Sample records for reverse genetics research

  1. CRISPR: a Versatile Tool for Both Forward and Reverse Genetics Research

    PubMed Central

    Gurumurthy, Channabasavaiah B.; Grati, M'hamed; Ohtsuka, Masato; Schilit, Samantha L.P.; Quadros, Rolen M.; Liu, Xue Zhong

    2016-01-01

    Human genetics research employs the two opposing approaches of forward and reverse genetics. While forward genetics identifies and links a mutation to an observed disease etiology, reverse genetics induces mutations in model organisms to study their role in disease. In most cases, causality for mutations identified by forward genetics is confirmed by reverse genetics through the development of genetically engineered animal models and an assessment of whether the model can recapitulate the disease. While many technological advances have helped improve these approaches, some gaps still remain. CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system, which has emerged as a revolutionary genetic engineering tool, holds great promise for closing such gaps. By combining the benefits of forward and reverse genetics, it has dramatically expedited human genetics research. We provide a perspective on the power of CRISPR-based forward and reverse genetics tools in human genetics and discuss its applications using some disease examples. PMID:27384229

  2. An efficient and rapid influenza gene cloning strategy for reverse genetics system.

    PubMed

    Shao, Hongxia; Fan, Zhonglei; Wan, Zhimin; Tian, Xiaoyan; Chen, Hongjun; Perez, Daniel R; Qin, Aijian; Ye, Jianqiang

    2015-09-15

    Influenza reverse genetics plays vital roles in understanding influenza molecular characteristics and vaccine development. However, current influenza reverse genetics heavily depends on restriction enzyme and ligation for gene cloning. The traditional cloning process of influenza eight fragments for virus rescuing generally requires considerable work. To simplify and increase the pace of gene cloning for influenza reverse genetics system, we developed a rapid restriction enzyme-free ExnaseTM II-based in vitro recombination approach for influenza gene cloning. We used this strategy rapidly and successfully to clone influenza eight genes both from viruses PR8 and H9N2 for virus rescuing. Our data demonstrate that the strategy developed here can accelerate the process of influenza gene cloning into reverse genetics system, and shows high potential for applications in both influenza basic and applied research. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Marburg Virus Reverse Genetics Systems

    PubMed Central

    Schmidt, Kristina Maria; Mühlberger, Elke

    2016-01-01

    The highly pathogenic Marburg virus (MARV) is a member of the Filoviridae family and belongs to the group of nonsegmented negative-strand RNA viruses. Reverse genetics systems established for MARV have been used to study various aspects of the viral replication cycle, analyze host responses, image viral infection, and screen for antivirals. This article provides an overview of the currently established MARV reverse genetic systems based on minigenomes, infectious virus-like particles and full-length clones, and the research that has been conducted using these systems. PMID:27338448

  4. Marburg Virus Reverse Genetics Systems.

    PubMed

    Schmidt, Kristina Maria; Mühlberger, Elke

    2016-06-22

    The highly pathogenic Marburg virus (MARV) is a member of the Filoviridae family and belongs to the group of nonsegmented negative-strand RNA viruses. Reverse genetics systems established for MARV have been used to study various aspects of the viral replication cycle, analyze host responses, image viral infection, and screen for antivirals. This article provides an overview of the currently established MARV reverse genetic systems based on minigenomes, infectious virus-like particles and full-length clones, and the research that has been conducted using these systems.

  5. A novel reverse genetics system for production of infectious West Nile virus using homologous recombination in mammalian cells.

    PubMed

    Kobayashi, Shintaro; Yoshii, Kentaro; Hirano, Minato; Muto, Memi; Kariwa, Hiroaki

    2017-02-01

    Reverse genetics systems facilitate investigation of many aspects of the life cycle and pathogenesis of viruses. However, genetic instability in Escherichia coli has hampered development of a reverse genetics system for West Nile virus (WNV). In this study, we developed a novel reverse genetics system for WNV based on homologous recombination in mammalian cells. Introduction of the DNA fragment coding for the WNV structural protein together with a DNA-based replicon resulted in the release of infectious WNV. The growth rate and plaque size of the recombinant virus were almost identical to those of the parent WNV. Furthermore, chimeric WNV was produced by introducing the DNA fragment coding for the structural protein and replicon plasmid derived from various strains. Here, we report development of a novel system that will facilitate research into WNV infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The art and design of genetic screens: maize

    USDA-ARS?s Scientific Manuscript database

    Maize (Zea mays) is an excellent model for basic research. Genetic screens have informed our understanding of developmental processes, meiosis, epigenetics and biochemical pathways--not only in maize but also in other cereal crops. We discuss the forward and reverse genetic screens that are possible...

  7. The Effects of Meiosis/Genetics Integration and Instructional Sequence on College Biology Student Achievement in Genetics.

    ERIC Educational Resources Information Center

    Browning, Mark

    The purpose of the research was to manipulate two aspects of genetics instruction in order to measure their effects on college, introductory biology students' achievement in genetics. One instructional sequence that was used dealt first with monohybrid autosomal inheritance patterns, then sex-linkage. The alternate sequence was the reverse.…

  8. Novel Structure of Ty3 Reverse Transcriptase | Center for Cancer Research

    Cancer.gov

    Retrotransposons are mobile genetic elements that self amplify via a single-stranded RNA intermediate, which is converted to double-stranded DNA by an encoded reverse transcriptase (RT) with both DNA polymerase (pol) and ribonuclease H (RNase) activities. Categorized by whether they contain flanking long terminal repeat (LTR) sequences, retrotransposons play a critical role in

  9. Lassa Virus Reverse Genetics.

    PubMed

    Martínez-Sobrido, Luis; Paessler, Slobodan; de la Torre, Juan Carlos

    2017-01-01

    The Old World (OW) arenavirus Lassa (LASV ) is estimated to infect several hundred thousand people yearly in West Africa, resulting in high numbers of Lassa fever (LF), a viral hemorrhagic fever (HF) disease associated with high morbidity and mortality. To date, no licensed vaccines are available to LASV infections, and anti-LASV drug therapy is limited to an off-label use of ribavirin (Rib) that is only partially effective. The development of reverse genetics has provided investigators with a novel and powerful approach for the investigation of the molecular, cell biology, and pathogenesis of LASV. The use of cell-based LASV minigenome (MG) systems has allowed examining the cis- and trans-acting factors involved in genome replication and gene transcription and the identification of novel drugable LASV targets. Likewise, it is now feasible to rescue infectious recombinant (r)LASV entirely from cloned cDNAs containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of pathogenesis, as well as to facilitate screens to identify antiviral drugs against LASV and the implementation of novel strategies to develop live-attenuated vaccines (LAV). In this chapter we will summarize the state-of-the-art experimental procedures for implementation of LASV reverse genetics. In addition, we will briefly discuss some significant translational research developments that have been made possible upon the development of LASV reverse genetics.

  10. Reverse genetics in high throughput: rapid generation of complete negative strand RNA virus cDNA clones and recombinant viruses thereof.

    PubMed

    Nolden, T; Pfaff, F; Nemitz, S; Freuling, C M; Höper, D; Müller, T; Finke, Stefan

    2016-04-05

    Reverse genetics approaches are indispensable tools for proof of concepts in virus replication and pathogenesis. For negative strand RNA viruses (NSVs) the limited number of infectious cDNA clones represents a bottleneck as clones are often generated from cell culture adapted or attenuated viruses, with limited potential for pathogenesis research. We developed a system in which cDNA copies of complete NSV genomes were directly cloned into reverse genetics vectors by linear-to-linear RedE/T recombination. Rapid cloning of multiple rabies virus (RABV) full length genomes and identification of clones identical to field virus consensus sequence confirmed the approache's reliability. Recombinant viruses were recovered from field virus cDNA clones. Similar growth kinetics of parental and recombinant viruses, preservation of field virus characters in cell type specific replication and virulence in the mouse model were confirmed. Reduced titers after reporter gene insertion indicated that the low level of field virus replication is affected by gene insertions. The flexibility of the strategy was demonstrated by cloning multiple copies of an orthobunyavirus L genome segment. This important step in reverse genetics technology development opens novel avenues for the analysis of virus variability combined with phenotypical characterization of recombinant viruses at a clonal level.

  11. Development of a PCR-Based Reverse Genetics System for an Attenuated Duck Tembusu Virus Strain

    PubMed Central

    Wu, Xiaogang; Shi, Ying; Yan, Dawei; Li, Xuesong; Yan, Pixi; Gao, Xuyuan; Zhang, Yuee; Yu, Lei; Ren, Chaochao; Li, Guoxin; Yan, Liping; Teng, Qiaoyang; Li, Zejun

    2016-01-01

    The infectious disease caused by the duck Tembusu virus (DTMUV) has resulted in massive economic losses to the Chinese duck industry in China since 2010. Research on the molecular basis of DTMUV pathogenicity has been hampered by the lack of a reliable reverse genetics system for this virus. Here we developed a PCR-based reverse genetics system with high fidelity for the attenuated DTMUV strain FX2010-180P. The rescued virus was characterized by using both indirect immunofluorescence assays (IFA) and whole genome sequencing. The rescued virus (rFX2010-180P) grew to similar titers as compared with the wild-type virus in DF-1 cells, and had similar replication and immunogenicity properties in ducks. To determine whether exogenous proteins could be expressed from DTMUV, both an internal ribosomal entry site (IRES) and the enhanced green fluorescent protein (eGFP) gene were introduced between the NS5 gene and the 3' non-coding sequence of FX2010-180P. A recombinant DTMUV expressing eGFP was rescued, but eGFP expression was unstable after 4 passages in DF-1 cells due to a deletion of 1,294 nucleotides. The establishment of a reliable reverse genetics system for FX2010-180P provides a foundation for future studies of DTMUV. PMID:27248497

  12. Development of a PCR-Based Reverse Genetics System for an Attenuated Duck Tembusu Virus Strain.

    PubMed

    Wu, Xiaogang; Shi, Ying; Yan, Dawei; Li, Xuesong; Yan, Pixi; Gao, Xuyuan; Zhang, Yuee; Yu, Lei; Ren, Chaochao; Li, Guoxin; Yan, Liping; Teng, Qiaoyang; Li, Zejun

    2016-01-01

    The infectious disease caused by the duck Tembusu virus (DTMUV) has resulted in massive economic losses to the Chinese duck industry in China since 2010. Research on the molecular basis of DTMUV pathogenicity has been hampered by the lack of a reliable reverse genetics system for this virus. Here we developed a PCR-based reverse genetics system with high fidelity for the attenuated DTMUV strain FX2010-180P. The rescued virus was characterized by using both indirect immunofluorescence assays (IFA) and whole genome sequencing. The rescued virus (rFX2010-180P) grew to similar titers as compared with the wild-type virus in DF-1 cells, and had similar replication and immunogenicity properties in ducks. To determine whether exogenous proteins could be expressed from DTMUV, both an internal ribosomal entry site (IRES) and the enhanced green fluorescent protein (eGFP) gene were introduced between the NS5 gene and the 3' non-coding sequence of FX2010-180P. A recombinant DTMUV expressing eGFP was rescued, but eGFP expression was unstable after 4 passages in DF-1 cells due to a deletion of 1,294 nucleotides. The establishment of a reliable reverse genetics system for FX2010-180P provides a foundation for future studies of DTMUV.

  13. Reverse Genetics for Mammalian Orthoreovirus.

    PubMed

    Stuart, Johnasha D; Phillips, Matthew B; Boehme, Karl W

    2017-01-01

    Reverse genetics allows introduction of specific alterations into a viral genome. Studies performed with mutant viruses generated using reverse genetics approaches have contributed immeasurably to our understanding of viral replication and pathogenesis, and also have led to development of novel vaccines and virus-based vectors. Here, we describe the reverse genetics system that allows for production and recovery of mammalian orthoreovirus, a double-stranded (ds) RNA virus, from plasmids that encode the viral genome.

  14. MINIGENOMES, TRANSCRIPTION AND REPLICATION COMPETENT VIRUS-LIKE PARTICLES AND BEYOND: REVERSE GENETICS SYSTEMS FOR FILOVIRUSES AND OTHER NEGATIVE STRANDED HEMORRHAGIC FEVER VIRUSES

    PubMed Central

    Hoenen, Thomas; Groseth, Allison; de Kok-Mercado, Fabian; Kuhn, Jens H.; Wahl-Jensen, Victoria

    2012-01-01

    Reverse-genetics systems are powerful tools enabling researchers to study the replication cycle of RNA viruses, including filoviruses and other hemorrhagic fever viruses, as well as to discover new antivirals. They include full-length clone systems as well as a number of life cycle modeling systems. Full-length clone systems allow for the generation of infectious, recombinant viruses, and thus are an important tool for studying the virus replication cycle in its entirety. In contrast, life cycle modeling systems such as minigenome and transcription and replication competent virus-like particle systems can be used to simulate and dissect parts of the virus life cycle outside of containment facilities. Minigenome systems are used to model viral genome replication and transcription, whereas transcription and replication competent virus-like particle systems also model morphogenesis and budding as well as infection of target cells. As such, these modeling systems have tremendous potential to further the discovery and screening of new antivirals targeting hemorrhagic fever viruses. This review provides an overview of currently established reverse genetics systems for hemorrhagic fever-causing negative-sense RNA viruses, with a particular emphasis on filoviruses, and the potential application of these systems for antiviral research. PMID:21699921

  15. Recovery of infectious classical swine fever virus (CSFV) from full-length genomic cDNA clones by a swine kidney cell line expressing bacteriophage T7 RNA polymerase.

    PubMed

    van Gennip, H G; van Rijn, P A; Widjojoatmodjo, M N; Moormann, R J

    1999-03-01

    A new method for the recovery of infectious classical swine fever virus (CSFV) from full-length genomic cDNA clones of the C-strain was developed. Classical reverse genetics is based on transfection of in vitro transcribed RNA to target cells to recover RNA viruses. However, the specific infectivity of such in vitro transcribed RNA in swine kidney cells is usually low. To improve reverse genetics for CSFV, a stable swine kidney cell line was established that expresses cytoplasmic bacteriophage T7 RNA polymerase (SK6.T7). A 200-fold increased virus titre was obtained from SK6.T7 cells transfected with linearized full-length cDNA compared to in vitro transcribed RNA, whereas transfection of circular full-length cDNA resulted in 20-fold increased virus titres. Viruses generated on the SK6.T7 cells are indistinguishable from the viruses generated by the classical reverse genetic procedures. These results show the improved recovery of infectious CSFV directly from full-length cDNAs. Furthermore, the reverse genetic procedures are simplified to a faster, one step protocol. We conclude that the SK6.T7 cell line will be a valuable tool for recovering mutant CSFV and will contribute to future pestivirus research.

  16. [Biosafety issues and public concerns on recombinant influenza viruses generated in the laboratories].

    PubMed

    Jia, Xiaojuan; Huang, Liqin; Liu, Wenjun

    2013-12-01

    Understanding inter-species transmission of influenza viruses is an important research topic. Scientists try to identify and evaluate the functional factors determining the host range of influenza viruses by generating the recombinant viruses through reverse genetics in laboratories, which reveals the viruses' molecular mechanisms of infection and transmission in different species. Therefore, the reverse genetic method is a very important tool for further understanding the biology of influenza viruses and will provide the insight for the prevention and treatment of infections and transmission. However, these recombinant influenza viruses generated in laboratories will become the potential threat to the public health and the environment. In this paper, we discussed the biological safety issues of recombinant influenza viruses and suggested we should set up protocols for risk management on research activities related to recombinant highly pathogenic influenza viruses.

  17. A Novel ‘Gene Insertion/Marker Out’ (GIMO) Method for Transgene Expression and Gene Complementation in Rodent Malaria Parasites

    PubMed Central

    Sajid, Mohammed; Chevalley-Maurel, Séverine; Ramesar, Jai; Klop, Onny; Franke-Fayard, Blandine M. D.; Janse, Chris J.; Khan, Shahid M.

    2011-01-01

    Research on the biology of malaria parasites has greatly benefited from the application of reverse genetic technologies, in particular through the analysis of gene deletion mutants and studies on transgenic parasites that express heterologous or mutated proteins. However, transfection in Plasmodium is limited by the paucity of drug-selectable markers that hampers subsequent genetic modification of the same mutant. We report the development of a novel ‘gene insertion/marker out’ (GIMO) method for two rodent malaria parasites, which uses negative selection to rapidly generate transgenic mutants ready for subsequent modifications. We have created reference mother lines for both P. berghei ANKA and P. yoelii 17XNL that serve as recipient parasites for GIMO-transfection. Compared to existing protocols GIMO-transfection greatly simplifies and speeds up the generation of mutants expressing heterologous proteins, free of drug-resistance genes, and requires far fewer laboratory animals. In addition we demonstrate that GIMO-transfection is also a simple and fast method for genetic complementation of mutants with a gene deletion or mutation. The implementation of GIMO-transfection procedures should greatly enhance Plasmodium reverse-genetic research. PMID:22216235

  18. Novel Structure of Ty3 Reverse Transcriptase | Center for Cancer Research

    Cancer.gov

    Retrotransposons are mobile genetic elements that self amplify via a single-stranded RNA intermediate, which is converted to double-stranded DNA by an encoded reverse transcriptase (RT) with both DNA polymerase (pol) and ribonuclease H (RNase) activities. Categorized by whether they contain flanking long terminal repeat (LTR) sequences, retrotransposons play a critical role in the architecture of eukaryotic genomes and are the evolutionary origin of retroviruses, including human immunodeficiency virus (HIV).

  19. A Multi-Stage Reverse Logistics Network Problem by Using Hybrid Priority-Based Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Eun; Gen, Mitsuo; Rhee, Kyong-Gu

    Today remanufacturing problem is one of the most important problems regarding to the environmental aspects of the recovery of used products and materials. Therefore, the reverse logistics is gaining become power and great potential for winning consumers in a more competitive context in the future. This paper considers the multi-stage reverse Logistics Network Problem (m-rLNP) while minimizing the total cost, which involves reverse logistics shipping cost and fixed cost of opening the disassembly centers and processing centers. In this study, we first formulate the m-rLNP model as a three-stage logistics network model. Following for solving this problem, we propose a Genetic Algorithm pri (GA) with priority-based encoding method consisting of two stages, and introduce a new crossover operator called Weight Mapping Crossover (WMX). Additionally also a heuristic approach is applied in the 3rd stage to ship of materials from processing center to manufacturer. Finally numerical experiments with various scales of the m-rLNP models demonstrate the effectiveness and efficiency of our approach by comparing with the recent researches.

  20. Generation of recombinant rotaviruses expressing fluorescent proteins using an optimized reverse genetics system.

    PubMed

    Komoto, Satoshi; Fukuda, Saori; Ide, Tomihiko; Ito, Naoto; Sugiyama, Makoto; Yoshikawa, Tetsushi; Murata, Takayuki; Taniguchi, Koki

    2018-04-18

    An entirely plasmid-based reverse genetics system for rotaviruses was established very recently. We improved the reverse genetics system to generate recombinant rotavirus by transfecting only 11 cDNA plasmids for its 11 gene segments under the condition of increasing the ratio of the cDNA plasmids for NSP2 and NSP5 genes. Utilizing this highly efficient system, we then engineered infectious recombinant rotaviruses expressing bioluminescent (NanoLuc luciferase) and fluorescent (EGFP and mCherry) reporters. These recombinant rotaviruses expressing reporters remained genetically stable during serial passages. Our reverse genetics approach and recombinant rotaviruses carrying reporter genes will be great additions to the tool kit for studying the molecular virology of rotavirus, and for developing future next-generation vaccines and expression vectors. IMPORTANCE Rotavirus is one of the most important pathogens causing severe gastroenteritis in young children worldwide. In this paper, we describe a robust and simple reverse genetics system based on only rotavirus cDNAs, and its application for engineering infectious recombinant rotaviruses harboring bioluminescent (NanoLuc) and fluorescent (EGFP and mCherry) protein genes. This highly efficient reverse genetics system and recombinant RVAs expressing reporters could be powerful tools for the study of different aspects of rotavirus replication. Furthermore, they may be useful for next-generation vaccine production for this medically important virus. Copyright © 2018 American Society for Microbiology.

  1. Reverse genetics of Newcastle disease virus

    USDA-ARS?s Scientific Manuscript database

    Reverse genetics allows the generation of recombinant viruses or vectors used in functional studies, vaccine development, and gene therapy. This technique allows genetic manipulation and cloning of viral genomes, mutation through site-directed mutagenesis, and gene insertion or deletion, among othe...

  2. Updating the Micro-Tom TILLING platform.

    PubMed

    Okabe, Yoshihiro; Ariizumi, Tohru; Ezura, Hiroshi

    2013-03-01

    The dwarf tomato variety Micro-Tom is regarded as a model system for functional genomics studies in tomato. Various tomato genomic tools in the genetic background of Micro-Tom have been established, such as mutant collections, genome information and a metabolomic database. Recent advances in tomato genome sequencing have brought about a significant need for reverse genetics tools that are accessible to the larger community, because a great number of gene sequences have become available from public databases. To meet the requests from the tomato research community, we have developed the Micro-Tom Targeting-Induced Local Lesions IN Genomes (TILLING) platform, which is comprised of more than 5000 EMS-mutagenized lines. The platform serves as a reverse genetics tool for efficiently identifying mutant alleles in parallel with the development of Micro-Tom mutant collections. The combination of Micro-Tom mutant libraries and the TILLING approach enables researchers to accelerate the isolation of desirable mutants for unraveling gene function or breeding. To upgrade the genomic tool of Micro-Tom, the development of a new mutagenized population is underway. In this paper, the current status of the Micro-Tom TILLING platform and its future prospects are described.

  3. RNA Virus Reverse Genetics and Vaccine Design

    PubMed Central

    Stobart, Christopher C.; Moore, Martin L.

    2014-01-01

    RNA viruses are capable of rapid spread and severe or potentially lethal disease in both animals and humans. The development of reverse genetics systems for manipulation and study of RNA virus genomes has provided platforms for designing and optimizing viral mutants for vaccine development. Here, we review the impact of RNA virus reverse genetics systems on past and current efforts to design effective and safe viral therapeutics and vaccines. PMID:24967693

  4. Cloned cDNA of A/swine/Iowa/15/1930 internal genes as a candidate backbone for reverse genetics vaccine against influenza A viruses

    PubMed Central

    Lekcharoensuk, Porntippa; Wiriyarat, Witthawat; Petcharat, Nuntawan; Lekcharoensuk, Chalermpol; Auewarakul, Prasert; Richt, Juergen A

    2012-01-01

    Reverse genetics viruses for influenza vaccine production usually utilize the internal genes of the egg-adapted A/Puerto Rico/8/34 (PR8) strain. This egg-adapted strain provides high production yield in embryonated eggs but does not necessarily give the best yield in mammalian cell culture. In order to generate a reverse genetics viral backbone that is well-adapted to high growth in mammalian cell culture, a swine influenza isolate (A/swine/Iowa/15/30 (H1N1) (rg1930) that was shown to give high yield in Madin-Darby Canine Kidney (MDCK) cells was used as the internal gene donor for reverse genetics plasmids. In this report, the internal genes from rg1930 were used for construction of reverse genetics viruses carrying a cleavage site-modified hemagglutinin (HA) gene and neuraminidase (NA) gene from a highly pathogenic H5N1 virus. The resulting virus (rg1930H5N1) was low pathogenic in vivo. Inactivated rg1930H5N1 vaccine completely protected chickens from morbidity and mortality after challenge with highly pathogenic H5N1. Protective immunity was obtained when chickens were immunized with an inactivated vaccine consisting of at least 29 HA units of the rg1930H5N1 virus. In comparison to the PR8-based reverse genetics viruses carrying the same HA and NA genes from an H5N1 virus, rg1930 based viruses yielded higher viral titers in MDCK and Vero cells. In addition, the reverse genetics derived H3N2 and H5N2 viruses with the rg1930 backbone replicated in MDCK cells better than the cognate viruses with the rgPR8 backbone. It is concluded that this newly established reverse genetics backbone system could serve as a candidate for a master donor strain for development of inactivated influenza vaccines in cell-based systems. PMID:22230579

  5. Generation of EMS-Mutagenized Populations of Arabidopsis thaliana for Polyamine Genetics.

    PubMed

    Atanasov, Kostadin E; Liu, Changxin; Tiburcio, Antonio F; Alcázar, Rubén

    2018-01-01

    In the recent years, genetic engineering of polyamine biosynthetic genes has provided evidence for their involvement in plant stress responses and different aspects of plant development. Such approaches are being complemented with the use of reverse genetics, in which mutants affected on a particular trait, tightly associated with polyamines, are isolated and the causal genes mapped. Reverse genetics enables the identification of novel genes in the polyamine pathway, which may be involved in downstream signaling, transport, homeostasis, or perception. Here, we describe a basic protocol for the generation of ethyl methanesulfonate (EMS) mutagenized populations of Arabidopsis thaliana for its use in reverse genetics applied to polyamines.

  6. Exploiting the Brachypodium Tool Box in cereal and grass research

    USDA-ARS?s Scientific Manuscript database

    It is now a decade since Brachypodium distachyon was suggested as a model species for temperate grasses and cereals. Since then transformation protocols, large expressed sequence tag (EST) populations, tools for forward and reverse genetic screens, highly refined cytogenetic probes, germplasm coll...

  7. Virus-induced gene silencing (VIGS) in barley seedling leaves

    USDA-ARS?s Scientific Manuscript database

    Virus-induced gene silencing (VIGS) is one of the most potent reverse genetics technologies for gene functional characterization. This method exploits a dsRNA-mediated antiviral defense mechanism in plants. Using this method allows researchers to generate rapid phenotypic data in a relatively rapid ...

  8. Analysis and visualization of Arabidopsis thaliana GWAS using web 2.0 technologies.

    PubMed

    Huang, Yu S; Horton, Matthew; Vilhjálmsson, Bjarni J; Seren, Umit; Meng, Dazhe; Meyer, Christopher; Ali Amer, Muhammad; Borevitz, Justin O; Bergelson, Joy; Nordborg, Magnus

    2011-01-01

    With large-scale genomic data becoming the norm in biological studies, the storing, integrating, viewing and searching of such data have become a major challenge. In this article, we describe the development of an Arabidopsis thaliana database that hosts the geographic information and genetic polymorphism data for over 6000 accessions and genome-wide association study (GWAS) results for 107 phenotypes representing the largest collection of Arabidopsis polymorphism data and GWAS results to date. Taking advantage of a series of the latest web 2.0 technologies, such as Ajax (Asynchronous JavaScript and XML), GWT (Google-Web-Toolkit), MVC (Model-View-Controller) web framework and Object Relationship Mapper, we have created a web-based application (web app) for the database, that offers an integrated and dynamic view of geographic information, genetic polymorphism and GWAS results. Essential search functionalities are incorporated into the web app to aid reverse genetics research. The database and its web app have proven to be a valuable resource to the Arabidopsis community. The whole framework serves as an example of how biological data, especially GWAS, can be presented and accessed through the web. In the end, we illustrate the potential to gain new insights through the web app by two examples, showcasing how it can be used to facilitate forward and reverse genetics research. Database URL: http://arabidopsis.usc.edu/

  9. Contribution of genetics to ecological restoration.

    PubMed

    Mijangos, Jose Luis; Pacioni, Carlo; Spencer, Peter B S; Craig, Michael D

    2015-01-01

    Ecological restoration of degraded ecosystems has emerged as a critical tool in the fight to reverse and ameliorate the current loss of biodiversity and ecosystem services. Approaches derived from different genetic disciplines are extending the theoretical and applied frameworks on which ecological restoration is based. We performed a search of scientific articles and identified 160 articles that employed a genetic approach within a restoration context to shed light on the links between genetics and restoration. These articles were then classified on whether they examined association between genetics and fitness or the application of genetics in demographic studies, and on the way the studies informed restoration practice. Although genetic research in restoration is rapidly growing, we found that studies could make better use of the extensive toolbox developed by applied fields in genetics. Overall, 41% of reviewed studies used genetic information to evaluate or monitor restoration, and 59% provided genetic information to guide prerestoration decision-making processes. Reviewed studies suggest that restoration practitioners often overlook the importance of including genetic aspects within their restoration goals. Even though there is a genetic basis influencing the provision of ecosystem services, few studies explored this relationship. We provide a view of research gaps, future directions and challenges in the genetics of restoration. © 2014 John Wiley & Sons Ltd.

  10. Climate-driven shifts in adult sex ratios via sex reversals: the type of sex determination matters.

    PubMed

    Bókony, Veronika; Kövér, Szilvia; Nemesházi, Edina; Liker, András; Székely, Tamás

    2017-09-19

    Sex reversals whereby individuals of one genetic sex develop the phenotype of the opposite sex occur in ectothermic vertebrates with genetic sex-determination systems that are sensitive to extreme temperatures during sexual differentiation. Recent rises in global temperatures have led researchers to predict that sex reversals will become more common, resulting in the distortion of many populations' sex ratios. However, it is unclear whether susceptibility to climate-driven sex-ratio shifts depends on the type of sex determination that varies across species. First, we show here using individual-based theoretical models that XX/XY (male-heterogametic) and ZZ/ZW (female-heterogametic) sex-determination systems can respond differentially to temperature-induced sex reversals. Interestingly, the impacts of climate warming on adult sex ratio (ASR) depend on the effects of both genotypic and phenotypic sex on survival and reproduction. Second, we analyse the temporal changes of ASR in natural amphibian populations using data from the literature, and find that ASR shifted towards males in ZZ/ZW species over the past 60 years, but did not change significantly in XX/XY species. Our results highlight the fact that we need a better understanding of the interactions between genetic and environmental sex-determining mechanisms to predict the responses of ectotherms to climate change and the associated extinction risks.This article is part of the themed issue 'Adult sex ratios and reproductive decisions: a critical re-examination of sex differences in human and animal societies'. © 2017 The Author(s).

  11. Strains and stressors: an analysis of touchscreen learning in genetically diverse mouse strains.

    PubMed

    Graybeal, Carolyn; Bachu, Munisa; Mozhui, Khyobeni; Saksida, Lisa M; Bussey, Timothy J; Sagalyn, Erica; Williams, Robert W; Holmes, Andrew

    2014-01-01

    Touchscreen-based systems are growing in popularity as a tractable, translational approach for studying learning and cognition in rodents. However, while mouse strains are well known to differ in learning across various settings, performance variation between strains in touchscreen learning has not been well described. The selection of appropriate genetic strains and backgrounds is critical to the design of touchscreen-based studies and provides a basis for elucidating genetic factors moderating behavior. Here we provide a quantitative foundation for visual discrimination and reversal learning using touchscreen assays across a total of 35 genotypes. We found significant differences in operant performance and learning, including faster reversal learning in DBA/2J compared to C57BL/6J mice. We then assessed DBA/2J and C57BL/6J for differential sensitivity to an environmental insult by testing for alterations in reversal learning following exposure to repeated swim stress. Stress facilitated reversal learning (selectively during the late stage of reversal) in C57BL/6J, but did not affect learning in DBA/2J. To dissect genetic factors underlying these differences, we phenotyped a family of 27 BXD strains generated by crossing C57BL/6J and DBA/2J. There was marked variation in discrimination, reversal and extinction learning across the BXD strains, suggesting this task may be useful for identifying underlying genetic differences. Moreover, different measures of touchscreen learning were only modestly correlated in the BXD strains, indicating that these processes are comparatively independent at both genetic and phenotypic levels. Finally, we examined the behavioral structure of learning via principal component analysis of the current data, plus an archival dataset, totaling 765 mice. This revealed 5 independent factors suggestive of "reversal learning," "motivation-related late reversal learning," "discrimination learning," "speed to respond," and "motivation during discrimination." Together, these findings provide a valuable reference to inform the choice of strains and genetic backgrounds in future studies using touchscreen-based tasks.

  12. A reverse genetics system for enterovirus D68 using human RNA polymerase I.

    PubMed

    Pan, Minglei; Gao, Shuai; Zhou, Zhenwei; Zhang, Keke; Liu, Sihua; Wang, Zhiyun; Wang, Tao

    2018-05-17

    Human enterovirus D68 (EV-D68) is a highly contagious virus, which causes respiratory tract infections. However, no effective vaccines are currently available for controlling EV-D68 infection. Here, we developed a reverse genetics system to recover EV-D68 minireplicons and infectious EV-D68 from transfected plasmids using the RNA polymerase I (Pol I) promoter. The EV-D68 minireplicons contained the luciferase reporter gene, which flanked by the non-coding regions of the EV-D68 RNA. The luciferase signals could be detected in cells after transfection and Pol I promoter-mediated luciferase signal was significantly stronger than that mediated by the T7 promoter. Furthermore, recombinant viruses were generated by transfecting plasmids that contained the genomic RNA segments of EV-D68, under the control of Pol I promoter into 293T cells or RD cells. On plaque morphology and growth kinetics, the rescued virus and parental virus were indistinguishable. In addition, we showed that the G394C mutation disrupts the viral 5'-UTR structure and suppresses the viral cap-independent translation. This reverse genetics system for EV-D68 recovery can greatly facilitate research into EV-D68 biology. Moreover, this system could accelerate the development of EV-D68 vaccines and anti-EV-D68 drugs.

  13. Arenavirus reverse genetics for vaccine development

    PubMed Central

    Ortiz-Riaño, Emilio; Cheng, Benson Yee Hin; Carlos de la Torre, Juan

    2013-01-01

    Arenaviruses are important human pathogens with no Food and Drug Administration (FDA)-licensed vaccines available and current antiviral therapy being limited to an off-label use of the nucleoside analogue ribavirin of limited prophylactic efficacy. The development of reverse genetics systems represented a major breakthrough in arenavirus research. However, rescue of recombinant arenaviruses using current reverse genetics systems has been restricted to rodent cells. In this study, we describe the rescue of recombinant arenaviruses from human 293T cells and Vero cells, an FDA-approved line for vaccine development. We also describe the generation of novel vectors that mediate synthesis of both negative-sense genome RNA and positive-sense mRNA species of lymphocytic choriomeningitis virus (LCMV) directed by the human RNA polymerases I and II, respectively, within the same plasmid. This approach reduces by half the number of vectors required for arenavirus rescue, which could facilitate virus rescue in cell lines approved for human vaccine production but that cannot be transfected at high efficiencies. We have shown the feasibility of this approach by rescuing both the Old World prototypic arenavirus LCMV and the live-attenuated vaccine Candid#1 strain of the New World arenavirus Junín. Moreover, we show the feasibility of using these novel strategies for efficient rescue of recombinant tri-segmented both LCMV and Candid#1. PMID:23364194

  14. Manipulations in Maternal Environment Reverse Periodontitis in Genetically Predisposed Rats

    PubMed Central

    Sluyter, Frans; Breivik, Torbjørn; Cools, Alexander

    2002-01-01

    The predisposition to develop periodontitis is partly genetically determined in humans as well as in animals. Here we demonstrate, however, that early manipulations in the maternal environment of an animal (rat) model of periodontitis can fully reverse the genetic predisposition to develop periodontitis at adult age. PMID:12093700

  15. The behavioural consequences of sex reversal in dragons

    PubMed Central

    Li, Hong; Holleley, Clare E.; Elphick, Melanie; Georges, Arthur

    2016-01-01

    Sex differences in morphology, physiology, and behaviour are caused by sex-linked genes, as well as by circulating sex-steroid levels. Thus, a shift from genotypic to environmental sex determination may create an organism that exhibits a mixture of male-like and female-like traits. We studied a lizard species (Central Bearded Dragon, Pogona vitticeps), in which the high-temperature incubation of eggs transforms genetically male individuals into functional females. Although they are reproductively female, sex-reversed dragons (individuals with ZZ genotype reversed to female phenotype) resemble genetic males rather than females in morphology (relative tail length), general behaviour (boldness and activity level), and thermoregulatory tactics. Indeed, sex-reversed ‘females’ are more male-like in some behavioural traits than are genetic males. This novel phenotype may impose strong selection on the frequency of sex reversal within natural populations, facilitating rapid shifts in sex-determining systems. A single period of high incubation temperatures (generating thermally induced sex reversal) can produce functionally female individuals with male-like (or novel) traits that enhance individual fitness, allowing the new temperature-dependent sex-determining system to rapidly replace the previous genetically based one.

  16. Comparison of peanut gentics and physical maps provided insights on collinearity, reversions and translocations

    USDA-ARS?s Scientific Manuscript database

    Genetic and physical maps are the valuable resources for peanut research community in understanding genome organization and serving as the basis for map-based cloning and marker-assisted selection. Physical maps of two diploid wild peanut progenitor species, Arachis duranensis (A genome) and A. ipae...

  17. TALENs and CRISPR/Cas9 fuel genetically engineered clinically relevant Xenopus tropicalis tumor models.

    PubMed

    Naert, Thomas; Van Nieuwenhuysen, Tom; Vleminckx, Kris

    2017-01-01

    The targeted nuclease revolution (TALENs, CRISPR/Cas9) now allows Xenopus researchers to rapidly generate custom on-demand genetic knockout models. These novel methods to perform reverse genetics are unprecedented and are fueling a wide array of human disease models within the aquatic diploid model organism Xenopus tropicalis (X. tropicalis). This emerging technology review focuses on the tools to rapidly generate genetically engineered X. tropicalis models (GEXM), with a focus on establishment of genuine genetic and clinically relevant cancer models. We believe that due to particular advantageous characteristics, outlined within this review, GEXM will become a valuable alternative animal model for modeling human cancer. Furthermore, we provide perspectives of how GEXM will be used as a platform for elucidation of novel therapeutic targets and for preclinical drug validation. Finally, we also discuss some future prospects on how the recent expansions and adaptations of the CRISPR/Cas9 toolbox might influence and push forward X. tropicalis cancer research. © 2017 Wiley Periodicals, Inc.

  18. Cloned cDNA of A/swine/Iowa/15/1930 internal genes as a candidate backbone for reverse genetics vaccine against influenza A viruses.

    PubMed

    Lekcharoensuk, Porntippa; Wiriyarat, Witthawat; Petcharat, Nantawan; Lekcharoensuk, Chalermpol; Auewarakul, Prasert; Richt, Juergen A

    2012-02-14

    Reverse genetics viruses for influenza vaccine production usually utilize the internal genes of the egg-adapted A/Puerto Rico/8/34 (PR8) strain. This egg-adapted strain provides high production yield in embryonated eggs but does not necessarily give the best yield in mammalian cell culture. In order to generate a reverse genetics viral backbone that is well-adapted to high growth in mammalian cell culture, a swine influenza isolate A/swine/Iowa/15/30 (H1N1) (rg1930) that was shown to give high yield in Madin-Darby canine kidney (MDCK) cells was used as the internal gene donor for reverse genetics plasmids. In this report, the internal genes from rg1930 were used for construction of reverse genetics viruses carrying a cleavage site-modified hemagglutinin (HA) gene and neuraminidase (NA) gene from a highly pathogenic H5N1 virus. The resulting virus (rg1930H5N1) was low pathogenic in vivo. Inactivated rg1930H5N1 vaccine completely protected chickens from morbidity and mortality after challenge with highly pathogenic H5N1. Protective immunity was obtained when chickens were immunized with an inactivated vaccine consisting of at least 2(9) HA units of the rg1930H5N1 virus. In comparison to the PR8-based reverse genetics viruses carrying the same HA and NA genes from an H5N1 virus, rg1930 based viruses yielded higher viral titers in MDCK and Vero cells. In addition, the reverse genetics derived H3N2 and H5N2 viruses with the rg1930 backbone replicated in MDCK cells better than the cognate viruses with the rgPR8 backbone. It is concluded that this newly established reverse genetics backbone system could serve as a candidate for a master donor strain for development of inactivated influenza vaccines in cell-based systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Genetic dissection of behavioral flexibility: reversal learning in mice.

    PubMed

    Laughlin, Rick E; Grant, Tara L; Williams, Robert W; Jentsch, J David

    2011-06-01

    Behavioral inflexibility is a feature of schizophrenia, attention-deficit/hyperactivity disorder, and behavior addictions that likely results from heritable deficits in the inhibitory control over behavior. Here, we investigate the genetic basis of individual differences in flexibility, measured using an operant reversal learning task. We quantified discrimination acquisition and subsequent reversal learning in a cohort of 51 BXD strains of mice (2-5 mice/strain, n = 176) for which we have matched data on sequence, gene expression in key central nervous system regions, and neuroreceptor levels. Strain variation in trials to criterion on acquisition and reversal was high, with moderate heritability (∼.3). Acquisition and reversal learning phenotypes did not covary at the strain level, suggesting that these traits are effectively under independent genetic control. Reversal performance did covary with dopamine D2 receptor levels in the ventral midbrain, consistent with a similar observed relationship between impulsivity and D2 receptors in humans. Reversal, but not acquisition, is linked to a locus on mouse chromosome 10 with a peak likelihood ratio statistic at 86.2 megabase (p < .05 genome-wide). Variance in messenger RNA levels of select transcripts expressed in neocortex, hippocampus, and striatum correlated with the reversal learning phenotype, including Syn3, Nt5dc3, and Hcfc2. This work demonstrates the clear trait independence between, and genetic control of, discrimination acquisition and reversal and illustrates how globally coherent data sets for a single panel of highly related strains can be interrogated and integrated to uncover genetic sources and molecular and neuropharmacological candidates of complex behavioral traits relevant to human psychopathology. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Genetic manipulation for inherited neurodegenerative diseases: myth or reality?

    PubMed Central

    Yu-Wai-Man, Patrick

    2016-01-01

    Rare genetic diseases affect about 7% of the general population and over 7000 distinct clinical syndromes have been described with the majority being due to single gene defects. This review will provide a critical overview of genetic strategies that are being pioneered to halt or reverse disease progression in inherited neurodegenerative diseases. This field of research covers a vast area and only the most promising treatment paradigms will be discussed with a particular focus on inherited eye diseases, which have paved the way for innovative gene therapy paradigms, and mitochondrial diseases, which are currently generating a lot of debate centred on the bioethics of germline manipulation. PMID:27002113

  1. 77 FR 54584 - Final Action Under the NIH Guidelines for Research Involving Recombinant DNA Molecules (NIH...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-05

    ... National Institutes of Health (NIH) Office of Biotechnology Activities, Office of Science Policy (NIH/OBA... in the life sciences, such as directed molecular evolution and viral reverse genetics, has the... synthetic biology), and (2) a recommendation from the National Science Advisory Board for Biosecurity (NSABB...

  2. Differentially expressed genes during the imbibition of dormant and after-ripened seeds - a reverse genetics approach.

    PubMed

    Yazdanpanah, Farzaneh; Hanson, Johannes; Hilhorst, Henk W M; Bentsink, Leónie

    2017-09-11

    Seed dormancy, defined as the incapability of a viable seed to germinate under favourable conditions, is an important trait in nature and agriculture. Despite extensive research on dormancy and germination, many questions about the molecular mechanisms controlling these traits remain unanswered, likely due to its genetic complexity and the large environmental effects which are characteristic of these quantitative traits. To boost research towards revealing mechanisms in the control of seed dormancy and germination we depend on the identification of genes controlling those traits. We used transcriptome analysis combined with a reverse genetics approach to identify genes that are prominent for dormancy maintenance and germination in imbibed seeds of Arabidopsis thaliana. Comparative transcriptomics analysis was employed on freshly harvested (dormant) and after-ripened (AR; non-dormant) 24-h imbibed seeds of four different DELAY OF GERMINATION near isogenic lines (DOGNILs) and the Landsberg erecta (Ler) wild type with varying levels of primary dormancy. T-DNA knock-out lines of the identified genes were phenotypically investigated for their effect on dormancy and AR. We identified conserved sets of 46 and 25 genes which displayed higher expression in seeds of all dormant and all after-ripened DOGNILs and Ler, respectively. Knock-out mutants in these genes showed dormancy and germination related phenotypes. Most of the identified genes had not been implicated in seed dormancy or germination. This research will be useful to further decipher the molecular mechanisms by which these important ecological and commercial traits are regulated.

  3. Strains and Stressors: An Analysis of Touchscreen Learning in Genetically Diverse Mouse Strains

    PubMed Central

    Graybeal, Carolyn; Bachu, Munisa; Mozhui, Khyobeni; Saksida, Lisa M.; Bussey, Timothy J.; Sagalyn, Erica; Williams, Robert W.; Holmes, Andrew

    2014-01-01

    Touchscreen-based systems are growing in popularity as a tractable, translational approach for studying learning and cognition in rodents. However, while mouse strains are well known to differ in learning across various settings, performance variation between strains in touchscreen learning has not been well described. The selection of appropriate genetic strains and backgrounds is critical to the design of touchscreen-based studies and provides a basis for elucidating genetic factors moderating behavior. Here we provide a quantitative foundation for visual discrimination and reversal learning using touchscreen assays across a total of 35 genotypes. We found significant differences in operant performance and learning, including faster reversal learning in DBA/2J compared to C57BL/6J mice. We then assessed DBA/2J and C57BL/6J for differential sensitivity to an environmental insult by testing for alterations in reversal learning following exposure to repeated swim stress. Stress facilitated reversal learning (selectively during the late stage of reversal) in C57BL/6J, but did not affect learning in DBA/2J. To dissect genetic factors underlying these differences, we phenotyped a family of 27 BXD strains generated by crossing C57BL/6J and DBA/2J. There was marked variation in discrimination, reversal and extinction learning across the BXD strains, suggesting this task may be useful for identifying underlying genetic differences. Moreover, different measures of touchscreen learning were only modestly correlated in the BXD strains, indicating that these processes are comparatively independent at both genetic and phenotypic levels. Finally, we examined the behavioral structure of learning via principal component analysis of the current data, plus an archival dataset, totaling 765 mice. This revealed 5 independent factors suggestive of “reversal learning,” “motivation-related late reversal learning,” “discrimination learning,” “speed to respond,” and “motivation during discrimination.” Together, these findings provide a valuable reference to inform the choice of strains and genetic backgrounds in future studies using touchscreen-based tasks. PMID:24586288

  4. Efficient assembly of full-length infectious clone of Brazilian IBDV isolate by homologous recombination in yeast

    PubMed Central

    Silva, J.V.J.; Arenhart, S.; Santos, H.F.; Almeida-Queiroz, S.R.; Silva, A.N.M.R.; Trevisol, I.M.; Bertani, G.R.; Gil, L.H.V.G.

    2014-01-01

    The Infectious Bursal Disease Virus (IBDV) causes immunosuppression in young chickens. Advances in molecular virology and vaccines for IBDV have been achieved by viral reverse genetics (VRG). VRG for IBDV has undergone changes over time, however all strategies used to generate particles of IBDV involves multiple rounds of amplification and need of in vitro ligation and restriction sites. The aim of this research was to build the world’s first VRG for IBDV by yeast-based homologous recombination; a more efficient, robust and simple process than cloning by in vitro ligation. The wild type IBDV (Wt-IBDV-Br) was isolated in Brazil and had its genome cloned in pJG-CMV-HDR vector by yeast-based homologous recombination. The clones were transfected into chicken embryo fibroblasts and the recovered virus (IC-IBDV-Br) showed genetic stability and similar phenotype to Wt-IBDV-Br, which were observed by nucleotide sequence, focus size/morphology and replication kinetics, respectively. Thus, IBDV reverse genetics by yeast-based homologous recombination provides tools to IBDV understanding and vaccines/viral vectors development. PMID:25763067

  5. Habit Reversal Therapy for Body-Focused Repetitive Behaviors in Williams Syndrome: A Case Study

    PubMed Central

    Klein-Tasman, Bonita P.

    2013-01-01

    Williams syndrome (WS) is genetic neurodevelopmental disorder with a well-characterized cognitive and behavioral phenotype. Research has consistently demonstrated high rates of psychopathology in this population; however, little research has examined the use of empirically-supported psychosocial interventions in those with WS. The current case study reports on the use of Habit Reversal Therapy (HRT) to treat multiple body-focused repetitive behaviors in a child with WS. Although HRT is a well-established cognitive-behavioral intervention for body-focused repetitive behaviors, it has been infrequently used in populations with developmental disabilities. An etiologically-informed approach was used to adapt HRT to fit the known behavioral and cognitive phenotype of WS. Results suggest that HRT may be beneficial for this population. Modified treatment elements are described and future research areas highlighted. PMID:24357918

  6. Identification and applications of the Petunia class II Act1/dTph1 transposable element system.

    PubMed

    Gerats, Tom; Zethof, Jan; Vandenbussche, Michiel

    2013-01-01

    Transposable genetic elements are considered to be ubiquitous. Despite this, their mutagenic capacity has been exploited in only a few species. The main plant species are maize, Antirrhinum, and Petunia. Representatives of all three major groups of class II elements, viz., hAT-, CACTA- and Mutator-like elements, have been identified in Petunia. Here we focus on the research "history" of the Petunia two-element Act1-dTph1 system and the development of its application in forward- and reverse-genetics studies.

  7. Slowly switching between environments facilitates reverse evolution in small populations.

    PubMed

    Tan, Longzhi; Gore, Jeff

    2012-10-01

    Natural populations must constantly adapt to ever-changing environmental conditions. A particularly interesting question is whether such adaptations can be reversed by returning the population to an ancestral environment. Such evolutionary reversals have been observed in both natural and laboratory populations. However, the factors that determine the reversibility of evolution are still under debate. The time scales of environmental change vary over a wide range, but little is known about how the rate of environmental change influences the reversibility of evolution. Here, we demonstrate computationally that slowly switching between environments increases the reversibility of evolution for small populations that are subject to only modest clonal interference. For small populations, slow switching reduces the mean number of mutations acquired in a new environment and also increases the probability of reverse evolution at each of these "genetic distances." As the population size increases, slow switching no longer reduces the genetic distance, thus decreasing the evolutionary reversibility. We confirm this effect using both a phenomenological model of clonal interference and also a Wright-Fisher stochastic simulation that incorporates genetic diversity. Our results suggest that the rate of environmental change is a key determinant of the reversibility of evolution, and provides testable hypotheses for experimental evolution. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  8. Polygenic risk and the development and course of asthma: Evidence from a 4-decade longitudinal study

    PubMed Central

    Belsky, DW; Sears, MR; Hancox, RJ; Harrington, HL; Houts, R; Moffitt, TE; Sugden, K; Williams, B; Poulton, R; Caspi, A

    2013-01-01

    BACKGROUND Genome-wide association studies (GWAS) have discovered loci that predispose to asthma. To integrate these new discoveries with emerging models of asthma pathobiology, research is needed to test how genetic discoveries relate to developmental and biological characteristics of asthma. METHODS We derived a multi-locus profile of genetic risk from published GWAS of asthma case status. We then tested associations between this “genetic risk score” and developmental and biological characteristics of asthma in a population-based long-running birth cohort, the Dunedin Longitudinal Study (n=1,037). We evaluated asthma onset, persistence, atopy, airway hyperresponsiveness, incompletely reversible airflow obstruction, and asthma-related school and work absenteeism and hospitalization during 9 prospective assessments spanning ages 9–38 years, when 95% of surviving cohort members were seen. INTERPRETATION Cohort members at higher genetic risk experienced asthma onset earlier in life (HR=1.12 [1.01–1.26]). Childhood-onset asthma cases at higher genetic risk were more likely to become life-course-persistent asthma cases (RR=1.36 [1.14–1.63]). Asthma cases at higher genetic risk more often manifested atopy (RR=1.07 [1.01–1.14]), airway hyperresponsiveness (RR=1.16 [1.03–1.32]), and incompletely reversible airflow obstruction (RR=1.28 [1.04–1.57]). They were also more likely to miss school or work due to asthma (IRR=1.38 [1.02–1.86]) and to be hospitalized with breathing problems (HR=1.38 [1.07–1.79]). Genotypic information about asthma risk was independent of and additive to information derived from cohort members’ family histories of asthma. CONCLUSIONS Findings from this population study confirm that GWAS-discoveries for asthma associate with a childhood-onset phenotype and advance asthma genetics beyond the original GWAS-discoveries in three ways: (1) We show that genetic risks predict which childhood-onset asthma cases remit and which become life-course-persistent cases, although these predictions are not sufficiently sensitive or specific to support immediate clinical translation; (2) We elucidate a biological profile of the asthma that arises from these genetic risks: asthma characterized by atopy and airway hyperresponsiveness and leading to incompletely reversible airflow obstruction; and (3) We describe the real-life impact of GWAS-discoveries by quantifying genetic associations with missed school and work and hospitalization. PMID:24429243

  9. Technical approaches for mouse models of human disease.

    PubMed

    Justice, Monica J; Siracusa, Linda D; Stewart, A Francis

    2011-05-01

    The mouse is the leading organism for disease research. A rich resource of genetic variation occurs naturally in inbred and special strains owing to spontaneous mutations. However, one can also obtain desired gene mutations by using the following processes: targeted mutations that eliminate function in the whole organism or in a specific tissue; forward genetic screens using chemicals or transposons; or the introduction of exogenous transgenes as DNAs, bacterial artificial chromosomes (BACs) or reporter constructs. The mouse is the only mammal that provides such a rich resource of genetic diversity coupled with the potential for extensive genome manipulation, and is therefore a powerful application for modeling human disease. This poster review outlines the major genome manipulations available in the mouse that are used to understand human disease: natural variation, reverse genetics, forward genetics, transgenics and transposons. Each of these applications will be essential for understanding the diversity that is being discovered within the human population.

  10. Universal Influenza B Virus Genomic Amplification Facilitates Sequencing, Diagnostics, and Reverse Genetics

    PubMed Central

    Zhou, Bin; Lin, Xudong; Wang, Wei; Halpin, Rebecca A.; Bera, Jayati; Stockwell, Timothy B.; Barr, Ian G.

    2014-01-01

    Although human influenza B virus (IBV) is a significant human pathogen, its great genetic diversity has limited our ability to universally amplify the entire genome for subsequent sequencing or vaccine production. The generation of sequence data via next-generation approaches and the rapid cloning of viral genes are critical for basic research, diagnostics, antiviral drugs, and vaccines to combat IBV. To overcome the difficulty of amplifying the diverse and ever-changing IBV genome, we developed and optimized techniques that amplify the complete segmented negative-sense RNA genome from any IBV strain in a single tube/well (IBV genomic amplification [IBV-GA]). Amplicons for >1,000 diverse IBV genomes from different sample types (e.g., clinical specimens) were generated and sequenced using this robust technology. These approaches are sensitive, robust, and sequence independent (i.e., universally amplify past, present, and future IBVs), which facilitates next-generation sequencing and advanced genomic diagnostics. Importantly, special terminal sequences engineered into the optimized IBV-GA2 products also enable ligation-free cloning to rapidly generate reverse-genetics plasmids, which can be used for the rescue of recombinant viruses and/or the creation of vaccine seed stock. PMID:24501036

  11. FLP-18 Functions through the G-Protein-Coupled Receptors NPR-1 and NPR-4 to Modulate Reversal Length in Caenorhabditis elegans

    PubMed Central

    Dahiya, Yogesh; Babu, Kavita

    2018-01-01

    Animal behavior is critically dependent on the activity of neuropeptides. Reversals, one of the most conspicuous behaviors in Caenorhabditis elegans, plays an important role in determining the navigation strategy of the animal. Our experiments on hermaphrodite C. elegans show the involvement of a neuropeptide FLP-18 in modulating reversal length in these hermaphrodites. We show that FLP-18 controls the reversal length by regulating the activity of AVA interneurons through the G-protein-coupled neuropeptide receptors, NPR-4 and NPR-1. We go on to show that the site of action of these receptors is the AVA interneuron for NPR-4 and the ASE sensory neurons for NPR-1. We further show that mutants in the neuropeptide, flp-18, and its receptors show increased reversal lengths. Consistent with the behavioral data, calcium levels in the AVA neuron of freely reversing C. elegans were significantly higher and persisted for longer durations in flp-18, npr-1, npr-4, and npr-1 npr-4 genetic backgrounds compared with wild-type control animals. Finally, we show that increasing FLP-18 levels through genetic and physiological manipulations causes shorter reversal lengths. Together, our analysis suggests that the FLP-18/NPR-1/NPR-4 signaling is a pivotal point in the regulation of reversal length under varied genetic and environmental conditions. PMID:29712787

  12. Reverse Genetics Approaches for the Development of Influenza Vaccines

    PubMed Central

    Nogales, Aitor; Martínez-Sobrido, Luis

    2016-01-01

    Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines. PMID:28025504

  13. Reverse genetics of Mononegavirales: How they work, new vaccines, and new cancer therapeutics

    PubMed Central

    Pfaller, Christian K.; Cattaneo, Roberto; Schnell, Matthias J.

    2015-01-01

    The order Mononegavirales includes five families: Bornaviridae, Filoviridae, Nyamaviridae, Paramyxoviridae, and Rhabdoviridae. The genome of these viruses is one molecule of negative-sense single strand RNA coding for five to ten genes in a conserved order. The RNA is not infectious until packaged by the nucleocapsid protein and transcribed by the polymerase and co-factors. Reverse genetics approaches have answered fundamental questions about the biology of Mononegavirales. The lack of icosahedral symmetry and modular organization in the genome of these viruses has facilitated engineering of viruses expressing fluorescent proteins, and these fluorescent proteins have provided important insights about the molecular and cellular basis of tissue tropism and pathogenesis. Studies have assessed the relevance for virulence of different receptors and the interactions with cellular proteins governing the innate immune responses. Research has also analyzed the mechanisms of attenuation. Based on these findings, ongoing clinical trials are exploring new live attenuated vaccines and the use of viruses re-engineered as cancer therapeutics. PMID:25702088

  14. Phenome-Wide Association Studies as a Tool to Advance Precision Medicine

    PubMed Central

    Denny, Joshua C.; Bastarache, Lisa; Roden, Dan M.

    2017-01-01

    Beginning in the early 2000s, the accumulation of biospecimens linked to electronic health records (EHRs) made possible genome-phenome studies (i.e., comparative analyses of genetic variants and phenotypes) using only data collected as a by-product of typical health care. In addition to disease and trait genetics, EHRs proved a valuable resource for analyzing pharmacogenetic traits and developing reverse genetics approaches such as phenome-wide association studies (PheWASs). PheWASs are designed to survey which of many phenotypes may be associated with a given genetic variant. PheWAS methods have been validated through replication of hundreds of known genotype-phenotype associations, and their use has differentiated between true pleiotropy and clinical comorbidity, added context to genetic discoveries, and helped define disease subtypes, and may also help repurpose medications. PheWAS methods have also proven to be useful with research-collected data. Future efforts that integrate broad, robust collection of phenotype data (e.g., EHR data) with purpose-collected research data in combination with a greater understanding of EHR data will create a rich resource for increasingly more efficient and detailed genome-phenome analysis to usher in new discoveries in precision medicine. PMID:27147087

  15. The zebrafish as a model for complex tissue regeneration

    PubMed Central

    Gemberling, Matthew; Bailey, Travis J.; Hyde, David R.; Poss, Kenneth D.

    2013-01-01

    For centuries, philosophers and scientists have been fascinated by the principles and implications of regeneration in lower vertebrate species. Two features have made zebrafish an informative model system for determining mechanisms of regenerative events. First, they are highly regenerative, able to regrow amputated fins, as well as a lesioned brain, retina, spinal cord, heart, and other tissues. Second, they are amenable to both forward and reverse genetic approaches, with a research toolset regularly updated by an expanding community of zebrafish researchers. Zebrafish studies have helped identify new mechanistic underpinnings of regeneration in multiple tissues, and in some cases have served as a guide for contemplating regenerative strategies in mammals. Here, we review the recent history of zebrafish as a genetic model system for understanding how and why tissue regeneration occurs. PMID:23927865

  16. Reinventing the ames test as a quantitative lab that connects classical and molecular genetics.

    PubMed

    Goodson-Gregg, Nathan; De Stasio, Elizabeth A

    2009-01-01

    While many institutions use a version of the Ames test in the undergraduate genetics laboratory, students typically are not exposed to techniques or procedures beyond qualitative analysis of phenotypic reversion, thereby seriously limiting the scope of learning. We have extended the Ames test to include both quantitative analysis of reversion frequency and molecular analysis of revertant gene sequences. By giving students a role in designing their quantitative methods and analyses, students practice and apply quantitative skills. To help students connect classical and molecular genetic concepts and techniques, we report here procedures for characterizing the molecular lesions that confer a revertant phenotype. We suggest undertaking reversion of both missense and frameshift mutants to allow a more sophisticated molecular genetic analysis. These modifications and additions broaden the educational content of the traditional Ames test teaching laboratory, while simultaneously enhancing students' skills in experimental design, quantitative analysis, and data interpretation.

  17. Next-generation AAV vectors for clinical use: an ever-accelerating race.

    PubMed

    Weinmann, Jonas; Grimm, Dirk

    2017-10-01

    During the past five decades, it has become evident that Adeno-associated virus (AAV) represents one of the most potent, most versatile, and thus most auspicious platforms available for gene delivery into cells, animals and, ultimately, humans. Particularly attractive is the ease with which the viral capsid-the major determinant of virus-host interaction including cell specificity and antibody recognition-can be modified and optimized at will. This has motivated countless researchers to develop high-throughput technologies in which genetically engineered AAV capsid libraries are subjected to a vastly hastened emulation of natural evolution, with the aim to enrich novel synthetic AAV capsids displaying superior features for clinical application. While the power and potential of these forward genetics approaches is undisputed, they are also inherently challenging as success depends on a combination of library quality, fidelity, and complexity. Here, we will describe and discuss two original, very exciting strategies that have emerged over the last three years and that promise to alleviate at least some of these concerns, namely, (i) a reverse genetics approach termed "ancestral AAV sequence reconstruction," and (ii) AAV genome barcoding as a technology that can advance both, forward and reverse genetics stratagems. Notably, despite the conceptual differences of these two technologies, they pursue the same goal which is tailored acceleration of AAV evolution and thus winning the race for the next-generation AAV vectors for clinical use.

  18. Recent Advances in Human Genetics and Epigenetics of Adiposity: Pathway to Precision Medicine?

    PubMed

    Fall, Tove; Mendelson, Michael; Speliotes, Elizabeth K

    2017-05-01

    Obesity is a heritable trait that contributes to substantial global morbidity and mortality. Here, we summarize findings from the past decade of genetic and epigenetic research focused on unravelling the underpinnings of adiposity. More than 140 genetic regions now are known to influence adiposity traits. The genetics of general adiposity, as measured by body mass index, and that of abdominal obesity, as measured by waist-to-hip ratio, have distinct biological backgrounds. Gene expression associated with general adiposity is enriched in the nervous system. In contrast, genes associated with abdominal adiposity function in adipose tissue. Recent population-based epigenetic analyses have highlighted additional distinct loci. We discuss how associated genetic variants can lead to understanding causal mechanisms, and to disentangling reverse causation in epigenetic analyses. Discoveries emerging from population genomics are identifying new disease markers and potential novel drug targets to better define and combat obesity and related diseases. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  19. Sex reversal triggers the rapid transition from genetic to temperature-dependent sex.

    PubMed

    Holleley, Clare E; O'Meally, Denis; Sarre, Stephen D; Marshall Graves, Jennifer A; Ezaz, Tariq; Matsubara, Kazumi; Azad, Bhumika; Zhang, Xiuwen; Georges, Arthur

    2015-07-02

    Sex determination in animals is amazingly plastic. Vertebrates display contrasting strategies ranging from complete genetic control of sex (genotypic sex determination) to environmentally determined sex (for example, temperature-dependent sex determination). Phylogenetic analyses suggest frequent evolutionary transitions between genotypic and temperature-dependent sex determination in environmentally sensitive lineages, including reptiles. These transitions are thought to involve a genotypic system becoming sensitive to temperature, with sex determined by gene-environment interactions. Most mechanistic models of transitions invoke a role for sex reversal. Sex reversal has not yet been demonstrated in nature for any amniote, although it occurs in fish and rarely in amphibians. Here we make the first report of reptile sex reversal in the wild, in the Australian bearded dragon (Pogona vitticeps), and use sex-reversed animals to experimentally induce a rapid transition from genotypic to temperature-dependent sex determination. Controlled mating of normal males to sex-reversed females produces viable and fertile offspring whose phenotypic sex is determined solely by temperature (temperature-dependent sex determination). The W sex chromosome is eliminated from this lineage in the first generation. The instantaneous creation of a lineage of ZZ temperature-sensitive animals reveals a novel, climate-induced pathway for the rapid transition between genetic and temperature-dependent sex determination, and adds to concern about adaptation to rapid global climate change.

  20. Resurgent vector-borne diseases as a global health problem.

    PubMed Central

    Gubler, D. J.

    1998-01-01

    Vector-borne infectious diseases are emerging or resurging as a result of changes in public health policy, insecticide and drug resistance, shift in emphasis from prevention to emergency response, demographic and societal changes, and genetic changes in pathogens. Effective prevention strategies can reverse this trend. Research on vaccines, environmentally safe insecticides, alternative approaches to vector control, and training programs for health-care workers are needed. PMID:9716967

  1. Reversal learning as a measure of impulsive and compulsive behavior in addictions.

    PubMed

    Izquierdo, Alicia; Jentsch, J David

    2012-01-01

    Our ability to measure the cognitive components of complex decision-making across species has greatly facilitated our understanding of its neurobiological mechanisms. One task in particular, reversal learning, has proven valuable in assessing the inhibitory processes that are central to executive control. Reversal learning measures the ability to actively suppress reward-related responding and to disengage from ongoing behavior, phenomena that are biologically and descriptively related to impulsivity and compulsivity. Consequently, reversal learning could index vulnerability for disorders characterized by impulsivity such as proclivity for initial substance abuse as well as the compulsive aspects of dependence. Though we describe common variants and similar tasks, we pay particular attention to discrimination reversal learning, its supporting neural circuitry, neuropharmacology and genetic determinants. We also review the utility of this task in measuring impulsivity and compulsivity in addictions. We restrict our review to instrumental, reward-related reversal learning studies as they are most germane to addiction. The research reviewed here suggests that discrimination reversal learning may be used as a diagnostic tool for investigating the neural mechanisms that mediate impulsive and compulsive aspects of pathological reward-seeking and -taking behaviors. Two interrelated mechanisms are posited for the neuroadaptations in addiction that often translate to poor reversal learning: frontocorticostriatal circuitry dysregulation and poor dopamine (D2 receptor) modulation of this circuitry. These data suggest new approaches to targeting inhibitory control mechanisms in addictions.

  2. Setaria viridis as a Model System to Advance Millet Genetics and Genomics

    PubMed Central

    Huang, Pu; Shyu, Christine; Coelho, Carla P.; Cao, Yingying; Brutnell, Thomas P.

    2016-01-01

    Millet is a common name for a group of polyphyletic, small-seeded cereal crops that include pearl, finger and foxtail millet. Millet species are an important source of calories for many societies, often in developing countries. Compared to major cereal crops such as rice and maize, millets are generally better adapted to dry and hot environments. Despite their food security value, the genetic architecture of agronomically important traits in millets, including both morphological traits and climate resilience remains poorly studied. These complex traits have been challenging to dissect in large part because of the lack of sufficient genetic tools and resources. In this article, we review the phylogenetic relationship among various millet species and discuss the value of a genetic model system for millet research. We propose that a broader adoption of green foxtail (Setaria viridis) as a model system for millets could greatly accelerate the pace of gene discovery in the millets, and summarize available and emerging resources in S. viridis and its domesticated relative S. italica. These resources have value in forward genetics, reverse genetics and high throughput phenotyping. We describe methods and strategies to best utilize these resources to facilitate the genetic dissection of complex traits. We envision that coupling cutting-edge technologies and the use of S. viridis for gene discovery will accelerate genetic research in millets in general. This will enable strategies and provide opportunities to increase productivity, especially in the semi-arid tropics of Asia and Africa where millets are staple food crops. PMID:27965689

  3. Setaria viridis as a Model System to Advance Millet Genetics and Genomics.

    PubMed

    Huang, Pu; Shyu, Christine; Coelho, Carla P; Cao, Yingying; Brutnell, Thomas P

    2016-01-01

    Millet is a common name for a group of polyphyletic, small-seeded cereal crops that include pearl, finger and foxtail millet. Millet species are an important source of calories for many societies, often in developing countries. Compared to major cereal crops such as rice and maize, millets are generally better adapted to dry and hot environments. Despite their food security value, the genetic architecture of agronomically important traits in millets, including both morphological traits and climate resilience remains poorly studied. These complex traits have been challenging to dissect in large part because of the lack of sufficient genetic tools and resources. In this article, we review the phylogenetic relationship among various millet species and discuss the value of a genetic model system for millet research. We propose that a broader adoption of green foxtail ( Setaria viridis ) as a model system for millets could greatly accelerate the pace of gene discovery in the millets, and summarize available and emerging resources in S. viridis and its domesticated relative S. italica . These resources have value in forward genetics, reverse genetics and high throughput phenotyping. We describe methods and strategies to best utilize these resources to facilitate the genetic dissection of complex traits. We envision that coupling cutting-edge technologies and the use of S. viridis for gene discovery will accelerate genetic research in millets in general. This will enable strategies and provide opportunities to increase productivity, especially in the semi-arid tropics of Asia and Africa where millets are staple food crops.

  4. Sex Reversal in Birds.

    PubMed

    Major, Andrew T; Smith, Craig A

    2016-01-01

    Sexual differentiation in birds is controlled genetically as in mammals, although the sex chromosomes are different. Males have a ZZ sex chromosome constitution, while females are ZW. Gene(s) on the sex chromosomes must initiate gonadal sex differentiation during embryonic life, inducing paired testes in ZZ individuals and unilateral ovaries in ZW individuals. The traditional view of avian sexual differentiation aligns with that expounded for other vertebrates; upon sexual differentiation, the gonads secrete sex steroid hormones that masculinise or feminise the rest of the body. However, recent studies on naturally occurring or experimentally induced avian sex reversal suggest a significant role for direct genetic factors, in addition to sex hormones, in regulating sexual differentiation of the soma in birds. This review will provide an overview of sex determination in birds and both naturally and experimentally induced sex reversal, with emphasis on the key role of oestrogen. We then consider how recent studies on sex reversal and gynandromorphic birds (half male:half female) are shaping our understanding of sexual differentiation in avians and in vertebrates more broadly. Current evidence shows that sexual differentiation in birds is a mix of direct genetic and hormonal mechanisms. Perturbation of either of these components may lead to sex reversal. © 2016 S. Karger AG, Basel.

  5. Efficient and Robust Paramyxoviridae Reverse Genetics Systems

    PubMed Central

    Beaty, Shannon M.; Won, Sohui T.; Hong, Patrick; Lyons, Michael; Vigant, Frederic; Freiberg, Alexander N.; tenOever, Benjamin R.; Duprex, W. Paul

    2017-01-01

    ABSTRACT The notoriously low efficiency of Paramyxoviridae reverse genetics systems has posed a limiting barrier to the study of viruses in this family. Previous approaches to reverse genetics have utilized a wide variety of techniques to overcome the technical hurdles. Although robustness (i.e., the number of attempts that result in successful rescue) has been improved in some systems with the use of stable cell lines, the efficiency of rescue (i.e., the proportion of transfected cells that yield at least one successful rescue event) has remained low. We have substantially increased rescue efficiency for representative viruses from all five major Paramyxoviridae genera (from ~1 in 106-107 to ~1 in 102-103 transfected cells) by the addition of a self-cleaving hammerhead ribozyme (Hh-Rbz) sequence immediately preceding the start of the recombinant viral antigenome and the use of a codon-optimized T7 polymerase (T7opt) gene to drive paramyxovirus rescue. Here, we report a strategy for robust, reliable, and high-efficiency rescue of paramyxovirus reverse genetics systems, featuring several major improvements: (i) a vaccinia virus-free method, (ii) freedom to use any transfectable cell type for viral rescue, (iii) a single-step transfection protocol, and (iv) use of the optimal T7 promoter sequence for high transcription levels from the antigenomic plasmid without incorporation of nontemplated G residues. The robustness of our T7opt-HhRbz system also allows for greater latitude in the ratios of transfected accessory plasmids used that result in successful rescue. Thus, our system may facilitate the rescue and interrogation of the increasing number of emerging paramyxoviruses. IMPORTANCE The ability to manipulate the genome of paramyxoviruses and evaluate the effects of these changes at the phenotypic level is a powerful tool for the investigation of specific aspects of the viral life cycle and viral pathogenesis. However, reverse genetics systems for paramyxoviruses are notoriously inefficient, when successful. The ability to efficiently and robustly rescue paramyxovirus reverse genetics systems can be used to answer basic questions about the biology of paramyxoviruses, as well as to facilitate the considerable translational efforts being devoted to developing live attenuated paramyxovirus vaccine vectors. PMID:28405630

  6. Genome-Wide Association Mapping Combined with Reverse Genetics Identifies New Effectors of Low Water Potential-Induced Proline Accumulation in Arabidopsis1[W][OPEN

    PubMed Central

    Verslues, Paul E.; Lasky, Jesse R.; Juenger, Thomas E.; Liu, Tzu-Wen; Kumar, M. Nagaraj

    2014-01-01

    Arabidopsis (Arabidopsis thaliana) exhibits natural genetic variation in drought response, including varying levels of proline (Pro) accumulation under low water potential. As Pro accumulation is potentially important for stress tolerance and cellular redox control, we conducted a genome-wide association (GWAS) study of low water potential-induced Pro accumulation using a panel of natural accessions and publicly available single-nucleotide polymorphism (SNP) data sets. Candidate genomic regions were prioritized for subsequent study using metrics considering both the strength and spatial clustering of the association signal. These analyses found many candidate regions likely containing gene(s) influencing Pro accumulation. Reverse genetic analysis of several candidates identified new Pro effector genes, including thioredoxins and several genes encoding Universal Stress Protein A domain proteins. These new Pro effector genes further link Pro accumulation to cellular redox and energy status. Additional new Pro effector genes found include the mitochondrial protease LON1, ribosomal protein RPL24A, protein phosphatase 2A subunit A3, a MADS box protein, and a nucleoside triphosphate hydrolase. Several of these new Pro effector genes were from regions with multiple SNPs, each having moderate association with Pro accumulation. This pattern supports the use of summary approaches that incorporate clusters of SNP associations in addition to consideration of individual SNP probability values. Further GWAS-guided reverse genetics promises to find additional effectors of Pro accumulation. The combination of GWAS and reverse genetics to efficiently identify new effector genes may be especially applicable for traits difficult to analyze by other genetic screening methods. PMID:24218491

  7. Inherited XX sex reversal originating from wild medaka populations.

    PubMed

    Shinomiya, A; Otake, H; Hamaguchi, S; Sakaizumi, M

    2010-11-01

    The teleost fish, medaka (Oryzias latipes), has an XX/XY sex-determining mechanism. A Y-linked DM domain gene, DMY, has been isolated by positional cloning as the sex-determining gene in this species. Previously, we conducted a field survey of genotypic sex and found that approximately 1% of wild medaka are sex-reversed (XX males and XY females). Here, we performed genetic analyses of nine spontaneous XX sex-reversed males to elucidate its genetic basis. In all cases, the F(1) progeny were all females, whereas XX males reappeared in the backcross (BC) progeny, suggesting that XX sex reversal is a recessive trait. Although the incidences of sex reversal in the BC progeny were mostly low, 40% were males derived from one XX male. We performed linkage analysis using 55 BC males and located a single major factor, sda-1 (sex-determining autosomal factor-1), controlling sex reversal in an autosomal linkage group. Thus, genes involved in the sex-determining pathway can be isolated from spontaneous mutants in wild populations.

