs resulting from GWA analysis. GWA results and SNP modules detected by WISH and DW analyses were further investigated by functional enrichment analyses. The functional annotation of SNPs revealed several genes associated with obesity, e.g., NPC2 and OR4D10. Moreover, gene enrichment analyses identified several significantly associated pathways, over and above the GWA study results, that may influence obesity and obesity related diseases, e.g., metabolic processes. WISH networks based on genotypic correlations allowed further identification of various gene ontology terms and pathways related to obesity and related traits, which were not identified by the GWA study. In conclusion, this is the first study to develop a (genetic) obesity index and employ systems genetics in a porcine model to provide important insights into the complex genetic architecture associated with obesity and many biological pathways that underlie it. PMID:25071839

  11. Genetic stability of Rift Valley fever virus MP-12 vaccine during serial passages in culture cells.

    PubMed

    Lokugamage, Nandadeva; Ikegami, Tetsuro

    2017-01-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa which affects both ruminants and humans. RVF causes serious damage to the livestock industry and is also a threat to public health. The Rift Valley fever virus has a segmented negative-stranded RNA genome consisting of Large (L)-, Medium (M)-, and Small (S)-segments. The live-attenuated MP-12 vaccine is immunogenic in livestock and humans, and is conditionally licensed for veterinary use in the U.S. The MP-12 strain encodes 23 mutations (nine amino acid substitutions) and is attenuated through a combination of mutations in the L-, M-, and S-segments. Among them, the M-U795C, M-A3564G, and L-G3104A mutations contribute to viral attenuation through the L- and M-segments. The M-U795C, M-A3564G, L-U533C, and L-G3750A mutations are also independently responsible for temperature-sensitive (ts) phenotype. We hypothesized that a serial passage of the MP-12 vaccine in culture cells causes reversions of the MP-12 genome. The MP-12 vaccine and recombinant rMP12-ΔNSs16/198 were serially passaged 25 times. Droplet digital PCR analysis revealed that the reversion occurred at L-G3750A during passages of MP-12 in Vero or MRC-5 cells. The reversion also occurred at M-A3564G and L-U533C of rMP12-ΔNSs16/198 in Vero cells. Reversion mutations were not found in MP-12 or the variant, rMP12-TOSNSs, in the brains of mice with encephalitis. This study characterized genetic stability of the MP-12 vaccine and the potential risk of reversion mutation at the L-G3750A ts mutation after excessive viral passages in culture cells.

  12. Applications of landscape genetics in conservation biology: concepts and challenges

    Treesearch

    Gernot Segelbacher; Samuel A. Cushman; Bryan K. Epperson; Marie-Josee Fortin; Olivier Francois; Olivier J. Hardy; Rolf Holderegger; Stephanie Manel

    2010-01-01

    Landscape genetics plays an increasingly important role in the management and conservation of species. Here, we highlight some of the opportunities and challenges in using landscape genetic approaches in conservation biology. We first discuss challenges related to sampling design and introduce several recent methodological developments in landscape genetics (analyses...

  13. Genetics of alcoholism.

    PubMed

    Edenberg, Howard J; Foroud, Tatiana

    2014-01-01

    Multiple lines of evidence strongly indicate that genetic factors contribute to the risk for alcohol use disorders (AUD). There is substantial heterogeneity in AUD, which complicates studies seeking to identify specific genetic factors. To identify these genetic effects, several different alcohol-related phenotypes have been analyzed, including diagnosis and quantitative measures related to AUDs. Study designs have used candidate gene analyses, genetic linkage studies, genomewide association studies (GWAS), and analyses of rare variants. Two genes that encode enzymes of alcohol metabolism have the strongest effect on AUD: aldehyde dehydrogenase 2 and alcohol dehydrogenase 1B each has strongly protective variants that reduce risk, with odds ratios approximately 0.2-0.4. A number of other genes important in AUD have been identified and replicated, including GABRA2 and alcohol dehydrogenases 1B and 4. GWAS have identified additional candidates. Rare variants are likely also to play a role; studies of these are just beginning. A multifaceted approach to gene identification, targeting both rare and common variations and assembling much larger datasets for meta-analyses, is critical for identifying the key genes and pathways important in AUD. © 2014 Elsevier B.V. All rights reserved.

  14. Interactions between genetic variants associated with adiposity traits and soft drinks in relation to longitudinal changes in body weight and waist circumference.

    PubMed

    Olsen, Nanna J; Ängquist, Lars; Larsen, Sofus C; Linneberg, Allan; Skaaby, Tea; Husemoen, Lise Lotte N; Toft, Ulla; Tjønneland, Anne; Halkjær, Jytte; Hansen, Torben; Pedersen, Oluf; Overvad, Kim; Ahluwalia, Tarunveer S; Sørensen, Thorkild Ia; Heitmann, Berit L

    2016-09-01

    Intake of sugar-sweetened beverages is associated with obesity, and this association may be modified by a genetic predisposition to obesity. We examined the interactions between a molecular genetic predisposition to various aspects of obesity and the consumption of soft drinks, which are a major part of sugar-sweetened beverages, in relation to changes in adiposity measures. A total of 4765 individuals were included in the study. On the basis of 50 obesity-associated single nucleotide polymorphisms that are associated with body mass index (BMI), waist circumference (WC), or the waist-to-hip ratio adjusted for BMI (WHRBMI), the following 4 genetic predisposition scores (GRSs) were constructed: a complete genetic predisposition score including all 50 single nucleotide polymorphisms (GRSComplete), a genetic predisposition score including BMI-associated single nucleotide polymorphisms (GRSBMI), a genetic predisposition score including waist circumference-associated single nucleotide polymorphisms (GRSWC), and a genetic predisposition score including the waist-to-hip ratio adjusted for BMI-associated single nucleotide polymorphisms (GRSWHR). Associations between soft drink intake and the annual change (Δ) in body weight (BW), WC, or waist circumference adjusted for BMI (WCBMI) and possible interactions with the GRSs were examined with the use of linear regression analyses and meta-analyses. For each soft drink serving per day, soft drink consumption was significantly associated with a higher ΔBW of 0.07 kg/y (95% CI: 0.01, 0.13 kg/y; P = 0.020) but not with the ΔWC or ΔWCBMI In analyses of the ΔBW, we showed an interaction only with the GRSWC (per risk allele for each soft drink serving per day: -0.06 kg/y; 95% CI: -0.10, -0.02 kg/y; P = 0.006). In analyses of the ΔWC, we showed interactions only with the GRSBMI and GRSComplete [per risk allele for each soft drink serving per day: 0.05 cm/y (95% CI: 0.02, 0.09 cm/y; P = 0.001) and 0.05 cm/y (95% CI: 0.02, 0.07 cm/y; P = 0.001), respectively]. Nearly identical results were observed in analyses of the ΔWCBMI CONCLUSIONS: A genetic predisposition to a high WC may attenuate the association between soft drink intake and BW gain. A genetic predisposition to high BMI as well as a genetic predisposition to high BMI, WC, and WHRBMI combined may strengthen the association between soft drink intake and WC gain. However, the public health impact may be limited. © 2016 American Society for Nutrition.

  15. Environmental change, phenotypic plasticity, and genetic compensation.

    PubMed

    Grether, Gregory F

    2005-10-01

    When a species encounters novel environmental conditions, some phenotypic characters may develop differently than in the ancestral environment. Most environmental perturbations of development are likely to reduce fitness, and thus selection would usually be expected to favor genetic changes that restore the ancestral phenotype. I propose the term "genetic compensation" to refer to this form of adaptive evolution. Genetic compensation is a subset of genetic accommodation and the reverse of genetic assimilation. When genetic compensation has occurred along a spatial environmental gradient, the mean trait values of populations in different environments may be more similar in the field than when representatives of the same populations are raised in a common environment (i.e., countergradient variation). If compensation is complete, genetic divergence between populations may be cryptic, that is, not detectable in the field. Here I apply the concept of genetic compensation to three examples involving carotenoid-based sexual coloration and then use these and other examples to discuss the concept in a broader context. I show that genetic compensation may lead to a cryptic form of reproductive isolation between populations evolving in different environments, may explain some puzzling cases in which heritable traits exposed to strong directional selection fail to show the expected evolutionary response, and may complicate efforts to monitor populations for signs of environmental deterioration.

  16. Magnetization Reversal Process of Single Crystal α-Fe Containing a Nonmagnetic Particle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yi; Xu, Ben; Hu, Shenyang Y.

    2015-09-25

    The magnetization reversal process and hysteresis loops in a single crystal α-iron with nonmagnetic particles are simulated in this work based on the Landau-Lifshitz–Gilbert equation. The evolutions of the magnetic domain morphology are studied, and our analyses show that the magnetization reversal process is affected by the interaction between the moving domain wall and the existing nonmagnetic particles. This interaction strongly depends on the size of the particles, and it is found that particles with a particular size contribute the most to magnetic hardening.

  17. Choice of Reading Comprehension Test Influences the Outcomes of Genetic Analyses

    PubMed Central

    Betjemann, Rebecca S.; Keenan, Janice M.; Olson, Richard K.; DeFries, John C.

    2010-01-01

    Does the choice of test for assessing reading comprehension influence the outcome of genetic analyses? A twin design compared two types of reading comprehension tests classified as primarily associated with word decoding (RC-D) or listening comprehension (RC-LC). For both types of tests, the overall genetic influence is high and nearly identical. However, the tests differed significantly in how they covary with the genes associated with decoding and listening comprehension. Although Cholesky decomposition showed that both types of comprehension tests shared significant genetic influence with both decoding and listening comprehension, RC-D tests shared most genetic variance with decoding, and RC-LC tests shared most with listening comprehension. Thus, different tests used to measure the same construct may manifest very different patterns of genetic covariation. These results suggest that the apparent discrepancies among the findings of previous twin studies of reading comprehension could be due at least in part to test differences. PMID:21804757

  18. Multicollinearity in spatial genetics: separating the wheat from the chaff using commonality analyses.

    PubMed

    Prunier, J G; Colyn, M; Legendre, X; Nimon, K F; Flamand, M C

    2015-01-01

    Direct gradient analyses in spatial genetics provide unique opportunities to describe the inherent complexity of genetic variation in wildlife species and are the object of many methodological developments. However, multicollinearity among explanatory variables is a systemic issue in multivariate regression analyses and is likely to cause serious difficulties in properly interpreting results of direct gradient analyses, with the risk of erroneous conclusions, misdirected research and inefficient or counterproductive conservation measures. Using simulated data sets along with linear and logistic regressions on distance matrices, we illustrate how commonality analysis (CA), a detailed variance-partitioning procedure that was recently introduced in the field of ecology, can be used to deal with nonindependence among spatial predictors. By decomposing model fit indices into unique and common (or shared) variance components, CA allows identifying the location and magnitude of multicollinearity, revealing spurious correlations and thus thoroughly improving the interpretation of multivariate regressions. Despite a few inherent limitations, especially in the case of resistance model optimization, this review highlights the great potential of CA to account for complex multicollinearity patterns in spatial genetics and identifies future applications and lines of research. We strongly urge spatial geneticists to systematically investigate commonalities when performing direct gradient analyses. © 2014 John Wiley & Sons Ltd.

  19. Dynamic Models and Coordination Analysis of Reverse Supply Chain with Remanufacturing

    NASA Astrophysics Data System (ADS)

    Yan, Nina

    In this paper, we establish a reverse chain system with one manufacturer and one retailer under demand uncertainties. Distinguishing between the recycling process of the retailer and the remanufacturing process of the manufacturer, we formulate a two-stage dynamic model for reverse supply chain based on remanufacturing. Using buyback contract as coordination mechanism and applying dynamic programming the optimal decision problems for each stage are analyzed. It concluded that the reverse supply chain system could be coordinated under the given condition. Finally, we carry out numerical calculations to analyze the expected profits for the manufacturer and the retailer under different recovery rates and recovery prices and the outcomes validate the theoretical analyses.

  20. Lower genetic variability of HIV-1 and antiretroviral drug resistance in pregnant women from the state of Pará, Brazil.

    PubMed

    Machado, Luiz Fernando Almeida; Costa, Iran Barros; Folha, Maria Nazaré; da Luz, Anderson Levy Bessa; Vallinoto, Antonio Carlos Rosário; Ishak, Ricardo; Ishak, Marluisa Oliveira Guimarães

    2017-04-12

    The present study aimed to describe the genetic diversity of HIV-1, as well as the resistance profile of the viruses identified in HIV-1 infected pregnant women under antiretroviral therapy in the state of Pará, Northern Brazil. Blood samples were collected from 45 HIV-1 infected pregnant to determine the virus subtypes according to the HIV-1 protease (PR) gene and part of the HIV-1 reverse transcriptase (RT) gene by sequencing the nucleotides of these regions. Drug resistance mutations and susceptibility to antiretroviral drugs were analyzed by the Stanford HIV Drug Resistance Database. Out of 45 samples, only 34 could be amplified for PR and 30 for RT. Regarding the PR gene, subtypes B (97.1%) and C (2.9%) were identified; for the RT gene, subtypes B (90.0%), F (6.7%), and C (3.3%) were detected. Resistance to protease inhibitors (PI) was identified in 5.8% of the pregnant, and mutations conferring resistance to nucleoside reverse transcriptase inhibitors were found in 3.3%, while mutations conferring resistance to non-nucleoside reverse transcriptase inhibitors were found in 3.3%. These results showed a low frequency of strains resistant to antiretroviral drugs, the prevalence of subtypes B and F, and the persistent low transmission of subtype C in pregnant of the state of Pará, Brazil.

  1. Alternative models in genetic analyses of carcass traits measured by ultrasonography in Guzerá cattle: A Bayesian approach

    USDA-ARS?s Scientific Manuscript database

    The objective was to study alternative models for genetic analyses of carcass traits assessed by ultrasonography in Guzerá cattle. Data from 947 measurements (655 animals) of Rib-eye area (REA), rump fat thickness (RFT) and backfat thickness (BFT) were used. Finite polygenic models (FPM), infinitesi...

  2. Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome

    USDA-ARS?s Scientific Manuscript database

    Aberrant epigenetic alterations in the genome such as DNA methylation and chromatin remodeling play a significant role in breast cancer development. Since epigenetic alterations are considered to be more easily reversible compared to genetic changes, epigenetic therapy is potentially very useful in ...

  3. Comparison of peanut gentics and physical maps provided insights on collinearity, reversions and translocations

    USDA-ARS?s Scientific Manuscript database

    Genetic and physical maps are the valuable resources for peanut research community in understanding genome organization and serving as the basis for map-based cloning and marker-assisted selection. Physical maps of two diploid wild peanut progenitor species, Arachis duranensis (A genome) and A. ipae...

  4. HuR interacts with human immunodeficiency virus type 1 reverse transcriptase, and modulates reverse transcription in infected cells

    PubMed Central

    Lemay, Julie; Maidou-Peindara, Priscilla; Bader, Thomas; Ennifar, Eric; Rain, Jean-Christophe; Benarous, Richard; Liu, Lang Xia

    2008-01-01

    Reverse transcription of the genetic material of human immunodeficiency virus type 1 (HIV-1) is a critical step in the replication cycle of this virus. This process, catalyzed by reverse transcriptase (RT), is well characterized at the biochemical level. However, in infected cells, reverse transcription occurs in a multiprotein complex – the reverse transcription complex (RTC) – consisting of viral genomic RNA associated with viral proteins (including RT) and, presumably, as yet uncharacterized cellular proteins. Very little is known about the cellular proteins interacting with the RTC, and with reverse transcriptase in particular. We report here that HIV-1 reverse transcription is affected by the levels of a nucleocytoplasmic shuttling protein – the RNA-binding protein HuR. A direct protein-protein interaction between RT and HuR was observed in a yeast two-hybrid screen and confirmed in vitro by homogenous time-resolved fluorescence (HTRF). We mapped the domain interacting with HuR to the RNAse H domain of RT, and the binding domain for RT to the C-terminus of HuR, partially overlapping the third RRM RNA-binding domain of HuR. HuR silencing with specific siRNAs greatly impaired early and late steps of reverse transcription, significantly inhibiting HIV-1 infection. Moreover, by mutagenesis and immunoprecipitation studies, we could not detect the binding of HuR to the viral RNA. These results suggest that HuR may be involved in and may modulate the reverse transcription reaction of HIV-1, by an as yet unknown mechanism involving a protein-protein interaction with HIV-1 RT. PMID:18544151

  5. Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.

    PubMed

    Wen, Shameng; Meng, Qingkun; Feng, Chao; Tang, Chaojing

    2017-01-01

    Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.

  6. Relevant genetic differentiation among Brazilian populations of Anastrepha fraterculus (Diptera, Tephritidae)

    PubMed Central

    Manni, Mosè; Lima, Kátia Manuela; Guglielmino, Carmela Rosalba; Lanzavecchia, Silvia Beatriz; Juri, Marianela; Vera, Teresa; Cladera, Jorge; Scolari, Francesca; Gomulski, Ludvik; Bonizzoni, Mariangela; Gasperi, Giuliano; Silva, Janisete Gomes; Malacrida, Anna Rodolfa

    2015-01-01

    Abstract We used a population genetic approach to detect the presence of genetic diversity among six populations of Anastrepha fraterculus across Brazil. To this aim, we used Simple Sequence Repeat (SSR) markers, which may capture the presence of differentiative processes across the genome in distinct populations. Spatial analyses of molecular variance were used to identify groups of populations that are both genetically and geographically homogeneous while also being maximally differentiated from each other. The spatial analysis of genetic diversity indicates that the levels of diversity among the six populations vary significantly on an eco-geographical basis. Particularly, altitude seems to represent a differentiating adaptation, as the main genetic differentiation is detected between the two populations present at higher altitudes and the other four populations at sea level. The data, together with the outcomes from different cluster analyses, identify a genetic diversity pattern that overlaps with the distribution of the known morphotypes in the Brazilian area. PMID:26798258

  7. Genetic diversity of calcareous grassland plant species depends on historical landscape configuration.

    PubMed

    Reisch, Christoph; Schmidkonz, Sonja; Meier, Katrin; Schöpplein, Quirin; Meyer, Carina; Hums, Christian; Putz, Christina; Schmid, Christoph

    2017-04-24

    Habitat fragmentation is considered to be a main reason for decreasing genetic diversity of plant species. However, the results of many fragmentation studies are inconsistent. This may be due to the influence of habitat conditions, having an indirect effect on genetic variation via reproduction. Consequently we took a comparative approach to analyse the impact of habitat fragmentation and habitat conditions on the genetic diversity of calcareous grassland species in this study. We selected five typical grassland species (Primula veris, Dianthus carthusianorum, Medicago falcata, Polygala comosa and Salvia pratensis) occurring in 18 fragments of calcareous grasslands in south eastern Germany. We sampled 1286 individuals in 87 populations and analysed genetic diversity using amplified fragment length polymorphisms. Additionally, we collected data concerning habitat fragmentation (historical and present landscape structure) and habitat conditions (vegetation structure, soil conditions) of the selected study sites. The whole data set was analysed using Bayesian multiple regressions. Our investigation indicated a habitat loss of nearly 80% and increasing isolation between grasslands since 1830. Bayesian analysis revealed a significant impact of the historical landscape structure, whereas habitat conditions played no important role for the present-day genetic variation of the studied plant species. Our study indicates that the historical landscape structure may be more important for genetic diversity than present habitat conditions. Populations persisting in abandoned grassland fragments may contribute significantly to the species' variability even under deteriorating habitat conditions. Therefore, these populations should be included in approaches to preserve the genetic variation of calcareous grassland species.

