Sample records for reverse genomic instability

  1. Aberrant methylation and associated transcriptional mobilization of Alu elements contributes to genomic instability in hypoxia.

    PubMed

    Pal, Arnab; Srivastava, Tapasya; Sharma, Manish K; Mehndiratta, Mohit; Das, Prerna; Sinha, Subrata; Chattopadhyay, Parthaprasad

    2010-11-01

    Hypoxia is an integral part of tumorigenesis and contributes extensively to the neoplastic phenotype including drug resistance and genomic instability. It has also been reported that hypoxia results in global demethylation. Because a majority of the cytosine-phosphate-guanine (CpG) islands are found within the repeat elements of DNA, and are usually methylated under normoxic conditions, we suggested that retrotransposable Alu or short interspersed nuclear elements (SINEs) which show altered methylation and associated changes of gene expression during hypoxia, could be associated with genomic instability. U87MG glioblastoma cells were cultured in 0.1% O₂ for 6 weeks and compared with cells cultured in 21% O₂ for the same duration. Real-time PCR analysis showed a significant increase in SINE and reverse transcriptase coding long interspersed nuclear element (LINE) transcripts during hypoxia. Sequencing of bisulphite treated DNA as well as the Combined Bisulfite Restriction Analysis (COBRA) assay showed that the SINE loci studied underwent significant hypomethylation though there was patchy hypermethylation at a few sites. The inter-alu PCR profile of DNA from cells cultured under 6-week hypoxia, its 4-week revert back to normoxia and 6-week normoxia showed several changes in the band pattern indicating increased alu mediated genomic alteration. Our results show that aberrant methylation leading to increased transcription of SINE and reverse transcriptase associated LINE elements could lead to increased genomic instability in hypoxia. This might be a cause of genetic heterogeneity in tumours especially in variegated hypoxic environment and lead to a development of foci of more aggressive tumour cells. © 2009 The Authors Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  2. Inactivation of parkin by promoter methylation correlated with lymph node metastasis and genomic instability in nasopharyngeal carcinoma.

    PubMed

    Ni, Haifeng; Zhou, Zhen; Jiang, Bo; Yuan, Xiaoyang; Cao, Xiaolin; Huang, Guangwu; Li, Yong

    2017-03-01

    This study aimed to investigate the inactivation of the parkin gene by promoter methylation and its relationship with genome instability in nasopharyngeal carcinoma. Parkin was considered as a tumor suppressor gene in various types of cancers. However, its role in nasopharyngeal carcinoma is unexplored. Genomic instabilities were detected in nasopharyngeal carcinoma tissues by the random amplified polymorphic DNA. The methylation-specific polymerase chain reaction, semi-quantitative reverse transcription polymerase chain reaction, and immunohistochemical analysis were used to detect methylation and mRNA and protein expression of parkin in 54 cases of nasopharyngeal carcinoma tissues and 16 cases of normal nasopharyngeal epithelia tissues, and in 5 nasopharyngeal carcinoma cell lines (CNE1, CNE2, TWO3, C666, and HONE1) and 1 normal nasopharyngeal epithelia cell line (NP69). mRNA expression of parkin in CNE1 and CNE2 was analyzed before and after methyltransferase inhibitor 5-aza-2-deoxycytidine treatment. The relationship between promoter methylation and mRNA expression, demethylation and mRNA expression, and mRNA and protein expression of the gene and clinical factors and genomic instabilities were analyzed. The mRNA and protein expression levels were significantly reduced in 54 cases of human nasopharyngeal carcinoma compared with 16 cases of normal nasopharyngeal epithelia. Parkin-methylated cases showed significantly lower mRNA and protein expression levels compared with unmethylated cases. After 5-aza-2-deoxycytidine treatment, parkin mRNA expression was restored in CNE1 and CNE2; 92.59% (50/54) of nasopharyngeal carcinoma demonstrated genomic instability. Parkin is frequently inactivated by promoter methylation, and its mRNA and protein expression correlate with lymph node metastasis and genomic instability. Parkin deficiency probably promotes tumorigenesis in nasopharyngeal carcinoma.

  3. p53 protects against genome instability following centriole duplication failure

    PubMed Central

    Lambrus, Bramwell G.; Uetake, Yumi; Clutario, Kevin M.; Daggubati, Vikas; Snyder, Michael; Sluder, Greenfield

    2015-01-01

    Centriole function has been difficult to study because of a lack of specific tools that allow persistent and reversible centriole depletion. Here we combined gene targeting with an auxin-inducible degradation system to achieve rapid, titratable, and reversible control of Polo-like kinase 4 (Plk4), a master regulator of centriole biogenesis. Depletion of Plk4 led to a failure of centriole duplication that produced an irreversible cell cycle arrest within a few divisions. This arrest was not a result of a prolonged mitosis, chromosome segregation errors, or cytokinesis failure. Depleting p53 allowed cells that fail centriole duplication to proliferate indefinitely. Washout of auxin and restoration of endogenous Plk4 levels in cells that lack centrioles led to the penetrant formation of de novo centrioles that gained the ability to organize microtubules and duplicate. In summary, we uncover a p53-dependent surveillance mechanism that protects against genome instability by preventing cell growth after centriole duplication failure. PMID:26150389

  4. Curcumin-Mediated Reversal of p15 Gene Promoter Methylation: Implication in Anti-Neoplastic Action against Acute Lymphoid Leukaemia Cell Line.

    PubMed

    Sharma, V; Jha, A K; Kumar, A; Bhatnagar, A; Narayan, G; Kaur, J

    2015-01-01

    Curcumin has been documented to exert anticancer effects by interacting with altered proliferative and apoptotic pathways in cancer models. In this study, we evaluated the potential of curcumin to reverse promoter methylation of the p15 gene in Raji cells and its ability to induce apoptosis and genomic instability. Anti-neoplastic action of curcumin showed an augmentation in reactive oxygen species (ROS) and cell cycle arrest in G1 phase. Subsequently, curcumin- exposed Raji cells showed structural abnormalities in chromosomes. These observations suggest that curcumin also causes ROS-mediated apoptosis and genomic instability. The treatment of Raji cell line with 10 μM curcumin caused hypomethylation of the p15 promoter after six days. Hypomethylation of p15 was further found to be favoured by downregulation of DNA methyltransferase 1 after 10 μM curcumin treatment for six days. Methylation-specific PCR suggested demethylation of the p15 promoter. Demethylation was further validated by DNA sequencing. Reverse-transcription PCR demonstrated that treatment with curcumin (10 μM) for six days led to the up-regulation of p15 and down-regulation of DNA methyltransferase 1. Furthermore, curcumin- mediated reversal of p15 promoter methylation might be potentiated by down-regulation of DNA methyltransferase 1 expression, which was supported by cell cycle analysis. Furthermore, curcumin acts as a double-pronged agent, as it caused apoptosis and promoter hypomethylation in Raji cells.

  5. APC/C Dysfunction Limits Excessive Cancer Chromosomal Instability

    PubMed Central

    Sansregret, Laurent; López-García, Carlos; Koch, André; McGranahan, Nicholas; Chao, William Chong Hang; Barry, David J.; Rowan, Andrew; Instrell, Rachael; Horswell, Stuart; Way, Michael; Howell, Michael; Singleton, Martin R.; Medema, René H.; Nurse, Paul; Petronczki, Mark; Swanton, Charles

    2017-01-01

    Intercellular heterogeneity, exacerbated by chromosomal instability (CIN), fosters tumor heterogeneity and drug resistance. However, extreme CIN correlates with improved cancer outcome, suggesting that karyotypic diversity required to adapt to selection pressures might be balanced in tumors against the risk of excessive instability. Here, we used a functional genomics screen, genome editing, and pharmacologic approaches to identify CIN-survival factors in diploid cells. We find partial anaphase-promoting complex/cyclosome (APC/C) dysfunction lengthens mitosis, suppresses pharmacologically induced chromosome segregation errors, and reduces naturally occurring lagging chromosomes in cancer cell lines or following tetraploidization. APC/C impairment caused adaptation to MPS1 inhibitors, revealing a likely resistance mechanism to therapies targeting the spindle assembly checkpoint. Finally, CRISPR-mediated introduction of cancer somatic mutations in the APC/C subunit cancer driver gene CDC27 reduces chromosome segregation errors, whereas reversal of an APC/C subunit nonsense mutation increases CIN. Subtle variations in mitotic duration, determined by APC/C activity, influence the extent of CIN, allowing cancer cells to dynamically optimize fitness during tumor evolution. Significance We report a mechanism whereby cancers balance the evolutionary advantages associated with CIN against the fitness costs caused by excessive genome instability, providing insight into the consequence of CDC27 APC/C subunit driver mutations in cancer. Lengthening of mitosis through APC/C modulation may be a common mechanism of resistance to cancer therapeutics that increase chromosome segregation errors. PMID:28069571

  6. A framework to quantify karyotype variation associated with CHO cell line instability at a single-cell level.

    PubMed

    Baik, Jong Youn; Lee, Kelvin H

    2017-05-01

    Chinese hamster ovary (CHO) cells, the major mammalian host cells for biomanufacturing of therapeutic proteins, have been extensively investigated to enhance productivity and product quality. However, cell line instability resulting in unexpected changes in productivity or product quality continues to be a challenge. Based on previous reports about causes and characteristics of production instability, we hypothesized that chromosomal rearrangements due to genomic instability are associated with production instability and that these events can be characterized. We developed a production instability model using secreted alkaline phosphatase (SEAP)-expressing CHO cells (CHO-SEAP) as well as a framework to quantify chromosomal rearrangements by karyotyping. In the absence of methotrexate (MTX), CHO-SEAP cells exhibited a slightly increased growth rate, a significantly decreased specific productivity, and changes in the chromosomal rearrangement ratio of seven chromosomes. In contrast, when MTX was re-introduced, the growth rate and SEAP productivity reversed to the initial values, demonstrating the reversibility of production instability in CHO-SEAP cells. Fluorescence in situ hybridization analysis identified that the SEAP genes were incorporated in the chromosomal rearrangement (insertion) part of the der(Z9) chromosome. Karyotype analysis indicated that the insertion ratio of the der(Z9) chromosome decreased in the CHO-SEAP cells grown without MTX, demonstrating a correlation between chromosomal rearrangement and production instability. Our results support a mechanism for production instability, wherein a randomly generated chromosomal rearrangement (or genotype) results in cells with a growth advantage that is also associated with non (or low)-producing traits. As a result, the non-producing cells grow faster and thereby outgrow the producing population. Biotechnol. Bioeng. 2017;114: 1045-1053. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Radiation-induced genomic instability: radiation quality and dose response

    NASA Technical Reports Server (NTRS)

    Smith, Leslie E.; Nagar, Shruti; Kim, Grace J.; Morgan, William F.

    2003-01-01

    Genomic instability is a term used to describe a phenomenon that results in the accumulation of multiple changes required to convert a stable genome of a normal cell to an unstable genome characteristic of a tumor. There has been considerable recent debate concerning the importance of genomic instability in human cancer and its temporal occurrence in the carcinogenic process. Radiation is capable of inducing genomic instability in mammalian cells and instability is thought to be the driving force responsible for radiation carcinogenesis. Genomic instability is characterized by a large collection of diverse endpoints that include large-scale chromosomal rearrangements and aberrations, amplification of genetic material, aneuploidy, micronucleus formation, microsatellite instability, and gene mutation. The capacity of radiation to induce genomic instability depends to a large extent on radiation quality or linear energy transfer (LET) and dose. There appears to be a low dose threshold effect with low LET, beyond which no additional genomic instability is induced. Low doses of both high and low LET radiation are capable of inducing this phenomenon. This report reviews data concerning dose rate effects of high and low LET radiation and their capacity to induce genomic instability assayed by chromosomal aberrations, delayed lethal mutations, micronuclei and apoptosis.

  8. Genome-wide profiles of CtBP link metabolism with genome stability and epithelial reprogramming in breast cancer.

    PubMed

    Di, Li-Jun; Byun, Jung S; Wong, Madeline M; Wakano, Clay; Taylor, Tara; Bilke, Sven; Baek, Songjoon; Hunter, Kent; Yang, Howard; Lee, Maxwell; Zvosec, Cecilia; Khramtsova, Galina; Cheng, Fan; Perou, Charles M; Miller, C Ryan; Raab, Rachel; Olopade, Olufunmilayo I; Gardner, Kevin

    2013-01-01

    The C-terminal binding protein (CtBP) is a NADH-dependent transcriptional repressor that links carbohydrate metabolism to epigenetic regulation by recruiting diverse histone-modifying complexes to chromatin. Here global profiling of CtBP in breast cancer cells reveals that it drives epithelial-to-mesenchymal transition, stem cell pathways and genome instability. CtBP expression induces mesenchymal and stem cell-like features, whereas CtBP depletion or caloric restriction reverses gene repression and increases DNA repair. Multiple members of the CtBP-targeted gene network are selectively downregulated in aggressive breast cancer subtypes. Differential expression of CtBP-targeted genes predicts poor clinical outcome in breast cancer patients, and elevated levels of CtBP in patient tumours predict shorter median survival. Finally, both CtBP promoter targeting and gene repression can be reversed by small molecule inhibition. These findings define broad roles for CtBP in breast cancer biology and suggest novel chromatin-based strategies for pharmacologic and metabolic intervention in cancer.

  9. Genomic instability in cancer: Teetering on the limit of tolerance

    PubMed Central

    Andor, Noemi; Maley, Carlo C.; Ji, Hanlee P.

    2017-01-01

    Cancer genomic instability contributes to the phenomenon of intratumoral genetic heterogeneity, provides the genetic diversity required for natural selection and enables the extensive phenotypic diversity that is frequently observed among patients. Genomic instability has previously been associated with poor prognosis. However, we have evidence that for solid tumors of epithelial origin, extreme levels of genomic instability, where more than 75% of the genome is subject to somatic copy number alterations, are associated with a potentially better prognosis compared to intermediate levels under this threshold. This has been observed in clonal subpopulations of larger size, especially when genomic instability is shared among a limited number of clones. We hypothesize that cancers with extreme levels of genomic instability may be teetering on the brink of a threshold where so much of their genome is adversely altered that cells rarely replicate successfully. Another possibility is that tumors with high levels of genomic instability are more immunogenic than other cancers with a less extensive burden of genetic aberrations. Regardless of the exact mechanism, but hinging on our ability to quantify how a tumor’s burden of genetic aberrations is distributed among coexisting clones – genomic instability has important therapeutic implications. Herein, we explore the possibility that a high genomic instability could be the basis for a tumor’s sensitivity to DNA damaging therapies. We primarily focus on studies of epithelial-derived solid tumors. PMID:28432052

  10. APC/C Dysfunction Limits Excessive Cancer Chromosomal Instability.

    PubMed

    Sansregret, Laurent; Patterson, James O; Dewhurst, Sally; López-García, Carlos; Koch, André; McGranahan, Nicholas; Chao, William Chong Hang; Barry, David J; Rowan, Andrew; Instrell, Rachael; Horswell, Stuart; Way, Michael; Howell, Michael; Singleton, Martin R; Medema, René H; Nurse, Paul; Petronczki, Mark; Swanton, Charles

    2017-02-01

    Intercellular heterogeneity, exacerbated by chromosomal instability (CIN), fosters tumor heterogeneity and drug resistance. However, extreme CIN correlates with improved cancer outcome, suggesting that karyotypic diversity required to adapt to selection pressures might be balanced in tumors against the risk of excessive instability. Here, we used a functional genomics screen, genome editing, and pharmacologic approaches to identify CIN-survival factors in diploid cells. We find partial anaphase-promoting complex/cyclosome (APC/C) dysfunction lengthens mitosis, suppresses pharmacologically induced chromosome segregation errors, and reduces naturally occurring lagging chromosomes in cancer cell lines or following tetraploidization. APC/C impairment caused adaptation to MPS1 inhibitors, revealing a likely resistance mechanism to therapies targeting the spindle assembly checkpoint. Finally, CRISPR-mediated introduction of cancer somatic mutations in the APC/C subunit cancer driver gene CDC27 reduces chromosome segregation errors, whereas reversal of an APC/C subunit nonsense mutation increases CIN. Subtle variations in mitotic duration, determined by APC/C activity, influence the extent of CIN, allowing cancer cells to dynamically optimize fitness during tumor evolution. We report a mechanism whereby cancers balance the evolutionary advantages associated with CIN against the fitness costs caused by excessive genome instability, providing insight into the consequence of CDC27 APC/C subunit driver mutations in cancer. Lengthening of mitosis through APC/C modulation may be a common mechanism of resistance to cancer therapeutics that increase chromosome segregation errors. Cancer Discov; 7(2); 218-33. ©2017 AACR.See related commentary by Burkard and Weaver, p. 134This article is highlighted in the In This Issue feature, p. 115. ©2017 American Association for Cancer Research.

  11. Inefficient differentiation response to cell cycle stress leads to genomic instability and malignant progression of squamous carcinoma cells

    PubMed Central

    Alonso-Lecue, Pilar; de Pedro, Isabel; Coulon, Vincent; Molinuevo, Rut; Lorz, Corina; Segrelles, Carmen; Ceballos, Laura; López-Aventín, Daniel; García-Valtuille, Ana; Bernal, José M; Mazorra, Francisco; Pujol, Ramón M; Paramio, Jesús; Ramón Sanz, J; Freije, Ana; Toll, Agustí; Gandarillas, Alberto

    2017-01-01

    Squamous cell carcinoma (SCC) or epidermoid cancer is a frequent and aggressive malignancy. However in apparent paradox it retains the squamous differentiation phenotype except for very dysplastic lesions. We have shown that cell cycle stress in normal epidermal keratinocytes triggers a squamous differentiation response involving irreversible mitosis block and polyploidisation. Here we show that cutaneous SCC cells conserve a partial squamous DNA damage-induced differentiation response that allows them to overcome the cell division block. The capacity to divide in spite of drug-induced mitotic stress and DNA damage made well-differentiated SCC cells more genomically instable and more malignant in vivo. Consistently, in a series of human biopsies, non-metastatic SCCs displayed a higher degree of chromosomal alterations and higher expression of the S phase regulator Cyclin E and the DNA damage signal γH2AX than the less aggressive, non-squamous, basal cell carcinomas. However, metastatic SCCs lost the γH2AX signal and Cyclin E, or accumulated cytoplasmic Cyclin E. Conversely, inhibition of endogenous Cyclin E in well-differentiated SCC cells interfered with the squamous phenotype. The results suggest a dual role of cell cycle stress-induced differentiation in squamous cancer: the resulting mitotic blocks would impose, when irreversible, a proliferative barrier, when reversible, a source of genomic instability, thus contributing to malignancy. PMID:28661481

  12. Genomic instability in human cancer: Molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition

    PubMed Central

    Ferguson, Lynnette R.; Chen, Helen; Collins, Andrew R.; Connell, Marisa; Damia, Giovanna; Dasgupta, Santanu; Malhotra, Meenakshi; Meeker, Alan K.; Amedei, Amedeo; Amin, Amr; Ashraf, S. Salman; Aquilano, Katia; Azmi, Asfar S.; Bhakta, Dipita; Bilsland, Alan; Boosani, Chandra S.; Chen, Sophie; Ciriolo, Maria Rosa; Fujii, Hiromasa; Guha, Gunjan; Halicka, Dorota; Helferich, William G.; Keith, W. Nicol; Mohammed, Sulma I.; Niccolai, Elena; Yang, Xujuan; Honoki, Kanya; Parslow, Virginia R.; Prakash, Satya; Rezazadeh, Sarallah; Shackelford, Rodney E.; Sidransky, David; Tran, Phuoc T.; Yang, Eddy S.; Maxwell, Christopher A.

    2015-01-01

    Genomic instability can initiate cancer, augment progression, and influence the overall prognosis of the affected patient. Genomic instability arises from many different pathways, such as telomere damage, centrosome amplification, epigenetic modifications, and DNA damage from endogenous and exogenous sources, and can be perpetuating, or limiting, through the induction of mutations or aneuploidy, both enabling and catastrophic. Many cancer treatments induce DNA damage to impair cell division on a global scale but it is accepted that personalized treatments, those that are tailored to the particular patient and type of cancer, must also be developed. In this review, we detail the mechanisms from which genomic instability arises and can lead to cancer, as well as treatments and measures that prevent genomic instability or take advantage of the cellular defects caused by genomic instability. In particular, we identify and discuss five priority targets against genomic instability: (1) prevention of DNA damage; (2) enhancement of DNA repair; (3) targeting deficient DNA repair; (4) impairing centrosome clustering; and, (5) inhibition of telomerase activity. Moreover, we highlight vitamin D and B, selenium, carotenoids, PARP inhibitors, resveratrol, and isothiocyanates as priority approaches against genomic instability. The prioritized target sites and approaches were cross validated to identify potential synergistic effects on a number of important areas of cancer biology. PMID:25869442

  13. Bacterial Genome Instability

    PubMed Central

    Darmon, Elise

    2014-01-01

    SUMMARY Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease. PMID:24600039

  14. Evaluation of Genomic Instability in the Abnormal Prostate

    DTIC Science & Technology

    2007-12-01

    Mehrotra, J., Varde, S., Wang, H., Chiu, H., Vargo, J., Gray , K., Nagle, R.B., Neri, J.R., Mazumder, A. (2007) Prostate 68, 152-60. Appendix A...GSTP-1 Reverse 5’-GCC CCA ATA CTA AAT CAC GAC G-3’ GSTP-1 Probe 5’-6-FAM-CGG TCG ACG TTC GGG GTG TAG CG-6-TAMSp-3’ RassF1A Forward 5’-GCG TTG AAG...GAA CCA AAA CGC TCC CCA T-3’ APC Reverse 5’-TTA TAT GTC GGT TAC GTG CGT TTA TAT-3’ APC Probe 5’-6-FAM-CCC GTC GAA AAC CCG CCG ATT A-6-TAMSp-3

  15. Genomic instability--an evolving hallmark of cancer.

    PubMed

    Negrini, Simona; Gorgoulis, Vassilis G; Halazonetis, Thanos D

    2010-03-01

    Genomic instability is a characteristic of most cancers. In hereditary cancers, genomic instability results from mutations in DNA repair genes and drives cancer development, as predicted by the mutator hypothesis. In sporadic (non-hereditary) cancers the molecular basis of genomic instability remains unclear, but recent high-throughput sequencing studies suggest that mutations in DNA repair genes are infrequent before therapy, arguing against the mutator hypothesis for these cancers. Instead, the mutation patterns of the tumour suppressor TP53 (which encodes p53), ataxia telangiectasia mutated (ATM) and cyclin-dependent kinase inhibitor 2A (CDKN2A; which encodes p16INK4A and p14ARF) support the oncogene-induced DNA replication stress model, which attributes genomic instability and TP53 and ATM mutations to oncogene-induced DNA damage.

  16. A Genome-Wide Survey of Genetic Instability by Transposition in Drosophila Hybrids

    PubMed Central

    Vela, Doris; Fontdevila, Antonio; Vieira, Cristina; García Guerreiro, María Pilar

    2014-01-01

    Hybridization between species is a genomic instability factor involved in increasing mutation rate and new chromosomal rearrangements. Evidence of a relationship between interspecific hybridization and transposable element mobilization has been reported in different organisms, but most studies are usually performed with particular TEs and do not discuss the real effect of hybridization on the whole genome. We have therefore studied whole genome instability of Drosophila interspecific hybrids, looking for the presence of new AFLP markers in hybrids. A high percentage (27–90%) of the instability markers detected corresponds to TEs belonging to classes I and II. Moreover, three transposable elements (Osvaldo, Helena and Galileo) representative of different families, showed an overall increase of transposition rate in hybrids compared to parental species. This research confirms the hypothesis that hybridization induces genomic instability by transposition bursts and suggests that genomic stress by transposition could contribute to a relaxation of mechanisms controlling TEs in the Drosophila genome. PMID:24586475

  17. Chromium and Genomic Stability

    PubMed Central

    Wise, Sandra S.; Wise, John Pierce

    2014-01-01

    Many metals serve as micronutrients which protect against genomic instability. Chromium is most abundant in its trivalent and hexavalent forms. Trivalent chromium has historically been considered an essential element, though recent data indicate that while it can have pharmacological effects and value, it is not essential. There are no data indicating that trivalent chromium promotes genomic stability and, instead may promote genomic instability. Hexavalent chromium is widely accepted as highly toxic and carcinogenic with no nutritional value. Recent data indicate that it causes genomic instability and also has no role in promoting genomic stability. PMID:22192535

  18. Causes of genome instability: the effect of low dose chemical exposures in modern society

    PubMed Central

    Langie, Sabine A.S.; Koppen, Gudrun; Desaulniers, Daniel; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Azqueta, Amaya; Bisson, William H.; Brown, Dustin; Brunborg, Gunnar; Charles, Amelia K.; Chen, Tao; Colacci, Annamaria; Darroudi, Firouz; Forte, Stefano; Gonzalez, Laetitia; Hamid, Roslida A.; Knudsen, Lisbeth E.; Leyns, Luc; Lopez de Cerain Salsamendi, Adela; Memeo, Lorenzo; Mondello, Chiara; Mothersill, Carmel; Olsen, Ann-Karin; Pavanello, Sofia; Raju, Jayadev; Rojas, Emilio; Roy, Rabindra; Ryan, Elizabeth; Ostrosky-Wegman, Patricia; Salem, Hosni K.; Scovassi, Ivana; Singh, Neetu; Vaccari, Monica; Van Schooten, Frederik J.; Valverde, Mahara; Woodrick, Jordan; Zhang, Luoping; van Larebeke, Nik; Kirsch-Volders, Micheline; Collins, Andrew R.

    2015-01-01

    Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome’s integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis. PMID:26106144

  19. Radiation-induced genomic instability and its implications for radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Huang, Lei; Snyder, Andrew R.; Morgan, William F.

    2003-01-01

    Radiation-induced genomic instability is characterized by an increased rate of genetic alterations including cytogenetic rearrangements, mutations, gene amplifications, transformation and cell death in the progeny of irradiated cells multiple generations after the initial insult. Chromosomal rearrangements are the best-characterized end point of radiation-induced genomic instability, and many of the rearrangements described are similar to those found in human cancers. Chromosome breakage syndromes are defined by chromosome instability, and individuals with these diseases are cancer prone. Consequently, chromosomal instability as a phenotype may underlie some fraction of those changes leading to cancer. Here we attempt to relate current knowledge regarding radiation-induced chromosome instability with the emerging molecular information on the chromosome breakage syndromes. The goal is to understand how genetic and epigenetic factors might influence the onset of chromosome instability and the role of chromosomal instability in carcinogenesis.

  20. Methyltransferases mediate cell memory of a genotoxic insult.

    PubMed

    Rugo, R E; Mutamba, J T; Mohan, K N; Yee, T; Chaillet, J R; Greenberger, J S; Engelward, B P

    2011-02-10

    Characterization of the direct effects of DNA-damaging agents shows how DNA lesions lead to specific mutations. Yet, serum from Hiroshima survivors, Chernobyl liquidators and radiotherapy patients can induce a clastogenic effect on naive cells, showing indirect induction of genomic instability that persists years after exposure. Such indirect effects are not restricted to ionizing radiation, as chemical genotoxins also induce heritable and transmissible genomic instability phenotypes. Although such indirect induction of genomic instability is well described, the underlying mechanism has remained enigmatic. Here, we show that mouse embryonic stem cells exposed to γ-radiation bear the effects of the insult for weeks. Specifically, conditioned media from the progeny of exposed cells can induce DNA damage and homologous recombination in naive cells. Notably, cells exposed to conditioned media also elicit a genome-destabilizing effect on their neighbouring cells, thus demonstrating transmission of genomic instability. Moreover, we show that the underlying basis for the memory of an insult is completely dependent on two of the major DNA cytosine methyltransferases, Dnmt1 and Dnmt3a. Targeted disruption of these genes in exposed cells completely eliminates transmission of genomic instability. Furthermore, transient inactivation of Dnmt1, using a tet-suppressible allele, clears the memory of the insult, thus protecting neighbouring cells from indirect induction of genomic instability. We have thus demonstrated that a single exposure can lead to long-term, genome-destabilizing effects that spread from cell to cell, and we provide a specific molecular mechanism for these persistent bystander effects. Collectively, our results impact the current understanding of risks from toxin exposures and suggest modes of intervention for suppressing genomic instability in people exposed to carcinogenic genotoxins.

  1. Causes of genome instability: the effect of low dose chemical exposures in modern society.

    PubMed

    Langie, Sabine A S; Koppen, Gudrun; Desaulniers, Daniel; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Azqueta, Amaya; Bisson, William H; Brown, Dustin G; Brunborg, Gunnar; Charles, Amelia K; Chen, Tao; Colacci, Annamaria; Darroudi, Firouz; Forte, Stefano; Gonzalez, Laetitia; Hamid, Roslida A; Knudsen, Lisbeth E; Leyns, Luc; Lopez de Cerain Salsamendi, Adela; Memeo, Lorenzo; Mondello, Chiara; Mothersill, Carmel; Olsen, Ann-Karin; Pavanello, Sofia; Raju, Jayadev; Rojas, Emilio; Roy, Rabindra; Ryan, Elizabeth P; Ostrosky-Wegman, Patricia; Salem, Hosni K; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Van Schooten, Frederik J; Valverde, Mahara; Woodrick, Jordan; Zhang, Luoping; van Larebeke, Nik; Kirsch-Volders, Micheline; Collins, Andrew R

    2015-06-01

    Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. SPOP mutation leads to genomic instability in prostate cancer

    PubMed Central

    Boysen, Gunther; Barbieri, Christopher E; Prandi, Davide; Blattner, Mirjam; Chae, Sung-Suk; Dahija, Arun; Nataraj, Srilakshmi; Huang, Dennis; Marotz, Clarisse; Xu, Limei; Huang, Julie; Lecca, Paola; Chhangawala, Sagar; Liu, Deli; Zhou, Pengbo; Sboner, Andrea; de Bono, Johann S

    2015-01-01

    Genomic instability is a fundamental feature of human cancer often resulting from impaired genome maintenance. In prostate cancer, structural genomic rearrangements are a common mechanism driving tumorigenesis. However, somatic alterations predisposing to chromosomal rearrangements in prostate cancer remain largely undefined. Here, we show that SPOP, the most commonly mutated gene in primary prostate cancer modulates DNA double strand break (DSB) repair, and that SPOP mutation is associated with genomic instability. In vivo, SPOP mutation results in a transcriptional response consistent with BRCA1 inactivation resulting in impaired homology-directed repair (HDR) of DSB. Furthermore, we found that SPOP mutation sensitizes to DNA damaging therapeutic agents such as PARP inhibitors. These results implicate SPOP as a novel participant in DSB repair, suggest that SPOP mutation drives prostate tumorigenesis in part through genomic instability, and indicate that mutant SPOP may increase response to DNA-damaging therapeutics. DOI: http://dx.doi.org/10.7554/eLife.09207.001 PMID:26374986

  3. UV-C–Irradiated Arabidopsis and Tobacco Emit Volatiles That Trigger Genomic Instability in Neighboring Plants[W

    PubMed Central

    Yao, Youli; Danna, Cristian H.; Zemp, Franz J.; Titov, Viktor; Ciftci, Ozan Nazim; Przybylski, Roman; Ausubel, Frederick M.; Kovalchuk, Igor

    2011-01-01

    We have previously shown that local exposure of plants to stress results in a systemic increase in genome instability. Here, we show that UV-C–irradiated plants produce a volatile signal that triggers an increase in genome instability in neighboring nonirradiated Arabidopsis thaliana plants. This volatile signal is interspecific, as UV-C–irradiated Arabidopsis plants transmit genome destabilization to naive tobacco (Nicotiana tabacum) plants and vice versa. We report that plants exposed to the volatile hormones methyl salicylate (MeSA) or methyl jasmonate (MeJA) exhibit a similar level of genome destabilization as UV-C–irradiated plants. We also found that irradiated Arabidopsis plants produce MeSA and MeJA. The analysis of mutants impaired in the synthesis and/or response to salicylic acid (SA) and/or jasmonic acid showed that at least one other volatile compound besides MeSA and MeJA can communicate interplant genome instability. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (npr1) mutant, defective in SA signaling, is impaired in both the production and the perception of the volatile signals, demonstrating a key role for NPR1 as a central regulator of genome stability. Finally, various forms of stress resulting in the formation of necrotic lesions also generate a volatile signal that leads to genomic instability. PMID:22028460

  4. Role of genetic background in induced instability

    NASA Technical Reports Server (NTRS)

    Kadhim, Munira A.; Nelson, G. A. (Principal Investigator)

    2003-01-01

    Genomic instability is effectively induced by ionizing radiation. Recently, evidence has accumulated supporting a relationship between genetic background and the radiation-induced genomic instability phenotype. This is possibly due to alterations in proteins responsible for maintenance of genomic integrity or altered oxidative metabolism. Studies in human cell lines, human primary cells, and mouse models have been performed predominantly using high linear energy transfer (LET) radiation, or high doses of low LET radiation. The interplay between genetics, radiation response, and genomic instability has not been fully determined at low doses of low LET radiation. However, recent studies using low doses of low LET radiation suggest that the relationship between genetic background and radiation-induced genomic instability may be more complicated than these same relationships at high LET or high doses of low LET radiation. The complexity of this relationship at low doses of low LET radiation suggests that more of the population may be at risk than previously recognized and may have implications for radiation risk assessment.

  5. Molecular evolution of colorectal cancer: from multistep carcinogenesis to the big bang.

    PubMed

    Amaro, Adriana; Chiara, Silvana; Pfeffer, Ulrich

    2016-03-01

    Colorectal cancer is characterized by exquisite genomic instability either in the form of microsatellite instability or chromosomal instability. Microsatellite instability is the result of mutation of mismatch repair genes or their silencing through promoter methylation as a consequence of the CpG island methylator phenotype. The molecular causes of chromosomal instability are less well characterized. Genomic instability and field cancerization lead to a high degree of intratumoral heterogeneity and determine the formation of cancer stem cells and epithelial-mesenchymal transition mediated by the TGF-β and APC pathways. Recent analyses using integrated genomics reveal different phases of colorectal cancer evolution. An initial phase of genomic instability that yields many clones with different mutations (big bang) is followed by an important, previously not detected phase of cancer evolution that consists in the stabilization of several clones and a relatively flat outgrowth. The big bang model can best explain the coexistence of several stable clones and is compatible with the fact that the analysis of the bulk of the primary tumor yields prognostic information.

  6. Enhanced homologous recombination is induced by alpha-particle radiation in somatic cells of Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Bian, Po; Liu, Ping; Wu, Yuejin

    Almost 9 percent of cosmic rays which strike the earth's atmosphere are alpha particles. As one of the ionizing radiations (IR), its biological effects have been widely studied. However, the plant genomic instability induced by alpha-particle radiation was not largely known. In this research, the Arabidopsis thaliana transgenic for GUS recombination substrate was used to evaluate the genomic instability induced by alpha-particle radiation (3.3MeV). The pronounced effects of systemic exposure to alpha-particle radiation on the somatic homologous recombination frequency (HRF) were found at different doses. The 10Gy dose of radiation induced the maximal HRF which was 1.9-fold higher than the control. The local radiation of alpha-particle (10Gy) on root also resulted in a 2.5-fold increase of somatic HRF in non-radiated aerial plant, indicating that the signal(s) of genomic instability was transferred to non-radiated parts and initiated their genomic instability. Concurrent treatment of seedlings of Arabidopsis thaliana with alpha-particle and DMSO(ROS scavenger) both in systemic and local radiation signifi- cantly suppressed the somatic HR, indicating that the free radicals produced by alpha-particle radiation took part in the production of signal of genomic instability rather than the signal transfer. Key words: alpha-particle radiation, somatic homologous recombination, genomic instability

  7. Genome instabilities arising from ribonucleotides in DNA.

    PubMed

    Klein, Hannah L

    2017-08-01

    Genomic DNA is transiently contaminated with ribonucleotide residues during the process of DNA replication through misincorporation by the replicative DNA polymerases α, δ and ε, and by the normal replication process on the lagging strand, which uses RNA primers. These ribonucleotides are efficiently removed during replication by RNase H enzymes and the lagging strand synthesis machinery. However, when ribonucleotides remain in DNA they can distort the DNA helix, affect machineries for DNA replication, transcription and repair, and can stimulate genomic instabilities which are manifest as increased mutation, recombination and chromosome alterations. The genomic instabilities associated with embedded ribonucleotides are considered here, along with a discussion of the origin of the lesions that stimulate particular classes of instabilities. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Mycobacterium tuberculosis promotes genomic instability in macrophages.

    PubMed

    Castro-Garza, Jorge; Luévano-Martínez, Miriam Lorena; Villarreal-Treviño, Licet; Gosálvez, Jaime; Fernández, José Luis; Dávila-Rodríguez, Martha Imelda; García-Vielma, Catalina; González-Hernández, Silvia; Cortés-Gutiérrez, Elva Irene

    2018-03-01

    Mycobacterium tuberculosis is an intracellular pathogen, which may either block cellular defensive mechanisms and survive inside the host cell or induce cell death. Several studies are still exploring the mechanisms involved in these processes. To evaluate the genomic instability of M. tuberculosis-infected macrophages and compare it with that of uninfected macrophages. We analysed the possible variations in the genomic instability of Mycobacterium-infected macrophages using the DNA breakage detection fluorescence in situ hybridisation (DBD-FISH) technique with a whole human genome DNA probe. Quantitative image analyses showed a significant increase in DNA damage in infected macrophages as compared with uninfected cells. DNA breaks were localised in nuclear membrane blebs, as confirmed with DNA fragmentation assay. Furthermore, a significant increase in micronuclei and nuclear abnormalities were observed in infected macrophages versus uninfected cells. Genomic instability occurs during mycobacterial infection and these data may be seminal for future research on host cell DNA damage in M. tuberculosis infection.

  9. Pathways and Mechanisms that Prevent Genome Instability in Saccharomyces cerevisiae

    PubMed Central

    Putnam, Christopher D.; Kolodner, Richard D.

    2017-01-01

    Genome rearrangements result in mutations that underlie many human diseases, and ongoing genome instability likely contributes to the development of many cancers. The tools for studying genome instability in mammalian cells are limited, whereas model organisms such as Saccharomyces cerevisiae are more amenable to these studies. Here, we discuss the many genetic assays developed to measure the rate of occurrence of Gross Chromosomal Rearrangements (called GCRs) in S. cerevisiae. These genetic assays have been used to identify many types of GCRs, including translocations, interstitial deletions, and broken chromosomes healed by de novo telomere addition, and have identified genes that act in the suppression and formation of GCRs. Insights from these studies have contributed to the understanding of pathways and mechanisms that suppress genome instability and how these pathways cooperate with each other. Integrated models for the formation and suppression of GCRs are discussed. PMID:28684602

  10. Evaluation of Genomic Instability in the Abnormal Prostate

    DTIC Science & Technology

    2008-12-01

    Research 63, 4781-5. (24) Mehrotra, J., Varde, S., Wang, H., Chiu, H., Vargo, J., Gray , K., Nagle, R.B., Neri, J.R., Mazumder, A. (2007) Quantitative...examined. B-actin was used as the internal control (not shown). Figure 6 Figure 6. Telomere Content of samples by tissue source. The gray ...TTC GGG GTG TAG CG-6-TAMSp-3’ RassF1A Forward 5’-GCG TTG AAG TCG GGG TTC-3’ RassF1A Reverse 5’-CCC GTA CTT CGC TAA CTT TAA ACG-3’ RassF1A Probe 5

  11. Methods to Monitor DNA Repair Defects and Genomic Instability in the Context of a Disrupted Nuclear Lamina.

    PubMed

    Gonzalo, Susana; Kreienkamp, Ray

    2016-01-01

    The organization of the genome within the nuclear space is viewed as an additional level of regulation of genome function, as well as a means to ensure genome integrity. Structural proteins associated with the nuclear envelope, in particular lamins (A- and B-type) and lamin-associated proteins, play an important role in genome organization. Interestingly, there is a whole body of evidence that links disruptions of the nuclear lamina with DNA repair defects and genomic instability. Here, we describe a few standard techniques that have been successfully utilized to identify mechanisms behind DNA repair defects and genomic instability in cells with an altered nuclear lamina. In particular, we describe protocols to monitor changes in the expression of DNA repair factors (Western blot) and their recruitment to sites of DNA damage (immunofluorescence); kinetics of DNA double-strand break repair after ionizing radiation (neutral comet assays); frequency of chromosomal aberrations (FISH, fluorescence in situ hybridization); and alterations in telomere homeostasis (Quantitative-FISH). These techniques have allowed us to shed some light onto molecular mechanisms by which alterations in A-type lamins induce genomic instability, which could contribute to the pathophysiology of aging and aging-related diseases.

  12. Genome instability in Novel Lolium multiflorum x L. arundinaceum hybrids

    USDA-ARS?s Scientific Manuscript database

    We have identified a method whereby Lolium multiflorum (Lm) or L. arundinaceum (Fa) genomes are preferentially eliminated through a mitotic loss behavior in interspecific Lm x Fa F1 hybrids,generating either dihaploid Lm lines or Fa lines. The genome instability has been visualized phenotypically an...

  13. Navigating yeast genome maintenance with functional genomics.

    PubMed

    Measday, Vivien; Stirling, Peter C

    2016-03-01

    Maintenance of genome integrity is a fundamental requirement of all organisms. To address this, organisms have evolved extremely faithful modes of replication, DNA repair and chromosome segregation to combat the deleterious effects of an unstable genome. Nonetheless, a small amount of genome instability is the driver of evolutionary change and adaptation, and thus a low level of instability is permitted in populations. While defects in genome maintenance almost invariably reduce fitness in the short term, they can create an environment where beneficial mutations are more likely to occur. The importance of this fact is clearest in the development of human cancer, where genome instability is a well-established enabling characteristic of carcinogenesis. This raises the crucial question: what are the cellular pathways that promote genome maintenance and what are their mechanisms? Work in model organisms, in particular the yeast Saccharomyces cerevisiae, has provided the global foundations of genome maintenance mechanisms in eukaryotes. The development of pioneering genomic tools inS. cerevisiae, such as the systematic creation of mutants in all nonessential and essential genes, has enabled whole-genome approaches to identifying genes with roles in genome maintenance. Here, we review the extensive whole-genome approaches taken in yeast, with an emphasis on functional genomic screens, to understand the genetic basis of genome instability, highlighting a range of genetic and cytological screening modalities. By revealing the biological pathways and processes regulating genome integrity, these analyses contribute to the systems-level map of the yeast cell and inform studies of human disease, especially cancer. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Opposite Roles for p38MAPK-Driven Responses and Reactive Oxygen Species in the Persistence and Resolution of Radiation-Induced Genomic Instability

    PubMed Central

    Werner, Erica; Wang, Huichen; Doetsch, Paul W.

    2014-01-01

    We report the functional and temporal relationship between cellular phenotypes such as oxidative stress, p38MAPK-dependent responses and genomic instability persisting in the progeny of cells exposed to sparsely ionizing low-Linear Energy Transfer (LET) radiation such as X-rays or high-charge and high-energy (HZE) particle high-LET radiation such as 56Fe ions. We found that exposure to low and high-LET radiation increased reactive oxygen species (ROS) levels as a threshold-like response induced independently of radiation quality and dose. This response was sustained for two weeks, which is the period of time when genomic instability is evidenced by increased micronucleus formation frequency and DNA damage associated foci. Indicators for another persisting response sharing phenotypes with stress-induced senescence, including beta galactosidase induction, increased nuclear size, p38MAPK activation and IL-8 production, were induced in the absence of cell proliferation arrest during the first, but not the second week following exposure to high-LET radiation. This response was driven by a p38MAPK-dependent mechanism and was affected by radiation quality and dose. This stress response and elevation of ROS affected genomic instability by distinct pathways. Through interference with p38MAPK activity, we show that radiation-induced stress phenotypes promote genomic instability. In contrast, exposure to physiologically relevant doses of hydrogen peroxide or increasing endogenous ROS levels with a catalase inhibitor reduced the level of genomic instability. Our results implicate persistently elevated ROS following exposure to radiation as a factor contributing to genome stabilization. PMID:25271419

  15. Genomic instability in human lymphoid cells exposed to 1 GeV/amu Fe ions

    NASA Technical Reports Server (NTRS)

    Grosovsky, A.; Bethel, H.; Parks, K.; Ritter, L.; Giver, C.; Gauny, S.; Wiese, C.; Kronenberg, A.

    2001-01-01

    The goal of this study was to assess whether charged particle radiations of importance to spaceflight elicit genomic instability in human TK6 lymphoblasts. The incidence of genomic instability in TK6 cells was assessed 21 days after exposure to 2, 4, or 6 Fe ions (1 GeV/amu, LET= 146 keV/micrometers). Three indices of instability were used: intraclonal karyotypic heterogeneity, mutation rate analysis at the thymidine kinase (TK1) locus, and re-cloning efficiency. Fifteen of sixty clones demonstrated karyotypic heterogeneity. Five clones had multiple indicators of karyotypic change. One clone was markedly hypomutable and polyploid. Six clones were hypomutable, while 21 clones were mutators. Of these, seven were karyotypically unstable. Six clones had low re-cloning efficiencies, one of which was a mutator. All had normal karyotypes. In summary, many clones that survived exposure to a low fluence of Fe ions manifested one or more forms of genomic instability that may hasten the development of neoplasia through deletion or by recombination.

  16. Genomic instability in human lymphoid cells exposed to 1 GeV/amu Fe ions.

    PubMed

    Grosovsky, A; Bethel, H; Parks, K; Ritter, L; Giver, C; Gauny, S; Wiese, C; Kronenberg, A

    2001-01-01

    The goal of this study was to assess whether charged particle radiations of importance to spaceflight elicit genomic instability in human TK6 lymphoblasts. The incidence of genomic instability in TK6 cells was assessed ~21 days after exposure to 2, 4, or 6 Fe ions (1 GeV/amu, LET= 146 keV/micrometers). Three indices of instability were used: intraclonal karyotypic heterogeneity, mutation rate analysis at the thymidine kinase (TK1) locus, and re-cloning efficiency. Fifteen of sixty clones demonstrated karyotypic heterogeneity. Five clones had multiple indicators of karyotypic change. One clone was markedly hypomutable and polyploid. Six clones were hypomutable, while 21 clones were mutators. Of these, seven were karyotypically unstable. Six clones had low re-cloning efficiencies, one of which was a mutator. All had normal karyotypes. In summary, many clones that survived exposure to a low fluence of Fe ions manifested one or more forms of genomic instability that may hasten the development of neoplasia through deletion or by recombination.

  17. aCGH Local Copy Number Aberrations Associated with Overall Copy Number Genomic Instability in Colorectal Cancer: Coordinate Involvement of the Regions Including BCR and ABL

    PubMed Central

    Bartos, Jeremy D.; Gaile, Daniel P.; McQuaid, Devin E.; Conroy, Jeffrey M.; Darbary, Huferesh; Nowak, Norma J.; Block, Annemarie; Petrelli, Nicholas J.; Mittelman, Arnold; Stoler, Daniel L.; Anderson, Garth R.

    2007-01-01

    In order to identify small regions of the genome whose specific copy number alteration is associated with high genomic instability in the form of overall genome-wide copy number aberrations, we have analyzed array-based comparative genomic hybridization (aCGH) data from 33 sporadic colorectal carcinomas. Copy number changes of a small number of specific regions were significantly correlated with elevated overall amplifications and deletions scattered throughout the entire genome. One significant region at 9q34 includes the c-ABL gene Another region spanning 22q11–13 includes the breakpoint cluster region (BCR) of the Philadelphia chromosome Coordinate 22q11–13 alterations were observed in nine of eleven tumors with the 9q34 alteration Additional regions on 1q and 14q were associated with overall genome-wide copy number changes, while copy number aberrations on chromosome 7p, 7q, and 13q21.1–31.3 were found associated with this instability only in tumors from patients with a smoking history Our analysis demonstrates there are a small number of regions of the genome where gain or loss is commonly associated with a tumor’s overall level of copy number aberrations Our finding BCR and ABL located within two of the instability-associated regions, and the involvement of these two regions occurring coordinately, suggests a system akin to the BCR-ABL translocation of CML may be involved in genomic instability in about one-third of human colorectal carcinomas. PMID:17196995

  18. Genome instability: Linking ageing and brain degeneration.

    PubMed

    Barzilai, Ari; Schumacher, Björn; Shiloh, Yosef

    2017-01-01

    Ageing is a multifactorial process affected by cumulative physiological changes resulting from stochastic processes combined with genetic factors, which together alter metabolic homeostasis. Genetic variation in maintenance of genome stability is emerging as an important determinant of ageing pace. Genome instability is also closely associated with a broad spectrum of conditions involving brain degeneration. Similarities and differences can be found between ageing-associated decline of brain functionality and the detrimental effect of genome instability on brain functionality and development. This review discusses these similarities and differences and highlights cell classes whose role in these processes might have been underestimated-glia and microglia. Copyright © 2016. Published by Elsevier B.V.

  19. Glutathione S-transferase gene polymorphisms in celiac disease and their correlation with genomic instability phenotype.

    PubMed

    Fundia, Ariela F; Weich, Natalia; Crivelli, Adriana; La Motta, Graciela; Larripa, Irene B; Slavutsky, Irma

    2014-06-01

    Genomic instability and reduced glutathione S-transferase (GST) activity have been identified as potential risk factors for malignant complications in celiac disease (CD). In this study, we assessed the possible influence of GST polymorphisms on genome instability phenotypes in a genetically characterised group of celiac patients from previous studies. The deletion polymorphisms in GSTM1 and GSTT1 genes and the single-nucleotide polymorphism GSTP1 c.313A>G were genotyped using PCR in a set of 20 untreated adult patients with a known genomic instability phenotype and 69 age- and sex-matched healthy individuals. The frequencies of variant genotypes in patients were GSTM1-null (30%), GSTT1-null (5%), GSTP1-AG (60%) and GSTP1-GG (15%), and they showed no differences from controls. No significant differences were found in the genotype distribution based on telomere length. Cases with GSTM1-null genotype (83%) and microsatellite stability were more frequent than those with genomic instability. Moreover, carriers of GSTP1-variant genotype (73%) and stable phenotype were significantly increased compared to unstable patients (27%) (P=0.031). No differences were found according to the clinical-pathological characteristics of celiac cases. No association between GST polymorphic variants and celiac-associated genomic instability was proven in our cohort. Future studies should explore the usefulness of other biomarkers to distinguish celiac patients who are susceptible to cancer development. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability.

    PubMed

    Galanos, Panagiotis; Pappas, George; Polyzos, Alexander; Kotsinas, Athanassios; Svolaki, Ioanna; Giakoumakis, Nickolaos N; Glytsou, Christina; Pateras, Ioannis S; Swain, Umakanta; Souliotis, Vassilis L; Georgakilas, Alexandros G; Geacintov, Nicholas; Scorrano, Luca; Lukas, Claudia; Lukas, Jiri; Livneh, Zvi; Lygerou, Zoi; Chowdhury, Dipanjan; Sørensen, Claus Storgaard; Bartek, Jiri; Gorgoulis, Vassilis G

    2018-03-16

    Genomic instability promotes evolution and heterogeneity of tumors. Unraveling its mechanistic basis is essential for the design of appropriate therapeutic strategies. In a previous study, we reported an unexpected oncogenic property of p21 WAF1/Cip1 , showing that its chronic expression in a p53-deficient environment causes genomic instability by deregulation of the replication licensing machinery. We now demonstrate that p21 WAF1/Cip1 can further fuel genomic instability by suppressing the repair capacity of low- and high-fidelity pathways that deal with nucleotide abnormalities. Consequently, fewer single nucleotide substitutions (SNSs) occur, while formation of highly deleterious DNA double-strand breaks (DSBs) is enhanced, crafting a characteristic mutational signature landscape. Guided by the mutational signatures formed, we find that the DSBs are repaired by Rad52-dependent break-induced replication (BIR) and single-strand annealing (SSA) repair pathways. Conversely, the error-free synthesis-dependent strand annealing (SDSA) repair route is deficient. Surprisingly, Rad52 is activated transcriptionally in an E2F1-dependent manner, rather than post-translationally as is common for DNA repair factor activation. Our results signify the importance of mutational signatures as guides to disclose the repair history leading to genomic instability. We unveil how chronic p21 WAF1/Cip1 expression rewires the repair process and identifies Rad52 as a source of genomic instability and a candidate therapeutic target.

  1. Association between genomic instability and evolutionary chromosomal rearrangements in Neotropical Primates.

    PubMed

    Puntieri, Fiona; Andrioli, Nancy B; Nieves, Mariela

    2018-06-14

    During the last decades the mammalian genome has been proposed to have regions prone to breakage and reorganization concentrated in certain chromosomal bands that seem to correspond to evolutionary breakpoints. These bands are likely to be involved in chromosome fragility or instability. In Primates, some biomarkers of genetic damage may be associated with various degrees of genomic instability. Here, we investigated the usefulness of Sister Chromatid Exchange (SCE) as a biomarker of potential sites of frequent chromosome breakage and rearrangement in Alouatta caraya, Ateles chamek, Ateles paniscus and Cebus cay. These Neotropical species have particular genomic and chromosomal features allowing the analysis of genomic instability for comparative purposes. We determined the frequency of spontaneous induction of SCEs and assessed the relationship between these and structural rearrangements implicated in the evolution of the primates of interest. Overall, A. caraya and C. cay presented a low proportion of statistically significant unstable bands, suggesting fairly stable genomes and the existence of some kind of protection against endogenous damage. In contrast, Ateles showed a highly significant proportion of unstable bands; these were mainly found in the rearranged regions, which is consistent with the numerous genomic reorganizations that might have occurred during the evolution of this genus.

  2. ZSCAN10 expression corrects the genomic instability of iPSCs from aged donors.

    PubMed

    Skamagki, Maria; Correia, Cristina; Yeung, Percy; Baslan, Timour; Beck, Samuel; Zhang, Cheng; Ross, Christian A; Dang, Lam; Liu, Zhong; Giunta, Simona; Chang, Tzu-Pei; Wang, Joye; Ananthanarayanan, Aparna; Bohndorf, Martina; Bosbach, Benedikt; Adjaye, James; Funabiki, Hironori; Kim, Jonghwan; Lowe, Scott; Collins, James J; Lu, Chi-Wei; Li, Hu; Zhao, Rui; Kim, Kitai

    2017-09-01

    Induced pluripotent stem cells (iPSCs), which are used to produce transplantable tissues, may particularly benefit older patients, who are more likely to suffer from degenerative diseases. However, iPSCs generated from aged donors (A-iPSCs) exhibit higher genomic instability, defects in apoptosis and a blunted DNA damage response compared with iPSCs generated from younger donors. We demonstrated that A-iPSCs exhibit excessive glutathione-mediated reactive oxygen species (ROS) scavenging activity, which blocks the DNA damage response and apoptosis and permits survival of cells with genomic instability. We found that the pluripotency factor ZSCAN10 is poorly expressed in A-iPSCs and addition of ZSCAN10 to the four Yamanaka factors (OCT4, SOX2, KLF4 and c-MYC) during A-iPSC reprogramming normalizes ROS-glutathione homeostasis and the DNA damage response, and recovers genomic stability. Correcting the genomic instability of A-iPSCs will ultimately enhance our ability to produce histocompatible functional tissues from older patients' own cells that are safe for transplantation.

  3. [Induced germ line genomic instability at mini- and micro-satellites in animals].

    PubMed

    Bezlepkin, V G; Gaziev, A I

    2001-01-01

    The recent data on the phenomenon of the induced germline genomic instability at mini- and microsatellites in animals were considered. Natural hypervariability of the minisatellites and microsatellites and their abundance in eukaryotic genome provide it's utility as the useful genetic markers for evaluation of the germline mutation frequency induced by treatment with different type of genotoxic factors at the low doses. High sensitivity of assays and possibility for direct determinations of the mutations, without the necessity to use extrapolation, are ensured. Some discussion is presented on the role of non-targeted mechanisms for the radiation-prone DNA lesions in the induction of germline genomic instability and also on the involving in this process the recombination events upon meiosis or during the early development stages of embryos. It is proposed that quantitative determination of germline genomic instability rate may be used as an acceptable variant for the genetic risk assessment and as indicator of increased probability for cancer and other pathologies at the offspring born to irradiated parents.

  4. Mycobacterium tuberculosis promotes genomic instability in macrophages

    PubMed Central

    Castro-Garza, Jorge; Luévano-Martínez, Miriam Lorena; Villarreal-Treviño, Licet; Gosálvez, Jaime; Fernández, José Luis; Dávila-Rodríguez, Martha Imelda; García-Vielma, Catalina; González-Hernández, Silvia; Cortés-Gutiérrez, Elva Irene

    2018-01-01

    BACKGROUND Mycobacterium tuberculosis is an intracellular pathogen, which may either block cellular defensive mechanisms and survive inside the host cell or induce cell death. Several studies are still exploring the mechanisms involved in these processes. OBJECTIVES To evaluate the genomic instability of M. tuberculosis-infected macrophages and compare it with that of uninfected macrophages. METHODS We analysed the possible variations in the genomic instability of Mycobacterium-infected macrophages using the DNA breakage detection fluorescence in situ hybridisation (DBD-FISH) technique with a whole human genome DNA probe. FINDINGS Quantitative image analyses showed a significant increase in DNA damage in infected macrophages as compared with uninfected cells. DNA breaks were localised in nuclear membrane blebs, as confirmed with DNA fragmentation assay. Furthermore, a significant increase in micronuclei and nuclear abnormalities were observed in infected macrophages versus uninfected cells. MAIN CONCLUSIONS Genomic instability occurs during mycobacterial infection and these data may be seminal for future research on host cell DNA damage in M. tuberculosis infection. PMID:29412354

  5. Genomic instability and bystander effects: a paradigm shift in radiation biology?

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2002-01-01

    A basic paradigm in radiobiology is that, following exposure to ionizing radiation, the deposition of energy in the cell nucleus and the resulting damage to DNA, the principal target, are responsible for the radiation's deleterious biological effects. Findings in two rapidly expanding fields of research--radiation-induced genomic instability and bystander effects--have caused us to reevaluate these central tenets. In this article, the potential influence of induced genomic instability and bystander effects on cellular injury after exposure to low-level radiation will be reviewed.

  6. Rb1 haploinsufficiency promotes telomere attrition and radiation-induced genomic instability.

    PubMed

    Gonzalez-Vasconcellos, Iria; Anastasov, Natasa; Sanli-Bonazzi, Bahar; Klymenko, Olena; Atkinson, Michael J; Rosemann, Michael

    2013-07-15

    Germline mutations of the retinoblastoma gene (RB1) predispose to both sporadic and radiation-induced osteosarcoma, tumors characterized by high levels of genomic instability, and activation of alternative lengthening of telomeres. Mice with haploinsufficiency of the Rb1 gene in the osteoblastic lineage reiterate the radiation susceptibility to osteosarcoma seen in patients with germline RB1 mutations. We show that the susceptibility is accompanied by an increase in genomic instability, resulting from Rb1-dependent telomere erosion. Radiation exposure did not accelerate the rate of telomere loss but amplified the genomic instability resulting from the dysfunctional telomeres. These findings suggest that telomere maintenance is a noncanonical caretaker function of the retinoblastoma protein, such that its deficiency in cancer may potentiate DNA damage-induced carcinogenesis by promoting formation of chromosomal aberrations, rather than simply by affecting cell-cycle control. ©2013 AACR.

  7. Correlation of mutations and recombination with growth kinetics of poliovirus vaccine strains.

    PubMed

    Pliaka, V; Kyriakopoulou, Z; Tsakogiannis, D; Ruether, I G A; Gartzonika, C; Levidiotou-Stefanou, S; Krikelis, A; Markoulatos, P

    2010-12-01

    Attenuated strains of Sabin poliovirus vaccine replicate in the human gut and, in rare cases, may cause vaccine-associated paralytic poliomyelitis (VAPP). The genetic instability of Sabin strains constitutes one of the main causes of VAPP, a disease that is most frequently associated with type 3 and type 2 Sabin strains, and more rarely with type 1 Sabin strains. In the present study, the growth phenotype of eight oral poliovirus vaccine (OPV) isolates (two non-recombinants and six recombinants), as well as of Sabin vaccine strains, was evaluated using two different assays, the reproductive capacity at different temperatures (Rct) test and the one-step growth curve test in Hep-2 cells at two different temperatures (37°C and 40°C). The growth phenotype of isolates was correlated with genomic modifications in order to identify the determinants and mechanisms of reversion towards neurovirulence. All of the recombinant OPV isolates showed a thermoresistant phenotype in the Rct test. Moreover, both recombinant Sabin-3 isolates showed significantly higher viral yield than Sabin 3 vaccine strain at 37°C and 40°C in the one-step growth curve test. All of the OPV isolates displayed mutations at specific sites of the viral genome, which are associated with the attenuated and temperature-sensitive phenotype of Sabin strains. The results showed that both mutations and recombination events could affect the phenotype traits of Sabin derivatives and may lead to the reversion of vaccinal strains to neurovirulent ones. The use of phenotypic markers along with the genomic analysis may shed additional light on the molecular determinants of the reversed neurovirulent phenotype of Sabin derivatives.

  8. DNA damage in cells exhibiting radiation-induced genomic instability

    DOE PAGES

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesismore » that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.« less

  9. Reversible beam heater for suppression of microbunching instability by transverse gradient undulators

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Qin, Weilun; Wang, Dong; Huang, Zhirong

    2017-08-01

    The microbunching instability driven by beam collective effects in a linear accelerator of a free-electron laser (FEL) facility significantly degrades the electron beam quality and FEL performance. A conventional method to suppress this instability is to introduce an additional uncorrelated energy spread by laser-electron interaction, which has been successfully operated in the Linac Coherent Light Source and Fermi@Elettra, etc. Some other ideas are recently proposed to suppress the instability without increasing energy spread, which could benefit the seeded FEL schemes. In this paper, we propose a reversible electron beam heater using two transverse gradient undulators to suppress the microbunching instability. This scheme introduces both an energy spread increase and a transverse-to-longitudinal phase space coupling, which suppress the microbunching instabilities driven by both longitudinal space charge and coherent synchrotron radiation before and within the system. Finally the induced energy spread increase and emittance growth are reversed. Theoretical analysis and numerical simulations are presented to verify the feasibility of the scheme and indicate the capability to improve the seeded FEL radiation performance.

  10. [Radiation-induced genomic instability: phenomenon, molecular mechanisms, pathogenetic significance].

    PubMed

    Mazurik, V K; Mikhaĭlov, V F

    2001-01-01

    The recent data on the radiation-induced genome instability as a special state of progeny of cells irradiated in vitro as well as after a whole body exposure to ionizing radiation, that make these cells considerably different from normal, unirradiated cells, were considered. This state presents a number of cytogenetical, molecular-biological, cytological and biochemical manifestations untypical for normal cells. The state is controlled by the mechanisms of regulation of checkpoints of cell cycle, and apoptosis, that is under gene p53 control. The proof has been found that this state transfers from irradiated maternal cells to their surviving progeny by the epigenetical mechanisms and would exist until the cells restore the original state of response on the DNA damage. From the point of view of the genome instability conception, that considers the chromatine rearrangement as the adaptive-evolution mechanism of adaptation of the species to changeable environmental conditions, the radiation-induced genome instability may be considered as transition of irradiated progeny to the state of read these to adaptation changes with two alternative pathways. The first leads to adaptation to enviromental conditions and restoring of normal cell functions. The second presents the cell transition into the transformed state with remain genome instability and with increase of tumour growth probability.

  11. Reversible beam heater for suppression of microbunching instability by transverse gradient undulators

    DOE PAGES

    Liu, Tao; Qin, Weilun; Wang, Dong; ...

    2017-08-02

    The microbunching instability driven by beam collective effects in a linear accelerator of a free-electron laser (FEL) facility significantly degrades the electron beam quality and FEL performance. A conventional method to suppress this instability is to introduce an additional uncorrelated energy spread by laser-electron interaction, which has been successfully operated in the Linac Coherent Light Source and Fermi@Elettra, etc. Some other ideas are recently proposed to suppress the instability without increasing energy spread, which could benefit the seeded FEL schemes. In this paper, we propose a reversible electron beam heater using two transverse gradient undulators to suppress the microbunching instability.more » This scheme introduces both an energy spread increase and a transverse-to-longitudinal phase space coupling, which suppress the microbunching instabilities driven by both longitudinal space charge and coherent synchrotron radiation before and within the system. Finally the induced energy spread increase and emittance growth are reversed. In conclusion, theoretical analysis and numerical simulations are presented to verify the feasibility of the scheme and indicate the capability to improve the seeded FEL radiation performance.« less

  12. Analysis of genomic instability in the offspring of fathers exposed to low doses of ionizing radiation.

    PubMed

    Aghajanyan, Anna; Kuzmina, Nina; Sipyagyna, Alla; Baleva, Larisa; Suskov, Igor

    2011-08-01

    Transgenerational genomic instability was studied in nonirradiated children born from fathers who were irradiated with low doses of ionizing radiation while working as clean-up workers at the Chernobyl Nuclear Power Plant (liquidators) and nonirradiated mothers from nuclear families. Aberrant cell frequencies (ACFs), chromosomal type aberration frequencies, and chromatid break frequencies (CBFs) in the lymphocytes of fathers-liquidators, and their children were significantly higher when compared with the control group (P < 0.05). Individual ACFs, aberration frequencies, and CBFs were independent of the time between irradiation of the father and conception of the child (1 month to 18 years). Chromosomes were categorized into seven groups (A through G). Analysis of aberrant chromosomes within these groups showed no differences in the average frequency of aberrant chromosomes between children and fathers-liquidators. However, significant differences were observed in the average frequency of aberrant chromosomes in groups A, B, and C between children and mothers in the families of liquidators. These results suggest that low doses of radiation induce genomic instability in fathers. Moreover, low radiation doses might be responsible for individual peculiarities in transgenerational genomic instability in children (as a consequence of response to primary DNA damage). Thus, genomic instability may contribute to increased morbidity over the lifetime of these children. Copyright © 2011 Wiley-Liss, Inc.

  13. Genomic instability and tumorigenic induction in immortalized human bronchial epithelial cells by heavy ions

    NASA Astrophysics Data System (ADS)

    Hei, T. K.; Piao, C. Q.; Wu, L. J.; Willey, J. C.; Hall, E. J.

    1998-11-01

    Carcinogenesis is postulated to be a progressive multistage process characterized by an increase in genomic instability and clonal selection with each mutational event endowing a selective growth advantage. Genomic instability as manifested by the amplification of specific gene fragments is common among tumor and transformed cells. In the present study, immortalized human bronchial (BEP2D) cells were irradiated with graded doses of either 1GeV/nucleon 56Fe ions or 150 keV/μm alpha particles. Transformed cells developed through a series of successive steps before becoming tumorigenic in nude mice. Tumorigenic cells showed neither ras mutations nor deletion in the p16 tumor suppressor gene. In contrast, they harbored mutations in the p53 gene and over-expressed cyclin D1. Genomic instability among transformed cells at various stage of the carcinogenic process was examined based on frequencies of PALA resistance. Incidence of genomic instability was highest among established tumor cell lines relative to transformed, non-tumorigenic and control cell lines. Treatment of BEP2D cells with a 4 mM dose of the aminothiol WR-1065 significantly reduced their neoplastic transforming response to 56Fe particles. This model provides an opportunity to study the cellular and molecular mechanisms involved in malignant transformation of human epithelial cells by heavy ions.

  14. A novel ATM-dependent checkpoint defect distinct from loss of function mutation promotes genomic instability in melanoma.

    PubMed

    Spoerri, Loredana; Brooks, Kelly; Chia, KeeMing; Grossman, Gavriel; Ellis, Jonathan J; Dahmer-Heath, Mareike; Škalamera, Dubravka; Pavey, Sandra; Burmeister, Bryan; Gabrielli, Brian

    2016-05-01

    Melanomas have high levels of genomic instability that can contribute to poor disease prognosis. Here, we report a novel defect of the ATM-dependent cell cycle checkpoint in melanoma cell lines that promotes genomic instability. In defective cells, ATM signalling to CHK2 is intact, but the cells are unable to maintain the cell cycle arrest due to elevated PLK1 driving recovery from the arrest. Reducing PLK1 activity recovered the ATM-dependent checkpoint arrest, and over-expressing PLK1 was sufficient to overcome the checkpoint arrest and increase genomic instability. Loss of the ATM-dependent checkpoint did not affect sensitivity to ionizing radiation demonstrating that this defect is distinct from ATM loss of function mutations. The checkpoint defective melanoma cell lines over-express PLK1, and a significant proportion of melanomas have high levels of PLK1 over-expression suggesting this defect is a common feature of melanomas. The inability of ATM to impose a cell cycle arrest in response to DNA damage increases genomic instability. This work also suggests that the ATM-dependent checkpoint arrest is likely to be defective in a higher proportion of cancers than previously expected. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Intrastrand triplex DNA repeats in bacteria: a source of genomic instability

    PubMed Central

    Holder, Isabelle T.; Wagner, Stefanie; Xiong, Peiwen; Sinn, Malte; Frickey, Tancred; Meyer, Axel; Hartig, Jörg S.

    2015-01-01

    Repetitive nucleic acid sequences are often prone to form secondary structures distinct from B-DNA. Prominent examples of such structures are DNA triplexes. We observed that certain intrastrand triplex motifs are highly conserved and abundant in prokaryotic genomes. A systematic search of 5246 different prokaryotic plasmids and genomes for intrastrand triplex motifs was conducted and the results summarized in the ITxF database available online at http://bioinformatics.uni-konstanz.de/utils/ITxF/. Next we investigated biophysical and biochemical properties of a particular G/C-rich triplex motif (TM) that occurs in many copies in more than 260 bacterial genomes by CD and nuclear magnetic resonance spectroscopy as well as in vivo footprinting techniques. A characterization of putative properties and functions of these unusually frequent nucleic acid motifs demonstrated that the occurrence of the TM is associated with a high degree of genomic instability. TM-containing genomic loci are significantly more rearranged among closely related Escherichia coli strains compared to control sites. In addition, we found very high frequencies of TM motifs in certain Enterobacteria and Cyanobacteria that were previously described as genetically highly diverse. In conclusion we link intrastrand triplex motifs with the induction of genomic instability. We speculate that the observed instability might be an adaptive feature of these genomes that creates variation for natural selection to act upon. PMID:26450966

  16. Bloom syndrome ortholog HIM-6 maintains genomic stability in C. elegans.

    PubMed

    Grabowski, Melissa M; Svrzikapa, Nenad; Tissenbaum, Heidi A

    2005-12-01

    Bloom syndrome is caused by mutation of the Bloom helicase (BLM), a member of the RecQ helicase family. Loss of BLM function results in genomic instability that causes a high incidence of cancer. It has been demonstrated that BLM is important for maintaining genomic stability by playing a role in DNA recombination and repair; however, the exact function of BLM is not clearly understood. To determine the mechanism by which BLM controls genomic stability in vivo, we examined the phenotypes caused by mutation of the C. elegans BLM helicase ortholog, HIM-6. We find that the loss of HIM-6 leads to genomic instability as evidenced by an increased number of genomic insertions and deletions, which results in visible random mutant phenotypes. In addition to the mutator phenotype, him-6 mutants have a low brood size, a high incidence of males, a shortened life span, and an increased amount of germ line apoptosis. Upon exposure to high temperature, him-6 mutants that are serially passed become sterile demonstrating a mortal germ line phenotype. Our data suggest a model in which loss of HIM-6 results in genomic instability due to an increased number of DNA lesions, which either cannot be repaired and/or are introduced by low fidelity recombination events. The increased level of genomic instability that leads to him-6(ok412) mutants having a shortened life span.

  17. ZSCAN10 expression corrects the genomic instability of iPSCs from aged donors

    PubMed Central

    Skamagki, Maria; Correia, Cristina; Yeung, Percy; Baslan, Timour; Beck, Samuel; Zhang, Cheng; Ross, Christian A.; Dang, Lam; Liu, Zhong; Giunta, Simona; Chang, Tzu-Pei; Wang, Joye; Ananthanarayanan, Aparna; Bohndorf, Martina; Bosbach, Benedikt; Adjaye, James; Funabiki, Hironori; Kim, Jonghwan; Lowe, Scott; Collins, James J.; Lu, Chi-Wei; Li, Hu; Zhao, Rui; Kim, Kitai

    2018-01-01

    Induced pluripotent stem cells (iPSCs), which are used to produce transplantable tissues, may particularly benefit older patients, who are more likely to suffer from degenerative diseases. However, iPSCs generated from aged donors (A-iPSCs) exhibit higher genomic instability, defects in apoptosis and a blunted DNA damage response compared with iPSCs generated from younger donors. We demonstrated that A-iPSCs exhibit excessive glutathione-mediated reactive oxygen species (ROS) scavenging activity, which blocks the DNA damage response and apoptosis and permits survival of cells with genomic instability. We found that the pluripotency factor ZSCAN10 is poorly expressed in A-iPSCs and addition of ZSCAN10 to the four Yamanaka factors (OCT4, SOX2, KLF4 and c-MYC) during A-iPSC reprogramming normalizes ROS–glutathione homeostasis and the DNA damage response, and recovers genomic stability. Correcting the genomic instability of A-iPSCs will ultimately enhance our ability to produce histocompatible functional tissues from older patients’ own cells that are safe for transplantation. PMID:28846095

  18. Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells.

    PubMed

    Martinez-Outschoorn, Ubaldo E; Balliet, Renee M; Rivadeneira, Dayana B; Chiavarina, Barbara; Pavlides, Stephanos; Wang, Chenguang; Whitaker-Menezes, Diana; Daumer, Kristin M; Lin, Zhao; Witkiewicz, Agnieszka K; Flomenberg, Neal; Howell, Anthony; Pestell, Richard G; Knudsen, Erik S; Sotgia, Federica; Lisanti, Michael P

    2010-08-15

    Loss of stromal fibroblast caveolin-1 (Cav-1) is a powerful single independent predictor of poor prognosis in human breast cancer patients, and is associated with early tumor recurrence, lymph node metastasis and tamoxifen-resistance. We developed a novel co-culture system to understand the mechanism(s) by which a loss of stromal fibroblast Cav-1 induces a "lethal tumor micro-environment." Here, we propose a new paradigm to explain the powerful prognostic value of stromal Cav-1. In this model, cancer cells induce oxidative stress in cancer-associated fibroblasts, which then acts as a "metabolic" and "mutagenic" motor to drive tumor-stroma co-evolution, DNA damage and aneuploidy in cancer cells. More specifically, we show that an acute loss of Cav-1 expression leads to mitochondrial dysfunction, oxidative stress and aerobic glycolysis in cancer associated fibroblasts. Also, we propose that defective mitochondria are removed from cancer-associated fibroblasts by autophagy/mitophagy that is induced by oxidative stress. As a consequence, cancer associated fibroblasts provide nutrients (such as lactate) to stimulate mitochondrial biogenesis and oxidative metabolism in adjacent cancer cells (the "Reverse Warburg Effect"). We provide evidence that oxidative stress in cancer-associated fibroblasts is sufficient to induce genomic instability in adjacent cancer cells, via a bystander effect, potentially increasing their aggressive behavior. Finally, we directly demonstrate that nitric oxide (NO) over-production, secondary to Cav-1 loss, is the root cause for mitochondrial dysfunction in cancer associated fibroblasts. In support of this notion, treatment with anti-oxidants (such as N-acetyl-cysteine, metformin and quercetin) or NO inhibitors (L-NAME) was sufficient to reverse many of the cancer-associated fibroblast phenotypes that we describe. Thus, cancer cells use "oxidative stress" in adjacent fibroblasts (i) as an "engine" to fuel their own survival via the stromal production of nutrients and (ii) to drive their own mutagenic evolution towards a more aggressive phenotype, by promoting genomic instability. We also present evidence that the "field effect" in cancer biology could also be related to the stromal production of ROS and NO species. eNOS-expressing fibroblasts have the ability to downregulate Cav-1 and induce mitochondrial dysfunction in adjacent fibroblasts that do not express eNOS. As such, the effects of stromal oxidative stress can be laterally propagated, amplified and are effectively "contagious"--spread from cell-to-cell like a virus--creating an "oncogenic/mutagenic" field promoting widespread DNA damage.

  19. Canonical DNA Repair Pathways Influence R-Loop-Driven Genome Instability.

    PubMed

    Stirling, Peter C; Hieter, Philip

    2017-10-27

    DNA repair defects create cancer predisposition in humans by fostering a higher rate of mutations. While DNA repair is quite well characterized, recent studies have identified previously unrecognized relationships between DNA repair and R-loop-mediated genome instability. R-loops are three-stranded nucleic acid structures in which RNA binds to genomic DNA to displace a loop of single-stranded DNA. Mutations in homologous recombination, nucleotide excision repair, crosslink repair, and DNA damage checkpoints have all now been linked to formation and function of transcription-coupled R-loops. This perspective will summarize recent literature linking DNA repair to R-loop-mediated genomic instability and discuss how R-loops may contribute to mutagenesis in DNA-repair-deficient cancers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Replication Fork Protection Factors Controlling R-Loop Bypass and Suppression.

    PubMed

    Chang, Emily Yun-Chia; Stirling, Peter C

    2017-01-14

    Replication-transcription conflicts have been a well-studied source of genome instability for many years and have frequently been linked to defects in RNA processing. However, recent characterization of replication fork-associated proteins has revealed that defects in fork protection can directly or indirectly stabilize R-loop structures in the genome and promote transcription-replication conflicts that lead to genome instability. Defects in essential DNA replication-associated activities like topoisomerase, or the minichromosome maintenance (MCM) helicase complex, as well as fork-associated protection factors like the Fanconi anemia pathway, both appear to mitigate transcription-replication conflicts. Here, we will highlight recent advances that support the concept that normal and robust replisome function itself is a key component of mitigating R-loop coupled genome instability.

  1. Air pollution and genomic instability: The role of particulate matter in lung carcinogenesis.

    PubMed

    Santibáñez-Andrade, Miguel; Quezada-Maldonado, Ericka Marel; Osornio-Vargas, Álvaro; Sánchez-Pérez, Yesennia; García-Cuellar, Claudia M

    2017-10-01

    In this review, we summarize and discuss the evidence regarding the interaction between air pollution, especially particulate matter (PM), and genomic instability. PM has been widely studied in the context of several diseases, and its role in lung carcinogenesis gained relevance due to an increase in cancer cases for which smoking does not seem to represent the main risk factor. According to epidemiological and toxicological evidence, PM acts as a carcinogenic factor in humans, inducing high rates of genomic alterations. Here, we discuss not only how PM is capable of inducing genomic instability during the carcinogenic process but also how our genetic background influences the response to the sources of damage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Magnetic resonance imaging in glenohumeral instability

    PubMed Central

    Jana, Manisha; Gamanagatti, Shivanand

    2011-01-01

    The glenohumeral joint is the most commonly dislocated joint of the body and anterior instability is the most common type of shoulder instability. Magnetic resonance (MR) imaging, and more recently, MR arthrography, have become the essential investigation modalities of glenohumeral instability, especially for pre-procedure evaluation before arthroscopic surgery. Injuries associated with glenohumeral instability are variable, and can involve the bones, the labor-ligamentous components, or the rotator cuff. Anterior instability is associated with injuries of the anterior labrum and the anterior band of the inferior glenohumeral ligament, in the form of Bankart lesion and its variants; whereas posterior instability is associated with reverse Bankart and reverse Hill-Sachs lesion. Multidirectional instability often has no labral pathology on imaging but shows specific osseous changes such as increased chondrolabral retroversion. This article reviews the relevant anatomy in brief, the MR imaging technique and the arthrographic technique, and describes the MR findings in each type of instability as well as common imaging pitfalls. PMID:22007285

  3. A Genome-Wide Association Study for Regulators of Micronucleus Formation in Mice.

    PubMed

    McIntyre, Rebecca E; Nicod, Jérôme; Robles-Espinoza, Carla Daniela; Maciejowski, John; Cai, Na; Hill, Jennifer; Verstraten, Ruth; Iyer, Vivek; Rust, Alistair G; Balmus, Gabriel; Mott, Richard; Flint, Jonathan; Adams, David J

    2016-08-09

    In mammals the regulation of genomic instability plays a key role in tumor suppression and also controls genome plasticity, which is important for recombination during the processes of immunity and meiosis. Most studies to identify regulators of genomic instability have been performed in cells in culture or in systems that report on gross rearrangements of the genome, yet subtle differences in the level of genomic instability can contribute to whole organism phenotypes such as tumor predisposition. Here we performed a genome-wide association study in a population of 1379 outbred Crl:CFW(SW)-US_P08 mice to dissect the genetic landscape of micronucleus formation, a biomarker of chromosomal breaks, whole chromosome loss, and extranuclear DNA. Variation in micronucleus levels is a complex trait with a genome-wide heritability of 53.1%. We identify seven loci influencing micronucleus formation (false discovery rate <5%), and define candidate genes at each locus. Intriguingly at several loci we find evidence for sexual dimorphism in micronucleus formation, with a locus on chromosome 11 being specific to males. Copyright © 2016 McIntyre et al.