  8. National Science Foundation-sponsored workshop report. Draft plan for soybean genomics.

    PubMed

    Stacey, Gary; Vodkin, Lila; Parrott, Wayne A; Shoemaker, Randy C

    2004-05-01

    Recent efforts to coordinate and define a research strategy for soybean (Glycine max) genomics began with the establishment of a Soybean Genetics Executive Committee, which will serve as a communication focal point between the soybean research community and granting agencies. Secondly, a workshop was held to define a strategy to incorporate existing tools into a framework for advancing soybean genomics research. This workshop identified and ranked research priorities essential to making more informed decisions as to how to proceed with large scale sequencing and other genomics efforts. Most critical among these was the need to finalize a physical map and to obtain a better understanding of genome microstructure. Addressing these research needs will require pilot work on new technologies to demonstrate an ability to discriminate between recently duplicated regions in the soybean genome and pilot projects to analyze an adequate amount of random genome sequence to identify and catalog common repeats. The development of additional markers, reverse genetics tools, and bioinformatics is also necessary. Successful implementation of these goals will require close coordination among various working groups.

  9. Genetic manipulation for inherited neurodegenerative diseases: myth or reality?

    PubMed

    Yu-Wai-Man, Patrick

    2016-10-01

    Rare genetic diseases affect about 7% of the general population and over 7000 distinct clinical syndromes have been described with the majority being due to single gene defects. This review will provide a critical overview of genetic strategies that are being pioneered to halt or reverse disease progression in inherited neurodegenerative diseases. This field of research covers a vast area and only the most promising treatment paradigms will be discussed with a particular focus on inherited eye diseases, which have paved the way for innovative gene therapy paradigms, and mitochondrial diseases, which are currently generating a lot of debate centred on the bioethics of germline manipulation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Reverse Engineering a Signaling Network Using Alternative Inputs

    PubMed Central

    Tanaka, Hiromasa; Yi, Tau-Mu

    2009-01-01

    One of the goals of systems biology is to reverse engineer in a comprehensive fashion the arrow diagrams of signal transduction systems. An important tool for ordering pathway components is genetic epistasis analysis, and here we present a strategy termed Alternative Inputs (AIs) to perform systematic epistasis analysis. An alternative input is defined as any genetic manipulation that can activate the signaling pathway instead of the natural input. We introduced the concept of an “AIs-Deletions matrix” that summarizes the outputs of all combinations of alternative inputs and deletions. We developed the theory and algorithms to construct a pairwise relationship graph from the AIs-Deletions matrix capturing both functional ordering (upstream, downstream) and logical relationships (AND, OR), and then interpreting these relationships into a standard arrow diagram. As a proof-of-principle, we applied this methodology to a subset of genes involved in yeast mating signaling. This experimental pilot study highlights the robustness of the approach and important technical challenges. In summary, this research formalizes and extends classical epistasis analysis from linear pathways to more complex networks, facilitating computational analysis and reconstruction of signaling arrow diagrams. PMID:19898612

  11. Recovery of infectious type Asia1 foot-and-mouth disease virus from suckling mice directly inoculated with an RNA polymerase I/II-driven unidirectional transcription plasmid.

    PubMed

    Lian, Kaiqi; Yang, Fan; Zhu, Zixiang; Cao, Weijun; Jin, Ye; Li, Dan; Zhang, Keshan; Guo, Jianhong; Zheng, Haixue; Liu, Xiangtao

    2015-10-02

    We developed an RNA polymerase (pol) I- and II-driven plasmid-based reverse genetics system to rescue infectious foot-and-mouth disease virus (FMDV) from cloned cDNA. In this plasmid-based transfection, the full-length viral cDNA was flanked by hammerhead ribozyme (HamRz) and hepatitis delta ribozyme (HdvRz) sequences, which were arranged downstream of the two promoters (cytomegalovirus (CMV) and pol I promoter) and upstream of the terminators and polyadenylation signal, respectively. The utility of this method was demonstrated by the recovery of FMDV Asia1 HN/CHA/06 in BHK-21 cells transfected with cDNA plasmids. Furthermore, infectious FMDV Asia1 HN/CHA/06 could be rescued from suckling mice directly inoculated with cDNA plasmids. Thus, this reverse genetics system can be applied to fundamental research and vaccine studies, most notably to rescue those viruses for which there is currently an absence of a suitable cell culture system. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Genetic screens for mutations affecting development of Xenopus tropicalis.

    PubMed

    Goda, Tadahiro; Abu-Daya, Anita; Carruthers, Samantha; Clark, Matthew D; Stemple, Derek L; Zimmerman, Lyle B

    2006-06-01

    We present here the results of forward and reverse genetic screens for chemically-induced mutations in Xenopus tropicalis. In our forward genetic screen, we have uncovered 77 candidate phenotypes in diverse organogenesis and differentiation processes. Using a gynogenetic screen design, which minimizes time and husbandry space expenditures, we find that if a phenotype is detected in the gynogenetic F2 of a given F1 female twice, it is highly likely to be a heritable abnormality (29/29 cases). We have also demonstrated the feasibility of reverse genetic approaches for obtaining carriers of mutations in specific genes, and have directly determined an induced mutation rate by sequencing specific exons from a mutagenized population. The Xenopus system, with its well-understood embryology, fate map, and gain-of-function approaches, can now be coupled with efficient loss-of-function genetic strategies for vertebrate functional genomics and developmental genetics.

  13. Reversal learning and resurgence of operant behavior in zebrafish (Danio rerio).

    PubMed

    Kuroda, Toshikazu; Mizutani, Yuto; Cançado, Carlos R X; Podlesnik, Christopher A

    2017-09-01

    Zebrafish are used extensively as vertebrate animal models in biomedical research for having such features as a fully sequenced genome and transparent embryo. Yet, operant-conditioning studies with this species are scarce. The present study investigated reversal learning and resurgence of operant behavior in zebrafish. A target response (approaching a sensor) was reinforced in Phase 1. In Phase 2, the target response was extinguished while reinforcing an alternative response (approaching a different sensor). In Phase 3, extinction was in effect for the target and alternative responses. Reversal learning was demonstrated when responding tracked contingency changes between Phases 1 and 2. Moreover, resurgence occurred in 10 of 13 fish in Phase 3: Target response rates increased transiently and exceeded rates of an unreinforced control response. The present study provides the first evidence with zebrafish supporting reversal learning between discrete operant responses and a laboratory model of relapse. These findings open the possibility to assessing genetic influences of operant behavior generally and in models of relapse (e.g., resurgence, renewal, reinstatement). Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia.

    PubMed

    Vallat, Laurent; Kemper, Corey A; Jung, Nicolas; Maumy-Bertrand, Myriam; Bertrand, Frédéric; Meyer, Nicolas; Pocheville, Arnaud; Fisher, John W; Gribben, John G; Bahram, Seiamak

    2013-01-08

    Cellular behavior is sustained by genetic programs that are progressively disrupted in pathological conditions--notably, cancer. High-throughput gene expression profiling has been used to infer statistical models describing these cellular programs, and development is now needed to guide orientated modulation of these systems. Here we develop a regression-based model to reverse-engineer a temporal genetic program, based on relevant patterns of gene expression after cell stimulation. This method integrates the temporal dimension of biological rewiring of genetic programs and enables the prediction of the effect of targeted gene disruption at the system level. We tested the performance accuracy of this model on synthetic data before reverse-engineering the response of primary cancer cells to a proliferative (protumorigenic) stimulation in a multistate leukemia biological model (i.e., chronic lymphocytic leukemia). To validate the ability of our method to predict the effects of gene modulation on the global program, we performed an intervention experiment on a targeted gene. Comparison of the predicted and observed gene expression changes demonstrates the possibility of predicting the effects of a perturbation in a gene regulatory network, a first step toward an orientated intervention in a cancer cell genetic program.

  15. Convergent functional genomics in addiction research - a translational approach to study candidate genes and gene networks.

    PubMed

    Spanagel, Rainer

    2013-01-01

    Convergent functional genomics (CFG) is a translational methodology that integrates in a Bayesian fashion multiple lines of evidence from studies in human and animal models to get a better understanding of the genetics of a disease or pathological behavior. Here the integration of data sets that derive from forward genetics in animals and genetic association studies including genome wide association studies (GWAS) in humans is described for addictive behavior. The aim of forward genetics in animals and association studies in humans is to identify mutations (e.g. SNPs) that produce a certain phenotype; i.e. "from phenotype to genotype". Most powerful in terms of forward genetics is combined quantitative trait loci (QTL) analysis and gene expression profiling in recombinant inbreed rodent lines or genetically selected animals for a specific phenotype, e.g. high vs. low drug consumption. By Bayesian scoring genomic information from forward genetics in animals is then combined with human GWAS data on a similar addiction-relevant phenotype. This integrative approach generates a robust candidate gene list that has to be functionally validated by means of reverse genetics in animals; i.e. "from genotype to phenotype". It is proposed that studying addiction relevant phenotypes and endophenotypes by this CFG approach will allow a better determination of the genetics of addictive behavior.

  16. Setaria viridis as a Model System to Advance Millet Genetics and Genomics

    DOE PAGES

    Huang, Pu; Shyu, Christine; Coelho, Carla P.; ...

    2016-11-28

    Millet is a common name for a group of polyphyletic, small-seeded cereal crops that include pearl, finger and foxtail millet. Millet species are an important source of calories for many societies, often in developing countries. Compared to major cereal crops such as rice and maize, millets are generally better adapted to dry and hot environments. Yet despite their food security value, the genetic architecture of agronomically important traits in millets, including both morphological traits and climate resilience remains poorly studied. These complex traits have been challenging to dissect in large part because of the lack of sufficient genetic tools andmore » resources. In this article, we review the phylogenetic relationship among various millet species and discuss the value of a genetic model system for millet research. We propose that a broader adoption of green foxtail (Setaria viridis) as a model system for millets could greatly accelerate the pace of gene discovery in the millets, and summarize available and emerging resources in S. viridis and its domesticated relative S. italica. These resources have value in forward genetics, reverse genetics and high throughput phenotyping. We describe methods and strategies to best utilize these resources to facilitate the genetic dissection of complex traits. We envision that coupling cutting-edge technologies and the use of S. viridis for gene discovery will accelerate genetic research in millets in general. This will enable strategies and provide opportunities to increase productivity, especially in the semi-arid tropics of Asia and Africa where millets are staple food crops.« less

  17. Setaria viridis as a Model System to Advance Millet Genetics and Genomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Pu; Shyu, Christine; Coelho, Carla P.

    Millet is a common name for a group of polyphyletic, small-seeded cereal crops that include pearl, finger and foxtail millet. Millet species are an important source of calories for many societies, often in developing countries. Compared to major cereal crops such as rice and maize, millets are generally better adapted to dry and hot environments. Yet despite their food security value, the genetic architecture of agronomically important traits in millets, including both morphological traits and climate resilience remains poorly studied. These complex traits have been challenging to dissect in large part because of the lack of sufficient genetic tools andmore » resources. In this article, we review the phylogenetic relationship among various millet species and discuss the value of a genetic model system for millet research. We propose that a broader adoption of green foxtail (Setaria viridis) as a model system for millets could greatly accelerate the pace of gene discovery in the millets, and summarize available and emerging resources in S. viridis and its domesticated relative S. italica. These resources have value in forward genetics, reverse genetics and high throughput phenotyping. We describe methods and strategies to best utilize these resources to facilitate the genetic dissection of complex traits. We envision that coupling cutting-edge technologies and the use of S. viridis for gene discovery will accelerate genetic research in millets in general. This will enable strategies and provide opportunities to increase productivity, especially in the semi-arid tropics of Asia and Africa where millets are staple food crops.« less

  18. Reverse Genetics of Newcastle Disease Virus.

    PubMed

    Cardenas-Garcia, Stivalis; Afonso, Claudio L

    2017-01-01

    Reverse genetics allows for the generation of recombinant viruses or vectors used in functional studies, vaccine development, and gene therapy. This technique enables genetic manipulation and cloning of viral genomes, gene mutation through site-directed mutagenesis, along with gene insertion or deletion, among other studies. An in vitro infection-based system including the highly attenuated vaccinia virus Ankara strain expressing the T7 RNA polymerase from bacteriophage T7, with co-transfection of three helper plasmids and a full-length cDNA plasmid, was successfully developed to rescue genetically modified Newcastle disease viruses in 1999. In this chapter, the materials and the methods involved in rescuing Newcastle disease virus (NDV) from cDNA, utilizing site-directed mutagenesis and gene replacement techniques, are described in detail.

  19. Sensitivity of Female Inbreds of Cucumis sativus to Sex Reversion by Gibberellin.

    PubMed

    Shifriss, O; George, W L

    1964-03-27

    Two female inbred cucumbers were developed by substituting gene Acr for acr in the genetic backgrounds of the monoecious races Marketer and Tokyo, which exhibit weak and strong male tendency respectively. Marketer females are resistant and Tokyo females are sensitive to sex reversion in response to treatments with gibberellin A(3). Resistance and sensitivity of this type appear to depend upon the genetic system which controls sex tendency.

  20. Reverse Genetics for Newcastle Disease Virus as a Vaccine Vector.

    PubMed

    Kim, Shin-Hee; Samal, Siba K

    2018-02-22

    Newcastle disease virus (NDV) is an economically important pathogen in the poultry industry worldwide. Recovery of infectious NDV from cDNA using reverse genetics has made it possible to manipulate the genome of NDV. This has greatly contributed to our understanding of the molecular biology and pathogenesis of NDV. Furthermore, NDV has modular genome and accommodates insertion of a foreign gene as a transcriptional unit, thus enabling NDV as a vaccine vector against diseases of humans and animals. Avirulent NDV strains (e.g., LaSota and B1) have been commonly used as vaccine vectors. In this protocol, we have described reverse genetics of NDV to be used as a vaccine vector by exemplifying the recovery of NDV vectored avian influenza virus vaccine. Specifically, cloning and recovery of NDV expressing the hemagglutinin protein of highly pathogenic influenza virus were explained. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.

  1. Population genetic structure and direct observations reveal sex-reversed patterns of dispersal in a cooperative bird.

    PubMed

    Harrison, Xavier A; York, Jennifer E; Young, Andrew J

    2014-12-01

    Sex-biased dispersal is pervasive and has diverse evolutionary implications, but the fundamental drivers of dispersal sex biases remain unresolved. This is due in part to limited diversity within taxonomic groups in the direction of dispersal sex biases, which leaves hypothesis testing critically dependent upon identifying rare reversals of taxonomic norms. Here, we use a combination of observational and genetic data to demonstrate a rare reversal of the avian sex bias in dispersal in the cooperatively breeding white-browed sparrow weaver (Plocepasser mahali). Direct observations revealed that (i) natal philopatry was rare, with both sexes typically dispersing locally to breed, and (ii), unusually for birds, males bred at significantly greater distances from their natal group than females. Population genetic analyses confirmed these patterns, as (i) corrected Assignment index (AIc), FST tests and isolation-by-distance metrics were all indicative of longer dispersal distances among males than females, and (ii) spatial autocorrelation analysis indicated stronger within-group genetic structure among females than males. Examining the spatial scale of extra-group mating highlighted that the resulting 'sperm dispersal' could have acted in concert with individual dispersal to generate these genetic patterns, but gamete dispersal alone cannot account entirely for the sex differences in genetic structure observed. That leading hypotheses for the evolution of dispersal sex biases cannot readily account for these sex-reversed patterns of dispersal in white-browed sparrow weavers highlights the continued need for attention to alternative explanations for this enigmatic phenomenon. We highlight the potential importance of sex differences in the distances over which dispersal opportunities can be detected. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  2. Parasites and deleterious mutations: interactions influencing the evolutionary maintenance of sex.

    PubMed

    Park, A W; Jokela, J; Michalakis, Y

    2010-05-01

    The restrictive assumptions associated with purely genetic and purely ecological mechanisms suggest that neither of the two forces, in isolation, can offer a general explanation for the evolutionary maintenance of sex. Consequently, attention has turned to pluralistic models (i.e. models that apply both ecological and genetic mechanisms). Existing research has shown that combining mutation accumulation and parasitism allows restrictive assumptions about genetic and parasite parameter values to be relaxed while still predicting the maintenance of sex. However, several empirical studies have shown that deleterious mutations and parasitism can reduce fitness to a greater extent than would be expected if the two acted independently. We show how interactions between these genetic and ecological forces can completely reverse predictions about the evolution of reproductive modes. Moreover, we demonstrate that synergistic interactions between infection and deleterious mutations can render sex evolutionarily stable even when there is antagonistic epistasis among deleterious mutations, thereby widening the conditions for the evolutionary maintenance of sex.

  3. A doxycycline-dependent human immunodeficiency virus type 1 replicates in vivo without inducing CD4+ T-cell depletion

    PubMed Central

    Legrand, Nicolas; van der Velden, Gisela J.; Fang, Raphaël Ho Tsong; Douaisi, Marc; Weijer, Kees; Das, Atze T.; Blom, Bianca; Uittenbogaart, Christel H.; Berkhout, Ben

    2012-01-01

    A novel genetic approach for the control of virus replication was used for the design of a conditionally replicating human immunodeficiency virus (HIV) variant, HIV-rtTA. HIV-rtTA gene expression and virus replication are strictly dependent on the presence of a non-toxic effector molecule, doxycycline (dox), and thus can be turned on and off at will in a graded and reversible manner. The in vivo replication capacity, pathogenicity and genetic stability of this HIV-rtTA variant were evaluated in a humanized mouse model of haematopoiesis that harbours lymphoid and myeloid components of the human immune system (HIS). Infection of dox-fed BALB Rag/γc HIS (BRG-HIS) mice with HIV-rtTA led to the establishment of a productive infection without CD4+ T-cell depletion. The virus did not show any sign of escape from dox control for up to 10 weeks after the onset of infection. No reversion towards a functional Tat–transactivating responsive (TAR) RNA element axis was observed, confirming the genetic stability of the HIV-rtTA variant in vivo. These results demonstrate the proof of concept that HIV-rtTA replicates efficiently in vivo. HIV-rtTA is a promising tool for fundamental research to study virus–host interactions in vivo in a controlled fashion. PMID:22647372

  4. Forward and reverse mutagenesis in C. elegans

    PubMed Central

    Kutscher, Lena M.; Shaham, Shai

    2014-01-01

    Mutagenesis drives natural selection. In the lab, mutations allow gene function to be deciphered. C. elegans is highly amendable to functional genetics because of its short generation time, ease of use, and wealth of available gene-alteration techniques. Here we provide an overview of historical and contemporary methods for mutagenesis in C. elegans, and discuss principles and strategies for forward (genome-wide mutagenesis) and reverse (target-selected and gene-specific mutagenesis) genetic studies in this animal. PMID:24449699

  5. An assessment of heavy ion irradiation mutagenesis for reverse genetics in wheat (Triticum aestivum L.).

    PubMed

    Fitzgerald, Timothy L; Powell, Jonathan J; Stiller, Jiri; Weese, Terri L; Abe, Tomoko; Zhao, Guangyao; Jia, Jizeng; McIntyre, C Lynne; Li, Zhongyi; Manners, John M; Kazan, Kemal

    2015-01-01

    Reverse genetic techniques harnessing mutational approaches are powerful tools that can provide substantial insight into gene function in plants. However, as compared to diploid species, reverse genetic analyses in polyploid plants such as bread wheat can present substantial challenges associated with high levels of sequence and functional similarity amongst homoeologous loci. We previously developed a high-throughput method to identify deletions of genes within a physically mutagenized wheat population. Here we describe our efforts to combine multiple homoeologous deletions of three candidate disease susceptibility genes (TaWRKY11, TaPFT1 and TaPLDß1). We were able to produce lines featuring homozygous deletions at two of the three homoeoloci for all genes, but this was dependent on the individual mutants used in crossing. Intriguingly, despite extensive efforts, viable lines possessing homozygous deletions at all three homoeoloci could not be produced for any of the candidate genes. To investigate deletion size as a possible reason for this phenomenon, we developed an amplicon sequencing approach based on synteny to Brachypodium distachyon to assess the size of the deletions removing one candidate gene (TaPFT1) in our mutants. These analyses revealed that genomic deletions removing the locus are relatively large, resulting in the loss of multiple additional genes. The implications of this work for the use of heavy ion mutagenesis for reverse genetic analyses in wheat are discussed.

  6. An Assessment of Heavy Ion Irradiation Mutagenesis for Reverse Genetics in Wheat (Triticum aestivum L.)

    PubMed Central

    Fitzgerald, Timothy L.; Powell, Jonathan J.; Stiller, Jiri; Weese, Terri L.; Abe, Tomoko; Zhao, Guangyao; Jia, Jizeng; McIntyre, C. Lynne; Li, Zhongyi; Manners, John M.; Kazan, Kemal

    2015-01-01

    Reverse genetic techniques harnessing mutational approaches are powerful tools that can provide substantial insight into gene function in plants. However, as compared to diploid species, reverse genetic analyses in polyploid plants such as bread wheat can present substantial challenges associated with high levels of sequence and functional similarity amongst homoeologous loci. We previously developed a high-throughput method to identify deletions of genes within a physically mutagenized wheat population. Here we describe our efforts to combine multiple homoeologous deletions of three candidate disease susceptibility genes (TaWRKY11, TaPFT1 and TaPLDß1). We were able to produce lines featuring homozygous deletions at two of the three homoeoloci for all genes, but this was dependent on the individual mutants used in crossing. Intriguingly, despite extensive efforts, viable lines possessing homozygous deletions at all three homoeoloci could not be produced for any of the candidate genes. To investigate deletion size as a possible reason for this phenomenon, we developed an amplicon sequencing approach based on synteny to Brachypodium distachyon to assess the size of the deletions removing one candidate gene (TaPFT1) in our mutants. These analyses revealed that genomic deletions removing the locus are relatively large, resulting in the loss of multiple additional genes. The implications of this work for the use of heavy ion mutagenesis for reverse genetic analyses in wheat are discussed. PMID:25719507

  7. Synthetic plant defense elicitors

    PubMed Central

    Bektas, Yasemin; Eulgem, Thomas

    2015-01-01

    To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug-like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection. PMID:25674095

  8. A reverse engineering algorithm for neural networks, applied to the subthalamopallidal network of basal ganglia.

    PubMed

    Floares, Alexandru George

    2008-01-01

    Modeling neural networks with ordinary differential equations systems is a sensible approach, but also very difficult. This paper describes a new algorithm based on linear genetic programming which can be used to reverse engineer neural networks. The RODES algorithm automatically discovers the structure of the network, including neural connections, their signs and strengths, estimates its parameters, and can even be used to identify the biophysical mechanisms involved. The algorithm is tested on simulated time series data, generated using a realistic model of the subthalamopallidal network of basal ganglia. The resulting ODE system is highly accurate, and results are obtained in a matter of minutes. This is because the problem of reverse engineering a system of coupled differential equations is reduced to one of reverse engineering individual algebraic equations. The algorithm allows the incorporation of common domain knowledge to restrict the solution space. To our knowledge, this is the first time a realistic reverse engineering algorithm based on linear genetic programming has been applied to neural networks.

  9. Reverse genetics: Its origins and prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, P.

    1991-04-01

    The nucleotide sequence of a gene and its flanking segments alone will not tell us how its expression is regulated during development and differentiation, or in response to environmental changes. To comprehend the physiological significance of the molecular details requires biological analysis. Recombinant DNA techniques provide a powerful experimental approach. A strategy termed reverse genetics' utilizes the analysis of the activities of mutant and normal genes and experimentally constructed mutants to explore the relationship between gene structure and function thereby helping elucidate the relationship between genotype and phenotype.

  10. A Transparent Window into Biology: A Primer on Caenorhabditis elegans.

    PubMed

    Corsi, Ann K; Wightman, Bruce; Chalfie, Martin

    2015-06-01

    A little over 50 years ago, Sydney Brenner had the foresight to develop the nematode (round worm) Caenorhabditis elegans as a genetic model for understanding questions of developmental biology and neurobiology. Over time, research on C. elegans has expanded to explore a wealth of diverse areas in modern biology including studies of the basic functions and interactions of eukaryotic cells, host-parasite interactions, and evolution. C. elegans has also become an important organism in which to study processes that go awry in human diseases. This primer introduces the organism and the many features that make it an outstanding experimental system, including its small size, rapid life cycle, transparency, and well-annotated genome. We survey the basic anatomical features, common technical approaches, and important discoveries in C. elegans research. Key to studying C. elegans has been the ability to address biological problems genetically, using both forward and reverse genetics, both at the level of the entire organism and at the level of the single, identified cell. These possibilities make C. elegans useful not only in research laboratories, but also in the classroom where it can be used to excite students who actually can see what is happening inside live cells and tissues. Copyright © 2015 Corsi, Wightman, and Chalfie.

  11. Genetics Home Reference: nephronophthisis

    MedlinePlus

    ... which can include liver fibrosis, heart abnormalities, or mirror image reversal of the position of one or ... Information from MedlinePlus (5 links) Diagnostic Tests Drug Therapy Genetic Counseling Palliative Care Surgery and Rehabilitation Related ...

  12. Speciation reversal and biodiversity dynamics with hybridization in changing environments.

    PubMed

    Seehausen, Ole; Takimoto, Gaku; Roy, Denis; Jokela, Jukka

    2008-01-01

    A considerable fraction of the world's biodiversity is of recent evolutionary origin and has evolved as a by-product of, and is maintained by, divergent adaptation in heterogeneous environments. Conservationists have paid attention to genetic homogenization caused by human-induced translocations (e.g. biological invasions and stocking), and to the importance of environmental heterogeneity for the ecological coexistence of species. However, far less attention has been paid to the consequences of loss of environmental heterogeneity to the genetic coexistence of sympatric species. Our review of empirical observations and our theoretical considerations on the causes and consequences of interspecific hybridization suggest that a loss of environmental heterogeneity causes a loss of biodiversity through increased genetic admixture, effectively reversing speciation. Loss of heterogeneity relaxes divergent selection and removes ecological barriers to gene flow between divergently adapted species, promoting interspecific introgressive hybridization. Since heterogeneity of natural environments is rapidly deteriorating in most biomes, the evolutionary ecology of speciation reversal ought to be fully integrated into conservation biology.

  13. FLP-18 Functions through the G-Protein-Coupled Receptors NPR-1 and NPR-4 to Modulate Reversal Length in Caenorhabditis elegans.

    PubMed

    Bhardwaj, Ashwani; Thapliyal, Saurabh; Dahiya, Yogesh; Babu, Kavita

    2018-05-16

    Animal behavior is critically dependent on the activity of neuropeptides. Reversals, one of the most conspicuous behaviors in Caenorhabditis elegans , plays an important role in determining the navigation strategy of the animal. Our experiments on hermaphrodite C. elegans show the involvement of a neuropeptide FLP-18 in modulating reversal length in these hermaphrodites. We show that FLP-18 controls the reversal length by regulating the activity of AVA interneurons through the G-protein-coupled neuropeptide receptors, NPR-4 and NPR-1. We go on to show that the site of action of these receptors is the AVA interneuron for NPR-4 and the ASE sensory neurons for NPR-1. We further show that mutants in the neuropeptide, flp-18 , and its receptors show increased reversal lengths. Consistent with the behavioral data, calcium levels in the AVA neuron of freely reversing C. elegans were significantly higher and persisted for longer durations in flp-18 , npr-1 , npr-4 , and npr-1 npr-4 genetic backgrounds compared with wild-type control animals. Finally, we show that increasing FLP-18 levels through genetic and physiological manipulations causes shorter reversal lengths. Together, our analysis suggests that the FLP-18/NPR-1/NPR-4 signaling is a pivotal point in the regulation of reversal length under varied genetic and environmental conditions. SIGNIFICANCE STATEMENT In this study, we elucidate the circuit and molecular machinery required for normal reversal behavior in hermaphrodite Caenorhabditis elegans We delineate the circuit and the neuropeptide receptors required for maintaining reversal length in C. elegans Our work sheds light on the importance of a single neuropeptide, FLP-18, and how change in levels in this one peptide could allow the animal to change the length of its reversal, thereby modulating how the C. elegans explores its environment. We also go on to show that FLP-18 functions to maintain reversal length through the neuropeptide receptors NPR-4 and NPR-1. Our study will allow for a better understanding of the complete repertoire of behaviors shown by freely moving animals as they explore their environment. Copyright © 2018 the authors 0270-6474/18/384641-14$15.00/0.

  14. Hybrid algorithms for fuzzy reverse supply chain network design.

    PubMed

    Che, Z H; Chiang, Tzu-An; Kuo, Y C; Cui, Zhihua

    2014-01-01

    In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods.

  15. Hybrid Algorithms for Fuzzy Reverse Supply Chain Network Design

    PubMed Central

    Che, Z. H.; Chiang, Tzu-An; Kuo, Y. C.

    2014-01-01

    In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods. PMID:24892057

  16. The strains recommended for use in the bacterial reverse mutation test (OECD guideline 471) can be certified as non-genetically modified organisms.

    PubMed

    Sugiyama, Kei-Ichi; Yamada, Masami; Awogi, Takumi; Hakura, Atsushi

    2016-01-01

    The bacterial reverse mutation test, commonly called Ames test, is used worldwide. In Japan, the genetically modified organisms (GMOs) are regulated under the Cartagena Domestic Law, and organisms obtained by self-cloning and/or natural occurrence would be exempted from the law case by case. The strains of Salmonella typhimurium and Escherichia coli recommended for use in the bacterial reverse mutation test (OECD guideline 471), have been considered as non-GMOs because they can be constructed by self-cloning or naturally occurring bacterial strains, or do not disturb the biological diversity. The present article explains the reasons why these tester strains should be classified as non-GMOs.

  17. Development and genetics in the evolution of land plant body plans

    PubMed Central

    2017-01-01

    The colonization of land by plants shaped the terrestrial biosphere, the geosphere and global climates. The nature of morphological and molecular innovation driving land plant evolution has been an enigma for over 200 years. Recent phylogenetic and palaeobotanical advances jointly demonstrate that land plants evolved from freshwater algae and pinpoint key morphological innovations in plant evolution. In the haploid gametophyte phase of the plant life cycle, these include the innovation of mulitcellular forms with apical growth and multiple growth axes. In the diploid phase of the life cycle, multicellular axial sporophytes were an early innovation priming subsequent diversification of indeterminate branched forms with leaves and roots. Reverse and forward genetic approaches in newly emerging model systems are starting to identify the genetic basis of such innovations. The data place plant evo-devo research at the cusp of discovering the developmental and genetic changes driving the radiation of land plant body plans. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994131

  18. Genetically Predicted Body Mass Index and Alzheimer’s Disease Related Phenotypes in Three Large Samples: Mendelian Randomization Analyses

    PubMed Central

    Mukherjee, Shubhabrata; Walter, Stefan; Kauwe, John S.K.; Saykin, Andrew J.; Bennett, David A.; Larson, Eric B.; Crane, Paul K.; Glymour, M. Maria

    2015-01-01

    Observational research shows that higher body mass index (BMI) increases Alzheimer’s disease (AD) risk, but it is unclear whether this association is causal. We applied genetic variants that predict BMI in Mendelian Randomization analyses, an approach that is not biased by reverse causation or confounding, to evaluate whether higher BMI increases AD risk. We evaluated individual level data from the AD Genetics Consortium (ADGC: 10,079 AD cases and 9,613 controls), the Health and Retirement Study (HRS: 8,403 participants with algorithm-predicted dementia status) and published associations from the Genetic and Environmental Risk for AD consortium (GERAD1: 3,177 AD cases and 7,277 controls). No evidence from individual SNPs or polygenic scores indicated BMI increased AD risk. Mendelian Randomization effect estimates per BMI point (95% confidence intervals) were: ADGC OR=0.95 (0.90, 1.01); HRS OR=1.00 (0.75, 1.32); GERAD1 OR=0.96 (0.87, 1.07). One subscore (cellular processes not otherwise specified) unexpectedly predicted lower AD risk. PMID:26079416

  19. Towards a systemic paradigm in carcinogenesis: linking epigenetics and genetics.

    PubMed

    Burgio, Ernesto; Migliore, Lucia

    2015-04-01

    For at least 30 years cancer has been defined as a genetic disease and explained by the so-called somatic mutation theory (SMT), which has dominated the carcinogenesis field. Criticism of the SMT has recently greatly increased, although still not enough to force all SMT supporters to recognize its limits. Various researchers point out that cancer appears to be a complex process concerning a whole tissue; and that genomic mutations, although variably deleterious and unpredictably important in determining the establishment of the neoplastic phenotype, are not the primary origin for a malignant neoplasia. We attempt to describe the inadequacies of the SMT and demonstrate that epigenetics is a more logical cause of carcinogenesis. Many previous models of carcinogenesis fall into two classes: (i) in which some biological changes inside cells alone lead to malignancy; and (ii) requiring changes in stroma/extracellular matrix. We try to make clear that in the (ii) model genomic instability is induced by persistent signals coming from the microenvironment, provoking epigenetic and genetic modifications in tissue stem cells that can lead to cancer. In this perspective, stochastic mutations of DNA are a critical by-product rather then the primary cause of cancer. Indirect support for such model of carcinogenesis comes from the in vitro and vivo experiments showing apparent 'reversion' of cancer phenotypes obtained via physiological factors of cellular differentiation (cytokines and other signaling molecules) or drugs, even if the key mutations are not 'reversed'.

  20. Genetic correlations and the evolution of photoperiodic time measurement within a local population of the pitcher-plant mosquito, Wyeomyia smithii

    PubMed Central

    Bradshaw, W E; Emerson, K J; Holzapfel, C M

    2012-01-01

    The genetic relationship between the daily circadian clock and the seasonal photoperiodic timer remains a subject of intense controversy. In Wyeomyia smithii, the critical photoperiod (an overt expression of the photoperiodic timer) evolves independently of the rhythmic response to the Nanda–Hamner protocol (an overt expression of the daily circadian clock) over a wide geographical range in North America. Herein, we focus on these two processes within a single local population in which there is a negative genetic correlation between them. We show that antagonistic selection against this genetic correlation rapidly breaks it down and, in fact, reverses its sign, showing that the genetic correlation is due primarily to linkage and not to pleiotropy. This rapid reversal of the genetic correlation within a small, single population means that it is difficult to argue that circadian rhythmicity forms the necessary, causal basis for the adaptive divergence of photoperiodic time measurement within populations or for the evolution of photoperiodic time measurement among populations over a broad geographical gradient of seasonal selection. PMID:22072069

  1. Biotechnological applications of mobile group II introns and their reverse transcriptases: gene targeting, RNA-seq, and non-coding RNA analysis.

    PubMed

    Enyeart, Peter J; Mohr, Georg; Ellington, Andrew D; Lambowitz, Alan M

    2014-01-13

    Mobile group II introns are bacterial retrotransposons that combine the activities of an autocatalytic intron RNA (a ribozyme) and an intron-encoded reverse transcriptase to insert site-specifically into DNA. They recognize DNA target sites largely by base pairing of sequences within the intron RNA and achieve high DNA target specificity by using the ribozyme active site to couple correct base pairing to RNA-catalyzed intron integration. Algorithms have been developed to program the DNA target site specificity of several mobile group II introns, allowing them to be made into 'targetrons.' Targetrons function for gene targeting in a wide variety of bacteria and typically integrate at efficiencies high enough to be screened easily by colony PCR, without the need for selectable markers. Targetrons have found wide application in microbiological research, enabling gene targeting and genetic engineering of bacteria that had been intractable to other methods. Recently, a thermostable targetron has been developed for use in bacterial thermophiles, and new methods have been developed for using targetrons to position recombinase recognition sites, enabling large-scale genome-editing operations, such as deletions, inversions, insertions, and 'cut-and-pastes' (that is, translocation of large DNA segments), in a wide range of bacteria at high efficiency. Using targetrons in eukaryotes presents challenges due to the difficulties of nuclear localization and sub-optimal magnesium concentrations, although supplementation with magnesium can increase integration efficiency, and directed evolution is being employed to overcome these barriers. Finally, spurred by new methods for expressing group II intron reverse transcriptases that yield large amounts of highly active protein, thermostable group II intron reverse transcriptases from bacterial thermophiles are being used as research tools for a variety of applications, including qRT-PCR and next-generation RNA sequencing (RNA-seq). The high processivity and fidelity of group II intron reverse transcriptases along with their novel template-switching activity, which can directly link RNA-seq adaptor sequences to cDNAs during reverse transcription, open new approaches for RNA-seq and the identification and profiling of non-coding RNAs, with potentially wide applications in research and biotechnology.

  2. Session 6: Infant nutrition: future research developments in Europe EARNEST, the early nutrition programming project: EARly Nutrition programming - long-term Efficacy and Safety Trials and integrated epidemiological, genetic, animal, consumer and economic research.

    PubMed

    Fewtrell, M S

    2007-08-01

    Increasing evidence from lifetime experimental studies in animals and observational and experimental studies in human subjects suggests that pre- and postnatal nutrition programme long-term health. However, key unanswered questions remain on the extent of early-life programming in contemporary European populations, relevant nutritional exposures, critical time periods, mechanisms and the effectiveness of interventions to prevent or reverse programming effects. The EARly Nutrition programming - long-term Efficacy and Safety Trials and integrated epidemiological, genetic, animal, consumer and economic research (EARNEST) consortium brings together a multi-disciplinary team of scientists from European research institutions in an integrated programme of work that includes experimental studies in human subjects, modern prospective observational studies and mechanistic animal work including physiological studies, cell-culture models and molecular techniques. Theme 1 tests early nutritional programming of disease in human subjects, measuring disease markers in childhood and early adulthood in nineteen randomised controlled trials of nutritional interventions in pregnancy and infancy. Theme 2 examines associations between early nutrition and later outcomes in large modern European population-based prospective studies, with detailed measures of diet in pregnancy and early life. Theme 3 uses animal, cellular and molecular techniques to study lifetime effects of early nutrition. Biomedical studies are complemented by studies of the social and economic importance of programming (themes 4 and 5), and themes encouraging integration, communication, training and wealth creation. The project aims to: help formulate policies on the composition and testing of infant foods; improve the nutritional value of infant formulas; identify interventions to prevent and reverse adverse early nutritional programming. In addition, it has the potential to develop new products through industrial partnerships, generate information on the social and economic cost of programming in Europe and help maintain Europe's lead in this critical area of research.

  3. Characterization of cis-Acting RNA Elements of Zika Virus by Using a Self-Splicing Ribozyme-Dependent Infectious Clone.

    PubMed

    Liu, Zhong-Yu; Yu, Jiu-Yang; Huang, Xing-Yao; Fan, Hang; Li, Xiao-Feng; Deng, Yong-Qiang; Ji, Xue; Cheng, Meng-Li; Ye, Qing; Zhao, Hui; Han, Jian-Feng; An, Xiao-Ping; Jiang, Tao; Zhang, Bo; Tong, Yi-Gang; Qin, Cheng-Feng

    2017-11-01

    Zika virus (ZIKV) has caused significant outbreaks and epidemics in the Americas recently, raising global concern due to its ability to cause microcephaly and other neurological complications. A stable and efficient infectious clone of ZIKV is urgently needed. However, the instability and toxicity of flavivirus cDNA clones in Escherichia coli hosts has hindered the development of ZIKV infectious clones. Here, using a novel self-splicing ribozyme-based strategy, we generated a stable infectious cDNA clone of a contemporary ZIKV strain imported from Venezuela to China in 2016. The constructed clone contained a modified version of the group II self-splicing intron P.li.LSUI2 near the junction between the E and NS1 genes, which were removed from the RNA transcripts by an easy-to-establish in vitro splicing reaction. Transfection of the spliced RNAs into BHK-21 cells led to the production of infectious progeny virus that resembled the parental virus. Finally, potential cis -acting RNA elements in ZIKV genomic RNA were identified based on this novel reverse genetics system, and the critical role of 5'-SLA promoter and 5'-3' cyclization sequences were characterized by a combination of different assays. Our results provide another stable and reliable reverse genetics system for ZIKV that will help study ZIKV infection and pathogenesis, and the novel self-splicing intron-based strategy could be further expanded for the construction of infectious clones from other emerging and reemerging flaviviruses. IMPORTANCE The ongoing Zika virus (ZIKV) outbreaks have drawn global concern due to the unexpected causal link to fetus microcephaly and other severe neurological complications. The infectious cDNA clones of ZIKV are critical for the research community to study the virus, understand the disease, and inform vaccine design and antiviral screening. A panel of existing technologies have been utilized to develop ZIKV infectious clones. Here, we successfully generated a stable infectious clone of a 2016 ZIKV strain using a novel self-splicing ribozyme-based technology that abolished the potential toxicity of ZIKV cDNA clones to the E. coli host. Moreover, two crucial cis -acting replication elements (5'-SLA and 5'-CS) of ZIKV were first identified using this novel reverse genetics system. This novel self-splicing ribozyme-based reverse genetics platform will be widely utilized in future ZIKV studies and provide insight for the development of infectious clones of other emerging viruses. Copyright © 2017 American Society for Microbiology.

  4. Characterization of cis-Acting RNA Elements of Zika Virus by Using a Self-Splicing Ribozyme-Dependent Infectious Clone

    PubMed Central

    Liu, Zhong-Yu; Yu, Jiu-Yang; Huang, Xing-Yao; Fan, Hang; Li, Xiao-Feng; Deng, Yong-Qiang; Ji, Xue; Cheng, Meng-Li; Ye, Qing; Zhao, Hui; Han, Jian-Feng; An, Xiao-Ping; Jiang, Tao; Zhang, Bo; Tong, Yi-Gang

    2017-01-01

    ABSTRACT Zika virus (ZIKV) has caused significant outbreaks and epidemics in the Americas recently, raising global concern due to its ability to cause microcephaly and other neurological complications. A stable and efficient infectious clone of ZIKV is urgently needed. However, the instability and toxicity of flavivirus cDNA clones in Escherichia coli hosts has hindered the development of ZIKV infectious clones. Here, using a novel self-splicing ribozyme-based strategy, we generated a stable infectious cDNA clone of a contemporary ZIKV strain imported from Venezuela to China in 2016. The constructed clone contained a modified version of the group II self-splicing intron P.li.LSUI2 near the junction between the E and NS1 genes, which were removed from the RNA transcripts by an easy-to-establish in vitro splicing reaction. Transfection of the spliced RNAs into BHK-21 cells led to the production of infectious progeny virus that resembled the parental virus. Finally, potential cis-acting RNA elements in ZIKV genomic RNA were identified based on this novel reverse genetics system, and the critical role of 5′-SLA promoter and 5′-3′ cyclization sequences were characterized by a combination of different assays. Our results provide another stable and reliable reverse genetics system for ZIKV that will help study ZIKV infection and pathogenesis, and the novel self-splicing intron-based strategy could be further expanded for the construction of infectious clones from other emerging and reemerging flaviviruses. IMPORTANCE The ongoing Zika virus (ZIKV) outbreaks have drawn global concern due to the unexpected causal link to fetus microcephaly and other severe neurological complications. The infectious cDNA clones of ZIKV are critical for the research community to study the virus, understand the disease, and inform vaccine design and antiviral screening. A panel of existing technologies have been utilized to develop ZIKV infectious clones. Here, we successfully generated a stable infectious clone of a 2016 ZIKV strain using a novel self-splicing ribozyme-based technology that abolished the potential toxicity of ZIKV cDNA clones to the E. coli host. Moreover, two crucial cis-acting replication elements (5′-SLA and 5′-CS) of ZIKV were first identified using this novel reverse genetics system. This novel self-splicing ribozyme-based reverse genetics platform will be widely utilized in future ZIKV studies and provide insight for the development of infectious clones of other emerging viruses. PMID:28814522

  5. PT-Flax (phenotyping and TILLinG of flax): development of a flax (Linum usitatissimum L.) mutant population and TILLinG platform for forward and reverse genetics.

    PubMed

    Chantreau, Maxime; Grec, Sébastien; Gutierrez, Laurent; Dalmais, Marion; Pineau, Christophe; Demailly, Hervé; Paysant-Leroux, Christine; Tavernier, Reynald; Trouvé, Jean-Paul; Chatterjee, Manash; Guillot, Xavier; Brunaud, Véronique; Chabbert, Brigitte; van Wuytswinkel, Olivier; Bendahmane, Abdelhafid; Thomasset, Brigitte; Hawkins, Simon

    2013-10-15

    Flax (Linum usitatissimum L.) is an economically important fiber and oil crop that has been grown for thousands of years. The genome has been recently sequenced and transcriptomics are providing information on candidate genes potentially related to agronomically-important traits. In order to accelerate functional characterization of these genes we have generated a flax EMS mutant population that can be used as a TILLinG (Targeting Induced Local Lesions in Genomes) platform for forward and reverse genetics. A population of 4,894 M2 mutant seed families was generated using 3 different EMS concentrations (0.3%, 0.6% and 0.75%) and used to produce M2 plants for subsequent phenotyping and DNA extraction. 10,839 viable M2 plants (4,033 families) were obtained and 1,552 families (38.5%) showed a visual developmental phenotype (stem size and diameter, plant architecture, flower-related). The majority of these families showed more than one phenotype. Mutant phenotype data are organised in a database and can be accessed and searched at UTILLdb (http://urgv.evry.inra.fr/UTILLdb). Preliminary screens were also performed for atypical fiber and seed phenotypes. Genomic DNA was extracted from 3,515 M2 families and eight-fold pooled for subsequent mutant detection by ENDO1 nuclease mis-match cleavage. In order to validate the collection for reverse genetics, DNA pools were screened for two genes coding enzymes of the lignin biosynthesis pathway: Coumarate-3-Hydroxylase (C3H) and Cinnamyl Alcohol Dehydrogenase (CAD). We identified 79 and 76 mutations in the C3H and CAD genes, respectively. The average mutation rate was calculated as 1/41 Kb giving rise to approximately 9,000 mutations per genome. Thirty-five out of the 52 flax cad mutant families containing missense or codon stop mutations showed the typical orange-brown xylem phenotype observed in CAD down-regulated/mutant plants in other species. We have developed a flax mutant population that can be used as an efficient forward and reverse genetics tool. The collection has an extremely high mutation rate that enables the detection of large numbers of independant mutant families by screening a comparatively low number of M2 families. The population will prove to be a valuable resource for both fundamental research and the identification of agronomically-important genes for crop improvement in flax.

  6. PT-Flax (phenotyping and TILLinG of flax): development of a flax (Linum usitatissimum L.) mutant population and TILLinG platform for forward and reverse genetics

    PubMed Central

    2013-01-01

    Background Flax (Linum usitatissimum L.) is an economically important fiber and oil crop that has been grown for thousands of years. The genome has been recently sequenced and transcriptomics are providing information on candidate genes potentially related to agronomically-important traits. In order to accelerate functional characterization of these genes we have generated a flax EMS mutant population that can be used as a TILLinG (Targeting Induced Local Lesions in Genomes) platform for forward and reverse genetics. Results A population of 4,894 M2 mutant seed families was generated using 3 different EMS concentrations (0.3%, 0.6% and 0.75%) and used to produce M2 plants for subsequent phenotyping and DNA extraction. 10,839 viable M2 plants (4,033 families) were obtained and 1,552 families (38.5%) showed a visual developmental phenotype (stem size and diameter, plant architecture, flower-related). The majority of these families showed more than one phenotype. Mutant phenotype data are organised in a database and can be accessed and searched at UTILLdb (http://urgv.evry.inra.fr/UTILLdb). Preliminary screens were also performed for atypical fiber and seed phenotypes. Genomic DNA was extracted from 3,515 M2 families and eight-fold pooled for subsequent mutant detection by ENDO1 nuclease mis-match cleavage. In order to validate the collection for reverse genetics, DNA pools were screened for two genes coding enzymes of the lignin biosynthesis pathway: Coumarate-3-Hydroxylase (C3H) and Cinnamyl Alcohol Dehydrogenase (CAD). We identified 79 and 76 mutations in the C3H and CAD genes, respectively. The average mutation rate was calculated as 1/41 Kb giving rise to approximately 9,000 mutations per genome. Thirty-five out of the 52 flax cad mutant families containing missense or codon stop mutations showed the typical orange-brown xylem phenotype observed in CAD down-regulated/mutant plants in other species. Conclusions We have developed a flax mutant population that can be used as an efficient forward and reverse genetics tool. The collection has an extremely high mutation rate that enables the detection of large numbers of independant mutant families by screening a comparatively low number of M2 families. The population will prove to be a valuable resource for both fundamental research and the identification of agronomically-important genes for crop improvement in flax. PMID:24128060

  7. Intermediate-type vancomycin resistance (VISA) in genetically-distinct Staphylococcus aureus isolates is linked to specific, reversible metabolic alterations.

    PubMed

    Alexander, Elizabeth L; Gardete, Susana; Bar, Haim Y; Wells, Martin T; Tomasz, Alexander; Rhee, Kyu Y

    2014-01-01

    Intermediate (VISA-type) vancomycin resistance in Staphylococcus aureus has been associated with a range of physiologic and genetic alterations. Previous work described the emergence of VISA-type resistance in two clonally-distinct series of isolates. In both series (the first belonging to MRSA clone ST8-USA300, and the second to ST5-USA100), resistance was conferred by a single mutation in yvqF (a negative regulator of the vraSR two-component system associated with vancomycin resistance). In the USA300 series, resistance was reversed by a secondary mutation in vraSR. In this study, we combined systems-level metabolomic profiling with statistical modeling techniques to discover specific, reversible metabolic alterations associated with the VISA phenotype.

  8. Rescue of a Plant Negative-Strand RNA Virus from Cloned cDNA: Insights into Enveloped Plant Virus Movement and Morphogenesis.

    PubMed

    Wang, Qiang; Ma, Xiaonan; Qian, ShaSha; Zhou, Xin; Sun, Kai; Chen, Xiaolan; Zhou, Xueping; Jackson, Andrew O; Li, Zhenghe

    2015-10-01

    Reverse genetics systems have been established for all major groups of plant DNA and positive-strand RNA viruses, and our understanding of their infection cycles and pathogenesis has benefitted enormously from use of these approaches. However, technical difficulties have heretofore hampered applications of reverse genetics to plant negative-strand RNA (NSR) viruses. Here, we report recovery of infectious virus from cloned cDNAs of a model plant NSR, Sonchus yellow net rhabdovirus (SYNV). The procedure involves Agrobacterium-mediated transcription of full-length SYNV antigenomic RNA and co-expression of the nucleoprotein (N), phosphoprotein (P), large polymerase core proteins and viral suppressors of RNA silencing in Nicotiana benthamiana plants. Optimization of core protein expression resulted in up to 26% recombinant SYNV (rSYNV) infections of agroinfiltrated plants. A reporter virus, rSYNV-GFP, engineered by inserting a green fluorescence protein (GFP) gene between the N and P genes was able to express GFP during systemic infections and after repeated plant-to-plant mechanical passages. Deletion analyses with rSYNV-GFP demonstrated that SYNV cell-to-cell movement requires the sc4 protein and suggested that uncoiled nucleocapsids are infectious movement entities. Deletion analyses also showed that the glycoprotein is not required for systemic infection, although the glycoprotein mutant was defective in virion morphogenesis. Taken together, we have developed a robust reverse genetics system for SYNV that provides key insights into morphogenesis and movement of an enveloped plant virus. Our study also provides a template for developing analogous systems for reverse genetic analysis of other plant NSR viruses.

  9. Rescue of a Plant Negative-Strand RNA Virus from Cloned cDNA: Insights into Enveloped Plant Virus Movement and Morphogenesis

    PubMed Central

    Zhou, Xin; Sun, Kai; Chen, Xiaolan; Zhou, Xueping; Jackson, Andrew O.; Li, Zhenghe

    2015-01-01

    Reverse genetics systems have been established for all major groups of plant DNA and positive-strand RNA viruses, and our understanding of their infection cycles and pathogenesis has benefitted enormously from use of these approaches. However, technical difficulties have heretofore hampered applications of reverse genetics to plant negative-strand RNA (NSR) viruses. Here, we report recovery of infectious virus from cloned cDNAs of a model plant NSR, Sonchus yellow net rhabdovirus (SYNV). The procedure involves Agrobacterium-mediated transcription of full-length SYNV antigenomic RNA and co-expression of the nucleoprotein (N), phosphoprotein (P), large polymerase core proteins and viral suppressors of RNA silencing in Nicotiana benthamiana plants. Optimization of core protein expression resulted in up to 26% recombinant SYNV (rSYNV) infections of agroinfiltrated plants. A reporter virus, rSYNV-GFP, engineered by inserting a green fluorescence protein (GFP) gene between the N and P genes was able to express GFP during systemic infections and after repeated plant-to-plant mechanical passages. Deletion analyses with rSYNV-GFP demonstrated that SYNV cell-to-cell movement requires the sc4 protein and suggested that uncoiled nucleocapsids are infectious movement entities. Deletion analyses also showed that the glycoprotein is not required for systemic infection, although the glycoprotein mutant was defective in virion morphogenesis. Taken together, we have developed a robust reverse genetics system for SYNV that provides key insights into morphogenesis and movement of an enveloped plant virus. Our study also provides a template for developing analogous systems for reverse genetic analysis of other plant NSR viruses. PMID:26484673

  10. Peroxisome Biogenesis and Function

    PubMed Central

    Kaur, Navneet; Reumann, Sigrun; Hu, Jianping

    2009-01-01

    Peroxisomes are small and single membrane-delimited organelles that execute numerous metabolic reactions and have pivotal roles in plant growth and development. In recent years, forward and reverse genetic studies along with biochemical and cell biological analyses in Arabidopsis have enabled researchers to identify many peroxisome proteins and elucidate their functions. This review focuses on the advances in our understanding of peroxisome biogenesis and metabolism, and further explores the contribution of large-scale analysis, such as in sillco predictions and proteomics, in augmenting our knowledge of peroxisome function In Arabidopsis. PMID:22303249

  11. Development of a reverse genetics system to generate a recombinant Ebola virus Makona expressing a green fluorescent protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albariño, César G., E-mail: calbarino@cdc.gov; Wiggleton Guerrero, Lisa; Lo, Michael K.

    Previous studies have demonstrated the potential application of reverse genetics technology in studying a broad range of aspects of viral biology, including gene regulation, protein function, cell entry, and pathogenesis. Here, we describe a highly efficient reverse genetics system used to generate recombinant Ebola virus (EBOV) based on a recent isolate from a human patient infected during the 2014–2015 outbreak in Western Africa. We also rescued a recombinant EBOV expressing a fluorescent reporter protein from a cleaved VP40 protein fusion. Using this virus and an inexpensive method to quantitate the expression of the foreign gene, we demonstrate its potential usefulnessmore » as a tool for screening antiviral compounds and measuring neutralizing antibodies. - Highlights: • Recombinant Ebola virus (EBOV) derived from Makona variant was rescued. • New protocol for viral rescue allows 100% efficiency. • Modified EBOV expresses a green fluorescent protein from a VP40-fused protein. • Modified EBOV was tested as tool to screen antiviral compounds and measure neutralizing antibodies.« less

  12. The molecular and cellular basis of gonadal sex reversal in mice and humans

    PubMed Central

    Warr, Nick; Greenfield, Andy

    2012-01-01

    The mammalian gonad is adapted for the production of germ cells and is an endocrine gland that controls sexual maturation and fertility. Gonadal sex reversal, namely, the development of ovaries in an XY individual or testes in an XX, has fascinated biologists for decades. The phenomenon suggests the existence of genetic suppressors of the male and female developmental pathways and molecular genetic studies, particularly in the mouse, have revealed controlled antagonism at the core of mammalian sex determination. Both testis and ovary determination represent design solutions to a number of problems: how to generate cells with the right properties to populate the organ primordium; how to produce distinct organs from an initially bipotential primordium; how to pattern an organ when the expression of key cell fate determinants is initiated only in a discrete region of the primordium and extends to other regions asynchronously; how to coordinate the interaction between distinct cell types in time and space and stabilize the resulting morphology; and how to maintain the differentiated state of the organ throughout the adult period. Some of these, and related problems, are common to organogenesis in general; some are distinctive to gonad development. In this review, we discuss recent studies of the molecular and cellular events underlying testis and ovary development, with an emphasis on the phenomenon of gonadal sex reversal and its causes in mice and humans. Finally, we discuss sex-determining loci and disorders of sex development in humans and the future of research in this important area. WIREs Dev Biol 2012, 1:559–577. doi: 10.1002/wdev.42 PMID:23801533

  13. High-throughput, luciferase-based reverse genetics systems for identifying inhibitors of Marburg and Ebola viruses.

    PubMed

    Uebelhoer, Luke S; Albariño, César G; McMullan, Laura K; Chakrabarti, Ayan K; Vincent, Joel P; Nichol, Stuart T; Towner, Jonathan S

    2014-06-01

    Marburg virus (MARV) and Ebola virus (EBOV), members of the family Filoviridae, represent a significant challenge to global public health. Currently, no licensed therapies exist to treat filovirus infections, which cause up to 90% mortality in human cases. To facilitate development of antivirals against these viruses, we established two distinct screening platforms based on MARV and EBOV reverse genetics systems that express secreted Gaussia luciferase (gLuc). The first platform is a mini-genome replicon to screen viral replication inhibitors using gLuc quantification in a BSL-2 setting. The second platform is complementary to the first and expresses gLuc as a reporter gene product encoded in recombinant infectious MARV and EBOV, thereby allowing for rapid quantification of viral growth during treatment with antiviral compounds. We characterized these viruses by comparing luciferase activity to virus production, and validated luciferase activity as an authentic real-time measure of viral growth. As proof of concept, we adapt both mini-genome and infectious virus platforms to high-throughput formats, and demonstrate efficacy of several antiviral compounds. We anticipate that both approaches will prove highly useful in the development of anti-filovirus therapies, as well as in basic research on the filovirus life cycle. Published by Elsevier B.V.

  14. Human telomerase reverse transcriptase is a promising target for cancer inhibition in squamous cell carcinomas.

    PubMed

    Park, Young-Jin; Kim, Eun-Kyoung; Moon, Sook; Hong, Doo-Pyo; Bae, Jung Yoon; Kim, Jin

    2014-11-01

    The present study aimed to investigate whether the down-regulation of human telomerase reverse transcriptase (hTERT) may induce an anti-invasive effect in oral squamous cell cancer cell lines. A genetically-engineered squamous carcinoma cell line overexpressing hTERT in immortalized oral keratinocytes transfected by human papilloma virus (HPV)-16 E6/E7 (IHOK) was used. In vivo tumorigenicity was examined using an orthotopic xenograft model of nude mice. For evaluating anti-invasive activity by knockdown of hTERT expression, transwell invasion assay and real-time polymerase chain reaction (PCR) for matrix metalloproteinases (MMP) were employed. The down-regulation of hTERT expression reduced the invasive activity and MMP expression. This result was re-confirmed in the HSC3 oral squamous carcinoma cell line. Targeting hTERT may lead to novel therapeutic approaches. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. Development and characterization of a new TILLING population of common bread wheat (Triticum aestivum L.).

    PubMed

    Chen, Liang; Huang, Linzhou; Min, Donghong; Phillips, Andy; Wang, Shiqiang; Madgwick, Pippa J; Parry, Martin A J; Hu, Yin-Gang

    2012-01-01

    Mutagenesis is an important tool in crop improvement. However, the hexaploid genome of wheat (Triticum aestivum L.) presents problems in identifying desirable genetic changes based on phenotypic screening due to gene redundancy. TILLING (Targeting Induced Local Lesions IN Genomes), a powerful reverse genetic strategy that allows the detection of induced point mutations in individuals of the mutagenized populations, can address the major challenge of linking sequence information to the biological function of genes and can also identify novel variation for crop breeding. Wheat is especially well-suited for TILLING due to the high mutation densities tolerated by polyploids. However, only a few wheat TILLING populations are currently available in the world, which is far from satisfying the requirement of researchers and breeders in different growing environments. In addition, current TILLING screening protocols require costly fluorescence detection systems, limiting their use, especially in developing countries. We developed a new TILLING resource comprising 2610 M(2) mutants in a common wheat cultivar 'Jinmai 47'. Numerous phenotypes with altered morphological and agronomic traits were observed from the M(2) and M(3) lines in the field. To simplify the procedure and decrease costs, we use unlabeled primers and either non-denaturing polyacrylamide gels or agarose gels for mutation detection. The value of this new resource was tested using PCR with RAPD and Intron-spliced junction (ISJ) primers, and also TILLING in three selected candidate genes, in 300 and 512 mutant lines, revealing high mutation densities of 1/34 kb by RAPD/ISJ analysis and 1/47 kb by TILLING. In total, 31 novel alleles were identified in the 3 targeted genes and confirmed by sequencing. The results indicate that this mutant population represents a useful resource for the wheat research community. We hope that the use of this reverse genetics resource will provide novel allelic diversity for wheat improvement and functional genomics.

  16. Reversed gender ratio of autism spectrum disorder in Smith-Magenis syndrome.

    PubMed

    Nag, Heidi Elisabeth; Nordgren, Ann; Anderlid, Britt-Marie; Nærland, Terje

    2018-01-01

    A substantial amount of research shows a higher rate of autistic type of problems in males compared to females. The 4:1 male to female ratio is one of the most consistent findings in autism spectrum disorder (ASD).Lately, the interest in studying ASD in genetic disorders has increased, and research has shown a higher prevalence of ASD in some genetic disorders than in the general population.Smith-Magenis syndrome (SMS) is a rare and complex genetic syndrome caused by an interstitial deletion of chromosome 17p11.2 or a mutation on the retinoic acid induced 1 gene. The disorder is characterised by intellectual disability, multiple congenital anomalies, obesity, neurobehavioural abnormalities and a disrupted circadian sleep-wake pattern. Parents of 28 persons with SMS between 5 and 50 years old participated in this study. A total of 12 of the persons with SMS were above the age of 18 at the time of the study. A total of 11 came from Sweden and 17 were from Norway.We collected information regarding the number of autism spectrum symptoms using the Social Communication Questionnaire (SCQ) and the Social Responsiveness Scale (SRS). Adaptive behaviour was also measured using the Vineland Adaptive Behavior Scale II. The level of intellectual disability was derived from a review of the medical chart. We found significant gender differences in ASD symptomatology using the SCQ and SRS questionnaires. We found approximately three females per male above the SCQ cutoff. The same differences were not found in the intellectual level and adaptive behaviour or for behavioural and emotional problems.Gender had an independent contribution in a regression model predicting the total SCQ score, and neither the Vineland Adaptive Behavior Scale II nor the Developmental Behaviour Checklist had an independent contribution to the SCQ scores. We found a clear reversed gender difference in ASD symptomatology in persons with SMS. This may be relevant in the search for female protective factors assumed to explain the male bias in ASD.

  17. Building of Reusable Reverse Logistics Model and its Optimization Considering the Decision of Backorder or Next Arrival of Goods

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Eun; Gen, Mitsuo; Rhee, Kyong-Gu; Lee, Hee-Hyol

    This paper deals with the building of the reusable reverse logistics model considering the decision of the backorder or the next arrival of goods. The optimization method to minimize the transportation cost and to minimize the volume of the backorder or the next arrival of goods occurred by the Just in Time delivery of the final delivery stage between the manufacturer and the processing center is proposed. Through the optimization algorithms using the priority-based genetic algorithm and the hybrid genetic algorithm, the sub-optimal delivery routes are determined. Based on the case study of a distilling and sale company in Busan in Korea, the new model of the reusable reverse logistics of empty bottles is built and the effectiveness of the proposed method is verified.

  18. copia-like retrotransposons are ubiquitous among plants.

    PubMed Central

    Voytas, D F; Cummings, M P; Koniczny, A; Ausubel, F M; Rodermel, S R

    1992-01-01

    Transposable genetic elements are assumed to be a feature of all eukaryotic genomes. Their identification, however, has largely been haphazard, limited principally to organisms subjected to molecular or genetic scrutiny. We assessed the phylogenetic distribution of copia-like retrotransposons, a class of transposable element that proliferates by reverse transcription, using a polymerase chain reaction assay designed to detect copia-like element reverse transcriptase sequences. copia-like retrotransposons were identified in 64 plant species as well as the photosynthetic protist Volvox carteri. The plant species included representatives from 9 of 10 plant divisions, including bryophytes, lycopods, ferns, gymnosperms, and angiosperms. DNA sequence analysis of 29 cloned PCR products and of a maize retrotransposon cDNA confirmed the identity of these sequences as copia-like reverse transcriptase sequences, thereby demonstrating that this class of retrotransposons is a ubiquitous component of plant genomes. Images PMID:1379734

  19. Mutations in the S gene and in the overlapping reverse transcriptase region in chronic hepatitis B Chinese patients with coexistence of HBsAg and anti-HBs.

    PubMed

    Ding, Feng; Miao, Xi-Li; Li, Yan-Xia; Dai, Jin-Fen; Yu, Hong-Gang

    2016-01-01

    The mechanism underlying the coexistence of hepatitis B surface antigen and antibodies to HBsAg in chronic hepatitis B patients remains unknown. This research aimed to determine the clinical and virological features of the rare pattern. A total of 32 chronic hepatitis B patients infected by HBV genotype C were included: 15 carrying both HBsAg and anti-HBs (group I) and 17 solely positive for HBsAg (group II). S gene and reverse transcriptase region sequences were amplified, sequenced and compared with the reference sequences. The amino acid variability within major hydrophilic region, especially the "a" determinant region, and within reverse transcriptase for regions overlapping the major hydrophilic region in group I is significantly higher than those in group II. Mutation sI126S/T within the "a" determinant was the most frequent change, and only patients from group I had the sQ129R, sG130N, sF134I, sG145R amino acid changes, which are known to alter immunogenicity. In chronic patients, the concurrent HBsAg/anti-HBs serological profile is associated with an increased aa variability in several key areas of HBV genome. Additional research on these genetic mutants are needed to clarify their biological significance for viral persistence. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.

  20. A reverse genetic approach identifies an ancestral frameshift mutation in RP1 causing recessive progressive retinal degeneration in European cattle breeds.

    PubMed

    Michot, Pauline; Chahory, Sabine; Marete, Andrew; Grohs, Cécile; Dagios, Dimitri; Donzel, Elise; Aboukadiri, Abdelhak; Deloche, Marie-Christine; Allais-Bonnet, Aurélie; Chambrial, Matthieu; Barbey, Sarah; Genestout, Lucie; Boussaha, Mekki; Danchin-Burge, Coralie; Fritz, Sébastien; Boichard, Didier; Capitan, Aurélien

    2016-08-10

    Domestication and artificial selection have resulted in strong genetic drift, relaxation of purifying selection and accumulation of deleterious mutations. As a consequence, bovine breeds experience regular outbreaks of recessive genetic defects which might represent only the tip of the iceberg since their detection depends on the observation of affected animals with distinctive symptoms. Thus, recessive mutations resulting in embryonic mortality or in non-specific symptoms are likely to be missed. The increasing availability of whole-genome sequences has opened new research avenues such as reverse genetics for their investigation. Our aim was to characterize the genetic load of 15 European breeds using data from the 1000 bull genomes consortium and prove that widespread harmful mutations remain to be detected. We listed 2489 putative deleterious variants (in 1923 genes) segregating at a minimal frequency of 5 % in at least one of the breeds studied. Gene enrichment analysis showed major enrichment for genes related to nervous, visual and auditory systems, and moderate enrichment for genes related to cardiovascular and musculoskeletal systems. For verification purposes, we investigated the phenotypic consequences of a frameshift variant in the retinitis pigmentosa-1 gene segregating in several breeds and at a high frequency (27 %) in Normande cattle. As described in certain human patients, clinical and histological examination revealed that this mutation causes progressive degeneration of photoreceptors leading to complete blindness in homozygotes. We established that the deleterious allele was even more frequent in the Normande breed before 1975 (>40 %) and has been progressively counter-selected likely because of its associated negative effect on udder morphology. Finally, using identity-by-descent analysis we demonstrated that this mutation resulted from a unique ancestral event that dates back to ~2800 to 4000 years. We provide a list of mutations that likely represent a substantial part of the genetic load of domestication in European cattle. We demonstrate that they accumulated non-randomly and that genes related to cognition and sensory functions are particularly affected. Finally, we describe an ancestral deleterious variant segregating in different breeds causing progressive retinal degeneration and irreversible blindness in adult animals.

  1. Effects of a fruit-vegetable dietary pattern on oxidative stress and genetic damage in coke oven workers: a cross-sectional study.

    PubMed

    Xie, Zheng; Lin, Haijiang; Fang, Renfei; Shen, Weiwei; Li, Shuguang; Chen, Bo

    2015-05-06

    Coke oven workers (COWs) are exposed to high level of genotoxic chemicals that induce oxidative stress and genetic damage. The dietary intake of certain types of foods may reverse these effects. We conducted a cross-sectional study with 51 topside COWs, 79 other COWs, and 67 controls, to assess the effects of dietary patterns on oxidative stress and genetic damage. Compared to the controls, both topside and other COWs had significantly higher urinary 1-hydroxypyrene levels, serum oxidant levels [malondialdehyde, (MDA)], and genetic damage [micronucleus (MN) frequency & 8-oxo-2'-deoxyguanosine (8-OH-dG)], but lower antioxidant levels [superoxide dismutase (SOD) and glutathione peroxidase, (GPx)]. The fruit-vegetable (FV) dietary pattern was positively correlated with serum SOD levels and negative correlated with serum MDA, MN frequency, and urinary 8-OH-dG. COWs with an FV patter in the highest quartile (Q4) had significantly increased antioxidant levels (SOD and GPx) and decreased oxidant levels (MDA) and genetic damage (MN frequency and 8-OH-dG) than those with an FV pattern in the lowest quartile (Q1). Compared to control subjects, COWs had increased oxidative stress and genetic damage. A FV dietary pattern may reverse oxidative stress and genetic damage in COWs.

  2. Genetic resources offer efficient tools for rice functional genomics research.

    PubMed

    Lo, Shuen-Fang; Fan, Ming-Jen; Hsing, Yue-Ie; Chen, Liang-Jwu; Chen, Shu; Wen, Ien-Chie; Liu, Yi-Lun; Chen, Ku-Ting; Jiang, Mirng-Jier; Lin, Ming-Kuang; Rao, Meng-Yen; Yu, Lin-Chih; Ho, Tuan-Hua David; Yu, Su-May

    2016-05-01

    Rice is an important crop and major model plant for monocot functional genomics studies. With the establishment of various genetic resources for rice genomics, the next challenge is to systematically assign functions to predicted genes in the rice genome. Compared with the robustness of genome sequencing and bioinformatics techniques, progress in understanding the function of rice genes has lagged, hampering the utilization of rice genes for cereal crop improvement. The use of transfer DNA (T-DNA) insertional mutagenesis offers the advantage of uniform distribution throughout the rice genome, but preferentially in gene-rich regions, resulting in direct gene knockout or activation of genes within 20-30 kb up- and downstream of the T-DNA insertion site and high gene tagging efficiency. Here, we summarize the recent progress in functional genomics using the T-DNA-tagged rice mutant population. We also discuss important features of T-DNA activation- and knockout-tagging and promoter-trapping of the rice genome in relation to mutant and candidate gene characterizations and how to more efficiently utilize rice mutant populations and datasets for high-throughput functional genomics and phenomics studies by forward and reverse genetics approaches. These studies may facilitate the translation of rice functional genomics research to improvements of rice and other cereal crops. © 2015 John Wiley & Sons Ltd.