  8. Genetic patterns of habitat fragmentation and past climate-change effects in the Mediterranean high-mountain plant Armeria caespitosa (Plumbaginaceae).

    PubMed

    García-Fernández, Alfredo; Iriondo, Jose M; Escudero, Adrián; Aguilar, Javier Fuertes; Feliner, Gonzalo Nieto

    2013-08-01

    Mountain plants are among the species most vulnerable to global warming, because of their isolation, narrow geographic distribution, and limited geographic range shifts. Stochastic and selective processes can act on the genome, modulating genetic structure and diversity. Fragmentation and historical processes also have a great influence on current genetic patterns, but the spatial and temporal contexts of these processes are poorly known. We aimed to evaluate the microevolutionary processes that may have taken place in Mediterranean high-mountain plants in response to changing historical environmental conditions. Genetic structure, diversity, and loci under selection were analyzed using AFLP markers in 17 populations distributed over the whole geographic range of Armeria caespitosa, an endemic plant that inhabits isolated mountains (Sierra de Guadarrama, Spain). Differences in altitude, geographic location, and climate conditions were considered in the analyses, because they may play an important role in selective and stochastic processes. Bayesian clustering approaches identified nine genetic groups, although some discrepancies in assignment were found between alternative analyses. Spatially explicit analyses showed a weak relationship between genetic parameters and spatial or environmental distances. However, a large proportion of outlier loci were detected, and some outliers were related to environmental variables. A. caespitosa populations exhibit spatial patterns of genetic structure that cannot be explained by the isolation-by-distance model. Shifts along the altitude gradient in response to Pleistocene climatic oscillations and environmentally mediated selective forces might explain the resulting structure and genetic diversity values found.

  9. Loci under selection and markers associated with host plant and host-related strains shape the genetic structure of Brazilian populations of Spodoptera frugiperda (Lepidoptera, Noctuidae).

    PubMed

    Silva-Brandão, Karina Lucas; Peruchi, Aline; Seraphim, Noemy; Murad, Natália Faraj; Carvalho, Renato Assis; Farias, Juliano Ricardo; Omoto, Celso; Cônsoli, Fernando Luis; Figueira, Antonio; Brandão, Marcelo Mendes

    2018-01-01

    We applied the ddRAD genotyping-by-sequencing technique to investigate the genetic distinctiveness of Brazilian populations of the noctuid moth Spodoptera frugiperda, the fall armyworm (FAW), and the role of host-plant association as a source of genetic diversification. By strain-genotyping all field-collected individuals we found that populations collected from corn were composed primarily of corn-strain individuals, while the population collected from rice was composed almost entirely of rice-strain individuals. Outlier analyses indicated 1,184 loci putatively under selection (ca. 15% of the total) related to 194 different Gene Ontologies (GOs); the most numerous GOs were nucleotide binding, ATP binding, metal-ion binding and nucleic-acid binding. The association analyses indicated 326 loci associated with the host plant, and 216 loci associated with the individual strain, including functions related to Bacillus thuringiensis and insecticide resistance. The genetic-structure analyses indicated a moderate level of differentiation among all populations, and lower genetic structure among populations collected exclusively from corn, which suggests that the population collected from rice has a strong influence on the overall genetic structure. Populations of S. frugiperda are structured partially due to the host plant, and pairs of populations using the same host plant are more genetically similar than pairs using different hosts. Loci putatively under selection are the main factors responsible for the genetic structure of these populations, which indicates that adaptive selection on important traits, including the response to control tactics, is acting in the genetic differentiation of FAW populations in Brazil.

  10. Loci under selection and markers associated with host plant and host-related strains shape the genetic structure of Brazilian populations of Spodoptera frugiperda (Lepidoptera, Noctuidae)

    PubMed Central

    Peruchi, Aline; Seraphim, Noemy; Murad, Natália Faraj; Carvalho, Renato Assis; Farias, Juliano Ricardo; Omoto, Celso; Cônsoli, Fernando Luis; Figueira, Antonio; Brandão, Marcelo Mendes

    2018-01-01

    We applied the ddRAD genotyping-by-sequencing technique to investigate the genetic distinctiveness of Brazilian populations of the noctuid moth Spodoptera frugiperda, the fall armyworm (FAW), and the role of host-plant association as a source of genetic diversification. By strain-genotyping all field-collected individuals we found that populations collected from corn were composed primarily of corn-strain individuals, while the population collected from rice was composed almost entirely of rice-strain individuals. Outlier analyses indicated 1,184 loci putatively under selection (ca. 15% of the total) related to 194 different Gene Ontologies (GOs); the most numerous GOs were nucleotide binding, ATP binding, metal-ion binding and nucleic-acid binding. The association analyses indicated 326 loci associated with the host plant, and 216 loci associated with the individual strain, including functions related to Bacillus thuringiensis and insecticide resistance. The genetic-structure analyses indicated a moderate level of differentiation among all populations, and lower genetic structure among populations collected exclusively from corn, which suggests that the population collected from rice has a strong influence on the overall genetic structure. Populations of S. frugiperda are structured partially due to the host plant, and pairs of populations using the same host plant are more genetically similar than pairs using different hosts. Loci putatively under selection are the main factors responsible for the genetic structure of these populations, which indicates that adaptive selection on important traits, including the response to control tactics, is acting in the genetic differentiation of FAW populations in Brazil. PMID:29787608

  11. Investigating the relationship between iron and depression.

    PubMed

    Mills, Natalie T; Maier, Robert; Whitfield, John B; Wright, Margaret J; Colodro-Conde, Lucia; Byrne, Enda M; Scott, James G; Byrne, Gerard J; Hansell, Narelle K; Vinkhuyzen, Anna A E; CouvyDuchesne, Baptiste; Montgomery, Grant W; Henders, Anjali K; Martin, Nicholas G; Wray, Naomi R; Benyamin, Beben

    2017-11-01

    Lower levels of circulating iron have been associated with depression. Our objective was to investigate the phenotypic and genetic relationship between measures of circulating levels of iron (serum iron, transferrin, transferrin saturation, and ferritin) and depressive symptoms. Data were available from ongoing studies at QIMR Berghofer Medical Research Institute (QIMRB), including twin adolescents (mean age 15.1 years, standard deviation (SD) 3.2 years), and twin adults (mean age 23.2 years, SD 2.2 years). In the adolescent cohort, there were 3416 participants from 1688 families. In the adult cohort there were 9035 participants from 4533 families. We estimated heritabilities of, and phenotypic and genetic correlations between, traits. We conducted analyses that linked results from published large-scale genome-wide association studies (including iron and Major Depressive Disorder) with our study samples using single SNP and multi-SNP genetic risk score analyses, and LD score regression analyses. In both cohorts, measures of iron, transferrin, transferrin saturation, and log 10 of ferritin (L10Fer) were all highly heritable, while depressive measures were moderately heritable. In adolescents, depression measures were higher in those in the middle 10th versus top 10th percentile of transferrin saturation measures (p = 0.002). Genetic profile risk scores of the iron measures were not significantly associated with depression in study participants. LD score analyses showed no significant genetic relationship between iron and depression. Genetic factors strongly influence iron measures in adolescents and adults. Using several different strategies we find no evidence for a genetic contribution to the relationship between blood measures of iron and measures of depression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Investigating shared aetiology between type 2 diabetes and major depressive disorder in a population based cohort.

    PubMed

    Clarke, Toni-Kim; Obsteter, Jana; Hall, Lynsey S; Hayward, Caroline; Thomson, Pippa A; Smith, Blair H; Padmanabhan, Sandosh; Hocking, Lynne J; Deary, Ian J; Porteous, David J; McIntosh, Andrew M

    2017-04-01

    Type II diabetes (T2D) and major depressive disorder (MDD) are often co-morbid. The reasons for this co-morbidity are unclear. Some studies have highlighted the importance of environmental factors and a causal relationship between T2D and MDD has also been postulated. In the present study we set out to investigate the shared aetiology between T2D and MDD using Mendelian randomization in a population based sample, Generation Scotland: the Scottish Family Health Study (N = 21,516). Eleven SNPs found to be associated with T2D were tested for association with MDD and psychological distress (General Health Questionnaire scores). We also assessed causality and genetic overlap between T2D and MDD using polygenic risk scores (PRS) assembled from the largest available GWAS summary statistics to date. No single T2D risk SNP was associated with MDD in the MR analyses and we did not find consistent evidence of genetic overlap between MDD and T2D in the PRS analyses. Linkage disequilibrium score regression analyses supported these findings as no genetic correlation was observed between T2D and MDD (rG = 0.0278 (S.E. 0.11), P-value = 0.79). As suggested by previous studies, T2D and MDD covariance may be better explained by environmental factors. Future studies would benefit from analyses in larger cohorts where stratifying by sex and looking more closely at MDD cases demonstrating metabolic dysregulation is possible. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.

  13. Computational discovery and in vivo validation of hnf4 as a regulatory gene in planarian regeneration.

    PubMed

    Lobo, Daniel; Morokuma, Junji; Levin, Michael

    2016-09-01

    Automated computational methods can infer dynamic regulatory network models directly from temporal and spatial experimental data, such as genetic perturbations and their resultant morphologies. Recently, a computational method was able to reverse-engineer the first mechanistic model of planarian regeneration that can recapitulate the main anterior-posterior patterning experiments published in the literature. Validating this comprehensive regulatory model via novel experiments that had not yet been performed would add in our understanding of the remarkable regeneration capacity of planarian worms and demonstrate the power of this automated methodology. Using the Michigan Molecular Interactions and STRING databases and the MoCha software tool, we characterized as hnf4 an unknown regulatory gene predicted to exist by the reverse-engineered dynamic model of planarian regeneration. Then, we used the dynamic model to predict the morphological outcomes under different single and multiple knock-downs (RNA interference) of hnf4 and its predicted gene pathway interactors β-catenin and hh Interestingly, the model predicted that RNAi of hnf4 would rescue the abnormal regenerated phenotype (tailless) of RNAi of hh in amputated trunk fragments. Finally, we validated these predictions in vivo by performing the same surgical and genetic experiments with planarian worms, obtaining the same phenotypic outcomes predicted by the reverse-engineered model. These results suggest that hnf4 is a regulatory gene in planarian regeneration, validate the computational predictions of the reverse-engineered dynamic model, and demonstrate the automated methodology for the discovery of novel genes, pathways and experimental phenotypes. michael.levin@tufts.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Reversing and nonreversing heat capacity of poly(lactic acid) in the glass transition region by TMDSC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyda, Marek; Wunderlich, Bernhard

    2005-11-01

    A study of the glass transition of an amorphous and a semicrystalline poly(lactic acid) (PLA) is performed with adiabatic calorimetry, differential scanning calorimetry (DSC), and temperature-modulated DSC (TMDSC). The reversing, total, and nonreversing apparent heat capacities of samples with different contents of L- and D-lactic acid and with various thermal histories were evaluated. Different modes of TMDSC analyses of amorphous and semicrystalline PLA were compared to the total heat capacity from standard DSC. The enthalpy relaxation and the cold crystallization in the glass transition region are largely irreversible. The melting is largely irreversible, but a 100% reversing fraction is observedmore » at low temperatures from 375 to 420 K, which becomes small inside the major melting peak at about 440 K. From the TMDSC of amorphous PLA, the combined information on endothermic and exothermic enthalpy relaxation and glass transition were deconvoluted into the reversing and nonreversing components. The glass transition temperature from the reversing heat capacity and the enthalpy relaxation peaks from the nonreversing component shift to higher temperature for increasingly annealed PLA. The relaxation times for aging decrease on cooling until the glass transition is reached and then increase. This behavior is linked to cooperativity. All quantitative thermal analyses are based on the heat capacity of the solid and liquid, evaluated earlier with the advanced thermal analysis system (ATHAS).« less

  15. Childhood sexual abuse history and role reversal in parenting.

    PubMed

    Alexander, P C; Teti, L; Anderson, C L

    2000-06-01

    This study explored the main and interactive effects of sexual abuse history and relationship satisfaction on self-reported parenting, controlling for histories of physical abuse and parental alcoholism. The community sample consisted of 90 mothers of 5- to 8-year-old children. The sample was limited to those mothers currently in an intimate relationship, 19 of whom reported a history of childhood sexual abuse. Participants completed the Child Behavior Checklist, the Parenting Stress Inventory, the Family Cohesion Index, and questions assessing parent-child role reversal, history of abuse and parental alcoholism, and current relationship satisfaction. Results of analyses and multivariate analyses of covariance suggested that sexual abuse survivors with an unsatisfactory intimate relationship were more likely than either sexual abuse survivors with a satisfactory relationship or nonabused women to endorse items on a questionnaire of role reversal (defined as emotional overdependence upon one's child). Role reversal was not significantly predicted by histories of physical abuse or parental alcoholism or child's gender. While parenting stress was inversely predicted by the significant main effect of relationship satisfaction, neither parenting stress nor child behavior problems were predicted by the main effect of sexual abuse history or by the interaction between sexual abuse history and relationship satisfaction. These results suggest the unique relevance of sexual abuse history and relationship satisfaction in the prediction of a specific type of parent-child role reversal--namely, a mother's emotional overdependence upon her child.

  16. De novo transcriptome assembly, development of EST-SSR markers and population genetic analyses for the desert biomass willow, Salix psammophila

    PubMed Central

    Jia, Huixia; Yang, Haifeng; Sun, Pei; Li, Jianbo; Zhang, Jin; Guo, Yinghua; Han, Xiaojiao; Zhang, Guosheng; Lu, Mengzhu; Hu, Jianjun

    2016-01-01

    Salix psammophila, a sandy shrub known as desert willow, is regarded as a potential biomass feedstock and plays an important role in maintaining local ecosystems. However, a lack of genomic data and efficient molecular markers limit the study of its population evolution and genetic breeding. In this study, chromosome counts, flow cytometry and SSR analyses indicated that S. psammophila is tetraploid. A total of 6,346 EST-SSRs were detected based on 71,458 de novo assembled unigenes from transcriptome data. Twenty-seven EST-SSR markers were developed to evaluate the genetic diversity and population structure of S. psammophila from eight natural populations in Northern China. High levels of genetic diversity (mean 10.63 alleles per locus; mean HE 0.689) were dectected in S. psammophila. The weak population structure and little genetic differentiation (pairwise FST = 0.006–0.016) were found among Population 1-Population 7 (Pop1-Pop7; Inner Mongolia and Shaanxi), but Pop8 (Ningxia) was clearly separated from Pop1-Pop7 and moderate differentiation (pairwise FST = 0.045–0.055) was detected between them, which may be influenced by local habitat conditions. Molecular variance analyses indicated that most of the genetic variation (94.27%) existed within populations. These results provide valuable genetic informations for natural resource conservation and breeding programme optimisation of S. psammophila. PMID:27995985

  17. Genetic Diversity in Introduced Golden Mussel Populations Corresponds to Vector Activity

    PubMed Central

    Ghabooli, Sara; Zhan, Aibin; Sardiña, Paula; Paolucci, Esteban; Sylvester, Francisco; Perepelizin, Pablo V.; Briski, Elizabeta; Cristescu, Melania E.; MacIsaac, Hugh J.

    2013-01-01

    We explored possible links between vector activity and genetic diversity in introduced populations of Limnoperna fortunei by characterizing the genetic structure in native and introduced ranges in Asia and South America. We surveyed 24 populations: ten in Asia and 14 in South America using the mitochondrial cytochrome c oxidase subunit I (COI) gene, as well as eight polymorphic microsatellite markers. We performed population genetics and phylogenetic analyses to investigate population genetic structure across native and introduced regions. Introduced populations in Asia exhibit higher genetic diversity (H E = 0.667–0.746) than those in South America (H E = 0.519–0.575), suggesting higher introduction effort for the former populations. We observed pronounced geographical structuring in introduced regions, as indicated by both mitochondrial and nuclear markers based on multiple genetic analyses including pairwise ФST, F ST, Bayesian clustering method, and three-dimensional factorial correspondence analyses. Pairwise F ST values within both Asia (F ST = 0.017–0.126, P = 0.000–0.009) and South America (F ST = 0.004–0.107, P = 0.000–0.721) were lower than those between continents (F ST = 0.180–0.319, P = 0.000). Fine-scale genetic structuring was also apparent among introduced populations in both Asia and South America, suggesting either multiple introductions of distinct propagules or strong post-introduction selection and demographic stochasticity. Higher genetic diversity in Asia as compared to South America is likely due to more frequent propagule transfers associated with higher shipping activities between source and donor regions within Asia. This study suggests that the intensity of human-mediated introduction vectors influences patterns of genetic diversity in non-indigenous species. PMID:23533614

  18. TEMPLE: analysing population genetic variation at transcription factor binding sites.

    PubMed

    Litovchenko, Maria; Laurent, Stefan

    2016-11-01

    Genetic variation occurring at the level of regulatory sequences can affect phenotypes and fitness in natural populations. This variation can be analysed in a population genetic framework to study how genetic drift and selection affect the evolution of these functional elements. However, doing this requires a good understanding of the location and nature of regulatory regions and has long been a major hurdle. The current proliferation of genomewide profiling experiments of transcription factor occupancies greatly improves our ability to identify genomic regions involved in specific DNA-protein interactions. Although software exists for predicting transcription factor binding sites (TFBS), and the effects of genetic variants on TFBS specificity, there are no tools currently available for inferring this information jointly with the genetic variation at TFBS in natural populations. We developed the software Transcription Elements Mapping at the Population LEvel (TEMPLE), which predicts TFBS, evaluates the effects of genetic variants on TFBS specificity and summarizes the genetic variation occurring at TFBS in intraspecific sequence alignments. We demonstrate that TEMPLE's TFBS prediction algorithms gives identical results to PATSER, a software distribution commonly used in the field. We also illustrate the unique features of TEMPLE by analysing TFBS diversity for the TF Senseless (SENS) in one ancestral and one cosmopolitan population of the fruit fly Drosophila melanogaster. TEMPLE can be used to localize TFBS that are characterized by strong genetic differentiation across natural populations. This will be particularly useful for studies aiming to identify adaptive mutations. TEMPLE is a java-based cross-platform software that easily maps the genetic diversity at predicted TFBSs using a graphical interface, or from the Unix command line. © 2016 John Wiley & Sons Ltd.