  4. Spectrum of magnetic resonance imaging findings in clinical glenohumeral instability

    PubMed Central

    Jana, Manisha; Srivastava, Deep Narayan; Sharma, Raju; Gamanagatti, Shivanand; Nag, Hiralal; Mittal, Ravi; Upadhyay, Ashish Dutt

    2011-01-01

    The glenohumeral joint is the most commonly dislocated joint in the body, and anterior instability is the most common type of shoulder instability. Depending on the etiology and the age of the patient, there may be associated injuries, for example, to the anterior-inferior labro-ligamentous structures (in young individuals with traumatic instability) or to the bony components (commoner in the elderly), which are best visualized using MRI and MR arthrography. Anterior instability is associated with a Bankart lesion and its variants and abnormalities of the anterior band of the inferior glenohumeral ligament (IGHL), whereas posterior instability is associated with reverse Bankart and reverse Hill-Sachs lesions. Cases of multidirectional instability often have no labral pathology on imaging but show specific osseous changes including increased chondrolabral retroversion. This article reviews the relevant anatomy in brief and describes the MRI findings in each type, with the imaging features of the common abnormalities. PMID:21799591

  5. Variability in Estrogen-Metabolizing Genes and Their Association with Genomic Instability in Untreated Breast Cancer Patients and Healthy Women

    PubMed Central

    Alves dos Santos, Raquel; Teixeira, Ana Cláudia; Mayorano, Mônica Beatriz; Carrara, Hélio Humberto Angotti; Moreira de Andrade, Jurandyr; Takahashi, Catarina Satie

    2011-01-01

    In the present study, we investigated the relationship between polymorphisms in the estrogen-metabolizing genes CYP17, CYP1B1, CYP1A1, and COMT and genomic instability in the peripheral blood lymphocytes of 62 BC patients and 62 controls considering that increased or prolonged exposure to estrogen can damage the DNA molecule and increase the genomic instability process in breast tissue. Our data demonstrated increased genomic instability in BC patients and that individuals with higher frequencies of MN exhibited higher risk to BC when belonging Val/Met genotype of the COMT gene. We also observed that CYP17 and CYP1A1 polymorphisms can modify the risk to BC depending on the menopause status. We can conclude that the genetic background in estrogen metabolism pathway can modulate chromosome damage in healthy controls and patients and thereby influence the risk to BC. These findings suggest the importance to ally biomarkers of susceptibility and effects to estimate risk groups. PMID:21716904

  6. Introns Protect Eukaryotic Genomes from Transcription-Associated Genetic Instability.

    PubMed

    Bonnet, Amandine; Grosso, Ana R; Elkaoutari, Abdessamad; Coleno, Emeline; Presle, Adrien; Sridhara, Sreerama C; Janbon, Guilhem; Géli, Vincent; de Almeida, Sérgio F; Palancade, Benoit

    2017-08-17

    Transcription is a source of genetic instability that can notably result from the formation of genotoxic DNA:RNA hybrids, or R-loops, between the nascent mRNA and its template. Here we report an unexpected function for introns in counteracting R-loop accumulation in eukaryotic genomes. Deletion of endogenous introns increases R-loop formation, while insertion of an intron into an intronless gene suppresses R-loop accumulation and its deleterious impact on transcription and recombination in yeast. Recruitment of the spliceosome onto the mRNA, but not splicing per se, is shown to be critical to attenuate R-loop formation and transcription-associated genetic instability. Genome-wide analyses in a number of distant species differing in their intron content, including human, further revealed that intron-containing genes and the intron-richest genomes are best protected against R-loop accumulation and subsequent genetic instability. Our results thereby provide a possible rationale for the conservation of introns throughout the eukaryotic lineage. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Industrialization and the increasing risk of genome instability in developing countries: nutrigenomics as a promising antidote.

    PubMed

    Anetor, J I

    2010-12-01

    Increased reliance on chemicals in the industrializing developing countries places new demands on them, as they have limited resources to adequately regulate exposure to these chemicals. Majority of the chemicals cause mutation in DNA among others. The consequences of increased exposure to chemicals on the genome and their mitigation by Nutrigenomics, a science concerned with the prevention of genome damage by nutritional factors is poorly recognized in these countries. Growing evidence indicates that genome instability in the absence of overt exposure to genotoxicants is a sensitive marker of nutritional deficiency. Therefore, the increasing prevalence of chemicals in these countries which contribute to genome disturbances and the widespread nutritional deficiency, at least double the risk of genome instability.Environmental pollutants such polychlorobiphenyls, metal fumes, and fly ash, common in these countries are known to increase urinary level of 8-hydroxy deoxyguanosine (8-OHdG), a marker of oxidative DNA damage, precursor of genome instability.Increasing evidence emphasizes the importance of zinc in both genetic stability and function. Zinc deficiency has been linked with oxidative stress, DNA damage and impairment of repair mechanisms as well as risk of cancer. Zinc plays an important role in vitamin A metabolism from which the retinoids are derived. Zinc is also an important component of the p53 protein, a DNA damage sensor which prevents genetic lesions contributing to genome instability.Zinc deficiency ranks among the top 10 leading causes of death in developing countries. A large proportion of the population in these countries ingests less than 50% of the RDA for Zn.This makes this genome protective nutrient among others grossly inadequate. Folate now also recognized for its role in genome stability, is among the nutrients frequently cited as critical to genome stability. Folate deficiency of sub- clinical degree is common. Reduced folate intake causes as much genome damage as that induced by exposure to a high dose of ionizing radiation. Even moderate folate deficiency causes very severe damage to the genome in the general population. All these accentuate the susceptibility of populations in these nations to environmental toxic assault requiring preventive measures employing the science of Nutrigenomics, probably augmented with adaptive response pathways such as the Nrf2 signaling pathway. Human populations in developing countries are increasingly exposed to a diverse array of industrial chemicals, which adversely modify the genome, the precursor of many diseases especially cancer. Nutrigenomics encompasses nutritional factors that protect the genome from damage and is a promising new field that can be exploited, perhaps augmented with the Nrf2 signaling pathway with international collaboration in these nations as an antidote to chemical-induced genome instability.

  8. The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability

    PubMed Central

    Hamperl, Stephan; Cimprich, Karlene A.

    2014-01-01

    Accurate DNA replication and DNA repair are crucial for the maintenance of genome stability, and it is generally accepted that failure of these processes is a major source of DNA damage in cells. Intriguingly, recent evidence suggests that DNA damage is more likely to occur at genomic loci with high transcriptional activity. Furthermore, loss of certain RNA processing factors in eukaryotic cells is associated with increased formation of co-transcriptional RNA:DNA hybrid structures known as R-loops, resulting in double-strand breaks (DSBs) and DNA damage. However, the molecular mechanisms by which R-loop structures ultimately lead to DNA breaks and genome instability is not well understood. In this review, we summarize the current knowledge about the formation, recognition and processing of RNA:DNA hybrids, and discuss possible mechanisms by which these structures contribute to DNA damage and genome instability in the cell. PMID:24746923

  9. Genome constraint through sexual reproduction: application of 4D-Genomics in reproductive biology.

    PubMed

    Horne, Steven D; Abdallah, Batoul Y; Stevens, Joshua B; Liu, Guo; Ye, Karen J; Bremer, Steven W; Heng, Henry H Q

    2013-06-01

    Assisted reproductive technologies have been used to achieve pregnancies since the first successful test tube baby was born in 1978. Infertile couples are at an increased risk for multiple miscarriages and the application of current protocols are associated with high first-trimester miscarriage rates. Among the contributing factors of these higher rates is a high incidence of fetal aneuploidy. Numerous studies support that protocols including ovulation-induction, sperm cryostorage, density-gradient centrifugation, and embryo culture can induce genome instability, but the general mechanism is less clear. Application of the genome theory and 4D-Genomics recently led to the establishment of a new paradigm for sexual reproduction; sex primarily constrains genome integrity that defines the biological system rather than just providing genetic diversity at the gene level. We therefore propose that application of assisted reproductive technologies can bypass this sexual reproduction filter as well as potentially induce additional system instability. We have previously demonstrated that a single-cell resolution genomic approach, such as spectral karyotyping to trace stochastic genome level alterations, is effective for pre- and post-natal analysis. We propose that monitoring overall genome alteration at the karyotype level alongside the application of assisted reproductive technologies will improve the efficacy of the techniques while limiting stress-induced genome instability. The development of more single-cell based cytogenomic technologies are needed in order to better understand the system dynamics associated with infertility and the potential impact that assisted reproductive technologies have on genome instability. Importantly, this approach will be useful in studying the potential for diseases to arise as a result of bypassing the filter of sexual reproduction.

  10. BYSTANDER EFFECTS GENOMIC INSTABILITY, ADAPTIVE RESPONSE AND CANCER RISK ASSESSMENT FOR RADIAION AND CHEMICAL EXPOSURES

    EPA Science Inventory

    BYSTANDER EFFECTS, GENOMIC INSTABILITY, ADAPTIVE RESPONSE AND CANCER RISK ASSESSMENT FOR RADIATION AND CHEMICAL EXPOSURES

    R. Julian Preston
    Environmental Carcinogenesis Division, U.S. Environmental Protection Agency, Research Triangle Park, N.C. 27711, USA

    There ...

  11. Double-strand break repair-adox: Restoration of suppressed double-strand break repair during mitosis induces genomic instability

    PubMed Central

    Terasawa, Masahiro; Shinohara, Akira; Shinohara, Miki

    2014-01-01

    Double-strand breaks (DSBs) are one of the severest types of DNA damage. Unrepaired DSBs easily induce cell death and chromosome aberrations. To maintain genomic stability, cells have checkpoint and DSB repair systems to respond to DNA damage throughout most of the cell cycle. The failure of this process often results in apoptosis or genomic instability, such as aneuploidy, deletion, or translocation. Therefore, DSB repair is essential for maintenance of genomic stability. During mitosis, however, cells seem to suppress the DNA damage response and proceed to the next G1 phase, even if there are unrepaired DSBs. The biological significance of this suppression is not known. In this review, we summarize recent studies of mitotic DSB repair and discuss the mechanisms of suppression of DSB repair during mitosis. DSB repair, which maintains genomic integrity in other phases of the cell cycle, is rather toxic to cells during mitosis, often resulting in chromosome missegregation and aberration. Cells have multiple safeguards to prevent genomic instability during mitosis: inhibition of 53BP1 or BRCA1 localization to DSB sites, which is important to promote non-homologous end joining or homologous recombination, respectively, and also modulation of the non-homologous end joining core complex to inhibit DSB repair. We discuss how DSBs during mitosis are toxic and the multiple safeguard systems that suppress genomic instability. PMID:25287622

  12. CRISPR/Cas9-Advancing Orthopoxvirus Genome Editing for Vaccine and Vector Development.

    PubMed

    Okoli, Arinze; Okeke, Malachy I; Tryland, Morten; Moens, Ugo

    2018-01-22

    The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (Cas9) technology is revolutionizing genome editing approaches. Its high efficiency, specificity, versatility, flexibility, simplicity and low cost have made the CRISPR/Cas9 system preferable to other guided site-specific nuclease-based systems such as TALENs (Transcription Activator-like Effector Nucleases) and ZFNs (Zinc Finger Nucleases) in genome editing of viruses. CRISPR/Cas9 is presently being applied in constructing viral mutants, preventing virus infections, eradicating proviral DNA, and inhibiting viral replication in infected cells. The successful adaptation of CRISPR/Cas9 to editing the genome of Vaccinia virus paves the way for its application in editing other vaccine/vector-relevant orthopoxvirus (OPXV) strains. Thus, CRISPR/Cas9 can be used to resolve some of the major hindrances to the development of OPXV-based recombinant vaccines and vectors, including sub-optimal immunogenicity; transgene and genome instability; reversion of attenuation; potential of spread of transgenes to wildtype strains and close contacts, which are important biosafety and risk assessment considerations. In this article, we review the published literature on the application of CRISPR/Cas9 in virus genome editing and discuss the potentials of CRISPR/Cas9 in advancing OPXV-based recombinant vaccines and vectors. We also discuss the application of CRISPR/Cas9 in combating viruses of clinical relevance, the limitations of CRISPR/Cas9 and the current strategies to overcome them.

  13. Corrupting the DNA damage response: a critical role for Rad52 in tumor cell survival.

    PubMed

    Lieberman, Rachel; You, Ming

    2017-07-15

    The DNA damage response enables cells to survive, maintain genome integrity, and to safeguard the transmission of high-fidelity genetic information. Upon sensing DNA damage, cells respond by activating this multi-faceted DNA damage response leading to restoration of the cell, senescence, programmed cell death, or genomic instability if the cell survives without proper repair. However, unlike normal cells, cancer cells maintain a marked level of genomic instability. Because of this enhanced propensity to accumulate DNA damage, tumor cells rely on homologous recombination repair as a means of protection from the lethal effect of both spontaneous and therapy-induced double-strand breaks (DSBs) in DNA. Thus, modulation of DNA repair pathways have important consequences for genomic instability within tumor cell biology and viability maintenance under high genotoxic stress. Efforts are underway to manipulate specific components of the DNA damage response in order to selectively induce tumor cell death by augmenting genomic instability past a viable threshold. New evidence suggests that RAD52, a component of the homologous recombination pathway, is important for the maintenance of tumor genome integrity. This review highlights recent reports indicating that reducing homologous recombination through inhibition of RAD52 may represent an important focus for cancer therapy and the specific efforts that are already demonstrating potential.

  14. Impact of drag reducing polymers on the onset of instability in a pipe with reverse flow

    NASA Astrophysics Data System (ADS)

    Shashank, H. J.; Sreenivas, K. R.

    2014-11-01

    The objective of this study is to understand the mechanism by which drag reducing polymer (DRP) additives modify turbulent flow, so as to reduce turbulent drag. Reverse flow in a pipe occurs when the fluid close to the wall moves in an opposite direction to that of the core fluid. Reverse flow is established by using a piston-cylinder mechanism, the programmed motion of which imparts a known impulse to the fluid. When the piston is stopped at the end of the stroke, fluid inertia makes the core of the flow to continue in the same direction. In order to conserve mass, reverse flow is established close to the wall. An inflection point is thus formed, leading to flow instability above a critical Reynolds number. Dye and streak flow visualization experiments are performed to highlight the impact of DRP additives (polyethylene oxide, PEO, dissolved in water). The time of onset of the instability and the wavelength of the observed instability are studied in systems with and without DRP additives. This study will provide further insight into the phenomenon of turbulent polymer drag reduction.

  15. Development of surrogate endpoint biomarkers for clinical trials of cancer chemopreventive agents: relationships to fundamental properties of preinvasive (intraepithelial) neoplasia.

    PubMed

    Boone, C W; Kelloff, G J

    1994-01-01

    The tissue changes offering the greatest immediate potential for development as surrogate endpoint biomarkers (SEBs) to be used in Phase II trials of cancer chemopreventive agents are those derived from the microscopic tissue changes pathologists use to make the diagnosis of preinvasive (intraepithelial) neoplasia. These changes comprise four categories: proliferative index, ploidy, nuclear morphometry (size, shape, texture, and pleomorphism), and nucleolar morphometry (number, size, shape, position, and pleomorphism). Computer-assisted image analysis (CIA) permits dozens of additional morphometric parameters to be developed. Other categories of candidate SEBs are: DNA and chromosomal structural changes associated with genomic instability, activation of oncogenes and inactivation of tumor suppressor genes, structural changes in differentiated molecules, and aberrations of growth factor/receptor structure and function. Self-perpetuating DNA breakage with secondary mutator mutations in genomic stability genes is a major mechanism by which the genomic instability characteristic of neoplasia occurs, and from which stem other basic neoplastic properties, including clonal evolution, along multiple pathways of genetic variation that are stochastically determined, continuously increasing proliferation, rate and extent of phenotypic heterogeneity. SEBs resulting from genomic instability include homogeneously staining regions, double minute chromosomes, micronuclei, dicentrics, gene amplification, loss of heterozygosity, and alterations in chromosome number. Newly developed assays for detecting genomic instability include comparative genomic hybridization using fluorescence in situ hybridization on > 20 micron-thick sections monitored by confocal laser scanning microscopy, assays for microsatellite instability, and restriction landmark genomic scanning. These assays offer promise for detecting the earliest molecular changes of neoplasia in normal-appearing epithelium prior to the onset of the dysplastic phase of intraepithelial neoplasia.

  16. Exploiting Tumor-Activated Testes Proteins to Enhance Efficacy of First-Line Chemotherapeutics in NSCLC

    DTIC Science & Technology

    2015-10-01

    TERMS Cancer Testis Antigen (CTA), Fanconia- Anemia (FA), DNA Damage, Genomic Instability, DNA Double Strand Break (DSB) 16. SECURITY CLASSIFICATION OF...Cancer Testis Antigen (CTA) o Fanconia- Anemia (FA) o DNA Damage o Genomic Instability o DNA Double Strand Break (DSB) 3. Accomplishments • What

  17. BYSTANDERS, ADAPTIVE RESPONSES AND GENOMIC INSTABILITY - POTENTIAL MODIFIERS OF LOW-DOSE CANCER RESPONSES.

    EPA Science Inventory

    Bystanders, Adaptive Responses and Genomic Instability -Potential Modifiers ofLow-Dose
    Cancer Responses
    .
    There has been a concerted effort in the field of radiation biology to better understand cellular
    responses that could have an impact on the estin1ation of cancer...

  18. SERIES: Genomic instability in cancer Balancing repair and tolerance of DNA damage caused by alkylating agents

    PubMed Central

    Fu, Dragony; Calvo, Jennifer A.; Samson, Leona D

    2013-01-01

    Alkylating agents comprise a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER), and mismatch repair (MMR) respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for an organism's favorable response to alkylating agents. Furthermore, an individual's response to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity. PMID:22237395

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peltomaeki, Paeivi, E-mail: Paivi.Peltomaki@Helsinki.Fi

    Cancer is traditionally viewed as a disease of abnormal cell proliferation controlled by a series of mutations. Mutations typically affect oncogenes or tumor suppressor genes thereby conferring growth advantage. Genomic instability facilitates mutation accumulation. Recent findings demonstrate that activation of oncogenes and inactivation of tumor suppressor genes, as well as genomic instability, can be achieved by epigenetic mechanisms as well. Unlike genetic mutations, epimutations do not change the base sequence of DNA and are potentially reversible. Similar to genetic mutations, epimutations are associated with specific patterns of gene expression that are heritable through cell divisions. Knudson's hypothesis postulates that inactivationmore » of tumor suppressor genes requires two hits, with the first hit occurring either in somatic cells (sporadic cancer) or in the germline (hereditary cancer) and the second one always being somatic. Studies on hereditary and sporadic forms of colorectal carcinoma have made it evident that, apart from genetic mutations, epimutations may serve as either hit or both. Furthermore, recent next-generation sequencing studies show that epigenetic genes, such as those encoding histone modifying enzymes and subunits for chromatin remodeling systems, are themselves frequent targets of somatic mutations in cancer and can act like tumor suppressor genes or oncogenes. This review discusses genetic vs. epigenetic origin of cancer, including cancer susceptibility, in light of recent discoveries. Situations in which mutations and epimutations occur to serve analogous purposes are highlighted.« less

  20. Assessment of the Tumorigenic Potential of Spontaneously Immortalized and hTERT-Immortalized Cultured Dental Pulp Stem Cells.

    PubMed

    Wilson, Ryan; Urraca, Nora; Skobowiat, Cezary; Hope, Kevin A; Miravalle, Leticia; Chamberlin, Reed; Donaldson, Martin; Seagroves, Tiffany N; Reiter, Lawrence T

    2015-08-01

    Dental pulp stem cells (DPSCs) provide an exciting new avenue to study neurogenetic disorders. DPSCs are neural crest-derived cells with the ability to differentiate into numerous tissues including neurons. The therapeutic potential of stem cell-derived lines exposed to culturing ex vivo before reintroduction into patients could be limited if the cultured cells acquired tumorigenic potential. We tested whether DPSCs that spontaneously immortalized in culture acquired features of transformed cells. We analyzed immortalized DPSCs for anchorage-independent growth, genomic instability, and ability to differentiate into neurons. Finally, we tested both spontaneously immortalized and human telomerase reverse transcriptase (hTERT)-immortalized DPSC lines for the ability to form tumors in immunocompromised animals. Although we observed increased colony-forming potential in soft agar for the spontaneously immortalized and hTERT-immortalized DPSC lines relative to low-passage DPSC, no tumors were detected from any of the DPSC lines tested. We noticed some genomic instability in hTERT-immortalized DPSCs but not in the spontaneously immortalized lines tested. We determined that immortalized DPSC lines generated in our laboratory, whether spontaneously or induced, have not acquired the potential to form tumors in mice. These data suggest cultured DPSC lines that can be differentiated into neurons may be safe for future in vivo therapy for neurobiological diseases. ©AlphaMed Press.

  1. Characterization of genomic instability in Saccharomyces cerevisiae and engaging teaching strategies described in two curricula

    NASA Astrophysics Data System (ADS)

    Keller, Alexandra P.

    Cancer arises through an accumulation of mutations in the genome. In cancer cells, mutations are frequently caused by DNA rearrangements, which include chromosomal breakages, deletions, insertions, and translocations. Such events contribute to genomic instability, a known hallmark of cancer. To study cycles of chromosomal instability, we are using baker's yeast as a model organism. In yeast, a ChrVII system was previously developed (Admire et al., 2006), in which a disomic yeast strain was used to identify regions of instability on ChrVII. Using this system, a fragile site on the left arm of ChrVII (Admire et al., 2006) was identified and characterized. This study led to insight into mechanisms involved in chromosomal rearrangements and mutations that arise from them as well as to an understanding of mechanisms involved in genomic instability. To further our understanding of genomic instability, I devised a strategy to study instability on a different chromosome (ChrV) (Figure 3), so that we could determine whether lessons learned from the ChrVII system are applicable to other chromosomes, and/or whether other mechanisms of instability could be identified. A suitable strain was generated and analyzed, and our findings suggest that frequencies of instability on the right arm of ChrV are similar to those found in ChrVII. The results from the work in ChrV described in this paper support the idea that the instability found on ChrVII is not an isolated occurrence. My research was supported by an NSF GK-12 grant. The aim of this grant is to improve science education in middle schools, and as part of my participation in this program, I studied and practiced effective science communication methodologies. In attempts to explain my research to middle school students, I collaborated with others to develop methods for explaining genetics and the most important techniques I used in my research. While developing these methods, I learned more about what motivates people to learn. I became interested in creating learning environments that encourage students to make interdisciplinary connections in a way that provides comprehensible learning experiences that they can relate to their daily lives. Resulting from these studies, I developed an interdisciplinary, stories-based curriculum that is described in chapter four of this thesis.

  2. Exploiting Tumor Activated Testes Proteins To Enhance Efficacy of First Line Chemotherapeutics in NSCLC

    DTIC Science & Technology

    2016-10-01

    Antigen (CTA), Fanconia- Anemia (FA), DNA Damage, Genomic Instability, DNA Double Strand Break (DSB) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...Fanconia- Anemia (FA) o DNA Damage o Genomic Instability o DNA Double Strand Break (DSB) 3. Accomplishments • What were the major goals and objectives of

  3. Constrained fixed-fulcrum reverse shoulder arthroplasty improves functional outcome in epileptic patients with recurrent shoulder instability

    PubMed Central

    Thangarajah, Tanujan; Higgs, Deborah; Bayley, J I L; Lambert, Simon M

    2016-01-01

    AIM: To report the results of fixed-fulcrum fully constrained reverse shoulder arthroplasty for the treatment of recurrent shoulder instability in patients with epilepsy. METHODS: A retrospective review was conducted at a single facility. Cases were identified using a computerized database and all clinic notes and operative reports were reviewed. All patients with epilepsy and recurrent shoulder instability were included for study. Between July 2003 and August 2011 five shoulders in five consecutive patients with epilepsy underwent fixed-fulcrum fully constrained reverse shoulder arthroplasty for recurrent anterior shoulder instability. The mean duration of epilepsy in the cohort was 21 years (range, 5-51) and all patients suffered from grand mal seizures. RESULTS: Mean age at the time of surgery was 47 years (range, 32-64). The cohort consisted of four males and one female. Mean follow-up was 4.7 years (range, 4.3-5 years). There were no further episodes of instability, and no further stabilisation or revision procedures were performed. The mean Oxford shoulder instability score improved from 8 preoperatively (range, 5-15) to 30 postoperatively (range, 16-37) (P = 0.015) and the mean subjective shoulder value improved from 20 (range, 0-50) preoperatively to 60 (range, 50-70) postoperatively (P = 0.016). Mean active forward elevation improved from 71° preoperatively (range, 45°-130°) to 100° postoperatively (range, 80°-90°) and mean active external rotation improved from 15° preoperatively (range, 0°-30°) to 40° (20°-70°) postoperatively. No cases of scapular notching or loosening were noted. CONCLUSION: Fixed-fulcrum fully constrained reverse shoulder arthroplasty should be considered for the treatment of recurrent shoulder instability in patients with epilepsy. PMID:27458554

  4. Double-strand break repair-adox: Restoration of suppressed double-strand break repair during mitosis induces genomic instability.

    PubMed

    Terasawa, Masahiro; Shinohara, Akira; Shinohara, Miki

    2014-12-01

    Double-strand breaks (DSBs) are one of the severest types of DNA damage. Unrepaired DSBs easily induce cell death and chromosome aberrations. To maintain genomic stability, cells have checkpoint and DSB repair systems to respond to DNA damage throughout most of the cell cycle. The failure of this process often results in apoptosis or genomic instability, such as aneuploidy, deletion, or translocation. Therefore, DSB repair is essential for maintenance of genomic stability. During mitosis, however, cells seem to suppress the DNA damage response and proceed to the next G1 phase, even if there are unrepaired DSBs. The biological significance of this suppression is not known. In this review, we summarize recent studies of mitotic DSB repair and discuss the mechanisms of suppression of DSB repair during mitosis. DSB repair, which maintains genomic integrity in other phases of the cell cycle, is rather toxic to cells during mitosis, often resulting in chromosome missegregation and aberration. Cells have multiple safeguards to prevent genomic instability during mitosis: inhibition of 53BP1 or BRCA1 localization to DSB sites, which is important to promote non-homologous end joining or homologous recombination, respectively, and also modulation of the non-homologous end joining core complex to inhibit DSB repair. We discuss how DSBs during mitosis are toxic and the multiple safeguard systems that suppress genomic instability. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  5. Predisposition to Cancer Caused by Genetic and Functional Defects of Mammalian Atad5

    PubMed Central

    Bell, Daphne W.; Chatterjee, Raghunath; Park, Hee-Dong; Fox, Jennifer; Ishiai, Masamichi; Rudd, Meghan L.; Pollock, Lana M.; Fogoros, Sarah K.; Mohamed, Hassan; Hanigan, Christin L.; Zhang, Suiyuan; Cruz, Pedro; Renaud, Gabriel; Hansen, Nancy F.; Cherukuri, Praveen F.; Borate, Bhavesh; McManus, Kirk J.; Stoepel, Jan; Sipahimalani, Payal; Godwin, Andrew K.; Sgroi, Dennis C.; Merino, Maria J.; Elliot, Gene; Elkahloun, Abdel; Vinson, Charles; Takata, Minoru; Mullikin, James C.; Wolfsberg, Tyra G.; Hieter, Philip; Lim, Dae-Sik; Myung, Kyungjae

    2011-01-01

    ATAD5, the human ortholog of yeast Elg1, plays a role in PCNA deubiquitination. Since PCNA modification is important to regulate DNA damage bypass, ATAD5 may be important for suppression of genomic instability in mammals in vivo. To test this hypothesis, we generated heterozygous (Atad5+/m) mice that were haploinsuffficient for Atad5. Atad5+/m mice displayed high levels of genomic instability in vivo, and Atad5+/m mouse embryonic fibroblasts (MEFs) exhibited molecular defects in PCNA deubiquitination in response to DNA damage, as well as DNA damage hypersensitivity and high levels of genomic instability, apoptosis, and aneuploidy. Importantly, 90% of haploinsufficient Atad5+/m mice developed tumors, including sarcomas, carcinomas, and adenocarcinomas, between 11 and 20 months of age. High levels of genomic alterations were evident in tumors that arose in the Atad5+/m mice. Consistent with a role for Atad5 in suppressing tumorigenesis, we also identified somatic mutations of ATAD5 in 4.6% of sporadic human endometrial tumors, including two nonsense mutations that resulted in loss of proper ATAD5 function. Taken together, our findings indicate that loss-of-function mutations in mammalian Atad5 are sufficient to cause genomic instability and tumorigenesis. PMID:21901109

  6. Tumor Hypoxia and Genetic Alterations in Sporadic Cancers

    PubMed Central

    Koi, Minoru; Boland, C.R.

    2011-01-01

    The cancer genome contains many gene alterations. How cancer cells acquire these alterations is a matter for discussion. One hypothesis is that cancer cells obtain mutations in genome stability genes at an early stage of tumor development, which results in genetic instability and generates a gene pool that enhances cellular proliferation and survival. Another hypothesis puts its emphasis on the natural selection of gene mutations for fitness. Recent data for systematic cancer genome sequencing shows that mutations in stability genes are rare in human sporadic cancers. Instead, many “passenger” mutations that do not drive the carcinogenesis process have been found in the cancer genome. Both the hypotheses mentioned above fall short in explaining recent data. Recently, many studies demonstrate the role of the tumor microenvironment, especially hypoxia and reoxygenation, in genetic instability. In this review, literature will be presented which supports a third hypothesis, i.e. that hypoxia/re-oxygenation induces genetic instability. PMID:21272156

  7. Differentiation and Genomic Instability in a Human Mammary Cell Model

    NASA Technical Reports Server (NTRS)

    Richmond, R.; Kale, R.; Pettengill, O.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Harvest of prophylactic mastectomy specimens from an obligate heterozygote for ataxia-telangiectasia provided autologous fibroblasts as well epithelial cells (HMEC). The routine availability of these autologous cells has provided an opportunity to study cell-cell interactions in coculture and monoculture, and in 3-dimensional cultures grown in the NASA rotating bioreactor. HMEC and stromal fibroblasts grown in 2-dimensional monoculture were both observed to produce extracellular matrix. Similar matrix was encountered in 3-dimensional cultures containing HMEC. Metaphases were analyzed. For stromal fibroblasts, genomic aberrations were found in 18% of metaphase spreads. For HMEC, aberrations were greater such that a majority were found to be abnormal. The level of genomic instability determined for these noncancerous cells in 2-dimensional monoculture should be useful for generating a human cell model that can correlate the effects of differentiation in 3-dimensional coculture on the level of genomic instability.

  8. An in vitro recombination-based reverse genetic system for rapid mutagenesis of structural genes of the Japanese encephalitis virus.

    PubMed

    Du, Ruikun; Wang, Manli; Hu, Zhihong; Wang, Hualin; Deng, Fei

    2015-10-01

    Japanese encephalitis virus (JEV) is one of the most common pathogens of severe viral encephalitis, which is a severe threat to human health. Despite instability of the JEV genome in bacteria, many strategies have been developed to establish molecular clone systems of JEV, providing convenient tools for studying the virus life cycle and virus-host interactions. In this study, we adapted an In-Fusion enzyme-based in vitro recombination method to construct a reverse genetic system of JEV, thereby providing a rapid approach to introduce mutations into the structural genes. A truncated genome without the structural genes was constructed as the backbone, and the complementary segment containing the structural genes was recombined in vitro, which was then transfected directly into virus-permissive cells. The progeny of the infectious virus was successfully detected in the supernatant of the transfected cells, and showed an identical phenotype to its parental virus. To provide a proof-of-principle, the 12 conserved cysteine residues in the envelope (E) protein of JEV were respectively mutated using this approach, and all mutations resulted in a complete failure to generate infectious virus. However, a leucine-tophenylanine mutation at amino acid 107 of the E protein did not interfere with the production of the infectious virus. These results suggested that all 12 cysteines in the E protein are essential for the JEV life cycle. In summary, a novel reverse genetic system of JEV was established for rapidly introducing mutations into structural genes, which will serve as a useful tool for functional studies.

  9. Transcription and replication: breaking the rules of the road causes genomic instability.

    PubMed

    Poveda, Ana Maria; Le Clech, Mikael; Pasero, Philippe

    2010-01-01

    Replication and transcription machineries progress at high speed on the same DNA template, which inevitably causes traffic accidents. Problems are not only caused by frontal collisions between polymerases, but also by cotranscriptional R-loops. These RNA-DNA hybrids induce genomic instability by blocking fork progression and could be implicated in the development of cancer.

  10. FANCD2 limits replication stress and genome instability in cells lacking BRCA2

    PubMed Central

    Buffa, Francesca M.; McDermott, Ultan; Tarsounas, Madalena

    2016-01-01

    The tumor suppressor BRCA2 plays a key role in genome integrity by promoting replication fork stability and homologous recombination (HR) DNA repair. Here we report that human cancer cells lacking BRCA2 rely on the Fanconi anemia protein FANCD2 to limit replication fork progression and genomic instability. Our results identify a novel role for FANCD2 in limiting constitutive replication stress in BRCA2-deficient cells, which impacts on cell survival and treatment responses. PMID:27322732

  11. CRISPR/Cas9—Advancing Orthopoxvirus Genome Editing for Vaccine and Vector Development

    PubMed Central

    Okoli, Arinze; Okeke, Malachy I.; Tryland, Morten; Moens, Ugo

    2018-01-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (Cas9) technology is revolutionizing genome editing approaches. Its high efficiency, specificity, versatility, flexibility, simplicity and low cost have made the CRISPR/Cas9 system preferable to other guided site-specific nuclease-based systems such as TALENs (Transcription Activator-like Effector Nucleases) and ZFNs (Zinc Finger Nucleases) in genome editing of viruses. CRISPR/Cas9 is presently being applied in constructing viral mutants, preventing virus infections, eradicating proviral DNA, and inhibiting viral replication in infected cells. The successful adaptation of CRISPR/Cas9 to editing the genome of Vaccinia virus paves the way for its application in editing other vaccine/vector-relevant orthopoxvirus (OPXV) strains. Thus, CRISPR/Cas9 can be used to resolve some of the major hindrances to the development of OPXV-based recombinant vaccines and vectors, including sub-optimal immunogenicity; transgene and genome instability; reversion of attenuation; potential of spread of transgenes to wildtype strains and close contacts, which are important biosafety and risk assessment considerations. In this article, we review the published literature on the application of CRISPR/Cas9 in virus genome editing and discuss the potentials of CRISPR/Cas9 in advancing OPXV-based recombinant vaccines and vectors. We also discuss the application of CRISPR/Cas9 in combating viruses of clinical relevance, the limitations of CRISPR/Cas9 and the current strategies to overcome them. PMID:29361752

  12. Persistent induction of somatic reversions of the pink-eyed unstable mutation in F1 mice born to fathers irradiated at the spermatozoa stage.

    PubMed

    Shiraishi, Kazunori; Shimura, Tsutomu; Taga, Masataka; Uematsu, Norio; Gondo, Yoichi; Ohtaki, Megu; Kominami, Ryo; Niwa, Ohtsura

    2002-06-01

    Untargeted mutation and delayed mutation are features of radiation-induced genomic instability and have been studied extensively in tissue culture cells. The mouse pink-eyed unstable (p(un)) mutation is due to an intragenic duplication of the pink-eyed dilution locus and frequently reverts back to the wild type in germ cells as well as in somatic cells. The reversion event can be detected in the retinal pigment epithelium as a cluster of pigmented cells (eye spot). We have investigated the reversion p(um) in F1 mice born to irradiated males. Spermatogonia-stage irradiation did not affect the frequency of the reversion in F1 mice. However, 6 Gy irradiation at the spermatozoa stage resulted in an approximately twofold increase in the number of eye spots in the retinal pigment epithelium of F1 mice. Somatic reversion occurred for the paternally derived p(un) alleles. In addition, the reversion also occurred for the maternally derived, unirradiated p(un) alleles at a frequency equal to that for the paternally derived allele. Detailed analyses of the number of pigmented cells per eye spot indicated that the frequency of reversion was persistently elevated during the proliferation cycle of the cells in the retinal pigment epithelium when the male parents were irradiated at the spermatozoa stage. The present study demonstrates the presence of a long-lasting memory of DNA damage and the persistent up-regulation of recombinogenic activity in the retinal pigment epithelium of the developing fetus.

  13. Yeast Sub1 and human PC4 are G-quadruplex binding proteins that suppress genome instability at co-transcriptionally formed G4 DNA.

    PubMed

    Lopez, Christopher R; Singh, Shivani; Hambarde, Shashank; Griffin, Wezley C; Gao, Jun; Chib, Shubeena; Yu, Yang; Ira, Grzegorz; Raney, Kevin D; Kim, Nayun

    2017-06-02

    G-quadruplex or G4 DNA is a non-B secondary DNA structure consisting of a stacked array of guanine-quartets that can disrupt critical cellular functions such as replication and transcription. When sequences that can adopt Non-B structures including G4 DNA are located within actively transcribed genes, the reshaping of DNA topology necessary for transcription process stimulates secondary structure-formation thereby amplifying the potential for genome instability. Using a reporter assay designed to study G4-induced recombination in the context of an actively transcribed locus in Saccharomyces cerevisiae, we tested whether co-transcriptional activator Sub1, recently identified as a G4-binding factor, contributes to genome maintenance at G4-forming sequences. Our data indicate that, upon Sub1-disruption, genome instability linked to co-transcriptionally formed G4 DNA in Top1-deficient cells is significantly augmented and that its highly conserved DNA binding domain or the human homolog PC4 is sufficient to suppress G4-associated genome instability. We also show that Sub1 interacts specifically with co-transcriptionally formed G4 DNA in vivo and that yeast cells become highly sensitivity to G4-stabilizing chemical ligands by the loss of Sub1. Finally, we demonstrate the physical and genetic interaction of Sub1 with the G4-resolving helicase Pif1, suggesting a possible mechanism by which Sub1 suppresses instability at G4 DNA. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Genomic Instability Associated with p53 Knockdown in the Generation of Huntington’s Disease Human Induced Pluripotent Stem Cells

    PubMed Central

    Tidball, Andrew M.; Neely, M. Diana; Chamberlin, Reed; Aboud, Asad A.; Kumar, Kevin K.; Han, Bingying; Bryan, Miles R.; Aschner, Michael; Ess, Kevin C.; Bowman, Aaron B.

    2016-01-01

    Alterations in DNA damage response and repair have been observed in Huntington’s disease (HD). We generated induced pluripotent stem cells (iPSC) from primary dermal fibroblasts of 5 patients with HD and 5 control subjects. A significant fraction of the HD iPSC lines had genomic abnormalities as assessed by karyotype analysis, while none of our control lines had detectable genomic abnormalities. We demonstrate a statistically significant increase in genomic instability in HD cells during reprogramming. We also report a significant association with repeat length and severity of this instability. Our karyotypically normal HD iPSCs also have elevated ATM-p53 signaling as shown by elevated levels of phosphorylated p53 and H2AX, indicating either elevated DNA damage or hypersensitive DNA damage signaling in HD iPSCs. Thus, increased DNA damage responses in the HD genotype is coincidental with the observed chromosomal aberrations. We conclude that the disease causing mutation in HD increases the propensity of chromosomal instability relative to control fibroblasts specifically during reprogramming to a pluripotent state by a commonly used episomal-based method that includes p53 knockdown. PMID:26982737

  15. Fanconi anemia and the cell cycle: new perspectives on aneuploidy

    PubMed Central

    2014-01-01

    Fanconi anemia (FA) is a complex heterogenic disorder of genomic instability, bone marrow failure, cancer predisposition, and congenital malformations. The FA signaling network orchestrates the DNA damage recognition and repair in interphase as well as proper execution of mitosis. Loss of FA signaling causes chromosome instability by weakening the spindle assembly checkpoint, disrupting centrosome maintenance, disturbing resolution of ultrafine anaphase bridges, and dysregulating cytokinesis. Thus, the FA genes function as guardians of genome stability throughout the cell cycle. This review discusses recent advances in diagnosis and clinical management of Fanconi anemia and presents the new insights into the origins of genomic instability in FA. These new discoveries may facilitate the development of rational therapeutic strategies for FA and for FA-deficient malignancies in the general population. PMID:24765528

  16. FANCA safeguards interphase and mitosis during hematopoiesis in vivo

    PubMed Central

    Abdul-Sater, Zahi; Cerabona, Donna; Sierra Potchanant, Elizabeth; Sun, Zejin; Enzor, Rikki; He, Ying; Robertson, Kent; Goebel, W. Scott; Nalepa, Grzegorz

    2015-01-01

    Fanconi anemia (FA/BRCA) signaling network controls multiple genome-housekeeping checkpoints, from interphase DNA repair to mitosis. The in vivo role of abnormal cell division in FA remains unknown. Here, we quantified the origins of genomic instability in FA patients and mice in vivo and ex vivo. We found that both mitotic errors and interphase DNA damage significantly contribute to genomic instability during FA-deficient hematopoiesis and in non-hematopoietic human and murine FA primary cells. Super-resolution microscopy coupled with functional assays revealed that FANCA shuttles to the pericentriolar material (PCM) to regulate spindle assembly at mitotic entry. Loss of FA signaling rendered cells hypersensitive to spindle chemotherapeutics and allowed escape from the chemotherapy-induced spindle assembly checkpoint. In support of these findings, direct comparison of DNA cross-linking and antimitotic chemotherapeutics in primary FANCA−/− cells revealed genomic instability originating through divergent cell cycle checkpoint aberrations. Our data indicate that the FA/BRCA signaling functions as an in vivo gatekeeper of genomic integrity throughout interphase and mitosis, which may have implications for future targeted therapies in FA and FA-deficient cancers. PMID:26366677

  17. Cyclin Kinase-independent role of p21CDKN1A in the promotion of nascent DNA elongation in unstressed cells

    PubMed Central

    Mansilla, Sabrina F; Bertolin, Agustina P; Bergoglio, Valérie; Pillaire, Marie-Jeanne; González Besteiro, Marina A; Luzzani, Carlos; Miriuka, Santiago G; Hoffmann, Jean-Sébastien; Gottifredi, Vanesa

    2016-01-01

    The levels of the cyclin-dependent kinase (CDK) inhibitor p21 are low in S phase and insufficient to inhibit CDKs. We show here that endogenous p21, instead of being residual, it is functional and necessary to preserve the genomic stability of unstressed cells. p21depletion slows down nascent DNA elongation, triggers permanent replication defects and promotes the instability of hard-to-replicate genomic regions, namely common fragile sites (CFS). The p21’s PCNA interacting region (PIR), and not its CDK binding domain, is needed to prevent the replication defects and the genomic instability caused by p21 depletion. The alternative polymerase kappa is accountable for such defects as they were not observed after simultaneous depletion of both p21 and polymerase kappa. Hence, in CDK-independent manner, endogenous p21 prevents a type of genomic instability which is not triggered by endogenous DNA lesions but by a dysregulation in the DNA polymerase choice during genomic DNA synthesis. DOI: http://dx.doi.org/10.7554/eLife.18020.001 PMID:27740454

  18. Analysis of microsatellite instability in CRISPR/Cas9 editing mice.

    PubMed

    Huo, Xueyun; Du, Yating; Lu, Jing; Guo, Meng; Li, Zhenkun; Zhang, Shuangyue; Li, Xiaohong; Chen, Zhenwen; Du, Xiaoyan

    2017-03-01

    Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR- associated (Cas) protein 9 system is a novel and powerful tool which is widely used for genome editing. CRISPR/Cas9 is RNA-guided and can lead to desired genomic modifications. However, whether the CRISPR/Cas9-mediated genome editing causes genomic alterations and genomic instability, such as microsatellite instability (MSI), is still unknown. Here we detected MSI in 21 CRISPR/Cas9 mouse strains using a panel of 42 microsatellite loci which were selected from our previous studies. Surprisingly, MSI occurrence was common in CRISPR/Cas9 modified genome, and most of the strains (19/21, 90.5%) examined showed MSI. Of 42 loci examined, 8 loci (8/42, 19.05%) exhibited MSI in the Cas9 editing mice. The Ttll9 (4/42, 9.5%) were the most unstable strains, and D10Mit3 and D10Mit198 (9/21, 42.9%) were considered to be the most "hot" loci in the Cas9 strains we tested. Through analyzing the mutation of microsatellite loci, we provide new insights into the genomic alterations of CRISPR/Cas9 models and it will help us for a better understanding of this powerful technology. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The NEIL1 G83D germline DNA glycosylase variant induces genomic instability and cellular transformation

    PubMed Central

    Galick, Heather A.; Marsden, Carolyn G.; Kathe, Scott; Dragon, Julie A.; Volk, Lindsay; Nemec, Antonia A.; Wallace, Susan S.; Prakash, Aishwarya; Doublié, Sylvie; Sweasy, Joann B.

    2017-01-01

    Base excision repair (BER) is a key genome maintenance pathway. The NEIL1 DNA glycosylase recognizes oxidized bases, and likely removes damage in advance of the replication fork. The rs5745906 SNP of the NEIL1 gene is a rare human germline variant that encodes the NEIL1 G83D protein, which is devoid of DNA glycosylase activity. Here we show that expression of G83D NEIL1 in MCF10A immortalized but non-transformed mammary epithelial cells leads to replication fork stress. Upon treatment with hydrogen peroxide, we observe increased levels of stalled replication forks in cells expressing G83D NEIL1 versus cells expressing the wild-type (WT) protein. Double-strand breaks (DSBs) arise in G83D-expressing cells during the S and G2/M phases of the cell cycle. Interestingly, these breaks result in genomic instability in the form of high levels of chromosomal aberrations and micronuclei. Cells expressing G83D also grow in an anchorage independent manner, suggesting that the genomic instability results in a carcinogenic phenotype. Our results are consistent with the idea that an inability to remove oxidative damage in an efficient manner at the replication fork leads to genomic instability and mutagenesis. We suggest that individuals who harbor the G83D NEIL1 variant face an increased risk for human cancer. PMID:29156764

  20. Genetic and Epigenetic Changes in Chromosomally Stable and Unstable Progeny of Irradiated Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baulch, Janet E.; Aypar, Umut; Waters, Katrina M.

    2014-09-24

    Radiation induced genomic instability is a well-studied phenomenon, the underlying mechanisms of which are poorly understood. Persistent oxidative stress, mitochondrial dysfunction, elevated cytokine levels and epigenetic changes are among the mechanisms invoked in the perpetuation of the phenotype. To determine whether epigenetic aberrations affect genomic instability we measured DNA methylation, mRNA and microRNA (miR) levels in well characterized chromosomally stable and unstable clonally expanded single cell survivors of irradiation. While no changes in DNA methylation were observed for the gene promoters evaluated, increased LINE-1 methylation was observed for two unstable clones (LS12, CS9) and decreased Alu element methylation was observedmore » for the other two unstable clones (115, Fe5.0-8). These relationships also manifested for mRNA and miR expression. mRNA identified for the LS12 and CS9 clones were most similar to each other (261 mRNA), while the 115 and Fe5.0-8 clones were more similar to each other, and surprisingly also similar to the two stable clones, 114 and 118 (286 mRNA among these four clones). Pathway analysis showed enrichment for pathways involved in mitochondrial function and cellular redox, themes routinely invoked in genomic instability. The commonalities between the two subgroups of clones were also observed for miR. The number of miR for which anti-correlated mRNA were identified suggests that these miR exert functional effects in each clone. The results of this study demonstrate significant genetic and epigenetic changes in unstable cells, but similar changes almost equally common in chromosomally stable cells. Possible conclusions might be that the chromosomally stable clones have some other form of instability, or that some of the observed changes represent a sort of radiation signature for and that other changes are related to genomic instability. Irrespective, these findings again suggest that a spectrum of changes both drive genomic instability and permit unstable cells to persist and proliferate.« less

  1. A mobile threat to genome stability: The impact of non-LTR retrotransposons upon the human genome

    PubMed Central

    Konkel, Miriam K.; Batzer, Mark A.

    2010-01-01

    It is now commonly agreed that the human genome is not the stable entity originally presumed. Deletions, duplications, inversions, and insertions are common, and contribute significantly to genomic structural variations (SVs). Their collective impact generates much of the inter-individual genomic diversity observed among humans. Not only do these variations change the structure of the genome; they may also have functional implications, e.g. altered gene expression. Some SVs have been identified as the cause of genetic disorders, including cancer predisposition. Cancer cells are notorious for their genomic instability, and often show genomic rearrangements at the microscopic and submicroscopic level to which transposable elements (TEs) contribute. Here, we review the role of TEs in genome instability, with particular focus on non-LTR retrotransposons. Currently, three non-LTR retrotransposon families – long interspersed element 1 (L1), SVA (short interspersed element (SINE-R), variable number of tandem repeats (VNTR), and Alu), and Alu (a SINE) elements – mobilize in the human genome, and cause genomic instability through both insertion- and post-insertion-based mutagenesis. Due to the abundance and high sequence identity of TEs, they frequently mislead the homologous recombination repair pathway into non-allelic homologous recombination, causing deletions, duplications, and inversions. While less comprehensively studied, non-LTR retrotransposon insertions and TE-mediated rearrangements are probably more common in cancer cells than in healthy tissue. This may be at least partially attributed to the commonly seen global hypomethylation as well as general epigenetic dysfunction of cancer cells. Where possible, we provide examples that impact cancer predisposition and/or development. PMID:20307669

  2. Transcription as a Threat to Genome Integrity.

    PubMed

    Gaillard, Hélène; Aguilera, Andrés

    2016-06-02

    Genomes undergo different types of sporadic alterations, including DNA damage, point mutations, and genome rearrangements, that constitute the basis for evolution. However, these changes may occur at high levels as a result of cell pathology and trigger genome instability, a hallmark of cancer and a number of genetic diseases. In the last two decades, evidence has accumulated that transcription constitutes an important natural source of DNA metabolic errors that can compromise the integrity of the genome. Transcription can create the conditions for high levels of mutations and recombination by its ability to open the DNA structure and remodel chromatin, making it more accessible to DNA insulting agents, and by its ability to become a barrier to DNA replication. Here we review the molecular basis of such events from a mechanistic perspective with particular emphasis on the role of transcription as a genome instability determinant.

  3. Diagnostic Instability and Reversals of Chronic Obstructive Pulmonary Disease Diagnosis in Individuals with Mild to Moderate Airflow Obstruction.

    PubMed

    Aaron, Shawn D; Tan, Wan C; Bourbeau, Jean; Sin, Don D; Loves, Robyn H; MacNeil, Jenna; Whitmore, George A

    2017-08-01

    Chronic obstructive pulmonary disease (COPD) is a chronic, progressive disease, and reversal of COPD diagnosis is thought to be uncommon. To determine whether a spirometric diagnosis of mild or moderate COPD is subject to variability and potential error. We examined two prospective cohort studies that enrolled subjects with mild to moderate post-bronchodilator airflow obstruction. The Lung Health Study (n = 5,861 subjects; study duration, 5 yr) and the Canadian Cohort of Obstructive Lung Disease (CanCOLD) study (n = 1,551 subjects; study duration, 4 yr) were examined to determine frequencies of (1) diagnostic instability, represented by how often patients initially met criteria for a spirometric diagnosis of COPD but then crossed the diagnostic threshold to normal and then crossed back to COPD over a series of annual visits, or vice versa; and (2) diagnostic reversals, defined as how often an individual's COPD diagnosis at the study outset reversed to normal by the end of the study. Diagnostic instability was common and occurred in 19.5% of the Lung Health Study subjects and 6.4% of the CanCOLD subjects. Diagnostic reversals of COPD from the beginning to the end of the study period occurred in 12.6% and 27.2% of subjects in the Lung Health Study and CanCOLD study, respectively. The risk of diagnostic instability was greatest for subjects whose baseline FEV 1 /FVC value was closest to the diagnostic threshold, and the risk of diagnostic reversal was greatest for subjects who quit smoking during the study. A single post-bronchodilator spirometric assessment may not be reliable for diagnosing COPD in patients with mild to moderate airflow obstruction at baseline.

  4. Estimation of low-dose radiation-responsive proteins in the absence of genomic instability in normal human fibroblast cells.

    PubMed

    Yim, Ji-Hye; Yun, Jung Mi; Kim, Ji Young; Nam, Seon Young; Kim, Cha Soon

    2017-11-01

    Low-dose radiation has various biological effects such as adaptive responses, low-dose hypersensitivity, as well as beneficial effects. However, little is known about the particular proteins involved in these effects. Here, we sought to identify low-dose radiation-responsive phosphoproteins in normal fibroblast cells. We assessed genomic instability and proliferation of fibroblast cells after γ-irradiation by γ-H2AX foci and micronucleus formation analyses and BrdU incorporation assay, respectively. We screened fibroblast cells 8 h after low-dose (0.05 Gy) γ-irradiation using Phospho Explorer Antibody Microarray and validated two differentially expressed phosphoproteins using Western blotting. Cell proliferation proceeded normally in the absence of genomic instability after low-dose γ-irradiation. Phospho antibody microarray analysis and Western blotting revealed increased expression of two phosphoproteins, phospho-NFκB (Ser536) and phospho-P70S6K (Ser418), 8 h after low-dose radiation. Our findings suggest that low-dose radiation of normal fibroblast cells activates the expression of phospho-NFκB (Ser536) and phospho-P70S6K (Ser418) in the absence of genomic instability. Therefore, these proteins may be involved in DNA damage repair processes.

  5. The expanding universe of cohesin functions: a new genome stability caretaker involved in human disease and cancer.

    PubMed

    Mannini, Linda; Menga, Stefania; Musio, Antonio

    2010-06-01

    Cohesin is responsible for sister chromatid cohesion, ensuring the correct chromosome segregation. Beyond this role, cohesin and regulatory cohesin genes seem to play a role in preserving genome stability and gene transcription regulation. DNA damage is thought to be a major culprit for many human diseases, including cancer. Our present knowledge of the molecular basis underlying genome instability is extremely limited. Mutations in cohesin genes cause human diseases such as Cornelia de Lange syndrome and Roberts syndrome/SC phocomelia, and all the cell lines derived from affected patients show genome instability. Cohesin mutations have also been identified in colorectal cancer. Here, we will discuss the human disorders caused by alterations of cohesin function, with emphasis on the emerging role of cohesin as a genome stability caretaker.

  6. Investigation of the Flow Field and Performances of a Centrifugal Pump at Part Load

    NASA Astrophysics Data System (ADS)

    Prunières, R.; Inoue, Y.; Nagahara, T.

    2016-11-01

    Centrifugal pump performance curve instability, characterized by a local dent at part load, can be the consequence of flow instabilities in rotating or stationary parts. Such flow instabilities often result in abnormal operating conditions which can damage both the pump and the system. In order for the pump to have reliable operation over a wide flow rate range, it is necessary to achieve a design free of instability. The present paper focuses on performance curve instability of a centrifugal pump of mid specific speed (ωs = 0.65) for which instability was observed at part load during tests. The geometry used for this research consist of the first stage of a multi-stage centrifugal pump and is composed of a suction bend, a closed-type impeller, a vaned diffuser and return guide vanes. In order to analyse the instability phenomenon, PIV and CFD analysis were performed. Both methods qualitatively agree relatively well. It appears that the main difference before and after head drop is an increase of reverse flow rate at the diffuser passage inlet on the hub side. This reverse flow decreases the flow passing area at the diffuser passage inlet, disallowing effective flow deceleration and impairing static pressure recovery.

  7. Roles of human POLD1 and POLD3 in genome stability

    PubMed Central

    Tumini, Emanuela; Barroso, Sonia; -Calero, Carmen Pérez; Aguilera, Andrés

    2016-01-01

    DNA replication is essential for cellular proliferation. If improperly controlled it can constitute a major source of genome instability, frequently associated with cancer and aging. POLD1 is the catalytic subunit and POLD3 is an accessory subunit of the replicative Pol δ polymerase, which also functions in DNA repair, as well as the translesion synthesis polymerase Pol ζ, whose catalytic subunit is REV3L. In cells depleted of POLD1 or POLD3 we found a differential but general increase in genome instability as manifested by DNA breaks, S-phase progression impairment and chromosome abnormalities. Importantly, we showed that both proteins are needed to maintain the proper amount of active replication origins and that POLD3-depletion causes anaphase bridges accumulation. In addition, POLD3-associated DNA damage showed to be dependent on RNA-DNA hybrids pointing toward an additional and specific role of this subunit in genome stability. Interestingly, a similar increase in RNA-DNA hybrids-dependent genome instability was observed in REV3L-depleted cells. Our findings demonstrate a key role of POLD1 and POLD3 in genome stability and S-phase progression revealing RNA-DNA hybrids-dependent effects for POLD3 that might be partly due to its Pol ζ interaction. PMID:27974823

  8. A mobile threat to genome stability: The impact of non-LTR retrotransposons upon the human genome.

    PubMed

    Konkel, Miriam K; Batzer, Mark A

    2010-08-01

    It is now commonly agreed that the human genome is not the stable entity originally presumed. Deletions, duplications, inversions, and insertions are common, and contribute significantly to genomic structural variations (SVs). Their collective impact generates much of the inter-individual genomic diversity observed among humans. Not only do these variations change the structure of the genome; they may also have functional implications, e.g. altered gene expression. Some SVs have been identified as the cause of genetic disorders, including cancer predisposition. Cancer cells are notorious for their genomic instability, and often show genomic rearrangements at the microscopic and submicroscopic level to which transposable elements (TEs) contribute. Here, we review the role of TEs in genome instability, with particular focus on non-LTR retrotransposons. Currently, three non-LTR retrotransposon families - long interspersed element 1 (L1), SVA (short interspersed element (SINE-R), variable number of tandem repeats (VNTR), and Alu), and Alu (a SINE) elements - mobilize in the human genome, and cause genomic instability through both insertion- and post-insertion-based mutagenesis. Due to the abundance and high sequence identity of TEs, they frequently mislead the homologous recombination repair pathway into non-allelic homologous recombination, causing deletions, duplications, and inversions. While less comprehensively studied, non-LTR retrotransposon insertions and TE-mediated rearrangements are probably more common in cancer cells than in healthy tissue. This may be at least partially attributed to the commonly seen global hypomethylation as well as general epigenetic dysfunction of cancer cells. Where possible, we provide examples that impact cancer predisposition and/or development. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. DNA replication stress as a hallmark of cancer.

    PubMed

    Macheret, Morgane; Halazonetis, Thanos D

    2015-01-01

    Human cancers share properties referred to as hallmarks, among which sustained proliferation, escape from apoptosis, and genomic instability are the most pervasive. The sustained proliferation hallmark can be explained by mutations in oncogenes and tumor suppressors that regulate cell growth, whereas the escape from apoptosis hallmark can be explained by mutations in the TP53, ATM, or MDM2 genes. A model to explain the presence of the three hallmarks listed above, as well as the patterns of genomic instability observed in human cancers, proposes that the genes driving cell proliferation induce DNA replication stress, which, in turn, generates genomic instability and selects for escape from apoptosis. Here, we review the data that support this model, as well as the mechanisms by which oncogenes induce replication stress. Further, we argue that DNA replication stress should be considered as a hallmark of cancer because it likely drives cancer development and is very prevalent.

  10. Ambient Oxygen Promotes Tumorigenesis

    PubMed Central

    Starost, Matthew F.; Lago, Cory U.; Lim, Philip K.; Sack, Michael N.; Kang, Ju-Gyeong; Wang, Ping-yuan; Hwang, Paul M.

    2011-01-01

    Oxygen serves as an essential factor for oxidative stress, and it has been shown to be a mutagen in bacteria. While it is well established that ambient oxygen can also cause genomic instability in cultured mammalian cells, its effect on de novo tumorigenesis at the organismal level is unclear. Herein, by decreasing ambient oxygen exposure, we report a ∼50% increase in the median tumor-free survival time of p53−/− mice. In the thymus, reducing oxygen exposure decreased the levels of oxidative DNA damage and RAG recombinase, both of which are known to promote lymphomagenesis in p53−/− mice. Oxygen is further shown to be associated with genomic instability in two additional cancer models involving the APC tumor suppressor gene and chemical carcinogenesis. Together, these observations represent the first report directly testing the effect of ambient oxygen on de novo tumorigenesis and provide important physiologic evidence demonstrating its critical role in increasing genomic instability in vivo. PMID:21589870

  11. Kinase-dead ATM protein causes genomic instability and early embryonic lethality in mice.

    PubMed

    Yamamoto, Kenta; Wang, Yunyue; Jiang, Wenxia; Liu, Xiangyu; Dubois, Richard L; Lin, Chyuan-Sheng; Ludwig, Thomas; Bakkenist, Christopher J; Zha, Shan

    2012-08-06

    Ataxia telangiectasia (A-T) mutated (ATM) kinase orchestrates deoxyribonucleic acid (DNA) damage responses by phosphorylating numerous substrates implicated in DNA repair and cell cycle checkpoint activation. A-T patients and mouse models that express no ATM protein undergo normal embryonic development but exhibit pleiotropic DNA repair defects. In this paper, we report that mice carrying homozygous kinase-dead mutations in Atm (Atm(KD/KD)) died during early embryonic development. Atm(KD/-) cells exhibited proliferation defects and genomic instability, especially chromatid breaks, at levels higher than Atm(-/-) cells. Despite this increased genomic instability, Atm(KD/-) lymphocytes progressed through variable, diversity, and joining recombination and immunoglobulin class switch recombination, two events requiring nonhomologous end joining, at levels comparable to Atm(-/-) lymphocytes. Together, these results reveal an essential function of ATM during embryogenesis and an important function of catalytically inactive ATM protein in DNA repair.

  12. Smarcal1-Mediated Fork Reversal Triggers Mre11-Dependent Degradation of Nascent DNA in the Absence of Brca2 and Stable Rad51 Nucleofilaments.

    PubMed

    Kolinjivadi, Arun Mouli; Sannino, Vincenzo; De Antoni, Anna; Zadorozhny, Karina; Kilkenny, Mairi; Técher, Hervé; Baldi, Giorgio; Shen, Rong; Ciccia, Alberto; Pellegrini, Luca; Krejci, Lumir; Costanzo, Vincenzo

    2017-09-07

    Brca2 deficiency causes Mre11-dependent degradation of nascent DNA at stalled forks, leading to cell lethality. To understand the molecular mechanisms underlying this process, we isolated Xenopus laevis Brca2. We demonstrated that Brca2 protein prevents single-stranded DNA gap accumulation at replication fork junctions and behind them by promoting Rad51 binding to replicating DNA. Without Brca2, forks with persistent gaps are converted by Smarcal1 into reversed forks, triggering extensive Mre11-dependent nascent DNA degradation. Stable Rad51 nucleofilaments, but not RPA or Rad51 T131P mutant proteins, directly prevent Mre11-dependent DNA degradation. Mre11 inhibition instead promotes reversed fork accumulation in the absence of Brca2. Rad51 directly interacts with the Pol α N-terminal domain, promoting Pol α and δ binding to stalled replication forks. This interaction likely promotes replication fork restart and gap avoidance. These results indicate that Brca2 and Rad51 prevent formation of abnormal DNA replication intermediates, whose processing by Smarcal1 and Mre11 predisposes to genome instability. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Immortalization of normal human mammary epithelial cells in two steps by direct targeting of senescence barriers does not require gross genomic alterations

    DOE PAGES

    Garbe, James C.; Vrba, Lukas; Sputova, Klara; ...

    2014-10-29

    Telomerase reactivation and immortalization are critical for human carcinoma progression. However, little is known about the mechanisms controlling this crucial step, due in part to the paucity of experimentally tractable model systems that can examine human epithelial cell immortalization as it might occur in vivo. We achieved efficient non-clonal immortalization of normal human mammary epithelial cells (HMEC) by directly targeting the 2 main senescence barriers encountered by cultured HMEC. The stress-associated stasis barrier was bypassed using shRNA to p16INK4; replicative senescence due to critically shortened telomeres was bypassed in post-stasis HMEC by c-MYC transduction. Thus, 2 pathologically relevant oncogenic agentsmore » are sufficient to immortally transform normal HMEC. The resultant non-clonal immortalized lines exhibited normal karyotypes. Most human carcinomas contain genomically unstable cells, with widespread instability first observed in vivo in pre-malignant stages; in vitro, instability is seen as finite cells with critically shortened telomeres approach replicative senescence. Our results support our hypotheses that: (1) telomere-dysfunction induced genomic instability in pre-malignant finite cells may generate the errors required for telomerase reactivation and immortalization, as well as many additional “passenger” errors carried forward into resulting carcinomas; (2) genomic instability during cancer progression is needed to generate errors that overcome tumor suppressive barriers, but not required per se; bypassing the senescence barriers by direct targeting eliminated a need for genomic errors to generate immortalization. Achieving efficient HMEC immortalization, in the absence of “passenger” genomic errors, should facilitate examination of telomerase regulation during human carcinoma progression, and exploration of agents that could prevent immortalization.« less

  14. Genetic stability and instability of the cis-acting control element of the 5' untranslated region of the poliovirus RNA.

    PubMed

    Agol, V I

    1993-01-01

    The poliovirus genome exhibits tremendous plasticity, which is particularly evident when mutations diminishing the growth potential are introduced into the genome. An amazing variability can be observed even among the genomes derived from a single plaque. Not less amazing is the stability of the viral RNA sequences, which could be revealed, for example, upon the analysis of populations of a given viral strain separated by many cycles of reproduction in different laboratories but under standard conditions. This stability is obviously due to very strong selection for the "fit" phenotype. Implications of both the stability and instability of the poliovirus genome for the design, production and use of live poliovirus vaccines are briefly discussed.

  15. Fanconi anemia: causes and consequences of genetic instability.

    PubMed

    Kalb, R; Neveling, K; Nanda, I; Schindler, D; Hoehn, H

    2006-01-01

    Fanconi anemia (FA) is a rare recessive disease that reflects the cellular and phenotypic consequences of genetic instability: growth retardation, congenital malformations, bone marrow failure, high risk of neoplasia, and premature aging. At the cellular level, manifestations of genetic instability include chromosomal breakage, cell cycle disturbance, and increased somatic mutation rates. FA cells are exquisitely sensitive towards oxygen and alkylating drugs such as mitomycin C or diepoxybutane, pointing to a function of FA genes in the defense against reactive oxygen species and other DNA damaging agents. FA is caused by biallelic mutations in at least 12 different genes which appear to function in the maintenance of genomic stability. Eight of the FA proteins form a nuclear core complex with a catalytic function involving ubiquitination of the central FANCD2 protein. The posttranslational modification of FANCD2 promotes its accumulation in nuclear foci, together with known DNA maintenance proteins such as BRCA1, BRCA2, and the RAD51 recombinase. Biallelic mutations in BRCA2 cause a severe FA-like phenotype, as do biallelic mutations in FANCD2. In fact, only leaky or hypomorphic mutations in this central group of FA genes appear to be compatible with life birth and survival. The newly discovered FANCJ (= BRIP1) and FANCM (= Hef ) genes correspond to known DNA-maintenance genes (helicase resp. helicase-associated endonuclease for fork-structured DNA). These genes provide the most convincing evidence to date of a direct involvement of FA genes in DNA repair functions associated with the resolution of DNA crosslinks and stalled replication forks. Even though genetic instability caused by mutational inactivation of the FANC genes has detrimental effects for the majority of FA patients, around 20% of patients appear to benefit from genetic instability since genetic instability also increases the chance of somatic reversion of their constitutional mutations. Intragenic crossover, gene conversion, back mutation and compensating mutations in cis have all been observed in revertant, and, consequently, mosaic FA-patients, leading to improved bone marrow function. There probably is no other experiment of nature in our species in which causes and consequences of genetic instability, including the role of reactive oxygen species, can be better documented and explored than in FA.

  16. Genetics and epigenetics of small bowel adenocarcinoma: the interactions of CIN, MSI, and CIMP.

    PubMed

    Warth, Arne; Kloor, Matthias; Schirmacher, Peter; Bläker, Hendrik

    2011-04-01

    Characterization of tumor genetics and epigenetics allows to stratify a tumor entity according to molecular pathways and may shed light on the interactions of different types of DNA alterations during tumorigenesis. Small intestinal adenocarcinoma is rare, and to date the interrelation of genomic instability and epigenetics has not been investigated in this tumor type. We therefore analyzed 37 primary small bowel carcinomas with known microsatellite instability and KRAS status for chromosomal instability using comparative genomic hybridization, for the presence of aberrant methylation (CpG island methylation phenotype) by methylation-specific polymerase chain reaction, and for BRAF mutations. Chromosomal instability was detected in 22 of 37 (59%) tumors (3 of 9 microsatellite instable, and 19 of 28 microsatellite stable carcinomas). Nine carcinomas (24%) were microsatellite and chromosomally stable. High-level DNA methylation was found in 16% of chromosomal instable tumors and in 44% of both microsatellite instable and microsatellite and chromosomally stable carcinomas. KRAS was mutated in 55, 0, and 10% of chromosomal instable, microsatellite instable, and microsatellite and chromosomally stable tumors, respectively whereas the frequencies of BRAF mutations were 6% for chromosomal instable and 22% for both microsatellite instable and microsatellite and chromosomally stable carcinomas. In conclusion, in this study we show that chromosomal instable carcinomas of the small intestine are distinguished from microsatellite instable and microsatellite and chromosomally stable tumors by a high frequency of KRAS mutations, low frequencies of CpG island methylation phenotype, and BRAF mutations. In microsatellite instable and microsatellite and chromosomally stable cancers, CpG island methylation phenotype and BRAF/KRAS mutations are similarly distributed, indicating common mechanisms of tumor initiation or progression in their molecular pathogenesis.

  17. Transposable Elements as Stress Adaptive Capacitors Induce Genomic Instability in Fungal Pathogen Magnaporthe oryzae

    PubMed Central

    Chadha, Sonia; Sharma, Mradul

    2014-01-01

    A fundamental problem in fungal pathogenesis is to elucidate the evolutionary forces responsible for genomic rearrangements leading to races with fitter genotypes. Understanding the adaptive evolutionary mechanisms requires identification of genomic components and environmental factors reshaping the genome of fungal pathogens to adapt. Herein, Magnaporthe oryzae, a model fungal plant pathogen is used to demonstrate the impact of environmental cues on transposable elements (TE) based genome dynamics. For heat shock and copper stress exposed samples, eight TEs belonging to class I and II family were employed to obtain DNA profiles. Stress induced mutant bands showed a positive correlation with dose/duration of stress and provided evidences of TEs role in stress adaptiveness. Further, we demonstrate that genome dynamics differ for the type/family of TEs upon stress exposition and previous reports of stress induced MAGGY transposition has underestimated the role of TEs in M. oryzae. Here, we identified Pyret, MAGGY, Pot3, MINE, Mg-SINE, Grasshopper and MGLR3 as contributors of high genomic instability in M. oryzae in respective order. Sequencing of mutated bands led to the identification of LTR-retrotransposon sequences within regulatory regions of psuedogenes. DNA transposon Pot3 was identified in the coding regions of chromatin remodelling protein containing tyrosinase copper-binding and PWWP domains. LTR-retrotransposons Pyret and MAGGY are identified as key components responsible for the high genomic instability and perhaps these TEs are utilized by M. oryzae for its acclimatization to adverse environmental conditions. Our results demonstrate how common field stresses change genome dynamics of pathogen and provide perspective to explore the role of TEs in genome adaptability, signalling network and its impact on the virulence of fungal pathogens. PMID:24709911

  18. Towards a systemic paradigm in carcinogenesis: linking epigenetics and genetics.

    PubMed

    Burgio, Ernesto; Migliore, Lucia

    2015-04-01

    For at least 30 years cancer has been defined as a genetic disease and explained by the so-called somatic mutation theory (SMT), which has dominated the carcinogenesis field. Criticism of the SMT has recently greatly increased, although still not enough to force all SMT supporters to recognize its limits. Various researchers point out that cancer appears to be a complex process concerning a whole tissue; and that genomic mutations, although variably deleterious and unpredictably important in determining the establishment of the neoplastic phenotype, are not the primary origin for a malignant neoplasia. We attempt to describe the inadequacies of the SMT and demonstrate that epigenetics is a more logical cause of carcinogenesis. Many previous models of carcinogenesis fall into two classes: (i) in which some biological changes inside cells alone lead to malignancy; and (ii) requiring changes in stroma/extracellular matrix. We try to make clear that in the (ii) model genomic instability is induced by persistent signals coming from the microenvironment, provoking epigenetic and genetic modifications in tissue stem cells that can lead to cancer. In this perspective, stochastic mutations of DNA are a critical by-product rather then the primary cause of cancer. Indirect support for such model of carcinogenesis comes from the in vitro and vivo experiments showing apparent 'reversion' of cancer phenotypes obtained via physiological factors of cellular differentiation (cytokines and other signaling molecules) or drugs, even if the key mutations are not 'reversed'.

  19. Molecular Inversion Probe Analysis of Gene Copy Alterations Reveals Distinct Categories of Colorectal Carcinoma

    PubMed Central

    Ji, Hanlee; Kumm, Jochen; Zhang, Michael; Farnam, Kyle; Salari, Keyan; Faham, Malek; Ford, James M.; Davis, Ronald W.

    2006-01-01

    Genomic instability is a major feature of neoplastic development in colorectal carcinoma and other cancers. Specific genomic instability events, such as deletions in chromosomes and other alterations in gene copy number, have potential utility as biologically relevant prognostic biomarkers. For example, genomic deletions on chromosome arm 18q are an indicator of colorectal carcinoma behavior and potentially useful as a prognostic indicator. Adapting a novel genomic technology called molecular inversion probes which can determine gene copy alterations, such as genomic deletions, we designed a set of probes to interrogate several hundred individual exons of >200 cancer genes with an overall distribution covering all chromosome arms. In addition, >100 probes were designed in close proximity of microsatellite markers on chromosome arm 18q. We analyzed a set of colorectal carcinoma cell lines and primary colorectal tumor samples for gene copy alterations and deletion mutations in exons. Based on clustering analysis, we distinguished the different categories of genomic instability among the colorectal cancer cell lines. Our analysis of primary tumors uncovered several distinct categories of colorectal carcinoma, each with specific patterns of 18q deletions and deletion mutations in specific genes. This finding has potential clinical ramifications given the application of 18q loss of heterozygosity events as a potential indicator for adjuvant treatment in stage II colorectal carcinoma. PMID:16912164

  20. On the secondary instability of the most dangerous Goertler vortex

    NASA Technical Reports Server (NTRS)

    Otto, S. R.; Denier, James P.

    1993-01-01

    Recent studies have demonstrated the most unstable Goertler vortex mode is found in flows, both two and three-dimensional, with regions of (moderately) large body curvature and these modes reside within a thin layer situated at the base of the conventional boundary layer. Further work concerning the nonlinear development of the most dangerous mode demonstrates that the flow results in a self induced flow reversal. However, prior to the point at which flow reversal is encountered, the total streamwise velocity profile is found to be highly inflectional in nature. Previous work then suggests that the nonlinear vortex state will become unstable to secondary, inviscid, Rayleigh wave instabilities prior to the point of flow reversal. Our concern is with the secondary instability of the nonlinear vortex states, which result from the streamwise evolution of the most unstable Goertler vortex mode, with the aim of determining whether such modes can induce a transition to a fully turbulent state before separation is encountered.

  1. Magnetic field diffusion and dissipation in reversed-field plasmas

    NASA Technical Reports Server (NTRS)

    Drake, J. F.; Gladd, N. T.; Huba, J. D.

    1981-01-01

    A diffusion equation is derived which describes the evolution of a magnetic field in a plasma of arbitrary beta and resistivity. The equation is valid for a one-dimensional slab geometry, assumes the plasma remains in quasi-equilibrium throughout its evolution and does not include thermal transport. Scaling laws governing the rate of change of the magnetic energy, particle drift energy, and magnetic flux are calculated. It is found that the magnetic free energy can be substantially larger than the particle drift energy and can be an important energy reservoir in driving plasma instabilities (e.g., the lower-hybrid-drift instability). In addition, the effect of a spatially varying resistivity on the evolution of a reversed-field plasma is studied. The resistivity model used is based upon the anomalous transport properties associated with the nonlocal mode structure of the lower-hybrid-drift instability. The relevance of this research to laboratory plasmas (e.g., theta pinches, reversed-field theta pinches) and space plasmas (e.g., the earth's magnetotail) is discussed.

  2. HPV16 E6 and E7 proteins induce a chronic oxidative stress response via NOX2 that causes genomic instability and increased susceptibility to DNA damage in head and neck cancer cells

    PubMed Central

    Marullo, Rossella; Werner, Erica; Zhang, Hongzheng; Chen, Georgia Z.; Shin, Dong M.; Doetsch, Paul W.

    2015-01-01

    Human papillomavirus (HPV) is the causative agent of a subgroup of head and neck cancer characterized by an intrinsic radiosensitivity. HPV initiates cellular transformation through the activity of E6 and E7 proteins. E6 and E7 expression is necessary but not sufficient to transform the host cell, as genomic instability is required to acquire the malignant phenotype in HPV-initiated cells. This study reveals a key role played by oxidative stress in promoting genomic instability and radiosensitivity in HPV-positive head and neck cancer. By employing an isogenic human cell model, we observed that expression of E6 and E7 is sufficient to induce reactive oxygen species (ROS) generation in head and neck cancer cells. E6/E7-induced oxidative stress is mediated by nicotinamide adenine dinucleotide phosphate oxidases (NOXs) and causes DNA damage and chromosomal aberrations. This mechanism for genomic instability distinguishes HPV-positive from HPV-negative tumors, as we observed NOX-induced oxidative stress in HPV-positive but not HPV-negative head and neck cancer cells. We identified NOX2 as the source of HPV-induced oxidative stress as NOX2 silencing significantly reduced ROS generation, DNA damage and chromosomal aberrations in HPV-positive cells. Due to their state of chronic oxidative stress, HPV-positive cells are more susceptible to DNA damage induced by ROS and ionizing radiation (IR). Furthermore, exposure to IR results in the formation of complex lesions in HPV-positive cells as indicated by the higher amount of chromosomal breakage observed in this group of cells. These results reveal a novel mechanism for sustaining genomic instability in HPV-positive head and neck tumors and elucidate its contribution to their intrinsic radiosensitivity. PMID:26354779

  3. High levels of histones promote whole-genome-duplications and trigger a Swe1WEE1-dependent phosphorylation of Cdc28CDK1.

    PubMed

    Maya Miles, Douglas; Peñate, Xenia; Sanmartín Olmo, Trinidad; Jourquin, Frederic; Muñoz Centeno, Maria Cruz; Mendoza, Manuel; Simon, Marie-Noelle; Chavez, Sebastian; Geli, Vincent

    2018-03-27

    Whole-genome duplications (WGDs) have played a central role in the evolution of genomes and constitute an important source of genome instability in cancer. Here, we show in Saccharomyces cerevisiae that abnormal accumulations of histones are sufficient to induce WGDs. Our results link these WGDs to a reduced incorporation of the histone variant H2A.Z to chromatin. Moreover, we show that high levels of histones promote Swe1 WEE1 stabilisation thereby triggering the phosphorylation and inhibition of Cdc28 CDK1 through a mechanism different of the canonical DNA damage response. Our results link high levels of histones to a specific type of genome instability that is quite frequently observed in cancer and uncovers a new mechanism that might be able to respond to high levels of histones. © 2018, Maya Miles et al.

  4. High levels of histones promote whole-genome-duplications and trigger a Swe1WEE1-dependent phosphorylation of Cdc28CDK1

    PubMed Central

    Peñate, Xenia; Sanmartín Olmo, Trinidad; Jourquin, Frederic; Muñoz Centeno, Maria Cruz; Mendoza, Manuel; Simon, Marie-Noelle; Chavez, Sebastian

    2018-01-01

    Whole-genome duplications (WGDs) have played a central role in the evolution of genomes and constitute an important source of genome instability in cancer. Here, we show in Saccharomyces cerevisiae that abnormal accumulations of histones are sufficient to induce WGDs. Our results link these WGDs to a reduced incorporation of the histone variant H2A.Z to chromatin. Moreover, we show that high levels of histones promote Swe1WEE1 stabilisation thereby triggering the phosphorylation and inhibition of Cdc28CDK1 through a mechanism different of the canonical DNA damage response. Our results link high levels of histones to a specific type of genome instability that is quite frequently observed in cancer and uncovers a new mechanism that might be able to respond to high levels of histones. PMID:29580382

  5. Nitric oxide coordinates development of genomic instability in realization of combined effect with ionizing radiation.