  3. GM foods: is there a way forward?

    PubMed

    Jones, Huw D

    2015-08-01

    There are many quality targets in cereals that could generate step-change improvements in nutritional or food-processing characteristics. For instance, levels of acrylamide, soluble and insoluble fibre, antioxidants, allergens and intolerance factors in food are, to a large extent, determined by the genetics of the raw materials used. However, improvements to these traits pose significant challenges to plant breeders. For some traits, this is because the underlying genetic and biochemical basis of the traits is not fully understood but for others, there is simply a lack of natural genetic variation in commercially useful germplasm. One strategy to overcome the latter hindrance is to use wide crosses with more exotic germplasm; however, this can bring other difficulties such as yield loss and linkage drag of deleterious alleles. As DNA sequencing becomes cheaper and faster, it drives the research fields of reverse genetics and functional genomics which in turn will enable the incorporation of desirable traits into crop varieties via molecular breeding and biotechnology. I will discuss the evolution of these techniques from conventional genetic modification to more recent developments in targeted gene editing and the potential of biotechnology to complement conventional breeding methods. I will also discuss the role of risk assessment and regulation in the commercialisation of GM crops.

  4. Virus fitness differences observed between two naturally occurring isolates of Ebola virus Makona variant using a reverse genetics approach.

    PubMed

    Albariño, César G; Guerrero, Lisa Wiggleton; Chakrabarti, Ayan K; Kainulainen, Markus H; Whitmer, Shannon L M; Welch, Stephen R; Nichol, Stuart T

    2016-09-01

    During the large outbreak of Ebola virus disease that occurred in Western Africa from late 2013 to early 2016, several hundred Ebola virus (EBOV) genomes have been sequenced and the virus genetic drift analyzed. In a previous report, we described an efficient reverse genetics system designed to generate recombinant EBOV based on a Makona variant isolate obtained in 2014. Using this system, we characterized the replication and fitness of 2 isolates of the Makona variant. These virus isolates are nearly identical at the genetic level, but have single amino acid differences in the VP30 and L proteins. The potential effects of these differences were tested using minigenomes and recombinant viruses. The results obtained with this approach are consistent with the role of VP30 and L as components of the EBOV RNA replication machinery. Moreover, the 2 isolates exhibited clear fitness differences in competitive growth assays. Published by Elsevier Inc.

  5. Advances in PCR technology.

    PubMed

    Lauerman, Lloyd H

    2004-12-01

    Since the discovery of the polymerase chain reaction (PCR) 20 years ago, an avalanche of scientific publications have reported major developments and changes in specialized equipment, reagents, sample preparation, computer programs and techniques, generated through business, government and university research. The requirement for genetic sequences for primer selection and validation has been greatly facilitated by the development of new sequencing techniques, machines and computer programs. Genetic libraries, such as GenBank, EMBL and DDBJ continue to accumulate a wealth of genetic sequence information for the development and validation of molecular-based diagnostic procedures concerning human and veterinary disease agents. The mechanization of various aspects of the PCR assay, such as robotics, microfluidics and nanotechnology, has made it possible for the rapid advancement of new procedures. Real-time PCR, DNA microarray and DNA chips utilize these newer techniques in conjunction with computer and computer programs. Instruments for hand-held PCR assays are being developed. The PCR and reverse transcription-PCR (RT-PCR) assays have greatly accelerated the speed and accuracy of diagnoses of human and animal disease, especially of the infectious agents that are difficult to isolate or demonstrate. The PCR has made it possible to genetically characterize a microbial isolate inexpensively and rapidly for identification, typing and epidemiological comparison.

  6. Gonadal sex differentiation and effects of dietary methyltestosterone treatment in sablefish (Anoplopoma fimbria).

    PubMed

    Luckenbach, J Adam; Fairgrieve, William T

    2016-02-01

    Methods for sex control are needed to establish monosex aquaculture of sablefish (Anoplopoma fimbria). Here we conducted the first characterization of sex differentiation by histology and hormonal sex reversal experiment in sablefish. Ovarian differentiation was first discernible at ~80 mm fork length (FL) and characterized by development of lamellar structures and onset of meiosis. Testes exhibited a dual-lobe appearance over much of their length and remained non-meiotic until males were ≥520 mm FL (2 years post-fertilization). Juveniles with undifferentiated gonads were provided diets containing 0 (control), 5 or 50 mg 17α-methyltestosterone (MT)/kg for 2 months. Following treatment, controls possessed either ovaries or non-meiotic testes, whereas MT-treated fish exhibited meiotic testes (60% of the fish), intersex gonads (~30%), or gonads that appeared sterile (~10%). A genetic sex marker revealed that all intersex fish were genetic females, although other females appeared to be completely sex reversed (i.e., neomales). One year after treatment, MT-treated fish possessed non-meiotic testes similar to control males or intersex gonads with reduced ovarian features, presumably due to atresia following MT withdrawal. Milt collected from neomales and genetic males 3 years post-treatment permitted sperm motility analyses; however, neomale sperm were virtually immotile. These results demonstrated that sablefish are differentiated gonochorists and that MT treatment from 76 to 196 mm FL induced permanent masculinization of a portion of the genetic females, but acquisition of sperm motility was impaired. Earlier administration of MT may be necessary to sex reverse a higher proportion of genetic females and reduce negative effects on fertility.

  7. Novel norovirus in dogs with diarrhea.

    PubMed

    Mesquita, João Rodrigo; Barclay, Leslie; Nascimento, Maria São José; Vinjé, Jan

    2010-06-01

    To identify the prevalence and genetic variability of noroviruses in dogs, we tested fecal samples by using reverse transcription-PCR. We found canine norovirus in 40% and 9% of dogs with and without diarrhea, respectively. The virus was genetically unrelated to other noroviruses and constitutes a tentative new genogroup.

  8. African Swine Fever Virus NP868R Capping Enzyme Promotes Reovirus Rescue during Reverse Genetics by Promoting Reovirus Protein Expression, Virion Assembly, and RNA Incorporation into Infectious Virions

    PubMed Central

    Eaton, Heather E.; Kobayashi, Takeshi; Dermody, Terence S.; Johnston, Randal N.

    2017-01-01

    ABSTRACT Reoviruses, like many eukaryotic viruses, contain an inverted 7-methylguanosine (m7G) cap linked to the 5′ nucleotide of mRNA. The traditional functions of capping are to promote mRNA stability, protein translation, and concealment from cellular proteins that recognize foreign RNA. To address the role of mRNA capping during reovirus replication, we assessed the benefits of adding the African swine fever virus NP868R capping enzyme during reovirus rescue. C3P3, a fusion protein containing T7 RNA polymerase and NP868R, was found to increase protein expression 5- to 10-fold compared to T7 RNA polymerase alone while enhancing reovirus rescue from the current reverse genetics system by 100-fold. Surprisingly, RNA stability was not increased by C3P3, suggesting a direct effect on protein translation. A time course analysis revealed that C3P3 increased protein synthesis within the first 2 days of a reverse genetics transfection. This analysis also revealed that C3P3 enhanced processing of outer capsid μ1 protein to μ1C, a previously described hallmark of reovirus assembly. Finally, to determine the rate of infectious-RNA incorporation into new virions, we developed a new recombinant reovirus S1 gene that expressed the fluorescent protein UnaG. Following transfection of cells with UnaG and infection with wild-type virus, passage of UnaG through progeny was significantly enhanced by C3P3. These data suggest that capping provides nontraditional functions to reovirus, such as promoting assembly and infectious-RNA incorporation. IMPORTANCE Our findings expand our understanding of how viruses utilize capping, suggesting that capping provides nontraditional functions to reovirus, such as promoting assembly and infectious-RNA incorporation, in addition to enhancing protein translation. Beyond providing mechanistic insight into reovirus replication, our findings also show that reovirus reverse genetics rescue is enhanced 100-fold by the NP868R capping enzyme. Since reovirus shows promise as a cancer therapy, efficient reovirus reverse genetics rescue will accelerate production of recombinant reoviruses as candidates to enhance therapeutic potency. NP868R-assisted reovirus rescue will also expedite production of recombinant reovirus for mechanistic insights into reovirus protein function and structure. PMID:28298603

  9. Ligand interaction scan: a general method for engineering ligand-sensitive protein alleles.

    PubMed

    Erster, Oran; Eisenstein, Miriam; Liscovitch, Mordechai

    2007-05-01

    The ligand interaction scan (LIScan) method is a general procedure for engineering small molecule ligand-regulated forms of a protein that is complementary to other 'reverse' genetic and chemical-genetic methods for drug-target validation. It involves insertional mutagenesis by a chemical-genetic 'switch', comprising a genetically encoded peptide module that binds with high affinity to a small-molecule ligand. We demonstrated the method with TEM-1 beta-lactamase, using a tetracysteine hexapeptide insert and a biarsenical fluorescein ligand (FlAsH).

  10. Statins and myositis: the role of anti-HMGCR antibodies.

    PubMed

    Selva-O'Callaghan, Albert; Alvarado-Cardenas, Marcelo; Marin, Ana; Pinal-Fernandez, Iago

    2015-01-01

    Muscle toxicity is a recognized adverse effect of statin use. Recently, a new myositis syndrome was described in association with antibodies directed against the pharmacologic target of statins, anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase (anti-HMGCR antibody). The patient's genetic background, characteristic histologic patterns (immune-mediated necrotizing myopathy), and presence of anti-HMGCR antibodies define the syndrome. In most patients, statin discontinuation is insufficient to reverse the myositis symptoms, and immunosuppressive therapy is needed. The mechanisms by which these antibodies may lead to disease are not fully elucidated. Several important questions remain unsolved and warrant further research.

  11. The Use of Double Translocation Heterozygotes To Control Populations of the German Cockroach and the Use of Genetic Mechanisms and Behavioral Characteristics To Control Natural Populations of the German Cockroach.

    DTIC Science & Technology

    1986-05-30

    insecticide resistance, pheromones 3 A 817 R4A(1 (,CctinL’e on reverse if nece’ssary and idenity by block number) !’,--arch supported by this Contract .as...reproductive state. The results left 1 !7e doubt that females play a leading role in regulating population behavior. Subsequent research on pheromones showed...aggregation pheromone and a less well known dispersal pheromone revealed differences in response with age/sex class Ta the aggregation experiments

  12. Performance on a strategy set shifting task during adolescence in a genetic model of attention deficit/hyperactivity disorder: Methylphenidate vs. atomoxetine treatments

    PubMed Central

    Harvey, Roxann C; Jordan, Chloe J; Tassin, David H; Moody, Kayla R; Dwoskin, Linda P; Kantak, Kathleen M

    2013-01-01

    Research examining medication effects on set shifting in teens with attention deficit/hyperactivity disorder (ADHD) is lacking. An animal model of ADHD may be useful for exploring this gap. The Spontaneously Hypertensive Rat (SHR) is a commonly used animal model of ADHD. SHR and two comparator strains, Wistar-Kyoto (WKY) and Wistar (WIS), were evaluated during adolescence in a strategy set shifting task under conditions of a 0-sec or 15-sec delay to reinforcer delivery. The task had three phases: initial discrimination, set shift and reversal learning. Under 0-sec delays, SHR performed as well as or better than WKY and WIS. Treatment with 0.3 mg/kg/day atomoxetine had little effect, other than to modestly increase trials to criterion during set shifting in all strains. Under 15-sec delays, SHR had longer lever press reaction times, longer latencies to criterion and more trial omissions than WKY during set shifting and reversal learning. These deficits were not reduced systematically by 1.5 mg/kg/day methylphenidate or 0.3 mg/kg/day atomoxetine. Regarding learning in SHR, methylphenidate improved initial discrimination, whereas atomoxetine improved set shifting but disrupted initial discrimination. During reversal learning, both drugs were ineffective in SHR, and atomoxetine made reaction time and trial omissions greater in WKY. Overall, WIS performance differed from SHR or WKY, depending on phase. Collectively, a genetic model of ADHD in adolescent rats revealed that neither methylphenidate nor atomoxetine mitigated all deficits in SHR during the set shifting task. Thus, methylphenidate or atomoxetine monotherapy may not mitigate all set shift task-related deficits in teens with ADHD. PMID:23376704

  13. Sex Reversal in Reptiles: Reproductive Oddity or Powerful Driver of Evolutionary Change?

    PubMed

    Holleley, Clare E; Sarre, Stephen D; O'Meally, Denis; Georges, Arthur

    2016-01-01

    Is sex a product of genes, the environment, or both? In this review, we describe the diversity of sex-determining mechanisms in reptiles, with a focus on systems that display gene-environment interactions. We summarise the field and laboratory-based evidence for the occurrence of environmental sex reversal in reptiles and ask whether this is a widespread evolutionary mechanism affecting the evolution of sex chromosomes and speciation in vertebrates. Sex determination systems exist across a continuum of genetic and environmental influences, blurring the lines between what was once considered a strict dichotomy between genetic sex determination and temperature-dependent sex determination. Across this spectrum, we identify the potential for sex reversal in species with clearly differentiated heteromorphic sex chromosomes (Pogona vitticeps, Bassiana duperreyi, Eremias multiocellata, Gekko japonicus), weakly differentiated homomorphic sex chromosomes (Niveoscincus ocellatus), and species with only a weak heritable predisposition for sex (Emys orbicularis, Trachemys scripta). We argue that sex reversal is widespread in reptiles (Testudines, Lacertidae, Agamidae, Scincidae, Gekkonidae) and has the potential to have an impact on individual fitness, resulting in reproductively, morphologically, and behaviourally unique phenotypes. Sex reversal is likely to be a powerful evolutionary force responsible for generating and maintaining lability and diversity in reptile sex-determining modes. © 2016 S. Karger AG, Basel.

  14. Westermarck, Freud, and the incest taboo: does familial resemblance activate sexual attraction?

    PubMed

    Fraley, R Chris; Marks, Michael J

    2010-09-01

    Evolutionary psychological theories assume that sexual aversions toward kin are triggered by a nonconscious mechanism that estimates the genetic relatedness between self and other. This article presents an alternative perspective that assumes that incest avoidance arises from consciously acknowledged taboos and that when awareness of the relationship between self and other is bypassed, people find individuals who resemble their kin more sexually appealing. Three experiments demonstrate that people find others more sexually attractive if they have just been subliminally exposed to an image of their opposite-sex parent (Experiment 1) or if the face being rated is a composite image based on the self (Experiment 2). This finding is reversed when people are aware of the implied genetic relationship (Experiment 3). These findings have implications for a century-old debate between E. Westermarck and S. Freud, as well as contemporary research on evolution, mate choice, and sexual imprinting.

  15. Porcine Reproductive and Respiratory Syndrome Virus (PRRSV): Pathogenesis and Interaction with the Immune System.

    PubMed

    Lunney, Joan K; Fang, Ying; Ladinig, Andrea; Chen, Nanhua; Li, Yanhua; Rowland, Bob; Renukaradhya, Gourapura J

    2016-01-01

    This review addresses important issues of porcine reproductive and respiratory syndrome virus (PRRSV) infection, immunity, pathogenesis, and control. Worldwide, PRRS is the most economically important infectious disease of pigs. We highlight the latest information on viral genome structure, pathogenic mechanisms, and host immunity, with a special focus on immune factors that modulate PRRSV infections during the acute and chronic/persistent disease phases. We address genetic control of host resistance and probe effects of PRRSV infection on reproductive traits. A major goal is to identify cellular/viral targets and pathways for designing more effective vaccines and therapeutics. Based on progress in viral reverse genetics, host transcriptomics and genomics, and vaccinology and adjuvant technologies, we have identified new areas for PRRS control and prevention. Finally, we highlight the gaps in our knowledge base and the need for advanced molecular and immune tools to stimulate PRRS research and field applications.

  16. Using Epigenetic Therapy to Overcome Chemotherapy Resistance.

    PubMed

    Strauss, Julius; Figg, William D

    2016-01-01

    It has been known for decades that as cancer progresses, tumors develop genetic alterations, making them highly prone to developing resistance to therapies. Classically, it has been thought that these acquired genetic changes are fixed. This has led to the paradigm of moving from one cancer therapy to the next while avoiding past therapies. However, emerging data on epigenetic changes during tumor progression and use of epigenetic therapies have shown that epigenetic modifications leading to chemotherapy resistance have the potential to be reversible with epigenetic therapy. In fact, promising clinical data exist that treatment with epigenetic agents can diminish chemotherapy resistance in a number of tumor types including chronic myelogenous leukemia, colorectal, ovarian, lung and breast cancer. The potential for epigenetic-modifying drugs to allow for treatment of resistant disease is exciting and clinical trials have just begun to evaluate this area. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. Genetic polymorphism and chronic obstructive pulmonary disease.

    PubMed

    Yuan, Cunhua; Chang, De; Lu, Guangming; Deng, Xiaowei

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) is a common chronic disease, and its morbidity and mortality are increasing. There are many studies that have tried to explain the pathogenesis of COPD from genetic susceptibility, to identify the susceptibility of COPD factors, which play a role in early prevention, early detection and the early treatment. However, it is well known that COPD is an inflammatory disease characterized by incomplete reversible airflow limitation in which genes interact with the environment. In recent years, many studies have proved gene polymorphisms and COPD correlation. However, there is less research on the relationship between COPD and genome-wide association study (GWAS), epigenetics and apoptosis. In this paper, we summarized the correlation between gene level and COPD from the following four aspects: the GWAS, the gene polymorphism, the epigenetics and the apoptosis, and the relationship between COPD and gene is summarized comprehensively.

  18. Immersion of fry in 17-Alpha Methyltestosterone can be highly effective for sex reversal in rainbow trout

    USDA-ARS?s Scientific Manuscript database

    17-alpha methyltestosterone (MT) is currently used to sex reverse genetic female rainbow trout into phenotypic males, commonly referred to as neomales. Neomales are primarily generated to propagate all-female lines. The MT is most commonly administered orally, fed during the first 6-9 weeks after sw...

  19. Sexual and somatic development of wood frog tadpoles along a thermal gradient.

    PubMed

    Lambert, Max R; Smylie, Meredith S; Roman, Amber J; Freidenburg, L Kealoha; Skelly, David K

    2018-02-01

    All amphibian species are known to have genetic sex determination. However, a variety of environmental conditions can moderate sexual differentiation, in some cases leading to sex reversal and skewed sex ratios. While there has been a recent focus on chemically-induced sex reversal in amphibians, temperature can also influence sexual differentiation. Building upon a classic 1929 study by Emil Witschi, we assessed temperature-mediated sex reversal. Witschi found that the wood frog sex ratio is 100% male at a high temperature (32°C) compared to a 50:50 sex ratio at 20°C. This pattern is consistent with multiple models of environmentally mediated sexual differentiation in vertebrates. To better understand thermally mediated sex reversal, we raised wood frogs at temperature increments of ∼1°C between 19 and 34°C. Mirroring earlier findings, wood frog metamorph sex ratios are indistinguishable from 50:50 at the lowest temperature and entirely male at the highest temperatures. In between, sex ratios become increasingly male-dominated as temperatures increase, implying a steadily increasing tendency toward female-to-male sex reversal in warmer environments. There was no evidence of a threshold temperature effect on reversal patterns. We also show that, compared to males, females metamorphose larger and later in cooler conditions but earlier and smaller under warmer conditions. While the ecological relevance in this species is unknown, these results conform to the Charnov-Bull model of sex determination (in which female-to-male sex reversal can increase fitness to genetic females at higher temperatures), suggesting the system would reward further study. © 2018 Wiley Periodicals, Inc.

  20. Heredity in epilepsy: neurodevelopment, comorbidity, and the neurological trait.

    PubMed

    Johnson, Michael R; Shorvon, Simon D

    2011-11-01

    The genetic bases of common, nonmendelian epilepsy have been difficult to elucidate. In this article, we argue for a new approach to genetic inquiry in epilepsy. In the latter part of the 19th century, epilepsy was universally acknowledged to be part of a wider "neurological trait" that included other neuropsychiatric conditions. In recent years, studies of comorbidity have shown clear links between epilepsy and various neuropsychiatric disorders including psychosis and depression, and genetic studies of copy number variants (CNVs) have shown that in some cases, the same CNV underpins neuropsychiatric illness and epilepsy. Functional annotation analysis of the sets of genes impacted by epilepsy CNVs shows enrichment for genes involved with neural development, with gene ontological (GO) categories including "neurological system process" (P=0.006), "synaptic transmission" (P=0.009), and "learning or memory" (P=0.01). These data support the view that epilepsy and some neuropsychiatric conditions share pathogenic neurodevelopmental pathways, and that epilepsy should be included in the spectrum of neurodevelopmental disorders. Yet, most current genetic research in epilepsy has restricted samples to specific types of epilepsy categorized according to the clinical classification schemes on the basis of seizure type, anatomical location, or epilepsy syndrome. These schemes are, to an extent, arbitrary and do not necessarily align with biological reality. We propose an alternative approach that makes no phenotypic assumptions beyond including epilepsy in the neurodevelopmental spectrum. A "'value-free" strategy of reverse phenotyping may be worth exploring, starting with genetic association and looking backward at the phenotype. Finally, it should be noted that there are societal implications to associating epilepsy with other neuropsychiatric disorders, and it is vital to ensure research in this area does not result in increased stigma for patients with epilepsy. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Isolation of mtpim Proves Tnt1 a Useful Reverse Genetics Tool in Medicago truncatula and Uncovers New Aspects of AP1-Like Functions in Legumes1

    PubMed Central

    Benlloch, Reyes; d'Erfurth, Isabelle; Ferrandiz, Cristina; Cosson, Viviane; Beltrán, José Pío; Cañas, Luis Antonio; Kondorosi, Adam; Madueño, Francisco; Ratet, Pascal

    2006-01-01

    Comparative studies help shed light on how the huge diversity in plant forms found in nature has been produced. We use legume species to study developmental differences in inflorescence architecture and flower ontogeny with classical models such as Arabidopsis thaliana or Antirrhinum majus. Whereas genetic control of these processes has been analyzed mostly in pea (Pisum sativum), Medicago truncatula is emerging as a promising alternative system for these studies due to the availability of a range of genetic tools. To assess the use of the retrotransposon Tnt1 for reverse genetics in M. truncatula, we screened a small Tnt1-mutagenized population using degenerate primers for MADS-box genes, known controllers of plant development. We describe here the characterization of mtpim, a new mutant caused by the insertion of Tnt1 in a homolog to the PROLIFERATING INFLORESCENCE MERISTEM (PIM)/APETALA1 (AP1)/SQUAMOSA genes. mtpim shows flower-to-inflorescence conversion and altered flowers with sepals transformed into leaves, indicating that MtPIM controls floral meristem identity and flower development. Although more extreme, this phenotype resembles the pea pim mutants, supporting the idea that M. truncatula could be used to complement analysis of reproductive development already initiated in pea. In fact, our study reveals aspects not shown by analysis of pea mutants: that the mutation in the AP1 homolog interferes with the specification of floral organs from common primordia and causes conversion of sepals into leaves, in addition to true conversion of flowers into inflorescences. The isolation of mtpim represents a proof of concept demonstrating that Tnt1 populations can be efficiently used in reverse genetics screenings in M. truncatula. PMID:16963524

  2. Development and Characterization of Recombinant Virus Generated from a New World Zika Virus Infectious Clone.

    PubMed

    Weger-Lucarelli, James; Duggal, Nisha K; Bullard-Feibelman, Kristen; Veselinovic, Milena; Romo, Hannah; Nguyen, Chilinh; Rückert, Claudia; Brault, Aaron C; Bowen, Richard A; Stenglein, Mark; Geiss, Brian J; Ebel, Gregory D

    2017-01-01

    Zika virus (ZIKV; family Flaviviridae, genus Flavivirus) is a rapidly expanding global pathogen that has been associated with severe clinical manifestations, including devastating neurological disease in infants. There are currently no molecular clones of a New World ZIKV available that lack significant attenuation, hindering progress toward understanding determinants of transmission and pathogenesis. Here we report the development and characterization of a novel ZIKV reverse genetics system based on a 2015 isolate from Puerto Rico (PRVABC59). We generated a two-plasmid infectious clone system from which infectious virus was rescued that replicates in human and mosquito cells with growth kinetics representative of wild-type ZIKV. Infectious clone-derived virus initiated infection and transmission rates in Aedes aegypti mosquitoes comparable to those of the primary isolate and displayed similar pathogenesis in AG129 mice. This infectious clone system provides a valuable resource to the research community to explore ZIKV molecular biology, vaccine development, antiviral development, diagnostics, vector competence, and disease pathogenesis. ZIKV is a rapidly spreading mosquito-borne pathogen that has been linked to Guillain-Barré syndrome in adults and congenital microcephaly in developing fetuses and infants. ZIKV can also be sexually transmitted. The viral molecular determinants of any of these phenotypes are not well understood. There is no reverse genetics system available for the current epidemic virus that will allow researchers to study ZIKV immunity, develop novel vaccines, or develop antiviral drugs. Here we provide a novel infectious clone system generated from a recent ZIKV isolated from a patient infected in Puerto Rico. This infectious clone produces virus with in vitro and in vivo characteristics similar to those of the primary isolate, providing a critical tool to study ZIKV infection and disease. Copyright © 2016 American Society for Microbiology.

  3. Reverse genetics of measles virus and resulting multivalent recombinant vaccines: applications of recombinant measles viruses.

    PubMed

    Billeter, M A; Naim, H Y; Udem, S A

    2009-01-01

    An overview is given on the development of technologies to allow reverse genetics of RNA viruses, i.e., the rescue of viruses from cDNA, with emphasis on nonsegmented negative-strand RNA viruses (Mononegavirales), as exemplified for measles virus (MV). Primarily, these technologies allowed site-directed mutagenesis, enabling important insights into a variety of aspects of the biology of these viruses. Concomitantly, foreign coding sequences were inserted to (a) allow localization of virus replication in vivo through marker gene expression, (b) develop candidate multivalent vaccines against measles and other pathogens, and (c) create candidate oncolytic viruses. The vector use of these viruses was experimentally encouraged by the pronounced genetic stability of the recombinants unexpected for RNA viruses, and by the high load of insertable genetic material, in excess of 6 kb. The known assets, such as the small genome size of the vector in comparison to DNA viruses proposed as vectors, the extensive clinical experience of attenuated MV as vaccine with a proven record of high safety and efficacy, and the low production cost per vaccination dose are thus favorably complemented.

  4. Protection of genetic heritage in the era of cloning

    PubMed Central

    de Oliveira Júnior, Eudes Quintino; de Oliveira, Pedro Bellentani Quintino

    2012-01-01

    Research on human beings has expanded greatly due to progress and the evolution of society as well as customs. Not only the unceasing development of research on human beings, but also interference in the beginning and end of life with homologous and heterogonous human reproduction, surrogate motherhood, cloning, gene therapies, eugenics, euthanasia, dysthanasia, orthothanasia, assisted suicide, genetic engineering, reassignment surgery in cases of transsexuality, the use of recombinant DNA technology and embryonic stem cells, transplantation of human organs and tissues, biotechnology and many other scientific advances. Scientific progress goes faster than the real needs of human beings, who are the final recipient of the entire evolutionary progress. Hence, there is the need to scrutinize whether new technologies are necessary, suitable and timely so that humanity can achieve its postulate of bene vivere. Human cloning, as an abrupt scientific fact, has presented itself to the world community as a procedure that can be performed with relative success and with little difficulty, since it achieved its objectives with the cloning of Dolly the sheep. This issue became the topic of discussion not only in the scientific community but in the lay population, and it received from both, global disapproval. The conclusion is that the human being is unique, with a life cycle defined by the rules of nature. Reversal will cause a violation of the genetic heritage and, above all, will confront the constitutional principle of human dignity. PMID:23323071

  5. Protection of genetic heritage in the era of cloning.

    PubMed

    de Oliveira Júnior, Eudes Quintino; de Oliveira, Pedro Bellentani Quintino

    2012-01-01

    Research on human beings has expanded greatly due to progress and the evolution of society as well as customs. Not only the unceasing development of research on human beings, but also interference in the beginning and end of life with homologous and heterogonous human reproduction, surrogate motherhood, cloning, gene therapies, eugenics, euthanasia, dysthanasia, orthothanasia, assisted suicide, genetic engineering, reassignment surgery in cases of transsexuality, the use of recombinant DNA technology and embryonic stem cells, transplantation of human organs and tissues, biotechnology and many other scientific advances. Scientific progress goes faster than the real needs of human beings, who are the final recipient of the entire evolutionary progress. Hence, there is the need to scrutinize whether new technologies are necessary, suitable and timely so that humanity can achieve its postulate of bene vivere. Human cloning, as an abrupt scientific fact, has presented itself to the world community as a procedure that can be performed with relative success and with little difficulty, since it achieved its objectives with the cloning of Dolly the sheep.This issue became the topic of discussion not only in the scientific community but in the lay population, and it received from both, global disapproval. The conclusion is that the human being is unique, with a life cycle defined by the rules of nature. Reversal will cause a violation of the genetic heritage and, above all, will confront the constitutional principle of human dignity.

  6. A Food Chain Algorithm for Capacitated Vehicle Routing Problem with Recycling in Reverse Logistics

    NASA Astrophysics Data System (ADS)

    Song, Qiang; Gao, Xuexia; Santos, Emmanuel T.

    2015-12-01

    This paper introduces the capacitated vehicle routing problem with recycling in reverse logistics, and designs a food chain algorithm for it. Some illustrative examples are selected to conduct simulation and comparison. Numerical results show that the performance of the food chain algorithm is better than the genetic algorithm, particle swarm optimization as well as quantum evolutionary algorithm.

  7. Challenging views on the peopling history of East Asia: the story according to HLA markers.

    PubMed

    Di, Da; Sanchez-Mazas, Alicia

    2011-05-01

    The peopling of East Asia by the first modern humans is strongly debated from a genetic point of view. A north-south genetic differentiation observed in this geographic area suggests different hypotheses on the origin of Northern East Asian (NEA) and Southern East Asian (SEA) populations. In this study, the highly polymorphic HLA markers were used to investigate East Asian genetic diversity. Our database covers a total of about 127,000 individuals belonging to 84 distinct Asian populations tested for HLA-A, -B, -C, -DPB1, and/or -DRB1 alleles. Many Chinese populations are represented, which have been sampled in the last 30 years but rarely taken into account in international research due to their data published in Chinese. By using different statistical methods, we found a significant correlation between genetics and geography and relevant genetic clines in East Asia. Additionally, HLA alleles appear to be unevenly distributed: some alleles observed in NEA populations are widespread at the global level, while some alleles observed in SEA populations are virtually unique in Asia. The HLA genetic variation in East Asia is also characterized by a decrease of diversity from north to south, although a reverse pattern appears when one only focuses on alleles restricted to Asia. These results reflect a more complex migration history than that illustrated by the "southern-origin" hypothesis, as genetic contribution of ancient human migrations through a northern route has probably been quite substantial. We thus suggest a new overlapping model where northward and southward opposite migrations occurring at different periods overlapped. Copyright © 2011 Wiley-Liss, Inc.

  8. Reverse Genetics System Demonstrates that Rotavirus Nonstructural Protein NSP6 Is Not Essential for Viral Replication in Cell Culture.

    PubMed

    Komoto, Satoshi; Kanai, Yuta; Fukuda, Saori; Kugita, Masanori; Kawagishi, Takahiro; Ito, Naoto; Sugiyama, Makoto; Matsuura, Yoshiharu; Kobayashi, Takeshi; Taniguchi, Koki

    2017-11-01

    The use of overlapping open reading frames (ORFs) to synthesize more than one unique protein from a single mRNA has been described for several viruses. Segment 11 of the rotavirus genome encodes two nonstructural proteins, NSP5 and NSP6. The NSP6 ORF is present in the vast majority of rotavirus strains, and therefore the NSP6 protein would be expected to have a function in viral replication. However, there is no direct evidence of its function or requirement in the viral replication cycle yet. Here, taking advantage of a recently established plasmid-only-based reverse genetics system that allows rescue of recombinant rotaviruses entirely from cloned cDNAs, we generated NSP6-deficient viruses to directly address its significance in the viral replication cycle. Viable recombinant NSP6-deficient viruses could be engineered. Single-step growth curves and plaque formation of the NSP6-deficient viruses confirmed that NSP6 expression is of limited significance for RVA replication in cell culture, although the NSP6 protein seemed to promote efficient virus growth. IMPORTANCE Rotavirus is one of the most important pathogens of severe diarrhea in young children worldwide. The rotavirus genome, consisting of 11 segments of double-stranded RNA, encodes six structural proteins (VP1 to VP4, VP6, and VP7) and six nonstructural proteins (NSP1 to NSP6). Although specific functions have been ascribed to each of the 12 viral proteins, the role of NSP6 in the viral replication cycle remains unknown. In this study, we demonstrated that the NSP6 protein is not essential for viral replication in cell culture by using a recently developed plasmid-only-based reverse genetics system. This reverse genetics approach will be successfully applied to answer questions of great interest regarding the roles of rotaviral proteins in replication and pathogenicity, which can hardly be addressed by conventional approaches. Copyright © 2017 American Society for Microbiology.

  9. Plastid, nuclear and reverse transcriptase sequences in the mitochondrial genome of Oenothera: is genetic information transferred between organelles via RNA?

    PubMed Central

    Schuster, W; Brennicke, A

    1987-01-01

    We describe an open reading frame (ORF) with high homology to reverse transcriptase in the mitochondrial genome of Oenothera. This ORF displays all the characteristics of an active plant mitochondrial gene with a possible ribosome binding site and 39% T in the third codon position. It is located between a sequence fragment from the plastid genome and one of nuclear origin downstream from the gene encoding subunit 5 of the NADH dehydrogenase. The nuclear derived sequence consists of 528 nucleotides from the small ribosomal RNA and contains an expansion segment unique to nuclear rRNAs. The plastid sequence contains part of the ribosomal protein S4 and the complete tRNA(Ser). The observation that only transcribed sequences have been found i more than one subcellular compartment in higher plants suggests that interorganellar transfer of genetic information may occur via RNA and subsequent local reverse transcription and genomic integration. PMID:14650433

  10. Reverse transcription-polymerase chain reaction molecular testing of cytology specimens: Pre-analytic and analytic factors.

    PubMed

    Bridge, Julia A

    2017-01-01

    The introduction of molecular testing into cytopathology laboratory practice has expanded the types of samples considered feasible for identifying genetic alterations that play an essential role in cancer diagnosis and treatment. Reverse transcription-polymerase chain reaction (RT-PCR), a sensitive and specific technical approach for amplifying a defined segment of RNA after it has been reverse-transcribed into its DNA complement, is commonly used in clinical practice for the identification of recurrent or tumor-specific fusion gene events. Real-time RT-PCR (quantitative RT-PCR), a technical variation, also permits the quantitation of products generated during each cycle of the polymerase chain reaction process. This review addresses qualitative and quantitative pre-analytic and analytic considerations of RT-PCR as they relate to various cytologic specimens. An understanding of these aspects of genetic testing is central to attaining optimal results in the face of the challenges that cytology specimens may present. Cancer Cytopathol 2017;125:11-19. © 2016 American Cancer Society. © 2016 American Cancer Society.

  11. Evaluation of a reverse-hybridization StripAssay for the detection of genetic polymorphisms leading to acenocoumarol sensitivity.

    PubMed

    Gialeraki, Argyri; Markatos, Christos; Grouzi, Elisabeth; Merkouri, Efrosyni; Travlou, Anthi; Politou, Marianna

    2010-04-01

    Acenocoumarol is mainly catabolized by CYP2C9 isoform of cytochrome P450 (CYP) liver complex and exerts its anticoagulant effect through the inhibition of Vitamin K Epoxide Reductase (VKOR). The most important genetic polymorphisms which lead to an impaired enzymatic activity and therefore predispose to acenocoumarol sensitivity, are considered to be CYP2C9*2 (Arg144Cys), CYP2C9*3 (Ile359Leu) and VKORC1-1639G>A, respectively. In this study we compared the results of the PGXThrombo StripAssay kit (ViennaLab Diagnostics,Vienna, Austria) with direct DNA sequencing and in house Restriction Fragment Length Polymorphisms (RFLP) for the detection of the aforementioned Single Nucleotide Polymorphisms (SNPs). The reverse hybridization StripAssay was found to be equally effective with RFLP and direct DNA sequencing for the detection of CYP2C9*2 and CYP2C9*3 polymorphisms, respectively. The comparison of the RFLP reference method with the reverse hybridization StripAssay for the detection of VKORC1-1639 G>A polymorphism showed that the reverse hybridization StripAsssay might misclassify some A/A homozygotes as heterozygotes. Optimization of the hybridization procedures may eliminate the extra low signal band observed in some samples at the reverse hybridization StripAssay and improve its diagnostic value.

  12. MONITORING MYCOTOXIN PRODUCTION AT THE GENETIC LEVEL ON VARIOUS GROWTH SUBSTRATES USING QUANTITATIVE REVERSE TRANSCRIPTION POLYMERASE CHAIN REACTION?EXPERIMENT DESIGN

    EPA Science Inventory

    The paper describes a method of analyzing the production of mycotoxins at the genetic level by monitoring the intracellular levels of messenger RNA (mRNA). Initial work will focus on threshing out the mycotoxin gene clusters in Stachybotrys chartarum followed by analysis of toxin...

  13. Are we there yet? Tracking the development of new model systems

    Treesearch

    A. Abzhanov; C. Extavour; A. Groover; S. Hodges; H. Hoekstra; E. Kramer; A. Monteiro

    2008-01-01

    It is increasingly clear that additional ‘model’ systems are needed to elucidate the genetic and developmental basis of organismal diversity. Whereas model system development previously required enormous investment, recent advances including the decreasing cost of DNA sequencing and the power of reverse genetics to study gene function are greatly facilitating...

  14. COTIP: Cotton TILLING Platform, a Resource for Plant Improvement and Reverse Genetic Studies

    PubMed Central

    Aslam, Usman; Cheema, Hafiza M. N.; Ahmad, Sheraz; Khan, Iqrar A.; Malik, Waqas; Khan, Asif A.

    2016-01-01

    Cotton is cultivated worldwide for its white fiber, of which around 90% is tetraploid upland cotton (Gossypium hirsutum L.) carrying both A and D genome. Since centuries, yield increasing efforts for the cotton crop by conventional breeding approaches have caused an extensive erosion of natural genetic variability. Mutation based improvement strategies provide an effective way of creating new allelic variations. Targeting Induced Local Lesions IN Genomes (TILLING) provides a mutation based reverse genetic strategy to create and evaluate induced genetic variability at DNA level. Here, we report development and testing of TILLING populations of allotetraploid cotton (G. hirsutum) for functional genomic studies and mutation based enrichment of cotton genetic resources. Seed of two cotton cultivars “PB-899 and PB-900” were mutagenized with 0.3 and 0.2% (v/v) ethyl methanesulfonate, respectively. The phenotyping of M1 and M2 populations presented numerous mutants regarding the branching pattern, leaf morphology, disease resistance, photosynthetic lesions and flower sterility. Molecular screening for point mutations was performed by TILLING PCR aided CEL1 mismatch cleavage. To estimate the mutation frequency in the mutant genomes, five gene classes were TILLed in 8000 M2 plants of each var. “PB-899” and “PB-900.” These include actin (GhACT), Pectin Methyl Esterase (GhPME), sucrose synthase (GhSUS), resistance gene analog, and defense response gene (DRGs). The var. PB-899 was harboring 47% higher mutation induction rate than PB-900. The highest rate of mutation frequency was identified for NAC-TF5 (EU706348) of DRGs class, ranging from 1/58 kb in PB-899 to 1/105 kb in PB-900. The mutation screening assay revealed the presence of significant proportion of induced mutations in cotton TILLING populations such as 1/153 kb and 1/326 kb in var. “PB-899” and “PB-900,” respectively. The establishment of a cotton TILLING platform (COTIP) and data obtained from the resource TILLING population suggest its effectiveness in widening the genetic bases of cotton for improvement and utilizing it for subsequent reverse genetic studies of various genes. PMID:28082993

  15. Genetic Instability at the Agouti Locus of the Mouse (Mus Musculus). I. Increased Reverse Mutation Frequency to the A(w) Allele in a/a Heterozygotes

    PubMed Central

    Sandulache, R.; Neuhauser-Klaus, A.; Favor, J.

    1994-01-01

    We have compiled the reverse mutation rate data to the white bellied agouti (A(w)) allele in heterozygous A/a mice and shown it to be increased by a factor of at least 350 in comparison to the reverse mutation rate in homozygous a/a mice. Employing tightly linked flanking restriction fragment length polymorphism DNA markers, we have shown that reversion to A(w) is associated with crossing over in the vicinity of the agouti locus. The non-agouti (a) allele has been recently shown to contain an 11-kb insert within the first intron of the agouti gene. Together with our present results, these observations suggest possible mechanisms to explain the reversion events. PMID:7982562

  16. The impact of sex-role reversal on the diversity of the major histocompatibility complex: insights from the seahorse (Hippocampus abdominalis).

    PubMed

    Bahr, Angela; Wilson, Anthony B

    2011-05-10

    Both natural and sexual selection are thought to influence genetic diversity, but the study of the relative importance of these two factors on ecologically-relevant traits has traditionally focused on species with conventional sex-roles, with male-male competition and female-based mate choice. With its high variability and significance in both immune function and olfactory-mediated mate choice, the major histocompatibility complex (MHC/MH) is an ideal system in which to evaluate the relative contributions of these two selective forces to genetic diversity. Intrasexual competition and mate choice are both reversed in sex-role reversed species, and sex-related differences in the detection and use of MH-odor cues are expected to influence the intensity of sexual selection in such species. The seahorse, Hippocampus abdominalis, has an exceptionally highly developed form of male parental care, with female-female competition and male mate choice. Here, we demonstrate that the sex-role reversed seahorse has a single MH class II beta-chain gene and that the diversity of the seahorse MHIIβ locus and its pattern of variation are comparable to those detected in species with conventional sex roles. Despite the presence of only a single gene copy, intralocus MHIIβ allelic diversity in this species exceeds that observed in species with multiple copies of this locus. The MHIIβ locus of the seahorse exhibits a novel expression domain in the male brood pouch. The high variation found at the seahorse MHIIβ gene indicates that sex-role reversed species are capable of maintaining the high MHC diversity typical in most vertebrates.Whether such species have evolved the capacity to use MH-odor cues during mate choice is presently being investigated using mate choice experiments. If this possibility can be rejected, such systems would offer an exceptional opportunity to study the effects of natural selection in isolation, providing powerful comparative models for understanding the relative importance of selective factors in shaping patterns of genetic variation.

  17. Salt tolerance research in date palm tree (Phoenix dactylifera L.), past, present, and future perspectives.

    PubMed

    Yaish, Mahmoud W; Kumar, Prakash P

    2015-01-01

    The date palm can adapt to extreme drought, to heat, and to relatively high levels of soil salinity. However, excessive amounts of salt due to irrigation with brackish water lead to a significant reduction in the productivity of the fruits as well as marked decrease in the viable numbers of the date palm trees. It is imperative that the nature of the existing salt-adaptation mechanism be understood in order to develop future date palm varieties that can tolerate excessive soil salinity. In this perspective article, several research strategies, obstacles, and precautions are discussed in light of recent advancements accomplished in this field and the properties of this species. In addition to a physiological characterization, we propose the use of a full range of OMICS technologies, coupled with reverse genetics approaches, aimed toward understanding the salt-adaption mechanism in the date palm. Information generated by these analyses should highlight transcriptional and posttranscriptional modifications controlling the salt-adaptation mechanisms. As an extremophile with a natural tolerance for a wide range of abiotic stresses, the date palm may represent a treasure trove of novel genetic resources for salinity tolerance.

  18. NMDA receptor blockade and hippocampal neuronal loss impair fear conditioning and position habit reversal in C57Bl/6 mice.

    PubMed

    Bardgett, Mark E; Boeckman, Ryan; Krochmal, Daniel; Fernando, Hiran; Ahrens, Rebecca; Csernansky, John G

    2003-04-15

    The interpretation of learning and memory deficits in transgenic mice has largely involved theories of NMDA receptor and/or hippocampal function. However, there is little empirical data that describes what NMDA receptors or the hippocampus do in mice. This research assessed the effects of different doses of the NMDA receptor antagonist, MK-801, or different-sized hippocampal lesions on several behavioral parameters in adult male C57Bl/6 mice. In the first set of experiments, different doses of MK-801 (0.05-0.3mg/kg, s.c.) were assayed in fear conditioning, shock sensitivity, locomotion, anxiety, and position habit reversal tests. Contextual and cued fear conditioning, and position habit reversal were impaired in a dose-dependent manner. Locomotor activity was increased immediately after injection of the highest dose of MK-801. A second set of experiments determined the behavioral effects of a moderate and large excitotoxic hippocampal lesion. Both lesions impaired contextual conditioning, while the larger lesion interfered with cued conditioning. Reversal learning was significantly diminished by the large lesion, while the moderate lesion had a detrimental effect at a trend level (P<0.10). These results provide important reference data for studies involving genetic manipulations of NMDA receptor or hippocampal function in mice. Furthermore, they serve as a basis for a non-transgenic mouse model of the NMDA receptor or hippocampal dysfunction hypothesized to occur in human cognitive disorders.

  19. From Evolution to Revolution: miRNAs as Pharmacological Targets for Modulating Cholesterol Efflux and Reverse Cholesterol Transport

    PubMed Central

    Dávalos, Alberto; Fernández-Hernando, Carlos

    2013-01-01

    There has been strong evolutionary pressure to ensure that an animal cell maintain levels of cholesterol within tight limits for normal function. Imbalances in cellular cholesterol levels are a major player in the development of different pathologies associated to dietary excess. Although epidemiological studies indicate that elevated levels of high-density lipoprotein (HDL)-cholesterol reduce the risk of cardiovascular disease, recent genetic evidence and pharmacological therapies to raise HDL levels do not support their beneficial effects. Cholesterol efflux as the first and probably the most important step in reverse cholesterol transport is an important biological process relevant to HDL function. Small non-coding RNAs (microRNAs), post-transcriptional control different aspects of cellular cholesterol homeostasis including cholesterol efflux. miRNA families miR-33, miR-758, miR-10b, miR-26 and miR-106b directly modulates cholesterol efflux by targeting the ATP-binding cassette transporter A1 (ABCA1). Pre-clinical studies with anti-miR therapies to inhibit some of these miRNAs have increased cellular cholesterol efflux, reverse cholesterol transport and reduce pathologies associated to dyslipidemia. Although miRNAs as therapy have benefits from existing antisense technology, different obstacles need to be solved before we incorporate such research into clinical care. Here we focus on the clinical potential of miRNAs as therapeutic target to increase cholesterol efflux and reverse cholesterol transport as a new alternative to ameliorate cholesterol-related pathologies. PMID:23435093

  20. Reverse Genetics and High Throughput Sequencing Methodologies for Plant Functional Genomics

    PubMed Central

    Ben-Amar, Anis; Daldoul, Samia; Reustle, Götz M.; Krczal, Gabriele; Mliki, Ahmed

    2016-01-01

    In the post-genomic era, increasingly sophisticated genetic tools are being developed with the long-term goal of understanding how the coordinated activity of genes gives rise to a complex organism. With the advent of the next generation sequencing associated with effective computational approaches, wide variety of plant species have been fully sequenced giving a wealth of data sequence information on structure and organization of plant genomes. Since thousands of gene sequences are already known, recently developed functional genomics approaches provide powerful tools to analyze plant gene functions through various gene manipulation technologies. Integration of different omics platforms along with gene annotation and computational analysis may elucidate a complete view in a system biology level. Extensive investigations on reverse genetics methodologies were deployed for assigning biological function to a specific gene or gene product. We provide here an updated overview of these high throughout strategies highlighting recent advances in the knowledge of functional genomics in plants. PMID:28217003

  1. The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo

    PubMed Central

    Meerbrey, Kristen L.; Hu, Guang; Kessler, Jessica D.; Roarty, Kevin; Fang, Justin E.; Herschkowitz, Jason I.; Burrows, Anna E.; Ciccia, Alberto; Sun, Tingting; Schmitt, Earlene M.; Bernardi, Ronald J.; Fu, Xiaoyong; Bland, Christopher S.; Cooper, Thomas A.; Schiff, Rachel; Rosen, Jeffrey M.; Westbrook, Thomas F.; Elledge, Stephen J.

    2011-01-01

    The discovery of RNAi has revolutionized loss-of-function genetic studies in mammalian systems. However, significant challenges still remain to fully exploit RNAi for mammalian genetics. For instance, genetic screens and in vivo studies could be broadly improved by methods that allow inducible and uniform gene expression control. To achieve this, we built the lentiviral pINDUCER series of expression vehicles for inducible RNAi in vivo. Using a multicistronic design, pINDUCER vehicles enable tracking of viral transduction and shRNA or cDNA induction in a broad spectrum of mammalian cell types in vivo. They achieve this uniform temporal, dose-dependent, and reversible control of gene expression across heterogenous cell populations via fluorescence-based quantification of reverse tet-transactivator expression. This feature allows isolation of cell populations that exhibit a potent, inducible target knockdown in vitro and in vivo that can be used in human xenotransplantation models to examine cancer drug targets. PMID:21307310

  2. A reverse genetics approach identifies novel mutants in light responses and anthocyanin metabolism in petunia.

    PubMed

    Berenschot, Amanda S; Quecini, Vera

    2014-01-01

    Flower color and plant architecture are important commercially valuable features for ornamental petunias (Petunia x hybrida Vilm.). Photoperception and light signaling are the major environmental factors controlling anthocyanin and chlorophyll biosynthesis and shade-avoidance responses in higher plants. The genetic regulators of these processes were investigated in petunia by in silico analyses and the sequence information was used to devise a reverse genetics approach to probe mutant populations. Petunia orthologs of photoreceptor, light-signaling components and anthocyanin metabolism genes were identified and investigated for functional conservation by phylogenetic and protein motif analyses. The expression profiles of photoreceptor gene families and of transcription factors regulating anthocyanin biosynthesis were obtained by bioinformatic tools. Two mutant populations, generated by an alkalyting agent and by gamma irradiation, were screened using a phenotype-independent, sequence-based method by high-throughput PCR-based assay. The strategy allowed the identification of novel mutant alleles for anthocyanin biosynthesis (CHALCONE SYNTHASE) and regulation (PH4), and for light signaling (CONSTANS) genes.

  3. DNA-launched live-attenuated vaccines for biodefense applications

    PubMed Central

    Pushko, Peter; Lukashevich, Igor S.; Weaver, Scott C.; Tretyakova, Irina

    2016-01-01

    Summary A novel vaccine platform uses DNA immunization to launch live-attenuated virus vaccines in vivo. This technology has been applied for vaccine development against positive-strand RNA viruses with global public health impact including alphaviruses and flaviviruses. The DNA-launched vaccine represents the recombinant plasmid that encodes the full-length genomic RNA of live-attenuated virus downstream from a eukaryotic promoter. When administered in vivo, the genomic RNA of live-attenuated virus is transcribed. The RNA initiates limited replication of a genetically defined, live-attenuated vaccine virus in the tissues of the vaccine recipient, thereby inducing a protective immune response. This platform combines the strengths of reverse genetics, DNA immunization and the advantages of live-attenuated vaccines, resulting in a reduced chance of genetic reversions, increased safety, and improved immunization. With this vaccine technology, the field of DNA vaccines is expanded from those that express subunit antigens to include a novel type of DNA vaccines that launch live-attenuated viruses. PMID:27055100

  4. Viral metagenomics, protein structure, and reverse genetics: Key strategies for investigating coronaviruses.

    PubMed

    Johnson, Bryan A; Graham, Rachel L; Menachery, Vineet D

    2018-04-01

    Viral metagenomics, modeling of protein structure, and manipulation of viral genetics are key approaches that have laid the foundations of our understanding of coronavirus biology. In this review, we discuss the major advances each method has provided and discuss how future studies should leverage these strategies synergistically to answer novel questions. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Genetic Detection and Isolation of Crimean-Congo hemorrhagic fever virus, Kosovo, Yugoslavia

    PubMed Central

    Boźović, Bojana; Pavlidou, Vassiliki; Papadimitriou, Evangelia; Pelemis, Mijomir; Antoniadis, Aantonis

    2002-01-01

    Crimean-Congo hemorrhagic fever virus (C-CHFV) strains were isolated from a fatal case and the attending physician in Kosovo, Yugoslavia. Early, rapid diagnosis of the disease was achieved by reverse transcription-polymerase chain reaction. The physician was successfully treated with oral ribavirin. These cases yielded the first genetically studied C-CHFV human isolates in the Balkans. PMID:12141973

  6. An Integrated Systems Genetics and Omics Toolkit to Probe Gene Function.

    PubMed

    Li, Hao; Wang, Xu; Rukina, Daria; Huang, Qingyao; Lin, Tao; Sorrentino, Vincenzo; Zhang, Hongbo; Bou Sleiman, Maroun; Arends, Danny; McDaid, Aaron; Luan, Peiling; Ziari, Naveed; Velázquez-Villegas, Laura A; Gariani, Karim; Kutalik, Zoltan; Schoonjans, Kristina; Radcliffe, Richard A; Prins, Pjotr; Morgenthaler, Stephan; Williams, Robert W; Auwerx, Johan

    2018-01-24

    Identifying genetic and environmental factors that impact complex traits and common diseases is a high biomedical priority. Here, we developed, validated, and implemented a series of multi-layered systems approaches, including (expression-based) phenome-wide association, transcriptome-/proteome-wide association, and (reverse-) mediation analysis, in an open-access web server (systems-genetics.org) to expedite the systems dissection of gene function. We applied these approaches to multi-omics datasets from the BXD mouse genetic reference population, and identified and validated associations between genes and clinical and molecular phenotypes, including previously unreported links between Rpl26 and body weight, and Cpt1a and lipid metabolism. Furthermore, through mediation and reverse-mediation analysis we established regulatory relations between genes, such as the co-regulation of BCKDHA and BCKDHB protein levels, and identified targets of transcription factors E2F6, ZFP277, and ZKSCAN1. Our multifaceted toolkit enabled the identification of gene-gene and gene-phenotype links that are robust and that translate well across populations and species, and can be universally applied to any populations with multi-omics datasets. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Genetically attenuated Trypanosoma cruzi parasites as a potential vaccination tool

    PubMed Central

    Brandan, Cecilia Pérez; Basombrío, Miguel Ángel

    2012-01-01

    Chagas disease is the clinical manifestation of the infection produced by the parasite Trypanosoma cruzi. Currently there is no vaccine to prevent this disease and the protection attained with vaccines containing non-replicating parasites is limited. Genetically attenuated trypanosomatid parasites can be obtained by deletion of selected genes. Gene deletion takes advantage of the fact that this parasite can undergo homologous recombination between endogenous and foreign DNA sequences artificially introduced in the cells. This approach facilitated the discovery of several unknown gene functions, as well as allowing us to speculate about the potential for genetically attenuated live organisms as experimental immunogens. Vaccination with live attenuated parasites has been used effectively in mice to reduce parasitemia and histological damage, and in dogs, to prevent vector-delivered infection in the field. However, the use of live parasites as immunogens is controversial due to the risk of reversion to a virulent phenotype. Herein, we present our results from experiments on genetic manipulation of two T. cruzi strains to produce parasites with impaired replication and infectivity, and using the mutation of the dhfr-ts gene as a safety device against reversion to virulence. PMID:22705838

  8. Genomic medicine in gastroenterology: A new approach or a new specialty?

    PubMed

    Roman, Sonia; Panduro, Arturo

    2015-07-21

    Throughout history, many medical milestones have been achieved to prevent and treat human diseases. Man's early conception of illness was naturally holistic or integrative. However, scientific knowledge was atomized into quantitative and qualitative research. In the field of medicine, the main trade-off was the creation of many medical specialties that commonly treat patients in advanced stages of disease. However, now that we are immersed in the post-genomic era, how should we reevaluate medicine? Genomic medicine has evoked a medical paradigm shift based on the plausibility to predict the genetic susceptibility to disease. Additionally, the development of chronic diseases should be viewed as a continuum of interactions between the individual's genetic make-up and environmental factors such as diet, physical activity, and emotions. Thus, personalized medicine is aimed at preventing or reversing clinical symptoms, and providing a better quality of life by integrating the genetic, environmental and cultural factors of diseases. Whether using genomic medicine in the field of gastroenterology is a new approach or a new medical specialty remains an open question. To address this issue, it will require the mutual work of educational and governmental authorities with public health professionals, with the goal of translating genomic medicine into better health policies.

  9. Common and Specific Protein Accumulation Patterns in Different Albino/Pale-Green Mutants Reveals Regulon Organization at the Proteome Level1[W

    PubMed Central

    Motohashi, Reiko; Rödiger, Anja; Agne, Birgit; Baerenfaller, Katja; Baginsky, Sacha

    2012-01-01

    Research interest in proteomics is increasingly shifting toward the reverse genetic characterization of gene function at the proteome level. In plants, several distinct gene defects perturb photosynthetic capacity, resulting in the loss of chlorophyll and an albino or pale-green phenotype. Because photosynthesis is interconnected with the entire plant metabolism and its regulation, all albino plants share common characteristics that are determined by the switch from autotrophic to heterotrophic growth. Reverse genetic characterizations of such plants often cannot distinguish between specific consequences of a gene defect from generic effects in response to perturbations in photosynthetic capacity. Here, we set out to define common and specific features of protein accumulation in three different albino/pale-green plant lines. Using quantitative proteomics, we report a common molecular phenotype that connects the loss of photosynthetic capacity with other chloroplast and cellular functions, such as protein folding and stability, plastid protein import, and the expression of stress-related genes. Surprisingly, we do not find significant differences in the expression of key transcriptional regulators, suggesting that substantial regulation occurs at the posttranscriptional level. We examine the influence of different normalization schemes on the quantitative proteomics data and report all identified proteins along with their fold changes and P values in albino plants in comparison with the wild type. Our analysis provides initial guidance for the distinction between general and specific adaptations of the proteome in photosynthesis-impaired plants. PMID:23027667

  10. Research on the influencing factors of reverse logistics carbon footprint under sustainable development.

    PubMed

    Sun, Qiang

    2017-10-01

    With the concerns of ecological and circular economy along with sustainable development, reverse logistics has attracted the attention of enterprise. How to achieve sustainable development of reverse logistics has important practical significance of enhancing low carbon competitiveness. In this paper, the system boundary of reverse logistics carbon footprint is presented. Following the measurement of reverse logistics carbon footprint and reverse logistics carbon capacity is provided. The influencing factors of reverse logistics carbon footprint are classified into five parts such as intensity of reverse logistics, energy structure, energy efficiency, reverse logistics output, and product remanufacturing rate. The quantitative research methodology using ADF test, Johansen co-integration test, and impulse response is utilized to interpret the relationship between reverse logistics carbon footprint and the influencing factors more accurately. This research finds that energy efficiency, energy structure, and product remanufacturing rate are more capable of inhibiting reverse logistics carbon footprint. The statistical approaches will help practitioners in this field to structure their reverse logistics activities and also help academics in developing better decision models to reduce reverse logistics carbon footprint.

  11. Genetic engineering of live attenuated influenza viruses.

    PubMed

    Jin, Hong; Chen, Zhongying; Liu, Jonathan; Kemble, George

    2012-01-01

    The first live attenuated influenza vaccine (LAIV) was licensed in the USA in 2003; it is a trivalent vaccine composed of two type A (H1N1 and H3N2) and one type B influenza virus each at 10(7) fluorescent focus units (FFU). Each influenza vaccine strain is a reassortant virus that contains the hemagglutinin (HA) and neuraminidase (NA) gene segments from a wild-type influenza virus and the six internal protein gene segments from a master donor virus (MDV) of either cold-adapted A/Ann Arbor/6/60 or B/Ann Arbor/1/66. MDV confers the cold-adapted, temperature-sensitive, and attenuation phenotypes to the vaccine strains. The reassortant vaccine seeds are currently produced by reverse genetics and amplified in specific pathogen-free (SPF) 9-11 days old embryonated chicken eggs for manufacture. In addition, MDCK cell culture manufacture processes have been developed to produce LAIV for research use and with modifications for clinical and/or commercial grade material production.

  12. Speaking Out About the Social Implications of Science: The Uneven Legacy of H. J. Muller

    PubMed Central

    Carlson, Elof Axel

    2011-01-01

    H. J. Muller (1890–1967) was unusual as a scientist because he spoke out on numerous occasions about the uses and abuses of genetics in society. In this article, I follow Muller's efforts to do so and the consequences that they had on his career, his productivity as a research scientist, and his reputation. The shifting sites of Muller's work—which ranged from Columbia University to Texas, from Berlin to Moscow and Leningrad, from Madrid to Edinburgh, and from Amherst to Indiana University—made his activism unusual. Muller paid a price for his activism, and his reputation today is still marred by what most historians would consider risky judgments and reversals of position about genetics and society. My analysis is not a defense but rather an evaluation of the circumstances that led him to these positions and an analysis of the consequences of challenging society when scientists believe their science is being ignored or abused. PMID:21224441

  13. Absence of Measles Virus Detection from Stapes of Patients with Otosclerosis.

    PubMed

    Flores-García, María de Lourdes; Colín-Castro, Claudia Adriana; Hernández-Palestina, Mario Sabas; Sánchez-Larios, Roberto; Franco-Cendejas, Rafael

    2018-01-01

    Objective To determine molecularly the presence of measles virus genetic material in the stapes of patients with otosclerosis. Study Design A cross-sectional study. Setting A tertiary referral hospital. Subjects and Methods Genetic material was extracted from the stapes of patients with otosclerosis (n = 93) during the period from March 2011 to April 2012. The presence of viral measles sequences was evaluated by the real-time reverse transcriptase polymerase chain reaction (RT-PCR). The expression of the CD46 gene was determined. Results Ninety-three patients were included in the study. No sample was positive for any of 3 measles virus genes (H, N, and F). Measles virus RNA was not detected in any sample by real-time RT-PCR. CD46 levels were positive in 3.3% (n = 3) and negative in 96.7% (n = 90). Conclusion This study does not support the theory of measles virus as the cause of otosclerosis. It is necessary to do more research about other causal theories to clarify its etiology and prevention.

  14. Whole transcriptome analysis using next-generation sequencing of model species Setaria viridis to support C4 photosynthesis research.

    PubMed

    Xu, Jiajia; Li, Yuanyuan; Ma, Xiuling; Ding, Jianfeng; Wang, Kai; Wang, Sisi; Tian, Ye; Zhang, Hui; Zhu, Xin-Guang

    2013-09-01

    Setaria viridis is an emerging model species for genetic studies of C4 photosynthesis. Many basic molecular resources need to be developed to support for this species. In this paper, we performed a comprehensive transcriptome analysis from multiple developmental stages and tissues of S. viridis using next-generation sequencing technologies. Sequencing of the transcriptome from multiple tissues across three developmental stages (seed germination, vegetative growth, and reproduction) yielded a total of 71 million single end 100 bp long reads. Reference-based assembly using Setaria italica genome as a reference generated 42,754 transcripts. De novo assembly generated 60,751 transcripts. In addition, 9,576 and 7,056 potential simple sequence repeats (SSRs) covering S. viridis genome were identified when using the reference based assembled transcripts and the de novo assembled transcripts, respectively. This identified transcripts and SSR provided by this study can be used for both reverse and forward genetic studies based on S. viridis.

  15. Pupils' Error on the Concept of Reversibility in Solving Arithmetic Problems

    ERIC Educational Resources Information Center

    Maf'ulah, Syarifatul; Juniati, Dwi; Siswono, Tatag Yuli Eko

    2016-01-01

    The fact that there is no much study on reversibility is one of reason this study was conducted. Others, the importance of reversibility is also being researcher's motivation for focusing pupils' reversibility. On the other hand, the concern on pupils' reversibility is a major concern. The objective of this research is to identify errors done by…

  16. The pathophysiology of lifelong premature ejaculation

    PubMed Central

    2016-01-01

    For many decades it has been thought that lifelong premature ejaculation (PE) is only characterized by persistent early ejaculations. Despite enormous progress of in vivo animal research, and neurobiological, genetic and pharmacological research in men with lifelong PE, our current understanding of the mechanisms behind early ejaculations is far from complete. The new classification of PE into four PE subtypes has shown that the symptomatology of lifelong PE strongly differs from acquired PE, subjective PE and variable PE. The phenotype of lifelong PE and therefore also the pathophysiology of lifelong PE is much more complex. A substantial number of men with lifelong PE not only have PE, but also premature erection and premature penile detumescence as part of an acute hypertonic or hypererotic state when engaged in an erotic situation or when making love. As both erectio praecox, ejaculatio praecox, detumescentia praecox, and the hypererotic state are part of the phenotype lifelong PE, it is argued that lifelong PE is not only a disturbance of the timing of ejaculation but also a disturbance of the timing of erection, detumescence and arousal. Since 1998, the pathophysiology of lifelong PE was thought to be mainly mediated by the central serotonergic system in line with genetic polymorphisms of specific serotonergic genes. However, by accepting that lifelong PE is characterized by the reversible hypertonic state the hypothesis of mainly serotonergic dysfunction is no longer tenable. Instead, it has been postulated that the pathophysiology of lifelong PE is mediated by a very complex interplay of central and peripheral serotonergic, dopaminergic, oxytocinergic, endocrinological, genetic and probably also epigenetic factors. Progress in research of lifelong PE can only be accomplished when a stopwatch is used to measure the IELT and the cut-off point of 1 minute for the definition of lifelong PE is maintained. Current use of validated questionnaires, neglect of stopwatch research, clinically inexperienced investigators and inclusion of anonymous men in a study performed by the Internet endanger the continuation of objective research of lifelong PE. PMID:27652215

  17. The Application of a Homologous Recombination Assay Revealed Amino Acid Residues in an LTR-Retrotransposon That Were Critical for Integration

    PubMed Central

    Atwood, Angela; Choi, Jeannie; Levin, Henry L.

    1998-01-01

    Retroviruses and their relatives, the LTR-retrotransposons, possess an integrase protein (IN) that is required for the insertion of reverse transcripts into the genome of host cells. Schizosaccharomyces pombe is the host of Tf1, an LTR-retrotransposon with integration activity that can be studied by using techniques of yeast genetics. In this study, we sought to identify amino acid substitutions in Tf1 that specifically affected the integration step of transposition. In addition to seeking amino acid substitutions in IN, we also explored the possibility that other Tf1 proteins contributed to integration. By comparing the results of genetic assays that monitored both transposition and reverse transcription, we were able to seek point mutations throughout Tf1 that blocked transposition but not the synthesis of reverse transcripts. These mutant versions of Tf1 were candidates of elements that possessed defects in the integration step of transposition. Five mutations in Tf1 that resulted in low levels of integration were found to be located in the IN protein: two substitutions in the N-terminal Zn domain, two in the catalytic core, and one in the C-terminal domain. These results suggested that each of the three IN domains was required for Tf1 transposition. The potential role of these five amino acid residues in the function of IN is discussed. Two of the mutations that reduced integration mapped to the RNase H (RH) domain of Tf1 reverse transcriptase. The Tf1 elements with the RH mutations produced high levels of reverse transcripts, as determined by recombination and DNA blot analysis. These results indicated that the RH of Tf1 possesses a function critical for transposition that is independent of the accumulation of reverse transcripts. PMID:9445033

  18. Mechanism-based strategies for protein thermostabilization.

    PubMed

    Mozhaev, V V

    1993-03-01

    Strategies for stabilizing enzymes can be derived from a two-step model of irreversible inactivation that involves preliminary reversible unfolding, followed by an irreversible step. Reversible unfolding is best prevented by covalent immobilization, whereas methods such as covalent modification of amino acid residues or 'medium engineering' (by the addition of low-molecular-weight compounds) are effective against irreversible 'incorrect' refolding. Genetic modification of the protein sequence is the most effective approach for preventing chemical deterioration.

  19. Genetic and Genomic Toolbox of Zea mays

    PubMed Central

    Nannas, Natalie J.; Dawe, R. Kelly

    2015-01-01

    Maize has a long history of genetic and genomic tool development and is considered one of the most accessible higher plant systems. With a fully sequenced genome, a suite of cytogenetic tools, methods for both forward and reverse genetics, and characterized phenotype markers, maize is amenable to studying questions beyond plant biology. Major discoveries in the areas of transposons, imprinting, and chromosome biology came from work in maize. Moving forward in the post-genomic era, this classic model system will continue to be at the forefront of basic biological study. In this review, we outline the basics of working with maize and describe its rich genetic toolbox. PMID:25740912

  20. The mismeasure of machine: Synthetic biology and the trouble with engineering metaphors.

    PubMed

    Boudry, Maarten; Pigliucci, Massimo

    2013-12-01

    The scientific study of living organisms is permeated by machine and design metaphors. Genes are thought of as the "blueprint" of an organism, organisms are "reverse engineered" to discover their functionality, and living cells are compared to biochemical factories, complete with assembly lines, transport systems, messenger circuits, etc. Although the notion of design is indispensable to think about adaptations, and engineering analogies have considerable heuristic value (e.g., optimality assumptions), we argue they are limited in several important respects. In particular, the analogy with human-made machines falters when we move down to the level of molecular biology and genetics. Living organisms are far more messy and less transparent than human-made machines. Notoriously, evolution is an opportunistic tinkerer, blindly stumbling on "designs" that no sensible engineer would come up with. Despite impressive technological innovation, the prospect of artificially designing new life forms from scratch has proven more difficult than the superficial analogy with "programming" the right "software" would suggest. The idea of applying straightforward engineering approaches to living systems and their genomes-isolating functional components, designing new parts from scratch, recombining and assembling them into novel life forms-pushes the analogy with human artifacts beyond its limits. In the absence of a one-to-one correspondence between genotype and phenotype, there is no straightforward way to implement novel biological functions and design new life forms. Both the developmental complexity of gene expression and the multifarious interactions of genes and environments are serious obstacles for "engineering" a particular phenotype. The problem of reverse-engineering a desired phenotype to its genetic "instructions" is probably intractable for any but the most simple phenotypes. Recent developments in the field of bio-engineering and synthetic biology reflect these limitations. Instead of genetically engineering a desired trait from scratch, as the machine/engineering metaphor promises, researchers are making greater strides by co-opting natural selection to "search" for a suitable genotype, or by borrowing and recombining genetic material from extant life forms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Production of infectious dromedary camel hepatitis E virus by a reverse genetic system: Potential for zoonotic infection.

    PubMed

    Li, Tian-Cheng; Zhou, Xianfeng; Yoshizaki, Sayaka; Ami, Yasushi; Suzaki, Yuriko; Nakamura, Tomofumi; Takeda, Naokazu; Wakita, Takaji

    2016-12-01

    The pathogenicity, epidemiology and replication mechanism of dromedary camel hepatitis E virus (DcHEV), a novel hepatitis E virus (HEV), has been unclear. Here we used a reverse genetic system to produce DcHEV and examined the possibility of zoonotic infection. Capped genomic RNA derived from a synthetic DcHEV cDNA was transfected into human hepatocarcinoma cells PLC/PRF/5. The DcHEV capsid protein and RNA were detected by an enzyme-linked immunosorbent assay (ELISA) or RT-qPCR. A neutralization test for DcHEV was carried out by using antisera against HEV-like particles. DcHEV was used to inoculate two cynomolgus monkeys to examine the potential for cross-species infection. The transfection of PLC/PRF/5 cells with capped DcHEV RNA resulted in the production of infectious DcHEV. The genome sequence analysis demonstrated that both nucleotide and amino acid changes accumulated during the passages in PLC/PRF/5 cells. The cynomolgus monkeys showed serological signs of infection when DcHEV was intravenously inoculated. DcHEV was neutralized by not only anti-DcHEV-LPs antibody, but also anti-genotype 1 (G1), G3 and G4 HEV-LPs antibodies. Moreover, the monkeys immunized with DcHEV escaped the G3 HEV challenge, indicating that the serotype of DcHEV is similar to those of other human HEVs. Infectious DcHEV was produced using a reverse genetic system and propagated in PLC/PRF/5 cells. The antigenicity and immunogenicity of DcHEV are similar to those of G1, G3 and G4 HEV. DcHEV was experimentally transmitted to primates, demonstrating the possibility of a zoonotic infection by DcHEV. Dromedary camel hepatitis E virus (DcHEV) was produced by a reverse genetic system and grows well in PLC/PRF/5 cells. Cynomolgus monkeys experimentally infected with DcHEV indicated serological signs of infection, suggesting that DcHEV has the potential to cause zoonotic HEV infection. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  2. Reverse cascade screening of newborns for hereditary haemochromatosis: a model for other late onset diseases?

    PubMed

    Cadet, E; Capron, D; Gallet, M; Omanga-Léké, M-L; Boutignon, H; Julier, C; Robson, K J H; Rochette, J

    2005-05-01

    Genetic testing can determine those at risk for hereditary haemochromatosis (HH) caused by HFE mutations before the onset of symptoms. However, there is no optimum screening strategy, mainly owing to the variable penetrance in those who are homozygous for the HFE Cys282Tyr (C282Y) mutation. The objective of this study was to identify the majority of individuals at serious risk of developing HFE haemochromatosis before they developed life threatening complications. We first estimated the therapeutic penetrance of the C282Y mutation in people living in la Somme, France, using genetic, demographic, biochemical, and follow up data. We examined the benefits of neonatal screening on the basis of increased risk to relatives of newborns carrying one or two copies of the C282Y mutation. Between 1999 and 2002, we screened 7038 newborns from two maternity hospitals in the north of France for the C282Y and His63Asp (H63D) mutations in the HFE gene, using bloodspots collected on Guthrie cards. Family studies and genetic counselling were undertaken, based on the results of the baby's genotype. In la Somme, we found that 24% of the adults homozygous for the C282Y mutation required at least 5 g iron to be removed to restore normal iron parameters (that is, the therapeutic penetrance). In the reverse cascade screening study, we identified 19 C282Y homozygotes (1/370), 491 heterozygotes (1/14) and 166 compound heterozygotes (1/42) in 7038 newborns tested. The reverse cascade screening strategy resulted in 80 adults being screened for both mutations. We identified 10 previously unknown C282Y homozygotes of whom six (four men and two women) required venesection. Acceptance of neonatal screening was high; parents understood the risks of having HH and the benefits of early detection, but a number of parents were reluctant to take the test themselves. Neonatal screening for HH is straightforward. Reverse cascade screening increased the efficiency of detecting affected adults with undiagnosed haemochromatosis. This strategy allows almost complete coverage for HH and could be a model for efficient screening for other late onset genetic diseases.