  19. Origin and evolution of SINEs in eukaryotic genomes.

    PubMed

    Kramerov, D A; Vassetzky, N S

    2011-12-01

    Short interspersed elements (SINEs) are one of the two most prolific mobile genomic elements in most of the higher eukaryotes. Although their biology is still not thoroughly understood, unusual life cycle of these simple elements amplified as genomic parasites makes their evolution unique in many ways. In contrast to most genetic elements including other transposons, SINEs emerged de novo many times in evolution from available molecules (for example, tRNA). The involvement of reverse transcription in their amplification cycle, huge number of genomic copies and modular structure allow variation mechanisms in SINEs uncommon or rare in other genetic elements (module exchange between SINE families, dimerization, and so on.). Overall, SINE evolution includes their emergence, progressive optimization and counteraction to the cell's defense against mobile genetic elements.

  20. Our retroviral heritage.

    PubMed

    Patience, C; Wilkinson, D A; Weiss, R A

    1997-03-01

    Darwin could not have foretold that we are descended from viruses as well as from apes. While there is clear evidence that viral diseases, such as polio and rabies, affected ancient civilizations, viruses were not defined until the early years of this century, shortly after the rediscovery of mendelian genetics. That retroviral genomes can oscillate between infectious and genetic modes of transmission seemed preposterous before the discovery of reverse transcription in 1970. Those of us who had earlier provided mendelian evidence for germ-line transmission of retroviruses were subject of friendly ridicule. Today, the shunting of genetic elements between chromosomes and RNA, and the generation of processed pseudogenes, seems commonplace. It is timely, however, to revisit the topic of human endogenous retroviruses-the subject of this article.

  1. Unravelling the genetic differentiation among varieties of the Neotropical savanna tree Hancornia speciosa Gomes.

    PubMed

    Collevatti, Rosane G; Rodrigues, Eduardo E; Vitorino, Luciana C; Lima-Ribeiro, Matheus S; Chaves, Lázaro J; Telles, Mariana P C

    2018-04-20

    Spatial distribution of species genetic diversity is often driven by geographical distance (isolation by distance) or environmental conditions (isolation by environment), especially under climate change scenarios such as Quaternary glaciations. Here, we used coalescent analyses coupled with ecological niche modelling (ENM), spatially explicit quantile regression analyses and the multiple matrix regression with randomization (MMRR) approach to unravel the patterns of genetic differentiation in the widely distributed Neotropical savanna tree, Hancornia speciosa (Apocynaceae). Due to its high morphological differentiation, the species was originally classified into six botanical varieties by Monachino, and has recently been recognized as only two varieties by Flora do Brasil 2020. Thus, H. speciosa is a good biological model for learning about evolution of phenotypic plasticity under genetic and ecological effects, and predicting their responses to changing environmental conditions. We sampled 28 populations (777 individuals) of Monachino's four varieties of H. speciosa and used seven microsatellite loci to genotype them. Bayesian clustering showed five distinct genetic groups (K = 5) with high admixture among Monachino's varieties, mainly among populations in the central area of the species geographical range. Genetic differentiation among Monachino's varieties was lower than the genetic differentiation among populations within varieties, with higher within-population inbreeding. A high historical connectivity among populations of the central Cerrado shown by coalescent analyses may explain the high admixture among varieties. In addition, areas of higher climatic suitability also presented higher genetic diversity in such a way that the wide historical refugium across central Brazil might have promoted the long-term connectivity among populations. Yet, FST was significantly related to geographic distances, but not to environmental distances, and coalescent analyses and ENM predicted a demographical scenario of quasi-stability through time. Our findings show that demographical history and isolation by distance, but not isolation by environment, drove genetic differentiation of populations. Finally, the genetic clusters do not support the two recently recognized botanical varieties of H. speciosa, but partially support Monachino's classification at least for the four sampled varieties, similar to morphological variation.

  2. Mitochondrial DNA diversity of the Amerindian populations living in the Andean Piedmont of Bolivia: Chimane, Moseten, Aymara and Quechua.

    PubMed

    Corella, Alfons; Bert, Francesc; Pérez-Pérez, Alejandro; Gené, Manel; Turbón, Daniel

    2007-01-01

    Chimane, Moseten Aymara and Quechua are Amerindian populations living in the Bolivian Piedmont, a characteristic ecoregion between the eastern slope of the Andean mountains and the Amazonian Llanos de Moxos. In both neighbouring areas, dense and complex societies have developed over the centuries. The Piedmont area is especially interesting from a human peopling perspective since there is no clear evidence regarding the genetic influence and peculiarities of these populations. This land has been used extensively as a territory of economic and cultural exchange between the Andes and Amazonia, however Chimane and Moseten populations have been sufficiently isolated from their neighbour groups to be recognized as distinct populations. Genetic information suggests that evolutionary processes, such as genetic drift, natural selection and genetic admixture have formed the history of the Piedmont populations. The objective of this study is to characterize the genetic diversity of the Piedmont populations, analysing the sequence variability of the HVR-I control region in the mitochondrial DNA (mtDNA). Haplogroup mtDNA data available from the whole of Central and South America were utilized to determine the relationship of the Piedmont populations with other Amerindian populations. Hair pulls were obtained in situ, and DNA from non-related individuals was extracted using a standard Chelex 100 method. A 401 bp DNA fragment of HVR-I region was amplified using standard procedures. Two independent 401 and 328 bp DNA fragments were sequenced separately for each sample. The sequence analyses included mismatch distribution and mean pairwise differences, median network analyses, AMOVA and principal component analyses. The genetic diversity of DNA sequences was measured and compared with other South Amerindian populations. The genetic diversity of 401 nucleotide mtDNA sequences, in the hypervariable Control Region, from positions 16 000-16 400, was characterized in a sample of 46 Amerindians living in the Piedmont area in the Beni Department of Bolivia. The results obtained indicate that the genetic diversity in the area is higher than that observed in other American groups living in much larger areas and despite the reduced size of the studied area the human groups analysed show high levels of inter-group variability. In addition, results show that Amerindian populations living in the Piedmont are genetically more related to those in the Andean than in the Amazonian populations.

  3. Evaluation of a genetically modified foot-and-mouth disease virus vaccine candidate generated by reverse genetics

    PubMed Central

    2012-01-01

    Background Foot-and-mouth disease (FMD) is the most economically important and highly contagious disease of cloven-hoofed animals worldwide. Control of the disease has been mainly based on large-scale vaccinations with whole-virus inactivated vaccines. In recent years, a series of outbreaks of type O FMD occurred in China (including Chinese Taipei, Chinese Hong Kong) posed a tremendous threat to Chinese animal husbandry. Its causative agent, type O FMDV, has evolved into three topotypes (East–South Asia (ME-SA), Southeast Asia (SEA), Cathay (CHY)) in these regions, which represents an important obstacle to disease control. The available FMD vaccine in China shows generally good protection against ME-SA and SEA topotype viruses infection, but affords insufficient protection against some variants of the CHY topotype. Therefore, the choice of a new vaccine strain is of fundamental importance. Results The present study describes the generation of a full-length infectious cDNA clone of FMDV vaccine strain and a genetically modified virus with some amino acid substitutions in antigenic sites 1, 3, and 4, based on the established infectious clone. The recombinant viruses had similar growth properties to the wild O/HN/CHA/93 virus. All swine immunized with inactivated vaccine prepared from the O/HN/CHA/93 were fully protected from challenge with the viruses of ME-SA and SEA topotypes and partially protected against challenge with the virus of CHY topotype at 28 days post-immunization. In contrast, the swine inoculated with the genetically modified vaccine were completely protected from the infection of viruses of the three topotypes. Conclusions Some amino acid substitutions in the FMDV vaccine strain genome did not have an effect on the ability of viral replication in vitro. The vaccine prepared from genetically modified FMDV by reverse genetics significantly improved the protective efficacy to the variant of the CHY topotype, compared with the wild O/HN/CHA/93 virus. Thus, the full-length cDNA clone of FMDV can be a useful tool to develop genetically engineered FMDV vaccine candidates to help control porcinophilic FMD epidemics in China. PMID:22591597

  4. Garcinia mangostana Linn displays antidepressant-like and pro-cognitive effects in a genetic animal model of depression: a bio-behavioral study in the Flinders Sensitive Line rat.

    PubMed

    Oberholzer, Inge; Möller, Marisa; Holland, Brendan; Dean, Olivia M; Berk, Michael; Harvey, Brian H

    2018-04-01

    There is abundant evidence for both disorganized redox balance and cognitive deficits in major depressive disorder (MDD). Garcinia mangostana Linn (GM) has anti-oxidant activity. We studied the antidepressant-like and pro-cognitive effects of raw GM rind in Flinders Sensitive Line (FSL) rats, a genetic model of depression, following acute and chronic treatment compared to a reference antidepressant, imipramine (IMI). The chemical composition of the GM extract was analysed for levels of α- and γ-mangostin. The acute dose-dependent effects of GM (50, 150 and 200 mg/kg po), IMI (20 mg/kg po) and vehicle were determined in the forced swim test (FST) in FSL rats, versus Flinders Resistant Line (FRL) control rats. Locomotor testing was conducted using the open field test (OFT). Using the most effective dose above coupled with behavioral testing in the FST and cognitive assessment in the novel object recognition test (nORT), a fixed dose 14-day treatment study of GM was performed and compared to IMI- (20 mg/kg/day) and vehicle-treated animals. Chronic treated animals were also assessed with respect to frontal cortex and hippocampal monoamine levels and accumulation of malondialdehyde. FSL rats showed significant cognitive deficits and depressive-like behavior, with disordered cortico-hippocampal 5-hydroxyindole acetic acid (5-HIAA) and noradrenaline (NA), as well as elevated hippocampal lipid peroxidation. Acute and chronic IMI treatment evoked pronounced antidepressant-like effects. Raw GM extract contained 117 mg/g and 11 mg/g α- and γ-mangostin, respectively, with acute GM demonstrating antidepressant-like effects at 50 mg/kg/day. Chronic GM (50 mg/kg/d) displayed significant antidepressant- and pro-cognitive effects, while demonstrating parity with IMI. Both behavioral and monoamine assessments suggest a more prominent serotonergic action for GM as opposed to a noradrenergic action for IMI, while both IMI and GM reversed hippocampal lipid peroxidation in FSL animals. Concluding, FSL rats present with cognitive deficits and depressive-like behaviors that are reversed by acute and chronic GM treatment, similar to that of IMI.

  5. Antiretroviral therapy modifies the genetic effect of known type 2 diabetes-associated risk variants in HIV-infected women.

    PubMed

    Frasco, Melissa A; Karim, Roksana; Van Den Berg, David; Watanabe, Richard M; Anastos, Kathryn; Cohen, Mardge; Gange, Stephen J; Gustafson, Deborah R; Liu, Chenglong; Tien, Phyllis C; Mack, Wendy J; Pearce, Celeste L

    2014-07-31

    Type 2 diabetes mellitus incidence is increased in HIV-infected persons. We examined the associations of diabetes mellitus with known diabetes mellitus-risk alleles from the general population in the context of HIV infection, and explored effect modification by combination antiretroviral therapy (cART). The Women's Interagency HIV Study is a prospective cohort of HIV-infected women. Seventeen European-derived diabetes mellitus-risk polymorphisms were genotyped in the eligible participants of the Women's Interagency HIV Study. Analyses were run separately for non-African Americans (Whites, Hispanics, Asians, and other; n = 378, 49 with incident diabetes mellitus) and African Americans (n = 591, 49 with incident diabetes mellitus). Cox proportional-hazards models were fit to estimate hazard ratios for diabetes mellitus overall and within strata of cART. In non-African Americans, heterogeneity across cART regimen was observed for nine of the 14 polymorphisms (phet < 0.05). One polymorphism was statistically significantly inversely associated with diabetes mellitus risk among women taking two nucleotide reverse transcriptase inhibitors (NRTIs) + non-nucleotide reverse transcriptase inhibitor (NNRTI). Five polymorphisms were statistically significantly associated with diabetes mellitus among women treated with at least two NRTIs + at least one protease inhibitor and one polymorphism was associated with diabetes mellitus among those treated with at least three NRTIs ± NNRTI. The hazard ratio per risk allele for IGF2BP2 rs1470579 was 2.67 (95% confidence interval 1.67-4.31) for women taking cART with at least two NRTIs + at least one protease inhibitor and 2.45 (95% confidence interval 1.08-5.53) in women taking at least three NRTIs ± NNRTI (phet = 2.50 × 10⁻³). No such associations were observed in the African Americans. Genetic susceptibility to diabetes mellitus, based on the variants studied, is substantially elevated among HIV-infected women using cART containing three or more NRTI/protease inhibitor components. A personalized medicine approach to cART selection may be indicated for HIV-infected persons carrying these diabetes mellitus-risk variants.

  6. Landscape genomics: A brief perspective [Chapter 9

    Treesearch

    Michael K. Schwartz; Gordon Luikart; Kevin S. McKelvey; Samuel A. Cushman

    2010-01-01

    Landscape genetics is the amalgamation of population genetics and landscape ecology (see Manel et al. 2003; Storfer et al. 2007). In Chapter 17, we discuss landscape genetics and provide two examples of applications in the area of modeling population connectivity and inferring fragmentation. These examples, like virtually all extant landscape genetic analyses, were...

  7. Isozymes and the genetic resources of forest trees

    Treesearch

    A. H. D. Brown; G. F. Moran

    1981-01-01

    Genetic data are an essential prerequisite for analysing the genetic structure of tree populations. The isozyme technique is the best currently available method for obtaining such data. Despite several shortcomings, isozyme data directly evaluate the genetic resources of forest trees, and can thus be used to monitor and manipulate these resources. For example,...

  8. The Integration of Genetic Propensities into Social-Control Models of Delinquency and Violence among Male Youths

    ERIC Educational Resources Information Center

    Guo, Guang; Roettger, Michael E.; Cai, Tianji

    2008-01-01

    This study, drawing on approximately 1,100 males from the National Longitudinal Study of Adolescent Health, demonstrates the importance of genetics, and genetic-environmental interactions, for understanding adolescent delinquency and violence. Our analyses show that three genetic polymorphisms--specifically, the 30-bp promoter-region variable…

  9. Gene silencing in non-model insects: Overcoming hurdles using symbiotic bacteria for trauma-free sustainable delivery of RNA interference: Sustained RNA interference in insects mediated by symbiotic bacteria: Applications as a genetic tool and as a biocide.

    PubMed

    Whitten, Miranda; Dyson, Paul

    2017-03-01

    Insight into animal biology and development provided by classical genetic analysis of the model organism Drosophila melanogaster was an incentive to develop advanced genetic tools for this insect. But genetic systems for the over one million other known insect species are largely undeveloped. With increasing information about insect genomes resulting from next generation sequencing, RNA interference is now the method of choice for reverse genetics, although it is constrained by the means of delivery of interfering RNA. A recent advance to ensure sustained delivery with minimal experimental intervention or trauma to the insect is to exploit commensal bacteria for symbiont-mediated RNA interference. This technology not only offers an efficient means for RNA interference in insects in laboratory conditions, but also has potential for use in the control of human disease vectors, agricultural pests and pathogens of beneficial insects. © 2017 WILEY Periodicals, Inc.

  10. TALENs and CRISPR/Cas9 fuel genetically engineered clinically relevant Xenopus tropicalis tumor models.

    PubMed

    Naert, Thomas; Van Nieuwenhuysen, Tom; Vleminckx, Kris

    2017-01-01

    The targeted nuclease revolution (TALENs, CRISPR/Cas9) now allows Xenopus researchers to rapidly generate custom on-demand genetic knockout models. These novel methods to perform reverse genetics are unprecedented and are fueling a wide array of human disease models within the aquatic diploid model organism Xenopus tropicalis (X. tropicalis). This emerging technology review focuses on the tools to rapidly generate genetically engineered X. tropicalis models (GEXM), with a focus on establishment of genuine genetic and clinically relevant cancer models. We believe that due to particular advantageous characteristics, outlined within this review, GEXM will become a valuable alternative animal model for modeling human cancer. Furthermore, we provide perspectives of how GEXM will be used as a platform for elucidation of novel therapeutic targets and for preclinical drug validation. Finally, we also discuss some future prospects on how the recent expansions and adaptations of the CRISPR/Cas9 toolbox might influence and push forward X. tropicalis cancer research. © 2017 Wiley Periodicals, Inc.

  11. Comparative evaluation of total RNA extraction methods in Theobroma cacao using shoot apical meristems.

    PubMed

    Silva, D V; Branco, S M J; Holanda, I S A; Royaert, S; Motamayor, J C; Marelli, J P; Corrêa, R X

    2016-03-04

    Theobroma cacao is a species of great economic importance with its beans used for chocolate production. The tree has been a target of various molecular studies. It contains many polyphenols, which complicate the extraction of nucleic acids with the extraction protocols requiring a large amount of plant material. These issues, therefore, necessitate the optimization of the protocols. The aim of the present study was to evaluate different methods for extraction of total RNA from shoot apical meristems of T. cacao 'CCN 51' and to assess the influence of storage conditions for the meristems on the extraction. The study also aimed to identify the most efficient protocol for RNA extraction using a small amount of plant material. Four different protocols were evaluated for RNA extraction using one shoot apical meristem per sample. Among these protocols, one that was more efficient was then tested to extract RNA using four different numbers of shoot apical meristems, subjected to three different storage conditions. The best protocol was tested for cDNA amplification using reverse transcription-polymerase chain reaction; the cDNA quality was determined to be satisfactory for molecular analyses. The study revealed that with the best RNA extraction protocol, one shoot apical meristem was sufficient for extraction of high-quality total RNA. The results obtained might enable advances in genetic analyses and molecular studies using reduced amount of plant material.

  12. Molecular ecology meets remote sensing: environmental drivers to population structure of humpback dolphins in the Western Indian Ocean.