    PubMed

    Mikhailenko, V M; Diomina, E A; Muzalov, I I; Gerashchenko, B I

    2013-03-01

    The aim of this study was to investigate the ability of environmental nitrogen oxides or natural nitric oxide (NO) donors to modify free radicals ba-lance and development of genomic instability alone or in combination with ionizing radiation. Genotoxicity and cytogenetic abnormalities were assessed in vitro in peripheral blood lymphocytes (PBL) isolated from healthy humans or in vivo in rats PBL. Human PBL were treated with physiologically relevant NO donor - S-Nitrosoglutathione and X-ray irradiation. The inhalation treatment of animals with NO was carried out in chamber with purified gaseous NO mixed inside with air. Levels of S-Nitrosohemoglobin and methemoglobin in the blood were assessed with electron paramagnetic resonance. The total level of reactive oxygen and nitrogen species in PBL was determined fluorometrically, and serum levels of reactive oxygen species was determined by spectrophotometric assay. DNA damages were assessed by alkaline single-cell gel electrophoresis. The frequency of chromosomal aberrations in human PBL measured with the conventional cytogenetic assay in metaphase cells on short-term (52 h) and long-term (72 h) cultures. Environmental nitrogen oxides or release of NO from stable complexes with biomolecules (such as S-Nitrosothiols) intensified generation of free radicals, DNA damage and development of genomic instability alone or in combination with ionizing radiation. Treatment of PBL by S-Nitrosoglutathione caused prevalent induction of chromatid type but irradiation - chromosome aberrations. The dose dependence of chromatid-type aberrations observed in human PBL after combined influence of S-Nitrosoglutathione and ionizing radiation indicates a crucial role of NO in the formation of chromosomal instability. NO can deregulate free radicals balance resulted in genotoxic effect, posttranslational modification of repair enzymes and thus coordinated development of genomic instability and increase of cancer risk.

  6. Zim17/Tim15 links mitochondrial iron-sulfur cluster biosynthesis to nuclear genome stability.

    PubMed

    Díaz de la Loza, María Del Carmen; Gallardo, Mercedes; García-Rubio, María Luisa; Izquierdo, Alicia; Herrero, Enrique; Aguilera, Andrés; Wellinger, Ralf Erik

    2011-08-01

    Genomic instability is related to a wide-range of human diseases. Here, we show that mitochondrial iron-sulfur cluster biosynthesis is important for the maintenance of nuclear genome stability in Saccharomyces cerevisiae. Cells lacking the mitochondrial chaperone Zim17 (Tim15/Hep1), a component of the iron-sulfur biosynthesis machinery, have limited respiration activity, mimic the metabolic response to iron starvation and suffer a dramatic increase in nuclear genome recombination. Increased oxidative damage or deficient DNA repair do not account for the observed genomic hyperrecombination. Impaired cell-cycle progression and genetic interactions of ZIM17 with components of the RFC-like complex involved in mitotic checkpoints indicate that replicative stress causes hyperrecombination in zim17Δ mutants. Furthermore, nuclear accumulation of pre-ribosomal particles in zim17Δ mutants reinforces the importance of iron-sulfur clusters in normal ribosome biosynthesis. We propose that compromised ribosome biosynthesis and cell-cycle progression are interconnected, together contributing to replicative stress and nuclear genome instability in zim17Δ mutants.

  7. The Fanconi anemia pathway promotes replication-dependent DNA interstrand crosslink repair

    PubMed Central

    Knipscheer, Puck; Räschle, Markus; Smogorzewska, Agata; Enoiu, Milica; Ho, The Vinh; Schärer, Orlando D.; Elledge, Stephen J.; Walter, Johannes C.

    2010-01-01

    Fanconi anemia is a human cancer predisposition syndrome caused by mutations in thirteen Fanc genes. The disorder is characterized by genomic instability and cellular hypersensitivity to chemicals that generate DNA interstrand crosslinks (ICLs). A central event in the activation of the Fanconi anemia pathway is the mono-ubiquitylation of the FANCI-FANCD2 complex, but how this complex confers ICL resistance remains enigmatic. We make use of a cell-free system to show that the FANCI-FANCD2 complex is required for replication-dependent ICL repair. Removal of FANCD2 from extracts inhibits nucleolytic incisions near the ICL as well as translesion DNA synthesis past the lesion. Reversal of these defects requires ubiquitylated FANCI-FANCD2. Our results show that multiple steps of the essential S phase ICL repair mechanism fail when the Fanconi anemia pathway is compromised. PMID:19965384

  8. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair.

    PubMed

    Knipscheer, Puck; Räschle, Markus; Smogorzewska, Agata; Enoiu, Milica; Ho, The Vinh; Schärer, Orlando D; Elledge, Stephen J; Walter, Johannes C

    2009-12-18

    Fanconi anemia is a human cancer predisposition syndrome caused by mutations in 13 Fanc genes. The disorder is characterized by genomic instability and cellular hypersensitivity to chemicals that generate DNA interstrand cross-links (ICLs). A central event in the activation of the Fanconi anemia pathway is the mono-ubiquitylation of the FANCI-FANCD2 complex, but how this complex confers ICL resistance remains enigmatic. Using a cell-free system, we showed that FANCI-FANCD2 is required for replication-coupled ICL repair in S phase. Removal of FANCD2 from extracts inhibits both nucleolytic incisions near the ICL and translesion DNA synthesis past the lesion. Reversal of these defects requires ubiquitylated FANCI-FANCD2. Our results show that multiple steps of the essential S-phase ICL repair mechanism fail when the Fanconi anemia pathway is compromised.

  9. Mode Medium Interaction. A Theoretical Study.

    DTIC Science & Technology

    1980-09-01

    Report) 10. SUPPLEMENTARY NOTES I9. KEY WORDS (Conrlfnue on reverse side II necessary mnd Identify by block rumber) CO, Laser Transfer Function...Chemical Laser Unstable Resonator Brillouin Scattering Instability Supersonic Laser Modes Acoustic Noise Acoustic Instability Perturbed Resonator Gain...end Identify by block number) An instability in the output of a high-power unstable-resonator cw CO2 laser is analyzed in terms of the perturbative

  10. Is there a common mechanism underlying genomic instability, bystander effects and other nontargeted effects of exposure to ionizing radiation?

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    A number of nontargeted and delayed effects associated with radiation exposure have now been described. These include radiation-induced genomic instability, death-inducing and bystander effects, clastogenic factors and transgenerational effects. It is unlikely that these nontargeted effects are directly induced by cellular irradiation. Instead, it is proposed that some as yet to be identified secreted factor can be produced by irradiated cells that can stimulate effects in nonirradiated cells (death-inducing and bystander effects, clastogenic factors) and perpetuate genomic instability in the clonally expanded progeny of an irradiated cell. The proposed factor must be soluble and capable of being transported between cells by cell-to-cell gap junction communication channels. Furthermore, it must have the potential to stimulate cellular cytokines and/or reactive oxygen species. While it is difficult to imagine a role for such a secreted factor in contributing to transgenerational effects, the other nontargeted effects of radiation may all share a common mechanism.

  11. PRDM9 variation strongly influences recombination hot-spot activity and meiotic instability in humans.

    PubMed

    Berg, Ingrid L; Neumann, Rita; Lam, Kwan-Wood G; Sarbajna, Shriparna; Odenthal-Hesse, Linda; May, Celia A; Jeffreys, Alec J

    2010-10-01

    PRDM9 has recently been identified as a likely trans regulator of meiotic recombination hot spots in humans and mice. PRDM9 contains a zinc finger array that, in humans, can recognize a short sequence motif associated with hot spots, with binding to this motif possibly triggering hot-spot activity via chromatin remodeling. We now report that human genetic variation at the PRDM9 locus has a strong effect on sperm hot-spot activity, even at hot spots lacking the sequence motif. Subtle changes within the zinc finger array can create hot-spot nonactivating or enhancing variants and can even trigger the appearance of a new hot spot, suggesting that PRDM9 is a major global regulator of hot spots in humans. Variation at the PRDM9 locus also influences aspects of genome instability-specifically, a megabase-scale rearrangement underlying two genomic disorders as well as minisatellite instability-implicating PRDM9 as a risk factor for some pathological genome rearrangements.

  12. PRDM9 variation strongly influences recombination hot-spot activity and meiotic instability in humans

    PubMed Central

    Berg, Ingrid L.; Neumann, Rita; Lam, Kwan-Wood G.; Sarbajna, Shriparna; Odenthal-Hesse, Linda; May, Celia A.; Jeffreys, Alec J.

    2011-01-01

    PRDM9 has recently been identified as a likely trans-regulator of meiotic recombination hot spots in humans and mice1-3. The protein contains a zinc finger array that in humans can recognise a short sequence motif associated with hot spots4, with binding to this motif possibly triggering hot-spot activity via chromatin remodelling5. We now show that variation in the zinc finger array in humans has a profound effect on sperm hot-spot activity, even at hot spots lacking the sequence motif. Very subtle changes within the array can create hot-spot non-activating and enhancing alleles, and even trigger the appearance of a new hot spot. PRDM9 thus appears to be the preeminent global regulator of hot spots in humans. Variation at this locus also influences aspects of genome instability, specifically a megabase-scale rearrangement underlying two genomic disorders6 as well as minisatellite instability7, implicating PRDM9 as a risk factor for some pathological genome rearrangements. PMID:20818382

  13. Spatiotemporal character of the Bobylev-Pikin flexoelectric instability in a twisted nematic bent-core liquid crystal exposed to very low frequency fields.

    PubMed

    Krishnamurthy, K S

    2014-05-01

    The Bobylev-Pikin striped-pattern state induced by a homogeneous electric field is a volume flexoelectric instability, originating in the midregion of a planarly aligned nematic liquid crystal layer. We find that the instability acquires a spatiotemporal character upon excitation by a low frequency (0.5 Hz) square wave field. This is demonstrated using a bent-core liquid crystal, initially in the 90°-twisted planar configuration. The flexoelectric modulation appears close to the cathode at each polarity reversal and, at low voltage amplitudes, decays completely as the field becomes steady. Correspondingly, at successive polarity changes, the stripe direction switches between the alignment directions at the two substrates. For large voltages, the stripes formed nearly along the alignment direction at the cathode gradually reorient toward the midplane director. These observations are generally attributed to inhomogeneous and time-dependent field conditions that come to exist after each polarity reversal. Polarity dependence of the instability is attributed to the formation of intrinsic double layers that bring about an asymmetry in surface fields. Momentary field elevation near the cathode following a voltage sign reversal and concomitant gradient flexoelectric polarization are considered the key factors in accounting for the surfacelike modulation observed at low voltages.

  14. Radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Kronenberg, A.

    1994-01-01

    Quantitative assessment of the heritable somatic effects of ionizing radiation exposures has relied upon the assumption that radiation-induced lesions were 'fixed' in the DNA prior to the first postirradiation mitosis. Lesion conversion was thought to occur during the initial round of DNA replication or as a consequence of error-prone enzymatic processing of lesions. The standard experimental protocols for the assessment of a variety of radiation-induced endpoints (cell death, specific locus mutations, neoplastic transformation and chromosome aberrations) evaluate these various endpoints at a single snapshot in time. In contrast with the aforementioned approaches, some studies have specifically assessed radiation effects as a function of time following exposure. Evidence has accumulated in support of the hypothesis that radiation exposure induces a persistent destabilization of the genome. This instability has been observed as a delayed expression of lethal mutations, as an enhanced rate of accumulation of non-lethal heritable alterations, and as a progressive intraclonal chromosomal heterogeneity. The genetic controls and biochemical mechanisms underlying radiation-induced genomic instability have not yet been delineated. The aim is to integrate the accumulated evidence that suggests that radiation exposure has a persistent effect on the stability of the mammalian genome.

  15. Hst3 and Hst4 histone deacetylases regulate replicative lifespan by preventing genome instability in Saccharomyces cerevisiae.

    PubMed

    Hachinohe, Mayumi; Hanaoka, Fumio; Masumoto, Hiroshi

    2011-04-01

    The acetylation of histone H3 on lysine 56 (H3-K56) occurs during S phase and contributes to the processes of DNA damage repair and histone gene transcription. Hst3 and Hst4 have been implicated in the removal of histone H3-K56 acetylation in Saccharomyces cerevisiae. Here, we show that Hst3 and Hst4 regulate the replicative lifespan of S. cerevisiae mother cells. An hst3Δ hst4Δ double-mutant strain, in which acetylation of histone H3-K56 persists throughout the genome during the cell cycle, exhibits genomic instability, which is manifested by a loss of heterozygosity with cell aging. Furthermore, we show that in the absence of other proteins Hst3 and Hst4 can deacetylate nucleosomal histone H3-K56 in a nicotinamide adenine dinucleotide(NAD)(+) -dependent manner. Our results suggest that Hst3 and Hst4 regulate replicative lifespan through their ability to deacetylate histone H3-K56 to minimize genomic instability. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  16. Lens epithelial cells derived from alphaB-crystallin knockout mice demonstrate hyperproliferation and genomic instability.

    PubMed

    Andley, U P; Song, Z; Wawrousek, E F; Brady, J P; Bassnett, S; Fleming, T P

    2001-01-01

    alphaB-crystallin is a member of the small heat shock protein family and can act as a molecular chaperone preventing the in vitro aggregation of other proteins denatured by heat or other stress conditions. Expression of alphaB-crystallin increases in cells exposed to stress and enhanced in tumors of neuroectodermal origin and in many neurodegenerative diseases. In the present study, we examined the properties of lens epithelial cells derived from mice in which the alphaB-crystallin gene had been knocked out. Primary rodent cells immortalize spontaneously in tissue culture with a frequency of 10(-5) to 10(-6). Primary lens epithelial cells derived from alphaB-crystallin-/- mice produced hyperproliferative clones at a frequency of 7.6 x 10(-2), four orders of magnitude greater than predicted by spontaneous immortalization (1). Hyperproliferative alphaB-crystallin-/- cells were shown to be truly immortal since they have been passaged for more than 100 population doublings without any diminution in growth potential. In striking contrast to the wild-type cells, which were diploid, the alphaB-crystallin-/- cultures had a high proportion of tetraploid and higher ploidy cells, indicating that the loss of alphaB-crystallin is associated with an increase in genomic instability. Further evidence of genomic instability of alphaB-crystallin-/- cells was observed when primary cultures were infected with Ad12-SV40 hybrid virus. In striking contrast to wild-type cells, alphaB-crystallin-/- cells expressing SV40 T antigen exhibited a widespread cytocidal response 2 to 3 days after attaining confluence, indicating that SV40 T antigen enhanced the intrinsic genomic instability of alphaB-crystallin-/- lens epithelial cells. These observations suggest that the widely distributed molecular chaperone alphaB-crystallin may play an important nuclear role in maintaining genomic integrity.

  17. Phosphatidylinositol 3-Kinase (PI3K) δ blockade increases genomic instability in B cells

    PubMed Central

    Compagno, Mara; Wang, Qi; Pighi, Chiara; Cheong, Taek-Chin; Meng, Fei-Long; Poggio, Teresa; Yeap, Leng-Siew; Karaca, Elif; Blasco, Rafael B.; Langellotto, Fernanda; Ambrogio, Chiara; Voena, Claudia; Wiestner, Adrian; Kasar, Siddha N.; Brown, Jennifer R.; Sun, Jing; Wu, Catherine J.; Gostissa, Monica; Alt, Frederick W.; Chiarle, Roberto

    2017-01-01

    Activation-induced cytidine deaminase (AID) is a B-cell specific enzyme that targets immunoglobulin (Ig) genes to initiate class switch recombination (CSR) and somatic hypermutation (SHM)1. Through off-target activity, however, AID has a much broader impact on genomic instability by initiating oncogenic chromosomal translocations and mutations involved in lymphoma development and progression2. AID expression is tightly regulated in B cells and its overexpression leads to enhanced genomic instability and lymphoma formation3. The phosphatidylinositol 3-kinase (PI3K) δ pathway plays a key role in AID regulation by suppressing its expression in B cells4. Novel drugs for leukemia or lymphoma therapy such as idelalisib, duvelisib or ibrutinib block PI3Kδ activity directly or indirectly5–8, potentially affecting AID expression and, consequently, genomic stability in B cells. Here we show that treatment of primary mouse B cells with idelalisib or duvelisib, and to a lesser extent ibrutinib, enhanced the expression of AID and increased somatic hypermutation (SHM) and chromosomal translocation frequency to the Igh locus and to several AID off-target sites. Both these effects were completely abrogated in AID deficient B cells. PI3Kδ inhibitors or ibrutinib increased the formation of AID-dependent tumors in pristane-treated mice. Consistently, PI3Kδ inhibitors enhanced AID expression and translocation frequency to IgH and AID off-target sites in human chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) cell lines, and patients treated with idelalisib, but not ibrutinib, showed increased SHM in AID off-targets. In summary, we show that PI3Kδ or BTK inhibitors increase genomic instability in normal and neoplastic B cells by an AID-dependent mechanism, an effect that should be carefully considered as such inhibitors are administered for years to patients. PMID:28199309

  18. Stabilization of lower hybrid drift modes by finite parallel wavenumber and electron temperature gradients in field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Farengo, R.; Guzdar, P. N.; Lee, Y. C.

    1989-08-01

    The effect of finite parallel wavenumber and electron temperature gradients on the lower hybrid drift instability is studied in the parameter regime corresponding to the TRX-2 device [Fusion Technol. 9, 48 (1986)]. Perturbations in the electrostatic potential and all three components of the vector potential are considered and finite beta electron orbit modifications are included. The electron temperature gradient decreases the growth rate of the instability but, for kz=0, unstable modes exist for ηe(=T'en0/Ten0)>6. Since finite kz effects completely stabilize the mode at small values of kz/ky(≂5×10-3), magnetic shear could be responsible for stabilizing the lower hybrid drift instability in field-reversed configurations.

  19. Suppression of the n=2 rotational instability in field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Hoffman, Alan L.; Slough, J.; Harding, Dennis G.

    1983-06-01

    Compact toroid plasmas formed in field-reversed theta pinches are generally destroyed after 30-50 μsec by a rotating n=2 instability. In the reported experiment, instability is controlled, and the plasma destruction is avoided in the TRX-1 theta pinch through the application of octopole magnetic fields. The decay times for loss of poloidal flux and particles are unaffected by the octopole fields. These decay times are about 100 μsec based on inferences from interferometry and excluded flux measurements. The weak, rotating elliptical disturbance (controlled n=2 mode) also made possible a novel determination of the density profile near the separatrix using single-chord interferometry. The local density gradient scale length in this region is found to be about one ion gyrodiameter.

  20. Histone demethylase JARID1C inactivation triggers genomic instability in sporadic renal cancer

    PubMed Central

    Rondinelli, Beatrice; Rosano, Dalia; Antonini, Elena; Frenquelli, Michela; Montanini, Laura; Huang, DaChuan; Segalla, Simona; Yoshihara, Kosuke; Amin, Samir B.; Lazarevic, Dejan; The, Bin Tean; Verhaak, Roel G.W.; Futreal, P. Andrew; Di Croce, Luciano; Chin, Lynda; Cittaro, Davide; Tonon, Giovanni

    2015-01-01

    Mutations in genes encoding chromatin-remodeling proteins are often identified in a variety of cancers. For example, the histone demethylase JARID1C is frequently inactivated in patients with clear cell renal cell carcinoma (ccRCC); however, it is largely unknown how JARID1C dysfunction promotes cancer. Here, we determined that JARID1C binds broadly to chromatin domains characterized by the trimethylation of lysine 9 (H3K9me3), which is a histone mark enriched in heterochromatin. Moreover, we found that JARID1C localizes on heterochromatin, is required for heterochromatin replication, and forms a complex with established players of heterochromatin assembly, including SUV39H1 and HP1α, as well as with proteins not previously associated with heterochromatin assembly, such as the cullin 4 (CUL4) complex adaptor protein DDB1. Transcription on heterochromatin is tightly suppressed to safeguard the genome, and in ccRCC cells, JARID1C inactivation led to the unrestrained expression of heterochromatic noncoding RNAs (ncRNAs) that in turn triggered genomic instability. Moreover, ccRCC patients harboring JARID1C mutations exhibited aberrant ncRNA expression and increased genomic rearrangements compared with ccRCC patients with tumors endowed with other genetic lesions. Together, these data suggest that inactivation of JARID1C in renal cancer leads to heterochromatin disruption, genomic rearrangement, and aggressive ccRCCs. Moreover, our results shed light on a mechanism that underlies genomic instability in sporadic cancers. PMID:26551685

  1. Evaluation of reliability on STR typing at leukemic patients used for forensic purposes.

    PubMed

    Filoglu, G; Bulbul, O; Rayimoglu, G; Yediay, F E; Zorlu, T; Ongoren, S; Altuncul, H

    2014-06-01

    Over the past decades, main advances in the field of molecular biology, coupled with benefits in genomic technologies, have led to detailed molecular investigations in the genetic diversity generated by researchers. Short tandem repeat (STR) loci are polymorphic loci found throughout all eukaryotic genome. DNA profiling identification, parental testing and kinship analysis by analysis of STR loci have been widely used in forensic sciences since 1993. Malignant tissues may sometimes be the source of biological material for forensic analysis, including identification of individuals or paternity testing. There are a number of studies on microsatellite instability in different types of tumors by comparing the STR profiles of malignant and healthy tissues on the same individuals. Defects in DNA repair pathways (non-repair or mis-repair) and metabolism lead to an accumulation of microsatellite alterations in genomic DNA of various cancer types that result genomic instabilities on forensic analyses. Common forms of genomic instability are loss of heterozygosity (LOH) and microsatellite instability (MSI). In this study, the applicability of autosomal STR markers, which are routinely used in forensic analysis, were investigated in order to detect genotypes in blood samples collected from leukemic patients to estimate the reliability of the results when malignant tissues are used as a source of forensic individual identification. Specimens were collected from 90 acute and 10 chronic leukemia volunteers with oral swabs as well as their paired peripheral blood samples from the Oncology Centre of the Department of Hematology at Istanbul University, during the years 2010-2011. Specimens were tested and compared with 16 somatic STR loci (CSFIPO, THO1, TPOX, vWA, D2S1338, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D19S433, D21S11 and FGA) widely used in forensic identification and kinship. Only two STR instabilities were encountered among 100 specimens. An MSI in the FGA loci and a LOH in the D2S1338 loci were determined in two individuals separately. Our results demonstrate that the use of the biological samples from leukemia patients in forensic identification and kinship testing is questionable, especially if known microsatellite instability is available. Genetic instabilities may alter the STR polymorphism, leading to potential errors on forensic identification of individuals. Therefore, typing of autosomal STRs from leukemia patients should be performed with both healthy and malignant tissue samples of individual as references.

  2. Beneficial and paradoxical roles of selenium at nutritional levels of intake in healthspan and longevity

    USDA-ARS?s Scientific Manuscript database

    Accumulation of damage to the genome and macromolecules is a hallmark of aging, age-associated degeneration, and genome instability syndromes. Although the processes of aging are irreversible, they can be modulated by genome maintenance pathways and environmental factors such as diet. Selenium (Se) ...

  3. Dana-Farber Cancer Institute | Office of Cancer Genomics

    Cancer.gov

    Functional Annotation of Cancer Genomes Principal Investigator: William C. Hahn, M.D., Ph.D. The comprehensive characterization of cancer genomes has and will continue to provide an increasingly complete catalog of genetic alterations in specific cancers. However, most epithelial cancers harbor hundreds of genetic alterations as a consequence of genomic instability. Therefore, the functional consequences of the majority of mutations remain unclear.

  4. Short loop length and high thermal stability determine genomic instability induced by G-quadruplex-forming minisatellites

    PubMed Central

    Piazza, Aurèle; Adrian, Michael; Samazan, Frédéric; Heddi, Brahim; Hamon, Florian; Serero, Alexandre; Lopes, Judith; Teulade-Fichou, Marie-Paule; Phan, Anh Tuân; Nicolas, Alain

    2015-01-01

    G-quadruplexes (G4) are polymorphic four-stranded structures formed by certain G-rich nucleic acids, with various biological roles. However, structural features dictating their formation and/or functionin vivo are unknown. InS. cerevisiae, the pathological persistency of G4 within the CEB1 minisatellite induces its rearrangement during leading-strand replication. We now show that several other G4-forming sequences remain stable. Extensive mutagenesis of the CEB25 minisatellite motif reveals that only variants with very short (≤ 4 nt) G4 loops preferentially containing pyrimidine bases trigger genomic instability. Parallel biophysical analyses demonstrate that shortening loop length does not change the monomorphic G4 structure of CEB25 variants but drastically increases its thermal stability, in correlation with thein vivo instability. Finally, bioinformatics analyses reveal that the threat for genomic stability posed by G4 bearing short pyrimidine loops is conserved inC. elegans and humans. This work provides a framework explanation for the heterogeneous instability behavior of G4-forming sequencesin vivo, highlights the importance of structure thermal stability, and questions the prevailing assumption that G4 structures with short or longer loops are as likely to formin vivo. PMID:25956747

  5. Methods and compositions for protection of cells and tissues from computed tomography radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grdina, David J.

    Described are methods for preventing or inhibiting genomic instability and in cells affected by diagnostic radiology procedures employing ionizing radiation. Embodiments include methods of preventing or inhibiting genomic instability and in cells affected by computed tomography (CT) radiation. Subjects receiving ionizing radiation may be those persons suspected of having cancer, or cancer patients having received or currently receiving cancer therapy, and or those patients having received previous ionizing radiation, including those who are approaching or have exceeded the recommended total radiation dose for a person.

  6. On the role of the lower hybrid drift instability in substorm dynamics

    NASA Technical Reports Server (NTRS)

    Huba, J. D.; Gladd, N. T.; Drake, J. F.

    1981-01-01

    Recent studies of the lower hybrid drift instability have shed new light on the role of this mode in field-reversed plasmas. For substorm magnetotail conditions it is found that the lower hybrid drift instability can penetrate to the neutral line and can dissipate magnetic energy at a rate of approximately 4 x 10 to the 17th erg/s. Thus this instability is capable of playing a major role in the onset of substorms and providing resistivity for reconnection processes in the context of the neutral line substorm model.

  7. Recognition and repair of chemically heterogeneous structures at DNA ends

    PubMed Central

    Andres, Sara N.; Schellenberg, Matthew J.; Wallace, Bret D.; Tumbale, Percy; Williams, R. Scott

    2014-01-01

    Exposure to environmental toxicants and stressors, radiation, pharmaceutical drugs, inflammation, cellular respiration, and routine DNA metabolism all lead to the production of cytotoxic DNA strand breaks. Akin to splintered wood, DNA breaks are not “clean”. Rather, DNA breaks typically lack DNA 5'-phosphate and 3'-hydroxyl moieties required for DNA synthesis and DNA ligation. Failure to resolve damage at DNA ends can lead to abnormal DNA replication and repair, and is associated with genomic instability, mutagenesis, neurological disease, ageing and carcinogenesis. An array of chemically heterogeneous DNA termini arises from spontaneously generated DNA single-strand and double-strand breaks (SSBs and DSBs), and also from normal and/or inappropriate DNA metabolism by DNA polymerases, DNA ligases and topoisomerases. As a front line of defense to these genotoxic insults, eukaryotic cells have accrued an arsenal of enzymatic first responders that bind and protect damaged DNA termini, and enzymatically tailor DNA ends for DNA repair synthesis and ligation. These nucleic acid transactions employ direct damage reversal enzymes including Aprataxin (APTX), Polynucleotide kinase phosphatase (PNK), the tyrosyl DNA phosphodiesterases (TDP1 and TDP2), the Ku70/80 complex and DNA polymerase β (POLβ). Nucleolytic processing enzymes such as the MRE11/RAD50/NBS1/CtIP complex, Flap endonuclease (FEN1) and the apurinic endonucleases (APE1 and APE2) also act in the chemical "cleansing" of DNA breaks to prevent genomic instability and disease, and promote progression of DNA- and RNA-DNA damage response (DDR and RDDR) pathways. Here, we provide an overview of cellular first responders dedicated to the detection and repair of abnormal DNA termini. PMID:25111769

  8. Human T-cell leukemia virus-I tax oncoprotein functionally targets a subnuclear complex involved in cellular DNA damage-response.

    PubMed

    Haoudi, Abdelali; Daniels, Rodney C; Wong, Eric; Kupfer, Gary; Semmes, O John

    2003-09-26

    The virally encoded oncoprotein Tax has been implicated in HTLV-1-mediated cellular transformation. The exact mechanism by which this protein contributes to the oncogenic process is not known. However, it has been hypothesized that Tax induces genomic instability via repression of cellular DNA repair. We examined the effect of de novo Tax expression upon the cell cycle, because appropriate activation of cell cycle checkpoints is essential to a robust damage-repair response. Upon induction of tax expression, Jurkat T-cells displayed a pronounced accumulation in G2/M that was reversible by caffeine. We examined the G2-specific checkpoint signaling response in these cells and found activation of the ATM/chk2-mediated pathway, whereas the ATR/chk1-mediated response was unaffected. Immunoprecipitation with anti-chk2 antibody results in co-precipitation of Tax demonstrating a direct interaction of Tax with a chk2-containing complex. We also show that Tax targets a discrete nuclear site and co-localizes with chk2 and not chk1. This nuclear site, previously identified as Tax Speckled Structures (TSS), also contains the early damage response factor 53BP1. The recruitment of 53BP1 to TSS is dependent upon ATM signaling and requires expression of Tax. Specifically, Tax expression induces redistribution of diffuse nuclear 53BP1 to the TSS foci. Taken together these data suggest that the TSS describe a unique nuclear site involved in DNA damage recognition, repair response, and cell cycle checkpoint activation. We suggest that association of Tax with this multifunctional subnuclear site results in disruption of a subset of the site-specific activities and contributes to cellular genomic instability.

  9. Telomeres, Reproductive Aging, and Genomic Instability During Early Development.

    PubMed

    Keefe, David L

    2016-12-01

    Implantation rate decreases and miscarriage rate increases with advancing maternal age. The oocyte must be the locus of reproductive aging because donation of oocytes from younger to older women abrogates the effects of aging on fecundity. Nuclear transfer experiments in a mouse model of reproductive aging show that the reproductive aging phenotype segregates with the nucleus rather than the cytoplasm. A number of factors within the nucleus have been hypothesized to mediate reproductive aging, including disruption of cohesions, reduced chiasma, aneuploidy, disrupted meiotic spindles, and DNA damage caused by chronic exposure to reactive oxygen species. We have proposed telomere attrition as a parsimonious way to explain these diverse effects of aging on oocyte function. Telomeres are repetitive sequences of DNA and associated proteins, which form a loop (t loop) at chromosome ends. Telomeres prevent the blunt end of DNA from triggering a DNA damage response. Previously, we showed that experimental telomere shortening phenocopies reproductive aging in mice. Telomere shortening causes reduced synapsis and chiasma, chromosome fusions, embryo arrest and fragmentation, and abnormal meiotic spindles. Telomere length of polar bodies predicts the fragmentation of human embryos. Telomerase, the reverse transcriptase capable of reconstituting shortened telomeres, is only minimally active in oocytes and preimplantation embryos. Intriguingly, during the first cell cycles following activation, telomeres robustly elongate via a DNA double-strand break mechanism called alternative lengthening of telomeres (ALTs). Alternative lengthening of telomere takes place even in telomerase-null mice. This mechanism of telomere elongation previously had been found only in cancer cells lacking telomerase activity. We propose that ALT elongates telomeres across generations but does so at the cost of extensive genomic instability in preimplantation embryos. © The Author(s) 2016.

  10. Assessment of the Tumorigenic Potential of Spontaneously Immortalized and hTERT-Immortalized Cultured Dental Pulp Stem Cells

    PubMed Central

    Wilson, Ryan; Urraca, Nora; Skobowiat, Cezary; Hope, Kevin A.; Miravalle, Leticia; Chamberlin, Reed; Donaldson, Martin; Seagroves, Tiffany N.

    2015-01-01

    Dental pulp stem cells (DPSCs) provide an exciting new avenue to study neurogenetic disorders. DPSCs are neural crest-derived cells with the ability to differentiate into numerous tissues including neurons. The therapeutic potential of stem cell-derived lines exposed to culturing ex vivo before reintroduction into patients could be limited if the cultured cells acquired tumorigenic potential. We tested whether DPSCs that spontaneously immortalized in culture acquired features of transformed cells. We analyzed immortalized DPSCs for anchorage-independent growth, genomic instability, and ability to differentiate into neurons. Finally, we tested both spontaneously immortalized and human telomerase reverse transcriptase (hTERT)-immortalized DPSC lines for the ability to form tumors in immunocompromised animals. Although we observed increased colony-forming potential in soft agar for the spontaneously immortalized and hTERT-immortalized DPSC lines relative to low-passage DPSC, no tumors were detected from any of the DPSC lines tested. We noticed some genomic instability in hTERT-immortalized DPSCs but not in the spontaneously immortalized lines tested. We determined that immortalized DPSC lines generated in our laboratory, whether spontaneously or induced, have not acquired the potential to form tumors in mice. These data suggest cultured DPSC lines that can be differentiated into neurons may be safe for future in vivo therapy for neurobiological diseases. Significance This study demonstrated that immortalized dental pulp stem cells (DPSCs) do not form tumors in animals and that immortalized DPSCs can be differentiated into neurons in culture. These results lend support to the use of primary and immortalized DPSCs for future therapeutic approaches to treatment of neurobiological diseases. PMID:26032749

  11. Trichloroethylene-mediated cytotoxicity in human epidermal keratinocytes is mediated by the rapid accumulation of intracellular calcium: Interception by naringenin.

    PubMed

    Ali, F; Khan, A Q; Khan, R; Sultana, S

    2016-02-01

    Industrial solvents pose a significant threat to the humankind. The mechanisms of their toxicity still remain in debate. Trichloroethylene (TCE) is a widespread industrial solvent responsible for severe liver dysfunction, cutaneous toxicity in occupationally exposed humans. We utilized an in vitro system of human epidermal keratinocyte (HaCaT) cells in this study to avoid complex cell and extracellular interactions. We report the cytotoxicity of organic solvent TCE in HaCaT and its reversal by a natural flavanone, naringenin (Nar). The cytotoxicity was attributed to the rapid intracellular free calcium (Ca(2+)) release, which might lead to the elevation of protein kinase C along with robust free radical generation, instability due to energy depletion, and sensitization of intracellular stress signal transducer nuclear factor κB. These effects were actually seen to induce significant amount of genomic DNA fragmentation. Furthermore, all these effects of TCE were effectively reversed by the treatment of Nar, a natural flavanone. Our studies identify intracellular Ca as a unique target used by organic solvents in the cytotoxicity and highlight the Ca(2+) ion stabilizer properties of Nar. © The Author(s) 2015.

  12. Structural Maturation of HIV-1 Reverse Transcriptase—A Metamorphic Solution to Genomic Instability

    PubMed Central

    London, Robert E.

    2016-01-01

    Human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT)—a critical enzyme of the viral life cycle—undergoes a complex maturation process, required so that a pair of p66 precursor proteins can develop conformationally along different pathways, one evolving to form active polymerase and ribonuclease H (RH) domains, while the second forms a non-functional polymerase and a proteolyzed RH domain. These parallel maturation pathways rely on the structural ambiguity of a metamorphic polymerase domain, for which the sequence–structure relationship is not unique. Recent nuclear magnetic resonance (NMR) studies utilizing selective labeling techniques, and structural characterization of the p66 monomer precursor have provided important insights into the details of this maturation pathway, revealing many aspects of the three major steps involved: (1) domain rearrangement; (2) dimerization; and (3) subunit-selective RH domain proteolysis. This review summarizes the major structural changes that occur during the maturation process. We also highlight how mutations, often viewed within the context of the mature RT heterodimer, can exert a major influence on maturation and dimerization. It is further suggested that several steps in the RT maturation pathway may provide attractive targets for drug development. PMID:27690082

  13. RECQL5 Controls Transcript Elongation and Suppresses Genome Instability Associated with Transcription Stress

    PubMed Central

    Saponaro, Marco; Kantidakis, Theodoros; Mitter, Richard; Kelly, Gavin P.; Heron, Mark; Williams, Hannah; Söding, Johannes; Stewart, Aengus; Svejstrup, Jesper Q.

    2014-01-01

    Summary RECQL5 is the sole member of the RECQ family of helicases associated with RNA polymerase II (RNAPII). We now show that RECQL5 is a general elongation factor that is important for preserving genome stability during transcription. Depletion or overexpression of RECQL5 results in corresponding shifts in the genome-wide RNAPII density profile. Elongation is particularly affected, with RECQL5 depletion causing a striking increase in the average rate, concurrent with increased stalling, pausing, arrest, and/or backtracking (transcription stress). RECQL5 therefore controls the movement of RNAPII across genes. Loss of RECQL5 also results in the loss or gain of genomic regions, with the breakpoints of lost regions located in genes and common fragile sites. The chromosomal breakpoints overlap with areas of elevated transcription stress, suggesting that RECQL5 suppresses such stress and its detrimental effects, and thereby prevents genome instability in the transcribed region of genes. PMID:24836610

  14. Genomic Instability in Human Pluripotent Stem Cells Arises from Replicative Stress and Chromosome Condensation Defects.

    PubMed

    Lamm, Noa; Ben-David, Uri; Golan-Lev, Tamar; Storchová, Zuzana; Benvenisty, Nissim; Kerem, Batsheva

    2016-02-04

    Human pluripotent stem cells (hPSCs) frequently acquire chromosomal aberrations such as aneuploidy in culture. These aberrations progressively increase over time and may compromise the properties and clinical utility of the cells. The underlying mechanisms that drive initial genomic instability and its continued progression are largely unknown. Here, we show that aneuploid hPSCs undergo DNA replication stress, resulting in defective chromosome condensation and segregation. Aneuploid hPSCs show altered levels of actin cytoskeletal genes controlled by the transcription factor SRF, and overexpression of SRF rescues impaired chromosome condensation and segregation defects in aneuploid hPSCs. Furthermore, SRF downregulation in diploid hPSCs induces replication stress and perturbed condensation similar to that seen in aneuploid cells. Together, these results suggest that decreased SRF expression induces replicative stress and chromosomal condensation defects that underlie the ongoing chromosomal instability seen in aneuploid hPSCs. A similar mechanism may also operate during initiation of instability in diploid cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Reverse Genetics for Mammalian Orthoreovirus.

    PubMed

    Stuart, Johnasha D; Phillips, Matthew B; Boehme, Karl W

    2017-01-01

    Reverse genetics allows introduction of specific alterations into a viral genome. Studies performed with mutant viruses generated using reverse genetics approaches have contributed immeasurably to our understanding of viral replication and pathogenesis, and also have led to development of novel vaccines and virus-based vectors. Here, we describe the reverse genetics system that allows for production and recovery of mammalian orthoreovirus, a double-stranded (ds) RNA virus, from plasmids that encode the viral genome.

  16. PTEN in the maintenance of genome integrity: From DNA replication to chromosome segregation.

    PubMed

    Hou, Sheng-Qi; Ouyang, Meng; Brandmaier, Andrew; Hao, Hongbo; Shen, Wen H

    2017-10-01

    Faithful DNA replication and accurate chromosome segregation are the key machineries of genetic transmission. Disruption of these processes represents a hallmark of cancer and often results from loss of tumor suppressors. PTEN is an important tumor suppressor that is frequently mutated or deleted in human cancer. Loss of PTEN has been associated with aneuploidy and poor prognosis in cancer patients. In mice, Pten deletion or mutation drives genomic instability and tumor development. PTEN deficiency induces DNA replication stress, confers stress tolerance, and disrupts mitotic spindle architecture, leading to accumulation of structural and numerical chromosome instability. Therefore, PTEN guards the genome by controlling multiple processes of chromosome inheritance. Here, we summarize current understanding of the PTEN function in promoting high-fidelity transmission of genetic information. We also discuss the PTEN pathways of genome maintenance and highlight potential targets for cancer treatment. © 2017 WILEY Periodicals, Inc.

  17. Human RTEL1 deficiency causes Hoyeraal-Hreidarsson syndrome with short telomeres and genome instability.

    PubMed

    Le Guen, Tangui; Jullien, Laurent; Touzot, Fabien; Schertzer, Michael; Gaillard, Laetitia; Perderiset, Mylène; Carpentier, Wassila; Nitschke, Patrick; Picard, Capucine; Couillault, Gérard; Soulier, Jean; Fischer, Alain; Callebaut, Isabelle; Jabado, Nada; Londono-Vallejo, Arturo; de Villartay, Jean-Pierre; Revy, Patrick

    2013-08-15

    Hoyeraal-Hreidarsson syndrome (HHS), a severe variant of dyskeratosis congenita (DC), is characterized by early onset bone marrow failure, immunodeficiency and developmental defects. Several factors involved in telomere length maintenance and/or protection are defective in HHS/DC, underlining the relationship between telomere dysfunction and these diseases. By combining whole-genome linkage analysis and exome sequencing, we identified compound heterozygous RTEL1 (regulator of telomere elongation helicase 1) mutations in three patients with HHS from two unrelated families. RTEL1 is a DNA helicase that participates in DNA replication, DNA repair and telomere integrity. We show that, in addition to short telomeres, RTEL1-deficient cells from patients exhibit hallmarks of genome instability, including spontaneous DNA damage, anaphase bridges and telomeric aberrations. Collectively, these results identify RTEL1 as a novel HHS-causing gene and highlight its role as a genomic caretaker in humans.

  18. No significant level of inheritable interchromosomal aberrations in the progeny of bystander primary human fibroblasts after alpha particle irradiation

    NASA Astrophysics Data System (ADS)

    Hu, Burong; Zhu, Jiayun; Zhou, Hongning; Hei, Tom K.

    2013-02-01

    A major concern for bystander effects is the probability that normal healthy cells adjacent to the irradiated cells become genomically unstable and undergo further carcinogenesis after therapeutic irradiation or space mission where astronauts are exposed to low dose of heavy ions. Genomic instability is a hallmark of cancer cells. In the present study, two irradiation protocols were performed in order to ensure pure populations of bystander cells and the genomic instability in their progeny were investigated. After irradiation, chromosomal aberrations of cells were analyzed at designated time points using G2 phase premature chromosome condensation (G2-PCC) coupled with Giemsa staining and with multiplex fluorescent in situ hybridization (mFISH). Our Giemsa staining assay demonstrated that elevated yields of chromatid breaks were induced in the progeny of pure bystander primary fibroblasts up to 20 days after irradiation. mFISH assay showed no significant level of inheritable interchromosomal aberrations were induced in the progeny of the bystander cell groups, while the fractions of gross aberrations (chromatid breaks or chromosomal breaks) significantly increased in some bystander cell groups. These results suggest that genomic instability occurred in the progeny of the irradiation associated bystander normal fibroblasts exclude the inheritable interchromosomal aberration.

  19. No significant level of inheritable interchromosomal aberrations in the progeny of bystander primary human fibroblast after alpha particle irradiation.

    PubMed

    Hu, Burong; Zhu, Jiayun; Zhou, Hongning; Hei, Tom K

    2013-02-01

    A major concern for bystander effects is the probability that normal healthy cells adjacent to the irradiated cells become genomically unstable and undergo further carcinogenesis after therapeutic irradiation or space mission where astronauts are exposed to low dose of heavy ions. Genomic instability is a hallmark of cancer cells. In the present study, two irradiation protocols were performed in order to ensure pure populations of bystander cells and the genomic instability in their progeny were investigated. After irradiation, chromosomal aberrations of cells were analyzed at designated time points using G 2 phase premature chromosome condensation (G 2 -PCC) coupled with Giemsa staining and with multiplex fluorescent in situ hybridization (mFISH). Our Giemsa staining assay demonstrated that elevated yields of chromatid breaks were induced in the progeny of pure bystander primary fibroblasts up to 20 days after irradiation. MFISH assay showed no significant level of inheritable interchromosomal aberrations were induced in the progeny of the bystander cell groups, while the fractions of gross aberrations (chromatid breaks or chromosomal breaks) significantly increased in some bystander cell groups. These results suggest that genomic instability occurred in the progeny of the irradiation associated bystander normal fibroblasts exclude the inheritable interchromosomal aberration.

  20. RECQ-like helicases Sgs1 and BLM regulate R-loop–associated genome instability

    PubMed Central

    Chang, Emily Yun-Chia; Novoa, Carolina A.; Aristizabal, Maria J.; Coulombe, Yan; Segovia, Romulo; Shen, Yaoqing; Keong, Christelle; Tam, Annie S.; Jones, Steven J.M.; Masson, Jean-Yves; Kobor, Michael S.

    2017-01-01

    Sgs1, the orthologue of human Bloom’s syndrome helicase BLM, is a yeast DNA helicase functioning in DNA replication and repair. We show that SGS1 loss increases R-loop accumulation and sensitizes cells to transcription–replication collisions. Yeast lacking SGS1 accumulate R-loops and γ-H2A at sites of Sgs1 binding, replication pausing regions, and long genes. The mutation signature of sgs1Δ reveals copy number changes flanked by repetitive regions with high R-loop–forming potential. Analysis of BLM in Bloom’s syndrome fibroblasts or by depletion of BLM from human cancer cells confirms a role for Sgs1/BLM in suppressing R-loop–associated genome instability across species. In support of a potential direct effect, BLM is found physically proximal to DNA:RNA hybrids in human cells, and can efficiently unwind R-loops in vitro. Together, our data describe a conserved role for Sgs1/BLM in R-loop suppression and support an increasingly broad view of DNA repair and replication fork stabilizing proteins as modulators of R-loop–mediated genome instability. PMID:29042409

  1. TopBP1/Dpb11 binds DNA anaphase bridges to prevent genome instability

    PubMed Central

    Germann, Susanne M.; Schramke, Vera; Pedersen, Rune Troelsgaard; Gallina, Irene; Eckert-Boulet, Nadine; Oestergaard, Vibe H.

    2014-01-01

    DNA anaphase bridges are a potential source of genome instability that may lead to chromosome breakage or nondisjunction during mitosis. Two classes of anaphase bridges can be distinguished: DAPI-positive chromatin bridges and DAPI-negative ultrafine DNA bridges (UFBs). Here, we establish budding yeast Saccharomyces cerevisiae and the avian DT40 cell line as model systems for studying DNA anaphase bridges and show that TopBP1/Dpb11 plays an evolutionarily conserved role in their metabolism. Together with the single-stranded DNA binding protein RPA, TopBP1/Dpb11 binds to UFBs, and depletion of TopBP1/Dpb11 led to an accumulation of chromatin bridges. Importantly, the NoCut checkpoint that delays progression from anaphase to abscission in yeast was activated by both UFBs and chromatin bridges independently of Dpb11, and disruption of the NoCut checkpoint in Dpb11-depleted cells led to genome instability. In conclusion, we propose that TopBP1/Dpb11 prevents accumulation of anaphase bridges via stimulation of the Mec1/ATR kinase and suppression of homologous recombination. PMID:24379413

  2. TopBP1/Dpb11 binds DNA anaphase bridges to prevent genome instability.

    PubMed

    Germann, Susanne M; Schramke, Vera; Pedersen, Rune Troelsgaard; Gallina, Irene; Eckert-Boulet, Nadine; Oestergaard, Vibe H; Lisby, Michael

    2014-01-06

    DNA anaphase bridges are a potential source of genome instability that may lead to chromosome breakage or nondisjunction during mitosis. Two classes of anaphase bridges can be distinguished: DAPI-positive chromatin bridges and DAPI-negative ultrafine DNA bridges (UFBs). Here, we establish budding yeast Saccharomyces cerevisiae and the avian DT40 cell line as model systems for studying DNA anaphase bridges and show that TopBP1/Dpb11 plays an evolutionarily conserved role in their metabolism. Together with the single-stranded DNA binding protein RPA, TopBP1/Dpb11 binds to UFBs, and depletion of TopBP1/Dpb11 led to an accumulation of chromatin bridges. Importantly, the NoCut checkpoint that delays progression from anaphase to abscission in yeast was activated by both UFBs and chromatin bridges independently of Dpb11, and disruption of the NoCut checkpoint in Dpb11-depleted cells led to genome instability. In conclusion, we propose that TopBP1/Dpb11 prevents accumulation of anaphase bridges via stimulation of the Mec1/ATR kinase and suppression of homologous recombination.

  3. RECQ-like helicases Sgs1 and BLM regulate R-loop-associated genome instability.

    PubMed

    Chang, Emily Yun-Chia; Novoa, Carolina A; Aristizabal, Maria J; Coulombe, Yan; Segovia, Romulo; Chaturvedi, Richa; Shen, Yaoqing; Keong, Christelle; Tam, Annie S; Jones, Steven J M; Masson, Jean-Yves; Kobor, Michael S; Stirling, Peter C

    2017-12-04

    Sgs1, the orthologue of human Bloom's syndrome helicase BLM, is a yeast DNA helicase functioning in DNA replication and repair. We show that SGS1 loss increases R-loop accumulation and sensitizes cells to transcription-replication collisions. Yeast lacking SGS1 accumulate R-loops and γ-H2A at sites of Sgs1 binding, replication pausing regions, and long genes. The mutation signature of sgs1 Δ reveals copy number changes flanked by repetitive regions with high R-loop-forming potential. Analysis of BLM in Bloom's syndrome fibroblasts or by depletion of BLM from human cancer cells confirms a role for Sgs1/BLM in suppressing R-loop-associated genome instability across species. In support of a potential direct effect, BLM is found physically proximal to DNA:RNA hybrids in human cells, and can efficiently unwind R-loops in vitro. Together, our data describe a conserved role for Sgs1/BLM in R-loop suppression and support an increasingly broad view of DNA repair and replication fork stabilizing proteins as modulators of R-loop-mediated genome instability. © 2017 Chang et al.

  4. The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo.

    PubMed

    Ribeyre, Cyril; Lopes, Judith; Boulé, Jean-Baptiste; Piazza, Aurèle; Guédin, Aurore; Zakian, Virginia A; Mergny, Jean-Louis; Nicolas, Alain

    2009-05-01

    In budding yeast, the Pif1 DNA helicase is involved in the maintenance of both nuclear and mitochondrial genomes, but its role in these processes is still poorly understood. Here, we provide evidence for a new Pif1 function by demonstrating that its absence promotes genetic instability of alleles of the G-rich human minisatellite CEB1 inserted in the Saccharomyces cerevisiae genome, but not of other tandem repeats. Inactivation of other DNA helicases, including Sgs1, had no effect on CEB1 stability. In vitro, we show that CEB1 repeats formed stable G-quadruplex (G4) secondary structures and the Pif1 protein unwinds these structures more efficiently than regular B-DNA. Finally, synthetic CEB1 arrays in which we mutated the potential G4-forming sequences were no longer destabilized in pif1Delta cells. Hence, we conclude that CEB1 instability in pif1Delta cells depends on the potential to form G-quadruplex structures, suggesting that Pif1 could play a role in the metabolism of G4-forming sequences.

  5. Functions of Replication Protein A as a Sensor of R Loops and a Regulator of RNaseH1

    PubMed Central

    Nguyen, Hai Dang; Yadav, Tribhuwan; Giri, Sumanprava; Saez, Borja; Graubert, Timothy A.; Zou, Lee

    2017-01-01

    R loop, a transcription intermediate containing RNA:DNA hybrids and displaced single-stranded DNA (ssDNA), has emerged as a major source of genomic instability. RNaseH1, which cleaves the RNA in RNA:DNA hybrids, plays an important role in R loop suppression. Here, we show that replication protein A (RPA), a ssDNA-binding protein, interacts with RNaseH1 and colocalizes with both RNaseH1 and R loops in cells. In vitro, purified RPA directly enhances the association of RNaseH1 with RNA:DNA hybrids and stimulates the activity of RNaseH1 on R loops. An RPA binding-defective RNaseH1 mutant is not efficiently stimulated by RPA in vitro, fails to accumulate at R loops in cells, and loses the ability to suppress R loops and associated genomic instability. Thus, in addition to sensing DNA damage and replication stress, RPA is a sensor of R loops and a regulator of RNaseH1, extending the versatile role of RPA in suppression of genomic instability. PMID:28257700

  6. Analysis of the vortices in the inner flow of reversible pump turbine with the new omega vortex identification method

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-ning; Liu, Kai-hua; Li, Jin-wei; Xian, Hai-zhen; Du, Xiao-ze

    2018-05-01

    Reversible pump turbines are widely employed in the pumped hydro energy storage power plants. The frequent shifts among various operational modes for the reversible pump turbines pose various instability problems, e.g., the strong pressure fluctuation, the shaft swing, and the impeller damage. The instability is related to the vortices generated in the channels of the reversible pump turbines in the generating mode. In the present paper, a new omega vortex identification method is applied to the vortex analysis of the reversible pump turbines. The main advantage of the adopted algorithm is that it is physically independent of the selected values for the vortex identification in different working modes. Both weak and strong vortices can be identified by setting the same omega value in the whole passage of the reversible pump turbine. Five typical modes (turbine mode, runaway mode, turbine brake mode, zero-flow-rate mode and reverse pump mode) at several typical guide vane openings are selected for the analysis and comparisons. The differences between various modes and different guide vane openings are compared both qualitatively in terms of the vortex distributions and quantitatively in terms of the areas of the vortices in the reversible pump turbines. Our findings indicate that the new omega method could be successfully applied to the vortex identification in the reversible pump turbines.

  7. Wavenumber distribution in Hopf-wave instability: the reversible Selkov model of glycolytic oscillation.

    PubMed

    Dutt, Arun K

    2005-09-22

    We have investigated the short-wave instability due to Hopf bifurcation in a reaction-diffusion model of glycolytic oscillations. Very low values of the ratio d of the diffusion coefficient of the inhibitor (ATP) and that of the activator (ADP) do help to create short waves, whereas high values of the ratio d and the complexing reaction of the activator ADP reduces drastically the wave-instability domain, generating much longer wavelengths.

  8. Spontaneous and radiation-induced genomic instability in human cell lines differing in cellular TP53 status.

    PubMed

    Moore, Stephen R; Ritter, Linda E; Gibbons, Catherine F; Grosovsky, Andrew J

    2005-10-01

    Structural chromosomal rearrangements are commonly observed in tumor karyotypes and in radiation-induced genomic instability. Here we report the effects of TP53 deficiency on karyotypic stability before and after irradiation using related cells and clones differing in cellular TP53 status. The parental cell line, TK6, is a TP53 wild-type human B-lymphoblastoid line with a highly stable karyotype. In the two TK6 derivatives used here, TP53 has been inactivated by biochemical means (expression of HPV16 E6; TK6-5E) or genetic means (allelic inactivation; NH32). Biochemical inactivation of TP53 (TK6-5E) had little effect on the spontaneous karyotype, whereas allelic inactivation of TP53 (NH32) resulted in a modest increase in spontaneous karyotypic instability. After 2 Gy gamma irradiation, the number of unstable clones derived from TP53-deficient cells was significantly elevated compared to the TP53 wild-type counterpart. Extensively destabilized clones were common after irradiation in the set of clones derived from NH32 cells, and one was observed in the set of TK6-5E clones; however, they were never observed in TK6-derived clones. In two of the irradiated NH32 clones, whole chromosomes or chromosome bands were preferentially involved in alterations. These results suggest that genomic instability may differ both quantitatively and qualitatively as a consequence of altered TP53 expression. Some of the results showing repeated and preferential chromosome involvement in aberrations support a model in which instability may be driven by cis mechanisms.

  9. Prolonged Particulate Hexavalent Chromium Exposure Suppresses Homologous Recombination Repair in Human Lung Cells

    PubMed Central

    Browning, Cynthia L.; Qin, Qin; Kelly, Deborah F.; Prakash, Rohit; Vanoli, Fabio; Jasin, Maria

    2016-01-01

    Abstract Genomic instability is one of the primary models of carcinogenesis and a feature of almost all cancers. Homologous recombination (HR) repair protects against genomic instability by maintaining high genomic fidelity during the repair of DNA double strand breaks. The defining step of HR repair is the formation of the Rad51 nucleofilament, which facilitates the search for a homologous sequence and invasion of the template DNA strand. Particulate hexavalent chromium (Cr(VI)), a human lung carcinogen, induces DNA double strand breaks and chromosome instability. Since the loss of HR repair increases Cr(VI)-induced chromosome instability, we investigated the effect of extended Cr(VI) exposure on HR repair. We show acute (24 h) Cr(VI) exposure induces a normal HR repair response. In contrast, prolonged (120 h) exposure to particulate Cr(VI) inhibited HR repair and Rad51 nucleofilament formation. Prolonged Cr(VI) exposure had a profound effect on Rad51, evidenced by reduced protein levels and Rad51 mislocalization to the cytoplasm. The response of proteins involved in Rad51 nuclear import and nucleofilament formation displayed varying responses to prolonged Cr(VI) exposure. BRCA2 formed nuclear foci after prolonged Cr(VI) exposure, while Rad51C foci formation was suppressed. These results suggest that particulate Cr(VI), a major chemical carcinogen, inhibits HR repair by targeting Rad51, causing DNA double strand breaks to be repaired by a low fidelity, Rad51-independent repair pathway. These results further enhance our understanding of the underlying mechanism of Cr(VI)-induced chromosome instability and thus, carcinogenesis. PMID:27449664

  10. Bony increased-offset reversed shoulder arthroplasty: minimizing scapular impingement while maximizing glenoid fixation.

    PubMed

    Boileau, Pascal; Moineau, Grégory; Roussanne, Yannick; O'Shea, Kieran

    2011-09-01

    Scapular notching, prosthetic instability, limited shoulder rotation and loss of shoulder contour are associated with conventional medialized design reverse shoulder arthroplasty. Prosthetic (ie, metallic) lateralization increases torque at the baseplate-glenoid interface potentially leading to failure. We asked whether bony lateralization of reverse shoulder arthroplasty would avoid the problems caused by humeral medialization without increasing torque or shear force applied to the glenoid component. We prospectively followed 42 patients with rotator cuff deficiency treated with bony increased-offset reverse shoulder arthroplasty. A cylinder of autologous cancellous bone graft, harvested from the humeral head, was placed between the reamed glenoid surface and baseplate. Graft and baseplate fixation was achieved using a lengthened central peg (25 mm) and four screws. Patients underwent clinical, radiographic, and CT assessment at a minimum of 2 years after surgery. The humeral graft incorporated completely in 98% of cases (41 of 42) and partially in one. At a mean of 28 months postoperatively, no graft resorption, glenoid loosening, or postoperative instability was observed. Inferior scapular notching occurred in 19% (eight of 42). The absolute Constant-Murley score improved from 31 to 67. Thirty-six patients (86%) were able to internally rotate sufficiently to reach their back over the sacrum. Grafting of the glenoid surface during reverse shoulder arthroplasty effectively creates a long-necked scapula, providing the benefits of lateralization. Bony increased-offset reverse shoulder arthroplasty is associated with low rates of inferior scapular notching, improved shoulder rotation, no prosthetic instability and improved shoulder contour. In contrast to metallic lateralization, bony lateralization has the advantage of maintaining the prosthetic center of rotation at the prosthesis-bone interface, thus minimizing torque on the glenoid component. Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

  11. Pancreatic Cancer Genomics 2.0: Profiling Metastases.

    PubMed

    Collisson, Eric A; Maitra, Anirban

    2017-03-13

    Pancreatic ductal adenocarcinoma, even when diagnosed early, nearly always metastasizes. Recurrent mutations and genomic instability are early events in the disease. Two recent papers advance our understanding of how the cancer genome evolves as the primary tumor migrates from its origin in the pancreas to colonize distant metastatic sites. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Complete Genome Sequence of Pelosinus fermentans JBW45, a Member of a Remarkably Competitive Group of Negativicutes in the Firmicutes Phylum

    DOE PAGES

    De León, Kara B.; Utturkar, Sagar M.; Camilleri, Laura B.; ...

    2015-09-24

    The genome of Pelosinus fermentans JBW45, isolated from a chromium-contaminated site in Hanford, Washington, USA, has been completed with PacBio sequencing. Finally, nine copies of the rRNA gene operon and multiple transposase genes with identical sequences resulted in breaks in the original draft genome and may suggest genomic instability of JBW45.

  13. Using Potential Vorticity to Characterize the Forcing of a Coastally Trapped Wind Reversal Along the California Coast

    DTIC Science & Technology

    2015-03-01

    inversion technique yielded mixed results, heavily influenced by diurnal effects and subjected to instability due to topographical interactions... effects and subjected to instability due to topographical interactions. vi THIS PAGE INTENTIONALLY LEFT BLANK vii TABLE OF CONTENTS I...3 A. DEFINITION AND CLIMATOLOGY OF A CTWR

  14. Somatic instability of the expanded allele of IT-15 from patients with Huntington disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stine, O.C.; Pleasant, N.; Ross, C.A.

    1994-09-01

    Huntington`s disease (HD) is an inherited neurodegenerative disorder caused by an expanded trinucleotide repeat in the gene IT-15. Although the expanded allele of IT-15 is unstable during gametogenesis, particularly, spermatogenesis, it is not clear if there is somatic stability. There are two reports of stability and one of instability. In order to test whether somatic instability occurs in the expansions found in HD, we have compared amplified genomic DNA isolated from either blood or distinct regions of autopsied brains of persons with Huntington disease. We find that somatic variation occurs in at least two ways. First, in cases with longermore » repeats (n > 47), the cerebellum often (8 of 9 cases) has a smaller number of repeats (2 to 10 less) than other tested regions of the brain. The larger the expanded allele, the larger the reduction in size of the repeat in the cerebellum (r=0.94, p<0.0001, df=12). Second, regardless of the repeat size, the number of amplification products from genomic DNA isolated from the cerebellum is smaller than that from genomic DNA from other forebrain regions such as the dorsal parietal cortex. As the length of the expanded allele increases, the number of amplification products increase in either tissue (r=0.86, p<0.001, df=12). Therefore our data demonstrates somatic instability especially for longer repeats.« less

  15. Immortal, telomerase-negative cell lines derived from a Li-Fraumeni syndrome patient exhibit telomere length variability and chromosomal and minisatellite instabilities.

    PubMed

    Tsutsui, Takeki; Kumakura, Shin-Ichi; Tamura, Yukiko; Tsutsui, Takeo W; Sekiguchi, Mizuki; Higuchi, Tokihiro; Barrett, J Carl

    2003-05-01

    Five immortal cell lines derived from a Li-Fraumeni syndrome patient (MDAH 087) with a germline mutant p53 allele were characterized with respect to telomere length and genomic instability. The remaining wild-type p53 allele is lost in the cell lines. Telomerase activity was undetectable in all immortal cell lines. Five subclones of each cell line and five re-subclones of each of the subclones also showed undetectable telomerase activity. All five immortal cell lines exhibited variability in the mean length of terminal restriction fragments (TRFs). Subclones of each cell line, and re-subclones of the subclones also showed TRF variability, indicating that the variability is owing to clonal heterogeneity. Chromosome aberrations were observed at high frequencies in these cell lines including the subclones and re-subclones, and the principal types of aberrations were breaks, double minute chromosomes and dicentric chromosomes. In addition, minisatellite instability detected by DNA fingerprints was observed in the immortal cell lines. However, all of the cell lines were negative for microsatellite instability. As minisatellite sequences are considered recombinogenic in mammalian cells, these results suggest that recombination rates can be increased in these cell lines. Tumor-derived human cell lines, HT1080 cells and HeLa cells that also lack p53 function, exhibited little genomic instability involving chromosomal and minisatellite instabilities, indicating that chromosomal and minisatellite instabilities observed in the immortal cell lines lacking telomerase activity could not result from loss of p53 function.

  16. Post-Genomics and Vaccine Improvement for Leishmania

    PubMed Central

    Seyed, Negar; Taheri, Tahereh; Rafati, Sima

    2016-01-01

    Leishmaniasis is a parasitic disease that primarily affects Asia, Africa, South America, and the Mediterranean basin. Despite extensive efforts to develop an effective prophylactic vaccine, no promising vaccine is available yet. However, recent advancements in computational vaccinology on the one hand and genome sequencing approaches on the other have generated new hopes in vaccine development. Computational genome mining for new vaccine candidates is known as reverse vaccinology and is believed to further extend the current list of Leishmania vaccine candidates. Reverse vaccinology can also reduce the intrinsic risks associated with live attenuated vaccines. Individual epitopes arranged in tandem as polytopes are also a possible outcome of reverse genome mining. Here, we will briefly compare reverse vaccinology with conventional vaccinology in respect to Leishmania vaccine, and we will discuss how it influences the aforementioned topics. We will also introduce new in vivo models that will bridge the gap between human and laboratory animal models in future studies. PMID:27092123

  17. Experimental study of the reversible behavior of modulational instability in optical fibers

    NASA Astrophysics Data System (ADS)

    van Simaeys, Gaetan; Emplit, Philippe; Haelterman, Marc

    2002-03-01

    We report what is to our knowledge the first clear-cut experimental evidence of the reversibility of modulational instability in dispersive Kerr media. It was possible to perform this experiment with standard telecommunication fiber because we used a specially designed 550-ps square-pulse laser source based on the two-wavelength configuration of a nonlinear optical loop mirror. Our observations demonstrate that reversibility is due to well-balanced and synchronous energy transfer among a significant number of spectral wave components. These results provide what we believe is the first evidence, in the field of nonlinear optics, of the universal Fermi-Pasta-Ulam recurrence phenomenon that has been predicted for a large number of conservative nonlinear systems, including those described by a nonlinear Schrödinger equation that is relevant to the context of the present study.

  18. Blessing and curse of chaos in numerical turbulence simulations

    NASA Astrophysics Data System (ADS)

    Lee, Jon

    1994-03-01

    Because of the trajectory instability, time reversal is not possible beyond a certain evolution time and hence the time irreversibility prevails under the finite-accuracy trajectory computation. This therefore provides a practical reconciliation of the dynamic reversibility and macroscopic irreversibility (blessing of chaos). On the other hand, the trajectory instability is also responsible for a limited evolution time, so that finite-accuracy computation would yield a pseudo-orbit which is totally unrelated to the true trajectory (curse of chaos). For the inviscid 2D flow, however, we can accurately compute the long- time average of flow quantities with a pseudo-orbit by invoking the ergodic theorem.

  19. Genome Modification Leads to Phenotype Reversal in Human Myotonic Dystrophy type 1 iPS-cell Derived Neural Stem Cells

    PubMed Central

    Xia, Guangbin; Gao, Yuanzheng; Jin, Shouguang; Subramony, SH.; Terada, Naohiro; Ranum, Laura P.W.; Swanson, Maurice S.; Ashizawa, Tetsuo

    2015-01-01

    Objective Myotonic dystrophy type 1 (DM1) is caused by expanded CTG repeats in the 3'-untranslated region (3’ UTR) of the DMPK gene. Correcting the mutation in DM1 stem cells would be an important step towards autologous stem cell therapy. The objective of this study is to demonstrate in vitro genome editing to prevent production of toxic mutant transcripts and reverse phenotypes in DM1 stem cells. Methods Genome editing was performed in DM1 neural stem cells (NSCs) derived from human DM1 iPS cells. An editing cassette containing SV40/bGH polyA signals was integrated upstream of the CTG repeats by TALEN-mediated homologous recombination (HR). The expression of mutant CUG repeats transcript was monitored by nuclear RNA foci, the molecular hallmarks of DM1, using RNA fluorescence in situ hybridization (RNA-FISH). Alternative splicing of microtubule-associated protein tau (MAPT) and muscleblind-like (MBNL) proteins were analyzed to further monitor the phenotype reversal after genome modification. Results The cassette was successfully inserted into DMPK intron 9 and this genomic modification led to complete disappearance of nuclear RNA foci. MAPT and MBNL 1, 2 aberrant splicing in DM1 NSCs was reversed to normal pattern in genome-modified NSCs. Interpretation Genome modification by integration of exogenous polyA signals upstream of the DMPK CTG repeat expansion prevents the production of toxic RNA and leads to phenotype reversal in human DM1 iPS-cells derived stem cells. Our data provide proof-of-principle evidence that genome modification may be used to generate genetically modified progenitor cells as a first step toward autologous cell transfer therapy for DM1. PMID:25702800

  20. Genome-based approaches to develop vaccines against bacterial pathogens.

    PubMed

    Serruto, Davide; Serino, Laura; Masignani, Vega; Pizza, Mariagrazia

    2009-05-26

    Bacterial infectious diseases remain the single most important threat to health worldwide. Although conventional vaccinology approaches were successful in conferring protection against several diseases, they failed to provide efficacious solutions against many others. The advent of whole-genome sequencing changed the way to think about vaccine development, enabling the targeting of possible vaccine candidates starting from the genomic information of a single bacterial isolate, with a process named reverse vaccinology. As the genomic era progressed, reverse vaccinology has evolved with a pan-genome approach and multi-strain genome analysis became fundamental for the design of universal vaccines. This review describes the applications of genome-based approaches in the development of new vaccines against bacterial pathogens.

  1. CNS germinomas are characterized by global demethylation, chromosomal instability and mutational activation of the Kit-, Ras/Raf/Erk- and Akt-pathways

    PubMed Central

    Schulte, Simone Laura; Waha, Andreas; Steiger, Barbara; Denkhaus, Dorota; Dörner, Evelyn; Calaminus, Gabriele; Leuschner, Ivo; Pietsch, Torsten

    2016-01-01

    CNS germinomas represent a unique germ cell tumor entity characterized by undifferentiated tumor cells and a high response rate to current treatment protocols. Limited information is available on their underlying genomic, epigenetic and biological alterations. We performed a genome-wide analysis of genomic copy number alterations in 49 CNS germinomas by molecular inversion profiling. In addition, CpG dinucleotide methylation was studied by immunohistochemistry for methylated cytosine residues. Mutational analysis was performed by resequencing of candidate genes including KIT and RAS family members. Ras/Erk and Akt pathway activation was analyzed by immunostaining with antibodies against phospho-Erk, phosho-Akt, phospho-mTOR and phospho-S6. All germinomas coexpressed Oct4 and Kit but showed an extensive global DNA demethylation compared to other tumors and normal tissues. Molecular inversion profiling showed predominant genomic instability in all tumors with a high frequency of regional gains and losses including high level gene amplifications. Activating mutations of KIT exons 11, 13, and 17 as well as a case with genomic KIT amplification and activating mutations or amplifications of RAS gene family members including KRAS, NRAS and RRAS2 indicated mutational activation of crucial signaling pathways. Co-activation of Ras/Erk and Akt pathways was present in 83% of germinomas. These data suggest that CNS germinoma cells display a demethylated nuclear DNA similar to primordial germ cells in early development. This finding has a striking coincidence with extensive genomic instability. In addition, mutational activation of Kit-, Ras/Raf/Erk- and Akt- pathways indicate the biological importance of these pathways and their components as potential targets for therapy. PMID:27391150

  2. [Study of genome instability using DNA fingerprinting of the offspring of male mice subjected to chronic low dose gamma irradiation].

    PubMed

    Bezlepkin, V G; Vasil'eva, G V; Lomaeva, M G; Sirota, N P; Gaziev, A I

    2000-01-01

    By a polymerase chain reaction with an arbitrary primer (AP-PCR), the possibility of transmission of genome instability to somatic cells of the offspring (F1 generation) from male parents of mice exposed to chronic low-level gamma-radiation was studied. Male BALB/c mice 15 days after exposure to 10-50 cGy were mated with unirradiated females. Biopsies were taken from tale tips of two month-old offspring mice and DNA was isolated. The primer in the AP-PCR was a 20-mer oligonucleotide flanking the microsatellite locus Atp1b2 on chromosome 11 of the mouse. A comparative analysis of individual fingerprints of AP-PCR products on DNA-templates from the offspring of irradiated and unirradiated male mice revealed an increased variability of microsatellite-associated sequences in the genome of the offspring of the males exposed to 25 and 50 cGy. The DNA-fingerprints of the offspring of male mice exposed to chronic irradiation with the doses 10 and 25 cGy 15 days before fertilization (at the post-meiotic stage of spermatogenesis) showed an increased frequency of "non-parent bands". The results of the study point to the possibility of transmission to the offspring somatic cells of changes increasing genome instability from male parents exposed to chronic low-level radiation prior to fertilization.

  3. Role of DNA Replication Defects in Breast Cancer

    DTIC Science & Technology

    2009-10-01

    Several recent studies have indicated that decreased levels of the MCM2-7 DNA replication proteins can lead to genomic instability (GIN) and cancer...exceeding that required for DNA replication under normal circumstances, we found that heterozygosity for 2 or more different MCMs caused genomic

  4. Cell Lines Expressing Nuclear and/or Mitochondrial RNAse H1 | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Institute of Child Health & Human Development (NICHD), Program in Genomics of Differentiation, seeks interested parties to further co-develop small molecule inhibitors of RNase H1, especially in regards to genome instability, transcription, and translation.

  5. Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability.

    PubMed

    Takaki, Tohru; Montagner, Marco; Serres, Murielle P; Le Berre, Maël; Russell, Matt; Collinson, Lucy; Szuhai, Karoly; Howell, Michael; Boulton, Simon J; Sahai, Erik; Petronczki, Mark

    2017-07-24

    Altered nuclear shape is a defining feature of cancer cells. The mechanisms underlying nuclear dysmorphia in cancer remain poorly understood. Here we identify PPP1R12A and PPP1CB, two subunits of the myosin phosphatase complex that antagonizes actomyosin contractility, as proteins safeguarding nuclear integrity. Loss of PPP1R12A or PPP1CB causes nuclear fragmentation, nuclear envelope rupture, nuclear compartment breakdown and genome instability. Pharmacological or genetic inhibition of actomyosin contractility restores nuclear architecture and genome integrity in cells lacking PPP1R12A or PPP1CB. We detect actin filaments at nuclear envelope rupture sites and define the Rho-ROCK pathway as the driver of nuclear damage. Lamin A protects nuclei from the impact of actomyosin activity. Blocking contractility increases nuclear circularity in cultured cancer cells and suppresses deformations of xenograft nuclei in vivo. We conclude that actomyosin contractility is a major determinant of nuclear shape and that unrestrained contractility causes nuclear dysmorphia, nuclear envelope rupture and genome instability.

  6. An Organismal CNV Mutator Phenotype Restricted to Early Human Development.

    PubMed

    Liu, Pengfei; Yuan, Bo; Carvalho, Claudia M B; Wuster, Arthur; Walter, Klaudia; Zhang, Ling; Gambin, Tomasz; Chong, Zechen; Campbell, Ian M; Coban Akdemir, Zeynep; Gelowani, Violet; Writzl, Karin; Bacino, Carlos A; Lindsay, Sarah J; Withers, Marjorie; Gonzaga-Jauregui, Claudia; Wiszniewska, Joanna; Scull, Jennifer; Stankiewicz, Paweł; Jhangiani, Shalini N; Muzny, Donna M; Zhang, Feng; Chen, Ken; Gibbs, Richard A; Rautenstrauss, Bernd; Cheung, Sau Wai; Smith, Janice; Breman, Amy; Shaw, Chad A; Patel, Ankita; Hurles, Matthew E; Lupski, James R

    2017-02-23

    De novo copy number variants (dnCNVs) arising at multiple loci in a personal genome have usually been considered to reflect cancer somatic genomic instabilities. We describe a multiple dnCNV (MdnCNV) phenomenon in which individuals with genomic disorders carry five to ten constitutional dnCNVs. These CNVs originate from independent formation incidences, are predominantly tandem duplications or complex gains, exhibit breakpoint junction features reminiscent of replicative repair, and show increased de novo point mutations flanking the rearrangement junctions. The active CNV mutation shower appears to be restricted to a transient perizygotic period. We propose that a defect in the CNV formation process is responsible for the "CNV-mutator state," and this state is dampened after early embryogenesis. The constitutional MdnCNV phenomenon resembles chromosomal instability in various cancers. Investigations of this phenomenon may provide unique access to understanding genomic disorders, structural variant mutagenesis, human evolution, and cancer biology. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Cognitive impairment, genomic instability and trace elements.

    PubMed

    Meramat, A; Rajab, N F; Shahar, S; Sharif, R

    2015-01-01

    Cognitive impairments are often related to aging and micronutrient deficiencies. Various essential micronutrients in the diet are involved in age-altered biological functions such as, zinc, copper, iron, and selenium that play pivotal roles either in maintaining and reinforcing the antioxidant performances or in affecting the complex network of genes (nutrigenomic approach) involved in encoding proteins for biological functions. Genomic stability is one of the leading causes of cognitive decline and deficiencies or excess in trace elements are two of the factors relating to it. In this review, we report and discuss the role of micronutrients in cognitive impairment in relation to genomic stability in an aging population. Telomere integrity will also be discussed in relation to aging and cognitive impairment, as well as, the micronutrients related to these events. This review will provide an understanding on how these three aspects can relate with each other and why it is important to keep a homeostasis of micronutrients in relation to healthy aging. Micronutrient deficiencies and aging process can lead to genomic instability.

  8. Cancer vulnerabilities unveiled by genomic loss

    PubMed Central

    Nijhawan, Deepak; Zack, Travis I.; Ren, Yin; Strickland, Matthew R.; Lamothe, Rebecca; Schumacher, Steven E.; Tsherniak, Aviad; Besche, Henrike C.; Rosenbluh, Joseph; Shehata, Shyemaa; Cowley, Glenn S.; Weir, Barbara A.; Goldberg, Alfred L.; Mesirov, Jill P.; Root, David E.; Bhatia, Sangeeta N.; Beroukhim, Rameen; Hahn, William C.

    2012-01-01

    Summary Due to genome instability, most cancers exhibit loss of regions containing tumor suppressor genes and collateral loss of other genes. To identify cancer-specific vulnerabilities that are the result of copy-number losses, we performed integrated analyses of genome-wide copy-number and RNAi profiles and identified 56 genes for which gene suppression specifically inhibited the proliferation of cells harboring partial copy-number loss of that gene. These CYCLOPS (Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS) genes are enriched for spliceosome, proteasome and ribosome components. One CYCLOPS gene, PSMC2, encodes an essential member of the 19S proteasome. Normal cells express excess PSMC2, which resides in a complex with PSMC1, PSMD2, and PSMD5 and acts as a reservoir protecting cells from PSMC2 suppression. Cells harboring partial PSMC2 copy-number loss lack this complex and die after PSMC2 suppression. These observations define a distinct class of cancer-specific liabilities resulting from genome instability. PMID:22901813

  9. Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability

    PubMed Central

    Takaki, Tohru; Montagner, Marco; Serres, Murielle P.; Le Berre, Maël; Russell, Matt; Collinson, Lucy; Szuhai, Karoly; Howell, Michael; Boulton, Simon J.; Sahai, Erik; Petronczki, Mark

    2017-01-01

    Altered nuclear shape is a defining feature of cancer cells. The mechanisms underlying nuclear dysmorphia in cancer remain poorly understood. Here we identify PPP1R12A and PPP1CB, two subunits of the myosin phosphatase complex that antagonizes actomyosin contractility, as proteins safeguarding nuclear integrity. Loss of PPP1R12A or PPP1CB causes nuclear fragmentation, nuclear envelope rupture, nuclear compartment breakdown and genome instability. Pharmacological or genetic inhibition of actomyosin contractility restores nuclear architecture and genome integrity in cells lacking PPP1R12A or PPP1CB. We detect actin filaments at nuclear envelope rupture sites and define the Rho-ROCK pathway as the driver of nuclear damage. Lamin A protects nuclei from the impact of actomyosin activity. Blocking contractility increases nuclear circularity in cultured cancer cells and suppresses deformations of xenograft nuclei in vivo. We conclude that actomyosin contractility is a major determinant of nuclear shape and that unrestrained contractility causes nuclear dysmorphia, nuclear envelope rupture and genome instability. PMID:28737169

  10. Reversibility and stability of information processing systems

    NASA Technical Reports Server (NTRS)

    Zurek, W. H.

    1984-01-01

    Classical and quantum models of dynamically reversible computers are considered. Instabilities in the evolution of the classical 'billiard ball computer' are analyzed and shown to result in a one-bit increase of entropy per step of computation. 'Quantum spin computers', on the other hand, are not only microscopically, but also operationally reversible. Readoff of the output of quantum computation is shown not to interfere with this reversibility. Dissipation, while avoidable in principle, can be used in practice along with redundancy to prevent errors.