  3. Genomic Insight into Mechanisms of Reversion of Antibiotic Resistance in Multidrug Resistant Mycobacterium tuberculosis Induced by a Nanomolecular Iodine-Containing Complex FS-1.

    PubMed

    Ilin, Aleksandr I; Kulmanov, Murat E; Korotetskiy, Ilya S; Islamov, Rinat A; Akhmetova, Gulshara K; Lankina, Marina V; Reva, Oleg N

    2017-01-01

    Drug induced reversion of antibiotic resistance is a promising way to combat multidrug resistant infections. However, lacking knowledge of mechanisms of drug resistance reversion impedes employing this approach in medicinal therapies. Induction of antibiotic resistance reversion by a new anti-tuberculosis drug FS-1 has been reported. FS-1 was used in this work in combination with standard anti-tuberculosis antibiotics in an experiment on laboratory guinea pigs infected with an extensively drug resistant (XDR) strain Mycobacterium tuberculosis SCAID 187.0. During the experimental trial, genetic changes in the population were analyzed by sequencing of M. tuberculosis isolates followed by variant calling. In total 11 isolates obtained from different groups of infected animals at different stages of disease development and treatment were sequenced. It was found that despite the selective pressure of antibiotics, FS-1 caused a counter-selection of drug resistant variants that speeded up the recovery of the infected animals from XDR tuberculosis. Drug resistance mutations reported in the genome of the initial strain remained intact in more sensitive isolates obtained in this experiment. Variant calling in the sequenced genomes revealed that the drug resistance reversion could be associated with a general increase in genetic heterogeneity of the population of M. tuberculosis . Accumulation of mutations in PpsA and PpsE subunits of phenolpthiocerol polyketide synthase was observed in the isolates treated with FS-1 that may indicate an increase of persisting variants in the population. It was hypothesized that FS-1 caused an active counter-selection of drug resistant variants from the population by aggravating the cumulated fitness cost of the drug resistance mutations. Action of FS-1 on drug resistant bacteria exemplified the theoretically predicted induced synergy mechanism of drug resistance reversion. An experimental model to study the drug resistance reversion phenomenon is hereby introduced.

  4. Insights from human genetic studies of lung and organ fibrosis.

    PubMed

    Garcia, Christine Kim

    2018-01-02

    Genetic investigations of fibrotic diseases, including those of late onset, often yield unanticipated insights into disease pathogenesis. This Review focuses on pathways underlying lung fibrosis that are generalizable to other organs. Herein, we discuss genetic variants subdivided into those that shorten telomeres, activate the DNA damage response, change resident protein expression or function, or affect organelle activity. Genetic studies provide a window into the downstream cascade of maladaptive responses and pathways that lead to tissue fibrosis. In addition, these studies reveal interactions between genetic variants, environmental factors, and age that influence the phenotypic spectrum of disease. The discovery of forces counterbalancing inherited risk alleles identifies potential therapeutic targets, thus providing hope for future prevention or reversal of fibrosis.

  5. Toward understanding of the role of reversibility of phenotypic switching in the evolution of resistance to therapy

    NASA Astrophysics Data System (ADS)

    Horvath, D.; Brutovsky, B.

    2018-06-01

    Reversibility of state transitions is intensively studied topic in many scientific disciplines over many years. In cell biology, it plays an important role in epigenetic variation of phenotypes, known as phenotypic plasticity. More interestingly, the cell state reversibility is probably crucial in the adaptation of population phenotypic heterogeneity to environmental fluctuations by evolving bet-hedging strategy, which might confer to cancer cells resistance to therapy. In this article, we propose a formalization of the evolution of highly reversible states in the environments of periodic variability. Two interrelated models of heterogeneous cell populations are proposed and their behavior is studied. The first model captures selection dynamics of the cell clones for the respective levels of phenotypic reversibility. The second model focuses on the interplay between reversibility and drug resistance in the particular case of cancer. Overall, our results show that the threshold dependencies are emergent features of the investigated model with eventual therapeutic relevance. Presented examples demonstrate importance of taking into account cell to cell heterogeneity within a system of clones with different reversibility quantified by appropriately chosen genetic and epigenetic entropy measures.

  6. EPI-743 reverses the progression of the pediatric mitochondrial disease--genetically defined Leigh Syndrome.

    PubMed

    Martinelli, Diego; Catteruccia, Michela; Piemonte, Fiorella; Pastore, Anna; Tozzi, Giulia; Dionisi-Vici, Carlo; Pontrelli, Giuseppe; Corsetti, Tiziana; Livadiotti, Susanna; Kheifets, Viktoria; Hinman, Andrew; Shrader, William D; Thoolen, Martin; Klein, Matthew B; Bertini, Enrico; Miller, Guy

    2012-11-01

    Genetically defined Leigh syndrome is a rare, fatal inherited neurodegenerative disorder that predominantly affects children. No treatment is available. EPI-743 is a novel small molecule developed for the treatment of Leigh syndrome and other inherited mitochondrial diseases. In compassionate use cases and in an FDA Expanded Access protocol, children with Leigh syndrome treated with EPI-743 demonstrated objective signs of neurologic and neuromuscular improvement. To confirm these initial findings, a phase 2A open label trial of EPI-743 for children with genetically-confirmed Leigh syndrome was conducted and herein we report the results. A single arm clinical trial was performed in children with genetically defined Leigh syndrome. Subjects were treated for 6 months with EPI-743 three times daily and all were eligible for a treatment extension phase. The primary objective of the trial was to arrest disease progression as assessed by neuromuscular and quality of life metrics. Results were compared to the reported natural history of the disease. Ten consecutive children, ages 1-13 years, were enrolled; they possessed seven different genetic defects. All children exhibited reversal of disease progression regardless of genetic determinant or disease severity. The primary endpoints--Newcastle Pediatric Mitochondrial Disease Scale, the Gross Motor Function Measure, and PedsQL Neuromuscular Module--demonstrated statistically significant improvement (p<0.05). In addition, all children had an improvement of one class on the Movement Disorder-Childhood Rating Scale. No significant drug-related adverse events were recorded. In comparison to the natural history of Leigh syndrome, EPI-743 improves clinical outcomes in children with genetically confirmed Leigh syndrome. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Epigenetic understanding of gene-environment interactions in psychiatric disorders: a new concept of clinical genetics

    PubMed Central

    2012-01-01

    Epigenetics is a mechanism that regulates gene expression independently of the underlying DNA sequence, relying instead on the chemical modification of DNA and histone proteins. Although environmental and genetic factors were thought to be independently associated with disorders, several recent lines of evidence suggest that epigenetics bridges these two factors. Epigenetic gene regulation is essential for normal development, thus defects in epigenetics cause various rare congenital diseases. Because epigenetics is a reversible system that can be affected by various environmental factors, such as drugs, nutrition, and mental stress, the epigenetic disorders also include common diseases induced by environmental factors. In this review, we discuss the nature of epigenetic disorders, particularly psychiatric disorders, on the basis of recent findings: 1) susceptibility of the conditions to environmental factors, 2) treatment by taking advantage of their reversible nature, and 3) transgenerational inheritance of epigenetic changes, that is, acquired adaptive epigenetic changes that are passed on to offspring. These recently discovered aspects of epigenetics provide a new concept of clinical genetics. PMID:22414323

  8. Generation of Recombinant Ebola Viruses Using Reverse Genetics.

    PubMed

    Groseth, Allison

    2017-01-01

    Reverse genetics systems encompass a wide array of tools aimed at recapitulating some or all of the virus life cycle. In their most complete form, full-length clone systems allow us to use plasmid-encoded versions of the ribonucleoprotein (RNP) components to initiate the transcription and replication of a plasmid-encoded version of the complete viral genome, thereby initiating the complete virus life cycle and resulting in infectious virus. As such this approach is ideal for the generation of tailor-made recombinant filoviruses, which can be used to study virus biology. In addition, the generation of tagged and particularly fluorescent or luminescent viruses can be applied as tools for both diagnostic applications and for screening to identify novel countermeasures. Here we describe the generation and basic characterization of recombinant Ebola viruses rescued from cloned cDNA using a T7-driven system.

  9. Large-Scale Discovery of Induced Point Mutations With High-Throughput TILLING

    PubMed Central

    Till, Bradley J.; Reynolds, Steven H.; Greene, Elizabeth A.; Codomo, Christine A.; Enns, Linda C.; Johnson, Jessica E.; Burtner, Chris; Odden, Anthony R.; Young, Kim; Taylor, Nicholas E.; Henikoff, Jorja G.; Comai, Luca; Henikoff, Steven

    2003-01-01

    TILLING (Targeting Induced Local Lesions in Genomes) is a general reverse-genetic strategy that provides an allelic series of induced point mutations in genes of interest. High-throughput TILLING allows the rapid and low-cost discovery of induced point mutations in populations of chemically mutagenized individuals. As chemical mutagenesis is widely applicable and mutation detection for TILLING is dependent only on sufficient yield of PCR products, TILLING can be applied to most organisms. We have developed TILLING as a service to the Arabidopsis community known as the Arabidopsis TILLING Project (ATP). Our goal is to rapidly deliver allelic series of ethylmethanesulfonate-induced mutations in target 1-kb loci requested by the international research community. In the first year of public operation, ATP has discovered, sequenced, and delivered >1000 mutations in >100 genes ordered by Arabidopsis researchers. The tools and methodologies described here can be adapted to create similar facilities for other organisms. PMID:12618384

  10. The impact of sex-role reversal on the diversity of the major histocompatibility complex: Insights from the seahorse (Hippocampus abdominalis)

    PubMed Central

    2011-01-01

    Background Both natural and sexual selection are thought to influence genetic diversity, but the study of the relative importance of these two factors on ecologically-relevant traits has traditionally focused on species with conventional sex-roles, with male-male competition and female-based mate choice. With its high variability and significance in both immune function and olfactory-mediated mate choice, the major histocompatibility complex (MHC/MH) is an ideal system in which to evaluate the relative contributions of these two selective forces to genetic diversity. Intrasexual competition and mate choice are both reversed in sex-role reversed species, and sex-related differences in the detection and use of MH-odor cues are expected to influence the intensity of sexual selection in such species. The seahorse, Hippocampus abdominalis, has an exceptionally highly developed form of male parental care, with female-female competition and male mate choice. Results Here, we demonstrate that the sex-role reversed seahorse has a single MH class II beta-chain gene and that the diversity of the seahorse MHIIβ locus and its pattern of variation are comparable to those detected in species with conventional sex roles. Despite the presence of only a single gene copy, intralocus MHIIβ allelic diversity in this species exceeds that observed in species with multiple copies of this locus. The MHIIβ locus of the seahorse exhibits a novel expression domain in the male brood pouch. Conclusions The high variation found at the seahorse MHIIβ gene indicates that sex-role reversed species are capable of maintaining the high MHC diversity typical in most vertebrates. Whether such species have evolved the capacity to use MH-odor cues during mate choice is presently being investigated using mate choice experiments. If this possibility can be rejected, such systems would offer an exceptional opportunity to study the effects of natural selection in isolation, providing powerful comparative models for understanding the relative importance of selective factors in shaping patterns of genetic variation. PMID:21569286

  11. Genetic Structure and Demographic History Reveal Migration of the Diamondback Moth Plutella xylostella (Lepidoptera: Plutellidae) from the Southern to Northern Regions of China

    PubMed Central

    Wei, Shu-Jun; Shi, Bao-Cai; Gong, Ya-Jun; Jin, Gui-Hua; Chen, Xue-Xin; Meng, Xiang-Feng

    2013-01-01

    The diamondback moth Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae) is one of the most destructive insect pests of cruciferous plants worldwide. Biological, ecological and genetic studies have indicated that this moth is migratory in many regions around the world. Although outbreaks of this pest occur annually in China and cause heavy damage, little is known concerning its migration. To better understand its migration pattern, we investigated the population genetic structure and demographic history of the diamondback moth by analyzing 27 geographical populations across China using four mitochondrial genes and nine microsatellite loci. The results showed that high haplotype diversity and low nucleotide diversity occurred in the diamondback moth populations, a finding that is typical for migratory species. No genetic differentiation among all populations and no correlation between genetic and geographical distance were found. However, pairwise analysis of the mitochondrial genes has indicated that populations from the southern region were more differentiated than those from the northern region. Gene flow analysis revealed that the effective number of migrants per generation into populations of the northern region is very high, whereas that into populations of the southern region is quite low. Neutrality testing, mismatch distribution and Bayesian Skyline Plot analyses based on mitochondrial genes all revealed that deviation from Hardy-Weinberg equilibrium and sudden expansion of the effective population size were present in populations from the northern region but not in those from the southern region. In conclusion, all our analyses strongly demonstrated that the diamondback moth migrates within China from the southern to northern regions with rare effective migration in the reverse direction. Our research provides a successful example of using population genetic approaches to resolve the seasonal migration of insects. PMID:23565158

  12. Bad outcomes in black babies: race or racism?

    PubMed

    David, R J; Collins, J W

    1991-01-01

    The gap between black and white infant death rates in the United States has grown over the last three decades. Epidemiologic and medical studies by investigators seeking to understand and reverse this adverse trend have been unsuccessful. Researchers have looked in vain for the combination of social and environmental risk factors that are more common among blacks and would therefore explain this group's poor reproductive outcomes. The implicit alternate hypothesis is genetic differences between blacks and whites. In fact, there is more of a gap between black and white mothers of higher socioeconomic position than between overall black and white rates without socioeconomic stratification. An alternative to the genetic theory explains these results, however, on the basis of social risk factors that, because of the presence of widespread discrimination in the society under study, apply only to blacks. Such factors are the effects of racism, not race per se. Several lines of research are needed to investigate the effects of racism on perinatal outcomes, including studies on psychophysiological reactions to racial discrimination and on ethnic group differences in coping mechanisms, social supports, and physical environment. Analysis of trends over the past 37 years indicates that improvements in white (and total US) infant mortality rates cannot be anticipated until the racial gap is closed.

  13. Acute effects of cocaine and cannabis on reversal learning as a function of COMT and DRD2 genotype.

    PubMed

    Spronk, Desirée B; Van der Schaaf, Marieke E; Cools, Roshan; De Bruijn, Ellen R A; Franke, Barbara; van Wel, Janelle H P; Ramaekers, Johannes G; Verkes, Robbert J

    2016-01-01

    Long-term cannabis and cocaine use has been associated with impairments in reversal learning. However, how acute cannabis and cocaine administration affect reversal learning in humans is not known. In this study, we aimed to establish the acute effects of administration of cannabis and cocaine on valence-dependent reversal learning as a function of DRD2 Taq1A (rs1800497) and COMT Val108/158Met (rs4680) genotype. A double-blind placebo-controlled randomized 3-way crossover design was used. Sixty-one regular poly-drug users completed a deterministic reversal learning task under the influence of cocaine, cannabis, and placebo that enabled assessment of both reward- and punishment-based reversal learning. Proportion correct on the reversal learning task was increased by cocaine, but decreased by cannabis. Effects of cocaine depended on the DRD2 genotype, as increases in proportion correct were seen only in the A1 carriers, and not in the A2/A2 homozygotes. COMT genotype did not modulate drug-induced effects on reversal learning. These data indicate that acute administration of cannabis and cocaine has opposite effects on reversal learning. The effects of cocaine, but not cannabis, depend on interindividual genetic differences in the dopamine D2 receptor gene.

  14. Demographic and genetic consequences of disturbed sex determination.

    PubMed

    Wedekind, Claus

    2017-09-19

    During sex determination, genetic and/or environmental factors determine the cascade of processes of gonad development. Many organisms, therefore, have a developmental window in which their sex determination can be sensitive to, for example, unusual temperatures or chemical pollutants. Disturbed environments can distort population sex ratios and may even cause sex reversal in species with genetic sex determination. The resulting genotype-phenotype mismatches can have long-lasting effects on population demography and genetics. I review the theoretical and empirical work in this context and explore in a simple population model the role of the fitness v yy of chromosomally aberrant YY genotypes that are a consequence of environmentally induced feminization. Low v yy is mostly beneficial for population growth. During feminization, low v yy reduces the proportion of genetic males and hence accelerates population growth, especially at low rates of feminization and at high fitness costs of the feminization itself (i.e. when feminization would otherwise not affect population dynamics much). When sex reversal ceases, low v yy mitigates the negative effects of feminization and can even prevent population extinction. Little is known about v yy in natural populations. The available models now need to be parametrized in order to better predict the long-term consequences of disturbed sex determination.This article is part of the themed issue 'Adult sex ratios and reproductive decisions: a critical re-examination of sex differences in human and animal societies'. © 2017 The Author(s).

  15. Genetics Home Reference: core binding factor acute myeloid leukemia

    MedlinePlus

    ... the CBFB gene. One such rearrangement, called an inversion , involves breakage of a chromosome in two places; ... is reversed and reinserted into the chromosome. The inversion involved in CBF-AML (written as inv(16)) ...

  16. Sex determination mode does not affect body or genital development of the central bearded dragon (Pogona vitticeps).

    PubMed

    Whiteley, Sarah L; Holleley, Clare E; Ruscoe, Wendy A; Castelli, Meghan; Whitehead, Darryl L; Lei, Juan; Georges, Arthur; Weisbecker, Vera

    2017-01-01

    The development of male- or female-specific phenotypes in squamates is typically controlled by either temperature-dependent sex determination (TSD) or chromosome-based genetic sex determination (GSD). However, while sex determination is a major switch in individual phenotypic development, it is unknownhow evolutionary transitions between GSD and TSD might impact on the evolution of squamate phenotypes, particularly the fast-evolving and diverse genitalia. Here, we take the unique opportunity of studying the impact of both sex determination mechanisms on the embryological development of the central bearded dragon ( Pogona vitticeps ). This is possible because of the transitional sex determination system of this species, in which genetically male individuals reverse sex at high incubation temperatures. This can trigger the evolutionary transition of GSD to TSD in a single generation, making P. vitticeps an ideal model organism for comparing the effects of both sex determination processes in the same species. We conducted four incubation experiments on 265 P. vitticeps eggs, covering two temperature regimes ("normal" at 28 °C and "sex reversing" at 36 °C) and the two maternal sexual genotypes (concordant ZW females or sex-reversed ZZ females). From this, we provide the first detailed staging system for the species, with a focus on genital and limb development. This was augmented by a new sex chromosome identification methodology for P. vitticeps that is non-destructive to the embryo. We found a strong correlation between embryo age and embryo stage. Aside from faster growth in 36 °C treatments, body and external genital development was entirely unperturbed by temperature, sex reversal or maternal sexual genotype. Unexpectedly, all females developed hemipenes (the genital phenotype of adult male P. vitticeps ), which regress close to hatching. The tight correlation between embryo age and embryo stage allows the precise targeting of specific developmental periods in the emerging field of molecular research on P. vitticeps . The stability of genital development in all treatments suggests that the two sex-determining mechanisms have little impact on genital evolution, despite their known role in triggering genital development. Hemipenis retention in developing female P. vitticeps , together with frequent occurrences of hemipenis-like structures during development in other squamate species, raises the possibility of a bias towards hemipenis formation in the ancestral developmental programme for squamate genitalia.

  17. Genomic medicine in gastroenterology: A new approach or a new specialty?

    PubMed Central

    Roman, Sonia; Panduro, Arturo

    2015-01-01

    Throughout history, many medical milestones have been achieved to prevent and treat human diseases. Man’s early conception of illness was naturally holistic or integrative. However, scientific knowledge was atomized into quantitative and qualitative research. In the field of medicine, the main trade-off was the creation of many medical specialties that commonly treat patients in advanced stages of disease. However, now that we are immersed in the post-genomic era, how should we reevaluate medicine? Genomic medicine has evoked a medical paradigm shift based on the plausibility to predict the genetic susceptibility to disease. Additionally, the development of chronic diseases should be viewed as a continuum of interactions between the individual’s genetic make-up and environmental factors such as diet, physical activity, and emotions. Thus, personalized medicine is aimed at preventing or reversing clinical symptoms, and providing a better quality of life by integrating the genetic, environmental and cultural factors of diseases. Whether using genomic medicine in the field of gastroenterology is a new approach or a new medical specialty remains an open question. To address this issue, it will require the mutual work of educational and governmental authorities with public health professionals, with the goal of translating genomic medicine into better health policies. PMID:26217074

  18. Peptide aptamers: The versatile role of specific protein function inhibitors in plant biotechnology.

    PubMed

    Colombo, Monica; Mizzotti, Chiara; Masiero, Simona; Kater, Martin M; Pesaresi, Paolo

    2015-11-01

    In recent years, peptide aptamers have emerged as novel molecular tools that have attracted the attention of researchers in various fields of basic and applied science, ranging from medicine to analytical chemistry. These artificial short peptides are able to specifically bind, track, and inhibit a given target molecule with high affinity, even molecules with poor immunogenicity or high toxicity, and represent a remarkable alternative to antibodies in many different applications. Their use is on the rise, driven mainly by the medical and pharmaceutical sector. Here we discuss the enormous potential of peptide aptamers in both basic and applied aspects of plant biotechnology and food safety. The different peptide aptamer selection methods available both in vivo and in vitro are introduced, and the most important possible applications in plant biotechnology are illustrated. In particular, we discuss the generation of broad-based virus resistance in crops, "reverse genetics" and aptasensors in bioassays for detecting contaminations in food and feed. Furthermore, we suggest an alternative to the transfer of peptide aptamers into plant cells via genetic transformation, based on the use of cell-penetrating peptides that overcome the limits imposed by both crop transformation and Genetically Modified Organism commercialization. © 2015 Institute of Botany, Chinese Academy of Sciences.

  19. The near demise and subsequent revival of classical genetics for investigating Caenorhabditis elegans embryogenesis: RNAi meets next-generation DNA sequencing.

    PubMed

    Bowerman, Bruce

    2011-10-01

    Molecular genetic investigation of the early Caenorhabditis elegans embryo has contributed substantially to the discovery and general understanding of the genes, pathways, and mechanisms that regulate and execute developmental and cell biological processes. Initially, worm geneticists relied exclusively on a classical genetics approach, isolating mutants with interesting phenotypes after mutagenesis and then determining the identity of the affected genes. Subsequently, the discovery of RNA interference (RNAi) led to a much greater reliance on a reverse genetics approach: reducing the function of known genes with RNAi and then observing the phenotypic consequences. Now the advent of next-generation DNA sequencing technologies and the ensuing ease and affordability of whole-genome sequencing are reviving the use of classical genetics to investigate early C. elegans embryogenesis.

  20. Tissue-Engineered Skeletal Muscle Organoids for Reversible Gene Therapy

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman; DelTatto, Michael; Shansky, Janet; Lemaire, Julie; Chang, Albert; Payumo, Francis; Lee, Peter; Goodyear, Amy; Raven, Latasha

    1996-01-01

    Genetically modified murine skeletal myoblasts were tissue engineered in vitro into organ-like structures (organoids) containing only postmitotic myoribers secreting pharmacological levels of recombinant human growth hormone (rhGH). Subcutaneous organoid implantation under tension led to the rapid and stable appearance of physiological sera levels of rhGH for up to 12 weeks, whereas surgical removal led to its rapid disappearance. Reversible delivery of bioactive compounds from postmitotic cells in tissue engineered organs has several advantages over other forms of muscle gene therapy.

  1. Tissue-Engineered Skeletal Muscle Organoids for Reversible Gene Therapy

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman; DelTatto, Michael; Shansky, Janet; Lemaire, Julie; Chang, Albert; Payumo, Francis; Lee, Peter; Goodyear, Amy; Raven, Latasha

    1996-01-01

    Genetically modified murine skeletal myoblasts were tissue engineered in vitro into organ-like structures (organoids) containing only postmitotic myofibers secreting pharmacological levels of recombinant human growth hormone (rhGH). Subcutaneous organoid Implantation under tension led to the rapid and stable appearance of physiological sera levels of rhGH for up to 12 weeks, whereas surgical removal led to its rapid disappearance. Reversible delivery of bioactive compounds from postimtotic cells in tissue engineered organs has several advantages over other forms of muscle gene therapy.

  2. Antibiotic Combinations That Enable One-Step, Targeted Mutagenesis of Chromosomal Genes.

    PubMed

    Lee, Wonsik; Do, Truc; Zhang, Ge; Kahne, Daniel; Meredith, Timothy C; Walker, Suzanne

    2018-06-08

    Targeted modification of bacterial chromosomes is necessary to understand new drug targets, investigate virulence factors, elucidate cell physiology, and validate results of -omics-based approaches. For some bacteria, reverse genetics remains a major bottleneck to progress in research. Here, we describe a compound-centric strategy that combines new negative selection markers with known positive selection markers to achieve simple, efficient one-step genome engineering of bacterial chromosomes. The method was inspired by the observation that certain nonessential metabolic pathways contain essential late steps, suggesting that antibiotics targeting a late step can be used to select for the absence of genes that control flux into the pathway. Guided by this hypothesis, we have identified antibiotic/counterselectable markers to accelerate reverse engineering of two increasingly antibiotic-resistant pathogens, Staphylococcus aureus and Acinetobacter baumannii. For S. aureus, we used wall teichoic acid biosynthesis inhibitors to select for the absence of tarO and for A. baumannii, we used colistin to select for the absence of lpxC. We have obtained desired gene deletions, gene fusions, and promoter swaps in a single plating step with perfect efficiency. Our method can also be adapted to generate markerless deletions of genes using FLP recombinase. The tools described here will accelerate research on two important pathogens, and the concept we outline can be readily adapted to any organism for which a suitable target pathway can be identified.

  3. Multilocus analysis of extracellular putative virulence proteins made by group A Streptococcus: population genetics, human serologic response, and gene transcription.

    PubMed

    Reid, S D; Green, N M; Buss, J K; Lei, B; Musser, J M

    2001-06-19

    Species of pathogenic microbes are composed of an array of evolutionarily distinct chromosomal genotypes characterized by diversity in gene content and sequence (allelic variation). The occurrence of substantial genetic diversity has hindered progress in developing a comprehensive understanding of the molecular basis of virulence and new therapeutics such as vaccines. To provide new information that bears on these issues, 11 genes encoding extracellular proteins in the human bacterial pathogen group A Streptococcus identified by analysis of four genomes were studied. Eight of the 11 genes encode proteins with a LPXTG(L) motif that covalently links Gram-positive virulence factors to the bacterial cell surface. Sequence analysis of the 11 genes in 37 geographically and phylogenetically diverse group A Streptococcus strains cultured from patients with different infection types found that recent horizontal gene transfer has contributed substantially to chromosomal diversity. Regions of the inferred proteins likely to interact with the host were identified by molecular population genetic analysis, and Western immunoblot analysis with sera from infected patients confirmed that they were antigenic. Real-time reverse transcriptase-PCR (TaqMan) assays found that transcription of six of the 11 genes was substantially up-regulated in the stationary phase. In addition, transcription of many genes was influenced by the covR and mga trans-acting gene regulatory loci. Multilocus investigation of putative virulence genes by the integrated approach described herein provides an important strategy to aid microbial pathogenesis research and rapidly identify new targets for therapeutics research.

  4. Deconstructing mammalian reproduction: using knockouts to define fertility pathways.

    PubMed

    Roy, Angshumoy; Matzuk, Martin M

    2006-02-01

    Reproduction is the sine qua non for the propagation of species and continuation of life. It is a complex biological process that is regulated by multiple factors during the reproductive life of an organism. Over the past decade, the molecular mechanisms regulating reproduction in mammals have been rapidly unraveled by the study of a vast number of mouse gene knockouts with impaired fertility. The use of reverse genetics to generate null mutants in mice through targeted disruption of specific genes has enabled researchers to identify essential regulators of spermatogenesis and oogenesis in vivo and model human disorders affecting reproduction. This review focuses on the merits, utility, and the variations of the knockout technology in studies of reproduction in mammals.

  5. Reverse Transcription Quantitative Polymerase Chain Reaction for Detection of and Differentiation Between RNA and DNA of HIV-1-Based Lentiviral Vectors.

    PubMed

    Pavlovic, Melanie; Koehler, Nina; Anton, Martina; Dinkelmeier, Anna; Haase, Maren; Stellberger, Thorsten; Busch, Ulrich; Baiker, Armin E

    2017-08-01

    The purpose of the described method is the detection of and differentiation between RNA and DNA of human immunodeficiency virus (HIV)-derived lentiviral vectors (LV) in cell culture supernatants and swab samples. For the analytical surveillance of genetic engineering, operations methods for the detection of the HIV-1-based LV generations are required. Furthermore, for research issues, it is important to prove the absence of LV particles for downgrading experimental settings in terms of the biosafety level. Here, a quantitative polymerase chain reaction method targeting the long terminal repeat U5 subunit and the start sequence of the packaging signal ψ is described. Numerous controls are included in order to monitor the technical procedure.

  6. Modeling the Ebolavirus Life Cycle with Transcription and Replication-Competent Viruslike Particle Assays.

    PubMed

    Biedenkopf, Nadine; Hoenen, Thomas

    2017-01-01

    Ebolaviruses are the causative agent of a severe hemorrhagic fever with high case fatality rates, for which no approved specific therapy is available. As biosafety level 4 (BSL4) agents, work with live ebolaviruses is restricted to maximum containment laboratories. Transcription and replication-competent viruslike particle (trVLP) systems are reverse genetics-based life cycle modeling systems that allow researchers to model virtually the entire ebolavirus life cycle outside of a maximum containment laboratory. These systems can be used to dissect the virus life cycle, and thus increase our understanding of virus biology, as well as for more applied uses such as the screening and development of novel antivirals, and thus represent powerful tools for work on ebolaviruses.

  7. Mendelian randomization in nutritional epidemiology

    PubMed Central

    Qi, Lu

    2013-01-01

    Nutritional epidemiology aims to identify dietary and lifestyle causes for human diseases. Causality inference in nutritional epidemiology is largely based on evidence from studies of observational design, and may be distorted by unmeasured or residual confounding and reverse causation. Mendelian randomization is a recently developed methodology that combines genetic and classical epidemiological analysis to infer causality for environmental exposures, based on the principle of Mendel’s law of independent assortment. Mendelian randomization uses genetic variants as proxiesforenvironmentalexposuresofinterest.AssociationsderivedfromMendelian randomization analysis are less likely to be affected by confounding and reverse causation. During the past 5 years, a body of studies examined the causal effects of diet/lifestyle factors and biomarkers on a variety of diseases. The Mendelian randomization approach also holds considerable promise in the study of intrauterine influences on offspring health outcomes. However, the application of Mendelian randomization in nutritional epidemiology has some limitations. PMID:19674341

  8. Transposable elements in sexual and ancient asexual taxa

    PubMed Central

    Arkhipova, Irina; Meselson, Matthew

    2000-01-01

    Sexual reproduction allows deleterious transposable elements to proliferate in populations, whereas the loss of sex, by preventing their spread, has been predicted eventually to result in a population free of such elements [Hickey, D. A. (1982) Genetics 101, 519–531]. We tested this expectation by screening representatives of a majority of animal phyla for LINE-like and gypsy-like reverse transcriptases and mariner/Tc1-like transposases. All species tested positive for reverse transcriptases except rotifers of the class Bdelloidea, the largest eukaryotic taxon in which males, hermaphrodites, and meiosis are unknown and for which ancient asexuality is supported by molecular genetic evidence. Mariner-like transposases are distributed sporadically among species and are present in bdelloid rotifers. The remarkable lack of LINE-like and gypsy-like retrotransposons in bdelloids and their ubiquitous presence in other taxa support the view that eukaryotic retrotransposons are sexually transmitted nuclear parasites and that bdelloid rotifers evolved asexually. PMID:11121049

  9. Genetic tests in major psychiatric disorders-integrating molecular medicine with clinical psychiatry-why is it so difficult?

    PubMed

    Demkow, U; Wolańczyk, T

    2017-06-13

    With the advent of post-genomic era, new technologies create extraordinary possibilities for diagnostics and personalized therapy, transforming todays' medicine. Rooted in both medical genetics and clinical psychiatry, the paper is designed as an integrated source of information of the current and potential future application of emerging genomic technologies as diagnostic tools in psychiatry, moving beyond the classical concept of patient approach. Selected approaches are presented, starting from currently used technologies (next-generation sequencing (NGS) and microarrays), followed by newer options (reverse phenotyping). Next, we describe an old concept in a new light (endophenotypes), subsequently coming up with a sophisticated and complex approach (gene networks) ending by a nascent field (computational psychiatry). The challenges and barriers that exist to translate genomic research to real-world patient assessment are further discussed. We emphasize the view that only a paradigm shift can bring a fundamental change in psychiatric practice, allowing to disentangle the intricacies of mental diseases. All the diagnostic methods, as described, are directed at uncovering the integrity of the system including many types of relations within a complex structure. The integrative system approach offers new opportunity to connect genetic background with specific diseases entities, or concurrently, with symptoms regardless of a diagnosis. To advance the field, we propose concerted cross-disciplinary effort to provide a diagnostic platform operating at the general level of genetic pathogenesis of complex-trait psychiatric disorders rather than at the individual level of a specific disease.

  10. Genetic tests in major psychiatric disorders—integrating molecular medicine with clinical psychiatry—why is it so difficult?

    PubMed Central

    Demkow, U; Wolańczyk, T

    2017-01-01

    With the advent of post-genomic era, new technologies create extraordinary possibilities for diagnostics and personalized therapy, transforming todays’ medicine. Rooted in both medical genetics and clinical psychiatry, the paper is designed as an integrated source of information of the current and potential future application of emerging genomic technologies as diagnostic tools in psychiatry, moving beyond the classical concept of patient approach. Selected approaches are presented, starting from currently used technologies (next-generation sequencing (NGS) and microarrays), followed by newer options (reverse phenotyping). Next, we describe an old concept in a new light (endophenotypes), subsequently coming up with a sophisticated and complex approach (gene networks) ending by a nascent field (computational psychiatry). The challenges and barriers that exist to translate genomic research to real-world patient assessment are further discussed. We emphasize the view that only a paradigm shift can bring a fundamental change in psychiatric practice, allowing to disentangle the intricacies of mental diseases. All the diagnostic methods, as described, are directed at uncovering the integrity of the system including many types of relations within a complex structure. The integrative system approach offers new opportunity to connect genetic background with specific diseases entities, or concurrently, with symptoms regardless of a diagnosis. To advance the field, we propose concerted cross-disciplinary effort to provide a diagnostic platform operating at the general level of genetic pathogenesis of complex-trait psychiatric disorders rather than at the individual level of a specific disease. PMID:28608853

  11. Testicular Differentiation Occurs in Absence of R-spondin1 and Sox9 in Mouse Sex Reversals

    PubMed Central

    Pauper, Eva; Gregoire, Elodie P.; Klopfenstein, Muriel; de Rooij, Dirk G.; Mark, Manuel; Schedl, Andreas; Ghyselinck, Norbert B.; Chaboissier, Marie-Christine

    2012-01-01

    In mammals, male sex determination is governed by SRY-dependent activation of Sox9, whereas female development involves R-spondin1 (RSPO1), an activator of the WNT/beta-catenin signaling pathway. Genetic analyses in mice have demonstrated Sry and Sox9 to be both required and sufficient to induce testicular development. These genes are therefore considered as master regulators of the male pathway. Indeed, female-to-male sex reversal in XX Rspo1 mutant mice correlates with Sox9 expression, suggesting that this transcription factor induces testicular differentiation in pathological conditions. Unexpectedly, here we show that testicular differentiation can occur in XX mutants lacking both Rspo1 and Sox9 (referred to as XX Rspo1KOSox9cKO ), indicating that Sry and Sox9 are dispensable to induce female-to-male sex reversal. Molecular analyses show expression of both Sox8 and Sox10, suggesting that activation of Sox genes other than Sox9 can induce male differentiation in Rspo1KOSox9cKO mice. Moreover, since testis development occurs in XY Rspo1KOSox9cKO mice, our data show that Rspo1 is the main effector for male-to-female sex reversal in XY Sox9cKO mice. Thus, Rspo1 is an essential activator of ovarian development not only in normal situations, but also in sex reversal situations. Taken together these data demonstrate that both male and female sex differentiation is induced by distinct, active, genetic pathways. The dogma that considers female differentiation as a default pathway therefore needs to be definitively revised. PMID:23300469

  12. Regulation of Sex Determination in Mice by a Non-coding Genomic Region

    PubMed Central

    Arboleda, Valerie A.; Fleming, Alice; Barseghyan, Hayk; Délot, Emmanuèle; Sinsheimer, Janet S.; Vilain, Eric

    2014-01-01

    To identify novel genomic regions that regulate sex determination, we utilized the powerful C57BL/6J-YPOS (B6-YPOS) model of XY sex reversal where mice with autosomes from the B6 strain and a Y chromosome from a wild-derived strain, Mus domesticus poschiavinus (YPOS), show complete sex reversal. In B6-YPOS, the presence of a 55-Mb congenic region on chromosome 11 protects from sex reversal in a dose-dependent manner. Using mouse genetic backcross designs and high-density SNP arrays, we narrowed the congenic region to a 1.62-Mb genomic region on chromosome 11 that confers 80% protection from B6-YPOS sex reversal when one copy is present and complete protection when two copies are present. It was previously believed that the protective congenic region originated from the 129S1/SviMJ (129) strain. However, genomic analysis revealed that this region is not derived from 129 and most likely is derived from the semi-inbred strain POSA. We show that the small 1.62-Mb congenic region that protects against B6-YPOS sex reversal is located within the Sox9 promoter and promotes the expression of Sox9, thereby driving testis development within the B6-YPOS background. Through 30 years of backcrossing, this congenic region was maintained, as it promoted male sex determination and fertility despite the female-promoting B6-YPOS genetic background. Our findings demonstrate that long-range enhancer regions are critical to developmental processes and can be used to identify the complex interplay between genome variants, epigenetics, and developmental gene regulation. PMID:24793290

  13. Future of Environmental Research in the Age of Epigenomics and Exposomics

    PubMed Central

    Holland, Nina

    2016-01-01

    Environmental research and public health in the 21st century face serious challenges such as increased air pollution and global warming, widespread use of potentially harmful chemicals including pesticides, plasticizers, and other endocrine disruptors, and radical changes in nutrition and lifestyle typical of modern societies. In particular, exposure to environmental and occupational toxicants may contribute to the occurrence of adverse birth outcomes, neurodevelopmental deficits, and increased risk of cancer and other multifactorial diseases such as diabetes and asthma. Rapidly evolving methodologies of exposure assessment and the conceptual framework of the Exposome, first introduced in 2005, are new frontiers of environmental research. Metabolomics and adductomics provide remarkable opportunities for a better understanding of exposure and prediction of potential adverse health outcomes. Metabolomics, the study of metabolism at the whole-body level, involves assessment of the total repertoire of small molecules present in a biological sample, shedding light on interactions between gene expression, protein expression and the environment. Advances in genomics, transcriptomics and epigenomics are generating multidimensional structures of biomarkers of effect and susceptibility, increasingly important for the understanding of molecular mechanisms and the emergence of personalized medicine. Epigenetic mechanisms, particularly DNA methylation and miRNA expression, attract increasing attention as potential links between the genetic and environmental determinants of health and disease. Unlike genetics, epigenetic mechanisms could be reversible and an understanding of their role may lead to better protection of susceptible populations and improved public health. PMID:27768585

  14. Genetic manipulation of STEP reverses behavioral abnormalities in a fragile X syndrome mouse model.

    PubMed

    Goebel-Goody, S M; Wilson-Wallis, E D; Royston, S; Tagliatela, S M; Naegele, J R; Lombroso, P J

    2012-07-01

    Fragile X syndrome (FXS), the most common inherited form of intellectual disability and prevailing known genetic basis of autism, is caused by an expansion in the Fmr1 gene that prevents transcription and translation of fragile X mental retardation protein (FMRP). FMRP binds to and controls translation of mRNAs downstream of metabotropic glutamate receptor (mGluR) activation. Recent work shows that FMRP interacts with the transcript encoding striatal-enriched protein tyrosine phosphatase (STEP; Ptpn5). STEP opposes synaptic strengthening and promotes synaptic weakening by dephosphorylating its substrates, including ERK1/2, p38, Fyn and Pyk2, and subunits of N-methyl-d-aspartate (NMDA) and AMPA receptors. Here, we show that basal levels of STEP are elevated and mGluR-dependent STEP synthesis is absent in Fmr1(KO) mice. We hypothesized that the weakened synaptic strength and behavioral abnormalities reported in FXS may be linked to excess levels of STEP. To test this hypothesis, we reduced or eliminated STEP genetically in Fmr1(KO) mice and assessed mice in a battery of behavioral tests. In addition to attenuating audiogenic seizures and seizure-induced c-Fos activation in the periaqueductal gray, genetically reducing STEP in Fmr1(KO) mice reversed characteristic social abnormalities, including approach, investigation and anxiety. Loss of STEP also corrected select nonsocial anxiety-related behaviors in Fmr1(KO) mice, such as light-side exploration in the light/dark box. Our findings indicate that genetically reducing STEP significantly diminishes seizures and restores select social and nonsocial anxiety-related behaviors in Fmr1(KO) mice, suggesting that strategies to inhibit STEP activity may be effective for treating patients with FXS. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  15. Distinct virulence of Rift Valley fever phlebovirus strains from different genetic lineages in a mouse model.

    PubMed

    Ikegami, Tetsuro; Balogh, Aaron; Nishiyama, Shoko; Lokugamage, Nandadeva; Saito, Tais B; Morrill, John C; Shivanna, Vinay; Indran, Sabarish V; Zhang, Lihong; Smith, Jennifer K; Perez, David; Juelich, Terry L; Morozov, Igor; Wilson, William C; Freiberg, Alexander N; Richt, Juergen A

    2017-01-01

    Rift Valley fever phlebovirus (RVFV) causes high rates of abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or blindness in humans. Viral transmission occurs via mosquito vectors in endemic areas, which necessitates regular vaccination of susceptible livestock animals to prevent the RVF outbreaks. Although ZH501 strain has been used as a challenge strain for past vaccine efficacy studies, further characterization of other RVFV strains is important to optimize ruminant and nonhuman primate RVFV challenge models. This study aimed to characterize the virulence of wild-type RVFV strains belonging to different genetic lineages in outbred CD1 mice. Mice were intraperitoneally infected with 1x103 PFU of wild-type ZH501, Kenya 9800523, Kenya 90058, Saudi Arabia 200010911, OS1, OS7, SA75, Entebbe, or SA51 strains. Among them, mice infected with SA51, Entebbe, or OS7 strain showed rapid dissemination of virus in livers and peracute necrotic hepatitis at 2-3 dpi. Recombinant SA51 (rSA51) and Zinga (rZinga) strains were recovered by reverse genetics, and their virulence was also tested in CD1 mice. The rSA51 strain reproduced peracute RVF disease in mice, whereas the rZinga strain showed a similar virulence with that of rZH501 strain. This study showed that RVFV strains in different genetic lineages display distinct virulence in outbred mice. Importantly, since wild-type RVFV strains contain defective-interfering RNA or various genetic subpopulations during passage from original viral isolations, recombinant RVFV strains generated by reverse genetics will be better suitable for reproducible challenge studies for vaccine development as well as pathological studies.

  16. Distinct virulence of Rift Valley fever phlebovirus strains from different genetic lineages in a mouse model

    PubMed Central

    Balogh, Aaron; Nishiyama, Shoko; Lokugamage, Nandadeva; Saito, Tais B.; Morrill, John C.; Shivanna, Vinay; Indran, Sabarish V.; Zhang, Lihong; Smith, Jennifer K.; Perez, David; Juelich, Terry L.; Morozov, Igor; Wilson, William C.; Freiberg, Alexander N.; Richt, Juergen A.

    2017-01-01

    Rift Valley fever phlebovirus (RVFV) causes high rates of abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or blindness in humans. Viral transmission occurs via mosquito vectors in endemic areas, which necessitates regular vaccination of susceptible livestock animals to prevent the RVF outbreaks. Although ZH501 strain has been used as a challenge strain for past vaccine efficacy studies, further characterization of other RVFV strains is important to optimize ruminant and nonhuman primate RVFV challenge models. This study aimed to characterize the virulence of wild-type RVFV strains belonging to different genetic lineages in outbred CD1 mice. Mice were intraperitoneally infected with 1x103 PFU of wild-type ZH501, Kenya 9800523, Kenya 90058, Saudi Arabia 200010911, OS1, OS7, SA75, Entebbe, or SA51 strains. Among them, mice infected with SA51, Entebbe, or OS7 strain showed rapid dissemination of virus in livers and peracute necrotic hepatitis at 2–3 dpi. Recombinant SA51 (rSA51) and Zinga (rZinga) strains were recovered by reverse genetics, and their virulence was also tested in CD1 mice. The rSA51 strain reproduced peracute RVF disease in mice, whereas the rZinga strain showed a similar virulence with that of rZH501 strain. This study showed that RVFV strains in different genetic lineages display distinct virulence in outbred mice. Importantly, since wild-type RVFV strains contain defective-interfering RNA or various genetic subpopulations during passage from original viral isolations, recombinant RVFV strains generated by reverse genetics will be better suitable for reproducible challenge studies for vaccine development as well as pathological studies. PMID:29267298

  17. The remarkable frequency of human immunodeficiency virus type 1 genetic recombination.

    PubMed

    Onafuwa-Nuga, Adewunmi; Telesnitsky, Alice

    2009-09-01

    The genetic diversity of human immunodeficiency virus type 1 (HIV-1) results from a combination of point mutations and genetic recombination, and rates of both processes are unusually high. This review focuses on the mechanisms and outcomes of HIV-1 genetic recombination and on the parameters that make recombination so remarkably frequent. Experimental work has demonstrated that the process that leads to recombination--a copy choice mechanism involving the migration of reverse transcriptase between viral RNA templates--occurs several times on average during every round of HIV-1 DNA synthesis. Key biological factors that lead to high recombination rates for all retroviruses are the recombination-prone nature of their reverse transcription machinery and their pseudodiploid RNA genomes. However, HIV-1 genes recombine even more frequently than do those of many other retroviruses. This reflects the way in which HIV-1 selects genomic RNAs for coencapsidation as well as cell-to-cell transmission properties that lead to unusually frequent associations between distinct viral genotypes. HIV-1 faces strong and changeable selective conditions during replication within patients. The mode of HIV-1 persistence as integrated proviruses and strong selection for defective proviruses in vivo provide conditions for archiving alleles, which can be resuscitated years after initial provirus establishment. Recombination can facilitate drug resistance and may allow superinfecting HIV-1 strains to evade preexisting immune responses, thus adding to challenges in vaccine development. These properties converge to provide HIV-1 with the means, motive, and opportunity to recombine its genetic material at an unprecedented high rate and to allow genetic recombination to serve as one of the highest barriers to HIV-1 eradication.

  18. An in vitro recombination-based reverse genetic system for rapid mutagenesis of structural genes of the Japanese encephalitis virus.

    PubMed

    Du, Ruikun; Wang, Manli; Hu, Zhihong; Wang, Hualin; Deng, Fei

    2015-10-01

    Japanese encephalitis virus (JEV) is one of the most common pathogens of severe viral encephalitis, which is a severe threat to human health. Despite instability of the JEV genome in bacteria, many strategies have been developed to establish molecular clone systems of JEV, providing convenient tools for studying the virus life cycle and virus-host interactions. In this study, we adapted an In-Fusion enzyme-based in vitro recombination method to construct a reverse genetic system of JEV, thereby providing a rapid approach to introduce mutations into the structural genes. A truncated genome without the structural genes was constructed as the backbone, and the complementary segment containing the structural genes was recombined in vitro, which was then transfected directly into virus-permissive cells. The progeny of the infectious virus was successfully detected in the supernatant of the transfected cells, and showed an identical phenotype to its parental virus. To provide a proof-of-principle, the 12 conserved cysteine residues in the envelope (E) protein of JEV were respectively mutated using this approach, and all mutations resulted in a complete failure to generate infectious virus. However, a leucine-tophenylanine mutation at amino acid 107 of the E protein did not interfere with the production of the infectious virus. These results suggested that all 12 cysteines in the E protein are essential for the JEV life cycle. In summary, a novel reverse genetic system of JEV was established for rapidly introducing mutations into structural genes, which will serve as a useful tool for functional studies.

  19. Epigenetics meets endocrinology

    PubMed Central

    Zhang, Xiang; Ho, Shuk-Mei

    2014-01-01

    Although genetics determines endocrine phenotypes, it cannot fully explain the great variability and reversibility of the system in response to environmental changes. Evidence now suggests that epigenetics, i.e. heritable but reversible changes in gene function without changes in nucleotide sequence, links genetics and environment in shaping endocrine function. Epigenetic mechanisms, including DNA methylation, histone modification, and microRNA, partition the genome into active and inactive domains based on endogenous and exogenous environmental changes and developmental stages, creating phenotype plasticity that can explain interindividual and population endocrine variability. We will review the current understanding of epigenetics in endocrinology, specifically, the regulation by epigenetics of the three levels of hormone action (synthesis and release, circulating and target tissue levels, and target-organ responsiveness) and the epigenetic action of endocrine disruptors. We will also discuss the impacts of hormones on epigenetics. We propose a three-dimensional model (genetics, environment, and developmental stage) to explain the phenomena related to progressive changes in endocrine functions with age, the early origin of endocrine disorders, phenotype discordance between monozygotic twins, rapid shifts in disease patterns among populations experiencing major lifestyle changes such as immigration, and the many endocrine disruptions in contemporary life. We emphasize that the key for understanding epigenetics in endocrinology is the identification, through advanced high-throughput screening technologies, of plasticity genes or loci that respond directly to a specific environmental stimulus. Investigations to determine whether epigenetic changes induced by today's lifestyles or environmental `exposures' can be inherited and are reversible should open doors for applying epigenetics to the prevention and treatment of endocrine disorders. PMID:21322125

  20. Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next-generation human artificial chromosomes for Duchenne muscular dystrophy.

    PubMed

    Benedetti, Sara; Uno, Narumi; Hoshiya, Hidetoshi; Ragazzi, Martina; Ferrari, Giulia; Kazuki, Yasuhiro; Moyle, Louise Anne; Tonlorenzi, Rossana; Lombardo, Angelo; Chaouch, Soraya; Mouly, Vincent; Moore, Marc; Popplewell, Linda; Kazuki, Kanako; Katoh, Motonobu; Naldini, Luigi; Dickson, George; Messina, Graziella; Oshimura, Mitsuo; Cossu, Giulio; Tedesco, Francesco Saverio

    2018-02-01

    Transferring large or multiple genes into primary human stem/progenitor cells is challenged by restrictions in vector capacity, and this hurdle limits the success of gene therapy. A paradigm is Duchenne muscular dystrophy (DMD), an incurable disorder caused by mutations in the largest human gene: dystrophin. The combination of large-capacity vectors, such as human artificial chromosomes (HACs), with stem/progenitor cells may overcome this limitation. We previously reported amelioration of the dystrophic phenotype in mice transplanted with murine muscle progenitors containing a HAC with the entire dystrophin locus (DYS-HAC). However, translation of this strategy to human muscle progenitors requires extension of their proliferative potential to withstand clonal cell expansion after HAC transfer. Here, we show that reversible cell immortalisation mediated by lentivirally delivered excisable hTERT and Bmi1 transgenes extended cell proliferation, enabling transfer of a novel DYS-HAC into DMD satellite cell-derived myoblasts and perivascular cell-derived mesoangioblasts. Genetically corrected cells maintained a stable karyotype, did not undergo tumorigenic transformation and retained their migration ability. Cells remained myogenic in vitro (spontaneously or upon MyoD induction) and engrafted murine skeletal muscle upon transplantation. Finally, we combined the aforementioned functions into a next-generation HAC capable of delivering reversible immortalisation, complete genetic correction, additional dystrophin expression, inducible differentiation and controllable cell death. This work establishes a novel platform for complex gene transfer into clinically relevant human muscle progenitors for DMD gene therapy. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  1. The Role of Drosophila Merlin in the Control of Mitosis Exit and Development

    DTIC Science & Technology

    2006-07-01

    schwannomas and is associated with mutations in the tumor suppressor gene called the neurofibromatosis type 2 (NF2) gene (Chang et al., 2005; Neff...been shown to associate with endocytic compartments and because mutations in the genes , such as clathrin and ff16, that are known to be important... mutations in the Drosophila homologues of the human Neurofibromatosis 2 and yeast CDC42 genes using a simple and efficient reverse-genetic method. Genetics

  2. Practical aspects of mutagenicity testing strategy: an industrial perspective.

    PubMed

    Gollapudi, B B; Krishna, G

    2000-11-20

    Genetic toxicology studies play a central role in the development and marketing of new chemicals for pharmaceutical, agricultural, industrial, and consumer use. During the discovery phase of product development, rapid screening tests that require minimal amounts of test materials are used to assist in the design and prioritization of new molecules. At this stage, a modified Salmonella reverse mutation assay and an in vitro micronucleus test with mammalian cell culture are frequently used for screening. Regulatory genetic toxicology studies are conducted with a short list of compounds using protocols that conform to various international guidelines. A set of four assays usually constitutes the minimum test battery that satisfies global requirements. This set includes a bacterial reverse mutation assay, an in vitro cytogenetic test with mammalian cell culture, an in vitro gene mutation assay in mammalian cell cultures, and an in vivo rodent bone marrow micronucleus test. Supplementary studies are conducted in certain instances either as a follow-up to the findings from this initial testing battery and/or to satisfy a regulatory requirement. Currently available genetic toxicology assays have helped the scientific and industrial community over the past several decades in evaluating the mutagenic potential of chemical agents. The emerging field of toxicogenomics has the potential to redefine our ability to study the response of cells to genetic damage and hence our ability to study threshold phenomenon.

  3. Integration of maternal genome into the neonate genome through breast milk mRNA transcripts and reverse transcriptase.

    PubMed

    Irmak, M Kemal; Oztas, Yesim; Oztas, Emin

    2012-06-07

    Human milk samples contain microvesicles similar to the retroviruses. These microvesicles contain mRNA transcripts and possess reverse transcriptase activity. They contain about 14,000 transcripts representing the milk transcriptome. Microvesicles are also enriched with proteins related to "caveolar-mediated endocytosis signaling" pathway. It has recently been reported that microvesicles could be transferred to other cells by endocytosis and their RNA content can be translated and be functional in their new location. A significant percentage of the mammalian genome appears to be the product of reverse transcription, containing sequences whose characteristics point to RNA as a template precursor. These are mobile elements that move by way of transposition and are called retrotransposons. We thought that retrotransposons may stem from about 14,000 transcriptome of breast milk microvesicles, and reviewed the literature.The enhanced acceptance of maternal allografts in children who were breast-fed and tolerance to the maternal MHC antigens after breastfeeding may stem from RNAs of the breast milk microvesicles that can be taken up by the breastfed infant and receiving maternal genomic information. We conclude that milk microvesicles may transfer genetic signals from mother to neonate during breastfeeding. Moreover, transfer of wild type RNA from a healthy wet-nurse to the suckling neonate through the milk microvesicles and its subsequent reverse transcription and integration into the neonate genome could result in permanent correction of the clinical manifestations in genetic diseases.

  4. Integration of maternal genome into the neonate genome through breast milk mRNA transcripts and reverse transcriptase

    PubMed Central

    2012-01-01

    Human milk samples contain microvesicles similar to the retroviruses. These microvesicles contain mRNA transcripts and possess reverse transcriptase activity. They contain about 14,000 transcripts representing the milk transcriptome. Microvesicles are also enriched with proteins related to “caveolar-mediated endocytosis signaling” pathway. It has recently been reported that microvesicles could be transferred to other cells by endocytosis and their RNA content can be translated and be functional in their new location. A significant percentage of the mammalian genome appears to be the product of reverse transcription, containing sequences whose characteristics point to RNA as a template precursor. These are mobile elements that move by way of transposition and are called retrotransposons. We thought that retrotransposons may stem from about 14,000 transcriptome of breast milk microvesicles, and reviewed the literature. The enhanced acceptance of maternal allografts in children who were breast-fed and tolerance to the maternal MHC antigens after breastfeeding may stem from RNAs of the breast milk microvesicles that can be taken up by the breastfed infant and receiving maternal genomic information. We conclude that milk microvesicles may transfer genetic signals from mother to neonate during breastfeeding. Moreover, transfer of wild type RNA from a healthy wet-nurse to the suckling neonate through the milk microvesicles and its subsequent reverse transcription and integration into the neonate genome could result in permanent correction of the clinical manifestations in genetic diseases. PMID:22676860

  5. A Roadmap for Tick-Borne Flavivirus Research in the "Omics" Era.

    PubMed

    Grabowski, Jeffrey M; Hill, Catherine A

    2017-01-01

    Tick-borne flaviviruses (TBFs) affect human health globally. Human vaccines provide protection against some TBFs, and antivirals are available, yet TBF-specific control strategies are limited. Advances in genomics offer hope to understand the viral complement transmitted by ticks, and to develop disruptive, data-driven technologies for virus detection, treatment, and control. The genome assemblies of Ixodes scapularis , the North American tick vector of the TBF, Powassan virus, and other tick vectors, are providing insights into tick biology and pathogen transmission and serve as nucleation points for expanded genomic research. Systems biology has yielded insights to the response of tick cells to viral infection at the transcript and protein level, and new protein targets for vaccines to limit virus transmission. Reverse vaccinology approaches have moved candidate tick antigenic epitopes into vaccine development pipelines. Traditional drug and in silico screening have identified candidate antivirals, and target-based approaches have been developed to identify novel acaricides. Yet, additional genomic resources are required to expand TBF research. Priorities include genome assemblies for tick vectors, "omic" studies involving high consequence pathogens and vectors, and emphasizing viral metagenomics, tick-virus metabolomics, and structural genomics of TBF and tick proteins. Also required are resources for forward genetics, including the development of tick strains with quantifiable traits, genetic markers and linkage maps. Here we review the current state of genomic research on ticks and tick-borne viruses with an emphasis on TBFs. We outline an ambitious 10-year roadmap for research in the "omics era," and explore key milestones needed to accomplish the goal of delivering three new vaccines, antivirals and acaricides for TBF control by 2030.

  6. A Roadmap for Tick-Borne Flavivirus Research in the “Omics” Era

    PubMed Central

    Grabowski, Jeffrey M.; Hill, Catherine A.

    2017-01-01

    Tick-borne flaviviruses (TBFs) affect human health globally. Human vaccines provide protection against some TBFs, and antivirals are available, yet TBF-specific control strategies are limited. Advances in genomics offer hope to understand the viral complement transmitted by ticks, and to develop disruptive, data-driven technologies for virus detection, treatment, and control. The genome assemblies of Ixodes scapularis, the North American tick vector of the TBF, Powassan virus, and other tick vectors, are providing insights into tick biology and pathogen transmission and serve as nucleation points for expanded genomic research. Systems biology has yielded insights to the response of tick cells to viral infection at the transcript and protein level, and new protein targets for vaccines to limit virus transmission. Reverse vaccinology approaches have moved candidate tick antigenic epitopes into vaccine development pipelines. Traditional drug and in silico screening have identified candidate antivirals, and target-based approaches have been developed to identify novel acaricides. Yet, additional genomic resources are required to expand TBF research. Priorities include genome assemblies for tick vectors, “omic” studies involving high consequence pathogens and vectors, and emphasizing viral metagenomics, tick-virus metabolomics, and structural genomics of TBF and tick proteins. Also required are resources for forward genetics, including the development of tick strains with quantifiable traits, genetic markers and linkage maps. Here we review the current state of genomic research on ticks and tick-borne viruses with an emphasis on TBFs. We outline an ambitious 10-year roadmap for research in the “omics era,” and explore key milestones needed to accomplish the goal of delivering three new vaccines, antivirals and acaricides for TBF control by 2030. PMID:29312896

  7. Solving TSP problem with improved genetic algorithm

    NASA Astrophysics Data System (ADS)

    Fu, Chunhua; Zhang, Lijun; Wang, Xiaojing; Qiao, Liying

    2018-05-01

    The TSP is a typical NP problem. The optimization of vehicle routing problem (VRP) and city pipeline optimization can use TSP to solve; therefore it is very important to the optimization for solving TSP problem. The genetic algorithm (GA) is one of ideal methods in solving it. The standard genetic algorithm has some limitations. Improving the selection operator of genetic algorithm, and importing elite retention strategy can ensure the select operation of quality, In mutation operation, using the adaptive algorithm selection can improve the quality of search results and variation, after the chromosome evolved one-way evolution reverse operation is added which can make the offspring inherit gene of parental quality improvement opportunities, and improve the ability of searching the optimal solution algorithm.

  8. Soul on Silicon.

    ERIC Educational Resources Information Center

    Kurzweil, Raymond C.

    1994-01-01

    Summarizes recent advances in computer simulation and "reverse engineering" technologies, highlighting the Human Genome Project to scan the human genetic code; artificial retina chips to copy the human retina's neural organization; high-speed, high-resolution Magnetic Resonance Imaging scanners; and the virtual book. Discusses…

  9. Crime and Child-Rearing.

    ERIC Educational Resources Information Center

    Roth, Byron M.

    1996-01-01

    Examines the notion that heredity plays a powerful role in criminal behavior, including genetic evidence that can allow for antisocial behavior. Reviews suggestions for reversing rising crime rates in light of the hereditary connection, policy development, family cohesion, and child raising. (GR)

  10. Molecular Genetic Analysis of Chlamydia Species.

    PubMed

    Sixt, Barbara S; Valdivia, Raphael H

    2016-09-08

    Species of Chlamydia are the etiologic agent of endemic blinding trachoma, the leading cause of bacterial sexually transmitted diseases, significant respiratory pathogens, and a zoonotic threat. Their dependence on an intracellular growth niche and their peculiar developmental cycle are major challenges to elucidating their biology and virulence traits. The last decade has seen tremendous advances in our ability to perform a molecular genetic analysis of Chlamydia species. Major achievements include the generation of large collections of mutant strains, now available for forward- and reverse-genetic applications, and the introduction of a system for plasmid-based transformation enabling complementation of mutations; expression of foreign, modified, or reporter genes; and even targeted gene disruptions. This review summarizes the current status of the molecular genetic toolbox for Chlamydia species and highlights new insights into their biology and new challenges in the nascent field of Chlamydia genetics.

  11. Applying behavior analysis to clinical problems: review and analysis of habit reversal.

    PubMed Central

    Miltenberger, R G; Fuqua, R W; Woods, D W

    1998-01-01

    This article provides a review and analysis of habit reversal, a multicomponent procedure developed by Azrin and Nunn (1973, 1974) for the treatment of nervous habits, tics, and stuttering. The article starts with a discussion of the behaviors treated with habit reversal, behavioral covariation among habits, and functional analysis and assessment of habits. Research on habit reversal and simplified versions of the procedure is then described. Next the article discusses the limitations of habit reversal and the evidence for its generality. The article concludes with an analysis of the behavioral processes involved in habit reversal and suggestions for future research. PMID:9757583

  12. The group II intron maturase: a reverse transcriptase and splicing factor go hand in hand.

    PubMed

    Zhao, Chen; Pyle, Anna Marie

    2017-12-01

    The splicing of group II introns in vivo requires the assistance of a multifunctional intron encoded protein (IEP, or maturase). Each IEP is also a reverse-transcriptase enzyme that enables group II introns to behave as mobile genetic elements. During splicing or retro-transposition, each group II intron forms a tight, specific complex with its own encoded IEP, resulting in a highly reactive holoenzyme. This review focuses on the structural basis for IEP function, as revealed by recent crystal structures of an IEP reverse transcriptase domain and cryo-EM structures of an IEP-intron complex. These structures explain how the same IEP scaffold is utilized for intron recognition, splicing and reverse transcription, while providing a physical basis for understanding the evolutionary transformation of the IEP into the eukaryotic splicing factor Prp8. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Molecular genetics research in ADHD: ethical considerations concerning patients' benefit and resource allocation.

    PubMed

    Rothenberger, Lillian Geza

    2012-12-01

    Immense resource allocations have led to great data output in genetic research. Concerning ADHD resources spent on genetic research are less than those spent on clinical research. But there are successful efforts made to increase support for molecular genetics research in ADHD. Concerning genetics no evidence based conclusive results have significant impact on prevention, diagnosis or treatment yet. With regard to ethical aspects like the patients' benefit and limited resources the question arises if it is indicated to think about a new balance of resource allocation between molecular genetics and non-genetics research in ADHD. An ethical reflection was performed focusing on recent genetic studies and reviews based on a selective literature search. There are plausible reasons why genetic research results in ADHD are somehow disappointing for clinical practice so far. Researchers try to overcome these gaps systematically, without knowing what the potential future benefits for the patients might be. Non-genetic diagnostic/therapeutic research may lead to clinically relevant findings within a shorter period of time. On the other hand, non-genetic research in ADHD may be nurtured by genetic approaches. But, with the latter there exist significant risks of harm like stigmatization and concerns regarding data protection. Isolated speeding up resources of genetic research in ADHD seems questionable from an ethical point of view. There is a need to find a new balance of resource allocation between genetic and non-genetic research in ADHD, probably by integrating genetics more systematically into clinical research. A transdisciplinary debate is recommended. Copyright © 2012 Wiley Periodicals, Inc.

  14. The Impact of Childhood Obesity on Health and Health Service Use.

    PubMed

    Kinge, Jonas Minet; Morris, Stephen

    2018-06-01

    To test the impact of obesity on health and health care use in children, by the use of various methods to account for reverse causality and omitted variables. Fifteen rounds of the Health Survey for England (1998-2013), which is representative of children and adolescents in England. We use three methods to account for reverse causality and omitted variables in the relationship between BMI and health/health service use: regression with individual, parent, and household control variables; sibling fixed effects; and instrumental variables based on genetic variation in weight. We include all children and adolescents aged 4-18 years old. We find that obesity has a statistically significant and negative impact on self-rated health and a positive impact on health service use in girls, boys, younger children (aged 4-12), and adolescents (aged 13-18). The findings are comparable in each model in both boys and girls. Using econometric methods, we have mitigated several confounding factors affecting the impact of obesity in childhood on health and health service use. Our findings suggest that obesity has severe consequences for health and health service use even among children. © Health Research and Educational Trust.

  15. Acylphloroglucinol biosynthesis in strawberry fruit

    USDA-ARS?s Scientific Manuscript database

    Phenolics have health-promoting properties and are a major group of metabolites in fruit crops. Through reverse genetic analysis of the functions of four ripening-related genes in the octoploid strawberry, Fragaria ×ananassa, we discovered four acylphloroglucinol (APG)-glucosides as native strawberr...

  16. Reinventing potato at the diploid level

    USDA-ARS?s Scientific Manuscript database

    The outcrossing polyploidy nature of cultivated potato has hindered the use of genomics resources to dissect the genetic basis of agronomically important traits. Reversion to the diploid level allows us to apply powerful tools toward this effort. Parthenogenesis generates diploid cultivated potato, ...

  17. A substitution in the transmembrane region of the glycoprotein leads to an unstable attenuation of Machupo virus.

    PubMed

    Patterson, Michael; Koma, Takaaki; Seregin, Alexey; Huang, Cheng; Miller, Milagros; Smith, Jennifer; Yun, Nadezhda; Smith, Jeanon; Paessler, Slobodan

    2014-09-01

    Machupo virus (MACV) is the etiologic agent of Bolivian hemorrhagic fever (BHF). Utilizing a reverse-genetics system recently developed, we report the rescue of a rationally modified recombinant MACV containing a single mutation in the transmembrane region of the glycoprotein. Following challenge of susceptible mice, we identified a significant reduction in virulence in the novel virus. We also identified an instability leading to reversion of the single mutation to a wild-type genotype. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. A rapid method for establishment of a reverse genetics system for canine parvovirus.

    PubMed

    Yu, Yongle; Su, Jun; Wang, Jigui; Xi, Ji; Mao, Yaping; Hou, Qiang; Zhang, Xiaomei; Liu, Weiquan

    2017-12-01

    Canine parvovirus (CPV) is an important and highly prevalent pathogen of dogs that causes acute hemorrhagic enteritis disease. Here, we describe a rapid method for the construction and characterization of a full-length infectious clone (rCPV) of CPV. Feline kidney (F81) cells were transfected with rCPV incorporating an engineered EcoR I site that served as a genetic marker. The rescued virus was indistinguishable from that of wild-type virus in its biological properties.

  19. Sex Reversal in C57BL/6J XY Mice Caused by Increased Expression of Ovarian Genes and Insufficient Activation of the Testis Determining Pathway

    PubMed Central

    Correa, Stephanie M.; Washburn, Linda L.; Kahlon, Ravi S.; Musson, Michelle C.; Bouma, Gerrit J.; Eicher, Eva M.; Albrecht, Kenneth H.

    2012-01-01

    Sex reversal can occur in XY humans with only a single functional WT1 or SF1 allele or a duplication of the chromosome region containing WNT4. In contrast, XY mice with only a single functional Wt1, Sf1, or Wnt4 allele, or mice that over-express Wnt4 from a transgene, reportedly are not sex-reversed. Because genetic background plays a critical role in testis differentiation, particularly in C57BL/6J (B6) mice, we tested the hypothesis that Wt1, Sf1, and Wnt4 are dosage sensitive in B6 XY mice. We found that reduced Wt1 or Sf1 dosage in B6 XYB6 mice impaired testis differentiation, but no ovarian tissue developed. If, however, a YAKR chromosome replaced the YB6 chromosome, these otherwise genetically identical B6 XY mice developed ovarian tissue. In contrast, reduced Wnt4 dosage increased the amount of testicular tissue present in Sf1+/− B6 XYAKR, Wt1+/− B6 XYAKR, B6 XYPOS, and B6 XYAKR fetuses. We propose that Wt1B6 and Sf1B6 are hypomorphic alleles of testis-determining pathway genes and that Wnt4B6 is a hypermorphic allele of an ovary-determining pathway gene. The latter hypothesis is supported by the finding that expression of Wnt4 and four other genes in the ovary-determining pathway are elevated in normal B6 XX E12.5 ovaries. We propose that B6 mice are sensitive to XY sex reversal, at least in part, because they carry Wt1B6 and/or Sf1B6 alleles that compromise testis differentiation and a Wnt4B6 allele that promotes ovary differentiation and thereby antagonizes testis differentiation. Addition of a “weak” Sry allele, such as the one on the YPOS chromosome, to the sensitized B6 background results in inappropriate development of ovarian tissue. We conclude that Wt1, Sf1, and Wnt4 are dosage-sensitive in mice, this dosage-sensitivity is genetic background-dependant, and the mouse strains described here are good models for the investigation of human dosage-sensitive XY sex reversal. PMID:22496664

  20. Contemporary Genetics for Gender Researchers: Not Your Grandma's Genetics Anymore

    ERIC Educational Resources Information Center

    Salk, Rachel H.; Hyde, Janet S.

    2012-01-01

    Over the past century, much of genetics was deterministic, and feminist researchers framed justified criticisms of genetics research. However, over the past two decades, genetics research has evolved remarkably and has moved far from earlier deterministic approaches. Our article provides a brief primer on modern genetics, emphasizing contemporary…

  1. Research on Colorant Systems Whose Characteristics May Be Reversed

    DTIC Science & Technology

    1974-06-01

    U.S. DEPARTMENT OF COMMERCE NatioMl Technical Information Service AD-A024 083 RESEARCH ON COLORANT SYSTEMS WHOSE CHARACTERISTICS MAY BE REVERSED...TR 75-61-CEMEL 2. SOVT ACCESSION NO «■ TITLE (on* SuMtl») RESEARCH ON COLORANT SYSTEMS WHOSE CHARACTERISTICS MAY BE REVERSED T. AUTMONM...estigation of electrically operated color- ant systems by which the color of a surface could be changed in a controlled manner. Four basic

  2. 46,XX males: a case series based on clinical and genetics evaluation.

    PubMed

    Mohammadpour Lashkari, F; Totonchi, M; Zamanian, M R; Mansouri, Z; Sadighi Gilani, M A; Sabbaghian, M; Mohseni Meybodi, A

    2017-09-01

    46,XX male sex reversal syndrome is one of the rarest sex chromosomal aberrations. The presence of SRY gene on one of the X chromosomes is the most frequent cause of this syndrome. Based on Y chromosome profile, there are SRY-positive and SRY-negative forms. The purpose of our study was to report first case series of Iranian patients and describe the different clinical appearances based on their genetic component. From the 8,114 azoospermic and severe oligozoospermic patients referred to Royan institute, we diagnosed 57 cases as sex reversal patients. Based on the endocrinological history, we performed karyotyping, SRY and AZF microdeletion screening. Patients had a female karyotype. According to available hormonal reports of 37 patients, 16 cases had low levels of testosterone (43.2%). On the other hand, 15 males were SRY positive (90.2%), while they lacked the spermatogenic factors encoding genes on Yq. Commencing the testicular differentiation in males, the SRY gene is considered to be very important in this process. Due to homogeneous results of karyotyping and AZF deletion, there are both positive and negative SRY cases that show similar sex reversal phenotypes. Evidences show that there could be diverse phenotypic differences that could be raised from various reasons. © 2016 Blackwell Verlag GmbH.