    PubMed

    Mendez, M; Subramaniam, A; Collins, T; Minton, G; Baldwin, R; Berggren, P; Särnblad, A; Amir, O A; Peddemors, V M; Karczmarski, L; Guissamulo, A; Rosenbaum, H C

    2011-10-01

    Genetic analyses of population structure can be placed in explicit environmental contexts if appropriate environmental data are available. Here, we use high-coverage and high-resolution oceanographic and genetic sequence data to assess population structure patterns and their potential environmental influences for humpback dolphins in the Western Indian Ocean. We analyzed mitochondrial DNA data from 94 dolphins from the coasts of South Africa, Mozambique, Tanzania and Oman, employing frequency-based and maximum-likelihood algorithms to assess population structure and migration patterns. The genetic data were combined with 13 years of remote sensing oceanographic data of variables known to influence cetacean dispersal and population structure. Our analyses show strong and highly significant genetic structure between all putative populations, except for those in South Africa and Mozambique. Interestingly, the oceanographic data display marked environmental heterogeneity between all sampling areas and a degree of overlap between South Africa and Mozambique. Our combined analyses therefore suggest the occurrence of genetically isolated populations of humpback dolphins in areas that are environmentally distinct. This study highlights the utility of molecular tools in combination with high-resolution and high-coverage environmental data to address questions not only pertaining to genetic population structure, but also to relevant ecological processes in marine species.

  13. Subspecies status and population genetic structure in Piping Plover (Charadrius melodus)

    USGS Publications Warehouse

    Miller, M.P.; Haig, S.M.; Gratto-Trevor, C. L.; Mullins, T.D.

    2010-01-01

    Piping Plover (Charadrius melodus) is a migratory shorebird that is listed as endangered in Canada and the U.S. Great Lakes and as threatened throughout the rest of its breeding and winter range. We undertook a comprehensive molecular-genetic investigation to (1) address subspecific taxonomy, (2) characterize population genetic structure, and (3) infer past bottlenecks and demographic processes in this species. Analyses included individuals from 23 U.S. states and Canadian provinces and were based on mitochondrial DNA sequences (580 base pairs, n = 245) and 8 nuclear microsatellite loci (n = 229). Our findings provide support for separate Atlantic and Interior subspecies (C. m. melodus and C. m. circumcinctus, respectively). Birds from the Great Lakes region were allied with the Interior subspecies and should be referred to as C. m. circumcinctus. Population genetic analyses illustrated stronger genetic structure among Atlantic than among Interior birds, which may reflect reduced natal- and breeding-site fidelity of Interior individuals. Furthermore, analyses suggested that Interior birds previously experienced genetic bottlenecks, whereas there was no evidence of such patterns in the Atlantic subspecies. We interpret these results in light of 25 years of range-wide census data. Overall, differences between Interior and Atlantic Piping Plovers may reflect differences in spatiotemporal stability of nesting habitat between regions. ?? 2010 The American Ornithologists' Union.

  14. Molecular ecology meets remote sensing: environmental drivers to population structure of humpback dolphins in the Western Indian Ocean

    PubMed Central

    Mendez, M; Subramaniam, A; Collins, T; Minton, G; Baldwin, R; Berggren, P; Särnblad, A; Amir, O A; Peddemors, V M; Karczmarski, L; Guissamulo, A; Rosenbaum, H C

    2011-01-01

    Genetic analyses of population structure can be placed in explicit environmental contexts if appropriate environmental data are available. Here, we use high-coverage and high-resolution oceanographic and genetic sequence data to assess population structure patterns and their potential environmental influences for humpback dolphins in the Western Indian Ocean. We analyzed mitochondrial DNA data from 94 dolphins from the coasts of South Africa, Mozambique, Tanzania and Oman, employing frequency-based and maximum-likelihood algorithms to assess population structure and migration patterns. The genetic data were combined with 13 years of remote sensing oceanographic data of variables known to influence cetacean dispersal and population structure. Our analyses show strong and highly significant genetic structure between all putative populations, except for those in South Africa and Mozambique. Interestingly, the oceanographic data display marked environmental heterogeneity between all sampling areas and a degree of overlap between South Africa and Mozambique. Our combined analyses therefore suggest the occurrence of genetically isolated populations of humpback dolphins in areas that are environmentally distinct. This study highlights the utility of molecular tools in combination with high-resolution and high-coverage environmental data to address questions not only pertaining to genetic population structure, but also to relevant ecological processes in marine species. PMID:21427750

  15. Genetic structure and demographic history of the endangered and endemic schizothoracine fish Gymnodiptychus pachycheilus in Qinghai-Tibetan Plateau.

    PubMed

    Su, Junhu; Ji, Weihong; Wei, Yanming; Zhang, Yanping; Gleeson, Dianne M; Lou, Zhongyu; Ren, Jing

    2014-08-01

    The endangered schizothoracine fish Gymnodiptychus pachycheilus is endemic to the Qinghai-Tibetan Plateau (QTP), but very little genetic information is available for this species. Here, we accessed the current genetic divergence of G. pachycheilus population to evaluate their distributions modulated by contemporary and historical processes. Population structure and demographic history were assessed by analyzing 1811-base pairs of mitochondrial DNA from 61 individuals across a large proportion of its geographic range. Our results revealed low nucleotide diversity, suggesting severe historical bottleneck events. Analyses of molecular variance and the conventional population statistic FST (0.0435, P = 0.0215) confirmed weak genetic structure. The monophyly of G. pachycheilus was statistically well-supported, while two divergent evolutionary clusters were identified by phylogenetic analyses, suggesting a microgeographic population structure. The consistent scenario of recent population expansion of two clusters was identified based on several complementary analyses of demographic history (0.096 Ma and 0.15 Ma). This genetic divergence and evolutionary process are likely to have resulted from a series of drainage arrangements triggered by the historical tectonic events of the region. The results obtained here provide the first insights into the evolutionary history and genetic status of this little-known fish.

  16. kWIP: The k-mer weighted inner product, a de novo estimator of genetic similarity.

    PubMed

    Murray, Kevin D; Webers, Christfried; Ong, Cheng Soon; Borevitz, Justin; Warthmann, Norman

    2017-09-01

    Modern genomics techniques generate overwhelming quantities of data. Extracting population genetic variation demands computationally efficient methods to determine genetic relatedness between individuals (or "samples") in an unbiased manner, preferably de novo. Rapid estimation of genetic relatedness directly from sequencing data has the potential to overcome reference genome bias, and to verify that individuals belong to the correct genetic lineage before conclusions are drawn using mislabelled, or misidentified samples. We present the k-mer Weighted Inner Product (kWIP), an assembly-, and alignment-free estimator of genetic similarity. kWIP combines a probabilistic data structure with a novel metric, the weighted inner product (WIP), to efficiently calculate pairwise similarity between sequencing runs from their k-mer counts. It produces a distance matrix, which can then be further analysed and visualised. Our method does not require prior knowledge of the underlying genomes and applications include establishing sample identity and detecting mix-up, non-obvious genomic variation, and population structure. We show that kWIP can reconstruct the true relatedness between samples from simulated populations. By re-analysing several published datasets we show that our results are consistent with marker-based analyses. kWIP is written in C++, licensed under the GNU GPL, and is available from https://github.com/kdmurray91/kwip.

  17. Determinate primary root growth as an adaptation to aridity in Cactaceae: towards an understanding of the evolution and genetic control of the trait

    PubMed Central

    Shishkova, Svetlana; Las Peñas, María Laura; Napsucialy-Mendivil, Selene; Matvienko, Marta; Kozik, Alex; Montiel, Jesús; Patiño, Anallely; Dubrovsky, Joseph G.

    2013-01-01

    Background and Aims Species of Cactaceae are well adapted to arid habitats. Determinate growth of the primary root, which involves early and complete root apical meristem (RAM) exhaustion and differentiation of cells at the root tip, has been reported for some Cactoideae species as a root adaptation to aridity. In this study, the primary root growth patterns of Cactaceae taxa from diverse habitats are classified as being determinate or indeterminate, and the molecular mechanisms underlying RAM maintenance in Cactaceae are explored. Genes that were induced in the primary root of Stenocereus gummosus before RAM exhaustion are identified. Methods Primary root growth was analysed in Cactaceae seedlings cultivated in vertically oriented Petri dishes. Differentially expressed transcripts were identified after reverse northern blots of clones from a suppression subtractive hybridization cDNA library. Key Results All species analysed from six tribes of the Cactoideae subfamily that inhabit arid and semi-arid regions exhibited determinate primary root growth. However, species from the Hylocereeae tribe, which inhabit mesic regions, exhibited mostly indeterminate primary root growth. Preliminary results suggest that seedlings of members of the Opuntioideae subfamily have mostly determinate primary root growth, whereas those of the Maihuenioideae and Pereskioideae subfamilies have mostly indeterminate primary root growth. Seven selected transcripts encoding homologues of heat stress transcription factor B4, histone deacetylase, fibrillarin, phosphoethanolamine methyltransferase, cytochrome P450 and gibberellin-regulated protein were upregulated in S. gummosus root tips during the initial growth phase. Conclusions Primary root growth in Cactoideae species matches their environment. The data imply that determinate growth of the primary root became fixed after separation of the Cactiodeae/Opuntioideae and Maihuenioideae/Pereskioideae lineages, and that the genetic regulation of RAM maintenance and its loss in Cactaceae is orchestrated by genes involved in the regulation of gene expression, signalling, and redox and hormonal responses. PMID:23666887

  18. Determinate primary root growth as an adaptation to aridity in Cactaceae: towards an understanding of the evolution and genetic control of the trait.

    PubMed

    Shishkova, Svetlana; Las Peñas, María Laura; Napsucialy-Mendivil, Selene; Matvienko, Marta; Kozik, Alex; Montiel, Jesús; Patiño, Anallely; Dubrovsky, Joseph G

    2013-07-01

    Species of Cactaceae are well adapted to arid habitats. Determinate growth of the primary root, which involves early and complete root apical meristem (RAM) exhaustion and differentiation of cells at the root tip, has been reported for some Cactoideae species as a root adaptation to aridity. In this study, the primary root growth patterns of Cactaceae taxa from diverse habitats are classified as being determinate or indeterminate, and the molecular mechanisms underlying RAM maintenance in Cactaceae are explored. Genes that were induced in the primary root of Stenocereus gummosus before RAM exhaustion are identified. Primary root growth was analysed in Cactaceae seedlings cultivated in vertically oriented Petri dishes. Differentially expressed transcripts were identified after reverse northern blots of clones from a suppression subtractive hybridization cDNA library. All species analysed from six tribes of the Cactoideae subfamily that inhabit arid and semi-arid regions exhibited determinate primary root growth. However, species from the Hylocereeae tribe, which inhabit mesic regions, exhibited mostly indeterminate primary root growth. Preliminary results suggest that seedlings of members of the Opuntioideae subfamily have mostly determinate primary root growth, whereas those of the Maihuenioideae and Pereskioideae subfamilies have mostly indeterminate primary root growth. Seven selected transcripts encoding homologues of heat stress transcription factor B4, histone deacetylase, fibrillarin, phosphoethanolamine methyltransferase, cytochrome P450 and gibberellin-regulated protein were upregulated in S. gummosus root tips during the initial growth phase. Primary root growth in Cactoideae species matches their environment. The data imply that determinate growth of the primary root became fixed after separation of the Cactiodeae/Opuntioideae and Maihuenioideae/Pereskioideae lineages, and that the genetic regulation of RAM maintenance and its loss in Cactaceae is orchestrated by genes involved in the regulation of gene expression, signalling, and redox and hormonal responses.

  19. Characterization of highly efficient heavy-ion mutagenesis in Arabidopsis thaliana.

    PubMed

    Kazama, Yusuke; Hirano, Tomonari; Saito, Hiroyuki; Liu, Yang; Ohbu, Sumie; Hayashi, Yoriko; Abe, Tomoko

    2011-11-15

    Heavy-ion mutagenesis is recognised as a powerful technology to generate new mutants, especially in higher plants. Heavy-ion beams show high linear energy transfer (LET) and thus more effectively induce DNA double-strand breaks than other mutagenic techniques. Previously, we determined the most effective heavy-ion LET (LETmax: 30.0 keV μm(-1)) for Arabidopsis mutagenesis by analysing the effect of LET on mutation induction. However, the molecular structure of mutated DNA induced by heavy ions with LETmax remains unclear. Knowledge of the structure of mutated DNA will contribute to the effective exploitation of heavy-ion beam mutagenesis. Dry Arabidopsis thaliana seeds were irradiated with carbon (C) ions with LETmax at a dose of 400 Gy and with LET of 22.5 keV μm(-1) at doses of 250 Gy or 450 Gy. The effects on mutation frequency and alteration of DNA structure were compared. To characterise the structure of mutated DNA, we screened the well-characterised mutants elongated hypocotyls (hy) and glabrous (gl) and identified mutated DNA among the resulting mutants by high-resolution melting curve, PCR and sequencing analyses. The mutation frequency induced by C ions with LETmax was two-fold higher than that with 22.5 keV μm(-1) and similar to the mutation frequency previously induced by ethyl methane sulfonate. We identified the structure of 22 mutated DNAs. Over 80% of the mutations caused by C ions with both LETs were base substitutions or deletions/insertions of less than 100 bp. The other mutations involved large rearrangements. The C ions with LETmax showed high mutation efficiency and predominantly induced base substitutions or small deletions/insertions, most of which were null mutations. These small alterations can be determined by single-nucleotide polymorphism (SNP) detection systems. Therefore, C ions with LETmax might be useful as a highly efficient reverse genetic system in conjunction with SNP detection systems, and will be beneficial for forward genetics and plant breeding.

  20. Functional connectivity in replicated urban landscapes in the land snail (Cornu aspersum).

    PubMed

    Balbi, Manon; Ernoult, Aude; Poli, Pedro; Madec, Luc; Guiller, Annie; Martin, Marie-Claire; Nabucet, Jean; Beaujouan, Véronique; Petit, Eric J

    2018-03-01

    Urban areas are highly fragmented and thereby exert strong constraints on individual dispersal. Despite this, some species manage to persist in urban areas, such as the garden snail, Cornu aspersum, which is common in cityscapes despite its low mobility. Using landscape genetic approaches, we combined study area replication and multiscale analysis to determine how landscape composition, configuration and connectivity influence snail dispersal across urban areas. At the overall landscape scale, areas with a high percentage of roads decreased genetic differentiation between populations. At the population scale, genetic differentiation was positively linked with building surface, the proportion of borders where wooded patches and roads appeared side by side and the proportion of borders combining wooded patches and other impervious areas. Analyses based on pairwise genetic distances validated the isolation-by-distance and isolation-by-resistance models for this land snail, with an equal fit to least-cost paths and circuit-theory-based models. Each of the 12 landscapes analysed separately yielded specific relations to environmental features, whereas analyses integrating all replicates highlighted general common effects. Our results suggest that urban transport infrastructures facilitate passive snail dispersal. At a local scale, corresponding to active dispersal, unfavourable habitats (wooded and impervious areas) isolate populations. This work upholds the use of replicated landscapes to increase the generalizability of landscape genetics results and shows how multiscale analyses provide insight into scale-dependent processes. © 2018 John Wiley & Sons Ltd.

  1. Evolutionary history and phylogeography of Encelia farinosa (Asteraceae) from the Sonoran, Mojave, and Peninsular Deserts.

    PubMed

    Fehlberg, Shannon D; Ranker, Tom A

    2009-02-01

    Pleistocene glaciations have had a profound influence on the genetic structure of plant species throughout the Northern Hemisphere because of range contractions, fragmentations, and expansions. Phylogeographic studies have contributed to our knowledge of this influence in several geographic regions of North America, however, very few phylogeographic studies have examined plant species in the Sonoran, Mojave, and Peninsular deserts. In this study, we used sequence data from the chloroplast DNA psbA-trnH intergenic spacer to obtain information on phylogeographic patterns among 310 individuals from 21 populations of Encelia farinosa ("brittlebush"; Asteraceae) across its range. We applied several population and spatial genetic analyses that allowed us to interpret our data with respect to Pleistocene climate change. These analyses indicate that E. farinosa displays patterns of genetic differentiation and geographic structuring consistent with postglacial range expansion. Populations of E. farinosa are characterized by distinct haplotype lineages significantly associated with geography. Centers of genetic diversity for the species occur in southwestern Arizona, the plains of Sonora, and Baja California Sur, all of which are putative sites of glacial refugia as predicted by analyses of macrofossil and pollen data. Nested clade analysis suggests that genetic structure in E. farinosa has been affected by past fragmentation followed by range expansion. Range expansion in several locations is further supported by significant departures from neutrality for values of Fu's F(S) and Tajima's D, and mismatch analyses.

  2. Low genetic diversity and strong population structure shaped by anthropogenic habitat fragmentation in a critically endangered primate, Trachypithecus leucocephalus.

    PubMed

    Wang, W; Qiao, Y; Li, S; Pan, W; Yao, M

    2017-06-01

    Habitat fragmentation may strongly impact population genetic structure and reduce the genetic diversity and viability of small and isolated populations. The white-headed langur (Trachypithecus leucocephalus) is a critically endangered primate species living in a highly fragmented and human-modified habitat in southern China. We examined the population genetic structure and genetic diversity of the species and investigated the environmental and anthropogenic factors that may have shaped its population structure. We used 214 unique multi-locus genotypes from 41 social groups across the main distribution area of T. leucocephalus, and found strong genetic structure and significant genetic differentiation among local populations. Our landscape genetic analyses using a causal modelling framework suggest that a large habitat gap and geographical distance represent the primary landscape elements shaping genetic structure, yet high levels of genetic differentiation also exist between patches separated by a small habitat gap or road. This is the first comprehensive study that has evaluated the population genetic structure and diversity of T. leucocephalus using nuclear markers. Our results indicate strong negative impacts of anthropogenic land modifications and habitat fragmentation on primate genetic connectivity between forest patches. Our analyses suggest that two management units of the species could be defined, and indicate that habitat continuity should be enforced and restored to reduce genetic isolation and enhance population viability.

  3. Barriers to the use of genetic information for the development of new epilepsy treatments.

    PubMed

    Ferraro, Thomas N

    2016-01-01

    Genetic analysis is providing new information on the biological basis of epilepsy at a rapid pace; this article identifies factors acting as major barriers to use of these data for therapy development. Disease heterogeneity is a primary obstacle since so many genes can cause or predispose to epilepsy and the clinical presentation of epilepsy is so diverse, thus making it difficult to define the most therapeutically relevant targets. Further, many epilepsy genes affect brain development, an observation that represents a barrier unto itself given the challenge of reversing or preventing genetically mediated alterations of brain pathway formation. Finally, the lack of appropriate models for testing new therapies is also recognized as a fundamental limitation. Overcoming these barriers will be aided by full characterization of the genetic landscape of epilepsy, elucidation of key pathway points for therapeutic intervention and creation of unique experimental models to validate results.

  4. Convergent functional genomics in addiction research - a translational approach to study candidate genes and gene networks.