  11. Prolonged Particulate Hexavalent Chromium Exposure Suppresses Homologous Recombination Repair in Human Lung Cells.

    PubMed

    Browning, Cynthia L; Qin, Qin; Kelly, Deborah F; Prakash, Rohit; Vanoli, Fabio; Jasin, Maria; Wise, John Pierce

    2016-09-01

    Genomic instability is one of the primary models of carcinogenesis and a feature of almost all cancers. Homologous recombination (HR) repair protects against genomic instability by maintaining high genomic fidelity during the repair of DNA double strand breaks. The defining step of HR repair is the formation of the Rad51 nucleofilament, which facilitates the search for a homologous sequence and invasion of the template DNA strand. Particulate hexavalent chromium (Cr(VI)), a human lung carcinogen, induces DNA double strand breaks and chromosome instability. Since the loss of HR repair increases Cr(VI)-induced chromosome instability, we investigated the effect of extended Cr(VI) exposure on HR repair. We show acute (24 h) Cr(VI) exposure induces a normal HR repair response. In contrast, prolonged (120 h) exposure to particulate Cr(VI) inhibited HR repair and Rad51 nucleofilament formation. Prolonged Cr(VI) exposure had a profound effect on Rad51, evidenced by reduced protein levels and Rad51 mislocalization to the cytoplasm. The response of proteins involved in Rad51 nuclear import and nucleofilament formation displayed varying responses to prolonged Cr(VI) exposure. BRCA2 formed nuclear foci after prolonged Cr(VI) exposure, while Rad51C foci formation was suppressed. These results suggest that particulate Cr(VI), a major chemical carcinogen, inhibits HR repair by targeting Rad51, causing DNA double strand breaks to be repaired by a low fidelity, Rad51-independent repair pathway. These results further enhance our understanding of the underlying mechanism of Cr(VI)-induced chromosome instability and thus, carcinogenesis. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Genomic and epigenomic heterogeneity in molecular subtypes of gastric cancer.

    PubMed

    Lim, Byungho; Kim, Jong-Hwan; Kim, Mirang; Kim, Seon-Young

    2016-01-21

    Gastric cancer is a complex disease that is affected by multiple genetic and environmental factors. For the precise diagnosis and effective treatment of gastric cancer, the heterogeneity of the disease must be simplified; one way to achieve this is by dividing the disease into subgroups. Toward this effort, recent advances in high-throughput sequencing technology have revealed four molecular subtypes of gastric cancer, which are classified as Epstein-Barr virus-positive, microsatellite instability, genomically stable, and chromosomal instability subtypes. We anticipate that this molecular subtyping will help to extend our knowledge for basic research purposes and will be valuable for clinical use. Here, we review the genomic and epigenomic heterogeneity of the four molecular subtypes of gastric cancer. We also describe a mutational meta-analysis and a reanalysis of DNA methylation that were performed using previously reported gastric cancer datasets.

  13. Sites of instability in the human TCF3 (E2A) gene adopt G-quadruplex DNA structures in vitro

    PubMed Central

    Williams, Jonathan D.; Fleetwood, Sara; Berroyer, Alexandra; Kim, Nayun; Larson, Erik D.

    2015-01-01

    The formation of highly stable four-stranded DNA, called G-quadruplex (G4), promotes site-specific genome instability. G4 DNA structures fold from repetitive guanine sequences, and increasing experimental evidence connects G4 sequence motifs with specific gene rearrangements. The human transcription factor 3 (TCF3) gene (also termed E2A) is subject to genetic instability associated with severe disease, most notably a common translocation event t(1;19) associated with acute lymphoblastic leukemia. The sites of instability in TCF3 are not randomly distributed, but focused to certain sequences. We asked if G4 DNA formation could explain why TCF3 is prone to recombination and mutagenesis. Here we demonstrate that sequences surrounding the major t(1;19) break site and a region associated with copy number variations both contain G4 sequence motifs. The motifs identified readily adopt G4 DNA structures that are stable enough to interfere with DNA synthesis in physiological salt conditions in vitro. When introduced into the yeast genome, TCF3 G4 motifs promoted gross chromosomal rearrangements in a transcription-dependent manner. Our results provide a molecular rationale for the site-specific instability of human TCF3, suggesting that G4 DNA structures contribute to oncogenic DNA breaks and recombination. PMID:26029241

  14. Generation of non-genomic oligonucleotide tag sequences for RNA template-specific PCR

    PubMed Central

    Pinto, Fernando Lopes; Svensson, Håkan; Lindblad, Peter

    2006-01-01

    Background In order to overcome genomic DNA contamination in transcriptional studies, reverse template-specific polymerase chain reaction, a modification of reverse transcriptase polymerase chain reaction, is used. The possibility of using tags whose sequences are not found in the genome further improves reverse specific polymerase chain reaction experiments. Given the absence of software available to produce genome suitable tags, a simple tool to fulfill such need was developed. Results The program was developed in Perl, with separate use of the basic local alignment search tool, making the tool platform independent (known to run on Windows XP and Linux). In order to test the performance of the generated tags, several molecular experiments were performed. The results show that Tagenerator is capable of generating tags with good priming properties, which will deliberately not result in PCR amplification of genomic DNA. Conclusion The program Tagenerator is capable of generating tag sequences that combine genome absence with good priming properties for RT-PCR based experiments, circumventing the effects of genomic DNA contamination in an RNA sample. PMID:16820068

  15. Wave propagation reversal for wavy vortices in wide-gap counter-rotating cylindrical Couette flow.

    PubMed

    Altmeyer, S; Lueptow, Richard M

    2017-05-01

    We present a numerical study of wavy supercritical cylindrical Couette flow between counter-rotating cylinders in which the wavy pattern propagates either prograde with the inner cylinder or retrograde opposite the rotation of the inner cylinder. The wave propagation reversals from prograde to retrograde and vice versa occur at distinct values of the inner cylinder Reynolds number when the associated frequency of the wavy instability vanishes. The reversal occurs for both twofold and threefold symmetric wavy vortices. Moreover, the wave propagation reversal only occurs for sufficiently strong counter-rotation. The flow pattern reversal appears to be intrinsic in the system as either periodic boundary conditions or fixed end wall boundary conditions for different system sizes always result in the wave propagation reversal. We present a detailed bifurcation sequence and parameter space diagram with respect to retrograde behavior of wavy flows. The retrograde propagation of the instability occurs when the inner Reynolds number is about two times the outer Reynolds number. The mechanism for the retrograde propagation is associated with the inviscidly unstable region near the inner cylinder and the direction of the global average azimuthal velocity. Flow dynamics, spatio-temporal behavior, global mean angular velocity, and torque of the flow with the wavy pattern are explored.

  16. Circularization of the HIV-1 genome facilitates strand transfer during reverse transcription

    PubMed Central

    Beerens, Nancy; Kjems, Jørgen

    2010-01-01

    Two obligatory DNA strand transfers take place during reverse transcription of a retroviral RNA genome. The first strand transfer involves a jump from the 5′ to the 3′ terminal repeat (R) region positioned at each end of the viral genome. The process depends on base pairing between the cDNA synthesized from the 5′ R region and the 3′ R RNA. The tertiary conformation of the viral RNA genome may facilitate strand transfer by juxtaposing the 5′ R and 3′ R sequences that are 9 kb apart in the linear sequence. In this study, RNA sequences involved in an interaction between the 5′ and 3′ ends of the HIV-1 genome were mapped by mutational analysis. This interaction appears to be mediated mainly by a sequence in the extreme 3′ end of the viral genome and in the gag open reading frame. Mutation of 3′ R sequences was found to inhibit the 5′–3′ interaction, which could be restored by a complementary mutation in the 5′ gag region. Furthermore, we find that circularization of the HIV-1 genome does not affect the initiation of reverse transcription, but stimulates the first strand transfer during reverse transcription in vitro, underscoring the functional importance of the interaction. PMID:20430859

  17. Untangling the Web: The Diverse Functions of the PIWI/piRNA Pathway

    PubMed Central

    Mani, Sneha Ramesh; Juliano, Celina E.

    2014-01-01

    SUMMARY Small RNAs impact several cellular processes through gene regulation. Argonaute proteins bind small RNAs to form effector complexes that control transcriptional and post-transcriptional gene expression. PIWI proteins belong to the Argonaute protein family, and bind PIWI-interacting RNAs (piRNAs). They are highly abundant in the germline, but are also expressed in some somatic tissues. The PIWI/piRNA pathway has a role in transposon repression in Drosophila, which occurs both by epigenetic regulation and post-transcriptional degradation of transposon mRNAs. These functions are conserved, but clear differences in the extent and mechanism of transposon repression exist between species. Mutations in piwi genes lead to the upregulation of transposon mRNAs. It is hypothesized that this increased transposon mobilization leads to genomic instability and thus sterility, although no causal link has been established between transposon upregulation and genome instability. An alternative scenario could be that piwi mutations directly affect genomic instability, and thus lead to increased transposon expression. We propose that the PIWI/piRNA pathway controls genome stability in several ways: suppression of transposons, direct regulation of chromatin architecture and regulation of genes that control important biological processes related to genome stability. The PIWI/piRNA pathway also regulates at least some, if not many, protein-coding genes, which further lends support to the idea that piwi genes may have broader functions beyond transposon repression. An intriguing possibility is that the PIWI/piRNA pathway is using transposon sequences to coordinate the expression of large groups of genes to regulate cellular function. PMID:23712694

  18. Human HLTF mediates postreplication repair by its HIRAN domain-dependent replication fork remodelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achar, Yathish Jagadheesh; Balogh, David; Neculai, Dante

    Defects in the ability to respond properly to an unrepaired DNA lesion blocking replication promote genomic instability and cancer. Human HLTF, implicated in error-free replication of damaged DNA and tumour suppression, exhibits a HIRAN domain, a RING domain, and a SWI/SNF domain facilitating DNA-binding, PCNA-polyubiquitin-ligase, and dsDNA-translocase activities, respectively. Here, we investigate the mechanism of HLTF action with emphasis on its HIRAN domain. We found that in cells HLTF promotes the filling-in of gaps left opposite damaged DNA during replication, and this postreplication repair function depends on its HIRAN domain. Our biochemical assays show that HIRAN domain mutant HLTF proteinsmore » retain their ubiquitin ligase, ATPase and dsDNA translocase activities but are impaired in binding to a model replication fork. These data and our structural study indicate that the HIRAN domain recruits HLTF to a stalled replication fork, and it also provides the direction for the movement of the dsDNA translocase motor domain for fork reversal. We suggest functional similarities between the HIRAN, the OB, the HARP2, and other domains found in certain motor proteins, which may explain why only a subset of DNA translocases can carry out fork reversal.« less

  19. The Long Terminal Repeat Retrotransposons Tf1 and Tf2 of Schizosaccharomyces pombe.

    PubMed

    Esnault, Caroline; Levin, Henry L

    2015-08-01

    The long terminal repeat (LTR) retrotransposons Tf1 and Tf2 of Schizosaccharomyces pombe are active mobile elements of the Ty3/gypsy family. The mobilization of these retrotransposons depends on particle formation, reverse transcription and integration, processes typical of other LTR retrotransposons. However, Tf1 and Tf2 are distinct from other LTR elements in that they assemble virus-like particles from a single primary translation product, initiate reverse transcription with an unusual self-priming mechanism, and, in the case of Tf1, integrate with a pattern that favors specific promoters of RNA pol II-transcribed genes. To avoid the chromosome instability and genome damage that results from increased copy number, S. pombe applies a variety of defense mechanisms that restrict Tf1 and Tf2 activity. The mRNA of the Tf elements is eliminated by an exosome-based pathway when cells are in favorable conditions whereas nutrient deprivation triggers an RNA interference-dependent pathway that results in the heterochromatization of the elements. Interestingly, Tf1 integrates into the promoters of stress-induced genes and these insertions are capable of increasing the expression of adjacent genes. These properties of Tf1 transposition raise the possibility that Tf1 benefits cells with specific insertions by providing resistance to environmental stress.

  20. Human HLTF mediates postreplication repair by its HIRAN domain-dependent replication fork remodelling

    DOE PAGES

    Achar, Yathish Jagadheesh; Balogh, David; Neculai, Dante; ...

    2015-09-08

    Defects in the ability to respond properly to an unrepaired DNA lesion blocking replication promote genomic instability and cancer. Human HLTF, implicated in error-free replication of damaged DNA and tumour suppression, exhibits a HIRAN domain, a RING domain, and a SWI/SNF domain facilitating DNA-binding, PCNA-polyubiquitin-ligase, and dsDNA-translocase activities, respectively. Here, we investigate the mechanism of HLTF action with emphasis on its HIRAN domain. We found that in cells HLTF promotes the filling-in of gaps left opposite damaged DNA during replication, and this postreplication repair function depends on its HIRAN domain. Our biochemical assays show that HIRAN domain mutant HLTF proteinsmore » retain their ubiquitin ligase, ATPase and dsDNA translocase activities but are impaired in binding to a model replication fork. These data and our structural study indicate that the HIRAN domain recruits HLTF to a stalled replication fork, and it also provides the direction for the movement of the dsDNA translocase motor domain for fork reversal. We suggest functional similarities between the HIRAN, the OB, the HARP2, and other domains found in certain motor proteins, which may explain why only a subset of DNA translocases can carry out fork reversal.« less

  1. Transcriptome instability as a molecular pan-cancer characteristic of carcinomas.

    PubMed

    Sveen, Anita; Johannessen, Bjarne; Teixeira, Manuel R; Lothe, Ragnhild A; Skotheim, Rolf I

    2014-08-10

    We have previously proposed transcriptome instability as a genome-wide, pre-mRNA splicing-related characteristic of colorectal cancer. Here, we explore the hypothesis of transcriptome instability being a general characteristic of cancer. Exon-level microarray expression data from ten cancer datasets were analyzed, including breast cancer, cervical cancer, colorectal cancer, gastric cancer, lung cancer, neuroblastoma, and prostate cancer (555 samples), as well as paired normal tissue samples from the colon, lung, prostate, and stomach (93 samples). Based on alternative splicing scores across the genomes, we calculated sample-wise relative amounts of aberrant exon skipping and inclusion. Strong and non-random (P < 0.001) correlations between these estimates and the expression levels of splicing factor genes (n = 280) were found in most cancer types analyzed (breast-, cervical-, colorectal-, lung- and prostate cancer). This suggests a biological explanation for the splicing variation. Surprisingly, these associations prevailed in pan-cancer analyses. This is in contrast to the tissue and cancer specific patterns observed in comparisons across healthy tissue samples from the colon, lung, prostate, and stomach, and between paired cancer-normal samples from the same four tissue types. Based on exon-level expression profiling and computational analyses of alternative splicing, we propose transcriptome instability as a molecular pan-cancer characteristic. The affected cancers show strong and non-random associations between low expression levels of splicing factor genes, and high amounts of aberrant exon skipping and inclusion, and vice versa, on a genome-wide scale.

  2. Diverse delayed effects in human lymphoblastoid cells surviving exposure to high-LET (56)Fe particles or low-LET (137)Cs gamma radiation

    NASA Technical Reports Server (NTRS)

    Evans, H. H.; Horng, M. F.; Ricanati, M.; Diaz-Insua, M.; Jordan, R.; Schwartz, J. L.

    2001-01-01

    To obtain information on the origin of radiation-induced genomic instability, we characterized a total of 166 clones that survived exposure to (56)Fe particles or (137)Cs gamma radiation, isolated approximately 36 generations after exposure, along with their respective control clones. Cytogenetic aberrations, growth alterations, responses to a second irradiation, and mutant frequencies at the Na(+)/K(+) ATPase and thymidine kinase loci were determined. A greater percentage of clones that survived exposure to (56)Fe particles exhibited instability (defined as clones showing one or more outlying characteristics) than in the case of those that survived gamma irradiation. The phenotypes of the unstable clones that survived exposure to (56)Fe particles were also qualitatively different from those of the clones that survived gamma irradiation. A greater percentage (20%) of the unstable clones that survived gamma irradiation than those that survived exposure to (56)Fe particles (4%) showed an altered response to the second irradiation, while an increase in the percentage of clones that had an outlying frequency of ouabain-resistant and thymidine kinase mutants was more evident in the clones exposed to (56)Fe particles than in those exposed to gamma rays. Growth alterations and increases in dicentric chromosomes were found only in clones with more than one alteration. These results underscore the complex nature of genomic instability and the likelihood that radiation-induced genomic instability arises from different original events.

  3. Lentivirus-meditated frataxin gene delivery reverses genome instability in Friedreich ataxia patient and mouse model fibroblasts.

    PubMed

    Khonsari, H; Schneider, M; Al-Mahdawi, S; Chianea, Y G; Themis, M; Parris, C; Pook, M A; Themis, M

    2016-12-01

    Friedreich ataxia (FRDA) is a progressive neurodegenerative disease caused by deficiency of frataxin protein, with the primary sites of pathology being the large sensory neurons of the dorsal root ganglia and the cerebellum. FRDA is also often accompanied by severe cardiomyopathy and diabetes mellitus. Frataxin is important in mitochondrial iron-sulfur cluster (ISC) biogenesis and low-frataxin expression is due to a GAA repeat expansion in intron 1 of the FXN gene. FRDA cells are genomically unstable, with increased levels of reactive oxygen species and sensitivity to oxidative stress. Here we report the identification of elevated levels of DNA double strand breaks (DSBs) in FRDA patient and YG8sR FRDA mouse model fibroblasts compared to normal fibroblasts. Using lentivirus FXN gene delivery to FRDA patient and YG8sR cells, we obtained long-term overexpression of FXN mRNA and frataxin protein levels with reduced DSB levels towards normal. Furthermore, γ-irradiation of FRDA patient and YG8sR cells revealed impaired DSB repair that was recovered on FXN gene transfer. This suggests that frataxin may be involved in DSB repair, either directly by an unknown mechanism, or indirectly via ISC biogenesis for DNA repair enzymes, which may be essential for the prevention of neurodegeneration.

  4. Radiation-induced transmissable chromosomal instability in haemopoietic stem cells

    NASA Astrophysics Data System (ADS)

    Kadhim, M. A.; Wright, E. G.

    Heritable radiation-induced genetic alterations have long been assumed to be ``fixed'' within the first cell division. However, there is a growing body of evidence that a considerable fraction of cells surviving radiation exposure appear normal, but a variety of mutational changes arise in their progeny due to a transmissible genomic instability. In our investigations of G-banded metaphases, non-clonal cytogenetic aberrations, predominantly chromatid-type aberrations, have been observed in the clonal descendants of murine and human haemopoietic stem cells surviving low doses (~1 track per cell) of alpha-particle irradiations. The data are consistent with a transmissible genetic instability induced in a stem cell resulting in a diversity of chromosomal aberrations in its clonal progeny many cell divisions later. Recent studies have demonstrated that the instability phenotype persists in vivo and that the expression of chromosomal instability has a strong dependence on the genetic characteristics of the irradiated cell. At the time when cytogenetic aberrations are detected, an increased incidence of hprt mutations and apoptotic cells have been observed in the clonal descendants of alpha-irradiated murine haemopoietic stem cells. Thus, delayed chromosomal abnormalities, delayed cell death by apoptosis and late-arising specific gene mutations may reflect diverse consequences of radiation-induced genomic instability. The relationship, if any, between these effects is not established. Current studies suggest that expression of these delayed heritable effects is determined by the type of radiation exposure, type of cell and a variety of genetic factors.

  5. Classification of instability after reverse shoulder arthroplasty guides surgical management and outcomes.

    PubMed

    Abdelfattah, Adham; Otto, Randall J; Simon, Peter; Christmas, Kaitlyn N; Tanner, Gregory; LaMartina, Joey; Levy, Jonathan C; Cuff, Derek J; Mighell, Mark A; Frankle, Mark A

    2018-04-01

    Revision of unstable reverse shoulder arthroplasty (RSA) remains a significant challenge. The purpose of this study was to determine the reliability of a new treatment-guiding classification for instability after RSA, to describe the clinical outcomes of patients stabilized operatively, and to identify those with higher risk of recurrence. All patients undergoing revision for instability after RSA were identified at our institution. Demographic, clinical, radiographic, and intraoperative data were collected. A classification was developed using all identified causes of instability after RSA and allocating them to 1 of 3 defined treatment-guiding categories. Eight surgeons reviewed all data and applied the classification scheme to each case. Interobserver and intraobserver reliability was used to evaluate the classification scheme. Preoperative clinical outcomes were compared with final follow-up in stabilized shoulders. Forty-three revision cases in 34 patients met the inclusion for study. Five patients remained unstable after revision. Persistent instability most commonly occurred in persistent deltoid dysfunction and postoperative acromial fractures but also in 1 case of soft tissue impingement. Twenty-one patients remained stable at minimum 2 years of follow-up and had significant improvement of clinical outcome scores and range of motion. Reliability of the classification scheme showed substantial and almost perfect interobserver and intraobserver agreement among all the participants (κ = 0.699 and κ = 0.851, respectively). Instability after RSA can be successfully treated with revision surgery using the reliable treatment-guiding classification scheme presented herein. However, more understanding is needed for patients with greater risk of recurrent instability after revision surgery. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  6. Associations between circulating carotenoids, genomic instability and the risk of high-grade prostate cancer.

    PubMed

    Nordström, Tobias; Van Blarigan, Erin L; Ngo, Vy; Roy, Ritu; Weinberg, Vivian; Song, Xiaoling; Simko, Jeffry; Carroll, Peter R; Chan, June M; Paris, Pamela L

    2016-03-01

    Carotenoids are a class of nutrients with antioxidant properties that have been purported to protect against cancer. However, the reported associations between carotenoids and prostate cancer have been heterogeneous and lacking data on interactions with nucleotide sequence variations and genomic biomarkers. To examine the associations between carotenoid levels and the risk of high-grade prostate cancer, also considering antioxidant-related genes and tumor instability. We measured plasma levels of carotenoids and genotyped 20 single nucleotide polymorphisms (SNP) in SOD1, SOD2, SOD3, XRCC1, and OGG1 among 559 men with non-metastatic prostate cancer undergoing radical prostatectomy. We performed copy number analysis in a subset of these men (n = 67) to study tumor instability assessed as Fraction of the Genome Altered (FGA). We examined associations between carotenoids, genotypes, tumor instability and risk of high-grade prostate cancer (Gleason grade ≥ 4 + 3) using logistic and linear regression. Circulating carotenoid levels were inversely associated with the risk of high-grade prostate cancer; odds ratios (OR) and 95% confidence intervals (CI) comparing highest versus lowest quartiles were: 0.34 (95% CI: 0.18-0.66) for α-carotene, 0.31 (95% CI: 0.15-0.63) for β-carotene, 0.55 (0.28-1.08) for lycopene and 0.37 (0.18-0.75) for total carotenoids. SNPs rs25489 in XRCC1, rs699473 in SOD3 and rs1052133 in OGG1 modified these associations for α-carotene, β-carotene and lycopene, respectively (P ≤ 0.05). The proportion of men with a high degree of FGA increased with Gleason Score (P < 0.001). Among men with Gleason score ≤ 3 + 4, higher lycopene levels were associated with lower FGA (P = 0.04). Circulating carotenoids at diagnosis, particularly among men carrying specific somatic variations, were inversely associated with risk of high-grade prostate cancer. In exploratory analyses, higher lycopene level was associated with less genomic instability among men with low-grade disease which is novel and supports the hypothesis that lycopene may inhibit progression of prostate cancer early in its natural history. © 2015 Wiley Periodicals, Inc.

  7. Whole genome comparison of donor and cloned dogs

    PubMed Central

    Kim, Hak-Min; Cho, Yun Sung; Kim, Hyunmin; Jho, Sungwoong; Son, Bongjun; Choi, Joung Yoon; Kim, Sangsoo; Lee, Byeong Chun; Bhak, Jong; Jang, Goo

    2013-01-01

    Cloning is a process that produces genetically identical organisms. However, the genomic degree of genetic resemblance in clones needs to be determined. In this report, the genomes of a cloned dog and its donor were compared. Compared with a human monozygotic twin, the genome of the cloned dog showed little difference from the genome of the nuclear donor dog in terms of single nucleotide variations, chromosomal instability, and telomere lengths. These findings suggest that cloning by somatic cell nuclear transfer produced an almost identical genome. The whole genome sequence data of donor and cloned dogs can provide a resource for further investigations on epigenetic contributions in phenotypic differences. PMID:24141358

  8. Revision to Reverse Total Shoulder Arthroplasty Restores Stability for Patients With Unstable Shoulder Prostheses.

    PubMed

    Hernandez, Nicholas M; Chalmers, Brian P; Wagner, Eric R; Sperling, John W; Cofield, Robert H; Sanchez-Sotelo, Joaquin

    2017-11-01

    Instability after shoulder arthroplasty remains a complication with limited salvage options. Reoperation for instability with anatomic designs has led to high rates of persistent instability, therefore we aimed to evaluate the use of RSA for treatment of prosthetic instability. (1) After revision shoulder arthroplasty to a reverse prosthesis (RSA), what is the survivorship free from dislocations at 2 and 5 years? (2) What factors are associated with dislocations? (3) What is the survivorship free from revision after revision to RSA? (4) From preoperation to postrevision to RSA, what are the clinical outcomes-the proportion of patients with moderate to severe pain, shoulder elevation and external rotation ROM, American Shoulder and Elbow Surgeons scores, and Simple Shoulder Test scores? All shoulder arthroplasties revised for prosthetic instability using RSA components between January 2004 and July 2014 were retrospectively studied. During the period in question, we performed 82 revisions for instability of an anatomic total shoulder arthroplasty (TSA) (n = 62), hemiarthroplasty (n = 13), or reverse TSA (n = 7). We typically used a reverse TSA to treat this problem, but we identified 12 treated in other ways, including revision of a TSA to hemiarthroplasty (n = 3), revision of a reverse TSA to hemiarthroplasty (n = 2), revision of hemiarthroplasty to a hemiarthroplasty (n = 1), and revision of an anatomic TSA to another anatomic TSA (n = 6). This left 70 patients for evaluation; of those, 65 (93%) were available for analysis at a mean of 3 years (range, 2-10 years). A total of seven patients died. Eight of the 65 shoulders were not evaluated during the last 5 years, including three in patients who died earlier. The mean age of the patients at the time of revision RSA was 65 years (range, 40-89 years). Data were obtained from a longitudinally maintained institutional joint registry. Instability was defined as severe subluxation confirmed on clinical and radiographic examinations. We evaluated pain and ROM, and Kaplan-Meier curves were used to estimate survivorship. The survivorship free from dislocation at 2 and 5 years was 87% (95% CI, 80%-94%) and 79% (95% CI, 67%-91%) respectively, with 10 of 65 (15%) patients having an episode of dislocation after revision surgery. Persistent instability was more common in those with a BMI greater than 35 kg/m 2 (hazard ratio [HR], 5; 95% CI, 2-16; p = 0.008) and prior hemiarthroplasty (HR, 5; 95% CI, 2-16; p = 0.005), whereas patients who had undergone a previous TSA were less likely to have persistent instability (HR, 0.08; 95% CI, 0.0-0.30; p < 0.001) The survival free from rerevision for any indication at 2 and 5 years was 85% (95% CI, 76%-94%) and 78% (95% CI, 66%-90%) respectively; with the numbers available, we were not able to find associated factors. Fewer patients had moderate or severe pain after revision to RSA (preoperative: 48 of 65 [74%]; postoperative: nine of 65 [14%]; p < 0.001). After surgery, patients showed improvement in shoulder elevation (preoperative: 42° [± 30°], postoperative: 112° [42°]; mean difference, 70° [95% CI, - 83 o to 57°]; p < 0.001) and external rotation (preoperative: 20° [± 22°], postoperative: 42° [± 23°]; mean difference, 22° [95% CI, - 30° to - 14°]; p < 0.001). American Shoulder and Elbow Surgeons scores improved (preoperative: 21 [± 10], postoperative: 68 [± 14], mean difference, 46 [95% CI, - 58 to - 35]; p < 0.001); where a higher score is better. Simple Shoulder Test scores also improved (preoperative: 2/12 [± 2], postoperative: 7/12 [± 3]; mean difference, 5 [95% CI, - 7 to - 2.17]; p < 0.001); where a higher score is better. Revision RSA for prosthetic instability after shoulder arthroplasty is associated with reasonable implant survival and few complications. Approximately one in seven patients will have a recurrent dislocation. In patients with persistent instability or with risk factors for instability, consideration should be given for use of larger glenospheres and increasing the lateral offset at the time of RSA. Level IV, therapeutic study.

  9. CEP152 is a genome maintenance protein disrupted in Seckel syndrome

    PubMed Central

    Kalay, Ersan; Yigit, Gökhan; Aslan, Yakup; Brown, Karen E; Pohl, Esther; Bicknell, Louise S; Kayserili, Hülya; Li, Yun; Tüysüz, Beyhan; Nürnberg, Gudrun; Kiess, Wieland; Koegl, Manfred; Baessmann, Ingelore; Buruk, Kurtulus; Toraman, Bayram; Kayipmaz, Saadettin; Kul, Sibel; Ikbal, Mevlit; Turner, Daniel J; Taylor, Martin S; Aerts, Jan; Scott, Carol; Milstein, Karen; Dollfus, Helene; Wieczorek, Dagmar; Brunner, Han G; Hurles, Matthew; Jackson, Andrew P; Rauch, Anita; Nürnberg, Peter; Karagüzel, Ahmet; Wollnik, Bernd

    2012-01-01

    Functional impairment of DNA damage response pathways leads to increased genomic instability. Here we describe the centrosomal protein CEP152 as a new regulator of genomic integrity and cellular response to DNA damage. Using homozygosity mapping and exome sequencing, we identified CEP152 mutations in Seckel syndrome and showed that impaired CEP152 function leads to accumulation of genomic defects resulting from replicative stress through enhanced activation of ATM signaling and increased H2AX phosphorylation. PMID:21131973

  10. Measuring the Levels of Ribonucleotides Embedded in Genomic DNA.

    PubMed

    Meroni, Alice; Nava, Giulia M; Sertic, Sarah; Plevani, Paolo; Muzi-Falconi, Marco; Lazzaro, Federico

    2018-01-01

    Ribonucleotides (rNTPs) are incorporated into genomic DNA at a relatively high frequency during replication. They have beneficial effects but, if not removed from the chromosomes, increase genomic instability. Here, we describe a fast method to easily estimate the amounts of embedded ribonucleotides into the genome. The protocol described is performed in Saccharomyces cerevisiae and allows us to quantify altered levels of rNMPs due to different mutations in the replicative polymerase ε. However, this protocol can be easily applied to cells derived from any organism.

  11. Rapid and Sensitive Detection of Norovirus Genomes in Oysters by a Two-Step Isothermal Amplification Assay System Combining Nucleic Acid Sequence-Based Amplification and Reverse Transcription-Loop-Mediated Isothermal Amplification Assays▿

    PubMed Central

    Fukuda, Shinji; Sasaki, Yukie; Seno, Masato

    2008-01-01

    We developed a two-step isothermal amplification assay system, which achieved the detection of norovirus (NoV) genomes in oysters with a sensitivity similar to that of reverse transcription-seminested PCR. The time taken for the amplification of NoV genomes from RNA extracts was shortened to about 3 h. PMID:18456857

  12. Rescue from replication stress during mitosis.

    PubMed

    Fragkos, Michalis; Naim, Valeria

    2017-04-03

    Genomic instability is a hallmark of cancer and a common feature of human disorders, characterized by growth defects, neurodegeneration, cancer predisposition, and aging. Recent evidence has shown that DNA replication stress is a major driver of genomic instability and tumorigenesis. Cells can undergo mitosis with under-replicated DNA or unresolved DNA structures, and specific pathways are dedicated to resolving these structures during mitosis, suggesting that mitotic rescue from replication stress (MRRS) is a key process influencing genome stability and cellular homeostasis. Deregulation of MRRS following oncogene activation or loss-of-function of caretaker genes may be the cause of chromosomal aberrations that promote cancer initiation and progression. In this review, we discuss the causes and consequences of replication stress, focusing on its persistence in mitosis as well as the mechanisms and factors involved in its resolution, and the potential impact of incomplete replication or aberrant MRRS on tumorigenesis, aging and disease.

  13. Rescue from replication stress during mitosis

    PubMed Central

    Naim, Valeria

    2017-01-01

    ABSTRACT Genomic instability is a hallmark of cancer and a common feature of human disorders, characterized by growth defects, neurodegeneration, cancer predisposition, and aging. Recent evidence has shown that DNA replication stress is a major driver of genomic instability and tumorigenesis. Cells can undergo mitosis with under-replicated DNA or unresolved DNA structures, and specific pathways are dedicated to resolving these structures during mitosis, suggesting that mitotic rescue from replication stress (MRRS) is a key process influencing genome stability and cellular homeostasis. Deregulation of MRRS following oncogene activation or loss-of-function of caretaker genes may be the cause of chromosomal aberrations that promote cancer initiation and progression. In this review, we discuss the causes and consequences of replication stress, focusing on its persistence in mitosis as well as the mechanisms and factors involved in its resolution, and the potential impact of incomplete replication or aberrant MRRS on tumorigenesis, aging and disease. PMID:28166452

  14. Dormant origins as a built-in safeguard in eukaryotic DNA replication against genome instability and disease development.

    PubMed

    Shima, Naoko; Pederson, Kayla D

    2017-08-01

    DNA replication is a prerequisite for cell proliferation, yet it can be increasingly challenging for a eukaryotic cell to faithfully duplicate its genome as its size and complexity expands. Dormant origins now emerge as a key component for cells to successfully accomplish such a demanding but essential task. In this perspective, we will first provide an overview of the fundamental processes eukaryotic cells have developed to regulate origin licensing and firing. With a special focus on mammalian systems, we will then highlight the role of dormant origins in preventing replication-associated genome instability and their functional interplay with proteins involved in the DNA damage repair response for tumor suppression. Lastly, deficiencies in the origin licensing machinery will be discussed in relation to their influence on stem cell maintenance and human diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Reevaluation of the Reliability and Usefulness of the Somatic Homologous Recombination Reporter Lines

    PubMed Central

    Ülker, Bekir; Hommelsheim, Carl Maximilian; Berson, Tobias; Thomas, Stefan; Chandrasekar, Balakumaran; Olcay, Ahmet Can; Berendzen, Kenneth Wayne; Frantzeskakis, Lamprinos

    2012-01-01

    A widely used approach for assessing genome instability in plants makes use of somatic homologous recombination (SHR) reporter lines. Here, we review the published characteristics and uses of SHR lines. We found a lack of detailed information on these lines and a lack of sufficient evidence that they report only homologous recombination. We postulate that instead of SHR, these lines might be reporting a number of alternative stress-induced stochastic events known to occur at transcriptional, posttranscriptional, and posttranslational levels. We conclude that the reliability and usefulness of the somatic homologous recombination reporter lines requires revision. Thus, more detailed information about these reporter lines is needed before they can be used with confidence to measure genome instability, including the complete sequences of SHR constructs, the genomic location of reporter genes and, importantly, molecular evidence that reconstituted gene expression in these lines is indeed a result of somatic recombination. PMID:23144181

  16. Functional morphology and hydrodynamics of backward swimming in bluegill sunfish, Lepomis macrochirus.

    PubMed

    Flammang, Brooke E; Lauder, George V

    2016-10-01

    Most teleost fishes, like the bluegill sunfish Lepomis macrochirus, have multiple flexible fins that are used as modifiable control surfaces. This helps to make fish highly maneuverable, permitting behaviors like reversing direction of motion and swimming backwards without having to rotate body position. To answer the question of how fish swim backwards we used high-speed videography and electromyography to determine the kinematics and muscle activity necessary to produce reverse-direction propulsion in four bluegill sunfish. We found that, in contrast to slow forward swimming, low-speed backward swimming is a multi-fin behavior, utilizing the pectoral, dorsal, anal, and caudal fins. The pectoral fins alternate beats, each fin broadly flaring on the outstroke and feathered on the instroke. The dorsal fin and dorsal portion of the caudal fin move out of phase as do the anal fin and ventral portion of the caudal fin. Electromyography of muscles in the pectoral, dorsal, anal, and caudal fins demonstrated bilateral activation when these fins changed direction, suggesting that fins are stiffened at this time. In addition to backward propulsion by the pectoral fins, particle image velocimetry revealed that the dorsal and anal fins are capable of producing reverse momentum jets to propel the fish backward. Because teleost fishes are statically unstable, locomotion at slow speeds requires precise fin control to adequately balance torques produced about the center of mass. Therefore, the kinematics of backward swimming may be the result of compensation for rolling, pitching, and yawning instability. We suggest that asymmetric pectoral fin activity with feathering during adduction balances rolling instability. The ventral to dorsal undulatory wave on the caudal fin controls pitch instability and yaw instability encountered from pectoral-driven backward locomotion. Thrust generation from the dorsal and anal fins decreases the destabilizing effect of the long moment arm of the tail in backward swimming. Thus, backward locomotion at slow speed is not simply the reverse of slow forward swimming. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Mitochondria damage checkpoint in apoptosis and genome stability.

    PubMed

    Singh, Keshav K

    2004-11-01

    Mitochondria perform multiple cellular functions including energy production, cell proliferation and apoptosis. Studies described in this paper suggest a role for mitochondria in maintaining genomic stability. Genomic stability appears to be dependent on mitochondrial functions involved in maintenance of proper intracellular redox status, ATP-dependent transcription, DNA replication, DNA repair and DNA recombination. To further elucidate the role of mitochondria in genomic stability, I propose a mitochondria damage checkpoint (mitocheckpoint) that monitors and responds to damaged mitochondria. Mitocheckpoint can coordinate and maintain proper balance between apoptotic and anti-apoptotic signals. When mitochondria are damaged, mitocheckpoint can be activated to help cells repair damaged mitochondria, to restore normal mitochondrial function and avoid production of mitochondria-defective cells. If mitochondria are severely damaged, mitocheckpoint may not be able to repair the damage and protect cells. Such an event triggers apoptosis. If damage to mitochondria is continuous or persistent such as damage to mitochondrial DNA resulting in mutations, mitocheckpoint may fail which can lead to genomic instability and increased cell survival in yeast. In human it can cause cancer. In support of this proposal we provide evidence that mitochondrial genetic defects in both yeast and mammalian systems lead to impaired DNA repair, increased genomic instability and increased cell survival. This study reveals molecular genetic mechanisms underlying a role for mitochondria in carcinogenesis in humans.

  18. DHX9 helicase is involved in preventing genomic instability induced by alternatively structured DNA in human cells

    PubMed Central

    Jain, Aklank; Bacolla, Albino; del Mundo, Imee M.; Zhao, Junhua; Wang, Guliang; Vasquez, Karen M.

    2013-01-01

    Sequences that have the capacity to adopt alternative (i.e. non-B) DNA structures in the human genome have been implicated in stimulating genomic instability. Previously, we found that a naturally occurring intra-molecular triplex (H-DNA) caused genetic instability in mammals largely in the form of DNA double-strand breaks. Thus, it is of interest to determine the mechanism(s) involved in processing H-DNA. Recently, we demonstrated that human DHX9 helicase preferentially unwinds inter-molecular triplex DNA in vitro. Herein, we used a mutation-reporter system containing H-DNA to examine the relevance of DHX9 activity on naturally occurring H-DNA structures in human cells. We found that H-DNA significantly increased mutagenesis in small-interfering siRNA-treated, DHX9-depleted cells, affecting mostly deletions. Moreover, DHX9 associated with H-DNA in the context of supercoiled plasmids. To further investigate the role of DHX9 in the recognition/processing of H-DNA, we performed binding assays in vitro and chromatin immunoprecipitation assays in U2OS cells. DHX9 recognized H-DNA, as evidenced by its binding to the H-DNA structure and enrichment at the H-DNA region compared with a control region in human cells. These composite data implicate DHX9 in processing H-DNA structures in vivo and support its role in the overall maintenance of genomic stability at sites of alternatively structured DNA. PMID:24049074

  19. DHX9 helicase is involved in preventing genomic instability induced by alternatively structured DNA in human cells.

    PubMed

    Jain, Aklank; Bacolla, Albino; Del Mundo, Imee M; Zhao, Junhua; Wang, Guliang; Vasquez, Karen M

    2013-12-01

    Sequences that have the capacity to adopt alternative (i.e. non-B) DNA structures in the human genome have been implicated in stimulating genomic instability. Previously, we found that a naturally occurring intra-molecular triplex (H-DNA) caused genetic instability in mammals largely in the form of DNA double-strand breaks. Thus, it is of interest to determine the mechanism(s) involved in processing H-DNA. Recently, we demonstrated that human DHX9 helicase preferentially unwinds inter-molecular triplex DNA in vitro. Herein, we used a mutation-reporter system containing H-DNA to examine the relevance of DHX9 activity on naturally occurring H-DNA structures in human cells. We found that H-DNA significantly increased mutagenesis in small-interfering siRNA-treated, DHX9-depleted cells, affecting mostly deletions. Moreover, DHX9 associated with H-DNA in the context of supercoiled plasmids. To further investigate the role of DHX9 in the recognition/processing of H-DNA, we performed binding assays in vitro and chromatin immunoprecipitation assays in U2OS cells. DHX9 recognized H-DNA, as evidenced by its binding to the H-DNA structure and enrichment at the H-DNA region compared with a control region in human cells. These composite data implicate DHX9 in processing H-DNA structures in vivo and support its role in the overall maintenance of genomic stability at sites of alternatively structured DNA.

  20. Chromosomal instability in the lymphocytes of breast cancer patients

    PubMed Central

    Harsimran, Kaur; Kaur, Monga Gaganpreet; Nitika, Setia; Meena, Sudan; M. S., Uppal; Yamini; A. P. S., Batra; Vasudha, Sambyal

    2009-01-01

    Genomic instability in the tumor tissue has been correlated with tumor progression. In the present study, chromosomal aberrations (CAs) in peripheral blood lymphocytes (PBLs) of breast tumor patients were studied to assess whether chromosomal instability (CIN) in PBLs correlates with aggressiveness of breast tumor (i.e., disease stage) and has any prognostic utility. Cultured blood lymphocyte metaphases were scored for aberrations in 31 breast cancer patients and 20 healthy age and sex-matched controls. A variety of CAs, including aneuploidy, polyploidy, terminal deletions, acentric fragments, double minutes, chromatid separations, ring chromosome, marker chromosome, chromatid gaps, and breaks were seen in PBLs of the patients. The CAs in patients were higher than in controls. A comparison of the frequency of metaphases with aberrations by grouping the patients according to the stage of advancement of disease did not reveal any consistent pattern of variation in lymphocytic CIN. Neither was any specific chromosomal abnormality found to be associated with the stage of cancer. This might be indicative of the fact that cancer patients have constitutional CIN, which predisposes them to the disease, and this inherent difference in the level of genomic instability might play a role in disease progression and response to treatment. PMID:20407644

  1. DNA Damage as a Driver for Growth Delay: Chromosome Instability Syndromes with Intrauterine Growth Retardation

    PubMed Central

    Hernández-Gómez, Mariana

    2017-01-01

    DNA is constantly exposed to endogenous and exogenous mutagenic stimuli that are capable of producing diverse lesions. In order to protect the integrity of the genetic material, a wide array of DNA repair systems that can target each specific lesion has evolved. Despite the availability of several repair pathways, a common general program known as the DNA damage response (DDR) is stimulated to promote lesion detection, signaling, and repair in order to maintain genetic integrity. The genes that participate in these pathways are subject to mutation; a loss in their function would result in impaired DNA repair and genomic instability. When the DDR is constitutionally altered, every cell of the organism, starting from development, will show DNA damage and subsequent genomic instability. The cellular response to this is either uncontrolled proliferation and cell cycle deregulation that ensues overgrowth, or apoptosis and senescence that result in tissue hypoplasia. These diverging growth abnormalities can clinically translate as cancer or growth retardation; both features can be found in chromosome instability syndromes (CIS). The analysis of the clinical, cellular, and molecular phenotypes of CIS with intrauterine growth retardation allows inferring that replication alteration is their unifying feature. PMID:29238724

  2. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    A long-standing dogma in the radiation sciences is that energy from radiation must be deposited in the cell nucleus to elicit a biological effect. A number of non-targeted, delayed effects of ionizing radiation have been described that challenge this dogma and pose new challenges to evaluating potential hazards associated with radiation exposure. These effects include induced genomic instability and non-targeted bystander effects. The in vitro evidence for non-targeted effects in radiation biology will be reviewed, but the question as to how one extrapolates from these in vitro observations to the risk of radiation-induced adverse health effects such as cancer remains open.

  3. JAK2 and genomic instability in the myeloproliferative neoplasms: a case of the chicken or the egg?

    PubMed Central

    Scott, Linda M.; Rebel, Vivienne I.

    2012-01-01

    The myeloproliferative neoplasms (MPNs) are a particularly useful model for studying mutation accumulation in neoplastic and the mechanisms of the molecular cells, understanding underlying defects our current This review summarizes acquisition. present their in patients with an MPN, and the effects of mutations targeting Janus kinase 2 (JAK2)-mediated intracellular signaling on DNA damage, and on the elimination of mutation-bearing cells by programmed cell death. Moreover, we discuss findings that suggest that the acquisition of disease-initiating mutations in hematopoietic stem cells of some MPN patients may be the consequence of an inherent genomic instability that was not previously appreciated. PMID:22641564

  4. Somatic POLE exonuclease domain mutations are early events in sporadic endometrial and colorectal carcinogenesis, determining driver mutational landscape, clonal neoantigen burden and immune response.

    PubMed

    Temko, Daniel; Van Gool, Inge C; Rayner, Emily; Glaire, Mark; Makino, Seiko; Brown, Matthew; Chegwidden, Laura; Palles, Claire; Depreeuw, Jeroen; Beggs, Andrew; Stathopoulou, Chaido; Mason, John; Baker, Ann-Marie; Williams, Marc; Cerundolo, Vincenzo; Rei, Margarida; Taylor, Jenny C; Schuh, Anna; Ahmed, Ahmed; Amant, Frédéric; Lambrechts, Diether; Smit, Vincent Thbm; Bosse, Tjalling; Graham, Trevor A; Church, David N; Tomlinson, Ian

    2018-03-31

    Genomic instability, which is a hallmark of cancer, is generally thought to occur in the middle to late stages of tumourigenesis, following the acquisition of permissive molecular aberrations such as TP53 mutation or whole genome doubling. Tumours with somatic POLE exonuclease domain mutations are notable for their extreme genomic instability (their mutation burden is among the highest in human cancer), distinct mutational signature, lymphocytic infiltrate, and excellent prognosis. To what extent these characteristics are determined by the timing of POLE mutations in oncogenesis is unknown. Here, we have shown that pathogenic POLE mutations are detectable in non-malignant precursors of endometrial and colorectal cancer. Using genome and exome sequencing, we found that multiple driver mutations in POLE-mutant cancers show the characteristic POLE mutational signature, including those in genes conventionally regarded as initiators of tumourigenesis. In POLE-mutant cancers, the proportion of monoclonal predicted neoantigens was similar to that in other cancers, but the absolute number was much greater. We also found that the prominent CD8 + T-cell infiltrate present in POLE-mutant cancers was evident in their precursor lesions. Collectively, these data indicate that somatic POLE mutations are early, quite possibly initiating, events in the endometrial and colorectal cancers in which they occur. The resulting early onset of genomic instability may account for the striking immune response and excellent prognosis of these tumours, as well as their early presentation. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  5. Radiation-induced chromosomal instability in BALB/c and C57BL/6 mice: the difference is as clear as black and white

    NASA Technical Reports Server (NTRS)

    Ponnaiya, B.; Cornforth, M. N.; Ullrich, R. L.

    1997-01-01

    Genomic instability has been proposed to be the earliest step in radiation-induced tumorigenesis. It follows from this hypothesis that individuals highly susceptible to induction of tumors by radiation should exhibit enhanced radiation-induced instability. BALB/c white mice are considerably more sensitive to radiation-induced mammary cancer than C57BL/6 black mice. In this study, primary mammary epithelial cell cultures from these two strains were examined for the "delayed" appearance of chromosomal aberrations after exposure to 137Cs gamma radiation, as a measure of radiation-induced genomic instability. As expected, actively dividing cultures from both strains showed a rapid decline of initial asymmetrical aberrations with time postirradiation. However, after 16 population doublings, cells from BALB/c mice exhibited a marked increase in the frequency of chromatid-type breaks and gaps which remained elevated throughout the time course of the experiment (28 doublings). No such effect was observed for the cells of C57BL/6 mice; after the rapid clearance of initial aberrations, the frequency of chromatid-type aberrations in the irradiated population remained at or near those of nonirradiated controls. These results demonstrate a correlation between the latent expression of chromosomal damage in vitro and susceptibility for mammary tumors, and provide further support for the central role of radiation-induced instability in the process of tumorigenesis.

  6. Identification and characterization of jute LTR retrotransposons:

    PubMed Central

    Ahmed, Salim; Shafiuddin, MD; Azam, Muhammad Shafiul; Islam, Md. Shahidul; Ghosh, Ajit

    2011-01-01

    Long Terminal Repeat (LTR) retrotransposons constitute a significant part of eukaryotic genomes and play an important role in genome evolution especially in plants. Jute is an important fiber crop with a large genome of 1,250 Mbps. This genome is still mostly unexplored. In this study we aimed at identifying and characterizing the LTR retrotransposons of jute with a view to understanding the jute genome better. In this study, the Reverse Transcriptase domain of Ty1-copia and Ty3-gypsy LTR retrotransposons of jute were amplified by degenerate primers and their expressions were examined by reverse transcription PCR. Copy numbers of reverse transcriptase (RT) genes of Ty1-copia and Ty3-gypsy elements were determined by dot blot analysis. Sequence analysis revealed higher heterogeneity among Ty1-copia retrotransposons than Ty3-gypsy and clustered each of them in three groups. Copy number of RT genes in Ty1-copia was found to be higher than that of Ty3-gypsy elements from dot blot hybridization. Cumulatively Ty1-copia and Ty3-gypsy may constitute around 19% of the jute genome where two groups of Ty1-copia were found to be transcriptionally active. Since the LTR retrotransposons constitute a large portion of jute genome, these findings imply the importance of these elements in the evolution of jute genome. PMID:22016842

  7. Analysis of Alfven eigenmode destabilization in DIII-D high poloidal β discharges using a Landau closure model

    NASA Astrophysics Data System (ADS)

    Varela, J.; Spong, D. A.; Garcia, L.; Huang, J.; Murakami, M.; Garofalo, A. M.; Qian, J. P.; Holcomb, C. T.; Hyatt, A. W.; Ferron, J. R.; Collins, C. S.; Ren, Q. L.; McClenaghan, J.; Guo, W.

    2018-07-01

    Alfvén eigenmodes are destabilized at the DIII-D pedestal during transient beta drops in high poloidal β discharges with internal transport barriers (ITBs), driven by n  =  1 external kink modes, leading to energetic particle losses. There are two different scenarios in the thermal β recovery phase: with bifurcation (two instability branches with different frequencies) or without bifurcation (single instability branch). We use the reduced MHD equations in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles as well as the geodesic acoustic wave dynamics, to study the properties of the instabilities observed in the DIII-D high poloidal β discharges and identify the conditions to trigger the bifurcation. The simulations suggest that instabilities with lower frequency in the bifurcation case are ballooning modes driven at the plasma pedestal, while the instability branch with higher frequencies are low n (n  <  4) toroidal Alfvén eigenmodes nearby the pedestal. The reverse shear region between the middle and plasma periphery in the non-bifurcated case avoids the excitation of ballooning modes at the pedestal, although toroidal Alfvén eigenmodes and reverse shear Alfvén eigenmodes are unstable in the reverse shear region. The n  =  1 and n  =  2 Alfvén eigenmode activity can be suppressed or minimized if the neutral beam injector (NBI) intensity is lower than the experimental value (). In addition, if the beam energy or neutral beam injector voltage is lower than in the experiment (), the resonance between beam and thermal plasma is weaker. The and 6 AE activity can not be fully suppressed, although the growth rate and frequency is smaller for an optimized neutral beam injector operation regime. In conclusion, AE activity in high poloidal β discharges can be minimized for optimized NBI operation regimes.

  8. ER stress and genomic instability induced by gamma radiation in mice primary cultured glial cells.

    PubMed

    Chatterjee, Jit; Nairy, Rajesha K; Langhnoja, Jaldeep; Tripathi, Ashutosh; Patil, Rajashekhar K; Pillai, Prakash P; Mustak, Mohammed S

    2018-06-01

    Ionizing radiation induces various pathophysiological conditions by altering central nervous system (CNS) homeostasis, leading to neurodegenerative diseases. However, the potential effect of ionizing radiation response on cellular physiology in glial cells is unclear. In the present study, micronucleus test, comet assay, and RT-PCR were performed to investigate the potential effect of gamma radiation in cultured oligodendrocytes and astrocytes with respect to genomic instability, Endoplasmic Reticulum (ER) stress, and inflammation. Further, we studied the effect of alteration in ER stress specific gene expression in cortex post whole body radiation in mice. Results showed that exposure of gamma radiation of 2Gy in-vitro cultured astrocytes and oligodendrocytes and 7Gy in-vivo induced ER stress and Inflammation along with profuse DNA damage and Chromosomal abnormality. Additionally, we observed downregulation of myelin basic protein levels in cultured oligodendrocytes exposed to radiation. The present data suggests that ER stress and pro inflammatory cytokines serve as the major players in inducing glial cell dysfunction post gamma irradiation along with induction of genomic instability. Taken together, these results indicate that ER stress, DNA damage, and inflammatory pathways may be critical events leading to glial cell dysfunction and subsequent cell death following exposure to ionizing radiation.

  9. Haploinsufficiency of Anx7 tumor suppressor gene and consequent genomic instability promotes tumorigenesis in the Anx7(+/-) mouse

    PubMed Central

    Srivastava, Meera; Montagna, Cristina; Leighton, Ximena; Glasman, Mirta; Naga, Shanmugam; Eidelman, Ofer; Ried, Thomas; Pollard, Harvey B.

    2003-01-01

    Annexin 7 (ANX7) acts as a tumor suppressor gene in prostate cancer, where loss of heterozygosity and reduction of ANX7 protein expression is associated with aggressive metastatic tumors. To investigate the mechanism by which this gene controls tumor development, we have developed an Anx7(+/-) knockout mouse. As hypothesized, the Anx7(+/-) mouse has a cancer-prone phenotype. The emerging tumors express low levels of Anx7 protein. Nonetheless, the wild-type Anx7 allele is detectable in laser-capture microdissection-derived tumor tissue cells. Genome array analysis of hepatocellular carcinoma tissue indicates that the Anx7(+/-) genotype is accompanied by profound reductions of expression of several other tumor suppressor genes, DNA repair genes, and apoptosis-related genes. In situ analysis by tissue imprinting from chromosomes in the primary tumor and spectral karyotyping analysis of derived cell lines identify chromosomal instability and clonal chromosomal aberrations. Furthermore, whereas 23% of the mutant mice develop spontaneous neoplasms, all mice exhibit growth anomalies, including gender-specific gigantism and organomegaly. We conclude that haploinsufficiency of Anx7 expression appears to drive disease progression to cancer because of genomic instability through a discrete signaling pathway involving other tumor suppressor genes, DNA-repair genes, and apoptosis-related genes. PMID:14608035

  10. Chronic exposure to the cytolethal distending toxins of Gram-negative bacteria promotes genomic instability and altered DNA damage response

    PubMed Central

    Guidi, Riccardo; Guerra, Lina; Levi, Laura; Stenerlöw, Bo; Fox, James G.; Josenhans, Christine; Masucci, Maria G.; Frisan, Teresa

    2014-01-01

    Summary Epidemiological evidence links chronic bacterial infections to the increased incidence of certain types of cancer but the molecular mechanisms by which bacteria contribute to tumour initiation and progression are still poorly characterized. Here we show that chronic exposure to the genotoxin cytolethal distending toxin (CDT) of Gram-negative bacteria promotes genomic instability and acquisition of phenotypic properties of malignancy in fibroblasts and colon epithelial cells. Cells grown for more than 30 weeks in the presence of sublethal doses of CDT showed increased mutation frequency, and accumulation of chromatin and chromosomal aberrations in the absence of significant alterations of cell cycle distribution, decreased viability or senescence. Cell survival was dependent on sustained activity of the p38 MAP kinase. The ongoing genomic instability was associated with impaired activation of the DNA damage response and failure to efficiently activate cell cycle checkpoints upon exposure to genotoxic stress. Independently selected sublines showed enhanced anchorage-independent growth as assessed by the formation of colonies in semisolid agarose. These findings support the notion that chronic infection by CDT-producing bacteria may promote malignant transformation, and point to the impairment of cellular control mechanisms associated with the detection and repair of DNA damage as critical events in the process. PMID:22998585

  11. Pleiotropic effects of methionine adenosyltransferases deregulation as determinants of liver cancer progression and prognosis.

    PubMed

    Frau, Maddalena; Feo, Francesco; Pascale, Rosa M

    2013-10-01

    Downregulation of liver-specific MAT1A gene, encoding S-adenosylmethionine (SAM) synthesizing isozymes MATI/III, and upregulation of widely expressed MAT2A, encoding MATII isozyme, known as MAT1A:MAT2A switch, occurs in hepatocellular carcinoma (HCC). Being inhibited by its reaction product, MATII isoform upregulation cannot compensate for MATI/III decrease. Therefore, MAT1A:MAT2A switch contributes to decrease in SAM level in rodent and human hepatocarcinogenesis. SAM administration to carcinogen-treated rats prevents hepatocarcinogenesis, whereas MAT1A-KO mice, characterized by chronic SAM deficiency, exhibit macrovesicular steatosis, mononuclear cell infiltration in periportal areas, and HCC development. This review focuses upon the pleiotropic changes, induced by MAT1A/MAT2A switch, associated with HCC development. Epigenetic control of MATs expression occurs at transcriptional and post-transcriptional levels. In HCC cells, MAT1A/MAT2A switch is associated with global DNA hypomethylation, decrease in DNA repair, genomic instability, and signaling deregulation including c-MYC overexpression, rise in polyamine synthesis, upregulation of RAS/ERK, IKK/NF-kB, PI3K/AKT, and LKB1/AMPK axis. Furthermore, decrease in MAT1A expression and SAM levels results in increased HCC cell proliferation, cell survival, and microvascularization. All of these changes are reversed by SAM treatment in vivo or forced MAT1A overexpression or MAT2A inhibition in cultured HCC cells. In human HCC, MAT1A:MAT2A and MATI/III:MATII ratios correlate negatively with cell proliferation and genomic instability, and positively with apoptosis and global DNA methylation. This suggests that SAM decrease and MATs deregulation represent potential therapeutic targets for HCC. Finally, MATI/III:MATII ratio strongly predicts patients' survival length suggesting that MAT1A:MAT2A expression ratio is a putative prognostic marker for human HCC. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  12. Onset of a Propagating Self-Sustained Spin Reversal Front in a Magnetic System

    NASA Astrophysics Data System (ADS)

    Kent, Andrew D.

    2014-03-01

    The energy released in a magnetic material by reversing spins as they relax toward equilibrium can lead to a dynamical magnetic instability in which all the spins in a sample rapidly reverse in a run-away process known as magnetic deflagration. A well-defined front separating reversed and un-reversed spins develops that propagates at a constant speed. This process is akin to a chemical reaction in which a flammable substance ignites and the resulting exothermic reaction leads via thermal conduction to increases in the temperature of an adjacent unburned substance that ignites it. In a magnetic system the reaction is the reversal of spins that releases Zeeman energy and the magnetic anisotropy barrier is the reaction's activation energy. An interesting aspect of magnetic systems is that these key energies-the activation energy and the energy released-can be independently controlled by applied magnetic fields enabling systematic studies of these magnetic instabilities. We have studied the instability that leads to the ignition of magnetic deflagration in a thermally driven Mn12-Ac molecular magnet single crystal. Each Mn12-ac molecule is a uniaxial nanomagnet with spin 10 and energy barrier of 60 K. We use a longitudinal field (a field parallel to the easy axis) to set the energy released and a transverse field to control the activation energy. A heat pulse is applied to one end of the crystal to initiate the process. We study the crossover between slow magnetic relaxation and rapid, self-sustained magnetic deflagration as a function of these fields at low temperature (0.5 K). An array of Hall sensors adjacent to a single crystal is used to detect and measure the speed of the spin-reversal front. I will describe a simple model we developed based on a reaction-diffusion process that describes our experimental findings. I will also discuss prospects for observing spin-fronts driven by magnetic dipole interactions between molecules that can be sonic, i.e. travel near the speed of sound (~ 1000 m/s). In collaboration with P. Subedi, S. Velez, F. Macià, S. Li, M. P. Sarachik, J. Tejada, S. Mukherjee and G. Christou. Supported by NSF-DMR-1006575.

  13. University of Texas MD Anderson Cancer Center: High-Throughput Screening Identifying Driving Mutations in Endometrial Cancer | Office of Cancer Genomics

    Cancer.gov

    Recent advances in next-generation sequencing technology have enabled the unprecedented characterization of a full spectrum of somatic alterations in cancer genomes. Given the large numbers of somatic mutations typically detected by this approach, a key challenge in the downstream analysis is to distinguish “drivers” that functionally contribute to tumorigenesis from “passengers” that occur as the consequence of genomic instability.

  14. A Quaternary Geomagnetic Instability Time Scale

    NASA Astrophysics Data System (ADS)

    Singer, B. S.

    2013-12-01

    Reversals and excursions of Earth's geomagnetic field create marker horizons that are readily detected in sedimentary and volcanic rocks worldwide. An accurate and precise chronology of these geomagnetic field instabilities is fundamental to understanding several aspects of Quaternary climate, dynamo processes, and surface processes. For example, stratigraphic correlation between marine sediment and polar ice records of climate change across the cryospheres benefits from a highly resolved record of reversals and excursions. The temporal patterns of dynamo behavior may reflect physical interactions between the molten outer core and the solid inner core or lowermost mantle. These interactions may control reversal frequency and shape the weak magnetic fields that arise during successive dynamo instabilities. Moreover, weakening of the axial dipole during reversals and excursions enhances the production of cosmogenic isotopes that are used in sediment and ice core stratigraphy and surface exposure dating. The Geomagnetic Instability Time Scale (GITS) is based on the direct dating of transitional polarity states recorded by lava flows using the 40Ar/39Ar method, in parallel with astrochronologic age models of marine sediments in which O isotope and magnetic records have been obtained. A review of data from Quaternary lava flows and sediments yields a GITS comprising 10 polarity reversals and 27 excursions during the past 2.6 million years. Nine of the ten reversals bounding chrons and subchrons are associated with 40Ar/39Ar ages of transitionally-magnetized lava flows. The tenth, the Guass-Matuyama chron boundary, is tightly bracketed by 40Ar/39Ar dated ash deposits. Of the 27 well-documented excursions, 14 occurred during the Matuyama chron and 13 during the Brunhes chron; 19 have been dated directly using the 40Ar/39Ar method on transitionally-magnetized volcanic rocks and form the backbone of the GITS. Excursions are clearly not the rare phenomena once thought. Rather, during the Quaternary period, they occur nearly three times as often as full polarity reversals. I will address analytical issues, including the size and consistency of system blanks, that have led to the recognition of minor (1%) discrepencies between the 40Ar/39Ar age for a particular reversal or excursion and the best astrochronologic estimates from ODP sediment cores. For example, re-analysis of lava flows from Haleakala volcano, Maui that record in detail the Matuyama-Brunhes polarity reversal have been undertaken with blanks an order of magntitude smaller and more stable than was common a decade ago. Using the modern astrochronologic calibration of 28.201 Ma for the age of the Fish Canyon sanidine standard, results thus far yield an 40Ar/39Ar age of 772 × 11 ka for the reversal that is identical to the most precise and accurate astrochronologic age of 773 × 2 ka for this reversal from ODP cores. Similarly, new dating of sanidine in the Cerro Santa Rosa I rhyolite dome, New Mexico reveals an age of 932 × 5 ka for the excursion it records, in perfect agreement with astrochronologically dated ODP core records. Work underway aims at refining the 40Ar/39Ar ages that underpin the entire GITS by further eliminating the bias between the radioisotopic and astrochronologically determined ages for several reversals and excursions.

  15. Numerical investigation on the effects of acceleration reversal times in Rayleigh-Taylor Instability with multiple reversals

    NASA Astrophysics Data System (ADS)

    Farley, Zachary; Aslangil, Denis; Banerjee, Arindam; Lawrie, Andrew G. W.

    2017-11-01

    An implicit large eddy simulation (ILES) code, MOBILE, is used to explore the growth rate of the mixing layer width of the acceleration-driven Rayleigh-Taylor instability (RTI) under variable acceleration histories. The sets of computations performed consist of a series of accel-decel-accel (ADA) cases in addition to baseline constant acceleration and accel-decel (AD) cases. The ADA cases are a series of varied times for the second acceleration reversal (t2) and show drastic differences in the growth rates. Upon the deceleration phase, the kinetic energy of the flow is shifted into internal wavelike patterns. These waves are evidenced by the examined differences in growth rate in the second acceleration phase for the set of ADA cases. Here, we investigate global parameters that include mixing width, growth rates and the anisotropy tensor for the kinetic energy to better understand the behavior of the growth during the re-acceleration period. Authors acknowledge financial support from DOE-SSAA (DE-NA0003195) and NSF CAREER (#1453056) awards.

  16. Microturbulence studies of pulsed poloidal current drive discharges in the reversed field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmody, D., E-mail: dcarmody@wisc.edu; Pueschel, M. J.; Anderson, J. K.

    2015-01-15

    Experimental discharges with pulsed poloidal current drive (PPCD) in the Madison Symmetric Torus reversed field pinch are investigated using a semi-analytic equilibrium model in the gyrokinetic turbulence code GENE. PPCD cases, with plasma currents of 500 kA and 200 kA, exhibit a density-gradient-driven trapped electron mode (TEM) and an ion temperature gradient mode, respectively. Relative to expectations of tokamak core plasmas, the critical gradients for the onset of these instabilities are found to be greater by roughly a factor of the aspect ratio. A significant upshift in the nonlinear TEM transport threshold, previously found for tokamaks, is confirmed in nonlinear reversed fieldmore » pinch simulations and is roughly three times the threshold for linear instability. The simulated heat fluxes can be brought in agreement with measured diffusivities by introducing a small, resonant magnetic perturbation, thus modeling the residual fluctuations from tearing modes. These fluctuations significantly enhance transport.« less

  17. Transport with Reversed Er in Gamma -10, LAPD and the Sao Paulo Tokamak

    NASA Astrophysics Data System (ADS)

    Fu, Sean; Morrison, P. J.; Horton, W.; Caldas, Ibere

    2009-11-01

    The understanding of how and when the reversed radial electric field produces an internal transport barrier is still poorly understood. There are two linked aspects to the problem: (i) the change in the plasma instabilities and thus the fluctuation spectrum from changes away from or towards the generalized Rayleigh condition for destabilizing the drift wave/ Rossby wave instabilities and (2) for a fixed fluctuation spectrum the role of the Er reversal in creating a layer where the resonant surfaces do not overlap so the condition for the onset of diffusion from overlapping resonances in phase space is not satisfied. We look at a model that is representative of the externally controlled Er shear in the G-10 Tsukuba tandem mirror and in the wall biasing experiments in the LAPD and the Sao Paulo Tokamak to ask when the effects are dominant and how they may compete with each other to determine the conditions for the transport suppression that is reported in numerous plasma experiments.

  18. Measurements of the momentum and current transport from tearing instability in the Madison Symmetric Torus reversed-field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuritsyn, A.; Fiksel, G.; Almagri, A. F.

    2009-05-15

    In this paper measurements of momentum and current transport caused by current driven tearing instability are reported. The measurements are done in the Madison Symmetric Torus reversed-field pinch [R. N. Dexter, D. W. Kerst, T. W. Lovell, S. C. Prager, and J. C. Sprott, Fusion Technol. 19, 131 (1991)] in a regime with repetitive bursts of tearing instability causing magnetic field reconnection. It is established that the plasma parallel momentum profile flattens during these reconnection events: The flow decreases in the core and increases at the edge. The momentum relaxation phenomenon is similar in nature to the well established relaxationmore » of the parallel electrical current and could be a general feature of self-organized systems. The measured fluctuation-induced Maxwell and Reynolds stresses, which govern the dynamics of plasma flow, are large and almost balance each other such that their difference is approximately equal to the rate of change of plasma momentum. The Hall dynamo, which is directly related to the Maxwell stress, drives the parallel current profile relaxation at resonant surfaces at the reconnection events. These results qualitatively agree with analytical calculations and numerical simulations. It is plausible that current-driven instabilities can be responsible for momentum transport in other laboratory and astrophysical plasmas.« less

  19. Genome-wide analysis in UK Biobank identifies four loci associated with mood instability and genetic correlation with major depressive disorder, anxiety disorder and schizophrenia.

    PubMed

    Ward, Joey; Strawbridge, Rona J; Bailey, Mark E S; Graham, Nicholas; Ferguson, Amy; Lyall, Donald M; Cullen, Breda; Pidgeon, Laura M; Cavanagh, Jonathan; Mackay, Daniel F; Pell, Jill P; O'Donovan, Michael; Escott-Price, Valentina; Smith, Daniel J

    2017-11-30

    Mood instability is a core clinical feature of affective and psychotic disorders. In keeping with the Research Domain Criteria approach, it may be a useful construct for identifying biology that cuts across psychiatric categories. We aimed to investigate the biological validity of a simple measure of mood instability and evaluate its genetic relationship with several psychiatric disorders, including major depressive disorder (MDD), bipolar disorder (BD), schizophrenia, attention deficit hyperactivity disorder (ADHD), anxiety disorder and post-traumatic stress disorder (PTSD). We conducted a genome-wide association study (GWAS) of mood instability in 53,525 cases and 60,443 controls from UK Biobank, identifying four independently associated loci (on chromosomes 8, 9, 14 and 18), and a common single-nucleotide polymorphism (SNP)-based heritability estimate of ~8%. We found a strong genetic correlation between mood instability and MDD (r g  = 0.60, SE = 0.07, p = 8.95 × 10 -17 ) and a small but significant genetic correlation with both schizophrenia (r g  = 0.11, SE = 0.04, p = 0.01) and anxiety disorders (r g  = 0.28, SE = 0.14, p = 0.04), although no genetic correlation with BD, ADHD or PTSD was observed. Several genes at the associated loci may have a role in mood instability, including the DCC netrin 1 receptor (DCC) gene, eukaryotic translation initiation factor 2B subunit beta (eIF2B2), placental growth factor (PGF) and protein tyrosine phosphatase, receptor type D (PTPRD). Strengths of this study include the very large sample size, but our measure of mood instability may be limited by the use of a single question. Overall, this work suggests a polygenic basis for mood instability. This simple measure can be obtained in very large samples; our findings suggest that doing so may offer the opportunity to illuminate the fundamental biology of mood regulation.

  20. Retrotransposition of Long Interspersed Element 1 Induced by Methamphetamine or Cocaine*

    PubMed Central

    Okudaira, Noriyuki; Ishizaka, Yukihito; Nishio, Hajime

    2014-01-01

    Long interspersed element 1 (L1) is a retroelement constituting ∼17% of the human genome. A single human cell has 80–100 copies of L1 capable of retrotransposition (L1-RTP), ∼10% of which are “hot L1” copies, meaning they are primed for “jumping” within the genome. Recent studies demonstrated induction of L1 activity by drugs of abuse or low molecular weight compounds, but little is known about the underlying mechanism. The aim of this study was to identify the mechanism and effects of methamphetamine (METH) and cocaine on L1-RTP. Our results revealed that METH and cocaine induced L1-RTP in neuronal cell lines. This effect was found to be reverse transcriptase-dependent. However, METH and cocaine did not induce double-strand breaks. RNA interference experiments combined with add-back of siRNA-resistant cDNAs revealed that the induction of L1-RTP by METH or cocaine depends on the activation of cAMP response element-binding protein (CREB). METH or cocaine recruited the L1-encoded open reading frame 1 (ORF1) to chromatin in a CREB-dependent manner. These data suggest that the cellular cascades underlying METH- and cocaine-induced L1-RTP are different from those behind L1-RTP triggered by DNA damage; CREB is involved in drug-induced L1-RTP. L1-RTP caused by drugs of abuse is a novel type of genomic instability, and analysis of this phenomenon might be a novel approach to studying substance-use disorders. PMID:25053411

  1. Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review.

    PubMed

    Lorimore, S A; Wright, E G

    2003-01-01

    To review studies of radiation responses in the haemopoietic system in the context of radiation-induced genomic instability, bystander effects and inflammatory-type processes. There is considerable evidence that cells that themselves are not exposed to ionizing radiation but are the progeny of cells irradiated many cell divisions previously may express a high frequency of gene mutations, chromosomal aberrations and cell death. These effects are collectively known as radiation-induced genomic instability. A second untargeted effect results in non-irradiated cells exhibiting responses typically associated with direct radiation exposure but occurs as a consequence of contact with irradiated cells or by receiving soluble signals from irradiated cells. These effects are collectively known as radiation-induced bystander effects. Reported effects include increases or decreases in damage-inducible and stress-related proteins; increases or decreases in reactive oxygen species, cell death or cell proliferation, and induction of mutations and chromosome aberrations. This array of responses is reminiscent of effects mediated by cytokines and other similar regulatory factors that may involve, but do not necessarily require, gap junction-mediated transfer, have multiple inducers and a variety of context-dependent consequences in different cell systems. That chromosomal instability in haemopoietic cells can be induced by an indirect bystander-type mechanism both in vitro and in vivo provides a potential link between these two untargeted effects and there are radiation responses in vivo consistent with the microenvironment contributing secondary cell damage as a consequence of an inflammatory-type response to radiation-induced injury. Intercellular signalling, production of cytokines and free radicals are features of inflammatory responses that have the potential for both bystander-mediated and persisting damage as well as for conferring a predisposition to malignancy. The induction of bystander effects and instabilities may reflect interrelated aspects of a non-specific inflammatory-type response to radiation-induced stress and injury and be involved in a variety of the pathological consequences of radiation exposures.

  2. Genomic Flexibility of Human Endogenous Retrovirus Type K

    PubMed Central

    Dube, Derek; Contreras-Galindo, Rafael; He, Shirley; King, Steven R.; Gonzalez-Hernandez, Marta J.; Gitlin, Scott D.; Kaplan, Mark H.

    2014-01-01

    ABSTRACT Human endogenous retrovirus type K (HERV-K) proviruses are scattered throughout the human genome, but as no infectious HERV-K virus has been detected to date, the mechanism by which these viruses replicated and populated the genome remains unresolved. Here, we provide evidence that, in addition to the RNA genomes that canonical retroviruses package, modern HERV-K viruses can contain reverse-transcribed DNA (RT-DNA) genomes. Indeed, reverse transcription of genomic HERV-K RNA into the DNA form is able to occur in three distinct times and locations: (i) in the virus-producing cell prior to viral release, yielding a DNA-containing extracellular virus particle similar to the spumaviruses; (ii) within the extracellular virus particle itself, transitioning from an RNA-containing particle to a DNA-containing particle; and (iii) after entry of the RNA-containing virus into the target cell, similar to canonical retroviruses, such as murine leukemia virus and HIV. Moreover, using a resuscitated HERV-K virus construct, we show that both viruses with RNA genomes and viruses with DNA genomes are capable of infecting target cells. This high level of genomic flexibility historically could have permitted these viruses to replicate in various host cell environments, potentially assisting in their many integration events and resulting in their high prevalence in the human genome. Moreover, the ability of modern HERV-K viruses to proceed through reverse transcription and package RT-DNA genomes suggests a higher level of replication competency than was previously understood, and it may be relevant in HERV-K-associated human diseases. IMPORTANCE Retroviral elements comprise at least 8% of the human genome. Of all the endogenous retroviruses, HERV-K viruses are the most intact and biologically active. While a modern infectious HERV-K has yet to be found, HERV-K activation has been associated with cancers, autoimmune diseases, and HIV-1 infection. Thus, determining how this virus family became such a prevalent member of our genome and what it is capable of in its current form are of the utmost importance. Here, we provide evidence that HERV-K viruses currently found in the human genome are able to proceed through reverse transcription and historically utilized a life cycle with a surprising degree of genomic flexibility in which both RNA- and DNA-containing viruses were capable of mediating infection. PMID:24920813

  3. Integrase inhibitor reversal dynamics indicate unintegrated HIV-1 dna initiate de novo integration.

    PubMed

    Thierry, Sylvain; Munir, Soundasse; Thierry, Eloïse; Subra, Frédéric; Leh, Hervé; Zamborlini, Alessia; Saenz, Dyana; Levy, David N; Lesbats, Paul; Saïb, Ali; Parissi, Vincent; Poeschla, Eric; Deprez, Eric; Delelis, Olivier

    2015-03-12

    Genomic integration, an obligate step in the HIV-1 replication cycle, is blocked by the integrase inhibitor raltegravir. A consequence is an excess of unintegrated viral DNA genomes, which undergo intramolecular ligation and accumulate as 2-LTR circles. These circularized genomes are also reliably observed in vivo in the absence of antiviral therapy and they persist in non-dividing cells. However, they have long been considered as dead-end products that are not precursors to integration and further viral propagation. Here, we show that raltegravir action is reversible and that unintegrated viral DNA is integrated in the host cell genome after raltegravir removal leading to HIV-1 replication. Using quantitative PCR approach, we analyzed the consequences of reversing prolonged raltegravir-induced integration blocks. We observed, after RAL removal, a decrease of 2-LTR circles and a transient increase of linear DNA that is subsequently integrated in the host cell genome and fuel new cycles of viral replication. Our data highly suggest that 2-LTR circles can be used as a reserve supply of genomes for proviral integration highlighting their potential role in the overall HIV-1 replication cycle.

  4. Transcription as a source of genome instability

    PubMed Central

    Kim, Nayun; Jinks-Robertson, Sue

    2012-01-01

    Alterations in genome sequence and structure contribute to somatic disease, affect the fitness of subsequent generations and drive evolutionary processes. The critical roles of highly accurate replication and efficient repair in maintaining overall genome integrity are well known, but the more localized stability costs associated with transcribing DNA into RNA molecules are less appreciated. Here we review the diverse ways that the essential process of transcription alters the underlying DNA template and thereby modifies the genetic landscape. PMID:22330764

  5. University of Texas MD Anderson Cancer Center (UT-MDACC): High-Throughput Screening Identifying Driving Mutations in Endometrial Cancer | Office of Cancer Genomics

    Cancer.gov

    Recent advances in next-generation sequencing technology have enabled the unprecedented characterization of a full spectrum of somatic alterations in cancer genomes. Given the large numbers of somatic mutations typically detected by this approach, a key challenge in the downstream analysis is to distinguish “drivers” that functionally contribute to tumorigenesis from “passengers” that occur as the consequence of genomic instability.

  6. Radiation-induced transgenerational instability.

    PubMed

    Dubrova, Yuri E

    2003-10-13

    To date, the analysis of mutation induction has provided an irrefutable evidence for an elevated germline mutation rate in the parents directly exposed to ionizing radiation and a number of chemical mutagens. However, the results of numerous publications suggest that radiation may also have an indirect effect on genome stability, which is transmitted through the germ line of irradiated parents to their offspring. This review describes the phenomenon of transgenerational instability and focuses on the data showing increased cancer incidence and elevated mutation rates in the germ line and somatic tissues of the offspring of irradiated parents. The possible mechanisms of transgenerational instability are also discussed.