  3. 50 years of Arabidopsis research: highlights and future directions

    DOE PAGES

    Provart, Nicholas J.; Alonso, Jose; Assmann, Sarah M.; ...

    2015-10-14

    The year 2014 marked the 25 th International Conference on Arabidopsis Research. In the 50 yr since the first International Conference on Arabidopsis Research, held in 1965 in Göttingen, Germany, > 54 000 papers that mention Arabidopsis thaliana in the title, abstract or keywords have been published. In this paper, we present herein a citational network analysis of these papers, and touch on some of the important discoveries in plant biology that have been made in this powerful model system, and highlight how these discoveries have then had an impact in crop species. We also look to the future, highlightingmore » some outstanding questions that can be readily addressed in Arabidopsis. Topics that are discussed include Arabidopsis reverse genetic resources, stock centers, databases and online tools, cell biology, development, hormones, plant immunity, signaling in response to abiotic stress, transporters, biosynthesis of cells walls and macromolecules such as starch and lipids, epigenetics and epigenomics, genome-wide association studies and natural variation, gene regulatory networks, modeling and systems biology, and synthetic biology.« less

  4. 50 years of Arabidopsis research: highlights and future directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Provart, Nicholas J.; Alonso, Jose; Assmann, Sarah M.

    The year 2014 marked the 25 th International Conference on Arabidopsis Research. In the 50 yr since the first International Conference on Arabidopsis Research, held in 1965 in Göttingen, Germany, > 54 000 papers that mention Arabidopsis thaliana in the title, abstract or keywords have been published. In this paper, we present herein a citational network analysis of these papers, and touch on some of the important discoveries in plant biology that have been made in this powerful model system, and highlight how these discoveries have then had an impact in crop species. We also look to the future, highlightingmore » some outstanding questions that can be readily addressed in Arabidopsis. Topics that are discussed include Arabidopsis reverse genetic resources, stock centers, databases and online tools, cell biology, development, hormones, plant immunity, signaling in response to abiotic stress, transporters, biosynthesis of cells walls and macromolecules such as starch and lipids, epigenetics and epigenomics, genome-wide association studies and natural variation, gene regulatory networks, modeling and systems biology, and synthetic biology.« less

  5. Vitamin C reverses hypogonadal bone loss

    USDA-ARS?s Scientific Manuscript database

    Epidemiologic studies correlate low vitamin C intake with bone loss. The genetic deletion of enzymes involved in de novo vitamin C synthesis in mice, likewise, causes severe osteoporosis. However, very few studies have evaluated a protective role of this dietary supplement on the skeleton. Here, ...

  6. A Transgenic Mouse Model of Poliomyelitis.

    PubMed

    Koike, Satoshi; Nagata, Noriyo

    2016-01-01

    Transgenic mice (tg mice) that express the human poliovirus receptor (PVR), CD155, are susceptible to poliovirus and develop a neurological disease that resembles human poliomyelitis. Assessment of the neurovirulence levels of poliovirus strains, including mutant viruses produced by reverse genetics, circulating vaccine-derived poliovirus, and vaccine candidates, is useful for basic research of poliovirus pathogenicity, the surveillance of circulating polioviruses, and the quality control of oral live poliovirus vaccines, and does not require the use of monkeys. Furthermore, PVR-tg mice are useful for studying poliovirus tissue tropism and host immune responses. PVR-tg mice can be bred with mice deficient in the genes involved in viral pathogenicity. This report describes the methods used to analyze the pathogenicity and immune responses of poliovirus using the PVR-tg mouse model.

  7. The genetic rescue of two bottlenecked South Island robin populations using translocations of inbred donors.

    PubMed

    Heber, S; Varsani, A; Kuhn, S; Girg, A; Kempenaers, B; Briskie, J

    2013-02-07

    Populations forced through bottlenecks typically lose genetic variation and exhibit inbreeding depression. 'Genetic rescue' techniques that introduce individuals from outbred populations can be highly effective in reversing the deleterious effects of inbreeding, but have limited application for the majority of endangered species, which survive only in a few bottlenecked populations. We tested the effectiveness of using highly inbred populations as donors to rescue two isolated and bottlenecked populations of the South Island robin (Petroica australis). Reciprocal translocations significantly increased heterozygosity and allelic diversity. Increased genetic diversity was accompanied by increased juvenile survival and recruitment, sperm quality, and immunocompetence of hybrid individuals (crosses between the two populations) compared with inbred control individuals (crosses within each population). Our results confirm that the implementation of 'genetic rescue' using bottlenecked populations as donors provides a way of preserving endangered species and restoring their viability when outbred donor populations no longer exist.

  8. Preimplantation genetic diagnosis (PGD) according to medical ethics and medical law

    PubMed Central

    Lutz, Emine Elif Vatanoğlu

    2012-01-01

    Assisted reproductive techniques not only nourish great and sometimes illusive hopes of couples who yearn for babies, but also spark new debates by reversing opinions, beliefs and values. Applications made to infertility clinics are increasing due to the influences such as broadcasts made by the media concerning assisted reproductive techniques and other infertility treatments, increase in the knowledge that people have about these problems, late marriages and postponement of childbearing age owing to sociological changes. Pre-implantation genetic diagnosis (PGD) is a technique applied to couples who are known to carry genetic diseases or who have children with genetic diseases. This technique is conducted by doctors in Turkey for its important contribution to decreasing the risk of genetic diseases and in order to raise healthy generations. In this paper, the general ethical debates and the legal situation in Turkey will be discussed. PMID:24627675

  9. Ultrasonic Drug Delivery – A General Review

    PubMed Central

    Pitt, William G.; Husseini, Ghaleb A.; Staples, Bryant J.

    2006-01-01

    Ultrasound (US) has an ever-increasing role in the delivery of therapeutic agents including genetic material, proteins, and chemotherapeutic agents. Cavitating gas bodies such as microbubbles are the mediators through which the energy of relatively non-interactive pressure waves is concentrated to produce forces that permeabilize cell membranes and disrupt the vesicles that carry drugs. Thus the presence of microbubbles enormously enhances delivery of genetic material, proteins and smaller chemical agents. Delivery of genetic material is greatly enhanced by ultrasound in the presence of microbubbles. Attaching the DNA directly to the microbubbles or to gas-containing liposomes enhances gene uptake even further. US-enhanced gene delivery has been studied in various tissues including cardiac, vascular, skeletal muscle, tumor and even fetal tissue. US-enhanced delivery of proteins has found most application in transdermal delivery of insulin. Cavitation events reversibly disrupt the structure of the stratus corneum to allow transport of these large molecules. Other hormones and small proteins could also be delivered transdermally. Small chemotherapeutic molecules are delivered in research settings from micelles and liposomes exposed to ultrasound. Cavitation appears to play two roles: it disrupts the structure of the carrier vesicle and releases the drug; it also makes the cell membranes and capillaries more permeable to drugs. There remains a need to better understand the physics of cavitation of microbubbles and the impact that such cavitation has upon cells and drug-carrying vesicles. PMID:16296719

  10. Molecular mechanisms underlying variations in lung function: a systems genetics analysis

    PubMed Central

    Obeidat, Ma’en; Hao, Ke; Bossé, Yohan; Nickle, David C; Nie, Yunlong; Postma, Dirkje S; Laviolette, Michel; Sandford, Andrew J; Daley, Denise D; Hogg, James C; Elliott, W Mark; Fishbane, Nick; Timens, Wim; Hysi, Pirro G; Kaprio, Jaakko; Wilson, James F; Hui, Jennie; Rawal, Rajesh; Schulz, Holger; Stubbe, Beate; Hayward, Caroline; Polasek, Ozren; Järvelin, Marjo-Riitta; Zhao, Jing Hua; Jarvis, Deborah; Kähönen, Mika; Franceschini, Nora; North, Kari E; Loth, Daan W; Brusselle, Guy G; Smith, Albert Vernon; Gudnason, Vilmundur; Bartz, Traci M; Wilk, Jemma B; O’Connor, George T; Cassano, Patricia A; Tang, Wenbo; Wain, Louise V; Artigas, María Soler; Gharib, Sina A; Strachan, David P; Sin, Don D; Tobin, Martin D; London, Stephanie J; Hall, Ian P; Paré, Peter D

    2016-01-01

    Summary Background Lung function measures reflect the physiological state of the lung, and are essential to the diagnosis of chronic obstructive pulmonary disease (COPD). The SpiroMeta-CHARGE consortium undertook the largest genome-wide association study (GWAS) so far (n=48 201) for forced expiratory volume in 1 s (FEV1) and the ratio of FEV1 to forced vital capacity (FEV1/FVC) in the general population. The lung expression quantitative trait loci (eQTLs) study mapped the genetic architecture of gene expression in lung tissue from 1111 individuals. We used a systems genetics approach to identify single nucleotide polymorphisms (SNPs) associated with lung function that act as eQTLs and change the level of expression of their target genes in lung tissue; termed eSNPs. Methods The SpiroMeta-CHARGE GWAS results were integrated with lung eQTLs to map eSNPs and the genes and pathways underlying the associations in lung tissue. For comparison, a similar analysis was done in peripheral blood. The lung mRNA expression levels of the eSNP-regulated genes were tested for associations with lung function measures in 727 individuals. Additional analyses identified the pleiotropic effects of eSNPs from the published GWAS catalogue, and mapped enrichment in regulatory regions from the ENCODE project. Finally, the Connectivity Map database was used to identify potential therapeutics in silico that could reverse the COPD lung tissue gene signature. Findings SNPs associated with lung function measures were more likely to be eQTLs and vice versa. The integration mapped the specific genes underlying the GWAS signals in lung tissue. The eSNP-regulated genes were enriched for developmental and inflammatory pathways; by comparison, SNPs associated with lung function that were eQTLs in blood, but not in lung, were only involved in inflammatory pathways. Lung function eSNPs were enriched for regulatory elements and were over-represented among genes showing differential expression during fetal lung development. An mRNA gene expression signature for COPD was identified in lung tissue and compared with the Connectivity Map. This in-silico drug repurposing approach suggested several compounds that reverse the COPD gene expression signature, including a nicotine receptor antagonist. These findings represent novel therapeutic pathways for COPD. Interpretation The system genetics approach identified lung tissue genes driving the variation in lung function and susceptibility to COPD. The identification of these genes and the pathways in which they are enriched is essential to understand the pathophysiology of airway obstruction and to identify novel therapeutic targets and biomarkers for COPD, including drugs that reverse the COPD gene signature in silico. Funding The research reported in this article was not specifically funded by any agency. See Acknowledgments for a full list of funders of the lung eQTL study and the Spiro-Meta CHARGE GWAS. PMID:26404118

  11. Enterovirus A71 DNA-Launched Infectious Clone as a Robust Reverse Genetic Tool

    PubMed Central

    Tan, Chee Wah; Tee, Han Kang; Lee, Michelle Hui Pheng; Sam, I-Ching; Chan, Yoke Fun

    2016-01-01

    Enterovirus A71 (EV-A71) causes major outbreaks of hand, foot and mouth disease, and is occasionally associated with neurological complications and death in children. Reverse genetics is widely used in the field of virology for functional study of viral genes. For EV-A71, such tools are limited to clones that are transcriptionally controlled by T7/SP6 bacteriophage promoter. This is often time-consuming and expensive. Here, we describe the development of infectious plasmid DNA-based EV-A71 clones, for which EV-A71 genome expression is under transcriptional control by the CMV-intermediate early promoter and SV40 transcriptional-termination signal. Transfection of this EV-A71 infectious DNA produces good virus yield similar to in vitro-transcribed EV-A71 infectious RNA, 6.4 and 5.8 log10PFU/ml, respectively. Infectious plasmid with enhanced green fluorescence protein and Nano luciferase reporter genes also produced good virus titers, with 4.3 and 5.0 log10 PFU/ml, respectively. Another infectious plasmid with both CMV and T7 promoters was also developed for easy manipulation of in vitro transcription or direct plasmid transfection. Transfection with either dual-promoter infectious plasmid DNA or infectious RNA derived from this dual-promoter clone produced infectious viral particles. Incorporation of hepatitis delta virus ribozyme, which yields precise 3’ ends of the DNA-launched EV-A71 genomic transcripts, increased infectious viral production. In contrast, the incorporation of hammerhead ribozyme in the DNA-launched EV-A71 resulted in lower virus yield, but improved the virus titers for T7 promoter-derived infectious RNA. This study describes rapid and robust reverse genetic tools for EV-A71. PMID:27617744

  12. A Point Mutation in the Rhesus Rotavirus VP4 Protein Generated through a Rotavirus Reverse Genetics System Attenuates Biliary Atresia in the Murine Model.

    PubMed

    Mohanty, Sujit K; Donnelly, Bryan; Dupree, Phylicia; Lobeck, Inna; Mowery, Sarah; Meller, Jaroslaw; McNeal, Monica; Tiao, Greg

    2017-08-01

    Rotavirus infection is one of the most common causes of diarrheal illness in humans. In neonatal mice, rhesus rotavirus (RRV) can induce biliary atresia (BA), a disease resulting in inflammatory obstruction of the extrahepatic biliary tract and intrahepatic bile ducts. We previously showed that the amino acid arginine (R) within the sequence SRL (amino acids 445 to 447) in the RRV VP4 protein is required for viral binding and entry into biliary epithelial cells. To determine if this single amino acid (R) influences the pathogenicity of the virus, we generated a recombinant virus with a single amino acid mutation at this site through a reverse genetics system. We demonstrated that the RRV mutant (RRV VP4-R446G ) produced less symptomatology and replicated to lower titers both in vivo and in vitro than those seen with wild-type RRV, with reduced binding in cholangiocytes. Our results demonstrate that a single amino acid change in the RRV VP4 gene influences cholangiocyte tropism and reduces pathogenicity in mice. IMPORTANCE Rotavirus is the leading cause of diarrhea in humans. Rhesus rotavirus (RRV) can also lead to biliary atresia (a neonatal human disease) in mice. We developed a reverse genetics system to create a mutant of RRV (RRV VP4-R446G ) with a single amino acid change in the VP4 protein compared to that of wild-type RRV. In vitro , the mutant virus had reduced binding and infectivity in cholangiocytes. In vivo , it produced fewer symptoms and lower mortality in neonatal mice, resulting in an attenuated form of biliary atresia. Copyright © 2017 American Society for Microbiology.

  13. Development of a Reverse Genetic System for Infectious Salmon Anemia Virus: Rescue of Recombinant Fluorescent Virus by Using Salmon Internal Transcribed Spacer Region 1 as a Novel Promoter

    PubMed Central

    Toro-Ascuy, Daniela; Tambley, Carolina; Beltran, Carolina; Mascayano, Carolina; Sandoval, Nicolas; Olivares, Eduardo; Medina, Rafael A.; Spencer, Eugenio

    2014-01-01

    Infectious salmon anemia (ISA) is a serious disease of marine-farmed Atlantic salmon (Salmo salar) caused by ISA virus (ISAV), belonging to the genus Isavirus, family Orthomyxoviridae. There is an urgent need to understand the virulence factors and pathogenic mechanisms of ISAV and to develop new vaccine approaches. Using a recombinant molecular biology approach, we report the development of a plasmid-based reverse genetic system for ISAV, which includes the use of a novel fish promoter, the Atlantic salmon internal transcribed spacer region 1 (ITS-1). Salmon cells cotransfected with pSS-URG-based vectors expressing the eight viral RNA segments and four cytomegalovirus (CMV)-based vectors that express the four proteins of the ISAV ribonucleoprotein complex allowed the generation of infectious recombinant ISAV (rISAV). We generated three recombinant viruses, wild-type rISAV901_09 and rISAVrS6-NotI-HPR containing a NotI restriction site and rISAVS6/EGFP-HPR harboring the open reading frame of enhanced green fluorescent protein (EGFP), both within the highly polymorphic region (HPR) of segment 6. All rescued viruses showed replication activity and cytopathic effect in Atlantic salmon kidney-infected cells. The fluorescent recombinant viruses also showed a characteristic cytopathic effect in salmon cells, and the viruses replicated to a titer of 6.5 × 105 PFU/ml, similar to that of the wild-type virus. This novel reverse genetics system offers a powerful tool to study the molecular biology of ISAV and to develop a new generation of ISAV vaccines to prevent and mitigate ISAV infection, which has had a profound effect on the salmon industry. PMID:25480750

  14. Understanding of research, genetics and genetic research in a rapid ethical assessment in north west Cameroon

    PubMed Central

    Kengne-Ouafo, Jonas A.; Millard, James D.; Nji, Theobald M.; Tantoh, William F.; Nyoh, Doris N.; Tendongfor, Nicholas; Enyong, Peter A.; Newport, Melanie J.; Davey, Gail; Wanji, Samuel

    2016-01-01

    Background There is limited assessment of whether research participants in low-income settings are afforded a full understanding of the meaning of medical research. There may also be particular issues with the understanding of genetic research. We used a rapid ethical assessment methodology to explore perceptions surrounding the meaning of research, genetics and genetic research in north west Cameroon. Methods Eleven focus group discussions (including 107 adults) and 72 in-depth interviews were conducted with various stakeholders in two health districts in north west Cameroon between February and April 2012. Results Most participants appreciated the role of research in generating knowledge and identified a difference between research and healthcare but gave varied explanations as to this difference. Most participants' understanding of genetics was limited to concepts of hereditary, with potential benefits limited to the level of the individual or family. Explanations based on supernatural beliefs were identified as a special issue but participants tended not to identify any other special risks with genetic research. Conclusion We demonstrated a variable level of understanding of research, genetics and genetic research, with implications for those carrying out genetic research in this and other low resource settings. Our study highlights the utility of rapid ethical assessment prior to complex or sensitive research. PMID:25969503

  15. Genetic Mechanisms of Immune Evasion in Colorectal Cancer.

    PubMed

    Grasso, Catherine S; Giannakis, Marios; Wells, Daniel K; Hamada, Tsuyoshi; Mu, Xinmeng Jasmine; Quist, Michael; Nowak, Jonathan A; Nishihara, Reiko; Qian, Zhi Rong; Inamura, Kentaro; Morikawa, Teppei; Nosho, Katsuhiko; Abril-Rodriguez, Gabriel; Connolly, Charles; Escuin-Ordinas, Helena; Geybels, Milan S; Grady, William M; Hsu, Li; Hu-Lieskovan, Siwen; Huyghe, Jeroen R; Kim, Yeon Joo; Krystofinski, Paige; Leiserson, Mark D M; Montoya, Dennis J; Nadel, Brian B; Pellegrini, Matteo; Pritchard, Colin C; Puig-Saus, Cristina; Quist, Elleanor H; Raphael, Ben J; Salipante, Stephen J; Shin, Daniel Sanghoon; Shinbrot, Eve; Shirts, Brian; Shukla, Sachet; Stanford, Janet L; Sun, Wei; Tsoi, Jennifer; Upfill-Brown, Alexander; Wheeler, David A; Wu, Catherine J; Yu, Ming; Zaidi, Syed H; Zaretsky, Jesse M; Gabriel, Stacey B; Lander, Eric S; Garraway, Levi A; Hudson, Thomas J; Fuchs, Charles S; Ribas, Antoni; Ogino, Shuji; Peters, Ulrike

    2018-06-01

    To understand the genetic drivers of immune recognition and evasion in colorectal cancer, we analyzed 1,211 colorectal cancer primary tumor samples, including 179 classified as microsatellite instability-high (MSI-high). This set includes The Cancer Genome Atlas colorectal cancer cohort of 592 samples, completed and analyzed here. MSI-high, a hypermutated, immunogenic subtype of colorectal cancer, had a high rate of significantly mutated genes in important immune-modulating pathways and in the antigen presentation machinery, including biallelic losses of B2M and HLA genes due to copy-number alterations and copy-neutral loss of heterozygosity. WNT/β-catenin signaling genes were significantly mutated in all colorectal cancer subtypes, and activated WNT/β-catenin signaling was correlated with the absence of T-cell infiltration. This large-scale genomic analysis of colorectal cancer demonstrates that MSI-high cases frequently undergo an immunoediting process that provides them with genetic events allowing immune escape despite high mutational load and frequent lymphocytic infiltration and, furthermore, that colorectal cancer tumors have genetic and methylation events associated with activated WNT signaling and T-cell exclusion. Significance: This multi-omic analysis of 1,211 colorectal cancer primary tumors reveals that it should be possible to better monitor resistance in the 15% of cases that respond to immune blockade therapy and also to use WNT signaling inhibitors to reverse immune exclusion in the 85% of cases that currently do not. Cancer Discov; 8(6); 730-49. ©2018 AACR. This article is highlighted in the In This Issue feature, p. 663 . ©2018 American Association for Cancer Research.

  16. Identifying Novel Helix–Loop–Helix Genes in Caenorhabditis elegans through a Classroom Demonstration of Functional Genomics

    PubMed Central

    Griffin, Vernetta; McMiller, Tracee; Jones, Erika; Johnson, Casonya M.

    2003-01-01

    A 14-week, undergraduate-level Genetics and Population Biology course at Morgan State University was modified to include a demonstration of functional genomics in the research laboratory. Students performed a rudimentary sequence analysis of the Caenorhabditis elegans genome and further characterized three sequences that were predicted to encode helix–loop–helix proteins. Students then used reverse transcription–polymerase chain reaction to determine which of the three genes is normally expressed in C. elegans. At the end of this laboratory activity, students were 1) to demonstrate a rudimentary knowledge of bioinformatics, including the ability to differentiate between “having” a gene and “expressing” a gene, and 2) to understand basic approaches to functional genomics, including one specific technique for assaying for gene expression. It was also anticipated that students would increase their skills at effectively communicating their research activities through written and/or oral presentation. This article describes the laboratory activity and the assessment of the effectiveness of the activity. PMID:12822036

  17. Personalized translational epilepsy research - Novel approaches and future perspectives: Part I: Clinical and network analysis approaches.

    PubMed

    Rosenow, Felix; van Alphen, Natascha; Becker, Albert; Chiocchetti, Andreas; Deichmann, Ralf; Deller, Thomas; Freiman, Thomas; Freitag, Christine M; Gehrig, Johannes; Hermsen, Anke M; Jedlicka, Peter; Kell, Christian; Klein, Karl Martin; Knake, Susanne; Kullmann, Dimitri M; Liebner, Stefan; Norwood, Braxton A; Omigie, Diana; Plate, Karlheinz; Reif, Andreas; Reif, Philipp S; Reiss, Yvonne; Roeper, Jochen; Ronellenfitsch, Michael W; Schorge, Stephanie; Schratt, Gerhard; Schwarzacher, Stephan W; Steinbach, Joachim P; Strzelczyk, Adam; Triesch, Jochen; Wagner, Marlies; Walker, Matthew C; von Wegner, Frederic; Bauer, Sebastian

    2017-11-01

    Despite the availability of more than 15 new "antiepileptic drugs", the proportion of patients with pharmacoresistant epilepsy has remained constant at about 20-30%. Furthermore, no disease-modifying treatments shown to prevent the development of epilepsy following an initial precipitating brain injury or to reverse established epilepsy have been identified to date. This is likely in part due to the polyetiologic nature of epilepsy, which in turn requires personalized medicine approaches. Recent advances in imaging, pathology, genetics and epigenetics have led to new pathophysiological concepts and the identification of monogenic causes of epilepsy. In the context of these advances, the First International Symposium on Personalized Translational Epilepsy Research (1st ISymPTER) was held in Frankfurt on September 8, 2016, to discuss novel approaches and future perspectives for personalized translational research. These included new developments and ideas in a range of experimental and clinical areas such as deep phenotyping, quantitative brain imaging, EEG/MEG-based analysis of network dysfunction, tissue-based translational studies, innate immunity mechanisms, microRNA as treatment targets, functional characterization of genetic variants in human cell models and rodent organotypic slice cultures, personalized treatment approaches for monogenic epilepsies, blood-brain barrier dysfunction, therapeutic focal tissue modification, computational modeling for target and biomarker identification, and cost analysis in (monogenic) disease and its treatment. This report on the meeting proceedings is aimed at stimulating much needed investments of time and resources in personalized translational epilepsy research. Part I includes the clinical phenotyping and diagnostic methods, EEG network-analysis, biomarkers, and personalized treatment approaches. In Part II, experimental and translational approaches will be discussed (Bauer et al., 2017) [1]. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Personalized translational epilepsy research - Novel approaches and future perspectives: Part II: Experimental and translational approaches.

    PubMed

    Bauer, Sebastian; van Alphen, Natascha; Becker, Albert; Chiocchetti, Andreas; Deichmann, Ralf; Deller, Thomas; Freiman, Thomas; Freitag, Christine M; Gehrig, Johannes; Hermsen, Anke M; Jedlicka, Peter; Kell, Christian; Klein, Karl Martin; Knake, Susanne; Kullmann, Dimitri M; Liebner, Stefan; Norwood, Braxton A; Omigie, Diana; Plate, Karlheinz; Reif, Andreas; Reif, Philipp S; Reiss, Yvonne; Roeper, Jochen; Ronellenfitsch, Michael W; Schorge, Stephanie; Schratt, Gerhard; Schwarzacher, Stephan W; Steinbach, Joachim P; Strzelczyk, Adam; Triesch, Jochen; Wagner, Marlies; Walker, Matthew C; von Wegner, Frederic; Rosenow, Felix

    2017-11-01

    Despite the availability of more than 15 new "antiepileptic drugs", the proportion of patients with pharmacoresistant epilepsy has remained constant at about 20-30%. Furthermore, no disease-modifying treatments shown to prevent the development of epilepsy following an initial precipitating brain injury or to reverse established epilepsy have been identified to date. This is likely in part due to the polyetiologic nature of epilepsy, which in turn requires personalized medicine approaches. Recent advances in imaging, pathology, genetics, and epigenetics have led to new pathophysiological concepts and the identification of monogenic causes of epilepsy. In the context of these advances, the First International Symposium on Personalized Translational Epilepsy Research (1st ISymPTER) was held in Frankfurt on September 8, 2016, to discuss novel approaches and future perspectives for personalized translational research. These included new developments and ideas in a range of experimental and clinical areas such as deep phenotyping, quantitative brain imaging, EEG/MEG-based analysis of network dysfunction, tissue-based translational studies, innate immunity mechanisms, microRNA as treatment targets, functional characterization of genetic variants in human cell models and rodent organotypic slice cultures, personalized treatment approaches for monogenic epilepsies, blood-brain barrier dysfunction, therapeutic focal tissue modification, computational modeling for target and biomarker identification, and cost analysis in (monogenic) disease and its treatment. This report on the meeting proceedings is aimed at stimulating much needed investments of time and resources in personalized translational epilepsy research. This Part II includes the experimental and translational approaches and a discussion of the future perspectives, while the diagnostic methods, EEG network analysis, biomarkers, and personalized treatment approaches were addressed in Part I [1]. Copyright © 2017. Published by Elsevier Inc.

  19. Ensemble of hybrid genetic algorithm for two-dimensional phase unwrapping

    NASA Astrophysics Data System (ADS)

    Balakrishnan, D.; Quan, C.; Tay, C. J.

    2013-06-01

    The phase unwrapping is the final and trickiest step in any phase retrieval technique. Phase unwrapping by artificial intelligence methods (optimization algorithms) such as hybrid genetic algorithm, reverse simulated annealing, particle swarm optimization, minimum cost matching showed better results than conventional phase unwrapping methods. In this paper, Ensemble of hybrid genetic algorithm with parallel populations is proposed to solve the branch-cut phase unwrapping problem. In a single populated hybrid genetic algorithm, the selection, cross-over and mutation operators are applied to obtain new population in every generation. The parameters and choice of operators will affect the performance of the hybrid genetic algorithm. The ensemble of hybrid genetic algorithm will facilitate to have different parameters set and different choice of operators simultaneously. Each population will use different set of parameters and the offspring of each population will compete against the offspring of all other populations, which use different set of parameters. The effectiveness of proposed algorithm is demonstrated by phase unwrapping examples and advantages of the proposed method are discussed.

  20. Reverse total shoulder arthroplasty: research models

    PubMed Central

    PETRILLO, STEFANO; LONGO, UMILE GIUSEPPE; GULOTTA, LAWRENCE V.; BERTON, ALESSANDRA; KONTAXIS, ANDREAS; WRIGHT, TIMOTHY; DENARO, VINCENZO

    2016-01-01

    Purpose the past decade has seen a considerable increase in the use of research models to study reverse total shoulder arthroplasty (RTSA). Nevertheless, none of these models has been shown to completely reflect real in vivo conditions. Methods we performed a systematic review of the literature matching the following key words: “reverse total shoulder arthroplasty” or “reverse total shoulder replacement” or “reverse total shoulder prosthesis” and “research models” or “biomechanical models” or “physical simulators” or “virtual simulators”. The following databases were screened: Medline, Google Scholar, EMBASE, CINAHIL and Ovid. We identified and included all articles reporting research models of any kind, such as physical or virtual simulators, in which RTSA and the glenohumeral joint were reproduced. Results computer models and cadaveric models are the most commonly used, and they were shown to be reliable in simulating in vivo conditions. Bone substitute models have been used in a few studies. Mechanical testing machines provided useful information on stability factors in RTSA. Conclusion because of the limitations of each individual model, additional research is required to develop a research model of RTSA that may reduce the limitations of those presently available, and increase the reproducibility of this technique in the clinical setting. PMID:28217660

  1. 46,XY female sex reversal syndrome with bilateral gonadoblastoma and dysgerminoma.

    PubMed

    DU, Xue; Zhang, Xuhong; Li, Yongmei; Han, Yukun

    2014-10-01

    Sex reversal syndrome is a rare congenital condition of complete or disordered gonadal development leading to discordance between the genetic, gonadal and phenotypic sexes, including 46,XX and 46,XY. The gonadoblastoma on the Y-chromosome (GBY) region is associated with an increased risk of developing type II germ cell tumors/cancer. The present study reports a unique case of a phenotypically normal female (age 17 years), presenting with primary amenorrhea and later diagnosed with 46,XY female sex reversal syndrome. Following bilateral gonadectomy, bilateral gonadoblastoma and dysgerminoma were diagnosed. Thus, estrogen replacement therapy was administered periodically to promote the development of secondary sexual characteristics and menstruation, and to prevent osteoporosis. A four year follow-up showed no tumor recurrence and a regular menstrual cycle in this patient.

  2. Determining mutation density using Restriction Enzyme Sequence Comparative Analysis (RESCAN)

    USDA-ARS?s Scientific Manuscript database

    The average mutation density of a mutant population is a major consideration when developing resources for the efficient, cost-effective implementation of reverse genetics methods such as Targeting of Induced Local Lesions in Genomes (TILLING). Reliable estimates of mutation density can be achieved ...

  3. Expressing foreign genes by Newcastle disease virus for cancer therapy

    USDA-ARS?s Scientific Manuscript database

    An interesting aspect of Newcastle disease virus (NDV) is the ability to selectively replicate in tumor cells. Recently, using reverse genetics technology to enhance the oncolytic properties and therapeutic potential of NDV for tumor therapy has become popular in immunocompetent carcinoma tumor mod...

  4. Naturally selecting solutions: the use of genetic algorithms in bioinformatics.

    PubMed

    Manning, Timmy; Sleator, Roy D; Walsh, Paul

    2013-01-01

    For decades, computer scientists have looked to nature for biologically inspired solutions to computational problems; ranging from robotic control to scheduling optimization. Paradoxically, as we move deeper into the post-genomics era, the reverse is occurring, as biologists and bioinformaticians look to computational techniques, to solve a variety of biological problems. One of the most common biologically inspired techniques are genetic algorithms (GAs), which take the Darwinian concept of natural selection as the driving force behind systems for solving real world problems, including those in the bioinformatics domain. Herein, we provide an overview of genetic algorithms and survey some of the most recent applications of this approach to bioinformatics based problems.

  5. The reverse evolution from multicellularity to unicellularity during carcinogenesis.

    PubMed

    Chen, Han; Lin, Fangqin; Xing, Ke; He, Xionglei

    2015-03-09

    Theoretical reasoning suggests that cancer may result from a knockdown of the genetic constraints that evolved for the maintenance of metazoan multicellularity. By characterizing the whole-life history of a xenograft tumour, here we show that metastasis is driven by positive selection for general loss-of-function mutations on multicellularity-related genes. Expression analyses reveal mainly downregulation of multicellularity-related genes and an evolving expression profile towards that of embryonic stem cells, the cell type resembling unicellular life in its capacity of unlimited clonal proliferation. Also, the emergence of metazoan multicellularity ~600 Myr ago is accompanied by an elevated birth rate of cancer genes, and there are more loss-of-function tumour suppressors than activated oncogenes in a typical tumour. These data collectively suggest that cancer represents a loss-of-function-driven reverse evolution back to the unicellular 'ground state'. This cancer evolution model may account for inter-/intratumoural genetic heterogeneity, could explain distant-organ metastases and hold implications for cancer therapy.

  6. Utilisation of ISA Reverse Genetics and Large-Scale Random Codon Re-Encoding to Produce Attenuated Strains of Tick-Borne Encephalitis Virus within Days.

    PubMed

    de Fabritus, Lauriane; Nougairède, Antoine; Aubry, Fabien; Gould, Ernest A; de Lamballerie, Xavier

    2016-01-01

    Large-scale codon re-encoding is a new method of attenuating RNA viruses. However, the use of infectious clones to generate attenuated viruses has inherent technical problems. We previously developed a bacterium-free reverse genetics protocol, designated ISA, and now combined it with large-scale random codon-re-encoding method to produce attenuated tick-borne encephalitis virus (TBEV), a pathogenic flavivirus which causes febrile illness and encephalitis in humans. We produced wild-type (WT) and two re-encoded TBEVs, containing 273 or 273+284 synonymous mutations in the NS5 and NS5+NS3 coding regions respectively. Both re-encoded viruses were attenuated when compared with WT virus using a laboratory mouse model and the relative level of attenuation increased with the degree of re-encoding. Moreover, all infected animals produced neutralizing antibodies. This novel, rapid and efficient approach to engineering attenuated viruses could potentially expedite the development of safe and effective new-generation live attenuated vaccines.

  7. Conservation of social effects (Ψ) between two species of Drosophila despite reversal of sexual dimorphism.

    PubMed

    Signor, Sarah A; Abbasi, Mohammad; Marjoram, Paul; Nuzhdin, Sergey V

    2017-12-01

    Indirect genetic effects (IGEs) describe the effect of the genes of social partners on the phenotype of a focal individual. Here, we measure indirect genetic effects using the "coefficient of interaction" (Ψ) to test whether Ψ evolved between Drosophila melanogaster and D. simulans . We compare Ψ for locomotion between ethanol and nonethanol environments in both species, but only D. melanogaster utilizes ethanol ecologically. We find that while sexual dimorphism for locomotion has been reversed in D. simulans , there has been no evolution of social effects between these two species. What did evolve was the interaction between genotype-specific Ψ and the environment, as D. melanogaster  varies unpredictably between environments and D. simulans  does not. In this system, this suggests evolutionary lability of sexual dimorphism but a conservation of social effects, which brings forth interesting questions about the role of the social environment in sexual selection.

  8. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast

    PubMed Central

    Oud, Bart; Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-01-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. PMID:22152095

  9. Genetic Network Inference: From Co-Expression Clustering to Reverse Engineering

    NASA Technical Reports Server (NTRS)

    Dhaeseleer, Patrik; Liang, Shoudan; Somogyi, Roland

    2000-01-01

    Advances in molecular biological, analytical, and computational technologies are enabling us to systematically investigate the complex molecular processes underlying biological systems. In particular, using high-throughput gene expression assays, we are able to measure the output of the gene regulatory network. We aim here to review datamining and modeling approaches for conceptualizing and unraveling the functional relationships implicit in these datasets. Clustering of co-expression profiles allows us to infer shared regulatory inputs and functional pathways. We discuss various aspects of clustering, ranging from distance measures to clustering algorithms and multiple-duster memberships. More advanced analysis aims to infer causal connections between genes directly, i.e., who is regulating whom and how. We discuss several approaches to the problem of reverse engineering of genetic networks, from discrete Boolean networks, to continuous linear and non-linear models. We conclude that the combination of predictive modeling with systematic experimental verification will be required to gain a deeper insight into living organisms, therapeutic targeting, and bioengineering.

  10. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast.

    PubMed

    Oud, Bart; van Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-03-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. An analysis of mobile genetic elements in three Plasmodium species and their potential impact on the nucleotide composition of the P. falciparum genome.

    PubMed

    Durand, Pierre M; Oelofse, Andries J; Coetzer, Theresa L

    2006-11-04

    The completed genome sequences of the malaria parasites P. falciparum, P. y. yoelii and P. vivax have revealed some unusual features. P. falciparum contains the most AT rich genome sequenced so far--over 90% in some regions. In comparison, P. y. yoelii is approximately 77% and P. vivax is approximately 55% AT rich. The evolutionary reasons for these findings are unknown. Mobile genetic elements have a considerable impact on genome evolution but a thorough investigation of these elements in Plasmodium has not been undertaken. We therefore performed a comprehensive genome analysis of these elements and their derivatives in the three Plasmodium species. Whole genome analysis was performed using bioinformatic methods. Forty potential protein encoding sequences with features of transposable elements were identified in P. vivax, eight in P. y. yoelii and only six in P. falciparum. Further investigation of the six open reading frames in P. falciparum revealed that only one is potentially an active mobile genetic element. Most of the open reading frames identified in all three species are hypothetical proteins. Some represent annotated host proteins such as the putative telomerase reverse transcriptase genes in P. y. yoelii and P. falciparum. One of the P. vivax open reading frames identified in this study demonstrates similarity to telomerase reverse transcriptase and we conclude it to be the orthologue of this gene. There is a divergence in the frequencies of mobile genetic elements in the three Plasmodium species investigated. Despite the limitations of whole genome analytical methods, it is tempting to speculate that mobile genetic elements might have been a driving force behind the compositional bias of the P. falciparum genome.

  12. Ecological transition predictably associated with gene degeneration.

    PubMed

    Wessinger, Carolyn A; Rausher, Mark D

    2015-02-01

    Gene degeneration or loss can significantly contribute to phenotypic diversification, but may generate genetic constraints on future evolutionary trajectories, potentially restricting phenotypic reversal. Such constraints may manifest as directional evolutionary trends when parallel phenotypic shifts consistently involve gene degeneration or loss. Here, we demonstrate that widespread parallel evolution in Penstemon from blue to red flowers predictably involves the functional inactivation and degeneration of the enzyme flavonoid 3',5'-hydroxylase (F3'5'H), an anthocyanin pathway enzyme required for the production of blue floral pigments. Other types of genetic mutations do not consistently accompany this phenotypic shift. This pattern may be driven by the relatively large mutational target size of degenerative mutations to this locus and the apparent lack of associated pleiotropic effects. The consistent degeneration of F3'5'H may provide a mechanistic explanation for the observed asymmetry in the direction of flower color evolution in Penstemon: Blue to red transitions are common, but reverse transitions have not been observed. Although phenotypic shifts in this system are likely driven by natural selection, internal constraints may generate predictable genetic outcomes and may restrict future evolutionary trajectories. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Genetic Code Optimization for Cotranslational Protein Folding: Codon Directional Asymmetry Correlates with Antiparallel Betasheets, tRNA Synthetase Classes.

    PubMed

    Seligmann, Hervé; Warthi, Ganesh

    2017-01-01

    A new codon property, codon directional asymmetry in nucleotide content (CDA), reveals a biologically meaningful genetic code dimension: palindromic codons (first and last nucleotides identical, codon structure XZX) are symmetric (CDA = 0), codons with structures ZXX/XXZ are 5'/3' asymmetric (CDA = - 1/1; CDA = - 0.5/0.5 if Z and X are both purines or both pyrimidines, assigning negative/positive (-/+) signs is an arbitrary convention). Negative/positive CDAs associate with (a) Fujimoto's tetrahedral codon stereo-table; (b) tRNA synthetase class I/II (aminoacylate the 2'/3' hydroxyl group of the tRNA's last ribose, respectively); and (c) high/low antiparallel (not parallel) betasheet conformation parameters. Preliminary results suggest CDA-whole organism associations (body temperature, developmental stability, lifespan). Presumably, CDA impacts spatial kinetics of codon-anticodon interactions, affecting cotranslational protein folding. Some synonymous codons have opposite CDA sign (alanine, leucine, serine, and valine), putatively explaining how synonymous mutations sometimes affect protein function. Correlations between CDA and tRNA synthetase classes are weaker than between CDA and antiparallel betasheet conformation parameters. This effect is stronger for mitochondrial genetic codes, and potentially drives mitochondrial codon-amino acid reassignments. CDA reveals information ruling nucleotide-protein relations embedded in reversed (not reverse-complement) sequences (5'-ZXX-3'/5'-XXZ-3').

  14. New Generation Live Vaccines against Human Respiratory Syncytial Virus Designed by Reverse Genetics

    PubMed Central

    Collins, Peter L.; Murphy, Brian R.

    2005-01-01

    Development of a live pediatric vaccine against human respiratory syncytial virus (RSV) is complicated by the need to immunize young infants and the difficulty in balancing attenuation and immunogenicity. The ability to introduce desired mutations into infectious virus by reverse genetics provides a method for identifying and designing highly defined attenuating mutations. These can be introduced in combinations as desired to achieve gradations of attenuation. Attenuation is based on several strategies: multiple independent temperature-sensitive point mutations in the polymerase, a temperature-sensitive point mutation in a transcription signal, a set of non–temperature-sensitive mutations involving several genes, deletion of a viral RNA synthesis regulatory protein, and deletion of viral IFN α/β antagonists. The genetic stability of the live vaccine can be increased by judicious choice of mutations. The virus also can be engineered to increase the level of expression of the protective antigens. Protective antigens from antigenically distinct RSV strains can be added or swapped to increase the breadth of coverage. Alternatively, the major RSV protective antigens can be expressed from transcription units added to an attenuated parainfluenza vaccine virus, making a bivalent vaccine. This would obviate the difficulties inherent in the fragility and inefficient in vitro growth of RSV, simplifying vaccine design and use. PMID:16113487

  15. Reverse Engineering Field Isolates of Myxoma Virus Demonstrates that Some Gene Disruptions or Losses of Function Do Not Explain Virulence Changes Observed in the Field

    PubMed Central

    Liu, June; Cattadori, Isabella M.; Sim, Derek G.; Eden, John-Sebastian; Read, Andrew F.

    2017-01-01

    ABSTRACT The coevolution of myxoma virus (MYXV) and wild European rabbits in Australia and Europe is a paradigm for the evolution of a pathogen in a new host species. Genomic analyses have identified the mutations that have characterized this evolutionary process, but defining causal mutations in the pathways from virulence to attenuation and back to virulence has not been possible. Using reverse genetics, we examined the roles of six selected mutations found in Australian field isolates of MYXV that fall in known or potential virulence genes. Several of these mutations occurred in genes previously identified as virulence genes in whole-gene knockout studies. Strikingly, no single or double mutation among the mutations tested had an appreciable impact on virulence. This suggests either that virulence evolution was defined by amino acid changes other than those analyzed here or that combinations of multiple mutations, possibly involving epistatic interactions or noncoding sequences, have been critical in the ongoing evolution of MYXV virulence. In sum, our results show that single-gene knockout studies of a progenitor virus can have little power to predict the impact of individual mutations seen in the field. The genetic determinants responsible for this canonical case of virulence evolution remain to be determined. IMPORTANCE The species jump of myxoma virus (MYXV) from the South American tapeti to the European rabbit populations of Australia and Europe is a canonical example of host-pathogen coevolution. Detailed molecular studies have identified multiple genes in MYXV that are critical for virulence, and genome sequencing has revealed the evolutionary history of MYXV in Australia and Europe. However, it has not been possible to categorically identify the key mutations responsible for the attenuation of or reversion to virulence during this evolutionary process. Here we use reverse genetics to examine the role of mutations in viruses isolated early and late in the Australian radiation of MYXV. Surprisingly, none of the candidate mutations that we identified as likely having roles in attenuation proved to be important for virulence. This indicates that considerable caution is warranted when interpreting the possible role of individual mutations during virulence evolution. PMID:28768866

  16. Understanding of research, genetics and genetic research in a rapid ethical assessment in north west Cameroon.

    PubMed

    Kengne-Ouafo, Jonas A; Millard, James D; Nji, Theobald M; Tantoh, William F; Nyoh, Doris N; Tendongfor, Nicholas; Enyong, Peter A; Newport, Melanie J; Davey, Gail; Wanji, Samuel

    2016-05-01

    There is limited assessment of whether research participants in low-income settings are afforded a full understanding of the meaning of medical research. There may also be particular issues with the understanding of genetic research. We used a rapid ethical assessment methodology to explore perceptions surrounding the meaning of research, genetics and genetic research in north west Cameroon. Eleven focus group discussions (including 107 adults) and 72 in-depth interviews were conducted with various stakeholders in two health districts in north west Cameroon between February and April 2012. Most participants appreciated the role of research in generating knowledge and identified a difference between research and healthcare but gave varied explanations as to this difference. Most participants' understanding of genetics was limited to concepts of hereditary, with potential benefits limited to the level of the individual or family. Explanations based on supernatural beliefs were identified as a special issue but participants tended not to identify any other special risks with genetic research. We demonstrated a variable level of understanding of research, genetics and genetic research, with implications for those carrying out genetic research in this and other low resource settings. Our study highlights the utility of rapid ethical assessment prior to complex or sensitive research. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  17. Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: a review of the last 20 years (1989-2009).

    PubMed

    de Béthune, Marie-Pierre

    2010-01-01

    It is almost 20 years since NNRTIs were identified as a new class of antiretroviral drugs for the treatment of HIV-1 infection. Although they belong to different and diverse chemical families, they share a common and unique mechanism of action: their interaction with HIV-1 reverse transcriptase induces conformational changes that inhibit the catalytic activities of the enzyme. They are characterized by their specificity for HIV-1, which makes them very selective inhibitors of the virus. First generation NNRTIs nevirapine and efavirenz, in combination with other antiretroviral drugs, have become a cornerstone for the treatment of HIV-1 infection, in patients initiating antiretroviral therapy. Further research has led to the discovery and development of next generation NNRTIs with an increased genetic barrier to the development of resistance. Etravirine is the first NNRTI to show sustained virologic efficacy in patients with NNRTI resistant HIV-1. This review covers the NNRTI class of anti-HIV-1 drugs, from the initial discovery of the class in 1990 to the current compounds in clinical development, i.e. around 20 years of research and development efforts. It describes the characteristics of the NNRTIs, their mechanisms of action, HIV-1 resistance to the inhibitors, and the drugs that have been approved for the treatment of HIV-1 infection, or are currently in clinical development. The role of NNRTIs in prevention of HIV transmission is also addressed. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, vol. 85, issue 1, 2010. Copyright 2009 Elsevier B.V. All rights reserved.

  18. CDK4/6 Inhibitors Sensitize Rb-positive Sarcoma Cells to Wee1 Kinase Inhibition through Reversible Cell-Cycle Arrest.

    PubMed

    Francis, Ashleigh M; Alexander, Angela; Liu, Yanna; Vijayaraghavan, Smruthi; Low, Kwang Hui; Yang, Dong; Bui, Tuyen; Somaiah, Neeta; Ravi, Vinod; Keyomarsi, Khandan; Hunt, Kelly K

    2017-09-01

    Research into the biology of soft tissue sarcomas has uncovered very few effective treatment strategies that improve upon the current standard of care which usually involves surgery, radiation, and chemotherapy. Many patients with large (>5 cm), high-grade sarcomas develop recurrence, and at that point have limited treatment options available. One challenge is the heterogeneity of genetic drivers of sarcomas, and many of these are not validated targets. Even when such genes are tractable targets, the rarity of each subtype of sarcoma makes advances in research slow. Here we describe the development of a synergistic combination treatment strategy that may be applicable in both soft tissue sarcomas as well as sarcomas of bone that takes advantage of targeting the cell cycle. We show that Rb-positive cell lines treated with the CDK4/6 inhibitor palbociclib reversibly arrest in the G 1 phase of the cell cycle, and upon drug removal cells progress through the cell cycle as expected within 6-24 hours. Using a long-term high-throughput assay that allows us to examine drugs in different sequences or concurrently, we found that palbociclib-induced cell-cycle arrest poises Rb-positive sarcoma cells (SK-LMS1 and HT-1080) to be more sensitive to agents that work preferentially in S-G 2 phase such as doxorubicin and Wee1 kinase inhibitors (AZD1775). The synergy between palbociclib and AZD1775 was also validated in vivo using SK-LMS1 xenografts as well as Rb-positive patient-derived xenografts (PDX) developed from leiomyosarcoma patients. This work provides the necessary preclinical data in support of a clinical trial utilizing this treatment strategy. Mol Cancer Ther; 16(9); 1751-64. ©2017 AACR . ©2017 American Association for Cancer Research.

  19. RNAi Screening in Spodoptera frugiperda.

    PubMed

    Ghosh, Subhanita; Singh, Gatikrushna; Sachdev, Bindiya; Kumar, Ajit; Malhotra, Pawan; Mukherjee, Sunil K; Bhatnagar, Raj K

    2016-01-01

    RNA interference is a potent and precise reverse genetic approach to carryout large-scale functional genomic studies in a given organism. During the past decade, RNAi has also emerged as an important investigative tool to understand the process of viral pathogenesis. Our laboratory has successfully generated transgenic reporter and RNAi sensor line of Spodoptera frugiperda (Sf21) cells and developed a reversal of silencing assay via siRNA or shRNA guided screening to investigate RNAi factors or viral pathogenic factors with extraordinary fidelity. Here we describe empirical approaches and conceptual understanding to execute successful RNAi screening in Spodoptera frugiperda 21-cell line.

  20. 40 CFR 798.5265 - The salmonella typhimurium reverse mutation assay.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., exogenous glucose 6-phosphate dehydrogenase, NADH and excess of glucose-6-phosphate. (5) Control groups—(i... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798... number of spontaneous revertants in an untreated and/or vehicle control culture. (2) Description. Several...

  1. 40 CFR 798.5265 - The salmonella typhimurium reverse mutation assay.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., exogenous glucose 6-phosphate dehydrogenase, NADH and excess of glucose-6-phosphate. (5) Control groups—(i... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798... number of spontaneous revertants in an untreated and/or vehicle control culture. (2) Description. Several...

  2. 40 CFR 798.5265 - The salmonella typhimurium reverse mutation assay.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., exogenous glucose 6-phosphate dehydrogenase, NADH and excess of glucose-6-phosphate. (5) Control groups—(i... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798... number of spontaneous revertants in an untreated and/or vehicle control culture. (2) Description. Several...

  3. 40 CFR 798.5265 - The salmonella typhimurium reverse mutation assay.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., exogenous glucose 6-phosphate dehydrogenase, NADH and excess of glucose-6-phosphate. (5) Control groups—(i... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798... number of spontaneous revertants in an untreated and/or vehicle control culture. (2) Description. Several...

  4. 40 CFR 798.5265 - The salmonella typhimurium reverse mutation assay.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., exogenous glucose 6-phosphate dehydrogenase, NADH and excess of glucose-6-phosphate. (5) Control groups—(i... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798... number of spontaneous revertants in an untreated and/or vehicle control culture. (2) Description. Several...

  5. Mycobacterium tuberculosis in Wild Asian Elephants, Southern India.

    PubMed

    Zachariah, Arun; Pandiyan, Jeganathan; Madhavilatha, G K; Mundayoor, Sathish; Chandramohan, Bathrachalam; Sajesh, P K; Santhosh, Sam; Mikota, Susan K

    2017-03-01

    We tested 3 ild Asian elephants (Elephas maximus) in southern India and confirmed infection in 3 animals with Mycobacterium tuberculosis, an obligate human pathogen, by PCR and genetic sequencing. Our results indicate that tuberculosis may be spilling over from humans (reverse zoonosis) and emerging in wild elephants.

  6. Next-generation sequencing for targeted discovery of rare mutations in rice

    USDA-ARS?s Scientific Manuscript database

    Advances in DNA sequencing (i.e., next-generation sequencing, NGS) have greatly increased the power and efficiency of detecting rare mutations in large mutant populations. Targeting Induced Local Lesions in Genomes (TILLING) is a reverse genetics approach for identifying gene mutations resulting fro...

  7. Parents' attitudes toward genetic research in autism spectrum disorder.

    PubMed

    Johannessen, Jarle; Nærland, Terje; Bloss, Cinnamon; Rietschel, Marcella; Strohmaier, Jana; Gjevik, Elen; Heiberg, Arvid; Djurovic, Srdjan; Andreassen, Ole A

    2016-04-01

    Genetic research in autism spectrum disorder (ASD) is mainly performed in minors who are legally unable to provide consent. Thus, knowledge of the attitudes, fears, and expectations toward genetic research of the parents is important. Knowledge of the attitudes toward genetic research will improve cooperation between researchers and participants, and help establish confidence in ASD genetic research. The present study aimed to assess these attitudes. Questionnaire-based assessments of attitudes toward genetic research and toward procedures in genetic research of n=1455 parents of individuals with ASD were performed. The main motivation for participation in genetic research is to gain more knowledge of the causes and disease mechanisms of ASD (83.6%), and to contribute toward development of improved treatment in the future (63.7%). The parents also had a positive attitude towards storing genetic information (54.3%) and they requested confidentiality of data (82.9%) and expressed a need to be informed about the purpose (89%) and progress of the research (83.7%). We found a slightly more positive attitude to participation in genetic research among older parents (P=0.015), among fathers compared with mothers (P=0.01), among parents of girls compared with boys (P=0.03), and infantile autism compared with Asperger syndrome (P=0.002). However, linear regression analysis showed that parent and child characteristics seem to have too small an influence on attitudes toward genetic research to be of any relevance (R(2)=0.002-0.02). Parents of children with ASD have, in general, a very positive attitude toward genetic research. Data confidentiality is important, and they express a need for information on the purpose and progress of the research.

  8. Coexistence of Y, W, and Z sex chromosomes in Xenopus tropicalis

    PubMed Central

    Roco, Álvaro S.; Olmstead, Allen W.; Degitz, Sigmund J.; Amano, Tosikazu; Zimmerman, Lyle B.; Bullejos, Mónica

    2015-01-01

    Homomorphic sex chromosomes and rapid turnover of sex-determining genes can complicate establishing the sex chromosome system operating in a given species. This difficulty exists in Xenopus tropicalis, an anuran quickly becoming a relevant model for genetic, genomic, biochemical, and ecotoxicological research. Despite the recent interest attracted by this species, little is known about its sex chromosome system. Direct evidence that females are the heterogametic sex, as in the related species Xenopus laevis, has yet to be presented. Furthermore, X. laevis’ sex-determining gene, DM-W, does not exist in X. tropicalis, and the sex chromosomes in the two species are not homologous. Here we identify X. tropicalis’ sex chromosome system by integrating data from (i) breeding sex-reversed individuals, (ii) gynogenesis, (iii) triploids, and (iv) crosses among several strains. Our results indicate that at least three different types of sex chromosomes exist: Y, W, and Z, observed in YZ, YW, and ZZ males and in ZW and WW females. Because some combinations of parental sex chromosomes produce unisex offspring and other distorted sex ratios, understanding the sex-determination systems in X. tropicalis is critical for developing this flexible animal model for genetics and ecotoxicology. PMID:26216983

  9. Animal models of arrhythmogenic right ventricular cardiomyopathy: what have we learned and where do we go? Insight for therapeutics.

    PubMed

    Padrón-Barthe, Laura; Domínguez, Fernando; Garcia-Pavia, Pablo; Lara-Pezzi, Enrique

    2017-09-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a rare genetically-determined cardiac heart muscle disorder characterized by fibro-fatty replacement of the myocardium that results in heart failure and sudden cardiac death (SCD), predominantly in young males. The disease is often caused by mutations in genes encoding proteins of the desmosomal complex, with a significant minority caused by mutations in non-desmosomal proteins. Existing treatment options are based on SCD prevention with the implantable cardioverter defibrillator, antiarrhythmic drugs, and anti-heart failure medication. Heart transplantation may also be required and there is currently no cure. Several genetically modified animal models have been developed to characterize the disease, assess its progression, and determine the influence of potential environmental factors. These models have also been very valuable for translational therapeutic approaches, to screen new treatment options that prevent and/or reverse the disease. Here, we review the available ARVC animal models reported to date, highlighting the most important pathophysiological findings and discussing the effect of treatments tested so far in this setting. We also describe gaps in our knowledge of the disease, with the goal of stimulating research and improving patient outcomes.

  10. Genetic stability of Rift Valley fever virus MP-12 vaccine during serial passages in culture cells.

    PubMed

    Lokugamage, Nandadeva; Ikegami, Tetsuro

    2017-01-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa which affects both ruminants and humans. RVF causes serious damage to the livestock industry and is also a threat to public health. The Rift Valley fever virus has a segmented negative-stranded RNA genome consisting of Large (L)-, Medium (M)-, and Small (S)-segments. The live-attenuated MP-12 vaccine is immunogenic in livestock and humans, and is conditionally licensed for veterinary use in the U.S. The MP-12 strain encodes 23 mutations (nine amino acid substitutions) and is attenuated through a combination of mutations in the L-, M-, and S-segments. Among them, the M-U795C, M-A3564G, and L-G3104A mutations contribute to viral attenuation through the L- and M-segments. The M-U795C, M-A3564G, L-U533C, and L-G3750A mutations are also independently responsible for temperature-sensitive (ts) phenotype. We hypothesized that a serial passage of the MP-12 vaccine in culture cells causes reversions of the MP-12 genome. The MP-12 vaccine and recombinant rMP12-ΔNSs16/198 were serially passaged 25 times. Droplet digital PCR analysis revealed that the reversion occurred at L-G3750A during passages of MP-12 in Vero or MRC-5 cells. The reversion also occurred at M-A3564G and L-U533C of rMP12-ΔNSs16/198 in Vero cells. Reversion mutations were not found in MP-12 or the variant, rMP12-TOSNSs, in the brains of mice with encephalitis. This study characterized genetic stability of the MP-12 vaccine and the potential risk of reversion mutation at the L-G3750A ts mutation after excessive viral passages in culture cells.

  11. An Exploration of Attitudes Among Black Americans Towards Psychiatric Genetic Research

    PubMed Central

    Murphy, Eleanor; Thompson, Azure

    2011-01-01

    With increasing emphasis on understanding genetic contribution to disease, inclusion of all racial and ethnic groups in molecular genetic research is necessary to ensure parity in distribution of research benefits. Blacks are underrepresented in large-scale genetic studies of psychiatric disorders. In an effort to understand the reasons for the underrepresentation, this study explored black participants’ attitudes towards genetic research of psychiatric disorders. Twenty-six adults, the majority of whom were black (n = 18) were recruited from a New York City community to participate in six 90-minute focus groups. This paper reports findings about respondents’ understanding of genetics and genetic research, and opinions about psychiatric genetic research. Primary themes revealed participants’ perceived lack of knowledge about genetics, concerns about potentially harmful study procedures, and confidentiality surrounding mental illness in families. Participation incentives included provision of treatment or related service, monetary compensation, and reporting of results to participants. These findings suggest that recruitment of subjects into genetic studies should directly address procedures, privacy, benefits and follow-up with results. Further, there is critical need to engage communities with education about genetics and mental illness, and provide opportunities for continued discussion about concerns related to genetic research. PMID:19614555

  12. Environmental change, phenotypic plasticity, and genetic compensation.

    PubMed

    Grether, Gregory F

    2005-10-01

    When a species encounters novel environmental conditions, some phenotypic characters may develop differently than in the ancestral environment. Most environmental perturbations of development are likely to reduce fitness, and thus selection would usually be expected to favor genetic changes that restore the ancestral phenotype. I propose the term "genetic compensation" to refer to this form of adaptive evolution. Genetic compensation is a subset of genetic accommodation and the reverse of genetic assimilation. When genetic compensation has occurred along a spatial environmental gradient, the mean trait values of populations in different environments may be more similar in the field than when representatives of the same populations are raised in a common environment (i.e., countergradient variation). If compensation is complete, genetic divergence between populations may be cryptic, that is, not detectable in the field. Here I apply the concept of genetic compensation to three examples involving carotenoid-based sexual coloration and then use these and other examples to discuss the concept in a broader context. I show that genetic compensation may lead to a cryptic form of reproductive isolation between populations evolving in different environments, may explain some puzzling cases in which heritable traits exposed to strong directional selection fail to show the expected evolutionary response, and may complicate efforts to monitor populations for signs of environmental deterioration.

  13. Developing weighted criteria to evaluate lean reverse logistics through analytical network process

    NASA Astrophysics Data System (ADS)

    Zagloel, Teuku Yuri M.; Hakim, Inaki Maulida; Krisnawardhani, Rike Adyartie

    2017-11-01

    Reverse logistics is a part of supply chain that bring materials from consumers back to manufacturer in order to gain added value or do a proper disposal. Nowadays, most companies are still facing several problems on reverse logistics implementation which leads to high waste along reverse logistics processes. In order to overcome this problem, Madsen [Framework for Reverse Lean Logistics to Enable Green Manufacturing, Eco Design 2009: 6th International Symposium on Environmentally Conscious Design and Inverse Manufacturing, Sapporo, 2009] has developed a lean reverse logistics framework as a step to eliminate waste by implementing lean on reverse logistics. However, the resulted framework sets aside criteria used to evaluate its performance. This research aims to determine weighted criteria that can be used as a base on reverse logistics evaluation by considering lean principles. The resulted criteria will ensure reverse logistics are kept off from waste, thus implemented efficiently. Analytical Network Process (ANP) is used in this research to determine the weighted criteria. The result shows that criteria used for evaluation lean reverse logistics are Innovation and Learning (35%), Economic (30%), Process Flow Management (14%), Customer Relationship Management (13%), Environment (6%), and Social (2%).

  14. Lower genetic variability of HIV-1 and antiretroviral drug resistance in pregnant women from the state of Pará, Brazil.

    PubMed

    Machado, Luiz Fernando Almeida; Costa, Iran Barros; Folha, Maria Nazaré; da Luz, Anderson Levy Bessa; Vallinoto, Antonio Carlos Rosário; Ishak, Ricardo; Ishak, Marluisa Oliveira Guimarães

    2017-04-12

    The present study aimed to describe the genetic diversity of HIV-1, as well as the resistance profile of the viruses identified in HIV-1 infected pregnant women under antiretroviral therapy in the state of Pará, Northern Brazil. Blood samples were collected from 45 HIV-1 infected pregnant to determine the virus subtypes according to the HIV-1 protease (PR) gene and part of the HIV-1 reverse transcriptase (RT) gene by sequencing the nucleotides of these regions. Drug resistance mutations and susceptibility to antiretroviral drugs were analyzed by the Stanford HIV Drug Resistance Database. Out of 45 samples, only 34 could be amplified for PR and 30 for RT. Regarding the PR gene, subtypes B (97.1%) and C (2.9%) were identified; for the RT gene, subtypes B (90.0%), F (6.7%), and C (3.3%) were detected. Resistance to protease inhibitors (PI) was identified in 5.8% of the pregnant, and mutations conferring resistance to nucleoside reverse transcriptase inhibitors were found in 3.3%, while mutations conferring resistance to non-nucleoside reverse transcriptase inhibitors were found in 3.3%. These results showed a low frequency of strains resistant to antiretroviral drugs, the prevalence of subtypes B and F, and the persistent low transmission of subtype C in pregnant of the state of Pará, Brazil.

  15. Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome

    USDA-ARS?s Scientific Manuscript database

    Aberrant epigenetic alterations in the genome such as DNA methylation and chromatin remodeling play a significant role in breast cancer development. Since epigenetic alterations are considered to be more easily reversible compared to genetic changes, epigenetic therapy is potentially very useful in ...

  16. HuR interacts with human immunodeficiency virus type 1 reverse transcriptase, and modulates reverse transcription in infected cells

    PubMed Central

    Lemay, Julie; Maidou-Peindara, Priscilla; Bader, Thomas; Ennifar, Eric; Rain, Jean-Christophe; Benarous, Richard; Liu, Lang Xia

    2008-01-01

    Reverse transcription of the genetic material of human immunodeficiency virus type 1 (HIV-1) is a critical step in the replication cycle of this virus. This process, catalyzed by reverse transcriptase (RT), is well characterized at the biochemical level. However, in infected cells, reverse transcription occurs in a multiprotein complex – the reverse transcription complex (RTC) – consisting of viral genomic RNA associated with viral proteins (including RT) and, presumably, as yet uncharacterized cellular proteins. Very little is known about the cellular proteins interacting with the RTC, and with reverse transcriptase in particular. We report here that HIV-1 reverse transcription is affected by the levels of a nucleocytoplasmic shuttling protein – the RNA-binding protein HuR. A direct protein-protein interaction between RT and HuR was observed in a yeast two-hybrid screen and confirmed in vitro by homogenous time-resolved fluorescence (HTRF). We mapped the domain interacting with HuR to the RNAse H domain of RT, and the binding domain for RT to the C-terminus of HuR, partially overlapping the third RRM RNA-binding domain of HuR. HuR silencing with specific siRNAs greatly impaired early and late steps of reverse transcription, significantly inhibiting HIV-1 infection. Moreover, by mutagenesis and immunoprecipitation studies, we could not detect the binding of HuR to the viral RNA. These results suggest that HuR may be involved in and may modulate the reverse transcription reaction of HIV-1, by an as yet unknown mechanism involving a protein-protein interaction with HIV-1 RT. PMID:18544151

  17. Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.

    PubMed

    Wen, Shameng; Meng, Qingkun; Feng, Chao; Tang, Chaojing

    2017-01-01

    Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.

  18. Rapid Quantification of Abscisic Acid by GC-MS/MS for Studies of Abiotic Stress Response.

    PubMed

    Verslues, Paul E

    2017-01-01

    Drought and low water potential induce large increases in Abscisic Acid (ABA ) content of plant tissue. This increased ABA content is essential to regulate downstream stress resistance responses; however, the mechanisms regulating ABA accumulation are incompletely known. Thus, the ability to accurately quantify ABA at high throughput and low cost is important for plant stress research. We have combined and modified several previously published protocols to establish a rapid ABA analysis protocol using gas chromatography-tandem mass spectrometry (GC-MS/MS). Derivatization of ABA is performed with (trimethylsilyl)-diazomethane rather than the harder to prepare diazomethane. Sensitivity of the analysis is sufficient that small samples of low water potential treated Arabidopsis thaliana seedlings can be routinely analyzed in reverse genetic studies of putative stress regulators as well as studies of natural variation in ABA accumulation.

  19. Chemical genomics: characterizing target pathways for bioactive compounds using the endomembrane trafficking network.

    PubMed

    Rodriguez-Furlán, Cecilia; Hicks, Glenn R; Norambuena, Lorena

    2014-01-01

    The plant endomembrane trafficking system is a highly complex set of processes. This complexity presents a challenge for its study. Classical plant genetics often struggles with loss-of-function lethality and gene redundancy. Chemical genomics allows overcoming many of these issues by using small molecules of natural or synthetic origin to inhibit specific trafficking proteins thereby affecting the processes in a tunable and reversible manner. Bioactive chemicals identified by high-throughput phenotype screens must be characterized in detail starting with understanding of the specific trafficking pathways affected. Here, we describe approaches to characterize bioactive compounds that perturb vesicle trafficking. This should equip researchers with practical knowledge on how to identify endomembrane-specific trafficking pathways that may be perturbed by specific compounds and will help to eventually identify molecular targets for these small molecules.

  20. Reliable transformation system for Microbotryum lychnidis-dioicae informed by genome and transcriptome project.

    PubMed

    Toh, Su San; Treves, David S; Barati, Michelle T; Perlin, Michael H

    2016-10-01

    Microbotryum lychnidis-dioicae is a member of a species complex infecting host plants in the Caryophyllaceae. It is used as a model system in many areas of research, but attempts to make this organism tractable for reverse genetic approaches have not been fruitful. Here, we exploited the recently obtained genome sequence and transcriptome analysis to inform our design of constructs for use in Agrobacterium-mediated transformation techniques currently available for other fungi. Reproducible transformation was demonstrated at the genomic, transcriptional and functional levels. Moreover, these initial proof-of-principle experiments provide evidence that supports the findings from initial global transcriptome analysis regarding expression from the respective promoters under different growth conditions of the fungus. The technique thus provides for the first time the ability to stably introduce transgenes and over-express target M. lychnidis-dioicae genes.

  1. Top1 May Do More Than Relax DNA | Center for Cancer Research

    Cancer.gov

    Topoisomerase 1 (Top1) is an enzyme with a well known role in relaxing DNA supercoils by making reversible nicks in DNA. The ribonuclease (RNase) H class of enzymes is equally well known for removing ribonucleotides from hybrid duplex DNA when they are misincorporated during DNA replication. Recently, Shar-yin Huang, Ph.D., and Yves Pommier, M.D., Ph.D., in CCR’s Laboratory of Molecular Pharmacology teamed up with Sue Jinks-Robertson of Duke University’s Department of Molecular Genetics and Microbiology and Thomas Kunkel of the NIEHS, NIH to show that in yeast, Top1 can act like the RNase H class enzymes and convert misincorporated single ribonucleotides into irreversible single-strand breaks, an activity that produces deletion mutations.  They reported this discovery in Science.

  2. Breaking the rules: sex roles and genetic mating system of the pheasant coucal.

    PubMed

    Maurer, G; Double, M C; Milenkaya, O; Süsser, M; Magrath, R D

    2011-10-01

    Generally in birds, the classic sex roles of male competition and female choice result in females providing most offspring care while males face uncertain parentage. In less than 5% of species, however, reversed courtship sex roles lead to predominantly male care and low extra-pair paternity. These role-reversed species usually have reversed sexual size dimorphism and polyandry, confirming that sexual selection acts most strongly on the sex with the smaller parental investment and accordingly higher potential reproductive rate. We used parentage analyses and observations from three field seasons to establish the social and genetic mating system of pheasant coucals, Centropus phasianinus, a tropical nesting cuckoo, where males are much smaller than females and provide most parental care. Pheasant coucals are socially monogamous and in this study males produced about 80% of calls in the dawn chorus, implying greater male sexual competition. Despite the substantial male investments, extra-pair paternity was unusually high for a socially monogamous, duetting species. Using two or more mismatches to determine extra-pair parentage, we found that 11 of 59 young (18.6%) in 10 of 21 broods (47.6%) were not sired by their putative father. Male incubation, starting early in the laying sequence, may give the female opportunity and reason to seek these extra-pair copulations. Monogamy, rather than the polyandry and sex-role reversal typical of its congener, C. grillii, may be the result of the large territory size, which could prevent females from monopolising multiple males. The pheasant coucal's exceptional combination of classic sex-roles and male-biased care for extra-pair young is hard to reconcile with current sexual selection theory, but may represent an intermediate stage in the evolution of polyandry or an evolutionary remnant of polyandry.

  3. Computational discovery and in vivo validation of hnf4 as a regulatory gene in planarian regeneration.

    PubMed

    Lobo, Daniel; Morokuma, Junji; Levin, Michael

    2016-09-01

    Automated computational methods can infer dynamic regulatory network models directly from temporal and spatial experimental data, such as genetic perturbations and their resultant morphologies. Recently, a computational method was able to reverse-engineer the first mechanistic model of planarian regeneration that can recapitulate the main anterior-posterior patterning experiments published in the literature. Validating this comprehensive regulatory model via novel experiments that had not yet been performed would add in our understanding of the remarkable regeneration capacity of planarian worms and demonstrate the power of this automated methodology. Using the Michigan Molecular Interactions and STRING databases and the MoCha software tool, we characterized as hnf4 an unknown regulatory gene predicted to exist by the reverse-engineered dynamic model of planarian regeneration. Then, we used the dynamic model to predict the morphological outcomes under different single and multiple knock-downs (RNA interference) of hnf4 and its predicted gene pathway interactors β-catenin and hh Interestingly, the model predicted that RNAi of hnf4 would rescue the abnormal regenerated phenotype (tailless) of RNAi of hh in amputated trunk fragments. Finally, we validated these predictions in vivo by performing the same surgical and genetic experiments with planarian worms, obtaining the same phenotypic outcomes predicted by the reverse-engineered model. These results suggest that hnf4 is a regulatory gene in planarian regeneration, validate the computational predictions of the reverse-engineered dynamic model, and demonstrate the automated methodology for the discovery of novel genes, pathways and experimental phenotypes. michael.levin@tufts.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Origin and evolution of SINEs in eukaryotic genomes.

    PubMed

    Kramerov, D A; Vassetzky, N S

    2011-12-01

    Short interspersed elements (SINEs) are one of the two most prolific mobile genomic elements in most of the higher eukaryotes. Although their biology is still not thoroughly understood, unusual life cycle of these simple elements amplified as genomic parasites makes their evolution unique in many ways. In contrast to most genetic elements including other transposons, SINEs emerged de novo many times in evolution from available molecules (for example, tRNA). The involvement of reverse transcription in their amplification cycle, huge number of genomic copies and modular structure allow variation mechanisms in SINEs uncommon or rare in other genetic elements (module exchange between SINE families, dimerization, and so on.). Overall, SINE evolution includes their emergence, progressive optimization and counteraction to the cell's defense against mobile genetic elements.