    PubMed

    Spanagel, Rainer

    2013-01-01

    Convergent functional genomics (CFG) is a translational methodology that integrates in a Bayesian fashion multiple lines of evidence from studies in human and animal models to get a better understanding of the genetics of a disease or pathological behavior. Here the integration of data sets that derive from forward genetics in animals and genetic association studies including genome wide association studies (GWAS) in humans is described for addictive behavior. The aim of forward genetics in animals and association studies in humans is to identify mutations (e.g. SNPs) that produce a certain phenotype; i.e. "from phenotype to genotype". Most powerful in terms of forward genetics is combined quantitative trait loci (QTL) analysis and gene expression profiling in recombinant inbreed rodent lines or genetically selected animals for a specific phenotype, e.g. high vs. low drug consumption. By Bayesian scoring genomic information from forward genetics in animals is then combined with human GWAS data on a similar addiction-relevant phenotype. This integrative approach generates a robust candidate gene list that has to be functionally validated by means of reverse genetics in animals; i.e. "from genotype to phenotype". It is proposed that studying addiction relevant phenotypes and endophenotypes by this CFG approach will allow a better determination of the genetics of addictive behavior.

  5. Development of an innovative immunoassay for CP4EPSPS and Cry1AB genetically modified protein detection and quantification.

    PubMed

    Ermolli, M; Prospero, A; Balla, B; Querci, M; Mazzeo, A; Van Den Eede, G

    2006-09-01

    An innovative immunoassay, called enzyme-linked immunoabsorbant assay (ELISA) Reverse, based on a new conformation of the solid phase, was developed. The solid support was expressly designed to be immersed directly in liquid samples to detect the presence of protein targets. Its application is proposed in those cases where a large number of samples have to be screened simultaneously or when the simultaneous detection of different proteins is required. As a first application, a quantitative immunoassay for Cry1AB protein in genetically modified maize was optimized. The method was tested using genetically modified organism concentrations from 0.1 to 2.0%. The limit of detection and limit of quantitation of the method were determined as 0.0056 and 0.0168 (expressed as the percentage of genetically modified organisms content), respectively. A qualitative multiplex assay to assess the presence of two genetically modified proteins simultaneously was also established for the case of the Cry1AB and the CP4EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) present in genetically modified maize and soy, respectively.

  6. Gene Drive for Mosquito Control: Where Did It Come from and Where Are We Headed?

    PubMed Central

    Macias, Vanessa M.; Ohm, Johanna R.; Rasgon, Jason L.

    2017-01-01

    Mosquito-borne pathogens place an enormous burden on human health. The existing toolkit is insufficient to support ongoing vector-control efforts towards meeting disease elimination and eradication goals. The perspective that genetic approaches can potentially add a significant set of tools toward mosquito control is not new, but the recent improvements in site-specific gene editing with CRISPR/Cas9 systems have enhanced our ability to both study mosquito biology using reverse genetics and produce genetics-based tools. Cas9-mediated gene-editing is an efficient and adaptable platform for gene drive strategies, which have advantages over innundative release strategies for introgressing desirable suppression and pathogen-blocking genotypes into wild mosquito populations; until recently, an effective gene drive has been largely out of reach. Many considerations will inform the effective use of new genetic tools, including gene drives. Here we review the lengthy history of genetic advances in mosquito biology and discuss both the impact of efficient site-specific gene editing on vector biology and the resulting potential to deploy new genetic tools for the abatement of mosquito-borne disease. PMID:28869513

  7. Integrative analyses of leprosy susceptibility genes indicate a common autoimmune profile.

    PubMed

    Zhang, Deng-Feng; Wang, Dong; Li, Yu-Ye; Yao, Yong-Gang

    2016-04-01

    Leprosy is an ancient chronic infection in the skin and peripheral nerves caused by Mycobacterium leprae. The development of leprosy depends on genetic background and the immune status of the host. However, there is no systematic view focusing on the biological pathways, interaction networks and overall expression pattern of leprosy-related immune and genetic factors. To identify the hub genes in the center of leprosy genetic network and to provide an insight into immune and genetic factors contributing to leprosy. We retrieved all reported leprosy-related genes and performed integrative analyses covering gene expression profiling, pathway analysis, protein-protein interaction network, and evolutionary analyses. A list of 123 differentially expressed leprosy related genes, which were enriched in activation and regulation of immune response, was obtained in our analyses. Cross-disorder analysis showed that the list of leprosy susceptibility genes was largely shared by typical autoimmune diseases such as lupus erythematosus and arthritis, suggesting that similar pathways might be affected in leprosy and autoimmune diseases. Protein-protein interaction (PPI) and positive selection analyses revealed a co-evolution network of leprosy risk genes. Our analyses showed that leprosy associated genes constituted a co-evolution network and might undergo positive selection driven by M. leprae. We suggested that leprosy may be a kind of autoimmune disease and the development of leprosy is a matter of defect or over-activation of body immunity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Genetic variation in growth, carbon isotope discrimination, and foliar N concentration in Picea mariana: analyses from a half-diallel mating design using field-grown trees

    Treesearch

    Kurt H. Johnsen; Lawrence B. Flanagan; Dudley A. Huber; John E. Major

    1999-01-01

    The authors performed genetic analyses of growth, carbon isotope discrimination (?13C), and foliar N concentration using a half-diallel subset of a 7 × 7 complete diallel planted on three sites ranging in water availability. Trees were 22 years old. Heritabilities; general and...

  9. Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics.

    PubMed

    Beaumont, Robin N; Warrington, Nicole M; Cavadino, Alana; Tyrrell, Jessica; Nodzenski, Michael; Horikoshi, Momoko; Geller, Frank; Myhre, Ronny; Richmond, Rebecca C; Paternoster, Lavinia; Bradfield, Jonathan P; Kreiner-Møller, Eskil; Huikari, Ville; Metrustry, Sarah; Lunetta, Kathryn L; Painter, Jodie N; Hottenga, Jouke-Jan; Allard, Catherine; Barton, Sheila J; Espinosa, Ana; Marsh, Julie A; Potter, Catherine; Zhang, Ge; Ang, Wei; Berry, Diane J; Bouchard, Luigi; Das, Shikta; Hakonarson, Hakon; Heikkinen, Jani; Helgeland, Øyvind; Hocher, Berthold; Hofman, Albert; Inskip, Hazel M; Jones, Samuel E; Kogevinas, Manolis; Lind, Penelope A; Marullo, Letizia; Medland, Sarah E; Murray, Anna; Murray, Jeffrey C; Njølstad, Pål R; Nohr, Ellen A; Reichetzeder, Christoph; Ring, Susan M; Ruth, Katherine S; Santa-Marina, Loreto; Scholtens, Denise M; Sebert, Sylvain; Sengpiel, Verena; Tuke, Marcus A; Vaudel, Marc; Weedon, Michael N; Willemsen, Gonneke; Wood, Andrew R; Yaghootkar, Hanieh; Muglia, Louis J; Bartels, Meike; Relton, Caroline L; Pennell, Craig E; Chatzi, Leda; Estivill, Xavier; Holloway, John W; Boomsma, Dorret I; Montgomery, Grant W; Murabito, Joanne M; Spector, Tim D; Power, Christine; Järvelin, Marjo-Ritta; Bisgaard, Hans; Grant, Struan F A; Sørensen, Thorkild I A; Jaddoe, Vincent W; Jacobsson, Bo; Melbye, Mads; McCarthy, Mark I; Hattersley, Andrew T; Hayes, M Geoffrey; Frayling, Timothy M; Hivert, Marie-France; Felix, Janine F; Hyppönen, Elina; Lowe, William L; Evans, David M; Lawlor, Debbie A; Feenstra, Bjarke; Freathy, Rachel M

    2018-02-15

    Genome-wide association studies of birth weight have focused on fetal genetics, whereas relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86 577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother-child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P < 5 × 10-8. In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate that genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights. © The Author(s) 2018. Published by Oxford University Press.

  10. Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics

    PubMed Central

    Beaumont, Robin N; Warrington, Nicole M; Cavadino, Alana; Tyrrell, Jessica; Nodzenski, Michael; Horikoshi, Momoko; Geller, Frank; Myhre, Ronny; Richmond, Rebecca C; Paternoster, Lavinia; Bradfield, Jonathan P; Kreiner-Møller, Eskil; Huikari, Ville; Metrustry, Sarah; Lunetta, Kathryn L; Painter, Jodie N; Hottenga, Jouke-Jan; Allard, Catherine; Barton, Sheila J; Espinosa, Ana; Marsh, Julie A; Potter, Catherine; Zhang, Ge; Ang, Wei; Berry, Diane J; Bouchard, Luigi; Das, Shikta; Hakonarson, Hakon; Heikkinen, Jani; Helgeland, Øyvind; Hocher, Berthold; Hofman, Albert; Inskip, Hazel M; Jones, Samuel E; Kogevinas, Manolis; Lind, Penelope A; Marullo, Letizia; Medland, Sarah E; Murray, Anna; Murray, Jeffrey C; Njølstad, Pål R; Nohr, Ellen A; Reichetzeder, Christoph; Ring, Susan M; Ruth, Katherine S; Santa-Marina, Loreto; Scholtens, Denise M; Sebert, Sylvain; Sengpiel, Verena; Tuke, Marcus A; Vaudel, Marc; Weedon, Michael N; Willemsen, Gonneke; Wood, Andrew R; Yaghootkar, Hanieh; Muglia, Louis J; Bartels, Meike; Relton, Caroline L; Pennell, Craig E; Chatzi, Leda; Estivill, Xavier; Holloway, John W; Boomsma, Dorret I; Montgomery, Grant W; Murabito, Joanne M; Spector, Tim D; Power, Christine; Järvelin, Marjo-Ritta; Bisgaard, Hans; Grant, Struan F A; Sørensen, Thorkild I A; Jaddoe, Vincent W; Jacobsson, Bo; Melbye, Mads; McCarthy, Mark I; Hattersley, Andrew T; Hayes, M Geoffrey; Frayling, Timothy M; Hivert, Marie-France; Felix, Janine F; Hyppönen, Elina; Lowe, William L; Evans, David M; Lawlor, Debbie A; Feenstra, Bjarke

    2018-01-01

    Abstract Genome-wide association studies of birth weight have focused on fetal genetics, whereas relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86 577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother–child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P < 5 × 10−8. In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate that genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights. PMID:29309628

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dharmarajan, Guha; Beasley, James C.; Beatty, William S.

    Many aspects of parasite biology critically depend on their hosts, and understanding how host-parasite populations are co-structured can help improve our understanding of the ecology of parasites, their hosts, and host-parasite interactions. Here, this study utilized genetic data collected from raccoons (Procyon lotor), and a specialist parasite, the raccoon tick (Ixodes texanus), to test for genetic co-structuring of host-parasite populations at both landscape and host scales. At the landscape scale, our analyses revealed a significant correlation between genetic and geographic distance matrices (i.e., isolation by distance) in ticks, but not their hosts. While there are several mechanisms that could leadmore » to a stronger pattern of isolation by distance in tick vs. raccoon datasets, our analyses suggest that at least one reason for the above pattern is the substantial increase in statistical power (due to the ≈8-fold increase in sample size) afforded by sampling parasites. Host-scale analyses indicated higher relatedness between ticks sampled from related vs. unrelated raccoons trapped within the same habitat patch, a pattern likely driven by increased contact rates between related hosts. Lastly, by utilizing fine-scale genetic data from both parasites and hosts, our analyses help improve our understanding of epidemiology and host ecology.« less

  12. A Novel Tightly Regulated Gene Expression System for the Human Intestinal Symbiont Bacteroides thetaiotaomicron.

    PubMed

    Horn, Nikki; Carvalho, Ana L; Overweg, Karin; Wegmann, Udo; Carding, Simon R; Stentz, Régis

    2016-01-01

    There is considerable interest in studying the function of Bacteroides species resident in the human gastrointestinal (GI)-tract and the contribution they make to host health. Reverse genetics and protein expression techniques, such as those developed for well-characterized Escherichia coli cannot be applied to Bacteroides species as they and other members of the Bacteriodetes phylum have unique promoter structures. The availability of useful Bacteroides-specific genetic tools is therefore limited. Here we describe the development of an effective mannan-controlled gene expression system for Bacteroides thetaiotaomicron containing the mannan-inducible promoter-region of an α-1,2-mannosidase gene (BT_3784), a ribosomal binding site designed to modulate expression, a multiple cloning site to facilitate the cloning of genes of interest, and a transcriptional terminator. Using the Lactobacillus pepI as a reporter gene, mannan induction resulted in an increase of reporter activity in a time- and concentration-dependent manner with a wide range of activity. The endogenous BtcepA cephalosporinase gene was used to demonstrate the suitability of this novel expression system, enabling the isolation of a His-tagged version of BtCepA. We have also shown with experiments performed in mice that the system can be induced in vivo in the presence of an exogenous source of mannan. By enabling the controlled expression of endogenous and exogenous genes in B. thetaiotaomicron this novel inducer-dependent expression system will aid in defining the physiological role of individual genes and the functional analyses of their products.

  13. The NSs protein of tomato spotted wilt virus is required for persistent infection and transmission by Frankliniella occidentalis.

    PubMed

    Margaria, P; Bosco, L; Vallino, M; Ciuffo, M; Mautino, G C; Tavella, L; Turina, M

    2014-05-01

    Tomato spotted wilt virus (TSWV) is the type member of tospoviruses (genus Tospovirus), plant-infecting viruses that cause severe damage to ornamental and vegetable crops. Tospoviruses are transmitted by thrips in the circulative propagative mode. We generated a collection of NSs-defective TSWV isolates and showed that TSWV coding for truncated NSs protein could not be transmitted by Frankliniella occidentalis. Quantitative reverse transcription (RT)-PCR and immunostaining of individual insects detected the mutant virus in second-instar larvae and adult insects, demonstrating that insects could acquire and accumulate the NSs-defective virus. Nevertheless, adults carried a significantly lower viral load, resulting in the absence of transmission. Genome sequencing and analyses of reassortant isolates showed genetic evidence of the association between the loss of competence in transmission and the mutation in the NSs coding sequence. Our findings offer new insight into the TSWV-thrips interaction and Tospovirus pathogenesis and highlight, for the first time in the Bunyaviridae family, a major role for the S segment, and specifically for the NSs protein, in virulence and efficient infection in insect vector individuals. Our work is the first to show a role for the NSs protein in virus accumulation in the insect vector in the Bunyaviridae family: demonstration was obtained for the system TSWV-F. occidentalis, arguably one of the most damaging combination for vegetable crops. Genetic evidence of the involvement of the NSs protein in vector transmission was provided with multiple approaches.

  14. The NSs Protein of Tomato spotted wilt virus Is Required for Persistent Infection and Transmission by Frankliniella occidentalis

    PubMed Central

    Margaria, P.; Bosco, L.; Vallino, M.; Ciuffo, M.; Mautino, G. C.; Tavella, L.

    2014-01-01

    ABSTRACT Tomato spotted wilt virus (TSWV) is the type member of tospoviruses (genus Tospovirus), plant-infecting viruses that cause severe damage to ornamental and vegetable crops. Tospoviruses are transmitted by thrips in the circulative propagative mode. We generated a collection of NSs-defective TSWV isolates and showed that TSWV coding for truncated NSs protein could not be transmitted by Frankliniella occidentalis. Quantitative reverse transcription (RT)-PCR and immunostaining of individual insects detected the mutant virus in second-instar larvae and adult insects, demonstrating that insects could acquire and accumulate the NSs-defective virus. Nevertheless, adults carried a significantly lower viral load, resulting in the absence of transmission. Genome sequencing and analyses of reassortant isolates showed genetic evidence of the association between the loss of competence in transmission and the mutation in the NSs coding sequence. Our findings offer new insight into the TSWV-thrips interaction and Tospovirus pathogenesis and highlight, for the first time in the Bunyaviridae family, a major role for the S segment, and specifically for the NSs protein, in virulence and efficient infection in insect vector individuals. IMPORTANCE Our work is the first to show a role for the NSs protein in virus accumulation in the insect vector in the Bunyaviridae family: demonstration was obtained for the system TSWV-F. occidentalis, arguably one of the most damaging combination for vegetable crops. Genetic evidence of the involvement of the NSs protein in vector transmission was provided with multiple approaches. PMID:24623427

  15. Genetic overlap between diagnostic subtypes of ischemic stroke.

    PubMed

    Holliday, Elizabeth G; Traylor, Matthew; Malik, Rainer; Bevan, Steve; Falcone, Guido; Hopewell, Jemma C; Cheng, Yu-Ching; Cotlarciuc, Ioana; Bis, Joshua C; Boerwinkle, Eric; Boncoraglio, Giorgio B; Clarke, Robert; Cole, John W; Fornage, Myriam; Furie, Karen L; Ikram, M Arfan; Jannes, Jim; Kittner, Steven J; Lincz, Lisa F; Maguire, Jane M; Meschia, James F; Mosley, Thomas H; Nalls, Mike A; Oldmeadow, Christopher; Parati, Eugenio A; Psaty, Bruce M; Rothwell, Peter M; Seshadri, Sudha; Scott, Rodney J; Sharma, Pankaj; Sudlow, Cathie; Wiggins, Kerri L; Worrall, Bradford B; Rosand, Jonathan; Mitchell, Braxton D; Dichgans, Martin; Markus, Hugh S; Levi, Christopher; Attia, John; Wray, Naomi R

    2015-03-01

    Despite moderate heritability, the phenotypic heterogeneity of ischemic stroke has hampered gene discovery, motivating analyses of diagnostic subtypes with reduced sample sizes. We assessed evidence for a shared genetic basis among the 3 major subtypes: large artery atherosclerosis (LAA), cardioembolism, and small vessel disease (SVD), to inform potential cross-subtype analyses. Analyses used genome-wide summary data for 12 389 ischemic stroke cases (including 2167 LAA, 2405 cardioembolism, and 1854 SVD) and 62 004 controls from the Metastroke consortium. For 4561 cases and 7094 controls, individual-level genotype data were also available. Genetic correlations between subtypes were estimated using linear mixed models and polygenic profile scores. Meta-analysis of a combined LAA-SVD phenotype (4021 cases and 51 976 controls) was performed to identify shared risk alleles. High genetic correlation was identified between LAA and SVD using linear mixed models (rg=0.96, SE=0.47, P=9×10(-4)) and profile scores (rg=0.72; 95% confidence interval, 0.52-0.93). Between LAA and cardioembolism and SVD and cardioembolism, correlation was moderate using linear mixed models but not significantly different from zero for profile scoring. Joint meta-analysis of LAA and SVD identified strong association (P=1×10(-7)) for single nucleotide polymorphisms near the opioid receptor μ1 (OPRM1) gene. Our results suggest that LAA and SVD, which have been hitherto treated as genetically distinct, may share a substantial genetic component. Combined analyses of LAA and SVD may increase power to identify small-effect alleles influencing shared pathophysiological processes. © 2015 American Heart Association, Inc.