  7. Interspecific hybridization as a genomic stressor inducing mobilization of transposable elements in Drosophila

    PubMed Central

    Guerreiro, Maria Pilar García

    2014-01-01

    Transposable elements (TEs) are DNA sequences able to be mobilized in host genomes. They are currently recognized as the major mutation inducers because of their insertion in the target, their effect on neighboring regions, or their ectopic recombination. A large number of factors including chemical and physical factors as well as intraspecific crosses have traditionally been identified as inducers of transposition. Besides environmental factors, interspecific crosses have also been proposed as promoters of transposition of particular TEs in plants and different animals. Our previous published work includes a genome-wide survey with the set of genomic TEs and shows that interspecific hybridization between the species Drosophila buzzatii and Drosophila koepferae induces genomic instability by transposition bursts. A high percentage of this instability corresponds to TEs belonging to classes I and II. The detailed study of three TEs (Osvaldo, Helena, and Galileo), representative of the different TE families, shows an increase of transposition in hybrids compared with parental species, that varies depending on the element. This study suggests ample variation in TE regulation mechanisms and the question is why this variation occurs. Interspecific hybridization is a genomic stressor that disrupts the stability of TEs probably contributing to a relaxation of the mechanisms controlling TEs in the Drosophila genome. In this commentary paper we will discuss these results and the molecular mechanisms that could explain these increases of transposition rates observed in interspecific Drosophila hybrids. PMID:25136509

  8. Drosophila Sld5 is essential for normal cell cycle progression and maintenance of genomic integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gouge, Catherine A.; Christensen, Tim W., E-mail: christensent@ecu.edu

    2010-09-10

    Research highlights: {yields} Drosophila Sld5 interacts with Psf1, PPsf2, and Mcm10. {yields} Haploinsufficiency of Sld5 leads to M-phase delay and genomic instability. {yields} Sld5 is also required for normal S phase progression. -- Abstract: Essential for the normal functioning of a cell is the maintenance of genomic integrity. Failure in this process is often catastrophic for the organism, leading to cell death or mis-proliferation. Central to genomic integrity is the faithful replication of DNA during S phase. The GINS complex has recently come to light as a critical player in DNA replication through stabilization of MCM2-7 and Cdc45 as amore » member of the CMG complex which is likely responsible for the processivity of helicase activity during S phase. The GINS complex is made up of 4 members in a 1:1:1:1 ratio: Psf1, Psf2, Psf3, And Sld5. Here we present the first analysis of the function of the Sld5 subunit in a multicellular organism. We show that Drosophila Sld5 interacts with Psf1, Psf2, and Mcm10 and that mutations in Sld5 lead to M and S phase delays with chromosomes exhibiting hallmarks of genomic instability.« less

  9. Coordinated phenotype switching with large-scale chromosome flip-flop inversion observed in bacteria.

    PubMed

    Cui, Longzhu; Neoh, Hui-min; Iwamoto, Akira; Hiramatsu, Keiichi

    2012-06-19

    Genome inversions are ubiquitous in organisms ranging from prokaryotes to eukaryotes. Typical examples can be identified by comparing the genomes of two or more closely related organisms, where genome inversion footprints are clearly visible. Although the evolutionary implications of this phenomenon are huge, little is known about the function and biological meaning of this process. Here, we report our findings on a bacterium that generates a reversible, large-scale inversion of its chromosome (about half of its total genome) at high frequencies of up to once every four generations. This inversion switches on or off bacterial phenotypes, including colony morphology, antibiotic susceptibility, hemolytic activity, and expression of dozens of genes. Quantitative measurements and mathematical analyses indicate that this reversible switching is stochastic but self-organized so as to maintain two forms of stable cell populations (i.e., small colony variant, normal colony variant) as a bet-hedging strategy. Thus, this heritable and reversible genome fluctuation seems to govern the bacterial life cycle; it has a profound impact on the course and outcomes of bacterial infections.

  10. Reversed flow events in the cusp ionosphere detected by SuperDARN HF radars

    NASA Astrophysics Data System (ADS)

    Oksavik, K.; Moen, J. I.; Rekaa, E. H.; Carlson, H. C.; Lester, M.

    2011-12-01

    We present several examples of reversed flow events (RFEs) from the cusp ionosphere. RFEs are 100-200 km wide flow channels opposing the background plasma convection. RFEs were discovered a few years ago by the incoherent scatter European Incoherent Scatter Svalbard Radar. In this paper we show that coherent scatter Super Dual Auroral Radar Network (SuperDARN) HF radars can also see RFEs. We report a close relationship between RFEs and the development of HF backscatter power and spectral width. Wide spectra were seen near the edges of the RFEs (i.e., associated with the flow shear), and there was a significant increase in SuperDARN HF backscatter power when the RFE expanded. This increase in power is much faster than anticipated from the gradient drift instability alone, supporting the hypothesis that RFE flow shears foster rapid growth of Kelvin-Helmholtz instabilities. That decameter-scale irregularities form so rapidly should be an important guide to the development of instability theory for cascade of plasma irregularities from larger to smaller scale sizes.

  11. Positional stability of field-reversed-configurations in the presence of resistive walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rath, N., E-mail: nrath@trialphanenergy.com; Onofri, M.; Barnes, D. C.

    2016-06-15

    We show that in a field-reversed-configuration, the plasma is unstable to either transverse or axial rigid displacement, but never to both. Driving forces are found to be parallel to the direction of displacement with no orthogonal components. Furthermore, we demonstrate that the properties of a resistive wall (geometry and resistivity) in the vicinity of the plasma do not affect whether the plasma is stable or unstable, but in the case of an unstable system determine the instability growth rate. Depending on the properties of the wall, the instability growth is dominated by plasma inertia (and not affected by wall resistivity)more » or dominated by ohmic dissipation of wall eddy currents (and thus proportional to the wall resistivity).« less

  12. Chromosomal Instability in Gastric Cancer Biology.

    PubMed

    Maleki, Saffiyeh Saboor; Röcken, Christoph

    2017-05-01

    Gastric cancer (GC) is the fifth most common cancer in the world and accounts for 7% of the total cancer incidence. The prognosis of GC is dismal in Western countries due to late diagnosis: approximately 70% of the patients die within 5 years following initial diagnosis. Recently, integrative genomic analyses led to the proposal of a molecular classification of GC into four subtypes, i.e.,microsatellite-instable, Epstein-Barr virus-positive, chromosomal-instable (CIN), and genomically stable GCs. Molecular classification of GC advances our knowledge of the biology of GC and may have implications for diagnostics and patient treatment. Diagnosis of microsatellite-instable GC and Epstein-Barr virus-positive GC is more or less straightforward. Microsatellite instability can be tested by immunohistochemistry (MLH1, PMS2, MSH2, and MSH6) and/or molecular-biological analysis. Epstein-Barr virus-positive GC can be tested by in situ hybridization (Epstein-Barr virus encoded small RNA). However, with regard to CIN, testing may be more complicated and may require a more in-depth knowledge of the underlying mechanism leading to CIN. In addition, CIN GC may not constitute a distinct subgroup but may rather be a compilation of a more heterogeneous group of tumors. In this review, we aim to clarify the definition of CIN and to point out the molecular mechanisms leading to this molecular phenotype and the challenges faced in characterizing this type of cancer. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Bystander effects in radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Morgan, William F.; Hartmann, Andreas; Limoli, Charles L.; Nagar, Shruti; Ponnaiya, Brian

    2002-01-01

    Exposure of GM10115 hamster-human hybrid cells to X-rays can result in the induction of chromosomal instability in the progeny of surviving cells. This instability manifests as the dynamic production of novel sub-populations of cells with unique cytogenetic rearrangements involving the "marker" human chromosome. We have used the comet assay to investigate whether there was an elevated level of endogenous DNA breaks in chromosomally unstable clones that could provide a source for the chromosomal rearrangements and thus account for the persistent instability observed. Our results indicate no significant difference in comet tail measurement between non-irradiated and radiation-induced chromosomally unstable clones. Using two-color fluorescence in situ hybridization we also investigated whether recombinational events involving the interstitial telomere repeat-like sequences in GM10115 cells were involved at frequencies higher than random processes would otherwise predict. Nine of 11 clones demonstrated a significantly higher than expected involvement of these interstitial telomere repeat-like sequences at the recombination junction between the human and hamster chromosomes. Since elevated levels of endogenous breaks were not detected in unstable clones we propose that epigenetic or bystander effects (BSEs) lead to the activation of recombinational pathways that perpetuate the unstable phenotype. Specifically, we expand upon the hypothesis that radiation induces conditions and/or factors that stimulate the production of reactive oxygen species (ROS). These reactive intermediates then contribute to a chronic pro-oxidant environment that cycles over multiple generations, promoting chromosomal recombination and other phenotypes associated with genomic instability.

  14. p21/Cyclin E pathway modulates anticlastogenic function of Bmi-1 in cancer cells

    PubMed Central

    Deng, Wen; Zhou, Yuan; Tiwari, Agnes FY; Su, Hang; Yang, Jie; Zhu, Dandan; Lau, Victoria Ming Yi; Hau, Pok Man; Yip, Yim Ling; Cheung, Annie LM; Guan, Xin-Yuan; Tsao, Sai Wah

    2015-01-01

    Apart from regulating stem cell self-renewal, embryonic development and proliferation, Bmi-1 has been recently reported to be critical in the maintenance of genome integrity. In searching for novel mechanisms underlying the anticlastogenic function of Bmi-1, we observed, for the first time, that Bmi-1 positively regulates p21 expression. We extended the finding that Bmi-1 deficiency induced chromosome breaks in multiple cancer cell models. Interestingly, we further demonstrated that knockdown of cyclin E or ectopic overexpression of p21 rescued Bmi-1 deficiency-induced chromosome breaks. We therefore conclude that p21/cyclin E pathway is crucial in modulating the anticlastogenic function of Bmi-1. As it is well established that the overexpression of cyclin E potently induces genome instability and p21 suppresses the function of cyclin E, the novel and important implication from our findings is that Bmi-1 plays an important role in limiting genomic instability in cylin E-overexpressing cancer cells by positive regulation of p21. PMID:25131797

  15. Evolutionary interaction between W/Y chromosome and transposable elements.

    PubMed

    Śliwińska, Ewa B; Martyka, Rafał; Tryjanowski, Piotr

    2016-06-01

    The W/Y chromosome is unique among chromosomes as it does not recombine in its mature form. The main side effect of cessation of recombination is evolutionary instability and degeneration of the W/Y chromosome, or frequent W/Y chromosome turnovers. Another important feature of W/Y chromosome degeneration is transposable element (TEs) accumulation. Transposon accumulation has been confirmed for all W/Y chromosomes that have been sequenced so far. Models of W/Y chromosome instability include the assemblage of deleterious mutations in protein coding genes, but do not include the influence of transposable elements that are accumulated gradually in the non-recombining genome. The multiple roles of genomic TEs, and the interactions between retrotransposons and genome defense proteins are currently being studied intensively. Small RNAs originating from retrotransposon transcripts appear to be, in some cases, the only mediators of W/Y chromosome function. Based on the review of the most recent publications, we present knowledge on W/Y evolution in relation to retrotransposable element accumulation.

  16. A genetic network that suppresses genome rearrangements in Saccharomyces cerevisiae and contains defects in cancers

    PubMed Central

    Putnam, Christopher D.; Srivatsan, Anjana; Nene, Rahul V.; Martinez, Sandra L.; Clotfelter, Sarah P.; Bell, Sara N.; Somach, Steven B.; E.S. de Souza, Jorge; Fonseca, André F.; de Souza, Sandro J.; Kolodner, Richard D.

    2016-01-01

    Gross chromosomal rearrangements (GCRs) play an important role in human diseases, including cancer. The identity of all Genome Instability Suppressing (GIS) genes is not currently known. Here multiple Saccharomyces cerevisiae GCR assays and query mutations were crossed into arrays of mutants to identify progeny with increased GCR rates. One hundred eighty two GIS genes were identified that suppressed GCR formation. Another 438 cooperatively acting GIS genes were identified that were not GIS genes, but suppressed the increased genome instability caused by individual query mutations. Analysis of TCGA data using the human genes predicted to act in GIS pathways revealed that a minimum of 93% of ovarian and 66% of colorectal cancer cases had defects affecting one or more predicted GIS gene. These defects included loss-of-function mutations, copy-number changes associated with reduced expression, and silencing. In contrast, acute myeloid leukaemia cases did not appear to have defects affecting the predicted GIS genes. PMID:27071721

  17. Effects of As2O3 on DNA methylation, genomic instability, and LTR retrotransposon polymorphism in Zea mays.

    PubMed

    Erturk, Filiz Aygun; Aydin, Murat; Sigmaz, Burcu; Taspinar, M Sinan; Arslan, Esra; Agar, Guleray; Yagci, Semra

    2015-12-01

    Arsenic is a well-known toxic substance on the living organisms. However, limited efforts have been made to study its DNA methylation, genomic instability, and long terminal repeat (LTR) retrotransposon polymorphism causing properties in different crops. In the present study, effects of As2O3 (arsenic trioxide) on LTR retrotransposon polymorphism and DNA methylation as well as DNA damage in Zea mays seedlings were investigated. The results showed that all of arsenic doses caused a decreasing genomic template stability (GTS) and an increasing Random Amplified Polymorphic DNAs (RAPDs) profile changes (DNA damage). In addition, increasing DNA methylation and LTR retrotransposon polymorphism characterized a model to explain the epigenetically changes in the gene expression were also found. The results of this experiment have clearly shown that arsenic has epigenetic effect as well as its genotoxic effect. Especially, the increasing of polymorphism of some LTR retrotransposon under arsenic stress may be a part of the defense system against the stress.

  18. Dosage Mutator Genes in Saccharomyces cerevisiae: A Novel Mutator Mode-of-Action of the Mph1 DNA Helicase.

    PubMed

    Ang, J Sidney; Duffy, Supipi; Segovia, Romulo; Stirling, Peter C; Hieter, Philip

    2016-11-01

    Mutations that cause genome instability are considered important predisposing events that contribute to initiation and progression of cancer. Genome instability arises either due to defects in genes that cause an increased mutation rate (mutator phenotype), or defects in genes that cause chromosome instability (CIN). To extend the catalog of genome instability genes, we systematically explored the effects of gene overexpression on mutation rate, using a forward-mutation screen in budding yeast. We screened ∼5100 plasmids, each overexpressing a unique single gene, and characterized the five strongest mutators, MPH1 (mutator phenotype 1), RRM3, UBP12, PIF1, and DNA2 We show that, for MPH1, the yeast homolog of Fanconi Anemia complementation group M (FANCM), the overexpression mutator phenotype is distinct from that of mph1Δ. Moreover, while four of our top hits encode DNA helicases, the overexpression of 48 other DNA helicases did not cause a mutator phenotype, suggesting this is not a general property of helicases. For Mph1 overexpression, helicase activity was not required for the mutator phenotype; in contrast Mph1 DEAH-box function was required for hypermutation. Mutagenesis by MPH1 overexpression was independent of translesion synthesis (TLS), but was suppressed by overexpression of RAD27, a conserved flap endonuclease. We propose that binding of DNA flap structures by excess Mph1 may block Rad27 action, creating a mutator phenotype that phenocopies rad27Δ. We believe this represents a novel mutator mode-of-action and opens up new prospects to understand how upregulation of DNA repair proteins may contribute to mutagenesis. Copyright © 2016 by the Genetics Society of America.

  19. The specificity and flexibility of l1 reverse transcription priming at imperfect T-tracts.

    PubMed

    Monot, Clément; Kuciak, Monika; Viollet, Sébastien; Mir, Ashfaq Ali; Gabus, Caroline; Darlix, Jean-Luc; Cristofari, Gaël

    2013-05-01

    L1 retrotransposons have a prominent role in reshaping mammalian genomes. To replicate, the L1 ribonucleoprotein particle (RNP) first uses its endonuclease (EN) to nick the genomic DNA. The newly generated DNA end is subsequently used as a primer to initiate reverse transcription within the L1 RNA poly(A) tail, a process known as target-primed reverse transcription (TPRT). Prior studies demonstrated that most L1 insertions occur into sequences related to the L1 EN consensus sequence (degenerate 5'-TTTT/A-3' sites) and frequently preceded by imperfect T-tracts. However, it is currently unclear whether--and to which degree--the liberated 3'-hydroxyl extremity on the genomic DNA needs to be accessible and complementary to the poly(A) tail of the L1 RNA for efficient priming of reverse transcription. Here, we employed a direct assay for the initiation of L1 reverse transcription to define the molecular rules that guide this process. First, efficient priming is detected with as few as 4 matching nucleotides at the primer 3' end. Second, L1 RNP can tolerate terminal mismatches if they are compensated within the 10 last bases of the primer by an increased number of matching nucleotides. All terminal mismatches are not equally detrimental to DNA extension, a C being extended at higher levels than an A or a G. Third, efficient priming in the context of duplex DNA requires a 3' overhang. This suggests the possible existence of additional DNA processing steps, which generate a single-stranded 3' end to allow L1 reverse transcription. Based on these data we propose that the specificity of L1 reverse transcription initiation contributes, together with the specificity of the initial EN cleavage, to the distribution of new L1 insertions within the human genome.

  20. A LINE-1 Component to Human Aging: Do LINE elements exact a longevity cost for evolutionary advantage?

    PubMed Central

    Laurent, Georges St.; Hammell, Neil; McCaffrey, Timothy A.

    2010-01-01

    Advancing age remains the largest risk factor for devastating diseases, such as heart disease, stroke, and cancer. The mechanisms by which advancing age predisposes to disease are now beginning to unfold, due in part, to genetic and environmental manipulations of longevity in lower organisms. Converging lines of evidence suggest that DNA damage may be a final common pathway linking several proposed mechanisms of aging. The present review forwards a theory for an additional aging pathway that involves modes of inherent genetic instability. Long interspersed nuclear elements (LINEs) are endogenous non-LTR retrotransposons that compose about 20% of the human genome. The LINE-1 (L1) gene products, ORF1p and ORF2p, possess mRNA binding, endonuclease, and reverse transcriptase activity that enable retrotransposition. While principally active only during embryogenesis, L1 transcripts are detected in adult somatic cells under certain conditions. The present hypothesis proposes that L1s act as an ‘endogenous clock’, slowly eroding genomic integrity by competing with the organism’s double-strand break repair mechanism. Thus, while L1s are an accepted mechanism of genetic variation fueling evolution, it is proposed that longevity is negatively impacted by somatic L1 activity. The theory predicts testable hypotheses about the relationship between L1 activity, DNA repair, healthy aging, and longevity. PMID:20346965

  1. Nuclear DNA-Content in Mesenchymal Lesions in Dogs: Its Value as Marker of Malignancy and Extent of Genomic Instability

    PubMed Central

    Boerkamp, Kim M.; Rutteman, Gerard R.; Kik, Marja J. L.; Kirpensteijn, Jolle; Schulze, Christoph; Grinwis, Guy C. M.

    2012-01-01

    DNA-aneuploidy may reflect the malignant nature of mesenchymal proliferations and herald gross genomic instability as a mechanistic factor in tumor genesis. DNA-ploidy and -index were determined by flow cytometry in canine inflammatory or neoplastic mesenchymal tissues and related to clinico-pathological features, biological behavior and p53 gene mutational status. Half of all sarcomas were aneuploid. Benign mesenchymal neoplasms were rarely aneuploid and inflammatory lesions not at all. The aneuploidy rate was comparable to that reported for human sarcomas with significant variation amongst subtypes. DNA-ploidy status in canines lacked a relation with histological grade of malignancy, in contrast to human sarcomas. While aneuploidy was related to the development of metastases in soft tissue sarcomas it was not in osteosarcomas. No relation amongst sarcomas was found between ploidy status and presence of P53 gene mutations. Heterogeneity of the DNA index between primary and metastatic sarcoma sites was present in half of the cases examined. Hypoploidy is more common in canine sarcomas and hyperploid cases have less deviation of the DNA index than human sarcomas. The variation in the presence and extent of aneuploidy amongst sarcoma subtypes indicates variation in genomic instability. This study strengthens the concept of interspecies variation in the evolution of gross chromosomal aberrations during cancer development. PMID:24213507

  2. Abnormal RNA splicing and genomic instability after induction of DNMT3A mutations by CRISPR/Cas9 gene editing.

    PubMed

    Banaszak, Lauren G; Giudice, Valentina; Zhao, Xin; Wu, Zhijie; Gao, Shouguo; Hosokawa, Kohei; Keyvanfar, Keyvan; Townsley, Danielle M; Gutierrez-Rodrigues, Fernanda; Fernandez Ibanez, Maria Del Pilar; Kajigaya, Sachiko; Young, Neal S

    2018-03-01

    DNA methyltransferase 3A (DNMT3A) mediates de novo DNA methylation. Mutations in DNMT3A are associated with hematological malignancies, most frequently acute myeloid leukemia. DNMT3A mutations are hypothesized to establish a pre-leukemic state, rendering cells vulnerable to secondary oncogenic mutations and malignant transformation. However, the mechanisms by which DNMT3A mutations contribute to leukemogenesis are not well-defined. Here, we successfully created four DNMT3A-mutated K562 cell lines with frameshift mutations resulting in truncated DNMT3A proteins. DNMT3A-mutated cell lines exhibited significantly impaired growth and increased apoptotic activity compared to wild-type (WT) cells. Consistent with previous studies, DNMT3A-mutated cells displayed impaired differentiation capacity. RNA-seq was used to compare transcriptomes of DNMT3A-mutated and WT cells; DNMT3A ablation resulted in downregulation of genes involved in spliceosome function, causing dysfunction of RNA splicing. Unexpectedly, we observed DNMT3A-mutated cells to exhibit marked genomic instability and an impaired DNA damage response compared to WT. CRISPR/Cas9-mediated DNMT3A-mutated K562 cells may be used to model effects of DNMT3A mutations in human cells. Our findings implicate aberrant splicing and induction of genomic instability as potential mechanisms by which DNMT3A mutations might predispose to malignancy. Published by Elsevier Inc.

  3. Hormone escape is associated with genomic instability in a human prostate cancer model.

    PubMed

    Legrier, Marie-Emmanuelle; Guyader, Charlotte; Céraline, Jocelyn; Dutrillaux, Bernard; Oudard, Stéphane; Poupon, Marie-France; Auger, Nathalie

    2009-03-01

    Lack of hormone dependency in prostate cancers is an irreversible event that occurs through generation of genomic instability induced by androgen deprivation. Indeed, the cytogenetic profile of hormone-dependent (HD) prostate cancer remains stable as long as it received a hormone supply, whereas the profile of hormone-independent (HID) variants acquired new and various alterations. This is demonstrated here using a HD xenografted model of a human prostate cancer, PAC120, transplanted for 11 years into male nude mice and 4 HID variants obtained by surgical castration. Cytogenetic analysis, done by karyotype, FISH, CGH and array-CGH, shows that PAC120 at early passage presents numerous chromosomal alterations. Very few additional alterations were found between the 5th and 47th passages, indicating the stability of the parental tumor. HID variants largely maintained the core of chromosomal alterations of PAC120 - losses at 6q, 7p, 12q, 15q and 17q sites. However, each HID variant displayed a number of new alterations, almost all being specific to each variant and very few shared by all. None of the HID had androgen receptor mutations. Our study indicates that hormone castration is responsible for genomic instability generating new cytogenetic abnormalities susceptible to alter the properties of cancer cell associated with tumor progression, such as increased cell survival and ability to metastasize.

  4. Chromosomal instability drives metastasis through a cytosolic DNA response.

    PubMed

    Bakhoum, Samuel F; Ngo, Bryan; Laughney, Ashley M; Cavallo, Julie-Ann; Murphy, Charles J; Ly, Peter; Shah, Pragya; Sriram, Roshan K; Watkins, Thomas B K; Taunk, Neil K; Duran, Mercedes; Pauli, Chantal; Shaw, Christine; Chadalavada, Kalyani; Rajasekhar, Vinagolu K; Genovese, Giulio; Venkatesan, Subramanian; Birkbak, Nicolai J; McGranahan, Nicholas; Lundquist, Mark; LaPlant, Quincey; Healey, John H; Elemento, Olivier; Chung, Christine H; Lee, Nancy Y; Imielenski, Marcin; Nanjangud, Gouri; Pe'er, Dana; Cleveland, Don W; Powell, Simon N; Lammerding, Jan; Swanton, Charles; Cantley, Lewis C

    2018-01-25

    Chromosomal instability is a hallmark of cancer that results from ongoing errors in chromosome segregation during mitosis. Although chromosomal instability is a major driver of tumour evolution, its role in metastasis has not been established. Here we show that chromosomal instability promotes metastasis by sustaining a tumour cell-autonomous response to cytosolic DNA. Errors in chromosome segregation create a preponderance of micronuclei whose rupture spills genomic DNA into the cytosol. This leads to the activation of the cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) cytosolic DNA-sensing pathway and downstream noncanonical NF-κB signalling. Genetic suppression of chromosomal instability markedly delays metastasis even in highly aneuploid tumour models, whereas continuous chromosome segregation errors promote cellular invasion and metastasis in a STING-dependent manner. By subverting lethal epithelial responses to cytosolic DNA, chromosomally unstable tumour cells co-opt chronic activation of innate immune pathways to spread to distant organs.

  5. Molecular Mechanisms of Radiation-Induced Genomic Instability in Human Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard L. Liber; Jeffrey L. Schwartz

    2005-10-31

    There are many different model systems that have been used to study chromosome instability. What is clear from all these studies is that conclusions concerning chromosome instability depend greatly on the model system and instability endpoint that is studied. The model system for our studies was the human B-lymphoblastoid cell line TK6. TK6 was isolated from a spontaneously immortalized lymphoblast culture. Thus there was no outside genetic manipulation used to immortalize them. TK6 is a relatively stable p53-normal immortal cell line (37). It shows low gene and chromosome mutation frequencies (19;28;31). Our general approach to studying instability in TK6 cellsmore » has been to isolate individual clones and analyze gene and chromosome mutation frequencies in each. This approach maximizes the possibility of detecting low frequency events that might be selected against in mass cultures.« less

  6. Bloom’s Syndrome: Why Not Premature Aging? A comparison of the BLM and WRN helicases

    PubMed Central

    de Renty, Christelle; Ellis, Nathan A.

    2016-01-01

    Genomic instability is a hallmark of cancer and aging. Premature aging (progeroid) syndromes are often caused by mutations in genes whose function is to ensure genomic integrity. The RecQ family of DNA helicases is highly conserved and plays crucial roles as genome caretakers. In human, mutations in three RecQ genes — BLM, WRN, and RECQL4 — give rise to Bloom’s syndrome (BS), Werner syndrome (WS), and Rothmund-Thomson’s syndrome (RTS), respectively. WS is a prototypic premature aging disorder; however, the clinical features present in BS and RTS do not indicate accelerated aging. The BLM helicase has pivotal functions at the crossroads of DNA replication, recombination, and repair. BS cells exhibit a characteristic form of genomic instability that includes excessive recombination. The excessive homologous recombination drives the development of the many types of cancers that affect persons in the normal population. Replication delay and slower cell turnover rates have been proposed to explain many features of Bloom’s syndrome, such as short stature. More recently, aberrant transcriptional regulation of growth and survival genes has been proposed as a hypothesis. PMID:27238185

  7. Polyploidy can drive rapid adaptation in yeast

    NASA Astrophysics Data System (ADS)

    Selmecki, Anna M.; Maruvka, Yosef E.; Richmond, Phillip A.; Guillet, Marie; Shoresh, Noam; Sorenson, Amber L.; de, Subhajyoti; Kishony, Roy; Michor, Franziska; Dowell, Robin; Pellman, David

    2015-03-01

    Polyploidy is observed across the tree of life, yet its influence on evolution remains incompletely understood. Polyploidy, usually whole-genome duplication, is proposed to alter the rate of evolutionary adaptation. This could occur through complex effects on the frequency or fitness of beneficial mutations. For example, in diverse cell types and organisms, immediately after a whole-genome duplication, newly formed polyploids missegregate chromosomes and undergo genetic instability. The instability following whole-genome duplications is thought to provide adaptive mutations in microorganisms and can promote tumorigenesis in mammalian cells. Polyploidy may also affect adaptation independently of beneficial mutations through ploidy-specific changes in cell physiology. Here we perform in vitro evolution experiments to test directly whether polyploidy can accelerate evolutionary adaptation. Compared with haploids and diploids, tetraploids undergo significantly faster adaptation. Mathematical modelling suggests that rapid adaptation of tetraploids is driven by higher rates of beneficial mutations with stronger fitness effects, which is supported by whole-genome sequencing and phenotypic analyses of evolved clones. Chromosome aneuploidy, concerted chromosome loss, and point mutations all provide large fitness gains. We identify several mutations whose beneficial effects are manifest specifically in the tetraploid strains. Together, these results provide direct quantitative evidence that in some environments polyploidy can accelerate evolutionary adaptation.

  8. Regulation of AID, the B-cell genome mutator

    PubMed Central

    Keim, Celia; Kazadi, David; Rothschild, Gerson; Basu, Uttiya

    2013-01-01

    The mechanisms by which B cells somatically engineer their genomes to generate the vast diversity of antibodies required to challenge the nearly infinite number of antigens that immune systems encounter are of tremendous clinical and academic interest. The DNA cytidine deaminase activation-induced deaminase (AID) catalyzes two of these mechanisms: class switch recombination (CSR) and somatic hypermutation (SHM). Recent discoveries indicate a significant promiscuous targeting of this B-cell mutator enzyme genome-wide. Here we discuss the various regulatory elements that control AID activity and prevent AID from inducing genomic instability and thereby initiating oncogenesis. PMID:23307864

  9. Plastid, nuclear and reverse transcriptase sequences in the mitochondrial genome of Oenothera: is genetic information transferred between organelles via RNA?

    PubMed Central

    Schuster, W; Brennicke, A

    1987-01-01

    We describe an open reading frame (ORF) with high homology to reverse transcriptase in the mitochondrial genome of Oenothera. This ORF displays all the characteristics of an active plant mitochondrial gene with a possible ribosome binding site and 39% T in the third codon position. It is located between a sequence fragment from the plastid genome and one of nuclear origin downstream from the gene encoding subunit 5 of the NADH dehydrogenase. The nuclear derived sequence consists of 528 nucleotides from the small ribosomal RNA and contains an expansion segment unique to nuclear rRNAs. The plastid sequence contains part of the ribosomal protein S4 and the complete tRNA(Ser). The observation that only transcribed sequences have been found i more than one subcellular compartment in higher plants suggests that interorganellar transfer of genetic information may occur via RNA and subsequent local reverse transcription and genomic integration. PMID:14650433

  10. Distinct Mechanisms of Nuclease-Directed DNA-Structure-Induced Genetic Instability in Cancer Genomes.

    PubMed

    Zhao, Junhua; Wang, Guliang; Del Mundo, Imee M; McKinney, Jennifer A; Lu, Xiuli; Bacolla, Albino; Boulware, Stephen B; Zhang, Changsheng; Zhang, Haihua; Ren, Pengyu; Freudenreich, Catherine H; Vasquez, Karen M

    2018-01-30

    Sequences with the capacity to adopt alternative DNA structures have been implicated in cancer etiology; however, the mechanisms are unclear. For example, H-DNA-forming sequences within oncogenes have been shown to stimulate genetic instability in mammals. Here, we report that H-DNA-forming sequences are enriched at translocation breakpoints in human cancer genomes, further implicating them in cancer etiology. H-DNA-induced mutations were suppressed in human cells deficient in the nucleotide excision repair nucleases, ERCC1-XPF and XPG, but were stimulated in cells deficient in FEN1, a replication-related endonuclease. Further, we found that these nucleases cleaved H-DNA conformations, and the interactions of modeled H-DNA with ERCC1-XPF, XPG, and FEN1 proteins were explored at the sub-molecular level. The results suggest mechanisms of genetic instability triggered by H-DNA through distinct structure-specific, cleavage-based replication-independent and replication-dependent pathways, providing critical evidence for a role of the DNA structure itself in the etiology of cancer and other human diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Requirement of the yeast MSH3 and MSH6 genes for MSH2-dependent genomic stability.

    PubMed

    Johnson, R E; Kovvali, G K; Prakash, L; Prakash, S

    1996-03-29

    Defects in DNA mismatch repair result in instability of simple repetitive DNA sequences and elevated levels of spontaneous mutability. The human G/T mismatch binding protein, GTBP/p160, has been suggested to have a role in the repair of base-base and single nucleotide insertion-deletion mismatches. Here we examine the role of the yeast GTBP homolog, MSH6, in mismatch repair. We show that both MSH6 and MSH3 genes are essential for normal genomic stability. Interestingly, although mutations in either MSH3 or MSH6 do not cause the extreme microsatellite instability and spontaneous mutability observed in the msh2 mutant, yeast cells harboring null mutations in both the MSH3 and MSH6 genes exhibit microsatellite instability and mutability similar to that in the msh2 mutant. Results from epistasis analyses indicate that MSH2 functions in mismatch repair in conjunction with MSH3 or MSH6 and that MSH3 and MSH6 constitute alternate pathways of MSH2-dependent mismatch repair.

  12. Interstitial telomeric sequences in vertebrate chromosomes: Origin, function, instability and evolution.

    PubMed

    Bolzán, Alejandro D

    2017-07-01

    By definition, telomeric sequences are located at the very ends or terminal regions of chromosomes. However, several vertebrate species show blocks of (TTAGGG)n repeats present in non-terminal regions of chromosomes, the so-called interstitial telomeric sequences (ITSs), interstitial telomeric repeats or interstitial telomeric bands, which include those intrachromosomal telomeric-like repeats located near (pericentromeric ITSs) or within the centromere (centromeric ITSs) and those telomeric repeats located between the centromere and the telomere (i.e., truly interstitial telomeric sequences) of eukaryotic chromosomes. According with their sequence organization, localization and flanking sequences, ITSs can be classified into four types: 1) short ITSs, 2) subtelomeric ITSs, 3) fusion ITSs, and 4) heterochromatic ITSs. The first three types have been described mainly in the human genome, whereas heterochromatic ITSs have been found in several vertebrate species but not in humans. Several lines of evidence suggest that ITSs play a significant role in genome instability and evolution. This review aims to summarize our current knowledge about the origin, function, instability and evolution of these telomeric-like repeats in vertebrate chromosomes. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Multiple functions of the S-phase checkpoint mediator.

    PubMed

    Tanaka, Katsunori

    2010-01-01

    There is mounting evidence that replication defects are the major source of spontaneous genomic instability in cells, and that S-phase checkpoints are the principal defense against such instability. The S-phase checkpoint mediator protein Mrc1/Claspin mediates the checkpoint response to replication stress by facilitating phosphorylation of effector kinase by a sensor kinase. In this review, the multiple functions and the regulation of the S-phase checkpoint mediator are discussed.

  14. Site-directed mutagenesis of the conserved Asp-443 and Asp-498 carboxy-terminal residues of HIV-1 reverse transcriptase.

    PubMed Central

    Mizrahi, V; Usdin, M T; Harington, A; Dudding, L R

    1990-01-01

    Substitution of the conserved Asp-443 residue of HIV-1 reverse transcriptase by asparagine specifically suppressed the ribonuclease H activity of the enzyme without affecting the reverse transcriptase activity, suggesting involvement of this ionizable residue at the ribonuclease H active site. An analogous asparagine substitution of the Asp-498 residue yielded an unstable enzyme that was difficult to enzymatically characterize. However, the instability caused by the Asn-498 mutation was relieved by the introduction of a second distal Asn-443 substitution, yielding an enzyme with wild type reverse transcriptase activity, but lacking ribonuclease H activity. Images PMID:1699202

  15. Pattern Analysis and Decision Support for Cancer through Clinico-Genomic Profiles

    NASA Astrophysics Data System (ADS)

    Exarchos, Themis P.; Giannakeas, Nikolaos; Goletsis, Yorgos; Papaloukas, Costas; Fotiadis, Dimitrios I.

    Advances in genome technology are playing a growing role in medicine and healthcare. With the development of new technologies and opportunities for large-scale analysis of the genome, genomic data have a clear impact on medicine. Cancer prognostics and therapeutics are among the first major test cases for genomic medicine, given that all types of cancer are related with genomic instability. In this paper we present a novel system for pattern analysis and decision support in cancer. The system integrates clinical data from electronic health records and genomic data. Pattern analysis and data mining methods are applied to these integrated data and the discovered knowledge is used for cancer decision support. Through this integration, conclusions can be drawn for early diagnosis, staging and cancer treatment.

  16. Regulation of Sex Determination in Mice by a Non-coding Genomic Region

    PubMed Central

    Arboleda, Valerie A.; Fleming, Alice; Barseghyan, Hayk; Délot, Emmanuèle; Sinsheimer, Janet S.; Vilain, Eric

    2014-01-01

    To identify novel genomic regions that regulate sex determination, we utilized the powerful C57BL/6J-YPOS (B6-YPOS) model of XY sex reversal where mice with autosomes from the B6 strain and a Y chromosome from a wild-derived strain, Mus domesticus poschiavinus (YPOS), show complete sex reversal. In B6-YPOS, the presence of a 55-Mb congenic region on chromosome 11 protects from sex reversal in a dose-dependent manner. Using mouse genetic backcross designs and high-density SNP arrays, we narrowed the congenic region to a 1.62-Mb genomic region on chromosome 11 that confers 80% protection from B6-YPOS sex reversal when one copy is present and complete protection when two copies are present. It was previously believed that the protective congenic region originated from the 129S1/SviMJ (129) strain. However, genomic analysis revealed that this region is not derived from 129 and most likely is derived from the semi-inbred strain POSA. We show that the small 1.62-Mb congenic region that protects against B6-YPOS sex reversal is located within the Sox9 promoter and promotes the expression of Sox9, thereby driving testis development within the B6-YPOS background. Through 30 years of backcrossing, this congenic region was maintained, as it promoted male sex determination and fertility despite the female-promoting B6-YPOS genetic background. Our findings demonstrate that long-range enhancer regions are critical to developmental processes and can be used to identify the complex interplay between genome variants, epigenetics, and developmental gene regulation. PMID:24793290

  17. Radiation-induced hyperproliferation of intestinal crypts results in elevated genome instability with inactive p53-related genomic surveillance.

    PubMed

    Zhou, Xin; Ma, Xiaofei; Wang, Zhenhua; Sun, Chao; Wang, Yupei; He, Yang; Zhang, Hong

    2015-12-15

    Radiation-induced hyperproliferation of intestinal crypts is well documented, but its potential tumorigenic effects remain elusive. Here we aim to determine the genomic surveillance process during crypt hyperproliferation, and its consequential outcome after ionizing radiation. Crypt regeneration in the intestine was induced by a single dose of 12Gy abdominal irradiation. γ-H2AX, 53BP1 and DNA-PKcs were used as DNA repair surrogates to investigate the inherent ability of intestinal crypt cells to recognize and repair double-strand breaks. Ki67 staining and the 5-bromo-2'-deoxyuridine incorporation assay were used to study patterns of cell proliferation in regenerating crypts. Staining for ATM, p53, Chk1 and Chk2 was performed to study checkpoint activation and release. Apoptosis was evaluated through H&E staining and terminal deoxynucleotidyl transferase (dUTP) nick-end labeling. The ATM-p53 pathway was immediately activated after irradiation. A second wave of DSBs in crypt cells was observed in regenerating crypts, accompanied with significantly increased chromosomal bridges. The p53-related genomic surveillance pathway was not active during the regeneration phase despite DSBs and chromosomal bridges in the cells of regenerating crypts. Non-homologous end joining (NHEJ) DSBs repair was involved in the DSBs repair process, as indicated by p-DNA-PKcs staining. Intestinal crypt cells retained hyperproliferation with inactive p53-related genomic surveillance system. NHEJ was involved in the resultant genomic instability during hyperproliferation. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Loss of Elongation-Like Factor 1 Spontaneously Induces Diverse, RNase H-Related Suppressor Mutations in Schizosaccharomyces pombe.

    PubMed

    Marayati, Bahjat F; Drayton, Alena L; Tucker, James F; Huckabee, Reid H; Anderson, Alicia M; Pease, James B; Zeyl, Clifford W; Zhang, Ke

    2018-05-29

    A healthy individual may carry a detrimental genetic trait that is masked by another genetic mutation. Such suppressive genetic interactions, in which a mutant allele either partially or completely restores the fitness defect of a particular mutant, tend to occur between genes that have a confined functional connection. Here we investigate a self-recovery phenotype in Schizosaccharomyces pombe , mediated by suppressive genetic interactions that can be amplified during cell culture. Cells without Elf1, an AAA+ family ATPase, have severe growth defects initially, but quickly recover growth rates near to those of wild-type strains by acquiring suppressor mutations. elf1Δ cells accumulate RNAs within the nucleus and display effects of genome instability such as sensitivity to DNA damage, increased incidence of lagging chromosomes, and mini-chromosome loss. Notably, the rate of phenotypic recovery was further enhanced in elf1Δ cells when RNase H activities were abolished and significantly reduced upon overexpression of RNase H1, suggesting that loss of Elf1-related genome instability can be resolved by RNase H activities, likely through eliminating the potentially mutagenic DNA-RNA hybrids caused by RNA nuclear accumulation. Using whole genome sequencing, we mapped a few consistent suppressors of elf1Δ including mutated Cue2, Rpl2702, and SPBPJ4664.02, suggesting previously unknown functional connections between Elf1 and these proteins. Our findings describe a mechanism by which cells bearing mutations that cause fitness defects and genome instability may accelerate the fitness recovery of their population through quickly acquiring suppressors. We propose that this mechanism may be universally applicable to all microorganisms in large-population cultures. Copyright © 2018, Genetics.

  19. Sunitinib induces genomic instability of renal carcinoma cells through affecting the interaction of LC3-II and PARP-1.

    PubMed

    Yan, Siyuan; Liu, Ling; Ren, Fengxia; Gao, Quan; Xu, Shanshan; Hou, Bolin; Wang, Yange; Jiang, Xuejun; Che, Yongsheng

    2017-08-10

    Deficiency of autophagy has been linked to increase in nuclear instability, but the role of autophagy in regulating the formation and elimination of micronuclei, a diagnostic marker for genomic instability, is limited in mammalian cells. Utilizing immunostaining and subcellular fractionation, we found that either LC3-II or the phosphorylated Ulk1 localized in nuclei, and immunoprecipitation results showed that both LC3 and Unc-51-like kinase 1 (Ulk1) interacted with γ-H2AX, a marker for the DNA double-strand breaks (DSB). Sunitinib, a multi-targeted receptor tyrosine kinase inhibitor, was found to enhance the autophagic flux concurring with increase in the frequency of micronuclei accrued upon inhibition of autophagy, and similar results were also obtained in the rasfonin-treated cells. Moreover, the punctate LC3 staining colocalized with micronuclei. Unexpectedly, deprivation of SQSTM1/p62 alone accumulated micronuclei, which was not further increased upon challenge with ST. Rad51 is a protein central to repairing DSB by homologous recombination and treatment with ST or rasfonin decreased its expression. In several cell lines, p62 appeared in the immunoprecipites of Rad51, whereas LC3, Ulk1 and p62 interacted with PARP-1, another protein involved in DNA repair and genomic stability. In addition, knockdown of either Rad51 or PARP-1 completely inhibited the ST-induced autophagic flux. Taken together, the data presented here demonstrated that both LC3-II and the phosphorylated Ulk1 localized in nuclei and interacted with the proteins essential for nuclear stability, thereby revealing a more intimate relationship between autophagy and genomic stability.

  20. Sunitinib induces genomic instability of renal carcinoma cells through affecting the interaction of LC3-II and PARP-1

    PubMed Central

    Yan, Siyuan; Liu, Ling; Ren, Fengxia; Gao, Quan; Xu, Shanshan; Hou, Bolin; Wang, Yange; Jiang, Xuejun; Che, Yongsheng

    2017-01-01

    Deficiency of autophagy has been linked to increase in nuclear instability, but the role of autophagy in regulating the formation and elimination of micronuclei, a diagnostic marker for genomic instability, is limited in mammalian cells. Utilizing immunostaining and subcellular fractionation, we found that either LC3-II or the phosphorylated Ulk1 localized in nuclei, and immunoprecipitation results showed that both LC3 and Unc-51-like kinase 1 (Ulk1) interacted with γ-H2AX, a marker for the DNA double-strand breaks (DSB). Sunitinib, a multi-targeted receptor tyrosine kinase inhibitor, was found to enhance the autophagic flux concurring with increase in the frequency of micronuclei accrued upon inhibition of autophagy, and similar results were also obtained in the rasfonin-treated cells. Moreover, the punctate LC3 staining colocalized with micronuclei. Unexpectedly, deprivation of SQSTM1/p62 alone accumulated micronuclei, which was not further increased upon challenge with ST. Rad51 is a protein central to repairing DSB by homologous recombination and treatment with ST or rasfonin decreased its expression. In several cell lines, p62 appeared in the immunoprecipites of Rad51, whereas LC3, Ulk1 and p62 interacted with PARP-1, another protein involved in DNA repair and genomic stability. In addition, knockdown of either Rad51 or PARP-1 completely inhibited the ST-induced autophagic flux. Taken together, the data presented here demonstrated that both LC3-II and the phosphorylated Ulk1 localized in nuclei and interacted with the proteins essential for nuclear stability, thereby revealing a more intimate relationship between autophagy and genomic stability. PMID:28796254

  1. HTLV-I Tax Increases Genetic Instability by Inducing DNA Double Strand Breaks during DNA Replication and Switching Repair to NHEJ

    PubMed Central

    Baydoun, Hicham H.; Bai, Xue Tao; Shelton, Shary; Nicot, Christophe

    2012-01-01

    Background Appropriate responses to damaged DNA are indispensible for preserving genome stability and preventing cancer. Tumor viruses often target DNA repair machinery to achieve transformation. The Human T-cell leukemia virus type I (HTLV-I) is the only known transforming human retrovirus and the etiological agent of Adult T-cell Leukemia (ATLL). Although HTLV-I-transformed leukemic cells have numerous genetic lesions, the precise role of the viral tax gene in this process is not fully understood. Results Our results show a novel function of HTLV-I oncoprotein Tax as an inducer of genomic DNA double strand breaks (DDSB) during DNA replication. We also found that Tax acts as a potent inhibitor of homologous recombination (HR) DNA repair through the activation of the NF-kB pathway. These results were confirmed using HTLV-I molecular clones expressing Tax at physiological levels in a natural context. We further found that HTLV-I- and Tax-transformed cells are not more susceptible to DNA damaging agents and repair DNA lesions at a rate similar to that of normal cells. Finally, we demonstrated that during S phase, Tax-associated DDSB are preferentially repaired using the error-prone non-homologous end joining (NHEJ) pathway. Conclusions This study provides new insights in Tax effects on DNA repair and genome instability. Although it may not be self sufficient, the creation of DNA breaks and subsequent abnormal use of the non-conservative NHEJ DNA repair during the S phase in HTLV-I-infected Tax-expressing cells may cooperate with other factors to increase genetic and genome instability and favor transformation. PMID:22916124

  2. Roles of brca2 (fancd1) in oocyte nuclear architecture, gametogenesis, gonad tumors, and genome stability in zebrafish.

    PubMed

    Rodríguez-Marí, Adriana; Wilson, Catherine; Titus, Tom A; Cañestro, Cristian; BreMiller, Ruth A; Yan, Yi-Lin; Nanda, Indrajit; Johnston, Adam; Kanki, John P; Gray, Erin M; He, Xinjun; Spitsbergen, Jan; Schindler, Detlev; Postlethwait, John H

    2011-03-01

    Mild mutations in BRCA2 (FANCD1) cause Fanconi anemia (FA) when homozygous, while severe mutations cause common cancers including breast, ovarian, and prostate cancers when heterozygous. Here we report a zebrafish brca2 insertional mutant that shares phenotypes with human patients and identifies a novel brca2 function in oogenesis. Experiments showed that mutant embryos and mutant cells in culture experienced genome instability, as do cells in FA patients. In wild-type zebrafish, meiotic cells expressed brca2; and, unexpectedly, transcripts in oocytes localized asymmetrically to the animal pole. In juvenile brca2 mutants, oocytes failed to progress through meiosis, leading to female-to-male sex reversal. Adult mutants became sterile males due to the meiotic arrest of spermatocytes, which then died by apoptosis, followed by neoplastic proliferation of gonad somatic cells that was similar to neoplasia observed in ageing dead end (dnd)-knockdown males, which lack germ cells. The construction of animals doubly mutant for brca2 and the apoptotic gene tp53 (p53) rescued brca2-dependent sex reversal. Double mutants developed oocytes and became sterile females that produced only aberrant embryos and showed elevated risk for invasive ovarian tumors. Oocytes in double-mutant females showed normal localization of brca2 and pou5f1 transcripts to the animal pole and vasa transcripts to the vegetal pole, but had a polarized rather than symmetrical nucleus with the distribution of nucleoli and chromosomes to opposite nuclear poles; this result revealed a novel role for Brca2 in establishing or maintaining oocyte nuclear architecture. Mutating tp53 did not rescue the infertility phenotype in brca2 mutant males, suggesting that brca2 plays an essential role in zebrafish spermatogenesis. Overall, this work verified zebrafish as a model for the role of Brca2 in human disease and uncovered a novel function of Brca2 in vertebrate oocyte nuclear architecture.

  3. Roles of brca2 (fancd1) in Oocyte Nuclear Architecture, Gametogenesis, Gonad Tumors, and Genome Stability in Zebrafish

    PubMed Central

    Rodríguez-Marí, Adriana; Wilson, Catherine; Titus, Tom A.; Cañestro, Cristian; BreMiller, Ruth A.; Yan, Yi-Lin; Nanda, Indrajit; Johnston, Adam; Kanki, John P.; Gray, Erin M.; He, Xinjun; Spitsbergen, Jan; Schindler, Detlev; Postlethwait, John H.

    2011-01-01

    Mild mutations in BRCA2 (FANCD1) cause Fanconi anemia (FA) when homozygous, while severe mutations cause common cancers including breast, ovarian, and prostate cancers when heterozygous. Here we report a zebrafish brca2 insertional mutant that shares phenotypes with human patients and identifies a novel brca2 function in oogenesis. Experiments showed that mutant embryos and mutant cells in culture experienced genome instability, as do cells in FA patients. In wild-type zebrafish, meiotic cells expressed brca2; and, unexpectedly, transcripts in oocytes localized asymmetrically to the animal pole. In juvenile brca2 mutants, oocytes failed to progress through meiosis, leading to female-to-male sex reversal. Adult mutants became sterile males due to the meiotic arrest of spermatocytes, which then died by apoptosis, followed by neoplastic proliferation of gonad somatic cells that was similar to neoplasia observed in ageing dead end (dnd)-knockdown males, which lack germ cells. The construction of animals doubly mutant for brca2 and the apoptotic gene tp53 (p53) rescued brca2-dependent sex reversal. Double mutants developed oocytes and became sterile females that produced only aberrant embryos and showed elevated risk for invasive ovarian tumors. Oocytes in double-mutant females showed normal localization of brca2 and pou5f1 transcripts to the animal pole and vasa transcripts to the vegetal pole, but had a polarized rather than symmetrical nucleus with the distribution of nucleoli and chromosomes to opposite nuclear poles; this result revealed a novel role for Brca2 in establishing or maintaining oocyte nuclear architecture. Mutating tp53 did not rescue the infertility phenotype in brca2 mutant males, suggesting that brca2 plays an essential role in zebrafish spermatogenesis. Overall, this work verified zebrafish as a model for the role of Brca2 in human disease and uncovered a novel function of Brca2 in vertebrate oocyte nuclear architecture. PMID:21483806

  4. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, Francesco; Wyrobek, Andrew J.

    Exposure to ionizing radiation and other environmental agents can affect the genomic integrity of germ cells and induce adverse health effects in the progeny. Efficient DNA repair during gametogenesis and the early embryonic cycles after fertilization is critical for preventing transmission of DNA damage to the progeny and relies on maternal factors stored in the egg before fertilization. The ability of the maternal repair machinery to repair DNA damage in both parental genomes in the fertilizing egg is especially crucial for the fertilizing male genome that has not experienced a DNA repair-competent cellular environment for several weeks prior to fertilization.more » During the DNA repair-deficient period of spermatogenesis, DNA lesions may accumulate in sperm and be carried into the egg where, if not properly repaired, could result in the formation of heritable chromosomal aberrations or mutations and associated birth defects. Studies with female mice deficient in specific DNA repair genes have shown that: (i) cell cycle checkpoints are activated in the fertilized egg by DNA damage carried by the sperm; and (ii) the maternal genotype plays a major role in determining the efficiency of repairing genomic lesions in the fertilizing sperm and directly affect the risk for abnormal reproductive outcomes. There is also growing evidence that implicates DNA damage carried by the fertilizing gamete as a mediator of postfertilization processes that contribute to genomic instability in subsequent generations. Transgenerational genomic instability most likely involves epigenetic mechanisms or error-prone DNA repair processes in the early embryo. Maternal and embryonic DNA repair processes during the early phases of mammalian embryonic development can have far reaching consequences for the genomic integrity and health of subsequent generations.« less

  5. The origins and impact of primate segmental duplications.

    PubMed

    Marques-Bonet, Tomas; Girirajan, Santhosh; Eichler, Evan E

    2009-10-01

    Duplicated sequences are substrates for the emergence of new genes and are an important source of genetic instability associated with rare and common diseases. Analyses of primate genomes have shown an increase in the proportion of interspersed segmental duplications (SDs) within the genomes of humans and great apes. This contrasts with other mammalian genomes that seem to have their recently duplicated sequences organized in a tandem configuration. In this review, we focus on the mechanistic origin and impact of this difference with respect to evolution, genetic diversity and primate phenotype. Although many genomes will be sequenced in the future, resolution of this aspect of genomic architecture still requires high quality sequences and detailed analyses.

  6. R-loops cause genomic instability in T helper lymphocytes from patients with Wiskott-Aldrich syndrome.

    PubMed

    Sarkar, Koustav; Han, Seong-Su; Wen, Kuo-Kuang; Ochs, Hans D; Dupré, Loïc; Seidman, Michael M; Vyas, Yatin M

    2017-12-15

    Wiskott-Aldrich syndrome (WAS), X-linked thrombocytopenia (XLT), and X-linked neutropenia, which are caused by WAS mutations affecting Wiskott-Aldrich syndrome protein (WASp) expression or activity, manifest in immunodeficiency, autoimmunity, genomic instability, and lymphoid and other cancers. WASp supports filamentous actin formation in the cytoplasm and gene transcription in the nucleus. Although the genetic basis for XLT/WAS has been clarified, the relationships between mutant forms of WASp and the diverse features of these disorders remain ill-defined. We sought to define how dysfunctional gene transcription is causally linked to the degree of T H cell deficiency and genomic instability in the XLT/WAS clinical spectrum. In human T H 1- or T H 2-skewing cell culture systems, cotranscriptional R-loops (RNA/DNA duplex and displaced single-stranded DNA) and DNA double-strand breaks (DSBs) were monitored in multiple samples from patients with XLT and WAS and in normal T cells depleted of WASp. WASp deficiency provokes increased R-loops and R-loop-mediated DSBs in T H 1 cells relative to T H 2 cells. Mechanistically, chromatin occupancy of serine 2-unphosphorylated RNA polymerase II is increased, and that of topoisomerase 1, an R-loop preventing factor, is decreased at R-loop-enriched regions of IFNG and TBX21 (T H 1 genes) in T H 1 cells. These aberrations accompany increased unspliced (intron-retained) and decreased spliced mRNA of IFNG and TBX21 but not IL13 (T H 2 gene). Significantly, increased cellular load of R-loops and DSBs, which are normalized on RNaseH1-mediated suppression of ectopic R-loops, inversely correlates with disease severity scores. Transcriptional R-loop imbalance is a novel molecular defect causative in T H 1 immunodeficiency and genomic instability in patients with WAS. The study proposes that cellular R-loop load could be used as a potential biomarker for monitoring symptom severity and prognostic outcome in the XLT-WAS clinical spectrum and could be targeted therapeutically. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  7. DNA repair and tumorigenesis: lessons from hereditary cancer syndromes.

    PubMed

    Heinen, Christopher D; Schmutte, Christoph; Fishel, Richard

    2002-01-01

    The discovery that alterations of the DNA mismatch repair system (MMR) were linked to the common human cancer susceptibility syndrome hereditary nonpolyposis colon cancer (HNPCC) resulted in the declaration of a third class of genes involved in tumor development. In addition to oncogenes and tumor suppressors, alterations of DNA repair genes involved in maintaining genomic stability were found to be a clear cause of tum the level of the single nucleotides or chromosomes. This observation suggested that the establishment of genomic instability, termed the Mutator Phenotype, was an important aspect of tumor development.(1,2) Since the initial identification of the human MutS homolog hMSH2 nearly a decade ago,(3,4) more links have been described between human cancers and genes involved in maintaining genomic stability. Work in recent years has revealed that DNA repair proteins may also function in signaling pathways that provoke cell cycle arrest and apoptosis. This review will focus on the genetic and biochemical functions of DNA repair genes linked to hereditary cancer predisposition characterized by genomic instability (Table 1). Interestingly, the protein products of these genes have been directly or indirectly linked to the DNA damage-induce cell cycle arrest and apoptosis. We conclude that a robust connection between DNA repair proteins and damage-induced apoptosis may be as important for tumorigenesis as their role in maintaining genome stability.

  8. Integration of maternal genome into the neonate genome through breast milk mRNA transcripts and reverse transcriptase.

    PubMed

    Irmak, M Kemal; Oztas, Yesim; Oztas, Emin

    2012-06-07

    Human milk samples contain microvesicles similar to the retroviruses. These microvesicles contain mRNA transcripts and possess reverse transcriptase activity. They contain about 14,000 transcripts representing the milk transcriptome. Microvesicles are also enriched with proteins related to "caveolar-mediated endocytosis signaling" pathway. It has recently been reported that microvesicles could be transferred to other cells by endocytosis and their RNA content can be translated and be functional in their new location. A significant percentage of the mammalian genome appears to be the product of reverse transcription, containing sequences whose characteristics point to RNA as a template precursor. These are mobile elements that move by way of transposition and are called retrotransposons. We thought that retrotransposons may stem from about 14,000 transcriptome of breast milk microvesicles, and reviewed the literature.The enhanced acceptance of maternal allografts in children who were breast-fed and tolerance to the maternal MHC antigens after breastfeeding may stem from RNAs of the breast milk microvesicles that can be taken up by the breastfed infant and receiving maternal genomic information. We conclude that milk microvesicles may transfer genetic signals from mother to neonate during breastfeeding. Moreover, transfer of wild type RNA from a healthy wet-nurse to the suckling neonate through the milk microvesicles and its subsequent reverse transcription and integration into the neonate genome could result in permanent correction of the clinical manifestations in genetic diseases.

  9. Integration of maternal genome into the neonate genome through breast milk mRNA transcripts and reverse transcriptase

    PubMed Central

    2012-01-01

    Human milk samples contain microvesicles similar to the retroviruses. These microvesicles contain mRNA transcripts and possess reverse transcriptase activity. They contain about 14,000 transcripts representing the milk transcriptome. Microvesicles are also enriched with proteins related to “caveolar-mediated endocytosis signaling” pathway. It has recently been reported that microvesicles could be transferred to other cells by endocytosis and their RNA content can be translated and be functional in their new location. A significant percentage of the mammalian genome appears to be the product of reverse transcription, containing sequences whose characteristics point to RNA as a template precursor. These are mobile elements that move by way of transposition and are called retrotransposons. We thought that retrotransposons may stem from about 14,000 transcriptome of breast milk microvesicles, and reviewed the literature. The enhanced acceptance of maternal allografts in children who were breast-fed and tolerance to the maternal MHC antigens after breastfeeding may stem from RNAs of the breast milk microvesicles that can be taken up by the breastfed infant and receiving maternal genomic information. We conclude that milk microvesicles may transfer genetic signals from mother to neonate during breastfeeding. Moreover, transfer of wild type RNA from a healthy wet-nurse to the suckling neonate through the milk microvesicles and its subsequent reverse transcription and integration into the neonate genome could result in permanent correction of the clinical manifestations in genetic diseases. PMID:22676860

  10. Gene amplification and microsatellite instability induced in tumorigenic human bronchial epithelial cells by alpha particles and heavy ions

    NASA Technical Reports Server (NTRS)

    Piao, C. Q.; Hei, T. K.; Hall, E. J. (Principal Investigator)

    2001-01-01

    Gene amplification and microsatellite alteration are useful markers of genomic instability in tumor and transformed cell lines. It has been suggested that genomic instability contributes to the progression of tumorigenesis by accumulating genetic changes. In this study, amplification of the carbamyl-P-synthetase, aspartate transcarbamylase, dihydro-orotase (CAD) gene in transformed and tumorigenic human bronchial epithelial (BEP2D) cells induced by either alpha particles or (56)Fe ions was assessed by measuring resistance to N-(phosphonacetyl)-l-aspartate (PALA). In addition, alterations of microsatellite loci located on chromosomes 3p and 18q were analyzed in a series of primary and secondary tumor cell lines generated in nude mice. The frequency of PALA-resistant colonies was 1-3 x 10(-3) in tumor cell lines, 5-8 x 10(-5) in transformed cells prior to inoculation into nude mice, and less than 10(-7) in control BEP2D cells. Microsatellite alterations were detected in all 11 tumor cell lines examined at the following loci: D18S34, D18S363, D18S877, D3S1038 and D3S1607. No significant difference in either PALA resistance or microsatellite instability was found in tumor cell lines that were induced by alpha particles compared to those induced by (56)Fe ions.

  11. Gyrokinetic simulation of driftwave instability in field-reversed configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulton, D. P., E-mail: dfulton@trialphaenergy.com; University of California, Irvine, California 92697; Lau, C. K.

    2016-05-15

    Following the recent remarkable progress in magnetohydrodynamic (MHD) stability control in the C-2U advanced beam driven field-reversed configuration (FRC), turbulent transport has become one of the foremost obstacles on the path towards an FRC-based fusion reactor. Significant effort has been made to expand kinetic simulation capabilities in FRC magnetic geometry. The recently upgraded Gyrokinetic Toroidal Code (GTC) now accommodates realistic magnetic geometry from the C-2U experiment at Tri Alpha Energy, Inc. and is optimized to efficiently handle the FRC's magnetic field line orientation. Initial electrostatic GTC simulations find that ion-scale instabilities are linearly stable in the FRC core for realisticmore » pressure gradient drives. Estimated instability thresholds from linear GTC simulations are qualitatively consistent with critical gradients determined from experimental Doppler backscattering fluctuation data, which also find ion scale modes to be depressed in the FRC core. Beyond GTC, A New Code (ANC) has been developed to accurately resolve the magnetic field separatrix and address the interaction between the core and scrape-off layer regions, which ultimately determines global plasma confinement in the FRC. The current status of ANC and future development targets are discussed.« less

  12. Gyrokinetic simulation of driftwave instability in field-reversed configuration

    NASA Astrophysics Data System (ADS)

    Fulton, D. P.; Lau, C. K.; Schmitz, L.; Holod, I.; Lin, Z.; Tajima, T.; Binderbauer, M. W.

    2016-05-01

    Following the recent remarkable progress in magnetohydrodynamic (MHD) stability control in the C-2U advanced beam driven field-reversed configuration (FRC), turbulent transport has become one of the foremost obstacles on the path towards an FRC-based fusion reactor. Significant effort has been made to expand kinetic simulation capabilities in FRC magnetic geometry. The recently upgraded Gyrokinetic Toroidal Code (GTC) now accommodates realistic magnetic geometry from the C-2U experiment at Tri Alpha Energy, Inc. and is optimized to efficiently handle the FRC's magnetic field line orientation. Initial electrostatic GTC simulations find that ion-scale instabilities are linearly stable in the FRC core for realistic pressure gradient drives. Estimated instability thresholds from linear GTC simulations are qualitatively consistent with critical gradients determined from experimental Doppler backscattering fluctuation data, which also find ion scale modes to be depressed in the FRC core. Beyond GTC, A New Code (ANC) has been developed to accurately resolve the magnetic field separatrix and address the interaction between the core and scrape-off layer regions, which ultimately determines global plasma confinement in the FRC. The current status of ANC and future development targets are discussed.

  13. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    The goal of this review is to summarize the evidence for non-targeted and delayed effects of exposure to ionizing radiation in vivo. Currently, human health risks associated with radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in irradiated cells. Over the years a number of non-targeted effects of radiation exposure in vivo have been described that challenge this concept. These include radiation-induced genomic instability, bystander effects, clastogenic factors produced in plasma from irradiated individuals that can cause chromosomal damage when cultured with nonirradiated cells, and transgenerational effects of parental irradiation that can manifest in the progeny. These effects pose new challenges to evaluating the risk(s) associated with radiation exposure and understanding radiation-induced carcinogenesis.

  14. Mitochondria regulate DNA damage and genomic instability induced by high LET radiation

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Davidson, Mercy M.; Hei, Tom K.

    2014-04-01

    High linear energy transfer (LET) radiation including α particles and heavy ions is the major type of radiation found in space and is considered a potential health risk for astronauts. Even though the chance that these high LET particles traversing through the cytoplasm of cells is higher than that through the nuclei, the contribution of targeted cytoplasmic irradiation to the induction of genomic instability and other chromosomal damages induced by high LET radiation is not known. In the present study, we investigated whether mitochondria are the potential cytoplasmic target of high LET radiation in mediating cellular damage using a mitochondrial DNA (mtDNA) depleted (ρ0) human small airway epithelial (SAE) cell model and a precision charged particle microbeam with a beam width of merely one micron. Targeted cytoplasmic irradiation by high LET α particles induced DNA oxidative damage and double strand breaks in wild type ρ+ SAE cells. Furthermore, there was a significant increase in autophagy and micronuclei, which is an indication of genomic instability, together with the activation of nuclear factor kappa-B (NF-κB) and mitochondrial inducible nitric oxide synthase (iNOS) signaling pathways in ρ+ SAE cells. In contrast, ρ0 SAE cells exhibited a significantly lower response to these same endpoints examined after cytoplasmic irradiation with high LET α particles. The results indicate that mitochondria are essential in mediating cytoplasmic radiation induced genotoxic damage in mammalian cells. Furthermore, the findings may shed some light in the design of countermeasures for space radiation.

  15. Buccal Micronucleus Cytome Assay in Sickle Cell Disease

    PubMed Central

    Naga, Mallika Bokka Sri Satya; Gour, Shreya; Nallagutta, Nalini; Velidandla, Surekha; Manikya, Sangameshwar

    2016-01-01

    Introduction Sickle Cell Anaemia (SCA) is a commonly inherited blood disorder preceded by episodes of pain, chronic haemolytic anaemia and severe infections. The underlying phenomenon which causes this disease is the point mutation in the haemoglobin beta gene (Hbβ) found on chromosome 11 p. Increased oxidative stress leads to DNA damage. DNA damage occurring in such conditions can be studied by the buccal micronucleus cytome assay, which is a minimally invasive method for studying chromosomal instability, cell death and regenerative potential of human buccal tissue. Aim To evaluate genomic instability in patients with sickle cell disease by buccal micronucleus cytome assay. Materials and Methods The study included 40 sickle cell anemia patients (Group A) and 40 age and sex matched controls (Group B). Buccal swabs were collected and stained with Papanicolaou (PAP). Number of cells with micronucleus, binuclei, nuclear bud, pyknosis and karyolysis were counted in two groups as parameters for the evaluation of genome stability. Results All the analysis was done using t-test. A p-value of <0.001 was considered statistically significant. There was a statistically significant increase in micronuclei number in SCA patients when compared with controls. Karyolytic (un-nucleated) cell number in Group A was more than to those of the controls. Conclusion The results might suggest that patients with sickle cell anaemia have genome instability which is represented by the presence of micronuclei in the somatic cells. Presence of apoptotic cells might only indicate the bodily damage to the tissue as a result of the disease. PMID:27504413

  16. Buccal Micronucleus Cytome Assay in Sickle Cell Disease.

    PubMed

    Naga, Mallika Bokka Sri Satya; Gour, Shreya; Nallagutta, Nalini; Ealla, Kranti Kiran Reddy; Velidandla, Surekha; Manikya, Sangameshwar

    2016-06-01

    Sickle Cell Anaemia (SCA) is a commonly inherited blood disorder preceded by episodes of pain, chronic haemolytic anaemia and severe infections. The underlying phenomenon which causes this disease is the point mutation in the haemoglobin beta gene (Hbβ) found on chromosome 11 p. Increased oxidative stress leads to DNA damage. DNA damage occurring in such conditions can be studied by the buccal micronucleus cytome assay, which is a minimally invasive method for studying chromosomal instability, cell death and regenerative potential of human buccal tissue. To evaluate genomic instability in patients with sickle cell disease by buccal micronucleus cytome assay. The study included 40 sickle cell anemia patients (Group A) and 40 age and sex matched controls (Group B). Buccal swabs were collected and stained with Papanicolaou (PAP). Number of cells with micronucleus, binuclei, nuclear bud, pyknosis and karyolysis were counted in two groups as parameters for the evaluation of genome stability. All the analysis was done using t-test. A p-value of <0.001 was considered statistically significant. There was a statistically significant increase in micronuclei number in SCA patients when compared with controls. Karyolytic (un-nucleated) cell number in Group A was more than to those of the controls. The results might suggest that patients with sickle cell anaemia have genome instability which is represented by the presence of micronuclei in the somatic cells. Presence of apoptotic cells might only indicate the bodily damage to the tissue as a result of the disease.

  17. CHPA, a Cysteine- and Histidine-Rich-Domain-Containing Protein, Contributes to Maintenance of the Diploid State in Aspergillus nidulans

    PubMed Central

    Sadanandom, Ari; Findlay, Kim; Doonan, John H.; Schulze-Lefert, Paul; Shirasu, Ken

    2004-01-01

    The alternation of eukaryotic life cycles between haploid and diploid phases is crucial for maintaining genetic diversity. In some organisms, the growth and development of haploid and diploid phases are nearly identical, and one might suppose that all genes required for one phase are likely to be critical for the other phase. Here, we show that targeted disruption of the chpA (cysteine- and histidine-rich-domain- [CHORD]-containing protein A) gene in haploid Aspergillus nidulans strains gives rise to chpA knockout haploids and heterozygous diploids but no chpA knockout diploids. A. nidulans chpA heterozygous diploids showed impaired conidiophore development and reduced conidiation. Deletion of chpA from diploid A. nidulans resulted in genome instability and reversion to a haploid state. Thus, our data suggest a vital role for chpA in maintenance of the diploid phase in A. nidulans. Furthermore, the human chpA homolog, Chp-1, was able to complement haploinsufficiency in A. nidulans chpA heterozygotes, suggesting that the function of CHORD-containing proteins is highly conserved in eukaryotes. PMID:15302831

  18. Phosphate steering by Flap Endonuclease 1 promotes 5'-flap specificity and incision to prevent genome instability

    DOE PAGES

    Tsutakawa, Susan E.; Thompson, Mark J.; Arvai, Andrew S.; ...

    2017-06-27

    DNA replication and repair enzyme Flap Endonuclease 1 (FEN1) is vital for genome integrity, and FEN1 mutations arise in multiple cancers. FEN1 precisely cleaves single-stranded (ss) 5'-flaps one nucleotide into duplex (ds) DNA. Yet, how FEN1 selects for but does not incise the ss 5'-flap was enigmatic. Here we combine crystallographic, biochemical and genetic analyses to show that two dsDNA binding sites set the 5'polarity and to reveal unexpected control of the DNA phosphodiester backbone by electrostatic interactions. Via phosphate steering', basic residues energetically steer an inverted ss 5'-flap through a gateway over FEN1's active site and shift dsDNA formore » catalysis. Mutations of these residues cause an 18,000-fold reduction in catalytic rate in vitro and large-scale trinucleotide (GAA) n repeat expansions in vivo, implying failed phosphate-steering promotes an unanticipated lagging-strand template-switch mechanism during replication. Thus, phosphate steering is an unappreciated FEN1 function that enforces 5'-flap specificity and catalysis, preventing genomic instability.« less

  19. DNA Excision Repair at Telomeres

    PubMed Central

    Jia, Pingping; Her, Chengtao; Chai, Weihang

    2015-01-01

    DNA damage is caused by either endogenous cellular metabolic processes such as hydrolysis, oxidation, alkylation, and DNA base mismatches, or exogenous sources including ultraviolet (UV) light, ionizing radiation, and chemical agents. Damaged DNA that is not properly repaired can lead to genomic instability, driving tumorigenesis. To protect genomic stability, mammalian cells have evolved highly conserved DNA repair mechanisms to remove and repair DNA lesions. Telomeres are composed of long tandem TTAGGG repeats located at the ends of chromosomes. Maintenance of functional telomeres is critical for preventing genome instability. The telomeric sequence possesses unique features that predispose telomeres to a variety of DNA damage induced by environmental genotoxins. This review briefly describes the relevance of excision repair pathways in telomere maintenance, with the focus on base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). By summarizing current knowledge on excision repair of telomere damage and outlining many unanswered questions, it is our hope to stimulate further interest in a better understanding of excision repair processes at telomeres and in how these processes contribute to telomere maintenance. PMID:26422132

  20. Phosphate steering by Flap Endonuclease 1 promotes 5'-flap specificity and incision to prevent genome instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsutakawa, Susan E.; Thompson, Mark J.; Arvai, Andrew S.

    DNA replication and repair enzyme Flap Endonuclease 1 (FEN1) is vital for genome integrity, and FEN1 mutations arise in multiple cancers. FEN1 precisely cleaves single-stranded (ss) 5'-flaps one nucleotide into duplex (ds) DNA. Yet, how FEN1 selects for but does not incise the ss 5'-flap was enigmatic. Here we combine crystallographic, biochemical and genetic analyses to show that two dsDNA binding sites set the 5'polarity and to reveal unexpected control of the DNA phosphodiester backbone by electrostatic interactions. Via phosphate steering', basic residues energetically steer an inverted ss 5'-flap through a gateway over FEN1's active site and shift dsDNA formore » catalysis. Mutations of these residues cause an 18,000-fold reduction in catalytic rate in vitro and large-scale trinucleotide (GAA) n repeat expansions in vivo, implying failed phosphate-steering promotes an unanticipated lagging-strand template-switch mechanism during replication. Thus, phosphate steering is an unappreciated FEN1 function that enforces 5'-flap specificity and catalysis, preventing genomic instability.« less

  1. Genome-wide CpG island methylation and intergenic demethylation propensities vary among different tumor sites.

    PubMed

    Lee, Seung-Tae; Wiemels, Joseph L

    2016-02-18

    The epigenetic landscape of cancer includes both focal hypermethylation and broader hypomethylation in a genome-wide manner. By means of a comprehensive genomic analysis on 6637 tissues of 21 tumor types, we here show that the degrees of overall methylation in CpG island (CGI) and demethylation in intergenic regions, defined as 'backbone', largely vary among different tumors. Depending on tumor type, both CGI methylation and backbone demethylation are often associated with clinical, epidemiological and biological features such as age, sex, smoking history, anatomic location, histological type and grade, stage, molecular subtype and biological pathways. We found connections between CGI methylation and hypermutability, microsatellite instability, IDH1 mutation, 19p gain and polycomb features, and backbone demethylation with chromosomal instability, NSD1 and TP53 mutations, 5q and 19p loss and long repressive domains. These broad epigenetic patterns add a new dimension to our understanding of tumor biology and its clinical implications. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Knockdown of RMI1 impairs DNA repair under DNA replication stress.

    PubMed

    Xu, Chang; Fang, Lianying; Kong, Yangyang; Xiao, Changyan; Yang, Mengmeng; Du, Li-Qing; Liu, Qiang

    2017-12-09

    RMI1 (RecQ-mediated genome instability protein 1) forms a conserved BTR complex with BLM, Topo IIIα, and RMI2, and its absence causes genome instability. It has been revealed that RMI1 localizes to nuclear foci with BLM and Topo IIIα in response to replication stress, and that RMI1 functions downstream of BLM in promoting replication elongation. However, the precise functions of RMI1 during replication stress are not completely understood. Here we report that RMI1 knockdown cells are hypersensitive to hydroxyurea (HU). Using comet assay, we show that RMI1 knockdown cells exhibit accumulation of broken DNAs after being released from HU treatment. Moreover, we demonstrate that RMI1 facilitates the recovery from activated checkpoint and resuming the cell cycle after replicative stress. Surprisingly, loss of RMI1 results in a failure of RAD51 loading onto DNA damage sites. These findings reveal the importance of RMI1 in response to replication stress, which could explain the molecular basis for its function in maintaining genome integrity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Physical proximity of chromatin to nuclear pores prevents harmful R loop accumulation contributing to maintain genome stability.

    PubMed

    García-Benítez, Francisco; Gaillard, Hélène; Aguilera, Andrés

    2017-10-10

    During transcription, the mRNA may hybridize with DNA, forming an R loop, which can be physiological or pathological, constituting in this case a source of genomic instability. To understand the mechanism by which eukaryotic cells prevent harmful R loops, we used human activation-induced cytidine deaminase (AID) to identify genes preventing R loops. A screening of 400 Saccharomyces cerevisiae selected strains deleted in nuclear genes revealed that cells lacking the Mlp1/2 nuclear basket proteins show AID-dependent genomic instability and replication defects that were suppressed by RNase H1 overexpression. Importantly, DNA-RNA hybrids accumulated at transcribed genes in mlp1/2 mutants, indicating that Mlp1/2 prevents R loops. Consistent with the Mlp1/2 role in gene gating to nuclear pores, artificial tethering to the nuclear periphery of a transcribed locus suppressed R loops in mlp1 ∆ cells. The same occurred in THO-deficient hpr1 ∆ cells. We conclude that proximity of transcribed chromatin to the nuclear pore helps restrain pathological R loops.

  4. Pan-cancer analysis of the extent and consequences of intra-tumor heterogeneity

    PubMed Central

    Andor, Noemi; Graham, Trevor A.; Jansen, Marnix; Xia, Li C.; Aktipis, C. Athena; Petritsch, Claudia; Ji, Hanlee P.; Maley, Carlo C.

    2016-01-01

    Intra-tumor heterogeneity (ITH) drives neoplastic progression and therapeutic resistance. We used EXPANDS and PyClone to detect clones >10% frequency within 1,165 exome sequences from TCGA tumors. 86% of tumors across 12 cancer types had at least two clones. ITH in nuclei morphology was associated with genetic ITH (Spearman ρ: 0.24–0.41, P<0.001). Mutation of a driver gene that typically appears in smaller clones was a survival risk factor (HR=2.15, 95% CI: 1.71–2.69). The risk of mortality also increased when >2 clones coexisted (HR=1.49, 95% CI: 1.20–1.87). In two independent datasets, copy number alterations affecting either <25% or >75% of a tumor’s genome predicted reduced risk (HR=0.15, 95% CI: 0.08–0.29). Mortality risk also declined when more than four clones coexisted in the sample, suggesting a tradeoff between costs and benefits of genomic instability. ITH and genomic instability have the potential to be useful measures universally applicable across cancers. PMID:26618723

  5. [Results from the German shoulder- and elbow arthroplasty register (SEPR) : Anatomic or reverse shoulder arthroplasty in B2-glenoids?

    PubMed

    Magosch, P; Habermeyer, P; Lichtenberg, S; Tauber, M; Gohlke, F; Mauch, F; Boehm, D; Loew, M; Zeifang, F; Pötzl, W

    2017-12-01

    Anatomic shoulder arthroplasty in osteoarthritis with biconcave glenoid wear results in decreased functional results and a higher rate of early glenoid loosening. The aim of the data analysis of the German shoulder arthroplasty register was to clarify whether reverse shoulder arthroplasty can provide better functional results and a lower complication rate than anatomic arthroplasty in osteoarthritis with biconcave glenoid wear. The analysis included 1052 completely documented primary implanted arthroplasties with a minimum follow-up of 2 years. In 119 cases, a B2-type glenoid was present. Out of these cases, 86 were treated with an anatomic shoulder arthroplasty, and in 33 cases a reverse shoulder arthroplasty was implanted. The mean follow-up was 47.6 months. The Constant score with its subcategories, as well as the active range of movement improved significantly after anatomic and after reverse shoulder arthroplasty. We observed no difference in functional results between both types of arthroplasty; however, reverse arthroplasty showed a significant higher revision rate (21.2%) (3% glenoid loosening, 6% prosthetic instability) than anatomic shoulder arthroplasty (12.8%) (11.6% glenoid loosening, 1.2% prosthetic instability), whereas anatomic shoulder arthroplasty showed a higher rate of glenoid loosening. Functional and radiographic results of both types of arthroplasty are comparable with the results reported in the literature, although our analysis represents results from an implant registry (data pertaining to medical care quality).

  6. Migration of mitochondrial DNA in the nuclear genome of colorectal adenocarcinoma.

    PubMed

    Srinivasainagendra, Vinodh; Sandel, Michael W; Singh, Bhupendra; Sundaresan, Aishwarya; Mooga, Ved P; Bajpai, Prachi; Tiwari, Hemant K; Singh, Keshav K

    2017-03-29

    Colorectal adenocarcinomas are characterized by abnormal mitochondrial DNA (mtDNA) copy number and genomic instability, but a molecular interaction between mitochondrial and nuclear genome remains unknown. Here we report the discovery of increased copies of nuclear mtDNA (NUMT) in colorectal adenocarcinomas, which supports link between mtDNA and genomic instability in the nucleus. We name this phenomenon of nuclear occurrence of mitochondrial component as numtogenesis. We provide a description of NUMT abundance and distribution in tumor versus matched blood-derived normal genomes. Whole-genome sequence data were obtained for colon adenocarcinoma and rectum adenocarcinoma patients participating in The Cancer Genome Atlas, via the Cancer Genomics Hub, using the GeneTorrent file acquisition tool. Data were analyzed to determine NUMT proportion and distribution on a genome-wide scale. A NUMT suppressor gene was identified by comparing numtogenesis in other organisms. Our study reveals that colorectal adenocarcinoma genomes, on average, contains up to 4.2-fold more somatic NUMTs than matched normal genomes. Women colorectal tumors contained more NUMT than men. NUMT abundance in tumor predicted parallel abundance in blood. NUMT abundance positively correlated with GC content and gene density. Increased numtogenesis was observed with higher mortality. We identified YME1L1, a human homolog of yeast YME1 (yeast mitochondrial DNA escape 1) to be frequently mutated in colorectal tumors. YME1L1 was also mutated in tumors derived from other tissues. We show that inactivation of YME1L1 results in increased transfer of mtDNA in the nuclear genome. Our study demonstrates increased somatic transfer of mtDNA in colorectal tumors. Our study also reveals sex-based differences in frequency of NUMT occurrence and that NUMT in blood reflects NUMT in tumors, suggesting NUMT may be used as a biomarker for tumorigenesis. We identify YME1L1 as the first NUMT suppressor gene in human and demonstrate that inactivation of YME1L1 induces migration of mtDNA to the nuclear genome. Our study reveals that numtogenesis plays an important role in the development of cancer.