  5. Our retroviral heritage.

    PubMed

    Patience, C; Wilkinson, D A; Weiss, R A

    1997-03-01

    Darwin could not have foretold that we are descended from viruses as well as from apes. While there is clear evidence that viral diseases, such as polio and rabies, affected ancient civilizations, viruses were not defined until the early years of this century, shortly after the rediscovery of mendelian genetics. That retroviral genomes can oscillate between infectious and genetic modes of transmission seemed preposterous before the discovery of reverse transcription in 1970. Those of us who had earlier provided mendelian evidence for germ-line transmission of retroviruses were subject of friendly ridicule. Today, the shunting of genetic elements between chromosomes and RNA, and the generation of processed pseudogenes, seems commonplace. It is timely, however, to revisit the topic of human endogenous retroviruses-the subject of this article.

  6. How decision reversibility affects motivation.

    PubMed

    Bullens, Lottie; van Harreveld, Frenk; Förster, Jens; Higgins, Tory E

    2014-04-01

    The present research examined how decision reversibility can affect motivation. On the basis of extant findings, it was suggested that 1 way it could affect motivation would be to strengthen different regulatory foci, with reversible decision making, compared to irreversible decision making, strengthening prevention-related motivation relatively more than promotion-related motivation. If so, then decision reversibility should have effects associated with the relative differences between prevention and promotion motivation. In 5 studies, we manipulated the reversibility of a decision and used different indicators of regulatory focus motivation to test these predictions. Specifically, Study 1 tested for differences in participants' preference for approach versus avoidance strategies toward a desired end state. In Study 2, we used speed and accuracy performance as indicators of participants' regulatory motivation, and in Study 3, we measured global versus local reaction time performance. In Study 4, we approached the research question in a different way, making use of the value-from-fit hypothesis (Higgins, 2000, 2002). We tested whether a fit between chronic regulatory focus and focus induced by the reversibility of the decision increased participants' subjective positive feelings about the decision outcome. Finally, in Study 5, we tested whether regulatory motivation, induced by decision reversibility, also influenced participants' preference in specific product features. The results generally support our hypothesis showing that, compared to irreversible decisions, reversible decisions strengthen a prevention focus more than a promotion focus. Implications for research on decision making are discussed.

  7. Evaluation of a genetically modified foot-and-mouth disease virus vaccine candidate generated by reverse genetics

    PubMed Central

    2012-01-01

    Background Foot-and-mouth disease (FMD) is the most economically important and highly contagious disease of cloven-hoofed animals worldwide. Control of the disease has been mainly based on large-scale vaccinations with whole-virus inactivated vaccines. In recent years, a series of outbreaks of type O FMD occurred in China (including Chinese Taipei, Chinese Hong Kong) posed a tremendous threat to Chinese animal husbandry. Its causative agent, type O FMDV, has evolved into three topotypes (East–South Asia (ME-SA), Southeast Asia (SEA), Cathay (CHY)) in these regions, which represents an important obstacle to disease control. The available FMD vaccine in China shows generally good protection against ME-SA and SEA topotype viruses infection, but affords insufficient protection against some variants of the CHY topotype. Therefore, the choice of a new vaccine strain is of fundamental importance. Results The present study describes the generation of a full-length infectious cDNA clone of FMDV vaccine strain and a genetically modified virus with some amino acid substitutions in antigenic sites 1, 3, and 4, based on the established infectious clone. The recombinant viruses had similar growth properties to the wild O/HN/CHA/93 virus. All swine immunized with inactivated vaccine prepared from the O/HN/CHA/93 were fully protected from challenge with the viruses of ME-SA and SEA topotypes and partially protected against challenge with the virus of CHY topotype at 28 days post-immunization. In contrast, the swine inoculated with the genetically modified vaccine were completely protected from the infection of viruses of the three topotypes. Conclusions Some amino acid substitutions in the FMDV vaccine strain genome did not have an effect on the ability of viral replication in vitro. The vaccine prepared from genetically modified FMDV by reverse genetics significantly improved the protective efficacy to the variant of the CHY topotype, compared with the wild O/HN/CHA/93 virus. Thus, the full-length cDNA clone of FMDV can be a useful tool to develop genetically engineered FMDV vaccine candidates to help control porcinophilic FMD epidemics in China. PMID:22591597

  8. Genetic mating systems and reproductive natural histories of fishes: lessons for ecology and evolution.

    PubMed

    Avise, John C; Jones, Adam G; Walker, DeEtte; DeWoody, J Andrew

    2002-01-01

    Fish species have diverse breeding behaviors that make them valuable for testing theories on genetic mating systems and reproductive tactics. Here we review genetic appraisals of paternity and maternity in wild fish populations. Behavioral phenomena quantified by genetic markers in various species include patterns of multiple mating by both sexes; frequent cuckoldry by males and rare cuckoldry by females in nest-tending species; additional routes to surrogate parentage via nest piracy and egg-thievery; egg mimicry by nest-tending males; brood parasitism by helper males in cooperative breeders; clutch mixing in oral brooders; kinship in schooling fry of broadcast spawners; sperm storage by dams in female-pregnant species; and sex-role reversal, polyandry, and strong sexual selection on females in some male-pregnant species. Additional phenomena addressed by genetic parentage analyses in fishes include clustered mutations, filial cannibalism, and local population size. All results are discussed in the context of relevant behavioral and evolutionary theory.

  9. Gene silencing in non-model insects: Overcoming hurdles using symbiotic bacteria for trauma-free sustainable delivery of RNA interference: Sustained RNA interference in insects mediated by symbiotic bacteria: Applications as a genetic tool and as a biocide.

    PubMed

    Whitten, Miranda; Dyson, Paul

    2017-03-01

    Insight into animal biology and development provided by classical genetic analysis of the model organism Drosophila melanogaster was an incentive to develop advanced genetic tools for this insect. But genetic systems for the over one million other known insect species are largely undeveloped. With increasing information about insect genomes resulting from next generation sequencing, RNA interference is now the method of choice for reverse genetics, although it is constrained by the means of delivery of interfering RNA. A recent advance to ensure sustained delivery with minimal experimental intervention or trauma to the insect is to exploit commensal bacteria for symbiont-mediated RNA interference. This technology not only offers an efficient means for RNA interference in insects in laboratory conditions, but also has potential for use in the control of human disease vectors, agricultural pests and pathogens of beneficial insects. © 2017 WILEY Periodicals, Inc.

  10. Complex Ancient Genetic Structure and Cultural Transitions in Southern African Populations.

    PubMed

    Montinaro, Francesco; Busby, George B J; Gonzalez-Santos, Miguel; Oosthuitzen, Ockie; Oosthuitzen, Erika; Anagnostou, Paolo; Destro-Bisol, Giovanni; Pascali, Vincenzo L; Capelli, Cristian

    2017-01-01

    The characterization of the structure of southern African populations has been the subject of numerous genetic, medical, linguistic, archaeological, and anthropological investigations. Current diversity in the subcontinent is the result of complex events of genetic admixture and cultural contact between early inhabitants and migrants that arrived in the region over the last 2000 years. Here, we analyze 1856 individuals from 91 populations, comprising novel and published genotype data, to characterize the genetic ancestry profiles of 631 individuals from 51 southern African populations. Combining both local ancestry and allele frequency based analyses, we identify a tripartite, ancient, Khoesan-related genetic structure. This structure correlates neither with linguistic affiliation nor subsistence strategy, but with geography, revealing the importance of isolation-by-distance dynamics in the area. Fine-mapping of these components in southern African populations reveals admixture and cultural reversion involving several Khoesan groups, and highlights that Bantu speakers and Coloured individuals have different mixtures of these ancient ancestries. Copyright © 2017 Montinaro et al.

  11. Isolated growth hormone deficiency (GHD) in childhood and adolescence: recent advances.

    PubMed

    Alatzoglou, Kyriaki S; Webb, Emma Alice; Le Tissier, Paul; Dattani, Mehul T

    2014-06-01

    The diagnosis of GH deficiency (GHD) in childhood is a multistep process involving clinical history, examination with detailed auxology, biochemical testing, and pituitary imaging, with an increasing contribution from genetics in patients with congenital GHD. Our increasing understanding of the factors involved in the development of somatotropes and the dynamic function of the somatotrope network may explain, at least in part, the development and progression of childhood GHD in different age groups. With respect to the genetic etiology of isolated GHD (IGHD), mutations in known genes such as those encoding GH (GH1), GHRH receptor (GHRHR), or transcription factors involved in pituitary development, are identified in a relatively small percentage of patients suggesting the involvement of other, yet unidentified, factors. Genome-wide association studies point toward an increasing number of genes involved in the control of growth, but their role in the etiology of IGHD remains unknown. Despite the many years of research in the area of GHD, there are still controversies on the etiology, diagnosis, and management of IGHD in children. Recent data suggest that childhood IGHD may have a wider impact on the health and neurodevelopment of children, but it is yet unknown to what extent treatment with recombinant human GH can reverse this effect. Finally, the safety of recombinant human GH is currently the subject of much debate and research, and it is clear that long-term controlled studies are needed to clarify the consequences of childhood IGHD and the long-term safety of its treatment.

  12. Barriers to the use of genetic information for the development of new epilepsy treatments.

    PubMed

    Ferraro, Thomas N

    2016-01-01

    Genetic analysis is providing new information on the biological basis of epilepsy at a rapid pace; this article identifies factors acting as major barriers to use of these data for therapy development. Disease heterogeneity is a primary obstacle since so many genes can cause or predispose to epilepsy and the clinical presentation of epilepsy is so diverse, thus making it difficult to define the most therapeutically relevant targets. Further, many epilepsy genes affect brain development, an observation that represents a barrier unto itself given the challenge of reversing or preventing genetically mediated alterations of brain pathway formation. Finally, the lack of appropriate models for testing new therapies is also recognized as a fundamental limitation. Overcoming these barriers will be aided by full characterization of the genetic landscape of epilepsy, elucidation of key pathway points for therapeutic intervention and creation of unique experimental models to validate results.

  13. Development of an innovative immunoassay for CP4EPSPS and Cry1AB genetically modified protein detection and quantification.

    PubMed

    Ermolli, M; Prospero, A; Balla, B; Querci, M; Mazzeo, A; Van Den Eede, G

    2006-09-01

    An innovative immunoassay, called enzyme-linked immunoabsorbant assay (ELISA) Reverse, based on a new conformation of the solid phase, was developed. The solid support was expressly designed to be immersed directly in liquid samples to detect the presence of protein targets. Its application is proposed in those cases where a large number of samples have to be screened simultaneously or when the simultaneous detection of different proteins is required. As a first application, a quantitative immunoassay for Cry1AB protein in genetically modified maize was optimized. The method was tested using genetically modified organism concentrations from 0.1 to 2.0%. The limit of detection and limit of quantitation of the method were determined as 0.0056 and 0.0168 (expressed as the percentage of genetically modified organisms content), respectively. A qualitative multiplex assay to assess the presence of two genetically modified proteins simultaneously was also established for the case of the Cry1AB and the CP4EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) present in genetically modified maize and soy, respectively.

  14. Gene Drive for Mosquito Control: Where Did It Come from and Where Are We Headed?

    PubMed Central

    Macias, Vanessa M.; Ohm, Johanna R.; Rasgon, Jason L.

    2017-01-01

    Mosquito-borne pathogens place an enormous burden on human health. The existing toolkit is insufficient to support ongoing vector-control efforts towards meeting disease elimination and eradication goals. The perspective that genetic approaches can potentially add a significant set of tools toward mosquito control is not new, but the recent improvements in site-specific gene editing with CRISPR/Cas9 systems have enhanced our ability to both study mosquito biology using reverse genetics and produce genetics-based tools. Cas9-mediated gene-editing is an efficient and adaptable platform for gene drive strategies, which have advantages over innundative release strategies for introgressing desirable suppression and pathogen-blocking genotypes into wild mosquito populations; until recently, an effective gene drive has been largely out of reach. Many considerations will inform the effective use of new genetic tools, including gene drives. Here we review the lengthy history of genetic advances in mosquito biology and discuss both the impact of efficient site-specific gene editing on vector biology and the resulting potential to deploy new genetic tools for the abatement of mosquito-borne disease. PMID:28869513

  15. Predicting attention-deficit/hyperactivity disorder severity from psychosocial stress and stress-response genes: a random forest regression approach

    PubMed Central

    van der Meer, D; Hoekstra, P J; van Donkelaar, M; Bralten, J; Oosterlaan, J; Heslenfeld, D; Faraone, S V; Franke, B; Buitelaar, J K; Hartman, C A

    2017-01-01

    Identifying genetic variants contributing to attention-deficit/hyperactivity disorder (ADHD) is complicated by the involvement of numerous common genetic variants with small effects, interacting with each other as well as with environmental factors, such as stress exposure. Random forest regression is well suited to explore this complexity, as it allows for the analysis of many predictors simultaneously, taking into account any higher-order interactions among them. Using random forest regression, we predicted ADHD severity, measured by Conners’ Parent Rating Scales, from 686 adolescents and young adults (of which 281 were diagnosed with ADHD). The analysis included 17 374 single-nucleotide polymorphisms (SNPs) across 29 genes previously linked to hypothalamic–pituitary–adrenal (HPA) axis activity, together with information on exposure to 24 individual long-term difficulties or stressful life events. The model explained 12.5% of variance in ADHD severity. The most important SNP, which also showed the strongest interaction with stress exposure, was located in a region regulating the expression of telomerase reverse transcriptase (TERT). Other high-ranking SNPs were found in or near NPSR1, ESR1, GABRA6, PER3, NR3C2 and DRD4. Chronic stressors were more influential than single, severe, life events. Top hits were partly shared with conduct problems. We conclude that random forest regression may be used to investigate how multiple genetic and environmental factors jointly contribute to ADHD. It is able to implicate novel SNPs of interest, interacting with stress exposure, and may explain inconsistent findings in ADHD genetics. This exploratory approach may be best combined with more hypothesis-driven research; top predictors and their interactions with one another should be replicated in independent samples. PMID:28585928

  16. Leaf phenomics: a systematic reverse genetic screen for Arabidopsis leaf mutants.

    PubMed

    Wilson-Sánchez, David; Rubio-Díaz, Silvia; Muñoz-Viana, Rafael; Pérez-Pérez, José Manuel; Jover-Gil, Sara; Ponce, María Rosa; Micol, José Luis

    2014-09-01

    The study and eventual manipulation of leaf development in plants requires a thorough understanding of the genetic basis of leaf organogenesis. Forward genetic screens have identified hundreds of Arabidopsis mutants with altered leaf development, but the genome has not yet been saturated. To identify genes required for leaf development we are screening the Arabidopsis Salk Unimutant collection. We have identified 608 lines that exhibit a leaf phenotype with full penetrance and almost constant expressivity and 98 additional lines with segregating mutant phenotypes. To allow indexing and integration with other mutants, the mutant phenotypes were described using a custom leaf phenotype ontology. We found that the indexed mutation is present in the annotated locus for 78% of the 553 mutants genotyped, and that in half of these the annotated T-DNA is responsible for the phenotype. To quickly map non-annotated T-DNA insertions, we developed a reliable, cost-effective and easy method based on whole-genome sequencing. To enable comprehensive access to our data, we implemented a public web application named PhenoLeaf (http://genetics.umh.es/phenoleaf) that allows researchers to query the results of our screen, including text and visual phenotype information. We demonstrated how this new resource can facilitate gene function discovery by identifying and characterizing At1g77600, which we found to be required for proximal-distal cell cycle-driven leaf growth, and At3g62870, which encodes a ribosomal protein needed for cell proliferation and chloroplast function. This collection provides a valuable tool for the study of leaf development, characterization of biomass feedstocks and examination of other traits in this fundamental photosynthetic organ. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  17. The neuroimaging of Leigh syndrome: case series and review of the literature.

    PubMed

    Bonfante, Eliana; Koenig, Mary Kay; Adejumo, Rahmat B; Perinjelil, Vinu; Riascos, Roy F

    2016-04-01

    Leigh syndrome by definition is (1) a neurodegenerative disease with variable symptoms, (2) caused by mitochondrial dysfunction from a hereditary genetic defect and (3) accompanied by bilateral central nervous system lesions. A genetic etiology is confirmed in approximately 50% of patients, with more than 60 identified mutations in the nuclear and mitochondrial genomes. Here we review the clinical features and imaging studies of Leigh syndrome and describe the neuroimaging findings in a cohort of 17 children with genetically confirmed Leigh syndrome. MR findings include lesions in the brainstem in 9 children (53%), basal ganglia in 13 (76%), thalami in 4 (24%) and dentate nuclei in 2 (12%), and global atrophy in 2 (12%). The brainstem lesions were most frequent in the midbrain and medulla oblongata. With follow-up an increased number of lesions from baseline was observed in 7 of 13 children, evolution of the initial lesion was seen in 6, and complete regression of the lesions was seen in 3. No cerebral white matter lesions were found in any of the 17 children. In concordance with the literature, we found that Leigh syndrome follows a similar pattern of bilateral, symmetrical basal ganglia or brainstem changes. Lesions in Leigh syndrome evolve over time and a lack of visible lesions does not exclude the diagnosis. Reversibility of lesions is seen in some patients, making the continued search for treatment and prevention a priority for clinicians and researchers.

  18. Forensic genetics and ethical, legal and social implications beyond the clinic

    PubMed Central

    Cho, Mildred K; Sankar, Pamela

    2008-01-01

    Data on human genetic variation help scientists to understand human origins, susceptibility to illness and genetic causes of disease. Destructive episodes in the history of genetic research make it crucial to consider the ethical and social implications of research in genomics, especially human genetic variation. The analysis of ethical, legal and social implications should be integrated into genetic research, with the participation of scientists who can anticipate and monitor the full range of possible applications of the research from the earliest stages. The design and implementation of research directs the ways in which its results can be used, and data and technology, rather than ethical considerations or social needs, drive the use of science in unintended ways. Here we examine forensic genetics and argue that all geneticists should anticipate the ethical and social issues associated with nonmedical applications of genetic variation research. PMID:15510102

  19. From ecology to base pairs: nursing and genetic science.

    PubMed

    Williams, J K; Tripp-Reimer, T

    2001-07-01

    With the mapping of the human genome has come the opportunity for nursing research to explore topics of concern to the maintenance, restoration, and attainment of genetic-related health. Initially, nursing research on genetic topics originated primarily from physical anthropology and from a clinical, disease-focused perspective. Nursing research subsequently focused on psychosocial aspects of genetic conditions for individuals and their family members. As findings emerge from current human genome discovery, new programs of genetic nursing research are originating from a biobehavioral interface, ranging from the investigations of the influence of specific molecular changes on gene function to social/ethical issues of human health and disease. These initiatives reflect nursing's response to discoveries of gene mutations related to phenotypic expression in both clinical and community-based populations. Genetic research programs are needed that integrate or adapt theoretical and methodological advances in epidemiology, family systems, anthropology, and ethics with those from nursing. Research programs must address not only populations with a specific disease but also community-based genetic health care issues. As genetic health care practice evolves, so will opportunities for research by nurses who can apply genetic concepts and interventions to improve the health of the public. This article presents an analysis of the evolution of genetic nursing research and challengesfor the future.

  20. Parents' Perspectives on Participating in Genetic Research in Autism

    ERIC Educational Resources Information Center

    Trottier, Magan; Roberts, Wendy; Drmic, Irene; Scherer, Stephen W.; Weksberg, Rosanna; Cytrynbaum, Cheryl; Chitayat, David; Shuman, Cheryl; Miller, Fiona A.

    2013-01-01

    Genetic research in autism depends on the willingness of individuals with autism to participate; thus, there is a duty to assess participants' needs in the research process. We report on families' motives and expectations related to their participation in autism genetic research. Respondents valued having a genetic result, as it alleviates guilt,…

  1. Amino acid substitutions in the neuraminidase protein of an H9N2 avian influenza virus affect its airborne transmission in chickens.

    PubMed

    Lv, Jing; Wei, Liangmeng; Yang, Yan; Wang, Bingxiao; Liang, Wei; Gao, Yuwei; Xia, Xianzhu; Gao, Lili; Cai, Yumei; Hou, Peiqiang; Yang, Huili; Wang, Airong; Huang, Rong; Gao, Jing; Chai, Tongjie

    2015-04-18

    Cases of H9N2 avian influenza virus (AIV) in poultry are increasing throughout many Eurasian countries, and co-infections with other pathogens have resulted in high morbidity and mortality in poultry. Few studies have investigated the genetic factors of virus airborne transmission which determine the scope of this epidemic. In this study, we used specific-pathogen-free chickens housed in isolators to investigate the airborne transmissibility of five recombinant H9N2 AIV rescued by reverse genetic technology. The results show that airborne transmission of A/Chicken/Shandong/01/2008 (SD01) virus was related to the neuraminidase (NA) gene, and four amino acid mutations (D368E, S370L, E313K and G381D) within the head region of the SD01 NA, reduced virus replication in the respiratory tract of chickens, reduced virus NA activity, and resulted in a loss of airborne transmission ability in chickens. Similarly, reverse mutations of these four amino acids in the NA protein of r01/NASS virus, conferred an airborne transmission ability to the recombinant virus. We conclude that these four NA residues may be significant genetic markers for evaluating potential disease outbreak of H9N2 AIV, and propose that immediate attention should be paid to the airborne transmission of this virus.

  2. Development and evaluation of a culture-independent method for source determination of fecal wastes in surface and storm waters using reverse transcriptase-PCR detection of FRNA coliphage genogroup gene sequences.

    PubMed

    Paar, Jack; Doolittle, Mark M; Varma, Manju; Siefring, Shawn; Oshima, Kevin; Haugland, Richard A

    2015-05-01

    A method, incorporating recently improved reverse transcriptase-PCR primer/probe assays and including controls for detecting interferences in RNA recovery and analysis, was developed for the direct, culture-independent detection of genetic markers from FRNA coliphage genogroups I, II & IV in water samples. Results were obtained from an initial evaluation of the performance of this method in analyses of waste water, ambient surface water and stormwater drain and outfall samples from predominantly urban locations. The evaluation also included a comparison of the occurrence of the FRNA genetic markers with genetic markers from general and human-related bacterial fecal indicators determined by current or pending EPA-validated qPCR methods. Strong associations were observed between the occurrence of the putatively human related FRNA genogroup II marker and the densities of the bacterial markers in the stormwater drain and outfall samples. However fewer samples were positive for FRNA coliphage compared to either the general bacterial fecal indicator or the human-related bacterial fecal indicator markers particularly for ambient water samples. Together, these methods show promise as complementary tools for the identification of contaminated storm water drainage systems as well as the determination of human and non-human sources of contamination. Published by Elsevier B.V.

  3. Single-Vector, Single-Injection Recombinant Vesicular Stomatitis Virus Vaccines Against High-Containment Viruses.

    PubMed

    Whitt, Michael A; Geisbert, Thomas W; Mire, Chad E

    2016-01-01

    There are many avenues for making an effective vaccine against viruses. Depending on the virus these can include one of the following: inactivation of whole virions; attenuation of viruses; recombinant viral proteins; non-replication-competent virus particles; or surrogate virus vector systems such as vesicular stomatitis virus (VSV). VSV is a prototypic enveloped animal virus that has been used for over four decades to study virus replication, entry, and assembly due to its ability to replicate to high titers in a wide variety of mammalian and insect cells. The use of reverse genetics to recover infectious and single-cycle replicating VSV from plasmid DNA transfected in cell culture began a revolution in the study of recombinant VSV (rVSV). This platform can be manipulated to study the viral genetic sequences and proteins important in the virus life cycle. Additionally, foreign genes can be inserted between naturally occurring or generated start/stop signals and polyadenylation sites within the VSV genome. VSV has a tolerance for foreign gene expression which has led to numerous rVSVs reported in the literature. Of particular interest are the very effective single-dose rVSV vaccine vectors against high-containment viruses such as filoviruses, henipaviruses, and arenaviruses. Herein we describe the methods for selecting foreign antigenic genes, selecting the location within the VSV genome for insertion, generation of rVSV using reverse genetics, and proper vaccine study designs.

  4. An overview of C. elegans biology.

    PubMed

    Strange, Kevin

    2006-01-01

    The establishment of Caenorhabditis elegans as a "model organism" began with the efforts of Sydney Brenner in the early 1960s. Brenner's focus was to find a suitable animal model in which the tools of genetic analysis could be used to define molecular mechanisms of development and nervous system function. C. elegans provides numerous experimental advantages for such studies. These advantages include a short life cycle, production of large numbers of offspring, easy and inexpensive laboratory culture, forward and reverse genetic tractability, and a relatively simple anatomy. This chapter will provide a brief overview of C. elegans biology.

  5. The Tgm9-induced indexed insertional mutant collection to conduct community-based reverse genetics studies in soybean

    USDA-ARS?s Scientific Manuscript database

    Until now, functional analyses of soybean genes have been very arduous because of the lack of a rapid transformation procedure. Recently identified the active endogenous type II transposable element, Tgm9, excises from insertion sites and restores wild-type phenotypes. Thus, this element provides a ...

  6. Recoding structural glycoprotein E2 in classical swine fever virus (CSFV) produces complete virus attenuation in swine and protects infected animals against disease

    USDA-ARS?s Scientific Manuscript database

    Controlling classical swine fever (CSF) involves vaccination in endemic regions and preemptive slaughter of infected swine herds during epidemics. Generally, live attenuated vaccines induce solid immunity. Using diverse approaches, reverse genetics has been useful in developing classical swine fever...

  7. Diet-influenced chromatin modification and expression of chemopreventive genes by the soy peptide, lunasin

    USDA-ARS?s Scientific Manuscript database

    Epigenetic silencing of tumor suppressors and pro-apoptosis genes in cancer cells, unlike genetic mutations, can potentially be reversed by the use of DNA demethylating agents (to remove methylation marks on the DNA) and HDAC inhibitors (to increase histone acetylation). It is now well established t...

  8. PhOBF1, a petunia OCS element binding factor, plays an important role in antiviral RNA silencing

    USDA-ARS?s Scientific Manuscript database

    Virus-induced gene silencing (VIGS) is a common strategy of reverse genetics for characterizing function of genes in plant. The detailed mechanism governing RNA silencing efficiency triggered by virus is largely unclear. Here, we revealed that a petunia (Petunia hybrida) ocs element binding factor, ...

  9. Evidence of a tick RNAi pathway by comparative genomics and reverse genetics screen of targets with known loss-of-function phenotypes in Drosophila

    USDA-ARS?s Scientific Manuscript database

    The Arthropods are a diverse group of organisms including Chelicerata (ticks, mites, spiders), Crustacea (crabs, shrimps), and Insecta (flies, mosquitoes, beetles, silkworm). The cattle tick, Rhipicephalus (Boophilus) microplus, is an economically significant ectoparasite of cattle affecting cattle...

  10. A plasmid-based reverse genetics system for influenza A virus.

    PubMed Central

    Pleschka, S; Jaskunas, R; Engelhardt, O G; Zürcher, T; Palese, P; García-Sastre, A

    1996-01-01

    A reverse genetics system for negative-strand RNA viruses was first successfully developed for influenza viruses. This technology involved the transfection of in vitro-reconstituted ribonucleoprotein (RNP) complexes into influenza virus-infected cells. We have now developed a method that allows intracellular reconstitution of RNP complexes from plasmid-based expression vectors. Expression of a viral RNA-like transcript is achieved from a plasmid containing a truncated human polymerase I (polI) promoter and a ribozyme sequence that generates the desired 3' end by autocatalytic cleavage. The polI-driven plasmid is cotransfected into human 293 cells with polII-responsive plasmids that express the viral PB1, PB2, PA, and NP proteins. This exclusively plasmid-driven system results in the efficient transcription and replication of the viral RNA-like reporter and allows the study of cis- and trans-acting signals involved in the transcription and replication of influenza virus RNAs. Using this system, we have also been able to rescue a synthetic neuraminidase gene into a recombinant influenza virus. This method represents a convenient alternative to the previously established RNP transfection system. PMID:8648766

  11. Alternative reverse genetics system for influenza viruses based on a synthesized swine 45S rRNA promoter.

    PubMed

    Wang, Kai; Huang, Qi; Yang, Zhiwei; Qi, Kezong; Liu, Hongmei; Chen, Hongjun

    2017-08-01

    We generated an alternative reverse genetics (RG) system based on a synthesized swine 45S rRNA promoter to rescue the H3N2 subtype swine influenza virus. All eight flanking segment cassettes of A/swine/Henan/7/2010 (H3N2) were amplified with ambisense expression elements from RG plasmids. All segments were then recombined with the pHC2014 vector, which contained the synthesized swine 45S rRNA promoter (spol1) and its terminal sequence (t1) in a pcDNA3 backbone. As a result, we obtained a set of RG plasmids carrying the corresponding eight-segment cassettes. We efficiently generated the H3N2 virus after transfection into 293T/PK15, PK15, and 293T cells. The efficiency of spol1-driven influenza virus rescue in PK15 cells was similar to that in 293T cells by titration using the human pol1 RG system. Our approach suggests that an alternative spol1-based RG system can produce influenza viruses.

  12. Respiratory Syncytial Virus: Virology, Reverse Genetics, and Pathogenesis of Disease

    PubMed Central

    Fearns, Rachel; Graham, Barney S.

    2016-01-01

    Human respiratory syncytial virus (RSV) is an enveloped, nonsegmented negative-strand RNA virus of family Paramyxoviridae. RSV is the most complex member of the family in terms of the number of genes and proteins. It is also relatively divergent and distinct from the prototype members of the family. In the past 30 years, we have seen a tremendous increase in our understanding of the molecular biology of RSV based on a succession of advances involving molecular cloning, reverse genetics, and detailed studies of protein function and structure. Much remains to be learned. RSV disease is complex and variable, and the host and viral factors that determine tropism and disease are poorly understood. RSV is notable for a historic vaccine failure in the 1960s involving a formalin-inactivated vaccine that primed for enhanced disease in RSV naïve recipients. Live vaccine candidates have been shown to be free of this complication. However, development of subunit or other protein-based vaccines for pediatric use is hampered by the possibility of enhanced disease and the difficulty of reliably demonstrating its absence in preclinical studies. PMID:24362682

  13. Obesity-programmed mice are rescued by early genetic intervention

    PubMed Central

    Bumaschny, Viviana F.; Yamashita, Miho; Casas-Cordero, Rodrigo; Otero-Corchón, Verónica; de Souza, Flávio S.J.; Rubinstein, Marcelo; Low, Malcolm J.

    2012-01-01

    Obesity is a chronic metabolic disorder affecting half a billion people worldwide. Major difficulties in managing obesity are the cessation of continued weight loss in patients after an initial period of responsiveness and rebound to pretreatment weight. It is conceivable that chronic weight gain unrelated to physiological needs induces an allostatic regulatory state that defends a supranormal adipose mass despite its maladaptive consequences. To challenge this hypothesis, we generated a reversible genetic mouse model of early-onset hyperphagia and severe obesity by selectively blocking the expression of the proopiomelanocortin gene (Pomc) in hypothalamic neurons. Eutopic reactivation of central POMC transmission at different stages of overweight progression normalized or greatly reduced food intake in these obesity-programmed mice. Hypothalamic Pomc rescue also attenuated comorbidities such as hyperglycemia, hyperinsulinemia, and hepatic steatosis and normalized locomotor activity. However, effectiveness of treatment to normalize body weight and adiposity declined progressively as the level of obesity at the time of Pomc induction increased. Thus, our study using a novel reversible monogenic obesity model reveals the critical importance of early intervention for the prevention of subsequent allostatic overload that auto-perpetuates obesity. PMID:23093774

  14. Reversal of a Neurospora Translocation by Crossing over Involving Displaced Rdna, and Methylation of the Rdna Segments That Result from Recombination

    PubMed Central

    Perkins, David D.; Metzenberg, Robert L.; Raju, Namboori B.; Selker, Eric U.; Barry, Edward G.

    1986-01-01

    In translocation OY321 of Neurospora crassa, the nucleolus organizer is divided into two segments, a proximal portion located interstitially in one interchange chromosome, and a distal portion now located terminally on another chromosome, linkage group I. In crosses of Translocation x Translocation, exceptional progeny are recovered nonselectively in which the chromosome sequence has apparently reverted to Normal. Genetic, cytological, and molecular evidence indicates that reversion is the result of meiotic crossing over between homologous displaced rDNA repeats. Marker linkages are wild type in these exceptional progeny. They differ from wild type, however, in retaining an interstitial block of rRNA genes which can be demonstrated cytologically by the presence of a second, small interstitial nucleolus and genetically by linkage of an rDNA restriction site polymorphism to the mating-type locus in linkage group I. The interstitial rDNA is more highly methylated than the terminal rDNA. The mechanism by which methylation enzymes distinguish between interstitial rDNA and terminal rDNA is unknown. Some hypotheses are considered. PMID:2947829

  15. Partial and Full PCR-Based Reverse Genetics Strategy for Influenza Viruses

    PubMed Central

    Chen, Hongjun; Ye, Jianqiang; Xu, Kemin; Angel, Matthew; Shao, Hongxia; Ferrero, Andrea; Sutton, Troy; Perez, Daniel R.

    2012-01-01

    Since 1999, plasmid-based reverse genetics (RG) systems have revolutionized the way influenza viruses are studied. However, it is not unusual to encounter cloning difficulties for one or more influenza genes while attempting to recover virus de novo. To overcome some of these shortcomings we sought to develop partial or full plasmid-free RG systems. The influenza gene of choice is assembled into a RG competent unit by virtue of overlapping PCR reactions containing a cDNA copy of the viral gene segment under the control of RNA polymerase I promoter (pol1) and termination (t1) signals – herein referred to as Flu PCR amplicons. Transfection of tissue culture cells with either HA or NA Flu PCR amplicons and 7 plasmids encoding the remaining influenza RG units, resulted in efficient virus rescue. Likewise, transfections including both HA and NA Flu PCR amplicons and 6 RG plasmids also resulted in efficient virus rescue. In addition, influenza viruses were recovered from a full set of Flu PCR amplicons without the use of plasmids. PMID:23029501

  16. Experiences from the National Institute of Nursing Research: Summer Genetics Institute 2004.

    PubMed

    Whitt, Karen J

    2005-02-01

    The National Institute of Nursing Research (NINR) Summer Genetics Institute (SGI) prepares nurses with training in molecular genetics for use in clinical practice, research, and education. Experiences from the SGI 2004 are recounted. More than 35 genetic experts from National Institutes of Health and surrounding universities in Washington, D.C., provided lecture and laboratory experiences. The lecture portion of the SGI focused on the molecular aspect of genetics and the laboratory component included experiments designed to provide an understanding of genetic approaches for diagnostic and research purposes. The SGI prepares nurses with the genetic foundation to meet the healthcare challenges of the future.

  17. Characterization of Passive Flow-Actuated Microflaps Inspired by Shark Skin for Separation Control

    NASA Astrophysics Data System (ADS)

    Morris, Jackson; Devey, Sean; Lang, Amy; Hubner, Paul

    2017-11-01

    Thanks to millions of years of natural selection, sharks have evolved into quick apex predators. Previous research has proven shark skin to reduce flow separation, which would result in lower pressure drag. Mako shark skin is made up of microscopic scales on the order of 0.2 mm in size. These scales are hypothesized to be a flow control mechanism, capable of being passively actuated by reversed flow. We believe shark scales are strategically sized to interact with the lower 5 percent of the boundary layer, where reversed flow occurs near the wall. Previous wind tunnel research has shown that it is possible to passively actuate 2D flaps in the lower regions of the boundary layer. This research aims to identify reverse flow conditions that will cause small 3D flaps to actuate. Several sets of microflaps (about 4 mm in length) geometrically similar to shark scales were 3D printed. These microflaps were tested in a low-speed wind tunnel in various reverse flow conditions. Microflaps were observed to be actuated by the reversing flow and flow conditions were characterized using a hot-wire probe. These microflaps have the potential to mimic the mako shark type of flow control in air, passively actuated by reverse flow conditions. This research was supported by Boeing, the US Army, and the National Science Foundation REU program.

  18. Genetic Based Plant Resistance and Susceptibility Traits to Herbivory Influence Needle and Root Litter Nutrient Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Classen, Aimee T; Chapman, Samantha K.; Whitham, Thomas G

    2007-01-01

    It is generally assumed that leaf and root litter decomposition have similar drivers and that nutrient release from these substrates is synchronized. Few studies have examined these assumptions, and none has examined how plant genetics (i.e., plant susceptibility to herbivory) could affect these relationships. Here we examine the effects of herbivore susceptibility and resistance on needle and fine root litter decomposition of pi on pine, Pinus edulis. The study population consists of individual trees that are either susceptible or resistant to herbivory by the pi on needle scale, Matsucoccus acalyptus, or the stem-boring moth, Dioryctria albovittella. Genetic analyses and experimentalmore » removals and additions of these insects have identified trees that are naturally resistant and susceptible to these insects. These herbivores increase the chemical quality of litter inputs and alter soil microclimate, both of which are important decomposition drivers. Our research leads to four major conclusions: Herbivore susceptibility and resistance effects on 1) needle litter mass loss and phosphorus (P) retention in moth susceptible and resistant litter are governed by microclimate, 2) root litter nitrogen (N) and P retention, and needle litter N retention are governed by litter chemical quality, 3) net nutrient release from litter can reverse over time, 4) root and needle litter mass loss and nutrient release are determined by location (above- vs. belowground), suggesting that the regulators of needle and root decomposition differ at the local scale. Understanding of decomposition and nutrient retention in ecosystems requires consideration of herbivore effects on above- and belowground processes and how these effects may be governed by plant genotype. Because an underlying genetic component to herbivory is common to most ecosystems of the world and herbivory may increase in climatic change scenarios, it is important to evaluate the role of plant genetics in affecting carbon and nutrient fluxes.« less

  19. Genome-wide ENU mutagenesis for the discovery of novel male fertility regulators.

    PubMed

    Jamsai, Duangporn; O'Bryan, Moira K

    2010-06-01

    The completion of genome sequencing projects has provided an extensive knowledge of the contents of the genomes of human, mouse, and many other organisms. Despite this, the function of most of the estimated 25,000 human genes remains largely unknown. Attention has now turned to elucidating gene function and identifying biological pathways that contribute to human diseases, including male infertility. Our understanding of the genetic regulation of male fertility has been accelerated through the use of genetically modified mouse models including knockout, knock-in, gene-trapped, and transgenic mice. Such reverse genetic approaches however, require some fore-knowledge of a gene's function and, as such, bias against the discovery of completely novel genes and biological pathways. To facilitate high throughput gene discovery, genome-wide mouse mutagenesis via the use of a potent chemical mutagen, N-ethyl-N-nitrosourea (ENU), has been developed over the past decade. This forward genetic, or phenotype-driven, approach relies upon observing a phenotype first, then subsequently defining the underlining genetic defect. Mutations are randomly introduced into the mouse genome via ENU exposure. Through a controlled breeding scheme, mutations causing a phenotype of interest (e.g., male infertility) are then identified by linkage analysis and candidate gene sequencing. This approach allows for the possibility of revealing comprehensive phenotype-genotype relationships for a range of genes and pathways i.e. in addition to null alleles, mice containing partial loss of function or gain-of-function mutations, can be recovered. Such point mutations are likely to be more reflective of those that occur within the human population. Many research groups have successfully used this approach to generate infertile mouse lines and some novel male fertility genes have been revealed. In this review, we focus on the utility of ENU mutagenesis for the discovery of novel male fertility regulators.

  20. Effects of methyl testosterone exposure on sexual differentiation in medaka, Oryzias latipes

    USGS Publications Warehouse

    Papoulias, D.M.; Noltie, Douglas B.; Tillitt, D.E.

    2000-01-01

    Studies were conducted to characterize effects of a known androgen on sexual differentiation and development of medaka, Oryzias latipes (d-rR strain), at two life stages. Embryos were injected with graded doses of methyl testosterone (MT) prior to epiboly. The occurrence of sex-reversal, and the gonadosomatic index (GSI) were evaluated in adults. Primary germ cells were counted and gonad volumes calculated for larvae to determine if sex-reversal could be detected at an early life stage. Sex-reversal of genetic females to phenotypic males was observed at both life stages. The GSI for phenotypic females was greater than for phenotypic males, while the GSI in XX males was similar to XY males. MT appeared to reduce the GSI of XX females exposed to MT but not sex-reversed. Our results indicate that embryonic exposure to androgens influences sexual development in medaka. Utilizing the d-rR strain of medaka allows detection of an effect as early as 2 weeks after chemical exposure making this a useful tool to screen chemicals for effects on sexual differentiation. Copyright (C) 2000.

  1. Reversible surgical model of biliary inflammation and obstructive jaundice in mice.

    PubMed

    Kirkland, Jacob G; Godfrey, Cody B; Garrett, Ryan; Kakar, Sanjay; Yeh, Benjamin M; Corvera, Carlos U

    2010-12-01

    Common bile duct (CBD) ligation is used in animal models to induce biliary inflammation, fibrosis, and cholestatic liver injury, but results in a high early postoperative mortality rate, probably from traumatic pancreatitis. We modified the CBD ligation model in mice by placing a small metal clip across the lower end of the CBD. To reverse biliary obstruction, a suture was incorporated within the clip during its placement. The suture and clip were removed on postoperative d 5 or 10 for biliary decompression. After 5 d of biliary obstruction, the gallbladder showed an 8-fold increase in wall thickness and a 17-fold increase in tissue myeloperoxidase activity. Markedly elevated serum levels of alkaline phosphatase and bilirubin indicated injury to the biliary epithelium and hepatocytes. Early postoperative (d 0-2) survival was 100% and later (d 3-5) survival was 85% (n=54 mice). We successfully reversed biliary obstruction in 20 mice (37%). Overall survival after reversal was 70%. In surviving mice, biliary decompression was complete, inflammation was reduced, and jaundice resolved. Histologic features confirmed reduced epithelial damage, edema, and neutrophil infiltration. Our technique minimized postoperative death, maintained an effective inflammatory response, and was easily reversible without requiring repeat laparotomy. This reversible model can be used to further define molecular mechanisms of biliary inflammation, fibrosis, and liver injury in genetically altered mice. Copyright © 2010. Published by Elsevier Inc.

  2. On the early emergence of reverse transcription: theoretical basis and experimental evidence

    NASA Technical Reports Server (NTRS)

    Lazcano, A.; Valverde, V.; Hernandez, G.; Gariglio, P.; Fox, G. E.; Oro, J.

    1992-01-01

    Reverse transcriptase (RT) was first discovered as an essential catalyst in the biological cycle of retroviruses. However, in the past years evidence has accumulated showing that RTs are involved in a surprisingly large number of RNA-mediated transpositional events that include both viral and nonviral genetic entities. Although it is probable that some RT-bearing genetic elements like the different types of AIDS viruses and the mammalian LINE family have arisen in recent geological times, the possibility that reverse transcription first took place in the early Archean is supported by (1) the hypothesis that RNA preceded DNA as cellular genetic material; (2) the existence of homologous regions of the subunit tau of the E. coli DNA polymerase III with the simian immunodeficiency virus RT, the hepatitis B virus RT, and the beta' subunit of the E. coli RNA polymerase (McHenry et al. 1988); (3) the presence of several conserved motifs, including a 14-amino-acid segment that consists of an Asp-Asp pair flanked by hydrophobic amino acids, which are found in all RTs and in most cellular and viral RNA polymerases. However, whether extant RTs descend from the primitive polymerase involved in the RNA-to-DNA transition remains unproven. Substrate specificity of the AMV and HIV-1 RTs can be modified in the presence of Mn2+, a cation which allows them to add ribonucleotides to an oligo (dG) primer in a template-dependent reaction. This change in specificity is comparable to that observed under similar conditions in other nucleic acid polymerases. This experimentally induced change in RT substrate specificity may explain previous observations on the misincorporation of ribonucleotides by the Maloney murine sarcoma virus RT in the minus and plus DNA of this retrovirus (Chen and Temin 1980). Our results also suggest that HIV-infected macrophages and T-cell cells may contain mixed polynucleotides containing both ribo- and deoxyribonucleotides. The evolutionary significance of these changes in substrate specificities of nucleic acid polymerases is also discussed.

  3. Origin and evolution of SINEs in eukaryotic genomes

    PubMed Central

    Kramerov, D A; Vassetzky, N S

    2011-01-01

    Short interspersed elements (SINEs) are one of the two most prolific mobile genomic elements in most of the higher eukaryotes. Although their biology is still not thoroughly understood, unusual life cycle of these simple elements amplified as genomic parasites makes their evolution unique in many ways. In contrast to most genetic elements including other transposons, SINEs emerged de novo many times in evolution from available molecules (for example, tRNA). The involvement of reverse transcription in their amplification cycle, huge number of genomic copies and modular structure allow variation mechanisms in SINEs uncommon or rare in other genetic elements (module exchange between SINE families, dimerization, and so on.). Overall, SINE evolution includes their emergence, progressive optimization and counteraction to the cell's defense against mobile genetic elements. PMID:21673742

  4. Barriers and Strategies Related to Qualitative Research on Genetic Ancestry Testing in Indigenous Communities.

    PubMed

    Blanchard, Jessica W; Tallbull, Gloria; Wolpert, Chantelle; Powell, Jill; Foster, Morris W; Royal, Charmaine

    2017-07-01

    Conducting genetics-related research with populations that have historically experienced considerable harm and little benefit from genetics research poses unique challenges for understanding community-based perceptions of new genetic technologies. This article identifies challenges and strategies for collecting qualitative data on the perceptions of direct-to-consumer (DTC) Genetic Ancestry tests (GAT) among diverse Indigenous communities. Based on a 3-year project related to perceptions, attitudes, and values associated with genetic ancestry testing among diverse Indigenous communities in Oklahoma, the engagement process revealed specific opportunities to improve the process of qualitative data collection related to GAT, and more broadly, to conduct genetics-related research with Indigenous communities in culturally and methodologically appropriate ways. Priority areas include issues related to participant recruitment and tribal advisory boards, challenges of self-identification as a recruitment mechanism, and the necessity of including Indigenous researchers in all aspects of the research process.

  5. The Effect of Using the Creative Reversal Act in Science Education on Middle School Students' Creativity Levels

    ERIC Educational Resources Information Center

    Karaca, Tulin; Koray, Ozlem

    2017-01-01

    Purpose: The purpose of this study is to examine the effects of the creative reversal act (CREACT) used in teaching ecosystems topics on the creativity levels of middle school students. Research Methods: The research was conducted using a quasi-experimental design, a quantitative research method, and a pretest-posttest control group design. The…

  6. U.S. Air Force Research Technology Area Plan, FY 1989

    DTIC Science & Technology

    1988-09-01

    Continue on reverse if necessaty and identify by block number) FIELD GROUP SUB-GROUP 19. ABSTRACT (Continue on reverse if necessary and identify by...Armstrong Aerospace Medical Research Laboratory (AAMRL) USAF School of Aerospace Medical Research Laboratory (USAFSAM) Rome Air Development Center...development of advanced weapon concepts and advance the state of the art in systems development, electromagnetic countermeasures, nuclear weapons

  7. Medical Genetics at McGill: The History of a Pioneering Research Group.

    PubMed

    Canning, Christopher; Weisz, George; Tone, Andrea; Cambrosio, Alberto

    2013-01-01

    The McGill Group in Medical Genetics was formed in 1972, supported by the Medical Research Council and successor Canadian Institutes for Health Research until September 2009, making it the longest active biomedical research group in the history of Canada. We document the history of the McGill Group and situate its research within a broader history of medical genetics. Drawing on original oral histories with the Group's members, surviving documents, and archival materials, we explore how the Group's development was structured around epistemological trends in medical genetics, policy choices made by research agencies, and the development of genetics at McGill University and its hospitals.

  8. Genetics/Genomics Research in the Central Region

    USGS Publications Warehouse

    ,

    2006-01-01

    Genetics-based research within the Biological Resources Discipline (BRD) Science Centers in the Central Region incorporates many aspects of the field of genetics. Research activities range from documenting patterns of genetic variation in order to investigate relationships among species, populations and individuals to investigating the structure, function and expression of genes and their response to environmental stressors. Research in the broad areas of genetics requires multidisciplinary expertise and specialized equipment and instrumentation. Brief summaries of the capabilities of the five BRD Centers are given below.

  9. A role for selective contraception of individuals in conservation.

    PubMed

    Cope, Holly R; Hogg, Carolyn J; White, Peter J; Herbert, Catherine A

    2018-06-01

    Contraception has an established role in managing overabundant populations and preventing undesirable breeding in zoos. We propose that it can also be used strategically and selectively in conservation to increase the genetic and behavioral quality of the animals. In captive breeding programs, it is becoming increasingly important to maximize the retention of genetic diversity by managing the reproductive contribution of each individual and preventing genetically suboptimal breeding through the use of selective contraception. Reproductive suppression of selected individuals in conservation programs has further benefits of allowing animals to be housed as a group in extensive enclosures without interfering with breeding recommendations, which reduces adaptation to captivity and facilitates the expression of wild behaviors and social structures. Before selective contraception can be incorporated into a breeding program, the most suitable method of fertility control must be selected, and this can be influenced by factors such as species life history, age, ease of treatment, potential for reversibility, and desired management outcome for the individual or population. Contraception should then be implemented in the population following a step-by-step process. In this way, it can provide crucial, flexible control over breeding to promote the physical and genetic health and sustainability of a conservation dependent species held in captivity. For Tasmanian devils (Sarcophilus harrisii), black-flanked rock wallabies (Petrogale lateralis), and burrowing bettongs (Bettongia lesueur), contraception can benefit their conservation by maximizing genetic diversity and behavioral integrity in the captive breeding program, or, in the case of the wallabies and bettongs, by reducing populations to a sustainable size when they become locally overabundant. In these examples, contraceptive duration relative to reproductive life, reversibility, and predictability of the contraceptive agent being used are important to ensure the potential for individuals to reproduce following cessation of contraception, as exemplified by the wallabies when their population crashed and needed females to resume breeding. © 2017 Society for Conservation Biology.

  10. Knowledge, group-based medical mistrust, future expectations, and perceived disadvantages of medical genetic testing: perspectives of Black African immigrants/refugees.

    PubMed

    Buseh, A; Kelber, S; Millon-Underwood, S; Stevens, P; Townsend, L

    2014-01-01

    Reasons for low participation of ethnic minorities in genetic studies are multifactorial and often poorly understood. Based on published literature, participation in genetic testing is low among Black African immigrants/refugees although they are purported to bear disproportionate disease burden. Thus, research involving Black African immigrant/refugee populations that examine their perspectives on participating in genetic studies is needed. This report examines and describes the knowledge of medical genetics, group-based medical mistrust, and future expectations of genetic research and the influence of these measures on the perceived disadvantages of genetic testing among Black African immigrants/refugees. Using a cross-sectional survey design, a nonprobability sample (n = 212) of Black African immigrants/refugees was administered a questionnaire. Participants ranged in age from 18 to 61 years (mean = 38.91, SD = 9.78). The questionnaire consisted of 5 instruments: (a) sociodemographic characteristics, (b) Knowledge of Medical Genetics scale, (c) Group-Based Medical Mistrust Scale, (d) Future Expectations/Anticipated Consequences of Genetics Research scale, and (e) Perceived Disadvantages of Genetic Testing scale. Participants were concerned that genetic research may result in scientists 'playing God,' interfering with the natural order of life. In multivariate analyses, the perceived disadvantages of genetic testing increased as medical mistrust and anticipated negative impacts of genetic testing increased. Increase in genetic knowledge contributed to a decrease in perceived disadvantages. Our findings suggest that recruitment of Black African immigrants/refugees in genetic studies should address potential low knowledge of genetics, concerns about medical mistrust, the expectations/anticipated consequences of genetic research, and the perceived disadvantages of genetic testing.

  11. Construction and Rescue of a Molecular Clone of Deformed Wing Virus (DWV)

    PubMed Central

    Lamp, Benjamin; Url, Angelika; Seitz, Kerstin; Eichhorn, Jürgen; Riedel, Christiane; Sinn, Leonie Janina; Indik, Stanislav; Köglberger, Hemma; Rümenapf, Till

    2016-01-01

    European honey bees are highly important in crop pollination, increasing the value of global agricultural production by billions of dollars. Current knowledge about virulence and pathogenicity of Deformed wing virus (DWV), a major factor in honey bee colony mortality, is limited. With this study, we close the gap between field research and laboratory investigations by establishing a complete in vitro model for DWV pathogenesis. Infectious DWV was rescued from a molecular clone of a DWV-A genome that induces DWV symptoms such as crippled wings and discoloration. The expression of DWV proteins, production of infectious virus progeny, and DWV host cell tropism could be confirmed using newly generated anti-DWV monoclonal antibodies. The recombinant RNA fulfills Koch’s postulates circumventing the need of virus isolation and propagation of pure virus cultures. In conclusion, we describe the development and application of a reverse genetics system for the study of DWV pathogenesis. PMID:27828961

  12. Risks Associated With Lentiviral Vector Exposures and Prevention Strategies

    PubMed Central

    Schlimgen, Ryan; Howard, John; Wooley, Dawn; Thompson, Maureen; Baden, Lindsey R.; Yang, Otto O.; Christiani, David C.; Mostoslavsky, Gustavo; Diamond, David V.; Duane, Elizabeth Gilman; Byers, Karen; Winters, Thomas; Gelfand, Jeffrey A.; Fujimoto, Gary; Hudson, T. Warner; Vyas, Jatin M.

    2016-01-01

    Lentiviral vectors (LVVs) are powerful genetic tools that are being used with greater frequency in biomedical laboratories and clinical trials. Adverse events reported from initial clinical studies provide a basis for risk assessment of occupational exposures, yet many questions remain about the potential harm that LVVs may cause. We review those risks and provide a framework for principal investigators, Institutional Biosafety Committees, and occupational health professionals to assess and communicate the risks of exposure to staff. We also provide recommendations to federal research and regulatory agencies for tracking LVV exposures to evaluate long-term outcomes. U.S. Food and Drug Administration approved antiviral drugs for HIV have theoretical benefits in LVV exposures, although evidence to support their use is currently limited. If treatment is appropriate, we recommend a 7-day treatment with an integrase inhibitor with or without a reverse transcriptase inhibitor within 72 hours of exposure. PMID:27930472

  13. Lessons learned from studying syndromic autism spectrum disorders.

    PubMed

    Sztainberg, Yehezkel; Zoghbi, Huda Y

    2016-10-26

    Syndromic autism spectrum disorders represent a group of childhood neurological conditions, typically associated with chromosomal abnormalities or mutations in a single gene. The discovery of their genetic causes has increased our understanding of the molecular pathways critical for normal cognitive and social development. Human studies have revealed that the brain is particularly sensitive to changes in dosage of various proteins from transcriptional and translational regulators to synaptic proteins. Investigations of these disorders in animals have shed light on previously unknown pathogenic mechanisms leading to the identification of potential targets for therapeutic intervention. The demonstration of reversibility of several phenotypes in adult mice is encouraging, and brings hope that with novel therapies, skills and functionality might improve in affected children and young adults. As new research reveals points of convergence between syndromic and nonsyndromic autism spectrum disorders, we believe there will be opportunities for shared therapeutics for this class of conditions.

  14. What has been learned from mouse models of the Fragile X Premutation and Fragile X-associated tremor/ataxia syndrome?

    PubMed

    Foote, Molly M; Careaga, Milo; Berman, Robert F

    2016-08-01

    To describe in this review how research using mouse models developed to study the Fragile X premutation (PM) and Fragile X-associated tremor/ataxia syndrome (FXTAS) have contributed to understanding these disorders. PM carriers bear an expanded CGG trinucleotide repeat on the Fragile X Mental Retardation 1 (FMR1) gene, and are at risk for developing the late onset neurodegenerative disorder FXTAS. Much has been learned about these genetic disorders from the development and study of mouse models. This includes new insights into the early cellular and molecular events that occur in PM carriers and in FXTAS, the presence of multiorgan pathology beyond the CNS, immunological dysregulation, unexpected synthesis of a potentially toxic peptide in FXTAS (i.e., FMRpolyG), and evidence that the disease process may be halted or reversed by appropriate molecular therapies given early in the course of disease.

  15. Harm as the price of liberty? Pre-implantation diagnosis and reproductive freedom.

    PubMed

    Haker, Hille

    2003-01-01

    Reproductive autonomy is often used as an argument to offer assisted reproduction services to women and to continue research into improving this service. What is often overlooked, however, is the gendered and normative background of parenthood, especially of motherhood. In this paper, I attempt to make women visible and to listen to their voices. Turning to the women's stories, the ethical perspective might be reversed: the so-called 'side-effects' of the overall successful assisted reproduction with or without genetic diagnosis, are to be considered the 'main effects' of assisted reproduction--true for the majority of couples and women. Autonomy, then, must be reformulated as concept of moral agency in the context of divergent social contexts and cultures of parenthood, of socially shaped images of disability, and in the context of scientific visions of technology which do not necessarily match with the medical practice.

  16. [Prevention of allergic diseases in childhood: from theory to reality].

    PubMed

    2016-06-01

    Allergic diseases have an increasing worldwide prevalence and a great impact on the health related costs. The research is focused on the study of etiological and risk factors of allergic diseases that can potentially be modified with primary, secondary and tertiary prevention strategies. Many of these measures do not have a definitively proven effect taking place in a controlled context different to what happens in real life. This paper aims to review the latest evidence on prevention of allergic diseases considering certainties and unresolved issues and focuses mainly on environmental, dietary, pharmacological and immunological preventive strategies for different levels of prevention. It is imperative to have a better understanding of genetic and environmental factors that cause allergic diseases to optimize preventive measures that are effective in reversing the increasing trend in the prevalence of allergic illnesses in childhood. Sociedad Argentina de Pediatría.

  17. Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production.

    PubMed

    Mans, Robert; Daran, Jean-Marc G; Pronk, Jack T

    2018-04-01

    Evolutionary engineering, which uses laboratory evolution to select for industrially relevant traits, is a popular strategy in the development of high-performing yeast strains for industrial production of fuels and chemicals. By integrating whole-genome sequencing, bioinformatics, classical genetics and genome-editing techniques, evolutionary engineering has also become a powerful approach for identification and reverse engineering of molecular mechanisms that underlie industrially relevant traits. New techniques enable acceleration of in vivo mutation rates, both across yeast genomes and at specific loci. Recent studies indicate that phenotypic trade-offs, which are often observed after evolution under constant conditions, can be mitigated by using dynamic cultivation regimes. Advances in research on synthetic regulatory circuits offer exciting possibilities to extend the applicability of evolutionary engineering to products of yeasts whose synthesis requires a net input of cellular energy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Rethinking the model of osteoarthritis: a clinical viewpoint.

    PubMed

    Wade, Greg J

    2011-11-01

    The prevailing model of joint degeneration based on age-related, genetic, and familial factors implies inevitable progression and limited palliation from manual therapy. This model is presented to primary care physicians and the public on Web sites and in resource texts and is implicit in many published research articles. The author presents a synthesized model of the progression of osteoarthritis, combining radiographic, histologic, and clinical evidence. The revised model suggests that the progression of primary osteoarthritis is divided into an initial reversible arthrosis phase and a later arthritis phase, with both phases linked to accepted histologic and radiographic observations. The revised model also suggests a number of novel concepts, including the influence of dominance bias and laterality. The author concludes that a small change in understanding could translate into important changes in the therapeutic management of osteoarthritis, with implications for government public health policy.

  19. Isolation, sequence identification and tissue expression profiles of 3 novel porcine genes: ASPA, NAGA, and HEXA.

    PubMed

    Shu, Xianghua; Liu, Yonggang; Yang, Liangyu; Song, Chunlian; Hou, Jiafa

    2008-01-01

    The complete coding sequences of 3 porcine genes - ASPA, NAGA, and HEXA - were amplified by the reverse transcriptase polymerase chain reaction (RT-PCR) based on the conserved sequence information of the mouse or other mammals and referenced pig ESTs. These 3 novel porcine genes were then deposited in the NCBI database and assigned GeneIDs: 100142661, 100142664 and 100142667. The phylogenetic tree analysis revealed that the porcine ASPA, NAGA, and HEXA all have closer genetic relationships with the ASPA, NAGA, and HEXA of cattle. Tissue expression profile analysis was also carried out and results revealed that swine ASPA, NAGA, and HEXA genes were differentially expressed in various organs, including skeletal muscle, the heart, liver, fat, kidney, lung, and small and large intestines. Our experiment is the first one to establish the foundation for further research on these 3 swine genes.

  20. ANALYSIS OF SELECTED PYRETHROID PESTICIDES USING REVERSE PHASE HIGH PRESSURE LIQUID CHROMATOGRAPHY/UV

    EPA Science Inventory

    This research was conducted in cooperation with EPA Region 4 in Athens, GA to develop a method to analyze selected pyrethroid pesticides using Reverse Phase-High Pressure Liquid Chromatography (HPLC). This HPLC method will aid researchers in separating and identifying these py...

  1. Research Strategies in Higher Education.

    ERIC Educational Resources Information Center

    Semb, George

    The present paper outlines two alternative strategies for evaluating teaching effectiveness. These are: (1) within-subject reversal designs, and (2) multiple baseline testing procedures. Each design is discussed in terms of its application to research problems in higher education. In reversal designs, the student is exposed to different teaching…

  2. Rice diversity panels available through the genetic stocks oryza collection

    USDA-ARS?s Scientific Manuscript database

    The Genetic Stocks Oryza (GSOR) Collection was established in 2004 at the USDA-ARS, Dale Bumpers National Rice Research Center (DBNRRC) located in Stuttgart, AR. The mission of GSOR is to provide unique genetic resources to the rice research community for genetic and genomics related research. GSOR ...

  3. Adaptation to Human Populations Is Revealed by Within-Host Polymorphisms in HIV-1 and Hepatitis C Virus

    PubMed Central

    Poon, Art F. Y; Kosakovsky Pond, Sergei L.; Bennett, Phil; Richman, Douglas D; Leigh Brown, Andrew J.; Frost, Simon D. W

    2007-01-01

    CD8+ cytotoxic T-lymphocytes (CTLs) perform a critical role in the immune control of viral infections, including those caused by human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV). As a result, genetic variation at CTL epitopes is strongly influenced by host-specific selection for either escape from the immune response, or reversion due to the replicative costs of escape mutations in the absence of CTL recognition. Under strong CTL-mediated selection, codon positions within epitopes may immediately “toggle” in response to each host, such that genetic variation in the circulating virus population is shaped by rapid adaptation to immune variation in the host population. However, this hypothesis neglects the substantial genetic variation that accumulates in virus populations within hosts. Here, we evaluate this quantity for a large number of HIV-1– (n ≥ 3,000) and HCV-infected patients (n ≥ 2,600) by screening bulk RT-PCR sequences for sequencing “mixtures” (i.e., ambiguous nucleotides), which act as site-specific markers of genetic variation within each host. We find that nonsynonymous mixtures are abundant and significantly associated with codon positions under host-specific CTL selection, which should deplete within-host variation by driving the fixation of the favored variant. Using a simple model, we demonstrate that this apparently contradictory outcome can be explained by the transmission of unfavorable variants to new hosts before they are removed by selection, which occurs more frequently when selection and transmission occur on similar time scales. Consequently, the circulating virus population is shaped by the transmission rate and the disparity in selection intensities for escape or reversion as much as it is shaped by the immune diversity of the host population, with potentially serious implications for vaccine design. PMID:17397261

  4. Mechanisms underlying the lifetime co-occurrence of tobacco and cannabis use in adolescent and young adult twins

    PubMed Central

    Agrawal, Arpana; Silberg, Judy L.; Lynskey, Michael T.; Maes, Hermine H.; Eaves, Lindon J.

    2009-01-01

    Using twins assessed during adolescence (Virginia Twin Study of Adolescent Behavioral Development: 8–17 years) and followed up in early adulthood (Young Adult Follow-Up, 18–27 years), we tested 13 genetically informative models of co-occurrence, adapted for the inclusion of covariates. Models were fit, in Mx, to data at both assessments allowing for a comparison of the mechanisms that underlie the lifetime co-occurrence of cannabis and tobacco use in adolescence and early adulthood. Both cannabis and tobacco use were influenced by additive genetic (38–81%) and non-shared environmental factors with the possible role of non-shared environment in the adolescent assessment only. Causation models, where liability to use cannabis exerted a causal influence on the liability to use tobacco fit the adolescent data best, while the reverse causation model (tobacco causes cannabis) fit the early adult data best. Both causation models (cannabis to tobacco and tobacco to cannabis) and the correlated liabilities model fit data from the adolescent and young adult assessments well. Genetic correlations (0.59–0.74) were moderate. Therefore, the relationship between cannabis and tobacco use is fairly similar during adolescence and early adulthood with reciprocal influences across the two psychoactive substances. However, our study could not exclude the possibility that ‘gateways’ and ‘reverse gateways’, particularly within a genetic context, exist, such that predisposition to using one substance (cannabis or tobacco) modifies predisposition to using the other. Given the high addictive potential of nicotine and the ubiquitous nature of cannabis use, this is a public health concern worthy of considerable attention. PMID:20047801

  5. A diploid wheat TILLING resource for wheat functional genomics

    PubMed Central

    2012-01-01

    Background Triticum monococcum L., an A genome diploid einkorn wheat, was the first domesticated crop. As a diploid, it is attractive genetic model for the study of gene structure and function of wheat-specific traits. Diploid wheat is currently not amenable to reverse genetics approaches such as insertion mutagenesis and post-transcriptional gene silencing strategies. However, TILLING offers a powerful functional genetics approach for wheat gene analysis. Results We developed a TILLING population of 1,532 M2 families using EMS as a mutagen. A total of 67 mutants were obtained for the four genes studied. Waxy gene mutation frequencies are known to be 1/17.6 - 34.4 kb DNA in polyploid wheat TILLING populations. The T. monococcum diploid wheat TILLING population had a mutation frequency of 1/90 kb for the same gene. Lignin biosynthesis pathway genes- COMT1, HCT2, and 4CL1 had mutation frequencies of 1/86 kb, 1/92 kb and 1/100 kb, respectively. The overall mutation frequency of the diploid wheat TILLING population was 1/92 kb. Conclusion The mutation frequency of a diploid wheat TILLING population was found to be higher than that reported for other diploid grasses. The rate, however, is lower than tetraploid and hexaploid wheat TILLING populations because of the higher tolerance of polyploids to mutations. Unlike polyploid wheat, most mutants in diploid wheat have a phenotype amenable to forward and reverse genetic analysis and establish diploid wheat as an attractive model to study gene function in wheat. We estimate that a TILLING population of 5, 520 will be needed to get a non-sense mutation for every wheat gene of interest with 95% probability. PMID:23134614

  6. Persistence of transmitted HIV-1 drug resistance mutations associated with fitness costs and viral genetic backgrounds.

    PubMed

    Yang, Wan-Lin; Kouyos, Roger D; Böni, Jürg; Yerly, Sabine; Klimkait, Thomas; Aubert, Vincent; Scherrer, Alexandra U; Shilaih, Mohaned; Hinkley, Trevor; Petropoulos, Christos; Bonhoeffer, Sebastian; Günthard, Huldrych F

    2015-03-01

    Transmission of drug-resistant pathogens presents an almost-universal challenge for fighting infectious diseases. Transmitted drug resistance mutations (TDRM) can persist in the absence of drugs for considerable time. It is generally believed that differential TDRM-persistence is caused, at least partially, by variations in TDRM-fitness-costs. However, in vivo epidemiological evidence for the impact of fitness costs on TDRM-persistence is rare. Here, we studied the persistence of TDRM in HIV-1 using longitudinally-sampled nucleotide sequences from the Swiss-HIV-Cohort-Study (SHCS). All treatment-naïve individuals with TDRM at baseline were included. Persistence of TDRM was quantified via reversion rates (RR) determined with interval-censored survival models. Fitness costs of TDRM were estimated in the genetic background in which they occurred using a previously published and validated machine-learning algorithm (based on in vitro replicative capacities) and were included in the survival models as explanatory variables. In 857 sequential samples from 168 treatment-naïve patients, 17 TDRM were analyzed. RR varied substantially and ranged from 174.0/100-person-years;CI=[51.4, 588.8] (for 184V) to 2.7/100-person-years;[0.7, 10.9] (for 215D). RR increased significantly with fitness cost (increase by 1.6[1.3,2.0] per standard deviation of fitness costs). When subdividing fitness costs into the average fitness cost of a given mutation and the deviation from the average fitness cost of a mutation in a given genetic background, we found that both components were significantly associated with reversion-rates. Our results show that the substantial variations of TDRM persistence in the absence of drugs are associated with fitness-cost differences both among mutations and among different genetic backgrounds for the same mutation.

  7. Cell-Based Genotoxicity Testing

    NASA Astrophysics Data System (ADS)

    Reifferscheid, Georg; Buchinger, Sebastian

    Genotoxicity test systems that are based on bacteria display an important role in the detection and assessment of DNA damaging chemicals. They belong to the basic line of test systems due to their easy realization, rapidness, broad applicability, high sensitivity and good reproducibility. Since the development of the Salmonella microsomal mutagenicity assay by Ames and coworkers in the early 1970s, significant development in bacterial genotoxicity assays was achieved and is still a subject matter of research. The basic principle of the mutagenicity assay is a reversion of a growth inhibited bacterial strain, e.g., due to auxotrophy, back to a fast growing phenotype (regain of prototrophy). Deeper knowledge of the ­mutation events allows a mechanistic understanding of the induced DNA-damage by the utilization of base specific tester strains. Collections of such specific tester strains were extended by genetic engineering. Beside the reversion assays, test systems utilizing the bacterial SOS-response were invented. These methods are based on the fusion of various SOS-responsive promoters with a broad variety of reporter genes facilitating numerous methods of signal detection. A very important aspect of genotoxicity testing is the bioactivation of ­xenobiotics to DNA-damaging compounds. Most widely used is the extracellular metabolic activation by making use of rodent liver homogenates. Again, genetic engineering allows the construction of highly sophisticated bacterial tester strains with significantly enhanced sensitivity due to overexpression of enzymes that are involved in the metabolism of xenobiotics. This provides mechanistic insights into the toxification and detoxification pathways of xenobiotics and helps explaining the chemical nature of hazardous substances in unknown mixtures. In summary, beginning with "natural" tester strains the rational design of bacteria led to highly specific and sensitive tools for a rapid, reliable and cost effective ­genotoxicity testing that is of outstanding importance in the risk assessment of compounds (REACH) and in ecotoxicology.

  8. Coalgebraic structure of genetic inheritance.

    PubMed

    Tian, Jianjun; Li, Bai-Lian

    2004-09-01

    Although in the broadly defined genetic algebra, multiplication suggests a forward direction of from parents to progeny, when looking from the reverse direction, it also suggests to us a new algebraic structure-coalge- braic structure, which we call genetic coalgebras. It is not the dual coalgebraic structure and can be used in the construction of phylogenetic trees. Math- ematically, to construct phylogenetic trees means we need to solve equations x([n]) = a, or x([n]) = b. It is generally impossible to solve these equations inalgebras. However, we can solve them in coalgebras in the sense of tracing back for their ancestors. A thorough exploration of coalgebraic structure in genetics is apparently necessary. Here, we develop a theoretical framework of the coalgebraic structure of genetics. From biological viewpoint, we defined various fundamental concepts and examined their elementary properties that contain genetic significance. Mathematically, by genetic coalgebra, we mean any coalgebra that occurs in genetics. They are generally noncoassociative and without counit; and in the case of non-sex-linked inheritance, they are cocommutative. Each coalgebra with genetic realization has a baric property. We have also discussed the methods to construct new genetic coalgebras, including cocommutative duplication, the tensor product, linear combinations and the skew linear map, which allow us to describe complex genetic traits. We also put forward certain theorems that state the relationship between gametic coalgebra and gametic algebra. By Brower's theorem in topology, we prove the existence of equilibrium state for the in-evolution operator.

  9. [Correlation between four properties of traditional Chinese medicine and function of reversing multidrug resistance of tumor cells].

    PubMed

    Tang, Tao; Liao, Zheng-Gen; Dong, Wei; Zhang, Jing; Zhao, Guo-Wei; Guan, Xue-Jing; Liang, Xin-Li

    2017-02-01

    To study the correlation of four properties of traditional Chinese medicine and the function of reversing multidrug resistance (MDR) of tumor cells, with 580 herbs in Chinese Pharmacopoeia 2015 version as the research objects. CNKI, CBA, Wanfang, VIP, and PubMed were searched to screen the documents related to the reversal of MDR for collection, summarizing and analysis. The results of the research showed that a total of 114 species Chinese herbs had been reported to be associated with reversal of MDR in tumor cells. Among 15 Chinese herbs with heat nature, 7 herbs had the function of reversing MDR in tumor cells, accounting for 46.7%. Among the 48 herbs with cool nature, 12 herbs had the function of reversing MDR, accounting for 25%. Among the 211 herbs with cold nature, 46 herbs had the function of reversing MDR, accounting for 21.8%. Among the 179 herbs with warm nature, 34 herbs had the function of reversing MDR, accounting for 19%. Among the 127 herbs with neutral nature, 15 herbs had the function of reversing MDR, accounting for 11.8%. Through the analysis on the relationship between four properties of 114 kinds of traditional Chinese medicines and reversing multidrug resistance of tumor cells, this paper speculated that there was a certain correlation between four properties of traditional Chinese medicine and the function of reversing multidrug resistance of tumor cells. Copyright© by the Chinese Pharmaceutical Association.

  10. "It Makes You Rethink Your Choice of the Pill": Theory-Based Formative Research to Design a Contraceptive Choice Campaign.