  16. Persistence of Animal and Human Glycopeptide-Resistant Enterococci on Two Norwegian Poultry Farms Formerly Exposed to Avoparcin Is Associated with a Widespread Plasmid-Mediated vanA Element within a Polyclonal Enterococcus faecium Population

    PubMed Central

    Johnsen, P. J.; Østerhus, J. I.; Sletvold, H.; Sørum, M.; Kruse, H.; Nielsen, K.; Simonsen, G. S.; Sundsfjord, A.

    2005-01-01

    The evolutionary processes responsible for the long-term persistence of glycopeptide-resistant Enterococcus faecium (GREF) in nonselective environments were addressed by genetic analyses of E. faecium populations in animals and humans on two Norwegian poultry farms that were previously exposed to avoparcin. A total of 222 fecal GREF (n = 136) and glycopeptide-susceptible (n = 86) E. faecium (GSEF) isolates were obtained from farmers and poultry on three separate occasions in 1998 and 1999. Pulsed-field gel electrophoresis (PFGE) and plasmid DNA analyses discerned 22 GREF and 32 GSEF PFGE types within shifting polyclonal animal and human E. faecium populations and indicated the presence of transferable plasmid-mediated vanA resistance, respectively. Examples of dominant, persistent GREF PFGE types supported the notion that environmentally well-adapted GREF types may counteract the reversal of resistance. PFGE analyses, sequencing of the purK housekeeping gene, and partial typing of vanA-containing Tn1546 suggested a common animal and human reservoir of glycopeptide resistance. Inverse PCR amplification and sequence analyses targeting the right end of the Tn1546-plasmid junction fragment strongly indicated the presence of a common single Tn1546-plasmid-mediated element in 20 of 22 GREF PFGE types. This observation was further strengthened by vanY-vanZ hybridization analyses of plasmid DNAs as well as the finding of a physical linkage between Tn1546 and a putative postsegregation killing system for seven GREF PFGE types. In conclusion, our observations suggest that the molecular unit of persistence of glycopeptide resistance is a common mobile plasmid-mediated vanA-containing element within a polyclonal GREF population that changes over time. In addition, we propose that “plasmid addiction systems” may contribute to the persistence of GREF in nonselective environments. PMID:15640183

  17. Positional cloning in mice and its use for molecular dissection of inflammatory arthritis.

    PubMed

    Abe, Koichiro; Yu, Philipp

    2009-02-01

    One of the upcoming next quests in the field of genetics might be molecular dissection of the genetic and environmental components of human complex diseases. In humans, however, there are certain experimental limitations for identification of a single component of the complex interactions by genetic analyses. Experimental animals offer simplified models for genetic and environmental interactions in human complex diseases. In particular, mice are the best mammalian models because of a long history and ample experience for genetic analyses. Forward genetics, which includes genetic screen and subsequent positional cloning of the causative genes, is a powerful strategy to dissect a complex phenomenon without preliminarily molecular knowledge of the process. In this review, first, we describe a general scheme of positional cloning in mice. Next, recent accomplishments on the patho-mechanisms of inflammatory arthritis by forward genetics approaches are introduced; Positional cloning effort for skg, Ali5, Ali18, cmo, and lupo mutants are provided as examples for the application to human complex diseases. As seen in the examples, the identification of genetic factors by positional cloning in the mouse have potential in solving molecular complexity of gene-environment interactions in human complex diseases.

  18. Genetic Diversity and Genetic Relationships of Purple Willow (Salix purpurea L.) from Natural Locations

    PubMed Central

    Prinz, Kathleen; Przyborowski, Jerzy A.

    2017-01-01

    In this study, the genetic diversity and structure of 13 natural locations of Salix purpurea were determined with the use of AFLP (amplified length polymorphism), RAPD (randomly amplified polymorphic DNA) and ISSR (inter-simple sequence repeats). The genetic relationships between 91 examined S. purpurea genotypes were evaluated by analyses of molecular variance (AMOVA), principal coordinates analyses (PCoA) and UPGMA (unweighted pair group method with arithmetic mean) dendrograms for both single marker types and a combination of all marker systems. The locations were assigned to distinct regions and the analysis of AMOVA (analysis of molecular variance) revealed a high genetic diversity within locations. The genetic diversity between both regions and locations was relatively low, but typical for many woody plant species. The results noted for the analyzed marker types were generally comparable with few differences in the genetic relationships among S. purpurea locations. A combination of several marker systems could thus be ideally suited to understand genetic diversity patterns of the species. This study makes the first attempt to broaden our knowledge of the genetic parameters of the purple willow (S. purpurea) from natural location for research and several applications, inter alia breeding purposes. PMID:29301207

  19. Genetic Structure of First Nation Communities in the Pacific Northwest.

    PubMed

    Hughes, Cris E; Rogers, Mary P; Owings, Amanda C; Petzelt, Barbara; Mitchell, Joycelynn; Harry, Harold; Williams, Theresa; Goldberg, Dena; Labuda, Damian; Smith, David Glenn; Cybulski, Jerome S; Malhi, Ripan S

    2016-10-01

    This study presents genetic data for nine Native American populations from northern North America. Analyses of genetic variation focus on the Pacific Northwest (PNW). Using mitochondrial, Y chromosomal, and autosomal DNA variants, we aimed to more closely address the relationships of geography and language with present genetic diversity among the regional PNW Native American populations. Patterns of genetic diversity exhibited by the three genetic systems were consistent with our hypotheses: genetic variation was more strongly explained by geographic proximity than by linguistic structure. Our findings were corroborated through a variety on analytic approaches, with the unrooted trees for the three genetic systems consistently separating inland from coastal PNW populations. Furthermore, analyses of molecular variance support the trends exhibited by the unrooted trees, with geographic partitioning of PNW populations (F CT = 19.43%, p = 0.010 ± 0.009) accounting for over twice as much of the observed genetic variation as linguistic partitioning of the same populations (F CT = 9.15%, p = 0.193 ± 0.013). These findings demonstrate a consensus with previous PNW population studies examining the relationships of genome-wide variation, mitochondrial haplogroup frequencies, and skeletal morphology with geography and language.

  20. [Molecular and immunohistochemical diagnostics in melanoma].

    PubMed

    Schilling, B; Griewank, K G

    2016-07-01

    To provide appropriate therapy and follow-up to patients with malignant melanoma, proper diagnostics are of critical importance. Targeted therapy of advanced melanoma is based on the molecular genetic analyses of tumor tissue. In addition, sequencing of genes and other genetic approaches can provide insight into the origin of melanocytic tumors and can aid in distinguishing benign from malignant lesions. In this regard, spizoid neoplasms remain a challenging entity. Aside from genetic analyses of tumor tissue, immunohistochemistry remains an essential tool in melanoma diagnostics and TNM classification. With new immunotherapies being approved for advanced melanoma, immunohistochemistry to determine PD-L1 expression has gained clinical interest. While PD-L1 expression is associated with response to PD-1 blockade, a substantial number of patients without PD-L1 expression can still experience tumor remission upon treatment. In this review, current and future developments in melanoma diagnostics with regard to molecular genetics and immunohistochemistry are summarized. The utilization of such analyses in clinical decision making is also discussed.

  1. Evidence of new species for malaria vector Anopheles nuneztovari sensu lato in the Brazilian Amazon region.

    PubMed

    Scarpassa, Vera Margarete; Cunha-Machado, Antonio Saulo; Saraiva, José Ferreira

    2016-04-12

    Anopheles nuneztovari sensu lato comprises cryptic species in northern South America, and the Brazilian populations encompass distinct genetic lineages within the Brazilian Amazon region. This study investigated, based on two molecular markers, whether these lineages might actually deserve species status. Specimens were collected in five localities of the Brazilian Amazon, including Manaus, Careiro Castanho and Autazes, in the State of Amazonas; Tucuruí, in the State of Pará; and Abacate da Pedreira, in the State of Amapá, and analysed for the COI gene (Barcode region) and 12 microsatellite loci. Phylogenetic analyses were performed using the maximum likelihood (ML) approach. Intra and inter samples genetic diversity were estimated using population genetics analyses, and the genetic groups were identified by means of the ML, Bayesian and factorial correspondence analyses and the Bayesian analysis of population structure. The Barcode region dataset (N = 103) generated 27 haplotypes. The haplotype network suggested three lineages. The ML tree retrieved five monophyletic groups. Group I clustered all specimens from Manaus and Careiro Castanho, the majority of Autazes and a few from Abacate da Pedreira. Group II clustered most of the specimens from Abacate da Pedreira and a few from Autazes and Tucuruí. Group III clustered only specimens from Tucuruí (lineage III), strongly supported (97 %). Groups IV and V clustered specimens of A. nuneztovari s.s. and A. dunhami, strongly (98 %) and weakly (70 %) supported, respectively. In the second phylogenetic analysis, the sequences from GenBank, identified as A. goeldii, clustered to groups I and II, but not to group III. Genetic distances (Kimura-2 parameters) among the groups ranged from 1.60 % (between I and II) to 2.32 % (between I and III). Microsatellite data revealed very high intra-population genetic variability. Genetic distances showed the highest and significant values (P = 0.005) between Tucuruí and all the other samples, and between Abacate da Pedreira and all the other samples. Genetic distances, Bayesian (Structure and BAPS) analyses and FCA suggested three distinct biological groups, supporting the barcode region results. The two markers revealed three genetic lineages for A. nuneztovari s.l. in the Brazilian Amazon region. Lineages I and II may represent genetically distinct groups or species within A. goeldii. Lineage III may represent a new species, distinct from the A. goeldii group, and may be the most ancestral in the Brazilian Amazon. They may have differences in Plasmodium susceptibility and should therefore be investigated further.

  2. Hierarchical structure of the Sicilian goats revealed by Bayesian analyses of microsatellite information.

    PubMed

    Siwek, M; Finocchiaro, R; Curik, I; Portolano, B

    2011-02-01

    Genetic structure and relationship amongst the main goat populations in Sicily (Girgentana, Derivata di Siria, Maltese and Messinese) were analysed using information from 19 microsatellite markers genotyped on 173 individuals. A posterior Bayesian approach implemented in the program STRUCTURE revealed a hierarchical structure with two clusters at the first level (Girgentana vs. Messinese, Derivata di Siria and Maltese), explaining 4.8% of variation (amovaФ(ST) estimate). Seven clusters nested within these first two clusters (further differentiations of Girgentana, Derivata di Siria and Maltese), explaining 8.5% of variation (amovaФ(SC) estimate). The analyses and methods applied in this study indicate their power to detect subtle population structure. © 2010 The Authors, Animal Genetics © 2010 Stichting International Foundation for Animal Genetics.

  3. Amino acid substitutions in the neuraminidase protein of an H9N2 avian influenza virus affect its airborne transmission in chickens.

    PubMed

    Lv, Jing; Wei, Liangmeng; Yang, Yan; Wang, Bingxiao; Liang, Wei; Gao, Yuwei; Xia, Xianzhu; Gao, Lili; Cai, Yumei; Hou, Peiqiang; Yang, Huili; Wang, Airong; Huang, Rong; Gao, Jing; Chai, Tongjie

    2015-04-18

    Cases of H9N2 avian influenza virus (AIV) in poultry are increasing throughout many Eurasian countries, and co-infections with other pathogens have resulted in high morbidity and mortality in poultry. Few studies have investigated the genetic factors of virus airborne transmission which determine the scope of this epidemic. In this study, we used specific-pathogen-free chickens housed in isolators to investigate the airborne transmissibility of five recombinant H9N2 AIV rescued by reverse genetic technology. The results show that airborne transmission of A/Chicken/Shandong/01/2008 (SD01) virus was related to the neuraminidase (NA) gene, and four amino acid mutations (D368E, S370L, E313K and G381D) within the head region of the SD01 NA, reduced virus replication in the respiratory tract of chickens, reduced virus NA activity, and resulted in a loss of airborne transmission ability in chickens. Similarly, reverse mutations of these four amino acids in the NA protein of r01/NASS virus, conferred an airborne transmission ability to the recombinant virus. We conclude that these four NA residues may be significant genetic markers for evaluating potential disease outbreak of H9N2 AIV, and propose that immediate attention should be paid to the airborne transmission of this virus.

  4. Single-Vector, Single-Injection Recombinant Vesicular Stomatitis Virus Vaccines Against High-Containment Viruses.

    PubMed

    Whitt, Michael A; Geisbert, Thomas W; Mire, Chad E

    2016-01-01

    There are many avenues for making an effective vaccine against viruses. Depending on the virus these can include one of the following: inactivation of whole virions; attenuation of viruses; recombinant viral proteins; non-replication-competent virus particles; or surrogate virus vector systems such as vesicular stomatitis virus (VSV). VSV is a prototypic enveloped animal virus that has been used for over four decades to study virus replication, entry, and assembly due to its ability to replicate to high titers in a wide variety of mammalian and insect cells. The use of reverse genetics to recover infectious and single-cycle replicating VSV from plasmid DNA transfected in cell culture began a revolution in the study of recombinant VSV (rVSV). This platform can be manipulated to study the viral genetic sequences and proteins important in the virus life cycle. Additionally, foreign genes can be inserted between naturally occurring or generated start/stop signals and polyadenylation sites within the VSV genome. VSV has a tolerance for foreign gene expression which has led to numerous rVSVs reported in the literature. Of particular interest are the very effective single-dose rVSV vaccine vectors against high-containment viruses such as filoviruses, henipaviruses, and arenaviruses. Herein we describe the methods for selecting foreign antigenic genes, selecting the location within the VSV genome for insertion, generation of rVSV using reverse genetics, and proper vaccine study designs.

  5. A doxycycline-dependent human immunodeficiency virus type 1 replicates in vivo without inducing CD4+ T-cell depletion

    PubMed Central

    Legrand, Nicolas; van der Velden, Gisela J.; Fang, Raphaël Ho Tsong; Douaisi, Marc; Weijer, Kees; Das, Atze T.; Blom, Bianca; Uittenbogaart, Christel H.; Berkhout, Ben

    2012-01-01

    A novel genetic approach for the control of virus replication was used for the design of a conditionally replicating human immunodeficiency virus (HIV) variant, HIV-rtTA. HIV-rtTA gene expression and virus replication are strictly dependent on the presence of a non-toxic effector molecule, doxycycline (dox), and thus can be turned on and off at will in a graded and reversible manner. The in vivo replication capacity, pathogenicity and genetic stability of this HIV-rtTA variant were evaluated in a humanized mouse model of haematopoiesis that harbours lymphoid and myeloid components of the human immune system (HIS). Infection of dox-fed BALB Rag/γc HIS (BRG-HIS) mice with HIV-rtTA led to the establishment of a productive infection without CD4+ T-cell depletion. The virus did not show any sign of escape from dox control for up to 10 weeks after the onset of infection. No reversion towards a functional Tat–transactivating responsive (TAR) RNA element axis was observed, confirming the genetic stability of the HIV-rtTA variant in vivo. These results demonstrate the proof of concept that HIV-rtTA replicates efficiently in vivo. HIV-rtTA is a promising tool for fundamental research to study virus–host interactions in vivo in a controlled fashion. PMID:22647372

  6. [Methods of identification and assessment of safety of genetically modified microorganisms in manufacture food production].

    PubMed

    Khovaev, A A; Nesterenko, L N; Naroditskiĭ, B S

    2011-01-01

    Methods of identification of genetically modified microorganisms (GMM), used in manufacture food on control probes are presented. Results of microbiological and molecular and genetic analyses of food products and their components important in microbiological and genetic expert examination of GMM in foods are considered. Examination of biosafety of GMM are indicated.

  7. Molecular mechanisms in response to phosphate starvation in rice.

    PubMed

    Panigrahy, Madhusmita; Rao, D Nageswara; Sarla, N

    2009-01-01

    Phosphorus is one of the most important elements that significantly affect plant growth and metabolism. Among the macro-nutrients, phosphorus is the least available to the plants as major phosphorus content of the fertiliser is sorbed by soil particles. An increased knowledge of the regulatory mechanisms controlling plant's phosphorus status is vital for improving phosphorus uptake and P-use efficiency and for reducing excessive input of fertilisers, while maintaining an acceptable yield. Phosphorus use efficiency has been studied using forward and reverse genetic analyses of mutants, quantitative genomic approaches and whole plant physiology but all these studies need to be integrated for a clearer understanding. We provide a critical overview on the molecular mechanisms and the components involved in the plant during phosphorus starvation. Then we summarize the information available on the genes and QTLs involved in phosphorus signalling and also the methods to estimate total phosphate in plant tissue. Also, an effort is made to build a comprehensive picture of phosphorus uptake, homeostasis, assimilation, remobilization, its deposition in the grain and its interaction with other micro- and macro-nutrients as well as phytohormones.

  8. Polysaccharide Utilization Loci: Fueling Microbial Communities

    PubMed Central

    Grondin, Julie M.; Tamura, Kazune; Déjean, Guillaume

    2017-01-01

    ABSTRACT The complex carbohydrates of terrestrial and marine biomass represent a rich nutrient source for free-living and mutualistic microbes alike. The enzymatic saccharification of these diverse substrates is of critical importance for fueling a variety of complex microbial communities, including marine, soil, ruminant, and monogastric microbiota. Consequently, highly specific carbohydrate-active enzymes, recognition proteins, and transporters are enriched in the genomes of certain species and are of critical importance in competitive environments. In Bacteroidetes bacteria, these systems are organized as polysaccharide utilization loci (PULs), which are strictly regulated, colocalized gene clusters that encode enzyme and protein ensembles required for the saccharification of complex carbohydrates. This review provides historical perspectives and summarizes key findings in the study of these systems, highlighting a critical shift from sequence-based PUL discovery to systems-based analyses combining reverse genetics, biochemistry, enzymology, and structural biology to precisely illuminate the molecular mechanisms underpinning PUL function. The ecological implications of dynamic PUL deployment by key species in the human gastrointestinal tract are explored, as well as the wider distribution of these systems in other gut, terrestrial, and marine environments. PMID:28138099

  9. Careful with That Axe, Gene, Genome Perturbation after a PEG-Mediated Protoplast Transformation in Fusarium verticillioides.