  7. The Specificity and Flexibility of L1 Reverse Transcription Priming at Imperfect T-Tracts

    PubMed Central

    Viollet, Sébastien; Mir, Ashfaq Ali; Gabus, Caroline; Darlix, Jean-Luc; Cristofari, Gaël

    2013-01-01

    L1 retrotransposons have a prominent role in reshaping mammalian genomes. To replicate, the L1 ribonucleoprotein particle (RNP) first uses its endonuclease (EN) to nick the genomic DNA. The newly generated DNA end is subsequently used as a primer to initiate reverse transcription within the L1 RNA poly(A) tail, a process known as target-primed reverse transcription (TPRT). Prior studies demonstrated that most L1 insertions occur into sequences related to the L1 EN consensus sequence (degenerate 5′-TTTT/A-3′ sites) and frequently preceded by imperfect T-tracts. However, it is currently unclear whether—and to which degree—the liberated 3′-hydroxyl extremity on the genomic DNA needs to be accessible and complementary to the poly(A) tail of the L1 RNA for efficient priming of reverse transcription. Here, we employed a direct assay for the initiation of L1 reverse transcription to define the molecular rules that guide this process. First, efficient priming is detected with as few as 4 matching nucleotides at the primer 3′ end. Second, L1 RNP can tolerate terminal mismatches if they are compensated within the 10 last bases of the primer by an increased number of matching nucleotides. All terminal mismatches are not equally detrimental to DNA extension, a C being extended at higher levels than an A or a G. Third, efficient priming in the context of duplex DNA requires a 3′ overhang. This suggests the possible existence of additional DNA processing steps, which generate a single-stranded 3′ end to allow L1 reverse transcription. Based on these data we propose that the specificity of L1 reverse transcription initiation contributes, together with the specificity of the initial EN cleavage, to the distribution of new L1 insertions within the human genome. PMID:23675310

  8. Evaluation of Genomic Instability in the Abnormal Prostate

    DTIC Science & Technology

    2006-12-01

    array CGH maps copy number aberrations relative to the genome sequence by using arrays of BAC or cDNA clones as the hybridization target instead of...data produced from these analyses complicate the interpretation of results . For these reasons, and as outlined by Davies et al., 22 it is desirable...There have been numerous studies of these abnormalities and several techniques, including 9 chromosome painting, array CGH and SNP arrays , have

  9. All y'all need to know 'bout retroelements in cancer.

    PubMed

    Belancio, Victoria P; Roy-Engel, Astrid M; Deininger, Prescott L

    2010-08-01

    Genetic instability is one of the principal hallmarks and causative factors in cancer. Human transposable elements (TE) have been reported to cause human diseases, including several types of cancer through insertional mutagenesis of genes critical for preventing or driving malignant transformation. In addition to retrotransposition-associated mutagenesis, TEs have been found to contribute even more genomic rearrangements through non-allelic homologous recombination. TEs also have the potential to generate a wide range of mutations derivation of which is difficult to directly trace to mobile elements, including double strand breaks that may trigger mutagenic genomic rearrangements. Genome-wide hypomethylation of TE promoters and significantly elevated TE expression in almost all human cancers often accompanied by the loss of critical DNA sensing and repair pathways suggests that the negative impact of mobile elements on genome stability should increase as human tumors evolve. The biological consequences of elevated retroelement expression, such as the rate of their amplification, in human cancers remain obscure, particularly, how this increase translates into disease-relevant mutations. This review is focused on the cellular mechanisms that control human TE-associated mutagenesis in cancer and summarizes the current understanding of TE contribution to genetic instability in human malignancies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Laboratory experiments on stability and entrainment of oceanic stratocumulus. Part 1: Instability experiment

    NASA Technical Reports Server (NTRS)

    Shy, Shenqyang S.

    1990-01-01

    The existence and persistence of marine stratocumulus play a significant role in the overall energy budget of the earth. Their stability and entrainment process are important in global climate studies, as well as for local weather forecasting. The purposes of the experimental simulations are to study this process and to address this paradox. The effects of buoyancy reversal is investigated, followed by two types of experiments. An instability experiment involves the behavior of a fully turbulent wake near the inversion generated by a sliding plate. Due to buoyancy reversal, the heavy, mixed fluid starts to sink, turning the potential energy created by the mixing process into kinetic energy, thereby increasing the entrainment rate. An entrainment experiment, using a vertically oscillating grid driven by a controllable speed motor, produces many eddy-induced entrainments at a surface region on scales much less than the depth of the layer.

  11. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast

    PubMed Central

    Oud, Bart; Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-01-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. PMID:22152095

  12. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast.

    PubMed

    Oud, Bart; van Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-03-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Are chromosomal instabilities induced by exposure of cultured normal human cells to low- or high-LET radiation?

    NASA Technical Reports Server (NTRS)

    Dugan, Lawrence C.; Bedford, Joel S.

    2003-01-01

    Radiation-induced genomic instability has been proposed as a very early, if not an initiating, step in radiation carcinogenesis. Numerous studies have established the occurrence of radiation-induced chromosomal instability in various cells of both human and rodent origin. In many of these studies, however, the cells were not "normal" initially, and in many cases they involved tumor-derived cell lines. The phenomenon clearly would be of even greater interest if it were shown to occur generally in cells that are normal at the outset, rather than cells that may have been "selected" because of a pre-existing susceptibility to induced instability. As a test of the generality of the phenomenon, we studied low-passage normal diploid human fibroblasts (AG1521A) to determine whether they are susceptible to the induction of chromosomal instability in the progeny of surviving cells after exposure in G(0) to low- and high-LET radiation. Cytogenetic assays for instability were performed on both mixed populations of cells and clones of cells surviving exposure. We found no evidence for the induction of such instability as a result of radiation exposure, though we observed a senescence-related chromosomal instability in the progeny of both irradiated and unirradiated cell populations. Copyright 2003 by Radiation Research Society.

  14. A review of reverse vaccinology approaches for the development of vaccines against ticks and tick borne diseases.

    PubMed

    Lew-Tabor, A E; Rodriguez Valle, M

    2016-06-01

    The field of reverse vaccinology developed as an outcome of the genome sequence revolution. Following the introduction of live vaccinations in the western world by Edward Jenner in 1798 and the coining of the phrase 'vaccine', in 1881 Pasteur developed a rational design for vaccines. Pasteur proposed that in order to make a vaccine that one should 'isolate, inactivate and inject the microorganism' and these basic rules of vaccinology were largely followed for the next 100 years leading to the elimination of several highly infectious diseases. However, new technologies were needed to conquer many pathogens which could not be eliminated using these traditional technologies. Thus increasingly, computers were used to mine genome sequences to rationally design recombinant vaccines. Several vaccines for bacterial and viral diseases (i.e. meningococcus and HIV) have been developed, however the on-going challenge for parasite vaccines has been due to their comparatively larger genomes. Understanding the immune response is important in reverse vaccinology studies as this knowledge will influence how the genome mining is to be conducted. Vaccine candidates for anaplasmosis, cowdriosis, theileriosis, leishmaniasis, malaria, schistosomiasis, and the cattle tick have been identified using reverse vaccinology approaches. Some challenges for parasite vaccine development include the ability to address antigenic variability as well the understanding of the complex interplay between antibody, mucosal and/or T cell immune responses. To understand the complex parasite interactions with the livestock host, there is the limitation where algorithms for epitope mining using the human genome cannot directly be adapted for bovine, for example the prediction of peptide binding to major histocompatibility complex motifs. As the number of genomes for both hosts and parasites increase, the development of new algorithms for pan-genomic mining will continue to impact the future of parasite and ricketsial (and other tick borne pathogens) disease vaccine development. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. Reversing DNA Methylation: Mechanisms, Genomics, and Biological Functions

    PubMed Central

    Wu, Hao; Zhang, Yi

    2014-01-01

    Methylation of cytosines in the mammalian genome represents a key epigenetic modification and is dynamically regulated during development. Compelling evidence now suggests that dynamic regulation of DNA methylation is mainly achieved through a cyclic enzymatic cascade comprised of cytosine methylation, iterative oxidation of methyl group by TET dioxygenases, and restoration of unmodified cytosines by either replication-dependent dilution or DNA glycosylase-initiated base excision repair. In this review, we discuss the mechanism and function of DNA demethylation in mammalian genomes, focusing particularly on how developmental modulation of the cytosine-modifying pathway is coupled to active reversal of DNA methylation in diverse biological processes. PMID:24439369

  16. Importance of DNA repair in tumor suppression

    NASA Astrophysics Data System (ADS)

    Brumer, Yisroel; Shakhnovich, Eugene I.

    2004-12-01

    The transition from a normal to cancerous cell requires a number of highly specific mutations that affect cell cycle regulation, apoptosis, differentiation, and many other cell functions. One hallmark of cancerous genomes is genomic instability, with mutation rates far greater than those of normal cells. In microsatellite instability (MIN tumors), these are often caused by damage to mismatch repair genes, allowing further mutation of the genome and tumor progression. These mutation rates may lie near the error catastrophe found in the quasispecies model of adaptive RNA genomes, suggesting that further increasing mutation rates will destroy cancerous genomes. However, recent results have demonstrated that DNA genomes exhibit an error threshold at mutation rates far lower than their conservative counterparts. Furthermore, while the maximum viable mutation rate in conservative systems increases indefinitely with increasing master sequence fitness, the semiconservative threshold plateaus at a relatively low value. This implies a paradox, wherein inaccessible mutation rates are found in viable tumor cells. In this paper, we address this paradox, demonstrating an isomorphism between the conservatively replicating (RNA) quasispecies model and the semiconservative (DNA) model with post-methylation DNA repair mechanisms impaired. Thus, as DNA repair becomes inactivated, the maximum viable mutation rate increases smoothly to that of a conservatively replicating system on a transformed landscape, with an upper bound that is dependent on replication rates. On a specific single fitness peak landscape, the repair-free semiconservative system is shown to mimic a conservative system exactly. We postulate that inactivation of post-methylation repair mechanisms is fundamental to the progression of a tumor cell and hence these mechanisms act as a method for the prevention and destruction of cancerous genomes.

  17. RECG Maintains Plastid and Mitochondrial Genome Stability by Suppressing Extensive Recombination between Short Dispersed Repeats

    PubMed Central

    Odahara, Masaki; Masuda, Yuichi; Sato, Mayuko; Wakazaki, Mayumi; Harada, Chizuru; Toyooka, Kiminori; Sekine, Yasuhiko

    2015-01-01

    Maintenance of plastid and mitochondrial genome stability is crucial for photosynthesis and respiration, respectively. Recently, we have reported that RECA1 maintains mitochondrial genome stability by suppressing gross rearrangements induced by aberrant recombination between short dispersed repeats in the moss Physcomitrella patens. In this study, we studied a newly identified P. patens homolog of bacterial RecG helicase, RECG, some of which is localized in both plastid and mitochondrial nucleoids. RECG partially complements recG deficiency in Escherichia coli cells. A knockout (KO) mutation of RECG caused characteristic phenotypes including growth delay and developmental and mitochondrial defects, which are similar to those of the RECA1 KO mutant. The RECG KO cells showed heterogeneity in these phenotypes. Analyses of RECG KO plants showed that mitochondrial genome was destabilized due to a recombination between 8–79 bp repeats and the pattern of the recombination partly differed from that observed in the RECA1 KO mutants. The mitochondrial DNA (mtDNA) instability was greater in severe phenotypic RECG KO cells than that in mild phenotypic ones. This result suggests that mitochondrial genomic instability is responsible for the defective phenotypes of RECG KO plants. Some of the induced recombination caused efficient genomic rearrangements in RECG KO mitochondria. Such loci were sometimes associated with a decrease in the levels of normal mtDNA and significant decrease in the number of transcripts derived from the loci. In addition, the RECG KO mutation caused remarkable plastid abnormalities and induced recombination between short repeats (12–63 bp) in the plastid DNA. These results suggest that RECG plays a role in the maintenance of both plastid and mitochondrial genome stability by suppressing aberrant recombination between dispersed short repeats; this role is crucial for plastid and mitochondrial functions. PMID:25769081

  18. Role of electric fields in the MHD evolution of the kink instability

    DOE PAGES

    Lapenta, Giovanni; Skender, Marina

    2017-02-17

    Here, the discovery of electrostatic fields playing a crucial role in establishing plasma motion in the flux conversion and dynamo processes in reversed field pinches is revisited. In order to further elucidate the role of the electrostatic fields, a flux rope configuration susceptible to the kink instability is numerically studied with anMHDcode. Simulated nonlinear evolution of the kink instability is found to confirm the crucial role of the electrostatic fields. Anew insight is gained on the special function of the electrostatic fields: they lead the plasma towards the reconnection site at the mode resonant surface. Without this step the plasmamore » column could not relax to its nonlinear state, since no other agent is present to perform this role. While the inductive field generated directly by the kink instability is the dominant flow driver, the electrostatic field is found to allow the motion in the vicinity of the reconnection region.« less

  19. Glenohumeral instability: evaluation with MR arthrography.

    PubMed

    Beltran, J; Rosenberg, Z S; Chandnani, V P; Cuomo, F; Beltran, S; Rokito, A

    1997-01-01

    Magnetic resonance arthrography is superior to other imaging techniques in evaluation of the glenohumeral joint. Normal variants that can be diagnostic pitfalls include the anterosuperior sublabral foramen, the Buford complex, and hyaline cartilage under the labrum. Anteroinferior dislocation is the most frequent cause of anterior glenohumeral instability and produces a constellation of lesions (anteroinferior labral tear, classic and osseous Bankart lesions, Hill-Sachs lesion). Variants of anteroinferior labral tears include anterior labroligamentous periosteal sleeve avulsion and glenoid labral articular disruption. Anterior glenohumeral instability can also involve tears of the anterior or anterosuperior labrum or the glenohumeral ligaments. Posterior glenohumeral instability can involve a posterior labral tear, posterior capsular stripping or laxity; fracture, erosion, or sclerosis and ectopic ossification of the posterior glenoid fossa; reverse Hill-Sachs lesion; McLaughlin fracture; or posterosuperior glenoid impingement. Superior labral anterior and posterior lesions involve the superior labrum with varying degrees of biceps tendon involvement.

  20. Role of electric fields in the MHD evolution of the kink instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapenta, Giovanni; Skender, Marina

    Here, the discovery of electrostatic fields playing a crucial role in establishing plasma motion in the flux conversion and dynamo processes in reversed field pinches is revisited. In order to further elucidate the role of the electrostatic fields, a flux rope configuration susceptible to the kink instability is numerically studied with anMHDcode. Simulated nonlinear evolution of the kink instability is found to confirm the crucial role of the electrostatic fields. Anew insight is gained on the special function of the electrostatic fields: they lead the plasma towards the reconnection site at the mode resonant surface. Without this step the plasmamore » column could not relax to its nonlinear state, since no other agent is present to perform this role. While the inductive field generated directly by the kink instability is the dominant flow driver, the electrostatic field is found to allow the motion in the vicinity of the reconnection region.« less

  1. Performance through Deformation and Instability

    NASA Astrophysics Data System (ADS)

    Bertoldi, Katia

    2015-03-01

    Materials capable of undergoing large deformations like elastomers and gels are ubiquitous in daily life and nature. An exciting field of engineering is emerging that uses these compliant materials to design active devices, such as actuators, adaptive optical systems and self-regulating fluidics. Compliant structures may significantly change their architecture in response to diverse stimuli. When excessive deformation is applied, they may eventually become unstable. Traditionally, mechanical instabilities have been viewed as an inconvenience, with research focusing on how to avoid them. Here, I will demonstrate that these instabilities can be exploited to design materials with novel, switchable functionalities. The abrupt changes introduced into the architecture of soft materials by instabilities will be used to change their shape in a sudden, but controlled manner. Possible and exciting applications include materials with unusual properties such negative Poisson's ratio, phononic crystals with tunable low-frequency acoustic band gaps and reversible encapsulation systems.

  2. Genetic Instability at the Agouti Locus of the Mouse (Mus Musculus). I. Increased Reverse Mutation Frequency to the A(w) Allele in a/a Heterozygotes

    PubMed Central

    Sandulache, R.; Neuhauser-Klaus, A.; Favor, J.

    1994-01-01

    We have compiled the reverse mutation rate data to the white bellied agouti (A(w)) allele in heterozygous A/a mice and shown it to be increased by a factor of at least 350 in comparison to the reverse mutation rate in homozygous a/a mice. Employing tightly linked flanking restriction fragment length polymorphism DNA markers, we have shown that reversion to A(w) is associated with crossing over in the vicinity of the agouti locus. The non-agouti (a) allele has been recently shown to contain an 11-kb insert within the first intron of the agouti gene. Together with our present results, these observations suggest possible mechanisms to explain the reversion events. PMID:7982562

  3. Mitochondrial-Associated Cell Death Mechanisms Are Reset to an Embryonic-Like State in Aged Donor-Derived iPS Cells Harboring Chromosomal Aberrations

    PubMed Central

    Prigione, Alessandro; Hossini, Amir M.; Lichtner, Björn; Serin, Akdes; Fauler, Beatrix; Megges, Matthias; Lurz, Rudi; Lehrach, Hans; Zouboulis, Christos C.

    2011-01-01

    Somatic cells reprogrammed into induced pluripotent stem cells (iPSCs) acquire features of human embryonic stem cells (hESCs) and thus represent a promising source for cellular therapy of debilitating diseases, such as age-related disorders. However, reprogrammed cell lines have been found to harbor various genomic alterations. In addition, we recently discovered that the mitochondrial DNA of human fibroblasts also undergoes random mutational events upon reprogramming. Aged somatic cells might possess high susceptibility to nuclear and mitochondrial genome instability. Hence, concerns over the oncogenic potential of reprogrammed cells due to the lack of genomic integrity may hinder the applicability of iPSC-based therapies for age-associated conditions. Here, we investigated whether aged reprogrammed cells harboring chromosomal abnormalities show resistance to apoptotic cell death or mitochondrial-associated oxidative stress, both hallmarks of cancer transformation. Four iPSC lines were generated from dermal fibroblasts derived from an 84-year-old woman, representing the oldest human donor so far reprogrammed to pluripotency. Despite the presence of karyotype aberrations, all aged-iPSCs were able to differentiate into neurons, re-establish telomerase activity, and reconfigure mitochondrial ultra-structure and functionality to a hESC-like state. Importantly, aged-iPSCs exhibited high sensitivity to drug-induced apoptosis and low levels of oxidative stress and DNA damage, in a similar fashion as iPSCs derived from young donors and hESCs. Thus, the occurrence of chromosomal abnormalities within aged reprogrammed cells might not be sufficient to over-ride the cellular surveillance machinery and induce malignant transformation through the alteration of mitochondrial-associated cell death. Taken together, we unveiled that cellular reprogramming is capable of reversing aging-related features in somatic cells from a very old subject, despite the presence of genomic alterations. Nevertheless, we believe it will be essential to develop reprogramming protocols capable of safeguarding the integrity of the genome of aged somatic cells, before employing iPSC-based therapy for age-associated disorders. PMID:22110631

  4. Micro-Scale Genomic DNA Copy Number Aberrations as Another Means of Mutagenesis in Breast Cancer

    PubMed Central

    Chao, Hann-Hsiang; He, Xiaping; Parker, Joel S.; Zhao, Wei; Perou, Charles M.

    2012-01-01

    Introduction In breast cancer, the basal-like subtype has high levels of genomic instability relative to other breast cancer subtypes with many basal-like-specific regions of aberration. There is evidence that this genomic instability extends to smaller scale genomic aberrations, as shown by a previously described micro-deletion event in the PTEN gene in the Basal-like SUM149 breast cancer cell line. Methods We sought to identify if small regions of genomic DNA copy number changes exist by using a high density, gene-centric Comparative Genomic Hybridizations (CGH) array on cell lines and primary tumors. A custom tiling array for CGH (244,000 probes, 200 bp tiling resolution) was created to identify small regions of genomic change, which was focused on previously identified basal-like-specific, and general cancer genes. Tumor genomic DNA from 94 patients and 2 breast cancer cell lines was labeled and hybridized to these arrays. Aberrations were called using SWITCHdna and the smallest 25% of SWITCHdna-defined genomic segments were called micro-aberrations (<64 contiguous probes, ∼ 15 kb). Results Our data showed that primary tumor breast cancer genomes frequently contained many small-scale copy number gains and losses, termed micro-aberrations, most of which are undetectable using typical-density genome-wide aCGH arrays. The basal-like subtype exhibited the highest incidence of these events. These micro-aberrations sometimes altered expression of the involved gene. We confirmed the presence of the PTEN micro-amplification in SUM149 and by mRNA-seq showed that this resulted in loss of expression of all exons downstream of this event. Micro-aberrations disproportionately affected the 5′ regions of the affected genes, including the promoter region, and high frequency of micro-aberrations was associated with poor survival. Conclusion Using a high-probe-density, gene-centric aCGH microarray, we present evidence of small-scale genomic aberrations that can contribute to gene inactivation. These events may contribute to tumor formation through mechanisms not detected using conventional DNA copy number analyses. PMID:23284754

  5. Epigenetic mechanisms during ageing and neurogenesis as novel therapeutic avenues in human brain disorders.

    PubMed

    Delgado-Morales, Raúl; Agís-Balboa, Roberto Carlos; Esteller, Manel; Berdasco, María

    2017-01-01

    Ageing is the main risk factor for human neurological disorders. Among the diverse molecular pathways that govern ageing, epigenetics can guide age-associated decline in part by regulating gene expression and also through the modulation of genomic instability and high-order chromatin architecture. Epigenetic mechanisms are involved in the regulation of neural differentiation as well as in functional processes related to memory consolidation, learning or cognition during healthy lifespan. On the other side of the coin, many neurodegenerative diseases are associated with epigenetic dysregulation. The reversible nature of epigenetic factors and, especially, their role as mediators between the genome and the environment make them exciting candidates as therapeutic targets. Rather than providing a broad description of the pathways epigenetically deregulated in human neurological disorders, in this review, we have focused on the potential use of epigenetic enzymes as druggable targets to ameliorate neural decline during normal ageing and especially in neurological disorders. We will firstly discuss recent progress that supports a key role of epigenetic regulation during healthy ageing with an emphasis on the role of epigenetic regulation in adult neurogenesis. Then, we will focus on epigenetic alterations associated with ageing-related human disorders of the central nervous system. We will discuss examples in the context of psychiatric disorders, including schizophrenia and posttraumatic stress disorders, and also dementia or Alzheimer's disease as the most frequent neurodegenerative disease. Finally, methodological limitations and future perspectives are discussed.

  6. Genomic Instability and Radiation Risk in Molecular Pathways to Colon Cancer

    PubMed Central

    Kaiser, Jan Christian; Meckbach, Reinhard; Jacob, Peter

    2014-01-01

    Colon cancer is caused by multiple genomic alterations which lead to genomic instability (GI). GI appears in molecular pathways of microsatellite instability (MSI) and chromosomal instability (CIN) with clinically observed case shares of about 15–20% and 80–85%. Radiation enhances the colon cancer risk by inducing GI, but little is known about different outcomes for MSI and CIN. Computer-based modelling can facilitate the understanding of the phenomena named above. Comprehensive biological models, which combine the two main molecular pathways to colon cancer, are fitted to incidence data of Japanese a-bomb survivors. The preferred model is selected according to statistical criteria and biological plausibility. Imprints of cell-based processes in the succession from adenoma to carcinoma are identified by the model from age dependences and secular trends of the incidence data. Model parameters show remarkable compliance with mutation rates and growth rates for adenoma, which has been reported over the last fifteen years. Model results suggest that CIN begins during fission of intestinal crypts. Chromosomal aberrations are generated at a markedly elevated rate which favors the accelerated growth of premalignant adenoma. Possibly driven by a trend of Westernization in the Japanese diet, incidence rates for the CIN pathway increased notably in subsequent birth cohorts, whereas rates pertaining to MSI remained constant. An imbalance between number of CIN and MSI cases began to emerge in the 1980s, whereas in previous decades the number of cases was almost equal. The CIN pathway exhibits a strong radio-sensitivity, probably more intensive in men. Among young birth cohorts of both sexes the excess absolute radiation risk related to CIN is larger by an order of magnitude compared to the MSI-related risk. Observance of pathway-specific risks improves the determination of the probability of causation for radiation-induced colon cancer in individual patients, if their exposure histories are known. PMID:25356998

  7. Treatment of The Posterior Unstable Shoulder

    PubMed Central

    Alepuz, Eduardo Sánchez

    2017-01-01

    Background: It is estimated that approximately 5% of glenohumeral instabilities are posterior. There are a number of controversies regarding therapeutic approaches for these patients. Methods: We analyse the main surgery alternatives for the treatment of the posterior shoulder instability. We did a research of the publications related with posterior glenohumeral instability. Results: There are conservative and surgical treatment options. Conservative treatment has positive results in most patients, with around 65 to 80% of cases showing recurrent posterior dislocation. There are multiple surgical techniques, both open and arthroscopic, for the treatment of posterior glenohumeral instability. There are procedures that aim to repair bone defects and others that aim to repair soft tissues and capsulolabral injuries. The treatment should be planned according to each case on an individual basis according to the patient characteristics and the injury type. Surgical treatment is indicated in patients with functional limitations arising from instability and/or pain that have not improved with rehabilitation treatment. The indications for arthroscopic treatment are recurrent posterior subluxation caused by injury of the labrum or the capsulolabral complex; recurrent posterior subluxation caused by capsuloligamentous laxity or capsular redundancy; and multidirectional instability with posterior instability as a primary component. Arthroscopic assessment will help identify potential injuries associated with posterior instability such as bone lesions or defects and lesions or defects of soft tissues. The main indications for open surgery would be in cases of Hill Sachs lesions or broad reverse Bankart lesions not accessible by arthroscopy. We indicated non-anatomical techniques (McLaughlin or its modifications) for reverse Hill-Sachs lesions with impairment of the articular surface between 20% and 50%. Disimpaction of the fracture and placement of bone graft (allograft or autograft) is a suitable treatment for acute lesions that do not exceed 50% of the articular surface and with articular cartilage in good condition. Reconstruction with allograft may be useful in lesions affecting up to 50% of the humeral surface and should be considered when there is a situation of non-viable cartilage at the fracture site. For defects greater than 50% of the articular surface or in the case of dislocations over 6 months in duration where there is poor bone quality, some authors advocate substitution techniques as a treatment of choice. The main techniques for treating glenoid bone defects are posterior bone block and posterior opening osteotomy of the glenoid. Conclusions: The treatment of the posterior glenohumeral instability has to be individualized based on the patient´s injuries, medical history, clinical exam and goals. The most important complications in the treatment of posterior glenohumeral instability are recurrent instability, avascular necrosis and osteoarthritis. PMID:28979596

  8. Sorting signed permutations by short operations.

    PubMed

    Galvão, Gustavo Rodrigues; Lee, Orlando; Dias, Zanoni

    2015-01-01

    During evolution, global mutations may alter the order and the orientation of the genes in a genome. Such mutations are referred to as rearrangement events, or simply operations. In unichromosomal genomes, the most common operations are reversals, which are responsible for reversing the order and orientation of a sequence of genes, and transpositions, which are responsible for switching the location of two contiguous portions of a genome. The problem of computing the minimum sequence of operations that transforms one genome into another - which is equivalent to the problem of sorting a permutation into the identity permutation - is a well-studied problem that finds application in comparative genomics. There are a number of works concerning this problem in the literature, but they generally do not take into account the length of the operations (i.e. the number of genes affected by the operations). Since it has been observed that short operations are prevalent in the evolution of some species, algorithms that efficiently solve this problem in the special case of short operations are of interest. In this paper, we investigate the problem of sorting a signed permutation by short operations. More precisely, we study four flavors of this problem: (i) the problem of sorting a signed permutation by reversals of length at most 2; (ii) the problem of sorting a signed permutation by reversals of length at most 3; (iii) the problem of sorting a signed permutation by reversals and transpositions of length at most 2; and (iv) the problem of sorting a signed permutation by reversals and transpositions of length at most 3. We present polynomial-time solutions for problems (i) and (iii), a 5-approximation for problem (ii), and a 3-approximation for problem (iv). Moreover, we show that the expected approximation ratio of the 5-approximation algorithm is not greater than 3 for random signed permutations with more than 12 elements. Finally, we present experimental results that show that the approximation ratios of the approximation algorithms cannot be smaller than 3. In particular, this means that the approximation ratio of the 3-approximation algorithm is tight.

  9. The fanconi anemia pathway limits human papillomavirus replication.

    PubMed

    Hoskins, Elizabeth E; Morreale, Richard J; Werner, Stephen P; Higginbotham, Jennifer M; Laimins, Laimonis A; Lambert, Paul F; Brown, Darron R; Gillison, Maura L; Nuovo, Gerard J; Witte, David P; Kim, Mi-Ok; Davies, Stella M; Mehta, Parinda A; Butsch Kovacic, Melinda; Wikenheiser-Brokamp, Kathryn A; Wells, Susanne I

    2012-08-01

    High-risk human papillomaviruses (HPVs) deregulate epidermal differentiation and cause anogenital and head and neck squamous cell carcinomas (SCCs). The E7 gene is considered the predominant viral oncogene and drives proliferation and genome instability. While the implementation of routine screens has greatly reduced the incidence of cervical cancers which are almost exclusively HPV positive, the proportion of HPV-positive head and neck SCCs is on the rise. High levels of HPV oncogene expression and genome load are linked to disease progression, but genetic risk factors that regulate oncogene abundance and/or genome amplification remain poorly understood. Fanconi anemia (FA) is a genome instability syndrome characterized at least in part by extreme susceptibility to SCCs. FA results from mutations in one of 15 genes in the FA pathway, whose protein products assemble in the nucleus and play important roles in DNA damage repair. We report here that loss of FA pathway components FANCA and FANCD2 stimulates E7 protein accumulation in human keratinocytes and causes increased epithelial proliferation and basal cell layer expansion in the HPV-positive epidermis. Additionally, FANCD2 loss stimulates HPV genome amplification in differentiating cells, demonstrating that the intact FA pathway functions to restrict the HPV life cycle. These findings raise the possibility that FA genes suppress HPV infection and disease and suggest possible mechanism(s) for reported associations of HPV with an FA cohort in Brazil and for allelic variation of FA genes with HPV persistence in the general population.

  10. Large transcription units unify copy number variants and common fragile sites arising under replication stress.

    PubMed

    Wilson, Thomas E; Arlt, Martin F; Park, So Hae; Rajendran, Sountharia; Paulsen, Michelle; Ljungman, Mats; Glover, Thomas W

    2015-02-01

    Copy number variants (CNVs) resulting from genomic deletions and duplications and common fragile sites (CFSs) seen as breaks on metaphase chromosomes are distinct forms of structural chromosome instability precipitated by replication inhibition. Although they share a common induction mechanism, it is not known how CNVs and CFSs are related or why some genomic loci are much more prone to their occurrence. Here we compare large sets of de novo CNVs and CFSs in several experimental cell systems to each other and to overlapping genomic features. We first show that CNV hotpots and CFSs occurred at the same human loci within a given cultured cell line. Bru-seq nascent RNA sequencing further demonstrated that although genomic regions with low CNV frequencies were enriched in transcribed genes, the CNV hotpots that matched CFSs specifically corresponded to the largest active transcription units in both human and mouse cells. Consistently, active transcription units >1 Mb were robust cell-type-specific predictors of induced CNV hotspots and CFS loci. Unlike most transcribed genes, these very large transcription units replicated late and organized deletion and duplication CNVs into their transcribed and flanking regions, respectively, supporting a role for transcription in replication-dependent lesion formation. These results indicate that active large transcription units drive extreme locus- and cell-type-specific genomic instability under replication stress, resulting in both CNVs and CFSs as different manifestations of perturbed replication dynamics. © 2015 Wilson et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Large transcription units unify copy number variants and common fragile sites arising under replication stress

    PubMed Central

    Park, So Hae; Rajendran, Sountharia; Paulsen, Michelle; Ljungman, Mats; Glover, Thomas W.

    2015-01-01

    Copy number variants (CNVs) resulting from genomic deletions and duplications and common fragile sites (CFSs) seen as breaks on metaphase chromosomes are distinct forms of structural chromosome instability precipitated by replication inhibition. Although they share a common induction mechanism, it is not known how CNVs and CFSs are related or why some genomic loci are much more prone to their occurrence. Here we compare large sets of de novo CNVs and CFSs in several experimental cell systems to each other and to overlapping genomic features. We first show that CNV hotpots and CFSs occurred at the same human loci within a given cultured cell line. Bru-seq nascent RNA sequencing further demonstrated that although genomic regions with low CNV frequencies were enriched in transcribed genes, the CNV hotpots that matched CFSs specifically corresponded to the largest active transcription units in both human and mouse cells. Consistently, active transcription units >1 Mb were robust cell-type-specific predictors of induced CNV hotspots and CFS loci. Unlike most transcribed genes, these very large transcription units replicated late and organized deletion and duplication CNVs into their transcribed and flanking regions, respectively, supporting a role for transcription in replication-dependent lesion formation. These results indicate that active large transcription units drive extreme locus- and cell-type-specific genomic instability under replication stress, resulting in both CNVs and CFSs as different manifestations of perturbed replication dynamics. PMID:25373142

  12. Combustor flame flashback

    NASA Technical Reports Server (NTRS)

    Proctor, M. P.; Tien, J. S.

    1985-01-01

    A stainless steel, two-dimensional (rectangular), center-dump, premixed-prevaporized combustor with quartz window sidewalls for visual access was designed, built, and used to study flashback. A parametric study revealed that the flashback equivalence ratio decreased slightly as the inlet air temperature increased. It also indicated that the average premixer velocity and premixer wall temperature were not governing parameters of flashback. The steady-state velocity balance concept as the flashback mechanism was not supported. From visual observation several stages of burning were identified. High speed photography verified upstream flame propagation with the leading edge of the flame front near the premixer wall. Combustion instabilities (spontaneous pressure oscillations) were discovered during combustion at the dump plane and during flashback. The pressure oscillation frequency ranged from 40 to 80 Hz. The peak-to-peak amplitude (up to 1.4 psi) increased as the fuel/air equivalence ratio was increased attaining a maximum value just before flashback. The amplitude suddenly decreased when the flame stabilized in the premixer. The pressure oscillations were large enough to cause a local flow reversal. A simple test using ceramic fiber tufts indicated flow reversals existed at the premixer exit during flickering. It is suspected that flashback occurs through the premixer wall boundary layer flow reversal caused by combustion instability. A theoretical analysis of periodic flow in the premixing channel has been made. The theory supports the flow reversal mechanism.

  13. MHD simulation of relaxation transition to a flipped relaxed state in spherical torus

    NASA Astrophysics Data System (ADS)

    Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro

    2008-11-01

    Recently, it has been demonstrated in the HIST device that in spite of the violation of the Kruskal-Shafranov stability condition, a normal spherical torus (ST) plasma has relaxed to a flipped ST state through a transient reversed-field pinch-like state when the vacuum toroidal field is decreased and its direction is reversed [1]. It has been also observed during this relaxation transition process that not only the toroidal field but also the poloidal field reverses polarity spontaneously and that the ion flow velocity is strongly fluctuated and abruptly increased up to > 50 km/s. The purpose of the present study is to investigate the plasma flows and the relevant MHD relaxation phenomena to elucidate this transition mechanism by using three-dimensional MHD simulations [2]. It is found from the numerical results that the magnetic reconnection between the open and closed field lines occurs due to the non-linear growth of the n=1 kink instability of the central open flux, generating the toroidal flow ˜ 60 km/s in the direction of the toroidal current. The n=1 kink instability and the plasma flows driven by the magnetic reconnection are consider to be responsible for the self-reversal of the magnetic fields. [1] M. Nagata el al., Phys. Rev. Lett. 90, 225001 (2003). [2] Y. Kagei el al., Plasma. Phys. Control. Fusion 45, L17 (2003).

  14. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    1996-01-01

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  15. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Astrophysics Data System (ADS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  16. Discovery of Genomic Breakpoints Affecting Breast Cancer Progression and Prognosis

    DTIC Science & Technology

    2010-10-01

    mutations compared to those detected by the 5Kbp method alone. Fosmid diTag method also reveals much higher proportion of gene fusions and truncations...observed highly similar structural mutational spectra affecting different sets of genes , pointing to similar histories of genomic instability against... mutations have been identified in non-BRCA1/2 multiethnic breast cancer cases (45,46), no truncating mutation of the RAP80 gene in breast cancer has

  17. Human MLH1 suppresses the insertion of telomeric sequences at intra-chromosomal sites in telomerase-expressing cells

    PubMed Central

    Jia, Pingping; Chastain, Megan; Zou, Ying; Her, Chengtao

    2017-01-01

    Abstract Aberrant formation of interstitial telomeric sequences (ITSs) promotes genome instabilities. However, it is unclear how aberrant ITS formation is suppressed in human cells. Here, we report that MLH1, a key protein involved in mismatch repair (MMR), suppresses telomeric sequence insertion (TSI) at intra-chromosomal regions. The frequency of TSI can be elevated by double-strand break (DSB) inducer and abolished by ATM/ATR inhibition. Suppression of TSI requires MLH1 recruitment to DSBs, indicating that MLH1's role in DSB response/repair is important for suppressing TSI. Moreover, TSI requires telomerase activity but is independent of the functional status of p53 and Rb. Lastly, we show that TSI is associated with chromosome instabilities including chromosome loss, micronuclei formation and chromosome breakage that are further elevated by replication stress. Our studies uncover a novel link between MLH1, telomerase, telomere and genome stability. PMID:28180301

  18. Heterochromatin-Encoded Satellite RNAs Induce Breast Cancer.

    PubMed

    Zhu, Quan; Hoong, Nien; Aslanian, Aaron; Hara, Toshiro; Benner, Christopher; Heinz, Sven; Miga, Karen H; Ke, Eugene; Verma, Sachin; Soroczynski, Jan; Yates, John R; Hunter, Tony; Verma, Inder M

    2018-06-07

    Heterochromatic repetitive satellite RNAs are extensively transcribed in a variety of human cancers, including BRCA1 mutant breast cancer. Aberrant expression of satellite RNAs in cultured cells induces the DNA damage response, activates cell cycle checkpoints, and causes defects in chromosome segregation. However, the mechanism by which satellite RNA expression leads to genomic instability is not well understood. Here we provide evidence that increased levels of satellite RNAs in mammary glands induce tumor formation in mice. Using mass spectrometry, we further show that genomic instability induced by satellite RNAs occurs through interactions with BRCA1-associated protein networks required for the stabilization of DNA replication forks. Additionally, de-stabilized replication forks likely promote the formation of RNA-DNA hybrids in cells expressing satellite RNAs. These studies lay the foundation for developing novel therapeutic strategies that block the effects of non-coding satellite RNAs in cancer cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. The DNA Helicase Activity of BLM Is Necessary for the Correction of the Genomic Instability of Bloom Syndrome Cells

    PubMed Central

    Neff, Norma F.; Ellis, Nathan A.; Ye, Tian Zhang; Noonan, James; Huang, Kelly; Sanz, Maureen; Proytcheva, Maria

    1999-01-01

    Bloom syndrome (BS) is a rare autosomal recessive disorder characterized by growth deficiency, immunodeficiency, genomic instability, and the early development of cancers of many types. BLM, the protein encoded by BLM, the gene mutated in BS, is localized in nuclear foci and absent from BS cells. BLM encodes a DNA helicase, and proteins from three missense alleles lack displacement activity. BLM transfected into BS cells reduces the frequency of sister chromatid exchanges and restores BLM in the nucleus. Missense alleles fail to reduce the sister chromatid exchanges in transfected BS cells or restore the normal nuclear pattern. BLM complements a phenotype of a Saccharomyces cerevisiae sgs1 top3 strain, and the missense alleles do not. This work demonstrates the importance of the enzymatic activity of BLM for its function and nuclear localization pattern. PMID:10069810

  20. Altering Genomic Integrity: Heavy Metal Exposure Promotes Transposable Element-Mediated Damage.

    PubMed

    Morales, Maria E; Servant, Geraldine; Ade, Catherine; Roy-Engel, Astrid M

    2015-07-01

    Maintenance of genomic integrity is critical for cellular homeostasis and survival. The active transposable elements (TEs) composed primarily of three mobile element lineages LINE-1, Alu, and SVA comprise approximately 30% of the mass of the human genome. For the past 2 decades, studies have shown that TEs significantly contribute to genetic instability and that TE-caused damages are associated with genetic diseases and cancer. Different environmental exposures, including several heavy metals, influence how TEs interact with its host genome increasing their negative impact. This mini-review provides some basic knowledge on TEs, their contribution to disease, and an overview of the current knowledge on how heavy metals influence TE-mediated damage.

  1. Localized instabilities and spinodal decomposition in driven systems in the presence of elasticity

    NASA Astrophysics Data System (ADS)

    Meca, Esteban; Münch, Andreas; Wagner, Barbara

    2018-01-01

    We study numerically and analytically the instabilities associated with phase separation in a solid layer on which an external material flux is imposed. The first instability is localized within a boundary layer at the exposed free surface by a process akin to spinodal decomposition. In the limiting static case, when there is no material flux, the coherent spinodal decomposition is recovered. In the present problem, stability analysis of the time-dependent and nonuniform base states as well as numerical simulations of the full governing equations are used to establish the dependence of the wavelength and onset of the instability on parameter settings and its transient nature as the patterns eventually coarsen into a flat moving front. The second instability is related to the Mullins-Sekerka instability in the presence of elasticity and arises at the moving front between the two phases when the flux is reversed. Stability analyses of the full model and the corresponding sharp-interface model are carried out and compared. Our results demonstrate how interface and bulk instabilities can be analyzed within the same framework which allows us to identify and distinguish each of them clearly. The relevance for a detailed understanding of both instabilities and their interconnections in a realistic setting is demonstrated for a system of equations modeling the lithiation and delithiation processes within the context of lithium ion batteries.

  2. Density waves at the interface of a binary complex plasma

    NASA Astrophysics Data System (ADS)

    Yang, Li; Schwabe, Mierk; Zhdanov, Sergey; Thomas, Hubertus M.; Lipaev, Andrey M.; Molotkov, Vladimir I.; Fortov, Vladimir E.; Zhang, Jing; Du, Cheng-Ran

    2017-01-01

    Density waves were studied in a phase-separated binary complex plasma under microgravity conditions. For the big particles, waves were self-excited by the two-stream instability, while for small particles, they were excited by heartbeat instability with the presence of reversed propagating pulses of a different frequency. By studying the dynamics of wave crests at the interface, we recognize a “collision zone” and a “merger zone” before and after the interface, respectively. The results provide a generic picture of wave-wave interaction at the interface between two “mediums”.

  3. Copy-number and gene dependency analysis reveals partial copy loss of wild-type SF3B1 as a novel cancer vulnerability. | Office of Cancer Genomics

    Cancer.gov

    Genomic instability is a hallmark of human cancer, and results in widespread somatic copy number alterations. We used a genome-scale shRNA viability screen in human cancer cell lines to systematically identify genes that are essential in the context of particular copy-number alterations (copy-number associated gene dependencies). The most enriched class of copy-number associated gene dependencies was CYCLOPS (Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS) genes, and spliceosome components were the most prevalent.

  4. Parallel approach on sorting of genes in search of optimal solution.

    PubMed

    Kumar, Pranav; Sahoo, G

    2018-05-01

    An important tool for comparing genome analysis is the rearrangement event that can transform one given genome into other. For finding minimum sequence of fission and fusion, we have proposed here an algorithm and have shown a transformation example for converting the source genome into the target genome. The proposed algorithm comprises of circular sequence i.e. "cycle graph" in place of mapping. The main concept of algorithm is based on optimal result of permutation. These sorting processes are performed in constant running time by showing permutation in the form of cycle. In biological instances it has been observed that transposition occurs half of the frequency as that of reversal. In this paper we are not dealing with reversal instead commencing with the rearrangement of fission, fusion as well as transposition. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Mlh1 deficiency in normal mouse colon mucosa associates with chromosomally unstable colon cancer

    PubMed Central

    Pussila, Marjaana; Törönen, Petri; Einarsdottir, Elisabet; Katayama, Shintaro; Krjutškov, Kaarel; Holm, Liisa; Kere, Juha; Peltomäki, Päivi; Mäkinen, Markus J; Linden, Jere; Nyström, Minna

    2018-01-01

    Abstract Colorectal cancer (CRC) genome is unstable and different types of instabilities, such as chromosomal instability (CIN) and microsatellite instability (MSI) are thought to reflect distinct cancer initiating mechanisms. Although 85% of sporadic CRC reveal CIN, 15% reveal mismatch repair (MMR) malfunction and MSI, the hallmarks of Lynch syndrome with inherited heterozygous germline mutations in MMR genes. Our study was designed to comprehensively follow genome-wide expression changes and their implications during colon tumorigenesis. We conducted a long-term feeding experiment in the mouse to address expression changes arising in histologically normal colonic mucosa as putative cancer preceding events, and the effect of inherited predisposition (Mlh1+/−) and Western-style diet (WD) on those. During the 21-month experiment, carcinomas developed mainly in WD-fed mice and were evenly distributed between genotypes. Unexpectedly, the heterozygote (B6.129-Mlh1tm1Rak) mice did not show MSI in their CRCs. Instead, both wildtype and heterozygote CRC mice showed a distinct mRNA expression profile and shortage of several chromosomal segregation gene-specific transcripts (Mlh1, Bub1, Mis18a, Tpx2, Rad9a, Pms2, Cenpe, Ncapd3, Odf2 and Dclre1b) in their colon mucosa, as well as an increased mitotic activity and abundant numbers of unbalanced/atypical mitoses in tumours. Our genome-wide expression profiling experiment demonstrates that cancer preceding changes are already seen in histologically normal colon mucosa and that decreased expressions of Mlh1 and other chromosomal segregation genes may form a field-defect in mucosa, which trigger MMR-proficient, chromosomally unstable CRC. PMID:29701748

  6. Aging impairs double-strand break repair by homologous recombination in Drosophila germ cells.

    PubMed

    Delabaere, Laetitia; Ertl, Henry A; Massey, Dashiell J; Hofley, Carolyn M; Sohail, Faraz; Bienenstock, Elisa J; Sebastian, Hans; Chiolo, Irene; LaRocque, Jeannine R

    2017-04-01

    Aging is characterized by genome instability, which contributes to cancer formation and cell lethality leading to organismal decline. The high levels of DNA double-strand breaks (DSBs) observed in old cells and premature aging syndromes are likely a primary source of genome instability, but the underlying cause of their formation is still unclear. DSBs might result from higher levels of damage or repair defects emerging with advancing age, but repair pathways in old organisms are still poorly understood. Here, we show that premeiotic germline cells of young and old flies have distinct differences in their ability to repair DSBs by the error-free pathway homologous recombination (HR). Repair of DSBs induced by either ionizing radiation (IR) or the endonuclease I-SceI is markedly defective in older flies. This correlates with a remarkable reduction in HR repair measured with the DR-white DSB repair reporter assay. Strikingly, most of this repair defect is already present at 8 days of age. Finally, HR defects correlate with increased expression of early HR components and increased recruitment of Rad51 to damage in older organisms. Thus, we propose that the defect in the HR pathway for germ cells in older flies occurs following Rad51 recruitment. These data reveal that DSB repair defects arise early in the aging process and suggest that HR deficiencies are a leading cause of genome instability in germ cells of older animals. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  7. Mps1 as a link between centrosomes and genomic instability.

    PubMed

    Kasbek, Christopher; Yang, Ching-Hui; Fisk, Harold A

    2009-10-01

    Centrosomes are microtubule-organizing centers that must be precisely duplicated before mitosis. Centrosomes regulate mitotic spindle assembly, and the presence of excess centrosomes leads to the production of aberrant mitotic spindles which generate chromosome segregation errors. Many human tumors possess excess centrosomes that lead to the production of abnormal spindles in situ. In some tumors, these extra centrosomes appear before aneuploidy, suggesting that defects in centrosome duplication might promote genomic instability and tumorigenesis. The Mps1 protein kinase is required for centrosome duplication, and preventing the proteasome-dependent degradation of Mps1 at centrosomes increases its local concentration and causes the production of excess centrosomes during a prolonged S-phase. Here, we show that Mps1 degradation is misregulated in two tumor-derived cell lines, and that the failure to appropriately degrade Mps1 correlates with the ability of these cells to produce extra centrosomes during a prolonged S-phase. In the 21NT breast-tumor derived cell line, a mutant Mps1 protein that is normally constitutively degraded can accumulate at centrosomes and perturb centrosome duplication, suggesting that these cells have a defect in the mechanisms that target Mps1 to the proteasome. In contrast, the U2OS osteosarcoma cell line expresses a nondegradable form of Mps1, which we show causes the dose-dependent over duplication of centrioles even at very low levels of expression. Our data demonstrate that defects in Mps1 degradation can occur through multiple mechanisms, and suggest that Mps1 may provide a link between the control of centrosome duplication and genomic instability. (c) 2009 Wiley-Liss, Inc.

  8. Disease severity in a mouse model of ataxia telangiectasia is modulated by the DNA damage checkpoint gene Hus1

    PubMed Central

    Balmus, Gabriel; Zhu, Min; Mukherjee, Sucheta; Lyndaker, Amy M.; Hume, Kelly R.; Lee, Jaesung; Riccio, Mark L.; Reeves, Anthony P.; Sutter, Nathan B.; Noden, Drew M.; Peters, Rachel M.; Weiss, Robert S.

    2012-01-01

    The human genomic instability syndrome ataxia telangiectasia (A-T), caused by mutations in the gene encoding the DNA damage checkpoint kinase ATM, is characterized by multisystem defects including neurodegeneration, immunodeficiency and increased cancer predisposition. ATM is central to a pathway that responds to double-strand DNA breaks, whereas the related kinase ATR leads a parallel signaling cascade that is activated by replication stress. To dissect the physiological relationship between the ATM and ATR pathways, we generated mice defective for both. Because complete ATR pathway inactivation causes embryonic lethality, we weakened the ATR mechanism to different degrees by impairing HUS1, a member of the 911 complex that is required for efficient ATR signaling. Notably, simultaneous ATM and HUS1 defects caused synthetic lethality. Atm/Hus1 double-mutant embryos showed widespread apoptosis and died mid-gestationally. Despite the underlying DNA damage checkpoint defects, increased DNA damage signaling was observed, as evidenced by H2AX phosphorylation and p53 accumulation. A less severe Hus1 defect together with Atm loss resulted in partial embryonic lethality, with the surviving double-mutant mice showing synergistic increases in genomic instability and specific developmental defects, including dwarfism, craniofacial abnormalities and brachymesophalangy, phenotypes that are observed in several human genomic instability disorders. In addition to identifying tissue-specific consequences of checkpoint dysfunction, these data highlight a robust, cooperative configuration for the mammalian DNA damage response network and further suggest HUS1 and related genes in the ATR pathway as candidate modifiers of disease severity in A-T patients. PMID:22575700

  9. DNA Repair in Human Pluripotent Stem Cells Is Distinct from That in Non-Pluripotent Human Cells

    PubMed Central

    Luo, Li Z.; Park, Sang-Won; Bates, Steven E.; Zeng, Xianmin; Iverson, Linda E.; O'Connor, Timothy R.

    2012-01-01

    The potential for human disease treatment using human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells (iPSCs), also carries the risk of added genomic instability. Genomic instability is most often linked to DNA repair deficiencies, which indicates that screening/characterization of possible repair deficiencies in pluripotent human stem cells should be a necessary step prior to their clinical and research use. In this study, a comparison of DNA repair pathways in pluripotent cells, as compared to those in non-pluripotent cells, demonstrated that DNA repair capacities of pluripotent cell lines were more heterogeneous than those of differentiated lines examined and were generally greater. Although pluripotent cells had high DNA repair capacities for nucleotide excision repair, we show that ultraviolet radiation at low fluxes induced an apoptotic response in these cells, while differentiated cells lacked response to this stimulus, and note that pluripotent cells had a similar apoptotic response to alkylating agent damage. This sensitivity of pluripotent cells to damage is notable since viable pluripotent cells exhibit less ultraviolet light-induced DNA damage than do differentiated cells that receive the same flux. In addition, the importance of screening pluripotent cells for DNA repair defects was highlighted by an iPSC line that demonstrated a normal spectral karyotype, but showed both microsatellite instability and reduced DNA repair capacities in three out of four DNA repair pathways examined. Together, these results demonstrate a need to evaluate DNA repair capacities in pluripotent cell lines, in order to characterize their genomic stability, prior to their pre-clinical and clinical use. PMID:22412831

  10. Z-DNA-induced super-transport of energy within genomes

    NASA Astrophysics Data System (ADS)

    Kulish, Vladimir V.; Heng, Li; Dröge, Peter

    2007-10-01

    Spontaneous transitions of genomic DNA segments from right-handed B-DNA into the left-handed, high-energy Z conformation are unstable within topologically relaxed DNA molecules, such as mammalian chromosomes. Here we show, from direct application of the principles of statistical physics with a promoter region in the mouse genome as a representative example, that the life span for this alternate DNA conformation may be much smaller than the characteristic time of thermal fluctuations that cause the B-to-Z transition. Surprisingly, such a short existence of Z-DNA is important because it can be responsible for super-transport of energy within a genome. This type of energy transport can be utilized by a cell to communicate information about the state of particular chromatin domains within chromosomes or as a buffer against genome instability.

  11. Particle Acceleration, Magnetic Field Generation in Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.

    2005-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  12. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-IchiI.; Hededal, C.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (m) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  13. The allosteric HIV-1 integrase inhibitor BI-D affects virion maturation but does not influence packaging of a functional RNA genome.

    PubMed

    van Bel, Nikki; van der Velden, Yme; Bonnard, Damien; Le Rouzic, Erwann; Das, Atze T; Benarous, Richard; Berkhout, Ben

    2014-01-01

    The viral integrase (IN) is an essential protein for HIV-1 replication. IN inserts the viral dsDNA into the host chromosome, thereby aided by the cellular co-factor LEDGF/p75. Recently a new class of integrase inhibitors was described: allosteric IN inhibitors (ALLINIs). Although designed to interfere with the IN-LEDGF/p75 interaction to block HIV DNA integration during the early phase of HIV-1 replication, the major impact was surprisingly found on the process of virus maturation during the late phase, causing a reverse transcription defect upon infection of target cells. Virus particles produced in the presence of an ALLINI are misformed with the ribonucleoprotein located outside the virus core. Virus assembly and maturation are highly orchestrated and regulated processes in which several viral proteins and RNA molecules closely interact. It is therefore of interest to study whether ALLINIs have unpredicted pleiotropic effects on these RNA-related processes. We confirm that the ALLINI BI-D inhibits virus replication and that the produced virus is non-infectious. Furthermore, we show that the wild-type level of HIV-1 genomic RNA is packaged in virions and these genomes are in a dimeric state. The tRNAlys3 primer for reverse transcription was properly placed on this genomic RNA and could be extended ex vivo. In addition, the packaged reverse transcriptase enzyme was fully active when extracted from virions. As the RNA and enzyme components for reverse transcription are properly present in virions produced in the presence of BI-D, the inhibition of reverse transcription is likely to reflect the mislocalization of the components in the aberrant virus particle.

  14. Genomics sequence analysis of the United States infectious laryngotracheitis vaccine strains chicken embryo origin (CEO) and tissue culture origin (TCO)

    USDA-ARS?s Scientific Manuscript database

    The genomic sequences of low and high passages of the United States infectious laryngotracheitis (ILT) vaccine strains CEO and TCO were determined using hybrid next generation sequencing in order to define genomic changes associated with attenuation and reversion to virulence. Phylogenetic analysis ...

  15. Cre/lox-recombinase-mediated cassette exchange for reversible site-specific genomic targeting of the disease vector, Aedes aegypti

    USDA-ARS?s Scientific Manuscript database

    Site-specific genome modification is an important tool for mosquito functional genomics studies that help to uncover gene functions, identify gene regulatory elements, and perform comparative gene expression studies, all of which contribute to a better understanding of mosquito biology and are thus ...

  16. Tearing relaxation and the globalization of transport in field-reversed configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinhauer, Loren; Barnes, D. C.

    2009-09-15

    Tearing instability of field-reversed configurations (FRC) is investigated using the method of neighboring equilibria. It is shown that the conducting wall position in experiment lies very close to the location needed for tearing stability. This strongly suggests that vigorous but benign tearing modes, acting globally, are the engine of continual self-organization in FRCs, i.e., tearing relaxation. It also explains the ''profile consistency'' and anomalous loss rate of magnetic flux. In effect, tearing globalizes the effect of edge-driven transport.

  17. Reverse Genetics and High Throughput Sequencing Methodologies for Plant Functional Genomics

    PubMed Central

    Ben-Amar, Anis; Daldoul, Samia; Reustle, Götz M.; Krczal, Gabriele; Mliki, Ahmed

    2016-01-01

    In the post-genomic era, increasingly sophisticated genetic tools are being developed with the long-term goal of understanding how the coordinated activity of genes gives rise to a complex organism. With the advent of the next generation sequencing associated with effective computational approaches, wide variety of plant species have been fully sequenced giving a wealth of data sequence information on structure and organization of plant genomes. Since thousands of gene sequences are already known, recently developed functional genomics approaches provide powerful tools to analyze plant gene functions through various gene manipulation technologies. Integration of different omics platforms along with gene annotation and computational analysis may elucidate a complete view in a system biology level. Extensive investigations on reverse genetics methodologies were deployed for assigning biological function to a specific gene or gene product. We provide here an updated overview of these high throughout strategies highlighting recent advances in the knowledge of functional genomics in plants. PMID:28217003

  18. Prognostic significance of cell cycle proteins and genomic instability in borderline, early and advanced stage ovarian carcinomas.

    PubMed

    Blegen, H.; Einhorn, N.; Sjövall, K.; Roschke, A.; Ghadimi, B. M.; McShane, L. M.; Nilsson, B.; Shah, K.; Ried, T.; Auer, G.

    2000-11-01

    Disturbed cell cycle-regulating checkpoints and impairment of genomic stability are key events during the genesis and progression of malignant tumors. We analyzed 80 epithelial ovarian tumors of benign (n = 10) and borderline type (n = 18) in addition to carcinomas of early (n = 26) and advanced (n = 26) stages for the expression of Ki67, cyclin A and cyclin E, p21WAF-1, p27KIP-1 and p53 and correlated the results with the clinical course. Genomic instability was assessed by DNA ploidy measurements and, in 35 cases, by comparative genomic hybridization. Overexpression of cyclin A and cyclin E was observed in the majority of invasive carcinomas, only rarely in borderline tumors and in none of the benign tumors. Similarly, high expression of p53 together with undetectable p21 or loss of chromosome arm 17p were frequent events only in adenocarcinomas. Both borderline tumors and adenocarcinomas revealed a high number of chromosomal gains and losses. However, regional chromosomal amplifications were found to occur 13 times more frequently in the adenocarcinomas than in the borderline tumors. The expression pattern of low p27 together with high Ki67 was found to be an independent predictor of poor outcome in invasive carcinomas. The results provide a link between disturbed cell cycle regulatory proteins, chromosomal aberrations and survival in ovarian carcinomas.

  19. Recurrent genomic instability of chromosome 1q in neural derivatives of human embryonic stem cells

    PubMed Central

    Varela, Christine; Denis, Jérôme Alexandre; Polentes, Jérôme; Feyeux, Maxime; Aubert, Sophie; Champon, Benoite; Piétu, Geneviève; Peschanski, Marc; Lefort, Nathalie

    2012-01-01

    Human pluripotent stem cells offer a limitless source of cells for regenerative medicine. Neural derivatives of human embryonic stem cells (hESCs) are currently being used for cell therapy in 3 clinical trials. However, hESCs are prone to genomic instability, which could limit their clinical utility. Here, we report that neural differentiation of hESCs systematically produced a neural stem cell population that could be propagated for more than 50 passages without entering senescence; this was true for all 6 hESC lines tested. The apparent spontaneous loss of evolution toward normal senescence of somatic cells was associated with a jumping translocation of chromosome 1q. This chromosomal defect has previously been associated with hematologic malignancies and pediatric brain tumors with poor clinical outcome. Neural stem cells carrying the 1q defect implanted into the brains of rats failed to integrate and expand, whereas normal cells engrafted. Our results call for additional quality controls to be implemented to ensure genomic integrity not only of undifferentiated pluripotent stem cells, but also of hESC derivatives that form cell therapy end products, particularly neural lines. PMID:22269325

  20. Condensin II mutation causes T-cell lymphoma through tissue-specific genome instability

    PubMed Central

    Woodward, Jessica; Taylor, Gillian C.; Soares, Dinesh C.; Boyle, Shelagh; Sie, Daoud; Read, David; Chathoth, Keerthi; Vukovic, Milica; Tarrats, Nuria; Jamieson, David; Campbell, Kirsteen J.; Blyth, Karen; Acosta, Juan Carlos; Ylstra, Bauke; Arends, Mark J.; Kranc, Kamil R.; Jackson, Andrew P.; Bickmore, Wendy A.

    2016-01-01

    Chromosomal instability is a hallmark of cancer, but mitotic regulators are rarely mutated in tumors. Mutations in the condensin complexes, which restructure chromosomes to facilitate segregation during mitosis, are significantly enriched in cancer genomes, but experimental evidence implicating condensin dysfunction in tumorigenesis is lacking. We report that mice inheriting missense mutations in a condensin II subunit (Caph2nes) develop T-cell lymphoma. Before tumors develop, we found that the same Caph2 mutation impairs ploidy maintenance to a different extent in different hematopoietic cell types, with ploidy most severely perturbed at the CD4+CD8+ T-cell stage from which tumors initiate. Premalignant CD4+CD8+ T cells show persistent catenations during chromosome segregation, triggering DNA damage in diploid daughter cells and elevated ploidy. Genome sequencing revealed that Caph2 single-mutant tumors are near diploid but carry deletions spanning tumor suppressor genes, whereas P53 inactivation allowed Caph2 mutant cells with whole-chromosome gains and structural rearrangements to form highly aggressive disease. Together, our data challenge the view that mitotic chromosome formation is an invariant process during development and provide evidence that defective mitotic chromosome structure can promote tumorigenesis. PMID:27737961

  1. The evolution of resistance genes in multi-protein plant resistance systems.

    PubMed

    Friedman, Aaron R; Baker, Barbara J

    2007-12-01

    The genomic perspective aids in integrating the analysis of single resistance (R-) genes into a higher order model of complex plant resistance systems. The majority of R-genes encode a class of proteins with nucleotide binding (NB) and leucine-rich repeat (LRR) domains. Several R-proteins act in multi-protein R-complexes that mediate interaction with pathogen effectors to induce resistance signaling. The complexity of these systems seems to have resulted from multiple rounds of plant-pathogen co-evolution. R-gene evolution is thought to be facilitated by the formation of R-gene clusters, which permit sequence exchanges via recombinatorial mispairing and generate high haplotypic diversity. This pattern of evolution may also generate diversity at other loci that contribute to the R-complex. The rate of recombination at R-clusters is not necessarily homogeneous or consistent over evolutionary time: recent evidence suggests that recombination at R-clusters is increased following pathogen infection, suggesting a mechanism that induces temporary genome instability in response to extreme stress. DNA methylation and chromatin modifications may allow this instability to be conditionally regulated and targeted to specific genome regions. Knowledge of natural R-gene evolution may contribute to strategies for artificial evolution of novel resistance specificities.

  2. Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress.

    PubMed

    Macheret, Morgane; Halazonetis, Thanos D

    2018-03-01

    Oncogene-induced DNA replication stress contributes critically to the genomic instability that is present in cancer. However, elucidating how oncogenes deregulate DNA replication has been impeded by difficulty in mapping replication initiation sites on the human genome. Here, using a sensitive assay to monitor nascent DNA synthesis in early S phase, we identified thousands of replication initiation sites in cells before and after induction of the oncogenes CCNE1 and MYC. Remarkably, both oncogenes induced firing of a novel set of DNA replication origins that mapped within highly transcribed genes. These ectopic origins were normally suppressed by transcription during G1, but precocious entry into S phase, before all genic regions had been transcribed, allowed firing of origins within genes in cells with activated oncogenes. Forks from oncogene-induced origins were prone to collapse, as a result of conflicts between replication and transcription, and were associated with DNA double-stranded break formation and chromosomal rearrangement breakpoints both in our experimental system and in a large cohort of human cancers. Thus, firing of intragenic origins caused by premature S phase entry represents a mechanism of oncogene-induced DNA replication stress that is relevant for genomic instability in human cancer.

  3. Extracellular signaling through the microenvironment: a hypothesis relating carcinogenesis, bystander effects, and genomic instability

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Brooks, A. L.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    Cell growth, differentiation and death are directed in large part by extracellular signaling through the interactions of cells with other cells and with the extracellular matrix; these interactions are in turn modulated by cytokines and growth factors, i.e. the microenvironment. Here we discuss the idea that extracellular signaling integrates multicellular damage responses that are important deterrents to the development of cancer through mechanisms that eliminate abnormal cells and inhibit neoplastic behavior. As an example, we discuss the action of transforming growth factor beta (TGFB1) as an extracellular sensor of damage. We propose that radiation-induced bystander effects and genomic instability are, respectively, positive and negative manifestations of this homeostatic process. Bystander effects exhibited predominantly after a low-dose or a nonhomogeneous radiation exposure are extracellular signaling pathways that modulate cellular repair and death programs. Persistent disruption of extracellular signaling after exposure to relatively high doses of ionizing radiation may lead to the accumulation of aberrant cells that are genomically unstable. Understanding radiation effects in terms of coordinated multicellular responses that affect decisions regarding the fate of a cell may necessitate re-evaluation of radiation dose and risk concepts and provide avenues for intervention.

  4. Neil2-null Mice Accumulate Oxidized DNA Bases in the Transcriptionally Active Sequences of the Genome and Are Susceptible to Innate Inflammation* ♦

    PubMed Central

    Chakraborty, Anirban; Wakamiya, Maki; Venkova-Canova, Tatiana; Pandita, Raj K.; Aguilera-Aguirre, Leopoldo; Sarker, Altaf H.; Singh, Dharmendra Kumar; Hosoki, Koa; Wood, Thomas G.; Sharma, Gulshan; Cardenas, Victor; Sarkar, Partha S.; Sur, Sanjiv; Pandita, Tej K.; Boldogh, Istvan; Hazra, Tapas K.

    2015-01-01

    Why mammalian cells possess multiple DNA glycosylases (DGs) with overlapping substrate ranges for repairing oxidatively damaged bases via the base excision repair (BER) pathway is a long-standing question. To determine the biological role of these DGs, null animal models have been generated. Here, we report the generation and characterization of mice lacking Neil2 (Nei-like 2). As in mice deficient in each of the other four oxidized base-specific DGs (OGG1, NTH1, NEIL1, and NEIL3), Neil2-null mice show no overt phenotype. However, middle-aged to old Neil2-null mice show the accumulation of oxidative genomic damage, mostly in the transcribed regions. Immuno-pulldown analysis from wild-type (WT) mouse tissue showed the association of NEIL2 with RNA polymerase II, along with Cockayne syndrome group B protein, TFIIH, and other BER proteins. Chromatin immunoprecipitation analysis from mouse tissue showed co-occupancy of NEIL2 and RNA polymerase II only on the transcribed genes, consistent with our earlier in vitro findings on NEIL2's role in transcription-coupled BER. This study provides the first in vivo evidence of genomic region-specific repair in mammals. Furthermore, telomere loss and genomic instability were observed at a higher frequency in embryonic fibroblasts from Neil2-null mice than from the WT. Moreover, Neil2-null mice are much more responsive to inflammatory agents than WT mice. Taken together, our results underscore the importance of NEIL2 in protecting mammals from the development of various pathologies that are linked to genomic instability and/or inflammation. NEIL2 is thus likely to play an important role in long term genomic maintenance, particularly in long-lived mammals such as humans. PMID:26245904

  5. Instability Mechanisms of Water-in-Oil Nanoemulsions with Phospholipids: Temporal and Morphological Structures.

    PubMed

    Sommerling, Jan-Hendrik; de Matos, Maria B C; Hildebrandt, Ellen; Dessy, Alberto; Kok, Robbert Jan; Nirschl, Hermann; Leneweit, Gero

    2018-01-16

    Many food preparations, pharmaceuticals, and cosmetics use water-in-oil (W/O) emulsions stabilized by phospholipids. Moreover, recent technological developments try to produce liposomes or lipid coated capsules from W/O emulsions, but are faced with colloidal instabilities. To explore these instability mechanisms, emulsification by sonication was applied in three cycles, and the sample stability was studied for 3 h after each cycle. Clearly identifiable temporal structures of instability provide evidence about the emulsion morphology: an initial regime of about 10 min is shown to be governed by coalescence after which Ostwald ripening dominates. Transport via molecular diffusion in Ostwald ripening is commonly based on the mutual solubility of the two phases and is therefore prohibited in emulsions composed of immiscible phases. However, in the case of water in oil emulsified by phospholipids, these form water-loaded reverse micelles in oil, which enable Ostwald ripening despite the low solubility of water in oil, as is shown for squalene. As is proved for the phospholipid dipalmitoylphosphatidylcholine (DPPC), concentrations below the critical aggregation concentration (CAC) form monolayers at the interfaces and smaller droplet sizes. In contrast, phospholipid concentrations above the CAC create complex multilayers at the interface with larger droplet sizes. The key factors for stable W/O emulsions in classical or innovative applications are first, the minimization of the phospholipids' capacity to form reversed micelles, and second, the adaption of the initial phospholipid concentration to the water content to enable an optimized coverage of phospholipids at the interfaces for the intended drop size.

  6. Universal Influenza B Virus Genomic Amplification Facilitates Sequencing, Diagnostics, and Reverse Genetics

    PubMed Central

    Zhou, Bin; Lin, Xudong; Wang, Wei; Halpin, Rebecca A.; Bera, Jayati; Stockwell, Timothy B.; Barr, Ian G.

    2014-01-01

    Although human influenza B virus (IBV) is a significant human pathogen, its great genetic diversity has limited our ability to universally amplify the entire genome for subsequent sequencing or vaccine production. The generation of sequence data via next-generation approaches and the rapid cloning of viral genes are critical for basic research, diagnostics, antiviral drugs, and vaccines to combat IBV. To overcome the difficulty of amplifying the diverse and ever-changing IBV genome, we developed and optimized techniques that amplify the complete segmented negative-sense RNA genome from any IBV strain in a single tube/well (IBV genomic amplification [IBV-GA]). Amplicons for >1,000 diverse IBV genomes from different sample types (e.g., clinical specimens) were generated and sequenced using this robust technology. These approaches are sensitive, robust, and sequence independent (i.e., universally amplify past, present, and future IBVs), which facilitates next-generation sequencing and advanced genomic diagnostics. Importantly, special terminal sequences engineered into the optimized IBV-GA2 products also enable ligation-free cloning to rapidly generate reverse-genetics plasmids, which can be used for the rescue of recombinant viruses and/or the creation of vaccine seed stock. PMID:24501036

  7. Premixed Flames Under Microgravity and Normal Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Krikunova, Anastasia I.; Son, Eduard E.

    2018-03-01

    Premixed conical CH4-air flames were studied experimentally and numerically under normal straight, reversed gravity conditions and microgravity. Low-gravity experiments were performed in Drop tower. Classical Bunsen-type burner was used to find out features of gravity influence on the combustion processes. Mixture equivalence ratio was varied from 0.8 to 1.3. Wide range of flow velocity allows to study both laminar and weakly turbulized flames. High-speed flame chemoluminescence video-recording was used as diagnostic. The investigations were performed at atmospheric pressure. As results normalized flame height, laminar flame speed were measured, also features of flame instabilities were shown. Low- and high-frequency flame-instabilities (oscillations) have a various nature as velocity fluctuations, preferential diffusion instability, hydrodynamic and Rayleigh-Taylor ones etc., that was explored and demonstrated.

  8. Studies of small-scale plasma inhomogeneities in the cusp ionosphere using sounding rocket data

    NASA Astrophysics Data System (ADS)

    Chernyshov, Alexander A.; Spicher, Andres; Ilyasov, Askar A.; Miloch, Wojciech J.; Clausen, Lasse B. N.; Saito, Yoshifumi; Jin, Yaqi; Moen, Jøran I.

    2018-04-01

    Microprocesses associated with plasma inhomogeneities are studied on the basis of data from the Investigation of Cusp Irregularities (ICI-3) sounding rocket. The ICI-3 rocket is devoted to investigating a reverse flow event in the cusp F region ionosphere. By numerical stability analysis, it is demonstrated that inhomogeneous-energy-density-driven (IEDD) instability can be a mechanism for the excitation of small-scale plasma inhomogeneities. The Local Intermittency Measure (LIM) method also applied the rocket data to analyze irregular structures of the electric field during rocket flight in the cusp. A qualitative agreement between high values of the growth rates of the IEDD instability and the regions with enhanced LIM is observed. This suggests that IEDD instability is connected to turbulent non-Gaussian processes.

  9. Genome-wide prediction of vaccine targets for human herpes simplex viruses using Vaxign reverse vaccinology

    PubMed Central

    2013-01-01

    Herpes simplex virus (HSV) types 1 and 2 (HSV-1 and HSV-2) are the most common infectious agents of humans. No safe and effective HSV vaccines have been licensed. Reverse vaccinology is an emerging and revolutionary vaccine development strategy that starts with the prediction of vaccine targets by informatics analysis of genome sequences. Vaxign (http://www.violinet.org/vaxign) is the first web-based vaccine design program based on reverse vaccinology. In this study, we used Vaxign to analyze 52 herpesvirus genomes, including 3 HSV-1 genomes, one HSV-2 genome, 8 other human herpesvirus genomes, and 40 non-human herpesvirus genomes. The HSV-1 strain 17 genome that contains 77 proteins was used as the seed genome. These 77 proteins are conserved in two other HSV-1 strains (strain F and strain H129). Two envelope glycoproteins gJ and gG do not have orthologs in HSV-2 or 8 other human herpesviruses. Seven HSV-1 proteins (including gJ and gG) do not have orthologs in all 40 non-human herpesviruses. Nineteen proteins are conserved in all human herpesviruses, including capsid scaffold protein UL26.5 (NP_044628.1). As the only HSV-1 protein predicted to be an adhesin, UL26.5 is a promising vaccine target. The MHC Class I and II epitopes were predicted by the Vaxign Vaxitop prediction program and IEDB prediction programs recently installed and incorporated in Vaxign. Our comparative analysis found that the two programs identified largely the same top epitopes but also some positive results predicted from one program might not be positive from another program. Overall, our Vaxign computational prediction provides many promising candidates for rational HSV vaccine development. The method is generic and can also be used to predict other viral vaccine targets. PMID:23514126

  10. Ortervirales: A new viral order unifying five families of reverse-transcribing viruses.

    PubMed

    Krupovic, Mart; Blomberg, Jonas; Coffin, John M; Dasgupta, Indranil; Fan, Hung; Geering, Andrew D; Gifford, Robert; Harrach, Balázs; Hull, Roger; Johnson, Welkin; Kreuze, Jan F; Lindemann, Dirk; Llorens, Carlos; Lockhart, Ben; Mayer, Jens; Muller, Emmanuelle; Olszewski, Neil; Pappu, Hanu R; Pooggin, Mikhail; Richert-Pöggeler, Katja R; Sabanadzovic, Sead; Sanfaçon, Hélène; Schoelz, James E; Seal, Susan; Stavolone, Livia; Stoye, Jonathan P; Teycheney, Pierre-Yves; Tristem, Michael; Koonin, Eugene V; Kuhn, Jens H

    2018-04-04

    Reverse-transcribing viruses, which synthesize a copy of genomic DNA from an RNA template, are widespread in animals, plants, algae and fungi (1, 2).…. Copyright © 2018 American Society for Microbiology.

  11. New Implications on Genomic Adaptation Derived from the Helicobacter pylori Genome Comparison

    PubMed Central

    Lara-Ramírez, Edgar Eduardo; Segura-Cabrera, Aldo; Guo, Xianwu; Yu, Gongxin; García-Pérez, Carlos Armando; Rodríguez-Pérez, Mario A.

    2011-01-01

    Background Helicobacter pylori has a reduced genome and lives in a tough environment for long-term persistence. It evolved with its particular characteristics for biological adaptation. Because several H. pylori genome sequences are available, comparative analysis could help to better understand genomic adaptation of this particular bacterium. Principal Findings We analyzed nine H. pylori genomes with emphasis on microevolution from a different perspective. Inversion was an important factor to shape the genome structure. Illegitimate recombination not only led to genomic inversion but also inverted fragment duplication, both of which contributed to the creation of new genes and gene family, and further, homological recombination contributed to events of inversion. Based on the information of genomic rearrangement, the first genome scaffold structure of H. pylori last common ancestor was produced. The core genome consists of 1186 genes, of which 22 genes could particularly adapt to human stomach niche. H. pylori contains high proportion of pseudogenes whose genesis was principally caused by homopolynucleotide (HPN) mutations. Such mutations are reversible and facilitate the control of gene expression through the change of DNA structure. The reversible mutations and a quasi-panmictic feature could allow such genes or gene fragments frequently transferred within or between populations. Hence, pseudogenes could be a reservoir of adaptation materials and the HPN mutations could be favorable to H. pylori adaptation, leading to HPN accumulation on the genomes, which corresponds to a special feature of Helicobacter species: extremely high HPN composition of genome. Conclusion Our research demonstrated that both genome content and structure of H. pylori have been highly adapted to its particular life style. PMID:21387011

  12. ddRADseq reveals determinants for temperature-dependent sex reversal in Nile tilapia on LG23.

    PubMed

    Wessels, Stephan; Krause, Ina; Floren, Claudia; Schütz, Ekkehard; Beck, Jule; Knorr, Christoph

    2017-07-14

    In Nile tilapia sex determination is governed by a male heterogametic system XX/XY either on LG1 or LG23. The latter carries a Y-specific duplicate of the amh gene, which is a testis-determining factor. Allelic variants in the amh gene demonstrated to be major triggers for autosomal and temperature-dependent sex reversal. Further, QTL on LG23 and LG20 show a temperature-responsiveness with influence on the phenotypic sex relative to the sex chromosomes. Here we present a ddRADseq based approach to identify genomic regions that show unusual large differentiation in terms of fixation index (F ST ) between temperature-treated pseudomales and non-masculinized females using a comparative genome-scan. Genome-wide associations were identified for the temperature-dependent sex using a genetically all-female population devoid of amh-ΔY. Twenty-two thousand three hundred ninety-two SNPs were interrogated for the comparison of temperature-treated pseudomales and females, which revealed the largest differentiation on LG23. Outlier F ST -values (0.35-0.44) were determined for six SNPs in the genomic interval (9,190,077-11,065,693) harbouring the amh gene (9,602,693-9,605,808), exceeding the genome-wide low F ST of 0.013. Association analysis with a set of 9104 selected SNPs confirmed that the same genomic region on LG23 exerts a significant effect on the temperature-dependent sex. This study highlights the role of LG23 in sex determination, harbouring major determinants for temperature-dependent sex reversal in Nile tilapia. Furthermore F ST outlier detection proves a powerful tool for detection of sex-determining regions in fish genomes.

  13. Growth, morphology, and developmental instability of rainbow trout, Yellowstone cutthroat trout, and four hybrid generations

    USGS Publications Warehouse

    Ostberg, C.O.; Duda, J.J.; Graham, J.H.; Zhang, S.; Haywood, K. P.; Miller, B.; Lerud, T.L.

    2011-01-01

    Hybridization of cutthroat trout Oncorhynchus clarkii with nonindigenous rainbow trout O. mykiss contributes to the decline of cutthroat trout subspecies throughout their native range. Introgression by rainbow trout can swamp the gene pools of cutthroat trout populations, especially if there is little selection against hybrids. We used rainbow trout, Yellowstone cutthroat trout O. clarkii bouvieri, and rainbow trout × Yellowstone cutthroat trout F1 hybrids as parents to construct seven different line crosses: F1 hybrids (both reciprocal crosses), F2 hybrids, first-generation backcrosses (both rainbow trout and Yellowstone cutthroat trout), and both parental taxa. We compared growth, morphology, and developmental instability among these seven crosses reared at two different temperatures. Growth was related to the proportion of rainbow trout genome present within the crosses. Meristic traits were influenced by maternal, additive, dominant, overdominant, and (probably) epistatic genetic effects. Developmental stability, however, was not disturbed in F1 hybrids, F2 hybrids, or backcrosses. Backcrosses were morphologically similar to their recurrent parent. The lack of developmental instability in hybrids suggests that there are few genetic incompatibilities preventing introgression. Our findings suggest that hybrids are not equal: that is, growth, development, character traits, and morphology differ depending on the genomic contribution from each parental species as well as the hybrid generation.