    PubMed

    Sundstrom, Beth; DeMaria, Andrea L; Meier, Stephanie; Jones, Annabel; Moxley, Grace E

    2015-01-01

    Half of all pregnancies in the United States remain unplanned despite improved access to highly effective long-acting reversible contraception, including the intrauterine device and the implant. This study conducted theory-based formative research to develop a contraceptive choice campaign aimed at increasing long-acting reversible contraception uptake by women ages 18-44 years in Charleston, South Carolina, an urban area in the southeastern United States. Researchers developed and tested message concepts and designs. Six focus groups and 18 interviews were conducted among reproductive-age women (n = 79). Qualitative data analysis revealed messages and designs that resonated with these women. Emphasizing long-acting reversible contraception as the healthy option, highlighting long-acting reversible contraception effectiveness, including relatable and trustworthy characters, and using language of control emerged as themes. Women reported a preference for statistics illustrating effectiveness combined with empowering messages of control over contraceptive decision making. Findings from this study offer practical recommendations for developing contraceptive choice campaigns targeting long-acting reversible contraception use and further the goal of reducing unintended pregnancy among women.

  11. pH Gradient Reversal: An Emerging Hallmark of Cancers.

    PubMed

    Sharma, Mohit; Astekar, Madhusudan; Soi, Sonal; Manjunatha, Bhari S; Shetty, Devi C; Radhakrishnan, Raghu

    2015-01-01

    Several tumors exhibit pH gradient reversal, with acidification of extracellular pH (pHe) and alkalinization of intracellular pH (pHi). The pH gradient reversal is evident even during the preliminary stages of tumorigenesis and is crucial for survival and propagation of tumors, irrespective of their pathology, genetics and origins. Moreover, this hallmark seems to be present ubiquitously in all malignant tumors. Based on these facts, we propose a new emerging hallmark of cancer "pH gradient reversal". Normalizing pH gradient reversal through inhibition of various proton transporters such as Na(+)-H(+) exchanger (NHE), Vacuolar-type H(+)-ATPase (V-ATPase), H(+)/K(+)-ATPases and carbonic anhydrases (CAs) has demonstrated substantial therapeutic benefits. Indeed, inhibition of NHE1 is now being regarded as the latest concept in cancer treatment. A recent patent deals with the utilization of cis-Urocanic acid to acidify the pHi and induce apoptosis in tumors. Another patent reports therapeutic benefit by inhibiting Lactate Dehydrogenase - 5 (LDH-5) in various cancers. Several patents have been formulated by designing drugs activated through acidic pHe providing a cancer specific action. The purpose of this review is to analyze the available literature and help design selective therapies that could be a valuable adjunct to the conventional therapies or even replace them.

  12. The Need for Development of New HIV-1 Reverse Transcriptase and Integrase Inhibitors in the Aftermath of Antiviral Drug Resistance

    PubMed Central

    Wainberg, Mark A.

    2012-01-01

    The use of highly active antiretroviral therapy (HAART) involves combinations of drugs to achieve maximal virological response and reduce the potential for the emergence of antiviral resistance. There are two broad classes of reverse transcriptase inhibitors, the nucleoside reverse transcriptase inhibitors (NRTIs) and nonnucleoside reverse transcriptase inhibitors (NNRTIs). Since the first classes of such compounds were developed, viral resistance against them has necessitated the continuous development of novel compounds within each class. This paper considers the NRTIs and NNRTIs currently in both preclinical and clinical development or approved for second line therapy and describes the patterns of resistance associated with their use, as well as the underlying mechanisms that have been described. Due to reasons of both affordability and availability, some reverse transcriptase inhibitors with low genetic barrier are more commonly used in resource-limited settings. Their use results to the emergence of specific patterns of antiviral resistance and so may require specific actions to preserve therapeutic options for patients in such settings. More recently, the advent of integrase strand transfer inhibitors represents another major step forward toward control of HIV infection, but these compounds are also susceptible to problems of HIV drug resistance. PMID:24278679

  13. Myxococcus xanthus Swarms Are Driven by Growth and Regulated by a Pacemaker ▿

    PubMed Central

    Kaiser, Dale; Warrick, Hans

    2011-01-01

    The principal social activity of Myxococcus xanthus is to organize a dynamic multicellular structure, known as a swarm. Although its cell density is high, the swarm can grow and expand rapidly. Within the swarm, the individual rod-shaped cells are constantly moving, transiently interacting with one another, and independently reversing their gliding direction. Periodic reversal is, in fact, essential for creating a swarm, and the reversal frequency controls the rate of swarm expansion. Chemotaxis toward nutrient has been thought to drive swarming, but here the nature of swarm growth and the impact of genetic deletions of members of the Frz family of proteins suggest otherwise. We find that three cytoplasmic Frz proteins, FrzCD, FrzF, and FrzE, constitute a cyclic pathway that sets the reversal frequency. Within each cell these three proteins appear to be connected in a negative-feedback loop that produces oscillations whose frequencies are finely tuned by methylation and by phosphorylation. This oscillator, in turn, drives MglAB, a small G-protein switch, to oscillate between its GTP- and GDP-bound states that ultimately determine when the cell moves forward or backward. The periodic reversal of interacting rod-shaped cells promotes their alignment. Swarm organization ensures that each cell can move without blocking the movement of others. PMID:21856842

  14. Regulation of Genetic Tests

    MedlinePlus

    ... Informed Consent for Genomics Research Intellectual Property Online Bioethics Resources Privacy in Genomics Regulation of Genetic Tests ... Research Intellectual Property Issues in Genetics Archive Online Bioethics Resources Privacy in Genomics Regulation of Genetic Tests ...

  15. "What's the difference?" women's wheelchair basketball, reverse integration, and the question(ing) of disability.

    PubMed

    Spencer-Cavaliere, Nancy; Peers, Danielle

    2011-10-01

    The inclusion of able-bodied athletes within disability sport, a phenomenon known as reverse integration, has sparked significant debate within adapted physical activity. Although researchers and practitioners have taken up positions for or against reverse integration, there is a lack of supporting research on the experiences of athletes who already play in such settings. In this study, we explore how competitive female athletes who have a disability experience reverse integration in Canadian wheelchair basketball. Athletic identity was used as the initial conceptual framework to guide semistructured interviews with nine participants. The results suggest that participation in this context contributed to positive athletic identities. Interviews also pointed to the unexpected theme of "what's the difference?" that this sporting context provided a space for the questioning and creative negotiation of the categories of disability and able-bodiedness. Methodologically, this paper also explores the possibilities and challenges of inter- worldview and insider-outsider research collaboration.

  16. The study of the rs9939609 FTO gene polymorphism in association with obesity and the management of obesity in a Romanian cohort.

    PubMed

    Ursu, R I; Badiu, C; Cucu, N; Ursu, G F; Craciunescu, I; Severin, E

    2015-01-01

    The incidence of obesity especially in Romanian population is presently escalating as a major nutrition and health problem. Clinicians aided by scientists are engaged in research approaches that include heredity aspects linked with behavior, education, applied nutrition studies and clinical therapies in order to prevent, control and reverse obesity. The common goal is to identify areas of basic and clinical research to understand aspects of human biology that may be considered as obesogenic. Regarding these approaches, recent discoveries in genetics, epigenetics and functional genomics, based on advancing technologies, are tools employed to prevent and treat obesity. The purpose of this article is to present the current knowledge of key components of the FTO gene role in the obesogenic system that links genetic, epigenetic and environmental, lifestyle/ diet nutritional and behavioral components and to describe the results obtained by genotyping and interviewing relevant selected groups of Romanian population. FTO rs9939609 genotyping was performed on a Romanian study group of 53 subjects (30 obese, 23 normal). Results have been analyzed in association with obesity parameters and comorbidities in order to identify this polymorphism's effect on body mass in our Caucasian cohort. At the same time, personal history of the subjects in correlation with the FTO genotypes provided important information on the FTO gene's influence on the feeding behavior and food selection of these individuals. In conclusion, the FTO rs9939609 polymorphism has been identified as a common gene variant in our Romanian Caucasian cohort, proving a high association with all the parameters of obesity and obesity comorbidities. The adherence to a Mediterranean diet is benefic for subjects with genetic predisposition for this disorder as long as it is kept for a long period of time along with sustained physical exercise. Association studies are an extremely important tool in understanding the hunger-satiety pathway, providing information on the relation between obesity-related genes, gene expression and behavior.

  17. Reverse logistics in the construction industry.

    PubMed

    Hosseini, M Reza; Rameezdeen, Raufdeen; Chileshe, Nicholas; Lehmann, Steffen

    2015-06-01

    Reverse logistics in construction refers to the movement of products and materials from salvaged buildings to a new construction site. While there is a plethora of studies looking at various aspects of the reverse logistics chain, there is no systematic review of literature on this important subject as applied to the construction industry. Therefore, the objective of this study is to integrate the fragmented body of knowledge on reverse logistics in construction, with the aim of promoting the concept among industry stakeholders and the wider construction community. Through a qualitative meta-analysis, the study synthesises the findings of previous studies and presents some actions needed by industry stakeholders to promote this concept within the real-life context. First, the trend of research and terminology related with reverse logistics is introduced. Second, it unearths the main advantages and barriers of reverse logistics in construction while providing some suggestions to harness the advantages and mitigate these barriers. Finally, it provides a future research direction based on the review. © The Author(s) 2015.

  18. GAN: a platform of genomics and genetics analysis and application in Nicotiana

    PubMed Central

    Yang, Shuai; Zhang, Xingwei; Li, Huayang; Chen, Yudong

    2018-01-01

    Abstract Nicotiana is an important Solanaceae genus, and plays a significant role in modern biological research. Massive Nicotiana biological data have emerged from in-depth genomics and genetics studies. From big data to big discovery, large-scale analysis and application with new platforms is critical. Based on data accumulation, a comprehensive platform of Genomics and Genetics Analysis and Application in Nicotiana (GAN) has been developed, and is publicly available at http://biodb.sdau.edu.cn/gan/. GAN consists of four main sections: (i) Sources, a total of 5267 germplasm lines, along with detailed descriptions of associated characteristics, are all available on the Germplasm page, which can be queried using eight different inquiry modes. Seven fully sequenced species with accompanying sequences and detailed genomic annotation are available on the Genomics page. (ii) Genetics, detailed descriptions of 10 genetic linkage maps, constructed by different parents, 2239 KEGG metabolic pathway maps and 209 945 gene families across all catalogued genes, along with two co-linearity maps combining N. tabacum with available tomato and potato linkage maps are available here. Furthermore, 3 963 119 genome-SSRs, 10 621 016 SNPs, 12 388 PIPs and 102 895 reverse transcription-polymerase chain reaction primers, are all available to be used and searched on the Markers page. (iii) Tools, the genome browser JBrowse and five useful online bioinformatics softwares, Blast, Primer3, SSR-detect, Nucl-Protein and E-PCR, are provided on the JBrowse and Tools pages. (iv) Auxiliary, all the datasets are shown on a Statistics page, and are available for download on a Download page. In addition, the user’s manual is provided on a Manual page in English and Chinese languages. GAN provides a user-friendly Web interface for searching, browsing and downloading the genomics and genetics datasets in Nicotiana. As far as we can ascertain, GAN is the most comprehensive source of bio-data available, and the most applicable resource for breeding, gene mapping, gene cloning, the study of the origin and evolution of polyploidy, and related studies in Nicotiana. Database URL: http://biodb.sdau.edu.cn/gan/ PMID:29688356

  19. The Genetic Interpretation of Area under the ROC Curve in Genomic Profiling

    PubMed Central

    Wray, Naomi R.; Yang, Jian; Goddard, Michael E.; Visscher, Peter M.

    2010-01-01

    Genome-wide association studies in human populations have facilitated the creation of genomic profiles which combine the effects of many associated genetic variants to predict risk of disease. The area under the receiver operator characteristic (ROC) curve is a well established measure for determining the efficacy of tests in correctly classifying diseased and non-diseased individuals. We use quantitative genetics theory to provide insight into the genetic interpretation of the area under the ROC curve (AUC) when the test classifier is a predictor of genetic risk. Even when the proportion of genetic variance explained by the test is 100%, there is a maximum value for AUC that depends on the genetic epidemiology of the disease, i.e. either the sibling recurrence risk or heritability and disease prevalence. We derive an equation relating maximum AUC to heritability and disease prevalence. The expression can be reversed to calculate the proportion of genetic variance explained given AUC, disease prevalence, and heritability. We use published estimates of disease prevalence and sibling recurrence risk for 17 complex genetic diseases to calculate the proportion of genetic variance that a test must explain to achieve AUC = 0.75; this varied from 0.10 to 0.74. We provide a genetic interpretation of AUC for use with predictors of genetic risk based on genomic profiles. We provide a strategy to estimate proportion of genetic variance explained on the liability scale from estimates of AUC, disease prevalence, and heritability (or sibling recurrence risk) available as an online calculator. PMID:20195508

  20. How lay people respond to messages about genetics, health, and race.

    PubMed

    Condit, C; Bates, B

    2005-08-01

    There is a growing movement in medical genetics to develop, implement, and promote a model of race-based medicine. Although race-based medicine may become a widely disseminated standard of care, messages that advocate race-based selection for diagnosing, screening and prescribing drugs may exacerbate health disparities. These messages are present in clinical genetic counseling sessions, mass media, and everyday talk. Messages promoting linkages among genes, race, and health and messages emphasizing genetic causation may promote both general racism and genetically based racism. This mini-review examines research in three areas: studies that address the effects of these messages about genetics on levels of genetic determinism and genetic discrimination; studies that address the effects of these messages on attitudes about race; and, studies of the impacts of race-specific genetic messages on recipients. Following an integration of this research, this mini-review suggests that the current literature appears fragmented because of methodological and measurement issues and offers strategies for future research. Finally, the authors offer a path model to help organize future research examining the effects of messages about genetics on socioculturally based racism, genetically based racism, and unaccounted for racism. Research in this area is needed to understand and mitigate the negative attitudinal effects of messages that link genes, race, and health and/or emphasize genetic causation.

  1. Generation of obese rat model by transcription activator-like effector nucleases targeting the leptin receptor gene.

    PubMed

    Chen, Yuting; Lu, Wenqing; Gao, Na; Long, Yi; Shao, Yanjiao; Liu, Meizhen; Chen, Huaqing; Ye, Shixin; Ma, Xueyun; Liu, Mingyao; Li, Dali

    2017-02-01

    The laboratory rat is a valuable mammalian model organism for basic research and drug discovery. Here we demonstrate an efficient methodology by applying transcription activator-like effector nucleases (TALENs) technology to generate Leptin receptor (Lepr) knockout rats on the Sprague Dawley (SD) genetic background. Through direct injection of in vitro transcribed mRNA of TALEN pairs into SD rat zygotes, somatic mutations were induced in two of three resulting pups. One of the founders carrying bi-allelic mutation exhibited early onset of obesity and infertility. The other founder carried a chimeric mutation which was efficiently transmitted to the progenies. Through phenotyping of the resulting three lines of rats bearing distinct mutations in the Lepr locus, we found that the strains with a frame-shifted or premature stop codon mutation led to obesity and metabolic disorders. However, no obvious defect was observed in a strain with an in-frame 57 bp deletion in the extracellular domain of Lepr. This suggests the deleted amino acids do not significantly affect Lepr structure and function. This is the first report of generating the Lepr mutant obese rat model in SD strain through a reverse genetic approach. This suggests that TALEN is an efficient and powerful gene editing technology for the generation of disease models.

  2. Secrets from immortal worms: What can we learn about biological ageing from the planarian model system?

    PubMed

    Sahu, Sounak; Dattani, Anish; Aboobaker, A Aziz

    2017-10-01

    Understanding how some animals are immortal and avoid the ageing process is important. We currently know very little about how they achieve this. Research with genetic model systems has revealed the existence of conserved genetic pathways and molecular processes that affect longevity. Most of these established model organisms have relatively short lifespans. Here we consider the use of planarians, with an immortal life-history that is able to entirely avoid the ageing process. These animals are capable of profound feats of regeneration fueled by a population of adult stem cells called neoblasts. These cells are capable of indefinite self-renewal that has underpinned the evolution of animals that reproduce only by fission, having disposed of the germline, and must therefore be somatically immortal and avoid the ageing process. How they do this is only now starting to be understood. Here we suggest that the evidence so far supports the hypothesis that the lack of ageing is an emergent property of both being highly regenerative and the evolution of highly effective mechanisms for ensuring genome stability in the neoblast stem cell population. The details of these mechanisms could prove to be very informative in understanding how the causes of ageing can be avoided, slowed or even reversed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Pedagogically Bereft! Improving Learning Outcomes for Children with Foetal Alcohol Spectrum Disorders

    ERIC Educational Resources Information Center

    Carpenter, Barry

    2011-01-01

    Foetal alcohol spectrum disorder (FASD) is the most common non-genetic cause of learning disability, affecting around 1% of live births in Europe, and costing an estimated $2.9 million per individual across their lifespan. In adulthood, non-reversible brain damage is often compounded by secondary disabilities in adulthood, such as mental health…

  4. Giving Birth to Someone Else's Children? A Case of Disputed Maternity

    ERIC Educational Resources Information Center

    Hutchison, Jessica

    2007-01-01

    Most students have heard about situations in which the paternity of a child is questioned; in a surprising reversal, in this case study, maternity is in question. Designed for an introductory biology course, the case involves concepts from genetics, inheritance, and the formation of pedigrees. Students develop hypotheses to explain how a mother…

  5. Genetic Inactivation of D-Amino Acid Oxidase Enhances Extinction and Reversal Learning in Mice

    ERIC Educational Resources Information Center

    Labrie, Viviane; Duffy, Steven; Wang, Wei; Barger, Steven W.; Baker, Glen B.; Roder, John C.

    2009-01-01

    Activation of the N-methyl-d-aspartate receptor (NMDAR) glycine site has been shown to accelerate adaptive forms of learning that may benefit psychopathologies involving cognitive and perseverative disturbances. In this study, the effects of increasing the brain levels of the endogenous NMDAR glycine site agonist D-serine, through the genetic…

  6. (PRESENT AT NCCU) ANALYSIS OF SELECTED PYRETHROID PESTICIDES USING REVERSE PHASE HIGH LIQUID CHROMATOGRAPHY

    EPA Science Inventory

    This research was conducted in cooperation with EPA Region 4 in Athens, GA to develop a method to analyze selected pyrethroid pesticides using Reverse Phase-High Pressure Liquid Chromatography (HPLC). This HPLC method will aid researchers in separating and identifying these pyre...

  7. 2004 Reversible Associations in Structure & Molecular Biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward Eisenstein Nancy Ryan Gray

    The Gordon Research Conference (GRC) on 2004 Gordon Research Conference on Reversible Associations in Structure & Molecular Biology was held at Four Points Sheraton, CA, 1/25-30/2004. The Conference was well attended with 82 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students.

  8. Quantitative Genetics in the Era of Molecular Genetics: Learning Abilities and Disabilities as an Example

    ERIC Educational Resources Information Center

    Haworth, Claire M. A.; Plomin, Robert

    2010-01-01

    Objective: To consider recent findings from quantitative genetic research in the context of molecular genetic research, especially genome-wide association studies. We focus on findings that go beyond merely estimating heritability. We use learning abilities and disabilities as examples. Method: Recent twin research in the area of learning…

  9. Antigenically Diverse Swine Origin H1N1 Variant Influenza Viruses Exhibit Differential Ferret Pathogenesis and Transmission Phenotypes.

    PubMed

    Pulit-Penaloza, Joanna A; Jones, Joyce; Sun, Xiangjie; Jang, Yunho; Thor, Sharmi; Belser, Jessica A; Zanders, Natosha; Creager, Hannah M; Ridenour, Callie; Wang, Li; Stark, Thomas J; Garten, Rebecca; Chen, Li-Mei; Barnes, John; Tumpey, Terrence M; Wentworth, David E; Maines, Taronna R; Davis, C Todd

    2018-06-01

    Influenza A(H1) viruses circulating in swine represent an emerging virus threat, as zoonotic infections occur sporadically following exposure to swine. A fatal infection caused by an H1N1 variant (H1N1v) virus was detected in a patient with reported exposure to swine and who presented with pneumonia, respiratory failure, and cardiac arrest. To understand the genetic and phenotypic characteristics of the virus, genome sequence analysis, antigenic characterization, and ferret pathogenesis and transmissibility experiments were performed. Antigenic analysis of the virus isolated from the fatal case, A/Ohio/09/2015, demonstrated significant antigenic drift away from the classical swine H1N1 variant viruses and H1N1 pandemic 2009 viruses. A substitution in the H1 hemagglutinin (G155E) was identified that likely impacted antigenicity, and reverse genetics was employed to understand the molecular mechanism of antibody escape. Reversion of the substitution to 155G, in a reverse genetics A/Ohio/09/2015 virus, showed that this residue was central to the loss of hemagglutination inhibition by ferret antisera raised against a prototypical H1N1 pandemic 2009 virus (A/California/07/2009), as well as gamma lineage classical swine H1N1 viruses, demonstrating the importance of this residue for antibody recognition of this H1 lineage. When analyzed in the ferret model, A/Ohio/09/2015 and another H1N1v virus, A/Iowa/39/2015, as well as A/California/07/2009, replicated efficiently in the respiratory tract of ferrets. The two H1N1v viruses transmitted efficiently among cohoused ferrets, but respiratory droplet transmission studies showed that A/California/07/2009 transmitted through the air more efficiently. Preexisting immunity to A/California/07/2009 did not fully protect ferrets from challenge with A/Ohio/09/2015. IMPORTANCE Human infections with classical swine influenza A(H1N1) viruses that circulate in pigs continue to occur in the United States following exposure to swine. To understand the genetic and virologic characteristics of a virus (A/Ohio/09/2015) associated with a fatal infection and a virus associated with a nonfatal infection (A/Iowa/39/2015), we performed genome sequence analysis, antigenic testing, and pathogenicity and transmission studies in a ferret model. Reverse genetics was employed to identify a single antigenic site substitution (HA G155E) responsible for antigenic variation of A/Ohio/09/2015 compared to related classical swine influenza A(H1N1) viruses. Ferrets with preexisting immunity to the pandemic A(H1N1) virus were challenged with A/Ohio/09/2015, demonstrating decreased protection. These data illustrate the potential for currently circulating swine influenza viruses to infect and cause illness in humans with preexisting immunity to H1N1 pandemic 2009 viruses and a need for ongoing risk assessment and development of candidate vaccine viruses for improved pandemic preparedness. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.

  10. Descriptive survey of Summer Genetics Institute nurse graduates in the USA.

    PubMed

    Hickey, Kathleen T; Sciacca, Robert R; McCarthy, Mary S

    2013-03-01

    The purpose of this study was to describe the clinical, research, educational, and professional activities that nurses are engaged in following participation in a 2 month intramural genetics training program. An online survey was administered in 2010 to graduates of the program sponsored by the US National Institute of Nursing Research from 2000 to 2009, in Bethesda, Maryland, USA. The electronic, voluntary survey was sent to 189 graduates via email. The survey included demographic characteristics, educational preparation, professional roles and responsibilities, and attitudes about genetic testing and privacy issues. Of the 95 graduates responding to the survey, 74% had doctorates and 70% were advanced practice nurses. All respondents reported incorporating genetics knowledge into daily clinical, academic, or research practices since completing the program, with 72% reporting being involved in genetically-focused research (52% with research funding), 32% incorporating genetics into patient care, and 79% providing genetics education. Respondents working in a hospital setting or academic institution were more likely to desire additional training in genetics. National Institute of Nursing Research graduates have successfully integrated genomics into a variety of nursing practices. © 2012 Wiley Publishing Asia Pty Ltd.

  11. Proteome and Transcriptome Analysis of Ovary, Intersex Gonads, and Testis Reveals Potential Key Sex Reversal/Differentiation Genes and Mechanism in Scallop Chlamys nobilis.

    PubMed

    Shi, Yu; Liu, Wenguang; He, Maoxian

    2018-04-01

    Bivalve mollusks exhibit hermaphroditism and sex reversal/differentiation. Studies generally focus on transcriptional profiling and specific genes related to sex determination and differentiation. Few studies on sex reversal/differentiation have been reported. A combination analysis of gonad proteomics and transcriptomics was conducted on Chlamys nobilis to provide a systematic understanding of sex reversal/differentiation in bivalves. We obtained 4258 unique peptides and 93,731 unigenes with good correlation between messenger RNA and protein levels. Candidate genes in sex reversal/differentiation were found: 15 genes differentially expressed between sexes were identified and 12 had obvious sexual functions. Three novel genes (foxl2, β-catenin, and sry) were expressed highly in intersex individuals and were likely involved in the control of gonadal sex in C. nobilis. High expression of foxl2 or β-catenin may inhibit sry and activate 5-HT receptor and vitellogenin to maintain female development. High expression of sry may inhibit foxl2 and β-catenin and activate dmrt2, fem-1, sfp2, sa6, Amy-1, APCP4, and PLK to maintain male function. High expression of sry, foxl2, and β-catenin in C. nobilis may be involved in promoting and maintaining sex reversal/differentiation. The downstream regulator may not be dimorphic expressed genes, but genes expressed in intersex individuals, males and females. Different expression patterns of sex-related genes and gonadal histological characteristics suggested that C. nobilis may change its sex from male to female. These findings suggest highly conserved sex reversal/differentiation with diverged regulatory pathways during C. nobilis evolution. This study provides valuable genetic resources for understanding sex reversal/differentiation (intersex) mechanisms and pathways underlying bivalve reproductive regulation.

  12. Nonbehavioral Selection for Pawns, Mutants of PARAMECIUM AURELIA with Decreased Excitability

    PubMed Central

    Schein, Stanley J.

    1976-01-01

    The reversal response in Paramecium aurelia is mediated by calcium which carries the inward current during excitation. Electrophysiological studies indicate that strontium and barium can also carry the inward current. Exposure to high concentrations of barium rapidly paralyzes and later kills wild-type paramecia. Following mutagenesis with nitrosoguanidine, seven mutants which continued to swim in the `high-barium' solution were selected. All of the mutants show decreased reversal behavior, with phenotypes ranging from extremely non-reversing (`extreme' pawns) to nearly wild-type reversal behavior (`partial' pawns). The mutations fall into three complementation groups, identical to the pwA, pwB, and pwC genes of Kung et al. (1975). All of the pwA and pwB mutants withstand longer exposure to barium, the pwB mutants surviving longer than the pwA mutants. Among mutants of each gene, survival is correlated with loss of reversal behavior. Double mutants (A–B, A–C, B–C), identified in the exautogamous progeny of crosses between `partial' mutants, exhibited a more extreme non-reversing phenotype than either of their single-mutant (`partial' pawn) parents.———Inability to reverse could be expected from an alteration in the calcium-activated reversal mechanism or in excitation. A normal calcium-activated structure was demonstrated in all pawns by chlorpromazine treatment. In a separate report (Schein, Bennett and Katz 1976) the results of electrophysiological investigations directly demonstrate decreased excitability in all of the mutants, a decrease due to an altered calcium activation. The studies of the genetics, the survival in barium and the electro-physiology of the pawns demonstrate that the pwA and pwB genes have different effects on calcium activation. PMID:1001878

  13. National human genome projects: an update and an agenda.

    PubMed

    An, Joon Yong

    2017-01-01

    Population genetic and human genetic studies are being accelerated with genome technology and data sharing. Accordingly, in the past 10 years, several countries have initiated genetic research using genome technology and identified the genetic architecture of the ethnic groups living in the corresponding country or suggested the genetic foundation of a social phenomenon. Genetic research has been conducted from epidemiological studies that previously described the health or disease conditions in defined population. This perspective summarizes national genome projects conducted in the past 10 years and introduces case studies to utilize genomic data in genetic research.

  14. Research on the Environmental Performance Evaluation of Electronic Waste Reverse Logistics Enterprise

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Xiang; Chen, Fei-Yang; Tong, Tong

    According to the characteristic of e-waste reverse logistics, environmental performance evaluation system of electronic waste reverse logistics enterprise is proposed. We use fuzzy analytic hierarchy process method to evaluate the system. In addition, this paper analyzes the enterprise X, as an example, to discuss the evaluation method. It's important to point out attributes and indexes which should be strengthen during the process of ewaste reverse logistics and provide guidance suggestions to domestic e-waste reverse logistics enterprises.

  15. Crop Genetics: The Seeds of Revolution.

    ERIC Educational Resources Information Center

    DeYoung, H. Garrett

    1983-01-01

    Current research in plant genetics is described. Benefits of this research (which includes genetic engineering applications) will include reduction/elimination of crop diseases, assurance of genetic stability, and the creation of new crop varieties. (JN)

  16. [Ethical guidelines on genetic testing and gene therapy].

    PubMed

    Fukushima, Yoshimitsu

    2005-03-01

    According to the recent and rapid advances in molecular genetics research, genetic testing and gene therapy have a potential of giving unexpected influence to the human beings. To prevent and to solve various ethical, legal and social implementations (ELSI) of genetic testing and gene therapy, several guidelines have been established. In Japan, all researchers and all clinicians have to know and keep the following three guidelines on genetic testing and a guideline on gene therapy: 1) "Guidelines for Researches on Human Genome and Gene (2001)" by the three Ministries (Education, Health and Economy), 2) "Guidelines for Genetic Testing (2001)" by the Genetic--medicine--related 10 societies, 3) "Ethical Principles on Entrusted Genetic Testing (2001)" by the Japan Registered Clinical Laboratories Association, and 4) "Guidelines for Clinical Research on Gene Therapy (2002)" by the two Ministries (Health and Education).

  17. [A case of SRY positive sex reversal in a domestic cat].

    PubMed

    Pieńkowska-Schelling, A; Becker, D; Pineroli, B; Schelling, C

    2015-03-01

    The present case report describes a stray cat with a female appearance. The new owners requested to neuter the animal. During surgery the veterinarian could not find any gonadal tissue. After puberty the cat showed more and more male behaviour. The owners of the cat were interested to know the cause of the abnormal behaviour, but forbid any further clinical tests or surgery. Based upon cytogenetic and molecular genetic experiments a diagnosis became possible. The uniform karyotype (38,XY) was in accordance with the karyotype of a male cat and it was possible to amplify the SR Y gene by PCR. The cat represents a case of SRYpositive sex reversal.

  18. A model describing the effect of sex-reversed YY fish in an established wild population: The use of a Trojan Y chromosome to cause extinction of an introduced exotic species.

    PubMed

    Gutierrez, Juan B; Teem, John L

    2006-07-21

    A novel means of inducing extinction of an exotic fish population is proposed using a genetic approach to shift the ratio of male to females within a population. In the proposed strategy, sex-reversed fish containing two Y chromosomes are introduced into a normal fish population. These YY fish result in the production of a disproportionate number of male fish in subsequent generations. Mathematical modeling of the system following introduction of YY fish at a constant rate reveals that female fish decline in numbers over time, leading to eventual extinction of the population.

  19. Translating Discovery in Zebrafish Pancreatic Development to Human Pancreatic Cancer: Biomarkers, Targets, Pathogenesis, and Therapeutics

    PubMed Central

    Kazi, Abid A.; Yee, Rosemary K.

    2013-01-01

    Abstract Experimental studies in the zebrafish have greatly facilitated understanding of genetic regulation of the early developmental events in the pancreas. Various approaches using forward and reverse genetics, chemical genetics, and transgenesis in zebrafish have demonstrated generally conserved regulatory roles of mammalian genes and discovered novel genetic pathways in exocrine pancreatic development. Accumulating evidence has supported the use of zebrafish as a model of human malignant diseases, including pancreatic cancer. Studies have shown that the genetic regulators of exocrine pancreatic development in zebrafish can be translated into potential clinical biomarkers and therapeutic targets in human pancreatic adenocarcinoma. Transgenic zebrafish expressing oncogenic K-ras and zebrafish tumor xenograft model have emerged as valuable tools for dissecting the pathogenetic mechanisms of pancreatic cancer and for drug discovery and toxicology. Future analysis of the pancreas in zebrafish will continue to advance understanding of the genetic regulation and biological mechanisms during organogenesis. Results of those studies are expected to provide new insights into how aberrant developmental pathways contribute to formation and growth of pancreatic neoplasia, and hopefully generate valid biomarkers and targets as well as effective and safe therapeutics in pancreatic cancer. PMID:23682805

  20. Translating discovery in zebrafish pancreatic development to human pancreatic cancer: biomarkers, targets, pathogenesis, and therapeutics.

    PubMed

    Yee, Nelson S; Kazi, Abid A; Yee, Rosemary K

    2013-06-01

    Abstract Experimental studies in the zebrafish have greatly facilitated understanding of genetic regulation of the early developmental events in the pancreas. Various approaches using forward and reverse genetics, chemical genetics, and transgenesis in zebrafish have demonstrated generally conserved regulatory roles of mammalian genes and discovered novel genetic pathways in exocrine pancreatic development. Accumulating evidence has supported the use of zebrafish as a model of human malignant diseases, including pancreatic cancer. Studies have shown that the genetic regulators of exocrine pancreatic development in zebrafish can be translated into potential clinical biomarkers and therapeutic targets in human pancreatic adenocarcinoma. Transgenic zebrafish expressing oncogenic K-ras and zebrafish tumor xenograft model have emerged as valuable tools for dissecting the pathogenetic mechanisms of pancreatic cancer and for drug discovery and toxicology. Future analysis of the pancreas in zebrafish will continue to advance understanding of the genetic regulation and biological mechanisms during organogenesis. Results of those studies are expected to provide new insights into how aberrant developmental pathways contribute to formation and growth of pancreatic neoplasia, and hopefully generate valid biomarkers and targets as well as effective and safe therapeutics in pancreatic cancer.

  1. Opportunities for CRISPR/Cas9 Gene Editing in Retinal Regeneration Research

    PubMed Central

    Campbell, Leah J.; Hyde, David R.

    2017-01-01

    While retinal degeneration and disease results in permanent damage and vision loss in humans, the severely damaged zebrafish retina has a high capacity to regenerate lost neurons and restore visual behaviors. Advancements in understanding the molecular and cellular basis of this regeneration response give hope that strategies and therapeutics may be developed to restore sight to blind and visually-impaired individuals. Our current understanding has been facilitated by the amenability of zebrafish to molecular tools, imaging techniques, and forward and reverse genetic approaches. Accordingly, the zebrafish research community has developed a diverse array of research tools for use in developing and adult animals, including toolkits for facilitating the generation of transgenic animals, systems for inducible, cell-specific transgene expression, and the creation of knockout alleles for nearly every protein coding gene. As CRISPR/Cas9 genome editing has begun to revolutionize molecular biology research, the zebrafish community has responded in stride by developing CRISPR/Cas9 techniques for the zebrafish as well as incorporating CRISPR/Cas9 into available toolsets. The application of CRISPR/Cas9 to retinal regeneration research will undoubtedly bring us closer to understanding the mechanisms underlying retinal repair and vision restoration in the zebrafish, as well as developing therapeutic approaches that will restore vision to blind and visually-impaired individuals. This review focuses on how CRISPR/Cas9 has been integrated into zebrafish research toolsets and how this new tool will revolutionize the field of retinal regeneration research. PMID:29218308

  2. Beliefs in genetic determinism and attitudes towards psychiatric genetic research: psychometric scale properties, construct associations, demographic correlates, and cross-cultural comparisons.

    PubMed

    Voracek, Martin; Swami, Viren; Loibl, Lisa Mariella; Furnham, Adrian

    2007-12-01

    Using two new scales, this study examined beliefs in genetic determinism and attitudes towards psychiatric genetic research in student samples from Austria, Malaysia, Romania, and the United Kingdom. For both constructs, effects of culture were detectable, whereas those related to key demographics were either small and inconsistent across samples (political orientation and religiosity) or zero (sex and age). Judged from factorial dimensionality and internal consistency, the psychometric properties of both scales were satisfactory. Belief in genetic determinism had lower prevalence and corresponded only modestly to positive attitudes towards psychiatric genetic research which had higher prevalence. The correlations of both constructs with a preference of inequality among social groups (social dominance orientation) were modest and inconsistent across samples. Both scales appear appropriate for cross-cultural applications, in particular for research into lay theories and public perceptions regarding genetic vs environmental effects on human behavior, mental disorders, and behavioral and psychiatric genetic research related to these.

  3. Public and Biobank Participant Attitudes toward Genetic Research Participation and Data Sharing

    PubMed Central

    Lemke, A.A.; Wolf, W.A.; Hebert-Beirne, J.; Smith, M.E.

    2010-01-01

    Research assessing attitudes toward consent processes for high-throughput genomic-wide technologies and widespread sharing of data is limited. In order to develop a better understanding of stakeholder views toward these issues, this cross-sectional study assessed public and biorepository participant attitudes toward research participation and sharing of genetic research data. Forty-nine individuals participated in 6 focus groups; 28 in 3 public focus groups and 21 in 3 NUgene biorepository participant focus groups. In the public focus groups, 75% of participants were women, 75% had some college education or more, 46% were African-American and 29% were Hispanic. In the NUgene focus groups, 67% of participants were women, 95% had some college education or more, and the majority (76%) of participants was Caucasian. Five major themes were identified in the focus group data: (a) a wide spectrum of understanding of genetic research; (b) pros and cons of participation in genetic research; (c) influence of credibility and trust of the research institution; (d) concerns about sharing genetic research data and need for transparency in the Policy for Sharing of Data in National Institutes of Health-Supported or Conducted Genome-Wide Association Studies; (e) a need for more information and education about genetic research. In order to increase public understanding and address potential concerns about genetic research, future efforts should be aimed at involving the public in genetic research policy development and in identifying or developing appropriate educational strategies to meet the public's needs. PMID:20805700

  4. Strengthening human genetics research in Africa: report of the 9th meeting of the African Society of Human Genetics in Dakar in May 2016.

    PubMed

    Ndiaye Diallo, R; Gadji, M; Hennig, B J; Guèye, M V; Gaye, A; Diop, J P D; Sylla Niang, M; Lopez Sall, P; Guèye, P M; Dem, A; Faye, O; Dieye, A; Cisse, A; Sembene, M; Ka, S; Diop, N; Williams, S M; Matovu, E; Ramesar, R S; Wonkam, A; Newport, M; Rotimi, C; Ramsay, M

    2017-01-01

    The 9th meeting of the African Society of Human Genetics, in partnership with the Senegalese Cancer Research and Study Group and the Human Heredity and Health in Africa (H3Africa) Consortium, was held in Dakar, Senegal. The theme was Strengthening Human Genetics Research in Africa. The 210 delegates came from 21 African countries and from France, Switzerland, UK, UAE, Canada and the USA. The goal was to highlight genetic and genomic science across the African continent with the ultimate goal of improving the health of Africans and those across the globe, and to promote the careers of young African scientists in the field. A session on the sustainability of genomic research in Africa brought to light innovative and practical approaches to supporting research in resource-limited settings and the importance of promoting genetics in academic, research funding, governmental and private sectors. This meeting led to the formation of the Senegalese Society for Human Genetics.

  5. Genetic Testing and Its Implications: Human Genetics Researchers Grapple with Ethical Issues.

    ERIC Educational Resources Information Center

    Rabino, Isaac

    2003-01-01

    Contributes systematic data on the attitudes of scientific experts who engage in human genetics research about the pros, cons, and ethical implications of genetic testing. Finds that they are highly supportive of voluntary testing and the right to know one's genetic heritage. Calls for greater genetic literacy. (Contains 87 references.) (Author/NB)

  6. Chemical genomics in plant biology.

    PubMed

    Sadhukhan, Ayan; Sahoo, Lingaraj; Panda, Sanjib Kumar

    2012-06-01

    Chemical genomics is a newly emerged and rapidly progressing field in biology, where small chemical molecules bind specifically and reversibly to protein(s) to modulate their function(s), leading to the delineation and subsequent unravelling of biological processes. This approach overcomes problems like lethality and redundancy of classical genetics. Armed with the powerful techniques of combinatorial synthesis, high-throughput screening and target discovery chemical genomics expands its scope to diverse areas in biology. The well-established genetic system of Arabidopsis model allows chemical genomics to enter into the realm of plant biology exploring signaling pathways of growth regulators, endomembrane signaling cascades, plant defense mechanisms and many more events.

  7. Epigenetic regulation of ageing: linking environmental inputs to genomic stability

    PubMed Central

    Benayoun, Bérénice A.; Pollina, Elizabeth A.; Brunet, Anne

    2016-01-01

    Preface Ageing is affected by both genetic and non-genetic factors. Here, we review the chromatin-based epigenetic changes that occur during ageing, the role of chromatin modifiers in modulating lifespan and the importance of epigenetic signatures as biomarkers of ageing. We also discuss how epigenome remodeling by environmental stimuli impacts several aspects of transcription and genomic stability, with important consequences on longevity, and outline epigenetic differences between the ‘mortal soma’ and the ‘immortal germline’. Finally, we discuss the inheritance of ageing characteristics and potential chromatin-based strategies to delay or reverse hallmarks of ageing or age-related diseases. PMID:26373265

  8. Congenital heart disease and genetic syndromes: new insights into molecular mechanisms.

    PubMed

    Calcagni, Giulio; Unolt, Marta; Digilio, Maria Cristina; Baban, Anwar; Versacci, Paolo; Tartaglia, Marco; Baldini, Antonio; Marino, Bruno

    2017-09-01

    Advances in genetics allowed a better definition of the role of specific genetic background in the etiology of syndromic congenital heart defects (CHDs). The identification of a number of disease genes responsible for different syndromes have led to the identification of several transcriptional regulators and signaling transducers and modulators that are critical for heart morphogenesis. Understanding the genetic background of syndromic CHDs allowed a better characterization of the genetic basis of non-syndromic CHDs. In this sense, the well-known association of typical CHDs in Down syndrome, 22q11.2 microdeletion and Noonan syndrome represent paradigms as chromosomal aneuploidy, chromosomal microdeletion and intragenic mutation, respectively. Area covered: For each syndrome the anatomical features, distinctive cardiac phenotype and molecular mechanisms are discussed. Moreover, the authors include recent genetic findings that may shed light on some aspects of still unclear molecular mechanisms of these syndromes. Expert commentary: Further investigations are needed to enhance the translational approach in the field of genetics of CHDs. When there is a well-established definition of genotype-phenotype (reverse medicine) and genotype-prognosis (predictive and personalized medicine) correlations, hopefully preventive medicine will make its way in this field. Subsequently a reduction will be achieved in the morbidity and mortality of children with CHDs.

  9. Breeding and quantitative genetics advances in sunflower Sclerotinia research

    USDA-ARS?s Scientific Manuscript database

    Genetic research of the sunflower research unit, USDA-ARS, in Fargo, ND, was discussed in a presentation to a group of producers, industry representatives, and scientists. The need for sunflower quantitative genetics research to find and capture Sclerotinia resistance is increasing with every year t...

  10. Characterization of Arabidopsis thaliana mismatch specific endonucleases: application to mutation discovery by TILLING in pea.

    PubMed

    Triques, Karine; Sturbois, Bénédicte; Gallais, Stéphane; Dalmais, Marion; Chauvin, Stéphanie; Clepet, Christian; Aubourg, Sébastien; Rameau, Catherine; Caboche, Michel; Bendahmane, Abdelhafid

    2007-09-01

    Scanning DNA sequences for mutations and polymorphisms has become one of the most challenging, often expensive and time-consuming obstacles in many molecular genetic applications, including reverse genetic and clinical diagnostic applications. Enzymatic mutation detection methods are based on the cleavage of heteroduplex DNA at the mismatch sites. These methods are often limited by the availability of a mismatch-specific endonuclease, their sensitivity in detecting one allele in a pool of DNA and their costs. Here, we present detailed biochemical analysis of five Arabidopsis putative mismatch-specific endonucleases. One of them, ENDO1, is presented as the first endonuclease that recognizes and cleaves all types of mismatches with high efficiency. We report on a very simple protocol for the expression and purification of ENDO1. The ENDO1 system could be exploited in a wide range of mutation diagnostic tools. In particular, we report the use of ENDO1 for discovery of point mutations in the gibberellin 3beta-hydrolase gene of Pisum sativum. Twenty-one independent mutants were isolated, five of these were characterized and two new mutations affecting internodes length were identified. To further evaluate the quality of the mutant population we screened for mutations in four other genes and identified 5-21 new alleles per target. Based on the frequency of the obtained alleles we concluded that the pea population described here would be suitable for use in a large reverse-genetics project.

  11. Contribution of domestic animals to the identification of new genes involved in sex determination.

    PubMed

    Pailhoux, E; Vigier, B; Vaiman, D; Schibler, L; Vaiman, A; Cribiu, E; Nezer, C; Georges, M; Sundström, J; Pelliniemi, L J; Fellous, M; Cotinot, C

    2001-12-01

    Among farm animals, two species present an intersex condition at a relatively high frequency: pig and goat. Both are known to contain XX sex-reversed individuals which are genetically female but with a true hermaphrodite or male phenotype. It has been clearly demonstrated that the SRY gene is not involved in these phenotypes. Consequently, autosomal or X-linked mutations in the sex-determining pathway may explain these sex-reversed phenotypes. A mutation referred to as "polled" has been characterized in goats by the suppression of horn formation and abnormal sexual differentiation. The Polled Intersex Syndrome locus (PIS) was initially located in the distal region of goat chromosome 1. The homologous human region has been precisely identified as an HSA 3q23 DNA segment containing the Blepharophimosis Ptosis Epicanthus locus (BPES), a syndrome combining Premature Ovarian Failure (POF) and an excess of epidermis of the eyelids. In order to isolate genes involved in pig intersexuality, a similar genetic approach was attempted in pigs using genome scanning of resource families. Genetic analyses suggest that pig intersexuality is controlled multigenically. Parallel to this work, gonads of fetal intersex animals have been studied during development by light and electron microscopy. The development of testicular tissue and reduction of germ cell number by apoptosis, which simultaneously occurs as soon as 50 days post coïtum, also suggests that several separate genes could be involved in pig intersexuality. Copyright 2001 Wiley-Liss, Inc.

  12. Retrospective on reverse genetics in mice around the world and in Japan.

    PubMed

    Aizawa, Shinichi

    2008-06-01

    The 2007 Nobel Prize for Physiology or Medicine was awarded to Mario R. Capecchi, Martin J. Evans and Oliver Smithies for their contribution in generating mutant mice by gene targeting in embryonic stem (ES) cells. Although there are many experimental animals, it is yet only in mouse that one can genetically examine functions of genes at will. It was merely a dream in the early 1980s that genetic studies with mutants would one day become a reality in mammals. The story began with tetratocarcinoma/embryonal carcinoma cells. Now, through the successes of cloning in mammals, somatic cells such as our skin cells will shortly be transformed into ES-like (induced pluripotent stem) cells by the proper activation of endogenous genes such as Oct4 and Sox2 with chemicals. How have times changed?

  13. An organelle-specific protein landscape identifies novel diseases and molecular mechanisms

    PubMed Central

    Boldt, Karsten; van Reeuwijk, Jeroen; Lu, Qianhao; Koutroumpas, Konstantinos; Nguyen, Thanh-Minh T.; Texier, Yves; van Beersum, Sylvia E. C.; Horn, Nicola; Willer, Jason R.; Mans, Dorus A.; Dougherty, Gerard; Lamers, Ideke J. C.; Coene, Karlien L. M.; Arts, Heleen H.; Betts, Matthew J.; Beyer, Tina; Bolat, Emine; Gloeckner, Christian Johannes; Haidari, Khatera; Hetterschijt, Lisette; Iaconis, Daniela; Jenkins, Dagan; Klose, Franziska; Knapp, Barbara; Latour, Brooke; Letteboer, Stef J. F.; Marcelis, Carlo L.; Mitic, Dragana; Morleo, Manuela; Oud, Machteld M.; Riemersma, Moniek; Rix, Susan; Terhal, Paulien A.; Toedt, Grischa; van Dam, Teunis J. P.; de Vrieze, Erik; Wissinger, Yasmin; Wu, Ka Man; Apic, Gordana; Beales, Philip L.; Blacque, Oliver E.; Gibson, Toby J.; Huynen, Martijn A.; Katsanis, Nicholas; Kremer, Hannie; Omran, Heymut; van Wijk, Erwin; Wolfrum, Uwe; Kepes, François; Davis, Erica E.; Franco, Brunella; Giles, Rachel H.; Ueffing, Marius; Russell, Robert B.; Roepman, Ronald; Al-Turki, Saeed; Anderson, Carl; Antony, Dinu; Barroso, Inês; Bentham, Jamie; Bhattacharya, Shoumo; Carss, Keren; Chatterjee, Krishna; Cirak, Sebahattin; Cosgrove, Catherine; Danecek, Petr; Durbin, Richard; Fitzpatrick, David; Floyd, Jamie; Reghan Foley, A.; Franklin, Chris; Futema, Marta; Humphries, Steve E.; Hurles, Matt; Joyce, Chris; McCarthy, Shane; Mitchison, Hannah M.; Muddyman, Dawn; Muntoni, Francesco; O'Rahilly, Stephen; Onoufriadis, Alexandros; Payne, Felicity; Plagnol, Vincent; Raymond, Lucy; Savage, David B.; Scambler, Peter; Schmidts, Miriam; Schoenmakers, Nadia; Semple, Robert; Serra, Eva; Stalker, Jim; van Kogelenberg, Margriet; Vijayarangakannan, Parthiban; Walter, Klaudia; Whittall, Ros; Williamson, Kathy

    2016-01-01

    Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub-complexes in exocyst and intraflagellar transport complexes, which we validate biochemically, and by probing structurally predicted, disruptive, genetic variants from ciliary disease patients. The landscape suggests other genetic diseases could be ciliary including 3M syndrome. We show that 3M genes are involved in ciliogenesis, and that patient fibroblasts lack cilia. Overall, this organelle-specific targeting strategy shows considerable promise for Systems Medicine. PMID:27173435

  14. Genetic Diversity of HIV-1 in Tunisia.

    PubMed

    El Moussi, Awatef; Thomson, Michael M; Delgado, Elena; Cuevas, María Teresa; Nasr, Majda; Abid, Salma; Ben Hadj Kacem, Mohamed Ali; Benaissa Tiouiri, Hanene; Letaief, Amel; Chakroun, Mohamed; Ben Jemaa, Mounir; Hamdouni, Hayet; Tej Dellagi, Rafla; Kheireddine, Khaled; Boutiba, Ilhem; Pérez-Álvarez, Lucía; Slim, Amine

    2017-01-01

    In this study, the genetic diversity of HIV-1 in Tunisia was analyzed. For this, 193 samples were collected in different regions of Tunisia between 2012 and 2015. A protease and reverse transcriptase fragment were amplified and sequenced. Phylogenetic analyses were performed through maximum likelihood and recombination was analyzed by bootscanning. Six HIV-1 subtypes (B, A1, G, D, C, and F2), 5 circulating recombinant forms (CRF02_AG, CRF25_cpx, CRF43_02G, CRF06_cpx, and CRF19_cpx), and 11 unique recombinant forms were identified. Subtype B (46.4%) and CRF02_AG (39.4%) were the predominant genetic forms. A group of 44 CRF02_AG sequences formed a distinct Tunisian cluster, which also included four viruses from western Europe. Nine viruses were closely related to isolates collected in other African or in European countries. In conclusion, a high HIV-1 genetic diversity is observed in Tunisia and the local spread of CRF02_AG is first documented in this country.

  15. RNA isolation from bloodstains collected on FTA cards - application in clinical and forensic genetics.

    PubMed

    Skonieczna, Katarzyna; Styczyński, Jan; Krenska, Anna; Wysocki, Mariusz; Jakubowska, Aneta; Grzybowski, Tomasz

    2016-01-01

    Aim of the study: In recent years, RNA analysis has been increasingly used in clinical and forensic genetics. Nevertheless, a major limitation of RNA-based applications is very low RNA stability in biological material, due to the RNAse activity. This highlights the need for improving the methods of RNA collection and storage. Technological approaches such as FTA Classic Cards (Whatman) could provide a solution for the problem of RNA degradation. However, different methods of RNA isolation from FTA cards could have diverse effects on RNA quantity and quality. The purpose of this research was to analyze the utility of three different methods of RNA isolation from peripheral blood collected on FTA Classic Cards (Whatman). The study also aimed at assessing RNA stability in bloodstains deposited on FTA cards. Material and methods: The study was performed on peripheral bloodstains collected from 59 individuals on FTA Classic Cards (Whatman). RNA was isolated with High Pure RNA Isolation Kit (Roche Diagnostics), Universal RNA/miRNA Purification (EURx) and TRIzol Reagent (Life Technologies). RNA was subjected to quantitative analysis followed by reverse transcription and Real - Time PCR reaction. Results: The study has shown that FTA Classic Cards (Whatman) are useful tools for storing bloodstains at room temperature for RNA analysis. Moreover, the method of RNA extraction employing TRIzol Reagent (Life Technologies) provides the highest efficiency and reproducibility for samples stored for no more than 2 years. Conclusions: The FTA cards are suitable for collecting and storing bloodstains for RNA analysis in clinical and forensic genetics.

  16. Contactins in the neurobiology of autism.

    PubMed

    Zuko, Amila; Kleijer, Kristel T E; Oguro-Ando, Asami; Kas, Martien J H; van Daalen, Emma; van der Zwaag, Bert; Burbach, J Peter H

    2013-11-05

    Autism is a disease of brain plasticity. Inspiring work of Willem Hendrik Gispen on neuronal plasticity has stimulated us to investigate gene defects in autism and the consequences for brain development. The central process in the pathogenesis of autism is local dendritic mRNA translation which is dependent on axodendritic communication. Hence, most autism-related gene products (i) are part of the protein synthesis machinery itself, (ii) are components of the mTOR signal transduction pathway, or (iii) shape synaptic activity and plasticity. Accordingly, prototype drugs have been recognized that interfere with these pathways. The contactin (CNTN) family of Ig cell adhesion molecules (IgCAMs) harbours at least three members that have genetically been implicated in autism: CNTN4, CNTN5, and CNTN6. In this chapter we review the genetic and neurobiological data underpinning their role in normal and abnormal development of brain systems, and the consequences for behavior. Although data on each of these CNTNs are far from complete, we tentatively conclude that these three contactins play roles in brain development in a critical phase of establishing brain systems and their plasticity. They modulate neuronal activities, such as neurite outgrowth, synaptogenesis, survival, guidance of projections and terminal branching of axons in forming neural circuits. Current research on these CNTNs concentrate on the neurobiological mechanism of their developmental functions. A future task will be to establish if proposed pharmacological strategies to counteract ASD-related symptomes can also be applied to reversal of phenotypes caused by genetic defects in these CNTN genes. © 2013 Elsevier B.V. All rights reserved.

  17. Serum total bilirubin levels and coronary heart disease--Causal association or epiphenomenon?

    PubMed

    Kunutsor, Setor K

    2015-12-01

    Observational epidemiological evidence supports a linear inverse and independent association between serum total bilirubin levels and coronary heart disease (CHD) risk, but whether this association is causal remains to be ascertained. A Mendelian randomization approach was employed to test whether serum total bilirubin is causally linked to CHD. The genetic variant rs6742078--well known to specifically modify levels of serum total bilirubin and accounting for up to 20% of the variance in circulating serum total bilirubin levels--was used as an instrumental variable. In pooled analysis of estimates reported from published genome-wide association studies, every copy of the T allele of rs6742078 was associated with 0.42 standard deviation (SD) higher levels of serum total bilirubin (95% confidence interval, 0.40 to 0.43). Based on combined data from the Coronary Artery Disease Genome wide Replication and Meta-analyses and the Coronary Artery Disease (C4D) Genetics Consortium involving a total of 36,763 CHD cases and 76,997 controls, the odds ratio for CHD per copy of the T allele was 1.01 (95% confidence interval, 0.99 to 1.04). The odds ratio of CHD for a 1 SD genetically elevated serum total bilirubin level was 1.03 (95% confidence interval, 0.98 to 1.09). The current findings casts doubt on a strong causal association of serum total bilirubin levels with CHD. The inverse associations demonstrated in observational studies may be driven by biases such as unmeasured confounding and/or reverse causation. However, further research in large-scale consortia is needed. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Ethical genetic research in Indigenous communities: challenges and successful approaches.

    PubMed

    McWhirter, Rebekah E; Mununggirritj, Djapirri; Marika, Dipililnga; Dickinson, Joanne L; Condon, John R

    2012-12-01

    Indigenous populations, in common with all populations, stand to benefit from the potential of genetic research to lead to improvements in diagnostic and therapeutic tools for a wide range of complex diseases. However, many Indigenous communities, especially ones that are isolated, are not included in genetic research efforts. This situation is largely a consequence of the challenges of ethically conducting genetic research in Indigenous communities and compounded by Indigenous peoples' negative past experiences with genetic issues. To examine ways of addressing these challenges, we review one investigation of a cancer cluster in remote Aboriginal communities in Arnhem Land, Australia. Our experiences demonstrate that genetic research can be both ethically and successfully conducted with Indigenous communities by respecting the authority of the community, involving community members, and including regular community review throughout the research process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Parents' perspectives on participating in genetic research in autism.

    PubMed

    Trottier, Magan; Roberts, Wendy; Drmic, Irene; Scherer, Stephen W; Weksberg, Rosanna; Cytrynbaum, Cheryl; Chitayat, David; Shuman, Cheryl; Miller, Fiona A

    2013-03-01

    Genetic research in autism depends on the willingness of individuals with autism to participate; thus, there is a duty to assess participants' needs in the research process. We report on families' motives and expectations related to their participation in autism genetic research. Respondents valued having a genetic result, as it alleviates guilt, promotes awareness, and may be used to tailor interventions and for family planning. The act of participating was distinctly significant, as it provided personal control, a connection to autism experts, networking with families, and hope for the future. The results of this study highlight complex factors involved in families' decisions to participate in autism genetic research and provide points to consider for this population of research participants.

  20. The Derived Transfer and Reversal of Mood Functions through Equivalence Relations: II

    ERIC Educational Resources Information Center

    Cahill, Jane; Barnes-Holmes, Yvonne; Barnes-Holmes, Dermot; Rodriguez-Valverde, Miguel; Luciano, Carmen; Smeets, Paul M.

    2007-01-01

    Recent research has demonstrated the transfer of induced mood functions through equivalence relations by means of a musical mood-induction procedure. The research described in this article replicated and extended such work, primarily with the inclusion of a baseline and two types of reversal procedures. First, 16 adult participants were trained…

  1. Ethical dimensions of genetics in pediatric neurology: a look into the future.

    PubMed

    Avard, Denise M; Knoppers, Bartha M

    2002-03-01

    Health care providers and families with children who participate in genetic research or who need specialized genetic services, including genetic testing, will encounter not only medical but difficult social, ethical, and legal questions surrounding pediatric genetic neurology. Children are often at the center of much of the genetic revolution and their unique needs raise special concerns about the risks and benefits associated with genetic research, particularly the issues of consent, the use of genetic databases, and gene therapy. Moreover, genetic research and testing raise important psychosocial risks. In this article we discuss some of the benefits and consequences of genetic technologies for children in relation to national and international guidelines. In particular, physicians, policy-makers, and families should be knowledgeable about the guidelines and have a good understanding of the psychosocial and ethical issues associated with genetics in pediatric neurology.

  2. [The study of tomato fruit weight quantitative trait locus and its application in genetics teaching].

    PubMed

    Wang, Hai-yan

    2015-08-01

    The classical research cases, which have greatly promoted the development of genetics in history, can be combined with the content of courses in genetics teaching to train students' ability of scientific thinking and genetic analysis. The localization and clone of gene controlling tomato fruit weight is a pioneer work in quantitative trait locus (QTL) studies and represents a complete process of QTL research in plants. Application of this integrated case in genetics teaching, which showed a wonderful process of scientific discovery and the fascination of genetic research, has inspired students' interest in genetics and achieved a good teaching effect.

  3. Overcoming translational barriers impeding development of Alzheimer's disease modifying therapies.

    PubMed

    Golde, Todd E

    2016-10-01

    It has now been ~ 30 years since the Alzheimer's disease (AD) research entered what may be termed the 'molecular era' that began with the identification of the amyloid β protein (Aβ) as the primary component of amyloid within senile plaques and cerebrovascular amyloid and the microtubule-associated protein tau as the primary component of neurofibrillary tangles in the AD brain. These pivotal discoveries and the subsequent genetic, pathological, and modeling studies supporting pivotal roles for tau and Aβ aggregation and accumulation have provided firm rationale for a new generation of AD therapies designed not to just provide symptomatic benefit, but as disease modifying agents that would slow or even reverse the disease course. Indeed, over the last 20 years numerous therapeutic strategies for disease modification have emerged, been preclinically validated, and advanced through various stages of clinical testing. Unfortunately, no therapy has yet to show significant clinical disease modification. In this review, I describe 10 translational barriers to successful disease modification, highlight current efforts addressing some of these barriers, and discuss how the field could focus future efforts to overcome barriers that are not major foci of current research efforts. Seminal discoveries made over the past 25 years have provided firm rationale for a new generation of Alzheimer's disease (AD) therapies designed as disease modifying agents that would slow or even reverse the disease course. Unfortunately, no therapy has yet to show significant clinical disease modification. In this review, I describe 10 translational barriers to successful AD disease modification, highlight current efforts addressing some of these barriers, and discuss how the field could focus future efforts to overcome these barriers. This article is part of the 60th Anniversary special issue. © 2016 International Society for Neurochemistry.

  4. Genetic counseling/consultation in South-East Asia: a report from the workshop at the 10th Asia pacific conference on human genetics.

    PubMed

    Zayts, Olga; Sarangi, Srikant; Thong, Meow-Keong; Chung, Brian Hon-yin; Lo, Ivan Fao-man; Kan, Anita Sik-yau; Lee, Juliana Mei-har; Padilla, Carmencita David; Cutiongco-de la Paz, Eva Maria; Faradz, Sultana M H; Wasant, Pornswan

    2013-12-01

    This paper reports on the workshop 'Genetic Counseling/Consultations in South-East Asia' at the 10(th) Asia Pacific Conference on Human Genetics in Kuala Lumpur, Malaysia, in December 2012. The workshop brought together professionals and language/communication scholars from South-East Asia, and the UK. The workshop aimed at addressing culture- and context-specific genetic counseling/consultation practices in South-East Asia. As a way of contextualizing genetic counseling/consultation in South-East Asia, we first offer an overview of communication-oriented research generally, drawing attention to consultation and counseling as part of a communicative continuum with distinctive interactional features. We then provide examples of genetic counseling/consultation research in Hong Kong. As other countries in South-East Asia have not yet embarked on communication-oriented empirical research, we report on the current practices of genetic counseling/consultation in these countries in order to identify similarities and differences as well as key obstacles that could be addressed through future research. Three issues emerged as 'problematic': language, religion and culture. We suggest that communication-oriented research can provide a starting point for evidence-based reflections on how to incorporate a counseling mentality in genetic consultation. To conclude, we discuss the need for creating a platform for targeted training of genetic counselors based on communication-oriented research findings.

  5. Taking a Stand: The Genetics Community's Responsibility for Intelligence Research.

    PubMed

    Callier, Shawneequa L; Bonham, Vence L

    2015-01-01

    There is a longstanding debate about genetics research into intelligence. Some scholars question the value of focusing on genetic contributions to intelligence in a society where social and environmental determinants powerfully influence cognitive ability and educational outcomes. Others warn that censoring certain research questions, such as inquiries about genetic differences in intellectual potential, compromises academic freedom. Still others view interest in this subject as a corollary to a long and troublesome history of eugenics research. The dawn of a new era in genome sequencing as a commodity will sustain scientific interest in the genetics of intelligence for the foreseeable future, but deep-rooted challenges threaten the scientific merit of the research. The use of imprecise definitions of study populations, the difficult nature of studying the environment, and the potential of researcher bias are inextricably linked with concerns about the trustworthiness and utility of research in this area. Leadership by the genetics community is essential to ensure the value and trustworthiness of these studies. © 2015 The Hastings Center.

  6. Finance issue brief: genetic testing.

    PubMed

    Herstek, J

    1999-06-25

    States have enacted genetic testing laws to address the contentious privacy, consent, research, discrimination, insurance and employment issues surrounding genetic information. These genetic testing laws attempt to strike a balance between the concerns of the consumer, research, insurance and business communities.

  7. Genes, Race and Research Ethics: Who’s Minding the Store?

    PubMed Central

    Hunt, Linda M.; Megyesi, Mary S.

    2015-01-01

    BACKGROUND The search for genetic variants between racial/ethnic groups to explain differential disease susceptibility and drug response has provoked sharp criticisms, challenging the appropriateness of using race/ethnicity as a variable in genetics research, because such categories are social constructs and not biological classifications. OBJECTIVES To gain insight into how a group of genetic scientists conceptualize and use racial/ethnic variables in their work, and their strategies for managing the ethical issues and consequences of this practice. METHODS In-depth semi-structured interviews were conducted with a purposive sample of 30 genetic researchers who use racial/ethnic variables in their research. Standard qualitative methods of content analysis were used. RESULTS Most of the genetic researchers viewed racial/ethnic variables as arbitrary and very poorly defined, and in turn as scientifically inadequate. However, most defended their use, describing them as useful proxy variables on a road to Imminent Medical Progress. None had developed overt strategies for addressing these inadequacies, with many instead asserting that science will inevitably correct itself, and saying that meanwhile researchers should “be careful” in the language chosen for reporting findings. CONCLUSIONS While the legitimacy and consequences of using racial/ethnic variables in genetics research has been widely criticized, ethical oversight is left to genetic researchers themselves. Given the general vagueness and imprecision we found amongst these researchers regarding their use of these variables, they do not seem well equipped for such an undertaking. It would seem imperative that research ethicist move forward to develop specific policies and practices to assure the scientific integrity of genetic research on biological differences between population groups. PMID:18511627

  8. Cariporide and other new and powerful NHE1 inhibitors as potentially selective anticancer drugs – an integral molecular/biochemical/metabolic/clinical approach after one hundred years of cancer research

    PubMed Central

    2013-01-01

    In recent years an increasing number of publications have emphasized the growing importance of hydrogen ion dynamics in modern cancer research, from etiopathogenesis and treatment. A proton [H+]-related mechanism underlying the initiation and progression of the neoplastic process has been recently described by different research groups as a new paradigm in which all cancer cells and tissues, regardless of their origin and genetic background, have a pivotal energetic and homeostatic disturbance of their metabolism that is completely different from all normal tissues: an aberrant regulation of hydrogen ion dynamics leading to a reversal of the pH gradient in cancer cells and tissues (↑pHi/↓pHe, or “proton reversal”). Tumor cells survive their hostile microenvironment due to membrane-bound proton pumps and transporters, and their main defensive strategy is to never allow internal acidification because that could lead to their death through apoptosis. In this context, one of the primary and best studied regulators of both pHi and pHe in tumors is the Na+/H+ exchanger isoform 1 (NHE1). An elevated NHE1 activity can be correlated with both an increase in cell pH and a decrease in the extracellular pH of tumors, and such proton reversal is associated with the origin, local growth, activation and further progression of the metastatic process. Consequently, NHE1 pharmaceutical inhibition by new and potent NHE1 inhibitors represents a potential and highly selective target in anticancer therapy. Cariporide, being one of the better studied specific and powerful NHE1 inhibitors, has proven to be well tolerated by humans in the cardiological context, however some side-effects, mainly related to drug accumulation and cerebrovascular complications were reported. Thus, cariporide could become a new, slightly toxic and effective anticancer agent in different human malignancies. PMID:24195657

  9. Identifying future research needs in landscape genetics: Where to from here?

    Treesearch

    Niko Balkenhol; Felix Gugerli; Sam A. Cushman; Lisette P. Waits; Aurelie Coulon; J. W. Arntzen; Rolf Holderegger; Helene H. Wagner

    2009-01-01

    Landscape genetics is an emerging interdisciplinary field that combines methods and concepts from population genetics, landscape ecology, and spatial statistics. The interest in landscape genetics is steadily increasing, and the field is evolving rapidly. We here outline four major challenges for future landscape genetic research that were identified during an...

  10. Building a Bridge Between Genetics and Outcomes Research: Application in Autism (The AutGO Study).

    PubMed

    Talebizadeh, Zohreh; Shah, Ayten

    2018-03-05

    Concerns over the need to improve translational aspects of genetics research studies and engaging community members in the research process have been noted in the literature and raised by patient advocates. In addition to the work done by patient advocacy groups, organizations such as the Patient-Centered Outcomes Research Institute advocate for a change in the culture of research from being researcher-driven to becoming more patient-driven. Our project, Autism Genetics and Outcomes (AutGO), consists of two phases. The goal for phase I was to initiate a general discussion around the main topic (i.e., linking genetics and outcomes research). We used the Patient-Centered Outcomes Research Institute engagement approach to: (aim 1) develop a partnership with a wide range of stakeholders to assess their perspective on developing projects that use both genetics and outcomes research data/principles; (aim 2) identify barriers, facilitators, and needs to promote engagement in patient-centered genetics research; and (aim 3) distill and describe actions that may facilitate utilization of patient/parent perspectives in designing genetics research studies. In phase I, we formed a community advisory board composed of 33 participants, including outcomes and genetics researchers, clinicians, healthcare providers, patients/family members, and community/industry representatives, and convened six sessions over the 12-month period. We structured the sessions as a combination of online PowerPoint presentations, surveys, and in-person group discussions. During the sessions, we discussed topics pertaining to linking genetics and outcomes research and reviewed relevant materials, including patient stories, research projects, and existing resources. Two sets of surveys, project evaluations (k = 2) and session evaluations (k = 6), were distributed among participants. Feedback was analyzed using content analysis strategies to identify the themes and subthemes. Herein, we describe: the established partnership (aim 1), the identified barriers, facilitators, and needs (aim 2), as well as the lessons learned and suggested recommendations for the research community (aim 3). Following phase I participants' recommendation, in phase II, we will focus on a specific disease (i.e., autism); this projected plan is briefly outlined to highlight the overarching goal of the project and its potential significance. We also discuss the study limitations, challenges for conducting this type of multidisciplinary work, as well as potential ways to address them. The AutGO project has created a unique collaborative forum to facilitate the much needed dialogue between genetics and outcomes researchers, which may contribute to finding ways to improve the translational aspects of genetics research studies.

  11. Potentiating mGluR5 Function with a Positive Allosteric Modulator Enhances Adaptive Learning

    ERIC Educational Resources Information Center

    Xu, Jian; Zhu, Yongling; Kraniotis, Stephen; He, Qionger; Marshall, John J.; Nomura, Toshihiro; Stauffer, Shaun R.; Lindsley, Craig W.; Conn, P. Jeffrey; Contractor, Anis

    2013-01-01

    Metabotropic glutamate receptor 5 (mGluR5) plays important roles in modulating neural activity and plasticity and has been associated with several neuropathological disorders. Previous work has shown that genetic ablation or pharmacological inhibition of mGluR5 disrupts fear extinction and spatial reversal learning, suggesting that mGluR5…

  12. Genomic and Biological Characterization of Aggressive and Docile Strains of LCMV Rescued from a Plasmid-Based Reverse Genetics System

    PubMed Central

    Chen, Minjie; Lan, Shuiyun; Ou, Rong; Price, Graeme E.; Jiang, Hong; de la Torre, Juan Carlos; Moskophidis, Demetrius

    2008-01-01

    Arenaviruses include several causative agents of hemorrhagic fever disease in humans. In addition, the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a superb model for the study of virus-host interactions, including the basis of viral persistence and associated diseases. The molecular mechanisms concerning the regulation and specific role of viral proteins in modulating arenavirus-host cell interactions associated either with an acute or persistent infection and associated disease remain little understood. Here we report the genomic and biological characterization of LCMV strains Docile (persistent) and Aggressive (not persistent) recovered from cloned cDNA via reverse genetics. Our results confirmed that the cloned viruses accurately recreated the in vivo phenotypes associated with the corresponding natural Docile and Aggressive viral isolates. In addition, we provide evidence that the ability of the Docile strain to persist is determined by the nature of both S and L RNA segments. Thus, our findings provide the foundation for studies aimed at gaining a detailed understanding of viral determinants of LCMV persistence in its natural host that may aid in the development of vaccines to prevent or treat the diseases caused by arenaviruses in humans. PMID:18474558

  13. Versatile Gene-Specific Sequence Tags for Arabidopsis Functional Genomics: Transcript Profiling and Reverse Genetics Applications

    PubMed Central

    Hilson, Pierre; Allemeersch, Joke; Altmann, Thomas; Aubourg, Sébastien; Avon, Alexandra; Beynon, Jim; Bhalerao, Rishikesh P.; Bitton, Frédérique; Caboche, Michel; Cannoot, Bernard; Chardakov, Vasil; Cognet-Holliger, Cécile; Colot, Vincent; Crowe, Mark; Darimont, Caroline; Durinck, Steffen; Eickhoff, Holger; de Longevialle, Andéol Falcon; Farmer, Edward E.; Grant, Murray; Kuiper, Martin T.R.; Lehrach, Hans; Léon, Céline; Leyva, Antonio; Lundeberg, Joakim; Lurin, Claire; Moreau, Yves; Nietfeld, Wilfried; Paz-Ares, Javier; Reymond, Philippe; Rouzé, Pierre; Sandberg, Goran; Segura, Maria Dolores; Serizet, Carine; Tabrett, Alexandra; Taconnat, Ludivine; Thareau, Vincent; Van Hummelen, Paul; Vercruysse, Steven; Vuylsteke, Marnik; Weingartner, Magdalena; Weisbeek, Peter J.; Wirta, Valtteri; Wittink, Floyd R.A.; Zabeau, Marc; Small, Ian

    2004-01-01

    Microarray transcript profiling and RNA interference are two new technologies crucial for large-scale gene function studies in multicellular eukaryotes. Both rely on sequence-specific hybridization between complementary nucleic acid strands, inciting us to create a collection of gene-specific sequence tags (GSTs) representing at least 21,500 Arabidopsis genes and which are compatible with both approaches. The GSTs were carefully selected to ensure that each of them shared no significant similarity with any other region in the Arabidopsis genome. They were synthesized by PCR amplification from genomic DNA. Spotted microarrays fabricated from the GSTs show good dynamic range, specificity, and sensitivity in transcript profiling experiments. The GSTs have also been transferred to bacterial plasmid vectors via recombinational cloning protocols. These cloned GSTs constitute the ideal starting point for a variety of functional approaches, including reverse genetics. We have subcloned GSTs on a large scale into vectors designed for gene silencing in plant cells. We show that in planta expression of GST hairpin RNA results in the expected phenotypes in silenced Arabidopsis lines. These versatile GST resources provide novel and powerful tools for functional genomics. PMID:15489341

  14. Discovery of dapivirine, a nonnucleoside HIV-1 reverse transcriptase inhibitor, as a broad-spectrum antiviral against both influenza A and B viruses.