    PubMed

    Scala, Valeria; Grottoli, Alessandro; Aiese Cigliano, Riccardo; Anzar, Irantzu; Beccaccioli, Marzia; Fanelli, Corrado; Dall'Asta, Chiara; Battilani, Paola; Reverberi, Massimo; Sanseverino, Walter

    2017-05-31

    Fusarium verticillioides causes ear rot disease in maize and its contamination with fumonisins, mycotoxins harmful for humans and livestock. Lipids, and their oxidized forms, may drive the fate of this disease. In a previous study, we have explored the role of oxylipins in this interaction by deleting by standard transformation procedures a linoleate diol synthase-coding gene, lds1 , in F. verticillioides . A profound phenotypic diversity in the mutants generated has prompted us to investigate more deeply the whole genome of two lds1 -deleted strains. Bioinformatics analyses pinpoint significant differences in the genome sequences emerged between the wild type and the lds1 -mutants further than those trivially attributable to the deletion of the lds1 locus, such as single nucleotide polymorphisms, small deletion/insertion polymorphisms and structural variations. Results suggest that the effect of a (theoretically) punctual transformation event might have enhanced the natural mechanisms of genomic variability and that transformation practices, commonly used in the reverse genetics of fungi, may potentially be responsible for unexpected, stochastic and henceforth off-target rearrangements throughout the genome.

  10. Careful with That Axe, Gene, Genome Perturbation after a PEG-Mediated Protoplast Transformation in Fusarium verticillioides

    PubMed Central

    Scala, Valeria; Grottoli, Alessandro; Aiese Cigliano, Riccardo; Anzar, Irantzu; Beccaccioli, Marzia; Fanelli, Corrado; Dall’Asta, Chiara; Battilani, Paola; Reverberi, Massimo; Sanseverino, Walter

    2017-01-01

    Fusarium verticillioides causes ear rot disease in maize and its contamination with fumonisins, mycotoxins harmful for humans and livestock. Lipids, and their oxidized forms, may drive the fate of this disease. In a previous study, we have explored the role of oxylipins in this interaction by deleting by standard transformation procedures a linoleate diol synthase-coding gene, lds1, in F. verticillioides. A profound phenotypic diversity in the mutants generated has prompted us to investigate more deeply the whole genome of two lds1-deleted strains. Bioinformatics analyses pinpoint significant differences in the genome sequences emerged between the wild type and the lds1-mutants further than those trivially attributable to the deletion of the lds1 locus, such as single nucleotide polymorphisms, small deletion/insertion polymorphisms and structural variations. Results suggest that the effect of a (theoretically) punctual transformation event might have enhanced the natural mechanisms of genomic variability and that transformation practices, commonly used in the reverse genetics of fungi, may potentially be responsible for unexpected, stochastic and henceforth off-target rearrangements throughout the genome. PMID:28561789

  11. Association between Adult Height and Risk of Colorectal, Lung, and Prostate Cancer: Results from Meta-analyses of Prospective Studies and Mendelian Randomization Analyses

    PubMed Central

    Khankari, Nikhil K.; Shu, Xiao-Ou; Wen, Wanqing; Kraft, Peter; Lindström, Sara; Peters, Ulrike; Schildkraut, Joellen; Schumacher, Fredrick; Bofetta, Paolo; Risch, Angela; Bickeböller, Heike; Amos, Christopher I.; Easton, Douglas; Gruber, Stephen B.; Haiman, Christopher A.; Hunter, David J.; Chanock, Stephen J.; Pierce, Brandon L.; Zheng, Wei

    2016-01-01

    Background Observational studies examining associations between adult height and risk of colorectal, prostate, and lung cancers have generated mixed results. We conducted meta-analyses using data from prospective cohort studies and further carried out Mendelian randomization analyses, using height-associated genetic variants identified in a genome-wide association study (GWAS), to evaluate the association of adult height with these cancers. Methods and Findings A systematic review of prospective studies was conducted using the PubMed, Embase, and Web of Science databases. Using meta-analyses, results obtained from 62 studies were summarized for the association of a 10-cm increase in height with cancer risk. Mendelian randomization analyses were conducted using summary statistics obtained for 423 genetic variants identified from a recent GWAS of adult height and from a cancer genetics consortium study of multiple cancers that included 47,800 cases and 81,353 controls. For a 10-cm increase in height, the summary relative risks derived from the meta-analyses of prospective studies were 1.12 (95% CI 1.10, 1.15), 1.07 (95% CI 1.05, 1.10), and 1.06 (95% CI 1.02, 1.11) for colorectal, prostate, and lung cancers, respectively. Mendelian randomization analyses showed increased risks of colorectal (odds ratio [OR] = 1.58, 95% CI 1.14, 2.18) and lung cancer (OR = 1.10, 95% CI 1.00, 1.22) associated with each 10-cm increase in genetically predicted height. No association was observed for prostate cancer (OR = 1.03, 95% CI 0.92, 1.15). Our meta-analysis was limited to published studies. The sample size for the Mendelian randomization analysis of colorectal cancer was relatively small, thus affecting the precision of the point estimate. Conclusions Our study provides evidence for a potential causal association of adult height with the risk of colorectal and lung cancers and suggests that certain genetic factors and biological pathways affecting adult height may also affect the risk of these cancers. PMID:27598322

  12. Dispersal, mating events and fine-scale genetic structure in the lesser flat-headed bats.

    PubMed

    Hua, Panyu; Zhang, Libiao; Guo, Tingting; Flanders, Jon; Zhang, Shuyi

    2013-01-01

    Population genetic structure has important consequences in evolutionary processes and conservation genetics in animals. Fine-scale population genetic structure depends on the pattern of landscape, the permanent movement of individuals, and the dispersal of their genes during temporary mating events. The lesser flat-headed bat (Tylonycteris pachypus) is a nonmigratory Asian bat species that roosts in small groups within the internodes of bamboo stems and the habitats are fragmented. Our previous parentage analyses revealed considerable extra-group mating in this species. To assess the spatial limits and sex-biased nature of gene flow in the same population, we used 20 microsatellite loci and mtDNA sequencing of the ND2 gene to quantify genetic structure among 54 groups of adult flat-headed bats, at nine localities in South China. AMOVA and F(ST) estimates revealed significant genetic differentiation among localities. Alternatively, the pairwise F(ST) values among roosting groups appeared to be related to the incidence of associated extra-group breeding, suggesting the impact of mating events on fine-scale genetic structure. Global spatial autocorrelation analyses showed positive genetic correlation for up to 3 km, indicating the role of fragmented habitat and the specialized social organization as a barrier in the movement of individuals among bamboo forests. The male-biased dispersal pattern resulted in weaker spatial genetic structure between localities among males than among females, and fine-scale analyses supported that relatedness levels within internodes were higher among females than among males. Finally, only females were more related to their same sex roost mates than to individuals from neighbouring roosts, suggestive of natal philopatry in females.

  13. Landscape genetics of leaf-toed geckos in the tropical dry forest of northern Mexico.

    PubMed

    Blair, Christopher; Jiménez Arcos, Victor H; Mendez de la Cruz, Fausto R; Murphy, Robert W

    2013-01-01

    Habitat fragmentation due to both natural and anthropogenic forces continues to threaten the evolution and maintenance of biological diversity. This is of particular concern in tropical regions that are experiencing elevated rates of habitat loss. Although less well-studied than tropical rain forests, tropical dry forests (TDF) contain an enormous diversity of species and continue to be threatened by anthropogenic activities including grazing and agriculture. However, little is known about the processes that shape genetic connectivity in species inhabiting TDF ecosystems. We adopt a landscape genetic approach to understanding functional connectivity for leaf-toed geckos (Phyllodactylus tuberculosus) at multiple sites near the northernmost limit of this ecosystem at Alamos, Sonora, Mexico. Traditional analyses of population genetics are combined with multivariate GIS-based landscape analyses to test hypotheses on the potential drivers of spatial genetic variation. Moderate levels of within-population diversity and substantial levels of population differentiation are revealed by FST and Dest. Analyses using structure suggest the occurrence of from 2 to 9 genetic clusters depending on the model used. Landscape genetic analysis suggests that forest cover, stream connectivity, undisturbed habitat, slope, and minimum temperature of the coldest period explain more genetic variation than do simple Euclidean distances. Additional landscape genetic studies throughout TDF habitat are required to understand species-specific responses to landscape and climate change and to identify common drivers. We urge researchers interested in using multivariate distance methods to test for, and report, significant correlations among predictor matrices that can impact results, particularly when adopting least-cost path approaches. Further investigation into the use of information theoretic approaches for model selection is also warranted.

  14. An overview of C. elegans biology.

    PubMed

    Strange, Kevin

    2006-01-01

    The establishment of Caenorhabditis elegans as a "model organism" began with the efforts of Sydney Brenner in the early 1960s. Brenner's focus was to find a suitable animal model in which the tools of genetic analysis could be used to define molecular mechanisms of development and nervous system function. C. elegans provides numerous experimental advantages for such studies. These advantages include a short life cycle, production of large numbers of offspring, easy and inexpensive laboratory culture, forward and reverse genetic tractability, and a relatively simple anatomy. This chapter will provide a brief overview of C. elegans biology.

  15. Admixture in Latin America.

    PubMed

    Adhikari, Kaustubh; Mendoza-Revilla, Javier; Chacón-Duque, Juan Camilo; Fuentes-Guajardo, Macarena; Ruiz-Linares, Andrés

    2016-12-01

    Latin Americans arguably represent the largest recently admixed populations in the world. This reflects a history of massive settlement by immigrants (mostly Europeans and Africans) and their variable admixture with Natives, starting in 1492. This process resulted in the population of Latin America showing an extensive genetic and phenotypic diversity. Here we review how genetic analyses are being applied to examine the demographic history of this population, including patterns of mating, population structure and ancestry. The admixture history of Latin America, and the resulting extensive diversity of the region, represents a natural experiment offering an advantageous setting for genetic association studies. We review how recent analyses in Latin Americans are contributing to elucidating the genetic architecture of human complex traits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Bodies of science and law: forensic DNA profiling, biological bodies, and biopower.

    PubMed

    Toom, Victor

    2012-01-01

    How is jurisdiction transferred from an individual's biological body to agents of power such as the police, public prosecutors, and the judiciary, and what happens to these biological bodies when transformed from private into public objects? These questions are examined by analysing bodies situated at the intersection of science and law. More specifically, the transformation of ‘private bodies’ into ‘public bodies’ is analysed by going into the details of forensic DNA profiling in the Dutch jurisdiction. It will be argued that various ‘forensic genetic practices’ enact different forensic genetic bodies'. These enacted forensic genetic bodies are connected with various infringements of civil rights, which become articulated in exploring these forensic genetic bodies’‘normative registers’.

  17. Comparison of preparation techniques for CoFeNb/CNTs catalyst

    NASA Astrophysics Data System (ADS)

    Hamid, Hami Haslinda; Zabidi, Noor Asmawati Mohd; Gholami, Zahra; Shaharun, Maizatul Shima

    2016-11-01

    CoFe-based catalysts were prepared using reverse-microemulsion and co-impregnation method. Effect of different preparation techniques on morphology and physiochemical properties of the FTS catalyst CoFeNb/CNTs was investigated. TEM analyses show that the morphological properties of catalysts were affected by preparation techniques. Reverse-micremulsion and co-impregnation method resulted in average particle size of 5.61 nm and 6.20 nm respectively. CoFe-impregnation catalyst is reducible at lower temperature compared to that of reverse-microemulsion catalyst. Acid and thermal treatment of CNTs created defects onto CNTs-support.

  18. Recoding structural glycoprotein E2 in classical swine fever virus (CSFV) produces complete virus attenuation in swine and protects infected animals against disease

    USDA-ARS?s Scientific Manuscript database

    Controlling classical swine fever (CSF) involves vaccination in endemic regions and preemptive slaughter of infected swine herds during epidemics. Generally, live attenuated vaccines induce solid immunity. Using diverse approaches, reverse genetics has been useful in developing classical swine fever...

  19. Diet-influenced chromatin modification and expression of chemopreventive genes by the soy peptide, lunasin

    USDA-ARS?s Scientific Manuscript database

    Epigenetic silencing of tumor suppressors and pro-apoptosis genes in cancer cells, unlike genetic mutations, can potentially be reversed by the use of DNA demethylating agents (to remove methylation marks on the DNA) and HDAC inhibitors (to increase histone acetylation). It is now well established t...

  20. PhOBF1, a petunia OCS element binding factor, plays an important role in antiviral RNA silencing

    USDA-ARS?s Scientific Manuscript database

    Virus-induced gene silencing (VIGS) is a common strategy of reverse genetics for characterizing function of genes in plant. The detailed mechanism governing RNA silencing efficiency triggered by virus is largely unclear. Here, we revealed that a petunia (Petunia hybrida) ocs element binding factor, ...

  1. Evidence of a tick RNAi pathway by comparative genomics and reverse genetics screen of targets with known loss-of-function phenotypes in Drosophila

    USDA-ARS?s Scientific Manuscript database

    The Arthropods are a diverse group of organisms including Chelicerata (ticks, mites, spiders), Crustacea (crabs, shrimps), and Insecta (flies, mosquitoes, beetles, silkworm). The cattle tick, Rhipicephalus (Boophilus) microplus, is an economically significant ectoparasite of cattle affecting cattle...

  2. 77 FR 54584 - Final Action Under the NIH Guidelines for Research Involving Recombinant DNA Molecules (NIH...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-05

    ... National Institutes of Health (NIH) Office of Biotechnology Activities, Office of Science Policy (NIH/OBA... in the life sciences, such as directed molecular evolution and viral reverse genetics, has the... synthetic biology), and (2) a recommendation from the National Science Advisory Board for Biosecurity (NSABB...

  3. AFLP fingerprinting: an efficient technique for detecting genetic variation of Xanthomonas axonopodis pv. manihotis.

    PubMed

    Restrepo, S; Duque, M; Tohme, J; Verdier, V

    1999-01-01

    Xanthomonas axonopodis pv. manihotis (Xam) is the causative agent of cassava bacterial blight (CBB), a worldwide disease that is particularly destructive in South America and Africa. CBB is controlled essentially through the use of resistant varieties. To develop an appropriate disease management strategy, the genetic diversity of the pathogen's populations must be assessed. Until now, the genetic diversity of Xam was characterized by RFLP analyses using ribotyping, and plasmid and genomic Xam probes. We used AFLP (amplified fragment length polymorphism), a novel PCR-based technique, to characterize the genetic diversity of Colombian Xam isolates. Six Xam strains were tested with 65 AFLP primer combinations to identify the best selective primers. Eight primer combinations were selected according to their reproducibility, number of polymorphic bands and polymorphism detected between Xam strains. Forty-seven Xam strains, originating from different Colombian ecozones, were analysed with the selected combinations. Results obtained with AFLP are consistent with those obtained with RFLP, using plasmid DNA as a probe. Some primer combinations differentiated Xam strains that were not distinguished by RFLP analyses, thus AFLP fingerprinting allowed a better definition of the genetic relationships between Xam strains.

  4. Review and meta-analysis of genetic polymorphisms associated with exceptional human longevity.

    PubMed

    Revelas, Mary; Thalamuthu, Anbupalam; Oldmeadow, Christopher; Evans, Tiffany-Jane; Armstrong, Nicola J; Kwok, John B; Brodaty, Henry; Schofield, Peter R; Scott, Rodney J; Sachdev, Perminder S; Attia, John R; Mather, Karen A

    2018-06-08

    Many factors contribute to exceptional longevity, with genetics playing a significant role. However, to date, genetic studies examining exceptional longevity have been inconclusive. This comprehensive review seeks to determine the genetic variants associated with exceptional longevity by undertaking meta-analyses. Meta-analyses of genetic polymorphisms previously associated with exceptional longevity (85+) were undertaken. For each variant, meta-analyses were performed if there were data from at least three independent studies available, including two unpublished additional cohorts. Five polymorphisms, ACE rs4340, APOE ε2/3/4, FOXO3A rs2802292, KLOTHO KL-VS and IL6 rs1800795 were significantly associated with exceptional longevity, with the pooled effect sizes (odds ratios) ranging from 0.42 (APOE ε4) to 1.45 (FOXO3A males). In general, the observed modest effect sizes of the significant variants suggest many genes of small influence play a role in exceptional longevity, which is consistent with results for other polygenic traits. Our results also suggest that genes related to cardiovascular health may be implicated in exceptional longevity. Future studies should examine the roles of gender and ethnicity and carefully consider study design, including the selection of appropriate controls. Copyright © 2018. Published by Elsevier B.V.

  5. A plasmid-based reverse genetics system for influenza A virus.

    PubMed Central

    Pleschka, S; Jaskunas, R; Engelhardt, O G; Zürcher, T; Palese, P; García-Sastre, A

    1996-01-01

    A reverse genetics system for negative-strand RNA viruses was first successfully developed for influenza viruses. This technology involved the transfection of in vitro-reconstituted ribonucleoprotein (RNP) complexes into influenza virus-infected cells. We have now developed a method that allows intracellular reconstitution of RNP complexes from plasmid-based expression vectors. Expression of a viral RNA-like transcript is achieved from a plasmid containing a truncated human polymerase I (polI) promoter and a ribozyme sequence that generates the desired 3' end by autocatalytic cleavage. The polI-driven plasmid is cotransfected into human 293 cells with polII-responsive plasmids that express the viral PB1, PB2, PA, and NP proteins. This exclusively plasmid-driven system results in the efficient transcription and replication of the viral RNA-like reporter and allows the study of cis- and trans-acting signals involved in the transcription and replication of influenza virus RNAs. Using this system, we have also been able to rescue a synthetic neuraminidase gene into a recombinant influenza virus. This method represents a convenient alternative to the previously established RNP transfection system. PMID:8648766

  6. Reverse Engineering a Signaling Network Using Alternative Inputs

    PubMed Central

    Tanaka, Hiromasa; Yi, Tau-Mu

    2009-01-01

    One of the goals of systems biology is to reverse engineer in a comprehensive fashion the arrow diagrams of signal transduction systems. An important tool for ordering pathway components is genetic epistasis analysis, and here we present a strategy termed Alternative Inputs (AIs) to perform systematic epistasis analysis. An alternative input is defined as any genetic manipulation that can activate the signaling pathway instead of the natural input. We introduced the concept of an “AIs-Deletions matrix” that summarizes the outputs of all combinations of alternative inputs and deletions. We developed the theory and algorithms to construct a pairwise relationship graph from the AIs-Deletions matrix capturing both functional ordering (upstream, downstream) and logical relationships (AND, OR), and then interpreting these relationships into a standard arrow diagram. As a proof-of-principle, we applied this methodology to a subset of genes involved in yeast mating signaling. This experimental pilot study highlights the robustness of the approach and important technical challenges. In summary, this research formalizes and extends classical epistasis analysis from linear pathways to more complex networks, facilitating computational analysis and reconstruction of signaling arrow diagrams. PMID:19898612

  7. Recovery of infectious type Asia1 foot-and-mouth disease virus from suckling mice directly inoculated with an RNA polymerase I/II-driven unidirectional transcription plasmid.