  14. Characteristics of genomic instability in clones of TK6 human lymphoblasts surviving exposure to 56Fe ions

    NASA Technical Reports Server (NTRS)

    Evans, Helen H.; Horng, Min-Fen; Ricanati, Marlene; Diaz-Insua, Mireya; Jordan, Robert; Schwartz, Jeffrey L.

    2002-01-01

    Genomic instability in the human lymphoblast cell line TK6 was studied in clones surviving 36 generations after exposure to accelerated 56Fe ions. Clones were assayed for 20 characteristics, including chromosome aberrations, plating efficiency, apoptosis, cell cycle distribution, response to a second irradiation, and mutant frequency at two loci. The primary effect of the 56Fe-ion exposure on the surviving clones was a significant increase in the frequency of unstable chromosome aberrations compared to the very low spontaneous frequency, along with an increase in the phenotypic complexity of the unstable clones. The radiation-induced increase in the frequency of unstable chromosome aberrations was much greater than that observed previously in clones of the related cell line, WTK1, which in comparison to the TK6 cell line expresses an increased radiation resistance, a mutant TP53 protein, and an increased frequency of spontaneous unstable chromosome aberrations. The characteristics of the unstable clones of the two cell lines also differed. Most of the TK6 clones surviving exposure to 56Fe ions showed unstable cytogenetic abnormalities, while the phenotype of the WTK1 clones was more diverse. The results underscore the importance of genotype in the characteristics of instability after radiation exposure.

  15. Deformation of interface in a partially miscible system during favorable displacement

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryuta; Nagatsu, Yuichiro; Mishra, Manoranjan; Ban, Takahiko

    2017-11-01

    The Saffman-Taylor instability triggers a well-known viscous fingering (VF, called unfavorable displacement), occurring when a less viscous fluid displaces a more viscous one in porous media or in a Hele-Shaw cell because the boundary of the two fluids becomes hydrodynamically unstable. In the reverse situation (called favorable displacement) in which a more viscous fluid displaces a less viscous one, no instabilities occur due to hydrodynamically stable system. It has been reported that the favorable displacements become unstable by several physicochemical effects. So far, studies of both displacements have focused on fluids that are either fully miscible or immiscible. However, little attention has been paid to displacements in partially miscible system. Here, we have discovered that a partial miscibility triggers fingering instability in a favorable displacement without any chemical reactions. The occurrence of this new instability is induced by not hydrodynamic effects but a thermodynamic effect that is so-called Korteweg effect in which convection is induced during phase separation process in a partially miscible system.

  16. Alcohol-induced one-carbon metabolism impairment promotes dysfunction of DNA base excision repair in adult brain.

    PubMed

    Fowler, Anna-Kate; Hewetson, Aveline; Agrawal, Rajiv G; Dagda, Marisela; Dagda, Raul; Moaddel, Ruin; Balbo, Silvia; Sanghvi, Mitesh; Chen, Yukun; Hogue, Ryan J; Bergeson, Susan E; Henderson, George I; Kruman, Inna I

    2012-12-21

    The brain is one of the major targets of chronic alcohol abuse. Yet the fundamental mechanisms underlying alcohol-mediated brain damage remain unclear. The products of alcohol metabolism cause DNA damage, which in conditions of DNA repair dysfunction leads to genomic instability and neural death. We propose that one-carbon metabolism (OCM) impairment associated with long term chronic ethanol intake is a key factor in ethanol-induced neurotoxicity, because OCM provides cells with DNA precursors for DNA repair and methyl groups for DNA methylation, both critical for genomic stability. Using histological (immunohistochemistry and stereological counting) and biochemical assays, we show that 3-week chronic exposure of adult mice to 5% ethanol (Lieber-Decarli diet) results in increased DNA damage, reduced DNA repair, and neuronal death in the brain. These were concomitant with compromised OCM, as evidenced by elevated homocysteine, a marker of OCM dysfunction. We conclude that OCM dysfunction plays a causal role in alcohol-induced genomic instability in the brain because OCM status determines the alcohol effect on DNA damage/repair and genomic stability. Short ethanol exposure, which did not disturb OCM, also did not affect the response to DNA damage, whereas additional OCM disturbance induced by deficiency in a key OCM enzyme, methylenetetrahydrofolate reductase (MTHFR) in Mthfr(+/-) mice, exaggerated the ethanol effect on DNA repair. Thus, the impact of long term ethanol exposure on DNA repair and genomic stability in the brain results from OCM dysfunction, and MTHFR mutations such as Mthfr 677C→T, common in human population, may exaggerate the adverse effects of ethanol on the brain.

  17. Resistive tearing instability in electron MHD: application to neutron star crusts

    NASA Astrophysics Data System (ADS)

    Gourgouliatos, Konstantinos N.; Hollerbach, Rainer

    2016-12-01

    We study a resistive tearing instability developing in a system evolving through the combined effect of Hall drift in the electron magnetohydrodynamic limit and Ohmic dissipation. We explore first the exponential growth of the instability in the linear case and we find the fastest growing mode, the corresponding eigenvalues and dispersion relation. The instability growth rate scales as γ ∝ B2/3σ-1/3, where B is the magnetic field and σ the electrical conductivity. We confirm the development of the tearing resistive instability in the fully non-linear case, in a plane-parallel configuration where the magnetic field polarity reverses, through simulations of systems initiating in Hall equilibrium with some superimposed perturbation. Following a transient phase, during which there is some minor rearrangement of the magnetic field, the perturbation grows exponentially. Once the instability is fully developed, the magnetic field forms the characteristic islands and X-type reconnection points, where Ohmic decay is enhanced. We discuss the implications of this instability for the local magnetic field evolution in neutron stars' crusts, proposing that it can contribute to heating near the surface of the star, as suggested by models of magnetar post-burst cooling. In particular, we find that a current sheet a few metres thick, covering as little as 1 per cent of the total surface, can provide 1042 erg in thermal energy within a few days. We briefly discuss applications of this instability in other systems where the Hall effect operates such as protoplanetary discs and space plasmas.

  18. Reverse genetics of Newcastle disease virus

    USDA-ARS?s Scientific Manuscript database

    Reverse genetics allows the generation of recombinant viruses or vectors used in functional studies, vaccine development, and gene therapy. This technique allows genetic manipulation and cloning of viral genomes, mutation through site-directed mutagenesis, and gene insertion or deletion, among othe...

  19. Hierarchy of stability factors in reverse shoulder arthroplasty.

    PubMed

    Gutiérrez, Sergio; Keller, Tony S; Levy, Jonathan C; Lee, William E; Luo, Zong-Ping

    2008-03-01

    Reverse shoulder arthroplasty is being used more frequently to treat irreparable rotator cuff tears in the presence of glenohumeral arthritis and instability. To date, however, design features and functions of reverse shoulder arthroplasty, which may be associated with subluxation and dislocation of these implants, have been poorly understood. We asked: (1) what is the hierarchy of importance of joint compressive force, prosthetic socket depth, and glenosphere size in relation to stability, and (2) is this hierarchy defined by underlying and theoretically predictable joint contact characteristics? We examined the intrinsic stability in terms of the force required to dislocate the humerosocket from the glenosphere of eight commercially available reverse shoulder arthroplasty devices. The hierarchy of factors was led by compressive force followed by socket depth; glenosphere size played a much lesser role in stability of the reverse shoulder arthroplasty device. Similar results were predicted by a mathematical model, suggesting the stability was determined primarily by compressive forces generated by muscles.

  20. Reverse Engineering of Genome-wide Gene Regulatory Networks from Gene Expression Data

    PubMed Central

    Liu, Zhi-Ping

    2015-01-01

    Transcriptional regulation plays vital roles in many fundamental biological processes. Reverse engineering of genome-wide regulatory networks from high-throughput transcriptomic data provides a promising way to characterize the global scenario of regulatory relationships between regulators and their targets. In this review, we summarize and categorize the main frameworks and methods currently available for inferring transcriptional regulatory networks from microarray gene expression profiling data. We overview each of strategies and introduce representative methods respectively. Their assumptions, advantages, shortcomings, and possible improvements and extensions are also clarified and commented. PMID:25937810

  1. Characterization of Human Cancer Cell Lines by Reverse-phase Protein Arrays* | Office of Cancer Genomics

    Cancer.gov

    Cancer cell lines are major model systems for mechanistic investigation and drug development. However, protein expression data linked to high-quality DNA, RNA, and drug-screening data have not been available across a large number of cancer cell lines. Using reverse-phase protein arrays, we measured expression levels of ∼230 key cancer-related proteins in >650 independent cell lines, many of which have publically available genomic, transcriptomic, and drug-screening data.

  2. Genomic instability of osteosarcoma cell lines in culture: impact on the prediction of metastasis relevant genes.

    PubMed

    Muff, Roman; Rath, Prisni; Ram Kumar, Ram Mohan; Husmann, Knut; Born, Walter; Baudis, Michael; Fuchs, Bruno

    2015-01-01

    Osteosarcoma is a rare but highly malignant cancer of the bone. As a consequence, the number of established cell lines used for experimental in vitro and in vivo osteosarcoma research is limited and the value of these cell lines relies on their stability during culture. Here we investigated the stability in gene expression by microarray analysis and array genomic hybridization of three low metastatic cell lines and derivatives thereof with increased metastatic potential using cells of different passages. The osteosarcoma cell lines showed altered gene expression during in vitro culture, and it was more pronounced in two metastatic cell lines compared to the respective parental cells. Chromosomal instability contributed in part to the altered gene expression in SAOS and LM5 cells with low and high metastatic potential. To identify metastasis-relevant genes in a background of passage-dependent altered gene expression, genes involved in "Pathways in cancer" that were consistently regulated under all passage comparisons were evaluated. Genes belonging to "Hedgehog signaling pathway" and "Wnt signaling pathway" were significantly up-regulated, and IHH, WNT10B and TCF7 were found up-regulated in all three metastatic compared to the parental cell lines. Considerable instability during culture in terms of gene expression and chromosomal aberrations was observed in osteosarcoma cell lines. The use of cells from different passages and a search for genes consistently regulated in early and late passages allows the analysis of metastasis-relevant genes despite the observed instability in gene expression in osteosarcoma cell lines during culture.

  3. Causes and Consequences of Replication Stress

    PubMed Central

    Zeman, Michelle K.; Cimprich, Karlene A.

    2015-01-01

    Replication stress is a complex phenomenon which has serious implications for genome stability, cell survival, and human disease. Generation of aberrant replication fork structures containing single-stranded DNA activates the replication stress response, primarily mediated by the kinase ATM- and Rad3-related (ATR). ATR and its downstream effectors stabilize and help to restart stalled replication forks, avoiding the generation of DNA damage and genome instability. Understanding these pathways may be key to diagnosis and treatment of human diseases caused by defective responses to replication stress. PMID:24366029

  4. DNA Damage and Genomic Instability Induced by Inappropriate DNA Re-replication

    DTIC Science & Technology

    2007-04-01

    Conway, A., Lockhart, D. J., Davis, R. W., Brewer , B. J., and Fangman, W. L. (2001). Replication dynamics of the yeast genome. Science 294, 115–121... Brewer , B. J. (2001). An origin-deficient yeast artificial chromosome triggers a cell cycle checkpoint. Mol. Cell 7, 705–713. Vas, A., Mok, W., and...replication in yeast cells. We have demonstrated that re-replication induces a rapid and significant decrease in cell viability and a cellular DNA damage

  5. POD analysis of the instability mode of a low-speed streak in a laminar boundary layer

    NASA Astrophysics Data System (ADS)

    Deng, Si-Chao; Pan, Chong; Wang, Jin-Jun; Rinoshika, Akira

    2017-12-01

    The instability of one single low-speed streak in a zero-pressure-gradient laminar boundary layer is investigated experimentally via both hydrogen bubble visualization and planar particle image velocimetry (PIV) measurement. A single low-speed streak is generated and destabilized by the wake of an interference wire positioned normal to the wall and in the upstream. The downstream development of the streak includes secondary instability and self-reproduction process, which leads to the generation of two additional streaks appearing on either side of the primary one. A proper orthogonal decomposition (POD) analysis of PIV measured velocity field is used to identify the components of the streak instability in the POD mode space: for a sinuous/varicose type of POD mode, its basis functions present anti-symmetric/symmetric distributions about the streak centerline in the streamwise component, and the symmetry condition reverses in the spanwise component. It is further shown that sinuous mode dominates the turbulent kinematic energy (TKE) through the whole streak evolution process, the TKE content first increases along the streamwise direction to a saturation value and then decays slowly. In contrast, varicose mode exhibits a sustained growth of the TKE content, suggesting an increasing competition of varicose instability against sinuous instability.

  6. Transverse instabilities of stripe domains in magnetic thin films with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Ruth, Max E.; Iacocca, Ezio; Kevrekidis, Panayotis G.; Hoefer, Mark A.

    2018-03-01

    Stripe domains are narrow, elongated, reversed regions that exist in magnetic materials with perpendicular magnetic anisotropy. They appear as a pair of domain walls that can exhibit topology with a nonzero chirality. Recent experimental and numerical investigations identify an instability of stripe domains along the long direction as a means of nucleating isolated magnetic skyrmions. Here, the onset and nonlinear evolution of transverse instabilities for a dynamic stripe domain known as the bion stripe are investigated. Both nontopological and topological variants of the bion stripe are shown to exhibit a long-wavelength transverse instability with different characteristic features. In the former, small transverse variations in the stripe's width lead to a neck instability that eventually pinches the nontopological stripe into a chain of two-dimensional breathers composed of droplet soliton pairs. In the latter case, small variations in the stripe's center result in a snake instability whose topological structure leads to the nucleation of dynamic magnetic skyrmions and antiskyrmions as well as perimeter-modulated droplets. Quantitative, analytical predictions for both the early, linear evolution and the long-time, nonlinear evolution are achieved using an averaged Lagrangian approach that incorporates both exchange (dispersion) and anisotropy (nonlinearity). The method of analysis is general and can be applied to other filamentary structures.

  7. Interleukin 6-dependent genomic instability heralds accelerated carcinogenesis following liver regeneration on a background of chronic hepatitis.

    PubMed

    Lanton, Tali; Shriki, Anat; Nechemia-Arbely, Yael; Abramovitch, Rinat; Levkovitch, Orr; Adar, Revital; Rosenberg, Nofar; Paldor, Mor; Goldenberg, Daniel; Sonnenblick, Amir; Peled, Amnon; Rose-John, Stefan; Galun, Eithan; Axelrod, Jonathan H

    2017-05-01

    Liver cancer, which typically develops on a background of chronic liver inflammation, is now the second leading cause of cancer mortality worldwide. For patients with liver cancer, surgical resection is a principal treatment modality that offers a chance of prolonged survival. However, tumor recurrence after resection, the mechanisms of which remain obscure, markedly limits the long-term survival of these patients. We have shown that partial hepatectomy in multidrug resistance 2 knockout (Mdr2 -/- ) mice, a model of chronic inflammation-associated liver cancer, significantly accelerates hepatocarcinogenesis. Here, we explore the postsurgical mechanisms that drive accelerated hepatocarcinogenesis in Mdr2 -/- mice by perioperative pharmacological inhibition of interleukin-6 (IL6), which is a crucial liver regeneration priming cytokine. We demonstrate that inhibition of IL6 signaling dramatically impedes tumorigenesis following partial hepatectomy without compromising survival or liver mass recovery. IL6 blockade significantly inhibited hepatocyte cell cycle progression while promoting a hypertrophic regenerative response, without increasing apoptosis. Mdr2 -/- mice contain hepatocytes with a notable persistent DNA damage response (γH2AX, 53BP1) due to chronic inflammation. We show that liver regeneration in this microenvironment leads to a striking increase in hepatocytes bearing micronuclei, a marker of genomic instability, which is suppressed by IL6 blockade. Our findings indicate that genomic instability derived during the IL6-mediated liver regenerative response within a milieu of chronic inflammation links partial hepatectomy to accelerated hepatocarcinogenesis; this suggests a new therapeutic approach through the usage of an anti-IL6 treatment to extend the tumor-free survival of patients undergoing surgical resection. (Hepatology 2017;65:1600-1611). © 2016 by the American Association for the Study of Liver Diseases.

  8. Genotoxic potential of the binary mixture of cyanotoxins microcystin-LR and cylindrospermopsin.

    PubMed

    Hercog, Klara; Maisanaba, Sara; Filipič, Metka; Jos, Ángeles; Cameán, Ana M; Žegura, Bojana

    2017-12-01

    Increased eutrophication of water bodies promotes cyanobacterial blooming that is hazardous due to the production of various bioactive compounds. Microcystin-LR (MCLR) is among the most widespread cyanotoxins classified as possible human carcinogen, while cylindrospermopsin (CYN) has only recently been recognized as health concern. Both cyanotoxins are genotoxic; however, the mechanisms of their action differ. They are ubiquitously present in water environment and are often detected together. Therefore, we studied genotoxic potential of the binary mixture of these cyanotoxins. Human hepatoma cells (HepG2) were exposed to a single dose of MCLR (1 μg/mL), graded doses of CYN (0.01-0.5 μg/mL), and their combinations. Comet and Cytokinesis block micronucleus assays were used to detect induction of DNA strand breaks (sb) and genomic instability, respectively, along with the transcriptional analyses of the expression of selected genes involved in xenobiotic metabolism, immediate/early cell response and DNA-damage response. MCLR induced DNA sb that were only transiently present after 4 h exposure, whereas CYN, after 24 h exposure, induced DNA sb and genomic instability. The MCLR/CYN mixture induced DNA sb after 24 h exposure, but to lesser extent as CYN alone. On the other hand, induction of genomic instability by the MCLR/CYN mixture was comparable to that induced by CYN alone. In addition, patterns of changes in the expression of selected genes induced by the MCLR/CYN mixture were not significantly different from those induced by CYN alone. Our results indicate that CYN exerts higher genotoxic potential than MCLR and that genotoxic potential of the MCLR/CYN mixture is comparable to that of CYN alone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Single-cell sequencing reveals karyotype heterogeneity in murine and human malignancies.

    PubMed

    Bakker, Bjorn; Taudt, Aaron; Belderbos, Mirjam E; Porubsky, David; Spierings, Diana C J; de Jong, Tristan V; Halsema, Nancy; Kazemier, Hinke G; Hoekstra-Wakker, Karina; Bradley, Allan; de Bont, Eveline S J M; van den Berg, Anke; Guryev, Victor; Lansdorp, Peter M; Colomé-Tatché, Maria; Foijer, Floris

    2016-05-31

    Chromosome instability leads to aneuploidy, a state in which cells have abnormal numbers of chromosomes, and is found in two out of three cancers. In a chromosomal instable p53 deficient mouse model with accelerated lymphomagenesis, we previously observed whole chromosome copy number changes affecting all lymphoma cells. This suggests that chromosome instability is somehow suppressed in the aneuploid lymphomas or that selection for frequently lost/gained chromosomes out-competes the CIN-imposed mis-segregation. To distinguish between these explanations and to examine karyotype dynamics in chromosome instable lymphoma, we use a newly developed single-cell whole genome sequencing (scWGS) platform that provides a complete and unbiased overview of copy number variations (CNV) in individual cells. To analyse these scWGS data, we develop AneuFinder, which allows annotation of copy number changes in a fully automated fashion and quantification of CNV heterogeneity between cells. Single-cell sequencing and AneuFinder analysis reveals high levels of copy number heterogeneity in chromosome instability-driven murine T-cell lymphoma samples, indicating ongoing chromosome instability. Application of this technology to human B cell leukaemias reveals different levels of karyotype heterogeneity in these cancers. Our data show that even though aneuploid tumours select for particular and recurring chromosome combinations, single-cell analysis using AneuFinder reveals copy number heterogeneity. This suggests ongoing chromosome instability that other platforms fail to detect. As chromosome instability might drive tumour evolution, karyotype analysis using single-cell sequencing technology could become an essential tool for cancer treatment stratification.

  10. Reverse genetics in high throughput: rapid generation of complete negative strand RNA virus cDNA clones and recombinant viruses thereof.

    PubMed

    Nolden, T; Pfaff, F; Nemitz, S; Freuling, C M; Höper, D; Müller, T; Finke, Stefan

    2016-04-05

    Reverse genetics approaches are indispensable tools for proof of concepts in virus replication and pathogenesis. For negative strand RNA viruses (NSVs) the limited number of infectious cDNA clones represents a bottleneck as clones are often generated from cell culture adapted or attenuated viruses, with limited potential for pathogenesis research. We developed a system in which cDNA copies of complete NSV genomes were directly cloned into reverse genetics vectors by linear-to-linear RedE/T recombination. Rapid cloning of multiple rabies virus (RABV) full length genomes and identification of clones identical to field virus consensus sequence confirmed the approache's reliability. Recombinant viruses were recovered from field virus cDNA clones. Similar growth kinetics of parental and recombinant viruses, preservation of field virus characters in cell type specific replication and virulence in the mouse model were confirmed. Reduced titers after reporter gene insertion indicated that the low level of field virus replication is affected by gene insertions. The flexibility of the strategy was demonstrated by cloning multiple copies of an orthobunyavirus L genome segment. This important step in reverse genetics technology development opens novel avenues for the analysis of virus variability combined with phenotypical characterization of recombinant viruses at a clonal level.

  11. An O([Formula: see text]) algorithm for sorting signed genomes by reversals, transpositions, transreversals and block-interchanges.

    PubMed

    Yu, Shuzhi; Hao, Fanchang; Leong, Hon Wai

    2016-02-01

    We consider the problem of sorting signed permutations by reversals, transpositions, transreversals, and block-interchanges. The problem arises in the study of species evolution via large-scale genome rearrangement operations. Recently, Hao et al. gave a 2-approximation scheme called genome sorting by bridges (GSB) for solving this problem. Their result extended and unified the results of (i) He and Chen - a 2-approximation algorithm allowing reversals, transpositions, and block-interchanges (by also allowing transversals) and (ii) Hartman and Sharan - a 1.5-approximation algorithm allowing reversals, transpositions, and transversals (by also allowing block-interchanges). The GSB result is based on introduction of three bridge structures in the breakpoint graph, the L-bridge, T-bridge, and X-bridge that models goodreversal, transposition/transreversal, and block-interchange, respectively. However, the paper by Hao et al. focused on proving the 2-approximation GSB scheme and only mention a straightforward [Formula: see text] algorithm. In this paper, we give an [Formula: see text] algorithm for implementing the GSB scheme. The key idea behind our faster GSB algorithm is to represent cycles in the breakpoint graph by their canonical sequences, which greatly simplifies the search for these bridge structures. We also give some comparison results (running time and computed distances) against the original GSB implementation.

  12. Transition of unsteady velocity profiles with reverse flow

    NASA Astrophysics Data System (ADS)

    Das, Debopam; Arakeri, Jaywant H.

    1998-11-01

    This paper deals with the stability and transition to turbulence of wall-bounded unsteady velocity profiles with reverse flow. Such flows occur, for example, during unsteady boundary layer separation and in oscillating pipe flow. The main focus is on results from experiments in time-developing flow in a long pipe, which is decelerated rapidly. The flow is generated by the controlled motion of a piston. We obtain analytical solutions for laminar flow in the pipe and in a two-dimensional channel for arbitrary piston motions. By changing the piston speed and the length of piston travel we cover a range of values of Reynolds number and boundary layer thickness. The velocity profiles during the decay of the flow are unsteady with reverse flow near the wall, and are highly unstable due to their inflectional nature. In the pipe, we observe from flow visualization that the flow becomes unstable with the formation of what appears to be a helical vortex. The wavelength of the instability [simeq R: similar, equals]3[delta] where [delta] is the average boundary layer thickness, the average being taken over the time the flow is unstable. The time of formation of the vortices scales with the average convective time scale and is [simeq R: similar, equals]39/([Delta]u/[delta]), where [Delta]u=(umax[minus sign]umin) and umax, umin and [delta] are the maximum velocity, minimum velocity and boundary layer thickness respectively at each instant of time. The time to transition to turbulence is [simeq R: similar, equals]33/([Delta]u/[delta]). Quasi-steady linear stability analysis of the velocity profiles brings out two important results. First that the stability characteristics of velocity profiles with reverse flow near the wall collapse when scaled with the above variables. Second that the wavenumber corresponding to maximum growth does not change much during the instability even though the velocity profile does change substantially. Using the results from the experiments and the stability analysis, we are able to explain many aspects of transition in oscillating pipe flow. We postulate that unsteady boundary layer separation at high Reynolds numbers is probably related to instability of the reverse flow region.

  13. Genetic instability in inherited and sporadic leukemias.

    PubMed

    Popp, Henning D; Bohlander, Stefan K

    2010-12-01

    Genetic instability due to increased DNA damage and altered DNA repair is of central significance in the initiation and progression of inherited and sporadic human leukemias. Although very rare, some inherited DNA repair insufficiency syndromes (e.g., Fanconi anemia, Bloom's syndrome) have added substantially to our understanding of crucial mechanisms of leukemogenesis in recent years. Conversely, sporadic leukemias account for the main proportion of leukemias and here DNA damaging reactive oxygen species (ROS) play a central role. Although the exact mechanisms of increased ROS production remain largely unknown and no single pathway has been detected thus far, some oncogenic proteins (e.g., the activated tyrosine kinases BCR-ABL1 and FLT3-ITD) seem to play a key role in driving genetic instability by increased ROS generation which influences the disease course (e.g., blast crisis in chronic myeloid leukemia or relapse in FLT3-ITD positive acute myeloid leukemia). Of course other mechanisms, which promote genetic instability in leukemia also exist. A newly emerging mechanism is the genome-wide alteration of epigenetic marks (e.g., hypomethylation of histone H3K79), which promotes chromosomal instability. Taken together genetic instability plays a critical role both in inherited and sporadic leukemias and emerges as a common theme in both inherited and sporadic leukemias. Beyond its theoretical impact, the analysis of genetic instability may lead the way to the development of innovative therapy strategies. © 2010 Wiley-Liss, Inc.

  14. Investigation of microsatellite instability in Turkish breast cancer patients.

    PubMed

    Demokan, Semra; Muslumanoglu, Mahmut; Yazici, H; Igci, Abdullah; Dalay, Nejat

    2002-01-01

    Multiple somatic and inherited genetic changes that lead to loss of growth control may contribute to the development of breast cancer. Microsatellites are tandem repeats of simple sequences that occur abundantly and at random throughout most eucaryotic genomes. Microsatellite instability (MI), characterized by the presence of random contractions or expansions in the length of simple sequence repeats or microsatellites, is observed in a variety of tumors. The aim of this study was to compare tumor DNA fingerprints with constitutional DNA fingerprints to investigate changes specific to breast cancer and evaluate its correlation with clinical characteristics. Tumor and normal tissue samples of 38 patients with breast cancer were investigated by comparing PCR-amplified microsatellite sequences D2S443 and D21S1436. Microsatellite instability at D21S1436 and D2S443 was found in 5 (13%) and 7 (18%) patients, respectively. Two patients displayed instability at both marker loci. No association was found between MI and age, family history, lymph node involvement and other clinical parameters.

  15. Targeting the Epigenome with Bioactive Food Components for Cancer Prevention

    PubMed Central

    Ong, Thomas Prates; Moreno, Fernando Salvador; Ross, Sharon Ann

    2012-01-01

    Epigenetic processes participate in cancer development and likely influence cancer prevention. Global DNA hypomethylation, gene promoter hypermethylation and aberrant histone post-translational modifications are hallmarks of neoplastic cells which have been associated with genomic instability and altered gene expression. Because epigenetic deregulation occurs early in carcinogenesis and is potentially reversible, intervention strategies targeting the epigenome have been proposed for cancer prevention. Bioactive food components (BFCs) with anticancer potential, including folate, polyphenols, selenium, retinoids, fatty acids, isothiocyanates and allyl compounds, influence DNA methylation and histone modification processes. Such activities have been shown to affect the expression of genes involved in cell proliferation, death and differentiation that are frequently altered in cancer. Although the epigenome represents a promising target for cancer prevention with BFCs, few studies have addressed the influence of dietary components on these mechanisms in vivo, particularly on the phenotype of humans, and thus the exact mechanisms whereby diet mediates an effect on cancer prevention remains unclear. Primary factors that should be elucidated include the effective doses and dose timing of BFCs to attain epigenetic effects. Because diet-epigenome interactions are likely to occur in utero, the impact of early-life nutrition on cancer risk programming should be further investigated. PMID:22353664

  16. Study of mechanism of stress-induced threshold voltage shift and recovery in top-gate amorphous-InGaZnO4 thin-film transistors with source- and drain-offsets

    NASA Astrophysics Data System (ADS)

    Mativenga, Mallory; Kang, Dong Han; Lee, Ung Gi; Jang, Jin

    2012-09-01

    Bias instability of top-gate amorphous-indium-gallium-zinc-oxide thin-film transistors with source- and drain-offsets is reported. Positive and negative gate bias-stress (VG_STRESS) respectively induce reversible negative threshold-voltage shift (ΔVTH) and reduction in on-current. Migration of positive charges towards the offsets lowers the local resistance of the offsets, resulting in the abnormal negative ΔVTH under positive VG_STRESS. The reduction in on-current under negative VG_STRESS is due to increase in resistance of the offsets when positive charges migrate away from the offsets. Appropriate drain and source bias-stresses applied simultaneously with VG_STRESS either suppress or enhance the instability, verifying lateral ion migration to be the instability mechanism.

  17. Limitations of a metabolic network-based reverse ecology method for inferring host-pathogen interactions.

    PubMed

    Takemoto, Kazuhiro; Aie, Kazuki

    2017-05-25

    Host-pathogen interactions are important in a wide range of research fields. Given the importance of metabolic crosstalk between hosts and pathogens, a metabolic network-based reverse ecology method was proposed to infer these interactions. However, the validity of this method remains unclear because of the various explanations presented and the influence of potentially confounding factors that have thus far been neglected. We re-evaluated the importance of the reverse ecology method for evaluating host-pathogen interactions while statistically controlling for confounding effects using oxygen requirement, genome, metabolic network, and phylogeny data. Our data analyses showed that host-pathogen interactions were more strongly influenced by genome size, primary network parameters (e.g., number of edges), oxygen requirement, and phylogeny than the reserve ecology-based measures. These results indicate the limitations of the reverse ecology method; however, they do not discount the importance of adopting reverse ecology approaches altogether. Rather, we highlight the need for developing more suitable methods for inferring host-pathogen interactions and conducting more careful examinations of the relationships between metabolic networks and host-pathogen interactions.

  18. Genetic Mechanisms of Immune Evasion in Colorectal Cancer.

    PubMed

    Grasso, Catherine S; Giannakis, Marios; Wells, Daniel K; Hamada, Tsuyoshi; Mu, Xinmeng Jasmine; Quist, Michael; Nowak, Jonathan A; Nishihara, Reiko; Qian, Zhi Rong; Inamura, Kentaro; Morikawa, Teppei; Nosho, Katsuhiko; Abril-Rodriguez, Gabriel; Connolly, Charles; Escuin-Ordinas, Helena; Geybels, Milan S; Grady, William M; Hsu, Li; Hu-Lieskovan, Siwen; Huyghe, Jeroen R; Kim, Yeon Joo; Krystofinski, Paige; Leiserson, Mark D M; Montoya, Dennis J; Nadel, Brian B; Pellegrini, Matteo; Pritchard, Colin C; Puig-Saus, Cristina; Quist, Elleanor H; Raphael, Ben J; Salipante, Stephen J; Shin, Daniel Sanghoon; Shinbrot, Eve; Shirts, Brian; Shukla, Sachet; Stanford, Janet L; Sun, Wei; Tsoi, Jennifer; Upfill-Brown, Alexander; Wheeler, David A; Wu, Catherine J; Yu, Ming; Zaidi, Syed H; Zaretsky, Jesse M; Gabriel, Stacey B; Lander, Eric S; Garraway, Levi A; Hudson, Thomas J; Fuchs, Charles S; Ribas, Antoni; Ogino, Shuji; Peters, Ulrike

    2018-06-01

    To understand the genetic drivers of immune recognition and evasion in colorectal cancer, we analyzed 1,211 colorectal cancer primary tumor samples, including 179 classified as microsatellite instability-high (MSI-high). This set includes The Cancer Genome Atlas colorectal cancer cohort of 592 samples, completed and analyzed here. MSI-high, a hypermutated, immunogenic subtype of colorectal cancer, had a high rate of significantly mutated genes in important immune-modulating pathways and in the antigen presentation machinery, including biallelic losses of B2M and HLA genes due to copy-number alterations and copy-neutral loss of heterozygosity. WNT/β-catenin signaling genes were significantly mutated in all colorectal cancer subtypes, and activated WNT/β-catenin signaling was correlated with the absence of T-cell infiltration. This large-scale genomic analysis of colorectal cancer demonstrates that MSI-high cases frequently undergo an immunoediting process that provides them with genetic events allowing immune escape despite high mutational load and frequent lymphocytic infiltration and, furthermore, that colorectal cancer tumors have genetic and methylation events associated with activated WNT signaling and T-cell exclusion. Significance: This multi-omic analysis of 1,211 colorectal cancer primary tumors reveals that it should be possible to better monitor resistance in the 15% of cases that respond to immune blockade therapy and also to use WNT signaling inhibitors to reverse immune exclusion in the 85% of cases that currently do not. Cancer Discov; 8(6); 730-49. ©2018 AACR. This article is highlighted in the In This Issue feature, p. 663 . ©2018 American Association for Cancer Research.

  19. Updating the Micro-Tom TILLING platform.

    PubMed

    Okabe, Yoshihiro; Ariizumi, Tohru; Ezura, Hiroshi

    2013-03-01

    The dwarf tomato variety Micro-Tom is regarded as a model system for functional genomics studies in tomato. Various tomato genomic tools in the genetic background of Micro-Tom have been established, such as mutant collections, genome information and a metabolomic database. Recent advances in tomato genome sequencing have brought about a significant need for reverse genetics tools that are accessible to the larger community, because a great number of gene sequences have become available from public databases. To meet the requests from the tomato research community, we have developed the Micro-Tom Targeting-Induced Local Lesions IN Genomes (TILLING) platform, which is comprised of more than 5000 EMS-mutagenized lines. The platform serves as a reverse genetics tool for efficiently identifying mutant alleles in parallel with the development of Micro-Tom mutant collections. The combination of Micro-Tom mutant libraries and the TILLING approach enables researchers to accelerate the isolation of desirable mutants for unraveling gene function or breeding. To upgrade the genomic tool of Micro-Tom, the development of a new mutagenized population is underway. In this paper, the current status of the Micro-Tom TILLING platform and its future prospects are described.

  20. Increased global transcription activity as a mechanism of replication stress in cancer

    PubMed Central

    Kotsantis, Panagiotis; Silva, Lara Marques; Irmscher, Sarah; Jones, Rebecca M.; Folkes, Lisa; Gromak, Natalia; Petermann, Eva

    2016-01-01

    Cancer is a disease associated with genomic instability that often results from oncogene activation. This in turn leads to hyperproliferation and replication stress. However, the molecular mechanisms that underlie oncogene-induced replication stress are still poorly understood. Oncogenes such as HRASV12 promote proliferation by upregulating general transcription factors to stimulate RNA synthesis. Here we investigate whether this increase in transcription underlies oncogene-induced replication stress. We show that in cells overexpressing HRASV12, elevated expression of the general transcription factor TATA-box binding protein (TBP) leads to increased RNA synthesis, which together with R-loop accumulation results in replication fork slowing and DNA damage. Furthermore, overexpression of TBP alone causes the hallmarks of oncogene-induced replication stress, including replication fork slowing, DNA damage and senescence. Consequently, we reveal that increased transcription can be a mechanism of oncogene-induced DNA damage, providing a molecular link between upregulation of the transcription machinery and genomic instability in cancer. PMID:27725641

  1. Increased global transcription activity as a mechanism of replication stress in cancer.

    PubMed

    Kotsantis, Panagiotis; Silva, Lara Marques; Irmscher, Sarah; Jones, Rebecca M; Folkes, Lisa; Gromak, Natalia; Petermann, Eva

    2016-10-11

    Cancer is a disease associated with genomic instability that often results from oncogene activation. This in turn leads to hyperproliferation and replication stress. However, the molecular mechanisms that underlie oncogene-induced replication stress are still poorly understood. Oncogenes such as HRAS V12 promote proliferation by upregulating general transcription factors to stimulate RNA synthesis. Here we investigate whether this increase in transcription underlies oncogene-induced replication stress. We show that in cells overexpressing HRAS V12 , elevated expression of the general transcription factor TATA-box binding protein (TBP) leads to increased RNA synthesis, which together with R-loop accumulation results in replication fork slowing and DNA damage. Furthermore, overexpression of TBP alone causes the hallmarks of oncogene-induced replication stress, including replication fork slowing, DNA damage and senescence. Consequently, we reveal that increased transcription can be a mechanism of oncogene-induced DNA damage, providing a molecular link between upregulation of the transcription machinery and genomic instability in cancer.

  2. [The absence of the facts connected with the genomic instability after the irradiation in low doses by radiation with low LET].

    PubMed

    Koterov A N

    2006-01-01

    In the review which is a brief account of more complete document (Koterov A.N. // Int. J. Low Radiat. 2005. V. 1. No. 4. P. 376-451) the data of world researches devoted to a phenomenon of radiation-induced genomic instability (RIGI) are considered. The purpose of the review is the definition of the bottom limit of radiation doses which induced of RIGI in experiments at different methodical approaches (irradiation in vitro, in vivo, in utero, bystander effect and transgeneration effects of radiation). The action only radiation with low LET is examined. Among several hundreds works wasn't revealed any fact, when RIGI induced by low doses irradiation (up to 0.2 Gy) for normal cells and for organism left from maternal womb. Six exceptions are revealed which are named as "apparent" so in all cases the abnormal, unstable, defective objects or ambiguous final parameter were used. Thus, RIGI at low doses of radiation with low LET is a myth.

  3. Tertiary Epimutations – A Novel Aspect of Epigenetic Transgenerational Inheritance Promoting Genome Instability

    PubMed Central

    McCarrey, John R.; Lehle, Jake D.; Raju, Seetha S.; Wang, Yufeng; Nilsson, Eric E.; Skinner, Michael K.

    2016-01-01

    Exposure to environmental factors can induce the epigenetic transgenerational inheritance of disease. Alterations to the epigenome termed “epimutations” include “primary epimutations” which are epigenetic alterations in the absence of genetic change and “secondary epimutations” which form following an initial genetic change. To determine if secondary epimutations contribute to transgenerational transmission of disease following in utero exposure to the endocrine disruptor vinclozolin, we exposed pregnant female rats carrying the lacI mutation-reporter transgene to vinclozolin and assessed the frequency of mutations in kidney tissue and sperm recovered from F1 and F3 generation progeny. Our results confirm that vinclozolin induces primary epimutations rather than secondary epimutations, but also suggest that some primary epimutations can predispose a subsequent accelerated accumulation of genetic mutations in F3 generation descendants that have the potential to contribute to transgenerational phenotypes. We therefore propose the existence of “tertiary epimutations” which are initial primary epimutations that promote genome instability leading to an accelerated accumulation of genetic mutations. PMID:27992467

  4. Therapeutic Implications for Overcoming Radiation Resistance in Cancer Therapy

    PubMed Central

    Kim, Byeong Mo; Hong, Yunkyung; Lee, Seunghoon; Liu, Pengda; Lim, Ji Hong; Lee, Yong Heon; Lee, Tae Ho; Chang, Kyu Tae; Hong, Yonggeun

    2015-01-01

    Ionizing radiation (IR), such as X-rays and gamma (γ)-rays, mediates various forms of cancer cell death such as apoptosis, necrosis, autophagy, mitotic catastrophe, and senescence. Among them, apoptosis and mitotic catastrophe are the main mechanisms of IR action. DNA damage and genomic instability contribute to IR-induced cancer cell death. Although IR therapy may be curative in a number of cancer types, the resistance of cancer cells to radiation remains a major therapeutic problem. In this review, we describe the morphological and molecular aspects of various IR-induced types of cell death. We also discuss cytogenetic variations representative of IR-induced DNA damage and genomic instability. Most importantly, we focus on several pathways and their associated marker proteins responsible for cancer resistance and its therapeutic implications in terms of cancer cell death of various types and characteristics. Finally, we propose radiation-sensitization strategies, such as the modification of fractionation, inflammation, and hypoxia and the combined treatment, that can counteract the resistance of tumors to IR. PMID:26569225

  5. WWOX, the common fragile site FRA16D gene product, regulates ATM activation and the DNA damage response

    PubMed Central

    Abu-Odeh, Mohammad; Salah, Zaidoun; Herbel, Christoph; Hofmann, Thomas G.; Aqeilan, Rami I.

    2014-01-01

    Genomic instability is a hallmark of cancer. The WW domain-containing oxidoreductase (WWOX) is a tumor suppressor spanning the common chromosomal fragile site FRA16D. Here, we report a direct role of WWOX in DNA damage response (DDR) and DNA repair. We show that Wwox deficiency results in reduced activation of the ataxia telangiectasia-mutated (ATM) checkpoint kinase, inefficient induction and maintenance of γ-H2AX foci, and impaired DNA repair. Mechanistically, we show that, upon DNA damage, WWOX accumulates in the cell nucleus, where it interacts with ATM and enhances its activation. Nuclear accumulation of WWOX is regulated by its K63-linked ubiquitination at lysine residue 274, which is mediated by the E3 ubiquitin ligase ITCH. These findings identify a novel role for the tumor suppressor WWOX and show that loss of WWOX expression may drive genomic instability and provide an advantage for clonal expansion of neoplastic cells. PMID:25331887

  6. Recent Insights into the Control of Human Papillomavirus (HPV) Genome Stability, Loss, and Degradation.

    PubMed

    Fisher, Chris

    2015-01-01

    Most human papillomavirus (HPV) antiviral strategies have focused upon inhibiting viral DNA replication, but it is increasingly apparent that viral DNA levels can be chemically controlled by approaches that promote its instability. HPVs and other DNA viruses have a tenuous relationship with their hosts. They must replicate and hide from the DNA damage response (DDR) and innate immune systems, which serve to protect cells from foreign or "non-self" DNA, and yet they draft these same systems to support their life cycles. DNA binding antiviral agents promoting massive viral DNA instability and elimination are reviewed. Mechanistic studies of these agents have identified genetic antiviral enhancers and repressors, antiviral sensitizers, and host cell elements that protect and stabilize HPV genomes. Viral DNA degradation appears to be an important means of controlling HPV DNA levels in some cases, but the underlying mechanisms remain poorly understood. These findings may prove useful not only for understanding viral DNA persistence but also in devising future antiviral strategies.

  7. BRCA1 interaction of centrosomal protein Nlp is required for successful mitotic progression.

    PubMed

    Jin, Shunqian; Gao, Hua; Mazzacurati, Lucia; Wang, Yang; Fan, Wenhong; Chen, Qiang; Yu, Wei; Wang, Mingrong; Zhu, Xueliang; Zhang, Chuanmao; Zhan, Qimin

    2009-08-21

    Breast cancer susceptibility gene BRCA1 is implicated in the control of mitotic progression, although the underlying mechanism(s) remains to be further defined. Deficiency of BRCA1 function leads to disrupted mitotic machinery and genomic instability. Here, we show that BRCA1 physically interacts and colocalizes with Nlp, an important molecule involved in centrosome maturation and spindle formation. Interestingly, Nlp centrosomal localization and its protein stability are regulated by normal cellular BRCA1 function because cells containing BRCA1 mutations or silenced for endogenous BRCA1 exhibit disrupted Nlp colocalization to centrosomes and enhanced Nlp degradation. Its is likely that the BRCA1 regulation of Nlp stability involves Plk1 suppression. Inhibition of endogenous Nlp via the small interfering RNA approach results in aberrant spindle formation, aborted chromosomal segregation, and aneuploidy, which mimic the phenotypes of disrupted BRCA1. Thus, BRCA1 interaction of Nlp might be required for the successful mitotic progression, and abnormalities of Nlp lead to genomic instability.

  8. BRCA1 Interaction of Centrosomal Protein Nlp Is Required for Successful Mitotic Progression*♦

    PubMed Central

    Jin, Shunqian; Gao, Hua; Mazzacurati, Lucia; Wang, Yang; Fan, Wenhong; Chen, Qiang; Yu, Wei; Wang, Mingrong; Zhu, Xueliang; Zhang, Chuanmao; Zhan, Qimin

    2009-01-01

    Breast cancer susceptibility gene BRCA1 is implicated in the control of mitotic progression, although the underlying mechanism(s) remains to be further defined. Deficiency of BRCA1 function leads to disrupted mitotic machinery and genomic instability. Here, we show that BRCA1 physically interacts and colocalizes with Nlp, an important molecule involved in centrosome maturation and spindle formation. Interestingly, Nlp centrosomal localization and its protein stability are regulated by normal cellular BRCA1 function because cells containing BRCA1 mutations or silenced for endogenous BRCA1 exhibit disrupted Nlp colocalization to centrosomes and enhanced Nlp degradation. Its is likely that the BRCA1 regulation of Nlp stability involves Plk1 suppression. Inhibition of endogenous Nlp via the small interfering RNA approach results in aberrant spindle formation, aborted chromosomal segregation, and aneuploidy, which mimic the phenotypes of disrupted BRCA1. Thus, BRCA1 interaction of Nlp might be required for the successful mitotic progression, and abnormalities of Nlp lead to genomic instability. PMID:19509300

  9. CHCHD10 mutations promote loss of mitochondrial cristae junctions with impaired mitochondrial genome maintenance and inhibition of apoptosis.

    PubMed

    Genin, Emmanuelle C; Plutino, Morgane; Bannwarth, Sylvie; Villa, Elodie; Cisneros-Barroso, Eugenia; Roy, Madhuparna; Ortega-Vila, Bernardo; Fragaki, Konstantina; Lespinasse, Françoise; Pinero-Martos, Estefania; Augé, Gaëlle; Moore, David; Burté, Florence; Lacas-Gervais, Sandra; Kageyama, Yusuke; Itoh, Kie; Yu-Wai-Man, Patrick; Sesaki, Hiromi; Ricci, Jean-Ehrland; Vives-Bauza, Cristofol; Paquis-Flucklinger, Véronique

    2016-01-01

    CHCHD10-related diseases include mitochondrial DNA instability disorder, frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) clinical spectrum, late-onset spinal motor neuropathy (SMAJ), and Charcot-Marie-Tooth disease type 2 (CMT2). Here, we show that CHCHD10 resides with mitofilin, CHCHD3 and CHCHD6 within the "mitochondrial contact site and cristae organizing system" (MICOS) complex. CHCHD10 mutations lead to MICOS complex disassembly and loss of mitochondrial cristae with a decrease in nucleoid number and nucleoid disorganization. Repair of the mitochondrial genome after oxidative stress is impaired in CHCHD10 mutant fibroblasts and this likely explains the accumulation of deleted mtDNA molecules in patient muscle. CHCHD10 mutant fibroblasts are not defective in the delivery of mitochondria to lysosomes suggesting that impaired mitophagy does not contribute to mtDNA instability. Interestingly, the expression of CHCHD10 mutant alleles inhibits apoptosis by preventing cytochrome c release. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  10. A substitution in the transmembrane region of the glycoprotein leads to an unstable attenuation of Machupo virus.

    PubMed

    Patterson, Michael; Koma, Takaaki; Seregin, Alexey; Huang, Cheng; Miller, Milagros; Smith, Jennifer; Yun, Nadezhda; Smith, Jeanon; Paessler, Slobodan

    2014-09-01

    Machupo virus (MACV) is the etiologic agent of Bolivian hemorrhagic fever (BHF). Utilizing a reverse-genetics system recently developed, we report the rescue of a rationally modified recombinant MACV containing a single mutation in the transmembrane region of the glycoprotein. Following challenge of susceptible mice, we identified a significant reduction in virulence in the novel virus. We also identified an instability leading to reversion of the single mutation to a wild-type genotype. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. Revision of failed shoulder hemiarthroplasty to reverse total arthroplasty: analysis of 157 revision implants.

    PubMed

    Merolla, Giovanni; Wagner, Eric; Sperling, John W; Paladini, Paolo; Fabbri, Elisabetta; Porcellini, Giuseppe

    2018-01-01

    There remains a paucity of studies examining the conversion of failed hemiarthroplasty (HA) to reverse total shoulder arthroplasty (RTSA). Therefore, the purpose of this study was to examine a large series of revision HA to RTSA. A population of 157 patients who underwent conversion of a failed HA to a revision RTSA from 2006 through 2014 were included. The mean follow-up was 49 months (range, 24-121 months). The indications for revision surgery included instability with rotator cuff insufficiency (n = 127) and glenoid wear (n = 30); instability and glenoid wear were associated in 38 cases. Eight patients with infection underwent 2-stage reimplantation. Patients experienced significant improvements in their preoperative to postoperative pain and shoulder range of motion (P < .0001), with median American Shoulder and Elbow Surgeons and Simple Shoulder Test scores of 60 and 6 points, respectively. There were 11 (7%) repeated revision surgeries, secondary to glenoid component loosening (n = 3), instability (n = 3), humeral component disassembly (n = 2), humeral stem loosening (n = 1), and infection (n = 2). Implant survivorship was 95.5% at 2 years and 93.3% at 5 years. There were 4 reoperations including axillary nerve neurolysis (n = 2), heterotopic ossification removal (n = 1), and hardware removal for rupture of the metal cerclage for an acromial fracture (n = 1). At final follow-up, there were 5 "at-risk" glenoid components. Patients experience satisfactory pain relief and recovery of reasonable shoulder function after revision RTSA from a failed HA. There was a relatively low revision rate, with glenoid loosening and instability being the most common causes. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  12. Genome expansion via lineage splitting and genome reduction in the cicada endosymbiont Hodgkinia.

    PubMed

    Campbell, Matthew A; Van Leuven, James T; Meister, Russell C; Carey, Kaitlin M; Simon, Chris; McCutcheon, John P

    2015-08-18

    Comparative genomics from mitochondria, plastids, and mutualistic endosymbiotic bacteria has shown that the stable establishment of a bacterium in a host cell results in genome reduction. Although many highly reduced genomes from endosymbiotic bacteria are stable in gene content and genome structure, organelle genomes are sometimes characterized by dramatic structural diversity. Previous results from Candidatus Hodgkinia cicadicola, an endosymbiont of cicadas, revealed that some lineages of this bacterium had split into two new cytologically distinct yet genetically interdependent species. It was hypothesized that the long life cycle of cicadas in part enabled this unusual lineage-splitting event. Here we test this hypothesis by investigating the structure of the Ca. Hodgkinia genome in one of the longest-lived cicadas, Magicicada tredecim. We show that the Ca. Hodgkinia genome from M. tredecim has fragmented into multiple new chromosomes or genomes, with at least some remaining partitioned into discrete cells. We also show that this lineage-splitting process has resulted in a complex of Ca. Hodgkinia genomes that are 1.1-Mb pairs in length when considered together, an almost 10-fold increase in size from the hypothetical single-genome ancestor. These results parallel some examples of genome fragmentation and expansion in organelles, although the mechanisms that give rise to these extreme genome instabilities are likely different.

  13. Lynch Syndrome: Genomics Update and Imaging Review.

    PubMed

    Cox, Veronica L; Saeed Bamashmos, Anas A; Foo, Wai Chin; Gupta, Shiva; Yedururi, Sireesha; Garg, Naveen; Kang, Hyunseon Christine

    2018-01-01

    Lynch syndrome is the most common hereditary cancer syndrome, the most common cause of heritable colorectal cancer, and the only known heritable cause of endometrial cancer. Other cancers associated with Lynch syndrome include cancers of the ovary, stomach, urothelial tract, and small bowel, and less frequently, cancers of the brain, biliary tract, pancreas, and prostate. The oncogenic tendency of Lynch syndrome stems from a set of genomic alterations of mismatch repair proteins. Defunct mismatch repair proteins cause unusually high instability of regions of the genome called microsatellites. Over time, the accumulation of mutations in microsatellites and elsewhere in the genome can affect the production of important cellular proteins, spurring tumorigenesis. Universal testing of colorectal tumors for microsatellite instability (MSI) is now recommended to (a) prevent cases of Lynch syndrome being missed owing to the use of clinical criteria alone, (b) reduce morbidity and mortality among the relatives of affected individuals, and (c) guide management decisions. Organ-specific cancer risks and associated screening paradigms vary according to the sex of the affected individual and the type of germline DNA alteration causing the MSI. Furthermore, Lynch syndrome-associated cancers have different pathologic, radiologic, and clinical features compared with their sporadic counterparts. Most notably, Lynch syndrome-associated tumors tend to be more indolent than non-Lynch syndrome-associated neoplasms and thus may respond differently to traditional chemotherapy regimens. The high MSI in cases of colorectal cancer reflects a difference in the biologic features of the tumor, possibly with a unique susceptibility to immunotherapy. © RSNA, 2018.

  14. Reverse-Tangent Injection in a Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2007-01-01

    Injection of working fluid into a centrifugal compressor in the reverse tangent direction has been invented as a way of preventing flow instabilities (stall and surge) or restoring stability when stall or surge has already commenced. The invention applies, in particular, to a centrifugal compressor, the diffuser of which contains vanes that divide the flow into channels oriented partly radially and partly tangentially. In reverse-tangent injection, a stream or jet of the working fluid (the fluid that is compressed) is injected into the vaneless annular region between the blades of the impeller and the vanes of the diffuser. As used here, "reverse" signifies that the injected flow opposes (and thereby reduces) the tangential component of the velocity of the impeller discharge. At the same time, the injected jet acts to increase the radial component of the velocity of the impeller discharge.

  15. Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity.

    PubMed

    Vasileiou, Panagiotis V S; Mourouzis, Iordanis; Pantos, Constantinos

    2017-08-22

    Mitochondria have emerged as key players regarding cellular homeostasis not only due to their contribution regarding energy production through oxidative phosphorylation, but also due to their involvement in signaling, ion regulation, and programmed cell death. Indeed, current knowledge supports the notion that mitochondrial dysfunction is a hallmark in the pathogenesis of various diseases. Mitochondrial biogenesis and function require the coordinated action of two genomes: nuclear and mitochondrial. Unfortunately, both intrinsic and environmental genotoxic insults constantly threaten the integrity of nuclear as well as mitochondrial DNA. Despite the extensive research that has been made regarding nuclear genome instability, the importance of mitochondrial genome integrity has only recently begun to be elucidated. The specific architecture and repair mechanisms of mitochondrial DNA, as well as the dynamic behavior that mitochondria exert regarding fusion, fission, and autophagy participate in mitochondrial genome stability, and therefore, cell homeostasis.

  16. Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity

    PubMed Central

    Vasileiou, Panagiotis V. S.; Mourouzis, Iordanis; Pantos, Constantinos

    2017-01-01

    Mitochondria have emerged as key players regarding cellular homeostasis not only due to their contribution regarding energy production through oxidative phosphorylation, but also due to their involvement in signaling, ion regulation, and programmed cell death. Indeed, current knowledge supports the notion that mitochondrial dysfunction is a hallmark in the pathogenesis of various diseases. Mitochondrial biogenesis and function require the coordinated action of two genomes: nuclear and mitochondrial. Unfortunately, both intrinsic and environmental genotoxic insults constantly threaten the integrity of nuclear as well as mitochondrial DNA. Despite the extensive research that has been made regarding nuclear genome instability, the importance of mitochondrial genome integrity has only recently begun to be elucidated. The specific architecture and repair mechanisms of mitochondrial DNA, as well as the dynamic behavior that mitochondria exert regarding fusion, fission, and autophagy participate in mitochondrial genome stability, and therefore, cell homeostasis. PMID:28829360

  17. Genome health nutrigenomics and nutrigenetics--diagnosis and nutritional treatment of genome damage on an individual basis.

    PubMed

    Fenech, Michael

    2008-04-01

    The term nutrigenomics refers to the effect of diet on gene expression. The term nutrigenetics refers to the impact of inherited traits on the response to a specific dietary pattern, functional food or supplement on a specific health outcome. The specific fields of genome health nutrigenomics and genome health nutrigenetics are emerging as important new research areas because it is becoming increasingly evident that (a) risk for developmental and degenerative disease increases with DNA damage which in turn is dependent on nutritional status and (b) optimal concentration of micronutrients for prevention of genome damage is also dependent on genetic polymorphisms that alter function of genes involved directly or indirectly in uptake and metabolism of micronutrients required for DNA repair and DNA replication. Development of dietary patterns, functional foods and supplements that are designed to improve genome health maintenance in humans with specific genetic backgrounds may provide an important contribution to a new optimum health strategy based on the diagnosis and individualised nutritional treatment of genome instability i.e. Genome Health Clinics.

  18. Visualization of DNA Replication in the Vertebrate Model System DT40 using the DNA Fiber Technique

    PubMed Central

    Schwab, Rebekka A.V.; Niedzwiedz, Wojciech

    2011-01-01

    Maintenance of replication fork stability is of utmost importance for dividing cells to preserve viability and prevent disease. The processes involved not only ensure faithful genome duplication in the face of endogenous and exogenous DNA damage but also prevent genomic instability, a recognized causative factor in tumor development. Here, we describe a simple and cost-effective fluorescence microscopy-based method to visualize DNA replication in the avian B-cell line DT40. This cell line provides a powerful tool to investigate protein function in vivo by reverse genetics in vertebrate cells1. DNA fiber fluorography in DT40 cells lacking a specific gene allows one to elucidate the function of this gene product in DNA replication and genome stability. Traditional methods to analyze replication fork dynamics in vertebrate cells rely on measuring the overall rate of DNA synthesis in a population of pulse-labeled cells. This is a quantitative approach and does not allow for qualitative analysis of parameters that influence DNA synthesis. In contrast, the rate of movement of active forks can be followed directly when using the DNA fiber technique2-4. In this approach, nascent DNA is labeled in vivo by incorporation of halogenated nucleotides (Fig 1A). Subsequently, individual fibers are stretched onto a microscope slide, and the labeled DNA replication tracts are stained with specific antibodies and visualized by fluorescence microscopy (Fig 1B). Initiation of replication as well as fork directionality is determined by the consecutive use of two differently modified analogues. Furthermore, the dual-labeling approach allows for quantitative analysis of parameters that influence DNA synthesis during the S-phase, i.e. replication structures such as ongoing and stalled forks, replication origin density as well as fork terminations. Finally, the experimental procedure can be accomplished within a day, and requires only general laboratory equipment and a fluorescence microscope. PMID:22064662

  19. Regulation of TGF-β signaling, exit from the cell cycle, and cellular migration through cullin cross-regulation: SCF-FBXO11 turns off CRL4-Cdt2.

    PubMed

    Abbas, Tarek; Keaton, Mignon; Dutta, Anindya

    2013-07-15

    Deregulation of the cell cycle and genome instability are common features of cancer cells and various mechanisms exist to preserve the integrity of the genome and guard against cancer. The cullin 4-RING ubiquitin ligase (CRL4) with the substrate receptor Cdt2 (CRL4 (Cdt2)) promotes cell cycle progression and prevents genome instability through ubiquitylation and degradation of Cdt1, p21, and Set8 during S phase of the cell cycle and following DNA damage. Two recently published studies report the ubiquitin-dependent degradation of Cdt2 via the cullin 1-RING ubiquitin ligase (CRL1) in association with the substrate specificity factor and tumor suppressor FBXO11 (CRL1 (FBXO11)). The newly identified pathway restrains the activity of CRL4 (Cdt2) on p21 and Set8 and regulates cellular response to TGF-β, exit from the cell cycle and cellular migration. Here, we show that the CRL1 (FBXO11) also promotes the degradation of Cdt2 during an unperturbed cell cycle to promote efficient progression through S and G 2/M phases of the cell cycle. We discuss how this new method of regulating the abundance of Cdt2 participates in various cellular activities.

  20. Lesion complexity drives age related cancer susceptibility in human mammary epithelial cells

    DOE PAGES

    Sridharan, Deepa M.; Enerio, Shiena; Stampfer, Martha M.; ...

    2017-02-28

    Exposures to various DNA damaging agents can deregulate a wide array of critical mechanisms that maintain genome integrity. It is unclear how these processes are impacted by one's age at the time of exposure and the complexity of the DNA lesion. To clarify this, we employed radiation as a tool to generate simple and complex lesions in normal primary human mammary epithelial cells derived from women of various ages. We hypothesized that genomic instability in the progeny of older cells exposed to complex damages will be exacerbated by age-associated deterioration in function and accentuate age-related cancer predisposition. Centrosome aberrations andmore » changes in stem cell numbers were examined to assess cancer susceptibility. Our data show that the frequency of centrosome aberrations proportionately increases with age following complex damage causing exposures. However, a dose-dependent increase in stem cell numbers was independent of both age and the nature of the insult. Phospho-protein signatures provide mechanistic clues to signaling networks implicated in these effects. Together these studies suggest that complex damage can threaten the genome stability of the stem cell population in older people. Propagation of this instability is subject to influence by the microenvironment and will ultimately define cancer risk in the older population.« less

  1. Radiation-induced genomic instability: Are epigenetic mechanisms the missing link?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    Purpose: This review examines the evidence for the hypothesis that epigenetics are involved in the initiation and perpetuation of radiation-induced genomic instability (RIGI). Conclusion: In addition to the extensively studied targeted effects of radiation, it is now apparent that non-targeted delayed effects such as RIGI are also important post-irradiation outcomes. In RIGI, unirradiated progeny cells display phenotypic changes at delayed times after radiation of the parental cell. RIGI is thought to be important in the process of carcinogenesis, however, the mechanism by which this occurs remains to be elucidated. In the genomically unstable clones developed by Morgan and colleagues, radiation-inducedmore » mutations, double-strand breaks, or changes in mRNA levels alone could not account for the initiation or perpetuation of RIGI. Since changes in the DNA sequence could not fully explain the mechanism of RIGI, inherited epigenetic changes may be involved. Epigenetics are known to play an important role in many cellular processes and epigenetic aberrations can lead to carcinogenesis. Recent studies in the field of radiation biology suggest that the changes in methylation patterns may be involved in RIGI. Together these clues have led us to hypothesize that epigenetics may be the missing link in understanding the mechanism behind RIGI.« less

  2. Lesion complexity drives age related cancer susceptibility in human mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Deepa M.; Enerio, Shiena; Stampfer, Martha M.

    Exposures to various DNA damaging agents can deregulate a wide array of critical mechanisms that maintain genome integrity. It is unclear how these processes are impacted by one's age at the time of exposure and the complexity of the DNA lesion. To clarify this, we employed radiation as a tool to generate simple and complex lesions in normal primary human mammary epithelial cells derived from women of various ages. We hypothesized that genomic instability in the progeny of older cells exposed to complex damages will be exacerbated by age-associated deterioration in function and accentuate age-related cancer predisposition. Centrosome aberrations andmore » changes in stem cell numbers were examined to assess cancer susceptibility. Our data show that the frequency of centrosome aberrations proportionately increases with age following complex damage causing exposures. However, a dose-dependent increase in stem cell numbers was independent of both age and the nature of the insult. Phospho-protein signatures provide mechanistic clues to signaling networks implicated in these effects. Together these studies suggest that complex damage can threaten the genome stability of the stem cell population in older people. Propagation of this instability is subject to influence by the microenvironment and will ultimately define cancer risk in the older population.« less

  3. Microsatellite instability and MLH1 promoter hypermethylation in colorectal cancer

    PubMed Central

    Niv, Yaron

    2007-01-01

    Colorectal cancer (CRC) is caused by a series of genetic or epigenetic changes, and in the last decade there has been an increased awareness that there are multiple forms of colorectal cancer that develop through different pathways. Microsatellite instability is involved in the genesis of about 15% of sporadic colorectal cancers and most of hereditary nonpolyposis cancers. Tumors with a high frequency of microsatellite instability tend to be diploid, to possess a mucinous histology, and to have a surrounding lymphoid reaction. They are more prevalent in the proximal colon and have a fast pass from polyp to cancer. Nevertheless, they are associated with longer survival than stage-matched tumors with microsatellite stability. Resistance of colorectal cancers with a high frequency of microsatellite instability to 5-fluorouracil-based chemotherapy is well established. Silencing the MLH1 gene expression by its promoter methylation stops the formation of MLH1 protein, and prevents the normal activation of the DNA repair gene. This is an important cause for genomic instability and cell proliferation to the point of colorectal cancer formation. Better knowledge of this process will have a huge impact on colorectal cancer management, prevention, treatment and prognosis. PMID:17465465

  4. Evolution of bird genomes-a transposon's-eye view.

    PubMed

    Kapusta, Aurélie; Suh, Alexander

    2017-02-01

    Birds, the most species-rich monophyletic group of land vertebrates, have been subject to some of the most intense sequencing efforts to date, making them an ideal case study for recent developments in genomics research. Here, we review how our understanding of bird genomes has changed with the recent sequencing of more than 75 species from all major avian taxa. We illuminate avian genome evolution from a previously neglected perspective: their repetitive genomic parasites, transposable elements (TEs) and endogenous viral elements (EVEs). We show that (1) birds are unique among vertebrates in terms of their genome organization; (2) information about the diversity of avian TEs and EVEs is changing rapidly; (3) flying birds have smaller genomes yet more TEs than flightless birds; (4) current second-generation genome assemblies fail to capture the variation in avian chromosome number and genome size determined with cytogenetics; (5) the genomic microcosm of bird-TE "arms races" has yet to be explored; and (6) upcoming third-generation genome assemblies suggest that birds exhibit stability in gene-rich regions and instability in TE-rich regions. We emphasize that integration of cytogenetics and single-molecule technologies with repeat-resolved genome assemblies is essential for understanding the evolution of (bird) genomes. © 2016 New York Academy of Sciences.

  5. HaCaT anchorage blockade leads to oxidative stress, DNA damage and DNA methylation changes.

    PubMed

    da Silva, Rodrigo A; Sammartino Mariano, Flavia; Planello, Aline C; Line, Sergio R P; de Souza, Ana Paula

    2015-07-01

    Cell adhesion plays an important role in neoplastic transformation. Thus, anchorage-independent growth and epithelial-mesenchymal transition, which are features associated to anoikis-resistance, are vital steps in cancer progression and metastatic colonization. Cell attachment loss may induce intracellular oxidative stress, which triggers DNA damage as methylation changes. HaCaT lineage cells were submitted to periods of 1, 3, 5 and 24 h of anchorage blockage with the purpose of study of oxidative stress effect on changes in the DNA methylation pattern, derived from attachment blockade. Through this study, HaCaT anchorage blockage-induced oxidative stress was reported to mediate alterations in global DNA methylation changes and into TP53 gene promoter pattern during anoikis-resistance acquisition. Furthermore, at the first experimental time-periods (1, 3 and 5 h), genome hypermethylation was found; however, genome hypomethylation was observed in later time-periods (24 h) of attachment impediment. The TP 53 methylation analyses were performed after 24 h of replated anoikis-resistance cells and same methylation pattern was observed, occurring an early (1 and 3 h) hypermethylation that was followed by late (5 and 24 h) hypomethylation. However, LINE-1, a marker of genomic instability, was perceived in time-dependent hypomethylation. The mRNA levels of the DNMTs enzymes were influenced by cell attachment blockage, but non-conclusive results were obtained in order to match DNMTs transcription to pattern methylation results. In conclusion, DNA damage was found, leaded by oxidative stress that has come up from HaCaT anchorage blockade, which rises a global genome hypomethylation tendency as consequence, which might denote genomic instability.

  6. Genomic instability in mice is greater in Fanconi anemia caused by deficiency of Fancd2 than Fancg.

    PubMed

    Reliene, Ramune; Yamamoto, Mitsuko L; Rao, P Nagesh; Schiestl, Robert H

    2010-12-01

    Fanconi anemia (FA) results from mutations in the FANC genes and is characterized by bone marrow failure, birth defects, and a high incidence of cancer. FANCG is a part of the FA core complex that is responsible for monoubiquitination of FANCD2 and FANCI. The precise role of the FA pathway is not well understood, although it may be involved in homologous recombination (HR), nonhomologous end joining, and translesion synthesis (TLS). Fancd2(-/-) mice have a more severe phenotype than Fancg(-/-), and other FA core complex-deficient mice, although both Fancg and Fancd2 belong to the same FA pathway. We hypothesized that Fancd2 deficiency results in a more severe phenotype because Fancd2 also has a FA pathway-independent function in the maintenance of genomic integrity. To test this hypothesis, we determined the level of DNA damage and genomic instability in Fancd2(-/-), Fancg(-/-), and wild-type controls. Fancd2(-/-) mice displayed a higher magnitude of chromosomal breakage and micronucleus formation than the wild-type or Fancg(-/-) mice. Also, DNA strand breaks were increased in Fancd2(-/-) but not in Fancg(-/-) mice. In addition, Fancd2(-/-) mice displayed an elevated frequency of DNA deletions, resulting from HR at the endogenous p(un) locus. In contrast, in Fancg(-/-) mice, the frequency of DNA deletions was decreased. Thus, Fancd2 but not Fancg deficiency results in elevated chromosomal/DNA breakage and permanent genome rearrangements. This provides evidence that Fancd2 plays an additional role in the maintenance of genomic stability than Fancg, which might explain the higher predisposition to cancer seen in the Fancd2(-/-) mice.

  7. Health Detectives: Uncovering the Mysteries of Disease (LBNL Science at the Theater)

    ScienceCinema

    Bissell, Mina; Canaria, Christie; Celnicker, Susan; Karpen, Gary

    2018-06-20

    In this April 23, 2012 Science at the Theater event, Berkeley Lab scientists discuss how they uncover the mysteries of disease in unlikely places. Speakers and topics include: World-renowned cancer researcher Mina Bissell's pioneering research on the role of the cellular microenvironment in breast cancer has changed the conversation about the disease. How does DNA instability cause disease? To find out, Christie Canaria images neural networks to study disorders such as Huntington's disease. Fruit flies can tell us a lot about ourselves. Susan Celniker explores the fruit fly genome to learn how our genome works. DNA is not destiny. Gary Karpen explores how environmental factors shape genome function and disease through epigenetics.

  8. Population genomics of intrapatient HIV-1 evolution

    PubMed Central

    Zanini, Fabio; Brodin, Johanna; Thebo, Lina; Lanz, Christa; Bratt, Göran; Albert, Jan; Neher, Richard A

    2015-01-01

    Many microbial populations rapidly adapt to changing environments with multiple variants competing for survival. To quantify such complex evolutionary dynamics in vivo, time resolved and genome wide data including rare variants are essential. We performed whole-genome deep sequencing of HIV-1 populations in 9 untreated patients, with 6-12 longitudinal samples per patient spanning 5-8 years of infection. The data can be accessed and explored via an interactive web application. We show that patterns of minor diversity are reproducible between patients and mirror global HIV-1 diversity, suggesting a universal landscape of fitness costs that control diversity. Reversions towards the ancestral HIV-1 sequence are observed throughout infection and account for almost one third of all sequence changes. Reversion rates depend strongly on conservation. Frequent recombination limits linkage disequilibrium to about 100bp in most of the genome, but strong hitch-hiking due to short range linkage limits diversity. DOI: http://dx.doi.org/10.7554/eLife.11282.001 PMID:26652000

  9. Relationships between Gene Structure and Genome Instability in Flowering Plants.

    PubMed

    Bennetzen, Jeffrey L; Wang, Xuewen

    2018-03-05

    Flowering plant (angiosperm) genomes are exceptional in their variability with respect to genome size, ploidy, chromosome number, gene content, and gene arrangement. Gene movement, although observed in some of the earliest plant genome comparisons, has been relatively underinvestigated. We present herein a description of several interesting properties of plant gene and genome structure that are pertinent to the successful movement of a gene to a new location. These considerations lead us to propose a model that can explain the frequent success of plant gene mobility, namely that Small Insulated Genes Move Around (SIGMAR). The SIGMAR model is then compared with known processes for gene mobilization, and predictions of the SIGMAR model are formulated to encourage future experimentation. The overall results indicate that the frequent gene movement in angiosperm genomes is partly an outcome of the unusual properties of angiosperm genes, especially their small size and insulation from epigenetic silencing. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Possible radioprotective effect of folic acid supplementation on low dose ionizing radiation-induced genomic instability in vitro.

    PubMed

    Padula, Gisel; Ponzinibbio, María Virginia; Seoane, Analia I

    2016-08-01

    Ionizing radiation (IR) induces DNA damage through production of single and double-strand breaks and reactive oxygen species (ROS). Folic acid (FA) prevents radiation-induced DNA damage by modification of DNA synthesis and/or repair and as a radical scavenger. We hypothesized that in vitro supplementation with FA will decrease the sensitivity of cells to genetic damage induced by low dose of ionizing radiation. Annexin V, comet and micronucleus assays were performed in cultured CHO cells. After 7 days of pre-treatment with 0, 100, 200 or 300 nM FA, cultures were exposed to radiation (100 mSv). Two un-irradiated controls were executed (0 and 100 nM FA). Data were statistically analyzed with X2-test and linear regression analysis (P 0.05). We observed a significantly decreased frequency of apoptotic cells with the increasing FA concentration (P <0.05). The same trend was observed when analyzing DNA damage and chromosomal instability (P <0.05 for 300 nM). Only micronuclei frequencies showed significant differences for linear regression analysis (R2=94.04; P <0.01). Our results have demonstrated the radioprotective effect of folic acid supplementation on low dose ionizing radiation-induced genomic instability in vitro; folate status should be taken into account when studying the effect of low dose radiation in environmental or occupational exposure.

  11. Alternative DNA structure formation in the mutagenic human c-MYC promoter

    PubMed Central

    del Mundo, Imee Marie A.; Zewail-Foote, Maha; Kerwin, Sean M.

    2017-01-01

    Abstract Mutation ‘hotspot’ regions in the genome are susceptible to genetic instability, implicating them in diseases. These hotspots are not random and often co-localize with DNA sequences potentially capable of adopting alternative DNA structures (non-B DNA, e.g. H-DNA and G4-DNA), which have been identified as endogenous sources of genomic instability. There are regions that contain overlapping sequences that may form more than one non-B DNA structure. The extent to which one structure impacts the formation/stability of another, within the sequence, is not fully understood. To address this issue, we investigated the folding preferences of oligonucleotides from a chromosomal breakpoint hotspot in the human c-MYC oncogene containing both potential G4-forming and H-DNA-forming elements. We characterized the structures formed in the presence of G4-DNA-stabilizing K+ ions or H-DNA-stabilizing Mg2+ ions using multiple techniques. We found that under conditions favorable for H-DNA formation, a stable intramolecular triplex DNA structure predominated; whereas, under K+-rich, G4-DNA-forming conditions, a plurality of unfolded and folded species were present. Thus, within a limited region containing sequences with the potential to adopt multiple structures, only one structure predominates under a given condition. The predominance of H-DNA implicates this structure in the instability associated with the human c-MYC oncogene. PMID:28334873

  12. Induction of genomic instability in TK6 human lymphoblasts exposed to 137Cs gamma radiation: comparison to the induction by exposure to accelerated 56Fe particles

    NASA Technical Reports Server (NTRS)

    Evans, Helen H.; Horng, Min-Fen; Ricanati, Marlene; Diaz-Insua, M.; Jordan, Robert; Schwartz, Jeffrey L.

    2003-01-01

    The induction of genomic instability in TK6 human lymphoblasts by exposure to (137)Cs gamma radiation was investigated by measuring the frequency and characteristics of unstable clones isolated approximately 36 generations after exposure. Clones surviving irradiation and control clones were analyzed for 17 characteristics including chromosomal aberrations, growth defects, alterations in response to a second irradiation, and mutant frequencies at the thymidine kinase and Na(+)/K(+) ATPase loci. Putative unstable clones were defined as those that exhibited a significant alteration in one or more characteristics compared to the controls. The frequency and characteristics of the unstable clones were compared in clones exposed to (137)Cs gamma rays or (56)Fe particles. The majority of the unstable clones isolated after exposure to either gamma rays or (56)Fe particles exhibited chromosomal instability. Alterations in growth characteristics, radiation response and mutant frequencies occurred much less often than cytogenetic alterations in these unstable clones. The frequency and complexity of the unstable clones were greater after exposure to (56)Fe particles than to gamma rays. Unstable clones that survived 36 generations after exposure to gamma rays exhibited increases in the incidence of dicentric chromosomes but not of chromatid breaks, whereas unstable clones that survived 36 generations after exposure to (56)Fe particles exhibited increases in both chromatid and chromosome aberrations.

  13. Genomic Insight into Mechanisms of Reversion of Antibiotic Resistance in Multidrug Resistant Mycobacterium tuberculosis Induced by a Nanomolecular Iodine-Containing Complex FS-1.

    PubMed

    Ilin, Aleksandr I; Kulmanov, Murat E; Korotetskiy, Ilya S; Islamov, Rinat A; Akhmetova, Gulshara K; Lankina, Marina V; Reva, Oleg N

    2017-01-01

    Drug induced reversion of antibiotic resistance is a promising way to combat multidrug resistant infections. However, lacking knowledge of mechanisms of drug resistance reversion impedes employing this approach in medicinal therapies. Induction of antibiotic resistance reversion by a new anti-tuberculosis drug FS-1 has been reported. FS-1 was used in this work in combination with standard anti-tuberculosis antibiotics in an experiment on laboratory guinea pigs infected with an extensively drug resistant (XDR) strain Mycobacterium tuberculosis SCAID 187.0. During the experimental trial, genetic changes in the population were analyzed by sequencing of M. tuberculosis isolates followed by variant calling. In total 11 isolates obtained from different groups of infected animals at different stages of disease development and treatment were sequenced. It was found that despite the selective pressure of antibiotics, FS-1 caused a counter-selection of drug resistant variants that speeded up the recovery of the infected animals from XDR tuberculosis. Drug resistance mutations reported in the genome of the initial strain remained intact in more sensitive isolates obtained in this experiment. Variant calling in the sequenced genomes revealed that the drug resistance reversion could be associated with a general increase in genetic heterogeneity of the population of M. tuberculosis . Accumulation of mutations in PpsA and PpsE subunits of phenolpthiocerol polyketide synthase was observed in the isolates treated with FS-1 that may indicate an increase of persisting variants in the population. It was hypothesized that FS-1 caused an active counter-selection of drug resistant variants from the population by aggravating the cumulated fitness cost of the drug resistance mutations. Action of FS-1 on drug resistant bacteria exemplified the theoretically predicted induced synergy mechanism of drug resistance reversion. An experimental model to study the drug resistance reversion phenomenon is hereby introduced.

  14. Control of rotordynamic instability in a typical gas turbine's power system

    NASA Technical Reports Server (NTRS)

    Veikos, N. M.; Page, R. H.; Tornillo, E. J.

    1984-01-01

    The effect of rotor internal friction on the system's stability was studied when operated above the first critical speed. This internal friction is commonly caused by sliding press fits or sliding splines. Under conditions of high speed and low bearing damping, these systems will occassionally whirl at a frequency less than the shaft's rotational speed. This subsynchronous precession is a self excited phenomenon and stress reversals are created. This phenomenon was observed during engine testing. The reduction of spline friction and/or the inclusion of squeeze film damping have controlled the instability. Case history and the detail design of the squeeze film dampers is discussed.

  15. Critical target and dose and dose-rate responses for the induction of chromosomal instability by ionizing radiation

    NASA Technical Reports Server (NTRS)

    Limoli, C. L.; Corcoran, J. J.; Milligan, J. R.; Ward, J. F.; Morgan, W. F.

    1999-01-01

    To investigate the critical target, dose response and dose-rate response for the induction of chromosomal instability by ionizing radiation, bromodeoxyuridine (BrdU)-substituted and unsubstituted GM10115 cells were exposed to a range of doses (0.1-10 Gy) and different dose rates (0.092-17.45 Gy min(-1)). The status of chromosomal stability was determined by fluorescence in situ hybridization approximately 20 generations after irradiation in clonal populations derived from single progenitor cells surviving acute exposure. Overall, nearly 700 individual clones representing over 140,000 metaphases were analyzed. In cells unsubstituted with BrdU, a dose response was found, where the probability of observing delayed chromosomal instability in any given clone was 3% per gray of X rays. For cells substituted with 25-66% BrdU, however, a dose response was observed only at low doses (<1.0 Gy); at higher doses (>1.0 Gy), the incidence of chromosomal instability leveled off. There was an increase in the frequency and complexity of chromosomal instability per unit dose compared to cells unsubstituted with BrdU. The frequency of chromosomal instability appeared to saturate around approximately 30%, an effect which occurred at much lower doses in the presence of BrdU. Changing the gamma-ray dose rate by a factor of 190 (0.092 to 17.45 Gy min(-1)) produced no significant differences in the frequency of chromosomal instability. The enhancement of chromosomal instability promoted by the presence of the BrdU argues that DNA comprises at least one of the critical targets important for the induction of this end point of genomic instability.