    PubMed

    Hu, Yanmei; Zhang, Jiantao; Musharrafieh, Rami Ghassan; Ma, Chunlong; Hau, Raymond; Wang, Jun

    2017-09-01

    The emergence of multidrug-resistant influenza viruses poses a persistent threat to public health. The current prophylaxis and therapeutic interventions for influenza virus infection have limited efficacy due to the continuous antigenic drift and antigenic shift of influenza viruses. As part of our ongoing effort to develop the next generation of influenza antivirals with broad-spectrum antiviral activity and a high genetic barrier to drug resistance, in this study we report the discovery of dapivirine, an FDA-approved HIV nonnucleoside reverse transcriptase inhibitor, as a broad-spectrum antiviral against multiple strains of influenza A and B viruses with low micromolar efficacy. Mechanistic studies revealed that dapivirine inhibits the nuclear entry of viral ribonucleoproteins at the early stage of viral replication. As a result, viral RNA and protein synthesis were inhibited. Furthermore, dapivirine has a high in vitro genetic barrier to drug resistance, and its antiviral activity is synergistic with oseltamivir carboxylate. In summary, the in vitro antiviral results of dapivirine suggest it is a promising candidate for the development of the next generation of dual influenza and HIV antivirals. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Automation and validation of DNA-banking systems.

    PubMed

    Thornton, Melissa; Gladwin, Amanda; Payne, Robin; Moore, Rachael; Cresswell, Carl; McKechnie, Douglas; Kelly, Steve; March, Ruth

    2005-10-15

    DNA banking is one of the central capabilities on which modern genetic research rests. The DNA-banking system plays an essential role in the flow of genetic data from patients and genetics researchers to the application of genetic research in the clinic. Until relatively recently, large collections of DNA samples were not common in human genetics. Now, collections of hundreds of thousands of samples are common in academic institutions and private companies. Automation of DNA banking can dramatically increase throughput, eliminate manual errors and improve the productivity of genetics research. An increased emphasis on pharmacogenetics and personalized medicine has highlighted the need for genetics laboratories to operate within the principles of a recognized quality system such as good laboratory practice (GLP). Automated systems are suitable for such laboratories but require a level of validation that might be unfamiliar to many genetics researchers. In this article, we use the AstraZeneca automated DNA archive and reformatting system (DART) as a case study of how such a system can be successfully developed and validated within the principles of GLP.

  16. Stocking activities for the Arctic charr in Lake Geneva: Genetic effects in space and time.

    PubMed

    Savary, Romain; Dufresnes, Christophe; Champigneulle, Alexis; Caudron, Arnaud; Dubey, Sylvain; Perrin, Nicolas; Fumagalli, Luca

    2017-07-01

    Artificial stocking practices are widely used by resource managers worldwide, in order to sustain fish populations exploited by both recreational and commercial activities, but their benefits are controversial. Former practices involved exotic strains, although current programs rather consider artificial breeding of local fishes (supportive breeding). Understanding the complex genetic effects of these management strategies is an important challenge with economic and conservation implications, especially in the context of population declines. In this study, we focus on the declining Arctic charr ( Salvelinus alpinus ) population from Lake Geneva (Switzerland and France), which has initially been restocked with allochtonous fishes in the early eighties, followed by supportive breeding. In this context, we conducted a genetic survey to document the evolution of the genetic diversity and structure throughout the last 50 years, before and after the initiation of hatchery supplementation, using contemporary and historical samples. We show that the introduction of exotic fishes was associated with a genetic bottleneck in the 1980-1990s, a break of Hardy-Weinberg Equilibrium (HWE), a reduction in genetic diversity, an increase in genetic structure among spawning sites, and a change in their genetic composition. Together with better environmental conditions, three decades of subsequent supportive breeding using local fishes allowed to re-establish HWE and the initial levels of genetic variation. However, current spawning sites have not fully recovered their original genetic composition and were extensively homogenized across the lake. Our study demonstrates the drastic genetic consequences of different restocking tactics in a comprehensive spatiotemporal framework and suggests that genetic alteration by nonlocal stocking may be partly reversible through supportive breeding. We recommend that conservation-based programs consider local diversity and implement adequate protocols to limit the genetic homogenization of this Arctic charr population.

  17. Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates

    PubMed Central

    Huang, Ruiqi; Hippauf, Frank; Rohrbeck, Diana; Haustein, Maria; Wenke, Katrin; Feike, Janie; Sorrelle, Noah; Piechulla, Birgit; Barkman, Todd J.

    2012-01-01

    In this study, we investigated the role for ancestral functional variation that may be selected upon to generate protein functional shifts using ancestral protein resurrection, statistical tests for positive selection, forward and reverse evolutionary genetics, and enzyme functional assays. Data are presented for three instances of protein functional change in the salicylic acid/benzoic acid/theobromine (SABATH) lineage of plant secondary metabolite-producing enzymes. In each case, we demonstrate that ancestral nonpreferred activities were improved upon in a daughter enzyme after gene duplication, and that these functional shifts were likely coincident with positive selection. Both forward and reverse mutagenesis studies validate the impact of one or a few sites toward increasing activity with ancestrally nonpreferred substrates. In one case, we document the occurrence of an evolutionary reversal of an active site residue that reversed enzyme properties. Furthermore, these studies show that functionally important amino acid replacements result in substrate discrimination as reflected in evolutionary changes in the specificity constant (kcat/KM) for competing substrates, even though adaptive substitutions may affect KM and kcat separately. In total, these results indicate that nonpreferred, or even latent, ancestral protein activities may be coopted at later times to become the primary or preferred protein activities. PMID:22315396

  18. Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates.

    PubMed

    Huang, Ruiqi; Hippauf, Frank; Rohrbeck, Diana; Haustein, Maria; Wenke, Katrin; Feike, Janie; Sorrelle, Noah; Piechulla, Birgit; Barkman, Todd J

    2012-02-21

    In this study, we investigated the role for ancestral functional variation that may be selected upon to generate protein functional shifts using ancestral protein resurrection, statistical tests for positive selection, forward and reverse evolutionary genetics, and enzyme functional assays. Data are presented for three instances of protein functional change in the salicylic acid/benzoic acid/theobromine (SABATH) lineage of plant secondary metabolite-producing enzymes. In each case, we demonstrate that ancestral nonpreferred activities were improved upon in a daughter enzyme after gene duplication, and that these functional shifts were likely coincident with positive selection. Both forward and reverse mutagenesis studies validate the impact of one or a few sites toward increasing activity with ancestrally nonpreferred substrates. In one case, we document the occurrence of an evolutionary reversal of an active site residue that reversed enzyme properties. Furthermore, these studies show that functionally important amino acid replacements result in substrate discrimination as reflected in evolutionary changes in the specificity constant (k(cat)/K(M)) for competing substrates, even though adaptive substitutions may affect K(M) and k(cat) separately. In total, these results indicate that nonpreferred, or even latent, ancestral protein activities may be coopted at later times to become the primary or preferred protein activities.

  19. Designing a multistage supply chain in cross-stage reverse logistics environments: application of particle swarm optimization algorithms.

    PubMed

    Chiang, Tzu-An; Che, Z H; Cui, Zhihua

    2014-01-01

    This study designed a cross-stage reverse logistics course for defective products so that damaged products generated in downstream partners can be directly returned to upstream partners throughout the stages of a supply chain for rework and maintenance. To solve this reverse supply chain design problem, an optimal cross-stage reverse logistics mathematical model was developed. In addition, we developed a genetic algorithm (GA) and three particle swarm optimization (PSO) algorithms: the inertia weight method (PSOA_IWM), V(Max) method (PSOA_VMM), and constriction factor method (PSOA_CFM), which we employed to find solutions to support this mathematical model. Finally, a real case and five simulative cases with different scopes were used to compare the execution times, convergence times, and objective function values of the four algorithms used to validate the model proposed in this study. Regarding system execution time, the GA consumed more time than the other three PSOs did. Regarding objective function value, the GA, PSOA_IWM, and PSOA_CFM could obtain a lower convergence value than PSOA_VMM could. Finally, PSOA_IWM demonstrated a faster convergence speed than PSOA_VMM, PSOA_CFM, and the GA did.

  20. Designing a Multistage Supply Chain in Cross-Stage Reverse Logistics Environments: Application of Particle Swarm Optimization Algorithms

    PubMed Central

    Chiang, Tzu-An; Che, Z. H.

    2014-01-01

    This study designed a cross-stage reverse logistics course for defective products so that damaged products generated in downstream partners can be directly returned to upstream partners throughout the stages of a supply chain for rework and maintenance. To solve this reverse supply chain design problem, an optimal cross-stage reverse logistics mathematical model was developed. In addition, we developed a genetic algorithm (GA) and three particle swarm optimization (PSO) algorithms: the inertia weight method (PSOA_IWM), V Max method (PSOA_VMM), and constriction factor method (PSOA_CFM), which we employed to find solutions to support this mathematical model. Finally, a real case and five simulative cases with different scopes were used to compare the execution times, convergence times, and objective function values of the four algorithms used to validate the model proposed in this study. Regarding system execution time, the GA consumed more time than the other three PSOs did. Regarding objective function value, the GA, PSOA_IWM, and PSOA_CFM could obtain a lower convergence value than PSOA_VMM could. Finally, PSOA_IWM demonstrated a faster convergence speed than PSOA_VMM, PSOA_CFM, and the GA did. PMID:24772026

  1. Trans-activation of the 5' to 3' viral DNA strand transfer by nucleocapsid protein during reverse transcription of HIV1 RNA.

    PubMed

    Darlix, J L; Vincent, A; Gabus, C; de Rocquigny, H; Roques, B

    1993-08-01

    Two DNA strand transfer reactions take place during reverse transcription of the retroviral genome. The first transfer, that of the minus-strand strong stop DNA from the 5' end of the viral RNA to the 3' end, has been studied in vitro with two RNAs mimicking the 5' and 3' regions of the HIV1 genome and with nucleocapsid protein, NCp7, and reverse transcriptase. The results show that NCp7 strongly activates the 5' to 3' DNA strand transfer during reverse transcription while a basic peptide resembling NCp7 is inactive. Activation of the first transfer by several NCp7 derived peptides and the influence of the terminal redundancies (R) present at the 5' and 3' ends of HIV1 RNA were also examined. The first transfer is optimal in the presence of intact NCp7 and necessitates R on both the 5' and 3' RNAs. Sequencing of full length viral DNA products reveals approximately 40% misincorporations at the first nucleotide beyond the transfer point. If such base misincorporations occur during proviral DNA synthesis with possible homologous recombinations it may well contribute to the high level of genetic variability of HIV.

  2. Ashkenazi Jews and Breast Cancer: The Consequences of Linking Ethnic Identity to Genetic Disease

    PubMed Central

    Brandt-Rauf, Sherry I.; Raveis, Victoria H.; Drummond, Nathan F.; Conte, Jill A.; Rothman, Sheila M.

    2006-01-01

    We explored the advantages and disadvantages of using ethnic categories in genetic research. With the discovery that certain breast cancer gene mutations appeared to be more prevalent in Ashkenazi Jews, breast cancer researchers moved their focus from high-risk families to ethnicity. The concept of Ashkenazi Jews as genetically unique, a legacy of Tay–Sachs disease research and a particular reading of history, shaped this new approach even as methodological imprecision and new genetic and historical research challenged it. Our findings cast doubt on the accuracy and desirability of linking ethnic groups to genetic disease. Such linkages exaggerate genetic differences among ethnic groups and lead to unequal access to testing and therapy. PMID:17018815

  3. The yeast retrotransposon Ty5 uses the anticodon stem-loop of the initiator methionine tRNA as a primer for reverse transcription.

    PubMed Central

    Ke, N; Gao, X; Keeney, J B; Boeke, J D; Voytas, D F

    1999-01-01

    Retrotransposons and retroviruses replicate by reverse transcription of an mRNA intermediate. Most retroelements initiate reverse transcription from a host-encoded tRNA primer. DNA synthesis typically extends from the 3'-OH of the acceptor stem, which is complementary to sequences on the retroelement mRNA (the primer binding site, PBS). However, for some retrotransposons, including the yeast Ty5 elements, sequences in the anticodon stem-loop of the initiator methionine tRNA (IMT) are complementary to the PBS. We took advantage of the genetic tractability of the yeast system to investigate the mechanism of Ty5 priming. We found that transposition frequencies decreased at least 800-fold for mutations in the Ty5 PBS that disrupt complementarity with the IMT. Similarly, transposition was reduced at least 200-fold for IMT mutations in the anticodon stem-loop. Base pairing between the Ty5 PBS and IMT is essential for transposition, as compensatory changes that restored base pairing between the two mutant RNAs restored transposition significantly. An analysis of 12 imt mutants with base changes outside of the region of complementarity failed to identify other tRNA residues important for transposition. In addition, assays carried out with heterologous IMTs from Schizosaccharomyces pombe and Arabidopsis thaliana indicated that residues outside of the anticodon stem-loop have at most a fivefold effect on transposition. Our genetic system should make it possible to further define the components required for priming and to understand the mechanism by which Ty5's novel primer is generated. PMID:10411136

  4. The New Reverse Transfer: A National Landscape

    ERIC Educational Resources Information Center

    Friedel, Janice Nahra; Wilson, Sarah L.

    2015-01-01

    For decades, higher education professionals and researchers have used the term reverse transfer to describe a specific group of students. A current review of community college literature and higher education policy reflects a contextual change of the term, and today reverse transfer has grown to include students who transfer from a two-year…

  5. Understanding Indiana's Reverse Transfer Students: A Case Study in Institutional Research

    ERIC Educational Resources Information Center

    Hillman, Nick; Lum, Tim; Hossler, Don

    2008-01-01

    Among all the students who transfer from one institution to another during their academic careers, a distinct group of "reverse transfer" students has emerged over time. Reverse transfer occurs when students begin their college careers at 4-year institutions but eventually transfer into 2-year institutions. Using student unit record data…

  6. Reverse Teaching: Exploring Student Perceptions of "Flip Teaching"

    ERIC Educational Resources Information Center

    Nguyen, Bang; Yu, Xiaoyu; Japutra, Arnold; Chen, Cheng-Hao Steve

    2016-01-01

    The concept of reverse teaching, considered by some as the education model of the future due to increasing technological availability in the classroom, has received great attention in education research lately. However, the focus of these studies has mainly been on the understanding of reverse teaching in terms of its application rather than…

  7. Willingness to donate blood samples for genetic research: a survey from a community in Singapore.

    PubMed

    Wong, M L; Chia, K S; Yam, W M; Teodoro, G R; Lau, K W

    2004-01-01

    Studies on the public's willingness to donate blood specimens for genetic research are few and are conducted mainly among Western countries. Little is known about the Asian community's willingness to participate in genetic research. A community-based survey was conducted on 548 adult Singaporeans to examine their willingness to donate blood samples for genetic research and its associated factors. The response rate was 70.3%. About 49.3% (95% CI, 45.1-53.5%) were willing to donate blood for genetic research. In the multivariable Cox regression analysis, willingness was significantly associated with belief in the benefits of genetic research; intention to participate in government studies; having no fear of pain, blood, injections, and needles; and non-concern about the loss of confidentiality. Reasons against donating blood were fear of pain, blood, injections, and needles (38.1%); no self-benefits (24.8%); fear of finding out about having a disease (22.3%); fear of discrimination (18.7%); and concerns about weakness (15.1%) and weight gain (9.4%). Public education programs to promote participation in genetic research should stress its benefits and address people's fears and concerns.

  8. Pharmacogenomic Testing

    MedlinePlus

    ... Financial Planning Who Should I Tell? Genetic Testing & Counseling Compensation for Genetic Testing Whole Genome Sequencing Screening vs. Testing What Is Genetic Counseling? Participating in Research Disease Research Patient Privacy Clinical ...

  9. Predictive Testing

    MedlinePlus

    ... Financial Planning Who Should I Tell? Genetic Testing & Counseling Compensation for Genetic Testing Whole Genome Sequencing Screening vs. Testing What Is Genetic Counseling? Participating in Research Disease Research Patient Privacy Clinical ...

  10. Verification of consumers' experiences and perceptions of genetic discrimination and its impact on utilization of genetic testing.

    PubMed

    Barlow-Stewart, Kristine; Taylor, Sandra D; Treloar, Susan A; Stranger, Mark; Otlowski, Margaret

    2009-03-01

    To undertake a systematic process of verification of consumer accounts of alleged genetic discrimination. Verification of incidents reported in life insurance and other contexts that met the criteria of genetic discrimination, and the impact of fear of such treatment, was determined, with consent, through interview, document analysis and where appropriate, direct contact with the third party involved. The process comprised obtaining evidence that the alleged incident was accurately reported and determining whether the decision or action seemed to be justifiable and/or ethical. Reported incidents of genetic discrimination were verified in life insurance access, underwriting and coercion (9), applications for worker's compensation (1) and early release from prison (1) and in two cases of fear of discrimination impacting on access to genetic testing. Relevant conditions were inherited cancer susceptibility (8), Huntington disease (3), hereditary hemochromatosis (1), and polycystic kidney disease (1). In two cases, the reversal of an adverse underwriting decision to standard rate after intervention with insurers by genetics health professionals was verified. The mismatch between consumer and third party accounts in three life insurance incidents involved miscommunication or lack of information provision by financial advisers. These first cases of verified genetic discrimination make it essential for policies and guidelines to be developed and implemented to ensure appropriate use of genetic test results in insurance underwriting, to promote education and training in the financial industry, and to provide support for consumers and health professionals undertaking challenges of adverse decisions.

  11. Substance use disorder genetic research: investigators and participants grapple with the ethical issues.

    PubMed

    Coors, Marilyn E; Raymond, Kristen M

    2009-04-01

    This qualitative research examined the ethical concerns regarding the psychosocial issues, research design and implementation, and application of psychiatric genetic research on substance use disorders (SUD) from multiple perspectives. A literature review of the bioethics literature related to psychiatric genetics and focus groups explored the ethical implications of SUD genetic research. Twenty-six National Institute on Drug Abuse funded principal investigators in the field of psychiatric genetic research, nine adolescent patients in residential SUD treatment, and 10 relatives of patients participated in focus groups (held separately). The focus groups were recorded, transcribed, and the content was analyzed. The themes that emerged from the literature and the focus group transcripts were organized by using NVIVO7, a software package designed to manage, analyze, and compare narrative data. Investigators and the literature expressed similar concerns regarding the ethical concerns associated with psychiatric genetic research including violation of privacy, misunderstanding about psychiatric genetics, stigmatization, commercialization, discrimination, eugenics, consequences of research on illegal behavior, unforeseen consequences, altered notion of individual responsibility, and others. Patients and their relatives showed little familiarity with the ethical issues as identified by professionals and little concern regarding most of the potential risks. The exception was apprehension associated with potential criminal justice uses of stored genetic information, in particular enforced therapy and stigmatization, which elicited some concern from all perspectives. The challenge for further research is to identify risks and benefits of SUD research that are germane in a behaviorally disinhibited population and devise effective tools to communicate information to participants through an improved informed consent process.

  12. Substance Use Disorder Genetic Research: Investigators and Participants Grapple with the Ethical Issues

    PubMed Central

    Raymond, Kristen M.

    2009-01-01

    Objective This qualitative research examined the ethical concerns regarding the psychosocial issues, research design and implementation, and application of psychiatric genetic research on substance use disorders (SUD) from multiple perspectives. Method A literature review of the bioethics literature related to psychiatric genetics and focus groups explored the ethical implications of SUD genetic research. Twenty-six National Institute on Drug Abuse (NIDA) funded principal investigators in the field of psychiatric genetic research, 9 adolescent patients in residential SUD treatment, and 10 relatives of patients participated in focus groups (held separately). The focus groups were recorded, transcribed, and the content was analyzed. The themes that emerged from the literature and the focus group transcripts were organized using NVIVO7, a software package designed to manage, analyze and compare narrative data. Results Investigators and the literature expressed similar concerns regarding the ethical concerns associated with psychiatric genetic research including violation of privacy, misunderstanding about psychiatric genetics, stigmatization, commercialization, discrimination, eugenics, consequences of research on illegal behavior, unforeseen consequences, altered notion of individual responsibility, and others. Patients and their relatives demonstrated little familiarity with the ethical issues as identified by professionals and little concern regarding most of the potential risks. The exception was apprehension associated with potential criminal justice uses of stored genetic information and enforced therapy, which elicited some concern from all perspectives. Conclusions The challenge for further research is to identify risks and benefits of SUD research that are germane in a behaviorally disinhibited population and devise effective tools to communicate information to participants through an improved informed consent process. PMID:19668113

  13. UV-induced reversion of his4 frameshift mutations in rad6, rev1, and rev3 mutants of yeast.

    PubMed

    Lawrence, C W; O'Brien, T; Bond, J

    1984-01-01

    The UV-induced reversion of two his4 frameshift alleles was much reduced in rad6 mutants of Saccharomyces cerevisiae, an observation that is consistent with the hypothesis that RAD6 function is required for the induction of all types of genetic alteration in misrepair mutagenesis. The reversion of these his4 alleles, together with two others of the same type, was also reduced in rev1 and rev3 mutant strains; in these, however, the extent of the reduction varied considerably with test allele used, in a manner analogous to the results in these strains for base repair substitution test alleles. The general features of UV-induced frameshift and substitution mutagenesis therefore appear quite similar, indicating that they may depend on related processes. If this conclusion is correct, greater attention must be given to integrating models which account for the production of nucleotide additions and deletions into those concerning misrepair mutagenesis.

  14. Reverse Transfer Student Characteristics--Fall 1979. Office of Institutional Research, Research Report 80-3.

    ERIC Educational Resources Information Center

    Drakulich, J. Scott; Karlen, Janice M.

    In order to determine the characteristics of students who transferred to Essex County College from four-year institutions in Fall 1979, the responses of 88 reverse transfer students (RTS's) to 84 items on the entering student demographic questionnaire were compared to the responses of 2,087 new Fall 1979 students. The questionnaire solicited…

  15. Historical overview of research on the tobacco mosaic virus genome: genome organization, infectivity and gene manipulation.

    PubMed Central

    Okada, Y

    1999-01-01

    Early in the development of molecular biology, TMV RNA was widely used as a mRNA [corrected] that could be purified easily, and it contributed much to research on protein synthesis. Also, in the early stages of elucidation of the genetic code, artificially produced TMV mutants were widely used and provided the first proof that the genetic code was non-overlapping. In 1982, Goelet et al. determined the complete TMV RNA base sequence of 6395 nucleotides. The four genes (130K, 180K, 30K and coat protein) could then be mapped at precise locations in the TMV genome. Furthermore it had become clear, a little earlier, that genes located internally in the genome were expressed via subgenomic mRNAs. The initiation site for assembly of TMV particles was also determined. However, although TMV contributed so much at the beginning of the development of molecular biology, its influence was replaced by that of Escherichia coli and its phages in the next phase. As recombinant DNA technology developed in the 1980s, RNA virus research became more detached from the frontier of molecular biology. To recover from this setback, a gene-manipulation system was needed for RNA viruses. In 1986, two such systems were developed for TMV, using full-length cDNA clones, by Dawson's group and by Okada's group. Thus, reverse genetics could be used to elucidate the basic functions of all proteins encoded by the TMV genome. Identification of the function of the 30K protein was especially important because it was the first evidence that a plant virus possesses a cell-to-cell movement function. Many other plant viruses have since been found to encode comparable 'movement proteins'. TMV thus became the first plant virus for which structures and functions were known for all its genes. At the birth of molecular plant pathology, TMV became a leader again. TMV has also played pioneering roles in many other fields. TMV was the first virus for which the amino acid sequence of the coat protein was determined and first virus for which cotranslational disassembly was demonstrated both in vivo and in vitro. It was the first virus for which activation of a resistance gene in a host plant was related to the molecular specificity of a product of a viral gene. Also, in the field of plant biotechnology, TMV vectors are among the most promising. Thus, for the 100 years since Beijerinck's work, TMV research has consistently played a leading role in opening up new areas of study, not only in plant pathology, but also in virology, biochemistry, molecular biology, RNA genetics and biotechnology. PMID:10212936

  16. Making sense of genetic risk: A qualitative focus-group study of healthy participants in genomic research.

    PubMed

    Viberg Johansson, Jennifer; Segerdahl, Pär; Ugander, Ulrika Hösterey; Hansson, Mats G; Langenskiöld, Sophie

    2018-03-01

    It is well known that research participants want to receive genetic risk information that is about high risks, serious diseases and potential preventive measures. The aim of this study was to explore, by qualitative means, something less well known: how do healthy research participants themselves make sense of genetic risk information? A phenomenographic approach was chosen to explore research participants' understanding and assessment of genetic risk. We conducted four focus-group (N=16) interviews with participants in a research programme designed to identify biomarkers for cardiopulmonary disease. Among the research participants, we found four ways of understanding genetic risk: as a binary concept, as an explanation, as revealing who I am (knowledge of oneself) and as affecting life ahead. Research participants tend to understand genetic risk as a binary concept. This does not necessarily imply a misunderstanding of, or an irrational approach to, genetic risk. Rather, it may have a heuristic function in decision-making. Risk communication may be enhanced by tailoring the communication to the participants' own lay conceptions. For example, researchers and counselors should address risk in binary terms, maybe looking out for how individual participants search for threshold figures. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Surrogate receptivity to participation in critical illness genetic research: aligning research oversight and stakeholder concerns.

    PubMed

    Freeman, Bradley D; Butler, Kevin; Bolcic-Jankovic, Dragana; Clarridge, Brian R; Kennedy, Carie R; LeBlanc, Jessica; Chandros Hull, Sara

    2015-04-01

    Collection of genetic biospecimens as part of critical illness investigations is increasingly commonplace. Oversight bodies vary in restrictions imposed on genetic research, introducing inconsistencies in study design, potential for sampling bias, and the possibility of being overly prohibitive of this type of research altogether. We undertook this study to better understand whether restrictions on genetic data collection beyond those governing research on cognitively intact subjects reflect the concerns of surrogates for critically ill patients. We analyzed survey data collected from 1,176 patients in nonurgent settings and 437 surrogates representing critically ill adults. Attitudes pertaining to genetic data (familiarity, perceptions, interest in participation, concerns) and demographic information were examined using univariate and multivariate techniques. We explored differences among respondents who were receptive (1,333) and nonreceptive (280) to genetic sample collection. Whereas factors positively associated with receptivity to research participation were "complete trust" in health-care providers (OR, 2.091; 95% CI, 1.544-2.833), upper income strata (OR, 2.319; 95% CI, 1.308-4.114), viewing genetic research "very positively" (OR, 3.524; 95% CI, 2.122-5.852), and expressing "no worry at all" regarding disclosure of results (OR, 2.505; 95% CI, 1.436-4.369), black race was negatively associated with research participation (OR, 0.410; 95% CI, 0.288-0.585). We could detect no difference in receptivity to genetic sample collection comparing ambulatory patients and surrogates (OR, 0.738; 95% CI, 0.511-1.066). Expressing trust in health-care providers and viewing genetic research favorably were associated with increased willingness for study enrollment, while concern regarding breach of confidentiality and black race had the opposite effect. Study setting had no bearing on willingness to participate.

  18. Employees' perspectives on ethically important aspects of genetic research participation: a pilot study.

    PubMed

    Roberts, Laura Weiss; Warner, Teddy D; Geppert, Cynthia M A; Rogers, Melinda; Green Hammond, Katherine A

    2005-01-01

    Insights from genetic research may greatly improve our understanding of physical and mental illnesses and assist in the prevention of disease. Early experience with genetic information suggests that it may lead to stigma, discrimination, and other psychosocial harms, however, and this may be particularly salient in some settings, such as the workplace. Despite the importance of these issues, little is known about how healthy adults, including workers, perceive and understand ethically important issues in genetic research pertaining to physical and mental illness. We developed, pilot tested, and administered a written survey and structured interview to 63 healthy working adults in 2 settings. For this paper, we analyzed a subset of items that assessed attitudes toward ethically relevant issues related to participation in genetic research on physical and mental illness, such as its perceived importance, its acceptability for various populations, and appropriate motivations for participation. Our respondents strongly endorsed the importance of physical and mental illness genetic research. They viewed participation as somewhat to very acceptable for all 12 special population groups we asked about, including persons with mental illness. They perceived more positives than negatives in genetic research participation, giving neutral responses regarding potential risks. They affirmed many motivations for participation to varying degrees. Men tended to affirm genetic research participation importance, acceptability, and motivations more strongly than women. Healthy working persons may be willing partners in genetic research related to physical and mental illnesses in coming years. This project suggests the feasibility and value of evidence-based ethics inquiry, although further study is necessary. Evidence regarding stakeholders' perspectives on ethically important issues in science may help in the development of research practices and policy.

  19. Angelman syndrome: current understanding and research prospects.

    PubMed

    Dan, Bernard

    2009-11-01

    Angelman syndrome is a neurogenetic disorder characterized by developmental delay, severe intellectual disability, absent speech, exuberant behavior with happy demeanor, motor impairment, and epilepsy, due to deficient UBE3A gene expression that may be caused by various abnormalities of chromosome 15. Recent findings in animal models demonstrated altered dendritic spine formation as well as both synaptic [including gamma-aminobutyric acid (GABA)(A) and N-methyl-D-aspartate (NMDA) transmission] and nonsynaptic (including gap junction) influences in various brain regions, including hippocampus and cerebellar cortex. Reversal of selected abnormalities in rescue genetically engineered animal models is encouraging, although it should not be misinterpreted as promising "cure" for affected patients. Much research is still required to fully understand the functional links between lack of UBE3A expression and clinical manifestations of Angelman syndrome. Studies of regulation of UBE3A expression, including imprinting-related methylation, may point to possibilities of therapeutic upregulation. Understanding relevant roles of the gene product might lead to targeted intervention. Further documentation of brain network dynamics, with particular emphasis on hippocampus, thalamocortical, and cerebellar networks is needed, including in a developmental perspective. There is also a need for further clinical research for improving management of problems such as epilepsy, behavior, communication, learning, motor impairment, and sleep disturbances.

  20. Public Willingness to Participate in and Public Opinions About Genetic Variation Research: A Review of the Literature

    PubMed Central

    Sterling, Rene; Henderson, Gail E.; Corbie-Smith, Giselle

    2006-01-01

    Scientists are turning to genetic variation research in hopes of addressing persistent racial/ethnic disparities in health. Despite ongoing controversy, the advancement of genetic variation research is likely to produce new knowledge and technologies that will substantially change the ways in which we understand and value health. They also may affect the ways in which individuals and groups organize socially, politically, and economically. Addressing concerns that may exist in different communities is vital to the scientific and ethical advancement of genetic variation research. We review empirical studies of public willingness to participate in and opinions about genetic research with particular attention to differences in consent and opinion by racial/ethnic group membership. PMID:17018829

  1. Practical use of advanced mouse models for lung cancer.

    PubMed

    Safari, Roghaiyeh; Meuwissen, Ralph

    2015-01-01

    To date a variety of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) mouse models have been developed that mimic human lung cancer. Chemically induced or spontaneous lung cancer in susceptible inbred strains has been widely used, but the more recent genetically engineered somatic mouse models recapitulate much better the genotype-phenotype correlations found in human lung cancer. Additionally, improved orthotopic transplantation of primary human cancer tissue fragments or cells into lungs of immune-compromised mice can be valuable tools for preclinical research such as antitumor drug tests. Here we give a short overview of most somatic mouse models for lung cancer that are currently in use. We accompany each different model with a description of its practical use and application for all major lung tumor types, as well as the intratracheal injection or direct injection of fresh or freeze-thawed tumor cells or tumor cell lines into lung parenchyma of recipient mice. All here presented somatic mouse models are based on the ability to (in) activate specific alleles at a time, and in a tissue-specific cell type, of choice. This spatial-temporal controlled induction of genetic lesions allows the selective introduction of main genetic lesions in an adult mouse lung as found in human lung cancer. The resulting conditional somatic mouse models can be used as versatile powerful tools in basic lung cancer research and preclinical translational studies alike. These distinctively advanced lung cancer models permit us to investigate initiation (cell of origin) and progression of lung cancer, along with response and resistance to drug therapy. Cre/lox or FLP/frt recombinase-mediated methods are now well-used techniques to develop tissue-restricted lung cancer in mice with tumor-suppressor gene and/or oncogene (in)activation. Intranasal or intratracheal administration of engineered adenovirus-Cre or lentivirus-Cre has been optimized for introducing Cre recombinase activity into pulmonary tissues, and we discuss here the different techniques underlying these applications. Concomitant with Cre/Flp recombinase-based models are the tetracycline (Tet)-inducible bitransgenic systems in which presence or absence of doxycycline can turn the expression of a specific oncogene on or off. The use of several Tet-inducible lung cancer models for NSCLC is presented here in which the reversal of oncogene expression led to complete tumor regression and provided us with important insight of how oncogene dependence influence lung cancer survival and growth. As alternative to Tet-inducible models, we discuss the application of reversible expressed, transgenic mutant estrogen receptor (ER) fusion proteins, which are regulated via systemic tamoxifen administration. Most of the various lung cancer models can be combined through the generation of transgenic compound mice so that the use of these somatic mouse models can be even more enhanced for the study of specific molecular pathways that facilitate growth and maintenance of lung cancer. Finally, this description of the practical application and methodology of mouse models for lung cancer should be helpful in assisting researchers to make the best choices and optimal use of (existing) somatic models that suits the specific experimental needs in their study of lung cancer.

  2. NASA Researcher Examines an Aircraft Model with a Four-Fan Thrust Reverser

    NASA Image and Video Library

    1972-03-21

    National Aeronautics and Space Administration (NASA) researcher John Carpenter inspects an aircraft model with a four-fan thrust reverser which would be studied in the 9- by 15-Foot Low Speed Wind Tunnel at the Lewis Research Center. Thrust reversers were introduced in the 1950s as a means for slowing high-speed jet aircraft during landing. Engineers sought to apply the technology to Vertical and Short Takeoff and Landing (VSTOL) aircraft in the 1970s. The new designs would have to take into account shorter landing areas, noise levels, and decreased thrust levels. A balance was needed between the thrust reverser’s efficiency, its noise generation, and the engine’s power setting. This model underwent a series of four tests in the 9- by 15-foot tunnel during April and May 1974. The model, with a high-wing configuration and no tail, was equipped with four thrust-reverser engines. The investigations included static internal aerodynamic tests on a single fan/reverser, wind tunnel isolated fan/reverser thrust tests, installation effects on a four-fan airplane model in a wind tunnel, and single reverser acoustic tests. The 9-by 15 was built inside the return leg of the 8- by 6-Foot Supersonic Wind Tunnel in 1968. The facility generates airspeeds from 0 to 175 miles per hour to evaluate the aerodynamic performance and acoustic characteristics of nozzles, inlets, and propellers, and investigate hot gas re-ingestion of advanced VSTOL concepts. John Carpenter was a technician in the Wind Tunnels Service Section of the Test Installations Division.

  3. Embracing an "African Ethos" to facilitate African immigrants participation in medical genetics and genomics research.

    PubMed

    Buseh, Aaron G; Stevens, Patricia E; Millon-Underwood, Sandra; Kelber, Sheryl T; Townsend, Leolia

    Limited published research exists on perceptions and potentials for black African immigrants' participation in medical genetics and genomics research. This study explores the inclination and disinclination of African immigrants to be involved in genetics and genomics research. In-depth qualitative interviews were employed in which a sample of black African immigrants 18 years and older (n = 34) were interviewed. Barriers included contrary beliefs and customs about disease and the human body that differs from Western conceptions, and lack of genuine connection to the health care system. Facilitators included promotion of an "African ethos," wherein Africans unite with one another in a communal extension of self and robust community involvement across the life span of genetic studies. It is important for researchers and genetic counselors to understand the sociocultural underpinnings of African immigrants about genetics and genomics research as an initial step to encouraging their participation. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. What Is Diagnostic Testing?

    MedlinePlus

    ... Financial Planning Who Should I Tell? Genetic Testing & Counseling Compensation for Genetic Testing Whole Genome Sequencing Screening vs. Testing What Is Genetic Counseling? Participating in Research Disease Research Patient Privacy Clinical ...

  5. What Is Carrier Screening?

    MedlinePlus

    ... Financial Planning Who Should I Tell? Genetic Testing & Counseling Compensation for Genetic Testing Whole Genome Sequencing Screening vs. Testing What Is Genetic Counseling? Participating in Research Disease Research Patient Privacy Clinical ...

  6. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    The Genetics of Cancer Susceptibility Section in the Mouse Cancer Genetics Program at NCI is seeking a highly motivated postdoctoral researcher to identify novel genetic interactors of BRCA2 using CRISPR-based genetic screen in mouse embryonic stem cells and perform functional studies in mouse models.

  7. Genetics in child and adolescent psychiatry: methodological advances and conceptual issues.

    PubMed

    Hohmann, Sarah; Adamo, Nicoletta; Lahey, Benjamin B; Faraone, Stephen V; Banaschewski, Tobias

    2015-06-01

    Discovering the genetic basis of early-onset psychiatric disorders has been the aim of intensive research during the last decade. We will first selectively summarize results of genetic research in child and adolescent psychiatry by using examples from different disorders and discuss methodological issues, emerging questions and future directions. In the second part of this review, we will focus on how to link genetic causes of disorders with physiological pathways, discuss the impact of genetic findings on diagnostic systems, prevention and therapeutic interventions. Finally we will highlight some ethical aspects connected to genetic research in child and adolescent psychiatry. Advances in molecular genetic methods have led to insights into the genetic architecture of psychiatric disorders, but not yet provided definite pathways to pathophysiology. If replicated, promising findings from genetic studies might in some cases lead to personalized treatments. On the one hand, knowledge of the genetic basis of disorders may influence diagnostic categories. On the other hand, models also suggest studying the genetic architecture of psychiatric disorders across diagnoses and clinical groups.

  8. Ethics in prevention science involving genetic testing.

    PubMed

    Fisher, Celia B; Harrington McCarthy, Erika L

    2013-06-01

    The Human Genome Project and rapid technological advances in genomics have begun to enrich prevention science's contributions to understanding the role of genetic factors in the etiology, onset and escalation of mental disorders, allowing for more precise descriptions of the interplay between genetic and non-genetic influences. Understanding of ethical challenges associated with the integration of genetic data into prevention science has not kept pace with the rapid increase in the collection and storage of genetic data and dissemination of research results. This article discusses ethical issues associated with (1) decisions to withhold or disclose personal genetic information to participants; (2) implications of recruitment and data collection methods that may reveal genetic information of family members; and the (3) nature and timing of informed consent. These issues are presented within the contexts of adult and pediatric research, longitudinal studies, and use of biobanks for storage of genetic materials. Recommendations for research ethics decision-making are provided. The article concludes with a section on justice and research burdens and the unique ethical responsibilities of prevention scientists to ensure the new genomic science protects the informational rights of participants, their families and communities.

  9. Integrating Genetics and Social Science: Genetic Risk Scores

    PubMed Central

    Belsky, Daniel W.; Israel, Salomon

    2014-01-01

    The sequencing of the human genome and the advent of low-cost genome-wide assays that generate millions of observations of individual genomes in a matter of hours constitute a disruptive innovation for social science. Many public-use social science datasets have or will soon add genome-wide genetic data. With these new data come technical challenges, but also new possibilities. Among these, the lowest hanging fruit and the most potentially disruptive to existing research programs is the ability to measure previously invisible contours of health and disease risk within populations. In this article, we outline why now is the time for social scientists to bring genetics into their research programs. We discuss how to select genetic variants to study. We explain how the polygenic architecture of complex traits and the low penetrance of individual genetic loci pose challenges to research integrating genetics and social science. We introduce genetic risk scores as a method of addressing these challenges and provide guidance on how genetic risk scores can be constructed. We conclude by outlining research questions that are ripe for social science inquiry. PMID:25343363

  10. Pathway-based discovery of genetic interactions in breast cancer

    PubMed Central

    Xu, Zack Z.; Boone, Charles; Lange, Carol A.

    2017-01-01

    Breast cancer is the second largest cause of cancer death among U.S. women and the leading cause of cancer death among women worldwide. Genome-wide association studies (GWAS) have identified several genetic variants associated with susceptibility to breast cancer, but these still explain less than half of the estimated genetic contribution to the disease. Combinations of variants (i.e. genetic interactions) may play an important role in breast cancer susceptibility. However, due to a lack of statistical power, the current tests for genetic interactions from GWAS data mainly leverage prior knowledge to focus on small sets of genes or SNPs that are known to have an association with breast cancer. Thus, many genetic interactions, particularly among novel variants, remain understudied. Reverse-genetic interaction screens in model organisms have shown that genetic interactions frequently cluster into highly structured motifs, where members of the same pathway share similar patterns of genetic interactions. Based on this key observation, we recently developed a method called BridGE to search for such structured motifs in genetic networks derived from GWAS studies and identify pathway-level genetic interactions in human populations. We applied BridGE to six independent breast cancer cohorts and identified significant pathway-level interactions in five cohorts. Joint analysis across all five cohorts revealed a high confidence consensus set of genetic interactions with support in multiple cohorts. The discovered interactions implicated the glutathione conjugation, vitamin D receptor, purine metabolism, mitotic prometaphase, and steroid hormone biosynthesis pathways as major modifiers of breast cancer risk. Notably, while many of the pathways identified by BridGE show clear relevance to breast cancer, variants in these pathways had not been previously discovered by traditional single variant association tests, or single pathway enrichment analysis that does not consider SNP-SNP interactions. PMID:28957314

  11. Role of Genomic Typing in Taxonomy, Evolutionary Genetics, and Microbial Epidemiology

    PubMed Central

    van Belkum, Alex; Struelens, Marc; de Visser, Arjan; Verbrugh, Henri; Tibayrenc, Michel

    2001-01-01

    Currently, genetic typing of microorganisms is widely used in several major fields of microbiological research. Taxonomy, research aimed at elucidation of evolutionary dynamics or phylogenetic relationships, population genetics of microorganisms, and microbial epidemiology all rely on genetic typing data for discrimination between genotypes. Apart from being an essential component of these fundamental sciences, microbial typing clearly affects several areas of applied microbiogical research. The epidemiological investigation of outbreaks of infectious diseases and the measurement of genetic diversity in relation to relevant biological properties such as pathogenicity, drug resistance, and biodegradation capacities are obvious examples. The diversity among nucleic acid molecules provides the basic information for all fields described above. However, researchers in various disciplines tend to use different vocabularies, a wide variety of different experimental methods to monitor genetic variation, and sometimes widely differing modes of data processing and interpretation. The aim of the present review is to summarize the technological and fundamental concepts used in microbial taxonomy, evolutionary genetics, and epidemiology. Information on the nomenclature used in the different fields of research is provided, descriptions of the diverse genetic typing procedures are presented, and examples of both conceptual and technological research developments for Escherichia coli are included. Recommendations for unification of the different fields through standardization of laboratory techniques are made. PMID:11432813

  12. Inclusion and exclusion in the globalisation of genomics; the case of rare genetic disease in Brazil.

    PubMed

    Gibbon, Sahra; Aureliano, Waleska

    2018-04-01

    Within the context of a globalising agenda for genetic research where 'global health' is increasingly seen as necessarily informed by and having to account for genomics, the focus on rare genetic diseases is becoming prominent. Drawing from ethnographic research carried out separately by both authors in Brazil, this paper examines how an emerging focus on two different arenas of rare genetic disease, cancer genetics and a class of degenerative neurological diseases known as Ataxias, is subject to and a product of the dynamics of inclusion and exclusion as this concerns participation in research and access to health care. It examines how in these different cases 'rarenesss' has been diversely situated and differently politicised and how clinicians, patients and their families grapple with the slippery boundaries between research, rights to health and the limits of care, therapy or prevention. It illustrates how attention to rare genetic disease in Brazil emerges at the intersection of a particular history of genetic research and public health infrastructure, densely complicated feedback loops between clinical care and research, patient mobilisation around the 'judicialisation' of health and recent state legislation regarding rare disease in Brazil. It highlights the relevance of local configurations in the way rare genetic disease is being made relevant for and by different communities.

  13. Understanding participation by African Americans in cancer genetics research.

    PubMed

    McDonald, Jasmine A; Barg, Frances K; Weathers, Benita; Guerra, Carmen E; Troxel, Andrea B; Domchek, Susan; Bowen, Deborah; Shea, Judy A; Halbert, Chanita Hughes

    2012-01-01

    Understanding genetic factors that contribute to racial differences in cancer outcomes may reduce racial disparities in cancer morbidity and mortality. Achieving this goal will be limited by low rates of African American participation in cancer genetics research. We conducted a qualitative study with African American adults (n = 91) to understand attitudes about participating in cancer genetics research and to identify factors that are considered when making a decision about participating in this type of research. Participants would consider the potential benefits to themselves, family members, and their community when making a decision to participate in cancer genetics research. However, concerns about exploitation, distrust of researchers, and investigators' motives were also important to participation decisions. Individuals would also consider who has access to their personal information and what would happen to these data. Side effects, logistical issues, and the potential to gain knowledge about health issues were also described as important factors in decision making. African Americans may consider a number of ethical, legal, and social issues when making a decision to participate in cancer genetics research. These issues should be addressed as part of recruitment efforts.

  14. The State of Federal Research Funding in Genetics as Reflected by Members of the Genetics Society of America.

    PubMed

    Rine, Jasper; Fagen, Adam P

    2015-08-01

    Scientific progress runs on the intellect, curiosity, and passion of its practitioners fueled by the research dollars of its sponsors. The concern over research funding in biology in general and genetics in particular led us to survey the membership of the Genetics Society of America for information about the federal support of genetics at the level of individual principal investigators. The results paint a mosaic of circumstances-some good, others not so good-that describes some of our present challenges with sufficient detail to suggest useful steps that could address the challenges. Copyright © 2015 by the Genetics Society of America.

  15. Chemical genetics of Plasmodium falciparum

    PubMed Central

    Guiguemde, W. Armand; Shelat, Anang A.; Bouck, David; Duffy, Sandra; Crowther, Gregory J.; Davis, Paul H.; Smithson, David C.; Connelly, Michele; Clark, Julie; Zhu, Fangyi; Jiménez-Díaz, María B; Martinez, María S; Wilson, Emily B.; Tripathi, Abhai K.; Gut, Jiri; Sharlow, Elizabeth R.; Bathurst, Ian; El Mazouni, Farah; Fowble, Joseph W; Forquer, Isaac; McGinley, Paula L; Castro, Steve; Angulo-Barturen, Iñigo; Ferrer, Santiago; Rosenthal, Philip J.; DeRisi, Joseph L; Sullivan, David J.; Lazo, John S.; Roos, David S.; Riscoe, Michael K.; Phillips, Margaret A.; Rathod, Pradipsinh K.; Van Voorhis, Wesley C.; Avery, Vicky M; Guy, R. Kiplin

    2010-01-01

    Malaria caused by Plasmodium falciparum is a catastrophic disease worldwide (880,000 deaths yearly). Vaccine development has proved difficult and resistance has emerged for most antimalarials. In order to discover new antimalarial chemotypes, we have employed a phenotypic forward chemical genetic approach to assay 309,474 chemicals. Here we disclose structures and biological activity of the entire library, many of which exhibited potent in vitro activity against drug resistant strains, and detailed profiling of 172 representative candidates. A reverse chemical genetic study identified 19 new inhibitors of 4 validated drug targets and 15 novel binders among 61 malarial proteins. Phylochemogenetic profiling in multiple organisms revealed similarities between Toxoplasma gondii and mammalian cell lines and dissimilarities between P. falciparum and related protozoans. One exemplar compound displayed efficacy in a murine model. Overall, our findings provide the scientific community with new starting points for malaria drug discovery. PMID:20485428

  16. Genetic networks and soft computing.

    PubMed

    Mitra, Sushmita; Das, Ranajit; Hayashi, Yoichi

    2011-01-01

    The analysis of gene regulatory networks provides enormous information on various fundamental cellular processes involving growth, development, hormone secretion, and cellular communication. Their extraction from available gene expression profiles is a challenging problem. Such reverse engineering of genetic networks offers insight into cellular activity toward prediction of adverse effects of new drugs or possible identification of new drug targets. Tasks such as classification, clustering, and feature selection enable efficient mining of knowledge about gene interactions in the form of networks. It is known that biological data is prone to different kinds of noise and ambiguity. Soft computing tools, such as fuzzy sets, evolutionary strategies, and neurocomputing, have been found to be helpful in providing low-cost, acceptable solutions in the presence of various types of uncertainties. In this paper, we survey the role of these soft methodologies and their hybridizations, for the purpose of generating genetic networks.

  17. Role of Genetics and Epigenetics in Mucosal, Uveal, and Cutaneous Melanomagenesis.

    PubMed

    Venza, Mario; Visalli, Maria; Beninati, Concetta; Biondo, Carmelo; Teti, Diana; Venza, Isabella

    2016-01-01

    Melanoma prevalently occurs on parts of the body that have been overexposed to the sun. However, it can also originate in the nervous system, eye and mucous membranes. Melanoma has been thought for a long time to arise through a series of genetic mechanisms involving numerous irreversible changes within the human genome. However, recently, "epimutations" have attracted considerable attention owing to their high prevalence rate and reversible nature. These observations opened up new perspectives in the use of epidrugs with the potential for restoring the "correct" control of neoplastic genomes. Here, we focused on the common consensus on genetics and epigenetics in melanoma. We also discussed the clinical applications of regulators of epigenetic enzymes able to revert the epigenetic and metabolic hallmarks of melanoma cells. Such anti-neoplastic agents affect the expression profile of antioncogenes, proto-oncogenes, and microRNAs resulting in enhanced differentiation, apoptosis, and growth inhibition.

  18. Oral delivery of dsRNA by microbes: Beyond pest control.

    PubMed

    Abrieux, Antoine; Chiu, Joanna C

    2016-01-01

    RNA interference (RNAi) by oral delivery of dsRNA in insects has great potential as a tool for integrated pest management (IPM), especially with respect to addressing the need to reduce off-target effect and slow down resistance development to chemical insecticides. Employing the natural association existing between insect and yeast, we developed a novel method to enable the knock down of vital genes in the pest insect Drosophila suzukii through oral delivery of species-specific dsRNA using genetically modified Saccharomyces cerevisae. D. suzukii that were fed with our "yeast biopesticide" showed a significant decrease in fitness. In this perspective article, we postulate that this approach could be adapted to a large number of species, given the great diversity of symbiotic interactions involving microorganisms and host species. Furthermore, we speculate that beyond its application as biopesticide, dsRNA delivery by genetically modified microbes can also serve to facilitate reverse genetic applications, specifically in non-model organisms.

  19. Avian Paramyxovirus Serotype-1: A Review of Disease Distribution, Clinical Symptoms, and Laboratory Diagnostics

    PubMed Central

    Hines, Nichole L.; Miller, Cathy L.

    2012-01-01

    Avian paramyxovirus serotype-1 (APMV-1) is capable of infecting a wide range of avian species leading to a broad range of clinical symptoms. Ease of transmission has allowed the virus to spread worldwide with varying degrees of virulence depending on the virus strain and host species. Classification systems have been designed to group isolates based on their genetic composition. The genetic composition of the fusion gene cleavage site plays an important role in virulence. Presence of multiple basic amino acids at the cleavage site allows enzymatic cleavage of the fusion protein enabling virulent viruses to spread systemically. Diagnostic tests, including virus isolation, real-time reverse-transcription PCR, and sequencing, are used to characterize the virus and identify virulent strains. Genetic diversity within APMV-1 demonstrates the need for continual monitoring for changes that may arise requiring modifications to the molecular assays to maintain their usefulness for diagnostic testing. PMID:22577610

  20. Engineering and Functional Analysis of Mitotic Kinases Through Chemical Genetics.

    PubMed

    Jones, Mathew J K; Jallepalli, Prasad V

    2016-01-01

    During mitosis, multiple protein kinases transform the cytoskeleton and chromosomes into new and highly dynamic structures that mediate the faithful transmission of genetic information and cell division. However, the large number and strong conservation of mammalian kinases in general pose significant obstacles to interrogating them with small molecules, due to the difficulty in identifying and validating those which are truly selective. To overcome this problem, a steric complementation strategy has been developed, in which a bulky "gatekeeper" residue within the active site of the kinase of interest is replaced with a smaller amino acid, such as glycine or alanine. The enlarged catalytic pocket can then be targeted in an allele-specific manner with bulky purine analogs. This strategy provides a general framework for dissecting kinase function with high selectivity, rapid kinetics, and reversibility. In this chapter we discuss the principles and techniques needed to implement this chemical genetic approach in mammalian cells.

  1. Health Benefits of Animal Research: The Mouse in Biomedical Research.

    ERIC Educational Resources Information Center

    Jonas, Albert M.

    1984-01-01

    Traces the history of using mice for medical research and discusses the benefits of using these animals for studies in bacteriology, virology, genetics (considering X-linked genetic homologies between mice and humans), molecular biology, immunology, hematology, immune response disorders, oncology, radiobiology, pharmacology, behavior genetics,…

  2. Imaging-Genetics Applications in Child Psychiatry

    ERIC Educational Resources Information Center

    Pine, Daniel S.; Ernst, Monique; Leibenluft, Ellen

    2010-01-01

    Objective: To place imaging-genetics research in the context of child psychiatry. Method: A conceptual overview is provided, followed by discussion of specific research examples. Results: Imaging-genetics research is described linking brain function to two specific genes, for the serotonin-reuptake-transporter protein and a monoamine oxidase…

  3. Defragged Binary I Ching Genetic Code Chromosomes Compared to Nirenberg’s and Transformed into Rotating 2D Circles and Squares and into a 3D 100% Symmetrical Tetrahedron Coupled to a Functional One to Discern Start From Non-Start Methionines through a Stella Octangula

    PubMed Central

    Castro-Chavez, Fernando

    2012-01-01

    Background Three binary representations of the genetic code according to the ancient I Ching of Fu-Xi will be presented, depending on their defragging capabilities by pairing based on three biochemical properties of the nucleic acids: H-bonds, Purine/Pyrimidine rings, and the Keto-enol/Amino-imino tautomerism, yielding the last pair a 32/32 single-strand self-annealed genetic code and I Ching tables. Methods Our working tool is the ancient binary I Ching's resulting genetic code chromosomes defragged by vertical and by horizontal pairing, reverse engineered into non-binaries of 2D rotating 4×4×4 circles and 8×8 squares and into one 3D 100% symmetrical 16×4 tetrahedron coupled to a functional tetrahedron with apical signaling and central hydrophobicity (codon formula: 4[1(1)+1(3)+1(4)+4(2)]; 5:5, 6:6 in man) forming a stella octangula, and compared to Nirenberg's 16×4 codon table (1965) pairing the first two nucleotides of the 64 codons in axis y. Results One horizontal and one vertical defragging had the start Met at the center. Two, both horizontal and vertical pairings produced two pairs of 2×8×4 genetic code chromosomes naturally arranged (M and I), rearranged by semi-introversion of central purines or pyrimidines (M' and I') and by clustering hydrophobic amino acids; their quasi-identity was disrupted by amino acids with odd codons (Met and Tyr pairing to Ile and TGA Stop); in all instances, the 64-grid 90° rotational ability was restored. Conclusions We defragged three I Ching representations of the genetic code while emphasizing Nirenberg's historical finding. The synthetic genetic code chromosomes obtained reflect the protective strategy of enzymes with a similar function, having both humans and mammals a biased G-C dominance of three H-bonds in the third nucleotide of their most used codons per amino acid, as seen in one chromosome of the i, M and M' genetic codes, while a two H-bond A-T dominance was found in their complementary chromosome, as seen in invertebrates and plants. The reverse engineering of chromosome I' into 2D rotating circles and squares was undertaken, yielding a 100% symmetrical 3D geometry which was coupled to a previously obtained genetic code tetrahedron in order to differentiate the start methionine from the methionine that is acting as a codifying non-start codon. PMID:23431415

  4. A Developmental-Genetic Model of Alcoholism: Implications for Genetic Research.

    ERIC Educational Resources Information Center

    Devor, Eric J.

    1994-01-01

    Research for biological-genetic markers of alcoholism is discussed in context of a multifactorial, heterogeneous, developmental model. Suggested that strategies used in linkage and association studies will require modification. Also suggested several extant associations of genetic markers represent true secondary interactive phenomena that alter…

  5. [Public health, genetics and ethics].

    PubMed

    Kottow, Miguel H

    2002-10-01

    Genetics research has shown enormous developments in recent decades, although as yet with only limited clinical application. Bioethical analysis has been unable to deal with the vast problems of genetics because emphasis has been put on the principlism applied to both clinical and research bioethics. Genetics nevertheless poses its most complex moral dilemmas at the public level, where a social brand of ethics ought to supersede the essentially interpersonal perspective of principlism. A more social understanding of ethics in genetics is required to unravel issues such as research and clinical explorations, ownership and patents, genetic manipulation, and allocation of resources. All these issues require reflection based on the requirements of citizenry, consideration of common assets, and definition of public policies in regulating genetic endeavors and protecting the society as a whole Bioethics has privileged the approach to individual ethical issues derived from genetic intervention, thereby neglecting the more salient aspects of genetics and social ethics.

  6. Culture-Shock and Reverse-Culture Shock: Implications for Juniors Abroad and Seniors at Home.

    ERIC Educational Resources Information Center

    Hogan, John T.

    Thousands of college seniors who have returned from their junior year abroad may be enduring "reverse culture shock" or "reentry crisis." Social psychology and sociology, in the form of "sojourn research," has derived a developmental, stage specific model of culture shock and reverse culture shock, similar to the grieving process identified by…

  7. Character Reversal in Children: The Prominent Role of Writing Direction

    ERIC Educational Resources Information Center

    Fischer, Jean-Paul

    2017-01-01

    Recent research has established that 5- to 6-year-old typically developing children in a left-right writing culture spontaneously reverse left-oriented characters (e.g., they write a [reversed J] instead of J) when they write single characters. Thus, children seem to implicitly apply a right-writing rule (RWR: see Fischer & Koch, 2016a). In…

  8. Phage transposon mutagenesis.

    PubMed

    Siegrist, M Sloan; Rubin, Eric J

    2009-01-01

    Phage transduction is an attractive method of genetic manipulation in mycobacteria. PhiMycoMarT7 is well suited for transposon mutagenesis as it is temperature sensitive for replication and contains T7 promoters that promote transcription, a highly active transposase gene, and an Escherichia coli oriR6 K origin of replication. Mycobacterial transposon mutant libraries produced by PhiMycoMarT7 transduction are amenable to both forward and reverse genetic studies. In this protocol, we detail the preparation of PhiMycoMarT7, including a description of the phage, reconstitution of the phage, purification of plaques, preparation of phage stock, and titering of phage stock. We then describe the transduction procedure and finally outline the isolation of individual transposon mutants.

  9. Transformation of soybean Gy3 gene into Artemisaarenaria mediated by corona discharge

    NASA Astrophysics Data System (ADS)

    Chao, Lu-meng; Na, Ri; Xue, Dan; Xu, Yongze; Liu, Teng

    2013-03-01

    In order to improve the protein content of desert plant, a method of genetic transformation mediated by corona discharge was established. Artemisia seeds were processed in corona electric field for 120 min at 12 kV, and then soaked in 0.1 SSC media that contained Soybean Gy3 gene DNA to incubate for 12 h at 26 °C. Finally the seeds were inoculated on the differentiation medium. Polymerase Chain Reaction (PCR) and Reverse Transcription Polymerase Chain Reaction (RT-PCR) detection showed that the Soybean Gy3 gene had been successfully introduced into genomic DNA of the regenerated plants of Artemisaarenaria. The study provided a new way for corona discharge in plant genetic modification.

  10. Functional Evolution of a cis-Regulatory Module

    PubMed Central

    Palsson, Arnar; Alekseeva, Elena; Bergman, Casey M; Nathan, Janaki; Kreitman, Martin

    2005-01-01

    Lack of knowledge about how regulatory regions evolve in relation to their structure–function may limit the utility of comparative sequence analysis in deciphering cis-regulatory sequences. To address this we applied reverse genetics to carry out a functional genetic complementation analysis of a eukaryotic cis-regulatory module—the even-skipped stripe 2 enhancer—from four Drosophila species. The evolution of this enhancer is non-clock-like, with important functional differences between closely related species and functional convergence between distantly related species. Functional divergence is attributable to differences in activation levels rather than spatiotemporal control of gene expression. Our findings have implications for understanding enhancer structure–function, mechanisms of speciation and computational identification of regulatory modules. PMID:15757364

  11. Participation in Genetic Research: Amazon's Mechanical Turk Workforce in the United States and India.

    PubMed

    Groth, Susan W; Dozier, Ann; Demment, Margaret; Li, Dongmei; Fernandez, I Diana; Chang, Jack; Dye, Timothy

    2016-01-01

    Genomic research has innumerable benefits. However, if people are unwilling to participate in genomic research, application of knowledge will be limited. This study examined the likelihood of respondents from a high- and a low- to middle-income country to participate in genetic research. Cross-sectional data were collected using Amazon's Mechanical Turk workforce to ascertain attitudes toward participation in genetic research. Registered country of residence was either the US (n = 505) or India (n = 505). Multiple logistic regression models were used to assess adjusted effects of demographic characteristics, health, social status, beliefs and concerns on 4 genetic research outcomes. Participants from India who believed chance and powerful others influenced their health were more likely to participate in genetic research (OR = 1.0, 95% CI 1.0-1.1) and to agree with sharing of DNA data (OR = 1.1, 95% CI 1.1-1.2). US participants were more likely to be concerned about protection of family history, which they indicated would affect participation (OR = 3.6, 95% CI 2.1-6.0). Commonalities for the likelihood of participation were beliefs that genetic research could help find new treatments (India OR = 2.3, 95% CI 1.0-5.4; US OR = 4.7, 95% CI 2.0-11.2) and descendants would benefit (India OR = 2.6, 95% CI 1.2-5.5; US OR = 3.0, 95% CI 1.3-7.1). Concurrence of beliefs on benefits and concerns about genetic research suggest they may be common across countries. Consideration of commonalities may be important to increase global participation in genetic research. © 2016 S. Karger AG, Basel.

  12. Participation in Genetic Research: Amazon's Mechanical Turk Workforce in the United States and India Weigh In

    PubMed Central

    Groth, Susan W; Dozier, Ann; Demment, Margaret; Li, Dongmei; Fernandez, I Diana; Chang, Jack; Dye, Timothy

    2016-01-01

    Background Genomic research has innumerable benefits. However, if people are unwilling to participate in genomic research application of knowledge will be limited. This study examined the likelihood of respondents from a high and a low-middle income country to participate in genetic research. Methods Cross-sectional data were collected using Amazon's Mechanical Turk workforce to ascertain attitudes toward participation in genetic research. Registered country of residence was either the US (n = 505) or India (n = 505). Multiple logistic regression models were used to assess adjusted effects of demographic characteristics, health, social status, beliefs and concerns on four genetic research outcomes. Results India participants who believed chance and powerful others influenced their health were more likely to participate in genetic research (OR = 1.0: 95% CI [1.0, 1.1]) and to agree with sharing of DNA data (OR = 1.1: 95% CI [1.1, 1.2]). US participants were more likely to be concerned about protection of family history, which they indicated would affect participation (OR = 3.6: 95% CIs [2.1, 6.0]). Commonalities for likelihood of participation were beliefs that genetic research could help find new treatments (India OR = 2.3: 95% CIs [1.0, 5.4]: US OR = 4.7: 95% CI [2.0, 11.2]) and descendants would benefit (India OR = 2.6: 95% CIs [1.2, 5.5]: US OR = 3.0: 95% CIs [1.3, 7.1]). Conclusions Concurrence of beliefs on benefits and concerns about genetic research suggest they may be common across countries. Consideration of commonalities may be important to increase global participation in genetic research. PMID:27811475

  13. Unwarranted optimism in media portrayals of genetic research on addiction overshadows critical ethical and social concerns.

    PubMed

    Ostergren, Jenny E; Dingel, Molly J; McCormick, Jennifer B; Koenig, Barbara A

    2015-01-01

    The cost of addiction in the United States, in combination with a host of new tools and techniques, has fueled an explosion of genetic research on addiction. Because the media has the capacity to reflect and influence public perception, there is a need to examine how treatments and preventive approaches projected to emerge from addiction genetic research are presented to the public. The authors conducted a textual analysis of 145 news articles reporting on genetic research on addiction from popular print media in the United States and from popular news and medical internet sites. In articles that report on prevention, the media emphasize vaccine development and identifying individuals at genetic risk through population screening. Articles that emphasize treatment often promote current pharmaceutical solutions and highlight the possibility of tailoring treatments to specific genetic variants. The authors raise concerns about the tendency of this coverage to focus on the benefits of pharmaceutical treatments and genetic-based approaches to prevention while neglecting or downplaying potential risks and ethical issues. This analysis suggests a need for more balanced, evidence-based media reporting on the potential outcomes of genetic research.

  14. Unwarranted optimism in media portrayals of genetic research on addiction overshadows critical ethical and social concerns

    PubMed Central

    Ostergren, Jenny E.; Dingel, Molly J.; McCormick, Jennifer B.; Koenig, Barbara A.

    2015-01-01

    The cost of addiction in the U.S., in combination with a host of new tools and techniques, has fueled an explosion of genetic research on addiction. Since the media has the capacity to reflect and influence public perception, there is a need to examine how treatments and preventive approaches projected to emerge from addiction genetic research are presented to the public. We conducted a textual analysis of 145 news articles reporting on genetic research on addiction from popular print media in the U.S., and from popular news and medical internet sites. In articles that report on prevention, the media emphasize vaccine development and identifying individuals at genetic risk through population screening. Articles that emphasize treatment often promote current pharmaceutical solutions and highlight the possibility of tailoring treatments to specific genetic variants. We raise concerns about the tendency of this coverage to focus on the benefits of pharmaceutical treatments and genetic-based approaches to prevention while neglecting or downplaying potential risks and ethical issues. Our analysis suggests a need for more balanced, evidence-based media reporting on the potential outcomes of genetic research. PMID:25806781

  15. The Effectiveness of the Creative Reversal Act (CREACT) on Students' Creative Thinking

    ERIC Educational Resources Information Center

    Sak, Ugur; Oz, Ozge

    2010-01-01

    A research study using one-group pretest-posttest design was carried out on the effectiveness of the Creative Reversal Act (CREACT) on creative thinking. The CREACT is a new, teaching technique developed based on the theory of the janusian process. The research participants included 34 students who were attending 10th grade at a social studies…

  16. ARC-1969-AC74-1058-29

    NASA Image and Video Library

    1974-03-13

    United Airlines DC-8 (N8099U) Two Segment Evaluation. In-Flight Thrust Reversing, Steep Approach Research. The thrust reversing concept was applied to the DC-8 Commercial transport to achieve the rapid descent capability required for FAA certificaiton. Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig 96

  17. Research on injury compensation and health outcomes: ignoring the problem of reverse causality led to a biased conclusion.

    PubMed

    Spearing, Natalie M; Connelly, Luke B; Nghiem, Hong S; Pobereskin, Louis

    2012-11-01

    This study highlights the serious consequences of ignoring reverse causality bias in studies on compensation-related factors and health outcomes and demonstrates a technique for resolving this problem of observational data. Data from an English longitudinal study on factors, including claims for compensation, associated with recovery from neck pain (whiplash) after rear-end collisions are used to demonstrate the potential for reverse causality bias. Although it is commonly believed that claiming compensation leads to worse recovery, it is also possible that poor recovery may lead to compensation claims--a point that is seldom considered and never addressed empirically. This pedagogical study compares the association between compensation claiming and recovery when reverse causality bias is ignored and when it is addressed, controlling for the same observable factors. When reverse causality is ignored, claimants appear to have a worse recovery than nonclaimants; however, when reverse causality bias is addressed, claiming compensation appears to have a beneficial effect on recovery, ceteris paribus. To avert biased policy and judicial decisions that might inadvertently disadvantage people with compensable injuries, there is an urgent need for researchers to address reverse causality bias in studies on compensation-related factors and health. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Caffeine, sleep and wakefulness: implications of new understanding about withdrawal reversal.

    PubMed

    James, Jack E; Keane, Michael A

    2007-12-01

    The broad aim of this review is to critically examine the implications of new understanding concerning caffeine withdrawal and withdrawal reversal in the context of research concerned with the effects of caffeine on sleep and wakefulness. A comprehensive search was conducted for relevant experimental studies in the PubMED and PsycINFO databases. Studies were assessed with particular reference to methodological adequacy for controlling against confounding due to caffeine withdrawal and withdrawal reversal. This assessment was used to clarify evidence of effects, highlight areas of ambiguity and derive recommendations for future research. It was found that researchers have generally failed to take account of the fact that habitual use of caffeine, even at moderate levels, leads to physical dependence evidenced by physiological, behavioural and subjective withdrawal effects during periods of abstinence. Consequently, there has been near-complete absence of adequate methodological controls against confounding due to reversal of withdrawal effects when caffeine is experimentally administered. The findings of what has been a substantial research effort to elucidate the effects of caffeine on sleep and wakefulness, undertaken over a period spanning decades, are ambiguous. Current shortcomings can be redressed by incorporating suitable controls in new experimental designs.

  19. Standards for the Reporting of Genetic Counseling Interventions in Research and Other Studies (GCIRS): an NSGC Task Force Report.

    PubMed

    Hooker, Gillian W; Babu, D; Myers, M F; Zierhut, H; McAllister, M

    2017-06-01

    As the demand for evidence to support the value of genetic counseling increases, it is critical that reporting of genetic counseling interventions in research and other types of studies (e.g. process improvement or service evaluation studies) adopt greater rigor. As in other areas of healthcare, the appraisal, synthesis, and translation of research findings into genetic counseling practice are likely to be improved if clear specifications of genetic counseling interventions are reported when studies involving genetic counseling are published. To help improve reporting practices, the National Society of Genetic Counselors (NSGC) convened a task force in 2015 to develop consensus standards for the reporting of genetic counseling interventions. Following review by the NSGC Board of Directors, the NSGC Practice Guidelines Committee and the editorial board of the Journal of Genetic Counseling, 23 items across 8 domains were proposed as standards for the reporting of genetic counseling interventions in the published literature (GCIRS: Genetic Counseling Intervention Reporting Standards). The authors recommend adoption of these standards by authors and journals when reporting studies involving genetic counseling interventions.

  20. Surrogate Receptivity to Participation in Critical Illness Genetic Research

    PubMed Central

    Butler, Kevin; Bolcic-Jankovic, Dragana; Clarridge, Brian R.; Kennedy, Carie R.; LeBlanc, Jessica; Chandros Hull, Sara

    2015-01-01

    BACKGROUND: Collection of genetic biospecimens as part of critical illness investigations is increasingly commonplace. Oversight bodies vary in restrictions imposed on genetic research, introducing inconsistencies in study design, potential for sampling bias, and the possibility of being overly prohibitive of this type of research altogether. We undertook this study to better understand whether restrictions on genetic data collection beyond those governing research on cognitively intact subjects reflect the concerns of surrogates for critically ill patients. METHODS: We analyzed survey data collected from 1,176 patients in nonurgent settings and 437 surrogates representing critically ill adults. Attitudes pertaining to genetic data (familiarity, perceptions, interest in participation, concerns) and demographic information were examined using univariate and multivariate techniques. RESULTS: We explored differences among respondents who were receptive (1,333) and nonreceptive (280) to genetic sample collection. Whereas factors positively associated with receptivity to research participation were “complete trust” in health-care providers (OR, 2.091; 95% CI, 1.544-2.833), upper income strata (OR, 2.319; 95% CI, 1.308-4.114), viewing genetic research “very positively” (OR, 3.524; 95% CI, 2.122-5.852), and expressing “no worry at all” regarding disclosure of results (OR, 2.505; 95% CI, 1.436-4.369), black race was negatively associated with research participation (OR, 0.410; 95% CI, 0.288-0.585). We could detect no difference in receptivity to genetic sample collection comparing ambulatory patients and surrogates (OR, 0.738; 95% CI, 0.511-1.066). CONCLUSIONS: Expressing trust in health-care providers and viewing genetic research favorably were associated with increased willingness for study enrollment, while concern regarding breach of confidentiality and black race had the opposite effect. Study setting had no bearing on willingness to participate. PMID:25340645

Top