    PubMed

    Lian, Kaiqi; Yang, Fan; Zhu, Zixiang; Cao, Weijun; Jin, Ye; Li, Dan; Zhang, Keshan; Guo, Jianhong; Zheng, Haixue; Liu, Xiangtao

    2015-10-02

    We developed an RNA polymerase (pol) I- and II-driven plasmid-based reverse genetics system to rescue infectious foot-and-mouth disease virus (FMDV) from cloned cDNA. In this plasmid-based transfection, the full-length viral cDNA was flanked by hammerhead ribozyme (HamRz) and hepatitis delta ribozyme (HdvRz) sequences, which were arranged downstream of the two promoters (cytomegalovirus (CMV) and pol I promoter) and upstream of the terminators and polyadenylation signal, respectively. The utility of this method was demonstrated by the recovery of FMDV Asia1 HN/CHA/06 in BHK-21 cells transfected with cDNA plasmids. Furthermore, infectious FMDV Asia1 HN/CHA/06 could be rescued from suckling mice directly inoculated with cDNA plasmids. Thus, this reverse genetics system can be applied to fundamental research and vaccine studies, most notably to rescue those viruses for which there is currently an absence of a suitable cell culture system. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Alternative reverse genetics system for influenza viruses based on a synthesized swine 45S rRNA promoter.

    PubMed

    Wang, Kai; Huang, Qi; Yang, Zhiwei; Qi, Kezong; Liu, Hongmei; Chen, Hongjun

    2017-08-01

    We generated an alternative reverse genetics (RG) system based on a synthesized swine 45S rRNA promoter to rescue the H3N2 subtype swine influenza virus. All eight flanking segment cassettes of A/swine/Henan/7/2010 (H3N2) were amplified with ambisense expression elements from RG plasmids. All segments were then recombined with the pHC2014 vector, which contained the synthesized swine 45S rRNA promoter (spol1) and its terminal sequence (t1) in a pcDNA3 backbone. As a result, we obtained a set of RG plasmids carrying the corresponding eight-segment cassettes. We efficiently generated the H3N2 virus after transfection into 293T/PK15, PK15, and 293T cells. The efficiency of spol1-driven influenza virus rescue in PK15 cells was similar to that in 293T cells by titration using the human pol1 RG system. Our approach suggests that an alternative spol1-based RG system can produce influenza viruses.

  9. Respiratory Syncytial Virus: Virology, Reverse Genetics, and Pathogenesis of Disease

    PubMed Central

    Fearns, Rachel; Graham, Barney S.

    2016-01-01

    Human respiratory syncytial virus (RSV) is an enveloped, nonsegmented negative-strand RNA virus of family Paramyxoviridae. RSV is the most complex member of the family in terms of the number of genes and proteins. It is also relatively divergent and distinct from the prototype members of the family. In the past 30 years, we have seen a tremendous increase in our understanding of the molecular biology of RSV based on a succession of advances involving molecular cloning, reverse genetics, and detailed studies of protein function and structure. Much remains to be learned. RSV disease is complex and variable, and the host and viral factors that determine tropism and disease are poorly understood. RSV is notable for a historic vaccine failure in the 1960s involving a formalin-inactivated vaccine that primed for enhanced disease in RSV naïve recipients. Live vaccine candidates have been shown to be free of this complication. However, development of subunit or other protein-based vaccines for pediatric use is hampered by the possibility of enhanced disease and the difficulty of reliably demonstrating its absence in preclinical studies. PMID:24362682

  10. Obesity-programmed mice are rescued by early genetic intervention

    PubMed Central

    Bumaschny, Viviana F.; Yamashita, Miho; Casas-Cordero, Rodrigo; Otero-Corchón, Verónica; de Souza, Flávio S.J.; Rubinstein, Marcelo; Low, Malcolm J.

    2012-01-01

    Obesity is a chronic metabolic disorder affecting half a billion people worldwide. Major difficulties in managing obesity are the cessation of continued weight loss in patients after an initial period of responsiveness and rebound to pretreatment weight. It is conceivable that chronic weight gain unrelated to physiological needs induces an allostatic regulatory state that defends a supranormal adipose mass despite its maladaptive consequences. To challenge this hypothesis, we generated a reversible genetic mouse model of early-onset hyperphagia and severe obesity by selectively blocking the expression of the proopiomelanocortin gene (Pomc) in hypothalamic neurons. Eutopic reactivation of central POMC transmission at different stages of overweight progression normalized or greatly reduced food intake in these obesity-programmed mice. Hypothalamic Pomc rescue also attenuated comorbidities such as hyperglycemia, hyperinsulinemia, and hepatic steatosis and normalized locomotor activity. However, effectiveness of treatment to normalize body weight and adiposity declined progressively as the level of obesity at the time of Pomc induction increased. Thus, our study using a novel reversible monogenic obesity model reveals the critical importance of early intervention for the prevention of subsequent allostatic overload that auto-perpetuates obesity. PMID:23093774

  11. Reversal of a Neurospora Translocation by Crossing over Involving Displaced Rdna, and Methylation of the Rdna Segments That Result from Recombination

    PubMed Central

    Perkins, David D.; Metzenberg, Robert L.; Raju, Namboori B.; Selker, Eric U.; Barry, Edward G.

    1986-01-01

    In translocation OY321 of Neurospora crassa, the nucleolus organizer is divided into two segments, a proximal portion located interstitially in one interchange chromosome, and a distal portion now located terminally on another chromosome, linkage group I. In crosses of Translocation x Translocation, exceptional progeny are recovered nonselectively in which the chromosome sequence has apparently reverted to Normal. Genetic, cytological, and molecular evidence indicates that reversion is the result of meiotic crossing over between homologous displaced rDNA repeats. Marker linkages are wild type in these exceptional progeny. They differ from wild type, however, in retaining an interstitial block of rRNA genes which can be demonstrated cytologically by the presence of a second, small interstitial nucleolus and genetically by linkage of an rDNA restriction site polymorphism to the mating-type locus in linkage group I. The interstitial rDNA is more highly methylated than the terminal rDNA. The mechanism by which methylation enzymes distinguish between interstitial rDNA and terminal rDNA is unknown. Some hypotheses are considered. PMID:2947829

  12. Partial and Full PCR-Based Reverse Genetics Strategy for Influenza Viruses

    PubMed Central

    Chen, Hongjun; Ye, Jianqiang; Xu, Kemin; Angel, Matthew; Shao, Hongxia; Ferrero, Andrea; Sutton, Troy; Perez, Daniel R.

    2012-01-01

    Since 1999, plasmid-based reverse genetics (RG) systems have revolutionized the way influenza viruses are studied. However, it is not unusual to encounter cloning difficulties for one or more influenza genes while attempting to recover virus de novo. To overcome some of these shortcomings we sought to develop partial or full plasmid-free RG systems. The influenza gene of choice is assembled into a RG competent unit by virtue of overlapping PCR reactions containing a cDNA copy of the viral gene segment under the control of RNA polymerase I promoter (pol1) and termination (t1) signals – herein referred to as Flu PCR amplicons. Transfection of tissue culture cells with either HA or NA Flu PCR amplicons and 7 plasmids encoding the remaining influenza RG units, resulted in efficient virus rescue. Likewise, transfections including both HA and NA Flu PCR amplicons and 6 RG plasmids also resulted in efficient virus rescue. In addition, influenza viruses were recovered from a full set of Flu PCR amplicons without the use of plasmids. PMID:23029501

  13. Genetic population structure of muskellunge in the Great Lakes

    USGS Publications Warehouse

    Kapuscinski, Kevin L.; Sloss, Brian L.; Farrell, John M.

    2013-01-01

    We quantified genetic relationships among Muskellunge Esox masquinongy from 15 locations in the Great Lakes to determine the extent and distribution of measurable population structure and to identify appropriate spatial scales for fishery management and genetic conservation. We hypothesized that Muskellunge from each area represented genetically distinct populations, which would be evident from analyses of genotype data. A total of 691 Muskellunge were sampled (n = 10–127/site) and genetic data were collected at 13 microsatellite loci. Results from a suite of analyses (including pairwise genetic differentiation, Bayesian admixture prediction, analysis of molecular variance, and tests of isolation by distance) indicated the presence of nine distinct genetic groups, including two that were approximately 50 km apart. Geographic proximity and low habitat complexity seemed to facilitate genetic similarity among areas, whereas Muskellunge from areas of greater habitat heterogeneity exhibited high differentiation. Muskellunge from most areas contained private alleles, and mean within-area genetic variation was similar to that reported for other freshwater fishes. Management programs aimed at conserving the broader diversity and long-term sustainability of Muskellunge could benefit by considering the genetically distinct groups as independent fisheries, and individual spawning and nursery habitats could subsequently be protected to conserve the evolutionary potential of Muskellunge.

  14. Molecular subtyping of European swine influenza viruses and scaling to high-throughput analysis.

    PubMed

    Bonin, Emilie; Quéguiner, Stéphane; Woudstra, Cédric; Gorin, Stéphane; Barbier, Nicolas; Harder, Timm C; Fach, Patrick; Hervé, Séverine; Simon, Gaëlle

    2018-01-10

    Swine influenza is a respiratory infection of pigs that may have a significant economic impact in affected herds and pose a threat to the human population since swine influenza A viruses (swIAVs) are zoonotic pathogens. Due to the increasing genetic diversity of swIAVs and because novel reassortants or variants may become enzootic or have zoonotic implications, surveillance is strongly encouraged. Therefore, diagnostic tests and advanced technologies able to identify the circulating strains rapidly are critically important. Several reverse transcription real-time PCR assays (RT-qPCRs) were developed to subtype European swIAVs in clinical samples previously identified as containing IAV genome. The RT-qPCRs aimed to discriminate HA genes of four H1 genetic lineages (H1 av , H1 hu , H1 huΔ146-147 , H1pdm) and one H3 lineage, and NA genes of two N1 lineages (N1, N1pdm) and one N2 lineage. After individual validation, each RT-qPCR was adapted to high-throughput analyses in parallel to the amplification of the IAV M gene (target for IAV detection) and the β-actin gene (as an internal control), in order to test the ten target genes simultaneously on a large number of clinical samples, using low volumes of reagents and RNA extracts. The RT-qPCRs dedicated to IAV molecular subtyping enabled the identification of swIAVs from the four viral subtypes that are known to be enzootic in European pigs, i.e. H1 av N1, H1 hu N2, H3N2 and H1N1pdm. They also made it possible to discriminate a new antigenic variant (H1 hu N2 Δ146-147 ) among H1 hu N2 viruses, as well as reassortant viruses, such as H1 hu N1 or H1 av N2 for example, and virus mixtures. These PCR techniques exhibited a gain in sensitivity as compared to end-point RT-PCRs, enabling the characterization of biological samples with low genetic loads, with considerable time saving. Adaptation to high-throughput analyses appeared effective, both in terms of specificity and sensitivity. This new development opens novel perspectives in diagnostic capacities that could be very useful for swIAV surveillance and large-scale epidemiological studies.

  15. Development of the piggyBac transposable system for Plasmodium berghei and its application for random mutagenesis in malaria parasites

    PubMed Central

    2011-01-01

    Background The genome of a number of species of malaria parasites (Plasmodium spp.) has been sequenced in the hope of identifying new drug and vaccine targets. However, almost one-half of predicted Plasmodium genes are annotated as hypothetical and are difficult to analyse in bulk due to the inefficiency of current reverse genetic methodologies for Plasmodium. Recently, it has been shown that the transposase piggyBac integrates at random into the genome of the human malaria parasite P. falciparum offering the possibility to develop forward genetic screens to analyse Plasmodium gene function. This study reports the development and application of the piggyBac transposition system for the rodent malaria parasite P. berghei and the evaluation of its potential as a tool in forward genetic studies. P. berghei is the most frequently used malaria parasite model in gene function analysis since phenotype screens throughout the complete Plasmodium life cycle are possible both in vitro and in vivo. Results We demonstrate that piggyBac based gene inactivation and promoter-trapping is both easier and more efficient in P. berghei than in the human malaria parasite, P. falciparum. Random piggyBac-mediated insertion into genes was achieved after parasites were transfected with the piggyBac donor plasmid either when transposase was expressed either from a helper plasmid or a stably integrated gene in the genome. Characterization of more than 120 insertion sites demonstrated that more than 70 most likely affect gene expression classifying their protein products as non-essential for asexual blood stage development. The non-essential nature of two of these genes was confirmed by targeted gene deletion one of which encodes P41, an ortholog of a human malaria vaccine candidate. Importantly for future development of whole genome phenotypic screens the remobilization of the piggyBac element in parasites that stably express transposase was demonstrated. Conclusion These data demonstrate that piggyBac behaved as an efficient and random transposon in P. berghei. Remobilization of piggyBac element shows that with further development the piggyBac system can be an effective tool to generate random genome-wide mutation parasite libraries, for use in large-scale phenotype screens in vitro and in vivo. PMID:21418605

  16. Estimating the causal influence of body mass index on risk of Parkinson disease: A Mendelian randomisation study

    PubMed Central

    Price, T. Ryan; De Pablo-Fernandez, Eduardo; Haycock, Philip C.; Schrag, Anette; Lees, Andrew J.; Hardy, John; Singleton, Andrew; Nalls, Mike A.; Pearce, Neil; Wood, Nicholas W.

    2017-01-01

    Background Both positive and negative associations between higher body mass index (BMI) and Parkinson disease (PD) have been reported in observational studies, but it has been difficult to establish causality because of the possibility of residual confounding or reverse causation. To our knowledge, Mendelian randomisation (MR)—the use of genetic instrumental variables (IVs) to explore causal effects—has not previously been used to test the effect of BMI on PD. Methods and findings Two-sample MR was undertaken using genome-wide association (GWA) study data. The associations between the genetic instruments and BMI were obtained from the GIANT consortium and consisted of the per-allele difference in mean BMI for 77 independent variants that reached genome-wide significance. The per-allele difference in log-odds of PD for each of these variants was estimated from a recent meta-analysis, which included 13,708 cases of PD and 95,282 controls. The inverse-variance weighted method was used to estimate a pooled odds ratio (OR) for the effect of a 5-kg/m2 higher BMI on PD. Evidence of directional pleiotropy averaged across all variants was sought using MR–Egger regression. Frailty simulations were used to assess whether causal associations were affected by mortality selection. A combined genetic IV expected to confer a lifetime exposure of 5-kg/m2 higher BMI was associated with a lower risk of PD (OR 0.82, 95% CI 0.69–0.98). MR–Egger regression gave similar results, suggesting that directional pleiotropy was unlikely to be biasing the result (intercept 0.002; p = 0.654). However, the apparent protective influence of higher BMI could be at least partially induced by survival bias in the PD GWA study, as demonstrated by frailty simulations. Other important limitations of this application of MR include the inability to analyse non-linear associations, to undertake subgroup analyses, and to gain mechanistic insights. Conclusions In this large study using two-sample MR, we found that variants known to influence BMI had effects on PD in a manner consistent with higher BMI leading to lower risk of PD. The mechanism underlying this apparent protective effect warrants further study. PMID:28609445

  17. mvMapper: statistical and geographical data exploration and visualization of multivariate analysis of population structure

    USDA-ARS?s Scientific Manuscript database

    Characterizing population genetic structure across geographic space is a fundamental challenge in population genetics. Multivariate statistical analyses are powerful tools for summarizing genetic variability, but geographic information and accompanying metadata is not always easily integrated into t...

  18. Comprehensive Genetic Characterization of Intraprostatic Chronic Inflammation and Prostate Cancer in African American Men

    DTIC Science & Technology

    2017-09-01

    with new methodologies of intratumoral phylogenetic analyses, will yield pivotal information in elucidating the key genes involved evolution of PCa...combined with both clinical and experimental genetic data produced by this study may empower patients and doctors to make personalized treatment decisions...sequencing, paired with new methodologies of intratumoral phylogenetic analyses, will yield pivotal information in elucidating the key genes involved

  19. Inflammasomes make the case for littermate-controlled experimental design in studying host-microbiota interactions.

    PubMed

    Mamantopoulos, Michail; Ronchi, Francesca; McCoy, Kathy D; Wullaert, Andy

    2018-04-19

    Several human diseases are thought to evolve due to a combination of host genetic mutations and environmental factors that include alterations in intestinal microbiota composition termed dysbiosis. Although in some cases, host genetics may shape the gut microbiota and enable it to provoke disease, experimentally disentangling cause and consequence in such host-microbe interactions requires strict control over non-genetic confounding factors. Mouse genetic studies previously proposed Nlrp6/ASC inflammasomes as innate immunity regulators of the intestinal ecosystem. In contrast, using littermate-controlled experimental setups, we recently showed that Nlrp6/ASC inflammasomes do not alter the gut microbiota composition. Our analyses indicated that maternal inheritance and long-term separate housing are non-genetic confounders that preclude the use of non-littermate mice when analyzing host genetic effects on intestinal ecology. Here, we summarize and discuss our gut microbiota analyses in inflammasome-deficient mice for illustrating the importance of littermate experimental design in studying host-microbiota interactions.

  20. Genetic structure of Octopus vulgaris (Cephalopoda, Octopodidae) in the central Mediterranean Sea inferred from the mitochondrial COIII gene.

    PubMed

    Fadhlaoui-Zid, Karima; Knittweis, Leyla; Aurelle, Didier; Nafkha, Chaala; Ezzeddine, Soufia; Fiorentino, Fabio; Ghmati, Hisham; Ceriola, Luca; Jarboui, Othman; Maltagliati, Ferruccio

    2012-01-01

    The polymorphism of the mitochondrial gene cytochrome oxidase III was studied in the Mediterranean octopus, Octopus vulgaris Cuvier, 1797. A total of 202 specimens from seven sampling sites were analysed with the aim of elucidating patterns of genetic structure in the central Mediterranean Sea and to give an insight into the phylogeny of the Octopus genus. Phylogenetic analyses showed that individuals from the central Mediterranean belong to the O. vulgaris species whose limits should nevertheless be clarified. Concerning genetic structure, two high-frequency haplotypes were present in all locations. The overall genetic divergence (Φ(ST)=0.05, P<0.05) indicated a significant genetic structuring in the study area and an AMOVA highlighted a significant break between western and eastern Mediterranean basins (Φ(CT)=0.094, P<0.05). Possible explanations for the observed patterns of genetic structuring are discussed with reference to their relevance for fisheries management. Copyright © 2012. Published by Elsevier SAS.

Top