  16. Small amplitude waves and linear firehose and mirror instabilities in rotating polytropic quantum plasma

    NASA Astrophysics Data System (ADS)

    Bhakta, S.; Prajapati, R. P.; Dolai, B.

    2017-08-01

    The small amplitude quantum magnetohydrodynamic (QMHD) waves and linear firehose and mirror instabilities in uniformly rotating dense quantum plasma have been investigated using generalized polytropic pressure laws. The QMHD model and Chew-Goldberger-Low (CGL) set of equations are used to formulate the basic equations of the problem. The general dispersion relation is derived using normal mode analysis which is discussed in parallel, transverse, and oblique wave propagations. The fast, slow, and intermediate QMHD wave modes and linear firehose and mirror instabilities are analyzed for isotropic MHD and CGL quantum fluid plasmas. The firehose instability remains unaffected while the mirror instability is modified by polytropic exponents and quantum diffraction parameter. The graphical illustrations show that quantum corrections have a stabilizing influence on the mirror instability. The presence of uniform rotation stabilizes while quantum corrections destabilize the growth rate of the system. It is also observed that the growth rate stabilizes much faster in parallel wave propagation in comparison to the transverse mode of propagation. The quantum corrections and polytropic exponents also modify the pseudo-MHD and reverse-MHD modes in dense quantum plasma. The phase speed (Friedrichs) diagrams of slow, fast, and intermediate wave modes are illustrated for isotropic MHD and double adiabatic MHD or CGL quantum plasmas, where the significant role of magnetic field and quantum diffraction parameters on the phase speed is observed.

  17. Reversibility of red blood cell deformation

    NASA Astrophysics Data System (ADS)

    Zeitz, Maria; Sens, P.

    2012-05-01

    The ability of cells to undergo reversible shape changes is often crucial to their survival. For red blood cells (RBCs), irreversible alteration of the cell shape and flexibility often causes anemia. Here we show theoretically that RBCs may react irreversibly to mechanical perturbations because of tensile stress in their cytoskeleton. The transient polymerization of protein fibers inside the cell seen in sickle cell anemia or a transient external force can trigger the formation of a cytoskeleton-free membrane protrusion of μm dimensions. The complex relaxation kinetics of the cell shape is shown to be responsible for selecting the final state once the perturbation is removed, thereby controlling the reversibility of the deformation. In some case, tubular protrusion are expected to relax via a peculiar “pearling instability.”

  18. Reversibility of red blood cell deformation.

    PubMed

    Zeitz, Maria; Sens, P

    2012-05-01

    The ability of cells to undergo reversible shape changes is often crucial to their survival. For red blood cells (RBCs), irreversible alteration of the cell shape and flexibility often causes anemia. Here we show theoretically that RBCs may react irreversibly to mechanical perturbations because of tensile stress in their cytoskeleton. The transient polymerization of protein fibers inside the cell seen in sickle cell anemia or a transient external force can trigger the formation of a cytoskeleton-free membrane protrusion of μm dimensions. The complex relaxation kinetics of the cell shape is shown to be responsible for selecting the final state once the perturbation is removed, thereby controlling the reversibility of the deformation. In some case, tubular protrusion are expected to relax via a peculiar "pearling instability."

  19. Super-Alfvénic translation of a field-reversed configuration into a large-bore dielectric chamber

    NASA Astrophysics Data System (ADS)

    Sekiguchi, J.; Asai, T.; Takahashi, T.

    2018-01-01

    An experimental device to demonstrate additional heating and control methods for a field-reversed configuration (FRC) has been developed. The newly developed device, named FRC Amplification via Translation (FAT), has a field-reversed theta-pinch plasma source and a low-elongation dielectric (transparent quartz) confinement chamber with quasi-static confinement field. In the initial experiments on the FAT device, FRC translation and trapping were successfully demonstrated. Although the typical elongation of the trapped FRC in the confinement region was roughly three, no disruptive global instability, such as tilt, was observed. The FAT device increases the latitude to perform translation-related experiments, such as those concerning inductive current drive, equivalent neutral beam injection effects, and wave applications.

  20. Multi-Fluid Simulations of Field Reversed Configuration Formation

    NASA Astrophysics Data System (ADS)

    Sousa, Eder; Martin, Robert

    2017-10-01

    The use of field reversed configuration (FRC) have been studied extensively for fusion application but here we investigate them for propulsion purposes. FRCs have the potential to produce highly variable thrust and specific impulse using different gases as propellant. Aspects of the FRC formation physics, using a rotating magnetic field (RMF) at low power, are simulated using a multi-fluid plasma model. Results are compared with experimental observations with emphasis in the development of instabilities and robustness of the field reversal. The use of collisional radiative models are used to help compare experiment versus simulation results. Distribution A: Approved for public release; distribution unlimited; Clearance No. 17445. This work is supported by the Air Force Office of Scientific Research Grant Number 17RQCOR465.

  1. copia-like retrotransposons are ubiquitous among plants.

    PubMed Central

    Voytas, D F; Cummings, M P; Koniczny, A; Ausubel, F M; Rodermel, S R

    1992-01-01

    Transposable genetic elements are assumed to be a feature of all eukaryotic genomes. Their identification, however, has largely been haphazard, limited principally to organisms subjected to molecular or genetic scrutiny. We assessed the phylogenetic distribution of copia-like retrotransposons, a class of transposable element that proliferates by reverse transcription, using a polymerase chain reaction assay designed to detect copia-like element reverse transcriptase sequences. copia-like retrotransposons were identified in 64 plant species as well as the photosynthetic protist Volvox carteri. The plant species included representatives from 9 of 10 plant divisions, including bryophytes, lycopods, ferns, gymnosperms, and angiosperms. DNA sequence analysis of 29 cloned PCR products and of a maize retrotransposon cDNA confirmed the identity of these sequences as copia-like reverse transcriptase sequences, thereby demonstrating that this class of retrotransposons is a ubiquitous component of plant genomes. Images PMID:1379734

  2. Trinucleotide's quadruplet symmetries and natural symmetry law of DNA creation ensuing Chargaff's second parity rule.

    PubMed

    Rosandić, Marija; Vlahović, Ines; Glunčić, Matko; Paar, Vladimir

    2016-07-01

    For almost 50 years the conclusive explanation of Chargaff's second parity rule (CSPR), the equality of frequencies of nucleotides A=T and C=G or the equality of direct and reverse complement trinucleotides in the same DNA strand, has not been determined yet. Here, we relate CSPR to the interstrand mirror symmetry in 20 symbolic quadruplets of trinucleotides (direct, reverse complement, complement, and reverse) mapped to double-stranded genome. The symmetries of Q-box corresponding to quadruplets can be obtained as a consequence of Watson-Crick base pairing and CSPR together. Alternatively, assuming Natural symmetry law for DNA creation that each trinucleotide in one strand of DNA must simultaneously appear also in the opposite strand automatically leads to Q-box direct-reverse mirror symmetry which in conjunction with Watson-Crick base pairing generates CSPR. We demonstrate quadruplet's symmetries in chromosomes of wide range of organisms, from Escherichia coli to Neanderthal and human genomes, introducing novel quadruplet-frequency histograms and 3D-diagrams with combined interstrand frequencies. These "landscapes" are mutually similar in all mammals, including extinct Neanderthals, and somewhat different in most of older species. In human chromosomes 1-12, and X, Y the "landscapes" are almost identical and slightly different in the remaining smaller and telocentric chromosomes. Quadruplet frequencies could provide a new robust tool for characterization and classification of genomes and their evolutionary trajectories.

  3. RNA Virus Reverse Genetics and Vaccine Design

    PubMed Central

    Stobart, Christopher C.; Moore, Martin L.

    2014-01-01

    RNA viruses are capable of rapid spread and severe or potentially lethal disease in both animals and humans. The development of reverse genetics systems for manipulation and study of RNA virus genomes has provided platforms for designing and optimizing viral mutants for vaccine development. Here, we review the impact of RNA virus reverse genetics systems on past and current efforts to design effective and safe viral therapeutics and vaccines. PMID:24967693

  4. Developmental instability in Rhus copallinum L.: multiple stressors, years, and responses

    USGS Publications Warehouse

    Freeman, D. Carl; Brown, Michelle L.; Duda, Jeffrey J.; Graham, John H.; Emlen, John M.; Krzysik, Anthony J.; Balbach, Harold E.; Kovacic, Dave A.; Zak, John C.

    2004-01-01

    Developmental instability, as assessed by leaf fluctuating asymmetry and stem internode allometry, was examined at nine sites, representing three levels of disturbance, over multiple years. Site selection was based on land‐use disturbance classes related to training of mechanized infantry and other land management activities at Fort Benning, Georgia. Developmental instability varied among sites and years, and there was a strong site‐by‐year interaction for many traits. Indeed, depending on the year, the same site could be ranked as having the greatest and least amount of leaf fluctuating asymmetry. Burning a site the year prior to collecting the leaves profoundly influenced measures of leaf fluctuating asymmetry. In the absence of recent burning, leaf fluctuating asymmetry declined with increasing disturbance, but burning the year prior to collecting the leaves reversed this trend. Total plant cover, proportion of bare ground, and amount of plant litter influenced the amount of leaf asymmetry in a site‐dependent manner. Overall, burning influenced the levels of developmental instability more than either disturbance or microhabitat variables such as total plant cover, which should reflect competition in a plant’s immediate neighborhood.

  5. BYSTANDER EFFECTS, GENOMIC INSTABILITY, ADAPTIVE RESPONSE AND CANCER RISK ASSESSMENT FOR RADIATION AND CHEMICAL EXPOSURES

    EPA Science Inventory

    There is an increased interest in utilizing mechanistic data in support of the cancer risk assessment process for ionizing radiation and environmental chemical exposures. In this regard the use of biologically based dose-response models is particularly advocated. The aim is to pr...

  6. Loss of Nucleotide Excision Repair as a Source of Genomic Instability in Breast Cancer

    DTIC Science & Technology

    2006-06-01

    requiring millions of cells and DNA extraction techniques. Therefore, this approach may prove useful for determining NER activity from clinical... grapefruit juice per day, as this has been shown to cause liver problems when people are also taking lovastatin. Drinking less than this amount (for

  7. FOXM1 upregulation is an early event in human squamous cell carcinoma and it is enhanced by nicotine during malignant transformation.

    PubMed

    Gemenetzidis, Emilios; Bose, Amrita; Riaz, Adeel M; Chaplin, Tracy; Young, Bryan D; Ali, Muhammad; Sugden, David; Thurlow, Johanna K; Cheong, Sok-Ching; Teo, Soo-Hwang; Wan, Hong; Waseem, Ahmad; Parkinson, Eric K; Fortune, Farida; Teh, Muy-Teck

    2009-01-01

    Cancer associated with smoking and drinking remains a serious health problem worldwide. The survival of patients is very poor due to the lack of effective early biomarkers. FOXM1 overexpression is linked to the majority of human cancers but its mechanism remains unclear in head and neck squamous cell carcinoma (HNSCC). FOXM1 mRNA and protein expressions were investigated in four independent cohorts (total 75 patients) consisting of normal, premalignant and HNSCC tissues and cells using quantitative PCR (qPCR), expression microarray, immunohistochemistry and immunocytochemistry. Effect of putative oral carcinogens on FOXM1 transcriptional activity was dose-dependently assayed and confirmed using a FOXM1-specific luciferase reporter system, qPCR, immunoblotting and short-hairpin RNA interference. Genome-wide single nucleotide polymorphism (SNP) array was used to 'trace' the genomic instability signature pattern in 8 clonal lines of FOXM1-induced malignant human oral keratinocytes. Furthermore, acute FOXM1 upregulation in primary oral keratinocytes directly induced genomic instability. We have shown for the first time that overexpression of FOXM1 precedes HNSCC malignancy. Screening putative carcinogens in human oral keratinocytes surprisingly showed that nicotine, which is not perceived to be a human carcinogen, directly induced FOXM1 mRNA, protein stabilisation and transcriptional activity at concentrations relevant to tobacco chewers. Importantly, nicotine also augmented FOXM1-induced transformation of human oral keratinocytes. A centrosomal protein CEP55 and a DNA helicase/putative stem cell marker HELLS, both located within a consensus loci (10q23), were found to be novel targets of FOXM1 and their expression correlated tightly with HNSCC progression. This study cautions the potential co-carcinogenic effect of nicotine in tobacco replacement therapies. We hypothesise that aberrant upregulation of FOXM1 may be inducing genomic instability through a program of malignant transformation involving the activation of CEP55 and HELLS which may facilitate aberrant mitosis and epigenetic modifications. Our finding that FOXM1 is upregulated early during oral cancer progression renders FOXM1 an attractive diagnostic biomarker for early cancer detection and its candidate mechanistic targets, CEP55 and HELLS, as indicators of malignant conversion and progression.

  8. Genome Therapy of Myotonic Dystrophy Type 1 iPS Cells for Development of Autologous Stem Cell Therapy.

    PubMed

    Gao, Yuanzheng; Guo, Xiuming; Santostefano, Katherine; Wang, Yanlin; Reid, Tammy; Zeng, Desmond; Terada, Naohiro; Ashizawa, Tetsuo; Xia, Guangbin

    2016-08-01

    Myotonic dystrophy type 1 (DM1) is caused by expanded Cytosine-Thymine-Guanine (CTG) repeats in the 3'-untranslated region (3' UTR) of the Dystrophia myotonica protein kinase (DMPK) gene, for which there is no effective therapy. The objective of this study is to develop genome therapy in human DM1 induced pluripotent stem (iPS) cells to eliminate mutant transcripts and reverse the phenotypes for developing autologous stem cell therapy. The general approach involves targeted insertion of polyA signals (PASs) upstream of DMPK CTG repeats, which will lead to premature termination of transcription and elimination of toxic mutant transcripts. Insertion of PASs was mediated by homologous recombination triggered by site-specific transcription activator-like effector nuclease (TALEN)-induced double-strand break. We found genome-treated DM1 iPS cells continue to maintain pluripotency. The insertion of PASs led to elimination of mutant transcripts and complete disappearance of nuclear RNA foci and reversal of aberrant splicing in linear-differentiated neural stem cells, cardiomyocytes, and teratoma tissues. In conclusion, genome therapy by insertion of PASs upstream of the expanded DMPK CTG repeats prevented the production of toxic mutant transcripts and reversal of phenotypes in DM1 iPS cells and their progeny. These genetically-treated iPS cells will have broad clinical application in developing autologous stem cell therapy for DM1.

  9. Comprehensive phylogenetic analysis of bacterial reverse transcriptases.

    PubMed

    Toro, Nicolás; Nisa-Martínez, Rafael

    2014-01-01

    Much less is known about reverse transcriptases (RTs) in prokaryotes than in eukaryotes, with most prokaryotic enzymes still uncharacterized. Two surveys involving BLAST searches for RT genes in prokaryotic genomes revealed the presence of large numbers of diverse, uncharacterized RTs and RT-like sequences. Here, using consistent annotation across all sequenced bacterial species from GenBank and other sources via RAST, available from the PATRIC (Pathogenic Resource Integration Center) platform, we have compiled the data for currently annotated reverse transcriptases from completely sequenced bacterial genomes. RT sequences are broadly distributed across bacterial phyla, but green sulfur bacteria and cyanobacteria have the highest levels of RT sequence diversity (≤85% identity) per genome. By contrast, phylum Actinobacteria, for which a large number of genomes have been sequenced, was found to have a low RT sequence diversity. Phylogenetic analyses revealed that bacterial RTs could be classified into 17 main groups: group II introns, retrons/retron-like RTs, diversity-generating retroelements (DGRs), Abi-like RTs, CRISPR-Cas-associated RTs, group II-like RTs (G2L), and 11 other groups of RTs of unknown function. Proteobacteria had the highest potential functional diversity, as they possessed most of the RT groups. Group II introns and DGRs were the most widely distributed RTs in bacterial phyla. Our results provide insights into bacterial RT phylogeny and the basis for an update of annotation systems based on sequence/domain homology.

  10. Comprehensive Phylogenetic Analysis of Bacterial Reverse Transcriptases

    PubMed Central

    Toro, Nicolás; Nisa-Martínez, Rafael

    2014-01-01

    Much less is known about reverse transcriptases (RTs) in prokaryotes than in eukaryotes, with most prokaryotic enzymes still uncharacterized. Two surveys involving BLAST searches for RT genes in prokaryotic genomes revealed the presence of large numbers of diverse, uncharacterized RTs and RT-like sequences. Here, using consistent annotation across all sequenced bacterial species from GenBank and other sources via RAST, available from the PATRIC (Pathogenic Resource Integration Center) platform, we have compiled the data for currently annotated reverse transcriptases from completely sequenced bacterial genomes. RT sequences are broadly distributed across bacterial phyla, but green sulfur bacteria and cyanobacteria have the highest levels of RT sequence diversity (≤85% identity) per genome. By contrast, phylum Actinobacteria, for which a large number of genomes have been sequenced, was found to have a low RT sequence diversity. Phylogenetic analyses revealed that bacterial RTs could be classified into 17 main groups: group II introns, retrons/retron-like RTs, diversity-generating retroelements (DGRs), Abi-like RTs, CRISPR-Cas-associated RTs, group II-like RTs (G2L), and 11 other groups of RTs of unknown function. Proteobacteria had the highest potential functional diversity, as they possessed most of the RT groups. Group II introns and DGRs were the most widely distributed RTs in bacterial phyla. Our results provide insights into bacterial RT phylogeny and the basis for an update of annotation systems based on sequence/domain homology. PMID:25423096

  11. Complete mitochondrial genome and evolutionary analysis of Turritopsis dohrnii, the "immortal" jellyfish with a reversible life-cycle.

    PubMed

    Lisenkova, A A; Grigorenko, A P; Tyazhelova, T V; Andreeva, T V; Gusev, F E; Manakhov, A D; Goltsov, A Yu; Piraino, S; Miglietta, M P; Rogaev, E I

    2017-02-01

    Turritopsis dohrnii (Cnidaria, Hydrozoa, Hydroidolina, Anthoathecata) is the only known metazoan that is capable of reversing its life cycle via morph rejuvenation from the adult medusa stage to the juvenile polyp stage. Here, we present a complete mitochondrial (mt) genome sequence of T. dohrnii, which harbors genes for 13 proteins, two transfer RNAs, and two ribosomal RNAs. The T. dohrnii mt genome is characterized by typical features of species in the Hydroidolina subclass, such as a high A+T content (71.5%), reversed transcriptional orientation for the large rRNA subunit gene, and paucity of CGN codons. An incomplete complementary duplicate of the cox1 gene was found at the 5' end of the T. dohrnii mt chromosome, as were variable repeat regions flanking the chromosome. We identified species-specific variations (nad5, nad6, cob, and cox1 genes) and putative selective constraints (atp8, nad1, nad2, and nad5 genes) in the mt genes of T. dohrnii, and predicted alterations in tertiary structures of respiratory chain proteins (NADH4, NADH5, and COX1 proteins) of T. dohrnii. Based on comparative analyses of available hydrozoan mt genomes, we also determined the taxonomic relationships of T. dohrnii, recovering Filifera IV as a paraphyletic taxon, and assessed intraspecific diversity of various Hydrozoa species. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Mechanisms Used for Genomic Proliferation by Thermophilic Group II Introns

    PubMed Central

    Mohr, Georg; Ghanem, Eman; Lambowitz, Alan M.

    2010-01-01

    Mobile group II introns, which are found in bacterial and organellar genomes, are site-specific retroelments hypothesized to be evolutionary ancestors of spliceosomal introns and retrotransposons in higher organisms. Most bacteria, however, contain no more than one or a few group II introns, making it unclear how introns could have proliferated to higher copy numbers in eukaryotic genomes. An exception is the thermophilic cyanobacterium Thermosynechococcus elongatus, which contains 28 closely related copies of a group II intron, constituting ∼1.3% of the genome. Here, by using a combination of bioinformatics and mobility assays at different temperatures, we identified mechanisms that contribute to the proliferation of T. elongatus group II introns. These mechanisms include divergence of DNA target specificity to avoid target site saturation; adaptation of some intron-encoded reverse transcriptases to splice and mobilize multiple degenerate introns that do not encode reverse transcriptases, leading to a common splicing apparatus; and preferential insertion within other mobile introns or insertion elements, which provide new unoccupied sites in expanding non-essential DNA regions. Additionally, unlike mesophilic group II introns, the thermophilic T. elongatus introns rely on elevated temperatures to help promote DNA strand separation, enabling access to a larger number of DNA target sites by base pairing of the intron RNA, with minimal constraint from the reverse transcriptase. Our results provide insight into group II intron proliferation mechanisms and show that higher temperatures, which are thought to have prevailed on Earth during the emergence of eukaryotes, favor intron proliferation by increasing the accessibility of DNA target sites. We also identify actively mobile thermophilic introns, which may be useful for structural studies, gene targeting in thermophiles, and as a source of thermostable reverse transcriptases. PMID:20543989

  13. Neil2-null Mice Accumulate Oxidized DNA Bases in the Transcriptionally Active Sequences of the Genome and Are Susceptible to Innate Inflammation.

    PubMed

    Chakraborty, Anirban; Wakamiya, Maki; Venkova-Canova, Tatiana; Pandita, Raj K; Aguilera-Aguirre, Leopoldo; Sarker, Altaf H; Singh, Dharmendra Kumar; Hosoki, Koa; Wood, Thomas G; Sharma, Gulshan; Cardenas, Victor; Sarkar, Partha S; Sur, Sanjiv; Pandita, Tej K; Boldogh, Istvan; Hazra, Tapas K

    2015-10-09

    Why mammalian cells possess multiple DNA glycosylases (DGs) with overlapping substrate ranges for repairing oxidatively damaged bases via the base excision repair (BER) pathway is a long-standing question. To determine the biological role of these DGs, null animal models have been generated. Here, we report the generation and characterization of mice lacking Neil2 (Nei-like 2). As in mice deficient in each of the other four oxidized base-specific DGs (OGG1, NTH1, NEIL1, and NEIL3), Neil2-null mice show no overt phenotype. However, middle-aged to old Neil2-null mice show the accumulation of oxidative genomic damage, mostly in the transcribed regions. Immuno-pulldown analysis from wild-type (WT) mouse tissue showed the association of NEIL2 with RNA polymerase II, along with Cockayne syndrome group B protein, TFIIH, and other BER proteins. Chromatin immunoprecipitation analysis from mouse tissue showed co-occupancy of NEIL2 and RNA polymerase II only on the transcribed genes, consistent with our earlier in vitro findings on NEIL2's role in transcription-coupled BER. This study provides the first in vivo evidence of genomic region-specific repair in mammals. Furthermore, telomere loss and genomic instability were observed at a higher frequency in embryonic fibroblasts from Neil2-null mice than from the WT. Moreover, Neil2-null mice are much more responsive to inflammatory agents than WT mice. Taken together, our results underscore the importance of NEIL2 in protecting mammals from the development of various pathologies that are linked to genomic instability and/or inflammation. NEIL2 is thus likely to play an important role in long term genomic maintenance, particularly in long-lived mammals such as humans. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. The chromosomal distributions of Ty1-copia group retrotransposable elements in higher plants and their implications for genome evolution

    Treesearch

    J.S. (Pat) Heslop-Harrison; Andrea Brandes; Shin Taketa; Thomas Schmidt; Alexander V. Vershinin; Elena G. Alkhimova; Anette Kamm; Robert L. Doudrick; [and others

    1997-01-01

    Retrotransposons make up a major fraction - sometimes more than 40% - of all plant genomes investigated so far. We have isolated the reverse transcriptase domains of theTyl-copia group elements from several species, ranging in genome size from some 100 Mbp to 23,000 Mbp, and determined the distribution patterns of these retrotransposons on metaphase chromosomes and...

  15. Cre/lox-Recombinase-Mediated Cassette Exchange for Reversible Site-Specific Genomic Targeting of the Disease Vector, Aedes aegypti.

    PubMed

    Häcker, Irina; Harrell Ii, Robert A; Eichner, Gerrit; Pilitt, Kristina L; O'Brochta, David A; Handler, Alfred M; Schetelig, Marc F

    2017-03-07

    Site-specific genome modification (SSM) is an important tool for mosquito functional genomics and comparative gene expression studies, which contribute to a better understanding of mosquito biology and are thus a key to finding new strategies to eliminate vector-borne diseases. Moreover, it allows for the creation of advanced transgenic strains for vector control programs. SSM circumvents the drawbacks of transposon-mediated transgenesis, where random transgene integration into the host genome results in insertional mutagenesis and variable position effects. We applied the Cre/lox recombinase-mediated cassette exchange (RMCE) system to Aedes aegypti, the vector of dengue, chikungunya, and Zika viruses. In this context we created four target site lines for RMCE and evaluated their fitness costs. Cre-RMCE is functional in a two-step mechanism and with good efficiency in Ae. aegypti. The advantages of Cre-RMCE over existing site-specific modification systems for Ae. aegypti, phiC31-RMCE and CRISPR, originate in the preservation of the recombination sites, which 1) allows successive modifications and rapid expansion or adaptation of existing systems by repeated targeting of the same site; and 2) provides reversibility, thus allowing the excision of undesired sequences. Thereby, Cre-RMCE complements existing genomic modification tools, adding flexibility and versatility to vector genome targeting.

  16. Bacteria exploit a polymorphic instability of the flagellar filament to escape from traps.

    PubMed

    Kühn, Marco J; Schmidt, Felix K; Eckhardt, Bruno; Thormann, Kai M

    2017-06-13

    Many bacterial species swim by rotating single polar helical flagella. Depending on the direction of rotation, they can swim forward or backward and change directions to move along chemical gradients but also to navigate their obstructed natural environment in soils, sediments, or mucus. When they get stuck, they naturally try to back out, but they can also resort to a radically different flagellar mode, which we discovered here. Using high-speed microscopy, we monitored the swimming behavior of the monopolarly flagellated species Shewanella putrefaciens with fluorescently labeled flagellar filaments at an agarose-glass interface. We show that, when a cell gets stuck, the polar flagellar filament executes a polymorphic change into a spiral-like form that wraps around the cell body in a spiral-like fashion and enables the cell to escape by a screw-like backward motion. Microscopy and modeling suggest that this propagation mode is triggered by an instability of the flagellum under reversal of the rotation and the applied torque. The switch is reversible and bacteria that have escaped the trap can return to their normal swimming mode by another reversal of motor direction. The screw-type flagellar arrangement enables a unique mode of propagation and, given the large number of polarly flagellated bacteria, we expect it to be a common and widespread escape or motility mode in complex and structured environments.

  17. A novel reverse genetics system for production of infectious West Nile virus using homologous recombination in mammalian cells.

    PubMed

    Kobayashi, Shintaro; Yoshii, Kentaro; Hirano, Minato; Muto, Memi; Kariwa, Hiroaki

    2017-02-01

    Reverse genetics systems facilitate investigation of many aspects of the life cycle and pathogenesis of viruses. However, genetic instability in Escherichia coli has hampered development of a reverse genetics system for West Nile virus (WNV). In this study, we developed a novel reverse genetics system for WNV based on homologous recombination in mammalian cells. Introduction of the DNA fragment coding for the WNV structural protein together with a DNA-based replicon resulted in the release of infectious WNV. The growth rate and plaque size of the recombinant virus were almost identical to those of the parent WNV. Furthermore, chimeric WNV was produced by introducing the DNA fragment coding for the structural protein and replicon plasmid derived from various strains. Here, we report development of a novel system that will facilitate research into WNV infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. R-loops: targets for nuclease cleavage and repeat instability.

    PubMed

    Freudenreich, Catherine H

    2018-01-11

    R-loops form when transcribed RNA remains bound to its DNA template to form a stable RNA:DNA hybrid. Stable R-loops form when the RNA is purine-rich, and are further stabilized by DNA secondary structures on the non-template strand. Interestingly, many expandable and disease-causing repeat sequences form stable R-loops, and R-loops can contribute to repeat instability. Repeat expansions are responsible for multiple neurodegenerative diseases, including Huntington's disease, myotonic dystrophy, and several types of ataxias. Recently, it was found that R-loops at an expanded CAG/CTG repeat tract cause DNA breaks as well as repeat instability (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392-E8401, 2017). Two factors were identified as causing R-loop-dependent breaks at CAG/CTG tracts: deamination of cytosines and the MutLγ (Mlh1-Mlh3) endonuclease, defining two new mechanisms for how R-loops can generate DNA breaks (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392-E8401, 2017). Following R-loop-dependent nicking, base excision repair resulted in repeat instability. These results have implications for human repeat expansion diseases and provide a paradigm for how RNA:DNA hybrids can cause genome instability at structure-forming DNA sequences. This perspective summarizes mechanisms of R-loop-induced fragility at G-rich repeats and new links between DNA breaks and repeat instability.

  19. Comparison of peanut gentics and physical maps provided insights on collinearity, reversions and translocations

    USDA-ARS?s Scientific Manuscript database

    Genetic and physical maps are the valuable resources for peanut research community in understanding genome organization and serving as the basis for map-based cloning and marker-assisted selection. Physical maps of two diploid wild peanut progenitor species, Arachis duranensis (A genome) and A. ipae...

  20. Expanded complexity of unstable repeat diseases

    PubMed Central

    Polak, Urszula; McIvor, Elizabeth; Dent, Sharon Y.R.; Wells, Robert D.; Napierala, Marek

    2015-01-01

    Unstable Repeat Diseases (URDs) share a common mutational phenomenon of changes in the copy number of short, tandemly repeated DNA sequences. More than 20 human neurological diseases are caused by instability, predominantly expansion, of microsatellite sequences. Changes in the repeat size initiate a cascade of pathological processes, frequently characteristic of a unique disease or a small subgroup of the URDs. Understanding of both the mechanism of repeat instability and molecular consequences of the repeat expansions is critical to developing successful therapies for these diseases. Recent technological breakthroughs in whole genome, transcriptome and proteome analyses will almost certainly lead to new discoveries regarding the mechanisms of repeat instability, the pathogenesis of URDs, and will facilitate development of novel therapeutic approaches. The aim of this review is to give a general overview of unstable repeats diseases, highlight the complexities of these diseases, and feature the emerging discoveries in the field. PMID:23233240

  1. Caspase 3 promotes genetic instability and carcinogenesis

    PubMed Central

    Liu, Xinjian; He, Yujun; Li, Fang; Huang, Qian; Kato, Takamitsu A.; Hall, Russell P; Li, Chuan-Yuan

    2015-01-01

    Summary Apoptosis is typically considered an anti-oncogenic process since caspase activation can promote the elimination of genetically unstable or damaged cells. We report that a central effector of apoptosis, caspase 3, facilitates, rather than suppresses, chemical and radiation-induced genetic instability and carcinogenesis. We found that a significant fraction of mammalian cells treated with ionizing radiation can survive, despite caspase 3 activation. Moreover, this sublethal activation of caspase 3 promoted persistent DNA damage and oncogenic transformation. In addition, chemically-induced skin carcinogenesis was significantly reduced in mice genetically deficient in caspase 3. Furthermore, attenuation of Endo G activity significantly reduced radiation-induced DNA damage and oncogenic transformation, identifying Endo G as a downstream effector of caspase 3 in this pathway. Our findings suggest that rather than acting as a broad inhibitor of carcinogenesis, caspase 3 activation may contribute to genome instability and play a pivotal role in tumor formation following damage. PMID:25866249

  2. A Dual Role for UVRAG in Maintaining Chromosomal Stability Independent of Autophagy

    PubMed Central

    Zhao, Zhen; Oh, Soohwan; Li, Dapeng; Ni, Duojiao; Pirooz, Sara Dolatshahi; Lee, Joo-Hyung; Yang, Shunhua; Lee, June-Yong; Ghozalli, Irene; Costanzo, Vincenzo; Stark, Jeremy M.; Liang, Chengyu

    2012-01-01

    SUMMARY Autophagy defects have been recently associated with chromosomal instability (CIN), a hallmark of human cancer. However, the functional specificity and mechanism of action of autophagy-related factors in genome stability remain elusive. Here we report that UVRAG, an autophagic tumor suppressor, plays a dual role in chromosomal stability, surprisingly independent of autophagy. We establish that UVRAG promotes DNA double-strand-breaks repair by directly binding and activating DNA-PK in non-homologous end-joining. Disruption of UVRAG increases genetic instability and sensitivity of cells to irradiation. Furthermore, UVRAG was found also localized at centrosomes and physically associated with CEP63, an integral component of centrosomes. Disruption of the association of UVRAG with centrosomes causes centrosome instability and aneuploidy. UVRAG thus represents an autophagy-related molecular factor that also has a convergent role in patrolling both the structural integrity and proper segregation of chromosomes, which may confer autophagy-independent tumor suppressor activity. PMID:22542840

  3. Baroclinic instability in the interiors of the giant planets: A cooling history of Uranus?

    NASA Technical Reports Server (NTRS)

    Holme, Richard; Ingersoll, Andrew P.

    1994-01-01

    We propose a quasigeostrophic, baroclinic model for heat transport within the interior of a stably stratified Jovian planet, based on motion in thin cylindrical annuli. Density decreases from the center outward and is zero at the surface of the planet. In the homogeneous case (no core), we find instability for the poles hotter than the equator, but not for the reverse. If the motion is bounded by an impenetrable core, instability occurs for both cases. Much of the behavior can be explained by analogy to conventional baroclinic instability theory. Motivated by our results, we explore a possible connection between the highly inclined rotation axis of Uranus and its anomalously low surface heat flux. We assume that the planets formed hot. Our conjecture is that heat was efficiently convected outwards by baroclinic instability in Uranus (with the poles hotter than the equator), but not in the other three Jovian planets. The surface temperature was higher for the stably stratified case (Uranus), leading to a higher rate of infrared emission and faster cooling. Therefore, we propose that Uranus lost its internal heat sooner than Neptune because baroclinic motions, permitted by its inclination to the sun, were able to extract its internal heat while the surface was still warm.

  4. Transcription instability in high-risk neuroblastoma is associated with a global perturbation of chromatin domains.

    PubMed

    Zanon, Carlo; Tonini, Gian Paolo

    2017-11-01

    Chromosome instability has a pivotal role among the hallmarks of cancer, but its transcriptional counterpart is rarely considered a relevant factor in cell destabilization. To examine transcription instability (TIN), we first devised a metric we named TIN index and used it to evaluate TIN on a dataset containing more than 500 neuroblastoma samples. We found that metastatic tumors from high-risk (HR) patients are characterized by significantly different TIN index values compared to low/intermediate-risk patients. Our results indicate that the TIN index is a good predictor of neuroblastoma patient's outcome, and a related TIN index gene signature (TIN-signature) is also able to predict the neuroblastoma patient's outcome with high confidence. Interestingly, we find that TIN-signature genes have a strong positional association with superenhancers in neuroblastoma tumors. Finally, we show that TIN is linked to chromatin structural domains and interferes with their integrity in HR neuroblastoma patients. This novel approach to gene expression analysis broadens the perspective of genome instability investigations to include functional aspects. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  5. Achieving a long-lived high-beta plasma state by energetic beam injection

    NASA Astrophysics Data System (ADS)

    Guo, H. Y.; Binderbauer, M. W.; Tajima, T.; Milroy, R. D.; Steinhauer, L. C.; Yang, X.; Garate, E. G.; Gota, H.; Korepanov, S.; Necas, A.; Roche, T.; Smirnov, A.; Trask, E.

    2015-04-01

    Developing a stable plasma state with high-beta (ratio of plasma to magnetic pressures) is of critical importance for an economic magnetic fusion reactor. At the forefront of this endeavour is the field-reversed configuration. Here we demonstrate the kinetic stabilizing effect of fast ions on a disruptive magneto-hydrodynamic instability, known as a tilt mode, which poses a central obstacle to further field-reversed configuration development, by energetic beam injection. This technique, combined with the synergistic effect of active plasma boundary control, enables a fully stable ultra-high-beta (approaching 100%) plasma with a long lifetime.

  6. General formulation for magnetohydrodynamic wave propagation, fire-hose, and mirror instabilities in Harris-type current sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hau, L.-N.; Department of Physics, National Central University, Jhongli, Taiwan; Lai, Y.-T.

    Harris-type current sheets with the magnetic field model of B-vector=B{sub x}(z)x-caret+B{sub y}(z)y-caret have many important applications to space, astrophysical, and laboratory plasmas for which the temperature or pressure usually exhibits the gyrotropic form of p{r_reversible}=p{sub Parallel-To }b-caretb-caret+p{sub Up-Tack }(I{r_reversible}-b-caretb-caret). Here, p{sub Parallel-To} and p{sub Up-Tack} are, respectively, to be the pressure component along and perpendicular to the local magnetic field, b-caret=B-vector/B. This study presents the general formulation for magnetohydrodynamic (MHD) wave propagation, fire-hose, and mirror instabilities in general Harris-type current sheets. The wave equations are expressed in terms of the four MHD characteristic speeds of fast, intermediate, slow, and cuspmore » waves, and in the local (k{sub Parallel-To },k{sub Up-Tack },z) coordinates. Here, k{sub Parallel-To} and k{sub Up-Tack} are, respectively, to be the wave vector along and perpendicular to the local magnetic field. The parameter regimes for the existence of discrete and resonant modes are identified, which may become unstable at the local fire-hose and mirror instability thresholds. Numerical solutions for discrete eigenmodes are shown for stable and unstable cases. The results have important implications for the anomalous heating and stability of thin current sheets.« less

  7. Transient, polarity-dependent dielectric response in a twisted nematic liquid crystal under very low frequency excitation.

    PubMed

    Krishnamurthy, K S

    2015-09-01

    The electric Freedericksz transition is a second-order quadratic effect, which, in a planarly aligned nematic liquid crystal layer, manifests above a threshold field as a homogeneous symmetric distortion with maximum director-tilt in the midplane. We find that, upon excitation by a low frequency (<0.2Hz) square-wave field, the instability becomes spatially and temporally varying. This is demonstrated using calamitic liquid crystals, initially in the 90°-twisted planar configuration. The distortion occurs close to the negative electrode following each polarity switch and, for low-voltage amplitudes, decays completely in time. We use the elastically favorable geometry of Brochard-Leger walls to establish the location of maximum distortion. Thus, at successive polarity changes, the direction of extension of both annular and open walls switches between the alignment directions at the two substrates. For high voltages, this direction is largely along the midplane director, while remaining marginally oscillatory. These results are broadly understood by taking into account the time-varying and inhomogeneous field conditions that prevail soon after the polarity reverses. Polarity dependence of the instability is traced to the formation of intrinsic double layers that lead to an asymmetry in field distribution in the presence of an external bias. Momentary field elevation near the negative electrode following a voltage sign reversal leads to locally enhanced dielectric and gradient flexoelectric torques, which accounts for the surface-like phenomenon observed at low voltages. These spatiotemporal effects, also found earlier for other instabilities, are generic in nature.

  8. Genomic profiling reveals extensive heterogeneity in somatic DNA copy number aberrations of canine hemangiosarcoma

    PubMed Central

    Thomas, Rachael; Borst, Luke; Rotroff, Daniel; Motsinger-Reif, Alison; Lindblad-Toh, Kerstin; Modiano, Jaime F.; Breen, Matthew

    2017-01-01

    Canine hemangiosarcoma is a highly aggressive vascular neoplasm associated with extensive clinical and anatomical heterogeneity and a grave prognosis. Comprehensive molecular characterization of hemangiosarcoma may identify novel therapeutic targets and advanced clinical management strategies, but there are no published reports of tumor-associated genome instability and disrupted gene dosage in this cancer. We performed genome-wide microarray-based somatic DNA copy number profiling of 75 primary intra-abdominal hemangiosarcomas from five popular dog breeds that are highly predisposed to this disease. The cohort exhibited limited global genomic instability, compared to other canine sarcomas studied to date, and DNA copy number aberrations (CNAs) were predominantly of low amplitude. Recurrent imbalances of several key cancer-associated genes were evident; however the global penetrance of any single CNA was low and no distinct hallmark aberrations were evident. Copy number gains of dog chromosomes 13, 24 and 31, and loss of chromosome 16, were the most recurrent CNAs involving large chromosome regions, but their relative distribution within and between cases suggests they most likely represent passenger aberrations. CNAs involving CDKN2A, VEGFA and the SKI oncogene were identified as potential driver aberrations of hemangiosarcoma development, highlighting potential targets for therapeutic modulation. CNA profiles were broadly conserved between the five breeds, although subregional variation was evident, including a near two-fold lower incidence of VEGFA gain in Golden Retrievers versus other breeds (22% versus 40%). These observations support prior transcriptional studies suggesting that the clinical heterogeneity of this cancer may reflect the existence of multiple, molecularly-distinct subtypes of canine hemangiosarcoma. PMID:24599718

  9. Genomic profiling reveals extensive heterogeneity in somatic DNA copy number aberrations of canine hemangiosarcoma.

    PubMed

    Thomas, Rachael; Borst, Luke; Rotroff, Daniel; Motsinger-Reif, Alison; Lindblad-Toh, Kerstin; Modiano, Jaime F; Breen, Matthew

    2014-09-01

    Canine hemangiosarcoma is a highly aggressive vascular neoplasm associated with extensive clinical and anatomical heterogeneity and a grave prognosis. Comprehensive molecular characterization of hemangiosarcoma may identify novel therapeutic targets and advanced clinical management strategies, but there are no published reports of tumor-associated genome instability and disrupted gene dosage in this cancer. We performed genome-wide microarray-based somatic DNA copy number profiling of 75 primary intra-abdominal hemangiosarcomas from five popular dog breeds that are highly predisposed to this disease. The cohort exhibited limited global genomic instability, compared to other canine sarcomas studied to date, and DNA copy number aberrations (CNAs) were predominantly of low amplitude. Recurrent imbalances of several key cancer-associated genes were evident; however, the global penetrance of any single CNA was low and no distinct hallmark aberrations were evident. Copy number gains of dog chromosomes 13, 24, and 31, and loss of chromosome 16, were the most recurrent CNAs involving large chromosome regions, but their relative distribution within and between cases suggests they most likely represent passenger aberrations. CNAs involving CDKN2A, VEGFA, and the SKI oncogene were identified as potential driver aberrations of hemangiosarcoma development, highlighting potential targets for therapeutic modulation. CNA profiles were broadly conserved between the five breeds, although subregional variation was evident, including a near twofold lower incidence of VEGFA gain in Golden Retrievers versus other breeds (22 versus 40 %). These observations support prior transcriptional studies suggesting that the clinical heterogeneity of this cancer may reflect the existence of multiple, molecularly distinct subtypes of canine hemangiosarcoma.

  10. Roles of SLX1–SLX4, MUS81–EME1, and GEN1 in avoiding genome instability and mitotic catastrophe

    PubMed Central

    Sarbajna, Shriparna; Davies, Derek; West, Stephen C.

    2014-01-01

    The resolution of recombination intermediates containing Holliday junctions (HJs) is critical for genome maintenance and proper chromosome segregation. Three pathways for HJ processing exist in human cells and involve the following enzymes/complexes: BLM–TopoIIIα–RMI1–RMI2 (BTR complex), SLX1–SLX4–MUS81–EME1 (SLX–MUS complex), and GEN1. Cycling cells preferentially use the BTR complex for the removal of double HJs in S phase, with SLX–MUS and GEN1 acting at temporally distinct phases of the cell cycle. Cells lacking SLX–MUS and GEN1 exhibit chromosome missegregation, micronucleus formation, and elevated levels of 53BP1-positive G1 nuclear bodies, suggesting that defects in chromosome segregation lead to the transmission of extensive DNA damage to daughter cells. In addition, however, we found that the effects of SLX4, MUS81, and GEN1 depletion extend beyond mitosis, since genome instability is observed throughout all phases of the cell cycle. This is exemplified in the form of impaired replication fork movement and S-phase progression, endogenous checkpoint activation, chromosome segmentation, and multinucleation. In contrast to SLX4, SLX1, the nuclease subunit of the SLX1–SLX4 structure-selective nuclease, plays no role in the replication-related phenotypes associated with SLX4/MUS81 and GEN1 depletion. These observations demonstrate that the SLX1–SLX4 nuclease and the SLX4 scaffold play divergent roles in the maintenance of genome integrity in human cells. PMID:24831703

  11. Traffic safety for the cell: influence of cyclin-dependent kinase activity on genomic stability.

    PubMed

    Enders, Greg H; Maude, Shannon L

    2006-04-12

    Genomic instability has long been considered a key factor in tumorigenesis. Recent evidence suggests that DNA damage may be widespread in early pre-neoplastic states, with deregulation of cyclin-dependent kinase (Cdk) activity a driving force. Increased Cdk activity may critically reduce licensing of origins of DNA replication, drive re-replication, or mediate overexpression of checkpoint proteins, inducing deleterious cell cycle delay. Conversely, inhibition of Cdk activity may compromise replication efficiency, expression of checkpoint proteins, or activation of DNA repair proteins. These vital functions point to the impact of Cdk activity on the stability of the genome. Insight into these pathways may improve our understanding of tumorigenesis and lead to more rational cancer therapies.

  12. Health Detectives: Uncovering the Mysteries of Disease (LBNL Science at the Theater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissell, Mina; Canaria, Christie; Celnicker, Susan

    In this April 23, 2012 Science at the Theater event, Berkeley Lab scientists discuss how they uncover the mysteries of disease in unlikely places. Speakers and topics include: World-renowned cancer researcher Mina Bissell's pioneering research on the role of the cellular microenvironment in breast cancer has changed the conversation about the disease. How does DNA instability cause disease? To find out, Christie Canaria images neural networks to study disorders such as Huntington's disease. Fruit flies can tell us a lot about ourselves. Susan Celniker explores the fruit fly genome to learn how our genome works. DNA is not destiny. Garymore » Karpen explores how environmental factors shape genome function and disease through epigenetics.« less

  13. Developmental instability analysis of BKD-infected spring Chinook salmon (Onchorhynchus tshawytscha) prior to seawater exposure

    USGS Publications Warehouse

    Campbell, W.B.; Emlen, J.M.

    1997-01-01

    Stress in organisms results in energy dissipation, making developmental pathways less stable. Effects of chronic stress, manifested as small random departures from phenotypic symmetry, reflect developmental instability, are considered to be epigenetic and an effect produced by compromised fitness. Instability is detectable and effectively interpreted among sites or populations if samples are collected randomly, the stressor is present throughout character development, characters are identified accurately and excessive mortality does not erase the existence of developmental instability. Bacterial kidney disease (BKD) is a chronic systemic disease in salmonids that, after vertical transmission from parent to egg, persists and spreads throughout ontogeny, potentially affecting developmental processes. Because levels of progeny infection reflect parental infection levels, groups of offspring from parents with high and low levels of BKD infection can be compared to assess the effects of disease-mediated developmental stress. Analyses of fluctuating asymmetry in five bilateral characters were inconclusive, but significant reductions in the proportion of unusable scales, in the number of circulus errors, and in the directional asymmetry of branchiostegal rays were observed in fish from the high-BKD group. This group also contained individuals of significantly larger size. These results are opposite to those expected from traditional developmental instability theory in suggesting that surviving high-BKD fish have greater developmental stability. This reversal appears to be produced by selective mortality having a greater effect than sublethal stress in altering developmental instability patterns. These results are discussed with respect to size selectivity, heterosis and the assumptions supporting developmental instability as a tool for detecting chronic sublethal stress.

  14. Reverse Genetics for Newcastle Disease Virus as a Vaccine Vector.

    PubMed

    Kim, Shin-Hee; Samal, Siba K

    2018-02-22

    Newcastle disease virus (NDV) is an economically important pathogen in the poultry industry worldwide. Recovery of infectious NDV from cDNA using reverse genetics has made it possible to manipulate the genome of NDV. This has greatly contributed to our understanding of the molecular biology and pathogenesis of NDV. Furthermore, NDV has modular genome and accommodates insertion of a foreign gene as a transcriptional unit, thus enabling NDV as a vaccine vector against diseases of humans and animals. Avirulent NDV strains (e.g., LaSota and B1) have been commonly used as vaccine vectors. In this protocol, we have described reverse genetics of NDV to be used as a vaccine vector by exemplifying the recovery of NDV vectored avian influenza virus vaccine. Specifically, cloning and recovery of NDV expressing the hemagglutinin protein of highly pathogenic influenza virus were explained. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.

  15. Arthroscopic management of posterior instability: evolution of technique and results.

    PubMed

    Savoie, Felix H; Holt, M Shaun; Field, Larry D; Ramsey, J Randall

    2008-04-01

    The purpose of this study was to evaluate the effectiveness of arthroscopic posterior shoulder reconstruction. We treated 136 shoulders in 131 patients with a diagnosis of primary posterior instability who failed 6 months of vigorous rehabilitation by operative stabilization between 1989 and 2001. Inclusion criterion was primary posterior instability that failed an extensive rehabilitative program with functional impairment and pain. Exclusion criterion was less than 12 months of follow-up and Suretac (Smith & Nephew, Andover, MA) or laser stabilization, leaving 92 shoulders in 90 patients available for the study (69 male, 21 female). Follow-up ranged from 12 to 132 months (average, 28 months). Each patient underwent diagnostic arthroscopy and surgical repair at the same time using one of several primary procedures. The procedure used was based on the pathologic entity noted at the time of surgery. At an average follow-up of 28 months, 97% of the shoulders were stable and considered a success based on the Neer-Foster rating scale. Posterior pathology varied, and a reverse Bankart lesion alone was found 51% of the time, a stretched posterior capsule 67% of the time, and a combination of a reverse Bankart lesion and capsular stretching 16% of the time. The rotator interval was obviously damaged in 61% of cases. Multiple accompanying lesions were found, including anterior-superior labral tears and SLAP tears (20%), superior glenohumeral ligament injury (7%), middle glenohumeral ligament injury (38%), anteroinferior glenohumaral ligament injury (37%), and an enlarged axillary pouch (20%). No essential lesion is present for posterior instability. Multiple varied pathologies will be present in a shoulder presenting with posterior instability. Arthroscopic surgery allows inspection of the joint and anatomic-specific repairs based on pathology. Careful attention to all the supporting structures of the shoulder, including the rotator interval, the anterior-superior labrum, and its attached superior glenohumeral ligament, the coracohumeral ligament, the inferior glenohumeral ligament complex, and the infraspinatus, in addition to the posterior labrum and capsule, allows excellent outcomes to be achieved with arthroscopic posterior reconstruction techniques. Level IV, therapeutic case series.

  16. Allograft-prosthetic composite reverse total shoulder arthroplasty for reconstruction of proximal humerus tumor resections.

    PubMed

    King, Joseph J; Nystrom, Lukas M; Reimer, Nickolas B; Gibbs, C Parker; Scarborough, Mark T; Wright, Thomas W

    2016-01-01

    Proximal humerus reconstructions after resection of tumors are challenging. Early success of the reverse shoulder arthroplasty for reconstructions has recently been reported. The reverse allograft-prosthetic composite offers the advantage of improved glenohumeral stability compared with hemiarthroplasty for proximal humeral reconstructions as it uses the deltoid for stability. This article describes the technique for treating proximal humeral tumors, including preoperative planning, biopsy principles, resection pearls, soft tissue tensioning, and specifics about reconstruction using the reverse allograft-prosthetic composite. Two cases are presented along with the functional outcomes with use of this technique. Biomechanical considerations during reconstruction are reviewed, including techniques to improve the deltoid compression force. Reported instability rates are less with reverse shoulder arthroplasty reconstruction as opposed to hemiarthroplasty or total shoulder arthroplasty reconstructions of tumor resections. Reported functional outcomes are promising for the reverse allograft-prosthetic composite reconstructions, although complications are reported. Reverse allograft-prosthetic composites are a promising option for proximal humeral reconstructions, although nonunion of the allograft-host bone junction continues to be a challenge for this technique. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  17. A Tool for Multiple Targeted Genome Deletions that Is Precise, Scar-Free, and Suitable for Automation.

    PubMed

    Aubrey, Wayne; Riley, Michael C; Young, Michael; King, Ross D; Oliver, Stephen G; Clare, Amanda

    2015-01-01

    Many advances in synthetic biology require the removal of a large number of genomic elements from a genome. Most existing deletion methods leave behind markers, and as there are a limited number of markers, such methods can only be applied a fixed number of times. Deletion methods that recycle markers generally are either imprecise (remove untargeted sequences), or leave scar sequences which can cause genome instability and rearrangements. No existing marker recycling method is automation-friendly. We have developed a novel openly available deletion tool that consists of: 1) a method for deleting genomic elements that can be repeatedly used without limit, is precise, scar-free, and suitable for automation; and 2) software to design the method's primers. Our tool is sequence agnostic and could be used to delete large numbers of coding sequences, promoter regions, transcription factor binding sites, terminators, etc in a single genome. We have validated our tool on the deletion of non-essential open reading frames (ORFs) from S. cerevisiae. The tool is applicable to arbitrary genomes, and we provide primer sequences for the deletion of: 90% of the ORFs from the S. cerevisiae genome, 88% of the ORFs from S. pombe genome, and 85% of the ORFs from the L. lactis genome.

  18. A Tool for Multiple Targeted Genome Deletions that Is Precise, Scar-Free, and Suitable for Automation

    PubMed Central

    Aubrey, Wayne; Riley, Michael C.; Young, Michael; King, Ross D.; Oliver, Stephen G.; Clare, Amanda

    2015-01-01

    Many advances in synthetic biology require the removal of a large number of genomic elements from a genome. Most existing deletion methods leave behind markers, and as there are a limited number of markers, such methods can only be applied a fixed number of times. Deletion methods that recycle markers generally are either imprecise (remove untargeted sequences), or leave scar sequences which can cause genome instability and rearrangements. No existing marker recycling method is automation-friendly. We have developed a novel openly available deletion tool that consists of: 1) a method for deleting genomic elements that can be repeatedly used without limit, is precise, scar-free, and suitable for automation; and 2) software to design the method’s primers. Our tool is sequence agnostic and could be used to delete large numbers of coding sequences, promoter regions, transcription factor binding sites, terminators, etc in a single genome. We have validated our tool on the deletion of non-essential open reading frames (ORFs) from S. cerevisiae. The tool is applicable to arbitrary genomes, and we provide primer sequences for the deletion of: 90% of the ORFs from the S. cerevisiae genome, 88% of the ORFs from S. pombe genome, and 85% of the ORFs from the L. lactis genome. PMID:26630677

  19. Dynamic changes of rice blast fungus in the USA through six decades

    USDA-ARS?s Scientific Manuscript database

    Rice blast disease caused by the fungus Magnaporthe oryzae is a serious rice disease in the USA and worldwide. M. oryzae is highly adaptive and changeable due to the instability of its genome and resistance genes which are effective only when M. oryzae isolates contain the cognate avirulence (AVR) g...

  20. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    One postdoctoral position is available immediately to join the ongoing laboratory research program aimed at defining the mechanism that ensures chromosome stability in normal cells, stem cells as well as in pre-cancerous cells. This research project aims to provide critical insight into the molecular pathways that cause genome instability and promote tumorigenesis. The ideal

  1. Do Deregulated Cas Proteins Induce Genomic Instability In Early Stage Ovarian Cancer?

    DTIC Science & Technology

    2007-12-01

    3457–3467. Ezratty, E.J., Partridge, M.A., and Gundersen, G.G. (2005). Microtu- bule -induced focal adhesion disassembly is mediated by dynamin and... bule -associated deacetylase. Nature 417, 455–458. Iomini, C., Tejada, K., Mo, W., Vaananen, H., and Piperno, G. (2004). Primary cilia of human

  2. Mismatch Repair Balances Leading and Lagging Strand DNA Replication Fidelity

    DTIC Science & Technology

    2012-10-11

    mismatched base stacks with a conserved phenylalanine in Msh6, and/or (iii) DNA flexibility, since MutSa-bound mismatched DNA is kinked, and a...AB, Watt DL , Watts BE, et al. (2010) Genome instability due to ribonucleotide incorporation into DNA. Nat Chem Biol 6: 774–781. 24. Poloumienko A

  3. Chromatin remodeller SMARCA4 recruits topoisomerase 1 and suppresses transcription-associated genomic instability.

    PubMed

    Husain, Afzal; Begum, Nasim A; Taniguchi, Takako; Taniguchi, Hisaaki; Kobayashi, Maki; Honjo, Tasuku

    2016-02-04

    Topoisomerase 1, an enzyme that relieves superhelical tension, is implicated in transcription-associated mutagenesis and genome instability-associated with neurodegenerative diseases as well as activation-induced cytidine deaminase. From proteomic analysis of TOP1-associated proteins, we identify SMARCA4, an ATP-dependent chromatin remodeller; FACT, a histone chaperone; and H3K4me3, a transcriptionally active chromatin marker. Here we show that SMARCA4 knockdown in a B-cell line decreases TOP1 recruitment to chromatin, and leads to increases in Igh/c-Myc chromosomal translocations, variable and switch region mutations and negative superhelicity, all of which are also observed in response to TOP1 knockdown. In contrast, FACT knockdown inhibits association of TOP1 with H3K4me3, and severely reduces DNA cleavage and Igh/c-Myc translocations, without significant effect on TOP1 recruitment to chromatin. We thus propose that SMARCA4 is involved in the TOP1 recruitment to general chromatin, whereas FACT is required for TOP1 binding to H3K4me3 at non-B DNA containing chromatin for the site-specific cleavage.

  4. The homologous recombination machinery modulates the formation of RNA–DNA hybrids and associated chromosome instability

    PubMed Central

    Wahba, Lamia; Gore, Steven K; Koshland, Douglas

    2013-01-01

    Genome instability in yeast and mammals is caused by RNA–DNA hybrids that form as a result of defects in different aspects of RNA biogenesis. We report that in yeast mutants defective for transcription repression and RNA degradation, hybrid formation requires Rad51p and Rad52p. These proteins normally promote DNA–DNA strand exchange in homologous recombination. We suggest they also directly promote the DNA–RNA strand exchange necessary for hybrid formation since we observed accumulation of Rad51p at a model hybrid-forming locus. Furthermore, we provide evidence that Rad51p mediates hybridization of transcripts to homologous chromosomal loci distinct from their site of synthesis. This hybrid formation in trans amplifies the genome-destabilizing potential of RNA and broadens the exclusive co-transcriptional models that pervade the field. The deleterious hybrid-forming activity of Rad51p is counteracted by Srs2p, a known Rad51p antagonist. Thus Srs2p serves as a novel anti-hybrid mechanism in vivo. DOI: http://dx.doi.org/10.7554/eLife.00505.001 PMID:23795288

  5. DNA Replication Origins and Fork Progression at Mammalian Telomeres

    PubMed Central

    Higa, Mitsunori; Fujita, Masatoshi; Yoshida, Kazumasa

    2017-01-01

    Telomeres are essential chromosomal regions that prevent critical shortening of linear chromosomes and genomic instability in eukaryotic cells. The bulk of telomeric DNA is replicated by semi-conservative DNA replication in the same way as the rest of the genome. However, recent findings revealed that replication of telomeric repeats is a potential cause of chromosomal instability, because DNA replication through telomeres is challenged by the repetitive telomeric sequences and specific structures that hamper the replication fork. In this review, we summarize current understanding of the mechanisms by which telomeres are faithfully and safely replicated in mammalian cells. Various telomere-associated proteins ensure efficient telomere replication at different steps, such as licensing of replication origins, passage of replication forks, proper fork restart after replication stress, and dissolution of post-replicative structures. In particular, shelterin proteins have central roles in the control of telomere replication. Through physical interactions, accessory proteins are recruited to maintain telomere integrity during DNA replication. Dormant replication origins and/or homology-directed repair may rescue inappropriate fork stalling or collapse that can cause defects in telomere structure and functions. PMID:28350373

  6. Use of propidium monoazide in reverse transcriptase PCR to distinguish between infectious and noninfectious enteric viruses in water samples

    EPA Science Inventory

    Human enteric viruses can be present in untreated and inadequately treated drinking water. Molecular methods, such as the reverse transcriptase PCR (RT-PCR), can detect viral genomes in a few hours, but they cannot distinguish between infectious and noninfectious viruses. Since o...

  7. A Predictive Approach to Network Reverse-Engineering

    NASA Astrophysics Data System (ADS)

    Wiggins, Chris

    2005-03-01

    A central challenge of systems biology is the ``reverse engineering" of transcriptional networks: inferring which genes exert regulatory control over which other genes. Attempting such inference at the genomic scale has only recently become feasible, via data-intensive biological innovations such as DNA microrrays (``DNA chips") and the sequencing of whole genomes. In this talk we present a predictive approach to network reverse-engineering, in which we integrate DNA chip data and sequence data to build a model of the transcriptional network of the yeast S. cerevisiae capable of predicting the response of genes in unseen experiments. The technique can also be used to extract ``motifs,'' sequence elements which act as binding sites for regulatory proteins. We validate by a number of approaches and present comparison of theoretical prediction vs. experimental data, along with biological interpretations of the resulting model. En route, we will illustrate some basic notions in statistical learning theory (fitting vs. over-fitting; cross- validation; assessing statistical significance), highlighting ways in which physicists can make a unique contribution in data- driven approaches to reverse engineering.

  8. Overexpression of the base excision repair NTHL1 glycosylase causes genomic instability and early cellular hallmarks of cancer

    PubMed Central

    Limpose, Kristin L; Trego, Kelly S; Li, Zhentian; Leung, Sara W; Sarker, Altaf H; Shah, Jason A; Ramalingam, Suresh S; Werner, Erica M; Dynan, William S; Cooper, Priscilla K; Corbett, Anita H; Doetsch, Paul W

    2018-01-01

    Abstract Base excision repair (BER), which is initiated by DNA N-glycosylase proteins, is the frontline for repairing potentially mutagenic DNA base damage. The NTHL1 glycosylase, which excises DNA base damage caused by reactive oxygen species, is thought to be a tumor suppressor. However, in addition to NTHL1 loss-of-function mutations, our analysis of cancer genomic datasets reveals that NTHL1 frequently undergoes amplification or upregulation in some cancers. Whether NTHL1 overexpression could contribute to cancer phenotypes has not yet been explored. To address the functional consequences of NTHL1 overexpression, we employed transient overexpression. Both NTHL1 and a catalytically-dead NTHL1 (CATmut) induce DNA damage and genomic instability in non-transformed human bronchial epithelial cells (HBEC) when overexpressed. Strikingly, overexpression of either NTHL1 or CATmut causes replication stress signaling and a decrease in homologous recombination (HR). HBEC cells that overexpress NTHL1 or CATmut acquire the ability to grow in soft agar and exhibit loss of contact inhibition, suggesting that a mechanism independent of NTHL1 catalytic activity contributes to acquisition of cancer-related cellular phenotypes. We provide evidence that NTHL1 interacts with the multifunctional DNA repair protein XPG suggesting that interference with HR is a possible mechanism that contributes to acquisition of early cellular hallmarks of cancer. PMID:29522130

  9. Replicative age induces mitotic recombination in the ribosomal RNA gene cluster of Saccharomyces cerevisiae.

    PubMed

    Lindstrom, Derek L; Leverich, Christina K; Henderson, Kiersten A; Gottschling, Daniel E

    2011-03-01

    Somatic mutations contribute to the development of age-associated disease. In earlier work, we found that, at high frequency, aging Saccharomyces cerevisiae diploid cells produce daughters without mitochondrial DNA, leading to loss of respiration competence and increased loss of heterozygosity (LOH) in the nuclear genome. Here we used the recently developed Mother Enrichment Program to ask whether aging cells that maintain the ability to produce respiration-competent daughters also experience increased genomic instability. We discovered that this population exhibits a distinct genomic instability phenotype that primarily affects the repeated ribosomal RNA gene array (rDNA array). As diploid cells passed their median replicative life span, recombination rates between rDNA arrays on homologous chromosomes progressively increased, resulting in mutational events that generated LOH at >300 contiguous open reading frames on the right arm of chromosome XII. We show that, while these recombination events were dependent on the replication fork block protein Fob1, the aging process that underlies this phenotype is Fob1-independent. Furthermore, we provide evidence that this aging process is not driven by mechanisms that modulate rDNA recombination in young cells, including loss of cohesion within the rDNA array or loss of Sir2 function. Instead, we suggest that the age-associated increase in rDNA recombination is a response to increasing DNA replication stress generated in aging cells.

  10. Regulation of L1 expression and retrotransposition by melatonin and its receptor: implications for cancer risk associated with light exposure at night

    PubMed Central

    deHaro, Dawn; Kines, Kristine J.; Sokolowski, Mark; Dauchy, Robert T.; Streva, Vincent A.; Hill, Steven M.; Hanifin, John P.; Brainard, George C.; Blask, David E.; Belancio, Victoria P.

    2014-01-01

    Expression of long interspersed element-1 (L1) is upregulated in many human malignancies. L1 can introduce genomic instability via insertional mutagenesis and DNA double-strand breaks, both of which may promote cancer. Light exposure at night, a recently recognized carcinogen, is associated with an increased risk of cancer in shift workers. We report that melatonin receptor 1 inhibits mobilization of L1 in cultured cells through downregulation of L1 mRNA and ORF1 protein. The addition of melatonin receptor antagonists abolishes the MT1 effect on retrotransposition in a dose-dependent manner. Furthermore, melatonin-rich, but not melatonin-poor, human blood collected at different times during the circadian cycle suppresses endogenous L1 mRNA during in situ perfusion of tissue-isolated xenografts of human cancer. Supplementation of human blood with exogenous melatonin or melatonin receptor antagonist during the in situ perfusion establishes a receptor-mediated action of melatonin on L1 expression. Combined tissue culture and in vivo data support that environmental light exposure of the host regulates expression of L1 elements in tumors. Our data imply that light-induced suppression of melatonin production in shift workers may increase L1-induced genomic instability in their genomes and suggest a possible connection between L1 activity and increased incidence of cancer associated with circadian disruption. PMID:24914052

  11. Unstable genomes elevate transcriptome dynamics

    PubMed Central

    Stevens, Joshua B.; Liu, Guo; Abdallah, Batoul Y.; Horne, Steven D.; Ye, Karen J.; Bremer, Steven W.; Ye, Christine J.; Krawetz, Stephen A.; Heng, Henry H.

    2015-01-01

    The challenge of identifying common expression signatures in cancer is well known, however the reason behind this is largely unclear. Traditionally variation in expression signatures has been attributed to technological problems, however recent evidence suggests that chromosome instability (CIN) and resultant karyotypic heterogeneity may be a large contributing factor. Using a well-defined model of immortalization, we systematically compared the pattern of genome alteration and expression dynamics during somatic evolution. Co-measurement of global gene expression and karyotypic alteration throughout the immortalization process reveals that karyotype changes influence gene expression as major structural and numerical karyotypic alterations result in large gene expression deviation. Replicate samples from stages with stable genomes are more similar to each other than are replicate samples with karyotypic heterogeneity. Karyotypic and gene expression change during immortalization is dynamic as each stage of progression has a unique expression pattern. This was further verified by comparing global expression in two replicates grown in one flask with known karyotypes. Replicates with higher karyotypic instability were found to be less similar than replicates with stable karyotypes. This data illustrates the karyotype, transcriptome, and transcriptome determined pathways are in constant flux during somatic cellular evolution (particularly during the macroevolutionary phase) and this flux is an inextricable feature of CIN and essential for cancer formation. The findings presented here underscore the importance of understanding the evolutionary process of cancer in order to design improved treatment modalities. PMID:24122714

  12. Flutter and oscillating air-force calculations for an airfoil in two-dimensional supersonic flow

    NASA Technical Reports Server (NTRS)

    Garrick, I E; Rubinow, S I

    1946-01-01

    A connected account is given of the Possio theory of non-stationary flow for small disturbances in a two-dimensional supersonic flow and of its application to the determination of the aerodynamic forces on an oscillating airfoil. Further application is made to the problem of wing flutter in the degrees of freedom - torsion, bending, and aileron rotations. Numerical tables for flutter calculations are provided for various values of the Mach number greater than unity. Results for bending-torsion wing flutter are shown in figures and are discussed. The static instabilities of divergence and aileron reversal are examined as is a one-degree-of-freedom case of torsional oscillatory instability.

  13. Transposable Elements in Human Cancer: Causes and Consequences of Deregulation.

    PubMed

    Anwar, Sumadi Lukman; Wulaningsih, Wahyu; Lehmann, Ulrich

    2017-05-04

    Transposable elements (TEs) comprise nearly half of the human genome and play an essential role in the maintenance of genomic stability, chromosomal architecture, and transcriptional regulation. TEs are repetitive sequences consisting of RNA transposons, DNA transposons, and endogenous retroviruses that can invade the human genome with a substantial contribution in human evolution and genomic diversity. TEs are therefore firmly regulated from early embryonic development and during the entire course of human life by epigenetic mechanisms, in particular DNA methylation and histone modifications. The deregulation of TEs has been reported in some developmental diseases, as well as for different types of human cancers. To date, the role of TEs, the mechanisms underlying TE reactivation, and the interplay with DNA methylation in human cancers remain largely unexplained. We reviewed the loss of epigenetic regulation and subsequent genomic instability, chromosomal aberrations, transcriptional deregulation, oncogenic activation, and aberrations of non-coding RNAs as the potential mechanisms underlying TE deregulation in human cancers.

  14. Transposable Elements in Human Cancer: Causes and Consequences of Deregulation

    PubMed Central

    Anwar, Sumadi Lukman; Wulaningsih, Wahyu; Lehmann, Ulrich

    2017-01-01

    Transposable elements (TEs) comprise nearly half of the human genome and play an essential role in the maintenance of genomic stability, chromosomal architecture, and transcriptional regulation. TEs are repetitive sequences consisting of RNA transposons, DNA transposons, and endogenous retroviruses that can invade the human genome with a substantial contribution in human evolution and genomic diversity. TEs are therefore firmly regulated from early embryonic development and during the entire course of human life by epigenetic mechanisms, in particular DNA methylation and histone modifications. The deregulation of TEs has been reported in some developmental diseases, as well as for different types of human cancers. To date, the role of TEs, the mechanisms underlying TE reactivation, and the interplay with DNA methylation in human cancers remain largely unexplained. We reviewed the loss of epigenetic regulation and subsequent genomic instability, chromosomal aberrations, transcriptional deregulation, oncogenic activation, and aberrations of non-coding RNAs as the potential mechanisms underlying TE deregulation in human cancers. PMID:28471386

  15. Elucidating the genomic architecture of Asian EGFR-mutant lung adenocarcinoma through multi-region exome sequencing.

    PubMed

    Nahar, Rahul; Zhai, Weiwei; Zhang, Tong; Takano, Angela; Khng, Alexis J; Lee, Yin Yeng; Liu, Xingliang; Lim, Chong Hee; Koh, Tina P T; Aung, Zaw Win; Lim, Tony Kiat Hon; Veeravalli, Lavanya; Yuan, Ju; Teo, Audrey S M; Chan, Cheryl X; Poh, Huay Mei; Chua, Ivan M L; Liew, Audrey Ann; Lau, Dawn Ping Xi; Kwang, Xue Lin; Toh, Chee Keong; Lim, Wan-Teck; Lim, Bing; Tam, Wai Leong; Tan, Eng-Huat; Hillmer, Axel M; Tan, Daniel S W

    2018-01-15

    EGFR-mutant lung adenocarcinomas (LUAD) display diverse clinical trajectories and are characterized by rapid but short-lived responses to EGFR tyrosine kinase inhibitors (TKIs). Through sequencing of 79 spatially distinct regions from 16 early stage tumors, we show that despite low mutation burdens, EGFR-mutant Asian LUADs unexpectedly exhibit a complex genomic landscape with frequent and early whole-genome doubling, aneuploidy, and high clonal diversity. Multiple truncal alterations, including TP53 mutations and loss of CDKN2A and RB1, converge on cell cycle dysregulation, with late sector-specific high-amplitude amplifications and deletions that potentially beget drug resistant clones. We highlight the association between genomic architecture and clinical phenotypes, such as co-occurring truncal drivers and primary TKI resistance. Through comparative analysis with published smoking-related LUAD, we postulate that the high intra-tumor heterogeneity observed in Asian EGFR-mutant LUAD may be contributed by an early dominant driver, genomic instability, and low background mutation rates.

  16. Efficient generation of transgenic cattle using the DNA transposon and their analysis by next-generation sequencing

    PubMed Central

    Yum, Soo-Young; Lee, Song-Jeon; Kim, Hyun-Min; Choi, Woo-Jae; Park, Ji-Hyun; Lee, Won-Wu; Kim, Hee-Soo; Kim, Hyeong-Jong; Bae, Seong-Hun; Lee, Je-Hyeong; Moon, Joo-Yeong; Lee, Ji-Hyun; Lee, Choong-Il; Son, Bong-Jun; Song, Sang-Hoon; Ji, Su-Min; Kim, Seong-Jin; Jang, Goo

    2016-01-01

    Here, we efficiently generated transgenic cattle using two transposon systems (Sleeping Beauty and Piggybac) and their genomes were analyzed by next-generation sequencing (NGS). Blastocysts derived from microinjection of DNA transposons were selected and transferred into recipient cows. Nine transgenic cattle have been generated and grown-up to date without any health issues except two. Some of them expressed strong fluorescence and the transgene in the oocytes from a superovulating one were detected by PCR and sequencing. To investigate genomic variants by the transgene transposition, whole genomic DNA were analyzed by NGS. We found that preferred transposable integration (TA or TTAA) was identified in their genome. Even though multi-copies (i.e. fifteen) were confirmed, there was no significant difference in genome instabilities. In conclusion, we demonstrated that transgenic cattle using the DNA transposon system could be efficiently generated, and all those animals could be a valuable resource for agriculture and veterinary science. PMID:27324781

  17. Genomic and oncogenic preference of HBV integration in hepatocellular carcinoma

    PubMed Central

    Zhao, Ling-Hao; Liu, Xiao; Yan, He-Xin; Li, Wei-Yang; Zeng, Xi; Yang, Yuan; Zhao, Jie; Liu, Shi-Ping; Zhuang, Xue-Han; Lin, Chuan; Qin, Chen-Jie; Zhao, Yi; Pan, Ze-Ya; Huang, Gang; Liu, Hui; Zhang, Jin; Wang, Ruo-Yu; Yang, Yun; Wen, Wen; Lv, Gui-Shuai; Zhang, Hui-Lu; Wu, Han; Huang, Shuai; Wang, Ming-Da; Tang, Liang; Cao, Hong-Zhi; Wang, Ling; Lee, Tin-Lap; Jiang, Hui; Tan, Ye-Xiong; Yuan, Sheng-Xian; Hou, Guo-Jun; Tao, Qi-Fei; Xu, Qin-Guo; Zhang, Xiu-Qing; Wu, Meng-Chao; Xu, Xun; Wang, Jun; Yang, Huan-Ming; Zhou, Wei-Ping; Wang, Hong-Yang

    2016-01-01

    Hepatitis B virus (HBV) can integrate into the human genome, contributing to genomic instability and hepatocarcinogenesis. Here by conducting high-throughput viral integration detection and RNA sequencing, we identify 4,225 HBV integration events in tumour and adjacent non-tumour samples from 426 patients with HCC. We show that HBV is prone to integrate into rare fragile sites and functional genomic regions including CpG islands. We observe a distinct pattern in the preferential sites of HBV integration between tumour and non-tumour tissues. HBV insertional sites are significantly enriched in the proximity of telomeres in tumours. Recurrent HBV target genes are identified with few that overlap. The overall HBV integration frequency is much higher in tumour genomes of males than in females, with a significant enrichment of integration into chromosome 17. Furthermore, a cirrhosis-dependent HBV integration pattern is observed, affecting distinct targeted genes. Our data suggest that HBV integration has a high potential to drive oncogenic transformation. PMID:27703150

  18. Enzymatic Removal of Ribonucleotides from DNA Is Essential for Mammalian Genome Integrity and Development

    PubMed Central

    Reijns, Martin A.M.; Rabe, Björn; Rigby, Rachel E.; Mill, Pleasantine; Astell, Katy R.; Lettice, Laura A.; Boyle, Shelagh; Leitch, Andrea; Keighren, Margaret; Kilanowski, Fiona; Devenney, Paul S.; Sexton, David; Grimes, Graeme; Holt, Ian J.; Hill, Robert E.; Taylor, Martin S.; Lawson, Kirstie A.; Dorin, Julia R.; Jackson, Andrew P.

    2012-01-01

    Summary The presence of ribonucleotides in genomic DNA is undesirable given their increased susceptibility to hydrolysis. Ribonuclease (RNase) H enzymes that recognize and process such embedded ribonucleotides are present in all domains of life. However, in unicellular organisms such as budding yeast, they are not required for viability or even efficient cellular proliferation, while in humans, RNase H2 hypomorphic mutations cause the neuroinflammatory disorder Aicardi-Goutières syndrome. Here, we report that RNase H2 is an essential enzyme in mice, required for embryonic growth from gastrulation onward. RNase H2 null embryos accumulate large numbers of single (or di-) ribonucleotides embedded in their genomic DNA (>1,000,000 per cell), resulting in genome instability and a p53-dependent DNA-damage response. Our findings establish RNase H2 as a key mammalian genome surveillance enzyme required for ribonucleotide removal and demonstrate that ribonucleotides are the most commonly occurring endogenous nucleotide base lesion in replicating cells. PMID:22579044

  19. Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis

    PubMed Central

    Patch, Ann-Marie; Bailey, Peter; Newell, Felicity; Holmes, Oliver; Fink, J. Lynn; Quinn, Michael C.J.; Tang, Yue Hang; Lampe, Guy; Quek, Kelly; Loffler, Kelly A.; Manning, Suzanne; Idrisoglu, Senel; Miller, David; Xu, Qinying; Waddell, Nick; Wilson, Peter J.; Bruxner, Timothy J.C.; Christ, Angelika N.; Harliwong, Ivon; Nourse, Craig; Nourbakhsh, Ehsan; Anderson, Matthew; Kazakoff, Stephen; Leonard, Conrad; Wood, Scott; Simpson, Peter T.; Reid, Lynne E.; Krause, Lutz; Hussey, Damian J.; Watson, David I.; Lord, Reginald V.; Nancarrow, Derek; Phillips, Wayne A.; Gotley, David; Smithers, B. Mark; Whiteman, David C.; Hayward, Nicholas K.; Campbell, Peter J.; Pearson, John V.; Grimmond, Sean M.; Barbour, Andrew P.

    2015-01-01

    Oesophageal adenocarcinoma (EAC) incidence is rapidly increasing in Western countries. A better understanding of EAC underpins efforts to improve early detection and treatment outcomes. While large EAC exome sequencing efforts to date have found recurrent loss-of-function mutations, oncogenic driving events have been underrepresented. Here we use a combination of whole-genome sequencing (WGS) and single-nucleotide polymorphism-array profiling to show that genomic catastrophes are frequent in EAC, with almost a third (32%, n = 40/123) undergoing chromothriptic events. WGS of 22 EAC cases show that catastrophes may lead to oncogene amplification through chromothripsis-derived double-minute chromosome formation (MYC and MDM2) or breakage-fusion-bridge (KRAS, MDM2 and RFC3). Telomere shortening is more prominent in EACs bearing localized complex rearrangements. Mutational signature analysis also confirms that extreme genomic instability in EAC can be driven by somatic BRCA2 mutations. These findings suggest that genomic catastrophes have a significant role in the malignant transformation of EAC. PMID:25351503

  20. Transcriptional activation of short interspersed elements by DNA-damaging agents.

    PubMed

    Rudin, C M; Thompson, C B

    2001-01-01

    Short interspersed elements (SINEs), typified by the human Alu repeat, are RNA polymerase III (pol III)-transcribed sequences that replicate within the genome through an RNA intermediate. Replication of SINEs has been extensive in mammalian evolution: an estimated 5% of the human genome consists of Alu repeats. The mechanisms regulating transcription, reverse transcription, and reinsertion of SINE elements in genomic DNA are poorly understood. Here we report that expression of murine SINE transcripts of both the B1 and B2 classes is strongly upregulated after prolonged exposure to cisplatin, etoposide, or gamma radiation. A similar induction of Alu transcripts in human cells occurs under these conditions. This induction is not due to a general upregulation of pol III activity in either species. Genotoxic treatment of murine cells containing an exogenous human Alu element induced Alu transcription. Concomitant with the increased expression of SINEs, an increase in cellular reverse transcriptase was observed after exposure to these same DNA-damaging agents. These findings suggest that genomic damage may be an important activator of SINEs, and that SINE mobility may contribute to secondary malignancy after exposure to DNA-damaging chemotherapy.

Top